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Abstract 

Molecular function in cellular processes is governed by protein-protein interactions (PPIs). 

With the exponential growth of PPI in the drug discovery field, understanding the key 

principles governing PPI is of immense current interest. Investigation of protein interfaces 

of known complexes is an important step towards understanding the molecular basis of PPIs. 

The overall objective of this thesis is to study known PPI complexes from the Protein Data 

Bank (PDB) using computational tools to capture their driving force and relate structural 

interface features to their biological functions. PPI features, analysis data and conclusions 

drawn are documented to facilitate prediction of interaction sites and partners and also to 

facilitate prediction of potential protein function of novel complexes. 

 

The interface features were analysed for all non-redundant protein heterodimers (278) in the 

PDB. The relative interface-surface polarities of each complex in the dataset were estimated 

to understand predominant forces driving binding. Structural analysis revealed two classes 

of interfaces - class A with less polar residues and class B with more polar residues, at the 

interface than the rest of the surface. Five distinguishing features (interface area, interface 

property abundance, interface charged residues, solvation free energy gain, binding energy) 

among these classes were identified. These results verify the need for classification of 

complexes based on residue-level properties in determining the features driving binding. 

Also, all functional categories are represented in the interface classes. This led to the study 

on relating structural features to their biological functions.  

 

PPIs are essential for catalysis, regulation, assembly, immunity and inhibition in a cell. 

However, it is unclear whether structural features can define protein functionality. Therefore, 

analysis of non-redundant protein complexes has been carried out to determine the structural 

basis for functional preferences. Structural interface of each complex has been characterized 

using a range of physico-chemical properties. The dataset is grouped using known function 

for molecular preferences. Five interface features (interface area, interface property 

abundance, hydrogen bonds, salt bridges, solvation free energy gain, and binding energy) 

are observed to be significantly different among functional groups.  

 

Preliminary application of using PPIs for the characterisation of protein interfaces in integrin 

αvβ6 heterodimer and its interactions with other proteins especially urokinase plasminogen 

activator receptor (uPAR) is carried out. The integrin αvβ6•uPAR interaction promotes 

cancer progression. Therefore, a comprehensive analysis of αvβ6 using modelling data and 



 xvi

docking simulations helped gain insights into binding of αvβ6 with uPAR suggesting an 

interaction site. These results provide preliminary evidence for potential targets in cancer 

therapies. 

 

In conclusion, the work presented in this thesis investigates interface features of known 

protein complexes to gain insights into the binding principles of PPIs. Structural analysis of 

heterodimer dataset and grouping complexes based on interface classes and functional 

groups lead to the identification of discriminatory features amongst these groups. 

Incorporation of these combinatorial features is necessary to develop models for PPI 

prediction and analysis, and also in utilizing PPI information for the prediction of potential 

functions in future studies. Novel observations using modelling and docking data to obtain 

significant information on key PPIs (involved in cancer) are discussed. 



 

1 

Chapter 1: Introduction  

 

1.1 Overview 

Proteins are essential working molecules of a biological system participating in virtually 

every process within the living cell. They are polypeptide macromolecules with finite 

sequences. A polypeptide is a linear chain of amino acid residues bonded together by peptide 

bonds. Short polypeptides comprising of 20-30 amino acid residues are called peptides or 

oligopeptides. Proteins differ primarily in their amino acid sequences. The amino acid 

sequence in a protein is prescribed by the nucleotide sequence of their genes and results in 

folding of the protein into unique three-dimensional structures for specific activity [10-12]. 

Protein biosynthesis occurs during the translation of mRNA into polypeptide chains on 

ribosomes [13].  

 

During or after protein synthesis, the residues are often chemically modified by 

posttranslational modification altering physicochemical properties, folding, proteolytic 

cleavage, stability and function of proteins [14]. Proteins thus formed exist for a certain 

period of time and are then broken down and replaced through a process called protein 

turnover [15, 16]. The turnover rate for individual proteins is different. The lifespan of a 

protein is measured in terms of its half-life and varies widely with an average lifespan of 1-

2 days in mammalian cells [17, 18]. Protein degradation is inversely proportional to the 

stability of proteins with misfolded or unfolded proteins degrading more rapidly. Many 

proteins bind to another protein or multiple proteins, organic and inorganic compounds, 

metals, sugars, fatty acids and nucleic acids in a cellular system [15].  

 

Protein-protein interactions (PPIs) form the central basis for complex biological networks in 

a cell. These interactions play a key role in the fields of systems biology, functional genomics 

and drug design [19-21]. Specific interactions between two or more protein molecules lead 

to various functions such as catalysis, regulation, signalling, immunity and inhibition [22-

24]. Advancements in experimental procedures have led to the determination of PPIs within 

the genome [25-28]. These experiments could however be laborious and time-consuming 

with inclusion of false positives that are not necessarily associated in vivo [29], thereby 

posing a need for progress in computational methods in determining PPIs [30].  
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A stable interface is often formed between the interacting proteins to achieve a particular 

function. Protein-protein interfaces are extensively analysed for PPI features as a crucial step 

towards deciphering the binding principles and functionality of proteins [23, 31-33]. These 

interface features have been investigated over several decades using sequence and structure 

information [6, 22-24, 30-49]. The interacting residues are characterized based on physical 

and chemical features, based on their strengths of interactions in different groups of 

complexes [50]. Several advances in the analyses of the interface residues give insights into 

the significance of PPI prediction [47, 51-60]. Moreover, the chemical properties of 

interacting residues gives useful information for various applications such as design of drugs 

that target such interactions, design of mutants for experimental verifications of interactions, 

construction of cellular network maps and also in the prediction of binding partners through 

sequence information, docking procedures and homology modeling [30]. Therefore, a study 

on the interactions of proteins in known complexes is the key to understanding cell 

machinery.  

 

In this thesis, a comprehensive literature review on PPIs and the key resources available for 

the study of PPIs has been carried out (Publication 1). A comprehensive structural analysis 

of an updated dataset of heterodimer complexes to identify distinguishing PPI features 

among various classes and thereby understand the structure-function relationship between 

interacting proteins is carried out. Based on these results, an application of PPI study for the 

abrogation of colon cancer progression is discussed. The specific aims of this thesis and how 

they have been addressed forms the rest of the thesis, followed by conclusions and future 

direction. 

 

At the outset, the various experimental procedures for the determination of PPIs are 

described. This is followed by the computational methods in determining PPIs, the key 

databases archiving this information and the current trends involved in studying PPIs is 

discussed. The key datasets of PPIs created/collected by various groups and the deterministic 

PPI features known to govern PPIs are then presented. The various protein interface 

databases and protein interaction characterisation and prediction tools/servers are 

documented. This is followed by an introduction to integrins. From this, the objectives for 

the thesis have been set out. A comprehensive overview on PPIs is presented in Publication 

1. 
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1.2 EXPERIMENTAL METHODS FOR THE DETERMINATION OF 

PPIs 

Recent progress in the field of proteomics has led to the development of a number of 

powerful methods for the determination of PPIs. Many new methods are now available for 

identification and characterisation of PPIs. An advance in techniques such as mass 

spectrometry has helped identify individual proteins and also characterise biological 

assemblies [61]. Experiment techniques are based on the qualitative aspects of PPI with 

less/no information on quantitative determination of PPIs [62]. New methods in proteomics 

are being developed for the quantitative aspects of PPI.  

 

Although various advances have been made to experimental studies for the determination of 

PPIs, these state-of-the-art methods are expensive and not available to many labs around the 

world. Moreover, experimental techniques are laborious and time-consuming with the 

addition of a high false-positive rate [63]. Experimental methods are also known to generate 

large amount of data and these need to be statistically verified for possible interpretations. 

Furthermore, the number of PPIs determined by experimental methods in an entire species 

is often underestimated [64-66]. Therefore, computational approaches complement 

experimental methods in narrowing and prioritising the data for effective determinations of 

PPIs.  

 

Common experimental methods used to identify and verify PPIs are discussed below with 

advantages and disadvantages of each method. 

 

1.2.1 Protein-fragment complementation assays  

Protein-fragment complementation assays, or PCAs, are a family of assays that provide a 

direct method for the identification of PPIs in a living cell. PCAs are widely used in the field 

of proteomics. In this method, the two proteins of interest, referred to as “bait” and “prey” 

are covalently linked to fragments of a third reporter protein. Upon interaction of the two 

proteins (“bait” and “prey”), fragments of the reporter protein come in close proximity and 

form a functional reporter. The activity of the functional receptor protein is then measured 

(Figure 1.1). Proteins that can be split and reconstituted by the interacting proteins, can be 

used as receptor proteins, such as dihydrofolate reductase (DHFR) [67], yeast GAL4 [68], 

β-lactamase [69], luciferase [70] and Ubiquitin [71] proteins. This principle is the basis for 

yeast two-hybrid system. 
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Figure 1.1: Illustration of protein-fragment complementation assay. The two proteins of 

interest (proteins X and Y) are fused to complementary fragment of receptor protein, DHFR. 

If the two proteins interact, the receptor fragments are brought together folding into native 

structure thereby reconstituting its activity. Adapted from Remy et al., 2007 [1]. 

 

The classic yeast two-hybrid system (Y2H) was developed by Field and Song in 1989 [68], 

using the properties of GAL4 protein, a transcriptional factor of the yeast S. cerevisiae. The 

GAL4 protein, acts as the reporter protein while the DNA-binding domain (DBD) and the 

activation domain (AD) act as “bait” and “prey”. When the two domains are linked into their 

functional form, the GAL4 protein activates the expression of the reporter gene and ceases 

capability of activation while they are split. The proteins of interest are fused to DBD and 

AD. The interaction of proteins fused to DBD and AD reconstitutes functional form of the 

domains and thereby allows GAL4 protein to activate the expression of reporter gene. Hence, 

the activity of GAL4 protein enables effective determination of true interactions between 

two proteins.  

 

The Y2H approach has disadvantages such as inclusion of high false positive rates, limitation 

to interactions within the nucleus barely accessing proteins that are anchored to or integrated 

into the plasma membrane [25]. Therefore, the two-hybrid approach is extended by split 

receptor techniques, for example, split ubiquitin protein technique [72] is used to include 

membrane protein interactions. The PCAs have been extended over the years for wide-range 

screening of protein interactions in different components of the cell and in different 

organisms and also to reduce false positives [73-75].  
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1.2.2 Affinity purification methods 

The principle behind affinity purification method is the use of an affinity-tag fused to specific 

proteins which interact in vivo and are preserved during biochemical purification steps in 

vitro. Widely used affinity purification techniques include Tandem Affinity Purification 

(TAP) method, GST pull-down technique and Co-immunoprecipitation (Co-IP) augmented 

with mass spectrometry for protein identification.  

 

1.2.2.1 Tandem Affinity Purification (TAP) method 

The TAP method is one of the best known methods to purify protein complexes and study 

protein-protein interactions. The TAP tag comprises of a calmodulin-binding peptide (CBP), 

tobacco etch virus (TEV) protease and protein A, which binds to immobilized 

Immunoglobulin G (IgG).  

 

In this method, the protein of interest is fused to a TAP tag at its C-terminal and allowed to 

express and fuse to its targets in a cell line. The TAP tag is cleaved by the enzyme, TEV, 

which minimizes the cleavage of bait proteins and/or its associated proteins [61]. The protein 

of interest in then washed through two affinity columns and studied for binding partners 

(Figure 1.2).  

 

Although TAP tag method is sensitive and selective with quantitative determination of PPI 

in vivo, it has some disadvantages. Tag method could lose transient PPIs during purification 

steps [76]. They may also lose low-abundance of binding proteins.  Moreover, the tag fused 

to a protein may obscure binding of new proteins. In addition, tags may affect protein 

expression levels and there is a possibility for the TEV protease enzyme to cleave the 

proteins, though highly unlikely given the specificity of TEV protease binding. Then again, 

the tag may also not be adequately exposed to the affinity beads, thereby skewing the results. 

Several addition techniques such as the GS-TAP-tag methods [77] are more advantageous 

than other TAP methods such as yeast TAP tag method [78].  
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Figure 1.2: Illustration of the TAP tag method. The TAP consists of a calmodulin-binding 

peptide (CBP), tobacco etch virus (TEV) protease and protein A, which binds to immobilized 

Immunoglobulin G (IgG). Cells containing TAP-tagged proteins are generated and are then 

extracted under mild conditions and TAP is performed. The first affinity column consists of 

IgG beads. TEV protease enzyme cleaves the immobilized multi protein complexes. Binding 

is carried out again on a second column that consists of calmodulin beads. Subsequently, 

chelating calcium using EGTA elutes the native complex. Adapted from Huber LA, 2003 

[2]. 

 

1.2.2.2 GST pull-down assay method 

The pull-down assay is a form of affinity purification method for studying physical protein 

interactions in vitro [79-81]. Pull-down assays are used as initial screening in identifying 

PPIs and also for affirming PPIs determined by other methods such as Co-IP. In this 

technique, a “bait” protein is used as a tag and captured on immobilized affinity ligand 

specific for the bait protein. This provides a secondary affinity support for purifying bait 

protein interactions. Incubation of the immobilized bait with putative “prey” proteins in a 

cell lysate is then carried out followed by protein elution with reducing buffers.   
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In the GST pull-down assay, glutathione S-transferase (GST) consisting of 220 amino acids 

[82], is used as a tag for studying interactions between proteins. GST DNA coding sequence 

is inserted next the gene coding for the protein of interest (at the N-terminus) and expressed 

in cells such as Escherichia coli. A fusion protein of the GST with protein of interest is thus 

formed after translation and transcription. The GST has a high affinity for the reduced form 

of glutathione, GSH. Therefore, the GST fusion proteins are purified by running a cell extract 

through a matrix of glutathione-coated beads, enabling the GST proteins to bind to beads 

and thereby isolating them from the rest of proteins in solution. Subsequently to purify the 

protein of interest, the GST fusion protein is washed and eluted with free GSH.  

 

Pull-down assay aids in analysing strong or stable interactions in a variety of platforms, and 

also those that lack specific antibodies for protein complex immunoprecipitation (Co-IP). 

However, the GST pull-down has some disadvantages. The GST is relatively large in size 

(26 kDa) and when fused to the protein of interest, altering its native state [83, 84]. The bait 

proteins may have non-specific interact with other proteins and since pull-down assays are 

performed in vitro further investigations need to be performed to confirm these interactions 

in vivo [85]. 

 

1.2.2.3 Protein complex immunoprecipitation (Co-IP) method  

Protein complex immunoprecipitation (Co-IP) is a technique widely used to detect, purify 

and analyse PPIs [62] using the principle of antibody-antigen reaction. In this technique, the 

protein complex is precipitated out as protein antigen (along with other macromolecules 

interacting in native state) using an antibody which specifically binds to that particular 

protein (“bait” protein) in a sample such as cell lysate [85]. Co-IP is used to target the bait 

protein with a specific antibody and thereby pull-out the entire protein complex to identify 

unknown interactions (“prey” proteins) in the large complex. This technique of pulling out 

all multiple proteins bound to the protein of interest is also known as “pull-down” technique. 

Co- IP technique is considered highly specific, relatively simple and compatible with most 

methods of downstream analysis while reagents can also be reused [86]. 

 

In this experiment, a specific antibody is added to the bait protein complex in a cell lysate 

and the complex is captured. Protein A or protein G covalently attached to beads is then used 

to immobilize the antibody. This is followed by washing of the beads with buffers to elute 

the bait and other proteins interacting with the bait protein. These bound proteins are 

commonly detected by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-
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PAGE) and Western blot analysis [62, 87] as shown in Figure 1.3. MS is also used to identify 

the unknown proteins bound to bait protein [61].  

 

 

Figure 1.3: Illustration of Co-IP technique for the identification of interacting proteins. 

Adapted from Emri et al., 2011 [3]. 

 

Although, the Co-IP approach targets specific protein of interest using antibody with 

confidence in a physiological condition, it has some disadvantages. The signals for low-

affinity PPIs may not be detected. Also in certain PPIs, there might be a third protein that 

may not necessarily be interacting. In addition, using specific antibodies for the predicted 

target proteins is highly important, which will otherwise lead to false interactions. Therefore, 

there may be occasional difficulties in obtaining antibodies of high specificity and avidity 

[86]. Moreover, the target protein needs to be accurately predicted. Furthermore, the Co-IP 

approach is not carried out in native membranes or in living cells [88]. 

 

1.2.3 Phage display 

Phage display is a powerful technique which uses bacteriophages (viruses that infect 

bacteria) to link proteins with the genetic information that encodes them [89]. Figure 1.4 

shows an example of phage display protocol. The phage display approach is similar to the 

Y
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two-hybrid system for high-throughput screening of protein interactions. This laboratory 

technique is used for studying protein-protein, protein-peptide and protein-DNA 

interactions. This technique also establishes binding preferences of peptide domains and is 

used to discover novel binding motifs [90]. Combinatorial peptide phage display uses highly 

diverse libraries to identify high-affinity ligands as potential inhibitors [91].  

 

 

Figure 1.4: Illustration of phage display protocol for peptide identification. Phage 

libraries expressing random AA are first screened for their binding to GST-Q62 through 4 

rounds of binding, elution, and amplification. . Phage clones are then screened for their 

preferential binding to GST-Q62 compared to GST-Q19. Adapted from Popiel, 2011 [4]. 

 

In this technique, phage coat protein gene is inserted with a gene encoding the protein of 

interest, causing it to display the protein on its outside with the gene for the protein on its 

inside. This results in a link between the genotype and phenotype. The displaying phage is 

then screened for interactions with proteins, peptides or DNA sequences. Similarly, large 
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libraries of proteins can be screened for interactions and amplified during in vitro selection. 

Bacteriophages such as M13 and fd filamentous phage [92, 93] are commonly used while 

T4 [94], T7 and λ phage have also been used.  

 

In a proteomic phage display using the M13 phage [90], the input phage display libraries are 

constructed from cDNA, ORFs, or oligonucleotide arrays designed from a proteome of 

interest with peptides displayed on pVIII surface. Consequently, binding of phage occurs 

through interactions between displayed peptides and bait proteins. (4) the unbound phage 

are then washed, followed by elution of the bound phage through acidic or basic conditions 

or by adding actively growing host bacteria. Amplification of eluted phage and used for 

repeated cycles, to amplify specifically bound phage is then carried out. Subsequent NGS 

analysis of retained phage pools and/or Sanger sequencing of confirmed binders provides 

lists of binders from the target proteome.  

 

Phage display is more of a survey tool, than an analytical one since it has some disadvantages 

as follows [95]. Predictions using combinatorial peptide phage display are not always 

accurate leading to time-consuming experimental validations of putative targets. The 

concentration of phage particles approaches 1012 per ml; however the molarity of displayed 

peptide is low (in Pico molar) leading to the need for using synthetic forms of peptides. The 

sequence complexity of the library is less than the number of recombinants in library and a 

negative result may be due to sparse sampling. The selection results can be inherently biased 

with biological selection against odd numbers of cysteine residues [96], runs of positive 

charges [97] and certain residues at fixed positions within the displayed peptide [98]. 

 

 

1.3 PROTEIN DATABASES AND RESOURCES 

Large-scale genomics and proteomics studies has led to the determination of protein data 

through experimental and bioinformatics approaches and these have been systematically 

archived in several key databases (DBs) as discussed below.  

 

1.3.1 General protein databases and resources 

Several general databases contain useful information on proteins and their interactions 

ranging from published literature to protein sequences to X-ray and NMR structures of 

protein complexes. These general databases are discussed below. 
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1.3.1.1 UniProt  

UniProt (www.uniprot.org), the Universal Protein Resource is a comprehensive, annotated 

and freely available database for high-quality information on protein sequence from genome 

sequencing projects and their biological functional information derived from literature. The 

UniProt knowledgebase (UniProtKB), a central repository is created by combining databases 

such as Swiss-Prot [99-101] developed by SIB (Swiss Institute of Bioinformatics) and EBI 

(European Bioinformatics Institute), TrEMBL (Translated EMBL Nucleotide Sequence 

Data Library- a computationally annotated supplement to Swiss-Prot) [99] and PIR-PSD 

(Protein Sequence Database produced by Protein Information Resource) [102-104].  

 

The UniProt DB provides four core databases such as UniProtKB, UniParc, UniRef and 

UniMes.The UniProtKB is a protein database curated by UniProtKB/Swiss-Prot and 

UniProtKB/TrEMBL teams, providing protein sequences with consistent, accurate, rich 

sequence and functional annotation. The UniParc is a UniProt archive containing protein 

sequences from freely available protein sequence databases [105], and cross-referencing 

them to source databases to avoid redundancy during protein sequence retrieval. The UniRef, 

UniProt Reference Clusters, contains clustered sets of protein sequences from UniProtKB 

and UniParc records [106]. The UniMes, UniProt Metagenomic and Environmental 

Sequences DB contains metagenomic and environmental data [107]. As of April 2015 the 

UniProtKB/TrEMBL comprises 47452313 sequence entries, with 15721413695 amino 

acids.  

 

1.3.1.2 Swiss-Prot 

Swiss-Prot (http://www.expasy.ch/sprot/) is a manually curated protein sequence database 

with high-level of annotation [99]. The DB provides two classes of information, i.e. the core 

data (sequence data, citation information and taxonomic data) and annotation (the 

description of protein function, posttranslational modifications such as carbohydrates, 

phosphorylation, acetylation and GPI-anchor; domains and sites, e.g., calcium-binding 

regions, ATP-binding sites, zinc fingers, homeoboxes, SH2 and SH3 domains and kringle; 

secondary structure, e.g. α helix, β sheet; quaternary structure, i.e. homodimer, heterotrimer, 

etc.; similarities to other proteins; disease(s) associated with any number of deficiencies in 

the protein; sequence conflicts, variants, etc.). The source of information is publications 

reporting new sequence data and review articles to add annotations of families or groups of 

proteins, along with expert opinions or comments on specific groups of proteins. As of April 
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2015 UniProtKB/Swiss-Prot contains 548454 sequence entries, including 195409447 amino 

acids and are abstracted from 236665 published references.  

 

1.3.1.3 NeXtProt 

neXtProt (www.nextprot.org) is an on-line knowledge platform devoted to human proteins 

[108]. neXtProt provides high-quality information on all human proteins that are coded by 

20,000 protein-coding genes in the human genome. This new resource contains a wealth of 

information such as biological function, subcellular location, expression, interactions and 

their role in diseases. The source of information at neXtProt is mainly from the UniProt 

Swiss-Prot database, while high-through studies especially proteomics also provide some 

data. As of May 2015, the neXtProt beta version contains 20,061 protein entries obtained 

from 439,129 published articles. 

 

1.3.1.4 PubMed 

PubMed (PubMed Central - PMC) is the central repository for biomedical literature from 

MEDLINE, life science journals, abstracts on biomedical topics and online books at the 

United States National Institutes of Health's National Library of Medicine (NIH/NLM). 

PubMed provides quality control on scientific publishing and only indexes/archives journals 

that meet PubMed’s scientific standards. Each PubMed record is assigned a unique identifier 

(PMID). The resource comprises over 13.1 million records (listed with abstracts), and 14.2 

million articles (having links to full-text) of which 3.8 million articles are freely-available 

with 24.6 million citations, as of May 2015.  

 

1.3.1.5 Protein Data Bank (PDB) 

PDB (www.rcsb.org/pdb) is the largest structural repository DB for three-dimensional (3D) 

structural data of large biological molecules, such as proteins and nucleic acids [109] [110]. 

It is an up-to-date archive for primary, secondary and tertiary structural data of biological 

macromolecules, obtained through X-ray crystallography or NMR spectroscopy and 

submitted by biologists and biochemists from around the world. A unique four letter code 

referred as PDB-ID or PDB-code is assigned to each structure deposited at the PDB. The 

PDB is a key resource for structural biology and structural genomics fields with hundreds of 

other DBs such as SCOP [111], CATH [112], SuperSite [113], PDB-ligand [114], PDBsum 

[115], GO [116] and ccPDB [117] categorising the primary information obtained at the PDB. 

A series of PDB related databases are reviewed elsewhere [118].  
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The deposition of structural complexes at the PDB is growing exponentially each year. As 

of May 2015, PDB contains 108395 biological structures. However, the data deposited at 

PDB contains few true or real complexes as compared to crystal artefacts despite significant 

development in determining the 3D structure of proteins [30]. Thus, obtaining a non-

redundant dataset of protein complexes from the PDB is often a non-trivial task.  

 

PDB for PPI analysis: PDB provides information on the physical interactions between 

proteins. The structures deposited at the PDB contain experimental data to cross-validate 

their structural information. Therefore I have created an updated yet non-redundant dataset 

of known protein complexes from the PDB for our study.   

 

1.3.2 PPI databases  

PPIs are involved in several biological processes as in co-expression, gene regulation, 

metabolic pathways, cellular components and molecular co-evolution signifying a 

confounding data landscape. Hence, it is often necessary for the PPI databases to include 

new data, organize, curate and annotate the data for useful information, in order to link these 

data objects to biological reality. Some PPI databases also provide information such as 

functional gene links and domain level interactions [119]. Tuncbag and colleagues [119] 

reviewed PPI databases with their characteristics such as source organism, detection type, 

structural availability, interaction type and the number of interactions. Key PPI databases 

with information on their sources, interaction types and available database statistics are 

shown in Table 1.1. Brief summaries of the databases are provided in the following 

paragraphs. 

 

The Database of Interacting Proteins (DIP) contains binary and multi-complex interaction 

information mined from experimentally techniques (Y2H, protein microarrays and 

TAP/MS) with nodes representing proteins and their interactions by edges [120]. DIP can 

also be accessed via Cytoscape plugin to view molecular interaction networks. Related 

databases include LiveDIP and Prolinks [121, 122]. The Biomolecular Interaction Network 

Database (BIND) Documents hand-curated molecular interactions data extracted from high-

through experiments and gathered from literature [123, 124]. BIND records contain three 

classifications including interactions, complexes and pathways with over 206,859 unique 

interactions [125]. The Molecular INTeraction Database (MINT) [126, 127] database 

archives PPI reported from peer-reviewed articles. The interaction data is available as XML 

documents according to PSI-MI (Proteomics Standards Initiative-Molecular Interactions) 
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Level 1 and 2.5 standards, MITAB formatted files (a format defined by PSI-MI group with 

complexes represented as binary interactions) and as a simplified tab-delimited file. 

 

Table 1.1: List of currently available PPI databases 

Database Number of entries URL 

DIP  27,390 proteins from 717 organisms and 78,735 

interactions from 77,015 experiments and 7299 data 

sources (articles) (last update: Jan. 17, 2014) 

http://dip.doe-

mbi.ucla.edu 

BIND  Over 206,859 unique interactions in PSI-MI BIND 

repository (last update: May 20, 2014) 

http://bind.ca 

MINT  241,458 interactions  from 35,662 proteins spanning over 

30 organisms (last update: Oct. 29, 2012) 

http://mint.bio.u

niroma2.it/mint 

IntAct  531,946 binary interactions from 13,807 curated 

publications and 1,298 biological complexes (last update: 

Aug. 25, 2015) 

http://www.ebi.

ac.uk/intact 

BioGRID  812,281 protein and genetic interactions, 27,034 chemical 

associations and 38,559 post translational modifications 

from major model organism species from 55,018 

publications (last update: Sept. 1, 2015) 

http://www.theb

iogrid.org 

HPRD  41,327 PPIs with 30,047 protein entries, 93,710 PTMs, 

112,158 protein expressions, 22,490 subcellular 

localization, 470 domains with 453,521 PubMed links (last 

update: April 13, 2010). 

http://www.hpr

d.org 

STRING  9,643,763 proteins from 2031 organisms; 919,186,040 

interactions (last update: April 12, 2015) 

http://string-

db.org 

 

IntAct [128] is a molecular interaction database providing experimentally determined PPIs 

across several species from literature curation or from direct user submissions. IntAct offers 

interaction data which complies with International Molecular Exchange Consortium (IMEx) 

guideline and the minimum information required to report a Molecular Interaction 

Experiment (MIMIx) standard. Biological General Repository for Interaction Datasets 

(BioGRID) [129] provides comprehensive curation of protein-protein and genetic 
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interactions BioGRID release version 2.0 comprises >116,000 interactions from 

Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster and Homo 

sapiens. The Human Protein Reference Database (HPRD) [130] contains manually-curated 

protein interaction and pathways information of human proteins such as post-translation 

modification (PTM), subcellular localisation, expression, protein-domain architecture and 

disease in association with OMIM (Online Mendalian Inheritance in Man) database [131].   

 

STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) [132] contains known 

and predicted PPIs using physical and functional associations obtained from genomic 

context, high-throughput experiments, (conserved) co-expression and previous knowledge 

(PubMed, mips etc.). The database contains experimental, predicted and transferred 

interactions, along with interactions obtained through text mining. The database also 

includes accessory information, such as protein domains and structures 

 

Several other databases such as DOMINE (database of domain–peptide interactions, 

http://mint.bio.uniroma2.it/domino) [126], OPHID (Online predicted human interaction 

database, http://ophid.utoronto.ca) [133], HPID (Human Protein Interaction Database, 

http://www.hpid.org) [134], and PIPS (human protein-protein interaction database, 

http://www.compbio.dundee.ac.uk/www-pips) [135], provide information on the protein 

interaction data generated through high and low throughput experiments, compiled from 

literature or from computational predictions. The Munich Information Centre for Protein 

Sequences (MIPS: http://mips.gsf.de) archives genome and protein sequences [136]. 

Comprehensive Yeast Genome Database (CYGD) of MIPS consists of two separate sets of 

yeast protein interactions, one with manually curated interaction and the other set generated 

through high throughput experiments [137].  

 

Protein complexes deposited at the PDB is most widely used for structural interaction 

analysis and functional characterisation of complexes. Databases such as BID (Binding 

Interface Database, http://tsailab.chem.pacific.edu/wikiBID/) [138] and ICBS (Inter-Chain 

Beta-Sheets, http://icbs.ics.uci.edu/) [139] provide structural information of protein 

interactions with reference to literature.   

 

Usage of these DBs: Based on the availability of data organized and presented in these 

databases, users can choose an appropriate database for specific data retrieval or to validate 

their predicted interactions. IntAct, BioGRID and STRING are currently regularly updated. 
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1.4 CURRENT TRENDS IN COMPUTATIONAL PPI ANALYSIS AND 

PREDICTION 

The current trends in computational analysis of PPIs using structural and sequence 

information of existing PPI data, their deposition in various databases and their utilization 

in the understanding of binding principles of PPI is discoursed. Application of PPI analysis 

in the prediction of interaction partners and sites is also discussed. Formation of a PPI 

complex is shown in Figure 1.5.  

 

 

Figure 1.5: PPI complex formation is represented. The protein subunit 1 and subunit 2 

come closer to form a PPI complex. Adapted from Sowmya et al., 2010 [5]. 

 

1.4.1 Classification of PPI complexes 

PPI complexes can be broadly classified into two main classes based on the size of protein 

subunits and their composition into homo-oligomers and hetero-oligomers. PPIs are also 

classified based on affinity and lifetime of their association into obligate or non-obligate and 

permanent or transient complexes, respectively [50], as shown in Figure 1.6 [6]. Moreover, 

aminoacid composition alone can discriminate the different classes of complexes (six types 

of PPI interactions) such as interactions within the same structural domain and between 

different domains, permanent and transient interfaces, homo- and hetero-obligomers 

(obligomer is a polymer consisting of monomeric units) [140]. Therefore, discrimination of 

the different types of protein complexes to identify structural diversity of PPIs for analysis 

and prediction studies helps gain insights into their nature of binding and their role in a 

biological cell [30, 50, 141]. 
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Figure 1.6: Representation of the diverse types of PPI based on affinity and stability. 

Adapted from Ozbabacan et al., 2011 [6].  

 

 

Figure 1.7: Examples of obligate PPI complex and non-obligate PPI complex is shown 

in cartoon representation. a) An obligate interface of bacterial luciferase with chain A and 

chain B (coloured in blue and magenta, respectively) interacting to form a stable interface to 

catalyse the oxidation of long-chain aldehydes. b) A non-obligate complex of pancreatic 

trypsin/trypsin inhibitor interacting transiently at the interface coloured as in (a). 

 

1.4.1.1 Obligate and non-obligate complexes 

PPIs are classified based on their affinity into obligate or non-obligate complexes [50] 

(examples of obligate and non-obligate protein dimers are shown in Figure 1.7). Obligate 

PPI complexes consist of protein subunits (or monomers) that do not exist as independent 

monomers or stable structures in vivo. However, non-obligate PPI complexes constitute 

protein subunits that can exist as independent structural monomers. For example, Krishna 

PPI Types
Based on Affinity

Obligate Non-obligate
Based on Lifetime (Stability)
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and Aravind showed how Ku protein is likely to bind to DNA to form an obligate dimer 

[142]. Examples of non-obligate complexes include signalling proteins, where constituent 

proteins dissociate into individual protein monomers after propagating signals [6]. 

 

1.4.1.2 Permanent and transient complexes 

PPIs are also classified into permanent and transient complexes based on their lifetime of 

association [6, 50]. Permanent complexes usually exist in stable and irreversible forms, 

whereas, transient complexes associate and dissociate temporarily in vivo [6]. Transient PPI 

complexes can be further classified into strong and weak based on their affinities and lifetime 

of association [50]. Discrimination of PPI into permanent and transient complexes can be 

done based on structural features such as interface geometrical and physicochemical 

properties and also sequence properties such as amino acid substitutions [23, 50, 143, 144]. 

These properties are the changes in accessible surface area (ΔASA) and planarity, size and 

shape properties, gap volume index, polarity [23, 50, 143], hydrophobicity, average number 

of hydrogen bonds, the number of discontinuous segments in the interface, secondary 

structures and the extent of conformational change upon binding [6].  

 

Permanent complexes are usually obligate complexes with stable interfaces and hence 

interchangeably used in literature. Similarly, non-obligate complexes are abundantly 

transient in nature with few examples of permanent complexes [22, 50]. Ozbabacan and 

colleagues [6] comprehensively reviewed transient PPI complexes with examples of 

transient and permanent complexes. Example of permanent (Ascaris pepsin inhibitor-3 

bound to porcine pepsin protein complex) and transient complex (An ARF1-GDP bound to 

Sec7 domain complexed with brefeldin A) is shown in Figure 1.8. 

 

1.4.1.3 Homo-oligomers and Hetero-oligomers 

Identical protein subunits (or chains) interact to form homo-oligomer complexes. The 

folding and binding mechanism of homo-oligomers is different from hetero-oligomer 

complexes. The homodimers (association of two identical subunits, Figure 1.9a) are formed 

through three folding mechanisms such as 2S (2S without any intermediate), 3SMI (3-state 

with monomer intermediate) and 3SDI (3-state with dimer intermediate) [145]. Hence, 

analysis of the homo-oligomeric association and folding mechanism in known structural 

complexes, helps predict folding mechanism given structural complexes [146]. The binding 

modes of homodimers play a key role in distinguishing them from heteromeric complexes 
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based on electrostatics [147], as heterodimers, composed of different monomers, can carry 

opposite net charge, while homodimers, arising from two identical monomers cannot.  

 

 

 

Figure 1.8: Examples of permanent PPI complex and transient PPI complex is shown 

in cartoon representation. a) A permanent complex of Ascaris pepsin inhibitor-3 bound to 

porcine pepsin. b) A transient complex of ARF1-GDP bound to Sec7 domain complexed 

with brefeldin A. 

 

 

 

Figure 1.9: Examples of homodimer and heterodimer complexes are shown in cartoon 

representation. a) A homodimer protein complex (inositol monophosphatase) is formed 

from the association of chain A (red) and chain B (green) of identical size (276 amino acids 

(AA) each). b) A heterodimer complex is formed from the association of chain A (α-

chymotrypsin) and chain B (Eglin C) coloured in red and green respectively. 
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Non-identical protein subunits (or chains) non-covalently interact to form hetero-oligomers 

(shown in Figure 1.9) with diverse functionality. The stability of heteromeric complexes 

may vary, and these proteins constitute a single macromolecular assembly [6].  

 

1.4.1.3.1 Heterodimers and their advantages in PPI analysis 

Heterodimeric interactions are commonly found in enzyme-inhibitors, enzyme complexes, 

antibody-antigen, signal proteins and cell cycle proteins [23, 39]. Heterodimer complexes 

are more intriguing than homodimers since they also include transient complexes [30]. 

Therefore, heterodimers are often used in studying PPIs for applications in PPI prediction 

[146].  

 

1.4.1.3.2 Dimers over multimers for PPI analysis  

Multimeric proteins represent different levels of interaction in a living cell. Also, multimeric 

interactions are, in general, weaker with temporary contacts among the interacting protein 

subunits, except in the case of very large complexes (e.g. the proteasome) or viral surfaces. 

However, dimeric interactions are amongst the strongest and most extensive in nature [23, 

32], suggesting that dimeric proteins are long-lived, with isolated oligomer subunits rarely 

achieving their biological function in monomer state. 

 

Hence, I have created an updated non-redundant dataset of heterodimers from the PDB and 

analysed them to gain insights into PPIs (detailed in Chapter 3 and Chapter 4). 

 

1.4.2 Datasets for PPI analysis and prediction 

PPIs are extensively studied using non-redundant datasets of structural complexes from 

protein structural repository databases such as PDB [148]. Also, PDB contains structural 

data that are frequently unorganized despite significant efforts to structure and organize the 

data. Therefore, it is difficult to maintain a default procedure to mine for a reliable dataset 

or in using a standard dataset for PPI analysis and to train predictors. Hence, creating an 

updated yet non-redundant dataset representing protein multimers from PDB is a non-trivial 

task and an important step in PPI studies [24]. The different levels of structural data available 

at the PDB are shown in Figure 1.10. 
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Figure 1.10: Different levels of structural complexes available at PDB.  

 

The datasets collected/created by different groups for PPI studies contains heterogeneous 

data (disproportionate mixture of homodimers and heterodimers). The classical work by 

Chothia and Janin in 1975 [31] with a modest dataset of three protein complexes, has paved 

the path towards the understanding of PPI using known structural complexes. Jones and 

Thornton (1996) [23] used a dataset of 59 protein complexes consisting of 32 homodimers, 

10 enzyme-inhibitor, 6 antibody-protein complexes and 11 hetero complexes to study the 

difference in various structural features among the classes. Xu and colleagues (1997) [38] 

generated a dataset of 319 protein-protein interfaces to analyse the features such as hydrogen 

bonds and salt bridges to gain insight into the specificity of protein-protein associations. In 

parallel, Tsai and colleagues (1997) [149] from the same group have used a dataset of 362 

protein-protein interfaces to perform a statistical analysis of hydrophobic effect at the 

interfaces. Lo Conte and colleagues [39] used 75 protein-protein complexes to study 

interface size distribution.  
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Similarly, various other groups have assembled datasets of X-ray crystal structures from the 

PDB to examine the different properties of subunit-subunit interactions [24, 43, 143, 150-

156]. Protein-protein docking benchmark datasets [157] have also been widely used to 

understand the binding principles of PPI [48]. Grouping of dataset to study bias in interface 

properties in the different types of PPI has also been carried out [40, 50, 57]. Table 1.2 shows 

the heterogeneous datasets created/collected over the decades by various groups for PPI 

analysis and prediction (in chronological order). 

 

Table 1.2: PPI datasets created/collected by various groups 

Authors Year Dataset Reference 

Chothia and Janin  1975 3 (insulin dimer, trypsin-PTI, / 

oxyhaemoglobin) 

[31] 

Chothia et al. 1976 2 (horse methemoglobin, human hemoglobin) [34] 

Miller et al. 1987 11 dimer, 9 tetramers, 2 hexamer, 1 octamer [35] 

Janin and Chothia 1990 15 protease inhibitors, 4 antigen-antibody 

complexes  

[36] 

Jones and 

Thornton 

1995 32 complexes [32] 

Janin and Rodier 1995 152 crystal forms of monomeric protein [158] 

Jones and 

Thornton 

1996 59 complexes (32 homodimers; 10 enzyme – 

inhibitor; 6 antibody – protein complexes; 11  

hetero complexes) 

[23] 

Xu et al. 1997 319 protein-protein interfaces [38] 

Tsai et al. 1997 362 non-redundant protein-protein interfaces, 

57 symmetry-related oligomeric interfaces 

[149] 

Dasgupta et al. 1997 58 oligomeric proteins, 223 protein crystal 

structures 

[159] 

Linzaad and Argos 1997 59 protein complexes with 159 polypeptide 

chains 

[51] 

  



 

 23

Authors Year Dataset Reference 

Jones and 

Thornton 

1997 Protomers from 28 homodimers, large and 

small protomers from 11 and 14 hetero-

complexes respectively, and antigens from 6 

antibody-antigen complexes.   

[160] 

Lo Conte et al. 1999 75 complexes (24 protease inhibitors, 19 

antigen-antibody) 32 others (9 enzyme 

inhibitors, 11 signal transduction) 

[39] 

Valdar and 

Thornton 

2001 53 families of homodimers and 65 families of 

monomers 

[161] 

Zhou and Shan 2001 615 pairs of non-homologous complex-

forming proteins 

[162] 

Fariselli et al. 2002 226 heterodimers [163] 

Chakrabarti and 

Janin 

2002 70 protein-protein complexes [150] 

Brinda et al. 2002 20 homodimers [151] 

Bahadur RP et al. 2003 122 homodimers [41] 

Mintseris et al. 2003 59 test cases: 22 enzyme-inhibitor complexes, 

19 antibody-antigen complexes, 11 other 

complexes, and 7 difficult test cases. 31 of the 

test cases (with receptor and ligand) are 

classified as 16 enzyme-inhibitor, 5 antibody-

antigen, 5 others difficult 

[164] 

Mintseris &Weng 2003 209 protein complexes [165] 

Nooren and 

Thornton 

2003 39 (16 experimentally validated "weak" 

transient homodimers and 23 functionally 

validated transient heterodimers) 

[143] 

Caffrey et al. 2004 64 complexes (42 homodimers, 12 

heterodimers, 10 transient complexes) 

[153] 
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Authors Year Dataset Reference 

Bahadur et al. 2004 70 protein-protein complexes and 122 

homodimers 

[152] 

Zhanhua et al. 2005 65 heterodimers [166] 

Zhanhua et al. 2005 156 heterodimers, 170 homodimers [43] 

Mintseris et al. 2005 72 unbound-unbound cases, with 52 rigid-

body cases, 13 medium-difficulty cases, and 7 

high-difficulty cases with substantial 

conformational change, and 12 antibody-

antigen test cases 

[167] 

Zhu et al. 2006 Dataset of 243 protein interactions   [168] 

Pal et al. 2007 204 protein complexes [44] 

Li et al. 2007 1276 non-redundant hetero-complex protein 

chains 

[169] 

Keskin et al. 2008 3799 structurally non-redundant interfaces [170] 

Hwang et al. 2008 124 unbound-unbound test cases classified 

into 88 rigid-body cases, 19 medium-

difficulty cases, and 17 difficult cases 

[154] 

Choi et al. 2009 2646 protein interfaces with the classification 

of homodimeric/heterodimeric and 

obligatory/transient interactions 

[171] 

Reynolds et al. 2009 220 heterodimers, 534 homodimers [155] 

Gromiha et al. 2009 153 heterodimers [172] 

Liu et al. 2010 130 protein chains from transient complexes [173] 

Guharoy and 

Chakrabarti 

2010 122 homodimer, 204 heterodimer  [156] 

Hwang et al. 2010 176 (52 new complexes added to the 124 

cases of Benchmark 3.0) 

[157] 

Kastritis et al. 2011 144 protein-protein complexes [174] 
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Authors Year Dataset Reference 

Sowmya et al. 2011 192 heterodimer complexes [24] 

Swapna et al. 2012 223 homodimers  [175] 

Swapna et al. 2012 76 protein-protein complexes [176] 

Chen et al. 2013 113 heterodimer complexes [49] 

Gromiha et al. 2014 185 protein–protein complexes [177] 

Du et al. 2015 270 hetero complexes and 289 homo 

complexes 

[178] 

 

 

 

1.4.3 Discerning features of PPI interfaces  

Protein associates with another protein forming a PPI complex to achieve a specific 

biological function. A stable interface is often formed between the two interacting protein 

subunits. Figure 1.11 shows an example of a typical PPI heterodimer complex. The ability 

of a protein to interact with its partner depends on various physical and chemical features. 

These factors determining the formation of the interface is often multi-parametric in nature.  

 

The physicochemical properties governing subunit-subunit interactions in a protein complex 

have been extensively studied over the past few decades and described in a number of studies 

elsewhere [31, 32, 35, 36, 39, 149, 179]. Protein-protein interfaces have several distinct 

features that distinguish it from the rest of the protein surface. The interface features have 

been considered to be additive in nature and therefore, these combinatorial features are often 

investigated to determine the major driving forces for binding and also towards using these 

features to train predictors for futuristic PPI predictions.  
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Figure 1.11: A pictorial representation of a protein-protein interaction complex. Rat 

anionic trypsin heterodimer (PDB ID: 1JKG) is shown here. The interacting residues at the 

protein interface are shown in space-filling or CPK representation with interface residues as 

white balls. The protein chains are shown in cartoon representation with chain A and chain 

B coloured in red and green respectively.   

 

 

1.4.3.1 Structural features of PPI 

The physical and chemical features that contribute to formation of an interface include shape, 

shape complementarity, planarity, sphericity, interface size, interface area, gap volume, gap 

index, residue side-chain packing, residue propensities (frequency of amino acid residue 

type), electrostatics, hydrogen bonds, salt bridges and disulphide linkages. These structural 

interface features have been studied extensively by various groups using datasets primarily 

from the PDB.  

 

Figure 1.12 shows the protein-protein interface, formed between two proteins, labelled 

Subunit 1 and Subunit 2. 
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Figure 1.12: A description of the interface in a PPI complex is shown. Subunits 1 and 2 

interact at specific binding sites to form a stable interface, involving interface residues. These 

interface residues may be hydrophobic, hydrophilic or amphipathic in nature. These interface 

residues form hydrogen bonds, salt bridges and/or disulphide linkages [7]. 

 

 

1.4.3.1.1 Interface Area 

A stable interface is formed between two interacting subunits in a PPI complex. The interface 

is identified by calculating the change in solvent accessible surface area (ΔASA) upon 

complex formation (Figure 1.13). A probe radius of 1.4 Å is used to calculate ASA with Lee 

and Richards implementation [180].  

 

The ΔASA of a protein complex is calculated as follows: 

 

ΔASA (complex) =
 [ASA (subunit 1) + ASA (subunit 2) – ASA (complex)]                   

 (1)
 

2                       

 

The solvent accessible surface area (ASA) of subunit 1 and subunit 2 are calculated, followed 

by the ASA of the complex. Thus, the ΔASA (complex) or the interface area (B/2) of the 

complex is the surface that becomes buried when two proteins interact.  
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Figure 1.13: Illustration of the delta ASA (ΔASA) analysis. The Accessible Surface Area 

(ASA) is calculated individually for subunit 1, subunit 2 and protein complex. Adapted from 

Sowmya et al., 2010 [5]. 

 

Jones and Thornton showed that the average size of a homodimeric complex ranges from 

368 – 4746 Å2, while heterodimers have an interface area within 639 – 3228 Å2 [23]. The 

interface area is also shown to range between 670 – 5540 Å2 based on 23 oligomeric protein 

complexes [159]. The interface area in heterodimeric protein complexes are in a range of 

1200 – 2000 Å2, denoted as the standard size of an interface [39]. Bahadur and colleagues 

showed that the range of interface area extends from 500 – 7000 Å2, with a mean of 1970 

Å2 [34]. Caffrey and colleagues showed that interface area ranges from 415 – 2361 Å2 for 

heterodimer complexes, 550 – 4718 Å2 for homodimers and 423 – 2361 Å2 for transient 

complexes [153]. These different values have been reported at different time points and 

based on different datasets of complexes. 

 

In general, the interfaces in homodimeric complexes are on average 2-fold larger than 

heterodimeric protein complexes and about 2.5-fold larger than the crystal-packing 

interfaces of monomeric proteins. Therefore, based on the 2008 review of Bahadur and 

Zacharias, the size of interfaces or interface area ranges from as small as 800 Å2 to very large 

interface area of more than 10,000 Å2 (in a few homodimeric complexes) [181]. Stronger 

protein subunit binding was commonly associated with larger interface areas. Also, 

homodimers are known to have larger interfaces than heterodimers [37, 43]. Thus, interfaces 

can vary based on different datasets and their features such as resolution, size and type of 

dataset [182]. The accessible and buried surface area is related to molecular weight [35]. 

Also, stronger protein-protein binding was associated with larger interface areas [32]. 
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1.4.3.1.2 Interface residues 

The interface is composed of interacting residues from either subunit/chain known as 

interface residues. The interface residue becomes inaccessible to the solvent upon protein-

protein binding. Thus, the interface residues are filtered based on the criteria that their ΔASA 

> 0.1Å2 [150]. Porollo and Meller [55] filtered interface residues based on the criteria that 

their relative ΔASA is at least 4% and not less than 5 Å2 upon complex formation. The 

interface residues may be hydrophobic, hydrophilic or amphipathic in nature (with equal 

distributions of hydrophobic and hydrophilic residues) [5]. The average number of interface 

residues is 44.4 in homodimers and 42.2 in heterodimer complexes [182]. The number of 

residues forming the interface (or interface residues) is proportional to interface area [41, 

150, 151].  

 

1.4.3.1.3 Interface patches 

Interfaces patches are widely used to characterise protein subunit interfaces and also in PPI 

binding site predictions. Jones and Thornton (1997) studied PPI sites using surface patch 

analysis to compare how interaction patches differed from the rest of the surface [37]. 

Hydrophobic patches (clusters of hydrophobic residues deemed accessible on a given protein 

surface) on protein subunit interfaces were known to be involved on multimeric interfaces 

in 90% of complexes [51]. Chakrabarti and Janin dissected protein recognition sites and 

described recognition patches in protein interfaces. These recognition sites are refined for a 

typical interaction ‘patch’ as having an area of at least 800 Å2 involving more than 20 

residues and less than 100 atoms [150], from protein chains of at least 50 residues.. The 

interface patches are composed of a core and a rim. The core residues are shown to have a 

distant composition than the rest of the surface, while the rim isolates the patch from the 

solvent. An interface patch is composed of 47±11 residues or 23 residues per recognition 

site. Dominant peptide segments were observed at the interfaces of homodimer and crystal 

contacts [44]. Guharoy and Chakrabarti (2010) also documented that conserved residues are 

not randomly distributed over the whole interface but form distinct clusters using a dataset 

of 122 homodimer and 204 heterodimer complexes [156].  

 

1.4.3.1.4 Hydrophobic/non-polar/apolar interfaces 

The interface residue composition determines the chemical nature of the interface. Hence, 

the nature of residues at the interface determines the hydrophobic effect of protein 

association. The classical work by Chothia and Janin (1975) showed that protein interact by 

burying large amounts of hydrophobic surface areas [31]. Chothia and colleagues also 
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demonstrated the role of hydrophobic interface to allosteric mechanism in human deoxy- 

haemoglobin [34]. Similarly, Jones and Thornton [32] reaffirmed the fact that hydrophobic 

residues are more at interface than surface but less than interior, using a dataset of 32 

complexes. They also assumed that proteins associate with each other through hydrophobic 

patches[23]. Tsai et al. (1997) also recognized the role of interface hydrophobic residues 

(although not as much as in protein folding) in binding, and found exceptions where there is 

no sign of significant hydrophobic contribution at the interface [149]. Furthermore, large and 

strong interface hydrophobic patches (cluster of neighbouring apolar atoms at the interface) 

have been shown to be dominating feature at the protein interfaces [51].  

 

Compared to heterodimers, homodimers are known to have larger interfaces with 

predominant hydrophobic residues at their interfaces [37, 43]. Thus, the hydrophobic effect 

is known to play a major role in the formation of PPI complexes. The hydrophobic 

distribution patterns for interfaces is quite different with some demonstrating a single large 

patch of hydrophobic residues surrounding by polar residues, while some others show 1-3 

patches of hydrophobic residue distributions, linked to water molecules and hydrogen bonds 

across the interface [182]. Most studies analysed the average hydrophobicity over a diverse 

set of PPI complexes, blurring the information on the contributions of hydrophobic effect to 

individual proteins complex stability and interactions. 

 

1.4.3.1.5 Hydrophilic/polar interfaces 

The interface residues in some PPI complexes are abundantly hydrophilic/polar, with 

predominant polar interactions at the interface. Lo Conte and colleagues (1999) showed that 

protein-protein interfaces are significantly polar as well as non-polar, with characteristics 

similar to the protein surface [39]. The fractional distribution of hydrophobic/non-polar, 

hydrophilic/polar and charged residues in homodimer and heterodimer interfaces was also 

demonstrated [43]. Hydrophilic/polar residues (W, C, H, Q, N, Y, S), except for T, were 

observed to occur dominantly in heterodimer. Moreover, heterodimer complexes were 

observed to commonly associate by polar interactions and not by hydrophobic interactions 

as in homodimers [5, 43].  

 

1.4.3.1.6 Hydrogen bonds (H-bonds) 

Intermolecular hydrogen bonds (H-bonds) formed between the two interacting 

subunits/chains play an essential role in determining stability at the interface. The hydrogen 

atoms covalently bound between two electronegative atoms from two different chains and 
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contributing to electrostatics are within a distance of 4 Å. The covalent bond is energetically 

favourable as it includes polarization energy, covalent energy and particularly the 

electrostatic energy [182]. The energy of an average inter-molecular h-bond is generally 

small, 20 KJ/mol (5 kcal/mol) [32], however play an important role in PPIs. The number of 

hydrogen bonds identified varies in different studies.  

 

Janin and Chothia showed that interfaces have 8 – 13 h-bonds with an  average of 10 

hydrogen binds per complex [36]. Jones and Thornton showed that interfaces have 0 – 46 h-

bonds with an average of 0.88 per 100 Å2 of interface area, with a Pearson correlation 

coefficient (r) value of 0.77 between h-bonds and interface area [32]. Xu and colleagues 

(1997) also showed 11 H-bonds per subunit, with r value of 0.89 between H-bonds and 

interface area [38]. On an average, 10.1 H-bonds are formed at a protein-protein interface, 

with one H-bond per 170 Å2 interface area with an r value of 0.84 observed between H-

bonds and interface area [39]. The r value between H-bonds and interface area calculated 

using different dataset size and nature of data varies from 0.75 to 0.89 [23, 32, 38, 39, 43, 

166], with an average of 0.24 H-bonds per interface residue in heterodimers. High H-bond 

density per interface residue (0.64) with dominant charged and hydrophilic/polar residues at 

the heterodimer protein interfaces is also demonstrated [43]. Therefore, documentation of 

inter-molecular hydrogen bonds among different protein complexes helps determine 

stability and evaluate predictions [23, 32, 38, 39, 41]. 

 

1.4.3.1.7 Salt bridges 

Intermolecular salt bridges formed between the two interacting subunits/chains also 

contribute to the stability and electrostatics of protein complex. The salt bridges are formed 

between two oppositely charged side-chain atoms (i.e., basic and acidic amino acids) within 

a distance of 4Å. An average of 2.0 salt bridges per interface has been documented by Xu 

and colleagues [38].  Salt bridges are also known to provide favourable free energy to 

binding, however an isolated charge buried in a protein interface could considerably 

destabilize binding due to the desolvation effect [38]. Thus salt bridges and hydrogen bonds 

contribute to high selectivity and specificity in protein binding.  

 

1.4.3.1.8 Shape complementarity 

Shape complementarity and geometric complementarity between interacting proteins has 

been observed to have a very important effect on PPIs for several decades [23, 183-185]. 

Shape complementarity has been characterised by the size of interface area, buried water 
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molecules and packing density of interface atoms [183, 186, 187]. Sternberg and Gabb 

scored potential complexes on the basis of shape complementarity and favourable 

electrostatic interactions using Fourier correlation theory [188]. Li and colleagues [185] 

demonstrated the role of shape complementarity in protein complexes They showed that 

when two membrane proteins with shape complementarity come close to each other, the 

lipid chains in the membrane between the two chains would have restricted conformation, 

therefore, tend to leave the gap between the proteins to maximize configuration entropy. 

This yields an effective entropy-induced PPI enhancing protein binding.  

 

1.4.3.1.9 Gap volume and gap index 

The complementarity of interacting protein surfaces can also calculated using gap index [23].  

The volume enclosed between the two interacting subunits is called the gap volume. The gap 

volume is generally calculated using SURFNET program with a procedure developed by 

Laskowski [189]. This algorithm runs a series of spheres (of maximum radius 5Å) between 

the surfaces of each interacting protein subunit atoms, such that the surface is contact with 

the surfaces of the atoms on either side. The interception of other atoms causes the size of 

sphere to reduce accordingly and is discarded if it falls below a minimum radius (1Å). Thus, 

the gap volume is measured by taking into account all the remaining allowable gap-spheres. 

Gap index calculated using the gap volume is a valuable method to evaluate complementarity 

between the interacting protein subunits. The gap index for different types of PPI complexes 

has been reviewed comprehensively by Jones and Thornton [23].  

 

The gap index in a PPI complex is calculated as below: 

 

 

              (2) 

 

 

1.4.3.1.10 Interface planarity 

Interface planarity is defined as the atomic root mean square deviation (RMSD) of all 

interface atoms from the least squares plane fitted through all interface atoms [40]. The 

PROTORP server shows an average interface planarity of ~3.1 Å for a dataset of 534 

homodimers and 220 heterodimer complexes [155].  

 

 

Gap index (Å) =
 gap volume between the molecules (Å3) 

         interface ASA (Å2) (per complex) 
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1.4.3.1.11 Interface electrostatic potential  

The electrostatic interactions are the interactions between charged atoms or molecules. The 

negatively charged residues, aspartic acid (D) and glumatic acid (E) often form bonds with 

the positively charged residues, histidine (H), lysine (K) and arginine (R). It has been 

observed that electrostatics could drive the formation of interfaces, while specificity might 

be driven by interactions such as h-bonds, salt bridges and interactions between hydrophobic 

patches [190]. Significant population of charged and polar residues have also been observed 

on protein–protein interfaces [39, 191, 192]. 

 

1.4.3.1.12 Interface hot spots  

A few interface residues are energetically more involved in the formation of interfaces than 

others called ‘hot spots’ [193-197]. Polar residues were observed to be conserved as hot 

spots in a dataset of 1629 protein-protein interfaces [198]. However, hot spots are 

structurally conserved and not conserved at sequence levels [197, 199]. Polar residues are 

known to occur at interfaces and are proportional to residue conservation, and size of the 

interface [182]. Furthermore, identification of hot spots using PPI features such as solvent 

accessible surface area, residue conservation and residue potential improves prediction 

accuracy for interface hot spots [199].  

 

1.4.3.1.13 Other properties of PPI interfaces 

Some PPI features besides those described above have also been used to identify and 

characterise PPIs. The differences in interface structural properties such as residues, 

hydrophobicity, hydrophilicity, hydrogen bonds, electrostatics, areas, and residue packing, 

steric strains, with selective pressure, has been documented for protease-inhibitors and 

antigen-antibodies [36]. Secondary structures at the biological interfaces with similar 

structural features between monomers was observed to contribute to the formation of a 

heterodimer complex [200]. van der Waals interactions along with other structural properties 

such as hydrogen bonds and hydrophobic interactions have been used to study PPI and 

differentiate among complexes [201]. Conformational changes upon protein complex 

formation have also been documented [202-204]. 

 

Analysis of structural features from known protein complexes helps in better understanding 

of features responsible for binding and extrapolating them to sequence level.  

 

The various structural PPI features used in this thesis are analysed in Chapters 3 and 4.   
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1.4.3.2 Sequence-based features of PPI 

Interface features based on non-structural data is also widely used for PPI analysis and 

prediction. Protein complexes are known to accommodate variation at sequence level, even 

with structurally similar interfaces [46]. Moreover, prediction of structural features from the 

sequence could improve sequence or evolutionary based prediction methods [205]. 

 

1.4.3.2.1 Amino acid composition 

Amino acid composition is widely used as an important PPI feature to understand the 

chemical nature of the interface. Miller and colleagues showed that in small globular proteins 

the interface consists of 57% non-polar residues, 24% neutral polar residues and 19% 

charged residues [35]. However, the amino acid compositions in oligomeric proteins is made 

up of 65% non-polar residues, 22% neutral polar residues and 13% charged residues [206]. 

Therefore, the amino acid compositions differ among different complexes. 

Aliphatic and aromatic residues as well as proline are the largest contributors to the interface 

as shown by Lijnzaad and Argos [51]. Non-polar residues are known to be more abundant 

in larger interfaces, while polar residues are abundant in smaller interfaces [207].  

 

Lo Conte and colleagues showed that interfaces are rich in aromatic residues histidine, 

tyrosine, phenylalanine, and tryptophan than the average protein surface and somewhat 

richer in aliphatic residues leucine, isoleucine, valine, and methionine. However, they are 

depleted in charged residues except arginine [162]. The interfaces in hetero-complexes 

consisted of dominantly hydrophilic/polar residues (W, C, H, Q, N, Y, S, except T), as 

opposed to dominant hydrophobic/non-polar residues at the homodimer interfaces 

suggesting protein association by hydrophilic/polar interactions in non-identical complexes, 

as observed by Zhanhua and colleagues [43]. Amino acid composition and residue-contact 

preferences alone can predict interaction types with 63-100% accuracy as shown by Ofran 

and Rost [140]. 

 

1.4.3.2.2 Amino acid residue propensity  

The interface amino acid residue propensity is the ratio of amino acids contributing to the 

interface as opposed to the ratio of amino acids contributing to the surface of a protein 

complex. This feature was first used by Jones and Thornton to study PPIs [23]. Their results 

showed that charged and polar residues, especially arginine and aspartic acid, show an 

increased affinity at the interface, and also non-polar residues such as methionine and proline 

show an increased affinity for the interface. Tryptophan and tyrosine residues are shown to 
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have the highest propensity for the core of recognition sites, while serine and threonine have 

a negative propensity [150]. Bahadur and colleagues [41]  described interface features 

(residue propensity score) in specific and non-specific complexes using a dataset of 70 

protein-protein complexes and 122 homodimers. Neuvirth and colleagues [208] counted 

tyrosine, methionine, cysteine and histidine as the most favoured residues at the interface, 

while threonine, proline, lysine, glutamic acid and alanine were least favoured at the 

interface. Gromiha and colleagues [172] showed dominance of aromatic and positively 

charged residues at the interface. Most studies show arginine as the major contributor to 

binding interfaces [182]. 

 

1.4.3.2.3 Amino acid residue conservation 

Residue conservation at the interface is observed to be less than the core but more than the 

surface [153]. Chakrabarti and colleagues [41, 209] have also discriminated the interface 

into core and rim regions and have concluded that the core is relatively more conserved than 

the rim. Structurally conserved residues were also known to distinguish between binding 

interfaces and protein surfaces [195]. Their results showed that tryptophan residue 

conservation on a protein surface shows a highly potential binding site, while conservation 

of phenylalanine and methionine also implies a slightly potential binding site. Moreover, 

Guharoy and Chakrabarti [156] observed that conserved interface residues are not randomly 

distributed but distinctly clustered along the protein binding interface. Sequence and 

structure-based features have been used to analyse PPIs [210] for their utilization in training 

prediction models, however, no strict set of features is known as yet for accurate protein 

binding site predictions. The correlation between different features is observed to provide 

subtle differences [30]. Furthermore, 3D structures of protein-protein complexes gives an 

in-depth understanding of how two proteins interact physically [211]. Therefore, analysing 

existing protein-protein complexes and documenting their physicochemical features is 

important in gaining knowledge on the fundamentals of protein-protein association. 

Documenting these essential PPI features contributing to binding is hence necessary to mine 

a comprehensive set of features that are contributing to protein-protein recognition. 

 

A combined formulation of structural and sequence-based features along with strong 

experimental evidence is therefore essential in understanding the molecular principles of 

PPIs and has applications in improving prediction accuracies of PPI prediction 

algorithms/models. 
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1.4.4 Protein interface databases  

Protein interactions data has been deposited in numerous databases (Table 1.3) using 

interface datasets at protein and domain levels. PIBASE is a relational database of 

structurally defined interfaces obtained from protein domain pair interactions  [212]. The 

database contains interfaces that are annotated based on geometric, physicochemical and 

topological properties responsible for the structural characterisation of protein complexes.  

 

Table 1.3: A list of currently available protein interface databases.  

Database Number of entries 

3did  

 

8829 domain-domain interactions; 291052 structures for domain-domain 

interactions 

InterPare  10,583 (Geometric distance), 10,431 (ASA), and 11,010 (Voronoi diagram) 

entries in PDB containing interfaces. 

PDBsum 111,180 entries including 2,196 superseded  

PIBASE  104,569 structures; 49,295 structures (PDB); 55,274 structures (PQS [216]); 

598,638 domains; 212,071 domains (SCOP v1.73 [217]); 191,915 domains 

(CATH v3.1.0 [218]); 194,652 domains (chain); 755,998 interfaces; 269,821 

interfaces (SCOP v1.73); 269,438 interfaces (CATH v3.1.0); 216,739 

interfaces 

PROTCOM  1770 entries  

SCOPPI 

 

105,547 domain-domain interactions; 22,874 domain-domain interactions at 

90% non-redundancy level; 4,630 family-family interactions; 15,058 

interface types 

SCOWLP 

 

74,907 protein interfaces; 2,093,976 residue-residue interactions from 

60,664 structural units 

STRING 5,214,234 proteins from 1133 organisms 

 

SCOPPI  (Structural Classification of Protein-Protein Interfaces) database consists of 

classifications and annotations of protein domain interactions derived from PDB and SCOP 

domain definitions [213]. SCOPPI classifies domains based on their geometry and provides 

several interface characteristics such as number of interfaces, aminoacid types and positions, 

conservation, interface size, and permanent or transient nature of interactions. The database 

of 3D Interacting Domain (3did) archives domain-domain interactions obtained from high 
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resolution protein structures [214, 215]. 3did provides information on structural similarity 

between different members of the same protein family. 

 

PDBsum [115, 219] is a pictorial database providing summary information of 3D structures 

deposited at the PDB. The database offers structure diagrams, GO annotations, 1D sequence 

annotated by Pfam [220] and InterPro [221, 222] domain assignments, clefts in structures 

and schematic diagrams of PPI, including provisions for generating PDBsum information 

for user’s own PDB file formats [115]. The SCOWLP (Structural Characterisation of Water, 

Ligands and Protein) web-server permits comprehensive structural analysis and comparisons 

of protein interfaces at atomic-level by text query of PDB codes and/or by navigating a 

SCOP-based tree. A visualization tool is involved to for users to interactively display protein 

interfaces and label interface residues and interface solvent by atomic physicochemical 

properties. SCOWLP  is automatically updated with every SCOP release [223].  

 

STRING [132] provides protein interaction interface information derived from high-

throughput data, experimentally determined structures at PDB and literature.  A large-scale 

protein domain interaction interface database, InterPare, is a public database and server for 

protein interface information obtained from 3D structures [124]. The database detects 

interfaces by three methods i.e. calculating geometric distance method for checking distance 

between atoms in different domains, detecting Accessible Surface Area (ASA) and 

calculating Voronoi diagram which uses mathematical definition for interaction interfaces. 

PROTCOM is a database of protein complexes enhanced with domain–domain structures 

[224]. Single chain structures are parsed into loosely connected domains to generate domain-

domain structures. PROTCOM can be used as a template database to model 3D structures 

of unknown protein-protein complexes using homology modeling techniques or threading 

methods. Moreover, integrated set of tools for browsing, searching, visualizing and 

downloading a pool of protein complexes is also provided. PINT (Protein-protein 

Interactions Thermodynamic Database) [225] consists of >1500 data of thermodynamic 

parameters along with sequence, structural, experimental and literature information. 

 

1.4.5 Protein interaction characterisation and prediction tools/servers 

Protein interfaces are characterised by several webservers and/or tools based on their 

physicochemical properties. These webservers/tools developed over the past two decades 

for effective characterisation and prediction have been described in Table 1.4.  
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Table 1.4: A list of webservers/tools developed for protein interface characterisation 

and prediction.  

Webserver/Tool Usage and URL 

ConSurf Identifies functionally important regions on the protein surface based 

on evolutionary conservation scores of protein residues 

http://consurf.tau.ac.il/  

InterPreTS Predicts protein interactions in query sequences using protein 

sequence similarity  

http://www.russelllab.org/cgi-bin/tools/interprets.pl  

InterProSurf Predicts potential interacting amino acid residues on protein surfaces 

that are most likely to interact with other proteins. 

http://curie.utmb.edu/  

LIGPLOT Generates schematic 2-D representations of protein-ligand complexes 

with intermolecular interactions and their strengths, including 

hydrogen bonds, hydrophobic interactions and atom accessibilities 

http://www.ebi.ac.uk/thornton-srv/software/LIGPLOT/  

MAPPIS Recognizes spatially conserved chemical interactions shared by a set 

of PPIs: http://bioinfo3d.cs.tau.ac.il/MAPPIS/  

meta-PPISP A metaserver built on three individual web servers: cons-PPISP, 

PINUP, and Promate for predicting protein-protein interaction sites 

http://pipe.scs.fsu.edu/meta-ppisp.html  

MODTIE Predicts binary protein interaction based on similarity of query 

sequence http://pibase.janelia.org/modtie/v1.11/index.html  

PIC Computes various interactions such as disulphide bonds, interactions 

between hydrophobic residues, ionic interactions, hydrogen bonds, 

aromatic–aromatic interactions, aromatic–sulphur interactions and 

cation–π interactions within a protein or between proteins in a 

complex: http://pic.mbu.iisc.ernet.in/job.html  

PI2PE Predicts protein interfaces  http://pipe.scs.fsu.edu/  

  



 

 39

Webserver/Tool Usage and URL 

PINUP Prediction of protein binding site prediction 

http://sparks.informatics.iupui.edu/PINUP/  

ProMate Identifies the location of protein-protein binding sites 

http://bioinfo.weizmann.ac.il/promate/  

ProtorP Calculates physical and chemical parameters of the protein 

interaction sites such as size and shape, intermolecular bonding, 

residue and atom composition and secondary structure contributions 

http://www.bioinformatics.sussex.ac.uk/protorp  

Pred-PPI Predicts PPIs from different organisms 

http://cic.scu.edu.cn/bioinformatics/predict_ppi/ 

ProFace A server for the analysis of the physicochemical features of protein-

protein interfaces 

http://www.boseinst.ernet.in/resources/bioinfo/stag.html  

ProteMot Predicts protein binding sites based on the interaction templates 

automatically extracted from the compound crystals in the PDB 

http://protemot.csie.ntu.edu.tw/step1.cgi  

http://bioinfo.mc.ntu.edu.tw/protemot/step1.cgi  

PRICE Analyse protein-protein interfaces 

http://www.boseinst.ernet.in/resources/bioinfo/stag.html  

PPA-Pred Predicts binding affinity of protein-protein complexes based on 

functional classification: http://www.iitm.ac.in/bioinfo/PPA_Pred/  

PPI Prediction 

Server 

Discriminates PPI complexes into permanent, transient and crystal 

artefacts: http://ppi.zbh.uni-hamburg.de/ 

SNAPPI Calculates protein–protein interactions properties and is currently 

being employed to train a protein–protein interaction predictor and a 

functional residue predictor 

http://www.compbio.dundee.ac.uk/SNAPPI/index.jsp  
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Webserver/Tool Usage and URL 

SHARP2 Predicts potential protein–protein interaction sites on protein 

structures. http://www.bioinformatics.sussex.ac.uk/SHARP2  

SPPIDER Predict residues at the putative protein interface(s) by considering 

single protein chain with resolved 3D structure; (2) analyse protein-

protein complex with given 3D structural information and identify 

residues that are being in inter-chain contact. 

http://sppider.cchmc.org  

WHISCY Predict protein-protein interfaces based on conservation and 

structural information 

http://nmr.chem.uu.nl/Software/whiscy/index.html  

 

InterPreTS (Interaction Prediction through Tertiary Structure) developed by Aloy and 

Russell (2003)  [226] uses BLAST to find homologues of known structure for all pairs for a 

given protein sequence set and therefore predicts protein interactions in query sequences 

using similarity between protein sequences and known complexes. MODTIE [227] predicts 

binary protein interactions and higher-order protein complexes from a set of protein 

sequences based on their similarity to template complexes, with the structures at MODBASE 

[228]. SHARP2 server [229], a flexible web-based bioinformatics tool, performs PPI 

prediction using patch analysis with parameters such as solvation potential, hydrophobicity, 

accessible surface area, interface residue propensity, planarity and protrusion.  

 

The Proface server [179] developed by Saha and colleagues dissects PPI to derive physical 

and chemical features. Sppider [55] is a protein interface identification and recognition 

server based on solvent accessibility and structural information with high levels of accuracy 

(74%). The ProtorP server [155] predicts physical and chemical characteristics of structural 

interfaces (types of atoms at interfaces, structural elements, H-bonds, bridging water 

molecules, salt bridges and disulphide bonds, interface area, planarity, eccentricity, gap 

volume and gap index etc. in homo and hetero complexes), to assess the different interface 

properties of the query protein against the pre-calculated set of interface features in different 

complexes.  
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Some other webservers developed based on structural data of available protein complexes at 

the PDB for the characterisation and prediction of interaction sites and interfaces include 

cons-PPISP [53], meta-PPISP [230], PI2PE [231], PIC [232], LIGPLOT [233], PPI-Pred 

[234], PPI Prediction Server [235], MAPPIS [236], WHISCY [237], SNAPPI (Structures, 

iNterfaces and Alignments for Protein-Protein Interactions) [238], Promate [208], PINUP 

[239], ProteMot [240], ConSurf [241], InterProSurf [242], PepSite [59], PRICE [243], PPA-

Pred [244], PrISE [58] and Wiki-pi [245].  

 

Table 1.5: List of webservers/tools developed for the prediction of hot-spots.  

Webserver/Tool Usage URL 

HotPoint Analyse any protein–protein interface for 

binding sites characterization and rational 

design of small molecules for protein 

interactions. Identifies hot spots in protein 

interfaces by combining solvent 

accessibility and inter-residue potentials 

http://prism.ccbb.ku.edu.

tr/hotpoint   

HotSpot Wizard Identifies 'hot spots' for engineering of 

substrate specificity, activity or enantio-

selectivity of enzymes and for annotation 

of protein structures 

http://loschmidt.chemi.m

uni.cz/hotspotwizard/  

HSPred predict hot spot residues based on support 

vector machine (SVM) method 

http://bioinf.cs.ucl.ac.uk/

hspred  

KFC Server Predicts binding "hot spots" within protein-

protein interfaces by identifying structural 

features indicative of binding contacts 

http://kfc.mitchell-

lab.org/  

PredHS Predicts PPI hot spots by using structural 

neighbourhood properties 

http://www.predhs.org  

 

Databases and webservers/tools available for predicting protein-protein interface hot spots 

including HotPoint [199, 246], HotSpot Wizard [247], HSPred [248], KFC server [249] and 

PredHS [250] as given in Table 1.5. 
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Other databases for hot spots prediction include ASEdb [251], BID [138], HotSprint [252], 

APIS [253], PCRPI [45], and DBAC [254]. PPI hot spots and in silico techniques available 

for hot spot residues is reviewed by Morrow and Zhang [47]. 

 

On the other hand, community wide experiment, CAPRI (Critical Assessment of Predicted 

Interactions) [255], performs continuous assessments of prediction models several times in 

a year. The prediction of interaction regions and residue contacts while accommodating large 

conformational changes with accuracy is an non-trivial task [256]. The community 

experiment recently found that electrostatics and solvation terms marginally distinguish the 

designs of proteins from natural complexes, largely due to non-polar characteristics of 

interactions and also that the binding surfaces were structurally less embedded in designed 

monomers, suggesting the importance of conformational rigidity at the designed surface 

[257].    

 

 

1.5 INTRODUCTION TO INTEGRINS  

Integrins are transmembrane glycoproteins that mediate interactions between the 

components of extracellular and intercellular milieu. Integrins are found in multicellular 

organisms, from sponges to mammals [258, 259]. These receptors span the plasma 

membrane promoting anchorage across the extracellular matrix and the cell components. 

Bidirectional cell signalling  of integrins transduces information between the components of 

extracellular and intracellular milieu [260]. The extracellular matrix binds to integrin 

glycoproteins initiating structural changes, subsequently triggering signal transduction [261, 

262]. These signals (arising from receptor-binding) relate to cell migration, attachment, 

differentiation, proliferation, polarity and survival/apoptosis [261, 263].  

 

Integrins are also known to regulate biological processes related to cell morphology, 

proliferation, survival, migration and invasion mostly by involving in crucial cell signalling 

pathways [264]. These receptors are involved in initiation and/or progression of many 

malicious diseases including tumour metastasis, immune dysfunction, neoplasia, 

inflammation, trauma and infections as reviewed elsewhere [260, 265-269]. These receptors 

have been the target of therapeutic drugs to combat inflammation, thrombosis, fibrosis and 

tumourigenesis caused by many viruses and bacteria [266, 270-273].  
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The integrin structure consists of two distinct α and β chains forming heterodimers with an 

obligatory function. These α and β subunits assemble into a “head” segment built on top of 

two V-shaped “legs” [274]. In mammals, 18α chains and 8β chains have been characterised 

for integrins which noncovalently associate to form 24 different receptors [266, 275]. These 

24 receptors binding to specific ligands have been characterised to have a unique function 

as shown in Figure 1.14. Ligands binding to the integrins include fibronectin, vitronectin, 

collagen, laminin and cytotactin. Individual integrins specifically bind to protein ligands, 

while the R-G-D (arginine-glycine-aspartate) tri-peptide sequence is a commonly known 

integrin-binding motif [276] as shown in Figure 1.14.  

 

 

Figure 1.14: Integrin receptor classes and related integrin-targeted compounds. The 

various classes of integrin heterodimer receptors are shown. The integrin consists of specific 

α and β binding subunits for functionality. The β6 subunit binds exclusively to αv subunit. 

Adapted from Binder and Trepel, 2009 [8]. 

 

Integrins are made of a comparatively large extracellular domain, a transmembrane domain 

and a short cytoplasmic tail [258, 266].  The α and β subunits of an integrin structure have 

an amino acid length over 1000 and 750 residues, respectively. The integrin  subunit is 

recognized to play a key role in regulatory function [277]. The  subunit undergoes 

conformational changes on ligand recognition resulting in variable epitope expression levels, 

thereby regulating integrin activity [278]. Elucidation of three-dimensional (3D) structures 
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of integrins [262, 279] in the past decade, has paved way for researchers to perform intensive 

structural analyses to relate to the functional significance of these large glycoproteins. 

However, the structural basis of integrin activation and regulation is yet to be known [261]. 

 

1.5.1 Integrin αvβ6 heterodimer 

Integrin αvβ6 is an epithelial heterodimeric transmembrane protein comprising a β6 subunit 

which binds exclusively to an αv subunit [280, 281] as shown in Figure 1.14. The αvβ6 

integrin expression is primarily restricted to epithelial cells, where it is expressed at low-

levels in normal adult cells while elevated in fetal tissue during embryogenesis, 

morphogenesis, and in injured tissue during wound healing, inflammation and 

tumourigenesis [280, 282-284]. Internalisation of integrin αvβ6 via clathrin-mediated 

endocytosis promotes cancer cell invasion. The αvβ6 integrin mediates cell adhesion, 

proliferation, migration and invasion. Integrin αvβ6 binds to ligands including fibronectin, 

cytotactin/tenascin, vitronectin, and Transforming Growth Factor-β1 (TGF-β1). Activation 

of TGFβ1 by the αvβ6 integrin occurs as a result of ligand-binding, through interactions with 

the R-G-D motif present in the latency associated peptides 1 and 3 (LAP1 and LAP3) [281, 

285, 286]. These heterodimers are also known to be involved in the activation of phospho-

ERK2, MAP kinase pathway and TGF-β1 pathway at the cell surface [280]. Furthermore, 

the interaction of integrin αvβ6 to HAX-1, a HS1 associated protein [287] involved in 

endocytosis, plays a major role in cancer progression [288], by controlling the net signalling 

output of the cell at various stages, thus associating this integrin in various stages of cancer. 

 

The unique 11-aminoacid C-terminal cytoplasmic tail of the integrin β6 subunit mediates 

cell proliferation, matrix metalloproteinase production (MMP2 or MMP9), invasion and 

survival [289]. Mutations in the cytoplasmic domain of the  subunit is identified to affect 

integrin activity [290]. Aminoacid extensions of the integrin 6 subunit have specific 

interactions with the cytoplasmic components, distinguishing it from its closely related 

homologue, integrin 3 [291].  

 

The αvβ6 integrin is also known to have a role in providing immune tolerance [292]. 

Neutralizing the αvβ6 is assumed to disrupt malignant transformation of cells [293]. The 

over-expression of αvβ6 integrin in a number of epithelial cells is hypothesized to promote 

malignancy through alterations in cell proteolytic activities with implications in cancer 

metastasis [294]. High levels of integrin expression have been documented in various 

epithelial carcinomas and cancer cell lines including skin, oral, lung, breast, pancreas, liver, 
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gastric, ovary, basal cell, endometrium, cervical squamous, duodenal and colorectal 

adenocarcinomas [282, 283, 293-307]. Interestingly, αvβ6 regulates development, neoplasia, 

and tissue repair, suggesting a role in epithelial remodelling [283]. 

 

1.5.2 The urokinase plasminogen activator receptor protein (uPAR) 

The uPAR protein is a versatile signalling orchestrator mediating interactions with other 

transmembrane receptors, including integrins. It is a glycosylphosphatidylinositol (GPI) 

anchored extracellular membrane protein. uPAR acts as a specific receptor for the urokinase 

plasminogen activator (uPA). In 1985, the uPAR was first identified in monocytes and 

monocyte-like U397 cells [308]. Subsequent studies on uPAR confirmed its involvement in 

many cell signalling pathways. uPAR is known to have implications in cell migration, 

adhesion, proliferation and tissue remodelling [309, 310]. uPAR is found on the surfaces of 

neoplastic and inflammatory cells including circulating blood monocytes and neutrophils 

[311, 312] in a normal cell. However, the expression of uPAR is high during cancer 

progression. Thus, in normal biology, uPAR plays a key role in enhancing extracellular 

proteolysis through confining plasminogen activation though uPA proximal to cell surface 

[313, 314]. uPAR is known to play a role in various types of cancer including breast, ovary, 

colon, lung and other carcinomas [315-317].   

 

 

Figure 1.15: The human uPAR structure is shown. The structure of human uPAR is 

shown in ribbon representation with three domains Domain I, Domain II and Domain III.  
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The uPAR protein forms a glove-like structure (Figure 1.15) providing  a central pocket for 

the binding of uPA [318]. It is made up of a single chained polypeptide with a sequence 

length of 283 amino acids. The three extracellular domains DI, DII and DIII are 

Ly6/uPAR/α-neurotoxin-like (LU) domains consisting of approximately 90 amino acid 

residues each [319].  The uPAR has a three polypeptide loop structure with each domain 

having four to five disulphide bonds [320]. Each of these domains is connected to the other 

by a linker region (i.e. L1 and L2) and has six anti-parallel β- strands, while DIII alone has 

five β-strands, ending with two short helical stretches. The domains adopt a three ‘finger’ 

fold to form a concave cavity in the centre of the receptor (Figure 1.15), with a high affinity 

for uPA.    

 

 

Figure 1.16: Schematic showing the role of uPAR•integrin interaction. Adapted from 

Blasi and Carmeliet, 2002 [9]. 

 

1.5.3 uPAR•integrin interaction 

uPAR is believed to play a role in downstream cellular signalling pathways through lateral 

interactions with transmembrane proteins such as integrins as they lack intrinsic intracellular 

domains [321]. Figure 1.16 illustrates the role of uPAR•integrin interaction in activating 

various pathways leading to biological functions such as adhesion, proliferation and 

migration, within the cell. Binding of integrin αvβ6 to urokinase plasminogen activating 

receptor (uPAR) promotes the plasminogen activator system, thereby playing a key role in 

cancer progression [322]. An in-depth understanding of the PPIs involving integrin αvβ6 

and uPAR is essential to understand the uPAR•integrin interaction for specific activity. 

Hence, I have carried out a PPI study on integrin αvβ6•uPAR interactions using modeling 

data and docking simulations as detailed in Chapter 5. 
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1.6 OBJECTIVES 

 

PPIs form the central basis for complex biological networks and molecular functions in a 

living cell. These interactions play a key role in the fields of systems biology, functional 

genomics and drug design. Therefore, there is a need to comprehensively study these 

interactions to gain insights into their molecular principles for applications in PPI prediction 

and identifying targets for drug design. Experimental determination of protein structures and 

interactions using high-throughput techniques has made it possible to obtain X-ray crystal 

structures of protein and also valuable information pertaining to protein interactions at 

cellular level. Bioinformatics analyses can help obtain into the binding principles of these 

interactions using the experimentally determined protein structures. A membrane 

heterodimer complex involved in cancer progression has been comprehensively studied to 

evaluate what properties characterize PPIs. Based on these properties, complexes were 

grouped at residue and functional levels to obtain distinguishing features for applications in 

prediction models. Specific aims are listed below, with four publications presented in this 

thesis: 

 

1. Review the key resources available for the study of PPIs, experimental procedures for 

PPI determination, the computational methods in determining PPIs, the key databases 

archiving this information, current trends involved in studying PPIs followed by key 

datasets created/collected by various groups and the deterministic PPI features known to 

govern PPIs (Publication 1).  

2. Structural analysis of all non-redundant known heterodimeric protein complexes at the 

PDB and classifying them based on their residue-level relative interface-surface 

polarities to understand predominant interactions at the interface and identify 

discriminatory PPI features between these classes (Publication 2)  

3. Group protein complexes based on literature-driven molecular functions to identify 

structural features possibly characterising functional interfaces (Publication 3). 

4. Study integrin αvβ6 membrane protein using model data and docking simulations for the 

characterisation of integrin αv-β6 subunit interface to gain insights into the structural 

basis of integrin αvβ6•uPAR interactions (Publication 4).  
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1.7 Publication 1  
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Abstract: Molecular function in cellular processes is governed by protein-protein interactions (PPIs) within biological 
networks. Selective yet specific association of these protein partners contributes to diverse functionality such as catalysis, 
regulation, assembly, immunity, and inhibition in a cell. Therefore, understanding the principles of protein-protein asso-
ciation has been of immense interest for several decades. We provide an overview of the experimental methods used to 
determine PPIs and the key databases archiving this information. Structural and functional information of existing protein 
complexes confers knowledge on the principles of PPI, based on which a classification scheme for PPIs is then intro-
duced. Obtaining high-quality non-redundant datasets of protein complexes for interaction characterisation is an essential 
step towards deciphering their underlying binding principles. Analysis of physicochemical features and their documenta-
tion has enhanced our understanding of the molecular basis of protein-protein association. We describe the diverse 
datasets created/collected by various groups and their key findings inferring distinguishing features. The currently avail-
able interface databases and prediction servers have also been compiled. 

Keywords: Binding sites, interface features, prediction, protein complexes, protein-protein interactions. 

INTRODUCTION 

 Proteins are social molecules essential for several bio-
logical processes in a cellular system. Proteins bind to differ-
ent molecules such as organic and inorganic compounds, 
metals, sugars, fatty acids, nucleotides and other proteins. 
Protein-protein interactions (PPIs) form the central basis of 
complex cellular networks, thereby playing a pivotal role in 
the fields of systems biology, functional genomics and drug 
design [1-4]. PPIs occur with varying affinities, yet with a 
high degree of specificity [5]. Specific interactions forming 
stable interfaces between two or more protein molecules lead 
to diverse functions such as catalysis, regulation, signal 
transduction, immunity and inhibition [6, 7]. Hence, a study 
of the interactions between specific proteins is the key to 
understanding cellular machinery. 
 Progress in large-scale high-throughput experimental pro-
cedures has led to the determination of possible PPIs within an 
entire genome. However, these biological experiments are 
laborious, time-consuming and expensive, besides their major 
drawback of poor accuracy in data generation and the inclu-
sion of many false positive proteins that are not necessarily 
associated in vivo [8-11]. Moreover, a comparative assessment 
of large-scale datasets of PPI has also shown that in silico 
predictions of many interactions provided levels of accuracy 
close to those determined experimentally [9]. Therefore, the 
flaws involved in the experimental determination of PPI 
complexes pose a need for progress in computational methods  
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Macquarie University, Sydney, NSW, Australia;  
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E-mail: shoba.ranganathan@mq.edu.au 

that can precisely reflect biological reality from abstract struc-
tural data [11, 12]. 
 At the other end of the spectrum, protein-protein docking 
procedures are being used for the prediction of native con-
formations of multimeric proteins when the constituent pro-
tein structures are known or by using high quality three-
dimensional (3D) structural models, known as “targeted in-
teraction pairs” [13, 14]. Docking methods can predict near-
native conformation of the complex based on comparative 
modelling of known protein structures using structural fea-
tures such as shape complementarity, steric, geometric and 
energetic considerations [15-19]. Nevertheless, docking stud-
ies lack high levels of accuracy owing to the inadequate in-
formation on the forces that bind proteins together [20]. 
Structural analyses of known protein complexes provide 
features that complement docking studies for accurate pre-
dictions of 3D structure of the PPI complex [21-24]. 
 Protein-protein complexes have been exhaustively ana-
lysed for common features as an important step towards de-
ciphering the binding principles and functionality of proteins 
[4, 25-27]. The ability of a protein to interact with its partner 
depends on several physicochemical features that are addi-
tive in nature. A stable interface is often formed between the 
interacting partners. Figure 1 represents a generic PPI com-
plex, composed of a heterodimer, with interacting residues 
forming a stable interface. Protein-protein interfaces have 
several distinct features that distinguish them from the rest of 
the protein surface. Structural data of X-ray 3D protein com-
plexes available at the Protein DataBank (PDB) [28] is 
commonly used to study protein-protein interfaces [29-31]. 
The interacting residues are characterized based on physical 
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Figure 1. A pictorial representation of a protein-protein interaction complex. TAP-p15 heterodimer (PDB ID: 1JKG) is shown here. The 
interacting residues at the protein interface are shown in space-filling or CPK representation with interface residues of chain A and chain B 
coloured amber and cyan, respectively. The protein chains are shown in cartoon representation with chain A and chain B coloured red and 
green, respectively.  

Figure 2: Classification of PPIs shown with structures of example cases. Chain A and chain B of each of these complexes are shown in 
red and green respectively. (a) Homodimer with the two-identical chains (chain A and B) forming the inositol monophosphatase complex 
performing catalyses in phosphatidylinositol signalling pathway; (b) Heterodimer with two non-identical chains (Alpha-chymotrypsin and 
Eglin C) performing an enzyme-inhibitory function; (c) Obligatory complex of bacterial luciferase with chain A and chain B forming a stable 
interface (coloured in blue and magenta, respectively) to catalyse the oxidation of long-chain aldehydes; (d) Non-obligatory complex of pan-
creatic trypsin/trypsin inhibitor interacting transiently at the interface coloured as in (c).  
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and chemical features based on their strengths of interactions 
in different types of complexes.  
 Proteins are also known to interact with multiple partners 
forming many interfaces [32, 33]. The formation of several 
interfaces among protein multimers is yet another facet of 
PPI that poses difficulty in prediction efforts, possibly be-
cause the interaction between the multiple protein partners 
occurs at different levels and these associations are often 
weak or transient in nature [34]. Clearly, the paucity in the 
availability of 3D structures of such transient complexes in 
the PDB hampers the inclusion of such interfaces for the 
analyses of binding sites and partners. Dimer complexes are 
known to be the strongest and most extensive interactions in 
nature, as their individual isolated oligomer subunits rarely 
exist as functional monomers [26]. Therefore, structural 
analyses of available protein complexes aids in better under-
standing the molecular basis of protein-protein association.  
 Here, we present an overview of the experimental meth-
ods used to determine PPIs, the key databases archiving 
these experimental data, as well as computationally predicted 
PPI information. We then review the current trends in inter-
action analyses and prediction, describing the classification 
of PPIs and differences in their interface features. The varia-
tions in PPI datasets created/collected by different groups, 
based on differing PPI features, are discussed. These datasets 
have led to the creation of interface databases that provide 
the data for currently available interaction characterisation 
and prediction tools/servers. 

EXPERIMENTAL DETERMINATION OF PPIs  

 Determination of PPI is based on a comprehensive char-
acterisation of qualitative and quantitative aspects of PPIs 
[10]. However, experimental approaches are often incom-
plete, providing qualitative information to catalogue PPI 
without taking heed to the quantitative and dynamic features 
involved in such interactions. Moreover, experimental de-
termination of PPIs for proteomes of entire species provided 
a smaller number of PPIs than the expected number or the 
number of interactions is often underestimated [35-37]. 
Computational approaches complement experimental data 
for an effective determination of PPI by predicting and pri-
oritizing the data for experimental study, thereby reducing 
their costs and time consumed. Methods for measuring pro-
tein interactions in living cells have been previously re-
viewed by Piehler [38]. We provide an outline of the two 
broad categories of PPI determination approaches such as 
Fragment Complementation (FC) assays and affinity purifi-
cation methods. FC is based on the functional reconstitution 
of proteins by fusion of the interacting proteins, thereby de-
termining binary interactions between protein pairs and has 
been widely used in yeast organism. On the other hand, af-
finity purification methods combined with MS (Mass Spec-
trometry) perform structural determination of all the compo-
nents in protein complexes, and have been used in several 
large-scale studies to investigate PPIs in model organisms 
and in human.  

Fragment Complementation Assay 

 The yeast two-hybrid (Y2H) is a widely used PPI deter-
mination technique, initially developed by Field and Song in 

1989, taking advantage of the properties of GAL4 protein of 
yeast S. cerevisiae [39]. The GAL4 protein is a transcrip-
tional factor, which activates the expression of a reporter 
gene when its DNA-binding domain (DBD) and its transcrip-
tion activation domain (AD) are linked. However, GAL4 
protein loses its capability of activation when the two do-
mains (DBD and AD) are separated. In this technique, the 
two proteins of interest are fused with either domain (DBD 
and AD) of the transcription factor. Interaction between the 
proteins reconstitutes the functional form of the domains, 
thereby activating the expression of reporter gene. Capitaliz-
ing on the activation property of GAL4 protein, the Y2H 
technique effectively determines whether two proteins truly 
interact with each other. Various other FC techniques have 
been developed over the past few decades for the detection 
of PPI based on the co-expression of two-hybrid fusion pro-
teins [40-47].  

Affinity Purification Methods 

 The principle behind affinity purification methods is that 
the interactions of protein partners involving affinity-tagged 
proteins formed in vivo are preserved during biochemical 
purification steps. In this technique the proteins of interest 
are purified from the cell and their interactions are identified 
in vitro under physiological conditions [48]. GST-pulldown 
and co-immunoprecipitation (co-IP) are the two widely used 
affinity purification techniques, supplemented with refined 
high-throughput methods that use mass spectrometry for 
protein identification. GST-pulldown technique uses glu-
tathione S-transferase (GST) as a tag (often radio-labelled) 
for studying in vitro protein interactions. A number of stud-
ies also reported the interactions of proteins using Co-IP 
methods [49-51]. Co-IP uses Protein A (isolated from 
Staphylococcus aureus) as a tag for identifying interactions 
between proteins; however, these interactions are limited 
based on the availability of specific antibodies. The various 
experimental techniques available for deciphering protein-
protein interactions, their advantages and disadvantages, and 
approaches to validate the diverse data produced by high-
throughput techniques has been reviewed by Shoemaker and 
Panchenko [52]. 

Databases for PPI 

 Protein-protein interaction data, determined as a conse-
quence of experimental and bioinformatics approaches, is 
made available through large scale genome- and proteome-
wide analyses. Several key databases archive the experimen-
tally verified as well as computationally predicted interac-
tions data. While several databases provide information on 
the physical interactions few others also provide information 
on the associations based on functional gene links and inter-
actions at domain level [53]. Inclusion of protein associa-
tions at different levels as in multiple partner complexes, 
cellular components, metabolic pathways, co-expression, 
gene regulation or molecular co-evolution represents a con-
founding data landscape. Therefore, incorporating new data, 
organizing, curating, annotating and thereby linking the data 
objects to several biological characterizations are of utmost 
importance in PPI databases. A list of databases with their 
characteristics such as source organism, detection type, 
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structural availability, interaction type and the number of 
interactions has been reviewed by Tuncbag and colleagues 
[53]. Some of the available PPI databases with updated in-
formation (as of February, 2013) include DIP (Database of 
Interacting Proteins) [54] and related databases [55, 56], 
BIND (Biomolecular Interaction Network Database) [57-59], 
MINT (Molecular INTeraction Database) [60], IntAct [61], 
BioGRID (Biological General Repository for Interaction 
Datasets) [62], HPRD (Human Protein Reference Database) 
[63] and STRING [64], as listed in Table 1. Based on the 
specific tasks at hand, a combination of these databases has 
been widely used by researchers to obtain information or to 
validate their predicted interactions. 

CURRENT TRENDS IN COMPUTATIONAL PPI 
ANALYSIS AND PREDICTION 

Classification of PPI Complexes 

 Protein-protein interaction complexes can be grouped 
into several classes based on their composition, affinity and 
the lifetime of their association [65]. Non-identical protein 
subunits (or chains) interact to form hetero-oligomers while 
identical protein subunits (or chains) interact to form homo-
oligomers. Examples of protein homodimer (with two identi-
cal chains) and heterodimer (with two non-identical chains) 
complexes are shown in (Figs. 2a, 2b). The folding and 
binding mechanism in the formation of homo-oligomers 
based on intra-molecular/inter-molecular contacts is intrigu-
ing, since homo-dimeric interfaces are formed through three 
folding mechanisms such as 2S (2S without any intermedi-
ate), 3SMI (3-state with monomer intermediate) and 3SDI 
(3-state with dimer intermediate) [66]. Therefore, it is often 
necessary to understand the homo-dimeric association and 

folding mechanism of known structural complexes to predict 
the folding mechanism given their structural complexes [67]. 
Compared to heterodimers, homodimers are known to have 
larger interfaces and more H-bonds, with predominant hy-
drophobic residues at their interfaces [68, 69] however het-
erodimers have a higher density of H-bonds per residue with 
predominantly charged and hydrophilic residues at their in-
terfaces. The binding modes in homomeric complexes also 
play a role in distinguishing these from the heteromeric 
complexes, based on electrostatics [70]. Thus, the structural 
analysis of protein dimers (homo- and heterodimers) using 
known protein 3D complexes reveals significant differences 
in the interface features.  
 PPIs are also classified based on their affinity and life-
time into obligate or non-obligate and permanent or transient 
complexes, respectively [65]. The constituent protein 
subunits (or monomers) in obligate PPI do not exist as stable 
structures in vivo, while the constituent proteins in non-
obligate PPI complexes can exist independently. Examples 
of obligatory and non-obligatory PPI complexes are shown 
in (Figs. 2c, 2d). Discrimination of PPI into permanent com-
plexes existing in stable and irreversible complexed forms 
and transient complexes readily associating and dissociating 
to perform a functional activity in vivo is based on their life-
time of association. Permanent and transient complexes can 
be distinguished based on structural features such as inter-
face geometrical and physicochemical properties and se-
quence properties such as aminoacid substitutions [27, 65, 
71, 72]. Typically, obligate interactions are permanent/ sta-
ble, whereas non-obligate interactions are predominantly 
transient, although a few are permanent in nature [6, 65]. The 
analysis of six types of PPIs, such as interactions within the 
same structural domain and between different domains, per-

Table 1. Current databases for PPI. 

Database Description Number of entries Reference 

DIP (Database of Inter-
acting Proteins) 

PPI data determined by experimental techniques (yeast two-
hybrid, protein microarrays and TAP/MS)  

75,019 interactions from 25,388 
proteins and 541 organisms 

[54] and related 
databases [55, 56] 

BIND (Biomolecular 
Interaction Network 

Database) 

Provides hand-curated molecular interactions data extracted 
from high-through experiments and literature  

Over 206,859 unique interactions [57-59]  

MINT (Molecular IN-
Teraction Database) 

Relational database archiving PPI reported from peer-reviewed 
articles 

241,458 interactions from 35,662 
proteins spanning over 30 organisms  

[60]  

IntAct  Molecular interaction database providing experimentally de-
termined interactions across several species from literature 

curation and from user submissions 

305,970 binary interactions com-
piled primarily from 6177 publica-

tions and 17,905 experiments 

[61]  

BioGRID (Biological 
General Repository for 
Interaction Datasets) 

Provides comprehensive curation of protein-protein and genetic 
interactions  

444,517 physical and genetic non-
redundant interactions from 47,972 

unique proteins 

[62]  

HPRD (Human Protein 
Reference Database) 

Contains manually-curated protein interaction and pathways 
information of human proteins  

41,327 PPIs with 30,047 proteins.  [63] 

STRING  Known and predicted protein interactions including direct 
(physical) and indirect (functional) associations obtained from 

genomic context, high-throughput experiments, (conserved) co-
expression and previous knowledge 

>5.2 million interactions from 
5,214,234 proteins and 1133 organ-

isms 

[64] 
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manent and transient interfaces, homo- and hetero-oligomers 
(oligomer is a polymer consisting of monomeric units) 
showed that aminoacid composition alone can be used to 
distinguish the different classes of complexes [73]. There-
fore, it is essential to discriminate the different types of pro-
tein complexes for PPI analysis and prediction studies, to 
gain knowledge on their nature of binding and functionality 
[65, 74, 75]. 

Datasets for PPI 

 Protein-protein interactions are often studied using a non-
redundant dataset of structural complexes obtained from 
protein structural repository databases such as PDB [28]. The 
X-ray crystal complexes deposited each year at the PDB are 
growing exponentially. Obtaining a non-redundant yet reli-
able dataset of protein structural complexes from the PDB, 
for PPI analysis and to train predictors, often poses difficulty 
owing to the unorganized structure in data repository, despite 
significant efforts. The data deposited at the PDB have few 
true or real complexes as compared to crystal artefacts in 
spite of much progress in determining the 3D structure of 
proteins [74]. The paucity of biological data at the PDB 
poses difficulty in maintaining a default procedure to mine 
for a reliable dataset or in using a standard dataset for analy-
sis and to train predictors. Therefore, creating an updated yet 
non-redundant dataset representing protein multimers from 
PDB is a non-trivial task and an important step in PPI studies 
[7]. 
 Structural datasets created by different groups for PPI 
studies consists of heterogeneous data as listed in Table 2. 
Protein-protein docking benchmark datasets [76] have also 
been extensively utilized to understand the roles of protein-
protein interfacial residues in binding [77]. Several authors 
have also grouped the dataset based on the types of PPI to 
further study the bias in interface properties in different 
groups of complexes [65, 78, 79].  

Discerning Features of PPI 

 The protein interface formation between the two interact-
ing subunits is governed by both physical and chemical fea-
tures as described in a number of studies [25, 26, 29, 80-83]. 
Physicochemical features that govern the subunit interactions 
include shape complementarity, planarity, sphericity, inter-
face size, interface area, gap volume, gap index, residue side-
chain packing, residue propensities (frequency of amino acid 
residue type), electrostatics, hydrogen bonds, salt bridges 
and disulphide linkages. These features have been studied 
extensively using structural datasets of protein-protein com-
plexes, to better understand the features determining their 
driving force for binding and thereby train predictors.  
 Interface features based on non-structural data is also 
widely used for PPI analysis and prediction. Chemical nature 
of the residues (amino acid composition) at the interface 
determines the hydrophobic effect of protein binding. Hy-
drophobic residues were predominantly observed at the inter-
face [80]. Interface with significantly hydrophilic as well as 
hydrophobic characteristics similar to surface with few 
charged groups were also observed in a dataset of 75 com-
plexes [29]. Ofran and Rost (2003) [73] have shown that 

amino acid composition and residue-contact preferences 
alone can predict interaction types with 63-100% accuracy. 
The interfaces in hetero-complexes consisted of dominantly 
hydrophilic residues (W, C, H, Q, N, Y, S, except T), as op-
posed to dominant hydrophobic residues at the homodimer 
interfaces suggesting protein association by hydrophilic in-
teractions in non-identical complexes, as shown by Zhanhua 
and colleagues [69]. Residue conservation at the interface is 
observed to be less than the core but more than the surface 
[84]. Chakrabarti and colleagues [85, 86] have also discrimi-
nated the interface into core and rim regions and have con-
cluded that the core is relatively more conserved than the 
rim. Prediction of structural features from the sequence could 
improve sequence or evolutionary based prediction methods 
[87]. 
 Analysis of structural features from known protein com-
plexes helps in better understanding of the features responsi-
ble for binding and extrapolating them to sequence level. 
Miller and colleagues (1987) [81] have shown that accessible 
and buried surface area is related to molecular weight. The 
differences in interface structural properties (residues, hy-
drophobicity, hydrophilicity, hydrogen bonds, electrostatics, 
areas, and residue packing, steric strains) with selective pres-
sure has been documented among protease-inhibitors and 
antigen-antibody [25]. Number of residues forming the inter-
face is proportional to the interface area [30, 85]. Stronger 
protein subunit binding was commonly associated with 
larger interface areas [26]. The stability of a protein-protein 
association also depends on the number of hydrogen bonds at 
the interface. Therefore, documentation of inter-molecular 
hydrogen bonds among different protein complexes helps 
determine stability and evaluate predictions [26, 27, 29, 85, 
88]. Structural properties such as hydrogen bonds, hydro-
phobic and Van der Waals interactions have been used to 
study PPI and differentiate among complexes [89]. Interface 
patch is yet another feature widely studied to determine pro-
tein-protein recognition mechanism. Analysing the distribu-
tion of surface patches at the interface using structural fea-
tures showed trends for distinguishing interfaces from other 
surface patches [68]. Dominant peptide segments were 
documented at the interfaces of homodimer and crystal con-
tacts [90]. Conserved residues were observed to be distinctly 
clustered and not randomly distributed on the interface [91]. 
It should also be noted that protein complexes are known to 
accommodate variation at sequence level, even with struc-
turally similar interfaces [5]. Documenting the essential 
structural features that directly or indirectly contribute to 
binding is hence necessary to mine a comprehensive set of 
features that are causal to protein-protein recognition [92]. 
 Several sequence and structure-based features have been 
used to analyse and comprehend PPIs [93], and for their 
incorporation in training predictors, however, no strict set of 
features is known as yet for accurate binding site predictions. 
Also, the correlation between different features may provide 
subtle differences [74]. Moreover, a thorough understanding 
of how proteins physically interact with each other can be 
gained from 3D structural information [94]. Therefore, 
documenting the roles of various features that contribute to 
binding in different complexes is often essential in under- 
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Table 2. PPI datasets and their key findings. 

Group Year Dataset Key findings Reference

Chothia and Janin  1975 3 (insulin dimer, trypsin-PTI, /  oxy-
haemoglobin) 

Dominant hydrophobic interfaces [80] 

Chothia et al. 1976 2 (horse methemoglobin, human hemo-
globin) 

Dimer-dimer interfaces are close packed and hydrophobicity 
stabilises the structure 

[137] 

Miller et al. 1987 11 dimer, 9 tetramers, 2 hexamer, 1 
octomer 

Same molecular weight bury similar amounts of surface, while 
the proportions buried within and between subunits vary unlike 

monomeric proteins 

[81] 

Janin and Chothia 1990 15 protease inhibitors, 4 antigen-
antibody complexes  

Interface structural properties and their implications for kinet-
ics and thermodynamics of association 

[25] 

Jones and Thornton 1995 32 complexes Higher interface hydrophobic residues than surface but less 
than interior 

[26] 

Jones and Thornton 1996 59 complexes Explored factors influencing interface formation are among 
different complexes 

[27] 

Xu et al. 1997 319 protein-protein interfaces Studied hydrogen bonds and salt bridges for specificity of 
protein-protein associations 

[88] 

Tsai et al. 1997 362 non-redundant protein-protein inter-
faces, 57 symmetry-related oligomeric 

interfaces 

Interface hydrophobic residues involved (although not as much 
as in protein folding) in binding 

[82] 

Dasgupta et al. 1997 58 oligomeric proteins, 223 protein 
crystal structures 

Hydrophobic interactions at oligomeric interfaces favour aro-
matic amino acids while crystal contacts avoid inclusion of 

hydrophobic interactions.  

[138] 

Linzaad and Argos 1997 59 protein complexes with 159 polypep-
tide chains 

Large and strong interface hydrophobic patches [139] 

Lo Conte et al. 1999 75 complexes (24 protease inhibitors, 19 
antigen-antibody) 32 others (9 enzyme 

inhibitors, 11 signal transduction) 

Observed interface non-polar characteristics as surface with 
few charged groups 

[29] 

Chakrabarti and 
Janin 

2002 70 complexes Recognition patches in protein interfaces [30] 

Brinda et al. 2002 20 homodimers Graph-spectral analysis effectively identifies clusters at protein 
interfaces  

[140] 

Caffrey et al 2004 64 complexes (42 homodimers, 12 hete-
rodimers, 10 transient complexes) 

Residue conservation is less than the core but more than the 
surface 

[84] 

Bahadur et al. 2004 70 protein-protein complexes, 122 ho-
modimers 

Interface features (residue propensity score) in specific and 
non-specific complexes 

[141] 

Zhanhua et al. 2005 156 heterodimers, 170 homodimers High Hydrogen-bond density per interface residue with domi-
nant charged and hydrophilic residues at the heterodimer pro-

tein interfaces 

[69] 

Pal et al. 2007 204 protein complexes Dominant peptide segments involved in specific interactions 
discriminate biological from non-biological ones  

[90] 

Reynolds et al. 2009 220 heterodimers, 534 homodimers PPI analysis server named ProtorP [31] 

Gromiha et al. 2009 153 heterodimers Dominance of aromatic and positively charged residues at 
interface 

[142] 

Guharoy and Chak-
rabarti 

2010 122 homodimer, 204 heterodimer  Conserved interface residues are not randomly distributed and 
are distinctly clustered 

[91] 

Sowmya et al. 2011 192 heterodimer complexes Heterodimeric interfaces are often abundant in polar residues [7] 

Chen et al. 2013 113 heterodimer complexes Direct correlation between binding affinity and amount of 
buried surface area at the interface 

[143] 
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standing the fundamentals of protein association. Thus, a 
combined formulation of structural and sequence features 
along with experimental evidence is often essential to im-
prove the prediction accuracy of PPIs. 

Protein Interface Databases 

 Protein interactions have been extensively studied and 
deposited in various databases using interface datasets at 
protein and domain levels. PIBASE is a relational database 
of structurally defined interfaces obtained from protein do-
main pair interactions [95]. The database contains interfaces 
that are annotated based on geometric, physicochemical and 
topological properties responsible for the structural charac-
terisation of protein complexes. Currently (as of February, 
2013) contains 104,569 structures from PDB and PQS (Pro-
tein Quaternary Structure) and 598,638 domains from SCOP 
(Structural Classification of Proteins) and CATH (Class Ar-
chitecture Topology and Homologous superfamily) data-
bases with a total of 755,998 interfaces from the interfaces of 
SCOP [96], CATH [97] and interface chains. SCOPPI 
(Structural Classification of Protein-Protein Interfaces) data-
base consists of classifications and annotations of protein 
domain interactions derived from PDB and SCOP domain 
definitions [98]. SCOPPI classifies domains based on their 
geometry and provides several interface characteristics such 
as number of interfaces, aminoacid types and positions, con-
servation, interface size, and permanent or transient nature of 
interactions. SCOPPI comprises of a total of 105,547 do-
main-domain interactions, 22,874 domain-domain interac-
tions at 90% non-redundancy level and 4,630 family-family 
interactions with 15,058 interface types (February 2013).  
 The database of 3D Interacting Domain (3DID) archives 
domain-domain interactions obtained from high resolution 
protein structures [99]. 3DID provides information regarding 
structural similarity between different members of the same 
protein family. As of February 2013, 3DID contains 4302 
unique Pfam domains participating in domain-domain inter-
actions, with 175,144 domain-domain interactions of known 
3D structures in 174,006 proteins. A large-scale protein do-
main interaction interface database, InterPare, is a public 
database and server for protein interface information ob-
tained from 3D-structures [100]. The database detects inter-
faces by three methods i.e. calculating geometric distance 
method for checking distance between atoms in different 
domains, detecting Accessible Surface Area (ASA) and cal-
culating Voronoi diagram which uses mathematical defini-
tion for interaction interfaces.  
 PDBsum [101, 102] is a pictorial database that provides 
summary information of 3D structures deposited at the PDB. 
The database provides structure diagrams, GO annotations, 
1D sequence annotated by Pfam [103] and InterPro [104, 
105] domain assignments, clefts in structures and schematic 
diagrams of PPI, including provisions for generating 
PDBsum information for user’s own PDB file formats [102]. 
As of February 2013, PDBsum contains 91,642 entries in-
cluding 1,854 superseded ones. Few other databases such as 
ProtCom (database of protein complexes) [106] and 
SCOWLP (Structural Characterisation of Water, Ligands and 
Protein) [107] provide protein interaction interface informa-

tion derived from high-throughput data, experimentally de-
termined structures at PDB and literature.  

Protein Interaction Characterisation and Prediction 
Tools/Servers 

 Several webservers and/or tools have been described over 
the past two decades for effective characterisation of protein 
interfaces based on physicochemical properties. InterPreTS 
developed by Aloy and Russell (2003) [108] predicts protein 
interactions in query sequences using similarity between 
protein sequences and known complexes. MODTIE predicts 
binary protein interaction based on similarity of query se-
quence with the structures at MODBASE [109]. SHARP2 
server performs PPI prediction using patch analysis with 
parameters such as solvation potential, hydrophobicity, ac-
cessible surface area, interface residue propensity, planarity 
and protrusion. The Proface server described by Saha and 
colleagues dissects PPI to derive physical and chemical fea-
tures [83]. Sppider [110] is a protein interface identification 
and recognition server based on solvent accessibility and 
structural information with high levels of accuracy (74%). 
The ProtorP server predicts physical and chemical character-
istics of structural interfaces (types of atoms at interfaces, 
structural elements, H-bonds, bridging water molecules, salt 
bridges and disulphide bonds, interface area, planarity, ec-
centricity, gap volume and gap index etc. in homo and hetero 
complexes), to assess the different interface properties of the 
query protein against the pre-calculated set of interface fea-
tures in different complexes [31]. Many other webservers 
developed based on structural data of available protein com-
plexes at the PDB for the prediction of interaction sites and 
interfaces include cons-PPISP [111], meta-PPISP [112], 
PI2PE [113], PIC [114], LIGPLOT [115], ProTherm [116], 
PPI-Pred [117], MAPPIS [118], WHISCY [119], SNAPPI 
[120], PepSite [121], PrISE [122] and Wiki-pi [123]. Several 
other databases/ tools available for protein-protein interface 
hot-spots include ASEdb [124], BID [125], KFC [126], Hot-
Sprint [127], hotPOINT [128], APIS [129], PCRPI [130], 
HotRegion [131] and DBAC [132]. PPI hot spots and in
silico techniques available for hot spot residues is reviewed 
by Morrow and Zhang [133]. The community wide experi-
ment, CAPRI (Critical Assessment of Predicted Interactions) 
[134], performs continuous assessments of prediction models 
multiples times in a year. The accurate prediction of interac-
tion regions and residue contacts while accommodating large 
conformational changes is often difficult [135]. The commu-
nity experiment recently found that electrostatics and solva-
tion terms marginally distinguish the designs of proteins 
from natural complexes, largely due to non-polar characteris-
tics of interactions and also that the binding surfaces were 
structurally less embedded in designed monomers, suggest-
ing the importance of conformational rigidity at the designed 
surface [136].  

CONCLUDING REMARKS  

 Molecular biology processes are frequently associated 
with interactions between protein pairs for specific function-
ality. PPIs have been widely studied using different ap-
proaches for an in-depth understanding of protein-protein 
recognition in cellular systems. Advances in the analyses of 
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the interfaces give insights into the significance of prediction 
using sequence and structure information. The physical and 
chemical factors determining the interface formation is often 
multi-parametric in nature. Despite several line-of-thoughts 
in the area, current information lacks compelling reasons 
towards the formation of stable interface. This also hampers 
the incorporation of a comprehensive set of features to train 
predictors for reliable protein interaction predictions. 
Moreover, interfaces are part of surfaces in interacting 
monomers associated for specific functionality in biological 
units; mimicking these interface features under in vivo condi-
tions poses further difficulty in prediction accuracy. Struc-
tural information is essential to obtain distinct features of 
binding for potential extrapolation to sequence level. Thus, 
understanding the basis of PPI using a dataset of known pro-
tein complexes and deriving important features responsible 
for binding is essential. Each individual protein complex 
portrays specific, selective and sensitive binding to its part-
ner. An investigation on the combination of atomic features 
and residue types at the interface as compared to the surface 
in different classes of complexes is necessary to characterize 
binding sites. Therefore, learning the discriminative features 
of different PPIs from known complexes and consequently 
obtaining common patterns of recognition will be critical for 
predicting interacting partners. 
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Chapter 2: Methods and applications 

 

Methods and applications that were developed and used in this study are summarised in 

Table 2.1. The ensuing publications have also been listed and included in the relevant 

chapter. 

 

 

Table 2.1: Methods, applications and publications 

Methods/Applications Chapter 
Thesis 

Publication 

Protein interface residue-level classes and their 

discriminatory structural features  
3 2 

Protein interfaces and biological functions 4 3 

Dissecting interfaces of interacting proteins: integrin 

αvβ6∙uPAR interactions 
5 4 
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Chapter 3: Protein interface residue-level classes and 

their discriminatory structural features 

 

3.1 Summary  

 

PPI establishes the central basis for complex cellular networks in a biological cell. 

Investigation on protein interfaces of known complexes is an important step towards 

deciphering the driving forces of PPIs. Each PPI complex is specific, sensitive and selective 

to binding. Therefore, an investigation on the relative interface-surface polarity of each 

complex is essential to determine the predominant forces driving binding.  

 

In this study, a comprehensive structural analysis of 278 non-redundant heterodimeric 

protein complexes from the PDB has been carried out. The relative surface-interface 

polarities, referred to as interface polarity abundance of each complex in the dataset were 

estimated for predominance of polar and/or non-polar interactions at the protein interface. 

This property divides the dataset into two interface classes as also observed in our previous 

study with a smaller dataset [24]. The complexes with less polar residues at the interface as 

compared to the surface (~60%), which is the ‘classical’ definition of a PPI complex, are 

designated as ‘class A’ (with predominant non-polar interactions at the interface), while the 

complexes with more polar residues at the interface as compared to the surface (~40%), are 

designated as ‘class B’ (with predominant polar interactions at the interface). 

 

The essential PPI structural features such as interface area (ΔASA), the relative abundance 

of polar and non-polar residues at the interface (interface property abundance), hydrogen 

bonds (H-bonds), salt bridges, percentage of charged residues at the interface (interface 

charged residues%), solvation free energy gain upon interface formation (ΔiG), binding 

energy (BE), and electrostatics among these interface classes were investigated and their 

gleaned features are documented. Water molecules and ions are not present in all the 

complexes in this dataset and their role has therefore not been explicitly considered in this 

analysis. The need for a residue-level characterization of the interface in addition to other 

structural features is discussed (Publication 2). 

 

3.2 Publication 2   
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Abstract 

Background 

Protein-protein interaction (PPI) is essential for molecular functions in biological cells. 

Investigation on protein interfaces of known complexes is an important step towards 

deciphering the driving forces of PPIs. Each PPI complex is specific, sensitive and selective 

to binding. Therefore, we have estimated the relative difference in percentage of polar 

residues between surface and the interface for each complex in a non-redundant heterodimer 

dataset of 278 complexes to understand the predominant forces driving binding.  

Results 

Our analysis showed ~60% of protein complexes with surface polarity greater than interface 

polarity (designated as class A). However, a considerable number of complexes (~40%) have 

interface polarity greater than surface polarity, (designated as class B), with a significantly 

different p-value of 1.66E-45 from class A. Comprehensive analyses of protein complexes 

show that interface features such as interface area, interface polarity abundance, solvation 

free energy gain upon interface formation, binding energy and the percentage of interface 

charged residue abundance distinguish among class A and class B complexes, while 

electrostatic visualization maps also help differentiate interface classes among complexes. 

Conclusions 

Class A complexes are classical with abundant non-polar interactions at the interface; 

however class B complexes have abundant polar interactions at the interface, similar to 

protein surface characteristics. Five physicochemical interface features analyzed from the 

protein heterodimer dataset are discriminatory among the interface residue-level classes. 

These novel observations find application in developing residue-level models for protein-

protein binding prediction, protein-protein docking studies and interface inhibitor design as 

drugs. 
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Background 

Protein-protein binding is a known phenomenon in complex biological networks. The 

molecular principle of such binding is often elusive in nature. Understanding its driving 

forces using known protein complexes is essential. The analysis of existing protein-protein 

interaction (PPI) complexes from the Protein Data Bank (PDB) [1] is the key to gaining 

insights into recognition mechanisms and binding principles as reviewed elsewhere [2-6]. 

Sequence and structural investigations on the existing complexes has been carried out for 

several decades [3, 7-10]. In these extensive surveys, structural features over diverse datasets 

of protein-protein complexes were typically averaged, obscuring information on individual 

proteins’ structural integrity. Each individual complex is specific and sensitive to binding. 

Although, non-polar (or hydrophobic) interactions are known to play a major role in 

contributing to the driving force for binding, in a considerable number of complexes, polar 

interactions are also observed to contribute abundantly to the formation of a stable interface 

[11]. Therefore, it is often essential to study the relative difference in surface and interface 

polarity of each PPI complex to determine the major binding forces at the interface and 

determine their discriminatory features. 

 

Interfaces are localized regions of surfaces with different physico-chemical properties 

compared to the rest of the surfaces, thereby driving binding to other molecules. Both 

physical and chemical features (including hydrophobicity, electrostatic interactions, binding 

energy, interface size, hydrogen bonds, salt bridges, disulphide bonds, planarity, sphericity, 

shape complementarity, amino acid chemical groups, and conserved residue clusters) govern 

the formation of protein interfaces as described elsewhere [7, 9, 12-18]. The chemical nature 

of residues forming a protein interface (amino acid residue composition) determines the 

hydrophobic effect of an interface. Non-polar (or hydrophobic) residues are observed to 

occur predominantly at the protein interface, playing a major role in contributing to the 

driving force for binding [7, 13]. Interfaces are observed to be less non-polar (or 

hydrophobic) than the protein interior [13]. The residue composition of protein-protein 

interfaces was observed to be more similar to the protein surface than the protein interior 

[9].  

 

Interfaces were observed to be significantly polar as well as non-polar with few charged 

groups, similar to the characteristics of the protein surface [12]. Structural analysis also 

revealed that charged and polar amino acids are involved in protein-protein interactions as 

reviewed elsewhere [19]. Charged and polar residues contributing to binding specificity and 
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complex formation are demonstrated in a number of complexes such as human IL-4, human  

CD2 and CD58, barnase-barstar, Colicin E9, integrin αvβ6 membrane protein and in 

intrinsically disordered proteins [20-25]. Shape complementarity, polar interactions, 

hydrogen bonding and salt bridges are also known to contribute to binding specificity and 

free energy of binding [17, 24, 26, 27]. Also, charged and aromatic side chains are crucial 

for binding, determining the cation-pi, electrostatic and aromatic interactions [8]. The role 

of electrostatics in binding stability of protein-protein complexes is demonstrated [16]. 

These observations indicate that although PPIs are driven by non-polar interactions at the 

interface for a majority of complexes, in some cases polar interactions contribute to binding 

specificity (characteristic of polar residues) and likewise to complex stabilization. Therefore, 

a study on the relative percentage difference between surface and interface polarities of each 

protein complex is often essential. In our previous study, we have identified a class of 

complexes (class B) with more polar residues that core and surface, where binding is mainly 

polar with a dataset of 198 complexes [11]. This observation has now been extended for an 

updated yet non-redundant dataset of 278 protein complexes to verify and identify any 

discriminatory features among these interface residue-level classes. 

 

In this study, we have carried out a comprehensive structural analysis of 278 non-redundant 

heterodimeric protein complexes from the PDB. We estimated the relative difference in 

surface and interface polarities of each complex in the dataset, using percentage values of 

polar residues. This property divides the dataset into two interface classes as also observed 

in our previous study with a smaller dataset [11]. Class A has less polar residues at the 

interface than the rest of the surface (~60%) which is the ‘classical’ definition of a PPI 

complex and class B has more polar residues at the interface than the rest of the surface 

(~40%), is ‘non-classical.’ Therefore, we have investigated essential PPI structural features 

such as interface area (ΔASA), the relative abundance of polar and non-polar residues at the 

interface (interface polarity abundance), hydrogen bonds (H-bonds), salt bridges, percentage 

of charged residues at the interface (interface charged residues%), solvation free energy gain 

upon interface formation (ΔiG), binding energy (BE), and electrostatics among these 

interface classes and their gleaned features are documented. We identified five key features 

(ΔASA, interface polarity abundance, interface charged residues%, ΔiG and BE) that are 

significantly different between the interface classes. These novel observations have 

implications for residue-level characterization of protein complexes to develop models for 

protein-protein binding prediction and docking studies.  
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Methods  

Heterodimer dataset 

We created a non-redundant heterodimer dataset of protein complexes from the PDB, using 

the RCSB PDB’s advanced search interface. The following criteria were used for filtering: 

(i) resolution <= 3Å (ii) protein size >50 residues (iii) contains experimental data (iv) number 

of chains, entities and oligomeric state is set at 2 (v) devoid of DNA or RNA or a hybrid of 

such molecules with the protein or otherwise (vi) entries with mutations were not included 

and (vii) sequence identity cut-off is set to 30%, which is the minimum cut-off available in 

the PDB. As a second step, the USEARCH program [28] was used to further remove the 

redundancy among heterodimer complexes at sequence identity cut-off of 20%, as this 

threshold eliminates remote homology up to 25% sequence identity seen in structures as well 

[29]. 

 

Interface analysis 

The interface of PPI complex is calculated as the change in solvent accessible surface area 

(ΔASA) upon complex formation. The Surface Racer 5.0 program [30] was used to calculate 

ASA with a probe radius of 1.4Å and Lee and Richards implementation [31]. Interface 

residues with ΔASA > 0.1Å2 were considered for this analysis, as defined by Chakrabarti 

and Janin [32]. ASA was used to determine surface residues of each complex. The amount 

of polar, non-polar and charged residues at the interface was then estimated for the dataset. 

The interface polarity abundance (P%-NP%) is measured as the difference in the percentage 

of polar residues (P%) and percentage of non-polar residues (NP%) at the interface [11]. 

 

Classification based on relative interface-surface polarity 

Interfaces are part of protein surface formed upon binding of individual subunits. Each 

protein complex has a specific composition of polar (P) and nonpolar (NP) residues at the 

surface (S) and at the interface (I). The distribution of polar and nonpolar residues at the 

interface of a protein complex describes the nature of the interface and the major driving 

force for binding. We have calculated the percentage of polar and nonpolar residues at the 

surface and interface for each complex in the dataset. Polar residues considered in the 

analysis are R, N, D, E, Q, H, K, S, T, and Y and non-polar residues are A, C, G, I, L, M, F, 

P, V, and W. Complexes were then grouped based on the relative difference in percentage 

of polar residues between surface (S) and the interface (I). Complexes with interface polarity 

less than the surface (represented as S>I) are grouped as class A, and those that have interface 

polarity greater than the surface (represented as S<I) are grouped as class B [11].  
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Intermolecular H-bonds and salt bridges calculation  

We calculated the intermolecular hydrogen bonds for the dataset using HBPLUS program 

[33] at a distance of < 4Å. The H-bonds were extracted such that the donor and acceptor are 

from two different chains. Salt bridges were calculated using SBION program [34] within a 

distance of 4Å. The salt bridges were also extracted such that the oppositely charged atoms 

are from two different chains. 

 

ΔiG and BE calculation 

PDBePISA webserver [35] was used to obtain the solvation free energy gain upon interface 

formation (ΔiG, in kcal/mol, with negative ΔiG values indicating hydrophobic interface) and 

for the heterodimer dataset. BE values were calculated using the DCOMPLEX program [36] 

with the most negative value considered the strongest. The DCOMPLEX program uses 

DFIRE-based potentials [37] to calculate BE terms, without values for individual 

components (electrostatic, van der Waals, hydrophobic and entropic terms) contributing to 

BE. Initially, the program calculates the total atom-atom potential of mean force, G, for each 

protein structure as follows: 

	 	∑ ū , , ,,          (1) 

where ū is the atom-atom potential of mean force between two atoms, i and j which are ‘r’ 

distance apart. The total is over atomic pairs which are not from the same residue and a K 

factor is used to avoid double-counting of residue-residue and atom-atom interactions [36]. 

The binding energy between two interacting proteins A and B can be calculated as follows: 

	         (2) 

where A and B are considered as two protein structures whose interface residues contribute 

most to ΔGbind. Therefore, DCOMPLEX [36] uses the equation below to calculate BE: 

	∑ ū
,
, . 	       (3) 

 

Electrostatic potential at the interface 

The surface electrostatic potential of chain A and chain B of a protein complex was 

calculated by solving Poisson-Boltzmann equation with dielectric constant (protein) of 4 

using DEEPVIEW [38]. 

 

Statistical analysis 

The Wilcoxon signed-rank test [39], a non-parametric statistical hypothesis test is used to 

compare the two interface classes to assess whether the mean ranks for the PPI features in 
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the two classes differ (i.e. it is a paired difference test). The discriminatory PPI features 

among the two classes were thus tested for statistical significance with p < 0.05 (for the 

Wilcoxon signed-rank test) in RStudio [40]. 

 

Results and Discussion  

We calculated the amount of polar and non-polar residues at the surface and interface of 

each protein-protein complex and estimated their relative interface-surface polarities for 

classification into class A and class B (as described in Materials and Methods section), to 

determine the type of interactions predominantly driving protein-protein binding. Additional 

File 1: Table S1 shows the heterodimer dataset (278) divided into class A (165) and class B 

(113). Thus, 59.4% of complexes in our dataset belong to class A (relative surface polarity 

is greater than interface polarity), where non-polar interactions are predominant at the 

interface, as previously observed in a number of studies [7, 13]. Nevertheless, 40.6% of 

complexes belong to class B (relative interface polarity is greater than surface polarity), 

where polar interactions are predominant at the interface, similar to the surface 

characteristics as also observed [12]. Class A and class B are significantly different with a 

p-value of 1.66E-45 (using Wilcoxon rank sum test) as shown in Additional File 2: Figure 

S1. Examples of class A and class B complexes representing predominant non-polar and 

predominant polar interfaces (using the PDBsum [41] interaction analysis) respectively are 

shown in Figure 1.  

 

PPI features among class A and class B complexes 

We carried out a statistical analysis of all the structural features (described in Materials and 

Methods section including ΔASA, interface polarity abundance, interface charged 

residues%, H-bonds, salt bridges, ΔiG, BE) in R program (using Wilcoxon rank sum test), 

to determine whether structural features discriminate among class A and class B complexes. 

Interestingly, five structural features showed significant difference among the interface 

classes as shown in Figure 2, with p-value < 0.05 (Table 1). The q-value in Table 1 is the 

smallest False Discovery Rate (FDR) at which a particular class (class A or class B) would 

stay on the discriminatory features table. This is not identical to the p-value, which is the 

smallest false positive rate (FPR) at which a class appears positive on the discriminatory 

features table. The p-value is much stricter than the q-value. An FDR of 5% (q-value <0.05) 

is acceptable, which is accepting 5% of erroneous single results, according to Wilcoxon test 

[39]. These structural features are presented below, along with sets of other correlated 

properties and electrostatics among classes. 
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Interface polarity abundance among classes 

Protein interfaces are composed of both polar and non-polar residues. Some interfaces are 

abundant in non-polar residues while few others are abundant in polar residues. The interface 

polarity abundance (P%-NP%) measure is significantly different among the interface classes 

with p = 7.01E-30 (Table 1 and Figure 2). 

 

ΔiG among classes 

The solvation free energy gain upon interface formation (ΔiG) is a measure of the interface 

stability in protein complexes [35]. The ΔiG values are significantly different among 

interface classes with p = 7.43E-18 (Table 1) as shown in Figure 2.  

 

BE among classes 

The strength of binding among class A and class B complexes is estimated as a measure of 

BE in kcal/mol. The BE values are relatively stronger for class A complexes (average BE is 

-33.99 kcal/mol), as compared to class B complexes (average BE is -17.94 kcal/mol). The 

BE values are significantly different among interface classes with p = 2.63E-14 (Table 1) as 

shown in Figure 2.  

 

Interface charged residues among classes 

The percentage of charged residues at the interface is estimated for both classes. The 

interface charged residues% is significantly different among interface classes with p = 

6.58E-13 (Table 1) as shown in Figure 2.  

 

ΔASA among classes 

The interface area (ΔASA) of a complex is an important structural characteristic of PPI. We 

observed that class A complexes demonstrate comparatively larger interfaces than class B 

complexes. The ΔASA is significantly different among the classes with p = 1.31E-08 (Table 

1 and Figure 2). 

 

Other correlations of interface features among classes 

The stability of protein-protein binding depends on the number of hydrogen bonds and salt 

bridges formed between the two interacting subunits. Class A complexes show high 

correlation between intermolecular H-bonds and interface area (r = 0.9) as previously 

observed [7, 42]. However, class B complexes alone show reduced trends (r = 0.73) between 

intermolecular H-bonds and interface area (Additional File 3: Figure S2), indicating that 
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low quality of intermolecular hydrogen bonds is a characteristic of the large number of polar 

or charged residues across protein interfaces as previously observed [17]. Although salt 

bridges showed no distinguishing trends among classes, we observed that class B complexes 

are rich in salt bridges (average number of salt bridges is 6.5), as compared to class A 

complexes (average number of salt bridges is 5.8).  

 

The BE values are proportional to interface area in the dataset (r = 0.96, shown in Additional 

File 4: Figure S3) as previously observed [43]. The ΔiG values show relatively less 

correlation with interface area in class B complexes (r = -0.62) as compared to class A 

complexes (r = -0.92, Additional File 5: Figure S4). Moreover, the ΔiG and BE is highly 

correlated among the dataset (r = 0.88) and class A (r = 0.91), however shows limited 

correlation among class B (r = 0.55, Additional File 6: Figure S5).  

 

Electrostatic visualization maps among protein interface classes 

We have studied the surface electrostatic potential solving Poisson-Boltzmann equation 

using DEEPVIEW for a few examples of class A and class B complexes. This shows 

common surface electrostatics at work amongst the class A and amongst the class B 

complexes. Interestingly, the class A complexes demonstrate similar distribution of charges 

at the protein interfaces of both chains, suggesting electrostatic energy may not contribute 

to binding energy among class A complexes. However, class B complexes show opposite 

charge distributions at the protein interfaces, suggesting electrostatic energy plays an 

important role in PPIs among class B complexes as shown in Figure 3. Therefore, the surface 

electrostatic potential maps give quick visual clues for identifying or distinguishing class A 

and class B complexes.  

 

Conclusions 

Structural analyses of known protein interfaces help in understanding the molecular 

principals of PPIs. Therefore, a comprehensive analysis of known structural interfaces of 

278 complexes was carried out and their gleaned features are documented in this study. It is 

realized that each complex type is unique, specific and sensitive to binding. Nonetheless, 

there is a considerable degree of observed pattern among protein interface classes. We report 

two classes of interfaces, one class with less polar residues and the other class with more 

polar residues compared to the surfaces in bound state. The surfaces of proteins are quite 

polar and therefore, it is perhaps not surprising that some interfaces is polar as well and that 

PPI complex forms due to interactions among charged and polar residues. Thus, the need for 



 72

a residue-level characterization of the interface is crucial in addition to other structural 

features. We document five discriminatory features (interface area, interface polarity 

abundance (P%-NP%), interface charged residues%, solvent free energy gain upon interface 

formation (ΔiG), and binding energy) among the interface residue-level classes. This is a 

first attempt towards classifying the complexes based on interface residue-level classes for 

the characterization of PPI features amongst these classes. These observations corroborate 

the need for classification of complexes in determining their combinatorial features and 

drawing consensus for common patterns in protein-protein recognition. These results 

provide molecular insights for protein-protein binding towards the development of residue-

level prediction models in future studies. Additionally, mutation experiments using hot spot 

residue databases [44] and detailed interface residue characterization (cation-pi, electrostatic 

and aromatic interactions [8]) will further strengthen this study, for individual structures. 

Furthermore, extending this analysis for a larger dataset with a combined formulation of 

atomic and residue level features in future studies may improve protein-protein docking. 
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Table 

Table 1: PPI features distinguishing class A and class B (using Wilcoxon rank sum 

test) 

PPI features P-value Q-value 

Interface polarity abundance (P%-NP%) 7.01E-30 1.19E-28

Solvent free energy gain (ΔiG), 7.43E-18 1.19E-16

Binding energy 2.63E-14 3.68E-13

Interface charged residues% 6.58E-13 8.55E-12

Interface area 1.31E-08 1.57E-07
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Figures 

 

 

Figure 1: Examples of PPI interfaces in class A and class B complexes. The PDBsum 

[41] interaction analysis represents interaction residues on either chain with residues shown 

in different colours based on their properties and the coloured lines joining these residues 

representing the type of interaction between these residues. Class A complex shows a surface 

polariy of 60.28% and interface polarity of 37.84% (S>I) implying relatively less polar 

interactions at the interface (or relative abundance of non-polar interactions at the interface). 

Class B complex shows surface polariy of 50.69% and an interface polarity of 73.21% (S<I) 

implying relative abundance of polar interactions at the interface (or relatively less non-polar 

interactions at the interface). 
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Figure 2: Distinguishing PPI features among interface classes. The interface area 

(ΔASA), interface polarity abundance (P%-NP%), interface charged residues%, solvent free 

energy gain (ΔiG), and BE are shown to distinguish among class A and class B complexes 

(p-values are shown in Table 1). 
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Figure 3: Surface electrostatics distribution of Class A and Class B complexes using 

DEEPVIEW. The heterodimer complexes are shown in cartoon representation with chain A 

in cyan, chain B in orange and interface residues colored in black. PDB IDs and protein 

names are given for each complex along with I-S values (numbers in parenthesis represent 

(P%-NP%), the interface polarity abundance).  The electrostatic potential images of class A 

complexes show that the interface of chain A and of chain B have same charges (similar 

colors), suggesting electrostatic energy may not favor protein binding in class A complexes. 

The electrostatic potential images of class B complexes show that the interface of chain A 

and chain B have opposite charges (different colors); suggesting electrostatic energy favors 

protein binding in class B complexes. 
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Additional Files 

Additional file 1  

Table S1: Heterodimer dataset (278) divided into interface classes based on 

residue level surface and interface polarity values.  The PDB code is shown 

along with the specific chains used in this study. S – Surface polarity; I – Interface 

polarity 

Class A (165) [S>I] 
1E44 [A, B] 1EUD [A, B] 1FS0 [E, G] 1GK9 [A, B] 1H32 [A, B] 

1JEQ [A, B] 1JKG [A, B] 1JMA [B, A] 1LSH [A, B] 1N1J [A, B]  

1NME [A, B] 1NRJ [A, B] 1OF5 [A, B] 1OO0 [A, B] 1ORY [A, B] 

1R0R [E, I] 1R8O [A, B] 1UGH [E, I] 1US7 [A, B] 1V74 [A, B] 

1VRA [A, B] 1WPX [A, B] 1WQJ [B, I] 1XEW [X, Y] 1XOU [A, B] 

1YKH [A, B] 1Z0J [A, B] 1Z5Y [D, E] 2CG5 [A, B] 2D74 [A, B] 

2DYO [A, B] 2F4M [A, B] 2FH5 [A, B] 2FTX [A, B] 2G2S [A, B] 

2GA9 [A, D] 2GSK [A, B] 2H9A [A, B] 2OMZ [A, B] 2OZN [A, B] 

2P1M [A, B] 2PA8 [D, L] 2PQN [A, B] 2QSF [A, X] 2QWO [A, B] 

2RAW [A, B] 2V3B [A, B] 2V6X [A, B] 2VN6 [A, B] 2VSM [A, B] 

2WD5 [A, B] 2XFG [A, B] 2ZFD [A, B] 2ZIV [A, B]  2ZSI [A, B] 

3A2F [A, B]   3A8G [A, B] 3AA7 [A, B] 3ABE [C, Z] 3AON [A, B] 

3AQF [A, B] 3AU4 [A, B] 3AYH [A, B] 3B0C [T, W] 3B0Z [A, B] 

3BS5 [A, B] 3BTP [A, B] 3CKI [A, B] 3CPT [A, B] 3CQC [A, B] 

3CX8 [A, B] 3DBO [A, B] 3DGP [A, B] 3DPL [C, R] 3DRA [A, B] 

3EGV [A, B] 3EP6 [B, A] 3F62 [A, B] 3FGR [A, B] 3FPU [A, B] 

3GA9 [L, S] 3H7H [A, B] 3HZH [A, B] 3IEY [A, B] 3IF8 [A, B] 

3JTQ [A, B]  3K1R [A, B] 3K8P [C, D] 3KCP [A, B] 3KF6 [A, B] 

3KXC [A, C] 3L91 [A, B] 3LBX [A, B] 3LF4 [A, B] 3LQC [A, B] 

3M1C [A, B] 3M7F [A, B] 3MCB [A, B] 3MJ7 [A, B] 3MKR [A, B] 

3ML1 [A, B] 3MXN [A, B] 3NW0 [B, A] 3NYB [A, B] 3OJA [A, B] 
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3OSS [C, D] 3PGE [A, B] 3PV6 [A, B] 3Q87 [A, B] 3QN1 [A, B] 

3R07 [A, C] 3R24 [A, B] 3REQ [A, B] 3RGW [L, S] 3SHG [A, B] 

3T5X [A, B] 3TBI [A, B] 3VYR [A, B] 3VZ9 [B, D] 3W8I [A, B] 

3ZET [A, B] 3ZVQ [A, B] 4A5U [A, B]  4AP2 [A, B] 4AT7 [A, B] 

4AWX [A, B] 4B8A [A, B] 4BJJ [A, B] 4BMP [A, B] 4C9B [A, B] 

4CBU [A, G] 4CGY [A, B] 4CT0 [A, B] 4CXF [A, B] 4DBG [A, B]  

4DEY [B, A] 4E4W [A, B] 4EGC [A, B] 4ETP [A, B] 4EUK [A, B] 

4EYY [R, Q] 4F6U [A, B] 4F9C [A, B] 4G1M [A, B] 4G6T [A, B] 

4G94 [A, B] 4GDX [A, B] 4GVB [A, B] 4H4K [A, C] 4HNX [A, B] 

4HPL [A, B] 4HST [A, B] 4HT3 [A, B] 4I1S [A, B] 4JE3 [A, B] 

4JEH [A, B] 4KHA [A, B] 4KMO [A, B] 4L2I [A, B] 4M69 [A, B] 

4M6W [A, B] 4MRT [C, A] 4NFU [A, B] 4NQW [A, B] 4O8Y [A, B] 

Class B (113) [S<I] 

1A22 [A, B] 1ARO [P, L] 1AY7 [A, B]   1DJ7 [A, B] 1GL4 [A, B] 

1H2V [C, Z]  1KA9 [H, F] 1M1E [A, B] 1NPE [A, B] 1SVD [A, M] 

1T0P [A, B] 1T6B [X, Y] 1USU [A, B] 1WMH [A, B] 1XG2 [A, B] 

1Z3E [A, B] 1Z92 [A, B]  1ZBX [A, B] 1ZHH [A, B] 2APO [A, B]  

2B42 [A, B] 2BLF [A, B] 2CKL [A, B] 2FCW [A, B] 2FHZ [A, B] 

2FOM [A, B] 2HDI [A, B] 2HRK [A, B] 2IW5 [A, B] 2O2V [A, B] 

2O3B [A, B] 2P45 [A, B] 2PTT [A, B] 2QC1 [A, B] 2QKL [A, B] 

2V8S [E, V] 2VDB [A, B] 2VLQ [A, B] 2Z5B [A, B] 2Z64 [A, C] 

3A4U [A, B] 3ANW [A, B] 3AWU [A, B] 3AXJ [A, B] 3BEG [A, B] 

3C5X [A, C] 3CLS [C, D] 3D3B [A, J] 3DI3 [A, B] 3DLQ [I, R] 

3DSS [A, B] 3EI3 [A, B] 3F6Q [A, B] 3FJU [A, B] 3FMO [A, B] 

3FPN [A, B] 3FQD [A, B] 3GB8 [A, B] 3GC3 [A, B] 3HHM [A, B] 

3KLD [A, B] 3KYJ [A, B] 3MCA [A, B] 3MP7 [A, B] 3MWD [A, B]  

3N1M [B, C] 3N40 [P, F] 3N4I [A, B] 3NV0 [A, B] 3NVN [A, B] 

3NY7 [A, B] 3O2P [A, E] 3O3O [A, B] 3OG6 [A, B] 3OJM [A, B] 
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3ONA [A, B] 3OQ3 [A, B] 3OUN [A, B] 3QQ8 [A, B] 3RNQ [B, A] 

3SBT [A, B] 3THO [A, B] 3TU3 [A, B] 3V8X [A, B] 3VF0 [A, B] 

3VRD [A, B] 3VU9 [A, B] 3W9C [A, B] 3WA5 [A, B] 3ZNZ [A, B] 

3ZYI [A, B] 4BI8 [A, B] 4BL7 [A, B] 4C2A [A, B] 4DRI [A, B] 

4DVG [A, B] 4EMJ [A, B] 4F48 [A, B] 4FZV [A, B] 4G7X [A, B] 

4GAF [A, B] 4GED [A, B] 4GQ2 [M, P] 4HFF [A, B] 4IU2 [A, B] 

4IYP [A, C] 4J38 [A, B] 4JHP [B, C] 4K12 [A, B] 4KBM [A, B] 

4KT1 [A, B] 4KT3 [A, B] 4LV5 [A, B]   
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Additional file 2  

 

Figure S1: Class A and Class B are significantly different. The boxplot depicts class A 

and class B significantly different with a p-value of 1.66E-45 (using Wilcoxon rank sum 

test). 
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Additional file 3  

 

Figure S2: Intermolecular H-bonds shows relatively low correlation with interface area 

in class B. Hydrogen bonds at the protein interface are highly correlated to interface area in 

the dataset (r = 0.88) and class A (r = 0.9), however shows relatively lower trends (r = 0.73) 

in class B.  
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Additional file 4  

 

 

Figure S3: Binding energy is highly correlated to interface area. BEs at the protein interfaces are 

highly correlated to interface area with r = -0.96. 
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Additional file 5  

 

Figure S4: Solvation free energy gain upon interface formation (ΔiG) shows limited 

correlation with interface area in class B complexes. ΔiG shows high correlation with 

interface area in (a) heterodimer dataset (r = -0.88), and (b) class A (r = -0.92), however 

shows limited correlation in (c) class B complexes (r = -0.62).  
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Additional file 6 

 

 

Figure S5: BE shows limited correlated with ΔiG in class B. Binding energies at the 

protein interfaces are highly correlated to solvation free energy gain upon interface 

formation (ΔiG) in the dataset (r = 0.88) and class A (r = 0.91), however shows limited 

correlation between BE and ΔiG in class B (r = 0.55). 
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3.3 Conclusions 

 

Structural analyses of known protein-protein interfaces provide insights into understanding 

the major driving forces for PPI. A comprehensive structural analysis of 278 complexes is 

thus carried out from the PDB and documented their gleaned features in this study. It is 

realized that each complex type is unique, specific and sensitive to binding. Nonetheless, 

there is a considerable degree of observed pattern among protein interface residue-level 

classes. Two classes of interfaces, one class with less polar residues and the other class with 

more polar residues compared to their surfaces in bound state are reported.  

 

Five key discriminatory features (interface area, interface property abundance (P%-NP%), 

interface charged residues%, solvent free energy gain upon interface formation (ΔiG), and 

binding energy) are identified among the interface residue-level classes. Specifically, we did 

not find statistically significant enhancement of any particular interface residue in our 

dataset. These results have application towards the development of a simple yet robust 

prediction model including for protein-protein binding prediction and docking studies. 

 

Looking at the ascribed functions of protein complexes in the heterodimer dataset, all 

functional categories are represented in these interface classes is noted. A separate study on 

relating structural features to biological functions is then carried out (Chapter 4).  
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Chapter 4: Protein interfaces and biological function  

 

4.1 Summary 

 

Molecular function in cellular processes is governed by PPIs. PPIs lead to diverse 

functionality such as catalysis, regulation, signalling, immunity and inhibition, playing a 

crucial role in functional genomics. However, the molecular principle of such interactions is 

often elusive in nature. Therefore, a comprehensive analysis of known protein complexes 

from the PDB is essential for the characterization of structural interface features to determine 

structure-function relationship. 

 

In this study, the non-redundant dataset of 278 protein complexes described in Chapter 3, 

was analysed and categorized into major functional classes for distinguishing features. 

Several physico-chemical features such as interface size, interface area, hydrogen bonds (H-

bonds), salt bridges, solvation free energy gain upon interface formation (ΔiG), binding 

energy (BE) and interface electrostatic energy (ΔΔGel) were investigated to identify 

discriminatory features prevailing in different functional groups. The discriminatory features 

among these functional groups (shown as boxplots in Figures 2 and 3 of Publication 3) along 

with significant correlations between these PPI features (amongst functional groups) are 

discussed in Publication 3. 

 

Since Publications 2 and 3 are under consideration for different journals concurrently, some 

descriptive text has been repeated to make each manuscript an independent publication. 

 

 
 
4.2 Publication 3 
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Abstract: Protein–protein interaction (PPI) establishes the central basis for complex cellular net-

works in a biological cell. Association of proteins with other proteins occurs at varying affinities,

yet with a high degree of specificity. PPIs lead to diverse functionality such as catalysis, regulation,
signaling, immunity, and inhibition, playing a crucial role in functional genomics. The molecular

principle of such interactions is often elusive in nature. Therefore, a comprehensive analysis of

known protein complexes from the Protein Data Bank (PDB) is essential for the characterization of
structural interface features to determine structure–function relationship. Thus, we analyzed a non-

redundant dataset of 278 heterodimer protein complexes, categorized into major functional

classes, for distinguishing features. Interestingly, our analysis has identified five key features
(interface area, interface polar residue abundance, hydrogen bonds, solvation free energy gain

from interface formation, and binding energy) that are discriminatory among the functional classes

using Kruskal-Wallis rank sum test. Significant correlations between these PPI interface features
amongst functional categories are also documented. Salt bridges correlate with interface area in

regulator-inhibitors (r50.75). These representative features have implications for the prediction of

potential function of novel protein complexes. The results provide molecular insights for better
understanding of PPIs and their relation to biological functions.

Keywords: protein–protein interaction; heterodimers; surface; interface; protein structure; protein
function

Introduction
Protein–protein interaction (PPI) is critical for molec-

ular functions in living systems. PPIs are associated

with catalysis, regulation, signaling, immunity, and

inhibition, thereby playing a critical role in functional

genomics.1 Extensive studies on the existing PPI

complexes are the key to understanding cellular

machinery as reviewed elsewhere.1–5 With modern

experimental techniques such as two hybrid systems,

protein fragment complementation, tandem affinity

purification methods and protein arrays, several

interacting protein pairs have been detected in large-

scale studies,6 although their biological role may not

be well characterized or known. Comprehensive

homology modeling techniques of known interacting

proteins combined with docking studies and PPI data

helps in understanding structural assembly for func-

tional preferences as shown for integrin avb6 hetero-

dimer (two different protein subunits) complex.7

Thus, the analysis of PPIs is essential in predicting

important biological functions.8,9 It is well known

that structure-based characterization of multimeric

proteins is the key to ascribing biological functional

annotation.10

The availability of protein–protein complexes at

the Protein Data Bank (PDB)11 has enabled sequence

and structural investigations on the existing complexes
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to decipher their recognition mechanisms and binding

principles for decades.3,12–15 The classical work by Cho-

thia and Janin16 with three protein complexes defined

‘hydrophobicity’ (nonpolar interactions) as the major

stabilizing factor in PPI, which has been affirmed with

larger datasets of protein complexes.12,14,17–19 Con-

versely, shape complementarity, polar interactions,

hydrogen bonding, and salt bridges are believed to pri-

marily contribute to binding specificity and free energy

of binding.20–23 Furthermore, a number of physico-

chemical factors known to govern protein–protein asso-

ciation include interface size, planarity, sphericity,

complementarity, types of amino acid chemical groups,

hydrophobicity, electrostatic interactions, H-bonds, dis-

tribution of binding energy, sequence conservation, and

conserved residue clusters.12,16,21,24–27 However, exten-

sive surveys carried out thus far by various groups’

typically average structural features over diverse data-

sets of protein–protein complexes, obscuring informa-

tion on individual proteins’ structural integrity. In an

earlier study, we developed a homology model for integ-

rin avb6 heterodimer7 where we found that the subu-

nit interface in our model as well as the template X-

ray structures clearly showed an increase of polar resi-

dues compared with the surface or the complex. There-

fore, it is essential to revisit interface analysis to

understand PPI binding principles, using a large non-

redundant structural dataset.

The classification of protein–protein complexes

based on their composition, affinity, interface stability,

and lifetime association into different groups has

gained momentum in the past decade,28–30 although

the boundaries between these classes is often indefi-

nite, based on physiological conditions.31 Alternatively,

the classification of complexes into major functional

groups can be valuable in relating structural data to

biological functions for better understanding of PPIs.32

Moreover, the classification of protein–protein com-

plexes based on functions and their usefulness in

improving prediction accuracy has been observed

recently.33 Therefore, for analyzing PPI primarily based

on functions, a nonredundant set of complexes, with

structural information, is essential.

Nonidentical protein subunits (or chains) nonco-

valently interact to form ‘heteromers’ with diverse

functionality. Heterodimeric interactions are com-

monly found in enzyme-inhibitors, enzyme com-

plexes, antibody–antigen, signal proteins and cell

cycle proteins, and also include transient complexes.

Dimeric interactions are amongst the strongest and

most extensive in nature.12,14 In this study, we have

created a nonredundant dataset of 278 heteromeric

protein structure dimers from the PDB, for charac-

terization of their interface structural features to

determine whether biochemical function is related to

interface features. Several physico–chemical fea-

tures such as interface size, interface area, hydrogen

bonds (H-bonds), salt bridges, solvation free energy

gain (DiG), binding energy (BE), and interface elec-

trostatic energy (DDGel) were investigated to study

discriminatory features prevailing in different func-

tional groups. Our analysis has identified key fea-

tures [interface area, interface polarity abundance

(P%2NP%), H-bonds, DiG, and BE] that are signifi-

cantly different between the functional groups. This

result has implications for function prediction for

orphan proteins, where interacting partners are

known and heteromeric complexes can be structur-

ally modeled with high confidence.

Results and Discussion

Our nonredundant dataset (described in Materials and

Methods: Heterodimer dataset) comprised 278 com-

plexes (Table I). Our previous dataset is 98.7% of the

current dataset with only five new entries in the cur-

rent dataset (underlined in Table I). The dataset was

then grouped into important functional groups and pro-

tein types to better understand PPIs among these divi-

sions of complexes. The dataset comprises enzymes

(40), regulators (144), enzyme-inhibitors (25), regulator-

inhibitors (27) and immune (18) and biological assem-

bly (24) complexes, of which 247 are globular and 31

membranous. The distribution of complexes under dif-

ferent functional classes is unbiased. Enzyme com-

plexes are formed when two enzyme subunits interact

to achieve a ‘catalytic’ function. For example, PDB ID:

1EUD succinyl coenzyme A (succinyl-CoA) synthetase

is formed by the interaction between succinyl CoA syn-

thetase a chain (311 AA) and succinyl-CoA synthetase

b chain (396 AA). The succinyl-CoA synthetase (SCS)

protein catalyses a reversible conversion of succinyl-

CoA and succinate, coupled with phosphorylation/

dephosphorylation. Enzyme complexes considered in

this study do not include enzyme-inhibitor complexes.

Enzyme-inhibitor complexes are formed when an

enzyme and an inhibitor protein interact to achieve an

‘inhibitory’ function. For example, PDB ID: 1ARO is T7

RNA polymerase (883 AA) complexed to the transcrip-

tional inhibitor T7 lysozyme (151 AA). The lysozyme

binds at a site distant from the polymerase active site,

suggesting an indirect mechanism of inhibition.

Regulatory complexes are formed between two

protein subunits to achieve a ‘regulatory’ or ‘cellular’

function. For example, PDB ID: 1JEQ is a Ku heter-

odimer, formed by Ku70 (609 AA) and Ku80 (565

AA) subunits, contributing to genomic integrity by

binding to DNA double-strand breaks and enabling

repair by nonhomologous end-joining pathway. The

regulatory complexes do not include regulator-

inhibitor complexes, which are formed between a

regulatory protein subunit and an inhibitor protein

to achieve an ‘inhibitory’ function. For example,

PDB ID: 1A22 is a complex between the G120R

mutant (191 AA) of the human growth hormone and

its cognate receptor, the human growth hormone

receptor (238 AA). The G120R mutant of human

Sowmya et al. PROTEIN SCIENCE VOL 24:1486—1494 1487
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growth hormone (hGH) is an antagonist binding to

the growth hormone receptor. An example for each

of these functional groups is shown in Figure 1.

PPI features among functional groups

Of all the physicochemical features described in the

Materials and Methods section, five were significant

in discriminating between the functional categories.

The results from these features, measured in terms

of six parameters (Fig. 2), using a Kruskal-Wallis

rank sum test (P-values in Table II) are presented

below, along with sets of correlated properties.

Interface area among complexes

The standard value reported by Lo Conte and col-

leagues for a protein interface is 1600 Å2 (6400).26

Bahadur and colleagues showed that the range of

interface area (DASA) extends from 500 to 7000 Å2,

with a mean of 1970 Å2,34 while Caffrey et al.

showed that interface area ranges from 415 to 2361

Å2 for heterodimer complexes.35 Our analysis

(described in Materials and Methods: Interface anal-

ysis) shows that the interface area per subunit (B/2)

ranges from �350 to 9500 Å2 (61100) and differs for

each functional group as shown in Figure 2. The

interface area is significantly different among func-

tional groups with P5 2.25E205 (Table II).

Interface polarity abundance

The difference in percentages between interface

polar residues and nonpolar residues (P%2NP%)

gives the measure of the abundance of polar or non-

polar residues at the interface.32 The interface polar-

ity abundance (P%2NP%) measure (described in

Table I. A Dataset of Heterodimer Protein Complexes (278) Divided into Literature Driven Functional Groups with
Major Protein Types. New entries added to the earlier dataset [42] are underlined.

Functional groups Globular (247) Membrane (31)

Enzymes (40) 1EUD 2APO 2O2V 3EP6 3O3O 3REQ 4HST 3RGW
1GK9 2BLF 2QKL 3FGR 4EMJ 3ZVQ 4MRT
1NME 2CG5 3A8G 3GA9 3L91 4BMP 4NFU
1VRA 2GA9 3AON 3JTQ 3M7F 4DBG
1KA9 2XFG 3AYH 3DSS 3ML1 4GED
1SVD 2ZIV 3DRA 3MWD 3R07 4HNX

Regulators (144) 1JEQ 2G2S 3B0C 3LF4 4AT7 4G6T 4IYP 1FS0
1JKG 2H9A 3B0Z 3MCB 4AWX 3VRD 4JHP 1H32
1LSH 2HRK 3CPT 3MKR 4BJJ 3W9C 4KBM 1NRJ
1N1J 2IW5 3CX8 3MXN 3O2P 3ZNZ 4KT1 1Z0J
1OF5 2VDB 3DGP 3NW0 3OG6 3ZYI 1Z5Y
1OO0 2P1M 3DPL 3GC3 3OJM 4BL7 2GSK
1ORY 2QSF 3EGV 3HHM 3SBT 4C2A 2PQN
1US7 2QWO 3CLS 3KLD 3THO 4DVG 2V6X
1WQJ 2V3B 3D3B 3KYJ 3TU3 4GDX 3AQF
1YKH 2VN6 3EI3 3MCA 3VF0 4JE3 3BS5
2D74 2WD5 3F6Q 3N1M 4C9B 4JEH 4CXF
1DJ7 2ZFD 3FMO 3NV0 4CBU 4KHA 4G1M
1H2V 2ZSI 3FQD 3OSS 4CGY 4KMO 1ZHH
1USU 3ANW 3GB8 3PGE 4CT0 4L2I 2FCW
1WMH 3AWU 3F62 3Q87 4DEY 4M69 2V8S
1Z3E 3AXJ 3H7H 3T5X 4E4W 4M6W 3MP7
1ZBX 3BEG 3HZH 3TBI 4EGC 4NQW 3NY7
2CKL 3A2F 3IF8 3VZ9 4ETP 4O8Y 3OUN
2DYO 3ABE 3K8P 3ZET 4EUK 4FZV 3V8X
2FH5 3AU4 3KXC 4A5U 4EYY 4GQ2 4G7X

Enzyme-inhibitors (25) 1ARO 1AY7 2OZN 3QN1 3N4I 4DRI 4LV5
1R0R 1WPX 3CKI 2O3B 3SHG 4F9C
1R8O 1XG2 3DBO 2VLQ 4F6U 4HT3
1UGH 2B42 3IEY 3R24 3FJU 4I1S

Regulator-inhibitors (27) 1A22 2FOM 2QC1 3NVN 3OQ3 4BI8 4GVB 1E44
1M1E 2HDI 3N40 3ONA 3QQ8 4GAF 1T6B
1JMA 2F4M 2RAW 3AA7 3NYB 4B8A
1XOU 2OMZ 2VSM 3BTP 3OJA 4G94

Immune complexes (18) 1Z92 2PTT 3DLQ 3PV6 4HFF 4KT3 1T0P
2FHZ 2Z64 3FPU 3RNQ 4J38 1V74
2P45 3DI3 3MJ7 3WA5 4K12

Biological assembly (24) 1XEW 2Z5B 3K1R 3LQC 3W8I 4H4K 1GL4
2FTX 3CQC 3KCP 3VYR 4AP2 4HPL 1NPE
2PA8 3FPN 3KF6 3VU9 4F48 4IU2 3A4U

3C5X
3LBX
3M1C
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Materials and Methods: Interface analysis) is signifi-

cantly different among the different functional cate-

gories with P54.25E205 (Table II and Fig. 2).

Hydrogen bonds among complexes
The stability of protein–protein binding depends on

the number of hydrogen bonds (H-bonds) and salt

bridges formed between the two interacting subu-

nits. On an average, 10.1 H-bonds are formed at a

protein–protein interface, with one H-bond per 170

Å2 interface area with an r value of 0.84 observed

between H-bonds and interface area.26 The r value

between H-bonds and interface area calculated using

different dataset size and nature of data varies from

0.75 to 0.89,12,14,21,26,36,37 with an average of 0.24 H-

bonds per interface residue in heterodimers. High

H-bond density per interface residue (0.64) with

dominant charged and hydrophilic/polar residues at

the heterodimer protein interfaces is also demon-

strated.37 Our statistical analysis (described in

Materials and Methods: Intermolecular hydrogen

bonds calculation) shows that the total number of

intermolecular H-bonds for each functional group is

significantly different with P57.54E204 (Table II

and Fig. 2).

Solvent free energy gain upon interface

formation
The solvation free energy gain upon interface forma-

tion (DiG)) [calculated as described in Materials and

Methods: calculation of solvation free energy gain

upon interface formation (DiG)] is significantly dif-

ferent among functional groups with P5 7.08E206

04 (Table II) as shown in Figure 2.

Binding energy at the interface

To study the strengths of binding among functional

groups, we estimated the binding free energy (BE;

also called binding affinity calculated as described in

Materials and Methods: Binding energy calculation)

Figure 1. Examples of protein–protein complex structures from each functional group. (a) An enzyme complex (PDB: 1EUD)

formed between succinyl-CoA synthetase a chain and succinyl-CoA synthetase b chain is shown in yellow and green colors,

respectively. (b) TACE-N-TIMP-3 enzyme-inhibitor complex (PDB: 3CKI) with ADAM (a disintegrin and metalloproteinase) inhibi-

tion by TIMP-3 (tissue inhibitor of metalloproteinases 3) is shown in light brown and red, respectively. (c) An immune complex

(PDB: 2PTT) between NK cell receptor 2B4 (CD244) bound to CD48 is shown in black and dark brown, respectively. (d) A regu-

latory SoxAX protein (involved in enzymatic oxidation of thiosulfate; PDB:1H32) of the diheme cytochrome C (in cyan colored)

and cytochrome C (in light green) is shown. (e) A regulator–inhibitor (PDB:1E44) of the cytotoxic domain of colicin E3 in com-

plex with its immunity protein is shown in green and red, respectively. (f) A biological assembly of the nuclear pore complex

(NPC) between Nup107 and Nup133 (PDB: 3CQC) is shown in cyan and dark blue, respectively.
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of the dataset. The BEs are significantly different

among functional groups with P53.11E205 (Table

II) as shown in Figure 2.

Correlations amongst interface physiochemical

features

Interface polarity abundance (P%2NP%) shows lim-

ited correlation with charged residues at the interface

(r5 0.61) for the heterodimer dataset. However, this

is not unexpected as charged residues are included in

the polar residue set. Also, the protein complexes in

our dataset show high correlation between intermolec-

ular H-bonds and interface area (r50.90) as previ-

ously observed.12,14,21,26,36,37 Moreover, H-bonds are

correlated to BE (r520.70). Salt bridges (described

in Materials and Methods: Intermolecular salt bridges

calculation) across the interface do not show any sig-

nificant correlation to all other features, which is in

accord with another study.21 Although this parameter

was not statistically significant between the different

functional groups, it is correlated to interface area in

regulator-inhibitor complexes (r50.75; see Supporting

Information Fig. S1). This shows that intermolecular

salt bridges are an important structural feature in

some functional complexes.

The solvation free energy gain upon interface for-

mation (DiG) shows high correlation with interface

area in the heterodimer dataset (r520.88), suggest-

ing DiG is an important feature in characterizing

PPIs. Interestingly, biological assembly and immune

complexes showed the least correlation of DiG with

interface area (r520.67) as compared with other

functional groups as shown in Supporting Information

Figure S2. The DiG and BE are also highly correlated

among the dataset (r5 0.88). Our analysis shows a

high correlation between BE and interface area in the

dataset (r5 0.96) as previously observed.38

The electrostatic component of binding free energy

(DDGel) was studied to quantify the electrostatic free

energy favoring protein–protein interaction among

functional groups of complexes (described in Materials

Table II. Discriminatory PPI Features Among Functional Groups (Using Kruskal-Wallis Rank Sum Test)

Functional groups P-value Q-value

Solvent free energy gain (DiG) 7.08E206 0.000128
Interface area 2.25E205 0.000382
Binding energy 3.11E205 0.000497
Interface polarity abundance (P%2NP%) 4.25E205 0.000638
Hydrogen bonds 7.54E204 0.009964
Solvent free energy gain (DiG) P-value 7.12E204 0.009964

Abbreviations: DiG, solvent free energy gain; DASA, interface area; DDGel, interface electrostatic free energy calculation;
BE, binding energy; H-bonds, hydrogen bonds; ICM, internal coordinate mechanics; NP, nonpolar residues; PDB, Protein
Data Bank; P, polar residues; PPI, protein–protein interaction.

Figure 2. Discriminatory structural PPI features among functional groups. The interface polarity abundance (P%2NP%), inter-

face area, hydrogen bonds, solvent free energy gain, and binding energies are significantly different among functional groups

obtained using Kruskal-Wallis test (P-values shown in Table II). The functional classes include E, enzymes; E-I, enzyme-inhibi-

tors; I, immune; R, regulators; R-I, regulator-inhibitors; BA, biological assembly.
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and Methods: Interface electrostatic free energy calcu-

lation (DDGel)). Interface electrostatic energy compo-

nent of BE (Supporting Information Fig. S3) shows

distribution of charges in the dataset with electrostatic

energy contributing to destabilizing PPIs in a few com-

plexes while stabilizing PPIs in the others, suggesting

that quantification of accurate interface electrostatic

component contributing to BE is often a nontrivial

task. The frequency distribution also shows similar

trends for interface electrostatic energy (Supporting

Information Fig. S4). Although DDGel values show lim-

ited correlation with interface area (r520.47), the

enzymes complexes show correlation between DDGel

and interface area (r520.61), as opposed to other

groups (r< 0.5).

These discriminatory PPI features hold significantly

different among functional groups in globular proteins

with P< 0.05 as shown in supplementary Supporting

Information Table S1. Since there is insufficient infor-

mation regarding all the functional groups in membrane

proteins, the discriminatory features among functional

groups in membrane proteins is not clear at this point.

These observations corroborate the need for classifica-

tion of complexes in determining their combinatorial fea-

tures and drawing consensus for common patterns in

protein–protein recognition. Incorporation of these com-

binatorial features among protein functional groups is

necessary to develop models for residue-level protein–

protein binding prediction and analysis, and also in uti-

lizing PPI information for the prediction of potential pro-

tein functions in future studies.

Materials and Methods

Heterodimer dataset

We created a nonredundant protein heterodimer (com-

prising two different protein subunits) dataset, the 3D

structures of which were determined by X-ray crystal-

lography, from the PDB, using the RCSB’s advanced

search interface. The search criteria were: (i) resolution

<= 3Å and (ii) protein size> 50 residues, as described

in earlier studies (iii) limited to “experimental data” to

obtain high resolution true structures and avoid short

peptides, synthetic, or artificial complexes and (iv) the

number of chains, entities, and oligomeric state is set

at two to obtain dimers with two unique or different

chains, (v) exclude DNA or RNA or a hybrid of such

molecules with proteins or otherwise and (vi) sequence

identity cut-off is set to 30% and (vii) the select param-

eter was set so that entries with mutations were not

included in the dataset. The redundancy among hetero-

dimer complexes was further removed using the

USEARCH program39 at sequence identity cut-off of

20%, as this threshold eliminates remote homology of

25%40 seen in structures as well. The criteria set out

are comparable with those of Janin and coworkers,41

who have used a resolution cutoff for X-ray structures

(3.25Å) and chain length (minimum of 30 residues) for

defining a benchmark dataset for complexes with

experimental binding energies, toward developing a

method for binding energy prediction.

Grouping based on function and protein type

The assembly of proteins into functional complexes

is essential in biology. Therefore, the characteriza-

tion of these functional complexes is an essential

step in deciphering their binding principles. Hence,

we have grouped the dataset into major functional

groups such as enzymes (E), enzyme-inhibitors (EI),

regulators (R), regulator-inhibitors (RI), immune (I),

and biological assembly (BA) complexes, as described

in the PDB header. In a few cases, where the com-

plexes had more than one function, the functional

group assigned is based on their primary role

obtained from literature. The dataset comprised

globular (247) and membranous (31) complexes.

Structural Analysis

Interface analysis
A protein–protein interface is identified by calculat-

ing the change in solvent accessible surface area

(DASA) upon binding.42 Surface Racer 5.0 program43

with a probe radius of 1.4Å and Lee and Richards

implementation42 was used to calculate ASA. DASA
(interface area) of a heterodimer complex was calcu-

lated as shown in Eq. (1).

DASAðcomplexÞ ¼½ASAðsubunit AÞ1ASAðsubunit BÞ
2ASAðcomplex ABÞ=2

(1)

The identified interface residues were further fil-

tered based on the criteria that their DASA> 0.1Å2.44

The amount of polar, nonpolar, and charged residues at

the interface was then estimated for the dataset. Polar

residues considered in the analysis are R, N, D, E, Q,

H, K, S, T, and Y.45 We have computed the relative

abundance of polar or nonpolar residues [“interface

polarity abundance (P%2NP%)”] compared with non-

polar residues at the interface as the difference

between the percentage of interface polar residues and

the percentage of interface nonpolar residues.

Intermolecular hydrogen bonds calculation
The hydrogen atoms covalently bound between two

electronegative atoms and contributing to electro-

statics was calculated using HBPLUS program.46

The output file of HBPLUS contains information on

all donor and acceptor atoms, angles and distances

within the distance of 4 Å and then filtered for inter-

molecular hydrogen bonds, where the hydrogen

bond donor and acceptor atoms are from two differ-

ent subunits.
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Intermolecular salt bridges calculation

The salt bridges formed between two oppositely

charged side-chain atoms, (i.e., basic and acidic

amino acids) within a distance of 4 Å and contribut-

ing to the stability and electrostatics of the protein

complex was calculated using the SBION program,47

and intermolecular salt bridges were then extracted

such that the oppositely charged atoms are from two

different subunits.

Calculation of solvation free energy gain upon

interface formation (DiG)

The DiG of protein complex arises from the change

in solvation energy as well as contact-dependent and

electrostatic interactions of the subunits, quantifying

the solvation free energy gained upon interface for-

mation. The difference in total solvation energies

between the isolated and complexed structure gives

the solvation free energy gain at the interface (in

kcal/mol), The PDBePISA webserver48 was used to

calculate DiG for the heterodimer dataset.

Binding energy calculation (BE)

The interaction between two protein subunits can be

characterized in terms of binding free energy. The BE

term (comprising electrostatic, van der Waals, hydro-

phobic, and entropic terms) gives an indication of

strong and weak intermolecular forces, with the most

negative value considered the strongest. The binding

free energy of 278 protein complexes was calculated

using the DCOMPLEX program,49 which uses

DFIRE-based potentials.50 DCOMPLEX is the most

widely used program for calculating binding energies

of protein complexes as it has been benchmarked to

reproduce experimental binding free energy values.

Interface electrostatic free energy (DDGel)

calculation

Interface electrostatic free energy component of the

binding free energy (DDGel) was calculated as the

difference in electrostatic free energies of the com-

plex and of the free protein subunits as follows:

DDGel ¼ DGel A : Bð Þ2DGel Að Þ2DGel Bð Þ (2)

where DGel(A:B), DGel(A), and DGel(B) are the elec-

trostatic energies of the complex AB, monomer A,

and monomer B as described previously.51 ICM soft-

ware52 was used to calculate the electrostatic free

energies of the complex and the free subunits, as

DCOMPLEX does not provide a breakup of the bind-

ing energy into components. The ICM REBEL

(Rapid Exact-Boundary Electrostatics)53 module

included in the ICM-Pro package uses ‘boundary ele-

ment’ method to solve Poisson equation for the pro-

tein with analytical molecular surface as dielectric

boundary. The ICM method is fast and accurate and

estimates the electrostatic energy of proteins sur-

rounded by continuous aqueous solution. The energy

solved by this method consists of solvation energy

and coulomb energy.

Statistical analysis

The Kruskal-Wallis rank sum test, a nonparametric

method,54 is used to test whether the mean ranks for

the PPI features in all functional groups are the

same. The discriminatory PPI features among func-

tional groups were thus tested for statistical signifi-

cance with P<0.05 (for the Kruskal-Wallis rank sum

test) in RStudio.55 Spearman’s rank correlation coeffi-

cient has been used to measure of statistical depend-

ence between the interface features, since it assesses

how well the relationship between two properties can

be described using a monotonic function.56
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SUPPLEMENTARY MATERIAL 

 

 
Figure S1: Intermolecular salt bridges show limited correlation with interface area. 

Intermolecular salt bridges at the protein interfaces are poorly correlated to interface area in most 

functional classes, however (f) regulator-inhibitors show high correlation (r = 0.75). 

 

 
Figure S2: Solvation-free-energy-gain upon interface formation shows high correlation with 

interface area. iG shows high correlation with interface area in (a) enzymes (r = -0.96), (b) 

regulators (r = -0.83), (e) enzyme-inhibitors (r = -0.89), and (f) regulator-inhibitors (r = -0.91), 

however, (c) biological assembly and (d) immune complexes show relatively less correlation with 

interface (r = -0.67) as compared to other functional classes.  
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2

 
Figure S3: Percentage interface electrostatic free energy component of binding energy 

distribution. The quantitative distribution of interface electrostatic energy contributes to 

destabilizing PPIs in a few complexes while stabilizing PPIs in the others. 

 

 
Figure S4: Interface electrostatic energy frequency distribution. The frequency distribution 

shows similar trends in interface electrostatic energy.  

 

Table S1: Discriminatory PPI features among functional groups in globular protein types 

(using Kruskal-Wallis rank sum test) 

Functional groups P-value Q-value 

Solvent-free-energy-gain ( iG) 3.12E-05 0.000561

Interface Area 9.89E-05 0.001681

Binding Energy 1.62E-04 0.002427

Interface property abundance (P%-NP%) 1.22E-04 0.001945

Hydrogen Bonds 3.23E-03 0.041998
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4.3 Conclusions 

 

Knowledge of the molecular principles of protein-protein binding is essential for the 

understanding of complex mechanisms in cellular processes. Therefore, it is of interest to 

analyse protein interfaces of known complexes for functional interpretation. Interfaces are 

parts of protein surfaces in the unbound state whose differential physico-chemical properties 

compared to the rest of the complex’s surface drive binding and complex formation. Hence, 

a comprehensive analysis of known structural interfaces of 278 heterodimer complexes was 

completed and their gleaned interface features are documented in this study.  

 

Although, functional ascription of structural interface is a non-trivial task, key interface 

properties are able to distinguish between functional classes of complexes. I have 

documented key discriminatory features (interface area, interface property abundance (P%-

NP%), H-bonds, ΔiG and BE) in different functional classes of complexes. These 

representative features have implications for the prediction of potential protein function of 

novel complexes. The results provide molecular insights for better understanding of PPIs 

and their relation to biological functions. With the availability of additional information, 

such as dynamics for these complexes, it will be possible to comment on the dynamic 

stability of the dataset, in the future. 

 

This study lead to the preliminary application of using PPI analysis for the identification of 

the integrin αvβ6∙uPAR interactions which are crucial for cancer progression (detailed in 

chapter 5). 
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Chapter 5: Dissecting interfaces of interacting proteins: 

integrin αvβ6∙uPAR interactions 

 

5.1 Summary (Preliminary application)  

 

The integrin αvβ6 heterodimer was studied for the characterisation of protein-protein 

interfaces, using information obtained from the previous studies.  

 

A comprehensive analysis of the PPIs involving integrin αvβ6 and its binding partners helps 

in better understanding the structural basis of integrin activation. Moreover, there is 

increasing evidence primarily from in vitro studies showing that the integrin αvβ6•uPAR 

interactions play a crucial role in cancer progression. However, the complete 3D X-ray 

crystallographic structure of integrin αvβ6 heterodimer remains elusive possibly due to its 

large size, membranous nature and complexity. Moreover, experimental determination of 

the 3D structure of large membrane proteins remains a laborious task; therefore homology 

modeling procedures are indispensable tools for structure prediction and structure based drug 

designing [323].  

 

Composite homology modeling approaches to build the complete 3D structural model of 

integrin αvβ6, including the transmembrane and cytoplasmic regions of the two subunits 

using other known integrin X-ray structures as templates is employed. Subsequently, 

structural analysis (detailed in Section 1.4.3.1) of integrin αvβ6•uPAR interactions was 

performed using model data with docking simulation for their binding. The interaction 

region and site on domain III of uPAR and αv subunit is in consensus with experimental data 

(detailed in Appendix 1 – Publication 5) providing high-affinity potential sites of interaction 

in 3D space.  

 

The molecular basis of integrin αvβ6•uPAR binding using structural data is discussed (in 

Publication 4 [324]) for implications as potential therapeutic targets in cancer management.  

 

5.2 Publication 4 
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a b s t r a c t

Integrin avb6 is an epithelially-restricted heterodimeric transmembrane glycoprotein, known to interact
with the urokinase plasminogen activating receptor (uPAR), playing a critical role in cancer progression.
While the X-ray crystallographic structures of segments of other integrin heterodimers are known, there
is no structural information for the complete avb6 integrin to assess its direct interaction with uPAR. We
have performed structural analysis of avb6�uPAR interactions using model data with docking simulations
to pinpoint their interface, in accord with earlier reports of the b-propeller region of integrin a-chain
interacting with uPAR. Interaction of avb6�uPAR was demonstrated by our previous study using immu-
noprecipitation coupled with proteomic analysis by mass spectrometry. Recently this interaction was
validated with proximity ligation assays and peptide arrays. The data suggested that two potential pep-
tide regions from domain II and one peptide region from domain III of uPAR, interact with avb6 integrin.
Only the peptide region from domain III is consistent with the three-dimensional interaction site pro-
posed in this study. The molecular basis of integrin avb6�uPAR binding using structural data is discussed
for its implications as a potential therapeutic target in cancer management.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Integrins are a large family of ab heterodimeric cell surface
receptors found in multicellular organisms, from sponges to mam-
mals (Humphries, 2000; Kim et al., 2011). These receptors are in-
volved in bidirectional cell signalling, transducing information
between the components of extracellular and intracellular milieu
(Hynes, 2004). Binding of integrin glycoproteins to the extracellu-
lar matrix initiates structural changes, consequently triggering sig-
nal transduction (Xiong et al., 2001, 2002). These signals, arising

from receptor-binding, are implicated in cell migration, attach-
ment, differentiation, proliferation, polarity and survival/apoptosis
(Giancotti and Ruoslahti, 1999; Xiong et al., 2001). Involvement of
integrin receptors in initiation and/or progression of many mali-
cious diseases including tumour metastasis, immune dysfunction,
neoplasia, inflammation, trauma and infections have been re-
viewed elsewhere (Arnaout et al., 2007; Hynes, 2002, 2004). Inte-
grins are also receptors for many viruses and bacteria, and have
been the target of therapeutic drugs to combat inflammation,
thrombosis, fibrosis and tumourigenesis (Binder and Trepel,
2009; Hynes, 2002; Lu et al., 2008; Margadant and Sonnenberg,
2010; Van Aarsen et al., 2008).

Integrins consist of two distinct subunits (a and b) forming het-
erodimers with an obligatory function (constituent subunits are
unstable in monomeric form). These a and b subunits assemble
into a ‘‘head’’ segment built on top of two V-shaped ‘legs’ (Campbell
and Humphries, 2011). In mammals, integrins noncovalently asso-
ciate to form 24 different receptors assembled from 18 a subunits
and 8 b subunits (Barczyk et al., 2010; Hynes, 2002). Each of these
24 receptors has been characterised to have a unique function
based on their ligand-binding specificities. The R–G–D (arginine–
glycine–aspartate; RGD) tri-peptide sequence is a commonly

1047-8477/$ - see front matter � 2014 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jsb.2014.01.001
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known integrin-binding motif associated with the ab interface of
several integrins, although individual integrins specifically bind
to select protein ligands (Takada et al., 2007). Each subunit has a
comparatively large extracellular domain, a transmembrane do-
main and a short cytoplasmic tail (Hynes, 2002; Kim et al.,
2011). The sequence lengths of a and b subunits of an integrin het-
erodimer are at least 1000 and 750 amino acid (aa) residues
respectively. In the past decade, elucidation of three-dimensional
(3D) structures of specific domains of integrins (Xiong et al.,
2002, 2009) has paved the way for researchers to perform inten-
sive structural analyses related to the functional significance of
these large glycoproteins.

Integrin avb6 is a member of the integrin family, with a b6 sub-
unit which binds exclusively to the av subunit (Bandyopadhyay
and Raghavan, 2009; Busk et al., 1992). Expression of avb6 integrin
is primarily restricted to epithelial cells, where it is expressed at
low-levels in normal adult cells and is elevated during embryogen-
esis, morphogenesis (i.e., epithelial to mesenchymal transition,
EMT), injury, wound healing and tumourigenesis (Bandyopadhyay
and Raghavan, 2009; Bates et al., 2005; Breuss et al., 1995). avb6
integrin mediates cell division, adhesion, migration and invasion.
It is also known to contribute to the complex mechanism of
EMT, from initiating cell signalling cascades and interacting with
other membrane proteins to activating extracellular signals such
as latent transforming growth factor b (TGF-b), a recognised indu-
cer of EMT. The interaction with TGF-b is through the RGD motif
present in the latency associated peptides 1 and 3 (LAP1 and
LAP3) (Busk et al., 1992; Morris et al., 2003; Munger et al.,
1999). The b6 subunit has a unique C-terminal cytoplasmic se-
quence that directly interacts with the extracellular signal-regu-
lated kinase (ERK2) to activate the ERK/MAPK pathway, often
highly activated during tumour progression and metastasis, and
to produce matrix metalloproteinase production (MMP2 or
MMP9) (Morgan et al., 2004; Bandyopadhyay and Raghavan,
2009). Binding of integrin avb6 to the glycosylphosphotidylinositol
(GPI) anchored membrane protein urokinase plasminogen activat-
ing receptor (uPAR) promotes the plasminogen activator system
(Saldanha et al., 2007).

uPAR is a versatile signalling orchestrator mediating interac-
tions with other transmembrane receptors, including integrins.
The uPAR comprises three domains which are anchored by glyco-
sylphosphotidylinositol (GPI) to the extracellular surface of the
plasma membrane. These three domains form a glove-like struc-
ture that provides a central pocket for the binding of uPA (Smith
and Marshall, 2010). uPAR is believed to play a role in downstream
cellular signalling pathways through lateral interactions with
transmembrane proteins such as integrins as they lack intrinsic
intracellular domains (Eden et al., 2011). Therefore, an in-depth
understanding of the protein–protein interactions involving inte-
grin avb6 and uPAR, is of immense interest. However, the complete
X-ray crystallographic structure of integrin avb6 heterodimer re-
mains elusive.

Experimental determination of the 3D structure of large mem-
brane proteins remains a laborious task; therefore homology mod-
elling procedures are indispensable tools for structure prediction
and structure based drug designing (Sanchez and Sali, 1997). We
have employed composite homology modelling approaches to
build the complete 3D structural model of integrin avb6, including
the transmembrane and cytoplasmic regions of the two subunits.
Analysis of the structural properties of integrin avb6 in comparison
with other X-ray crystal structures of integrins known to interact
with uPAR reveals that avb6 integrin is independently an RGD-
binding and a uPAR-binding receptor. Docking simulations be-
tween the integrin avb6 structural model and uPAR protein reveal
a single potential interaction site, thereby providing better under-
standing of integrin avb6 mediated regulation of the plasminogen

activator system and also help gain insights into integrin
avb6�uPAR interactions.

2. Materials and methods

Protein structures are evolutionarily more conserved when
compared to their sequence conservation alone (Sander and
Schneider, 1991). This observation led to the development of
homology modelling, a powerful technique which has been used
for many years to computationally build 3D structural models of
proteins, provided a structural homologue with more than 20% se-
quence similarity is available (Huynh et al., 2011; Khan and Ranga-
nathan, 2009; Ranganathan, 2001). Homology modelling provides
reliable and qualitative structural models for further investigations
into the structure–function relationship of a protein and also, in
many cases, directs further experimental studies. Moreover, it is
well known that integrins are a family of proteins with a highly
conserved overall structure. Therefore, we have applied homology
modelling to build a comprehensive high-quality 3D structural
model of integrin avb6 and obtain crucial knowledge of the vital
integrin avb6�uPAR interactions which have known implications
in cancer metastasis.

2.1. Data collection

Complete sequences of human integrin av (UniProt: P06756
with a chain length of 1048 aa) and b6 (UniProt: P18564 with a
chain length of 788 aa) subunits were retrieved from the Uni-
ProtKB/SwissprotKB database release (2014). Currently, there is
no complete structure (encompassing the extracellular, transmem-
brane and cytoplasmic domains) for any ab integrin heterodimer
in the Protein DataBank (PDB) (Berman et al., 2000). Nevertheless,
X-ray crystal structures for complete extracellular domains and
short C-terminal transmembrane stretches of integrin avb3 (PDB:
3IJE) (Xiong et al., 2009) with a query coverage of 96% (identities:
347/693 (50%), positives: 469/693 (68%), gaps: 11/693 (2%) be-
tween b3 and b6) was identified as the closest homologue to b6 se-
quence (obtained by performing a NCBI BLAST (Altschul et al.,
1997), search against the PDB protein sequences). The integrin
av chain was derived from the avb3 structure for modelling. The
3IJE structure of avb3 (the template structure used for modelling
avb6) was resolved in a bent conformation under conditions that
activate ligand binding in biochemical and cell biological assays
(Xiong et al., 2009). The transmembrane-cytoplasmic domains of
integrin aIIbb3 (PDB: 2KNC) (Yang et al., 2009) was the closest
homologue, with a query coverage of 90% (identities: 10/14
(71%), positives: 10/14 (71%), gaps: 2/14 (14%)) and 77% (identities:
29/45 (64%), positives: 37/45 (82%), gaps: 0/45) for transmem-
brane and cytoplasmic domains of av and b6 respectively. Hence,
these X-ray crystal structures were chosen as the two templates
for 3D structural modelling of the integrin avb6 complex. Se-
quences of the template structures were extrapolated from their
respective X-ray crystal structures using MODELLER (Sali and Blun-
dell, 1993).

2.2. Preliminary evaluation

Alignment of the target sequence with that of the template
structure is the most critical step in modelling an accurate struc-
ture. The retrieved sequences of integrin av and b6 subunits were
aligned to the extracted sequences from the template structures of
integrin avb3 (PDB: 3IJE; for extracellular domains) and integrin
aIIbb3 (PDB: 2KNC; for transmembrane-cytoplasmic domains),
using ClustalX (Thompson et al., 1997) with default BLOSUM scor-
ing matrices. Prior to the alignment process, we noted that UniProt
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has annotated the presence of signal peptides in integrin av (30 aa)
and b6 (22 aa) sequences. These were removed from the respective
protein sequences as they are absent in the mature template pro-
tein structures. Moreover, due to the absence of a few residues in
the integrin avb3 (PDB: 3IJE) template structure, the gaps in the
alignment were carefully scrutinised and manually curated to re-
tain chain boundaries and the conservation of structurally and
functionally important residues (Supplementary Fig. S1). Further-
more, in view of the fact that there were multiple templates being
used for the modelling, we allowed an overlap of at least four res-
idues between the template sequences (the complete alignment is
provided in Supplementary Fig. S1, annotated with the secondary
structure of the template structures), to ensure that the relevant
biological orientation is adopted. The alignment obtained has se-
ven residues overlapping between the two template structures
used for both modelling integrin av and b6 sequences, as shown
in Supplementary Fig. S1.

2.3. 3D structural modelling, refinement and quality verification

The model building process was carried out using MODELLER
(version 7v7) (Sali and Blundell, 1993), owing to its superiority
over other homology modelling software in allowing the simulta-
neous generation of a multi-chain protein assembly, ligand inclu-
sion and the use of multiple templates for model building
(Huynh et al., 2011; Khan and Ranganathan, 2009; Tng et al.,
2004). The optimal satisfaction of dihedral angle restraints and
spatial constraints employed in MODELLER, ensure sound stereo-
chemistry for the structural models.

We have initially generated a structural model without con-
straints for disulfide bonds or calcium ions (data not shown). We
found that six disulphide bonds (one in the av subunit and five
in the b6 subunit) annotated by Uniprot/Swiss-Prot were missing
in the initial model. The residue numbers for the missing disulfide
bonds were specifically constrained in the model building com-
mand file so that all missing disulfide bonds were included in
our structural models. In addition, the existence of four ligands
(Ca2+ ions), all binding to av subunit, has been annotated in
UniProt, whereas the template structure of integrin avb3 contains
six ligands (Ca2+ ions; five bound to av subunit and one bound to
b3 subunit). As all six Ca2+ ion binding sites are viable from
sequence conservation, we have retained all six ligands in our inte-
grin avb6 models by extrapolating (and refining) their structural
coordinates and positional information from the integrin avb3
template structure, in order to dissect the effect of ligand binding
on both av and b6 subunit interactions and integrin avb6�uPAR
interactions.

Five composite models of integrin avb6 heterodimeric complex
were generated based on the sequence alignment and the best
model was selected on the basis of MODELLER’s DOPE score.

Upon structural refinement, three models with the best objec-
tive functions, out of the five, were chosen. Subsequently, the mod-
el with the lowest current energy among these three was selected
based on stereo-chemical quality assessment. The Protein Struc-
ture Validation Suite (PSVS) (Bhattacharya et al., 2007) and the
Structure Analysis and Verification Server (SAVES; http://ser-
vices.mbi.ucla.edu/SAVES/) version 4, which incorporate major
structural assessment tools such as PROCHECK (Laskowski et al.,
1996), PDB Validation (Diago et al., 2007) and WHATCHECK (Hooft
et al., 1996), were used to evaluate the overall accuracy of the
structural model by assessing residue geometry, protein folding,
bond-length, bond-angle, stereo-chemical quality, possible errors
in localised regions and performing volumetric analysis. Internal
Coordinate Mechanics (ICM) package version 3.7-2a (Abagyan
et al., 1994) was used to visualise the structures and PyMOL was
utilised to calculate the root mean square deviation (RMSD) values

of superimposed Ca positions. After performing stereo-chemical
quality checks and structural assessment, the best quality integrin
avb6 heterodimer model was selected for further structural analy-
ses. The coordinates of the final model in PDB format are available
from Supplementary Fig. S2.

2.4. Structural analyses

2.4.1. Interface and surface analysis
Interface residues in a protein–protein complex are identified

by calculating the interface area or change in solvent accessible
surface area (DASA) upon complex formation. Similarly, surface
residues are identified by calculating the ASA of the protein com-
plex. The efficiency of Surface Racer 5.0 (Tsodikov et al., 2002) to
accurately calculate ASA and determine interacting residues in a
protein complex has been previously documented (Sowmya
et al., 2011). Therefore, we used Surface Racer (Tsodikov et al.,
2002) to identify both the interface residues between integrin av
and b6 subunits and the solvent exposed surface residues of inte-
grin avb6 complex. DASA of integrin avb6 complex was calculated
as follows:

DASAðavb6Þ ¼ ½ASAðavÞ þ ASAðb6Þ � ASAðavb6Þ�=2 ð1Þ

A probe radius of 1.4 Å was used to calculate ASA (Lee and Richards,
1971). The interface residues were further filtered based on the cri-
teria that their relative DASA is at least 4% and not less than 5 Å2

upon complex formation (Porollo and Meller, 2007).
The residue compositions of interface and surface residues of

integrin avb6 complex were documented in order to determine
the type of interactions (obligatory, occurring at the interface or
transient, occurring at the surface) of the integrin avb6 heterodi-
mer. The residues are grouped as polar and non-polar, based on
their residue type. We then estimated the amount of polar, non-
polar and charged residues at the surface and the interface of inte-
grin avb6 complex. The residue composition for surface residues of
uPAR was also identified to determine the type of surface interac-
tions that occur abundantly on uPAR.

2.4.2. Molecular surface electrostatic potential (MSEP) calculation and
comparison

A result of charged side chains of the amino acid residues and
bound ions, MSEP in proteins plays a vital role in protein folding,
stability, enzyme catalysis and specific protein–protein interac-
tions. The measure of similarity in the composition of charged res-
idues between any two (or a group of) proteins is their MSEP
similarity. We calculated and compared the electrostatic interac-
tion properties of the ectodomains of our integrin avb6 model with
all available crystal structures of ab integrins (five; four uPAR-
binding heterodimers {avb3, PDB: 3IJE; aIIbb3, PDB: 3FCS (Zhu
et al., 2008); a5b1, PDB: 3VI3 (Nagae et al., 2012); aXb2, PDB:
3K6S (Xie et al., 2010)} and one uPAR non-binding dimer {a4b7,
PDB: 3V4V (Yu et al., 2012)} as a control) using the webPIPSA
(Richter et al., 2008) server of the Protein Interaction Property Sim-
ilarity Analysis (PIPSA; Blomberg et al., 1999) program.

Initially, the algorithm calculates MSEP for all proteins. Simi-
larity indices are then calculated for all pairs of proteins based
on the electrostatic similarity. Subsequently, electrostatic dis-
tances are computed using the similarity indices. These electro-
static distances are then plotted as a tree/cluster dendogram
and as a colour coded matrix called a heat map. These cluster
dendograms and heat maps were consequently used to study
and understand the similarities between uPAR binding ab inte-
grins and the differences between uPAR binding and non-uPAR
binding ab integrins.
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2.5. Docking of integrin avb6 model with uPAR X-ray crystal structure

The ICM (Abagyan et al., 1994) package is benchmarked and
extensively validated for docking simulations and ligand binding
mode accuracy (Neves et al., 2012), for flexible protein–protein
interaction modelling. Hence, we used ICM for our docking project
to generate multiple conformations, owing to its high success rates
in including experimentally solved near-native conformations. The
ICM protein–protein docking protocol was used to perform dock-
ing simulations between our integrin avb6 model and the crystal
structure of uPAR (PDB: 1YWH; 268aa, residues renumbered as
per UniProt: Q03405).

Docking is an extremely compute-intensive procedure, there-
fore the complete structural model of integrin avb6 was not con-
sidered suitable for docking simulations. Experimental reports on
the interactions of ab integrins with uPAR provide evidence that
the b-propeller region of integrin a-chain is involved in direct
interactions with uPAR affecting the functions of ab integrins
(Chaurasia et al., 2006; Simon et al., 2000; Zhang et al., 2003).
Hence, we sliced our complete integrin avb6 model for b-propeller
domain of integrin a-chain (440 aa) and its corresponding binding
domain in the b-chain (244 aa) to carry our docking simulations
with uPAR crystal structure. This 684 aa avb6 b-propeller region
was considered as a ‘‘receptor’’ and uPAR (268 aa) was considered
as a ‘‘ligand’’ for docking simulations.

The uPAR binds uPA at an internal cavity, leaving the large outer
surface of uPAR for interactions with other ligands such as inte-
grins and vitronectins (Llinas et al., 2005). Hence, the outer surface
residues of uPAR were selected as epitopes or potential binding
sites of interest in our docking simulations, with complete freedom
to bind anywhere to the integrin avb6 b-propeller region. Three
docking simulation projects were set up by selecting different ‘epi-
topes’ on the ligand, uPAR (the outer surface residues of domain I, II
and III, the outer surface of domain III only and the binding sites
from previous studies (Chaurasia et al., 2006), to avoid bias in
the selection of potential uPAR binding sites and also to optimise
and verify interaction sites in docked complexes. Docking refine-
ments using the ICM global optimisation docking algorithm were
then performed for complexes, to minimise conformational ener-
gies in all the three docking projects. Subsequently, avb6–uPAR
interaction analysis was performed on the three refined complexes
generated from the docking projects. The ICM docking project (20
in silico experiments) was run on a 2 CPU 2.66 GHz 24 GB RAM
workstation, with each run taking about 48 h.

3. Results and discussion

3.1. High-quality 3D structural model for integrin avb6

The 3D structural models generated by MODELLER are inter-
nally subjected to multiple iterations of stereo-chemical refine-
ments upon their selection from a pool of randomized potential
starting conformations. Moreover, the structural models that
MODELLER generates also satisfy spatial restraints, de novo loop
modelling along with structure optimisation with respect to flexi-
bly defined objective function. The structural quality assessment of
the best integrin avb6 model (Fig. 1) (selected based on the best
objective function and lowest current energy as explained above)
was performed using PSVS and SAVES structure validation servers
as described earlier.

The PROCHECK program embedded in the PSVS package calcu-
lated that our integrin avb6 model had 97.2% of residues within
the conformationally allowed regions, while the minimum bench-
mark for a high quality X-ray crystal structure is 85%. These com-
prise 84.0% in the most favoured and 13.2% in additional favoured

regions. Moreover, the PDB Validation software (also embedded in
the PSVS package) calculated an average value of 2.5� and 0.020 Å
for deviations from ideal geometry for bond angles (BA) and bond
lengths (BL), respectively, which is typical for a good resolution X-
ray crystal structure (Diago et al., 2007).

The WHATCHECK program (included in the SAVES package)
checks normality of the local environment of amino acids to esti-
mate the packing quality of a 3D protein structure. Our model re-
turned a First Generation Packing Quality (FGPQ) Z-score of
�1.580, which lies within the range of �2 to 0 for a good structural
model. WHATCHECK also computed the RMS Z-scores of 1.301 and
0.942 for bond angles and bond lengths, respectively. The close
proximity of these values to 1.5 for bond angles and 1.0 for bond
lengths (RMS Z-score for an ideal structure) signifies a good struc-
tural model. Moreover, the model shares a high degree of conserva-
tion of functional domains with the avb3 (PDB: 3IJE) template
structure. The RMSD calculations performed using PyMOL retrieved
scores of 0.853 and 0.500 Å for the ectodomains of av and b6 sub-
units, respectively (model compared to template structure of
avb3, PDB: 3IJE). Similarly, the RMSD values for transmembrane
and cytoplasmic domains of av and b6subunits (model compared
to template structure of aIIbb3, PDB: 2KNC) are 1.493 and
1.071 Å, respectively. The model was generated for av and b6
chains together as a heterodimeric structure. Two templates were
used to build the av chain (ectodomain and transmembrane + cyto-
plasmic regions from avb3 and aIIbb3 structures respectively),
with at least four overlapping residues (Supplementary Fig. S1).
This overlap (of seven residues) defined the relative orientation of
the inter domains, with the available X-ray data. Therefore, the
RMSDs of av chain of avb6 model and the templates used (avb3
for ectodomain and aIIbb3 for transmembrane + cytoplasmic re-
gions) were also calculated based on the alignment. Despite the fact
that accurate Z-scores may not be applicable for the analysis of
transmembrane proteins (Bhattacharya et al., 2007), ouravb6mod-
el has returned excellent Z-scores across the structure validation
programs used in this investigation suggesting that the avb6 struc-
tural model is of high quality (Table 1). Hence, this structural model
of integrin avb6 was utilised for further structural analyses.

Fig.1. The complete structural model of integrin avb6 in cartoon representation. av
and b6 subunits are shown in red and green, respectively. The six ligands (Ca2+ ions)
are depicted as blue spheres while the newly built disulfide bonds (yellow) are in
ball and stick representation. The extracellular and the transmembrane and
cytoplasmic domains of the two subunits are labelled. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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3.2. Abundance of polar interactions at avb6 subunit interface

The subunit interface analysis of integrin avb6 model deter-
mined that 194 aa (95 av aa and 99 b6 aa; 11.05% of the total
1756 aa and 11.97% of the 1621 ectodomain residues) participate
in subunit-subunit interactions, forming an obligatory protein–
protein interaction complex (i.e. subunits are not stable in their
monomeric states and have no independent existence). The inter-
face area formed by the interacting residues of av and b6 subunits
is depicted in Fig. 2a. The integrin avb6 complex buries a large
interface area of 3725.25 Å2 suggesting that the av and b6 subunits
undergo large conformational dynamics upon assembly (Lo Conte
et al., 1999). The interacting residues at the avb6 interface are also
represented as a function of residue number using DASA in an X–Y
plot (Fig. 2b). The hydrophobic core region of the avb6 complex
comprises of 222 aa (12.64% of the total 1756 aa; 13.70% of the
1621 ectodomain residues), while 1399 aa (79.67% of the total
1756 aa; 86.30% of the 1621 ectodomain residues) are present at
its solvent-exposed surface.

The surface residues of av and b6 subunits that become inac-
cessible to solvent upon binding and thereby contribute to
interface formation were analysed for their chemical nature in
order to gain insights into the extent and strength of such pro-
tein–protein interactions. Therefore, the chemical properties of
interface and surface regions of the integrin avb6 were deter-
mined based on the contribution of aa residue types. Interest-
ingly, our analysis shows that the two surfaces (subunit
interface and the solvent accessible surface) have similar aa
compositions. Table 2 shows that the 54.12% polar (27.31% neu-
tral, 11.86% positively charged and 14.95% negatively charged
residues) residues occur at the avb6 subunit interface, while
45.88% of the interface residues are non-polar (hydrophobic),
which is very similar to the avb3 subunit interface (55.67% po-
lar and 44.32% non-polar). Similarly, the residues contributing to
the surface of the avb6 complex are 53.04% polar and 46.96%
hydrophobic in nature, with charged residues amounting for
23.30% (positively charged: 10.08% and negatively charged:
13.22%) and 29.74% polar neutral residues. These outcomes

Table 1
Structure quality assessment of the integrin avb6 model.

PROCHECK PDB validation
(deviations from ideal
geometry)

WHATCHECK (RMS Z-
score)

RMSD (Å; calculated using PyMOL)

Ramachandran plot summary of model residues BA (�) BL (Å) FGPQ BA (�) BL (Å) Ectodomain
(model and 3IJE)

Transmembrane + Cytoplasmic
domains (model and 2KNC)

Most favoured regions (%) Allowed regions (%) av b6 av b6

84.0 15.3 2.5 0.020 �1.580 1.301 0.942 0.853 0.500 1.493 1.071

Fig.2. (a) Integrin avb6 model depicting the interface area formed by the interacting residues of av and b6 subunits. av (red) and b6 (green) subunits are shown in cartoon
representation. The interface residues from av (95 aa) and b6 (99 aa) subunits are shown as yellow and cyan spheres, respectively, and are labelled. (b) A graphical
representation of the av and b6 interface residues as a function of residue number usingDASA. The residue numbers are plotted on the x-axis while DASA is on the y-axis. The
N and C termini of the two subunits are portrayed along their corresponding x-axis. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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suggest that polar interactions are the predominant forces that
drive both avb6 subunit interface formation and protein–protein
interactions at the avb6 surface.

3.3. avb6 integrin clusters with other RGD-binding and uPAR-binding
receptors

MSEP similarity calculation of the ectodomains of all available
crystal structures of ab integrins (using the webPIPSA server) con-
firms that integrin avb6 is an RGD-binding and uPAR-binding
receptor. The server produces a cluster dendogram and a heat
map using R software for statistical computing and analytical
grouping (shown in Fig. 3). Fig. 3a clearly shows the clustering of
our integrin avb6 model with other RGD-binding and uPAR-bind-
ing receptors. The integrins aXb2 (PDB: 3K6S) and a4b7 (PDB:
3V4V) are known to be leukocyte-specific (and non RGD-binding)
receptors, whereas the integrins avb3 (PDB: 3IJE), aIIbb3 (PDB:
3FCS) and a5b1 (PDB: 3VI3) are RGD-binding receptors. Our elec-
trostatic potential similarity analysis suggests common surface
electrostatics at work amongst the RGD-binding integrins.

While uPAR is known to functionally interact with b1, b2 and b3
integrin families (Ossowski and Aguirre-Ghiso, 2000), there is no
evidence yet to prove that the b7 integrin family binds to uPAR.
From Fig. 3b, it is evident that the electrostatic surface potentials
among other known uPAR-binding ab integrins (aXb2 – PDB:
3K6S, avb3 – PDB: 3IJE, aIIbb3 – PDB: 3FCS, a5b1 – PDB: 3VI3)

Table 2
Amino acid (aa) residue composition for the solvent accessible surface and the
subunit interface of integrin avb6 heterodimeric complex. % aa composition is
reported for a total of 1621 ectodomain residues.

aa residue type Surface (% aa
composition)

avb6 interface
(% aa composition)

Polar Neutral 29.64 27.20
Charged +ve 10.40 15.40

�ve 13.00 11.80
Total 53.04 54.40

Non-polar 46.96 45.60

Fig.3. (a) Cluster dendogram illustrating the similarity of integrin avb6 model to
other RGD-binding ab integrins. The electrostatic surface potentials for the
ectodomains of available crystal structures of ab integrins (avb3, PDB: 3IJE; aIIbb3,
PDB: 3FCS; a5b1, PDB: 3VI3 that bind the RGD peptide and a4b7, PDB: 3V4V; aXb2,
PDB: 3K6S that do not bind the RGD peptide) were compared with our avb6 model.
(b) Heat map depicting the electrostatic similarity of integrin avb6 model to other
uPAR-binding ab integrins. Similar to the comparison with RGD binders, our avb6
model was also compared to known uPAR-binding ab integrins (avb3, PDB: 3IJE;
aIIbb3, PDB: 3FCS; a5b1, PDB: 3VI3; aXb2, PDB: 3K6S) and a4b7, PDB: 3V4V (which
is not known to bind uPAR and acted as a control). The heat map shows colours
ranging from red, indicating most electrostatic similarity to magenta indicating
least electrostatic similarity. These MSEP comparisons were carried out using the
webPIPSA server (Richter et al., 2008). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Fig.4. Integrin avb6�uPAR complex with bound uPA and VN. The docked avb6�uPAR
complex along with uPA and VN are shown in cartoon representation, with av chain
coloured in red, b6 chain in green, uPAR in yellow, uPA in blue and VN in grey. The
avb6 domains of the docked complex (shown in a lighter shade) were superposed
onto the complete integrin avb6 model (along with transmembrane and cytoplas-
mic domains). The structure of uPA and VN in complex with uPAR was obtained
from the PDB (ID: 3BT1) and superimposed onto uPAR in our docked complex. The
RGD ligand (in magenta) was obtained from avb3 structure (PDB: 1L5G (Xiong
et al., 2002)) and superposed onto the integrin model to show the RGD-binding site
on integrin. The avb6�uPAR docked complex shows that the b-propeller region of a-
chain of integrin avb6 interacts with the domain III region of uPAR. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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and integrin avb6 model developed in this study, are similar. Con-
versely, Fig. 3b shows that a4b7 (PDB: 3V4V; not known to bind
uPAR) does not cluster with other known uPAR-binding ab inte-
grins and is electrostatically furthest from the integrin avb6 model,
thereby acting as a control for this analysis. Thus, our MSEP simi-
larity analysis provides substantial evidence that integrin avb6 is
an uPAR-binding receptor. However, it is not clear whether there
is any overlap between the RGD- and uPAR-binding domains or if
they are distinct.

3.4. av subunit of avb6 integrin interacts with outer surface of uPAR
domain III

The ICM docking simulations of integrin avb6 model with the
crystal structure of uPAR generated multiple conformations of
the docked complexes. Three docking projects with different start-
ing geometries were carried out to ensure that the starting orien-
tation did not bias the final orientation of the binding complex.
The final conformations were identified following refinement to
minimise the energy and the RMSD of the docked complexes. All
three docking experiments result in similar sites of interaction
for integrin avb6 model and uPAR (data not shown), with the least
energy conformation selected for further analysis. These outcomes
reaffirm that the selection of different epitopes or potential binding

sites of interest on the outer surface of uPAR does not bias the final
binding conformation of the docked complex. Experimental reports
have shown that integrin a5b1 interacts with domain III region of
uPAR (Chaurasia et al., 2006). The surface loop of the b-propeller
domain of integrin a-chain in a3b1 and aMb2 heterodimers were
previously reported to functionally associate with uPAR (Simon
et al., 2000; Zhang et al., 2003). The refined complex with mini-
mum energy and least RMSD (of all the three docking projects) also
reveals similar binding regions wherein the b-propeller region of
av interacts with the outer surface of uPAR domain III. Our docking
simulation of integrin avb3 (PDB: 3IJE) and uPAR (PDB: 1YWH)
also revealed similar sites of interaction, wherein the b-propeller

Fig.5. The interaction sites of integrin avb6�uPAR docked complex. (a) avb6 and uPAR rotated by 90� left and right respectively, as indicated. The avb6 and uPAR structures
are shown in cartoon representation with av coloured in red, b6 in green and the uPAR in yellow. The avb6 and uPAR are rotated by 90� in opposite directions, to show the
mutual sites of interaction (coloured in blue) on both structures. (b) Schematic diagram of av and uPAR interface. The PDBsum interaction analysis represents the interaction
residues on either chain with residues shown in different colours based on their properties and the coloured lines joining these residues representing the type of interaction
between these residues. (c) A graphical representation of the uPAR binding residues on integrin avb6–uPAR interface obtained from docking simulation as a function of
residue number using DASA. The residue numbers of the uPAR region identified to bind to avb6 integrin by PLA and peptide array experiments are plotted on the x-axis while
DASA is on the y-axis. The uPAR interface residues and their numbers obtained from the DASA analysis of avb6–uPAR docked complex are shown. Six out of the 27 residues
(identified by PLA and peptide array experiment) are consistent with docking result.

Table 3
Amino acid residue composition for the solvent accessible surface of uPAR.

aa residue type Surface (% aa composition)

Polar Neutral 34.50
Charged +ve 10.70

�ve 13.10
Total 58.30

Non-polar 41.70
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region of av from avb3 interacts with domain II and domain III of
uPAR as shown in Supplementary Fig. S3 (Degryse et al., 2005).

Fig. 4 depicts the results of the in silico avb6�uPAR docked com-
plex along with the uPA and vitronectin (VN) bound to the uPAR
structure, which could represent the binding/complexation model
of these proteins in vivo. The avb6 domain regions (considered for
our avb6�uPAR docking project) were superposed onto the com-
plete integrin avb6 model to visualise the avb6�uPAR binding
mode of interaction in vivo. The crystal structure of the uPAR,
uPA and VN complex was obtained from the PDB (ID: 3BT1(Huai
et al., 2008)) and superposed onto the position of uPAR in our
avb6�uPAR docked complex, in order to represent multiple yet li-
gand-specific binding sites on the uPAR surface. The viability of
the proposed avb6�uPAR interface, in the presence of uPAR-bound
uPA and VN, is thus verified. We note that the RGD-binding site is
spatially separated from the uPAR-binding site defined by docking,
so that avb6 could independently bind fibronection, osteopontin
and other ligands at the RGD-binding site.

Fig. 5 represents the sites of interaction on the uPAR and a-
chain of the integrin avb6 model. The avb6 and uPAR structures
in the docked complex are shown separated and rotated by 90�
(as if opening out the pages of a book) to visualise the mutually
interacting sites on both proteins. The PDBsum interaction analysis
(Laskowski, 2009) of the docked complex depicts the predicted
sites of interaction with residue numbers coloured based on their
aminoacid properties (positively charged: H, K, R in blue; nega-
tively charged: D, E in red; neutral: S, T, N, Q in green; aliphatic:
A, V, L, I, M in grey; aromatic: F, Y, W in purple; proline and glycine:
P, G in orange; cysteine: C in yellow) and bonds between these res-
idues represented as coloured lines (red: salt bridge; yellow: disul-
phide bonds; blue: hydrogen bonds; orange: non-bonded contacts)
for chain A (av chain) and chain C (uPAR). The docked complex
demonstrates a binding mode between the integrin avb6 and
uPAR, which could be a potential binding conformation in vivo
for the two proteins to interact and thereby perform biological
functions.

Interaction of avb6�uPAR was shown by previous study using
immunoprecipitation followed by mass spectrometry protein iden-
tification (Saldanha et al., 2007). Recent data from our laboratory
using proximity ligation assays and peptide array experiments re-
vealed that domains II and III of uPAR interact with avb6 (unpub-
lished data). The peptide array has shown that the domain II region
(peptides: L172–F189 and C193–E207) and the domain III region of
uPAR ranging from S299–N255 (27 residues) interact with avb6
integrin. Hence, we performed ASA analysis to obtain buried and
surface residues of uPAR in order to eliminate surface inaccessible
residues from these peptide segments. The aa residue composition
of uPAR shows that the 91% of uPAR residues are surface exposed
and that the accessible surface is highly polar with predominantly
polar interactions (Table 3).

Docking data reduced the six possible peptide segments known
to interact with avb6 integrin to the only peptide segment on do-
main III (27 residues: S299–N255). Of these 27 residues, 5 (C237,
M241, C244, L245, and A247) in the identified domain III region
are found to be buried in the uPAR structure, with 22 surface res-
idues. Fig. 5c shows that 6 out of 22 surface residues (27.2%) found
in this segment are consistent with the docking data (S229, E230,
T248, G249, T250, and E255). Integrin a5b1 is known to interact
with the domain III region of uPAR via the peptide GCATASMCQ
(referred to as ‘‘240–248’’) using co-immunoprecipitation experi-
ments (Chaurasia et al., 2006). This peptide corresponds to 262–
270 in UniProt numbering, used in this study. Our docking results
show that two residues on the domain III region of uPAR (C247 and
Q248 out of the 9 residues known to bind integrin a5b1) interact
with integrin av residues (G234 and K258) identified by alignment
of the homologous interaction sites on integrin a3, a5 and aM

chains (Chaurasia et al., 2006; Simon et al., 2000; Zhang et al.,
2003). Therefore, the predicted binding modes of interaction of
our integrin avb6�uPAR docked complex is in accordance with
experimental data.

4. Conclusions

Integrin avb6, a transmembrane protein binds fibronectin, oste-
opontin, and LAP of TGF-b to perform various essential biological
functions. The specific interaction between integrin avb6 and uPAR
is known to be a key step in cancer progression. An investigation
on the distinctive yet descriptive structural properties of integrin
avb6 in comparison with other X-ray crystal structures of integrins
known to interact with uPAR, gives a better understanding of inte-
grin avb6 mediated regulation of the plasminogen activator sys-
tem. The consensus of knowledge gleaned between structural
analysis and docking information suggests the mode of interaction
of uPAR to integrin avb6. Although, functional attribution of struc-
tural interface between two proteins is often a non-trivial task, we
believe that the convergence of our structural analysis and docking
data with previous experimental results aids in understanding the
molecular basis of avb6�uPAR interactions. Six (S229, E230, T248,
G249, T250, and E255) out of 27 aa in the identified uPAR domain
III binding region is consistent with docking data. Therefore, the
avb6 structural model and avb6-uPAR molecular docking
simulations are informative in eliminating possible false positives
obtained from experimental data and thereby identify the
high-affinity potential site of interaction between avb6 and uPAR
in 3D space. These observations have implications for the abroga-
tion of the avb6-uPAR interaction as a potential therapeutic target
in cancer management, using specific chemical inhibitors as
demonstrated for a5b1 (Chaurasia et al., 2009).
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Supplementary data files  

                           
sp|P06756|ITAV_HUMAN      FNLDVDSPAEYSGPEGSYFGFAVDFFVPSASSRMFLLVGAPKANTTQPGIVEGGQVLKCD 
3IJE_A                    FNLDVDSPAEYSGPEGSYFGFAVDFFVPSASSRMFLLVGAPKANTTQPGIVEGGQVLKCD 
                          ************************************************************ 
 

                           
sp|P06756|ITAV_HUMAN      WSSTRRCQPIEFDATGNRDYAKDDPLEFKSHQWFGASVRSKQDKILACAPLYHWRTEMKQ 
3IJE_A                    WSSTRRCQPIEFDATGNRDYAKDDPLEFKSHQWFGASVRSKQDKILACAPLYHWRTEMKQ 
                          ************************************************************ 
 

                           
sp|P06756|ITAV_HUMAN      EREPVGTCFLQDGTKTVEYAPCRSQDIDADGQGFCQGGFSIDFTKADRVLLGGPGSFYWQ 
3IJE_A                    EREPVGTCFLQDGTKTVEYAPCRSQDIDADGQGFCQGGFSIDFTKADRVLLGGPGSFYWQ 
                          ************************************************************ 
 

                           
sp|P06756|ITAV_HUMAN      GQLISDQVAEIVSKYDPNVYSIKYNNQLATRTAQAIFDDSYLGYSVAVGDFNGDGIDDFV 
3IJE_A                    GQLISDQVAEIVSKYDPNVYSIKYNNQLATRTAQAIFDDSYLGYSVAVGDFNGDGIDDFV 
                          ************************************************************ 
 

                           
sp|P06756|ITAV_HUMAN      SGVPRAARTLGMVYIYDGKNMSSLYNFTGEQMAAYFGFSVAATDINGDDYADVFIGAPLF 
3IJE_A                    SGVPRAARTLGMVYIYDGKNMSSLYNFTGEQMAAYFGFSVAATDINGDDYADVFIGAPLF 
                          ************************************************************ 
 

                           
sp|P06756|ITAV_HUMAN      MDRGSDGKLQEVGQVSVSLQRASGDFQTTKLNGFEVFARFGSAIAPLGDLDQDGFNDIAI 
3IJE_A                    MDRGSDGKLQEVGQVSVSLQRASGDFQTTKLNGFEVFARFGSAIAPLGDLDQDGFNDIAI 
                          ************************************************************ 
 

                           
sp|P06756|ITAV_HUMAN      AAPYGGEDKKGIVYIFNGRSTGLNAVPSQILEGQWAARSMPPSFGYSMKGATDIDKNGYP 
3IJE_A                    AAPYGGEDKKGIVYIFNGRSTGLNAVPSQILEGQWAARSMPPSFGYSMKGATDIDKNGYP 
                          ************************************************************ 
 

                           
sp|P06756|ITAV_HUMAN      DLIVGAFGVDRAILYRARPVITVNAGLEVYPSILNQDNKTCSLPGTALKVSCFNVRFCLK 
3IJE_A                    DLIVGAFGVDRAILYRARPVITVNAGLEVYPSILNQDNKTCSLPGTALKVSCFNVRFCLK 
                          ************************************************************ 
 

                           
sp|P06756|ITAV_HUMAN      ADGKGVLPRKLNFQVELLLDKLKQKGAIRRALFLYSRSPSHSKNMTISRGGLMQCEELIA 
3IJE_A                    ADGKGVLPRKLNFQVELLLDKLKQKGAIRRALFLYSRSPSHSKNMTISRGGLMQCEELIA 
                          ************************************************************ 
 

                           
sp|P06756|ITAV_HUMAN      YLRDESEFRDKLTPITIFMEYRLDYRTAADTTGLQPILNQFTPANISRQAHILLDCGEDN 
3IJE_A                    YLRDESEFRDKLTPITIFMEYRLDYRTAADTTGLQPILNQFTPANISRQAHILLDCGEDN 
                          ************************************************************ 
 

                           
sp|P06756|ITAV_HUMAN      VCKPKLEVSVDSDQKKIYIGDDNPLTLIVKAQNQGEGAYEAELIVSIPLQADFIGVVRNN 
3IJE_A                    VCKPKLEVSVDSDQKKIYIGDDNPLTLIVKAQNQGEGAYEAELIVSIPLQADFIGVVRNN 
                          ************************************************************ 
 

                           
sp|P06756|ITAV_HUMAN      EALARLSCAFKTENQTRQVVCDLGNPMKAGTQLLAGLRFSVHQQSEMDTSVKFDLQIQSS 
3IJE_A                    EALARLSCAFKTENQTRQVVCDLGNPMKAGTQLLAGLRFSVHQQSEMDTSVKFDLQIQSS 
                          ************************************************************ 
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Supplementary data 

                           
sp|P06756|ITAV_HUMAN      NLFDKVSPVVSHKVDLAVLAAVEIRGVSSPDHVFLPIPNWEHKENPETEEDVGPVVQHIY 
3IJE_A                    NLFDKVSPVVSHKVDLAVLAAVEIRGVSSPDHVFLPIPNWEHKENPETEEDVGPVVQHIY 
                          ************************************************************ 
 

                           
sp|P06756|ITAV_HUMAN      ELRNNGPSSFSKAMLHLQWPYKYNNNTLLYILHYDIDGPMNCTSDMEINPLRIKISSLDI 
3IJE_A                    ELRNNGPSSFSKAMLHLQWPYKYNNNTLLYILHYDIDGPMNCTSDMEINPLRIKISSLDI 
                          ************************************************************ 
 

                           
sp|P06756|ITAV_HUMAN      HTLGCGVAQCLKIVCQVGRLDRGKSAILYVKSLLWTETFMNKENQNHSYSLKSSASFNVI 
3IJE_A                    HTLGCGVAQCLKIVCQVGRLDRGKSAILYVKSLLWTETFMNKENQNHSYSLKSSASFNVI 
                          ************************************************************ 
 

                           
sp|P06756|ITAV_HUMAN      EFPYKNLPIEDITNSTLVTTNVTWGIQPAPMPVPVWVIILAVLAGLLLLAVLVFVMYRMG 
3IJE_A                    EFPYKNLPIEDITNSTLVTTNVTWGIQPAPMPVPVWVIG--------------------- 
2KNC_A                    -----------------------GAMGSEERAIPIWWVLVGVLGGLLLLTILVLAMWKVG 
                          ********************************:*:* :::.**.*****::**:.*:::* 
 

                           
sp|P06756|ITAV_HUMAN      FFKRVRPPQEEQEREQLQPHENGEGNSET 
2KNC_A                    -FKRNRPPLEEDD-------EEG 
                           *** *** **::       *:* 
 
                                                                            
 
 
sp|P18564|ITB6_HUMAN      ---GCALGGAETCEDCLLIGPQCAWCAQENFTHPSGVGERCDTPANLLAKGCQLNFIENP 
3IJE_B                    GPNICTTRGVSSCQQCLAVSPMCAWCSDE---ALPlgsPRCDLKENLLKDNCAPESIEFP 
                              *:  *..:*::** :.* ****::*          ***   *** ..*  : ** * 
                               
 
 
 
sp|P18564|ITB6_HUMAN      VSQVEILKNKPLSVGRQKNSSDIVQIAPQSLILKLRPGGAQTLQVHVRQTEDYPVDLYYL 
3IJE_B                    VSEARVLEDRPLSDKGSGDSSQVTQVSPQRIALRLRPDDSKNFSIQVRQVEDYPVDIYYL 
                          **:..:*:::***   . :**::.*::** : *:***..::.:.::***.******:*** 
                                                               

                           
sp|P18564|ITB6_HUMAN      MDLSASMDDDLNTIKELGSRLSKEMSKLTSNFRLGFGSFVEKPVSPFVKTTPE-EIANPC 
3IJE_B                    MDLSYSMKDDLWSIQNLGTKLATQMRKLTSNLRIGFGAFVDKPVSPYMYISPPEALENPC 
                          **** **.*** :*::**::*:.:* *****:*:***:**:*****::  :*   : *** 
 

                           
sp|P18564|ITB6_HUMAN      SSIPYFCLPTFGFKHILPLTNDAERFNEIVKNQKISANIDTPEGGFDAIMQAAVCKEKIG 
3IJE_B                    YDMKTTCLPMFGYKHVLTLTDQVTRFNEEVKKQSVSRNRDAPEGGFDAIMQATVCDEKIG 
                           .:   *** **:**:*.**::. **** **:*.:* * *:***********:**.**** 
 
 
 
 
sp|P18564|ITB6_HUMAN      WRNDSLHLLVFVSDADSHFGMDSKLAGIVIPNDGLCHLDSKNEYSMSTVLEYPTIGQLID 
3IJE_B                    WRNDASHLLVFTTDAKTHIALDGRLAGIVQPNDGQCHVGSDNHYSASTTMDYPSLGLMTE 
                          ****: *****.:**.:*:.:*.:***** **** **:.*.*.** **.::**::* : : 
 
 
 
 
 
sp|P18564|ITB6_HUMAN      KLVQNNVLLIFAVTQEQVHLYENYAKLIPGATVGLLQKDSGNILQLIISAYEELRSEVEL 
3IJE_B                    KLSQKNINLIFAVTENVVNLYQNYSELIPGTTVGVLSMDSSNVLQLIVDAYGKIRSKVEL 
                          ** *:*: ******:: *:**:**::****:***:*. **.*:****:.** ::**:*** 
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sp|P18564|ITB6_HUMAN      EVLGDTEGLNLSFTAICNNGTLFQHQKKCSHMKVGDTASFSVTVNIPHCER-RSRHIIIK 
3IJE_B                    EVRDLPEELSLSFNATCLNNEVIPGLKSCMGLKIGDTVSFSIEAKVRGCPQEKEKSFTIK 
                          ** . .* *.***.* * *. ::   *.*  :*:***.***: .::  * : :.: : ** 
 
  
 
 
sp|P18564|ITB6_HUMAN      PVGLGDALELLVSPECNCDCQKEVEVNSSKCHHGNGSFQCGVCACHPGHMGPRCECGEDM 
3IJE_B                    PVGFKDSLIVQVTFDCDCACQAQAEPNSHRCNNGNGTFECGVCRCGPGWLGSQCECSEED 
                          ***: *:* : *: :*:* ** :.* ** :*::***:*:**** * ** :*.:***.*:  
 
 
 
 
sp|P18564|ITB6_HUMAN      LSTDSCKEAP---DHPSCSGRGDCYCGQCICHLSPYGNIYGPYCQCDNFSCVRHKGLLCG 
3IJE_B                    YRPSQQDECSPREGQPVCSQRGECLCGQCVCHSSDFGKITGKYCECDDFSCVRYKGEMCS 
                                 *     .:* ** **:* ****:** * :*:* * **:**:*****:** :*. 
      

                           
sp|P18564|ITB6_HUMAN      GNGDCDCGECVCRSGWTGEYCNCTTSTDSCVSEDGVLCSGRGDCVCGKCVCTNPGASGPT 
3IJE_B                    GHGQCSCGDCLCDSDWTGYYCNCTTRTDTCMSSNGLLCSGRGKCECGSCVCIQPGSYGDT 
                          *:*:*.**:*:* *.*** ****** **:*:*.:*:******.* **.*** :**: * * 
     
 
 
 
 
sp|P18564|ITB6_HUMAN      CERCPTCGDPCNSKRSCIECHLSAAGQAREECVDKCKLAGATISE--EEDFSKDGSVSCS 
3IJE_B                    CEKCPTCPDACTFKKECVECKKFDRGALHDENTCNRYCRDEIESVKELKDTGKD-AVNCT 
                          **:**** *.*. *:.*:**:    *  ::*            *    :* .** :*.*: 
      
 
 
 
sp|P18564|ITB6_HUMAN      LQGENECLITFLITTDNEGKTIIHSINEKDCPKPPNIPMIMLGVSLAILLIGVVLLCIWK 
3IJE_B                    YKNEDDCVVRFQYYEDSSGKSILYVVEEPECPKGPDILV--------------------- 
2KNC_B                    ---------------------------GAMGSKGPDILVVLLSVMGAILLIGLAALLIWK 
                           :.*::*:: *    *..**:*:: ::* :*** *:* :::*.*  ******:. * *** 
             
 

 
 
sp|P18564|ITB6_HUMAN      LLVSFHDRKEVAKFEAERSKAKWQTGTNPLYRGSTSTFKNVTYKHREKQKVDLSTDC 
2KNC_B                    LLITIHDRKEFAKFEEERARAKWDTANNPLYKEATSTFTNITYRGT 
                          **:::*****.**** **::***:*..****: :****.*:**: 
 

Figure S1: Alignment between integrin v6 and v3 template sequences (PDB: 3IJE 
and 2KNC) along with secondary structure. The dark green and light green highlighted 
regions represent transmembrane and cytoplasmic domains respectively. The blue 
highlighted region represents the gaps in the integrin v6 and template sequences. The gaps 
were then adjusted by pinching off or adding appropriate aminoacid residues at the (end) 
loop regions; of the adjacent sequence such that there is less (or no) hindrance to the 
secondary structure conformation or other possible interactions of such residues with the 
core residues. The overlapping residues between inter-domains are shown in blue boxes, 
with the grey highlighted regions not used in the model building. The red highlighted 
residues represent the interface residues between the v and 3 chains (ectodomain) of 
integrin v3 template structure (PDB: 3IJE). (The number of interface residues in the 
3IJE_B protein subunit is 59, out of which 30 residues (50.85%) are conserved in the human 
integrin 6 protein, 14 residues (23.73%) are conservatively substituted, 4 residues (6.78%) 
are semi-conservatively substituted while 11 residues (18.64%) (I167T, Y657L, R216I, 
Q267I, L294Q, D477M, Y478L, R479S, R563S, R666T, Y594S) are dissimilar. The interface 
residues do not form hydrogen bonds; hence these non-bonded contacts may be due to 
hydrophobic interactions or van der Waals forces).  
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Supplementary data file 2: The coordinates of the final model of integrin v6 heterodimer 

in PDB format is available at: 

http://www.sciencedirect.com/science/article/pii/S1047847714000021#m0025  

 

As this file is very big, it has not been included in the thesis. 
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Supplementary Figure S3: The interaction sites of integrin αvβ3•uPAR docked 

complex. (a) The αvβ3•uPAR docked complex is shown in cartoon representation with αv 

coloured in red, β3 in green and uPAR in yellow. The interaction sites on αv subunit of 

integrin αvβ3 and domain II and domain III of uPAR structures are coloured in dark blue 

and light blue respectively. (b) Schematic diagram of αv (chain A) and uPAR (chain C; 

residues renumbered as per UniProt: Q03405) interface. The PDBsum interaction 

analysis represents the interaction residues on either chain with residues shown in different 

colours based on their properties and the coloured lines joining these residues representing 

the type of interaction between these residues.  
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5.3 Conclusions 

 

The specific interaction between integrin αvβ6 and uPAR is known to be a key step in cancer 

progression. A complete 3D structural model of integrin αvβ6 along with extracellular 

domain, transmembrane domain and cytoplasmic domain has been built. An investigation 

on the distinctive yet descriptive structural properties of integrin αvβ6 in comparison with 

other X-ray crystal structures of integrins known to interact with uPAR reveals that αvβ6 

integrin is independently an RGD-binding and an uPAR-binding receptor. Docking 

simulations between the integrin αvβ6 structural model and uPAR protein reveal a single 

potential interaction site. These observations have implications for the abrogation of the 

integrin αvβ6•uPAR interaction as a potential therapeutic target in cancer management, 

using specific chemical inhibitors as demonstrated for α5β1 [325]. These results provide 

better understanding of integrin αvβ6 mediated regulation of the plasminogen activator 

system and help gain insights into integrin αvβ6•uPAR interactions.  

 

The consensus of knowledge gleaned between structural analysis and docking information 

suggests the mode of interaction of uPAR to integrin αvβ6. Although, functional attribution 

of structural interface between two proteins is often a non-trivial task, the convergence of 

our structural analysis and docking data with previous experimental results is believed to aid 

in understanding the molecular basis of PPIs.  

 

This preliminary application of PPIs helped verify the abundance of polar interactions at the 

integrin αv-β6 subunit interface and also characterised the integrin protein interfaces.  
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Chapter 6: Conclusions and future directions 

 

6.1 Summary  

 

Protein-protein interactions (PPI) are common in molecular catalysis, regulation, human 

genetics, human diseases and biotechnology applications. Therefore, it is of interest to study 

the molecular basis of PPI. Structural understanding of protein complexes using 

representative sets of known complexes have improved our understanding of this 

phenomenon over the last five decades. These observations laid the foundation to the 

formulation of rigid body protein-protein docking and analysis for application in molecular 

cellular biology. However, there is a huge scope for improvement in docking and post model 

analysis of protein complexes for mimicking molecular events. Hence, there is a need to 

revisit this phenomenon using an updated set of known structural complexes. 

 

A review on PPIs focussing on current trends in structural analysis of known proteins to 

understand their binding is presented (Chapter 1). At the outset, the various experimental 

techniques used to determine PPIs and their disadvantages have been discussed. The key 

databases archiving these experimental data, as well as computationally predicted PPI 

information is documented. The current trends in interaction analyses and prediction, 

describing the classification of PPIs using various structural and sequence based interface 

features studied during the past few decades are then reviewed. The variations in PPI datasets 

created/collected by different groups are then compared and discussed. These datasets that 

led to the creation of interface databases that provide the data for currently available 

interaction characterisation and prediction tools/servers are examined. These curated 

information with online databases and prediction services on PPI have helped to understand 

its features at large. Nonetheless, this is not yet adequate for a comprehensive understating 

of the phenomenon.  

 

Extensive studies carried out thus far typically average structural features over diverse 

datasets. Nevertheless, each PPI complex is specific and selective to binding. Therefore, it 

is of interest to analyse and study such interface properties in a non-redundant dataset of 

heterodimer (different subunits) protein-protein complexes (278) available at the PDB 

(Chapter 3). The relative interface-surface polarity of each complex was estimated in the 

protein-protein complex dataset to understand the predominant forces driving binding. This 
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showed ~60% of protein complexes as ‘classical’, with surface polarity greater than interface 

polarity, implying abundant non-polar interactions at the interface (designated as class A). 

A considerable number of complexes (~40%) have interface polarity greater than surface 

polarity, implying abundant polar interactions at the interface (designated as class B). 

Comprehensive analyses of protein complexes show that interface features such as interface 

area, the relative abundance of polar and non-polar residues, solvent free energy gained upon 

interface formation, binding energy and percentage of interface charged residues distinguish 

among class A and class B complexes. It is also subsequently shown that electrostatic 

visualization maps helps differentiate interface classes among complexes. These novel 

observations find application in evaluating new interfaces, developing residue-level 

prediction models, protein-protein docking studies and subunit interface specific inhibitor 

design as drugs. This could be improved with a collective understanding of molecular 

functions among protein-protein complexes. Manual curation of the ascribed biological 

function for each of the 278 protein complexes from known literature showed that all 

functional categories are represented in the interface classes. The underlying relationship 

between structures and its features with known biological function is intriguing. 

 

Protein-protein complexes are associated with catalysis, regulation, assembly, immunity and 

inhibition in a living cell. Therefore, it is of interest to create a comprehensive map through 

manual grouping between known protein complexes with characterized molecular function 

in the literature (Chapter 4). The complexes were categorized into major functional groups 

to identify distinguishing interface features among them. It shows five key features -interface 

area, interface polar residue abundance (P % - NP %), hydrogen bonds, salt bridges, 

solvation free energy gain from interface formation, binding energy; that are discriminatory 

to functional groups. Significant correlations between these interface properties amongst 

functional groups are also documented. These representative features have implications for 

the prediction of potential protein function of novel complexes. They find application in 

understanding diseases through the interpretation of their molecular mechanism.  

 

PPIs underlie the majority of biological processes, signalling, and disease. Small-molecule 

inhibitors that abolish specific PPIs responsible for diseases have been actively researched 

and several are currently in clinical use or undergoing clinical trials for gout, dry eye, some 

cancers, carcinomas and HIV [326]. The relevance of integrin αvβ6•uPAR interaction is 

known to be crucial for cancer progression. Therefore, it is of interest to analyse and 

characterize integrin αvβ6 hetero-dimer complex using interface features complemented 
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with known molecular function (Chapter 5). However, the 3D X-ray crystal structure of 

integrin αvβ6 remains elusive possibly due to its large size, membranous nature and 

cytoplasmic tail. Nonetheless, the β-propeller region of integrin α-chain is known to interact 

with uPAR. Recent data from our laboratory using proximity ligation assays (PLA) and 

peptide arrays showed that domain II and III of uPAR interact with αvβ6 integrin. Therefore, 

a composite structural model of αvβ6 heterodimer using other known integrin X-ray 

structures as templates has been built. Subsequently, structural PPI analysis of integrin 

αvβ6•uPAR interactions was performed using model data with docking simulation for their 

binding. The interaction region and site on domain III of uPAR and αv subunit is in 

consensus with experimental data (as detailed in Appendix-1) providing high-affinity 

potential sites of interaction in 3D space. The molecular basis of integrin αvβ6•uPAR 

binding using structural data is discussed, for implications as potential therapeutic targets in 

cancer management.  

 

The work presented in this thesis has utilized various structural analysis tools/software 

and/or programs to comprehensively investigate binding properties of known protein 

complexes to gain insights into the molecular principles of PPI. Analysis and grouping of a 

large number of protein complexes based on interface classes and functional groups lead to 

the identification of discriminatory features amongst these groups. Incorporation of these 

combinatorial features is necessary to develop models for protein-protein binding prediction 

and analysis. Novel observations on modeling membrane protein heterodimer and docking 

simulation to obtain significant information on key features with integrin αvβ6•uPAR 

associated cancer progression have been discussed. 

 

 

6.2 Innovations 

 

The thesis highlights original findings and application of protein complexes to study the 

molecular principles of PPIs and their relation to known biological functions using known 

structures. Observations on extending the analysis to a larger dataset of protein complexes, 

for the understanding of the predominant forces driving binding and their relationship to 

molecular functions, their implication in PPI prediction model and for prediction of protein 

functions is discussed. PPI analysis on known protein complexes identified discriminatory 

features amongst interface classes and also among protein functional classes, for applications 

in the development of PPI binding prediction algorithms, and for the prediction of functions 
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for novel proteins. Novel aspects on the identification of key interactions involved in integrin 

membrane proteins based on model data, docking simulations and structural analysis of PPI 

features during cancer progression has been presented as an application in medical sciences.  

 

To the best of my knowledge, the studies described in Chapters 3 and 4: structural analysis 

of known complexes identified key discriminatory features among interface residue-level 

classes and reports correlation between PPI structural features and biological function, have 

not been reported before. Also, the preliminary application of PPI study is the first of its 

kind, where structural modeling data, docking simulations and PPI analysis of X-ray 

complex data was used to identify key PPI interactions involved in diseases, such as cancer 

(Chapter 5). 

 

 

6.3 Significance and contributions 

 

This work emphasises the inherent importance of studying PPIs by the structural analysis of 

known complexes. A comprehensive overview on PPIs with a focus on interface structural 

features has been presented in this study. A review of known experimental techniques, 

mathematically-driven prediction models and information rich curated databases on PPI is 

reported, in addition to a chronological documentation of several interface features identified 

by different research groups during the last five decades (Chapter 1).  

 

PPI studies thus far analysed the average hydrophobicity over a diverse set of protein-protein 

interfaces. This strategy, however, suffers the lack of information for interface stability. 

Thus, the distribution of hydrophobic features over the individual interfaces also remains 

unclear. The PPI interface is specific, sensitive and selective for each individual complex. A 

number of attempts have been made to describe the driving force for PPI using both interface 

chemical and physical features. However, the compelling reasons for  interactions between 

heteromeric proteins are not yet evident. Therefore, the description of interfaces using 

prominent chemical features (such as polarity and hydrophobicity) for each protein-protein 

complex has direct relevance to their extrapolation in sequences. Hence, known protein-

protein complexes from the PDB were classified based on relative interface-surface polarity 

classes. Key discriminatory features- interface area, interface property abundance (P%-

NP%), interface charged residues %, solvent free energy gain upon interface formation 
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(ΔiG), and BE; that are significantly different among these interface classes were identified 

(Chapter 3).  

 

Protein-protein complexes have critical role in many biological functions. Functional 

classification of protein-protein complexes into major categories (enzymes, enzyme-

inhibitors, regulators, regulator-inhibitors, immune and structural assembly), and PPI 

analysis, has identified five physicochemical interface features (interface area, interface 

property abundance (P%-NP%), H-bonds, ΔiG and BE computed from heterodimer complex 

structures), that are discriminatory among these functional categories (Chapter 4). PPI 

features identified and conclusions drawn are discussed to facilitate prediction of novel 

interaction sites and partners. It also proposes the prediction of biological functions for novel 

protein-protein complexes. 

 

The inhibition of PPIs for various diseases of therapeutic importance requires the 

identification of the druggable interface. One such application of PPIs, is the identification 

of integrin αvβ6•uPAR interface, crucial to cancer progression, as discussed in this thesis 

(Chapter 5). Our results have implications for drug design to inhibit this specific PPI. 

 

 

6.4 Future directions 

 

The PPI study presented in this thesis could lead to advancements in many directions for the 

better understanding of molecular principles of PPIs. Structural analysis of protein interface 

properties to help predict interacting sites and partners is a challenge. Moreover, there are 

several binding sites in an interacting monomer under in vivo conditions. Advances in the 

analyses of protein interfaces provide insights into the significance of prediction using 

sequence and structure related information. The classification of complexes based on relative 

interface-surface polarity has identified key discriminatory features that are significantly 

different amongst these interface classes (Chapter 3). These observations corroborate the 

need for classification of protein complexes in determining their combinatorial features and 

drawing consensus for common patterns in protein-protein recognition. This study should 

be extended using a combined formulation of residue types and atomic features in future 

investigation. Furthermore, a detailed analysis of the electrostatic surfaces in each complex, 

especially in the case of enzymes, could provide explanations for metabolic channelling, as 

an extension of this work. 



 

 125

The functional classification of complexes and PPI analysis shown in Chapter 4 has 

identified significantly different PPI features among these categories. Experiments should 

be formulated to capture these PPI features among functions in future studies. A future 

extension of this PPI analysis would be to estimate the relative contributions of these PPI 

features to the function of the protein complex, when the heterodimer dataset is considerably 

enlarged with new structural information. Relating binding free energy change using 

combinations of the features derived in the present work will be possible, when a larger 

dataset is available. The results also have implications for function prediction for orphan 

proteins, where interacting partners are known and heteromeric complexes can be 

structurally modelled with high confidence. Nonetheless, the phenomenon and mechanism 

of gene fusion in multiple domain protein architecture across distant evolutionary history 

should be considered to the context in future investigations.  

 

Based on the outcomes in Chapter 5, the identified interaction site of integrin αvβ6•uPAR, 

which is crucial for cancer progression, has implications as potential therapeutic targets in 

cancer management. The detailed groundwork analysis on integrin αvβ6 structural model 

and its interactions with other ligands, especially uPAR, can be used to verify these vital 

interactions using experimental data. In addition, experimental PPI techniques could be used 

to elucidate these interactions to identify significant pathways affected by these interactions 

and to ascertain their role. Furthermore, in vivo approach of abrogating these interactions in 

mouse models of colorectal cancer (CRC) can be designed for investigation in future studies. 
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ABSTRACT: Urokinase plasminogen activator receptor
(uPAR) and the epithelial integrin αvβ6 are thought to
individually play critical roles in cancer metastasis. These
observations have been highlighted by the recent discovery (by
proteomics) of an interaction between these two molecules,
which are also both implicated in the epithelial−mesenchymal
transition (EMT) that facilitates escape of cells from tissue
barriers and is a common signature of cancer metastases. In
this study, orthogonal in cellulo and in vitro functional
proteomic approaches were used to better characterize the
uPAR·αvβ6 interaction. Proximity ligation assays (PLA)
confirmed the uPAR·αvβ6 interaction on OVCA429 (ovarian
cancer line) and four different colon cancer cell lines including
positive controls in cells with de novo β6 subunit expression.
PLA studies were then validated using peptide arrays, which
also identified potential physical sites of uPAR interaction with
αvβ6, as well as verifying interactions with other known uPAR
ligands (e.g., uPA, vitronectin) and individual integrin subunits
(i.e., αv, β1, β3, and β6 alone). Our data suggest that
interaction with uPAR requires expression of the complete αβ
heterodimer (e.g., αvβ6), not individual subunits (i.e., αv, β1, β3, or β6). Finally, using in silico structural analyses in concert with
these functional proteomics studies, we propose and demonstrate that the most likely unique sites of interaction between αvβ6
and uPAR are located in uPAR domains II and III.

KEYWORDS: functional proteomics, uPAR, αvβ6 integrin, proximity ligation assay, peptide array, ovarian cancer, colorectal cancer

■ INTRODUCTION

A hallmark of epithelial cancer metastasis is the ability of cancer
cells to migrate and infiltrate distant organs. Key stages during
metastasis include detachment of the tumor cell from
neighboring cells and the basement membrane, intravasation
of cell(s) to the blood or lymphatic system, invasion of the
migrated cell into a new environment, readhesion, and finally
angiogenesis.1 At the molecular level, the epithelial−mesen-
chymal transition (EMT) is thought to be a pivotal biological
process that facilitates tissue remodeling and metastatic
progression. Normal epithelial cells undergo numerous
biochemical alterations during EMT, including loss of cell
polarity, loss of cell−cell adhesion, suppression of E-cadherin,

and an increase in cell migration and invasiveness.2 EMT is
facilitated by degradation of extracellular matrix (ECM)
structures, allowing cancer cells to escape and potentially
colonize secondary sites in the body.2 Degradation of ECM is
now thought to be one of the most complex and important
mechanisms that drives EMT, but how this occurs is not yet
fully understood. The matrix metalloproteinase (MMP) family
and the serine protease plasminogen activation cascade are two
major matrix degrading protease families implicated in
epithelial cancer metastasis (e.g., breast, endometrial, hepato-
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cellular, colorectal, pancreatic, gastric, renal, brain, and lung).3

Both the MMPs and the plasmin are found as inactive
zymogens (pro-MMPs and plasminogen, respectively), which
are spatially and temporally (spatiotemporally) activated in a
series of steps.4 Inactive plasminogen can be converted to active
plasmin by urokinase plasminogen activator (uPA) on its major
receptor the uPA-receptor (uPAR), where it is relatively
“shielded” from inhibitors when located on the cell surface.
Plasmin degrades many ECM components including fibrin,
fibronectin, laminin, and the protein core of proteoglycans,4

while also activating MMP-1, MMP-3, and MMP-9 among
many proteases that consequently degrade additional ECM
components.3 To understand the regulation and consequences
of ECM degradation in the tumor microenvironment, it was
essential to determine cell surface interacting proteins. Using
immunoprecipitation and mass spectrometry, we recently
elucidated a cell surface uPAR interactome using an ovarian
cancer cell line (OVCA429) with the novel discovery of the
interaction of uPAR and integrin αvβ6,5 subsequently shown as
uPAR·αvβ6. This was further validated by Western blot
analysis. Interestingly, both of these cell surface proteins have
been implicated in many aspects of the biology of epithelial
cancer and its progression.5

From more than 8000 membrane proteins predicted from
the human protein-coding genes,6 uPAR has been suggested to
be one of a few multifunctional multi-interacting cell surface
receptors that is known to be involved in, among other things,
ECM degradation, growth factor activation, and downstream
cellular signaling.7 A glycosylphosphotidylinositol (GPI) linker
anchors the three domains (DI, DII, and DIII) of the mature
uPAR protein to the extracellular surface of the plasma
membrane. These three domains form a thick-fingered glove-
like structure that provides a central pocket for the binding of
the cognate ligand protease, uPA.8 Equally this shape reveals a
large contralateral external surface potentially facilitating
interactions with other proteins.8 While initial studies focused
exclusively on regulation of plasmin activation by uPAR, 42
proteins (9 extracellular proteins and 33 lateral interacting
partners) have now been proposed to interact with uPAR.9

This exhaustive list suggests that uPAR may have evolved
multiple different ligand specificities involved in the regulation
of many biologies, like proteolysis, cell migration, proliferation,
cell signaling, as well as other yet to be explored cell behaviors.
Indeed, in the past decade, extensive evidence has suggested
that uPAR is implicated in cell adhesion, proliferation,
migration, tissue remodeling, and regulation of signaling
pathways (e.g., MAP kinase, Ras pathways),7 which are
important features not only of ubiquitous developmental
pathways, but more importantly for cancer metastasis. High
expression of the uPAR antigen has been observed in many
cancers (including breast, ovarian, colon, and lung10,11). In
colorectal cancer (CRC), a high level of uPAR has been
suggested as a prognostic factor for poor survival.11 Addition-
ally, up-regulation of uPA in metastasis and its subsequent roles
in the degradation of the ECM have further suggested uPAR
and its interacting partners are central to processes that lead to
metastasis, including EMT.12

As uPAR possesses no intrinsic intracellular domain, it is
commonly thought that downstream cellular signaling pathways
influenced by uPAR must be mediated through lateral
interactions with transmembrane proteins (e.g., integrins).
Indeed, 11 integrins (out of a total of 24) have been suggested
to directly interact with uPAR,9 and many of these studies have

implicated these interactions in some role in cancer meta-
stasis.13 A major function of integrins that relates them directly
to cell adhesion in cancer metastasis is in cellular traction,
where the β subunit embeds itself across the cell membrane and
mechanically links integrins to the cytoskeleton and ECM.13

Integrins also regulate molecular processes related to cell
morphology, proliferation, survival, migration, and invasion,
mostly by engaging in crucial intracellular signaling.13

This study focuses specifically on the αvβ6 integrin, a
transmembrane heterodimer receptor expressed exclusively on
the surface of epithelial cells. The αvβ6 integrin is involved in a
bidirectional manner in the signal cascade system, sending
signals from the cells to the ECM and vice versa via a series of
protein binding partners, which include fibronectin, cytotactin,
tenascin, vitronectin (Vn), and TGFβ1.14 High expression of
ανβ6 has been demonstrated in various cancers including CRC,
liver, ovarian, gastric, thyroid, cervical squamous, and
endometrial cancer, where its expression is often correlated
with poor patient survival.15,16 Several studies have implicated
ανβ6 in cell proliferation, migration, and invasion,16,17 with
some reports suggesting the involvement of αvβ6 through
activation and up-regulation of various MMP-driven proteolytic
pathways.16 Furthermore, it has been conclusively demon-
strated that αvβ6 activates nascent latent transforming growth
factor, TGF-β1,18 which can also up-regulate MMP pathways,19

leading to similar outcomes.
Our central hypothesis here is that, when coexpressed, uPAR

and αvβ6 function cooperatively as a single membrane
proteomic machine (as uPAR·αvβ6). In this study, we confirm
the originally observed uPAR·αvβ6 interaction by functional
proteomics using two orthogonal techniques, proximity ligation
assays (PLA) and peptide arrays. In detail, PLA is an in cellulo
technique that allows direct detection of protein−protein
interactions due to the close proximity of the binding partners,
and the in vitro peptide array method was used to locate
potential specific interacting sites in uPAR·αvβ6 using an offset
15-mer sequential array of uPAR peptides across the whole
protein sequence to find binding sites using HRP-labeled αvβ6
or other ligands (i.e., uPA, Vn, and integrin subunits).
Furthermore, using an in silico structural analysis tool (ICM
bioinformatics software), we were able to map putative sites of
uPAR and αvβ6 interaction. This study not only validates the
uPAR·αvβ6 interactions observed by proteomics in CRC and
ovarian cancer cells, but also opens significant new avenues for
functional targeting of similar interactions that may play key
roles in epithelial cancer metastasis and provide unique
therapeutic options.

■ MATERIALS AND METHODS

Antibodies and Recombinant Proteins

Monoclonal antibodies (mAb) against human uPAR (clone R4,
IgG1) were purchased from DAKO (Glostrup, Denmark). The
mAb against the β6 subunit of the human αvβ6 integrin (clone
6.4B4, IgG1) was obtained from Biogen Idec (Cambridge,
MA).20 Isotype control, IgG1, was purchased from R&D
Systems (Minneapolis, MN). The full length recombinant
proteins that were used for the peptide array were uPA and
integrin αvβ6 (R&D Systems); vitronectin (Merck Millipore,
MA); and integrin αv, β6, β1, and β3 (Abnova, Taipei City,
Taiwan).
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Cell Culture

The ovarian and colon cancer cell lines expressing uPAR and
varying levels of β6 used for the experiments were: ovarian,
OVCA42921 (uPAR+, β6+); colorectal, HT29mock (uPAR+, β6+),
HT29β6AS (uPAR+, β6+↓), SW480β6OE (uPAR+, β6+↑), and
SW480mock (uPAR+, β6−).22,23 The OVCA429 cells were
cultured in DMEM (Invitrogen) media supplemented with
10% FBS, 100 μg/mL penicillin, 100 μg/mL streptomycin, 10
mM HEPES, and 6 mM L-glutamine. The HT29mock and
HT29β6AS cells were cultured in RPMI media (Invitrogen, San
Diego, CA) supplemented with 10% FBS and 2.5 μg/mL
puromycin. The SW480β6OE and SW480mock cells were cultured
in DMEM supplemented with 4.5 g/L glucose, 10% FBS, and
500 μg/mL Geneticin G418 (Invitrogen). The cells were
seeded at 2 × 105 cells/mL and were grown until ∼50%
confluence prior to immunofluorescence and PLA experiments.
All cells were grown at 37 °C in 5% CO2 (v/v) in biological
triplicates.

Immunofluorescence (IF)

The presence and/or absence of uPAR and β6 in all five cell
lines were confirmed using IF. When cell cultures reached
∼50% confluence, the cells were fixed using 2% paraformalde-
hyde for 10 min, washed with 0.1 M glycine in PBS, and
incubated with blocking solution (9% goat serum, 1% BSA in
PBS) for 1 h at room temperature. The cells were then
incubated with anti-uPAR R4 (5 μg/mL) and anti-αvβ6 6.4B4
(5 μg/mL) antibodies for 1 h at 37 °C followed by incubation
with Alexa Fluor 488 goat Anti-Mouse IgG (H+L) (Invitrogen)
as secondary antibody (4 μg/mL), for 1 h at 37 °C. Cell nuclei
were counter stained with the blue fluorescent DAPI
(Invitrogen) nucleic acid stain (300 nM) for 10 min and
mounted on glass slides in Gelmount (ProScitech, Australia).
The cells were analyzed using a UPLSAPO 40× objective (NA.
0.95) on a fluorescence microscope (BX63, Olympus, Tokyo).
All image capture was conducted using a XM10, monochrome
cooled CCD camera and CELLSENS dimensions software
(Olympus, Tokyo).

Proximity Ligation Assay (PLA)

The assay was performed according to manufacturer’s
instructions (Olink Bioscience, Uppsala, Sweden). Briefly, the
PLUS oligonucleotide probe was conjugated to anti-uPAR R4
and its isotype control (IgG1), while the MINUS oligonucleo-
tide probe was conjugated to anti-αvβ6 6.4B4 and its
corresponding isotype control (IgG1). Cells were fixed using
2% paraformaldehyde in PBS and blocked using blocking
solution (9% goat serum, 1% BSA in PBS). Oligonucleotide
probe conjugated antibodies were introduced to the cells and
incubated for 1 h, followed by incubation with the ligation
solution for 30 min, followed by amplification solution
(contains Cy5 fluorophore) for 100 min. Cells were counter
stained with SYBR Green1 stain and mounted. The PLUS and
MINUS oligonucleotide conjugated IgG1 mAbs were used as
negative controls.

PLA Imaging

The cells were imaged using an Olympus Fluoview 300
confocal laser scanning system equipped with an inverted
microscope (IX70, Olympus Tokyo). A 40× UPLAN APO
objective (NA 0.95) was used for analysis of all slides. SYBR
Green1 stain was excited using a 488 nm argon laser and the
emission signal detected using 510 and 530 nm interference
filters. The Cy5 dye was excited using the 633 nm HeNe laser,

and the emission signal was detected using a long pass 610
barrier filter. Three sets of images, in the X, Y, and Z
dimensions (10 optical slices with a spacing of 0.5 μm), were
captured for each replicate and image analysis performed on the
extended XYZ images, using Duolink Image Tool software
(Olink Bioscience). The number of protein interaction signals
(seen as red spots) per cell was calculated for each image.
Aggregated cells were counted manually to avoid miscalcula-
tion. A student t test was performed to establish the statistical
significance of uPAR·αvβ6 for each cell line.
uPAR Peptide Array

A cellulose-bound array of 108 spots of 15-mer peptides
covering the complete uPAR sequence of 331 amino acids with
a 3 amino acid shift was synthesized using SPOT synthesis.24,25

The uPAR peptide arrays were blocked with 5% skim milk
followed by incubation with HRP conjugated recombinant
proteins (HRP-RPs) for 4 h. HRP-RPs were prepared by a
Lightning-Link HRP conjugation kit (Innova Biosciences) as
per the manufacturer’s instructions. Unbound HRP-RPs was
washed off, and bound HRP-RPs was detected using Super-
Signal West Femto Chemiluminescent Substrate (Thermo
Scientific). Images were captured using a Fujifilm CS3000
imager in chemiluminescence mode with the intensity adjusted
such that the darkest spots were slightly below saturation. The
images were then analyzed using MultiGuage software
(FujiFilm). A quantitative intensity value for each spot was
calculated using the following formula:

= − tintensity (AU BG)/

where “AU” is the measured intensity of each spot, “BG” is the
background, and “t” is the time of exposure of the imaging. The
uPAR peptide array with αvβ6 was performed in triplicate to
confirm reproducibility.
Bioinformatics Analysis of uPAR Interaction

The known crystal structures (PDB ID: 3BT1) of uPAR, uPA,
and Vn complex26 were analyzed using the ICM bioinformatics
software (Internal Coordinate Mechanics).27 First, the uPAR
regions that bound to αvβ6 on the peptide array were
graphically visualized using ICM. These regions were then
subjected to manual analysis to determine residues with
favorable side-chain orientations. The residues with favorable
side-chain orientations were then reanalyzed to determine αvβ6
residues potentially accessible to the outer surface of uPAR
based on hydrophobicity.

■ RESULTS AND DISCUSSION
Previous proteomics studies using immunoprecipitation, mass
spectrometry, and Western blot analysis, using the ovarian
cancer cell line OVCA429,5 demonstrated that uPAR
potentially interacts with other membrane associated proteins,
including the αvβ6 integrin heterodimer. Many of the proteins
identified in that study had been previously implicated in either
the biology of cancer metastasis, the regulation of plasminogen
activation, or as prognostic indicators of poor cancer patient
survival (e.g., α-enolase, αvβ6, uPAR). Specifically, uPAR and
αvβ6 have been independently implicated in both cancer
biology (e.g., proliferation, TGFβ activation, cell adhesion,
migration, proteolysis, and invasion) and poor epithelial cancer
patient prognosis (colorectal, breast, prostate, lung, and ovarian
cancer).7 Coexpression of uPAR and αvβ6 in the OVCA429
and other cell lines is now well established.5 Studies using flow
cytometry have also independently confirmed the expression of
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both of these antigens on the cell surface.23,28−30 However,
correlations of tumor tissue coexpression and relationships with
cancer stage, differentiation status, and patient clinical out-
comes (including survival) remain to be explored. The
confirmation of a direct uPAR·αvβ6 interaction would suggest

a novel paradigm that potentially explains how and why these

membrane proteins share critical aspects of tumor biology and

would assist in the development of novel therapeutics to

prevent cancer metastasis.29

Figure 1. A representation of the cell surface expression of uPAR and αvβ6 for five different cell lines as SW480 β6OE, SW480 mock, OVCA-429,
HT-29 mock, and HT-29 β6AS each expressing varying levels of β6. The third row represents the antibody control (IgG1). Nuclei were stained with
DAPI, while proteins were detected with a secondary antibody conjugated to Alexa 488.

Figure 2. Proximity ligation assay images of the cells shown in (A) where the red spots represent the interaction between uPAR·αvβ6. A signal for
the interaction of the uPAR·αvβ6 corresponding to the level of β6 in the cell seems to be observed as compared to the IgG1 isotype control. (B)
This observation was quantified by measuring the number of spots per cell. The results showed a significant decrease in interaction when the level of
β6 was reduced by 35% (in HT-29 β6AS cells) (p < 0.05). Similarly, a significant increase in interactions was observed when β6 was up-regulated in
SW480 β6OE cells.
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The aim of the present study was to functionally validate our
previous proteomic studies5 on IP pull downs of the specific
interacting sites of uPAR·αvβ6 by using two diverse orthogonal
biochemical techniques: PLA for in cellulo studies and peptide
arrays for in vitro analysis of the specific interacting sites. To
validate the uPAR·αvβ6 interaction, ovarian (OVCA429) and
four colon cancer cell lines were employed (HT29mock, HT29
β6AS, SW480β6OE, and SW480mock). The dysregulation of uPAR
and β6 in these cell lines has been previously demonstrated by
various techniques not limited to but including flow cytometry,
Western blot, and PET analysis.29,31−33

Immunofluorescence and PLA Confirm the Presence of
uPAR·αvβ6 Interactions

In this study, immunofluorescence (IF) was used to
demonstrate the presence of uPAR and αvβ6 on the cell
surface using anti-uPAR R4 and anti-αvβ6 6.4B4 mAbs.
Consistent with previous studies, these results demonstrated
that uPAR was expressed on the cell surface of all cell lines,
while αvβ6 was expressed on SW480β6OE, HT29mock, HT29β6AS,
and OVCA429, but was not on SW480mock (Figure 1). No
binding (no fluorescence) was observed with the negative
isotype control IgG1 antibody (Figure 1) as control.
Proximity ligation is an emerging technology that has been

used to visualize and simultaneously quantify P·P interactions
occurring in situ.34 Proteins in close proximity (30−40 nm) are
fluorescently detected using rolling circle amplification of
ligatable DNA primers attached to secondary antibodies that
bind a pair of epitope-specific monoclonal antibodies.34,35 In
our study, primary antibodies were directed against uPAR and
αvβ6. Expression of integrin β6 is restricted to epithelial cells,
and it is only known to dimerize with the αv subunit.36

Therefore, to identify whether interaction with uPAR could be
demonstrated quantitatively, we examined other cell lines in
which relative expression levels of the β6 integrin were
modulated. The cell lines used expressed uPAR with varying
levels of integrin β6 expression. For example, cells that did not
express β6 (i.e., SW480mock) were compared to those in which
integrin β6 had been engineered to be overexpressed
(SW480β6OE). In addition, cells that endogenously expressed
β6 (HT29mock) were compared to subclones of the same cell
line in which β6 expression had been deliberately and stably
reduced by ∼80% (i.e., HT29β6AS)29 (Figure 2).
To allow statistical analyses, the assay was performed in

biological triplicate for all cell lines, and three images were
acquired for each replicate. A significant number of positive

spots were observed localized to the cell surface as anticipated
(Figure 2). The OVCA429, SW480β6OE, and HT29mock cell
lines showed strong signals for the uPAR·αvβ6 interaction,
whereas the HT29β6AS cell line showed much weaker signals (p
< 0.05) (Figure 2a), which is in agreement with the reduced β6
expression previously reported.29 The SW480mock cell line,
where β6 is completely absent, showed no apparent
uPAR·αvβ6 PLA signal (Figure 2a). An analysis of the average
signal obtained per cell as compared to the corresponding
isotype controls demonstrated that the signals obtained from
uPAR·αvβ6 were significantly greater (p < 0.05) than the
control (Figure 2b).
The results for the OVCA429 cell line were similar to those

we had obtained previously.5 For the colon cancer cell lines,
PLA data showed a significant decrease in interaction when the
level of αvβ6 was reduced; concordantly, a significant increase
in interaction was observed when αvβ6 was up-regulated.
In all cases, our PLA results were in good agreement with

previous expression data,29 showing that quantitative uPAR·-
αvβ6 PLA signal could be altered simply by decreasing or
increasing the expression level of β6 present on the cell surface.
All isotype controls were negative. However, while collectively
these data show close proximity of uPAR and β6 indicative of
an interaction, the possibility that other “bridging” proteins may
be involved in direct interactions with either partner in
uPAR·αvβ6 could not be conclusively excluded. To eliminate
this possibility, direct uPAR·αvβ6 was probed using an
orthogonal technique, peptide arrays.

Peptide Arrays Map Potential Sites of uPAR·αvβ6
Interaction

Peptide arrays are cost-efficient, accurate, and reliable one-
dimensional reconstructions that allow mapping of potential
peptidyl binding sites of labeled full length interacting
proteins.37 They have been widely used to analyze large arrays
of synthetic peptides on cellulose membranes, facilitating the
rapid screening of diverse biomolecule probes.38 SPOT
synthesis24 was used in this study to generate an array
composed of 108 sequential overlapping (3 residues) 15-mer
peptides (along the linear uPAR expressed protein sequence)
arranged successively on a cellulose membrane. This was used
to map the potential binding sites of uPAR and the
heterodimeric αvβ6 integrin, as well as the individual integrin
subunits (αv and β6). While this method involves a reduction
of the three-dimensional uPAR structure into single linear
overlapping 15-mer peptides, the method has been used

Figure 3. (a) uPAR peptide array incubated with αvβ6 and corresponding intensity plot indicating locations of binding on the three domains of
uPAR with the more intense spot (semiquantitatively indicated on the bar chart) indicating a stronger affinity for the heterodimer to the
corresponding uPAR peptide. The same peptide array incubated with αv (b) and β6 (c) integrins separately, neither of which showed any binding to
the array.
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successfully to identify linear specific binding sequences
involved in many P·P interactions.24

In this study, a GUI (graphical user interface) was developed
to semiquantitatively determine the binding affinity of the
labeled species (e.g., HRP-labeled αvβ6) to the uPAR peptide
array based on the intensity of positive spots identified (Figure
3a). Overall, our data showed that integrin αvβ6 binds to
peptides emanating from all three uPAR domains (DI, DII, and
DIII); in particular, positive binding of labeled-αvβ6 was
located within the following uPAR amino acid sequences:
uPAR DI at E61-R75 and G82-D96, uPAR DII at G121-E141,
L172-F189, and C193-E207, and uPAR DIII at S229-N255.
In control experiments using identical protein concentra-

tions, the individual integrin protein subunits αv (Figure 3b) or
β6 (Figure 3c) did not bind to any region of the uPAR peptide
array, in contrast to the αvβ6 dimer.
The peptide array was also used to identify the binding sites

of other potential uPAR partners, uPAR’s cognate protease
ligand uPA and the well-established binding partner Vn. The
integrin subunits β1 and β3 were also examined to determine if
they were able to bind as individual integrin subunits in
contrast to the data observed for β6 (Figure 3C).
These data showed that uPA could bind through domain I,

C16-V51, I85-T108; domain II, S112-H150, C169-P210; and
domain III, M226-Y258 and I283-V300, (Figure 4a), while Vn

was found to bind to domain I, G22-V51, G82-R105; domain
II, L116-H150, L172-E207; and domain III, G226-N255
(Figure 4b). As observed for individual subunits αv and β6,
neither β1 nor β3 (Figure 4c and d) showed any detectable
binding to the uPAR peptide array.
Structural Mapping of Interacting Sites Reveals Pockets of
uPAR·αvβ6 Interactions

Six potential binding sites were located on the uPAR sequence
from the collective peptide array data. These sites were found
to be spread across all three domains of uPAR and covered
almost 35% of the uPAR sequence. Interestingly, a number of
the sequences found to bind to αvβ6 integrin have previously
been implicated in interactions with either Vn and/or uPA
(Table 1).7 To narrow potential docking/binding sites for
integrin αvβ6, an in silico structural analysis of where these six
sites were located on the uPAR crystal structure was
undertaken and mapped using ICM software (Figure 5a).
This was followed by a manual identification of uPAR regions
with residues containing favorable side-chain orientations and
then investigated for potential residues that could be accessed
on the outer surfaces of uPAR (Table 1).
Initial uPAR residue side-chain orientation analysis revealed

that approximately 39% of the αvβ6 interacting uPAR residues
identified on peptide arrays possessed side chains found in
favorable orientations (i.e., surface accessible). However,

Figure 4. (a) uPAR peptide array incubated with uPA and corresponding intensity plot indicating locations of binding on the three domains of uPAR
with the more intense spot (semiquantitatively indicated on the bar chart) indicating a stronger affinity for the heterodimer to the corresponding
uPAR peptide. The same peptide array incubated with vitronectin, another known binding partner of uPAR, and its corresponding intensity plot (b)
and the β1 (c) and β3 (d) integrins separately, neither of which again, as monomers, showed any binding to the array.

Table 1. Potential uPAR and Integrin αvβ6 Interaction Sitesa

uPAR
domain region identified from peptide array possible surface residues identified

overlapping residues binding to Vn
(uPA)

I 61 ELVEKSCTHSEKTNRTLS 78 E61, V63, K65, S70, E71, N74, T76, S78 S78 (T76)
82 GLKITSLTEVVCGLD 96 I85, S87, T89, V91, L95 I85, S87 (T89)

II 121 GSSDMSCERGRHQSLQCRSPE 141 M125, R129, R131, H132, S134, Q136, R138 Q136, R138
172LPGCPGSNGFHNNDTFHF 189 S178, N184, D185, F187, F189 none
193 CNTTKCNEGPILELE 207 N194, T195, K197, E200, P202, E207, N208 none

III 229
SEETFLIDCRGPMNQCLVATGTHEPKN
255

S229, E230, L234, D236, D238, N242, Q243, V246, T248,
T250, T254

none

aRegions binding to integrin αvβ6 on the peptide array and possible surface residues were identified by manual analysis of the uPAR crystal
structure. The last column lists known overlapping binding residues to Vn and uPA (in parentheses). Amino acid residue numbers correspond to full
uPAR sequence from UniProt KB (ID: Q03405).
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further manual analysis revealed that many of these residues
were inaccessible. Only the favorable residues were then
subjected to physicochemical (hydrophobicity) analysis (Figure
5). Figure 5b illustrates the hydrophobic nature of the residues
identified. It was noted that most of the identified residues had
hydrogen (H-) bond acceptor potential (red residues) with
some residues having the potential to be H-bond donors (blue
residues), while very few residues showed any potential to form
H-bonds. Those with acceptor or donor H-bond potentials
should prove better binding sites than those with low or no H-
bond acceptor potential.
It was clear from this analysis that some residues identified in

regions of uPAR domain I (E61 to R75 and G82 to D96) that
had been previously suggested to be required for interaction
with Vn and/or the receptor’s cognate protease ligand uPA26,39

were buried inside the outer surfaces of uPAR. Residues Q136
and R128, and L172, P173, and H188 in uPAR domain II,
which have been previously demonstrated to be required for
interaction with Vn and uPA, respectively, were found to be
surface accessible.26,39

This study revealed that most of the domain II and III
residues identified from the arrays could potentially be sites of
αvβ6 integrin interaction. Interestingly, a previous study
addressing interactions between integrin α5β1 and uPAR
suggested that integrin α5β1 directly interacts with uPAR
domain III across the sequence G262-Q270 and the interaction
was lost when a single amino acid alanine substitution (S267A)
was introduced.40 Our data suggest that although domains II
and III maybe accessible for integrin binding, domain III
appears to be a more favorable site, should other ligands be
available.
While binding of uPA to its cognate receptor uPAR is a high

affinity interaction (Kd = 4 × 10−10 M),41 significant external

regions of uPAR remain available for binding to other potential
interacting partners (e.g., Vn and various integrins like α3β1,
αMβ2, αvβ1, α5β1, αvβ3

42). The uPA and Vn sites indicated
from the peptide array showed ∼70% overlap with binding sites
already published,26,39 including data obtained from alanine
scanning mutagenesis experiments.9 A detailed structural
docking study has been performed to recapitulate and confirm
these findings on the interaction of uPAR and αvβ6.43

■ IMPLICATIONS AND FUTURE DIRECTIONS

The most likely binding sites for αvβ6 to uPAR, based on the
crystal structure of uPAR (bound to uPA and Vn) coupled with
information arising from our peptide array data and a manual
analysis of potential binding sites by side-chain orientation and
hydrophobicity, appeared to be neighboring adjacent integrin
binding sites that were previously identified.40 An additional
advantage of the use of peptide arrays in this study over
screening by site directed protein−protein interaction libraries
or molecular modeling is that not only are potential binding
sites identified, but lead peptide antagonists also determined.
These can subsequently be used as tools to address the specific
interaction under study.44 Structural analysis coupled with the
previous study on interaction of uPAR with α5β140 suggests
that uPAR domain III may be a favorable binding site for “all”
uPAR-binding integrins. Experiments using blocking peptides
against the domain III region of uPAR to determine the precise
binding site of uPAR and integrin αvβ6 are currently ongoing.
For cell motility, invasion, proliferation, and adhesion, it is

essential for uPAR to interact with transmembrane proteins for
transmission of specific signals across cell membranes to
activate appropriate intracellular second messenger systems.
Thus, interaction of uPAR with αvβ6 and other integrins not

Figure 5. (a) The space-filling crystal structure of uPAR (magenta) with red indicating vitronectin, green indicating uPA, and cyan showing regions
of uPAR binding to αvβ6 from uPAR peptide array in three different views. (b) Crystal structure of uPAR only indicating its three domains (light
pink, domain I; yellow, domain II; magenta, domain III) overlaid with predicted hydrophobicity labeled in red (residues with H-bond acceptor
potential) and blue (residues with H-bond donor potential). The intensity of red and blue shows how strong or weak the H-bond formation
potential is, and the numbers correspond to the amino acid sequence of uPAR without the signal peptide. A total of 14 potential residues as sites of
binding can be observed on domain II, while 11 can be observed on domain III.
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only couples the proteolytic activation (by binding with uPA)
with cell signaling but also localizes the proteolysis to the cell
surface.7 Interactions between uPAR and αvβ6 could
potentially have profound implications on the promotion of
cancer cell metastasis by activating a series of specific signaling
pathways. For example, uPAR is involved in the Ras-ERK
pathway, which is known to directly induce EMT in cells.7,45

The association of uPAR with integrins like α3β1, αvβ1, α5β1,
αvβ3 has been studied to varying degrees. It has been shown
that uPAR interaction with β1 activates both FAK and ERK/
MAPK pathways,40 while interaction with β3 activates the Rac
pathway.46 Similarly, studies have shown that disruption of a
uPAR and αvβ3 integrin interaction selectively inhibits Vn-
induced cell migration,9,47 implying that αvβ6 might also
modulate cell migration in some comparable manner.
High expression of αvβ6 is associated with poor prognosis in

many cancer types, including colon cancer.48 Several studies
have implicated β6 in cell proliferation, migration, and
invasion,49−51 although the mechanisms by which these
processes occur remain unclear. Some reports have suggested
involvement of αvβ6 in MMP pathways as a means by which
ECM degradation is facilitated.16,52 For example, Fyn kinase,
which associates with αvβ6, recruits FAK, thereby activating the
Rac/ERK/MAPK pathways, which in turn activate MMP3.50

There is also evidence showing that αvβ6 activates trans-
forming growth factor TGFβ1 by a mechanism involving
torsional stress (not proteolysis), which leads to up-regulation
of MMP pathways.53 In addition, a direct interaction between
αvβ6-P-ERK2 has been conclusively established29 and shown to
mediate MMP-9 secretion in colon cancer cells.29

It is possible that the pathways activated, seemingly
independently by uPAR and αvβ6, could indeed be activated
collectively with proteins found in membranes forming the
uPAR·αvβ6 complex. Indeed, in our initial study several other
proteins were identified by proteomics to be binding to uPAR.5

Targeting αvβ6 integrin has the additional benefit that it is
exclusively expressed in epithelial restricted tumors. It is
possible that by therapeutically targeting the uPAR·αvβ6, the
αvβ6 signaling pathway can be uncoupled from the plasmin
activity, potentially leading to a disruption of the pathways
involved in EMT resulting in decreased metastasis.
This study provides the detailed groundwork for an analysis

of the uPAR·αvβ6 interaction aimed at using it as a potential
novel therapeutic cancer target. Further alternative and
complementary techniques could be used to elucidate P·P
interactions and to identify significant pathways affected by the
interaction. When combined with the approaches taken here,
methods like cross-linking mass spectrometry54 in conjunction
with competition studies using peptide arrays and surface
plasmon resonance analysis (e.g., BIAcore, Proteon) could be
used to analyze the binding kinetics of potential interactants.
Indeed, preliminary studies using complementary peptides to
block the sites of binding followed by functional assays
(migration, proliferation, etc.) on related cell lines have been
shown to induce biological and morphological effects (data not
shown). The consequences of ablating such interactions can be
investigated in mouse models of CRC enabling an in vivo
approach.

■ AUTHOR INFORMATION
Corresponding Author

*Phone: +61 2 9850 8211. Fax: +61 2 9812-3600. E-mail:
mark.baker@mq.edu.au.
Author Contributions
∇These authors contributed equally.
Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We thank Paul H. Weinreb and Sheila M. Violette, from Biogen
Idec Inc., Cambridge Center, Cambridge, MA 02142, for kindly
providing the 6.4B4 antibody against the integrin αvβ6. This
study was supported with research project grant funding from
the NHMRC (#1010303), Cancer Council NSW (RG10-04
and RG08-16), and a Macquarie University MQSN grant and
supported through the Australian School of Advanced Medicine
(ASAM), Macquarie University, MQ Biofocus and Biomolec-
ular Frontiers Research Centres. Some of the research
described herein was facilitated by access to the Australian
Proteome Analysis Facility (APAF) and Monash University
Antibody Technology Facility (MATF), both established under
the Australian Government’s National Collaborative Research
Infrastructure Strategy (NCRIS).

■ REFERENCES
(1) Nguyen, D. X.; Bos, P. D.; Massague, J. Metastasis: from
dissemination to organ-specific colonization. Nat. Rev. Cancer 2009, 9,
274−84.
(2) Kalluri, R.; Weinberg, R. A. The basics of epithelial-mesenchymal
transition. J. Clin. Invest. 2009, 119, 1420−8.
(3) Pepper, M. S. Role of the matrix metalloproteinase and
plasminogen activator-plasmin systems in angiogenesis. Arterioscler.,
Thromb., Vasc. Biol. 2001, 21, 1104−17.
(4) Cox, G.; Steward, W. P.; O’Byrne, K. J. The plasmin cascade and
matrix metalloproteinases in non-small cell lung cancer. Thorax 1999,
54, 169−79.
(5) Saldanha, R. G.; Molloy, M. P.; Bdeir, K.; Cines, D. B.; Song, X.;
Uitto, P. M.; Weinreb, P. H.; Violette, S. M.; Baker, M. S. Proteomic
identification of lynchpin urokinase plasminogen activator receptor
protein interactions associated with epithelial cancer malignancy. J.
Proteome Res. 2007, 6, 1016−28.
(6) Fagerberg, L.; Jonasson, K.; von Heijne, G.; Uhlen, M.; Berglund,
L. Prediction of the human membrane proteome. Proteomics 2010, 10,
1141−9.
(7) Smith, H. W.; Marshall, C. J. Regulation of cell signalling by
uPAR. Nat. Rev. Mol. Cell Biol. 2010, 11, 23−36.
(8) Llinas, P.; Le Du, M. H.; Gardsvoll, H.; Dano, K.; Ploug, M.;
Gilquin, B.; Stura, E. A.; Menez, A. Crystal structure of the human
urokinase plasminogen activator receptor bound to an antagonist
peptide. EMBO J. 2005, 24, 1655−63.
(9) Eden, G.; Archinti, M.; Furlan, F.; Murphy, R.; Degryse, B. The
urokinase receptor interactome. Curr. Pharm. Des. 2011, 17, 1874−89.
(10) Mekkawy, A. H.; Morris, D. L.; Pourgholami, M. H. Urokinase
plasminogen activator system as a potential target for cancer therapy.
Future Oncol. 2009, 5, 1487−99.
(11) Seetoo, D. Q.; Crowe, P. J.; Russell, P. J.; Yang, J. L.
Quantitative expression of protein markers of plasminogen activation
system in prognosis of colorectal cancer. J. Surg. Oncol. 2003, 82, 184−
93.
(12) Rabbani, S. A.; Mazar, A. P. The role of the plasminogen
activation system in angiogenesis and metastasis. Surg. Oncol. Clin. N.
Am. 2001, 10, 393−415.
(13) Hynes, R. O. Integrins: versatility, modulation, and signaling in
cell adhesion. Cell 1992, 69, 11−25.

Journal of Proteome Research Article

dx.doi.org/10.1021/pr500849x | J. Proteome Res. 2014, 13, 5956−59645963

160



(14) Giancotti, F. G.; Ruoslahti, E. Integrin signaling. Science 1999,
285, 1028−32.
(15) Liu, S.; Liang, B.; Gao, H.; Zhang, F.; Wang, B.; Dong, X.; Niu,
J. Integrin alphavbeta6 as a novel marker for diagnosis and metastatic
potential of thyroid carcinoma. Head Neck Oncol. 2013, 5, 7.
(16) Bandyopadhyay, A.; Raghavan, S. Defining the role of integrin
alphavbeta6 in cancer. Curr. Drug Targets 2009, 10, 645−52.
(17) Bates, R. C. The alphaVbeta6 integrin as a novel molecular
target for colorectal cancer. Future Oncol. 2005, 1, 821−8.
(18) Annes, J. P.; Munger, J. S.; Rifkin, D. B. Making sense of latent
TGFbeta activation. J. Cell Sci. 2003, 116, 217−24.
(19) Gu, X.; Niu, J.; Dorahy, D. J.; Scott, R.; Agrez, M. V. Integrin
alpha(v)beta6-associated ERK2 mediates MMP-9 secretion in colon
cancer cells. Br. J. Cancer 2002, 87, 348−51.
(20) Weinreb, P. H.; Simon, K. J.; Rayhorn, P.; Yang, W. J.; Leone, D.
R.; Dolinski, B. M.; Pearse, B. R.; Yokota, Y.; Kawakatsu, H.; Atakilit,
A.; Sheppard, D.; Violette, S. M. Function-blocking integrin alpha(v)-
beta(6) monoclonal antibodies - Distinct ligand-mimetic and non-
ligand-mimetic classes. J. Biol. Chem. 2004, 279, 17875−17887.
(21) Tsao, S. W.; Mok, S. C.; Fey, E. G.; Fletcher, J. A.; Wan, T. S.;
Chew, E. C.; Muto, M. G.; Knapp, R. C.; Berkowitz, R. S.
Characterization of human ovarian surface epithelial cells immortalized
by human papilloma viral oncogenes (HPV-E6E7 ORFs). Exp. Cell
Res. 1995, 218, 499−507.
(22) Agrez, M.; Chen, A.; Cone, R. I.; Pytela, R.; Sheppard, D. The
alpha v beta 6 integrin promotes proliferation of colon carcinoma cells
through a unique region of the beta 6 cytoplasmic domain. J. Cell Biol.
1994, 127, 547−56.
(23) Weinacker, A.; Chen, A.; Agrez, M.; Cone, R. I.; Nishimura, S.;
Wayner, E.; Pytela, R.; Sheppard, D. Role of the integrin alpha v beta 6
in cell attachment to fibronectin. Heterologous expression of intact
and secreted forms of the receptor. J. Biol. Chem. 1994, 269, 6940−8.
(24) Frank, R. The SPOT-synthesis technique. Synthetic peptide
arrays on membrane supports–principles and applications. J. Immunol.
methods 2002, 267, 13−26.
(25) Frank, R. Spot-Synthesis - an easy technique for the positionally
addressable, parallel chemical synthesis on a membrane support.
Tetrahedron 1992, 48, 9217−9232.
(26) Huai, Q.; Zhou, A.; Lin, L.; Mazar, A. P.; Parry, G. C.; Callahan,
J.; Shaw, D. E.; Furie, B.; Furie, B. C.; Huang, M. Crystal structures of
two human vitronectin, urokinase and urokinase receptor complexes.
Nat. Struct. Mol. Biol. 2008, 15, 422−3.
(27) Abagyan, R.; Totrov, M.; Kuznetsov, D. ICM−A new method
for protein modeling and design: Applications to docking and
structure prediction from the distorted native conformation. J. Comput.
Chem. 1994, 15, 488−506.
(28) Li, Y.; Wood, N.; Yellowlees, D.; Donnelly, P. K. Cell surface
expression of urokinase receptor in normal mammary epithelial cells
and breast cancer cell lines. Anticancer Res. 1999, 19, 1223−8.
(29) Ahmed, N.; Niu, J.; Dorahy, D. J.; Gu, X.; Andrews, S.;
Meldrum, C. J.; Scott, R. J.; Baker, M. S.; Macreadie, I. G.; Agrez, M.
V. Direct integrin alphavbeta6-ERK binding: implications for tumour
growth. Oncogene 2002, 21, 1370−80.
(30) Niu, J.; Gu, X.; Ahmed, N.; Andrews, S.; Turton, J.; Bates, R.;
Agrez, M. The alphaVbeta6 integrin regulates its own expression with
cell crowding: implications for tumour progression. Int. J. Cancer 2001,
92, 40−8.
(31) Moreau, M.; Mourah, S.; Dosquet, C. beta-Catenin and NF-
kappaB cooperate to regulate the uPA/uPAR system in cancer cells.
Int. J. Cancer 2011, 128, 1280−92.
(32) Ronne, E.; Behrendt, N.; Ploug, M.; Nielsen, H. J.; Wollisch, E.;
Weidle, U.; Dano, K.; Hoyer-Hansen, G. Quantitation of the receptor
for urokinase plasminogen activator by enzyme-linked immunosorbent
assay. J. Immunol. Methods 1994, 167, 91−101.
(33) Persson, M.; Madsen, J.; Ostergaard, S.; Jensen, M. M.;
Jorgensen, J. T.; Juhl, K.; Lehmann, C.; Ploug, M.; Kjaer, A.
Quantitative PET of human urokinase-type plasminogen activator
receptor with 64Cu-DOTA-AE105: implications for visualizing cancer
invasion. J. Nucl. Med. 2012, 53, 138−45.

(34) Weibrecht, I.; Leuchowius, K. J.; Clausson, C. M.; Conze, T.;
Jarvius, M.; Howell, W. M.; Kamali-Moghaddam, M.; Soderberg, O.
Proximity ligation assays: a recent addition to the proteomics toolbox.
Expert Rev. Proteomics 2010, 7, 401−9.
(35) Thymiakou, E.; Episkopou, V. Detection of signaling effector-
complexes downstream of bmp4 using PLA, a proximity ligation assay.
J. Visualized Exp. 2011.
(36) Breuss, J. M.; Gillett, N.; Lu, L.; Sheppard, D.; Pytela, R.
Restricted distribution of integrin beta 6 mRNA in primate epithelial
tissues. J. Histochem. Cytochem. 1993, 41, 1521−7.
(37) Li, S. S.; Wu, C. Using peptide array to identify binding motifs
and interaction networks for modular domains. Methods Mol. Biol.
2009, 570, 67−76.
(38) Maier, R. H.; Maier, C. J.; Rid, R.; Hintner, H.; Bauer, J. W.;
Onder, K. Epitope mapping of antibodies using a cell array-based
polypeptide library. J. Biomol. Screening 2010, 15, 418−26.
(39) Barinka, C.; Parry, G.; Callahan, J.; Shaw, D. E.; Kuo, A.; Bdeir,
K.; Cines, D. B.; Mazar, A.; Lubkowski, J. Structural basis of interaction
between urokinase-type plasminogen activator and its receptor. J. Mol.
Biol. 2006, 363, 482−95.
(40) Chaurasia, P.; Aguirre-Ghiso, J. A.; Liang, O. D.; Gardsvoll, H.;
Ploug, M.; Ossowski, L. A region in urokinase plasminogen receptor
domain III controlling a functional association with alpha5beta1
integrin and tumor growth. J. Biol. Chem. 2006, 281, 14852−63.
(41) Vassalli, J. D.; Baccino, D.; Belin, D. A cellular binding site for
the Mr 55,000 form of the human plasminogen activator, urokinase. J.
Cell Biol. 1985, 100, 86−92.
(42) Blasi, F.; Carmeliet, P. uPAR: a versatile signalling orchestrator.
Nat. Rev. Mol. Cell Biol. 2002, 3, 932−43.
(43) Sowmya, G.; Khan, J. M.; Anand, S.; Ahn, S. B.; Baker, M. S.;
Ranganathan, S. A site for direct integrin alphavbeta6.uPAR interaction
from structural modelling and docking. J. Struct. Biol. 2014, 185, 327−
35.
(44) Hruby, V. J. Designing peptide receptor agonists and
antagonists. Nat. Rev. Drug Discovery 2002, 1, 847−58.
(45) Jo, M.; Eastman, B. M.; Webb, D. L.; Stoletov, K.; Klemke, R.;
Gonias, S. L. Cell signaling by urokinase-type plasminogen activator
receptor induces stem cell-like properties in breast cancer cells. Cancer
Res. 2010, 70, 8948−58.
(46) Smith, H. W.; Marra, P.; Marshall, C. J. uPAR promotes
formation of the p130Cas-Crk complex to activate Rac through
DOCK180. J. Cell Biol. 2008, 182, 777−90.
(47) Degryse, B.; Orlando, S.; Resnati, M.; Rabbani, S. A.; Blasi, F.
Urokinase/urokinase receptor and vitronectin/alpha(v)beta(3) integ-
rin induce chemotaxis and cytoskeleton reorganization through
different signaling pathways. Oncogene 2001, 20, 2032−43.
(48) Bates, R. C. Colorectal cancer progression: integrin alphavbeta6
and the epithelial-mesenchymal transition (EMT). Cell Cycle 2005, 4,
1350−2.
(49) Ramos, D. M.; But, M.; Regezi, J.; Schmidt, B. L.; Atakilit, A.;
Dang, D.; Ellis, D.; Jordan, R.; Li, X. Expression of integrin beta 6
enhances invasive behavior in oral squamous cell carcinoma. Matrix
Biol. 2002, 21, 297−307.
(50) Li, X.; Yang, Y.; Hu, Y.; Dang, D.; Regezi, J.; Schmidt, B. L.;
Atakilit, A.; Chen, B.; Ellis, D.; Ramos, D. M. Alphavbeta6-Fyn
signaling promotes oral cancer progression. J. Biol. Chem. 2003, 278,
41646−53.
(51) Ramos, D. M.; Dang, D.; Sadler, S. The role of the integrin
alpha v beta6 in regulating the epithelial to mesenchymal transition in
oral cancer. Anticancer Res. 2009, 29, 125−30.
(52) Morgan, M. R.; Thomas, G. J.; Russell, A.; Hart, I. R.; Marshall,
J. F. The integrin cytoplasmic-tail motif EKQKVDLSTDC is sufficient
to promote tumor cell invasion mediated by matrix metalloproteinase
(MMP)-2 or MMP-9. J. Biol. Chem. 2004, 279, 26533−9.
(53) Xu, J.; Lamouille, S.; Derynck, R. TGF-beta-induced epithelial to
mesenchymal transition. Cell Res. 2009, 19, 156−72.
(54) Tang, X.; Bruce, J. E. A new cross-linking strategy: protein
interaction reporter (PIR) technology for protein-protein interaction
studies. Mol. BioSyst. 2010, 6, 939−47.

Journal of Proteome Research Article

dx.doi.org/10.1021/pr500849x | J. Proteome Res. 2014, 13, 5956−59645964

161




