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Abstract 

This thesis is concerned with mathematical cognition and teacher cognition, two of the subfields within 
mathematics education research. Within each there is a broad range of diverse theories that cultivate 
varied understandings of complex phenomena in mathematical thinking, learning, and teaching. 
However, the abundance and diversity of theories can polarize perspectives and foster the development 
of narrow and restricting theoretical accounts. This thesis uses existing theoretical tensions to stimulate 
the development of more powerful theoretical accounts by coordinating theoretical perspectives in 
mathematical cognition and teacher cognition.  

The thesis consists of three articles, which aim to blend opposing theoretical perspectives to reveal 
complementarity in the field of mathematical knowing and learning, challenge assumptions to reveal 
restrictions in the field of teacher knowledge, and portray some complex phenomena that cannot be 
accounted for using intuitive models of teacher noticing. These articles link apparently disparate 
approaches, revealing the complexity of the phenomena under consideration and the limitations of 
existing theoretical accounts for them. 

The first article blends theoretical perspectives from two local theories of mathematical cognition 
(abstraction-from-actions and abstraction-from-objects) to present a bi-directional, dynamic, non-linear 
view of mathematical concept formation. The second article examines teacher cognition, discussing 
existing conceptualizations of mathematics teacher knowledge, revealing their limitations, and offering 
alternative views that direct attention to underexplored issues. The third article examines teacher 
cognition from the perspective of the construct of teacher noticing, drawing on insights from cognitive 
science and the applied science of human factors to develop a model of teacher noticing which 
challenges intuitive assumptions and views individual and environment as interdependent and 
inseparable. 

It is hoped that these contributions add value to the field by advancing knowledge, providing links 
between previous conceptualizations, and offering fresh insights and theoretical views. 
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1 Introduction 

Theory underlies most scholarly activity and is key to driving progress in both educational research and 
educational practice.1 Despite empirical research being more common and often more prominent than 
theoretical research, theorizing is central to mathematics education research (Lester, 2005) and the deep 
understanding it fosters is often essential when confronting truly important problems (diSessa, 1991). 
A central issue met by this thesis is the prevalence of multiple and frequently conflicting theoretical 
perspectives and theoretical frameworks in mathematics education. This is the case because 
mathematics education is a very broad research field, divided into subfields that together encompass 
insights from fields such as anthropology, philosophy, psychology, semiotics, and sociology, among 
others. In each piece of research mathematics education is approached from a specific viewpoint, which 
determines to a large extent how mathematics education is understood as a research object. This thesis 
focuses on cognitive psychology, cognitive science, and complexity science, which provide theoretical 
insights that help account for complex phenomena in mathematical cognition and teacher cognition.2  

1.1 Research Focus 
The focus on mathematical cognition and teacher cognition relates directly to the complexity of learning 
and teaching in mathematics education, addressing critical questions regarding students’ mathematical 
cognition and teachers’ cognition that have been disputed about by scholars within both the mathematics 
education research community and the larger educational research community.  

The learning-teaching environment is considered as a complex system in which teacher, learners, 
and subject matter are interrelated and in a state of flux, and the interacting agents are themselves 
regarded as complex systems (see Davis & Simmt, 2012). One way to capture the dimensions involved 
is by means of the didactic triangle, in which teacher, students, and subject matter represent the vertices 
of the triangle (see Figure 1).3 Goodchild and Sriraman (2012) described the didactic triangle as “the 
classical trivium used to conceptualize teaching and learning in mathematics classrooms” (p. 581, italics 
in original), and further argued that:  

“Even though this representation may seem canonical to an extent and ‘simplify’ the complexity 
of what occurs within the classroom during a mathematics lesson, it serves as a starting point to 
theorize the dynamics of teaching-learning, as well as situating and contextualizing each element 
in relation to the others.” (Goodchild & Sriraman, 2012, p. 581) 

Figure 1: The didactic relation in the didactic triangle (modified from Kansanen, 2003, p. 230) 
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Here the didactic triangle functions as a heuristic (Ruthven, 2012) for foregrounding what Kansanen 
(2003) considered as two critical relations in the learning-teaching complexity that go beyond the 
pedagogical relation between teacher and students:  

“First, there is a relation between the student and the content. This is manifest as studying, and 
latent as learning and other changes. Secondly, the teacher has a relation to this relationship 
between the student and the content. In other words, the teacher has a relation to studying, and at 
the same time this relation is also to the learning. That may be called didactic relation […]. To 
highlight the importance of the didactic relation it may be emphasised that concentrating on the 
content makes the teacher an expert and concentrating on a student makes the teacher a caretaker 
of the pedagogical relation. To concentrate on the relation between the student and the content or 
on studying is, however, the core of a teacher’s profession.” (Kansanen, 2003, p. 230) 

The didactic triangle speaks to the multidimensional concerns of mathematics education. The 
relations that Kansanen (2003) pointed out are of prime concern in this thesis: the relation between 
students and subject matter and the relation between teacher and the student-subject matter relation (see 
Figure 1). These two relations refer to two research areas in mathematics education: mathematical 
cognition and teacher cognition.  

The thesis is a dissertation by publication, consisting of three journal articles in the area of 
mathematical cognition and teacher cognition (one article concerning mathematical cognition; the other 
two articles concerning teacher cognition). In the area of mathematical cognition, the thesis aims to 
advance theory on forms of abstraction and sense-making in mathematics. In the area of teacher 
cognition, the thesis intends to make theoretical contributions to the discussion of mathematics teacher 
knowledge and teacher noticing.  

Research Focus 1: Abstraction and Sense-Making 
Over recent years, various theoretical frameworks have arisen to account for cognitive development in 
mathematical knowing and learning. The focus here is explicitly on local theories of mathematical 
knowing and learning – in particular on two approaches (abstraction-from-actions and abstraction-from-
objects) that have been previously construed as opposing – instead of global theories such as the 
embodied cognition approach (e.g. Lakoff & Nunez, 2000) or the situated learning approach (e.g. Lave 
& Wenger, 1991). The purpose here is to raise the debate beyond comparison of these seemingly 
opposing approaches, by identifying fundamental cognitive processes underlying both approaches in 
order to explore possibilities for coordinating them in a meaningful way that better speaks to the 
complexity of mathematical knowing. The purpose of coordinating these two approaches is not to 
attempt to build a unified theory, but to acknowledge the exquisite complexity of mathematical knowing 
and learning.  

Research Focus 2: Teacher Knowledge  
The last few decades have produced a considerable body of literature that conceptualizes, 
operationalizes, and measures mathematics teacher knowledge. The focus here is on general 
orientations and tendencies in conceptualizing mathematics teacher knowledge, and how the field 
currently conceives of what makes mathematics teacher knowledge specialized. The purpose here is to 
identify serious limitations of these orientations and tendencies and to provide alternative views to each 
of these orientations and tendencies that foreground topics in what makes mathematics teacher 
knowledge specialized that have only been partially investigated.  
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Research Focus 3: Teacher Noticing  
The complexity of fields such as teacher noticing engenders difficulties when attempting to generate 
deep theoretical understanding. This thesis strives to generate such understanding by developing a 
theoretical perspective that borrows from other research disciplines. In doing so, it is hoped that 
researchers and educators will be provided with useful insights concerning the complexities of an 
individual’s attentional engagement with the environment and her or his situation awareness. The 
approach taken here is an example of how a theoretical construct (namely teacher noticing) that is 
intensively discussed in mathematics teacher education can be re-conceptualized in light of rich 
conceptualizations of related phenomena discussed in cognitive science and the applied science of 
human factors. This may form a basis for reconsidering how to conceptualize the complexities involved 
in teacher noticing. Such a reframing may enable the identification of important questions that need to 
be addressed in the field. 

1.2 Aims and Purposes 
This thesis seeks to better understand the complexity of mathematical cognition and teacher cognition. 
Existing theories are considered to be restrictive or conflicting in their explanations of knowing, 
learning and teaching. Alternatives are sought that might contrast, link, and extend existing 
understandings. Hence, the mission of this thesis is to provide new theoretical insights that advance 
scholarly understanding of complex phenomena in student mathematical cognition and teacher 
cognition (phenomena that cannot be accounted for by deterministic accounts and cannot be understood 
strictly by means of analysis).4  

The interest here is in generating, not testing, theoretical perspectives.5 Theoretical perspectives can 
be generated through multiple modes of inquiry. Here the thesis follows critical and dialectical 
approaches in generating new theoretical perspectives and insights. The goal is to understand, criticize, 
and extend theoretical accounts of mathematical abstraction and sense-making, mathematics teacher 
knowledge, and teacher noticing, with the ultimate goal of transforming existing perspectives to provide 
greater insights and extend previous conceptualizations in new directions. Thus, the theoretical 
perspectives generated herein are intended to serve as catalysts for the development of more 
comprehensive theoretical accounts of the phenomena under consideration.  

As such, the thesis intends to both extend current conversations and start new conversations in the 
areas of mathematical cognition and teacher cognition. Current conversations are extended by offering 
critical reflections and elaborations of existing views as well as making an attempt to suggest “how 
researchers […] can deal with the almost mystifying range of theories and theoretical perspectives that 
are being used” (Lester, 2005, pp. 176-177). New conversations are started by questioning existing 
conceptualizations and understandings of critical phenomena, and providing new points of view that 
move scholarly understanding closer toward better accounting for their complexity.6 

1.3 Organization of the Thesis 

The thesis is organized into six chapters, with different orientations and intentions, that deepen or extend 
the discussions provided in the three articles. Chapter 2 begins by acknowledging the broad diversity 
of (at times competing) theoretical perspectives in mathematics education research. The strategies 
employed by networking theories to deal with this abundance of theory are then discussed, with a 
particular emphasis on one form of coordination strategy, called blending. The chapter then states the 
three objectives of the thesis. Chapter 3 presents a new theoretical perspective on the acquisition of 
mathematical meaning by students, the dialogic framing, which is obtained by blending two existing 
theoretical perspectives that are often viewed as mutually exclusive, followed by the first article entitled 
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“New light on old horizon: constructing mathematical concepts, underlying abstraction processes, and 
sense making strategies” by T. Scheiner, published 2016 in Educational Studies in Mathematics, 91(2), 
165-183 (doi: 10.1007/s10649-015-9665-4). Chapter 4 examines teacher cognition, discussing existing
conceptualizations of mathematics teacher knowledge and taking a critical stance toward the
assumptions that underlie those conceptualizations, followed by the second article entitled “What makes
mathematics teacher knowledge specialized? Offering alternative views” by T. Scheiner, M. A. Montes,
J. D. Godino, J. Carrillo, & L. R. Pino-Fan, published online-first in International Journal of Science
and Mathematics Education (doi: 10.1007/s10763-017-9859-6). Chapter 5 examines teacher cognition
from the perspective of the construct of teacher noticing, drawing on insights from cognitive science
and the applied science of human factors to develop a model of teacher noticing wherein individual and
environment are inseparable and interdependent, followed by the third article entitled “Teacher
noticing: enlightening or blinding?” by T. Scheiner, published 2016 in ZDM Mathematics
Education, 48(1-2), 227-238 (doi: 10.1007/s11858-016-0771-2). Chapter 6 concludes by summarizing
the results of this thesis and discussing their wider significance.

Notes to Chapter 1 
1 The question of what theory is, is on its own a crucial question. There is a range of diverse answers to 
this question, but little consensus on a common definition of what theory is. For the purposes of this 
thesis, a broad, relatively general definition is used: theory is a collection of clearly defined concepts 
and their interrelationships that taken together offer an explanation for how and why a phenomenon 
occurs. It should be noted that the purpose of the thesis is not to develop new theories, but rather to 
make some theoretical contributions to the field that advance scholarly understanding of some complex 
phenomena in mathematics education.      
2 In response to the limitations of cognitive-oriented approaches to accounting for individual cognition, 
a number of theoretical perspectives have arisen in the past few decades that treat cognition as socially 
and culturally situated (see De Corte, Greer, & Verschaffel, 1996). While the distinction between 
cognitive and situated perspectives is important, the assumption that one needs to choose between them 
is misleading (for a discussion see e.g. diSessa, Levin, & Brown, 2016). It should be stressed that the 
focus on cognition in mathematics education herein is not arguing in favor of a cognitive orientation, 
but is simply an attempt to account for the cognitive structures and processes that seem to be involved. 
3 Certainly, the didactic triangle does not provide an all-embracing framing of the learning-teaching 
complexity in mathematics education, but it does foreground some central objects of mathematics 
education (or, more precisely, didactics of mathematics) and the important role that subject matter 
(mathematics) plays for learning and teaching processes. In the German-speaking countries especially, 
the didactic triangle has a long tradition, with an emphasis on didactical analyses of school mathematics, 
called Stoffdidaktik (see Steinbring, 1998; Strässer, 2007), and mathematics as a focal point of lessons 
(see Kaiser, 2002). For a more recent discussion on broadening the ‘classical’ version of the didactic 
triangle to view classroom activities from a socio-cultural perspective see Schoenfeld (2012). 
4 This thesis is not written from the assumption that there is only one paradigmatic way of thinking 
about cognition. It suggests instead an interpretation of certain phenomena in mathematical cognition 
and teacher cognition that might have value in its own right and that can put in dialogue, other, limiting, 
ways of thinking. As such, this thesis is not uniquely associated with any particular school of thought 
but acknowledges insights from other traditions without trapping itself in absolutes. Such an attitude 
recognizes that all accounts are partial, impermanent, and from a particular perspective, and that all 
theoretical framing, in consequence, changes and evolves over time. 
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5 In testing theoretical perspectives, the primary interest is in the verification or falsification of those 
perspectives (with a focus on hypotheses testing and mainly quantitative analyses). Theory building in 
those cases typically occurs through the incremental adjustment or broadening (or occasionally, refusal) 
of the original theory.  
6 The author’s standpoint is rooted in the conviction that what makes one theoretical construct or 
framework preferred over another is advancement toward “what is believed to be true” (Dubin, 1978, 
p. 13). The author believes that there is room for further theoretical contributions that reveal what was 
otherwise not seen, known, or conceived. These theoretical contributions may “allow us to see 
profoundly, imaginatively, unconventionally into phenomena we thought we understood. […] [A 
theoretical contribution] is of no use unless it initially surprises – that is, changes perceptions” 
(Mintzberg, 2005, p. 361). 
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2 Advancing Theory Building in Mathematics Education   

In reviewing Sierpinska and Kilpatrick’s (1998) edited book Mathematics education as a research 
domain: A search for identity, Steen (1999) stated that mathematics education is “a field in disarray, a 
field whose high hopes for a science of education have been overwhelmed by complexity and drowned 
in a sea of competing theories” (p. 236). Certainly, mathematics education is a ‘pluralized field’ 
(Jablonka & Bergsten, 2010) containing a broad range of diverse, at times competing, theoretical 
perspectives and theories.1 These theories, in addressing issues about and related to the knowing, 
learning, and teaching of mathematics, sometimes borrow insights from many other disciplines (e.g. 
philosophy, psychology, sociology, cognitive science, etc.), while claiming to speak to both academics 
and practitioners.2 The broad diversity of theoretical perspectives and theories is itself not a problem, 
but must be acknowledged to grasp the complexity of the objects of investigation (Lerman, 2006).3 
Theoretical perspectives and theories serve as lenses through which complex phenomena in 
mathematics education are looked at; the lenses being socially and culturally situated (Sierpinska & 
Kilpatrick, 1998) and relying on, and projecting, different philosophies and paradigms (Cobb, 2007).4 
Such a multi-perspective view is an attempt to account for a complex phenomenon by linking various 
theories to constitute a multi-dimensional account of the phenomenon.   

2.1 Networking Theories: Fostering Deeper Insights 
Recently, researchers working within the ‘networking theories’ group (Bikner-Ahsbahs et al., 2010; 
Bikner-Ahsbahs & Prediger, 2014) made substantial progress in dealing with the diversity of theories in 
mathematics education. Networking theories do not mean to remove diverse theoretical perspectives or 
theories through uniform assimilation, but instead to create a dialogue between theories in mathematics 
education (Radford, 2008). Networking theories aim at answering the question of “how to deal with the 
diversity of manifold, partly overlapping and partly contradictory theories and the connected diversity 
of conceptual descriptions for similar phenomena” (Bikner-Ahsbahs & Prediger, 2006, p. 52). The 
networking theories approach offers a systematic way of interacting with diverse theoretical positions 
and theories by using different strategies (Bikner-Ahsbahs & Prediger, 2006; Prediger, Bikner-Ahsbahs, 
& Arzarello, 2008). In this thesis, the strategies ‘comparing’ and ‘contrasting’, ‘combining’ and 
‘coordinating’, as well as ‘synthesizing’ and ‘integrating’ are of primary concern.  

The strategies of comparing and contrasting are useful when considering the diversity of existing 
theories. Comparing takes account of both similarities and differences, whereas contrasting stresses the 
differences and is less neutral. Using these strategies, the strengths and weaknesses of theoretical 
approaches can be highlighted. Prediger et al. (2008) identified three different aims associated with these 
two strategies: they can be used as an “inter-theoretical communication”, a “competition strategy on the 
market of available theoretical approaches”, and a “rational base for the choice of theories” (p. 171).  

In contrast to comparing and contrasting, which aim to advance understanding of critical qualities 
and characteristics of theoretical perspectives for further theory development, the strategies of 
combining and coordinating are mainly used to looking at a particular phenomenon from different 
theoretical perspectives. Combining is described as a strategy that tries to combine a number of local 
theories, even those with incompatible background theories and conflicting perspectives, in order to get 
a multi-focal insight into the phenomenon under consideration. Coordinating is described as fitting 
elements from different theories to form a conceptual framework for making sense of the phenomenon. 
As coordinating is a strategy that can only be employed between theories with compatible core 
elements, using this strategy necessitates a careful analysis of the interconnections between and amongst 
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components of each theory in order to determine the degree of their compatibility (see Prediger et al., 
2008).  

Whereas combining and coordinating primarily focus on a specific phenomenon with the aim of 
developing deeper insights into it, synthesizing and integrating aim at creating new theories by bringing 
together a small number of theoretical approaches into a new framework. These two strategies differ in 
their “degree of symmetry”, or the extent to which constituents of both theories are utilized (Prediger 
et al., 2008, p. 173). Synthesizing describes a strategy used “when two (or more) equally stable theories 
are taken and connected in such a way that a new theory evolves” (Prediger et al., 2008, p. 173). 
Integrating is used where there is a lower degree of symmetry in related theoretical components, where 
a subset of the components of one theory are integrated into a more detailed and primary theory.  

Networking theories can contribute to the empirical, the methodological, and the theoretical (Bikner-
Ahsbahs et al., 2014). For the purpose of advancing theory development, this thesis focuses attention 
on the theoretical. In summary, networking theories attempt to explore ways of dealing with the 
increasing diversity of theories in mathematics education, by studying the insights offered by and 
limitations of each theory with the aim of advancing theory building in mathematics education. In 
particular, networking theories may advance theory building “by sharpening theoretical principles or 
constructs, extending theoretical approaches, building new concepts, posing new questions, or making 
explicit commonalities” (Bikner-Ahsbahs et al., 2014, p. 10).  

2.2 Blending Theories: Fostering Novel Insights 
Similarly to networking theories, this thesis uses various lenses to cultivate multifaceted understandings and 
diverse interpretations of critical phenomena in mathematical cognition and teacher cognition. Major efforts 
are made to look for theoretical tensions or oppositions and to recognize divides and bridges in existing 
theory, and to use them to stimulate the development of new insight and understanding. That is, the 
thesis aims not so much for an increasing degree of integration of different theories, but for a 
highlighting of contradictions and interdependencies in existing theoretical approaches.   

The guiding philosophy of this thesis is based on the perspective that although at times there is a 
necessity to look at complex phenomena from different viewpoints, it might be even more productive 
to put in dialogue viewpoints (even competing ones) in order to generate novel and stronger theoretical 
insights. In a departure from the approach taken by previous attempts at networking theories, this thesis 
strives to coordinate conflicting perspectives and insights to generate new understanding. It is assumed 
that theoretical perspectives (or theoretical frameworks) can be ‘blended’ to provide novel insights and 
understanding that are absent when each individual theoretical perspective (or theoretical framework) 
is considered in isolation. As Tall (2013) stated:  

“[…] frameworks may benefit from a broader theory that is a blend of both, explicitly revealing 
the nature of aspects that are supportive in some contexts yet problematic in others, yet at the 
same time, these aspects may blend together so that an apparent dichotomy has the potential to 
offer new insights.” (pp. 410-411). 

Blending is a higher level of coordinating theoretical perspectives that does not imply synthesis (or 
unification) but, instead, seeks to view similarities, differences, inter-relationships and contradictions 
(between theories) in new light. The goal is a richer, comprehensive, and contextualized understanding.  
This is the level of coordinating perspectives that diSessa, Levin, and Brown (2016) described as ‘deep 
synergy’,  

“at which things pass beyond being ‘interesting’ to being ‘fundamental for the field’ […], where 
the intellectual support for at least some of the most important ideas comes from both 

8



perspectives. This is the regime where retaining the identity of the two perspectives begins to 
become questionable. Genuinely new intellectual territory has been reached that is not 
construable from within only one perspective.” (p. 5)  

The term ‘blending’ has its origin in the work of Fauconnier and Turner (2002) on ‘conceptual 
blending’, who built a detailed framework of blending two knowledge domains from which novel 
elements result from in the blend that are not evident in either domain on its own. According to 
Fauconnier and Turner (2002): “In conceptual blending, frames from established domains (known 
as inputs) are combined to yield a hybrid frame (a blend or blended model) comprised of structures 
from each of the inputs, as well as unique structure of its own” (p. 115). As such, blending is a 
process of partial mapping or integration, called cross-space mapping, a mental operation of 
combining frames from (originally distinct) input spaces that leads to different meaning, novel 
insights, and conceptual compression.5 Some scholars argue that the capacity for complex 
conceptual blending is essential for thought, and underlies the formation of meaning (for a 
comprehensive account, see Fauconnier & Turner, 2002). 

Figure 2 shows the main features of conceptual blending: the four circles represent the mental 
spaces (two input spaces, a generic space containing structure common to the input spaces, and a 
blended space with unique structure). The solid lines designate the cross-space mapping between 
the input spaces, and the dashed lines designate links between input spaces and either generic or 
blended spaces. The rectangle inside the blended space designates emergent structure (along with 
selected aspects or structure from each input space). 

Figure 2: The basic diagram of conceptual blending (reproduced from Fauconnier & Turner, 2002, p. 46)6

Turner (2014) specified that 

“The blend is not an abstraction, or an analogy, or anything else already named and recognized 
in common sense. A blend is a new mental space that contains some elements from different 

Generic Space

Input I Input II

Blend

selective 
projection

cross-space mapping
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mental spaces in a mental web but that develops new meaning of its own that is not drawn from 
those spaces. This new meaning emerges in the blend.” (p. 6)  

Blending is considered here as a rich resource for networking theories that provides a productive 
way of producing novel insights that may not be manifest in the original theoretical frameworks from 
where critical components have been blended. What is important here is the recognition that different 
theoretical frameworks might have conflicting theoretical positions, but those conflicting positions can 
make central contributions to the blend, with the resulting blend being a conceptual system of higher 
explanatory power, flexibility, and greater insight. Theory development by conceptual blending can 
then be phrased as: putting in dialogue familiar (possibly mutually contradictory) ideas in an 
unfamiliar (possibly complementary) way, thereby producing novel (potentially enlightening) 
ideas.   

2.3 Objectives for Theory Development  
Blending is a recurrent theme in this thesis. The thesis consists of three major contributions, each having 
its specific objective for theory development in important areas in mathematics education. In particular, 
the thesis attempts to blend opposing theoretical perspectives to reveal complementarity in the field of 
mathematical knowing and learning, challenge taken-for-granted assumptions to reveal restrictions in 
the field of teacher knowledge, and portray some complex phenomena that cannot be accounted for 
using intuitive models of teacher noticing.  

Objective 1: Transcending Dualisms in Mathematical Cognition  
The first contribution (Scheiner, 2016a) of this thesis draws on various theoretical frameworks in 
mathematical concept formation to put in dialogue cognitive processes and sense-making strategies that 
are often considered to be in opposition to each other. This has the potential to move the discussion 
beyond simple comparison and offer new insights into the complexity of mathematical cognition and 
learning which cannot be appreciated by a taking a mono-logical vision of mathematical concept 
formation.   

In particular, this thesis blends opposing theoretical perspectives to reveal complementarity. As 
such, the intention is to move beyond dualisms by examining supposedly conflicting views 
concurrently. The purpose here is not to dispute or strive to surpass previous ideas, but to give 
deeper meaning to such ideas and elaborate upon them in novel ways. As such, the theoretical 
contribution consists of presenting countervailing views and coordinating seemingly opposing 
theoretical perspectives via dialectical approaches. 

Objective 2: Challenging Taken-For-Granted Assumptions in Conceptualizing Teacher 
Knowledge  
The second contribution (Scheiner et al., 2017) of this thesis takes a critical stance toward existing 
conceptualizations of teacher knowledge by examining the assumptions that underlie them. In so doing 
the commonly accepted view of what lies at the core of the teaching profession, the transformation of 
subject matter for the purpose of teaching, is challenged.  

The purpose here is to demonstrate how different ‘frames of reference’ (namely, the structure of a 
discipline vs. the structure of mind) foster certain conceptualizations of teacher knowledge and may 
lead to opposing views on subject matter (where subject matter is seen as an object of teaching vs. where 
subject matter is seen as an object of learning).  
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Objective 3: Going Beyond Intuitive Models of Teacher Noticing  
The third contribution (Scheiner, 2016b) of this thesis intends to modify, extend, and redirect theoretical 
conceptualizations of the construct of teacher noticing by providing theoretical linkages with constructs 
discussed in cognitive science (inattentional blindness) and the applied science of human factors 
(situation awareness). Put differently and more provocatively, central constructs developed in cognitive 
science and the applied science of human factors are (re-)situated in the discussion of teacher noticing, 
to break away from the simplified and expected and explain complex phenomena involved in teacher 
noticing in new light.  

More importantly, this situating brings a greater appreciation of the complex interdependencies of 
individual and environment that cannot be account for by intuitive models of teacher noticing. 
Explaining how and why teachers notice what they notice presents a major open scientific problem.  

2.4 Summary 
In summary, this chapter discusses strategies used by networking theories to deal with the diversity of 
theories in mathematics education and outlines the objectives of the thesis. Specific strategies employed 
by networking theories are presented, namely the strategies of comparing, contrasting, combining, 
coordinating, synthesizing, and integrating. This chapter uses the idea of blending to illuminate 
unspoken and unexamined practices for coordinating conflicting perspectives. Finally, the three 
objectives of this thesis are outlined: transcending dualisms in thinking about mathematical cognition, 
challenging critical assumptions implicit in most accounts of conceptualizing teacher knowledge, and 
going beyond intuitive models of teacher noticing by incorporating ideas from other fields. The 
following chapters discuss the presented objectives in detail, each chapter being self-standing and 
deepening or extending a particular aspect focused on in the respective article.  

Notes to Chapter 2 
1 Not everything that is termed ‘theory’ is a theory. Instead, in discussing theoretical work, one might 
advocate more nuances. It might be useful to distinguish between ‘theoretical perspective’ (or 
‘theoretical orientation’), ‘theoretical framework’, ‘theory’, and ‘model’. These notions, when 
considered as relative rather than absolute distinctions, can help to identify differences in how 
theories are interpreted. A theoretical perspective (or theoretical orientation) can be understood as a 
‘worldview’ or a ‘background theory’ (in the sense of Mason & Waywood, 1996) that influences an 
individual’s approach to professional life. A theoretical framework might be understood as “a general 
pool of constructs for understanding a domain, but it is not tightly enough organized to constitute a 
predictive theory” (Anderson, 1983, p. 12). It is possible to generate a theory from this pool of 
constructs, one that makes unique empirical predictions that distinguish it from other frameworks. In 
this sense, “one judges a framework in terms of [the] success, or fruitfulness, of the theories it generates. 
If the theories lead to many accurate accounts of interesting phenomena, the framework is regarded as 
fruitful.” (Anderson, 1983, p. 12). On the other hand, a theory is “a precise deductive system that is 
more general than a model […]”, whereas a model is “the application of a theory to a specific 
phenomenon […]” (Anderson, 1983, p. 13). 
2 Another reason for the broad diversity of theories is the versatile use of theories (see Assude, Boero, 
Herbst, Lerman, & Radford, 2008; Sriraman & English, 2005). Theories function as “lens[es] to analyze 
data and produce results of research on a problem” (Silver & Herbst, 2007, p. 50); they are “the way in 
which we represent the knowledge and understanding that comes from any particular research study” 
(Bishop, 1992, p. 711). Theories are used “to direct action in ways more powerful than are possible 
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without the use of the theory, because they take account of qualities of the environment which are 
inaccessible to simple observation” (Skemp, 1979, p. 315). In addition, theories may also serve as “a 
language of descriptions of an educational practice” (Silver & Herbst, 2007, p. 56) and as a “tool which 
can help to design new [educational] practices” (ibid., p. 59). 
3 However, introducing isolated theoretical positions and theories rather than charting a discourse 
among them becomes a challenge for the research community and does not resolve researchers’ 
continuing search for a disciplinary identity. On the other hand, the diversity of theoretical perspectives 
and theories can become an “eminently fruitful source for the development of a disciplinary identity” 
when different positions and traditions interact (Bikner-Ahsbahs & Prediger, 2006, p. 56). 
4 Instead of viewing phenomena through the lens of one particular theoretical orientation, we often act 
as bricoleurs (in the sense of Lévi-Strauss, 1966) by adopting ideas from a variety of theoretical sources 
to conform to our intentions and own biases (see e.g. Cobb, 2007; Gravemeijer, 1994). The thesis is to 
be understood as a bricolage, an emergent collage-like piece that brings together divergent views, 
understandings, and interpretations of some complex phenomena in mathematics education and the 
author’s own analyses of these understandings and interpretations. 
5 Studies of conceptual blending conceive of it in terms of integration networks of mental spaces. 
“Mental spaces are small conceptual packets constructed as we think and talk, for purposes of local 
understanding and action” (Fauconnier & Turner, 2002, p. 40), they are partial collections 
containing elements that are organized by conceptual frames and mental models. In its simplest 
form, an integration network consists of two partially matched input spaces, a generic space, and 
a blended space. The generic space shares structure with both of the inputs; thus, it defines a partial 
mapping between representations in the input spaces. The blended space is constructed through (a) 
composition, (b) completion, and (c) elaboration, each of which provides for the possibility of 
emergent structure. In short, “composition of elements from the inputs makes relations available in 
the blend that do not exist in the separate inputs” (Fauconnier & Turner, 2002, p. 42, italics in 
original). In other words, composition involves identifying a relation between an element or 
elements of an input space and an element or elements from other input spaces. Completion is 
pattern-completion, which occurs when patterns extrapolated from the inputs fit with background 
knowledge that is brought into a blend. Elaboration is closely related to completion, and is a 
process whereby an event is performed and/or mentally simulated in the blend, and is constrained 
by the logic of the blended domain itself. In this sense, the blend has emergent dynamics –  it can 
‘run’, while remaining connected to the other spaces. 
6 Notice that this figure of conceptual blending is just a snapshot of a more complex process, 
presented in an order that does not necessarily correspond with the actual stages of blending as 
performed by an individual. More complex systems of connected mental spaces can have more 
input and blended spaces (where blends at one level can be inputs at another). 
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3 Transcending Dualisms in Mathematical Cognition: Toward a 
Dialogical Framing*  

*This chapter refers to the first journal article, entitled “New light on old horizon: constructing mathematical 
concepts, underlying abstraction processes, and sense making strategies” by T. Scheiner, published 2016 in 
Educational Studies in Mathematics, 91(2), 165-183. (doi: 10.1007/s10649-015-9665-4) 

This chapter focuses on two strands of research concerning mathematical concept formation: 
abstraction-from-actions approaches and abstraction-from-objects approaches. The first article 
(Scheiner, 2016a) identifies cognitive processes and sense-making strategies underlying the two 
approaches and opens a new avenue to go beyond simply viewing the two approaches as being in 
opposition. The article draws on various theoretical frameworks to move the discussion from simple 
comparison towards a synergy of theoretical frameworks that acknowledges both the complementarity 
of the underlying cognitive processes and their respective sense-making strategies. This 
complementarity has been overlooked in previous approaches. Specifically, the article blends 
theoretical frameworks on two fundamental forms of abstraction (reflective abstraction and structural 
abstraction) and their respective sense-making strategies (extracting meaning and giving meaning).1 
This blending argues strongly against dismissing abstraction from objects as irrelevant for mathematical 
concept formation, and instead aims to overcome misleading dichotomies of abstraction from actions 
and abstraction from objects, as Piaget (1977/2001) put forth.2 A detailed discussion of the particular 
cognitive processes, their respective sense-making strategies, and the new insights into the complexity 
of mathematical concept formation that emerged in blending the theoretical frameworks on reflective 
and structural abstraction can be found in Scheiner (2016a).  

This article makes a theoretical contribution by discussing the dialogical framing of extracting 
meaning and giving meaning, which emerged from examination of the seemingly opposing approaches 
of abstraction from actions and abstraction from objects. This discussion focuses on the relation 
between extracting meaning and giving meaning and the potential of a blended theory to account for 
the complex dynamics involved in mathematical concept formation, dynamics which cannot be 
accounted for considering extracting meaning and giving meaning separately.  

This chapter is structured in three parts: First, some theoretical assertions are outlined that oriented 
the theoretical framing put forth in Scheiner (2016a). Second, explicit and implicit assumptions 
underlying the respective sense-making strategies of extracting meaning and giving meaning are 
examined. Third, the dialogic framing of extracting meaning and giving meaning is outlined, revealing 
the complex dynamics involved in mathematical concept formation.    

3.1 Theoretical Orientations and Orienting Assertions  
The theoretical foundation for coordinating reflective and structural abstraction, as presented in 
Scheiner (2016a), relies on and projects several theoretical insights revealed by the German 
mathematician and philosopher Gottlob F. L. Frege (1848-1925) that have informed a variety of 
theoretical perspectives on mathematical knowing, thinking, and learning (see Arzarello, Bazzini, & 
Chiappini, 2001; Duval, 2006; Radford, 2002). In particular, the theoretical foundation in Scheiner 
(2016a) shares Frege’s (1892a) assertion that a mathematical concept is not directly accessible through 
the concept itself but only through objects that act as proxies for it.3 

However, mathematical objects (unlike objects of natural sciences) cannot be apprehended by 
human senses (we cannot, for instance, ‘see’ the object), but only via some ‘mode of presentation’ 
(Frege, 1892b) – that is, objects need to be expressed by using signs or other semiotic means such as a 
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gestures, pictures, or linguistic expression (Radford, 2002). The ‘mode of presentation’ (or ‘way of 
presentation’) of an object is to be distinguished from the object that is represented, as individuals often 
confuse a senseF (‘Sinn’) of an expression (or representation) with the referenceF (‘Bedeutung’) of an 
expression (or representation) (the subscript F indicates that these terms refer to Frege, 1892b).4 The 
referenceF of an expression is the object it refers to, whereas the senseF is the way in which the object 
is given to the mind (Frege, 1892b), or in other words, it is the thought (‘Gedanke’) expressed by the 
expression (or representation) (Frege, 1918). The expression ‘𝑎 = 𝑏’, for instance, is informative, in 
contrast to the expression ‘𝑎 = 𝑎’, as the senseF of ‘𝑎’ differs from the senseF of ‘𝑏’. Consider also 
Frege’s (1892b) well-known example concerning the two different expressions of the planet Venus: 
‘the morning star’ and ‘the evening star’. The two expressions ‘the morning star’ and ‘the evening star’ 
have the same referenceF, that is the planet Venus, but have different ways the planet Venus is given to 
the mind: as a celestial body that shines in the east (morning sky) before sunrise or as a celestial body 
that shines in the west (evening sky) after sunset. Concerning mathematics, the two expressions ‘3 + 2’ 
and ‘7 − 2’, for instance, express different thoughts but have the same referenceF, the natural number 
5. Thus, sensesF capture the epistemological and cognitive significance of expressions. This implies one 
of Frege’s decisive assertions, that an object can only be apprehended via a senseF of an expression (or 
representation): the senseF orients how a person thinks of the object being referred to. Thus, it seems 
reasonable to understand Frege’s (1892b) notion of an ideaF (‘Vorstellung’) as the manner in which a 
person makes senseF of the world. IdeasF can interact with each other and form more compressed 
knowledge structures, called conceptions. A general outline of this view is provided in Figure 3, which 
is a slightly modified version of the original figure presented in Scheiner (2016a).  

  

 
Figure 3: On referenceF, senseF, and ideaF (modified from Scheiner, 2016a, p. 179) 
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3.2 On Extracting Meaning: Pointing to a Conception-to-Concept Direction 
of Fit 
A common assumption is that the meaning of a mathematical concept is an inherent quality of objects 
that fall under a particular concept, and that this quality is to be extracted. This extraction of meaning 
is realized through the manipulation of objects and reflection of variations of sensesF when objects are 
manipulated. These cognitive processes are often associated with reflective abstraction, that is, 
reflecting on the coordination of actions on mental objects (see Piaget, 1977/2001). Similarly, Duval 
(2006) argued that via systematic variation of one representation of an object and reflecting on resulting 
variations in another representation of the same object, an individual can recognize what is 
mathematically relevant and separate the senseF of a representation from the referenceF of a 
representation. Such a view asserts that individuals internalize extracted mathematical structures and 
relations associated with their actions and reflections of their actions on objects. It gives the impression 
that individuals construct mental models (ideasF or conceptions) that correspond to an ideal realm 
(objects or concepts), though it might be read as taking a ‘trivial constructivist’ position (von 
Glasersfeld, 1989): the view that a necessary condition of knowledge is that individuals construct, 
constitute, make, or produce their own understanding (see Ernest, 2010). More importantly, such a view 
seems to suggest a ‘conception-to-concept direction of fit’ (Scheiner, 2017) that is, mathematical 
concept formation is regarded as individuals constructing conceptions that best reflect a (seemingly 
given) mathematical concept (see Figure 4).  

 
Figure 4: From object to idea to conception 

3.3 On Giving Meaning: Pointing to a Concept-to-Conception Direction of 
Fit 

In the attempt to coordinate abstraction-from-actions and abstraction-from-objects approaches, a new 
understanding of abstraction emerged: abstraction is not so much the extraction of a previously 
unnoticed meaning of a concept (or the recognition of structure common to various objects), but rather 
a process of giving meaning to the objects an individual interacts with from the perspective an individual 
has taken. Abstraction, as such, is more focused on “the richness of the particular [that] is embodied not 
in the concept as such but rather in the objects that falling under the concept [...]. This view gives 
primacy to meaningful, richly contextualized forms of (mathematical) structure over formal 
(mathematical) structures” (Scheiner, 2016, p. 175). This is to say, individuals give meaning to the 
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objects they interact with by attaching ideasF to objects or, more precisely, by attaching ideasF to the 
sensesF expressed by the representations in which an object actualizes. Recent research investigating 
the contextuality, complementarity, and complexity of this sense-making strategy (see Scheiner & 
Pinto, 2017) asserted that in contrast to Frege (1892b), who construed senseF in a disembodied fashion 
as a way an object is given to an individual, an individual assigns senseF to object. However, what 
senseF is assigned to an object is a function of what ideaF is activated in the immediate context (see 
Figure 5). In this view, ideasF direct forming the modes of presentation under which an individual refers 
to an object. As such, it is a person’s complex system of ideasF that directs forming a senseF, rather than 
merely the object a representation refers to.  

 
Figure 5: On activating ideasF and assigning sensesF 

This research also indicated that individuals might even give meaning to objects that are yet to 
become. This means that although an object does not have a being prior to the individual’s attempts to 
know it, an individual might create a new ideaF that directs their thinking to potential objects, or more 
precisely: an individual might create an ideaF that allows assigning a new senseF to objects that are yet 
to become (see Figure 6). That is, individuals might give meaning beyond what is apparent. It is 
proposed that the creation of such ideasF is of the nature of what Koestler (1964) described as 
‘bisociation’, and Fauconnier and Turner (2002) elaborated as ‘conceptual blending’.5 

 
Figure 6: Transforming ideasF to give (new) meaning to an object 
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The key insight here is that unrelated ideasF can be transformed into new ideasF that allow ‘setting 
the mind’ not only to actual instances, but also to potential instances that might become ‘reality’ in the 
future. In such cases, conceptual development is not merely meant to reflect an actual concept, but 
rather to create a concept: a view that suggests a ‘concept-to-conception direction of fit’ (Scheiner, 
2017) that is, mathematical concept formation is regarded as individuals creating a concept that best fits 
their conceptions. Similarly, Lakoff and Johnson (1980), drew attention to the power of (new) 
metaphors to create a (new) reality rather than simply to provide a way of conceptualizing a pre-existing 
reality: “changes in our conceptual system do change what is real for us and affect how we perceive the 
world and act upon those perceptions” (pp. 145-146.). It is reasonable to assume that students transform 
ideasF to express a yet-to-be-realized state of a concept. This accentuates Tall’s (2013) assertion that 
the “whole development of mathematical thinking is presented as a combination of compression and 
blending of knowledge structures to produce crystalline concepts that can lead to imaginative new ways 
of thinking mathematically in new contexts” (p. 28).  

3.4 On the Dialogical Framing of Extracting Meaning and Giving Meaning  
Each of the previous two sections articulated a particular sense-making strategy: extracting meaning 
from objects (via manipulating objects and reflecting on the variations) and giving meaning to objects 
(via attaching existing and new ideasF to objects). These two sense-making strategies seem to differ in 
their directions of fit: extracting meaning involves individuals’ attempts to construct conceptions that 
aim to fit a concept (conception-to-concept direction of fit), whereas giving meaning involves 
individuals’ attempts to create a concept that aims to fit their conceptions (concept-to-conception 
direction of fit) (for a detailed discussion, see Scheiner, 2017).  

In Scheiner (2016a), instead of construing extracting meaning and giving meaning as independent 
processes that point in two opposing directions, a bi-directional theoretical framing of mathematical 
concept formation was developed. Specifically, Scheiner (2016a) argued for a dialogical framing of 
extracting meaning and giving meaning, asserting that extracting meaning and giving meaning are 
interdependent (rather than independent): what meaning one extracts is very much a function of what 
meaning is given to, and vice versa (see Figure 7). This dialogical framing can better account for the 
complex emergence of evolving forms of meaning: meaning not only emerges (from Latin emergere, 
‘to become visible’) via reflection on manipulations of objects, but also evolves (from Latin evolvere, 
‘to become more complex’) via transforming previously constructed ideasF (see Scheiner, 2017).  

 

Figure 7: On the dialogue of extracting meaning and giving meaning 
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The dialogical framing of extracting meaning and giving meaning acknowledges the complex 
emergence of evolving forms of meaning that cannot be accounted for by viewing extracting meaning 
or giving meaning as separate. Extracting meaning and giving meaning, though they have value in their 
own right, are restricted, and restricting, in their accounts of mathematical concept formation. This is 
due to the ‘hidden determinisms’ inherent in the two approaches: extracting meaning assumes that what 
dictates meaning is the concept itself; while giving meaning advocates an individual’s conceptions as 
the determinants of all meaning. The dialogical framing, in contrast, is not deterministic but bi-
directional: mathematical concept formation involves processes that direct from conception to concept 
as much as it involves processes that direct from concept to conception. As such, the dialogical framing 
is more than a matter of recasting the concept-conception divide: it underlines that concept and 
conception are not static and apart but fluid and co-specifying (see Figure 8).  

 

Figure 8: A complexivist frame: on the complex interaction between concept and conception 

Figure 8 is an alternative to the reductionist view taken in respective approaches of extracting 
meaning (see Figure 4) and giving meaning (see Figure 5), both being rather uni-directional and 
deterministic in orientation. The dialogical framing provides new interpretative possibilities regarding 
the complex dynamics in mathematical concept formation, allowing for a move beyond simplistic 
assertions about linearity and determinism (that were transposed from analytical science and analytical 
philosophy onto discussions of mathematical concept formation). Figure 8 attends to the complexity in 
mathematical concept formation and speaks to the nonlinear, emergent characters of evolving forms of 
mathematical meaning (see e.g. Pirie & Kieren, 1994; Schoenfeld, Smith, & Arcavi, 1993).  

3.5 Reflections 
The theoretical contribution specified in Scheiner (2016a) makes the case that neither uni-directional 
framing of mathematical concept formation (whether involving extracting meaning or giving meaning) 
provides a comprehensive account of the complex emergence of evolving forms of meaning. It is argued 
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for an alternative framing that acknowledges mathematical concept formation as both directed from 
concept to conception and from conception to concept. Mathematical concept formation, then, is 
construed as an ongoing, intertwined process of extracting meaning and giving meaning, in which 
conceptions shape, and are shaped by, the concepts with which an individual interacts.  

This dialogical framing brings a greater insight: that any attempt to frame cognition in terms of mind 
over matter or matter over mind is misleading, as cognition is bi-directional: from the outside in (mind-
to-world direction of fit) and from the inside out (world-to-mind direction of fit). That is, mind and 
world are engaged in a co-creative interaction: mind is shaped by the world and mind shapes the world. 
Such a world is subjectively articulated, in that its objectivity is relative to how it has been shaped by 
the knower (see Reason, 1998).  

Such a dialogical framing is not so much a unification of any monism (that sees, for instance, mind 
as situated within its world), nor of any dualism (that sees mind apart from the world), but rather is an 
acknowledgment that mind is an integral part of the world, and as such both mind and world are in a 
constant state of flux, changing in the ever-unfolding process of extracting meaning and giving 
meaning.  

3.6 Summary 
In summary, this chapter presents a new theoretical perspective blended from the existing perspectives 
that mathematical meaning is extracted (from objects falling under a particular concept) and that 
mathematical meaning is given (to objects that an individual interacts with by that individual). This 
blending seeks to frame mathematical concept formation as bi-directional (where what meaning one 
extracts is a function of what meaning is given to, and vice versa) and to recast the concept-conception 
divide (by viewing concept and conception as fluid and co-specifying instead of static and apart). In 
doing so, the dialogical framing presents a view of mathematical concept formation that is complex, 
dynamic, non-linear, and possessed of emergent characteristics. After having focused on the subject 
matter–student axes of the didactic triangle in this chapter, attention is turned in the next chapter to the 
didactic relation between teacher and learning. In particular, the focus in the next chapter is on the 
underlying assumptions of existing conceptualizations of teacher knowledge.  

Notes to Chapter 3 
1 There are several ways that individuals can make sense; here the focus is on Pinto’s (1998) distinction 
between ‘extracting meaning’ and ‘giving meaning’ with respect to sense-making of a formal concept 
definition:  

“Extracting meaning involves working within the content, routinizing it, using it, and building 
its meaning as a formal construct. Giving meaning means taking one’s personal concept imagery 
as a starting point to build new knowledge.” (Pinto, 1998, pp. 298-299) 

Gray, Pinto, Pitta, and Tall (1999) stated that in giving meaning a person attempts to build from their 
own perspective, trying to give meaning to mathematics from current cognitive structures. Tall (2013) 
elucidated that these two approaches are related to a ‘natural approach’, that builds on the concept 
image, and a ‘formal approach’, that builds formal theorems based on the formal definition.  

In Scheiner (2016), extracting meaning was linked to the manipulation of objects and reflection on 
the variations in modes of presentation when objects are manipulated. These cognitive processes are 
often associated with Piaget’s (1977/2001) reflective abstraction, that is, abstraction through 
coordination of actions on mental objects (see e.g. Dubinsky, 1991). Giving meaning, on the other hand, 
was related to attaching an ideaF to a mode of presentation. That is, an individual gives meaning to the 
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objects one interacts with from the perspective an individual has taken. These cognitive processes are 
more a manner of perspective-taking, grounded in the notion of structural abstraction that focuses on 
“the richness of the particular [that] is embodied not in the concept as such but rather in the objects that 
falling under the concept” (Scheiner, 2016a, p. 175). 
2 Piaget (1977/2001) dichotomized abstraction à partir de l’action (abstraction from actions) and 
abstraction à partir de l’objet (abstraction from objects), dismissing abstraction from object as 
irrelevant for conceptual knowing and learning in mathematics, due to a restricted understanding of 
empirical abstraction that “draws its information from objects” (p. 317) but “is limited to recording the 
most obvious and global perceptual characteristics of objects” (p. 319). Generally speaking, empirical 
abstraction is the extraction of superficial characteristics that individuals can observe in the 
environment. Skemp (1986), however, departed from the understanding of abstraction that focuses on 
underlying structures rather than superficial characteristics. Mitchelmore and White (2000) utilized 
Skemp’s understanding of abstraction to develop an empirical abstraction approach in learning 
elementary mathematics, focusing on similarities of structures underlying objects or situations. The 
outline of structural abstraction provided in Scheiner (2016a) shares with Mitchelmore and White 
(2000) the focus on underlying structure but differs from them in that it accentuates the diversity rather 
than the similarity of structures underlying objects. 
3 While some have taken expressions or representations as objects (Font, Godino, & Gallardo, 2013), 
Scheiner (2016a) construed a mathematical object (e.g. a natural number, a linear function) as the 
referenceF of a multiplicity of expressions (or representations), which are acknowledged as such by the 
scientific community. A mathematical object can be expressed (or represented) in the form of a 
linguistic element (e.g. expression, metaphor, notation), a definition (e.g. formal concept definition), or 
a proposition (e.g. statement), among others. The assumption that objects pre-exist or are given is not 
necessary, as an object comes into being in the representations in which it actualizes (Radford, 2013), 
and emerges in the recognition of referential equivalence of representations (the recognition that certain 
representations stand for the same object) (Duval, 2006).  
4 Duval (2006) provided a detailed description of students’ confusion of a representation of an object 
with the object that is being represented, substantiated with what he called a ‘cognitive paradox’:  

“how can they [individuals] distinguish the represented object from the semiotic representation 
used if they cannot get access to the mathematical object apart from the semiotic representation?” 
(p. 107) 

5 Koestler’s (1964) central idea is that any creative act is a bisociation of two (or more) unrelated (and 
seemingly incompatible) frames of thought (called matrices) into a new matrix of meaning by way of a 
process involving abstraction, categorization, comparison, and the use of analogies and metaphors. 
More recently, Fauconnier and Turner (2002) elaborated and formalized Koestler’s idea of bisociation 
into what they called conceptual blending. Conceptual blending consists of constructing a partial match, 
called a cross-space mapping, in order to selectively project a set of inputs into a set of outputs. The 
inputs are frames from established domains, and the outputs are a novel hybrid frame (called blend), 
comprised of a structure from each of its inputs, and a unique structure of its own (or emergent 
structure). Fauconnier and Turner (2002) elucidated that individuals “are exceptionally adept at 
integrating two extraordinarily different inputs to create new emergent structures, which result in […] 
new ways of thinking” (p. 27). 
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Abstract The initial assumption of this article is that there is an overemphasis on abstraction-
from-actions theoretical approaches in research on knowing and learning mathematics. This
article uses a critical reflection on research on students’ ways of constructing mathematical
concepts to distinguish between abstraction-from-actions theoretical approaches and
abstraction-from-objects theoretical approaches. Acknowledging and building on research on
knowing and learning processes in mathematics, this article presents a theoretical framework
that provides a new perspective on the underlying abstraction processes and a new approach
for interpreting individuals’ ways of constructing concepts on the background of their strate-
gies to make sense of a mathematical concept. The view taken here is that the abstraction-
from-actions and abstraction-from-objects approaches (although different) are complementary
(rather than opposing) frameworks. The article is concerned with the theoretical description of
the framework rather than with its use in empirical investigations. This article addresses the
need for more advanced theoretical work in research on mathematical learning and knowledge
construction.

Keywords Cognition . Learner types . Reflective abstraction . Reflectural abstraction . Sense
making strategies . Structural abstraction . Theory development

1 Introduction

It is widely acknowledged that the complex phenomena of knowing and learning processes in
mathematics need pluralistic frameworks in order to adequately address the many facets of
mathematical learning. The literature provides a variety of well-elaborated theoretical models
and frameworks concerning mathematical concept construction such as Dubinsky and his
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colleagues’ (Dubinsky, 1991; Cottrill et al., 1996) APOS theory using Piaget’s (1977/2001)
reflective abstraction as a point of departure, Tall’s (2004, 2013) Three Worlds of Mathematics
that cultivated Bruner’s (1966) long-term development of the enactive-iconic-symbolic modes
and van Hiele’s (1986) levels of learning geometry and integrated them into a ‘bigger picture’
of mathematical learning, as well as Hershkowitz, Schwarz, and Dreyfus’s (2001) RBC model
(recognizing, building-with, & constructing). The latter has been further elaborated in later
works (Hershkowitz, Hadas, Dreyfus, & Schwarz, 2007) into the RBC+C model (adding
consolidation), its overall model grounded in an abstraction in context framework, suggesting
that constructing new knowledge is largely based on vertical reorganization of existing
knowledge elements. The latter two frameworks are remarkable examples as they integrate
ideas from various ‘schools of thought’ that provide different perspectives on learning
mathematics. For instance, the work of researchers within the RBC+C model uses the
perspective of situated learning and apprenticeship, its main theoretical foundation lying in
Vygotsky’s Activity Theory. Tall’s (2013) recent work, which presents a blending of numerous
fundamental ideas underlying what Ernest (2006) called ‘philosophies of learning’, enabled
him to identify three different worlds of mathematics: the (conceptual) embodied, the
(operational) symbolic, and the (axiomatic) formal world.

These and further frameworks have shed light on important issues in research on learning
mathematics and present strong cases showing that progress can and has been made in
education research on learning and cognition in mathematics. It is a reasonable assertion that
diSessa’s (1991) description of the state of the art with respect to theory building in learning
and knowledge construction as Bquite poor^ (p. 222) can no longer be considered to be
accurate. Mathematics education research has progressed considerably since diSessa (1991)
called for more advanced theories in learning and knowledge construction. Research has
become more sophisticated in the sense that the same phenomena are looked at in more detail
by using different perspectives. However, some areas need more emphasis. From the author’s
point of view, one of these areas falls within the dominant (if not the leading) perspective on
how mathematics is learned, labeled as the cognitive constructivist perspective on learning.
Research approaches that use this perspective have drawn on Piaget’s work; in particular,
Piaget’s forms of abstraction have been influential in research on cognitive processes under-
lying mathematical concept construction. This article argues that in the past there has been an
overemphasis on what in this article are called abstraction-from-actions theoretical approaches
in research on constructing mathematical concepts. These approaches converge in an under-
lying cognitive process that Piaget described as reflective abstraction. However, Piaget (1977/
2001) already distinguished between two forms of abstraction, namely abstraction à partir de
l’action (abstraction from actions) and abstraction à partir de l’objet (abstraction from
objects). While ‘abstraction from actions’ has been emphasized for several decades almost
always as an exclusive way of concept construction, the focus on ‘abstraction from objects’
has been overlooked. Sfard (1998) reminds us that Bgiving full exclusivity to one conceptual
framework would be hazardous. Dictatorship of a single metaphor […] may lead to theories
that serve the interests of certain groups to the disadvantage of others^ (p. 11). In this work, it
is assumed that an overemphasis on ‘abstraction from actions’ cannot adequately represent the
multi-faceted phenomena involved in constructing mathematical concepts.

In the following pages, a theoretical framework is described that (1) extends current
perspectives on ways of constructing mathematical concepts, (2) identifies their underlying
forms of abstraction, and (3) takes account of their interrelationships with strategies of making
sense. A comprehensive reflection on the state of the art with respect to theoretical work on
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abstraction in mathematics education research is beyond the scope of this article. In addressing
the issues mentioned, the following section (Section 2) focusses on two research strands on
constructing mathematical concepts, namely abstraction-from-actions and abstraction-from-
objects approaches. The article tries to identify the cognitive processes underlying mathemat-
ical concept construction within each strand. Based on the assumption that there is a need to
better theoretically map out the cognitive processes that build the architecture for abstraction
from objects, the second part of this section presents the outline of a theoretical reflection of
this form of abstraction. Then, in Section 3, it is argued that research should take into account
the interrelationships of cognitive processes underlying mathematical concept construction and
students’ strategies of making sense. Based on previous research on students’ strategies of
making sense, the article begins to examine this issue by providing a particular way to think
about it. This effort is used to open a new avenue to go beyond simply viewing abstraction-
from-actions and abstraction-from-objects approaches as being in opposition to each other.
Section 4 provides some considerations of a particular way to think about the interrelationship
between the two forms of abstraction highlighted in the previous sections.

This article draws on various theoretical frameworks that address local issues in concept
construction to raise the discussion beyond simple comparison to move towards identifying
deeper underlying themes that enable us to offer new insights into multiple cognitive processes
and their interrelationships with strategies of making sense. The diversity of theoretical
approaches and traditions can be a rich resource for theoretical and philosophical advancement
when these approaches interact. In recent years, the work of researchers within the ‘networking
theories’ group (Bikner-Ahsbahs et al., 2010; Bikner-Ahsbahs & Prediger, 2014) presents
significant progress in how to deal with the richness of the diversity of theories. The
‘networking’ approach provides a systematic way of interacting with diverse theoretical
approaches by using different strategies (Bikner-Ahsbahs & Prediger, 2006; Prediger,
Bikner-Ahsbahs, & Arzarello, 2008). In this article, the strategies ‘comparing’ and ‘contrast-
ing’ as well as ‘integrating’ and ‘synthesizing’ are of particular interest. In short, in order to
consider the diversity of theories, the strategies comparing and contrasting are meaningful
since the former one, comparing, takes account of both similarities and differences in a more
neutral way of perceiving theoretical components, whereas the latter, contrasting, stresses only
the differences. Especially by contrasting, the strengths and weaknesses of theoretical ap-
proaches can be highlighted. Synthesizing and integrating, on the other hand, aim at develop-
ing theories by putting together a small number of theoretical approaches into a new
framework. These two strategies differ along the Bdegree of symmetry^ (Prediger et al.,
2008, p. 173) of the involved theoretical approaches. Synthesizing describes a strategy used
Bwhen two (or more) equally stable theories are taken and connected in such a way that a new
theory evolves^ (Prediger et al., 2008, p. 173). Integrating is used with a lower degree of
symmetry of the linked theoretical components, in the sense, that only some components of a
theory are integrated into an already more elaborate dominant theory.

With regard to this issue, one of the lessons learned from the recent work of Tall (2013) is
that each theoretical framework has value in its own context and that, in addition, theoretical
frameworks can be ‘blended’ to give new insights that were not available in each individual
theoretical framework alone. Following Tall (2013), in this article, blending various frame-
works is considered as a productive tool to produce emergent insights that may not be evident
in the original theories. It is hoped this will shed light on aspects that have been overlooked in
past approaches in research on cognitive processes underlying mathematical concept construc-
tion compatible with students’ strategies of making sense.
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The article is considered as an extended effort to advance theory building in research on
cognition and learning mathematics which has the potential to overcome the predominance of
a single way of constructing mathematical concepts. In doing so, the presented sketch of the
framework calls for other researchers to broaden the perspective on the issue by addressing it
in a complementary direction, and to extend and advance the explanatory power of the
framework. The purpose of this article is not to challenge or explain ideas presented in an
original work or compete with recent approaches in mathematics education but to theorize
about, and provide deeper meaning to older ideas, and to take them forward in ways not
conceived of originally. Thus, this article is intended to provide a further piece of the ‘bigger
picture’ in research on abstraction in learning mathematics.

Notice that the choice of theoretical approaches commented on in this article represents a
limited selection of approaches that fall within a cognitive constructivist orientation of learning.
The author is aware that there are several versions of constructivism, including radical and social
constructivism; the latter having two formulations: Piagetian and Vygotskian (Ernest, 1994).
This article uses Piagetian formulation when referring to social constructivism.

2 Abstraction-from-actions and abstraction-from-objects theoretical
approaches in mathematics education research

Several approaches, partly distinct and partly overlapping, shape the theoretical landscape in
mathematics education research on abstraction. If taken as poles of a wide spectrum, two
research strands can be distinguished: (1) an abstraction-from-actions strand and (2) an
abstraction-from-objects strand. Each strand, as argued in this article, has a particular under-
lying cognitive process. While cognitive processes underlying the abstraction-from-actions
strand have been extensively examined in the past two decades, cognitive processes underlying
the abstraction-from-objects strand have been nearly overlooked. This article attempts to better
theoretically map out the cognitive processes that build the architecture for abstraction from
objects. The outline of a theoretical reflection on this kind of abstraction introduced under the
same name by Tall (2013) is presented in the second part of this section.

Each strand, as argued in this article, has a particular underlying cognitive process that is
also inextricably linked with a specific strategy for making sense of a mathematical concept.
This is in line with a natural view of learning emphasizing that individuals’ ways of concept
construction and their strategies of making sense are inseparable from each other.

The following subsection provides an analysis of cognitive processes underlying the two
research strands concerning mathematical concept construction.

2.1 Abstraction-from-actions theoretical approaches

Abstraction-from-actions theoretical approaches, in the literature often labelled as process-object-
encapsulation, assume that learners first learn processes and procedures for solving problems in a
particular domain and later extract domain-specific concepts through reflection on actions on
known objects. This development of mental construction has been variously described as (1)
interiorization, condensation, and reification (Sfard, 1991). (2) action, process, object, and
schema (Dubinsky, 1991). or (3) procedure, process, and procept (Gray & Tall, 1994).

Mathematics education research has shown that there is an inherent process-object duality
in the majority of mathematical concepts.
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The basic tenet of Sfard’s (1991) theory is that mathematical notions can be considered both
structurally (as objects) and operationally (as processes). Sfard (1991) points out that these
two approaches Balthough ostensibly incompatible […], are in fact complementary^ (p. 4).
Therefore, the process of learning is considered as the interplay between operational and
structural conceptions of the same notions; whereas the operational conception emerges first
and the structural conception develops afterwards through reification of the process (Sfard,
1991). However, the transition from an operational conception to a structural conception is a
time-consuming process, subdivided into three hierarchically arranged phases (see Fig. 1),
namely interiorization, condensation, and reification. In the phase of interiorization the learner
becomes Bskilled at performing processes^, in the phase of condensation the learner becomes
Bmore and more capable of thinking about a given process as a whole^, without going into
detail (Sfard, 1991, pp. 18–19). While interiorization and condensation occur gradually,
reification requires Ban ontological shift—a sudden ability to see something familiar in a
totally new light^ (Sfard, 1991, p. 19). This step turns out to be particularly complicated since
the reification of an object is often associated with the interiorization of a higher-level process.

Dubinsky and his colleagues’ (Cottrill et al., 1996; Dubinsky, 1991) approach of actions
becoming mental objects as part of their APOS theory shows the same characteristics. The
fundamental feature of the APOS theory is the assumption that objects are constructed by the
encapsulation of processes. Encapsulation describes the conversion of a dynamic process into
a static object (Dubinsky, 1991), in the sense that actions and processes become objects of
thought by repeating them until the construction of structures is completed. As mentioned by
Cottrill et al. (1996), encapsulation is started as an individual reflects on the transforming
process and is achieved as an individual Bbecomes aware of the totality of the process, realizes
that transformations can act on it, and is able to construct such transformations^ (p. 170).
During the encapsulation, a continuing oscillation between process and object conceptions is
vital. It is assumed that the encapsulation is a reversible, often to be carried out act (Dubinsky
& Harel, 1992, p. 85). The process of encapsulation is similar to reification (see Harel, Selden,
& Selden, 2006; Sfard & Linchevski, 1994).

The same holds for Gray and Tall’s (1994) progress from procedural thinking to proceptual
thinking, where proceptual thinking means the ability to manipulate a mathematical symbol as
both a process and a concept flexibly. Gray and Tall (1994) termed symbols that may be
regarded as being a pivot between a process to compute or manipulate and a concept that may
be thought of as a manipulable entity as procepts. The progression from doing a procedure to
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thinking about a procept can be briefly described in three stages (see Fig. 1): Students who
know a specific procedure are able to do a specific computation or manipulation. Knowing
more alternatives allows an individual to perform mathematics more flexibly because, for
example, of the possibility to choose the most suitable route in solving routine problems. The
shift from doing a process and performing a procedure to thinking about a symbol allows an
individual to think about mathematics in a compressed and manipulable way, moving flexible
between a process and a concept (Gray, Pinto, Pitta, & Tall, 1999; Gray & Tall, 1994; Tall et
al., 2001).

Although these three theoretical approaches differ in detail, they are similar regarding their
core assumptions. Comparing these approaches reveals the underlying cognitive process of
concept construction within the abstraction-from-actions strand. Drawing on the work of Pegg
and Tall (2005), who have already been thinking about these relationships, the underlying
cognitive process of concept construction in the abstraction-from-actions strand is described in
the progress from actions on known objects to thinking of those actions as manipulated mental
objects. Although various terms (such as encapsulation and reification) have been introduced
in research on mathematics concept construction, the cognitive process of forming a
(structural) concept from an (operational) process is founded on Piaget’s notion of abstraction
réfléchissante (reflective abstraction).

Notice that contrasting the approaches mentioned above brings to light that both
Dubinsky’s (1991) and Sfard’s (1991) approaches are uni-directional (processes become
objects which are used at a ‘higher’ stage), while Gray and Tall’s (1994) approach is bi-
directional (moving flexibly between the process and the object); an important note made by
one of the three reviewers. Further, in using the term ‘encapsulation’ Dubinsky and his
colleagues as well as Tall and his colleagues explicitly refer to Piaget’s reflective abstraction,
while Sfard’s theory of reification is not explicitly based on Piaget’s reflective abstraction.

Encapsulation: The most powerful form of reflective abstraction Although the signif-
icance of reflection in thinking and learning processes was well highlighted, for instance, by
von Humboldt’s (see 1795/1908) work emphasizing that the essence of thinking consists in
reflecting, the main expansion of the notion of reflection was done with Piaget’s (1977/2001)
Recherches sur l’ abstraction réfléchissante (Studies in Reflective Abstraction). With his
framework, labelled as genetic epistemology and understood as an intrinsically developmental
theory of human knowledge, Piaget describes fundamentally operative knowledge as basically
pragmatic or action-oriented. Operative knowledge, in contrast to figurative knowledge, is
important to contribute to human development and consists of cognitive structures. For Piaget
(1961/1969), the knowledge we get from perception is figurative, not operative. Thus,
perception cannot be the source of any genuinely new construction. Thus, it is abstraction
réfléchissante (reflective abstraction) that becomes one of the central ideas in Piaget’s (1973)
reissue of the Introduction à l’épistémologie génétique. Piaget describes that reflective ab-
straction Bdraws its information from the subject’s actions on objects […] and particularly
from the coordination between these actions^ (Piaget, 1973, p. 11, italics added). The special
function of reflective abstraction is, therefore, abstracting properties of an individual’s action
coordinations. That is, reflective abstraction is a mechanism for the isolation of particular
properties of a mathematical structure that allows the individual to construct new pieces of
knowledge. According to Piaget (1977/2001), reflective abstraction is constructive in the sense
that it is linked to the elaboration of a new action on a higher level than the action from which
the characteristic under consideration was constructed. In mathematics education research, the
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most important and powerful form of reflective abstraction is considered to be the process of
encapsulation (or reification):

BReflective abstraction includes the act of reflecting on one’s cognitive actions and
coming to perceive a collection of thoughts as a structured whole. As a result, the subject
can now encapsulate the structure, and can see it as an aliment for other structures^
(Dubinsky & Lewin, 1986, p. 63).

While this process-object construction has been emphasized for several decades, almost
always as an exclusive way of concept construction, other foci have been overlooked. The next
subsection therefore provides an alternative account of cognitive processes underlying ways of
constructing mathematical concepts. With abstraction-from-objects theoretical approaches an
additional strand of concept construction is presented that is based on another kind of
abstraction, namely structural abstraction.

2.2 Abstraction-from-objects theoretical approaches

Abstraction-from-objects theoretical approaches in mathematics education research assume that
learners are first faced with specific objects that fall under a particular concept and acquire the
meaningful components of the concept through studying the underlying mathematical structure of
the objects. The guiding philosophy of the approach is rooted in the assumption that learners
construct mathematical concepts in a domain initially using their backgrounds of existing domain-
specific (conceptual) knowledge through progressive integration of previous concept images or by
the insertion of a new discourse alongside existing concept images. The author’s understanding
concerning the abstraction-from-objects strand is rooted in a deeply constructivist view emphasizing
that an individual’s prior knowledge is the primary resource for acquiring new knowledge. Bruner’s
(1966) ideas concerning cognitive structures, for instance, are consistent with this view of learning
that describes learning as an active process in which individuals construct new mathematical
concepts based on their existing knowledge. Once conceptions and concept images are established,
they become the vocabulary invoked to give meaning to later experiences. Moreover, individuals
already have, in some contexts, substantial parts of the new conceptual structures in mind.
Accordingly, they do not passively respond to new information but actively select parts of their
concept images that are productive in a particular context. Consequently, individuals interpret (in the
sense of Piaget’s notion of assimilation) new concepts in terms of their prior knowledge. This article
assumes that the underlying cognitive processes of concept construction in the abstraction-from-
objects strand are founded in studying the underlying structure of a mathematical concept through a
specific kind of abstraction, called structural abstraction, a notion that has already been used by Tall
(2013) as a kind of abstraction focusing on the properties of objects. This kind of abstraction, as
shown by Tall (2013), plays Ba fundamental role at successive stages of increasing sophistication
[…] throughout the full development of mathematical thinking^ (p. 39).

The study of the underlying structure has a long history in philosophy, psychology, and
mathematics education. Skemp (1986), for instance, states the importance of the study of
structures as followed:

BThe study of the structures themselves is an important part of mathematics, and the
study of the ways in which they are built up and function is at the very core of the
psychology of learning mathematics.^ (Skemp, 1986, p. 37)
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If this is a correct reading of his work, it seems that Skemp’s (1986) conception of
abstraction as an Bactivity by which we become aware of similarities […] among our
experiences^ (p. 21) followed by embodiment of the similarities in a new mental entity is
rooted in the idea of recognizing the similarity of the underlying (rather than superficial)
structure. This view differs from Piaget’s notion of empirical abstraction. In Piaget (1977/
2001), the term empirical abstraction is described as the kind of abstraction that Branges over
physical objects or the material aspects of one’s own activities^ (p. 29) and Bis limited to
recording the most obvious and global perceptual characteristics of objects^ (p. 319). Roughly
speaking, empirical abstraction is abstraction of dimensions that individuals can perceive in the
environment from experiential situations. As already noted by Mitchelmore and White (2007),
Skemp’s conception goes beyond Piaget’s notion of empirical abstraction by providing a
foundation of what Mitchelmore and White elaborated as empirical abstraction in learning
elementary mathematical concepts. However, although Skemp’s idea of seeing the underlying
structure is considered as a building block for structural abstraction in this article, structural
abstraction differs from Skemp’s idea in two fundamental ways: (1) structural abstraction takes
mental (rather than physical) objects as a point of departure and (2) the core of this kind of
abstraction is complementarity (rather than similarity).

Notice that abstraction-from-objects theoretical approaches do not use an ‘objectivist view’
of knowledge, or one that views knowledge as grounded in objective reality. Instead, the idea
of mathematical objectivity as a social construct is adopted.

Epistemological function of structural abstraction The underlying assumption of struc-
tural abstraction lies in the essence of Frege’s (1892a) Über Begriff und Gegenstand empha-
sizing that the meaning of a mathematical concept (that differs both from the content of a
concept and from the abstract general notion) is not directly accessible through the concept
itself but through objects that (in Fregeian terminology) fall under that concept. In order to get
access to the meaning of a concept, the concept Bmust first be converted into an object, or,
more precisely, an object must go proxy for it […]^ (Frege, 1892a, p. 197). These objects,
which build the initial point for the cognitive processes underlying the abstraction-from-
objects strand, may be either concrete or abstract. In this work, concreteness and abstractness
are not considered as properties of an object in the classical sense, but rather as a property of an
individual’s relatedness to an object in the sense of the richness of an individual’s represen-
tations, interactions, and connections with the object (Wilensky, 1991). A concrete object,
then, is an object for which an individual has established rich representations and several ways
of interacting with, as well as connections between it and other objects. This view differs from
a classical perspective considering concrete objects as those objects that are mediated by the
senses.

It is assumed that the essence of a concept is almost always contained in the unity of diverse
meaningful components of a variety of specific objects that fall under the particular concept.
However, structural abstraction requires the particularization of meaningful components as
well as the underlying mathematical structure. The crucial aspect of this initial process is
contextualizing that is, placing abstract objects in different specific contexts. The process of
placing objects into different specific contexts may have to be guided by using a realistic
model or by taking a specific perspective. The adjective ‘realistic’, relating to the Dutch
Realistic Mathematics Education approach (rooted in Freudenthal and his colleagues’ work),
refers to the intention of making a mathematical problem imaginable for students. A realistic
model, in its broad sense, can be, for instance, a metaphor or generic representation. Within
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this approach, a model is a tool for theoretically structuring the construction of mathematical
concepts. It necessarily reflects the essential aspects of a mathematical concept but can have
different manifestations (Van den Heuvel-Panhuizen, 2003). The crucial function of a model is
considered to be bridging the gap between ‘the abstract’ and ‘the concrete’. This means that in
the beginning of a particular learning process a model is constituted that supports ascending
from the abstract to the concrete as described by Davydov (1972/1990). Davydov’s strategy of
ascending from the abstract to the concrete describes the transition from the general to the
particular as one where learners initially seek out the primary general ‘kernel’ and then deduce
multiple particular features of the object using that ‘kernel’ as their mainstay. Taking
Davydov’s theory as a point of view, this implies the ascending from the abstract to the
concrete in terms of this model. Similar to Davydov, Ilyenkov (1982) considers the course of
ascent from the abstract to the concrete as basically related to looking at a concrete situation
from a particular theoretical point of view. That means that Bthe concrete is realized in thinking
through the abstract^ (Ilyenkov, 1982, p. 37). In further learning processes both the context
and the perspective may be shifted in the sense of looking at an object placed in different
specific contexts from a particular point of view or looking at an object placed in a particular
context from different specific points of views. This understanding is in line with van Oers
(1998) perspective of abstraction as a process of contextualization arguing that abstrac-
tion is related to recontextualization instead of decontextualization. Thus, the abstract
and the concrete sub-serve one another in thought through a dialectical interplay. This
dialectic between the ascending from the abstract to the concrete and the ascending
from the concrete to the abstract reflects Marx’s original discussion of the abstract and
the concrete in Capital. Drawing from Marx’s work, the dialectic of the abstract and
the concrete in thought and in theoretical processing is Ilyenkov’s (1982) primary
concern:

B[…] the ascent from the concrete to the abstract and the ascent from the abstract to the
concrete, are two mutually assuming forms of theoretical assimilation of the world, of
abstract thinking. Each of them is realized only through its opposite and in unity with it.^
(Ilyenkov, 1982, p. 137).

According to this dialectical view, structural abstraction means (mentally) structuring the
diverse aspects and the underlying structure of specific objects that have been particularized by
placing the objects in a variety of different contexts. Whereas within the traditional (or
empiricist) view conceptual unity relies on the commonality of elements, it is the interrelat-
edness of diverse elements that creates unity within the approach of structural abstraction.
Thus, the essence of structural abstraction is complementarity rather than similarity. The
overall framework is in line with Davydov’s (1972/1990) description that the internal, essential
relationships are detected Bin mediations, in a system, within a whole, in its emergence^ (p.
119, italics in original). This view has the advantage of escaping the weakness of concrete
ideas in terms of their difficulty in combining or composing each other (since the specific
features of their components may conflict with each other). In the case of constructing
mathematical concepts through structural abstraction the abstract has primacy over the
concrete.

The crucial puzzle lies in the observation that structural abstraction has a dual nature,
namely (1) ‘complementarizing’ the aspects and structure underlying specific objects falling
under a particular mathematical concept, and (2) facilitating the growth of coherent and
complex knowledge structures through restructuring the constructed ‘pieces of knowledge’.
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From this point of view, structural abstraction takes place both on the objects-structure and on
the knowledge-structure (see Fig. 2).

The former function, as it is described above, requires a concretizing process where the
mathematical structure of an object is particularized by looking at the object in relation to itself
or to other objects that fall under the particular concept. Through placing the object into
different specific contexts with the ‘structural advice’ of a particular model or perspective as a
framing instrument, the meaningful components of the object may be further highlighted. It
must be emphasized that in psychology, for instance, these cognitive processes are regarded as
particular kinds of activity. However, in the author’s opinion, they are components of a general
activity ‘architecture’ (rather than different forms of activity) that promote the realization of
structural abstraction.

On the other hand, structural abstraction implies a process of restructuring ‘pieces of
knowledge’ constructed through the mentioned process. Further, it also implies restructuring
knowledge structures coming from already formed concept images that are essential for the
construction of the new concept. The cognitive function of structural abstraction is to facilitate
the assembly of more complex knowledge structures. It aims to establish highly coherent
knowledge structures or – to put it in the words of Viholainen (2008) – to form concept images
of a high level of coherence. The crucial aspect of structural abstraction, from the knowledge-
structures perspective, is that structural abstraction moves from simple to complex knowledge
structures (see Fig. 2).

Notice that, as described by Tall, Thomas, Davis, Gray, and Simpson (1999). the term
‘structural’ has multiple meanings in the literature: For instance, Sfard’s notion of ‘structural’
can be subdivided into (a) whether the focus is on properties of observed or conceived objects
and (b) whether some of these properties are specified as set-theoretic axioms and definitions
to give a formal theory that is ‘structural’ in the sense of Bourbaki. The term ‘structural’
employed in this article, however, refers to both the structure of mental objects and the
structure of knowledge. These two interrelated ideas are implicit in the notion of ‘structural’:
Structures underlying the specific objects falling under a particular mathematical concept are
represented as mental structures when placed into several contexts and situations, and those
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mental structures are further restructured (through complementarizing of meaningful compo-
nents) with the aim to construct highly complex and coherent knowledge structures.

Further, notice that the former (structure of objects) relates to Sfard’s (1991) understanding
of structures, including, but not limited to, formal ‘structures’ of mathematical axiomatic
systems. In addition to a formalist interpretation (in terms of set-theoretic definition and
deduction), the notion of ‘structural’ includes the view that the richness of the particular is
embodied not in the concept as such but rather in the objects falling under the concept—the
particular is reflected in the context where the objects are placed in. This view gives primacy to
meaningful, richly contextualized forms of (mathematical) structures over formal
(mathematical) structures.

3 Shifting the perspective towards strategies of making sense

Learning mathematics is more than simply adding meaningful elements together in a relational
way. The learner must make sense of the mathematical concept through restructuring knowl-
edge structures that are built on previously constructed knowledge pieces. Moreover, as
indicated by von Glasersfeld (1987), Bto make sense of a given collection of experiences,
[…] means to have organized them in a way that permits us to make more or less reliable
predictions^ (p. 9).

Mathematics education research has identified various strategies used by students to make
sense when they are involved in a mathematical activity. For the purposes of this work, the
article builds upon the research by Pinto (1998), and Pinto and Tall (1999, 2002). In a study of
novice mathematicians working through an introductory analysis course, Pinto (1998) identi-
fied two different strategies used by learners in their attempts to build up concepts given by
formal definitions: (1) extracting meaning from a definition and (2) giving meaning to a
definition.

BExtracting meaning involves working within the content, routinizing it, using it, and
building its meaning as a formal construct. Giving meaningmeans taking one’s personal
concept imagery as a starting point to build new knowledge.^ (Pinto, 1998, pp. 298–
299)

Thus, the former strategy, extracting meaning, builds from the formal definitions, while the
latter strategy, giving meaning, builds upon earlier experiences. In her work, Pinto (1998)
highlighted two different types of learners based on work by Duffin and Simpson (1993),
namely natural and formal learners, distinguished by whether they prefer extracting or giving
meaning as the core strategy to make sense. There is a spectrum of performance in each of
these types of learners; indicating that neither of these routes of learning necessarily lead to
success or failure (Pinto, 1998).

Reflective and structural learners Pinto’s (1998) work pays attention to extracting mean-
ing from and giving meaning to the formal definition. However, the perspective on the two
strategies identified by Pinto (1998) can be broadened in order to extend the focus to extracting
meaning from and giving meaning to objects that fall under the mathematical concept in
consideration. The notion of ‘object’ is used in a broad sense including, inter alia, the formal
definition of the mathematical concept.

Constructing mathematical concepts, abstraction processes, and sense making strategies 175

33



Based on research by Pinto (1998) and Pinto and Tall (1999, 2002), Scheiner (2013) further
elaborates the distinction of the two strategies of making sense, claiming that according to the
abstraction-from-actions approach learners extract meaning of objects through reflective
abstraction. For instance, learners may focus on actions on known objects, where they begin
with the manipulation of meaningful components. Learners preferring this approach are termed
reflective learners (Scheiner, 2013). On the other hand, learners preferring the cognitive
processes underlying the abstraction-from-objects approach give meaning to a mathematical
concept through structural abstraction. Those learners build on a variety of previous knowl-
edge structures and attribute meaning to the object of their thinking. This is consistent with
Duffin and Simpson’s (1993) description of a natural learner that has been adapted by Pinto
(1998):

BA natural learner always attempts to make sense of experiences by connecting them
immediately to existing mental structures, looking for explanations and reasons based on
those connections.^ (Simpson, 1995, p. 42, italics added)

Based on this description, Pinto (1998), later Pinto and Tall (1999), identified
that natural thinkers reconstruct new knowledge from their concept images. They use their
own imagery as a starting point to build on or modify through thought experiment. In Scheiner
(2013), learners following this approach are termed structural learners (see Fig. 3).

Tall et al. (2001) presume that giving meaning and extracting meaning may be best used in
sequence. They describe this in the following way:

BFirst one gives meaning, by constructing examples and non-examples and building a
range of possibilities that might be deduced from the definitions. Then one moves to the
logical extraction of the hypothesized results by formulating them as theorems and
proving them.^ (Tall et al., 2001, p. 100)

This is consistent with past research focusing on the dialectic between the development of
procedural and conceptual knowledge. Past research showed that, on the one hand, learners
have partial knowledge of both procedures and concepts and that, on the other hand, more
knowledge of one type is related to more knowledge of the other (see Baroody & Gannon,
1984). Furthermore, Rittle-Johnson and Alibali (1999) state that improving knowledge of one
type can lead to improvements of the other type.

In addition to the two previous paths of concept construction and types of learners, it is
proposed that both paths may be interwoven and, as a consequence, that there is a third type of
learner, namely reflectural learners (a blend of reflective and structural). Throughout concept
construction, reflective abstraction and structural abstraction may interact with each other. In

extracting meaning 
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reflective abstraction

reflective learners

abstraction-from-actions

giving meaning 
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structural abstraction

structural learners
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Fig. 3 Reflective and structural
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this case, reflectural learners develop further knowledge in a hand-over-hand process of
reflective and structural abstraction (see Fig. 4).

Based on these assumptions regarding the interrelationship between the two strategies of
making sense, the following section goes beyond simply viewing abstraction-from-actions and
abstraction-from-objects approaches as being in opposition to each other. Indeed, a way of
viewing how reflective abstraction and structural abstraction may interact with each other is
offered.

4 Reflectural abstraction: The dialectic between reflective and structural
abstraction

In Section 2, two basic cognitive processes underlying mathematical concept construction
have been polarized: (1) the process-object-encapsulation and (2) ‘complementarizing’ partic-
ularized meaningful components of the mathematical objects with simultaneous restructuring
knowledge pieces intended to construct a highly complex knowledge system. The consider-
ations in Section 3 open new avenues for theoretical reflection on the interaction between the
cognitive processes underlying mathematical concept construction with students’ strategies of
making sense. In this section, a first attempt is made to blend the two above-mentioned
frameworks with the intention of providing a potentially useful way to bring to light the
interrelation between reflective and structural abstraction.

In his influential work Über Sinn und Bedeutung, the German philosopher and
mathematician Gottlob Frege (1892b) introduced the distinction between sense and reference
as two semantic functions of an expression (a name, sign, or description). In general, the
former is the way that an expression refers to an object, whereas the latter is the object to which
the expression refers. Duval (1995), for instance, applied Frege’s (1892b) distinction to refer to
the relation between a representation and its sense and a representation and its reference.
Adapting the Fregeian terminology, a representation expresses its sense and stands for or
designates its reference. Thereby, the sense depends on the selected representation system and
the reference only on the represented object. As indicated in Section 2.2., in order to
particularize the meaningful components or mathematical structure of an object, the object
has to be placed into different specific contexts. The object may be ‘exemplified’ through a
variety of representations, in which each representation has the same reference (the mathe-
matical object) (see Fig. 5). This perspective, in line with the typology of primary mathemat-
ical objects described, for instance, by Font, Godino, and Gallardo (2013), allows the
exemplified object to be a linguistic element (e.g., term, expression, notation), a definition
(e.g., formal concept definition), or a proposition (e.g., statement), amongst others.
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reflectural abstraction 
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In accordance with Frege (1892b) and adapted by Duval (2006), each representation
corresponds to a sense. As shown in Fig. 5, the corresponding sense may be connected with
an ideaF (the subscript F indicates that the term ‘idea’ refers to Frege) that may differ amongst
individuals since individuals may associate different senses with a given representation (see
Frege, 1892b).

Connecting the ideaF with a sense occurs when individuals give meaning to the corre-
sponding sense by taking their previously constructed pieces of knowledge as a point of
departure. At this level, an individual may create single or several competing mental repre-
sentations of the same mathematical object. When various representations are being considered
in parallel and when links between various representations are being established, then an
individual may become aware of the underlying structure of a mathematical concept. However,
in order to particularize the meaningful components or the mathematical structure underlying
the representations that stand for a specific object, systematic variation within a representation
system may have to take place; its importance has been indicated by Duval (2006) as followed.

BIt is only by investigating representation variations in the source register and represen-
tation variations in a target register, that students can at the same time realize what is
mathematically relevant in a representation, achieve its conversion in another register,
and dissociate the represented object from the content of these representations^ (Duval,
2006, p. 125).

The systematic variation of a representation within a representation system leads to a
variation of a representation within another representation system. Reflections of the variations
of relevant variables within a representation system enable the extraction of the underlying
structures and other relevant variables within the other representation system. Reflective
abstraction, in this context, concretizes an individual’s ideasF by extracting the underlying
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structures in the variations of representations of a specific object. At the heart of this level,
reflective abstraction is considered as a mechanism for extracting particular meaningful
components of a mathematical structure from the variations of various representations and
allowing the individual to construct new pieces of knowledge. The extracted meaningful
components become the subject of an individual’s considerations that may lead to a reflective
discourse across the ideasF representing the specific representations. However, the ‘organiza-
tion’ of extracted structures into structured wholes does not take place by itself (as assumed by
Piaget). Rather structural abstraction takes place in order to embed the extracted structures that
subsequently become internalized and become the vocabulary invoked to give meaning to the
structure as a whole. That is, this level is associated with the goal of ‘packaging’ ideasF into
conceptions. Thus, an individual gives meaning to the extracted pieces of knowledge through
structural abstraction. These conceptions, however, get connected by the learner through
increasingly sophisticated structural abstraction to create more coherent and complex struc-
tures. From this point of view, conceptions can be considered as compressions of ideasF. A
conception is formed not just by one particular object but by a variety of objects falling under
the same mathematical concept (see Fig. 6). Thus, a conception has a more complex character
than an ideaF. In summary it can be stated that the individual may focus at first on a particular
aspect, but then sees other meaningful aspects and links them to build not just various ideasF,
but also richer compressed conceptions that can operate as single entities in further learning
processes (see Tall, 2013). This progress can be considered as evolving from simple to
complex knowledge pieces; starting with the construction of uni-structural knowledge pieces
that become multi-structural and relational through restructuring, and in further attempts highly
coherent, compressed knowledge structures conceived as a single sophisticated entity that may
in turn be an object of consideration in further learning processes. Such a development features
as a local cycle of learning in the wide range of the above-mentioned theoretical frameworks.
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Although the interaction of the two abstraction processes involves a developmental pro-
gression, this does not imply that they involve a strict order or hierarchy. Rather, it is to be
understood that the highest impact can be considered in the dialectic interaction between
reflective and structural abstraction. This hand-in-hand process is more of an inextricably
combined activity of reflective and structural abstraction, called reflectural abstraction (a blend
of reflective and structural).

5 Conclusion

This article provides a theoretical frame of various knowing and learning processes in mathe-
matics that addresses several issues. Two research strands that are poles of a wide spectrum (the
abstraction-from-actions and abstraction-from-objects approaches) are the objects of observa-
tion. In this article, it is argued that each research strand has an underlying cognitive process
(reflective and structural abstraction); each of which is inextricably linked with a particular
strategy of making sense (extracting meaning and giving meaning). The intention is to
illuminate those aspects that have been overlooked in past approaches in research on cognitive
processes underlying mathematical concept construction compatible with students’ strategies of
making sense. Of particular interest are the cognitive processes that build the architecture of
structural abstraction since it is assumed that the cognitive processes underlying the abstraction-
from-objects strand have nearly been overlooked in the past. With the outline of the theoretical
framework on structural abstraction, it is hoped that abstraction is acknowledged as a movement
across levels of complementarity and complexity (rather than levels of abstractedness). The
author therefore asks that the term abstraction be freed from connotations that have been
associated with it during several decades in numerous works.

In an attempt to move beyond various dichotomies in the psychology of learning mathe-
matics, the last section provides the fundamentals of a framework incorporating the cognitive
processes underlying the abstraction-from-actions and abstraction-from-objects approaches. It
is argued that these frameworks (although different) are complementary (rather than opposing)
frameworks.

With this theoretical article, the author intends to make a further contribution to more
cutting-edge theoretical work in research on cognition and learning mathematics. The purpose
of this article, however, is to provide a theoretical framework, not a theory. A theoretical
framework is Ba general pool of constructs for understanding a domain, but it is not tightly
enough organized to constitute a predictive theory^ (Anderson, 1983, p. 12). Thus, it is hoped
that the above-mentioned outline is a building block for generating a theory that can be used to
make unique empirical predictions that provide insights overlooked by other frameworks. The
approach developed offers a plausible broadening of past and current perspectives on cognitive
processes underlying ways of concept construction and their interrelationships with strategies
of making sense. In addition, the article offers an initial departure point to rethink discussion
and efforts in mathematics education concerning concept formation at both elementary and
advanced mathematical levels. Instead of focusing on the ways of mathematical instruction
(from operational growth to structural growth, or vice versa), we should shift our attention to
the most natural ways of concept construction that, as considered here, are dependant on the
individual rather than on the concept itself (or the instruction).

Theoretical frameworks such as this provide fertile ground for investigations. The article
illustrated the complexity of the cognitive processes underlying concept construction and the
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necessity for clearly identifying and studying their interaction with sense-making strategies.
Thus, this theoretical framework can be viewed as a source of ideas that scholars can
appropriate and modify for their research purposes.

The question of paramount importance—yet to be answered—is whether this description is
operational. That is, whether it is possible to specify the nature of the interrelationship between
reflective and structural abstraction and the interconnections with the two strategies of making
sense. Research attempts to address these questions are needed.

It is hoped that the validity of the framework will be confirmed with systematic investiga-
tions, both empirical and theoretical, whereby its status may change to a model or theory with
explanatory power.

The author wants to note that a theoretically and philosophically based description of
cognitive processes underlying mathematical concept construction and their interrelationships
with strategies of making sense calls for reducing the number of objects of consideration in
order to identify the most significant ones. This conveys the tension between complexity and
simplicity. One can argue that additional aspects must be considered when theorizing and
philosophizing about how students construct mathematical concepts while engaging in the act
of making sense. The author is aware that only a glimpse of this fascinating issue has been
provided in this article. The potential power and soundness of the mentioned theoretical
reflection, together with its implications at the educational level, are to be investigated in
future research.
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4 Challenging Conceptualizations of Teacher Knowledge:  
Toward Emerging Theoretical Perspectives*  

*This chapter refers to the second journal article entitled “What makes mathematics teacher knowledge 
specialized? Offering alternative views” by T. Scheiner, M. A. Montes, J. D. Godino, J. Carrillo, & L. R. Pino-
Fan, published (online first) in International Journal of Science and Mathematics Education 
(doi: 10.1007/s10763-017-9859-6). 

This chapter focuses on the discussion of teacher professional knowledge, and the debate as to what 
makes mathematics teacher knowledge specialized in particular. The second article (Scheiner, Montes, 
Godino, Carillo, & Pino-Fan, 2017) critiques what the literature implies makes mathematics teacher 
knowledge specialized. In order to do so, the paper identifies the principal viewpoints that currently 
exist in the literature and points to the more severe limitations of their underlying assumptions. 
Specifically, the article takes a critical stance toward three general orientations that seem to be implicit 
in the present discussion on teacher knowledge:  

(1) the field makes external comparisons (mathematics teachers vs. mathematicians; teaching 
mathematics vs. teaching other subjects) when discussing what makes mathematics teacher 
knowledge specialized; 

(2) the field takes a disciplinary, reductionist perspective when considering teacher knowledge, 
arguing from the viewpoint of teaching mathematics; and  

(3) the field has accumulated additional dimensions of teacher knowledge.  

It should be emphasized that this article does not advocate a dismissal of empirical studies and 
approaches in measuring teacher knowledge. Such studies and approaches are relevant particularly 
when teacher knowledge is assessed on a large scale. The contribution made in Scheiner et al. (2017) 
is not a substitution for those empirical studies, but rather provides an alternative for exploring some of 
the complexity of teacher knowledge from disparate theoretical perspectives. Hence, alternative views 
to these three major orientations in the field of mathematics teacher knowledge are provided to focus 
on theoretical issues that have not been fully explored. The first such view argues that specialization is 
a process of becoming rather than a state of being, and argues that specialization should be accounted 
for via internal (or within-field) comparisons rather than external comparisons. The second view argues 
that reductionist conceptualizations of knowing and learning are inadequate, and calls for the 
recognition of the epistemological position inherent in mathematics teacher knowledge, one that entails 
the use by teachers of the historical and cognitive geneses of mathematical insights to unpack students’ 
mathematical understandings. The third view argues for a holistic consideration of specialization, where 
specialization is considered to be the interaction of various pieces of knowledge that interact 
dynamically to form emergent structures. In summary, Scheiner et al. (2017) argue for an approach 
which is:   

(1) intrinsic rather than extrinsic, dispensing with external reference points and accounting for 
specialization as a process of becoming rather than a state of being;  

(2) anthropological-sociocultural rather than reductionist, eschewing reductionist approaches and 
instead underlining the epistemological thread inherent in mathematics teacher knowledge; and  

(3) transformative rather than additive, construing teacher knowledge as complex interactions of 
knowledge facets within a dynamic structure rather than as an incremental accumulation of 
knowledge facets.  

Collectively, these alternative views suggest that specialization in mathematics teacher knowledge 
requires an account of ‘how’ teachers’ knowing comes into being, rather than an account of ‘what’ 

43



teachers know. It is concluded that it is not a kind of knowledge but a style of knowing that signifies 
specialization in mathematics teacher knowledge.  

Here attention is focused on one of the three tendencies as outlined above in thinking about teacher 
knowledge: the reductionist orientation inherent in conceptualizations of teacher knowledge. This 
chapter intends to deepen the discussion given in Scheiner et al. (2017) in making explicit and visible 
what often remain implicit and invisible: the underlying assumptions of the taken-for-granted 
conceptualization of pedagogical content knowledge (PCK). The focus is directed to the theoretical 
construct of PCK as introduced by Shulman (1986, 1987), an accepted “academic construct” (Berry, 
Loughran, & van Driel, 2008, p. 1272) that has become “a powerful lexical item in the educational 
community” (Deng, 2007, p. 279). PCK has not only become mainstream but has become the 
conventional wisdom in thinking about “the category [of teacher knowledge] most likely to distinguish 
the understanding of the content specialist from that of the pedagogue” (Shulman, 1987, p. 8).  

This chapter aims to articulate and critically reflect on the theoretical underpinnings of PCK, 
underpinnings that often go unrecognized and hence remain beyond the scrutiny of critical reflection. 
The chapter is structured in three parts. First, a relatively deep account is given of the guiding principles 
that shaped, and still shape, our thinking about PCK. To this end, the key to the notion of PCK is 
articulated, that is, the transformation of the subject matter in a way that is ‘teachable’, by identifying 
its underlying assumptions with some precision. Second, a critical stance is taken toward some of the 
assumptions underlying PCK. Third, potential contradictions with more recent understandings of 
students’ knowing and learning are outlined, followed by a sketch of potential resolutions.  

4.1 Making Visible the Invisible: Key Assumptions Underlying PCK  
Shulman’s (1986, 1987) most critical contribution in his research on teaching and teacher knowledge 
was his directing of attention to an issue absent from most studies within process-product approaches 
in research on teaching: the reference to subject matter. Shulman called this problem ‘the missing 
paradigm’ and argued that subject matter was a central and pivotal feature that needed to be included 
in any research program on teaching.  

In this context, Shulman and his colleagues (Grossman, Wilson, & Shulman, 1989; Shulman, 1986, 
1987; Wilson, Shulman, & Richert, 1987) foregrounded subject matter knowledge for teaching as a 
category of teacher knowledge, that “embodies the aspects of content most germane to its teachability” 
(Shulman, 1986, p. 9), as distinct from subject matter knowledge per se.  

Shulman (1986, 1987) called this category of teacher knowledge pedagogical content knowledge 
(PCK), including “the most powerful analogies, illustrations, examples, explanations, and 
demonstrations – in a word, the ways of representing and formulating the subject that makes it 
comprehensible for others” (Shulman, 1986, p. 9). 

The conceptualization of PCK was developed in the context of, and informed by, Shulman and his 
colleagues’ research program Knowledge Growth in Teaching, which attempted to articulate the 
interrelatedness of pedagogy and subject matter. The primary focus of this research program was on 
how novice secondary school teachers adapt their prior knowledge of the content of an academic 
discipline so that it becomes suitable for classroom teaching. They conceptualized this teaching task as 
a transformation of the content of an academic discipline to the content of a school subject – the latter 
considered as the kind of content appropriate for teaching in classrooms. Shulman (1987) argued that 
subject matter knowledge per se “must be transformed in some manner if they are to be taught. To 
reason one’s way through an act of teaching is to think one’s way from the subject matter as understood 
by the teacher into the minds and motivations of learners” (p. 16). In more general terms, the central 
intellectual task of teaching is considered to be transforming subject matter knowledge into a form in 
which it is teachable to particular learners (Geddis, 1993).  

44



Shulman (1987) stated that  

“the key to distinguishing the knowledge base of teaching lies at the intersection of content and 
pedagogy, in the capacity of a teacher to transform the content knowledge he or she possesses 
into forms that are pedagogically powerful and yet adaptive to the variations in ability and 
background presented by the students.” (p. 15, italics added) 

The recommended strategy is greatly, if not entirely, determined by the content of the discipline, as 
this forms the primary source of information for teaching and informs decisions about instruction.1  

The transformation seems to concentrate on the structure and representation of disciplinary subject 
matter – in a word: the transformation takes place on the structure of a discipline. Gudmundsdottir 
(1991) described this transformation process as a “reorganization [of content knowledge] that derives 
from a disciplinary orientation” (p. 412), and Gudmundsdottir and Shulman (1987) designated it as a 
re-definition of subject matter knowledge to construct PCK. Grossman et al. (1989) described it as 
“translat[ing] [the] knowledge of subject matter into instructional representations” (p. 32). Marks 
(1990), on the other hand, portrayed it as a process of interpretation that means, “the content is 
examined for its structure and significance, then transformed as necessary to make it comprehensible 
and compelling to a particular group of learners” (p. 7). Although different terms for describing the 
transformation process were used, they are similar regarding their core assumption: the transformation 
is grounded in, and determined by, the structure of a discipline. 

Although different scholars use various terms to describe the transformation process, they share the 
same understanding of the function of transformation, that is, to make subject matter accessible to the 
students. The primary goal of transformation is to re-structure the content of an (academic) discipline 
“into a form of knowledge that is appropriate for students and specific to the task of teaching” 
(Grossman et al., 1989, p. 32). Geddis and Wood (1997) stated that “[t]he end products of pedagogical 
transformations are the representations of subject matter and instructional strategies that enact specific 
instructional encounters” (p. 612).  

4.2 Taking a Critical Stance Toward Assumptions Underlying PCK 
That Shulman used the structure of a discipline as the foundation for his conceptualization of PCK is 
not surprising, given that in much research on learning and teaching subject matter disciplines were 
used as the organizing frame for investigation and implementation (see Steffe & Kieren, 1994). 
However, such an approach is reductionist in orientation as, in such an approach, subject matter is 
considered as a sort of package, where the quality of transferring subject matter into the minds of 
students depends on the quality of the vehicles of transformation. The mathematics education literature 
identifies various such discipline-specific practices, including, but not limited to, elementarizing, 
exemplification, explanation, decompression, and simplification, that require the capacity “to 
deconstruct one’s own mathematical knowledge into a less polished and final form, where elemental 
components are accessible and visible” (Ball & Bass, 2000, p. 98). For instance, Ball (2000) highlighted 
the need for teachers to examine particular tasks to determine their utility for students. Ball (2000) then 
discussed the need for teachers to alter the task to make it easier or simpler, or to make it illuminate 
particular key components of a concept.2  

This view points to a critical understanding: subject matter is mapped as an already existing object 
that is to be transferred from the mind of the teacher to the minds of students. In consequence, 
Shulman’s idea of transforming subject matter seem to be narrowly and implicitly embedded in a 
transmission view of teaching, as already noted by McEwan and Bull (1991). Similarly, Meredith 
(1995) stated that “pedagogical reasoning, which leads to the transformation of subject knowledge, 
seems to be concerned primarily with the transmission of content” (p. 177). 
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In summary, taking the structure of a discipline as the determinant of the transformation process has 
contributed to an image of teaching that is deceptively simple and instrumental, an image driven by 
assumptions that are reductionist in orientation. One might take the didactic triangle as a lens to clarify 
the idea of transforming subject matter and analyze its relationship to three important elements of the 
teaching-learning process: subject matter, teacher, and students. It is argued that Shulman examined 
teacher practice merely from the perspective of teaching and focused his attention on the teacher-subject 
matter edge of the didactic triangle (see Figure 9).  

 
Figure 9: A transformation view: a top-down approach 

4.3 Troubling Assertions and Potential Resolutions  
The limitations of the underlying assumptions of PCK call attention to the problematic boundaries of 
our historical ways of thinking in conceptualizing teacher knowledge. One set of concerns relates to the 
issue that, in taking the structure of a discipline as the determinant of the transformation process, 
Shulman seems to have been, perhaps unintentionally, trapped in Cartesian epistemology, where our 
representations must conform to an object independent of the mind to constitute knowledge. Another 
set of concerns, and linked to the previous one, relates to the issue that Shulman’s assertions ultimately 
advocate a position in which subject matter can be transferred to students by transforming subject matter 
in ways accessible to students. However, such views are troublesome in light of recent understandings 
of student knowing and sense-making, which portray a dynamic and complex view that contrasts with 
the linear, simplistic view of Shulman’s model (see Chapter 3). It seems common sense, though not 
common practice, to suggest that the world does not harbor unambiguous ‘truths’ independent of the 
human mind, revealed to us through instruction; rather, the ‘real’ are (multiple) mental constructions, 
and ‘truth’ is a consensus construction arising in social interaction by negotiating personally constructed 
(subjective) realities into a socially shared (intersubjective) reality.  

For instance, constructivism (both cognitive and social constructivism) has challenged 
‘transmission’ views of teaching and ‘absorptionist’ views of learning; particularly the premise that 
subject matter is an object of teaching that can be transferred more or less directly from one party to 
another.3 Cobb et al. (1991), for instance, reminded us that “from a constructivist perspective, […] 
learning is not a process of internalizing carefully packaged knowledge but is instead a matter of 
reorganizing activity, where activity is interpreted broadly to include conceptual activity or thought” 
(p. 5). Thus, it is not only the case that teachers cannot and do not have knowledge of subject matter ‘in 
a form’ for consumption by the students, but that knowledge has to be constructed by the learners 
themselves in order to be meaningful. This metaphor of ‘knowledge construction’ conveys the 
understanding that knowledge does not lie beyond the realm of human beings, but rather is something 
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made by human beings, advocating the perspective that subject matter is an object of learning (rather 
than an object of teaching). 

Though constructivism is a theory of knowing and learning, rather than a theory of teaching, 
constructivist assumptions about students’ learning suggest a set of instructional commitments for 
teachers that differ from traditional discipline-centered approaches. If one subscribes to a constructivist 
view of learning, then instruction cannot be seen as translating the subject matter of the discipline 
downwards (à la Shulman) but as a process of co-construction upwards. From a constructivist view, the 
teacher has no longer only to develop pedagogical strategies to unpack the subject matter content and 
enable students to know objects and products of cultural development, but also has to attend to students’ 
multiple, individual, subjective realities, which may differ from what has been socially constructed 
(Confrey, 1990). It is this call, for teachers to attend to students’ mental structures by building models 
of students’ thinking, that shape the constructivist view of teaching: “in the constructivist view, teachers 
should continually make a conscious attempt to ‘see’ both their own and the children’s actions from the 
children’s point of view” (Cobb & Steffe, 1983, p. 85).  

The implication of this is to revise traditional views on learning and teaching. Rather than separating 
the student and the subject matter, the students’ relation to the subject matter becomes the key to 
understanding the instructional process (see Figure 10). Subject matter is constructed individually and 
socially mediated, rather than passively received from authority (Driver, Asoko, Leach, Mortimer, & 
Scott, 1994; Tobin & Tippins, 1993); in the teaching-learning process multiple (subjective) realities 
then can become a temporarily, socially shared (intersubjective) reality.  

 
Figure 10:  A constructivist view: a bottom-up approach 

4.4 Reflections 
Fundamental assumptions underlying PCK are in contention with more recent understandings of student 
knowing and learning concerning the critical issues of subject matter (object of teaching vs. object of 
learning) and the teaching-learning process (transmissive vs. constructive). This disagreement is 
grounded in the duality of the structure of a discipline (logic of a discipline) and the structure of mind 
(logic of students).  

The persistence of the different frames of reference in thinking about structure (discipline vs. mind) 
reflects the power such oppositions have in shaping our thought and discussion. Once they are permitted 
to frame the debate, we are put in a position of having to choose between stark alternatives, a position 
from which it seems very difficult to extricate oneself. Often the structure of a discipline and the 
structure of mind are framed as competing perspectives between one must choose. Specifically, we tend 
to take either the structure of a discipline or the structure of mind as fundamental and as giving rise to 

TEACHER

SUBJECT 
MATTER STUDENTSconstructing

47



the other. However, virtually no theoretical orientation or commitment can go unchallenged by 
proponents of contending movements of thought.4 Not a single epistemological leitmotif is immune to 
fading away after a while. Consequently, it is more useful to reconcile paradigmatic differences through 
dialogue than to argue that the paradigmatic assumptions oppose one another.  

However, those oppositions seem not to be evident when departing from an understanding of trivial 
constructivism (which reduces constructivism to the notion of students constructing their own 
understandings). Radford (2013) stated that:  

“It is now common in mathematics education discourse to talk about knowledge as something 
that you make or something that you construct. The fundamental metaphor behind this idea is 
that knowledge is somehow similar to the concrete objects of the world. You construct, build or 
assemble knowledge, as you construct, build or assemble chairs.” (p. 8)  

Inherent in such views is the assumption that subject matter is a ‘regular thing’ such as a chair 
(Brown, 2014). The acquisition of subject matter is framed in terminologies borrowed from architecture 
(Towers & Davis, 2002), such as building a house, constructing a wall, or more generally, putting things 
with static structure together to make or build something more complicated but also with static structure. 
Such views, however, project particularly linearized models of knowing and learning, in which subject 
matter can be both constructed and deconstructed, given that subject matter is considered “as regular 
things with static structure that react predictably to influences and that can be taken apart and put back 
together” (Brown, 2014, p. 1472). From these perspectives, subject matter is considered as an object in 
two rather complementary ways: as an object of teaching (to be deconstructed) as well as an object of 
learning (to be constructed).  

Following the common practice of considering knowledge as a static structure, we can make the 
linear teaching-learning model bidirectional, indicating the complementarity of constructing and 
deconstructing subject matter (see Figure 11): a top-down approach in which teachers act upon subject 
matter (deconstructing) as well as a bottom-up approach in which students act upon subject matter 
(constructing).  

 
Figure 11: A complementary view: a bidirectional approach 

Another way is to adopt the view of cognition and learning as dynamic and complex: dynamic in the 
sense that knowledge is fluid, changes, and expands; and complex in the sense that knowledge 
development is non-linear and often unpredictable due to multiple, mutually-influencing aspects of 
mind and contexts (see Chapter 3). 

Knowledge, in such a view, is neither seen as separated bits of knowledge nor as architectural 
structure with static interconnections among elements. A dynamic stance toward knowledge rejects the 
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view of knowledge as an object: both that of subject matter as an object of teaching and that of subject 
matter as an object of learning.  

Radford (2013) asked, “[…] if knowledge is neither something that you merely construct nor 
something that you transmit, what is it?” (p. 10). He suggested that knowledge is considered not as an 
object but as a process: “an ensemble of culturally and historically constituted embodied processes of 
reflection and action” (Radford, 2013, p. 10). Here knowledge is a moment of action (or process) rather 
than an entity that exists somehow in isolation. This theoretical re-orientation reflects Cobb’s (1999) 
suggestion to “shift from the content metaphor to the emergence metaphor” (p. 31), that is, to understand 
mathematics not as existing content but as emergent knowledge. As Cobb (1999) explicated, “[t]he 
content metaphor entails the notion that mathematics is placed in the container of the curriculum, which 
then serves as the primary vehicle for making it accessible to students” (p. 31), whereas, when 
understood in emergent terms, a “mathematical idea […] [is] seen to emerge as the collective practices 
of the classroom community evolved” (p. 31).  

The contribution made in Scheiner et al. (2017) takes the latter position: a complex, dynamic stance 
is adopted toward the discussion of mathematics teacher knowledge, and the debate regarding what 
makes it specialized. This highlights the complex, dynamic usage, function, and interaction of 
mathematics teacher knowing, and in doing so goes beyond considering only what teacher knowledge 
is about. It is argued that such an approach illuminates the conversation concerning the nature of 
mathematics teacher knowledge, allowing for a better integration of teacher knowledge and teacher 
action. Finally, such an approach frames mathematics teacher knowledge primarily as a style of 
knowing rather than as a set of static traits or dispositions.  

4.5 Summary 
In summary, this chapter critiques existing conceptualizations concerning mathematics teacher 
knowledge. After identifying some trends in the field, the chapter argues for an approach to 
understanding teacher knowledge which is: intrinsic rather than extrinsic, viewing specialization as a 
process of becoming rather than a state of being and rejecting out-of-field comparisons; 
anthropological-sociocultural rather than reductionist, highlighting the epistemological thread inherent 
in mathematics teacher knowledge; and transformative rather than additive, where teacher knowledge 
is conceived as a complex set of interacting knowledge facets within a dynamic structure rather than as 
an incremental accumulation of knowledge facets. The chapter then discusses the concept of PCK, 
giving an account of its guiding principles, critiquing its underlying assumptions, and providing a sketch 
of potential resolutions to possible contradictions. The view of subject matter (and the idea of 
transforming subject matter for the purposes of teaching) offered by Shulman works well for simplified 
understandings of knowing, learning, and teaching (where the teacher deconstructs disciplinary 
knowledge while the student constructs meaning); however, falls short with rather dynamic (where 
knowledge is considered more as a process than as an object) and complex views on knowing and 
learning (as it is often non-linear or unpredictable). In the next chapter, insights from other fields are 
used to develop a more comprehensive model of the phenomenon of teacher noticing.  

Notes to Chapter 4 
1 The intended outcome of instruction based on the structure of a discipline is that students will learn 
what is taught in a way close to that of the logic of a discipline. 
2 These discipline-specific practices (elementarizing, exemplification, explanation, simplification, etc.) 
seem to be centered on ways to uncover the constituent elements of discipline-specific concepts and 
make subject matter more accessible to others. It requires the capacity to “work backward from mature 
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and compressed understanding of the content to unpack its constituent elements” (Cohen, in 
preparation, cit. in Ball & Bass, 2000, p. 98). 
3 The literature demonstrates many faces of constructivism (see Perkins, 1999; Phillips, 1995); the two 
most predominant ones in education research are cognitive constructivist perspectives and social 
constructivist perspectives (Cobb, 1994, Ernest, 1998). Within each (cognitive constructivism and 
social constructivism) there is also a range of positions. However, the various perspectives on 
constructivism are committed to a common theoretical assumption (Ernest, 2010): knowledge is not 
discovered but actively constructed, a theoretical position that von Glasersfeld (1989) called ‘trivial 
constructivism’. Radical constructivism, on the other hand, is based on two principles: (1) knowledge 
is actively constructed by the subject through their cognition, not passively received from the 
environment (trivial constructivism); and (2) cognition is an adaptive process that organizes a person’s 
experience; it does not discover an independent, pre-existing world that exists outside of the human 
mind (von Glasersfeld, 1989, p. 162). Von Glasersfeld’s use of ‘radical’ is in the sense of fundamental, 
as already noted by Thompson (2014), that is, cognition is “a constitutive activity which, alone, is 
responsible for every type or kind of structure an organism comes to know” (von Glasersfeld, 1974, p. 
10). 
4 Neither of the two positions contrasted here can be simply reduced to a single school of thought; in 
contrast, both are best referred to as movements of thought embodying a variety of forms (that are 
evolving and changing). 
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Introduction

Mathematics teacher knowledge has become a fertile research field in mathematics
education (see Ponte & Chapman, 2016). Scholars have considered mathematics
teacher knowledge from multiple perspectives, using various constructs and frame-
works to describe and explain what makes mathematics teacher knowledge specialized.
1 Despite the relatively short time that research on teacher knowledge has existed as a
field, the literature is currently shaped by a diversity of conceptualizations of mathe-
matics teacher knowledge (Petrou & Goulding, 2011; Rowland, 2014).

As research on teacher knowledge has moved to a more central role in mathematics
education research (see Even & Ball, 2010; Fennema & Franke, 1992; Sullivan &
Wood, 2008), the search for what signifies the specialization in mathematics teacher
knowledge has been becoming an increasingly important enterprise in the research
field. Recent research has addressed this issue by describing and identifying facets or
types of teacher knowledge that have been considered as crucial for teaching mathe-
matics, and in obtaining empirical evidence to support these (e.g., Ball, Thames &
Phelps, 2008; Baumert, Kunter, Blum, Brunner, Voss, Jordan, Klusmann et al., 2010;
Blömeke, Hsieh, Kaiser & Schmidt, 2014). As such, the focus tends to be on (seem-
ingly distinct) facets of knowledge that an individual teacher possesses (knowledge for
teaching) or uses in the classroom (knowledge in teaching). A number of scholars have
pointed to inadequacies in such conceptualizations of teacher knowledge, arguing that
they disregard the deep embeddedness of knowledge in professional activity (Hodgen,
2011) and ignore the dynamic interactions between different kinds or facets of teacher
knowledge (Hashweh, 2005). Others have argued that the premises on which much
research into teacher knowledge is based depend on assumptions that are rather aligned
with transmission views of teaching (McEwan & Bull, 1991) and, in consequence, are
rather asymmetrical to constructivist viewpoints (Cochran, DeRuiter & King, 1993).
Thus, it is not surprising that scholars have called for making the assumptions under-
lying frameworks of teacher knowledge, teaching, and teacher learning explicit
(Lerman, 2013) and for achieving coherence between research into teacher character-
istics and teacher practice (Van Zoest & Thames, 2013).

This paper aims to make explicit the discussion of what makes mathematics teacher
knowledge specialized, a question that has often been addressed implicitly by several
scholars in various ways and with different emphases. The paper outlines further
attempts that reflect theoretically on this important issue and try to articulate more
explicitly what the specialization signifies, or may signify, in mathematics teacher
knowledge. The purpose of this paper is, therefore, twofold: First, we try to elucidate
central orientations currently available in the literature and point to the more serious
limitations of the grounds on which they stand. Second, we provide alternative views
that direct attention to underexplored issues about these orientations.

We begin this article by briefly discussing previous accounts on what mathematics
teacher knowledge signifies and encompasses, and then take this retrospection as a

1 We prefer using the term ‘specialized’ instead of ‘special’ with respect to mathematics teacher knowledge.
The latter implies the assertion of a quality of teacher knowledge that is distinguishable from something. We
use the term ‘specialized’ to indicate a quality of mathematics teacher knowledge that comes into being when
enacted.
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point of departure for outlining the limitations of these accounts. Afterwards, we
articulate and draw a contrast with alternative viewpoints that provide a critical stance
toward previous accounts but also provide new ways to think about the issues under
consideration. The first perspective underlines the complex dynamics of the usage and
function of mathematics teacher knowledge in context that calls for specialization as a
process of becoming rather than a state of being. The second perspective points to the
epistemological stance inherent in mathematics teacher knowledge, arguing for the
sensitivity for the historical and cognitive geneses of mathematical insights. The third
perspective accentuates the complex interactions of knowledge facets that generate
dynamic structures. Then, we highlight underlying themes and convergences of these
alternative views with regard to specialization in mathematics teacher knowledge.
Finally, we conclude by proposing to construe specialization in mathematics teacher
knowledge as a style of knowing rather than a kind of knowledge.

On the Evolution of Thinking About Conceptualizing Mathematics
Teacher Knowledge

Research into mathematics teacher knowledge has evolved considerably, especially
over the last three decades. The number of studies in this field has significantly
increased, the nature and scope of the research have expanded, and the frameworks
used to guide the study of mathematics teacher knowledge have become quite diverse.
The growing diversity of frameworks for teacher knowledge testifies to the complexity
and multidimensionality of the research field.

In the following, we try to outline the evolution of thinking within the field
in conceptualizing mathematics teacher knowledge —with the explicit intention
of identifying central orientations in the literature concerning what makes
mathematics teacher knowledge specialized. We acknowledge that in any ap-
proach intending to identify central orientations in the literature a great deal of
important detail is lost. More detailed accounts of this research can be found
elsewhere (see e.g. Kaiser, Blömeke, König, Busse, Döhrmann & Hoth, 2017;
Kunter, Baumert, Blum, Klusmann, Krauss & Neubrand, 2013; Rowland &
Ruthven, 2011; Schoenfeld & Kilpatrick, 2008). A recent discussion of several
research traditions is provided by Blömeke and Kaiser (2017), in which the
same authors arrive at a complex framework of teacher competence and con-
ceptualize the development of teacher competence as personally, situationally,
and socially determined, as well as embedded in a professional context.

Our purpose here, however, is to foreground central orientations of what signifies
mathematics teacher knowledge that have been provoked by scholars in the field. We
start by portraying different dimensions of mathematical knowledge discussed in the
literature as being essential for mathematics teachers. Then, we draw attention to
selected contributions that articulate what particularizes subject matter knowledge for
teaching, particularly in reference to mathematical knowledge for teaching, with an
emphasis on the way specialization is considered. Afterwards, we focus on what is
considered as the heart of teaching: the transformation of subject matter in ways
accessible to students, an assumption that underlies several attempts in conceptualizing
mathematics teacher knowledge.

What Makes Mathematics Teacher Knowledge Specialized? Offering...
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Mathematical Knowledge

The literature foregrounds different aspects of mathematical knowledge as impor-
tant for teachers. Shulman (1986), for instance, accredited Bthe amount and
organization of the knowledge per se in the mind of the teacher^ (p. 9), referring
to Schwab’s (1978) distinction between substantive and syntactic structures of a
discipline. Substantive structures are the key concepts, principles, theories, and
explanatory frameworks that guide inquiry in a discipline, while syntactic struc-
tures provide the procedures and mechanisms for the acquisition of knowledge,
and include the canons of evidence and proof. Bromme (1994), then again,
acknowledged that Bschool subjects have a ‘life of their own’ with their own
logic; that is, the meaning of the concepts taught cannot be explained simply by
the logic of the respective scientific disciplines^ (p. 74). In recognizing school
mathematics as a special kind of mathematics, Bromme (ibid.) suggested school
mathematical knowledge and academic content knowledge as further dimensions
of mathematical knowledge. Buchholtz, Leung, Ding, Kaiser, Park and Schwarz
(2013) set forth a kind of knowledge Bthat comprises school mathematics, but
goes beyond it and relates it to the underlying advanced academic mathematics^
(p. 108). The same authors called this kind of knowledge, in homage to the
pioneering work of Felix Klein, knowledge of elementary mathematics from an
advanced standpoint.

This small selection of a fuller corpus of dimensions of mathematical knowl-
edge already indicates a critical point to be expanded here: the contributions to
dimensions of mathematical knowledge that teachers know, or should know, are
accumulative (or incremental). However, as Monk (1994) reminds us, Ba good
grasp of one’s subject areas is a necessary but not sufficient condition for effective
teaching^ (p. 142). We might interpret Monk’s statement as a call for additional
knowledge, but we might also understand it as a call for a qualitatively different
kind of knowledge.

Subject Matter Knowledge for Teaching (Pedagogical Content Knowledge)

A critical advance in the field was the recognition that teaching entails a specialized
kind of subject matter that is distinct from disciplinary subject matter. Shulman (1986)
proposed a kind of knowledge Bwhich goes beyond knowledge of subject matter per se
to the dimension of subject matter knowledge for teaching^ (p. 9, italics in original)
that he labeled pedagogical content knowledge (PCK). Shulman (1986) described PCK
as encompassing

for the most regularly taught topics in one’s subject area, the most useful
forms of [external] representation of those ideas, the most powerful analo-
gies, illustrations, examples, explanations, and demonstrations – in a word,
the ways of representing and formulating the subject that make it compre-
hensible to others […] [and] an understanding of what makes the learning of
specific topics easy or difficult: the conceptions and preconceptions that
students of different ages and backgrounds bring with them to the learning
of those most frequently taught topics and lessons. (p. 9)
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In this view, PCK consists of two dimensions: ‘knowledge of representations of
subject matter’ and ‘knowledge of specific learning difficulties and students’
conceptions’. These two dimensions often served as reference points in thinking
about PCK, as Ball (1988), for instance, assumed B[…] ‘forms of representation’
[…] to be the crucial substance of pedagogical content knowledge^ (p. 166). She
then explored the more dynamic aspects of this idea, examining preservice
teachers’ pedagogical reasoning in mathematics as the process whereby they
build their knowledge of mathematics teaching and learning. Other scholars in
mathematics education have delineated dimensions of PCK that extended or
refined Shulman’s original considerations. For instance, Marks (1990) clarified
PCK in the context of mathematics by identifying four dimensions, including
knowledge of students’ understanding, knowledge of subject matter for instruc-
tional purposes, knowledge of media for instruction, and knowledge of instruc-
tional processes.

Shulman (1987) asserted that among multiple knowledge domains for teaching (e.g.
content knowledge, general pedagogical knowledge, curriculum knowledge, knowl-
edge of learners), it is PCK that is Bthe category most likely to distinguish the
understanding of the content specialist from that of the pedagogue^ (p. 8). As such,
the existence of PCK relies on and projects the belief in a distinction between the
subject matter knowledge of teachers and that of other subject specialists or scholars
(e.g. mathematicians). While the notion of PCK advocated a position distinguishing
teachers’ and academics’ subject matter knowledge, the concept of mathematical
knowledge for teaching advocated a position distinguishing knowledge for teaching
mathematics from knowledge for teaching other subjects (such as physics, biology, or
the arts).

Mathematical Knowledge for Teaching

The notion of mathematical knowledge for teaching has become an important point of
departure in thinking about what signifies the specialization in mathematics teacher
knowledge. Various researchers have applied different emphases to this notion, as shall
be seen below. In this realm, it is particularly the Mathematical Knowledge for
Teaching (MKT) framework (e.g. Ball & Bass, 2000; Ball et al., 2008), that has
attracted significant research attention. The MKT framework evolved through the
application of a kind of job analysis (Ball et al., 2008) focusing on the use of
knowledge in and for the work of teaching.

The MKT framework defines several sub-domains within two of Shulman’s (1987)
original knowledge domains: pedagogical content knowledge (PCK) and subject matter
knowledge (SMK). PCK is divided into knowledge of content and students, knowledge
of content and teaching, and knowledge of curriculum, while SMK is divided into
common content knowledge, specialized content knowledge, and knowledge at the
mathematical horizon. We outline four of the six dimensions, excluding horizon content
knowledge and knowledge of curriculum as they have so far not been the primary focus
of studies into the area.

Within PCK, knowledge of content and teaching combines knowing about teaching
and knowing about mathematics, including knowledge of the design of instruction,
such as the knowledge governing the choice of examples to introduce a content item
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and those used to take students deeper into it. Knowledge of content and students is the
knowledge that combines knowing about mathematics and knowing about students. It
includes knowledge of common student conceptions and misconceptions about partic-
ular mathematical content as well as the interpretation of students’ emerging and
incomplete thinking.

Within the mathematical knowledge domain, common content knowledge refers to
the mathematical knowledge and skill possessed by any well-educated adult, and
certainly by all mathematicians, which is used in settings other than teaching. Special-
ized content knowledge, on the other hand, is defined as mathematical knowledge
tailored to the specialized uses that come up in the work of teaching. It is described as
being used by teachers in their work, but not held by well-educated adults, and is not
typically needed for purposes other than teaching. Ball et al. (2008) noted that teaching
may require Ba specialized form of pure subject matter knowledge^ (p. 396, italics
added):

pure because it is not mixed with knowledge of students or pedagogy and is thus
distinct from the pedagogical content knowledge identified by Shulman and his
colleagues and specialized because it is not needed or used in settings other than
mathematics teaching. (Ball et al., 2008, p. 396, italics added)

Transforming Subject Matter

The previous two approaches support the assertion that a kind of subject matter
knowledge exists that is qualitatively different from the subject matter knowledge
of disciplinary scholars or teachers of other subjects. The nature of such knowl-
edge, however, is not just a matter of mastering disciplinary subject matter. From
the perspectives presented so far, teachers’ primary concern is not with mathe-
matics, but with teaching mathematics. The difference between disciplinary
scholars and educators is, therefore, also seen in the different uses of their
knowledge. This important recognition of the different purposes of disciplinary
scholars and teachers highlights, as Shulman (1987) argued, a unique aspect of
teachers’ professional work: a teacher must Btransform the content knowledge he
or she possesses into forms that are pedagogically powerful and yet adaptive to the
variations in ability and background presented by the students^ (Shulman, 1987,
p. 15). It is this notion of transforming the subject matter of an (academic)
discipline that highly impacted our thinking about teacher knowledge, but it seems
to have been taken for granted once the picture of knowledge for teaching was
defined. The primary purpose of transformation is to organize, structure, and
represent the subject matter of an (academic) discipline in a form Bthat is appro-
priate for students and peculiar to the task of teaching^ (Grossman, Wilson &
Shulman, 1989, p. 32).

The literature on mathematical knowledge for teaching also identifies various
discipline-specific practices of transformation, often described in terms of exemplify-
ing, explaining, decompressing, or simplifying, that converge on teachers’ core practice
of unpacking mathematics content in ways that are accessible to students (Adler &
Davis, 2006; Ball & Bass, 2000; Ma, 1999). It requires the capacity Bto deconstruct
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one’s own mathematical knowledge into a less polished and final form, where elemen-
tal components are accessible and visible^ (Ball & Bass, 2000, p. 98). Hodgen (2011),
for instance, takes this idea further arguing that the Bessence of teacher knowledge
involves an explicit recognition of this – ‘unpacking’ the mathematical ideas […],
[whereas] doing mathematics only requires an implicit recognition of this.^ (pp. 34–35,
italics in original).

More recently, the idea of transformation has also been further elaborated by
scholars working in the Knowledge Quartet research program (Rowland, 2009;
Rowland, Huckstep & Thwaites, 2005), as part of their conceptualization of the
classification of situations in which mathematical knowledge surfaces in teaching.
The research group considers transformation as concerning Bknowledge in action as
demonstrated both in planning to teach and in the act of teaching itself. A central focus
is the representation of ideas to learners in the form of analogies, examples, explana-
tions, and demonstrations^ (Rowland, 2009, p. 237). This conceptualization concerns
knowledge in action, focusing on teaching activity in the transmission of content.

Thinking About What Makes Mathematics Teacher Knowledge
Specialized: Various Orientations, Different Responses

As innocent and straightforward as the question What makes mathematics teacher
knowledge specialized? sounds, the research field has found it difficult to provide an
explicit answer as there are various orientations toward teacher knowledge, each with a
quite different response to the question. The previous section briefly outlined the
following orientations regarding what mathematics teacher knowledge signifies: (1)
identifying and describing multiple dimensions of mathematical knowledge (and ped-
agogical content knowledge), (2) declaring kinds of subject matter knowledge for
teaching that are distinct from subject matter knowledge per se, and (3) asserting
teachers’ action upon subject matter (that is the transmission of subject matter in ways
accessible to students) as the core task of teaching.

These three orientations seem to indicate different lines of thinking about what
makes mathematics teacher knowledge specialized. Each focuses attention on particular
aspects: the first considers additional knowledge dimensions (quantity), whereas the
second turns the attention toward knowledge that is construed as qualitatively different.
These different lines of thinking seem to be convolved in Shulman’s idea of
transforming subject matter, that is, the various orientations shape, and are shaped by,
our interpretations of Shulman’s idea of transforming subject matter.

One might interpret Shulman’s (1986, 1987) initial writings on teacher knowledge as
indicating a stance in which teachers’ and disciplinary scholars’ subject matter knowl-
edge were differentiated, signifying the existence of a kind of subject matter knowledge
for teaching (held by teachers) that is qualitatively different from subject matter
knowledge per se (held by disciplinary scholars). On the other hand, Ball and her
colleagues proposed a more nuanced differentiation in which subject matter content
itself is considered in a way that only makes sense to mathematics teachers. In other
words, while both notions of PCK and specialized content knowledge indicate the
existence of a qualitatively different kind of knowledge, they differ in where to put
emphasis: Shulman’s notion of PCK puts emphasis on a kind of knowledge distinctive
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to teachers (and not to disciplinary scholars) and Ball and her colleagues’ notion of
specialized content knowledge puts emphasis on a kind of knowledge distinctive to
mathematics teachers (and not to teachers of other subjects).

Each of these orientations provides a (partial) response to the question of what
signifies mathematics teacher knowledge. The first orientation calls for the multidi-
mensionality of mathematical knowledge in particular, and teacher knowledge in
general. The second orientation argues for the qualitative differences between scholars’
subject matter knowledge (per se) and teachers’ subject matter knowledge (for teach-
ing) or the qualitative differences between knowledge for teaching mathematics and
knowledge for teaching other subjects. The third orientation, underlying and extending
the previous one, points to teachers’ actions upon subject matter, as manifested in
notions such as transforming, unpacking, deconstructing, and decompressing subject
matter.

Correspondingly, we can frame the responses of the three orientations concerning
what makes mathematics teacher knowledge specialized as follows:

– mathematics teachers need to know more than the subject matter they teach
(additional knowledge);

– mathematics teachers need to know subject matter in a qualitatively different way
than other practitioners of mathematics (mathematicians, physicists, engineers,
among others), and they need to hold a qualitatively different kind of knowledge
than teachers of other subjects (physics teachers, biology teachers, history teachers,
among others) (qualitatively different knowledge); and

– mathematics teachers need to know how to organize or structure the subject matter
in ways accessible to students (teaching-oriented action).

These responses, taken together, seem to converge on an understanding that what
mathematics teacher knowledge signifies depends on its distinctiveness or exclusive-
ness: mathematics teacher knowledge is construed as knowledge that is needed only for
teaching mathematics, that is, knowledge not required for other purposes than teaching
and not needed for teaching other subjects than mathematics.

Too often when we frame our thinking about what mathematics teacher knowledge
signifies, we see ourselves getting caught in the mire of current debates without taking a
critical stance toward the grounds on which they stand. In the present paper, it is
intended to take a more critical stance toward the current state of what the literature
implicitly represents as making mathematics teacher knowledge specialized. To this
end, we explicitly identify the more significant boundaries demarking the outlined
orientations and provide new ways of thinking about the issue under consideration. Our
critique rests on at least three general tendencies that seem to have been implicit in the
current discussion on teacher knowledge:

– the field brings up external references in justifying what makes teacher knowledge
specialized (mathematics teachers vs. mathematicians; teaching mathematics vs.
teaching other subjects);

– in its consideration of teacher knowledge, the field takes a disciplinary perspective
which is reductionist in orientation, arguing from the viewpoint of teaching
mathematics; and
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– the field has been partly additive, that is, accumulating dimensions of teacher
knowledge.

In the following sections, we adopt a critical stance to these general tendencies,
around which we organize our understanding of the question of what makes knowledge
for teaching mathematics specialized. As such, we argue for an approach which is:

– intrinsic: it dispenses with external reference points, and accounts for specialization
as a process of becoming rather than a state of being;

– anthropological-sociocultural: it eschews a reductionist approach, and instead
underlines the epistemological thread inherent in mathematics teacher knowledge;
and

– transformative: rather than seeing teacher knowledge as an incremental accumula-
tion of facets, it accentuates the complex interactions of knowledge within a
dynamic structure.

In doing so, we draw on and debate different emerging perspectives that provide
critical issues that are un- or under-addressed in the current literature, and, more
importantly, that provide provocative new avenues for thinking about what makes
mathematics teacher knowledge specialized in ways not yet explicitly articulated.

From an Extrinsic to an Intrinsic Approach

In this section, we adopt a critical stance to a tendency that seems to be common among
scholars discussing mathematics teacher knowledge: the tendency of comparing math-
ematics teacher knowledge with the knowledge demanded of other professionals (such
as mathematicians, teachers of subjects other than mathematics). Such an approach is
extrinsically oriented (see Flores, Escudero & Carrillo, 2013) as it takes an external
referent (e.g. mathematicians or teachers of other subjects) as a reference point for
comparison. The explicit purpose of such an approach is to identify the distinctiveness
of mathematics teacher knowledge in relation to someone else’s knowledge.

Since Shulman (1986) acknowledged teachers as professionals, various scholars in
mathematics education have attempted to identify the distinctiveness of knowledge for
teaching mathematics in comparison with other forms of knowledge. This search took
place primarily by looking outside of mathematics education to provide answers as to
what mathematics teacher knowledge signifies. Researchers articulated ways in which
mathematics teacher knowledge differs from mathematicians’ knowledge, or how it
differs from knowledge of those who teach subjects other than mathematics. This
tendency to look beyond the discipline, we believe, is a very natural one, particularly
when, at the same time, scholars were searching for an identity for the research field. In
relating mathematics teachers to professionals of other disciplines, scholars were able to
determine certain cognitive dispositions that seemed to be specific for mathematics
teachers—aspects of teacher knowledge that have been referred to as being static,
explicit, and objective (in the sense of being observable). However, it is one thing to
make comparisons between mathematics teacher knowledge and the knowledge perti-
nent to other professionals, and quite another to interpret the seemingly distinctive
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features of teacher knowledge in terms of ‘specialization’. Whereas ‘specialization’
seems to have been understood in terms of distinctiveness, in this paper, we argue for a
different meaning of specialization that allows us to focus our attention inside and not
necessarily outside.

Flores et al. (2013), for instance, identified difficulties in defining the specialized
nature of certain cognitive dispositions when analyzing the knowledge involved in
assessing students’ subtraction strategies. They affirmed that it is debatable whether the
knowledge used by a teacher is exclusive to him or her, or is shared with other
practitioners of mathematics. They focus discussion on certain cognitive dispositions
and wonder who else, other than a mathematics teacher might have such kind of
knowledge, thus moving the focal point of the debate from mathematics teacher
knowledge to that of other professionals.

The answers we might gain from such comparisons (mathematics teachers vs.
mathematicians, mathematics teachers vs. teachers of other subjects, etc.) are external
to mathematics education as a discipline, in that they offer justifications that are
recognizable and measurable but neither cognitive (concerning the processes involved
in knowledge) nor epistemological (regarding the nature of knowledge). External
referents (such as mathematicians) might provide useful markers for identifying static
traits that differ from mathematics teachers such as the content of teacher knowledge,
that is, what teachers’ knowledge is about. However, they seem to be inappropriate in
accounts of the complex dynamics of knowledge in use. Rather than framing the
discussion of what makes mathematics teacher knowledge specialized in terms of
external referents, we suggest an account of specialization understood in relation to
mathematics teacher knowledge in action. That is to say, what makes mathematics
teacher knowledge specialized is not so much Bwhat^ mathematics teachers know
(which might indeed differ from other professionals), but Bhow^ mathematics teachers
know. This involves a shift away from the content of mathematics teacher knowledge to
its usage and function, that is, how teacher knowledge comes into action (how it comes
into being or how it actualizes). This shift in perspective foregrounds the context rather
than the content.

Instead of an extrinsic perspective, we suggest taking an intrinsic view, that is,
acknowledging the situatedness of mathematics teacher knowledge within the context
of mathematics learning and teaching. Interestingly, Carrillo, Climent, Contreras and
Muñoz-Catalán (2013) have already explicated a framework, termed the Mathematics
Teacher’s Specialized Knowledge (MTSK) framework, which is constructed on, and
projects, an intrinsic perspective whereby the idea of specialization is framed with
regard to the inseparability of knowledge and context. The key to recognizing and
making visible what makes mathematics teacher knowledge specialized lies, we argue,
in the context in which the knowledge comes into being. Contextuality, then, becomes
the central concern. Obviously, that context matters is hardly new nor provocative (see
e.g. Fennema & Franke, 1992); however, the way in which the term is commonly used
differs from the point we want to advance in this paper.

In our view, whether knowledge is specialized or not is a question of whether the
knowledge is contextually adaptive (Hashweh, 2005), that is, functional on a moment-
by-moment basis, and highly sensitive to the changing details of the situation as
teachers interact with the environment and with the students around them. This means,
rather than expecting differences in knowledge (concerning quantity, quality, etc.)
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based on broad descriptions of context—such as school vs. scientific environment—the
term Bcontext^ acquires a very different and deeper meaning than the ways it has been
previously construed. This perspective assumes that context consists of situations and
activities embedded in the learning-teaching complex in the immediate moment. In
consequence, what signifies mathematics teacher knowledge might be better described
(or can be better approached) from within the discipline. In this regard, mathematics
teacher knowledge is treated not as static traits (that differ from other professions) but
as interpretations of performances that are situated in the immediate context. In this
regard, Putnam and Borko (2000) argued that Bprofessional knowledge is developed in
context, stored together with characteristic features of classrooms and activities,
organised around the tasks that teachers accomplish in classroom settings, and accessed
for use in similar situations^ (p. 13). As such, a mathematics teacher’s action is not a
simple display of a static system of some certain knowledge types, but rather a highly
contingent and continually adaptive and proactive response that shapes, and is shaped
by, the environment in which the teacher interacts.

In other words, it is not about being but about becoming, that is, it is less about static
dispositions or traits differentiable from those of other professions and more about the
complex dynamics of the usage and function of knowledge in context. Mathematics
teacher knowledge becomes specialized in its adaptive function in response to the
dynamics and complexities in which it comes into being.

From a Reductionist to an Anthropological-Sociocultural Approach

In this section, we adopt a critical stance to the disciplinary approach to teacher
knowledge, an approach that is primarily reductionist in orientation and that argues
from the viewpoint of teaching mathematics rather than from the standpoint of learning
mathematics. We argue against a reductionist understanding of knowing and learning,
in which knowledge is construed as independent of the knower. Instead, we argue for
an anthropological-sociocultural perspective that accounts for the evolving nature of
mathematical meaning in the learning process.

Shulman (1987) declared that subject matter knowledge per se Bmust be transformed
in some manner if they are to be taught. To reason one’s way through an act of teaching
is to think one’s way from the subject matter as understood by the teacher into the
minds and motivations of learners^ (p. 16). Generally speaking, the central task of
teaching is considered as transforming subject matter knowledge into a form in which it
is teachable to particular learners. This transformation of the subject matter is, accord-
ing to Shulman (1987), heavily, if not wholly, determined by the disciplinary subject
matter as the primary source of information for teaching and the principal route to
informed decisions about instruction. Gudmundsdottir (1991) described this transfor-
mation as a Breorganization [of content knowledge] that derives from a disciplinary
orientation^ (p. 412) and Grossman et al. (1989) designated it as Btranslat[ing] knowl-
edge of subject matter into instructional representations^ (p. 32). As mentioned above,
scholars in the field of mathematics education have recommended several discipline-
specific practices of transformation that aim to unpack mathematics content in ways
accessible to students. In this view, teachers must be able to take apart mathematical
concepts, operations and strategies so as to enable students to gain access to the thought
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processes and ideas that they represent. Students, on the other hand, are considered as
putting together the constituent pieces of those mathematical concepts, operation, and
strategies. Such assertions rely on, and project, a reductionist understanding of the
knowing and learning processes; an understanding in which the knowing and learning
processes are construed as putting together what teachers intentionally picked apart. This
view not only distorts the complexity of the processes of knowing and learning mathe-
matics, but also advocates the assumption that knowledge is independent of the knower.

Some general approaches in mathematics education have challenged reductionist
views on knowing and learning, including, but not limited to, Gestaltism, constructiv-
ism, problem-solving, socio-culturalism, and complexity thinking. Here, we follow
anthropological-sociocultural perspectives, which, rather than consider knowledge as
an object that exists apart from the individual, acknowledge the co-implicated nature of
knowledge, knower, and context. In this perspective, particular emphasis is given to the
genesis of mathematical knowing and learning by accounting for historical and cogni-
tive evolutions, dynamics, and changes. In this view, knowledge is considered a process
rather than an object—to acknowledge the complex dynamics in knowing mathematics.

For instance, the Didactic Mathematical Knowledge (DMK) framework (Pino-Fan,
Assis & Castro, 2015) is grounded in an onto-semiotic perspective of mathematical
knowledge and instruction (Font, Godino & Gallardo, 2013; Godino, Batanero & Font,
2007). As such, the framework is rooted in anthropological-sociocultural assumptions
about mathematical knowledge (where mathematics is understood as a human activity),
and takes up the ontological assumption of a diversity of mathematical objects as well
as the semiotic assumption of a plurality of languages and meanings. The DMK
framework, similar to other proposals (e.g. Ernest, 1989), relies on, and projects,
assumptions that transcends realist-Platonic positions on the nature of mathematics
and foregrounds an anthropological conception of mathematics. That is, teachers have
to recognize the emergence of concepts, procedures, and propositions from mathemat-
ical practices, and attribute a central role to the various languages and artifacts involved
in such practices. The applications—the use of mathematics as a cultural reality in itself
to solve real-life or mathematical problems—promote a variety of meanings for
mathematical objects, which must be progressively articulated in the learning process.
Such a view acknowledges the embodied meanings of mathematical concepts that
evolve in the learning process. The DMK framework particularly foregrounds an
epistemic facet of teachers’ didactical-mathematical knowledge which, according to
Godino, Font, Wilhelmi and Lurduy (2011), interacts with other knowledge facets
(affective, cognitive, ecological, interactional, and mediational). Consequently, the
attentiveness (or mindfulness) to epistemological issues (such as the nature of mathe-
matics and mathematics learning) is illuminated. From this perspective, teachers’
sensitivity toward the epistemic genesis of mathematics and mathematics learning
becomes a central aspect of what mathematics teacher knowledge signifies.

In short, an anthropological-sociocultural perspective acknowledges knowledge as
an evolving process rather than a more or less static object that exists independent of
the knower. In this view, not only the interaction between knowledge, knower, and
context is highlighted, but also the historical and cognitive genesis of mathematical
meanings. Thus, what makes mathematics teacher knowledge specialized is not the
accumulation of distinct facets of knowledge, but the teachers’ stance toward knowl-
edge, in the light of the historical and cognitive geneses of mathematical insights. This
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perspective calls for a shift in thinking about teachers’ core tasks: the teachers’ focus
should not be on acting upon subject matter by re-structuring, re-interpreting, re-
configuring, and re-building mathematical concepts to make them accessible to stu-
dents, but instead on the complex interactions between students and subject matter.
That is, the key is not teachers’ capacity to unpack mathematics, but their capacity to
unpack students’ ways of understanding in order to make students’ ways of mathemat-
ical thinking visible.2

From an Additive to a Transformative Approach

In this section, we adopt a critical stance to another apparently widespread tendency
that seems to have implicitly driven recent discussions on teacher knowledge: the
tendency toward atomizing teacher knowledge for the sake of accumulating distinct
and refined dimensions of teacher knowledge. We argue for a transformative approach
that goes beyond a merely incremental approach to facets of knowledge by turning
back to Shulman’s idea of blending knowledge facets.

The last three decades have been colored by various attempts to capture what
mathematics teacher knowledge is about and what it entails. Research studies started
out by distinguishing, refining, and adding to various dimensions of knowledge
regarded as critical for teaching mathematics. Since then, we have accumulated a
considerable number of, often indistinguishable (see Silverman & Thompson, 2008),
knowledge dimensions that, taken together, seem to provide a more refined picture of
the multidimensionality of teacher knowledge. This undertaking allowed scholars to
order, structure, and, most important, simplify the complexity of teacher knowledge, to
reduce it to its observable and measurable parts.

The approach relies on the assumption that a full understanding of teacher knowl-
edge should emerge from a detailed analysis of each of its parts. It is believed that the
complexity of teacher knowledge can be studied by dissecting it into its smallest parts
(knowledge facets, types, etc.), and that these knowledge units are the basis, or the
fundamental particles, of what mathematics teacher knowledge signifies. Following
these lines of thinking, reflections on mathematics teacher knowledge emphasize the
nature of these parts—paying little attention to transformations that arise when knowl-
edge elements are blended.

Instead of dividing and thinking in terms of multiple, distinct sub-categories of
teacher knowledge, our disposition is to take a broader view that sees teacher knowl-
edge as an organic whole. Interestingly, Shulman (1987) already described PCK as
Bthat special amalgam of content and pedagogy that is uniquely the province of
teachers, their own special form of professional understanding^ (p. 8, italics added).
Here, Shulman understood PCK not as the summation or accumulation of content
knowledge and pedagogical knowledge: B[…] just knowing the content well was really
important, just knowing general pedagogy was really important and yet when you add

2 This is not to be understood as dichotomizing teachers’ capacity for unpacking mathematics and their
capacity for unpacking students’ understandings, but to re-emphasize that teaching is not (merely) a top-down
approach of transposing subject matter to the students but a bottom-up approach of students constructing
mathematical ideas that are used as points of departure in the teaching-leaning complex.
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the two together, you didn’t get the teacher^ (Shulman, cit. in Berry, Loughran & van
Driel, 2008, p. 1274). Rather, the amalgamation of content and pedagogy means Bthe
blending of content and pedagogy^ (Shulman, 1987, p. 8, italics added) into a new kind
of knowledge that is distinctively and qualitatively different from the knowledge
dimensions from which it was constructed. However, by proposing PCK as the
amalgam of content and pedagogy without accounting for the complex interactions
between these and other knowledge facets, Shulman left the task of further clarifying
the blending process to other scholars.

Surprisingly, though many scholars paraphrased Shulman’s idea of amalgamation,
they almost always took the result of blending knowledge domains (that is, according
to Shulman, PCK) as given and often considered it as static (for a critique, see
Hashweh, 2005). In other words, many scholars ignored the complex dynamics of
blending, a high interaction of knowledge facets that forms new structure not evident in
the previous facets.

To the best of our knowledge, blending seems to be an undertheorized
phenomenon in research on teacher knowledge. Recently, Scheiner (2015) has
suggested construing teacher knowledge as a complex, dynamic system of
various knowledge atoms, which are understood as blends of different knowl-
edge facets. The idea of ‘knowledge atom’ shares similarities with Sherin’s
(2002) idea of ‘content knowledge complexes’ construed as Btightly integrated
structures containing [pieces of] both subject matter knowledge and pedagog-
ical content knowledge^ (p. 125) repeatedly accessed during instruction.
Scheiner (2015) proposed that teacher knowledge is dynamic not simply
because it evolves dynamically (which it does), but because it forms dynam-
ically: teacher knowledge is dynamically emergent from the interactions of
knowledge facets. This interaction of knowledge facets is in the nature of
what Fauconnier and Turner (2002) described as conceptual blending. In
technical terms, blending is a process of conceptual mapping and integration,
a mental operation for combining frames or models in integration networks
that leads to new meaning, global insights, and conceptual compression (see
Fauconnier & Turner, 2002). The essence of conceptual blending is to con-
struct a partial match, called cross-space mapping, between frames from
established domains (known as inputs), to project selectively from those inputs
into a novel hybrid frame (a blend or blended model), comprised of structure
from each of its inputs, as well as a unique structure of its own (emergent
structure). Crucially, the inputs are not just projected wholesale into the blend,
but a combination of the processes of projection, completion, and elaboration
(or ‘running’ the blend) Bdevelops emergent structure that is not in the inputs^
(Fauconnier & Turner, 2002, p. 42). The point we want to make here is that
knowledge facets interact dynamically to form emergent structures. Not only
do new elements arise in the blend that are not evident in either input domain
on its own, but blending accounts also for the interdependencies of knowledge
dimensions: the production of a blend is recursive, in the sense, that blends
depend on previous blends.

Scheiner’s (2015) proposal of teacher knowledge as a complex, dynamic system of
various knowledge atoms attempts a dialectic between atomistic and holistic views of
teacher knowledge. It puts the refinements of teacher knowledge identified and gained
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through atomistic approaches together into a complex system of blends that—as a
whole—is more than the sum of its parts.

In a nutshell, a complex system perspective regards teacher knowledge as dynam-
ically emergent and dimensions of teacher knowledge as being organically interrelated.
It emphasizes that various knowledge facets are in constant dialog with each other,
inform each other, and interact dynamically to form emergent structures. Thus, the key
relies not on accumulating types of teacher knowledge but on blending knowledge
facets that emerge dynamically. Accumulating teacher knowledge facets is additive (or
complementary), but blending is transformative.

Discussion

In the three previous sections, we have critically appraised what the current literature
implicitly represents as making mathematics teacher knowledge specialized. In each
section, we have tried to make explicit the more serious limitations of the grounds on
which at least three general tendencies stand, and which seem to have been inherent in
the current discussion on teacher knowledge. Each section provides provocative new
ways of thinking about the issue under consideration.

First, we called for an account of specialization that comes from the inside rather
than the outside (such as comparisons with professionals working in other disciplines).
In recognizing the situated nature of mathematics teacher knowledge in the immediate
context, the complex dynamics of the usage and function of knowledge in the imme-
diate context can be underlined. As such, specialization is not a state of being but a
process of becoming: mathematics teacher knowledge becomes specialized in its
adaptive function in response to the dynamics and complexities in which it comes into
being.

Second, we argued that an account of specialization cannot be provided with
itemization of mathematics teacher knowledge, but rather through teachers’ epistemo-
logical stance toward knowledge and the sensitivity for the historical and cognitive
geneses of mathematical insights. Going beyond a reductionist understanding of
knowing and learning processes, in which the teacher’s task is considered to be
unpacking the subject matter of mathematics, we encouraged the view of teachers
unpacking students’ understandings to make students’ ways of mathematical thinking
explicit.

Third, we argued that an account of specialization lies not in the sum of the parts of
mathematics teacher knowledge but in its organic whole, that is, various knowledge
facets being constantly in dialog with each other, informing each other, and interacting
dynamically to form emergent structures. We proposed a complex system perspective
that construes teacher knowledge as blends of various knowledge facets that emerge
dynamic structure.

On the one hand, these alternative views point to several aspects that scholars
attempted to encompass in their use of the notion of knowing rather than knowledge:
knowledge is usually treated as static, explicit, and objective, whereas what is described
as knowing is seen as dynamic, tacit, and contextualized (see Adler, 1998; Ponte,
1994). However, the alternative views outlined above foreground aspects that might
contribute further to the discussion of knowledge versus knowing. First, whereas
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knowledge has been debated as either existing independently of the knower (the realist
viewpoint) or only existing in the mind of the knower (the relativist viewpoint), with
the term knowing, we can signal the inseparability of knowledge and knower. That is, it
makes no sense to talk about something being known without also talking about who
knows it (and under which circumstances). Second, what is called knowledge is usually
perceived as a state of being (or product), whereas what is described as knowing is seen
as an emergent process—a process of becoming. However, this is not a call for a
distinction between product and process, since the main point is seen in the complex
dynamics underpinning the stability of established knowledge (see Davis & Simmt,
2006). It implies the dynamic character of knower, knowledge, and context such that all
three are changing and evolving over time. This means knowing is not just situated in
place—that is, it is contextual and embedded in the practices of teaching (Adler,
1998)—but also situated with respect to time and other factors, given that the context
of knowing is similarly dynamic and changing over time. That knowing is situated with
regard to time, place, and other factors implies that it cannot be reduced to some
observable and measurable by-products. The whole venture is to understand mathe-
matics teacher knowing as it is, as it comes into being, as it works in the immediate
context; that is, to take a holistic (rather than a reductionist) view that acknowledges
mathematics teacher knowing as highly personal, embodied, enacted, and performed.
Any approach toward what makes teacher knowledge specialized must deal with this
complex whole rather than with piecemeal facets or types of knowledge (see Beswick,
Callingham & Watson, 2012).3 Of course, such sensibilities are not entirely new. They
might be argued to have been represented in the discourses of different movements of
thought such as cognitive approaches and situated approaches (see Kaiser et al., 2017),
as well as other discourses. However, the view advanced here takes the discussion to
realms that often cast knowing and knowledge as oppositional.

On the other hand, and more importantly, the alternative viewpoints converge on the
understanding that it is not a kind of knowledge but a style of knowing that accounts for
specialization in mathematics teacher knowledge. To elaborate this aspect in more
detail: In the past, the focus was primarily on knowledge about/of/for/in the discipline.
This resulted in multiple descriptions and distinctions, such as knowledge about
mathematics versus knowledge of mathematics, or mathematical knowledge for teach-
ing as opposed to mathematical knowledge in teaching, and knowledge for teaching
mathematics in contradistinction to knowledge in teaching mathematics, all primarily
concerned with the question of ‘what’ mathematics teachers know. In this regard,
comparisons such as mathematics teachers versus mathematicians or mathematics
teachers versus teachers of other subjects were assumed to be decisive, as it was
believed that it was the kind of knowledge—whether quantitatively or qualitatively
different—that set mathematics teachers apart from other professionals. However, the
alternative views discussed above consider the yet unsettled question of ‘how’ teachers’
knowing comes into being rather than pointing to the question of ‘what’ teachers know.
This brings to the fore the complex, dynamic usage, function, and interaction of
mathematics teacher knowing, a position that goes beyond accounts that primarily

3 Notice that we do not construe the relationship between knowing and knowledge as contradictory but rather
as dialectical. In terms of the onto-semiotic approach, there is no mathematical practice without objects, or
objects without practice, which is equivalent to the issues of knowing and knowledge discussed here.
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address kinds of teacher knowledge. We intend to enunciate this shift in perspective by
calling for attention to mathematics teachers’ styles of knowing rather than merely
teachers’ kinds of knowledge. We believe that this shift in perspective is critical as it
provides a new light on the discussion of the nature of mathematics teacher knowledge
that allows us to better integrate knowledge and action. It articulates mathematics
teacher knowledge more as a mindset rather than as some static traits or dispositions.
To cast this idea in a term, we suggest a fine distinction in thinking about the issues
under consideration: knowledge about/of/for/in a discipline and disciplinary knowing.
Knowledge about/of/for/in the discipline prompts the question of different kinds of
knowledge, while disciplinary knowing prompts the question of a style of knowing that
is a function of particular activities, orientations, and dynamics recognizably disciplin-
ary. From this perspective, we argue that it is mathematics educational knowing that
signifies specialization in mathematics teacher knowledge.

Conclusions

Mathematics teacher knowing is a mysterious phenomenon indeed. To acknowledge
this mystery is not to mystify mathematics teacher knowing, but to express our
recognition of the exquisite complexity of how mathematics teacher knowing comes
into being. Breaking up the complex nature of teacher knowledge for the sake of
insights leads to atomizing our understanding, our thinking, of what makes mathemat-
ics teacher knowledge specialized. Such insights are themselves fragmented, not
holistic. The piecemeal, atomistic, analytic approach (as advocated in the past) does
not work in relation to the complex usage, function, and interaction of teacher knowing.
Any approach toward what makes teacher knowledge specialized must deal with the
complex whole rather than with some piecemeal facets or types of teacher knowledge.

In this paper, new avenues for theoretical reflection on some of the major orienta-
tions and tendencies in the field of mathematics teacher knowledge were outlined.
These reflections were not intended to exhaust the object of consideration, but to
include those approaches, initiatives, and theoretical insights that might prompt re-
thinking about what mathematics teacher knowledge signifies.

We explained that the question of what makes teacher knowledge specialized cannot
be comprehensively answered by only addressing Bwhat^ teachers know, but we need
to account for Bhow^ teachers’ knowing comes into being. The alternative views
discussed in the paper bring to the foreground that it is not a kind of knowledge but
a style of knowing that accounts for specialization in mathematics teacher knowledge.
Such style of knowing is not a state of being but a process of becoming—the becoming
of a mathematics educational mindset.

This call for a style of knowing is rather different from what normally receives
emphasis in discussion of mathematics teacher knowledge. We hypothesize that con-
sidering specialization as a style of knowing (rather than a kind of knowledge) can have
far-reaching consequences not only for conceptualizing mathematics teacher
knowledge.

With respect to mathematics teacher education programs, for instance, considering
specialization as a style of knowing (rather than a kind of knowledge) advocates a
holistic approach to mathematics teacher education, criticizing the separate acquirement
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of different kinds of knowledge (generally acquired from different academic depart-
ments such as mathematics, education, psychology, among others). Mathematics teach-
er education programs should be deliberately designed in an integrated fashion to
support teachers in blending insights from various disciplines including, but not limited
to, mathematics, education, and psychology, thereby creating novel styles of knowing
that empower teachers to reshape the way they view their own profession. It is
reasonable to assume that such styles of knowing develop gradually, rooted in authentic
activities and within a community of individuals engaged in inquiry and practice (see
Putnam & Borko, 2000). Further, a shift toward a style of knowing is expected to affect
researchers’ and educators’ perceptions of teachers’ professional identity, as the path to
a mathematics educational mindset is a journey, not a proclamation. This would mean
giving up deficit-oriented discussions on teacher knowledge in terms of identifying and
fixing teachers’ lack of knowledge (Askew, 2008). The central concern for future
research, then, is to understand those mindsets, which underpin any authentic form of
mathematics educational knowing. It is hoped that this call for a style of knowing offers
a new vision of what makes mathematics teacher knowledge specialized.
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5 Going Beyond Intuitive Models of Teacher Noticing:       
Toward Emerging Theoretical Perspectives*  

*This chapter refers to the third journal article, entitled “Teacher noticing: enlightening or blinding?” by T. 
Scheiner, published 2016 in ZDM Mathematics Education, 48(1-2), 227-238. (doi: 10.1007/s11858-016-0771-2) 

The focus in this chapter is expanded to the theoretical construct of teacher noticing, which has the 
potential to challenge reductionist assumptions that allowed teacher cognition and teacher performance 
to be parsed. The third article (Scheiner, 2017b), found in a selection of papers in a special issue of 
ZDM Mathematics Education, provides a commentary on the theoretical formulations and usage of the 
construct of teacher noticing. It is argued that current conceptualizations of teacher noticing are 
inadequate, as they seem to treat the phenomenon as self-evident in meaning. Furthermore, the 
phenomenon is sometimes regarded as an explanans (explanation of a phenomenon), rather than the 
explanandum (a phenomenon that needs to be explained) that it actually is. The contribution made in 
Scheiner (2016a) problematizes the theoretical construct of teacher noticing, drawing on phenomena 
discussed in and findings derived from cognitive science to challenge some intuitive assumptions on 
teacher noticing that restrict current conceptualizations of the phenomenon. The construct of teacher 
noticing is then compared and contrasted to the construct of situation awareness, a construct originating 
in the applied science of human factors that points to critical issues that seem to have been 
oversimplified in current conceptualizations of teacher noticing. Furthermore, the article sets the stage 
for a more comprehensive model that speaks to the complex interactions of perceptual and cognitive 
processes in dynamic situations that can hardly be appreciated with previous conceptualizations of 
teacher noticing. Here the focus is on new theoretical perspectives that emerged in the discussion 
provided in Scheiner (2016b). These perspectives have the potential to enrich our understanding of 
interactions and interdependencies in the context of teacher noticing and improve our understanding of 
the complexities involved.   

This chapter is structured in two parts. First, a critical stance is taken toward some intuitive 
assumptions underlying the phenomenon of teacher noticing by drawing on phenomena from cognitive 
science and the applied science of human factors. Second, a more comprehensive model is outlined that 
speaks to the inseparability of individual and environment, and provides a promising perspective with 
which to better interpret the complex interactions involved in teacher noticing.  

5.1 Problematizing the Theoretical Construct of Teacher Noticing  
Scholars in the field of teacher research in mathematics education are increasingly interested in and 
cognizant of the dynamic interactions between teachers’ cognitive and contextual resources, teachers’ 
noticing, and teachers’ classroom practice. The literature contains numerous contributions on the topic 
of teacher noticing, despite the recent nature of the field (Jacobs, Lamb, & Philipp, 2010; Kaiser, Busse, 
Hoth, König, & Blömeke, 2015; König et al., 2014; Mason, 2002; Sherin, Jacobs, & Philipp, 2011; Star 
& Strickland, 2008).  

There is a consensus amongst researchers that the phenomenon of teacher noticing is comprised of 
a set of activities, skills, and processes. Despite attempts to determine the specific elements of teacher 
noticing, there is still scope for making definitions of terms more precise, clarifying the relationship of 
terms with other terms, and discussion of their appropriateness. The terms used seem to borrow much 
from the lexicon of cognitive psychology, but are often based on restrictive intuitive understandings 
(for instance, the intuitive assumption that we ‘see’ what we direct our eyes to). Similarly, scholars 
often treat the relationships between activities that are part of teacher noticing as given, despite holding 
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diverse views on the subject. Scheiner (2016b) problematizes some of the terms used and the 
assumptions underlying how these activities relate to one another.  

More importantly, it is argued that the complex interactions of perceptual and cognitive processes 
in dynamic situations (such as classrooms) can hardly be appreciated with current conceptualizations 
of teacher noticing. At a time when researchers seem directed by, or confined within, intuitive frames 
that cannot fully account for the phenomena under consideration, other disciplines such as cognitive 
science may allow for a better understanding of the complexity involved in teacher noticing. Research 
on attention capture and inattentional blindness1, for instance, indicate that noticing is much more 
complex than previously considered. Attention does not a priori lead to awareness; even if teachers 
attend to certain events (for example, by directing their eyes to them), it is not certain that they become 
aware of them. Hence research findings on attention capture and inattentional blindness seem to indicate 
that it is not only with their eyes that people see, but also their minds. ‘Blindness’, then, is more a 
product of the absence of expectation (or anticipation), knowledge, or beliefs, than a simple absence of 
attention.  

Further, Scheiner (2016b) uses the construct of situation awareness2, a concept well-discussed in the 
applied science of human factors, to stress that any conceptualization of teacher noticing needs to 
account for the relevance of a given event with regard to the context and time it is bounded by. Most 
conceptualizations of teacher noticing lack both acknowledgment of the bounded nature (both in time 
and space) of the environment and consideration of the relevance of an event. Dynamic environments, 
such as classrooms, require that a person’s situation awareness be continuously updated. When teachers 
interact in such environments, the relevance of a given event will depend on its context, and may change 
with time. Another aspect of situation awareness is the ability to project forward from current events to 
forecast future events and understand the implications of decisions (which allows for timely decision 
making).  

Current conceptualizations of teacher noticing do not allow for a full appreciation of the complexities 
involved in attending to and becoming aware of events in dynamic situations. In the following, a 
theoretical model is described that incorporates insights derived from cognitive science and the applied 
science of human factors, and might offer a further step to Sherin and Star’s (2011) call for “work[ing] 
toward the development of a more complete model of how teachers make sense, in the moment, of 
complex classroom events” (p. 77).  

5.2 Toward a More Comprehensive Model of Teacher Noticing   
Attempts to theorize the relation between individual and environment are too often oversimplified, 
when in reality this relation is a complex interplay between cognitive and contextual resources, 
perceptual and cognitive processes, and the actual situation. Such attempts are usually based on the 
assumption that either the individual, or her or his environment, determines what she or he will see. The 
contribution made in Scheiner (2016b) attempts to overcome this false dichotomy by developing a 
theoretical model of teacher noticing that acknowledges the mutual and recurring interaction between 
an individual and an environment. In particular, the contribution draws attention to the inseparability of 
the teacher and the environment in which the teacher is engaged when addressing issues such as 
perceiving, interpreting, and decision-making, amongst others. The approach taken in the article extends 
Neisser’s (1976) perceptual cycle model that includes both top-down and bottom-up processes, and 
blends constructs and insights from cognitive science and the applied science of human factors.3 

The model proposed in Scheiner (2016b) suggests (a) that perception and cognition reinforce each 
other and (b) that individual and environment are inseparable (see Figure 12). That is, how one perceives 
the world is very much a function of how one understands the world, and vice versa. This is not to say 
that reality is purely imagined, but rather that perception is filtered through a person’s understanding of 
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the world, which is affected by her or his knowledge, values, and intentions. Sherin and Star (2011) 
proposed that “what the teacher sees in the world is strongly driven by knowledge and expectations” 
(p. 73), and Schoenfeld (2011a) argued that “what you attend to [...] is in large measure a function of 
your orientations” (p. 232). Hence, cognitive resources such as knowledge, values and intentions cause 
some aspects of the world to be more important than others, thereby creating an understanding of the 
world with a particular bias.  

Even more importantly, these cognitive resources may direct further perceptual exploration by 
creating expectations of certain events. A person notices information in her or his environment that may 
modify or extend their cognitive resources, and shifts her or his attention elsewhere. This cycle of 
attention guidance enriches the person’s understanding of the situation in which she or he is engaged. 
Thus, perception and cognition reinforce one another: the perceptual processes relevant to situation 
awareness are directed or influenced by cognitive resources, and the outcome of perceptual exploration, 
in the form of sensory input, modifies or extends cognitive resources. These modified cognitive 
resources direct further perceptual exploration, determining what information will be noticed next. 
Hence, perception is an active rather than passive process, imposing expectation on experience.  

 
Figure 12: A cyclical model of the reciprocal relations of world, mind, and attention (modified from Scheiner, 

2016b, p. 234) 

Such a view advocates a position in which perceptual and conceptual processes are convoluted and 
oriented by one’s conceptual frame – a frame that is cognitively affected, biologically enabled, and 
culturally infused. As such, mind orients one’s attention to some aspects of the world, though attention 
is not so much an attempt of seeing or sensing anything, but rather attentive thinking, or attention as the 
direction of thinking (see Mole, 2011). In this respect, attention is intentional: it directs one’s thinking 
to particular events in the world. The information of the world gained through attentive thinking, in 
turn, might extend one’s conceptual frame, and, as such, shape one’s mind in ways that direct one’s 
attention to aspects of the world.  

The interactive, reciprocal, and cyclical characteristic of the model outlined in Scheiner (2016b) 
provides a theoretical viewpoint that accounts for the interdependencies between an individual and her 
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or his environment and a promising tool with which to interpret the phenomenon of situation awareness. 
Such a reciprocal and cyclical model between individual and environment – a model in which an 
individual is shaped by, but also shapes, the environment – provides a productive counterpart to any 
uni-directional model that is either based on the assumption that the individual determines what she or 
he sees, or that her or his environment determines it.  

Scheiner’s (2016b) model differs from Blömeke, Gustafsson, and Shavelson’s (2015) more linear, 
unidirectional conceptualization of competence, in which competence was considered as “a continuum 
from traits (cognitive, affective, motivational) that underlie [...] perception, interpretation, and decision 
making that give rise to observed behavior in a particular real-world situation” (p. 11). In their 
conceptualization, situation-specific skills including perception, interpretation, and decision-making 
were considered as mediating the transformation of dispositions into practice. The model outlined in 
Scheiner (2016b) instead acknowledges a reciprocal and cyclical relationship between individual and 
environment that seems to be more aligned with Santagata and Yeh’s (2016) suggestion that a 
knowledge of the specific context in which a teacher works is necessary to understand teacher 
competence (which is a complex interaction of situated knowledge, beliefs, and practices). Santagata 
and Yeh (2016) argued that it is through perception, interpretation, and decision-making that knowledge 
and beliefs become relevant in practice, and that these processes lay at the junction of knowledge, 
beliefs, and classroom practice. New knowledge and new beliefs (the enablers of changers in 
competence) are formed when decisions are made and interpreted based on practice. Thus, practice is a 
means of both refining perception, interpretation and decision-making, and of increasing knowledge 
and changing beliefs and therefore changing competence.  

5.3 Reflections 
Phenomena of perception and cognition are complex. Of course, this is not expected to be controversial 
nor to be ground-breaking. However obvious this may seem, it has had little impact on thinking about 
teacher noticing to date. Here the view was taken of teacher noticing as involving multiple, mutually 
influencing aspects of mind and world. A reciprocal and cyclical relationship was acknowledged 
between individual and environment, a relationship in which an individual is shaped by, but also shapes, 
the environment. The contribution made in Scheiner (2016b) argues against any uni-directional model 
that is either based on the assumption that the individual determines what she or he sees, or that her or 
his environment determines it. Scheiner (2016) puts forth a cyclical model that advocates a position in 
which perceptual and conceptual processes involved in developing situation awareness are directed by 
one’s conceptual frame. The outcome of perceptual exploration and focused attention – the insights 
gained from the environment – modifies or extends the conceptual frame. Thus modified or extended, 
it directs further exploration and determines what will be noticed in the environment. 

Current research on teacher noticing documents that over time teachers shift what they notice and 
how they talk about what they notice; however, the reason as to why this shift takes place remains 
elusive. The model proposed in Scheiner (2016b) enables one to generate a theoretical hypothesis with 
respect to this issue: any shift (or extension) of one’s focus of attention is inspired by, and inspires, a 
shift (or extension) in one’s conceptual frame. In the author’s developmental research with pre-service 
secondary school mathematics teachers, he observed and documented shifts of teachers’ foci of 
attention: from focusing on the deficits of student mathematical understanding to focusing on the 
productivity of student understanding. These shifts were quite remarkable and might be attributed to a 
mindset shift that has been encouraged by raising the pre-service teachers’ awareness of their own 
understanding of student mathematical knowing and learning (specifically, suspending a fixed mindset 
that is primarily judgmental in order to encourage a growth mindset that is primarily based on 
understanding and interpreting student mathematical thinking).  
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5.4 Summary 
In summary, this chapter identifies problems in current conceptualizations of teacher noticing, and 
draws on insights from cognitive science and the applied science of human factors to develop a more 
comprehensive account of the phenomenon of teacher noticing. In particular, the chapter highlights 
findings from research on attention capture, inattentional blindness, and situation awareness in order to 
challenge commonly held, intuitive assumptions about the phenomenon of teacher noticing. These 
insights are used to inform the development of a model of the phenomenon in which individual and 
environment are inextricably intertwined, one in which the individual both shapes and is shaped by her 
or his environment. In the next chapter, the contribution of this thesis and its wider significance is 
summarised. 

Notes to Chapter 5 
1 Recent research into attention capture reveals a surprising degree of blindness to unusual events (that 
might be expected to capture attention). This phenomenon, known as ‘inattentional blindness’ (see 
Mack & Rock, 1998), consists of individuals failing to notice unexpected events directly in front of 
them when their attention is otherwise engaged. Inattentional blindness is particularly striking since it 
violates our intuition that people should see what is directly in their field of vision. 
2 Situation awareness is a construct used in the applied science of human factors to describe the level 
of awareness a person has of a situation being engaged in. Endsley (1995) described situation awareness 
as “the perception of the elements in the environment within a volume of time and space, the 
comprehension of their meaning and the projection of their status in the near future” (p. 36), and 
précised that situation awareness (SA) 

 “is based on far more than simply perceiving information about the environment. It includes 
comprehending the meaning of that information in an integrated form, comparing it with operator 
goals, and providing projected future states of the environment. In this respect, SA is a broad 
construct that is applicable across a wide variety of application areas, with many underlying 
cognitive processes in common.” (p. 37) 

3 A detailed discussion of Neisser’s (1976) perceptual cycle model and its potential for better 
acknowledging the interactions between individuals’ internal schemes, their perceptual exploration, and 
the situation in which they are engaged can be found in Scheiner (2016b). Here the focus is on the 
emerging theoretical model and how it may contribute to, and extend, the discussion on teacher noticing, 
giving primacy to the interdependencies between teacher and environment. 
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research toward crucial questions, and in enlightening 
aspects that we otherwise had not seen or conceived.

Constructs are not valued simply in terms of whether 
they are right or wrong; instead, they are valued by 
their usefulness to the field. Occasionally a con-
struct emerges that transforms the field by enabling 
researchers to reconceptualize their endeavors and 
to shift, sometimes in subtle ways, the focus of their 
attention. (Sherin, Jacobs, & Philipp, 2011a, p. 3)

This potential has been attributed to the construct of 
teacher noticing by Sherin et  al. (2011a); a construct that 
seems to cross the threshold of the mainstream of teacher 
research. Despite the relatively short time since teacher 
noticing has entered the vernacular of researchers and prac-
titioners in mathematics education, there is actually quite a 
collection of contributions on the notion of teacher notic-
ing (Jacobs, Lamb, & Philipp, 2010; Kaiser, Busse, Hoth, 
König, & Blömeke, 2015; König et  al., 2014; Sherin, 
Jacobs, & Philipp, 2011b; Star & Strickland, 2008).

The papers in this special issue, taken together, offer a 
collection of important advancements of teacher noticing, 
and provide insight by presenting original approaches in 
integrating various research lines into the frame of noticing 
that may constitute a more advanced understanding of the 
observed phenomena. However, several papers seem to be 
guided by intuitive frames, speaking about teacher notic-
ing as though its meaning were self-evident, or even treat-
ing teacher noticing as an explanatory construct for certain 
phenomena. As scientists, we cannot afford to be seduced 
by simple, intuitive, easy-to-understand answers. Instead 
we need to recognize that there may be more to this situa-
tion than meets our eyes. We need to recognize that teacher 
noticing is not an answer but a real and important ques-
tion that invites us to enlighten (rather than blind) critical 

Abstract  This paper comments on the theoretical for-
mulations and usage of the construct of teacher noticing 
in a selection of the papers in this special issue of ZDM 
Mathematics Education. The analysis of how the notion 
of teacher noticing is used in the papers suggests that it 
draws attention to several interdependencies involved that 
have not been attended to in the past. However, the contri-
butions in this special issue have only partially accounted 
for the dynamic interactions in teacher noticing, suggesting 
that there is potential for enriching our understanding of 
the complexities involved in the realm of teacher noticing. 
The purpose of this commentary is to stimulate the cur-
rent discussion on teacher noticing by providing insights 
from cognitive science and the applied science of human 
factors, which have the potential to challenge the current 
understanding of noticing. In doing so, the paper sets the 
stage for several related constructs from these research dis-
ciplines to raise awareness of aspects that recent conceptu-
alizations of teacher noticing may have blinded rather than 
enlightened.

Keywords  Attention · Perceptual cycle model · Situation 
awareness · Teacher cognition · Teacher noticing · Theory 
development

1  Introduction

Theoretical constructs are valued for their potential in 
advancing knowledge in a scientific discipline, in guiding 
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aspects in the field of teacher competence. This is exactly 
what is set as the goal for this commentary. In this paper, 
it is argued that there is room for further contributions in 
the process of indicating where to direct our eyes to—an 
opportunity for our field to question interactions and inter-
dependencies in the realm of teacher noticing that we 
thought we understood.

This commentary examines the general contribution of 
various papers in this special issue. Yet, the very notion of 
selective looking (see Neisser, 1976) reminds us that we, 
as researchers, conduct research using a particular lens 
and that this focus has a bearing on what is noticed, that 
is, what is perceived and attended to, interpreted as signifi-
cant, and ultimately reported. This use applies to commen-
tators as well. The focus of this commentary will be on the 
usage of the construct of teacher noticing, and the postu-
lated value of it in enlightening issues that otherwise have 
not been acknowledged. Then, some directions for future 
research will be developed by drawing on notions originat-
ing in cognitive science and the applied science of human 
factors that may allow us to see with greater perspective the 
complexities involved in the realm of teacher noticing.

This commentary aims at an interpretation and blending 
of several ideas gained from the various contributions to 
this issue with the goal of seeing profoundly and unconven-
tionally into phenomena that are necessary to understand.

2 � Teacher noticing: a critical and evolving 
theoretical construct

The merits of any body of research may be judged by how 
well it contributes to a current discussion and how well it 
represents an incremental advance in our understanding. 
Many papers in this special issue of ZDM Mathematics 
Education have certainly done so: they moved scholars in 
the field and advanced our understanding of many critical 
issues. Another way to judge the value of research is how 
well it contributes to seeing issues we thought we under-
stood in a different way, how well it offers a critical redi-
rection of existing views or provides a surprising advance 
in understanding, or even violates our intuition. The body 
of research considered in this paper has been evaluated 
based on these criteria. In this section, several contribu-
tions to this special issue that progressively advanced our 
field are highlighted. However, a more critical stance is also 
adopted in commenting on aspects that have been only par-
tially considered and occasionally oversimplified.

The approach taken here will be more than usually 
assertional in the hope of raising issues provocatively. As 
the issues are deep and complex and simply cannot be elab-
orated in any great detail, they will mostly be defined rather 
than uncovered, explicated or settled.

In the following subsections, first a global focus is 
adopted on the ways in which contributions in this special 
issue enriched the emergent picture of teacher competence. 
Then the lens is focused on specific issues in the research 
on teacher noticing: what explicit and implicit assertions 
are made with regard to the various activities involved, their 
relation to each other, and how data has been analyzed.

2.1 � Emerging insights in and new targets for research 
on teacher competence

Blömeke, Gustafsson, and Shavelson (2015) observed 
that, in the past, research on teacher competence focused 
primarily either on teacher dispositions in terms of cogni-
tion, affect, and motivation-volition or on teacher perfor-
mance. In an attempt to overcome the ongoing tension in 
separating research on teacher dispositions from research 
on teacher performance, Blömeke et al. (2015) enunciated 
an integrated perspective articulating competence as a con-
tinuum of dispositions and performance. Blömeke et  al. 
(2015) proposed to consider competence as “a continuum 
from traits (cognitive, affective, motivational) that underlie 
[…] perception, interpretation, and decision making that 
give rise to observed behavior in a particular real-world sit-
uation” (p. 11). In this light, situation-specific skills includ-
ing perception, interpretation, and decision-making were 
considered as mediating the transformation of dispositions 
into practice.

Dunekacke, Jenßen, Eilerts, and Blömeke (2016, this 
issue) supported this viewpoint on competence, argu-
ing, based on their empirical findings, that special parts of 
knowledge and beliefs could predict preservice preschool 
teachers’ perception and planning skills. Interestingly, 
when knowledge and beliefs have both been controlled, 
mathematical pedagogical content knowledge and appli-
cation-related beliefs could predict the perception skills 
of prospective preschool teachers. Prospective preschool 
teachers’ perception skills could then be used to predict 
their planning skills, while mathematical content knowl-
edge was modeled as a precondition for mathematical ped-
agogical content knowledge.

On the other hand, Herbst, Chazan, Kosko, Dim-
mel, and Erickson (2016, this issue) made a case against 
a reductionist view of human action as only individual 
agency. They argued for going beyond the dominating 
account of the influence that individual cognitive factors 
have in decision-making by considering not only indi-
vidual resources but also contextual resources. Herbst 
et al. (2016, this issue) hypothesized that decisions teach-
ers make are “products of how individuals use personal 
resources to negotiate the demands of their institutional 
positions and the norms of the activities in which they play 
roles”. They particularly paid attention to instructional 
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norms and professional obligations as two sets of contex-
tual resources that might help account for teachers’ deci-
sion making. Similarly to the perspective proposed by 
Herbst et  al. (2016, this issue), Lande and Mesa (2016, 
this issue) argued that not taking into account the work-
ing environment and other socio-cultural influences in 
understanding teacher action would be problematic. They 
argued that the societal and institutional contexts shape 
the role of teachers by establishing norms of professional 
behavior when individuals enact those roles and by defin-
ing obligations to which teachers respond. Lande and 
Mesa (2016, this issue) took a more ecological stance for 
understanding the work of mathematics teaching by recog-
nizing that mathematics teaching is situated within class-
rooms (working environment), institutions (institutional 
environment), as well as social environments (society). 
In doing so, Herbst et  al. (2016, this issue) and Lande 
and Mesa (2016, this issue) broadened the discussion on 
teacher competence by attending to both the psychological 
and socio-cultural influence and the interaction between 
them that may inform teachers’ decision making.

To account for the influence of teacher communities on 
teachers’ instructional decision making, Santagata and Yeh 
(2016, this issue) explicitly included communities in their 
conceptualization of teacher competence. These authors 
identified that the context in which teachers worked and 
other professional communities in which they engaged also 
served as lenses for attending to and interpreting their prac-
tices, and for making decisions. In their analysis consisting 
of a classroom video analysis survey, videotaped lessons, 
and post-lesson interviews, Santagata and Yeh (2016, this 
issue) came to a different conclusion than the view of com-
petence Blömeke et  al. (2015) suggested. Santagata and 
Yeh argued that perception, interpretation, and decision-
making are at the center of the overlap of knowledge and 
beliefs with classroom practice. These situation-specific 
skills function as the processes through which knowledge 
and beliefs become relevant in practice. Conversely, the 
process of deliberately attending to, interpreting, and mak-
ing decisions based on practice creates new knowledge and 
new beliefs, thus enabling changes in competence. Practice 
therefore functions as a means of refining perception, inter-
pretation, and decision-making and of increasing knowl-
edge and changing beliefs. This bi-directional relationship 
between knowledge, beliefs, skills, and practice differs 
from Blömeke et  al.’s (2015) more linear, unidirectional 
conceptualization of competence. While Blömeke et  al. 
(2015) proposed to consider competence as a continuum 
from dispositions to performance, Santagata and Yeh (2016, 
this issue) suggested considering teacher competence as 
a complex interaction of situated knowledge, beliefs, and 
practices that can be understood only in the specific context 
in which teachers work.

Overall, the merit of Santagata and Yeh’s (2016, this 
issue) approach is the acknowledgement of the interde-
pendence between an individual and the environment—an 
interdependence that surprisingly often remained unno-
ticed. Interactions between individual and contextual 
resources, situation-specific skills (such as perceiving, 
interpreting, and decision-making), and the environment 
have never been fully described in contemporary research, 
and often remain in the ‘black box’.

2.2 � Determining and defining activities in teacher 
noticing

The notion of teacher noticing has many faces, as previous 
contributions and the various contributions in this special 
issue revealed. Philipp, Jacobs, and Sherin (2014) asserted 
a range of conceptualizations of noticing in mathematics 
education. The same holds for many papers in this special 
issue. Descriptions of teacher noticing used in a selection of 
these papers are considered, such as Hoth et al. (2016, this 
issue), who used Kaiser et al.’s (2015) so-called PID-model 
comprising (a) perceiving particular events in an instruc-
tional setting, (b) interpreting the perceived activities in the 
classroom, and (c) decision-making, either as anticipating 
a response to students’ activities or as proposing alterna-
tive instructional strategies, which is closely connected to 
the approach by Blömeke et al. (2015). Santagata and Yeh 
(2016, this issue) focused on (a) attending to the mathemat-
ics content at the center of the instruction, (2) elaborating 
on students’ mathematical thinking and learning, and (c) 
proposing improvements in the form of alternative strate-
gies teachers might adopt to enhance students’ learning 
opportunities. These conceptualizations announce a variety 
of key activities: perceiving, attending, interpreting, elab-
orating, proposing improvements, and decision-making. 
These conceptualizations paint a picture fairly consistent 
with earlier approaches specifying activities involved in 
teacher noticing. For instance, Jacobs et al. (2010) concep-
tualized professional noticing of children’s mathematical 
thinking as comprised of three skills: (a) attending to chil-
dren’s strategies, (b) interpreting children’s understandings, 
and (c) deciding how to respond on the basis of children’s 
understanding.

These contributions bring to the surface several critical 
activities (such as attending, interpreting, and decision-
making) that allow the world to be seen in new and differ-
ent terms. Although most authors tried to be quite specific 
in determining what the important elements of teacher 
noticing are, there is still room for making more precise the 
meaning of the terms used, clarifying how they are related 
to or differ from the ones used by other scholars, as well as 
for clarifying the appropriateness of their terms. The terms 
used in conceptualizing teacher noticing seem to bring into 
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discussion much of the vocabulary of cognitive psychol-
ogy, but apparently often based on intuitive, not necessarily 
appropriate, understanding. Almost all the effort in pursu-
ing the meanings of terms, their integrity and general utility 
is left to the theoretically reflective reader. Section 3 pro-
vides a point of departure in thinking about the concern of 
perceiving and attending.

2.3 � Relating activities involved in teacher noticing: 
continual, sequential, or interactional?

Currently researchers agree that teacher noticing is seen as 
a set of various activities, skills, or processes; however, they 
differ not only in the terms used but also in their assump-
tions of how these activities might be related to one another. 
Several scholars made explicit or implicit assertions con-
cerning the relation between the various activities attributed 
to the construct of teacher noticing. Although these asser-
tions were not the focus of their papers, they are important 
as they highlight a diversity of views about relationships 
which otherwise may be thought of as self-evident.

For instance, Bruckmaier, Krauss, Blum, and Leiss 
(2016, this issue) specified that “although the teachers 
investigated in the COACTIV video-study obviously had 
to perceive and interpret the video stimuli […], only the 
resulting final continuation (“decision”) was assessed”. 
The term ‘final continuation’ causes some kind of confu-
sion. It raises the question of how something can be ‘final’ 
when it ‘continues’. Is perceiving considered as one pole of 
a spectrum, and decision making as the other pole? In any 
case, this formulation carries the connotation that activi-
ties are ordered. One might think that the authors think in 
terms of a linear order or hierarchical order, or even that the 
various activities are embedded in one another. The point is 
that Bruckmaier et al.’s (2016, this issue) assertion allows 
much room for speculation. Santagata and Yeh (2016, this 
issue), on the other hand, hypothesized a “cyclical process 
of perception, interpretation, and decision making”. The 
difference between a linear (or hierarchical) process and a 
cyclical process is that the latter implies an on-going pro-
cess. Pankow et al. (2016, this issue) referred the identifica-
tion of typical students’ errors “to the first phase of notic-
ing, namely the perception and anticipation of important 
classroom incidents”. In doing so, they explicated that, in 
their opinion, noticing consists of several ordered phases, 
the first being the anticipation and perception. Similarly, 
Hoth et al. (2016, this issue) mentioned with regard to the 
PID-model that perception, interpretation, and decision-
making are phases, whereas Dunekacke et  al. (2016, this 
issue) hypothesized perception, interpretation, and plan-
ning action as being steps. One might think, based on these 
statements, that these activities take place sequentially or 
successively.

The diverse views presented in this special issue show 
that the relationship between the various activities is non-
obvious. Interestingly, almost all mentioned papers treated 
the issue as given, considering the various activities as 
phases or steps in a continuum or in a cycle, among oth-
ers. Yet reasonable clarity regarding how the activities are 
related to one another is still missing. Dyer and Sherin 
(2016, this issue) take a different stance, explicating that 
they do not mean to suggest that a teacher first develops 
an interpretation of student thinking and then reasons 
about it. Instead they propose a more dynamic relationship 
between the two processes. Their model of the way teach-
ers make sense of student thinking treated interpretations 
and instructional reasoning as working in conjunction with 
one another, and could be iteratively revised and used flex-
ibly. Similarly, Sherin et al. (2011a) suggested considering 
‘attending’ and ‘making sense’ as “interrelated and cycli-
cal” (p. 5). Based on empirical grounds, Dunekacke et al. 
(2016, this issue) stated a strong relation between percep-
tion and planning, indicating that the two activities cannot 
be distinguished empirically; however, despite their empiri-
cal finding, the authors suggested distinguishing between 
the two ‘categories’—both in theory and in practice. This, 
obviously, raises more questions than it provides answers.

The argument is that more often neither theoretical nor 
empirical contributions justified the deduction and con-
firmation of the postulated relationship of the activities 
involved in teacher noticing. However, we need to be cau-
tious about deducing the relational nature of the activi-
ties in order to avoid the risk of blinding the complexities 
involved. Section 5 provides the target to problematize the 
complexities involved more profoundly.

2.4 � Theoretical and methodological issues in research 
on teacher noticing

Discussions of teacher noticing in this special issue have 
acknowledged the importance of theoretical frames in 
bounding problems of consideration. Bounding allows us 
to identify, from the many potential dimensions and inter-
actions among dimensions that could be identified with a 
phenomenon, those aspects to which researchers should 
attend. Theoretical frames tell which details are relevant.

In many papers of this special issue, the theoretical 
frame of teacher noticing has been taken as a tool for ana-
lyzing the data that often took the form of teachers’ com-
ments (or responses) on classroom events: viewing video 
vignettes of classroom events (Bruckmaier et  al., 2016, 
this issue; Dunekacke et  al., 2016, this issue; Hoth et  al., 
2016, this issue) or drawing on teachers’ own teaching 
in classrooms (Dyer & Sherin, 2016, this issue; Jacobs 
& Empson, 2016, this issue; Santagata & Yeh, 2016, this 
issue). To analyze the data, researchers often coded these 
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comments, placing them either into categories (Bruckmaier 
et al., 2016, this issue; Kersting et al., 2016, this issue) or 
identifying new categories (Jacobs & Empson, 2016, this 
issue; Hoth et al., 2016, this issue). Sherin and Star (2011) 
reminded us that

When we say that teachers are ‘attending to peda-
gogy’ in their comments, we are saying only what 
their comments are about, from a researcher’s point 
of view, not what they were perceiving. […] These 
meters [coherent or topic meters] tell us something 
about emergent features of teacher reasoning. But 
they do not, in any direct way, tell us anything about 
the underlying noticing machinery that produced 
those emergent features. (p. 76, italics in original)

Kersting et al. (2016, this issue) concluded their contri-
bution with the observation that a fundamental challenge is 
that our theoretical advances are limited by our measures 
and our measures are limited by our theoretical under-
standing. Thus, it is not surprising that we have focused 
our attention on the seemingly most observable aspects in 
teacher noticing, and that numerical scales have become 
the dominating measure in teacher noticing. However, 
quantitative instruments that symbolize teacher’ noticing 
with a number on a scale provide a general orientation for, 
but fall short of, explaining phenomena of modest com-
plexity. Inherent in a number system is an implication of a 
unidimensional continuum on which values (points) differ 
in degree rather than in kind. The use of an overall score for 
various dimensions or activities involved in teacher notic-
ing (Bruckmaier et  al., 2016, this issue; Santaga & Yeh, 
2016, this issue), while a useful starting point, does not 
fully represent the phenomena being studied. As a meas-
ure of the extent to which teachers demonstrate the abilities 
defined by each rubric, the use of an overall score is justi-
fied. However, such a measure does not capture the inter-
actions of activities and possible relationships between the 
dimensions being explored, thus omitting some qualitative 
detail.

The utility of Kersting et al.’s (2016, this issue) specu-
lation that summating individual scores teachers obtained 
in various categories allows an interpretation in terms of 
a knowledge system perspective is unlikely. A knowledge 
system perspective is of value to provide insights in a struc-
tural description of teacher knowledge that accounts for the 
interactions of knowledge elements, the complex nature 
of the organization of the knowledge system, the dynamic 
and fluid nature of knowledge activation, and its non-linear 
development, amongst others (Scheiner, 2015). An overall 
score as a measure for the complexity and dynamics of a 
knowledge system is of limited value.

3 � Looking at the black box: on vision 
and blindness

In the field of teacher noticing, we are guided by, or trapped 
in, intuitive frames that run the risk of blinding critical 
issues. As mentioned in Sect.  2.2, this becomes obvious 
with respect to perceiving and attending: Santagata and Yeh 
(2016, this issue), for instance, explicated that they used the 
terms attending and perceiving interchangeably. This may 
be grounded in the assumption that what we perceive we 
do attend to, and what we attend to we do perceive. Con-
versely, several scholars in cognitive psychology and cog-
nitive science have clarified that not all perceived stimuli 
are attended, and not all attended stimuli are perceived 
(see Baars, 1997; Lamme, 2003). To illustrate this issue, 
in drawing reference to Lamme (2003), it is argued that 
we have various levels of processing that a stimulus can 
reach: unperceived or perceived, unattended or attended, 
and implicitly attended (without awareness) and explicitly 
attended (with awareness).

However, it is found that only in perceived stimuli that 
are attended and have the potential to be explicitly attended 
is there evidence of awareness (see Fig.  1). With this in 
mind, attention selects certain stimuli of a perceived scene 
for detailed analysis, while perception goes to build up a 
certain visual experience. Neisser (1976) clarified: “[o]nly 
the attended episode is involved in the cycle of anticipa-
tions, explorations, and information pick up” (p. 87), that is 
the way of gaining access to awareness. Thus, it is reason-
able that Most, Scholl, Clifford, and Simons (2005) stated 
that “[p]erception is impoverished without attention” (p. 
218). The central claim here is that attention is to be con-
sidered as selecting stimuli perceived in a scene but also as 
creating access to awareness. This is important as I believe 
that ultimately, awareness of the situation is all that matters 
in a teaching–learning situation. Simons (2000) argued that

In most real-world settings, the critical question of 
interest is not whether an object will implicitly affect 
performance, but whether it will explicitly capture 
attention and reach awareness, thereby allowing us to 
modify our behavior and select new goals. Although, 
much, if not most, of perception and performance 
occurs without awareness, we feel that when sali-
ent events occur, we should become aware of them 
so that we can intentionally change our behavior. (p. 
150)

Recent research on teacher noticing (including the many 
papers in this special issue) productively investigated what 
a teacher did or did not ‘see’, and whether a certain event 
affected a teacher’s behavior; however, research is needed 
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in determining the question of why a teacher did or did not 
‘see’ a particular event.

At a time when it seems we are guided by, or trapped 
in, intuitive frames that are of limited explanatory power, 
we may turn to other research lines from cognitive science 
such as attention capture and inattentional blindness that 
may bring to light yet unaddressed issues in the teacher 
noticing literature: (a) how and why teachers tune into par-
ticular events and, at the same time, may remain sensitive 
to other important events; and (b) how and why different 
types of attention shifts do or do not give rise to awareness.

3.1 � Setting the stage for attention capture 
and inattentional blindness

 Research on attention capture showed that events that have 
been found to capture attention implicitly might not also 
capture awareness. Simons (2000), therefore, distinguished 
between instances in which events affect performance with-
out necessarily impinging on awareness (implicit atten-
tion capture) from instances in which there is evidence 
of awareness (explicit attention capture). Recent studies 
of explicit attention capture reveal a surprising degree of 
blindness to unusual events that might be expected to cap-
ture attention. This blindness, known as inattentional blind-
ness (Mack & Rock, 1998), is a phenomenon in which indi-
viduals fail to notice unexpected events appearing in front 
of their eyes when their attention is otherwise engaged. 
Inattentional blindness is particularly striking since it vio-
lates our intuition that people should see whatever they 
direct their eyes to (Mack & Rock, 1998). Several inatten-
tional blindness experiments (see Most et al., 2005; Simons 
& Chabris, 1999) indicated that, although being engaged in 
a certain situation, a person may not necessarily explicitly 
attend to critical elements taking place in the situation. This 

phenomenon of inattentional blindness has been explained 
by Neisser (1976): that a person’s own expectations (or 
anticipatory schemas) of what belongs in a scene determine 
where and how attention is directed.

In the following a way is described in which the discus-
sion on teacher noticing may be productively extended, 
which accounts for a crucial, yet often unaddressed, issue: 
the teacher’s awareness of the situation in which she or he 
is engaged. In doing so, the notion of situation awareness 
will be presented, a concept particularly important in the 
applied science of human factors.

4 � Opening the black box: on attention 
and awareness

Implicit attention capture research and inattentional blind-
ness research have illuminated different processes relevant 
to the noticing of critical objects. Important insights about 
the mechanisms of attention shifting can be drawn from 
the study of implicit attention capture that has focused pri-
marily on measuring effects of certain events on task per-
formance; however, it is still of limited practical value for 
research on teacher noticing since it primarily explored 
how well observers can ignore something they expect but 
know to be irrelevant. Ordinarily, the density of critical 
events taking place in the classroom raises a different ques-
tion: how likely are teachers to notice something poten-
tially relevant that they do not expect? Inattentional blind-
ness research has been exploring this question, providing 
reviewed evidence that, quite often, unexpected events fail 
to capture attention. However, the literature on inattentional 
blindness has yielded only limited insights into the factors 
that determine whether an unexpected event in a dynamic 
scene captures awareness. This naturally raises the question 

Fig. 1   Perceiving-attending-
explicitly attending as the 
gateway to awareness (modified 
from Lamme, 2003, p. 13)
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of what accounts for developing and maintaining aware-
ness of relevant events in a complex and dynamic situation 
like the classroom setting.

Most et  al. (2005) recognized that the distinction 
between implicit and explicit attention capture reflects a 
“fundamental paradox concerning the nature of attention” 
(p. 218):

On one hand, people engaging in challenging tasks 
must often maintain focus, effectively ignoring irrel-
evant information that might distract them from their 
goal. […] On the other hand, attention must be distract-
ible; if potentially dangerous or behaviorally relevant 
objects appear, they should divert cognitive resources. 
[…] A complete explication of attention must incor-
porate both these seemingly conflicting requirements 
(Allport, 1989). (Most et al., 2005, p. 218)

The same authors suggested theoretically bridging these 
two research fields by illuminating mechanisms of aware-
ness and by “shifting the emphasis of the field from dem-
onstrations of perceptual failure to investigations of factors 
underlying successful noticing” (Most et al., 2005, p. 237). 
This theoretical bridging of attention capture and inatten-
tional blindness may be achieved by drawing on Neisser’s 
(1976) perceptual cycle model that is discussed in Sect. 5. 
In accounting for the relation between attention and aware-
ness, the stage will be set for the construct of situation 
awareness, a notion presented by scholars in the applied 
science of human factors that is highly relevant for the con-
struct of teacher noticing.

4.1 � Setting the stage for situation awareness

 Situation awareness is the term used within the applied sci-
ence of human factors to describe the level of awareness 
that a person has of the situation she or he is engaged in. 
Over the past two decades, the construct has become a fun-
damental theme within the human factors research commu-
nity and has received considerable attention across a broad 
range of contexts, including aviation, air traffic, power 
plant operations, emergency services, and aircraft pilot-
ing, from whence the term originated. These contexts share 
many characteristics including “dynamism, complexity, 
high information load, variable workload, and risk” (Gaba, 
Howard, & Small, 1995, p. 20).

The human factors community has not settled on a sin-
gle definition, or description, of situation awareness, but 
the most acknowledged one was given by Endsley (1995):

Situation awareness is the perception of the elements 
in the environment within a volume of time and 
space, the comprehension of their meaning and the 
projection of their status in the near future. (p. 36)

Inherent in this description are three processes: First, 
it involves perceiving “the status, attributes, and dynam-
ics of relevant elements in the [surrounding] environment” 
(Endsley, 1995, p. 36). This echoes scholars’ understand-
ing, working in the field of teacher noticing, arguing that 
a teacher must first be able to gather perceptual informa-
tion from the environment, and, then, be able to selectively 
attend to those elements that are most relevant to the task 
at hand. Similarly to teacher noticing, situation aware-
ness as a construct goes beyond mere perception. It also 
encompasses comprehending the current situation, which 
allows an individual to interpret its relevance in relation to 
the individual’s task and goals. At first glance, one might 
argue that scholars working in the field of teacher notic-
ing have stressed this issue in the same, or a similar, way. 
Of course, it echoes the main activity of “making sense 
of events […] [that is] teachers necessarily interpret what 
they see, relating observed events to abstract categories and 
characterizing what they see in terms of familiar instruc-
tional episodes” (Sherin et al., 2011a, p. 5). However, com-
prehending means not only to “form a holistic picture of 
the environment” but also to determine the “significance 
of […] elements in light of the pertinent operator goals” 
(Endsley, 1995, p. 37). This aspect places situation aware-
ness squarely in the realm of ecological realism (Gibson, 
1986). Situation awareness also includes the ability to pro-
ject from current events and dynamics to forecast future 
situation events (and their implications). This ability to 
predict future events allows for timely decision-making 
and therefore seems to be of particular importance given 
the dynamic nature of the situations in which teachers are 
engaged. It is this aspect that sets situation awareness apart 
from teacher noticing. One might observe that the construct 
of situation awareness is similar to teacher noticing but uses 
different terms; however, a small shift in orientation might 
make a big difference in the contribution of our research to 
addressing important issues. For instance, Endsley’s (1995) 
account of “within a volume of time and space” (p. 36) 
contained in the description of situation awareness points 
to a critical, yet often only implicitly assumed, aspect in 
the discussion on teacher noticing: the fact that the state 
of awareness of some environment is bounded in time and 
space. As environments change over time, the dynamic 
nature of situations (e.g., the ever-changing classroom situ-
ation) dictates that the person’s situation awareness must 
be constantly maintained and kept up-to-date. Conversely, 
since people interact with the environment, a person con-
strains parts of the situation that are of interest to her or 
him. Thus, time and space become critical concerns in an 
individual’s situation awareness. Attempts to define the 
essential components of teacher noticing in general suffer 
from the fact that, given the dynamic environment in which 
teachers are engaged, the relevance of events depends on 
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the context, and will vary from time to time. Any concep-
tualization of teacher noticing needs to account for the rel-
evance of a given event with regard to the context and time 
it is bounded by.

It is important to explicate that situation awareness is 
viewed here as theoretically distinct from decision-making, 
rather than as a single combined construct as many scholars 
in this special issue suggested with regard to teacher notic-
ing. The argument made is that this distinction is important 
and real both in terms of models of human information pro-
cessing and characterizations of dynamic systems (Endsley, 
2000). Poor decisions may be made despite a high level of 
situation awareness for a variety of reasons, such as limited 
decision choices, lack of experience in similar situations, or 
unsuitable strategies guiding the decision-making process. 
Similarly, good decisions may occur despite low or absent 
situation awareness, particularly if decisions are affected 
by automaticity of cognitive processes. However, this dis-
tinction is not meant to dispute the significance of situation 
awareness in the decision-making process or the essential 
link between situation awareness and decision-making in 
many instances. On the contrary, in highly complex and 
dynamic environments, situation awareness and decision-
making are necessarily highly interactive: decision making 
is often shaped by situation awareness and situation aware-
ness is often shaped by decision making.

5 � Looking inside the black box: 
on interdependencies between individual 
and environment

The complex interactions of cognitive and perceptual pro-
cesses and activities in dynamic situations (such as class-
rooms) have never been fully described in research on 
teacher noticing, leaving many aspects of their interdepend-
encies in the ‘black box’, unseen by researchers and edu-
cators and often understood only in isolation. This section 
intends to provide a first step towards a more comprehen-
sive understanding of the interactions involved. As men-
tioned above, a more comprehensive stance for understand-
ing attention and awareness may be achieved by blending 
various insights from cognitive science (attention capture 
and inattentional blindness) and the science of human fac-
tors (situation awareness). In framing this blending, the 
formulation is drawn on Neisser’s (1976) perceptual cycle 
model that accounts for the interaction between an indi-
vidual and an environment. Interestingly, other scholars 
have already been taking advantage of Neisser’s (1976) 
perceptual cycle model in relating research on attention and 
awareness. In cognitive science, Most et al. (2005) utilized 
Neisser’s perceptual cycle in theoretically bridging atten-
tion capture research and inattention blindness research. In 

the applied science of human factors, Adams, Tenney, and 
Pew (1995) and Smith and Hancock (1995) brought Neis-
ser’s model into the discussion on situation awareness.

5.1 � Setting the stage for Neisser’s (1976) perceptual 
cycle model

Neisser (1976) proposed an information-processing model 
that accounts for the interaction between a person’s inter-
nal schemas (or mental models), the perceptual explora-
tion, and the situation in which the individual is engaged. 
Neisser (1976) explicated that “[p]erception and cognition 
are usually not just operations in the head, but transactions 
with the world. These transactions do not merely inform the 
perceiver, they also transform him [or her]” (p. 11, italics in 
original). The model differs from linear models of informa-
tion processing by acknowledging a reciprocal and cyclical 
relationship between a person and an environment. To con-
cretize this position, Neisser’s perceptual cycle model (see 
Fig. 2) suggests that perception is influenced and directed by 
a person’s existing knowledge. This means existing knowl-
edge (in the form of mental models or schemas) may lead 
to expectations or anticipations of certain events that in turn 
serve as the vehicle for perceptual exploration. As such, a 
person samples or picks up information available in the envi-
ronment that may serve to modify and update schemas, and 
in turn shifts her or his attention to other critical elements 
in the environment. This cycle of attention guidance continu-
ously enriches the emerging representation of the situation.

The perceptual cycle model may provide the key to unlock 
the black box of the complex interactions involved in devel-
oping and maintaining situation awareness. As such, the per-
ceptual cycle model offers a promising theoretical perspective 

actual present 
environment 

perceptual 
exploration

active 
schema

directs

samplesmodifies

Fig. 2   Perceptual cycle model (adapted from Neisser, 1976, p. 21)
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to account for the interdependencies between an individual 
and an environment in the process of situation awareness. It 
is a central thesis of this paper that the interactive nature of 
the perceptual cycle model is persuasive in explaining the 
dynamic aspects in developing situation awareness. We may 
argue that, according to the perceptual cycle model, situation 
awareness emerges through temporally recurrent and active 
engagement with the environment. Certain elements of the 
environment do not leap into awareness on initial attention 
engagement. Rather, the reciprocal and cyclical process pro-
posed by Neisser (1976) is crucial in developing and main-
taining an awareness of the actual situation.

It should be explicated that in drawing on Neisser’s per-
ceptual cycle model, perception, comprehension, and pro-
jection are neither considered as being cyclically related 
with each other nor as particular phases of the cycle as 
some scholars in this special issue assumed with regard 
to activities involved in teacher noticing (see Sect.  2.3). 
It is unlikely that a teacher sequentially perceives all ele-
ments of a situation, then interprets and understands their 
relevance in relation to her or his task and goals, and then 
predicts future situation events. In contrast, in naturalistic 
settings, it is more likely that perceiving, comprehending, 
and projecting take place concurrently (rather than suc-
cessively) and are interwoven (rather than separated), and 
each of these processes apply to the entire cycle. Still, the 
question of how perception, comprehension, and projec-
tion interact remains unanswered. To draw this issue back 
to teacher noticing, ‘attending’ and ‘making sense’ (Sherin 
et  al., 2011a) are, from this point of view, not to be con-
sidered as separated but rather interwoven and do not take 
place successively but concurrently. As Towers and Davis 
(2002) once indicated: “what we notice is completely 
framed by what we know. Perception and conception are 
inextricable. An event of noticing is always and already an 
event of interpretation” (p. 318).

6 � Discussion

Research on teacher cognition and teacher decision-making 
has mainly focused on constraints internal to the human 
mind. A real value of the theoretical construct of teacher 
noticing is to draw attention to the inseparability of individ-
ual and environment when addressing issues such as per-
ceiving, interpreting, and decision-making, amongst others. 
Gibson (1986) referred to this as the challenge of ecologi-
cal validity. Teacher noticing as a theoretical framing calls 
attention to a lesson that Gibson (1986) tried to teach long 
ago: the correspondence between perception and action, 
and the demands of the environment.

The growing interest in teacher noticing illustrates that 
scholars in the field of teacher research in mathematics 

education are coming to recognize the dynamic interac-
tions between teachers’ cognitive and contextual resources, 
teachers’ noticing, and teachers’ classroom practice. The 
growing appreciation for these interactions can be seen in 
several papers in this special issue (Dyer & Sherin, 2016, 
this issue; Herbst et al., 2016, this issue; Jacobs & Empson, 
2016, this issue; Lande & Mesa, 2016, this issue). These 
contributions make it clear that attention needs to be drawn 
to the complex interactions involved. In this light, teacher 
noticing is a theoretical construct that challenges the reduc-
tionist assumptions that permitted parsing of teacher cogni-
tion and teacher performance.

However, attempts to account for an individual attend-
ing to specific issues and becoming aware of them have 
too often been oversimplified. They are usually based on 
the assumption that either the individual herself or him-
self determines what she or he will see, or else her or 
his environment determines it. We overcome this false 
dichotomy by using an information processing model that 
encompasses both top-down and bottom-up processes and 
that acknowledges the reciprocal and cyclical interaction 
between an individual and an environment.

The perceptual cycle model might be relevant to the 
current discussion on teacher noticing for several reasons, 
including: (1) the model accounts for, and distinguishes 
between, attentional orienting and active, extended atten-
tional engagement with the environment; and (2) the inter-
active, reciprocal and cyclical characteristic of the percep-
tual cycle offers a promising tool to interpret the dynamic 
aspects involved in situation awareness.

In more detail, the perceptual cycle model distinguishes 
between an orienting response and the more extended pro-
cessing necessary for subjective awareness. That is, tran-
sient shifts of attention can be relatively automatic, but sus-
tained shifts often involve significant cognitive resources. 
The question naturally arises as to what determines whether 
a transient shift is followed by sustained allocation of atten-
tion. Neisser (1976) proposed that a person’s own expecta-
tions of what belongs in a scene determine how sustained 
attention is directed, stating that: “Because we can see only 
what we know how to look for, it is these [anticipatory] 
schemata (together with the information actually available) 
that determine what will be perceived” (p. 20). Similarly, 
Sherin and Star (2011) specified that “what the teacher sees 
in the world is strongly driven by knowledge and expec-
tations” (p. 73). In addition to an individual’s knowledge 
and expectations, Schoenfeld (2011a) reminded us that 
“what you attend to […] is in large measure a function of 
your orientations” (p. 232). In this light, noticing takes 
place within the context of knowledge, beliefs, intentions, 
goals, expectations, and experiences, amongst others (in 
short, individual resources). However, these assertions do 
not suggest that individual resources and the environment 
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are uni-directionally related but instead bi-directionally 
related: Perceptual and conceptual processes involved in 
developing situation awareness are directed by the individ-
ual resources, and the outcome of perceptual exploration—
the information picked up in the environment—modifies 
the original individual resources. Thus modified, they direct 
further exploration and determine what will be picked up in 
the environment next (see Neisser, 1976).

Dunekacke et  al. (2016, this issue) argued that percep-
tion and interpretation provide the basis to activate teach-
ers’ knowledge and to make meaningful decisions. This 
assertion sounds reasonable; however, it is only half of 
the equation. Research on attentional capture and inatten-
tional blindness (see Sect. 3) highlighted the importance of 
considering the potential impact of activated schemas for 
perceiving certain events. This issue has been addressed 
by Pankow et  al. (2016, this issue) taking account of the 
relation between anticipation and identification of typical 
student errors. In short, in order to address issues of the 
interaction between cognition, perception, and environment 
both sides of the equation must be considered: the poten-
tial impact of individual resources on perception, and the 
potential impact of perceived information on individual 
resources, and their activation.

It is a central proposition of this paper that managing 
the perceptual and conceptual processes that permit situ-
ation awareness involve, and are shaped by, not only sig-
nificant individual resources but also contextual resources. 
This position draws on Herbst et al.’s (2016, this issue) and 
Lande and Mesa’s (2016, this issue) account for both indi-
vidual and contextual resources in informing teachers’ deci-
sion making. Individual characteristics such as knowledge, 
beliefs, goals, experiences, and intentions have been identi-
fied as having an impact for instructional actions (Borko, 
Roberts, & Shavelson, 2008; Schoenfeld, 2011b). Schoe-
nfeld’s (2011b) insightful investigations of in-the-moment 
decision-making posited that an individual’s resources 
(including knowledge), orientations (including beliefs), and 
goals are critically important determinants in what teachers 
do, and why they do so. That is, according to Schoenfeld, 
one must know another person’s resources, orientations, 
and goals well enough to predict what she or he will do in a 
given situation. However, Neisser (1976) reminded us that 
even then we cannot be sure what another person will do 
if we have an incomplete understanding of the situation in 
which the person is engaged. This is not in contradiction 
to Schoenfeld’s (2011b) assertions but emphasizes the per-
spective that “perception and behavior are controlled inter-
actively […] depend[ing] on the individual as well as the 
environment” (Neisser, 1976, p. 186). In this light, it is rea-
sonable that Herbst et al. (2016, this issue) argued for going 
beyond the dominating account of individual cognitive fac-
tors by considering contextual resources as well. Attending 

to both the individual and the environment allows us to 
examine how the environment might affect the individual, 
and vice versa.

7 � Concluding remarks

This paper draws on phenomena described in and findings 
gained from cognitive science and the applied science of 
human factors in the hope of finding a foundation for better 
understanding critical issues that have too often been over-
looked in research on teacher noticing. The motivation for 
doing so was that although the notion of teacher noticing 
shows great promise for merging various research lines in 
mathematics education, we do not have access to the com-
plexities involved in the processes involved, from attend-
ing to certain events, to becoming aware of these events in 
dynamic situations. Though turning to insights gained from 
cognitive science and the applied science of human fac-
tors might be beneficial to go beyond an intuitive model of 
teacher noticing (Sherin & Star, 2011), we need to be cau-
tious about their ecological validity since they may not nec-
essarily be approximations to what ordinarily takes place in 
classrooms and in classroom interactions.

At first glance, the accounts given in this paper seem to 
make the matter more mysterious: We cannot be sure that 
teachers ‘see’ certain events, though they direct their eyes 
to them. Even if they attend to certain events, we cannot 
be sure they become aware of them. And, even when they 
became aware of the events, we cannot be sure that the 
decisions they make are reasonable. This seems to be true 
as far as it goes; nevertheless, there are congruencies that 
the insights presented and briefly discussed in this paper 
point to. The bigger picture converges to the understand-
ing that it is not only our eyes with which we see but also 
our minds. Our ‘blindness’ results not so much from our 
absence of attention but from our absence of expectation 
(or anticipation), knowledge, or beliefs. Even more impor-
tantly, the bigger picture converges to the understanding 
that it is all about the interdependencies between individ-
ual and environment, or, in more detail, the interactions 
between cognitive and contextual resources, perceptual and 
cognitive processes, and the actual situation. Thus, in this 
paper, teacher noticing—or more appropriately teacher sit-
uation awareness and teacher decision making—is treated 
as a construct that gives primacy to the interdependencies 
between teacher and environment.

Therefore, an important lesson to be learned from the 
inquiry thus far is that we need to step out of intuitive 
frames that hide the complexities involved in teacher notic-
ing. With the above-mentioned arguments in mind, we may 
argue that both attending and developing situation aware-
ness are mindful and cultural processes; however, attention 
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does not a priori lead to awareness. Attention selection 
results from the convolution of cognition and processing 
inputs from the environment, a convolution that takes place 
in a broader socio-cultural context. On the other hand, situ-
ation awareness requires recurrent interactions between an 
individual’s cognitive and contextual resources, perceptual 
and conceptual processes, and the environment (including a 
broader, societal environment).

This more global orienting frame for discussions of 
teacher noticing allows us to rephrase the well-known slo-
gan in research on teacher noticing “teacher noticing: see-
ing through teachers’ eyes” to “teacher noticing: teachers’ 
seeing with their minds’ eyes” that takes place in continu-
ous interdependence with the environment. Referring to the 
colloquial proverb by Richard Bach it can be formulated:

Don’t believe what your eyes are telling you. All they 
show is limitation. Looking with your understanding, 
find out what you already know, and you’ll see the 
way to fly.

The same principle applies to this commentary: What 
is ‘seen’ in the assertions and arguments in this paper will 
depend not only on what was said in this paper but also on 
the reader’s knowledge and beliefs prior to reading it.

Certainly, in any field as complex as teacher noticing 
is, it is difficult to develop deep theoretical understanding; 
however, we will not achieve this if we do not set our minds 
to it. The purpose of this paper was to do so by cultivat-
ing a theoretical perspective in research on teacher noticing 
by drawing on other research disciplines that may provide 
researchers and educators with useful insights into the com-
plexities of an individual’s attentional engagement with the 
environment and the development and maintenance of an 
awareness of the actual situation the individual is engaged 
in. The approach taken in this commentary was more than 
usually assertional in the hope of providing some degree of 
foresight in identifying important coming issues that need 
to be conceptualized in our field. The many advances pro-
vided in this special issue provide viable grounds for recon-
sidering how we might think more profoundly about the 
complexities in teacher noticing.

This paper directed to Sherin and Star’s (2011) call 
for the development of a more comprehensive model of 
teacher noticing: “as a field, we should work toward the 
development of a more complete model of how teach-
ers make sense, in the moment, of complex classroom 
events” (p. 77). A ‘first cut’ has been taken in accounting 
for the complex interactions involved in teacher notic-
ing, drawing on Neisser’s (1976) perceptual cycle model 
and blending sound insights from cognitive science and 
the applied science of human factors. It is hoped that the 
discussion presented here offers a promising theoretical 
perspective to further explore the complex interactions 

underlying the interdependencies involved in teacher notic-
ing. In particular, more ground-breaking theoretical and 
empirical research is needed on the nature and dynamics 
of the resources and processes involved in understanding 
teacher situation awareness and decision-making in real-
time events. It is hoped that the discussion reinforces the 
intellectual framing of what we need to set our minds to 
in the future in order to enlighten the black box of teacher 
noticing.
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6 Conclusion 

Mathematics education is certainly a vibrant field, replete with diverse theoretical views that 
cultivate varied understandings and interpretations of complex phenomena in mathematical 
thinking, learning, and teaching. However, the abundance of disparate theories encourages both 
the multiplication of perspectives and the division of thought into opposing schools. This 
frequently hinders dialogue across traditions and paradigms, biases theorists, and promotes the 
creation and growth of narrow, and at times restricting, theories. Recognizing this challenge, this 
thesis attempted to look for theoretical tensions or oppositions and use them to stimulate the 
development of more powerful theories. In particular, this thesis goes beyond previous attempts at 
coordinating theoretical perspectives in the context of mathematical cognition and teacher cognition 
that fostered unidimensional representations and privileged one side of a dualism (i.e., an either/or 
distinction such as extracting meaning or giving meaning, the structure of a discipline or the 
structure of mind, individual or environment). The thesis highlights the contradictions and 
interdependencies of critical issues in mathematical cognition and teacher cognition that might 
inspire other scholars to question dualisms. In exploring and encouraging both greater expansion 
and more interlinking of multiple, at times competing, theoretical positions and approaches, theory 
and scholarly debate may become more detailed and useful, moving beyond deceptive dualisms 
and enabling deeper and more accurate understandings for theoreticians, practitioners, and 
researchers. 

More importantly, the different contributions in this thesis seek a perspective (or a multiplicity 
of perspectives) from which one can appreciate the interaction between seemingly conflicting, yet 
ultimately interconnected, insights. The theoretical perspectives generated in this thesis 
demonstrate that it is possible to construct bridges between seemingly dissimilar viewpoints, 
revealing that some conflicting viewpoints underscore interwoven (rather than contradictory) 
facets of complex phenomena.1 In doing so, this thesis contributes to raising awareness that 
seemingly unambiguous phenomena and issues in mathematical cognition and teacher cognition 
are more nuanced than they have heretofore been considered and that existing theoretical 
conceptualizations and theories that attempt to account for them are in many ways restricting. 

It is hoped that this thesis offers both a contribution of theory advancement and a contribution 
to theory advancement. It might offer a contribution of theory development as it: presents a novel 
theoretical perspective on mathematical concept formation, the dialogic framing, which blends 
aspects of the existing perspectives that mathematical meaning is extracted (from objects falling 
under a particular concept) and that mathematical meaning is given (by individuals to objects they 
interact with) in order to present a bi-directional, dynamic, non-linear view of meaning making; 
challenges the dominant view of subject matter transformation and its underlying assumptions by 
presenting knowledge as co-constructed by both student and teacher; and develops a model of 
teacher noticing which challenges intuitive assumptions and views individual and environment as 
interdependent and inseparable. It is hoped that these three contributions add value to the field by 
advancing understanding and contributing to progress in the field, providing novel insights and 
informative views regarding complex phenomena, as well as presenting new relations among 
previous conceptualizations and exploring potentials of alternative views. 

This thesis might also offer a contribution to theory development because it articulates a yet-
unaddressed strategy of networking theories, blending, which has the potential to generate new 
theoretical insights not present in previous theories. As such, it extends the space of possibilities of 
networking strategies and speaks to the complexity involved in theory-building processes, particularly 
when coordinating apparently conflicting theoretical accounts. Each contribution made in this thesis 
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puts forth a specific approach for theory advancement: the first contribution (Scheiner, 2016a) blends 
seemingly opposing approaches to transcend dualisms by revealing complementarity among conflicting 
theoretical perspectives, the second contribution (Scheiner et al., 2017) questions taken-for-granted 
assumptions underlying existing conceptualizations of teacher knowledge and provides alternative 
views that have the potential to redirect the way one conceives of what makes mathematics teacher 
knowledge specialized, and finally, the third contribution (Scheiner, 2016b) moves away from 
simplified conceptions by considering phenomena discussed in cognitive science and the applied 
science of human factors to better account for the complex process of awareness, including the 
significance of cognitive and affective structures, and the many interdependencies involved in 
teacher noticing.2 

Notes to Chapter 6 
1 The emerging theoretical perspectives discussed in this thesis are not substitutes for existing 
perspectives or conceptualizations in the field but, rather, alternatives or extensions for exploring 
complex phenomena from a new angle. Indeed, the theoretical perspectives may help extend 
existing theoretical constructs, a theme that the three articles in this thesis explicitly consider. In 
Scheiner (2016a), ‘reflectural abstraction’ is introduced as a new term to provide a vocabulary that 
speaks to the dialectic between reflective abstraction and structural abstraction and the 
interdependencies of the respective sense-making strategies of extracting meaning and giving 
meaning. In Scheiner et al. (2017), the construct of teacher knowledge is extended in a way that 
accounts for specialization in mathematics teacher knowledge as a style of knowing rather than a 
kind of knowledge. In Scheiner (2016b), the theoretical construct of teacher noticing is enriched 
with theoretical insights derived from cognitive science and the applied science of human factors, 
surpassing the limitations of intuitive models of teacher noticing. 
2 The purpose of this thesis was clearly not to offer actionable insights into how to blend conflicting 
theoretical frameworks; this is an undertaking for another time. Rather, it is to foster a new 
perspective on networking theories that may provide new insights and deeper meaning, and may 
take original ideas forward in ways not conceived of originally. Taking the idea of blending 
forward in the area of theory development may extend the lexicon for talking about these and 
related issues, and cast light upon the implicit and unexamined practices found in attempts to 
coordinate competing or conflicting theories.
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Appendix A: Summary/Zusammenfassung 

Summary 
Mathematics education is a very broad research field divided into several subfields, two of them being 
of primary concern in this thesis: mathematical cognition and teacher cognition. These subfields 
contain a broad range of diverse theories that cultivate varied understandings of complex 
phenomena in mathematical thinking, learning, and teaching. However, the now-pervasive 
diversity of theories encourages the development of conflicting viewpoints, frequently hindering 
dialogue across traditions and paradigms, biasing theorists, and promoting the formation and 
growth of narrow, and at times restricting, theoretical accounts of complex phenomena. Recognizing 
this challenge, this thesis attempts to look for theoretical tensions or oppositions and use them to 
stimulate the development of more powerful theoretical accounts. In particular, this thesis goes beyond 
previous attempts at coordinating theoretical perspectives in the context of mathematical cognition and 
teacher cognition that fostered unidimensional representations and privileged one side of a dualism.  

This thesis consists of three articles, each having its specific objective for theory development in the 
areas of mathematical cognition and teacher cognition. In particular, the thesis attempts to blend 
opposing theoretical perspectives to reveal complementarity in the field of mathematical knowing and 
learning, challenge taken-for-granted assumptions to reveal restrictions in the field of teacher 
knowledge, and portray some complex phenomena that cannot be accounted for using intuitive models 
of teacher noticing. The articles, taken together, call for a perspective from which one can recognize 
the interplay of apparently conflicting, yet interdependent, insights. The theoretical perspectives 
generated in this thesis demonstrate possibilities for linking apparently disparate approaches, revealing 
that some conflicting approaches underscore interwoven (rather than contradictory) facets of complex 
phenomena. In doing so, this thesis contributes to raising awareness that seemingly unambiguous 
phenomena and issues in mathematical cognition and teacher cognition are far more complex than one 
might have imagined and that existing theoretical conceptualizations and theories that attempt to 
account for them are in many ways restricting. 

The first article, and the respective chapter in the thesis, discuss local theories of mathematical 
cognition, in particular two approaches (abstraction-from-actions and abstraction-from-objects) that 
have been previously construed as opposing. The thesis blends theoretical perspectives from both 
approaches to present a bi-directional, dynamic, non-linear view of mathematical concept formation. 
The second article, and the respective chapter in the thesis, examine teacher cognition, discussing 
existing conceptualizations of mathematics teacher knowledge and taking a critical stance toward how 
the field currently conceives of what makes this knowledge specialized. The thesis reveals some 
limitations of current conceptualizations of teacher knowledge and offers alternative views that provide 
insights into underexplored issues regarding what makes mathematics teacher knowledge specialized. 
The third article, and the respective chapter in the thesis, examine teacher cognition from the perspective 
of the construct of teacher noticing, drawing on insights from cognitive science and the applied science 
of human factors to develop a model of teacher noticing which challenges intuitive assumptions and 
views individual and environment as interdependent and inseparable. The thesis provides viable 
grounds for reconsidering how to think about the complexities involved in teacher noticing, in the hope 
of anticipating crucial unanswered questions in this field. 

It is hoped that these contributions add value to the field by advancing understanding and moving 
the field’s thinking forward, offering fresh insights regarding complex phenomena, producing decidedly 
different and uniquely informative theoretical views of phenomena under study, providing new 
connections among previous conceptualizations and exploring the implications of alternative views. 
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Zusammenfassung 
Mathematikdidaktik ist ein sehr weites Forschungsfeld, das in mehrere Teilbereiche unterteilt ist, von 
denen zwei in dieser Dissertation von vorrangiger Bedeutung sind: mathematische Kognition und 
Lehrerkognition. Diese Teilgebiete enthalten bzw. beziehen sich auf ein breites Spektrum 
unterschiedlicher Theorien, die komplexe Phänomene im mathematischen Denken, Lernen und Lehren 
unterschiedlich verstehen und interpretieren. Gleichzeitig erlaubt die heute verbreitete Vielfalt von 
Theorien die Entwicklung von Perspektiven, die den Diskurs über mathematische Kognition sowie über 
komplexe Phänomene des mathematischen Denkens, Lehrens und Lernens behindern – u.a. durch von 
Traditionen und engen Paradigmen geprägten Auffassungen, die die Entwicklung enger und bisweilen 
einschränkender theoretischer Darstellungen komplexer Phänomene fördern. Die vorliegende Arbeit 
stellt sich dieser Problematik und intendiert, theoretisch bedingte Spannungen oder Gegensätze zu 
identifizieren und diese zu nutzen, um die Entwicklung theoriebasierter Ansätze zu stimulieren. 
Insbesondere geht diese Dissertation über Ansätze hinaus, die theoretische Perspektiven im Bereich der 
mathematischen Kognition und Lehrerkognition im Hinblick auf eine eindimensionale Repräsentation 
bevorzugten und plurale Ansätze vernachlässigten. 

Die Dissertation basiert auf drei Artikeln in wissenschaftlichen Zeitschriften, die jeweils einen 
spezifischen Aspekt der Theorieentwicklung in den Bereichen der mathematischen Kognition und der 
Lehrerkognition fokussieren. Dabei intendiert die Arbeit gegensätzliche theoretische Perspektiven zu 
kombinieren, die die Notwendigkeit komplementärer Ansätze auf dem Gebiet des mathematischen 
Wissens und Lernens aufzeigen, die als selbstverständlich vorausgesetzte theoriebasierte Annahmen 
hinterfragen, die Einschränkungen im Bereich des Lehrerwissens aufdecken und komplexe Phänomene 
darlegen, die in den Theorieansätzen nicht berücksichtigt wurden. Dabei dient die professionelle 
Unterrichtswahrnehmung als zentraler Ansatz.  Die der Dissertation zugrundeliegenden Artikel fordern 
eine Perspektive, aus der man die Verknüpfung scheinbar widerstreitender, aber voneinander 
abhängiger Ansätze erkennen kann. Die theoretischen Perspektiven, die in dieser Arbeit generiert 
werden, zeigen Möglichkeiten auf, scheinbar unvereinbare Ansätze zu verknüpfen, und decken auf, 
dass widersprüchliche Ansätze eher miteinander verwobene und nicht widersprüchliche Facetten 
komplexer Phänomene darstellen. Damit trägt diese Arbeit dazu bei, das Bewusstsein zu schärfen, dass 
scheinbar augenfällige Phänomene der mathematischen Kognition und Lehrerkognition deutlich 
komplexer sind, als man es sich gemeinhin vorstellt und dass existierende theoretische 
Konzeptualisierungen und Theorien, die versuchen, diese zu erklären, in vielerlei Hinsicht 
einschränkend bzw. eingeschränkt sind. 

Im Detail behandelt der erste Artikel lokale Theorien der mathematischen Kognition, insbesondere 
zwei Ansätze (Abstraktion von Aktionen und Abstraktion von Objekten), die zuvor als gegensätzlich 
konzeptualisiert wurden. Die Dissertation geht über die Diskussion eines Vergleichs dieser scheinbar 
gegensätzlichen Ansätze hinaus, indem theoretische Perspektiven grundlegender kognitiver Prozesse, 
die beiden Ansätzen zugrunde liegen, miteinander verschmolzen werden, um eine bi-direktional 
ausgerichtete, dynamische und nichtlineare Sicht der mathematischen Begriffsbildung zu entwickeln. 
Der zweite Artikel untersucht die Lehrerkognition, indem bestehende Konzeptualisierungen des 
Professionswissens von Mathematiklehrkräften diskutiert werden. Insbesondere wird eine kritische 
Haltung eingenommen gegenüber der Frage, wie das Forschungsfeld gegenwärtig Spezialisierung im 
Professionswissen von Mathematiklehrkräften konzeptualisiert. Die Arbeit zeigt Einschränkungen 
aktueller Konzeptualisierungen des Lehrerprofessionswissens auf, und bietet alternative Sichtweisen, 
die die Aufmerksamkeit auf wenig erforschte Fragen hinsichtlich der Spezialisierung des 
Lehrerprofessionswissens lenken. Der dritte Artikel untersucht Lehrerkognition aus der Perspektive des 
Konstrukts der professionellen Unterrichtswahrnehmung von Lehrkräften und stützt sich dabei auf 
Erkenntnisse der Kognitionsforschung, um ein Modell der professionellen Wahrnehmung von 
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Lehrkräften zu entwickeln, das intuitive Annahmen herausfordert und Individuum und Umwelt als 
voneinander abhängig und untrennbar betrachtet. Die Dissertation eröffnet eine Grundlage zur 
Reflektion der Komplexität der professionellen Wahrnehmung von Lehrkräften, um damit einen Beitrag 
zur Identifizierung wichtiger Fragen in diesem Bereich zu ermöglichen. 

Es ist zu hoffen, dass es der Dissertation gelingt, einen Beitrag zur Fortentwicklung der Diskussion 
zur Kognition und insbesondere Lehrerkognition zu leisten, indem neue Erkenntnisse zur Interpretation 
komplexer Phänomene angeboten und Verbindungen zwischen bereits existierenden Konzeptuali-
sierungen von Lehrerprofessionalität hergestellt und damit alternative Weiterentwicklungen der 
Diskussion ermöglicht werden.    
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Appendix B: Titles of Articles of the Dissertation  

This dissertation by publications consists of three journal articles. The titles of the articles of the 
dissertation are:   
 
Article 1 Scheiner, T. (2016). New light on old horizon: Constructing mathematical concepts, 

underlying abstraction processes, and sense making strategies. Educational Studies in 
Mathematics, 91(2), 165-183. (doi: 10.1007/s10649-015-9665-4) 

 
 
Article 2 Scheiner, T., Montes, M. A., Godino, J. D., Carrillo, J., & Pino-Fan, L. R. (2017). What 

Makes Mathematics Teacher Knowledge Specialized? Offering Alternative 
Views. International Journal of Science and Mathematics Education. 
(doi: 10.1007/s10763-017-9859-6) (online-first) 

 

 
Article 3 Scheiner, T. (2016). Teacher noticing: enlightening or blinding?. ZDM Mathematics 

Education, 48(1-2), 227-238. (doi: 10.1007/s11858-016-0771-2)
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