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Abstract

Pretrained transformer-based language models have achieved state-of-the-art results on various

Natural Language Processing (NLP) tasks. These models can be fine-tuned on a range of

downstream tasks with minimalistic modifications. However, fine-tuning a language model

may result in the problem of catastrophic forgetting and tend to overfit on smaller training

datasets. Therefore, gradually unfreezing the pretrained weights is a possible approach to avoid

catastrophic forgetting of the knowledge learnt from the source task. Multi-task fine-tuning is

an intermediate step on a high-resource dataset that yields good results for low-resource tasks.

In this project, we will be investigating the strategies of multi-task fine-tuning and gradual

unfreezing on DistilBERT, which have not yet been applied for biomedical domain. First, we

explore whether DistilBERT improves the accuracy of a low-resource dataset, BioASQ, with

question answering (QA) task as our NLP use-case. Second, we investigate the effect that

gradual unfreezing has on the performance of DistilBERT. We observe that despite being 40%

smaller and without any domain-specific pretraining, DistilBERT achieves comparable results

to a larger model, BERT on smaller BioASQ dataset. However, we observed that gradually

unfreezing DistilBERT has no significant impact on the results of our QA task in comparison to

standard non-gradual fine-tuning.
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1
Introduction

Humans have the inherent ability to transfer the skills learned from one task to another related

task. For example, the road rules learnt when learning to ride a bike can be reused for driving

a car. This transfer of knowledge across tasks has relieved us from the hassle of acquiring the

knowledge from scratch each time. Along similar lines, machine learning has also transitioned

from the isolated paradigm of learning to transferring knowledge across tasks [7, 27].

In the context of Natural Language Processing (NLP), pretrained language models enable

this transfer of knowledge. Language models that are pretrained on vast volumes of data have

become a norm these days [8, 24, 28]. These pretrained models can be fine-tuned for a variety

of tasks with minor modifications like adding a single additional output layer instead of major

task-specific architectural changes. The fine-tuning techniques are quintessential for better

adaptation of the language model and to learn the distributions of target tasks. Different fine-

tuning techniques like gradual unfreezing, discriminative fine-tuning have yielded improvements

on various NLP tasks [17].

Language models are pretrained on general language and adapted to the target tasks of

1
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different domains. These domain-specific tasks have the universal problem of limited availability

of manually labelled data. For better adaptation to these target tasks, additional signal in the

form of multi-task fine-tuning has improved the quality of different systems [60, 11, 19]. This

intermediary step of fine-tuning on a large related dataset prior to fine-tuning on target data has

proven to be effective on various NLP tasks.

In this thesis, we focus on a low-resource dataset from the biomedical domain with question

answering task as our NLP use case. We apply and investigate the techniques of gradual

unfreezing and multi-task fine-tuning on the pretrained transformer-based language model,

DistilBERT. We are also interested in understanding how a compact language model, DistilBERT,

adapts to both the low-resource BioASQ dataset and the fine tuning techniques mentioned above.

1.1 Objectives

Our primary goal is to improve the accuracy of biomedical question answering task using fine-

tuning techniques. Our secondary goal is to analyse the impact of these fine-tuning techniques

on a smaller transformer-based language model for a low resource dataset.

Our thesis is built upon two research questions:

1. Can a smaller model, DistilBERT, achieve good results on a low-resource dataset, BioASQ?

2. Does gradual unfreezing of DistilBERT improve the quality of biomedical question

answering task?

1.2 Contributions

In this thesis, we provide a comprehensive literature review on sequential transfer learning

that covers all the current research and key developments. We detail the fine-tuning strategies

and provide a manual that other niche domains with smaller datasets can use. We explore an

unfreezing approach that makes use of 34% fewer trainable DistilBERT parameters. We discover

that smaller language models viz. DistilBERT is a good alternative to large models for smaller

datasets. From our experiments, we observe that DistilBERT achieved comparable results to a

larger model, BERT.
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1.3 Outline

This thesis has been structured in the following format. Chapter 1 provides a brief introduction

along with our objectives and contribution. Chapter 2 details our background and literature

review. Chapter 3 provides the details of the methodology used to answer both our research

questions. Chapter 4 details our experimental setup and discusses the results of the experiments

of fine-tuning the BioASQ task. Chapter 5 discusses the results of the experiments of gradual

unfreezing the BioASQ task. Lastly, Chapter 6 provides a conclusion to our research and lists

the future pathways of research.



2
Background and Literature Review

The traditional machine learning models were initially developed to work in isolation on specific

tasks. They were usually designed from scratch for a particular task and trained to achieve good

results. In recent years, complex deep learning algorithms require huge amount of labelled data

to improve the learning, which might not be available for some tasks and domains. Manually

annotating the data can be an exhaustive, time consuming and expensive process. Thus, the

need of the hour was to forgo an isolated learning process and allow the transfer of knowledge

acquired from one task to another. This utilisation of what has been learned in one setting to

improve the ability to generalise better in another setting is Transfer Learning [13].

Motivated by the success of transfer learning in Computer Vision (CV), NLP research has

also moved in this direction. The availability of huge amounts of raw text on the web and

the ever increasing computational power are the driving forces behind the use of unsupervised

pretraining for language understanding tasks.

In this chapter, we will discuss the advancements of transfer learning particularly in the

context of deep learning and the language understanding task of Biomedical Question Answering.

4
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2.1 Sequential Transfer Learning

Transfer learning is the process of leveraging the knowledge acquired from one system to other

system to improve the performance and efficiency of the target system as illustrated in Figure

2.1.

FIGURE 2.1: Learning process comparison of traditional machine learning and transfer learning.

Transfer learning can be broadly classified based on the three scenarios listed below [53]:

• whether the source and the target domains are same or different.

• the type of source and target task.

• the sequence in which the tasks are learnt.

As depicted in the Figure 2.2, Inductive Transfer Learning is the setting where the target

domain has labelled data, and source and target tasks are different. On the other hand, Transduc-

tive Transfer Learning involves the scenario where the source and target task is the same and

only the source domain has labelled data.

Depending on the order in which the tasks are learnt, inductive transfer learning can further

be categorised into Multi-task Learning and Sequential Learning. Multiple tasks learnt at the

same time is multi-task learning and when tasks are learnt sequentially it is sequential transfer

learning. In this report, we focus on sequential transfer learning [53], particularly in the context

of deep learning.

Computer Vision (CV) is one of the latest success stories of sequential transfer learning.

Most machine learning models for CV tasks like object recognition, image classification and
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FIGURE 2.2: Categorization of NLP transfer learning [53].

image segmentation are not trained from scratch but they reuse the knowledge learnt from

already existing pretrained models on large datasets like Imagenet Dataset [7] and MS-COCO

[27].

Sequential learning is the transfer learning setting where the source and target tasks are

different and the training process is carried out sequentially. This implies that the models are

trained and learn separately. The ultimate aim of sequential transfer learning is that the target

model generalises better on the target task by using the information acquired from the model

trained on the source task [53]. It is found to be quite effective in scenarios where the source

task has huge amount of data compared to target task and many target tasks are available to

adapt to the representations learnt from the source task.

Sequential transfer learning [39] consists of two phases: pretraining and adaptation [53].

In the first phase, the model is pretrained on the source task; and in the adaptation phase the

knowledge gained by the pretrained model is passed on to the target task. The pretraining phase

usually has a substantial cost associated with it while the adaptation of the trained model on the

target task is quicker.
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2.2 Pretraining

Pretraining the model on the source task is costly, has high environmental costs and a con-

siderable amount of carbon footprint associated with it [59]. Due to the high compute power

required to pretrain the source models, pretraining is often done only once. Often researchers

make available their pretrained models so that other people with less resources can use them for

subsequent fine-tuning. The choice of the source task needs to be a well thought-out decision.

The pretraining task should be able to capture all the properties of the language for its usefulness

across many target NLP tasks [53].

The pretraining task can either be a large dataset of unlabelled text or human-crafted labelled

dataset. Based on the type of pretraining task used, the source models can be pretrained in a

supervised or unsupervised way. In this report, we focus on unsupervised pretraining and its

adaption techniques.

Unsupervised pretraining leverages the representations or knowledge learnt from unlabelled

data to the target task. It is a more accessible and adaptable approach in comparison to supervised

pretraining. Unsupervised pretraining not only adds robustness to a deep architecture but also

captures more intricate dependencies between parameters [9].

Most of the basic approaches used in NLP fall under the category of unsupervised pretraining.

The knowledge acquired from the unsupervised pretraining process is usually transferred to

the target tasks either in the form of features [35, 41] or fine-tuned weights [17, 8]. In the

following sections, we describe the evolution of unsupervised pretraining from the shallow word

embeddings to deep conceptualized word representations and eventually towards the pretrained

language models.

2.2.1 Pretrained Word Embeddings

Word embeddings are an integral part in most of the NLP systems. Word embedding is a feature

engineering and dimension reduction technique where the words or phrases from the vocabulary

are mapped to vectors of real numbers [71].

One of the early approaches of word representations in NLP was one-hot vectors. A One-hot

vector is a 1 ˆ N vector that is used to distinguish words in the vocabulary N . The vector

has zeros in all the cells except the cell with the word that has the value 1 [70]. However,

traditional word representations such as one-hot vectors are sparse and suffer from the curse of
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dimensionality. Also, they are not good at representing the relations between different words.

For example, the words “carrots” and “parsnips” belong to a root vegetable category, but their

word representation using one-hot vector does not capture this relationship.

Due to the above shortcomings of the one-hot vectors, distributed word representations came

into existence. These distributed word vectors are dense, have less dimensions and are more

expressive than the traditional word representations [53]. Mikolov et al. [36] used two neural

network architectures to produce distributed representations of words by pretraining a large

corpus of unlabelled text. These continuous representations of words called Word2vec capture

the exact word relationships both syntactically and semantically. The words encoded using these

approaches are such that similar words are placed closer to each other in the vector space and

have different levels of similarity. Apart from Word2vec, Glove [40] and fastText [3] are the

most popular pretrained neural word embeddings in the NLP community. These embeddings are

most commonly used as features in the majority of NLP tasks. The pretrained word embeddings

significantly improve the accuracy of the baseline NLP systems over the embeddings learnt from

scratch [64].

2.2.2 Language Model Pretraining

Pretrained neural language models can be regarded as these black boxes that learn the language

representations and then can be fine-tuned on different NLP tasks in that language. These models

have significantly improved the accuracy of the systems for different NLP tasks. Pretrained

language models can capture the semantics and the syntax of the language and can learn both

the word and the sentence representations from large corpus of unannotated data [54]. Moreover,

due to the increase in computational power, it has become easier to pretrain deep neural language

models.

In this section, we cover the background of the underpinning NLP advancements that

paved the way for the pretrained language models that we all know today: Encoder-Decoder

Architecture, Attention and Transformers.

Language modelling has been the focal point for many natural processing tasks. It has lead

to many subsequent advancements like sequence-to-sequence models and different pretraining

approaches for transfer learning. Language modelling predicts the next word in a sequence for a

given sequence of previous words. In 2003, Bengio et al. [2] introduced the first shallow neural

language model using a single hidden layer of a feed forward neural network. Later, Recurrent
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Neural Networks (RNNs) [21, 34, 67] and Long Short Term Memory (LSTM) networks [14, 76,

33] based language models became more common.

Concurrently, the advancements in the field of machine translation has also led to new

architectures of pretrained language models. Sutskever et al. proposed a new neural framework

called sequence-to-sequence learning (seq2seq) [61] which is extensively used for machine

translation and text generation tasks. The sequence-to-sequence model takes a sequence of

words as input and outputs another sequence of words as shown in the Figure 2.3.

FIGURE 2.3: Diagram showing Sequence-to-Sequence model [31].

In the context of machine translation, both the sequences are processed word by word and

can be of different lengths. Underneath the covers, seq2seq models consist of an encoder and a

decoder. The encoder takes each word in the input sequence and compresses the information

into a context vector, which is typically a vector of numbers. Once all the words in the input

sequence are processed by the encoder the final context is passed the decoder. The decoder

then outputs the prediction word by word taking into account the encoder context, and uses

the previously predicted word as input at each step (Figure 2.4). Typically, both the encoders

and decoders are RNNs. In recent architectures, RNNs are replaced with deep LSTMs [75],

Convolutional encoders [12], and Transformers [65].

One of the drawbacks of the encode-decoder architecture is its inability to handle long

sentences. Usually, the fixed-length content vector forgets the starting part of the sentence by

the time it reaches its end. Bahdanau et al. [1] proposed Attention, a ground-breaking innovation
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FIGURE 2.4: Diagram illustrating the Encode-Decoder Framework [56].

that changed the landscape of machine translation. Attention is paying more interest to relevant

words in the input sequence. For example: Consider the sentence “The girl is eating a red apple”.

When you see the word “eating” you expect a category of food directly after it instead of colour.

Thus each word “attends” to other word differently in the same sentence.

In Bahdanau et al.’s architecture [1], the context vector has information from all the hidden

states of the encoder, decoder and the alignment information between input and output sequence.

For each word that the decoder translates, it soft-searches for the positions of the most relevant

parts in the input sentence as depicted in the Figure 2.5. Then, it predicts the output word

based on the context vector associated with these positions and all the target words previously

predicted. Attention is not only limited to looking for relevant information in between the

input and output sentences. Self-attention looks at the neighbouring words in a sentence to get

representations of the same sentence.
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FIGURE 2.5: The graphical illustration of Attention mechanism [1].

Encoder-decoder models that use either RNNs and LSTMs have memory constraints due

to the sequential nature of their computations thereby hindering parallelization. Attention

mechanism used in conjunction with RNNs or LSTMs did not help the cause much. Thus,

Vaswani et al. [65] came up with transformers for better parallelization compared to already

existing machine translation and language modelling models.

The Transformer architecture [65], the latest state-of-the-art paradigm for neural machine

translation has multiple layers of self-attention as its centerpiece, completely discarding recurrent

and convolutional networks. Transformers are based on an encoder-decoder architecture with

both encoder and decoder having 6 similar layers stacked over each other and adding position

information through the positional encoding, displayed in the left and right side of the Figure 2.6.

Each encoder layer has two components: multi-head attention and position-wise fully connected

feed-forward network. Each component in turn is passed through a layer of residual connection

followed by normalisation. The decoder is similar to the encoder except it has an additional

component in between that processes’ multi-head attention with the output from the encoder

side.

Depending on the choice of the encoder and the training objective used there are many lan-

guage models like BERT [8], GPT [45], GPT-2 [46], ELECTRA [5], ALBERT [24], RoBERTa

[28], DistilBERT [55] and so on. In this section, we shed some light on the most prominent

pretrained language models.
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FIGURE 2.6: Diagram showing the Transformer Architecture [65].

Early Pretraining Approches

Dai et al. [6] were the first to come up with an idea to pretrain a sequence auto-encoder or

language model on unlabelled data and then use the parameters from these models to train other

supervised models. Their seq2seq model was similar to Sutskever et al. [61], except that their

model predicted the input sequence as output, as shown in the Figure 2.7. They demonstrated

that LSTMs pretrained on recurrent language models or seq2seq models performed better in

comparison to LSTMs initialized with random weights.

FIGURE 2.7: Figure showing Sequence Autoencoder [6].
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Deep Contextual Word Representations

Consider the two statements: “The grey car is mine” and “This is a gold mine”. The word “mine”

has different meanings depending on its context in the sentence. It is vital to capture the complex

characteristics of the word use and how these characteristics change with the context when

encoding the word vectors [41]. However, the distributed word representations using neural

networks discussed so far are shallow and applied in a context free manner [53]. To resolve this

problem, Peters et al. [41] introduced a new type of deep contextualized word representations

called ELMo (Embeddings from Language Models). They use the entire input sentence as a

function to derive the representation of each token. Bidirectional LSTMs are trained with a

language model objective on a large text corpus to extract contextual representations. ELMo

representations are deep since they are derived as a function from all the internal layers of a

bidirectional language model. These representations can be easily added to already existing

architectures and improve the accuracy of the state-of-the-art benchmarks in every language

understanding task.

Peters et al. [42] also conducted multiple experiments on three different bidirectional

language model architectures to conclude that the LMs equip themselves with a high quality

hierarchy of contextual data at both word and token level. Also, the models learn representations

that differ with the depth of the network ranging from morphological based at embedding layer

to syntactical information at lower layers and semantics and language modelling task related at

top layers.

OpenAI Generative Pre-Training (GPT)

Radford et al. [45] proposed universal language representations which can be adapted easily

with task-specific fine-tuning while requiring few changes to the model architectures. This

method uses multi-layer transformer [65] decoders due to their ability to capture long term

dependencies and add robustness to the model. These transformer decoders use multi-head self

attention to train with a language modelling objective during the pretraining phase. Later, the

pretrained parameters can be fine-tuned for diverse NLP tasks.

BERT

One of the limitations of the previous approaches is that they pretrain with uni-directional

language modelling as their objective to derive the representations. In the case of ELMo,
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independently trained left-to-right and right-to-left LSTMs are concatenated shallowly to pro-

duce the representations that are used for downstream tasks. Similarly, GPT uses left-to-right

transformers in their architecture as depicted visually in Figure 2.8.

FIGURE 2.8: Comparing different pretraining model architectures [8].

To overcome this drawback, BERT (Bidirectional Encoder Representations from Transform-

ers) [8] produces representations such that they are jointly conditioned on both left and right

context in all layers. To achieve this, they use Masked Language Model (MLM) and Next

Sentence Prediction tasks as the pretraining objective. In MLM, few words are randomly masked

from the input tokens and later only those masked words are predicted. This masking strategy

allows the model to look in both directions (left and right) and to be aware of the full context of

the sentence when predicting the masked word. The second pretraining task of next sentence

prediction captures the intrinsic relationships between two sentences useful for downstream

tasks like Natural Language Inference (NLI) and Question Answering (QA). The next prediction

task is the simple binary task of predicting whether two given sentences are next to each other or

not.

BERT has been pretrained on large corpus of data from BooksCorpus [78] and Wikipedia

with the two pretraining tasks as their objective described above. It took 4 days for the model to

complete the pretraining.

Owing to the multi-layer bidirectional transformer encoder [65] architecture, BERT has

outperformed all the previous state-of-the-art models in eleven token-level and sentence-level

NLP tasks like language inference and question answering. The pretrained representations of

BERT can be easily fine-tuned with only one output layer to achieve outstanding results on

various NLP tasks without any modifications to the existing task-specific architectures. There

are two variants of BERT depending on the model size:
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• BERTBASE: This model has 12 transformer blocks with 768 as hidden size and 12 self-

attention heads that account to 110 million parameters in total.

• BERTLARGE: This model has 24 transformer blocks with 1024 as hidden size and 16

self-attention heads that account to 340 million parameters in total.

DistilBERT

Following the current trend, pretrained language models in deep learning are getting deeper

and more complex each day. Language models are being scaled up to gargantuan proportions

to achieve outstanding performance on many target tasks. Deploying these bulky models on

edge devices and to a large number of users has its own set of challenges. They have millions

(occasionally billions) of parameters for example, GPT-2 [46] has 1.5 billion parameters. This

leads to increased environmental costs [59] and computational constraints in terms of memory,

budget and time, thereby impeding broader adoption of these models in real-time applications.

Sanh et al. [55] in their paper demonstrate that a smaller general purpose language model,

DistilBERT can reach comparable performance of large models on different downstream tasks

using information distillation. These compact models are lighter and faster in terms of inference

time and have low latency when deployed on edge devices without impacting the performance.

Sanh et al. apply the compression technique called Knowledge Distillation first introduced by

Hinton et al. [15] as one of the ways to achieve this. Knowledge Distillation is the compression

technique where a bigger cumbersome model – the teacher, is used to distill its knowledge to a

smaller compact model – the student. In transfer learning, the weights are transferred from a

pretrained model to a target model, which can be as complex as the pretrained model. However,

in knowledge distillation, the goal is to transfer the ability to generalise from a bigger model to

a compact model.

One way to transfer the ability to generalise from a teacher model to a student model is by

utilising the class probabilities generated by the teacher model as “soft targets” for the training

of a smaller student model as illustrated in Figure 2.9. The teacher model has the softmax with

temperature T at the output layer, while the student model has two outputs, one with usual

softmax function at the output layer and the other with the softmax with temperature T same as

the teacher model. The smaller student model is trained to model the “soft targets”, which are

the outputs of the teacher model.
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FIGURE 2.9: Diagram depicting Teacher Student architecture [38].

Sanh et al. [55] use the same softmax-temperature as Hinton et al. [15] given by equation

2.1.

pi “
expp zi

T
q

ř

i expp
zj
T
q

(2.1)

where a typical neural network that outputs the class probabilities using the “softmax” output

layer transforms zi, the logit, for each class into a probability pi by comparing zi with other

logits. The temperature value T is ideally set to 1 to restore the standard softmax. The student

is trained on the distillation loss shown in the equation 2.2 where ti (resp. siq is a probability

estimated by the teacher (resp. the student).

Lce “
ÿ

i

ti ˚ log spiq (2.2)

Also, they set the architecture of the student model (DistilBERT) same as the teacher model

(BERT) except that the number of layers is halved. Their end training objective, “triple loss”

which is a linear combination of distillation loss Lce with supervised training loss, masked

language modeling loss Lmlm, in this case, and finally the cosine embedding loss Lcos between

the hidden states of student and teacher models.

DistilBERT has half the total number of parameters and reports just about 5% drop in the

efficiency of natural language understanding task benchmarks in comparison to BERT.
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2.3 Adaptation of Pretrained Models

In the previous section, we have discussed the pretraining phase in sequential transfer learning.

Research in the adaptation phase is in its nascent form. During the adaptation phase, the below

directions form the basis for the decisions to be taken [54]:

• How much change does the pretrained model architecture require for adaptation?

• Which pretrained weights should we update?

• How and when should the weights be updated?

• Do we need additional supervision signals?

2.3.1 Whether to Tune or Not to Tune?

There are mainly two techniques used to adapt the pretrained representations on the target task:

feature extraction and fine-tuning.

In feature extraction, the pretrained model’s weights are ‘frozen’. In this paradigm, the

pretrained representations are used as input features to the downstream model. Alternatively,

a linear classifier or a linear combination of layers is trained on the top of the pretrained

representations [41]. Feature extraction enables the use of already existing task-specific model

architectures and is cost efficient as features are computed only once [43].

In contrast, the pretrained representations are updated in fine-tuning and the whole pretrained

architecture is trained directly on the target task data. The pretrained weights are used as

initialization for the parameters of the downstream model on the target task. One of the major

benefits of using fine-tuning is that it allows us to adopt a general purpose representation to a

diverse number of tasks [54].

Peters et al. [43], compare the two adaptation techniques, feature extraction and fine-tuning

on different tasks with two state-of-the-art pretraining representations. The results show that the

similarity between source and target tasks plays an important role in their relative performance.

When the source and target tasks are similar, fine-tuning gives better results and in the case of

dissimilar tasks, feature extraction outperforms the other. The decision to fine-tune or not also

depends on other trade-offs like space, time and performance.
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2.3.2 Fine-tuning Settings

The fine-tuning settings are quintessential for better adaptation of the language model represen-

tations. Fine-tuning involves updating the pretrained weights. However, the schedule in which

these weights are updated is critical to avoid catastrophic forgetting of the knowledge learnt

from the source task [54].

After pretraining the Language Model (LM), fine-tuning enables the LM to adapt to the

different distribution of the target task data. Since all the layers of pretrained model have already

learnt the general language features, fine-tuning the pretrained LM only involves adapting to the

peculiar behavior of the target data. One of the guiding principles of fine-tuning is to update the

weights from top to bottom progressively in time and intensity [54].

Training all layers at the same time on data of different target task might result in instability

and poor results. The solution to this is to train all the layers individually giving it time to adapt

to the new task and data [54]. There are many unfreezing schedules worth mentioning like

freezing all the layers except the top layer [29], chain thaw [10], gradual unfreezing [17]. In

the chain thaw approach, there is sequential unfreezing and fine-tuning of a single layer at a

time. In gradual unfreezing, Howard et al. propose to first unfreeze the last layer and fine-tune

the unfrozen layer and then gradually add a layer at a time to the set of unfreezed layers and

fine-tune all layers until convergence.

Recently, Chronopoulou et al. in their paper [4] proposed a simple and efficient approach

to address the problem of catastrophic forgetting by training the entire model end-to-end in a

single step. They used sequential unfreezing using hyper-parameters that determine the length

of fine-tuning process. They first fine-tune only the extra, randomly initialised LSTM and the

output layer for n - 1 epochs. Exactly at the nth epoch, they unfreeze the pretrained hidden layers.

Then, they let the model fine-tune, until epoch k - 1. Finally, at epoch k, they also unfreeze the

embedding layer and let the network train until convergence. Grid search is used to obtain the

values of n and k.

Prior work shows that different layers capture diverse information. The upper layers capture

task-specific features and the lower layers have the general language representations. During

the early stage of learning, the model needs to adapt to the target task and thus we can afford to

use bigger steps of learning rates. Then late in the training process, as the model converges, a

lower learning rate should be preferred to avoid overwriting useful information. In their paper,

Howards et al. [17] propose discriminative fine-tuning which tunes each layer with different
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learning rates such that the learning rate decreases from top to bottom layer.

Also, when adapting the parameters to the task-specific features, the model needs to quickly

move to a suitable region in the parameter space in the early stage of training and then slowly

converge over time. To achieve this behaviour, Smith et al. [57] proposed Cyclical Learning

Rate (CLR), where they estimate the boundary learning rates by running the training in mini

batches of few epochs with increasing learning rate for the CLR policies. Then, they devise a

policy where the learning rate cyclically varies between these bounds to achieve optimal results

[57]. They adopted a triangular window (linearly increasing then linearly decreasing) as the

policy in their approach.

Howard et al. adapted a similar strategy called Slanted Triangular Learning Rates (STLR),

in which they first linearly increase the learning rate and then linearly decay it as shown in

Figure 2.10 [17]. This approach has a shorter increase and a longer decay period when compared

to the triangular learning rates approach [57].

FIGURE 2.10: ULMFiT as a function of training iterations and with slanted triangular rate schedule
[17].



2.3 ADAPTATION OF PRETRAINED MODELS 20

2.3.3 Architectural Modifications and Additional Signals

Depending on the similarity between pretrained and target tasks, the pretrained model architec-

ture can change or remain the same. If the target task is structurally similar to the pretrained

task, then the pretrained model internals remain unchanged with minor target-task-specific

modifications on top of the architecture. Usually, NLP practitioners remove the pretraining task

head if it is not required for the target task. For example, removing a softmax classifier from the

pretrained language model. Then, target task specific layers like linear layers are added on top

or bottom of the pretrained models, keeping the model internals unchanged [54].

However, when the pretrained representations are adapted to a structurally different target

task, the pretrained model’s internal architecture needs to be changed. For example, when

adapting a pretrained task of single sequence to a multiple sequence target task. Different

capabilities or modules are added to the pretrained model’s architecture to increase its usefulness

for the target task [54]. Adding residual connections between layers, using multi-layer attention

[49] and adapters [50] [58] are a few of the approaches used recently.

Using the Residual Adapters [50] module is a recent strategy in which task-specific pa-

rameters are inserted in between the layers of the pretrained model instead of adding them on

top of the pretrained model architecture. These adapters are layers of different designs and

contain a small fraction of parameters in comparison to the entire model. They are connected by

means of residual connections with the rest of the network [54]. Adapters facilitate the reuse of

the same pretrained parameters for many target tasks. Only the adapters are fine-tuned during

the adaptation phase. In case the adapters are not useful for the downstream task, the residual

connection enables the model to ignore them [54].

Inspired by residual adapters, Stickland et al. [58] add a low-dimensional multi-head

attention layer in parallel to normal BERT layers. These adaptation modules allow a high degree

of parameter sharing between the target tasks by adding the task-specific parameters to every

layer of the pretrained BERT model. They get the same results as fine-tuned BERT on the

General Language Understanding Evaluation (GLUE) benchmark with around 7 times less

parameters.

To improve the performance of transfer learning on low-resource target data, we could use a

combination of different strategies to provide additional signals. Some of these strategies are

listed below [54]:

• Sequential Adaption: intermediate fine-tuning on related, high-resource datasets before
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fine-tuning on the target dataset. Sequential adaptation is also referred to as multi-task

fine-tuning in some literature.

• Ensembling: combining the predictions of different models fine-tuned with various

hyper-parameters.

• Multi-tasking: fine-tuning the model jointly on related tasks.

2.4 Transfer Learning for Biomedical Question Answering

Question Answering (QA) is an NLP task of retrieving answers to a question given set of

contexts. A typical span-extractive question answering task consists of a given passage P and

question Q, the system needs to locate an answer span A (astart, aend) in P.

Transfer learning has been extensively used for transferring the knowledge from one domain

to another. The lack of large scale domain-specific datasets and the cost associated with manually

annotating them is the reason behind this trend. In this literature review, we particularly focus

on biomedical question answering task of BioASQ [62].

BioASQ [62] is the first international challenge for generic biomedical question answering.

It organises challenge tasks on biomedical question answering and semantic indexing. Question

Answering (QA) is a task of retrieving answers to a question given set of contexts. The BioASQ

dataset consists of a small collection of list, factoid and yes/no questions.

Wiese et al. [69] were the first to explore transfer learning techniques on biomedical question

answering. They employ domain adaptation techniques to transfer knowledge from an already

existing neural QA system (Fast QA [68]) trained on large SQuAD dataset to a smaller BioASQ

dataset. Their approach falls under the category of supervised domain adaptation since the

source task is labelled, target and source domains are different but tasks are similar. During the

fine-tuning phase, they initialise the model parameters with the parameters of the pretrained

models. The combination of fine-tuning and use of biomedical Word2vec embeddings produced

state-of-the-art results in the 5th BioASQ challenge. Also, to avoid catastrophic forgetting,

they deployed optimization techniques like forgetting cost term and L2 weight regularization to

further boost the results.
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FIGURE 2.11: The pretraining and fine-tuning process of BioBERT. Diagram adapted from [25].

With the onset of pretrained language models like BERT for general domain, Lee et al. [25]

found the potential to adapt BERT for the biomedical domain. They introduce BioBERT which

is the first pretrained language representation model for the biomedical domain. Figure 2.11

illustrates an overview of the pretraining and the fine-tuning process of BioBERT. As shown in

Figure 2.11, during the pretraining step, BioBERT is first initialized with the weights of BERT,

a state-of-the art model which is pretrained on general domain corpora. Then, BioBERT is

pretrained on biomedical domain corpora. It took nearly 23 days for them to pretrain BioBERT

v1.1 using 8 NVIDIA V100 GPUs. BioBERT has yielded state-of-the-art results on various

biomedical text mining tasks like named entity recognition, relation extraction and question

answering tasks.

In the 7th BioASQ challenge, Yoon et al.’s submission [77] for the task 7b was at the top of

the leaderboard. They employed the sequential adaptation strategy where pretrained BioBERT

was first fine-tuned on SQuAD [48] and later on BioASQ dataset.

On the same lines, BioELMo [18], which is a biomedical version of ELMo, when used

as features extractor, outperforms BioBERT on the probing tasks designed by the authors.

However, as expected, the fine-tuned BioBERT performs better than BioELMo on named entity

recognition and NLI tasks.

In their paper [16], Hosein et al. detail their experiments and evaluation results of their

submission to the BioASQ Task 7b. They measure the domain portability of BERT based

question answering models that are pretrained and fine-tuned on general domain with models

in biomedical domain. The results conclude that large scale general domain models have good

portability to a new domain. They also observe that pretraining is more vital than fine-tuning
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to improve the domain portability of BERT based question answering models. Interestingly,

one of their system uses a sequential adaptation strategy in which BERT is first fine-tuned on

SQuAD and later on Natural Questions (NQ) [23] and Conversational Question Answering

(CoQA) challenge [51] datasets.

Resta et al. [52] explored the use of an ensemble of classifiers whose input was obtained

through different transformer based language models. They used contextual embeddings from

different pretrained language models like ELMo and BERT as features to capture long term

dependencies. Their submission ranked top of the leaderboard in two batches for yes/no

questions in the 7th BioASQ challenge.

The 8th BioASQ Challenge in 2020 saw a total of 34 teams from around the world partici-

pate in the three shared tasks of the challenge [37]. In their participating system for the challenge,

Jeong et al. [19] extend their previous work on BioBERT models [25, 77] to demonstrate that

multiple levels of sequential adaptation is effective in improving the performance of biomedical

question answering. They first fine-tune BioBERT on the NLI dataset [72] and then on the

SQuAD [48] dataset and finally on the BioASQ Task 8b dataset. Their results establish that NLI

task, which learns the relationships amongst sentence pairs, enhances the accuracy of biomedical

question answering systems. Furthermore, they also report an analysis of the number of the

unanswerable questions from BioASQ Task 7b Phase B test data in the extractive question

answering (QA) setting.

The transformer-based system of Kazaryan et al. [20] has ALBERT [24] as its underlying

neural network that is first fine-tuned on SQuAD v2.0 [47] and then on the training dataset of

BioASQ 8b [24].

2.5 Conclusion

In recent years, there has been a major paradigm shift. We are beginning to realise the true

potential of transfer learning in NLP. This realisation stems from the fact that generalisation

from an existing task is any day better than starting from scratch. We discuss transfer learning

with the main focus on sequential transfer learning and also describe in detail the two phases of

sequential learning: pretraining and fine-tuning. Furthermore, we detail the current developments

of applying transfer learning in the biomedical domain.

There is a great deal of scope for applying fine-tuning techniques like residual adapters
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and optimization techniques on the pretrained models to generalise better in the biomedical

domain. Currently, there is no research on the effects of using different fine-tuning techniques

like gradual unfreezing and discriminative fine-tuning on BioBERT. In this project, we will

investigate the effect of using fine-tuning technique of Gradual Unfreezing on DistilBERT.



3
Approach

As stated in Chapter 1, this thesis aims to answer two main research questions. First, we explore

whether a compact model like DistilBERT can achieve comparable performance to a larger

model, BioBERT. We report our results on the data from BioASQ with question answering

task as our NLP use case. Second, we investigate the effect gradual unfreezing has on the

performance of a smaller transformer-based model, DistilBERT, using a low-resource dataset

such as BioASQ.

In this chapter, we explain our approach to answering our two research questions. Section 3.1

describes the BioASQ shared task, a question answering dataset used in our experiments. Section

3.2 describes the evaluation metrics used to evaluate the quality of our question answering

systems. In Section 3.3 we lay out our main approach used for our first line of inquiry and our

reasoning behind the algorithms chosen. In section 3.4 we propose an approach to tackle our

second research question of gradual unfreezing.

25
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3.1 BioASQ

BioASQ [62] is the first international challenge for generic biomedical question answering

started in 2013. They organize annual challenge tasks on biomedical question answering and

semantic indexing. The seventh edition of the BioASQ competition consists of two tasks:

Task 7a, a biomedical semantic indexing task and Task 7b, a biomedical question answering

task. Task 7a aims to classify the new articles from the PubMed [44] digital library into

concepts of the Medical Subject Headings (MeSH) hierarchy. Task 7b involves a comprehensive

question answering challenge designed for systems to tackle four categories of questions from

biomedical domain namely, yes/no, list, factoid and summary questions. The participants of

Task 7b are provided with questions along with related articles and snippets for each question.

The participants’ systems in turn output either ideal answers (a short paragraph for summary

questions) or exact answers (e.g., list of named entities for factoid questions). Task 7b is released

in five test batches over a period of two months with only 24 hours gap given to submit the

answers after releasing the questions.

In this project we focus on factoid questions from the BioASQ 7b dataset. The training

dataset of BioASQ 7b consists of 2747 questions in total out of which 779 are factoid questions.

Each question from the Task 7b of the BioASQ training dataset has many fields, the most

prominent ones are:

• type: type of question i.e., factoid, list, yes/no or summary

• snippets: multiple snippets extracted from PubMed articles relevant to the question along

with the URLs of the PubMed documents used

• ideal answer: a short summary for summary questions

• exact answer: an entity or list of entities for factoid question; yes/no for yes/no type

questions; list of answers for list questions

FIGURE 3.1: An example of factoid question from the BioASQ 7b training dataset. The gold standard
answer is in bold. Note that the gold standard answer is present in snippet 2 and not in snippet 1.
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Our system returns exact answers to the factoid question from the BioASQ 7b dataset. An

exact answer to the factoid question could be either a single entity (it could be the name of a

gene, disease, medicine, virus or even a number) or a list of 3-4 entities. An example of one of

the factoid questions from the BioASQ 7b training dataset is shown in Figure 3.1. As seen in

the example, answer to the question is extracted from the relevant snippet (passage) provided.

Therefore, we consider the BioASQ 7b task as an extractive question answering task.

3.2 Evaluation Metrics

In this section, we list the metrics used to evaluate our system. Our system returns a list of up to

five entities for each factoid question in decreasing order of their probability. The performance

of our system is evaluated on the same three metrics used by the BioASQ organisers: Strict

Accuracy (SAcc), Lenient Accuracy (LAcc) and Mean Reciprocal Rank (MRR).

For each question, if the golden entity name (or its synonym) is the first element of the list

returned by the participant’s system, strict accuracy marks that particular question as correctly

answered. On the other hand, lenient accuracy marks a question as being correctly answered

if the golden entity name (or its synonym) is included in the list returned by the system, not

necessarily as the first element.

The equations 3.1, 3.2 below define the formula to calculate the strict and lenient accuracy

for factoid questions [62].

SAcc “
c1
n

(3.1)

LAcc “
c5
n

(3.2)

where c1 is the number of factoid questions answered correctly when considering only the

first element from the list of answers returned by the systems, c5 is the number of questions

counted as correct when all the five answers in the list submitted are considered and n is the total

number of factoid questions to be evaluated.

MRR is the most common evaluation metrics used for factoid question answering, proposed

in the Text REtrieval Conference (TREC) question answering track in 1999 [66]. MRR tends

to punish systems that produce the correct answers that are ranked lower in the returned list of

answers.
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MRR scores each question as the reciprocal of the rank of the first correct answer. Suppose

a system returns a list of five answers for a particular question, and the correct answer is ranked

third in the list, then the reciprocal rank score for that question is
1

3
. Any question that has no

correct answers in the returned list of answers is marked as zero. Then MRR for the system is

the average of the score of each question.

In the formal definition 3.3 below, for each factoid query qi, we scan through the returned

list for the top position containing the golden entity name (or one of its synonyms). Let’s assume

that the j-th element is that topmost position, then r(i) = j; otherwise rpiq Ñ `8, i.e.,
1

rpiq
“ 0

[62].

MRR “
1

n
¨

n
ÿ

i“1

1

rpiq
(3.3)

In the lines of BioASQ, we employ the strict and lenient accuracy for measuring complete-

ness. We use the mean reciprocal rank as the main criteria when evaluating our systems for

factoid questions since it is the main metric used by BioASQ organisers.

3.3 Fine-tuning DistilBERT

We apply sequential Transfer learning that has proven to be successful on extractive question

answering tasks [77, 16, 8]. The small size of the BioASQ dataset makes it the ideal scenario

for using transfer learning approaches. In line with the sequential methodology, a pretrained

language model is first selected which is trained in an unsupervised manner on a large data corpus.

The knowledge from this pretrained model is then adapted to biomedical domain. Taking cue

from the success of using pretrained transformer-based models like BERT, BioBERT, ALBERT

on different question answering datasets [8, 25, 24], we choose DistilBERT as our pretrained

transformer-based model. Our choice of DistilBERT is due to the fact that it is architecturally

similar to BERT and has less parameters than BERT. To the best of our knowledge, DistilBERT

has not yet been used as pretrained model for the BioASQ dataset.

For the adaptation phase, we prefer to use the fine-tuning technique to adapt the pretrained

representations on the target task. Sequential adaptation (multi-task fine-tuning), intermediate

fine-tuning on high-resource datasets, has improved the performance of low-resource target

tasks [77, 20, 19]. This second step of fine-tuning has yielded benefits on answer sentence

selection and text classification tasks [11, 60]. However, there are no large scale factoid question
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answering datasets readily available in biomedical domain. Thus, SQuAD v1.1 [48] and SQuAD

v2.0 [47], general domain QA datasets are widely used as intermediary datasets for sequential

adaptation [22, 77] in the biomedical domain. In our system, we use SQuAD v1.1 to provide the

additional signal required to improve the performance of biomedical QA systems. To summarize,

we use DistilBERT as our pretrained language model which is first fine-tuned on SQuAD v1.1

and then on BioASQ 7b dataset shown in Figure 3.2. Further details of the experiments and the

fine-tuning settings used are elaborated in chapter 4.

FIGURE 3.2: Diagram depicting the fine-tuning approach used by our system. DistilBERT is first
fine-tuned on span-extractive QA task – SQuAD v1.1 and then on biomedical BioASQ 7b QA dataset.

3.4 Gradual Unfreezing

In typical end-to-end fine-tuning, all the layers of the pretrained model and the task-specific

layers are trained simultaneously on the target data. The pretrained weights that are initialised

at the start of the fine-tuning process are all updated. However, in the process of learning new

knowledge, there is a risk that the model might forget the knowledge it has learned from the

pretrained task. Hence the schedule for updating the weights plays an important role in avoiding

this catastrophic forgetting. Howard et al. [17] introduced the gradual unfreezing technique on a

regular LSTM without any attention mechanism. Instead of fine-tuning all the layers together,

they gradually unfreeze one layer starting from the top layer, each time fine-tuning the set of

unfrozen layers for one epoch until all the layers are fine-tuned as illustrated in the Figure 3.3.

Gradual unfreezing has not yet been applied to the low-resource BioASQ dataset in combination

with a compact transformer-based model such as DistilBERT.

On similar lines, in our approach, we start from the top task-specific layer and allow the

model to learn the varied representations of the target task first for one epoch while all the

remaining layers are frozen. Then we gradually unfreeze the lower top layer and continue
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fine-tuning unfrozen layers for one epoch until all the layers except the bottom embedding layer

are fine-tuned.

The initial embedding layer of the model is never fine-tuned in our approach. The decision to

remove the embedding layer from the fine-tuning phase was taken on the basis of the preliminary

investigations discussed in Chapter 5. The intuition behind our top to bottom fine-tuning

approach is that top layers are task-related, domain-specific and require more fine-tuning on

target task. Also, the topmost task-specific layer of the pretrained model is the only layer that is

initialized with random weights during the fine-tuning process and therefore needs to capture

the distributions of the target task first.

We implement the same sequential adaptation approach described in the Section 3.3. In

short, we follow multi-task fine-tuning in which DistilBERT is first fine tuned on the SQuAD

dataset and then on the data from BioASQ 7b. Gradual unfreezing is employed only when

fine-tuning DistilBERT on the target dataset i.e., BioASQ 7b.

FIGURE 3.3: Diagram depicting the gradual unfreezing approach when unfreezing three transformer
layers at a time.

The DistilBERT architecture consists of three blocks: an embedding layer, 6 transformer

layers, and an additional final question answering layer. We also investigate the effect of gradual
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unfreezing when the transformer layers are fine-tuned together in groups. Again, we start from

the top question answering layer, which is first fine-tuned for few epochs while the other layers

are frozen. Next, we unfreeze transformer layers consecutively in groups of either 3 or 6 and

fine-tune them for a few epochs until all the layer except the embedding layer are fine-tuned.

Figure 3.3 shows the unfreezing process when three transformer layers are grouped together.

All experiments of gradual unfreezing are detailed in chapter 5.



4
Fine-tuning DistilBERT

In Chapter 3, we discussed the approach that we use to answer our research questions. In this

chapter, we describe our experiments using the multi-task fine-tuning methodology discussed

in Section 3.3 to answer our first research question as to whether a smaller pretrained model,

DistilBERT, can improve the quality of a low-resource biomedical question answering task.

We begin this chapter by describing the inner workings of our model. Then we detail the

pre-processing and post-processing steps involved in transforming the BioASQ 7b dataset from

an extractive QA task into a span prediction task.

This chapter’s layout is as follows. Section 4.1 describes the details of our experiments.

Section 4.2 describes the data processing steps involved on the dataset. Sections 4.3 and 4.4

describe the experimental setup and the hyper-parameters that we choose for our experiments.

Section 4.5 describes and discusses the results.
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4.1 Model

In this section, we detail the input representation of our model and the fine-tuning procedure

adapted by BERT for the extractive question answering task.

The input representation of BERT can cater for single sentences and pairs of sentences

in one sequence of tokens. The input representation for each token is the sum of its three

corresponding embeddings: token, segment and position. WordPiece embeddings [75] is used

for tokenization to avoid the problem of out-of-vocabulary and rare words. WordPiece is a

segmentation technique that splits the words into sub-word units (“wordpieces”) and the split

wordpieces are denoted by ##. For example, the word “proteasome” is split into 4 wordpieces:

“pro”, “##te”, “##as”, “##ome”. A classification embedding token, [CLS] is always added as the

first token of every input sequence to cater for classification tasks. For sentence pair tasks such

as QA and NLI, a special token [SEP] is added in between two sentences to separate them. To

further differentiate the two sentences, a learned sentence embedding A is added to every token

in sentence A and sentence embedding B to every token in sentence B. The position embedding

represents the learned position of the token in the sequence. BERT can support sequence lengths

up to 512 tokens.

FIGURE 4.1: Example of a sequence of Question-Passage pair processed by BioBERT. Diagram
adapted from [77].
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Fine-tuning Procedure The fine-tuning process to adapt BERT for a span extraction task (or

span-level prediction task) like SQuAD involves few task-specific modifications. The input

question and context are fed into the model as a single sequence separated by a [SEP] token

along with their corresponding segment embeddings to distinguish them.

During fine-tuning, the only new parameters that are learned are: a start vector S P RH and

an end vector E P RH . Let us assume Ti P RH and Tj P RH denote BERT’s final hidden vectors

for the ith and jth input tokens respectively. Then, the probability that the word i is the start of

the answer span is calculated as a dot product between Ti and S followed by a softmax of all the

words in the paragraph [8]. Similarly, the end of the answer is calculated. Equations 4.1, 4.2 for

computing both the start and the end are shown below:

P start
i “

epS¨Tiq

ř

j e
pS¨Tjq

(4.1)

P end
i “

epE¨Tiq

ř

j e
pE¨Tjq

(4.2)

The score of a possible span from position i to position j is calculated as S ¨ Ti`E ¨ Tj . The

candidate span with maximum score and where end position, j is greater than or equal to the

start position i, (j ě i) is the model’s prediction. Therefore, the training objective is the sum of

the log-likelihoods of the correct start and end positions.

4.2 Data Processing

This section discusses both the pre-processing and post-processing steps required to convert

the BioASQ dataset into the SQuAD format and vice-versa. The SQuAD dataset is a large

collection of question-answer pairs along with a passage (named context in the dataset) that

answers the given question.

On the other hand, the BioASQ training dataset provided by the BioASQ organisers has a

question, an exact answer and multiple relevant snippets. Refer to section 3.1 for an example

of a factoid BioASQ question. First, as part of pre-processing, each snippet is paired with its

question to transform the dataset into multiple question-snippet pairs [77].

In their work, Yoon et al. [77] introduce Full Abstract Strategy to pre-process the BioASQ

dataset. In this strategy, in addition to the snippet provided, the complete abstract along with

the title from PubMed articles related to that snippet (obtained using the links provided in the
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BioASQ dataset) is appended to the original snippet to make a single passage. Finally, using the

exact answer provided in the original dataset, the start position of the answer in the passage is

identified and populated in the dataset to transform the BioASQ 7b dataset into a span prediction

task. These pre-processing steps increase the total number of training samples from 779 to 5537.

Table 4.1 shows the statistics of BioASQ training and test batches. Refer to Appendix A for an

example of a factoid question before and after pre-processing.

In our experiments, we use the full abstract variant of pre-processed training and test batches

of BioASQ 7b dataset that have been made publicly available by the authors [77] in their GitHub

repository [74]. Our system outputs the prediction span for each question. However, since we

have split snippets into multiple question-passage pairs in the pre-processing step, we now have

several answer spans along with their probabilities as predictions for each question. We then

select the top five answers in the decreasing order of their probabilities for a particular question

as our submission, since the official evaluation of BioASQ requires each system to return a list

of up to 5 answers.

Dataset
Number of Factoid Questions

(Provided by BioASQ Organisers)

Number of Factoid Questions

After Pre-processing

Training 779 5537

Test Batch 1 39 98

Test Batch 2 25 56

Test Batch 3 29 84

Test Batch 4 34 90

Test Batch 5 35 79

TABLE 4.1: Statistics of Factoid Questions BioASQ 7b Training and Five Test Batches

4.3 Experimental Setup

We are investigating different fine-tuning techniques on DistilBERT for extractive question

answering setting. The BioASQ 7b training data is used for training our model and Test Batch 1

is to tune the hyper-parameters. The four batches of test data are evaluated on the gold-standard

answers made available by the BioASQ organisers and are compared with other top-ranked

systems on the BioASQ 7b leaderboard [63]. All the systems are evaluated for performance on
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the three metrics: SAcc, LAcc and MRR (detailed in Section 3.2) used by the BioASQ organisers

with an intent to compare results with the top ranked systems in the BioASQ challenge.

In all of our experiments (including chapter 5), we use pretrained models from the Hug-

gingface Transformers Library [73] along with their model specific tokenizers. We choose

AdamW optimizer [30] along with a linear scheduler with a warm-up in all our experiments.

This linear scheduler linearly decreases from the initially assigned learning rate in the optimizer

to zero until a warm up period after which it linearly increases from zero to the initially assigned

learning rate in the optimizer.

We utilize one NVIDIA Volta GPU for all our fine-tuning experiments. This project was

implemented using the resources from the National Computational Infrastructure Australia (NCI

Australia).

4.4 Multi-task Fine-tuning

In accordance with multi-task fine-tuning, we are fine-tuning DistilBERT on two tasks: first on

SQuAD v1.1 and then on our downstream task of biomedical question answering.

We employ distilbert-base-cased as our pretrained model with an additional task-specific

layer (linear layer on top of the hidden-states output) to compute span start logits and span end

logits). All the layers are trainable in the fine-tuning process. When fine-tuning the model on

SQuAD v1.1, we use the default parameters recommended by the DistilBERT authors [55].

In the second phase of fine-tuning on BioASQ data, the model is fine-tuned with a batch size

of 4 and learning rate in the range of 9e-6 to 3e-5. We perform an extensive hyper-parameter

sweep on the low-resource BioASQ dataset in line with Devlin et al.’s [8] observation that smaller

datasets are more sensitive to hyper-parameters than the larger datasets when fine-tuning the

transformer-based models. All the other hyper-parameters are set to default values as suggested

by the authors of DistilBERT [55] unless stated otherwise.

DistilBERT takes 512 as the maximum sequence length after WordPiece tokenization. Any

input sequence longer than this set value will be truncated and shorter will be padded. This

value can be set depending on the length of the input sequence.
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FIGURE 4.2: Distribution of the total number of tokens in Query (a), Passage (b) and Input se-
quence (c) of the BioASQ 7b Training Data after WordPiece Tokenization. Here the input sequence is
[CLS]+[Question tokens]+[SEP]+[Passage tokens]. It is truncated for sequences longer than 512 and
padded for shorter sequences.

In the context of a QA setting, the input sequence is the concatenation of the [CLS] token

with the Question and Passage tokens separated by the [SEP] token. The full abstract version of

the BioASQ dataset that we use for fine-tuning has the initial snippet sentence along with its full

abstract and title as its passage. Using the full abstract dataset not only extends the search space

for extracting the answer, but also increases the number of tokens in the passage and in turn the

input sequence. From our initial analysis, we observe that the total number of tokens in the input

sequence after WordPiece tokenization is in the range of 51-1329. The frequency distribution of

the tokens in question, passage and input sequence are plotted using the histograms shown in

Figure 4.2.

In Table 4.2, we report the evaluation results of two of our models: one fine-tuned with

input sequence length of 512 and the other one fine-tuned with sequence length of 384. The

sequence length value of 384 is chosen for comparison as it is the default value suggested by

BERT authors [8]. All four BioASQ 7b test batches are evaluated on the three metrics: SAcc,

LAcc and MRR for both the models. From the comparison, we observe that there is a 4-6%

increase in all the three metrics when the model is fine-tuned with 512 input sequence tokens.

Thus, we set the sequence length as 512, for all of our models to handle the long sequence of

tokens in our BioASQ 7b full abstract training dataset.
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System Name
Factoid

Strict Accuracy

(SAcc)

Lenient Accuracy

(LAcc)

Mean Reciprocal Rank

(MRR)

DistilBERT

(max seq length = 384)
0.3868 0.4902 0.4255

DistilBERT

(max seq length = 512)
0.4403 0.5588 0.4844

TABLE 4.2: Comparison of systems with different maximum sequence lengths. The scores of all
the four test batches are averaged for each metric. ‘DistilBERT (max seq length = 512)’ and ‘Distil-
BERT (max seq length = 384)’ indicate models fine-tuned with input sequence lengths of 512 and 384
respectively on BioASQ 7b full abstract dataset. The best score is in bold.

Additionally, we conduct experiments on BERT to perform a comparative analysis with

DistilBERT. We adapt the same multi-task fine-tuning strategy and first fine-tune BERT on

SQuAD v1.1 and then on the BioASQ 7b dataset. We use the batch size of 4, 8 and same

learning rate range and maximum sequence length as DistilBERT.

We report our final results on the four BioASQ 7b test batches in Table 4.3. We compare

our results with the top ranking systems of the BioASQ 7b (Phase B) Challenge [63]. The top

ranking systems for each test batch along with their scores are listed in the table. The systems

with highest score are in bold.

The top performing systems among those who participated in BioASQ 7b for four test

batches use BioBERT as their pretrained language model. The systems that start with ‘KU-

DMIS’ are BioBERT based QA systems [77] and are the top scorers in four out of the five test

batches of BioASQ 7b Challenge. Our system ‘DistilBERT fine-tuned’ yields good results on

Test Batch 2. DistilBERT obtains higher MRR score (+2%) than the top performing system for

Test Batch 2. Both the fine-tuned BERT and DistilBERT models score the lower MRR scores on

Test Batch 4 and Test Batch 5.
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Test

Batch

Number

System Name
Factoid

Strict Accuracy

(SAcc)

Lenient Accuracy

(LAcc)

Mean Reciprocal

Rank (MRR)

2

KU-DMIS-5 0.5200 0.6400 0.5667

DistilBERT (fine-tuned) 0.5600 0.6400 0.5867

BERT (fine-tuned) 0.5600 0.6400 0.5800

3

KU-DMIS-1 0.3793 0.6207 0.4724

DistilBERT (fine-tuned) 0.4138 0.5172 0.4655

BERT (fine-tuned) 0.4138 0.5517 0.4770

4

KU-DMIS-1 0.5882 0.8235 0.6912

DistilBERT (fine-tuned) 0.5588 0.7353 0.6186

BERT (fine-tuned) 0.5294 0.6176 0.5510

5

KU-DMIS-5 0.2857 0.5143 0.3638

DistilBERT (fine-tuned) 0.2286 0.3429 0.2667

BERT (fine-tuned) 0.2286 0.3714 0.2819

TABLE 4.3: System comparison run on four BioASQ test batches. The best score for each test batch is
in bold.

4.5 Results and Discussion

This section discusses the results pertaining to the first research question of our thesis. Our

first research question was whether a smaller pretrained language model like DistilBERT can

improve the quality of current biomedical question answering systems.

Table 4.4 lists the results of our fine-tuning experiments along with the current state-of-the-

art system. We use paired t-tests to know how significant the differences between the groups are

and observe that there is no statistically significant difference between our models and the top

ranked model. This might be due to the small sample used for t-tests. Thus, we conclude that

our system does not improve the accuracy in comparison to the current state-of-the-art question

answering system. In spite of being 40% smaller than other models listed and without domain

specific pretraining, DistilBERT has achieved comparable results to BERT on a small dataset

like BioASQ.
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System Name Mean Reciprocal Rank

KU-DMIS Team [63, 77] 0.5235

DistilBERT (fine-tuned) 0.4844

BERT (fine-tuned) 0.4725

TABLE 4.4: Results of DistilBERT and BERT systems. We include the results of ‘KU-DMIS Team’
system for comparison. The ‘KU-DMIS Team’ system is the top-ranked system on the BioASQ 7b
leaderboard. The reported results are the average MRR of the four test batches of BioASQ 7b. MRR was
the main metric used by the BioASQ organisers.

DistilBERT was 3.9 points behind BERT in test accuracy on a larger SQuAD dataset when

evaluating on exact match and F1 score [55]. However, on low-resource BioASQ dataset, not

only has DistilBERT closed the gap but also resulted in comparable performance to BERT. Thus

using DistilBERT for small datasets is better considering there is no drop in performance and

requires less compute power. Most of this improvement can be attributed to our fine-tuning

strategies.

Based on our results, DistilBERT is a good alternative to BERT for small datasets like

BioASQ. This paves the way for DistilBERT to be used for other niche domains that have less

human annotated data. Furthermore, since the top ranked model, BioBERT [77] is pretrained

on biomedical data, it would be worth exploring the performance of using distilled version of

BioBERT.



5
Gradual Unfreezing Experiments

In this chapter, we describe the experiments that we run in order to answer our second research

question (introduced in Section 1.1). Our second research question was whether gradual

unfreezing can improve the performance of DistilBERT on a biomedical question answering

task. We first lay out our baseline system that we use to compare our gradual unfreezing

approach performance with. Later, we describe our experiments with the unfreezing approach

and discuss the results of our experiments in detail.

The layout of this is as follows. Section 5.1 describes the baseline system which we use

to compare our results. Section 5.2 describes the unfreezing approach that we use, and the

hyper-parameters that we choose. Section 5.3 describes unfreezing when grouping transformer

blocks. Section 5.4 presents and discusses the results.
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5.1 Baselines

Catastrophic forgetting [32] has been detrimental when transferring knowledge learned from a

pretrained task to a target task. The risk of forgetting the knowledge learned from earlier stages

undermines the potential of transfer learning. Gradually unfreezing layers instead of fine-tuning

all the layers of the pretrained model together helps overcome the catastrophic forgetting [17].

We test this fine-tuning approach on a transformer-based model, DistilBERT with biomedical

extractive question answering as our NLP use-case.

Before we start our experiments of fine-tuning with gradual unfreezing, we need a baseline

system to compare our approach with. We use our ‘DistilBERT (fine-tuned)’ system from

Chapter 4 as the baseline system. ‘DistilBERT (fined-tuned)’ is a strong baseline due to our

fine-tuning settings and its results are comparable to the current state-of-the-art systems on the

BioASQ 7b dataset. To recall, we used a multi-task fine-tuning approach of fine-tuning first

on SQuAD v1.1 and then on the BioASQ dataset. Both the fine-tuning stages use the standard

fine-tuning process i.e., all the layers are trained at once.

5.2 Unfreezing Experiments

In this section, we describe the experiments that we ran to investigate the gradual unfreezing

technique on DistilBERT for extractive QA setting. We use the full abstract version of BioASQ

7b training data to train our model and use Test Batch 1 as our validation data to tune our

hyper-parameters. The remaining four test batches from BioASQ 7b are evaluated to provide

a comparison against our baseline and systems that achieved the best score in the BioASQ

challenge. All the systems are evaluated on the three metrics: SAcc, LAcc and MRR as discussed

in Section 3.2.

During the fine-tuning on biomedical data, we apply the gradual unfreezing approach

discussed in Section 3.4. We start from the top task-specific layer and train the model for one

epoch in order to learn the distributions of the target task while freezing all the other layers.

Then we gradually unfreeze the next top layer and continue training the unfrozen layers for one

more epoch. This gradual fine-tuning is continued until all the layers of DistilBERT converge

except the embedding layer. The embedding layer is never fine-tuned in our approach.

We fine-tune the pretrained model distilbert-base-cased [73] using AdamW optimizer along

with a linear scheduler with a warm up. All the fine-tuning setting for SQuAD v1.1 are same
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as before and are detailed in Section 4.4. During this stage of fine-tuning, all of the model’s

parameters are trained together. We use a batch size of 4 and learning rate in the range of 9e-6 to

3e-5 with a maximum sequence length of 512 when fine-tuning on BioASQ. It is worth noting

that the gradual unfreezing approach is only applied when fine-tuning on the BioASQ dataset.

In our experiments, in order to avoid overfitting on the training data, the total number of epochs

the model is fine-tuned during gradual unfreezing is set to seven epochs. We choose seven as our

upper limit for number of epochs considering the fact that there are seven layers in DistilBERT

(six transformer layers and an additional question answering layer excluding the embedding

layer) and each layer needs to be fine-tuned at least once. We do not change the learning rate for

each layer and use the same set learning rate for each cycle of unfreezing.

In the first set of experiments, we compared the impact of applying gradual unfreezing with

and without including the embedding layer in the list of layers to unfreeze. The results are

shown in Figure 5.1. We observe an increase in the Mean Reciprocal Rank in the experiments

that did not unfreeze the embedding layer. Thus, we conclude that removing the embedding

layer during our unfreezing process has no negative impact on the performance of the system.

Freezing the embedding layer throughout the fine-tuning process also reduced the number of

trainable parameters from 65.19 million to 42.52 million, i.e., a 34.76% reduction in the number

of trainable parameters. We therefore decide to keep the embedding layer frozen for all our

experiments hereafter.

FIGURE 5.1: Comparison of systems when unfreezing one layer at a time with and without embedding
layer. The scores of all the four test batches are averaged for each metric. ‘DistilBERT (unfreeze with
embedding)’ and ‘DistilBERT (unfreeze without embedding)’ indicate models unfreezed with and without
embedding layer respectively on four test batches from BioASQ 7b.
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5.3 Grouping Blocks of Transformers

In addition, we also apply the gradual unfreezing approach when grouping the transformer layers.

Figure 3.3 shows the gradual unfreezing process when three transformer layers are fine-tuned

together. In this approach, we start from the top-most task-specific layer, and fine-tune it for few

epochs while the other layers are frozen. Next, we unfreeze transformer layers consecutively

in groups of either 3 or 6 and fine-tune them for a few epochs until all the layers except the

embedding layer are fine-tuned. Our approach differs from the standard gradual unfreezing,

as we have grouped the transformer layers and kept the embedding layer always frozen. Also,

the number of epochs during each cycle of unfreezing is not always one in our approach as

described.

We conducted an extensive search and selected the combination of epochs for unfreezing

layers which resulted in the best MRR on validation data (Test Batch 1). We notice that the top

task-specific layers required more epochs than the transformer layers (refer Table 5.1). This

is understandable given that the task-specific layer weights are the only randomly initialised

weights during fine-tuning and therefore require more epochs to learn the target task distributions.

DistilBERT (unfreeze 1) DistilBERT (unfreeze 3) DistilBERT (unfreeze 6)

1,1,1,1,1,1,1 3,1,1 5,1

TABLE 5.1: The table lists the sequence of epochs utilized by the models: ‘DistilBERT (unfreeze 1)’,
‘DistilBERT (unfreeze 3)’ and ‘DistilBERT (unfreeze 6)’. We list the sequence of epochs used during
the gradually unfreezing of layers. This combination of epochs was selected as it gave the best MRR on
validation data (Test batch 1) of BioASQ data.

In Table 5.1, we report the sequence of epochs the model is fine-tuned for when unfreezing 1,

3 and 6 transformer layers at once. The sequence in the table represents the number of epochs the

model is fine-tuned for during each cycle of unfreezing starting from the top task-specific layer.

For example, the sequence 3,1,1 implies that model fine-tunes for 3 epochs after unfreezing

question-answering layer, 1 epoch for the next unfrozen layers group (QA layer and top 3

transformer layers) and finally 1 epoch for all the remaining unfrozen layers (all layers except

embedding layer).
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Test

Batch

Number

System Name
Factoid

Strict Accuracy

(SAcc)

Lenient Accuracy

(LAcc)

Mean Reciprocal

Rank (MRR)

2

DistilBERT (fine-tuned) 0.5600 0.6400 0.5867

DistilBERT (unfreeze 1) 0.5200 0.6400 0.5633

DistilBERT (unfreeze 3) 0.5200 0.6000 0.5500

DistilBERT (unfreeze 6) 0.5200 0.6800 0.5833

3

DistilBERT (fine-tuned) 0.4138 0.5172 0.4655

DistilBERT (unfreeze 1) 0.3793 0.5172 0.4425

DistilBERT (unfreeze 3) 0.4483 0.5172 0.4741

DistilBERT (unfreeze 6) 0.4483 0.5172 0.4828

4

DistilBERT (fine-tuned) 0.5588 0.7353 0.6186

DistilBERT (unfreeze 1) 0.5000 0.7059 0.5647

DistilBERT (unfreeze 3) 0.5588 0.7647 0.6422

DistilBERT (unfreeze 6) 0.5294 0.7059 0.5917

5

DistilBERT (fine-tuned) 0.2286 0.3429 0.2667

DistilBERT (unfreeze 1) 0.2571 0.3429 0.2795

DistilBERT (unfreeze 3) 0.2571 0.3143 0.2700

DistilBERT (unfreeze 6) 0.1714 0.3714 0.2448

TABLE 5.2: Results of gradual unfreezing approaches compared to the baseline. ‘DistilBERT (fine-
tuned)’ depicts the baseline. ‘DistilBERT (unfreeze 1)’ denotes fine-tuned model when gradual unfreezing
one layer at a time. ‘DistilBERT (unfreeze 3)’ and ‘DistilBERT (unfreeze 6)’ represents fine-tuned models
when unfreezing 3 and 6 transformer layers at a time, respectively, on BioASQ 7b test batches. The best
score for each test batch is in bold.

In Table 5.2, we report our final results when using gradual unfreezing on BioASQ 7b dataset.

We compare all the three DistilBERT models that are fine-tuned using gradual unfreezing with

our baseline model. We discover that ‘DistilBERT (unfreeze 3)’ achieves better results in three

test batches with the exception of Test Batch 2 relative to the baseline in terms of MRR. Overall,

the model that unfreezed one transformer layer at a time achieved worst results amongst all

unfreezed models. Since the MRR for each test batch is a normal distribution as it is an average

of about hundred samples, we use paired t-tests to let us know how significant the differences

between groups are. We observe that there is no statistically significant difference between the

three unfreezed models and the baseline. Therefore, our gradual unfreezing approach has not

achieved any significant improvement over the baseline. Even though ’distilBERT (unfreeze 1)
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shows worst results, the difference is still not statistically significant to confirm that this model

performed worst.

5.4 Results and Discussion

In this section, we discuss the results of our experiments to answer our second research question.

Our second question was to investigate whether gradual unfreezing can improve the accuracy of

DistilBERT on extractive question answering task.

Table 5.3 summaries the results of all our gradual unfreezing experiments along with the

current state-of-the-art BioBERT-based system [77] for the biomedical question answering task

of BioASQ 7b. We conclude that our fine-tuning technique of gradual unfreezing does not

improve the performance of DistilBERT over the baseline system, which uses typical end-to-end

fine-tuning.

System Name Mean Reciprocal Rank

KU-DMIS Team [63, 77] 0.5235

DistilBERT (fine-tuned) 0.4844

DistilBERT (unfreeze 3) 0.4841

DistilBERT (unfreeze 6) 0.4756

BERT (fine-tuned) 0.4725

DistilBERT (unfreeze 1) 0.4625

TABLE 5.3: Comparison of all unfreezing experiments run on the BioASQ dataset along with the top
ranked BioBERT based ‘KU-DMIS Team’ system on BioASQ leaderboard [63, 77]. All the reported
results are averaged MRR scores (the main metric used by BioASQ organisers) of four test batches of
BioASQ 7b data.

Furthermore, we observe that the systems that have unfreezed transformer layers in the

groups of three and six, have achieved comparable results than the ‘BERT (fine-tuned)’ model.

This feat was achieved by the smaller ‘DistilBERT’ model and, on top of that, by not training

the embedding layer during fine-tuning, 34% less trainable parameters of DistilBERT were used

during fine-tuning.



6
Conclusion and Future Work

This thesis examined two research questions. First, we investigated whether a smaller pre-

trained language model, DistilBERT, could improve the accuracy of a limited human annotated

dataset, BioASQ. Second, we investigate whether gradual unfreezing can improve the quality of

biomedical question answering task.

We have observed that DistilBERT did not result in any significant reduction of accuracy over

the current benchmark model in BioASQ. From the results of our experiments, we discovered

that DistilBERT is a better alternative for small datasets like BioASQ than BERT. We have

provided a step by step guide to sequential adaptation of pretrained model that serves as

the starting point for other question answering tasks with limited annotated data. From our

experiments, we observe that DistilBERT achieved comparable results to a larger model, BERT.

Thus, DistilBERT is a viable alternative option for deploying biomedical QA applications on

edge, mobile and other Internet of Things (IoT) devices.

We conducted multiple experiments of gradual unfreezing on BioASQ dataset. From the

results obtained, we can conclude that our gradual unfreezing has no significant impact on the

47
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quality of biomedical question answering task. None of our unfreezed models performed better

than the standard baseline fine-tuned model.

6.1 Future Work

In view of the limited availability of human annotated data in biomedical domain, additional

fine-tuning on in-domain extractive question answering datasets could lead to an improvement

in accuracy. Recently, Lewis et al. [26] devised an extractive question answering dataset

from unsupervised data by applying cloze translation approach. We could try to create an

exclusive biomedical extractive QA dataset from the unsupervised data from PubMed articles

and documents for additional fine-tuning. Along with additional data for training, we would

like to investigate the fine-tuning strategies like multi-tasking and residual adapters discussed in

Chapter 2.

Language models are pretrained on the general domain corpus and are usually adapted to

a target task from a completely different domain. While the general domain corpus used for

pretraining can be from a variety of diverse sources, the target data will often have a different

distribution. Therefore, Howard and Ruder [17] used an intermediate step of fine-tuning the

language model on the target task data before fine-tuning the target task itself. This intermediary

step of fine-tuning the language model with text data from BioASQ task before fine-tuning on

the extractive question answering task holds potential and needs to be explored further.
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A
Appendix: BioASQ Factoid Question

An example of factoid question from the BioASQ 7b dataset before pre-processing:

1 {

2 "body": "Which is the third subunit of the TSC1-TSC2 complex

upstream of mTORC1?",

3 "documents": [

4 "http: //www.ncbi.nlm.nih.gov/pubmed/22795129"

5 ],

6 "ideal_answer": [

7 "TBC1D7 was identified as a stably associated and

ubiquitous third core subunit of the TSC1-TSC2 complex

.... "

8 ],

9 "exact_answer": [

58



59

10 "TBC1D7"

11 ],

12 "concepts": [

13 "http: //www.uniprot.org/uniprot/TSC1_HUMAN",

14 "http: //www.biosemantics.org/jochem#4266396",

15 "http: //amigo.geneontology.org/cgi-bin/amigo/term_details

?term=GO:0033596",

16 "http: //amigo.geneontology.org/cgi-bin/amigo/term_details

?term=GO:0031931",

17 "http: //www.uniprot.org/uniprot/TSC2_HUMAN"

18 ],

19 "type": "factoid",

20 "id": "5319ac99b166e2b806000034",

21 "snippets": [{

22 "offsetInBeginSection": 0,

23 "offsetInEndSection": 328,

24 "text": "The tuberous sclerosis complex (TSC) tumor

suppressors form the TSC1-TSC2 complex, which limits

cell growth in response to poor growth conditions

.....",

25 "beginSection": "abstract",

26 "document": "http: //www.ncbi.nlm.nih.gov/pubmed/2279512

9",

27 "endSection": "abstract"

28 },

29 {

30 "offsetInBeginSection": 329,

31 "offsetInEndSection": 633,

32 "text": "Here, we identify and biochemically

characterize TBC1D7 as a stably associated and

ubiquitous third core subunit of the TSC1-TSC2 complex

..... ",
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33 "beginSection": "abstract",

34 "document": "http: //www.ncbi.nlm.nih.gov/pubmed/2279512

9",

35 "endSection": "abstract"

36 }

37 ]

38 }

An example of factoid question from the BioASQ 7b dataset after pre-processing into SQuAD

format:

1 {

2 "qas": [{

3 "id": "5319ac99b166e2b806000034_001",

4 "question": "Which is the third subunit of the TSC1-TSC2

complex upstream of mTORC1?",

5 "answers": [{

6 "text": "TBC1D7",

7 "answer_start": 449

8 }]

9 }],

10 "context": "The tuberous sclerosis complex(TSC) tumor

suppressors form the TSC1 - TSC2 complex, which limits

cell growth in response to poor growth........"

11 },

12 {

13 "qas": [{

14 "id": "5319ac99b166e2b806000034_002",

15 "question": "Which is the third subunit of the TSC1-TSC2

complex upstream of mTORC1?",

16 "answers": [{

17 "text": "TBC1D7",
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18 "answer_start": 573

19 }]

20 }],

21 "context": " Here, we identify and biochemically

characterize TBC1D7 as a stably associated and ubiquitous

third core subunit of the TSC1-TSC2 complex. We

demonstrate that the TSC1-TSC2-TBC1D7 (TSC-TBC) complex is

the functional complex..........."

22 }
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