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Summary

Electricity markets are significantly more volatile than other comparable financial or commod-

ity markets. Extreme price outcomes, typically referred to as price spikes, as well as periods

of substantial price volatility and their transmission between interconnected regional markets

pose significant risks for market participants.

This study investigates spillover effects for electricity spot prices across different regions

in the Australian National Electricity Market (NEM), aiming to provide a better understand-

ing of price and volatility dynamics in a multi-regional context. This pioneering study is

established in the econometric framework developed by Diebold and Yilmaz (2009, 2012),

originally applied to equity markets. The research methodology is based on forecast error

variance decomposition of vector autoregressive (VAR) models. We conduct both static and

dynamic analyses to assess the systemically aggregated spillovers and their directional de-

composition between regions. Using daily electricity spot market data from 2010 to 2015, we

find that although spillover effects play an important role in the NEM, regional prices are

still mostly influenced by local factors. In particular, greater spillover effects are observed

between physically interconnected markets. Among all regions in the NEM, South Australia

(SA) transmits the most net spillovers to others, while New South Wales (NSW) is the most

significant net spillover receiver. The spillover effects show time-varying and event-dependent

patterns.

Our findings provide insights to market participants for the development of cross-regional

trading or risk management strategies in the Australian NEM. As the Australian Energy

Regulator considers building new interconnectors to facilitate regional market integration, our

findings regarding connectedness of regional markets through the applied spillover measures

also provide important quantitative information to NEM policy makers.

Matlab and R code and the data used in the thesis can be provided upon request.
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Chapter 1

Introduction

This study empirically assesses spillover effects in electricity spot prices and volatilities

across regional markets in the Australian National Electricity Market (NEM). The

aim is to provide a better understanding of electricity spot price dynamics in a multi-

regional context.

Due to the non-storable nature of electricity, electricity markets are usually con-

sidered to be significantly more volatile than other comparable financial or commodity

markets. Extreme price outcomes, typically referred to as price spikes, and periods of

substantial price volatility are major sources of risks for electricity market participants.

For example, The Australian Financial Review (Potter, 2016) reported that recently

in July 2016, there were complaints from business about the extreme electricity prices

in South Australia. Whereas the normal price levels are below $100 per megawatt

hour (MWh), the spot prices frequently jumped above $1000 per MWh in that month,

and even hit $14,000 per MWh at one point. ABC News (2016) reported that this

highly volatile price period has cost South Australia $42 million. Interestingly, during

this period also significant price spillover effects to the connected electricity market in

Victoria could be observed. A more extreme situation was observed on 28 September

2016, when South Australia experienced a complete blackout of the state due to ex-
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Chapter 1. Introduction

treme weather events. The electricity spot prices jumped to and stayed at higher than

$10,000 per MWh for several hours.

In a multi-regional context where electricity can be transmitted across different

regions through interconnections, the spillovers of prices and volatilities are of great

concern. By definition, spillovers are the effects that shocks or crises in one region

have on another region through external links (Pesaran and Pick, 2007). A large part

contained of the price and volatility spillovers is the transmission of those extreme price

outcomes and substantial price volatilities. The analysis of these effects is important,

especially for businesses that simultaneously operate in several electricity markets, since

the probability of joint price spikes imposes significant risk on them.

This study focuses on the Australian NEM, which differs from the electricity mar-

kets in other countries and continents as a nationally interconnected system with strong

linkages between regions. It comprises five state-based regional markets: New South

Wales (NSW), Queensland (QLD), South Australia (SA), Tasmania (TAS) and Vic-

toria (VIC) (Australian Energy Regulator, 2015). Wholesale trading in the NEM is

conducted in a spot market where electricity supply and demand are matched in real

time through a centrally-coordinated dispatch process. This process determines a mar-

ket price for each region, which is known as the spot price. The NEM participants trade

electricity at the spot prices and often protect themselves from spot price movements

by entering into hedge contracts. In addition, electricity can be transmitted across

different regions within the NEM through so-called interconnectors, which are high-

voltage transmission lines between adjacent regional markets. This allows electricity

to be imported from a low price region to a high price region.

The assessment of the spillover effects in electricity prices and price volatilities can

be particularly important for the Australian NEM for two reasons. Firstly, electricity

spot prices are even more volatile and spiky in the Australian NEM than in other com-

parable electricity markets partially due to the interconnection and electricity trans-

mission (Higgs and Worthington, 2008a; Mayer and Trück, 2015). A better knowledge
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Chapter 1. Introduction

of the periodic price spikes and high volatility and their spillovers in this market is

therefore of significance. Secondly, although the Australian NEM aims to provide a sin-

gle integrated market with similar electricity prices across different states (Australian

Energy Market Commission, 2013), so far the different regions in the NEM are still

considered to be relatively isolated, which is reflected by the sizeable price differences

across regions (Higgs, 2009; Ignatieva and Trück, 2016; Nepal et al., 2016). Stake-

holders have raised one concern about the potential problem of underinvestment in

interconnectors (Productivity Commission, 2013; Garnaut, 2011; Ignatieva and Trück,

2016; Nepal et al., 2016), although the Productivity Commission (2013) argues that

new investment in interconnectors at the current stage is not cost efficient. In this

context, there is a strong incentive for regulators to seek more evidence of the current

market integration level, and to evaluate the efficiency of existing market interconnec-

tions and the potential of the NEM to achieve integration. According to Ciarreta and

Zarraga (2015), spillover effects in prices and price volatilities are required features for

market integration. Thus, from this perspective, the spillover analysis in the NEM is

again of great interest.

The worldwide restructuring and deregulation of electricity markets since the 1990s

have fostered a small but rapidly growing literature on spot price modelling in electric-

ity markets, including univariate studies which investigate the intra-relationship of spot

prices within each region (e.g. Bessembinder and Lemmon, 2002; Higgs and Worthing-

ton, 2005, 2008a; Janczura et al., 2013; Lucia and Schwartz, 2002), and multivariate

studies which consider the inter-relationship of prices among different regions. How-

ever, to date the analyses of electricity price dynamics in a multivariate context are still

limited. These studies typically include two groups: long-run interregional relationship

and short-run relationship analyses. Cointegration analyses are normally employed in

long-run relationship analyses (e.g. Apergis et al., 2016; De Menezes and Houllier, 2014;

De Vany and Walls, 1999a; Dempster et al., 2008; Nepal et al., 2016; Zachmann, 2008).

These analyses focus on revealing long-term trends in, for example, market integration

and price convergence, and are usually inadequate to capture the time-varying dynam-

ics. Short-run relationship analyses typically consider the time path of innovation or
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volatility transmission in electricity prices. The generalised autoregressive conditional

heteroskedasticity (GARCH) type models are most popular in these analyses, espe-

cially when considering volatility spillovers (e.g. Ciarreta and Zarraga, 2015; Higgs,

2009; Higgs et al., 2015; Worthington et al., 2005), given that electricity prices are

usually characterised by persistence and volatility clustering (Higgs and Worthington,

2008b)1. Vector autoregressive (VAR) models together with impulse response func-

tions and forecast error variance decompositions are also widely used for analysing

electricity price dynamics within an interconnected system (e.g. De Vany and Walls,

1999b; Le Pen and Sévi, 2010; Park et al., 2006). These techniques based on VAR

models are also the foundation of the spillover analysis in this study. There are other

methods which have been applied in recent studies, focusing on particular features or

phenomena, such as tail dependence, in electricity price dynamics, for example, copulas

(Aderounmu and Wolff, 2014a,b; Ignatieva and Trück, 2016; Smith, 2015; Smith et al.,

2012) and multivariate point process model (Clements et al., 2015). This study builds

on and extends the existing work of Aderounmu and Wolff (2014a,b), Clements et al.

(2015), Higgs (2009) and Ignatieva and Trück (2016) by providing a more detailed

analysis of the price and volatility spillover effects in the Australian NEM with more

recent evidence.

Our analysis is based on the following research questions. Firstly, in general, the

previous literature focuses more on testing the existence of the spillover effects or price

interdependence across different electricity markets, while the detailed pattern of these

effects is missing. This motivates us to examine electricity price and price volatility

spillovers in more details: in particular, what are the degrees of price and volatility

spillover effects in the Australian NEM; what are the directions of the spillovers be-

tween the regional markets; are certain markets transmitting or receiving more price

or volatility spillovers? Secondly, Higgs (2009) and Ignatieva and Trück (2016) sug-

gest that the level of the interdependence between regional prices varies over time.

Meanwhile, in recent years significant events have taken place in the Australian NEM,
1 Multivariate GARCH methods might have disadvantages in practice since they sometimes suffer from

convergence problems (i.e. when more variables are included the model may not converge, especially
when the number of variables is more than three) (Hassan and Malik, 2007).
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including long-run evolution and short-run or mid-run events. For example, a carbon

taxation system was established in 2012 and removed in 2014; the whole electricity in-

dustry is moving towards renewable energy generation; the NEM is under an ongoing

reform aiming for a more integrated and efficient market (Productivity Commission,

2013); and electricity markets are usually significantly influenced by events such as ex-

treme weather and technical issues in generation and networks. These facts motivate

us to examine whether the level of various spillovers is changing in nature and, if so,

how the time variation in spillover effects can be related to market structure or specific

events (seasonality, regulatory changes, extreme weather, etc.) in the NEM. Thirdly,

although the periodic occurrence of price spikes and the substantial price volatility

in electricity markets are highly interrelated, the spillover effects in these two mar-

ket properties can be different (see Worthington et al., 2005). As argued by Diebold

and Yilmaz (2009), the divergent spillover patterns of different market properties can

be due to the fact that they capture different information in the considered market.

This motivates us to investigate whether there is any divergence in the degree and the

time-varying pattern between price spillovers and volatility spillovers in the NEM.

A major novelty of this study is that we employ a relatively new econometric frame-

work (Diebold and Yilmaz, 2009, 2012) to analyse the nature of spillover effects across

regional markets in the NEM. This framework combines the elements of long-run and

short-run interregional relationship analyses. Based on forecast error variance decom-

positions in a vector autoregressive (VAR) model, this framework allows us to quantify

pairwise spillovers between two regions, gross directional spillovers from/to each region,

net directional spillovers from each market, and the system-wide aggregated spillover

index over a certain time horizon. By using a rolling-window technique, the applied

analysis can monitor different types of spillovers at varying points in time.

In practice, the Diebold and Yilmaz (2009, 2012) method (hereafter, DY method)

has three main advantages in examining price and volatility spillovers across regional

electricity markets. Firstly, the nature of the DY method is similar and closely related

to impulse response function analysis which is widely used to explore time-paths of
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shock transmissions across an economic system (see e.g. De Vany and Walls, 1999b;

Park et al., 2006). However, compared with the standard application of impulse func-

tion analysis, the DY spillover measures have the advantage that they can be easily

aggregated so that the overall level of spillover effects in the whole system can be

estimated and monitored. Secondly, the DY method is superior in analysing the direc-

tional spillover flows across markets. Compared with some structural models, it can

conveniently provide such information without having to conduct a priori analysis on

the relative importance of all considered markets or to select particular independent

variables beforehand (Conefrey and Cronin, 2015). Thirdly, this method is also ad-

vantageous in capturing the time variations of spillovers. It produces a continuously

time-varying index, allowing the spillover effects to be tractable without having to

pre-specify a series of breakpoints (for example, the peak/off-peak state in electricity

markets specified in Bollino and Polinori (2008) and De Vany and Walls (1999a,b)).

To the best of our knowledge, this framework has never been used to examine the

dynamics of electricity prices across different regions. Therefore, the successful appli-

cation of the DY method to other financial markets such as equity, bond and foreign

exchange markets in assessing spillover effects (e.g. Allen et al., 2014a,b; Antonakakis

and Vergos, 2013; Claeys and Vašíček, 2014; Cronin, 2014; Maghyereh et al., 2015;

McMillan and Speight, 2010; Narayan et al., 2014; Sugimoto et al., 2014) motivates us

to test the approach for electricity markets as well.

We investigate price and volatility spillover effects in all five regional electricity

markets in the Australian NEM, namely, NSW, QLD, SA, TAS and VIC. We investigate

both market aggregated spillovers and directional spillovers for specific markets. Both

static and dynamic analyses are conducted. By using daily electricity price and price

volatility data from 1 January 2010 to 31 December 2015, we cover the periods before,

during and after the implementation of an important policy – the carbon taxation

policy between July 2012 and July 2014 – and we are able to assess the evolution of

the spillover effects in these three stages.
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Our findings suggest that although spillover effects play an important role in elec-

tricity price formulation in the NEM, regional prices are still mostly influenced by local

factors. Among the five regions in the NEM, SA is the most influential market, while

NSW is the most dependent on others. On the other hand, the magnitude and direc-

tions of those spillover effects all exhibit time variations. A large part of these time

variations could be related to events in the NEM. In addition, the patterns of price and

volatility spillovers are influenced by the physical interconnecting structure of the NEM.

More spillovers can be observed where physical interconnections exist. Furthermore,

divergent behaviour can be observed between price and volatility spillovers. Finally,

our findings are robust when separate assessments are conducted for sub-periods with

regard to the introduction and repeal of the Australian carbon taxation policy. All

results are also relatively robust to the choice of model specification.

Overall, our results contribute to the existing literature in three ways. First, we

conduct a pioneer study by applying the DY spillover method to electricity spot mar-

kets. By doing this we test the usefulness of this approach for electricity markets.

Our results suggest that this method can efficiently capture the price dynamics across

wholesale electricity markets. Second, we provide a deep analysis of price and volatil-

ity spillover effects in the Australian NEM, including detailed patterns of these effects,

such as magnitude, directions and time variations. Finally, by using more recent data,

our results add important empirical evidence to the limited multivariate studies in the

Australian electricity market. In particular, we provide important evidence on the

impacts of the recent introduction and abolishment of the carbon taxation system on

spillover effects in the NEM, which has not been documented in the literature yet.

From a practical perspective, our results provide important information for partic-

ipants in the NEM who are concerned about the extreme outcomes and high volatility

periods of spot prices and the transmission of these events across regions. For exam-

ple, retailers who are operating simultaneously in several different regions have to take

spillover effects into consideration when making risk management and hedging deci-

sions. Our results are also of great interest to electricity traders and so-called merchant
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interconnectors who earn revenue by making purchases in a lower-priced region and

selling electricity to a higher-priced region, because the price differences and joint price

behaviours between regions are highly relevant to their revenue. Furthermore, our re-

sults also provide important information for regulators who aim to evaluate the current

market interconnection, systemic risks as a result of extreme events in a singular or

multiple markets, and the potential of the NEM to achieve integration.

The rest of this thesis is structured as follows. Chapter 2 reviews the related liter-

ature. Chapter 3 provides a description of the Australian NEM, including its institu-

tional background and some stylised facts regarding electricity spot prices. Chapter 4

introduces our methodological framework, while Chapter 5 summarises the properties

of the data used in this study. Empirical findings are provided in Chapter 6. These in-

clude the results of both static and dynamic spillover analyses, as well as the robustness

assessment of the results to different sub-periods and choice of model specifications.

Finally, Chapter 7 concludes and discusses possible directions for future research.
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Chapter 2

Literature Review

This chapter provides an overview of the existing literature related to this research,

including multivariate studies2 of electricity markets (Section 2.1) and literature on our

major methodological framework: Diebold and Yilmaz’s (DY) (2009, 2012) spillover

method (Section 2.2).

2.1 Multivariate Analysis in Electricity Markets

Although this study focuses on the spillover effects in Australian electricity markets,

more international studies have been conducted in this field, mostly based on the

United States (US) and European electricity markets. Therefore, the evidence in the

international context and in the Australian context is separately discussed in Section

2.1.1 and Section 2.1.2.

2 Univariate analyses in electricity markets generally aim to model or forecast prices in a single market.
The key issue in these studies is to deal with the unique features (stylised facts) of electricity prices
and the own spillovers. These are discussed in Chapter 3, Section 3.3.

9
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2.1.1 Literature in the International Context

The multivariate studies of electricity markets are roughly divided into two streams.

The first stream focuses on the long-term market trend, while the second stream in-

vestigates short-term price interactions between markets.

In the first stream, De Vany and Walls (1999a) were the first to study the pric-

ing transmission in decentralised electricity markets. The authors examine the joint

behaviour of daily electricity spot prices in 11 regional spot markets in the western

US from 1994 to 1996. By testing the price series for cointegration, the existence of

arbitrage opportunities, and the equivalence in expectation, they find evidence of a

highly integrated and efficient wholesale power market. On the other hand, contrary

to De Vany and Walls (1999a), based on the Granger causality test and cointegra-

tion analysis results on an extended data set from 1994 to 1999 in the same markets,

Dempster et al. (2008) suggest only a moderate degree of market integration.

Zachmann (2008) studies the integration of European electricity markets by analysing

both static market integration levels and dynamic market convergence, accounting for

the congestion and congestion management effects. The Principle Component Analysis

results reject the existence of a single integrated market. However, using a Kalman

filter, the author finds pairwise price convergence between several countries after con-

sidering congestion costs. More recently, De Menezes and Houllier (2014) reassess the

European electricity market integration using both daily spot prices and month-ahead

prices. They test the price convergence and conduct a time-varying fractional cointe-

gration analysis. In particular, the authors argue that the prevalent unit root tests are

not adequate for assessing convergence of electricity spot prices, which are fractionally

integrated and mean-reverting.

In the second stream, De Vany and Walls (1999b) use impulse-response analysis

and variance decompositions based on a VAR model to estimate the price dynamics in

a network composed of five regional markets in the western US. They find that dur-

10



Chapter 2. Literature Review

ing off-peak periods, a larger proportion of price shocks can be absorbed locally, and

only a small proportion of shocks are transmitted to other regions through the market

interconnection. However, during peak periods, a large proportion of price shocks will

propagate to other markets due to the limited local generation capacity. Later, Park

et al. (2006) use the similar techniques based on the VAR model to analyse the trans-

mission of price dynamics across the US national electricity markets. In an approach

different to De Vany and Walls (1999b) who employ an unrestricted VAR model, Park

et al. (2006) use an acyclic graphical method to impose identifying restrictions on VAR

innovations. Their results suggest that the interrelationship between markets varies

across time. Although the western US markets are separated from the other markets

in contemporaneous time, in a longer time horizon (1 day or 30 days), the separation

disappears, and regional prices become interdependent.

In the European context, Haldrup and Nielsen (2006) examine the dynamics of

electricity price and price interdependence between pairs of regional markets in the

Nordic countries by developing a Markov switching fractional integration model. They

find that bilateral prices are identical during some periods but are divergent during

other periods. Thus, they argue that a regime switching model is effective in fore-

casting relative prices based on Monte Carlo forecasting. Furthermore, Bollino and

Polinori (2008) conduct a contagion analysis of regional electricity markets in Italy.

They identify contagion effects in those markets and conclude that contagion and price

interdependence can be identified separately.

Le Pen and Sévi (2010) use data from electricity forward markets to estimate a VAR-

BEKK (Baba, Engle, Kraft and Kroner) model. They show the return and volatility

spillovers in three major European electricity markets: Germany, the Netherlands,

and the UK. The authors also investigate the impact of shocks on volatilities in each

market by quantifying the impact through volatility impulse response functions. They

find significant but short-lived positive impacts only when a shock has a large size

compared to the current volatility level. Ciarreta and Zarraga (2015) use multivari-

ate Generalised Autoregressive Conditional Heteroscedasticity (MGARCH) models to
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investigate mean and volatility spillovers of electricity prices between six European

countries (Spain, Portugal, Austria, Germany, Switzerland and France). They find sig-

nificant mean and volatility spillovers as well as increasing price convergence between

each pair of countries except between Spain and France, and between Germany and

France, and thus conclude that the considered markets are in a process of market inte-

gration. In addition, De Menezes and Houllier (2015) investigate the influence of the

recently higher penetration of wind power in electricity generation (in particular, in

Germany) on interconnected European markets. This study conducts both short-run

and long-run interrelationship analyses to investigate changes in the market integration

level. Two MGARCH models are used in the short-run analysis and a fractional coin-

tegration method is used in the long-run analysis. Their results illustrate that greater

price and volatility transmission can be observed in the short-run due to the market

interconnection; however, in the long-run higher wind power penetration in Germany

tends to make it less integrated with its neighbouring markets.

2.1.2 Literature in the Australian Context

In the Australian context, more studies focus on modelling short-term price and volatil-

ity dynamics in electricity markets. For example, Worthington et al. (2005) employ a

MGARCH model to investigate the daily electricity spot price transmission and price

volatility spillover in five regional markets (NSW, QLD, SA, SNO3 and VIC) in the

Australian NEM. Their results suggest insignificant price transmission across these

markets. However, significant volatility spillovers are present in all five markets, indi-

cating that shocks in one market have an influence on price volatility in other markets.

This study is extended by Higgs (2009) by further assessing the effects of interregional

electricity price volatility spillovers through three conditional correlation MGARCH

models. Higgs (2009) finds significant positive conditional correlations between all

pairs of regional markets. These correlations are strongest between interconnected
3 SNO denotes the Snowy regional market in the NEM, which was abolished on 1 January 2008. Its

electricity demand was then redistributed between NSW and VIC (Australian Energy Regulator,
2015).
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markets.

Instead of examining volatility transmissions, several more recent studies conduct

analyses on the interdependence of electricity prices. A number of studies have pro-

posed the employment of copula models to measure the nonlinearity in multivariate

electricity price modelling. In particular, Smith et al. (2012) construct a skew t copula

to capture electricity spot price dependence. Their analysis of Australian electricity

market integration suggests strong nonlinear price dependence between different re-

gional markets. They show that the skew t copula coupled with Bayesian inference

constructs a powerful model for this dependence. Smith (2015) employs a vine copula

model to estimate the high level of nonlinear serial and cross-sectional price interde-

pendence in the NEM. Aderounmu and Wolff (2014a,b) use copulas and the so-called

tail dependence coefficient (TDC) to show significant dependence of price spikes in the

NEM. Ignatieva and Trück (2016) employ a group of copula models to analyse price

dependence structure in the NEM. They find a positive dependence structure between

each pair of regions, while prices between well-connected markets exhibit the strongest

dependence. They also show that copula mixture models are superior in capturing

asymmetric tail dependence. Manner et al. (2016) propose a copula-based multivariate

dynamic binary choice model to estimate and forecast joint spikes in the NEM. Dy-

namic spillover effects are evidenced through this model. Furthermore, Clements et al.

(2015) model price spikes simultaneously in several interconnected regions in the NEM

with a multivariate point process. They find transmissions of spikes across regions,

which are proven to be influenced by interconnector capacities.

From the long-run market integration perspective, Nepal et al. (2016) employ pair-

wise unit root tests, a Johansen cointegration test, and time-varying coefficient esti-

mations to examine the market integration level. Overall, the results suggest that the

Australian NEM has not achieved full integration. Furthermore, Apergis et al. (2016)

test the price convergence across states in Australia with a clustering group approach,

including all five regions in the NEM as well as the Western Australia (WA) market.

They find three groups: NSW, QLD and VIC; SA; and TAS and WA. According to
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Apergis et al. (2016), the electricity generation mix and ownership structure of elec-

tricity generation are important factors that contribute to the separation of these three

groups.

2.1.3 Electricity Market Interconnections in the Literature

Noticeably, while analysing market interdependence, various studies have emphasised

the important role of market interconnections (i.e. physical interconnections of power

lines between regions and their capacity). Some studies illustrate that the interconnec-

tor capacity is a key factor that influences the degree of market integration. Haldrup

and Nielsen (2006) find that with the existence or absence of bottlenecks in network

transmission, the electricity price behaviours in single markets are different. Micola

and Bunn (2007) analyse the role of interconnector congestion in the split of local

energy spot markets. They suggest that a threshold of interconnector capacity deploy-

ment exists. The interconnected local markets split after this threshold is reached. By

analysing the data from the Bacton (the United Kingdom) to Zeebrugge (Belgium)

natural gas pipeline, they find an increasing and convex relationship between the in-

terconnector capacity utilisation and the market split level. In the Australian NEM,

Nepal et al. (2016) illustrate that the limitation of transmission capacities of inter-

connectors prevents the overall market integration. Higgs (2009), Ignatieva and Trück

(2016) and Smith (2015) find stronger electricity price interdependence between phys-

ically well-connected markets and weaker interdependence between markets that are

not so well-connected. Higgs (2009) argues that interconnected markets in the NEM

are integrated and informationally efficient, while it is unreasonable to expect markets

that are geographically distant and isolated to become integrated.

In addition, several studies assess the influence of market interconnections on the

specific patterns of electricity price dynamics. As highlighted in De Menezes and

Houllier (2015), although higher electricity market integration and efficiency level can

be achieved through market interconnection, when prices are positively correlated,
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the overall price volatility is higher than the sum of volatilities in every individual

market. It means that higher price risks from the interconnections are imposed on

market participants. Furthermore, Füss et al. (2015) theoretically show the important

implication of different allocation mechanisms for cross-border transmission capacity

for pricing in interconnected electricity markets. A fundamental multi-market model

is developed to price the electricity spot and derivatives. Through this model, the

authors show how the set-ups for cross-border trades impact the key stylised facts of

electricity spot prices, such as price spikes and high price volatility. Finally, Clements

et al. (2015) illustrate the significant impacts of interconnector capacities on the size

of price spikes and thus the spillover effects of these spikes in interconnected regional

electricity markets.

2.2 Diebold and Yilmaz’s (DY) (2009, 2012) Spillover

Measure

Our major methodological framework in this study is formed based on the spillover

method of Diebold and Yilmaz (2009, 2012). The DY method provides several spillover

measures, allowing us to conduct detailed analyses on the transmission of price and

volatility in the Australian NEM.

2.2.1 Development and Advancements of the DY Framework

The DY measure was firstly developed in 2009 based on the forecast error variance de-

compositions from a vector autoregressive (VAR) model that was originally introduced

by Sims (1980). Diebold and Yilmaz (2009) apply this measure to 19 global equity

markets and assess the return and volatility spillovers in these markets. Their study

shows divergent behaviour in return and volatility spillovers. Return spillovers display

a gently upward trend, which is, as explained by Diebold and Yilmaz (2009), associated

with the increasing integration level of the global financial markets. In comparison,
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volatility spillovers are more eventful than return spillovers, with bursts during crisis

episodes, but display no trends.

Despite the efficiency of the DY method (2009) in analysing the aggregated market

spillover effects, Diebold and Yilmaz (2012) and Gaspar (2012) point out that it has two

main limitations. Firstly, its VAR variance decomposition relies on the Cholesky-factor

identification which is dependent on variable ordering. The results generated with this

method are thus sensitive to variable ordering by nature. Therefore, the application of

this version (2009) requires a priori analysis on the comparative influential power of the

considered variables. Secondly, the original version of the DY method only addresses

the measure of total market spillovers, while in practice it might be of more significance

to look at directional spillovers (spillovers from and to a particular market).

To address the two limitations above, Diebold and Yilmaz (2012) propose an im-

proved spillover measure based on a generalised variance decomposition (GVD) frame-

work that was introduced by Koop et al. (1996) and Pesaran and Shin (1998). The new

method is invariant to the variable ordering and introduces the concept of directional

spillovers, which can be used to analyse the transmission flow of spillovers without a

priori identification of the relative importance of markets. Diebold and Yilmaz (2012)

apply this new version of the DY method to assess the volatility transmission among

four asset classes: stocks, bonds, commodities and foreign exchange. Further, Diebold

and Yilmaz (2014) show that by combining it with network theories, the DY method

can provide a variety of information on market connectedness.

In addition, to address the sensitivity of the original DY measure (2009) to variable

ordering, Klößner and Wagner (2012, 2014) introduce another improvement. They

develop an algorithm for fast calculation of the spillover index. Based on this algo-

rithm all possible ordering can be explored, and the minimum and maximum values of

the spillover index can be computed. Klößner and Wagner (2012) use this algorithm

to assess the robustness of the DY measure (2009). They suggest that the aggre-

gated spillover index is relatively robust; however, its decompositions (i.e. directional
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spillovers) are severely impacted by reorderings of the input variables.

In this study, identifying the directions of spillovers across the five regions in the

NEM and the relative influencing power of these regions is one of the major research

objectives. Therefore, the order-invariant version of the spillover measure (Diebold and

Yilmaz, 2012) is more appropriate.

2.2.2 Application of the DY Framework

Although the DY (2009, 2012) framework is proposed to be appropriate for assessing

spillover effects in any market, its application so far is limited mainly to equity, bond

and foreign exchange markets (e.g. Allen et al., 2014a,b; Antonakakis and Vergos, 2013;

Claeys and Vašíček, 2014; Cronin, 2014; Maghyereh et al., 2015; McMillan and Speight,

2010; Narayan et al., 2014; Sugimoto et al., 2014). The DY method is commonly used

to investigate the transmission of shocks among different markets or asset classes.

It provides implications on portfolio construction and risk management in financial

markets. For example, Maghyereh et al. (2015) investigate equity return and volatility

spillovers between the US and the Middle East and North African markets. They use

the DY method to evaluate the diversification potential of the Middle East and North

African equities before and after the global financial crisis in 2008. Allen et al. (2014b),

in their analysis of volatility spillover from a group of Australia’s trading partners to

Australia’s stock market, apply the DY model as a preliminary analysis for a further

GARCH analysis. In particular, they first use the DY method to identify the two most

influential markets (the US and Hong Kong). Next, they fit the data from these two

markets and Australia into a GARCH framework. In addition, the DY method is able

to generate a variety of time series data that measure dynamic spillover levels. Krause

et al. (2014) use these time series as the dependent variable in Fama and MacBeth

(1973) regressions, while Lau and Bilgin (2013) use the time series of an aggregated

spillover index as an independent variable in the GARCH specification. Lau and Bilgin

(2013) and Tokat and Tokat (2010) suggest that including a volatility spillover measure
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into the conditional variance equation in the GARCH model can help investors improve

the hedging strategy in currency markets.

A few studies apply the DY measure in energy commodity markets. The DY frame-

work based on structural VAR variance decompositions is used for oil markets in Anton-

akakis et al. (2014) and Kang et al. (2014). Rather than using Cholesky decomposition

or GVD, they conduct variance decomposition by separating three types of structural

oil price shocks. Zhang and Wang (2014) apply the DY (2012) method to show the bi-

directional and asymmetric patterns in return and volatility spillovers between China

and global oil markets. Their dynamic spillover analysis further illustrates the intensi-

fied influence of China’s oil market on others in recent years. Furthermore, in the study

of Baruník et al. (2015), the DY method is extended to detect and measure the spillover

asymmetries (spillovers due to negative returns and positive returns) in petroleum mar-

kets. They use five-minute data and point out that when the focus of interest is the

price movements (in their study, positive and negative returns), high-frequency data

can be more informative for the analysis of the transmission mechanism. Finally, only

one study (Jaeck and Lautier, 2015) has employed the DY framework to investigate

the electricity derivative markets. The study analyses the volatility spillovers across

electricity futures with different maturities.

However, to the best of our knowledge, the DY method has not been applied to

analyse either electricity spot prices or the interrelationship between regional electricity

markets.
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2.3 Summary of Literature Review

In summary, Chapter 2 presents the rationale of this study in the context of the lit-

erature. There are limited multivariate studies focusing on electricity spot markets,

especially in the Australian NEM. Furthermore, the existing literature focuses more

on testing the existence of the spillover effects, while the specific pattern of these ef-

fects is missing. A detailed assessment of the spillovers in the NEM can therefore add

important empirical evidence in this field. In particular, given the important role of

electricity market interconnections in a multi-regional context, their impacts on price

and volatility spillovers should be evaluated.

In addition, the DY method, which is efficient in capturing spillovers and connect-

edness in financial markets, has yet to be applied in a multivariate context in electricity

spot markets. This encourages an assessment of the efficiency of the DY method in

electricity markets.
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Chapter 3

The Australian National Electricity

Market

Because of the non-storable nature of electricity, electricity markets have a strong de-

mand and supply relationship, resulting in special features, namely, seasonality, mean-

reversion and short-lived spikes in electricity prices (Bessembinder and Lemmon, 2002;

Kaminski, 2004). These stylised facts have to be considered in modelling electricity spot

prices and price dynamics. Meanwhile, since the institutional set-ups have important

influence on the formulation of electricity prices (Füss et al., 2015; Park et al., 2006),

understanding the market mechanisms is significant in analysing electricity markets’

interrelationship. Therefore, this chapter provides an overview of the structure and

operation mechanism of the Australian NEM (Sections 3.1 and 3.2), as well as stylised

facts of electricity prices (Section 3.3). The aim is to build a foundation for the fol-

lowing spillover analysis. Furthermore, the role of an important policy in Australia in

recent years, the carbon taxation policy, is also discussed.
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3.1 Overview of the NEM

The Australian NEM began operating as a wholesale market in December 1998 (Aus-

tralian Energy Regulator, 2015). Prior to it, the electricity market in Australia was

separated, with each state operating its own vertically integrated state-owned busi-

ness for electricity generation, transmission and distribution. Electricity prices were

determined by state government regulations in order to cover costs with any required

return for the government. With the aim of increasing the market efficiency of the

electricity industry, the Australian government commenced the reform in the 1990s to

restructure the electricity market in three ways. Firstly, it separated the supply in-

dustry into generation, transmission, retail and distribution segments. Secondly, while

transmission and distribution segments remained in a regulated monopoly, competition

was introduced to the generation and retail markets. Private participants could enter

the competitive generation and retail markets, and customers could choose their retail

suppliers. Thirdly, the states’ power systems were extended to be interconnected to

form a national electricity wholesale market.

The following sections introduce the current characteristics of the NEM, including

the structure, generation, spot pricing, interregional trade and market interconnection

issues.

3.1.1 Structure of the NEM

The NEM operates one of the longest interconnected power systems in the world,

covering 4,500 kilometres, and supplying electricity for five states which are NSW, QLD,

SA, VIC and TAS (Australian Energy Regulator, 2015). Networks in each state are

linked to others via interconnecting transmission lines. This nationally interconnected

grid provides electricity supply to retailers and end-users.

The NEM differs significantly from other commodity markets since electricity is
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non-storable and indistinguishable according to its generator or consumer. Because of

these features, the NEM uses a pool where the electricity output from all generators

can be centrally pooled and scheduled to meet the forecasted demand. The Australian

Energy Market Operator (AEMO) manages this pool, following the National Electricity

Rules.

3.1.2 Spot Pricing

Unlike many other markets in the US and Europe (ACER (Agency for the Coopera-

tion of Energy Regulators), 2013; Ciarreta and Zarraga, 2012; Füss et al., 2015), the

electricity spot market in Australia is not a day-ahead market. Instead, supply and

demand for electricity are matched in real time through a centrally-coordinated dis-

patch process (Australian Energy Regulator, 2015). Generators submit bids every five

minutes, specifying the amount and the price they offer. AEMO then determines the

generators to produce electricity to meet the forecasted demand based on a least-cost

optimisation. Thus, generators with lower marginal costs will be given priority when

scheduling a dispatch. Every five minutes AEMO determines a dispatch price for each

region. The final half-hourly electricity spot price is the average of six dispatch prices.

Similarly, a daily average spot price can be calculated based on the half-hourly prices4.

Remarkably, although all of the supply of electricity is centrally pooled to meet the

demand, spot prices are determined separately for each region after considering trans-

mission loss factors and interconnector capacities, and therefore can vary significantly

in different regions.

4 Unlike electricity markets in many European countries (see ACER (Agency for the Cooperation of
Energy Regulators), 2013; Ciarreta and Zarraga, 2012; Füss et al., 2015), the Australian NEM is an
‘energy only’ market where spot prices are ‘energy only’ without any price component for capacity.
Namely, the NEM does not comprise a separate capacity market. In theory, this market mechanism
leads to efficient generation and spot market pricing (Nepal et al., 2016).
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3.1.3 Electricity Generation

The generation of electricity in the Australian NEM predominantly relies on fossil fuels,

such as coal and gas. For example, in 2015, about 88% of the overall electricity genera-

tion were from fossil fuels, with around 76% from black and brown coal and 12% from

gas (Australian Energy Regulator, 2015). However, encouraged by the government

policies due to concerns regarding climate changes and energy generation indepen-

dence, the source of electricity generation in the NEM is moderately transferring from

fossil fuels to renewables. For example, the share of coal generation dropped by ap-

proximately 6% from 2010 to 2015, while on the other hand, the share of renewable

energy increased from 9.6% to 12% (Clean Energy Council, 2011, 2015). In particular,

hydropower and wind power represented the largest shares of the renewable genera-

tions in the NEM (40.1% and 33.7%) in 2015 (Clean Energy Council, 2015). Other

renewable energy sources include solar, bioenergy and geothermal.

In reference to energy use by region, VIC, NSW and QLD rely more heavily on

coal generation than other regions. On the other hand, TAS and SA have larger shares

of renewable energy generation. In 2015, 99.9% of TAS’s generation and 43% SA’s

generation came from renewable energy (Clean Energy Council, 2015). In particular,

the majority of the TAS generation is hydroelectric, while the penetration of wind

generation is especially strong in SA (Clean Energy Council, 2015). As suggested by

Higgs et al. (2015), the type of generation has a strong impact on both electricity prices

and price volatilities.
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3.2 Interconnectors and Interregional Trade

The NEM allows electricity to be traded across different regions. In fact, a key objective

of the continuing reform of the Australian NEM is to provide a nationally integrated

electricity market with efficient delivery of network services and electricity infrastruc-

ture, limiting the market power of generators in each regional market (Productivity

Commission, 2013). This is supported by interconnectors, which are the physical trans-

mission lines connecting adjacent regions. The following sections introduce the role of

these interconnectors in the NEM and discuss the current issues related to them.

3.2.1 Role of Interconnectors in Interregional Trade

On the one hand, those physical interconnections between regions facilitate market

integration (Nepal and Jamasb, 2012) and promote competition in electricity whole-

sale markets, especially in a concentrated market with limited market participants.

Specifically, electricity is imported into one region through the interconnectors when

the output of local generators is insufficient to meet demand, or when the electricity

price in the adjoining market is low enough to replace the local supply. Optimally, if

the market operates efficiently, prices align across regions, with the difference only to

account for physical transmission losses during the delivery of electricity (Australian

Energy Regulator, 2015).

On the other hand, the efficient scheduling of generators to meet demand across

different regions is limited by the physical transfer capacity of interconnectors (Aus-

tralian Energy Regulator, 2015). When the interconnector is constrained (the limit

of its capacity is reached), AEMO has to schedule a more expensive generator from

within a region to meet the local demand, even if electricity supply with a lower price

is available in another region. This results in substantial price differences between two

regions, as well as extreme price outcomes in high demand areas, indicating the isola-

tion of two markets. In addition, in the presence of transmission congestion, the higher
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spot price encourages strategic bidding behaviour by those generators constrained by

interconnector capacity (Productivity Commission, 2013). These strategic biddings

lead to further inefficient market generation and regional spot pricing.

The importance of interconnectors and interregional electricity transmission is evi-

denced by the recent extreme price scenarios in SA in July 2016. Those extreme spot

prices and high price volatilities are partially due to the planned outage of a main

interconnector (Heywood) between VIC and SA (Uhlmann, 2016). They also had a

spillover effect to the VIC market, where periods of relatively high price volatility were

observed5. In addition, in the recent blackout in SA at the end of September 2016, the

failure of interconnectors between SA and VIC which cut off SA’s supply from VIC

is also a main contributing factor to this event (Charis, 2016). The important role of

interconnectors is also evidenced by another recent event related to the outage of the

interconnector between VIC and TAS (Basslink). Basslink went down on December

20, 2015, which isolated TAS from the NEM6. As a result, electricity spot prices in

TAS spiked 400% from a normal level of around $40 per MWh to higher than $200

per MWh. These high prices were maintained over four months (Australian Energy

Market Operator, 2016).

3.2.2 Interconnectors in the NEM

As shown in Figure 3.1, currently there are six interconnectors linking five jurisdictions

in the NEM: QNI and Terranora between NSW and QLD, Heywood and Murraylink

between VIC and SA, VIC-NSW interconnector between NSW and VIC, and Basslink

between VIC and TAS. Notably, no direct interconnections exist between NSW and

SA or between QLD and SA.

Except for Basslink between VIC and TAS, all of these interconnectors operate

5 Those periods of high volatility in VIC include, for example, most half-hourly intervals on July 6 and
July 7 (Australian Energy Market Operator, 2016).

6 Basslink interconnector was back in operation in June 2016.
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as regulated interconnectors. A regulated interconnector receives fixed revenue deter-

mined by the regulator based on the asset’s value. The actual interconnector usage is

not considered in calculating this revenue. In comparison, an unregulated interconnec-

tor, which is also called a market network service provider or merchant interconnector,

derives revenue by participating in interregional trades in the spot market (Australian

Energy Regulator, 2015). Therefore, the analysis of price difference and spillover effects

between regions is especially of interest for unregulated interconnectors.

Figure 3.1: Interconnectors in the NEM (Australian Energy Regulator, 2015). Regulated intercon-
nectors are interconnectors that have passed the Australian Competition and Consumer Commission
(ACCC)-devised regulatory and add net market value to the NEM. Unregulated interconnectors do
not undergo regulatory test.

3.2.3 Investigation of the Use of Interconnectors

Figure 3.2 illustrates the quarterly interregional trade as a percentage of regional elec-

tricity consumption. For the period considered in this study (January 2010 to December

2015), with only four exceptions out of 120 datapoints, the percentage of interregional

trade for each region is limited below 30% (in absolute value). Most of these percent-

ages are below 20%. Among the five states, NSW and SA typically import electricity,

while QLD and VIC are typically electricity exporters. For TAS, the trade position
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fluctuates depending on the market and weather conditions (Australian Energy Regu-

lator, 2015).

Overall, electricity generation from interstate trades still represents a relatively

small fraction of the overall market generation. Accordingly, there is a concern about

underinvestment in interconnectors in the Australian NEM (Productivity Commission,

2013; Garnaut, 2011). This potential underinvestment problem is reflected by the sub-

stantial price differences between regions, and the occurrence of unnecessarily high price

outcomes. In particular, Nepal et al. (2016) investigate the use of the interconnectors

in the NEM, and their hypothesis test results show that the existing interconnector ca-

pacities are not underutilised. The results, together with the isolated regional markets

in the NEM, suggest the existence of significant transmission constraints (or bottle-

necks) in all interconnectors. Nepal et al. (2016) thus propose more investments in the

current interconnector capacities and new interconnectors.

Figure 3.2: Quarterly interregional trade as a percentage of regional electricity consumption from July
2009 to June 2016 (Australian Energy Regulator, 2016)
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3.3 Stylized Facts of Electricity Prices

Because of its non-storability, electricity has to be consumed when it is produced.

This means that the electricity to be distributed in a particular time horizon is not

substitutable for power that is available shortly before or after that time (Weron, 2006).

This pushes the demand and supply balance in electricity markets to a knife-edge;

namely, the electricity demand is highly inelastic. Even small changes in electricity

load and generation may result in substantial changes in spot prices. In addition to

the tight electricity demand and supply relationship, there are various factors (including

seasonal factors and extraordinary events) imposing significant influences on the load

of electricity. As a result, electricity prices can be far more volatile than prices in other

commodity markets. In particular, three well-documented stylised facts, seasonality,

mean-reversion and short-lived spikes, contribute to those high volatilities, which are

discussed in this section.

3.3.1 Seasonality

Seasonality in electricity prices is stronger than in any other commodity market. This

seasonal component is mainly driven by cyclical fluctuations in electricity demands

(Kaminski, 2004; Pilipovic, 2007). These fluctuations correspond to changes in climate

conditions and business or household activities such as working hours. Accordingly,

different cycles (daily, weekly and yearly) can be observed in electricity prices. For

example, electricity prices tend to be higher during summer and winter or weekdays

which are usually high demand periods.

Given the significance of the seasonal component, a number of studies (e.g. Clements

et al., 2015; Hadsell et al., 2004; Higgs et al., 2015; Higgs and Worthington, 2005; Koop-

man et al., 2007; Lucia and Schwartz, 2002) choose either to include seasonal factors

in modelling electricity prices, or to remove the seasonality (Aderounmu and Wolff,

2014a,b; Ignatieva and Trück, 2016) before further analysing the stochastic part of
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electricity prices. Typical techniques for removing the seasonal component from elec-

tricity prices include differencing, moving average, spectral decomposition, the rolling

volatility technique and wavelet decomposition (Weron, 2006).

3.3.2 Mean-Reversion

In a mean-reversion process, the value of a variable is always brought back to the equi-

librium level. The stronger the mean-reversion effect is, the faster the variable returns

when deviating from the equilibrium. Mean-reversion can be observed in most finan-

cial markets. However, this effect generally appears to be much stronger in electricity

markets than in most other markets (Weron, 2006). In storable commodity markets,

such as oil and gas markets, the mean-reversion process is usually related to annual

cycles in supply and demand or economic cycles, which can take months or even years.

In comparison, in electricity markets, it is common to observe extreme price values

followed by fast reversion to the previous levels (Benth et al., 2008; Pilipovic, 2007).

For example, when there is an increase in electricity demand due to extreme weather

conditions, more expensive generators enter the pool on the supply side and push up

the spot prices. As soon as the weather conditions and electricity demand return to

normal afterwards (usually within several hours or days), those expensive generators

leave the pool and the prices fall. This market operating mechanism, together with

the multiple cyclical demand-drivers, results in the significant mean-reversion effect in

electricity spot prices.

3.3.3 Price Spikes

Another pronounced feature of the electricity market is known as price spikes, referring

to those infrequent, short-lived, and generally unanticipated extreme outcomes of spot

prices. Within a period of as little as one hour, the electricity price can increase tenfold

and then fall back to the previous level. As suggested by Bessembinder and Lemmon

30



Chapter 3. The Australian National Electricity Market

(2002), price spikes reflect a convex relationship between demand and supply cost in

the electricity market. Thus, during those unexpected high demand periods, there is

a substantial increase in the marginal cost of electricity generators. In contrast, on

some rare occasions, because of the non-storable nature of electricity, when electricity

demand is reduced, generators fail to adjust to the new demand level due to operating

costs or generation constraints. Consequently, negative prices spikes can be observed

(see Fanone et al., 2013).

In the Australian NEM, electricity prices are even more volatile and spiky than

other comparable markets (Higgs and Worthington, 2008a; Mayer and Trück, 2015).

The current market price cap that limits the highest possible electricity spot price is

$13,800 per MWh (Australian Energy Regulator, 2015). The regional spot price has

been close to or reached the market price cap on several occasions (e.g. extreme prices

in SA in July 2016). Furthermore, the price dependence between regions in the NEM

is especially strong for those price spikes (Aderounmu and Wolff, 2014a,b; Ignatieva

and Trück, 2016; Smith et al., 2012).

Given the important role of price spikes in any electricity market, a number of

studies have applied various techniques to deal with them in the analysis of electricity

prices. For example, some authors use fixed or variable price and price change thresh-

olds to identify spikes (Bierbrauer et al., 2004; Fanone et al., 2013; Trück et al., 2007;

Weron, 2008), while others employ wavelet decomposition to filter out the extreme val-

ues (Stevenson et al., 2001, 2006). Furthermore, Green et al. (2014) and Schmidt (2008)

use a generalised filtered Poisson Process to model electricity price spikes. Bierbrauer

et al. (2004), Deng (2000) and Huisman and Mahieu (2003) show the interactions be-

tween the degree of the mean-reversion effect and price spikes. Other univariate studies

on electricity price spikes include, for example, Christensen et al. (2012), Clements et al.

(2013), Eichler et al. (2014), Herrera and González (2014) and Korniichuk et al. (2012).
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3.4 Dynamics in Electricity Price Interdependence

The interrelationship between regional markets in the Australian NEM is not constant,

and the level of the interdependence between regional prices varies over time. As

described by Higgs (2009) and Ignatieva and Trück (2016), while significant electricity

price differences can be observed between regional markets during certain periods,

indicating a relatively low price interdependence, there have been occasions when joint

price spikes and high volatilities appeared in several regions and price interdependence

has been much higher. These observations indicate a time-varying pattern in both price

and volatility spillover effects in the NEM. The issue of dynamic price intedependence

in the NEM has been addressed in, for example, Aderounmu and Wolff (2014a,b), Higgs

(2009), Ignatieva and Trück (2016) and Manner et al. (2016).

Furthermore, one would intuitively expect the spillover patterns to be time-varying

due to a series of changes or specific events happening to the NEM. For example, in

the long-term, the continuing reform aiming for a more efficient and integrated market

(Australian Energy Regulator, 2015) may increase the spillover level by creating a closer

relationship between different regions. In the short-term, shocks caused by issues such

as extreme weather conditions or temporary generation outages in a particular market

may spill over into other regions. In addition, regulatory changes such as the carbon

taxation introduced in 2012 impact the NEM in various typical aspects, including

the generation activity and interregional electricity flows. They are also expected to

influence the pattern of spillover effects across all regions.
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3.5 The Role of the Carbon Taxation Policy

The Australian NEM is constantly experiencing regulatory changes that may have an

impact on the interaction between electricity spot prices in different regions. One

important change that is relevant to our sample period is the carbon tax policy that

operated between 1 July 2012 and 30 June 2014. This policy was introduced by the

Australian Labor Government in order to reduce carbon emissions and mitigate climate

change (Australian Energy Regulator, 2015). Central to this policy was the mechanism

that a fixed price (or tax), starting at $23, was placed on each tonne of carbon dioxide

equivalent emission. This policy had a significant influence on the electricity sector

because electricity generation contributes a large proportion to overall carbon emissions

in Australia.

The major impacts of the carbon pricing scheme can be summarised in three points.

First, the carbon tax increased the cost of electricity generators during the two-year

carbon pricing period between July 2012 and July 2014. As a result, although the

electricity demand declined in this period, spot prices in the NEM generally exhibited

a substantial rise. However, the increases in electricity spot prices were not even across

all regions in the NEM. In particular, the increase in electricity prices in TAS was

much less than in the other four NEM regions (Australian Energy Regulator, 2015;

Apergis et al., 2016), because hydro generation had a large share in the TAS market.

Second, the carbon taxation also altered the composition of the electricity generation

in the NEM. The market share of coal generation largely dropped and even reached

a historical low in the 2013-2014 financial year, while the share of generation from

renewables significantly increased (Australian Energy Regulator, 2015). In particular,

carbon taxation increased returns for hydro generation, and the share of hydropower

generation thus grew to a record high level in the carbon pricing period. Finally,

the changes in regional prices and the generation mix in the NEM further altered the

interregional electricity flows. This is especially true for TAS. Due to the increased local

hydro output and the relatively low electricity prices, TAS became a major electricity
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exporter during the carbon pricing period. In the 2013-2014 financial year, it even

recorded the highest ratio for exports of all regions since the NEM operation (Australian

Energy Regulator, 2015).

After the repeal of carbon taxation on 1 July 2014, the share of electricity gener-

ations based on fossil fuels became high again. The overall spot prices in the NEM

fell back to lower levels. In contrast, the share of generation from renewables dropped.

In particular, hydro generation in TAS significantly decreased due to its reduced prof-

itability. As a result, TAS became a net electricity importer after July 2014.

Due to the impacts of carbon taxation on various aspects in the NEM operation, the

interregional relationships across regions are expected to have been altered during the

implementation of this policy. For example, Apergis et al. (2016), in their clustering

group analysis for market integration, find that over recent years, although the prices

of SA are converging towards those of QLD, NSW and VIC through investments in

renewable energy, the carbon taxation policy between July 2012 and July 2014 slowed

this process, because QLD, NSW and VIC were more sensitive to this policy than SA

due to their higher reliance on coal-fired electricity generation. This motivates us to pay

particular attention to the influence of carbon taxation on the spillover effects in prices

and price volatilities in the NEM when conducting our dynamic spillover analysis.
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3.6 Summary of the Australian NEM

In summary, Chapter 3 discusses the features of electricity prices and the institutional

background in the Australian NEM. Electricity prices are generally characterised by

seasonality, mean-reversion and periodic occurrence of spikes. The Australian NEM is

a highly volatile and spiky electricity spot market. The market interconnection among

the five regional markets is one of the contributors to the high volatilities and their

transmissions.

Although one objective of establishing the Australian NEM is to provide a single

integrated market with similar electricity prices across different states (Australian En-

ergy Market Commission, 2013), due to the limited capacity of the interconnectors, the

different regions in the NEM are still relatively isolated and sizeable price differences

exist. These encourage a spillover analysis to evaluate the potential of the NEM to

achieve market integration.

Meanwhile, the interrelationships between different regions in the NEM tend to vary

across time. This encourages a dynamic spillover analysis where the time variations of

the spillover effects are monitored and related to the changes in the market conditions.

In particular, the important role of the recent establishment and abolishment of the

carbon taxation policy encourages a particular attention to its impacts on the spillover

effects in the NEM.
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Chapter 4

Methodology

This chapter presents the methodology to assess the spillover effects based on the five

regional markets in the Australian NEM. Our methodology in this study is composed

of the following three steps:

(i) Deseasonalisation (4.1);

(ii) VAR modelling (4.2.1);

(iii) Decomposition of the linear forecast error variance (4.2.2-4.2.3).

4.1 Deseasonalisation

The electricity spot price (Pt) is typically modelled as Equation 4.1,

Pt = ft + Xt, (4.1)

where ft is a deterministic (trend-seasonal) component, and Xt is a stochastic compo-

nent (e.g. Ignatieva and Trück, 2016; Janczura and Weron, 2010; Janczura et al., 2013;

Weron, 2006). Furthermore, the deterministic component ft of electricity prices con-

tains both a short-term (st) and a long-term (Tt) seasonal component, i.e., ft = st+Tt.
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This section introduces our approach to modelling and removing the seasonality

in electricity prices. According to Ignatieva and Trück (2016), Janczura et al. (2013)

and Weron (2009), three types of approaches are widely applied in the literature to

model the trend-seasonal component (ft) in electricity prices. The first is the piecewise

constant function (e.g. Fanone et al., 2013; Higgs and Worthington, 2008a; Knittel

and Roberts, 2005; Lucia and Schwartz, 2002). This method is flexible with regard

to modelling seasonality in different time periods. However, the modelled seasonal

component lacks smoothness, and thus requires additional processing. The second

type of model consists of sinusoidal functions (e.g. Bierbrauer et al., 2007; Cartea and

Figueroa, 2005; Clements et al., 2015; Geman and Roncoroni, 2006; Green et al., 2014;

Pilipovic, 2007). Although the sinusoidal function can be a good approximation of the

cyclical pattern for electricity prices in many countries (Pilipovic, 2007; Weron, 2006),

for the Australian NEM it is too regular in periodicity to be used. As shown in Figure

5.1 in the following chapter on data, irregular long-term seasonal patterns of price

changes can be observed throughout the sample period. These patterns rather reflects

non-periodic factor, such as the fuel price level, changing climate conditions, consumer

behaviour and strategic bidding practices by generators (Ignatieva and Trück, 2016).

Therefore, sinusoidal functions are not used in this study.

Instead, we follow Aderounmu and Wolff (2014a,b), Ignatieva and Trück (2016),

Janczura and Weron (2010) and Weron (2006, 2009) to apply a third approach: wavelet

decomposition. Specifically, in this study a wavelet analysis is conducted for the long-

term seasonal component in electricity prices, while a moving average technique is used

for the short-term seasonal component. This method yields a flexible smoothing for

the estimated seasonal component and is a less periodic alternative to the sinusoidal

functions. Sections 4.1.1 and 4.1.2 introduce the detailed steps of this approach.
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4.1.1 Removal of Long-term Seasonal Component: Wavelet Anal-

ysis

The first step of our deseasonalisation is to estimate and remove the long-term seasonal

component (Tt) from electricity prices (Pt) through wavelet analysis. Wavelet analysis

involves two procedures: the decomposition of the original data and a reconstruction

process.

Wavelet decomposition projects a signal onto a series of so-called wavelets, which

are an orthonormal set of components. Wavelets belong to different families. The

choice of the wavelet family involves making trade-offs between the smoothness of the

wavelets and the compactness of their localisation in time (Weron, 2006). In this study,

the Daubechies wavelet family is used following Ignatieva and Trück (2016), Janczura

et al. (2013) and Weron (2006). A wavelet family contains a father wavelet (denoted

by ϕ) and a mother wavelet (denoted by ψ). The father wavelet is used to represent

the trend or cycle component (‘low frequency’ smooth components) in a signal, while

the mother wavelet is used to represent the deviations from the trend (‘high frequency’

detail components). In wavelet analysis, any signal f(t) (or Pt here) can be decomposed

as the sum of one father wavelet (S) and a sequence of mother wavelets (D),

f(t) = SJ +DJ +DJ−1 + ...+D1, (4.2)

where

SJ =
∑
k

sJ,kϕJ,k(t) and Dj =
∑
k

dj,kψj,k(t), k = 0, 1, 2, ... and j = 0, 1, 2, ..., J.

(4.3)

Mother wavelets are indexed by k and s = 2j, where 2J is the maximum scale that is

sustainable with the number of observations. The coefficients sJ,k and dj,k in Equation

4.3 measure the contribution of each corresponding wavelet function to the overall
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approximation, where the approximating father and mother wavelet functions are

ϕJ,k(t) = 2−J/2ϕ

(
t− 2Jk

2J

)
and ψj,k(t) = 2−j/2ψ

(
t− 2jk

2j

)
. (4.4)

After decomposing f(t) with Equation 4.2, an approximation of the original signal

is obtained by inverting the decomposition procedure (i.e. reconstruction of the signal).

Specifically, the father wavelet SJ provides a rough approximation of f(t), while SJ−1 =

SJ +DJ yields a higher level of refinement in the approximation. Furthermore, in each

step when a mother wavelet Dj of a lower scale (j = J − 1, J − 2, ...) is added, a

better estimation of f(t) is obtained. This reconstruction process continues until the

desired accuracy is achieved. The final estimation obtained is de-noised or smoothed.

This procedure is also called a wavelet lowpass filtering, and the obtained estimation

represents the long-term seasonal component Tt, which can subsequently be removed

from the original data.

4.1.2 Removal of Short-term Seasonal Component: Moving Av-

erage Technique

The second step of our deseasonalisation is to remove the short-term (weekly) period-

icity (st) in electricity prices. A moving average technique (see Aderounmu and Wolff,

2014a,b; Brockwell and Davis, 2002; Ignatieva and Trück, 2016; Weron, 2006) is applied

to the data series from which the long-term seasonal component has been removed (i.e.

xt = Pt − Tt). This includes two procedures.

First, for the daily price series xt = x1, x2, ..., xn, the weekly trend is estimated

through a moving average filter:

m̂t =
1

7
(xt−3 + . . .+ xt+3), where t = 4, 5, ..., n− 3. (4.5)

Next, the seasonal component within a week is estimated. Specifically, for each day of a
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week (k = 1, 2, ..., 7), the average of the deviations (xk+7j−m̂k+7j, 3 < k+7j ≤ n−3) is

calculated to represent the seasonal fluctuations. These average deviations are denoted

by wk, k = 1, 2, ..., 7. Since the sum of these average deviations is not necessarily equal

to zero, the weekly seasonal component sk is further estimated as:

ŝk = wk −
1

7

7∑
i=1

wi, where k = 1, 2, ..., 7. (4.6)

Finally, the deseasonalised price data are obtained after removing both long-term and

short-term seasonal components, i.e., Xt = Pt − Tt − St.

4.2 Diebold and Yilmaz’s (DY) (2009, 2012) Spillover

Method

To estimate the spillover effect in electricity markets, we apply the DY method to the

deseasonalised electricity prices and price volatilities.

Specifically, in this methodological framework, the first step involves a VAR model

estimation for the considered market property (i.e. price and volatility). Next, a gen-

eralised variance decomposition is applied to the forecast error term of the VAR esti-

mation. Based on the forecast error variance decomposition, various types of spillovers

can be calculated, conveying a wealth of market information. Sections 4.2.1 to 4.2.3

introduce the details of these steps.

4.2.1 Vector Autoregressive (VAR) Model Estimation

Our spillover analysis starts from a covariance stationary N -variable VAR(p) model

(in this study, N = 5 for five regional markets) for vector xt = (x1t, ..., xNt) (here xt is
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the electricity price or price volatility):

xt = Ψ+

p∑
i=1

Φixt−i + εt, (4.7)

where p is the lag length, ε ∼ (0,Σ) is a vector of independently and identically

distributed error terms, Σ is the variance matrix for ε, and Ψ is an intercept vector .

According to Greene (2003) and Park et al. (2006), one advantage of such a VAR model

is that it captures regularities in the data without imposing as many prior restrictions

as structural models may impose.

The moving average representation of the covariance stationary VAR exists, which

is

xt = A0εt +A1εt−1 +A2εt−2 + ... =
∞∑
i=0

Aiεt−i. (4.8)

The N ×N coefficient matrices follow the recursion:

Ai = Φ1Ai−1 +Φ2Ai−2 + ...+ΦpAi−p, (4.9)

where A0 is an N × N identity matrix and Ai = 0 for i < 0. The moving average

coefficients and their transformations (variance decompositions in this study) are the

key to analysing the dynamics of the considered system.

Since the definition of our spillover measures relies on the forecast error variance

decomposition, we look at the H-step-ahead forecast at time t:

xt+H,t = AHεt +AH+1εt−1 +AH+2εt−2 + ... =
∞∑
i=0

AH+iεt−i. (4.10)

The corresponding forecast error is:

et+H,t = xt+H − xt+H,t =
∞∑
i=0

Aiεt+H−i −
∞∑
i=0

AH+iεt−i =
H−1∑
i=0

Aiεt+H−i. (4.11)
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The variance matrix of the forecast error is thus calculated as:

Σe,H = A0ΣA′0 +A1ΣA′1 +A2ΣA′2 + ...+AH−1ΣA′H−1 =
H−1∑
h=0

AhΣA′h, (4.12)

where A0 = IN , which is an N ×N identity matrix. A′h (h = 0, ..., H − 1) stands for

the transpose of A′h.

4.2.2 Forecast Error Variance Decomposition

The next step of our spillover analysis is to decompose the forecast error variance

(i.e. the diagonal elements of Σe,H) into parts that are attributable to different sys-

tem shocks. More precisely, the variance decomposition answers the following ques-

tion: what fraction of the H-step-ahead error variance in forecasting variable xi (i =

1, 2, ..., N) is due to exogenous shocks (typically include surged demand, generation

outage and transmission failure in electricity markets) to variable xj (j = 1, 2, ..., N)?

In particular, the fraction of the H-step-ahead error variance in forecasting variable

xi due to shocks to xi itself is defined as own-variance share; and the fraction of the

H-step-ahead error variance in forecasting variable xi due to shocks to xj (j ̸= i) is

defined as cross-variance share. The cross-variance share then measures the spillover

effects.

The calculation of the forecast error variance decomposition requires orthogonal in-

novations (or shocks). However, as with electricity price data, our VAR model innova-

tions are generally contemporaneously correlated. With contemporaneously correlated

innovations, examining a shock to a single variable in isolation can yield misleading

results (Park et al., 2006). To address this issue, Diebold and Yilmaz (2009) used

an identification scheme based on Cholesky factorisation to achieve orthogonality in

their original paper. Nevertheless, in a Cholesky-based orthogonalisation of correlated

shocks, it is assumed that the first variable in the ordering is only contemporaneously

influenced by its own innovations, that the second variable is only contemporaneously
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influenced by innovations of itself and the first variable, and so on (Sims, 1980). Under

these assumptions, the first version of the DY method (2009) is sensitive to variable

ordering by nature.

Later, Diebold and Yilmaz (2012) proposed a generalised version of the above

method based on a generalised variance decomposition (GVD) framework that was in-

troduced by Koop et al. (1996) and Pesaran and Shin (1998). The identification scheme

in the GVD framework is largely data based. Instead of orthogonalising shocks, GVDs

allow for correlated shocks but account for those correlations simultaneously based on

historically observed distribution of the forecast errors (Diebold and Yilmaz, 2012).

An appeal of GVDs is that the decomposition results are insensitive to the ordering of

variables because, as opposed to Cholesky based variance decomposition, GVDs treat

every variable as the first one in the ordering. Our spillover analysis with regards to

variance decompositions therefore relies on the 2012 version of the DY method, rather

than the 2009 version7.

Using the 2012 version of the DY framework, the H-step-ahead error variance de-

compositions are calculated as

θgij(H) =
σ−1jj

∑H−1
h=0 (s

′
iAhΣsj)

2∑H−1
h=0 (s

′
iAhΣA′hsi)

. (4.13)

In Equation 4.13, θgij(H) denotes the ijth element of the variance decomposition matrix,

where g refers to the generalised variance decomposition method. Σ is the variance

matrix of the error vector ε; σjj is the standard deviation of the error term for the

jth equation of the VAR model; and si, sj are selection vectors, i.e., the ith element

of si and jth element of sj are one, and other elements are zero. Each element of the

variance decomposition matrix is then normalised as in Equation 4.14:

θ̃gij(H) =
θgij(H)∑N
j=1 θ

g
ij(H)

, (4.14)

7 It should be noted that the 2009 version of the DY method is applied in the robustness assessment,
which provides results in a similar pattern as those of Diebold and Yilmaz (2012).

44



Chapter 4. Methodology

so that the sum of each row equals one (i.e.
∑N

j=1 θ̃
g
ij(H) = 1) and

∑N
i,j=1 θ̃

g
ij(H) = N .

Table 4.1 below is called a spillover table (Diebold and Yilmaz, 2012). The upper

left N × N block provides the H-step-ahead forecast error variance decomposition

matrix. Based on the decomposition matrix, this table describes various spillovers as

explained in Section 4.2.3.

Table 4.1: Methodology: spillover table derived from VAR variance decomposition

From
x1 x2 · · · xN From others

x1 θ̃g11(H) θ̃g12(H) · · · θ̃g1N (H)
∑N

j=1 θ̃
g
1j(H), j ̸= 1

x2 θ̃g21(H) θ̃g22(H) · · · θ̃g2N (H)
∑N

j=1 θ̃
g
2j(H), j ̸= 2

To
...

...
. . .

...
...

...
xN θ̃gN1(H) θ̃gN2(H) · · · θ̃gNN (H)

∑N
j=1 θ̃

g
Nj(H), j ̸= N

To others
∑N

i=1 θ̃
g
i1(H),

i ̸= 1

∑N
i=1 θ̃

g
i2(H),

i ̸= 2
· · ·

∑N
i=1 θ̃

g
iN (H),

i ̸= N

Aggregated Spillover Index
= 1

N

∑N
i=1 θ̃

g
ij(H),

i ̸= j

Notes : x1, ..., xN are the considered variables from N markets. θ̃gij(H), i, j = 1, ..., N is
defined in Equations 4.13 and 4.14.

4.2.3 Spillover Measures

Pairwise Net Spillover

In the forecast error variance decomposition matrix in Table 4.1, the ijth entry is

considered to be the spillover of shocks received by market i which are transmitted by

market j (i.e., Sg
i←j(H) = θ̃gij(H), θ̃gij(H) is defined in Equations 4.13 and 4.14). That

is, the elements of this matrix measure the pairwise directional spillovers. Hence the

pairwise net directional spillover from market j to market i can be defined as:

Sg
ij(H) = Sg

i←j(H)− Sg
j←i(H) = θ̃gij(H)− θ̃gji(H) (4.15)
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Gross Directional Spillovers

The off-diagonal row and column sums measure the gross directional spillovers for

each market. In particular, the gross directional spillover received by market i (i.e. the

‘From others’ column) is measured as the ith off-diagonal row sum:

Sg
i←•(H) =

N∑
j=1,j ̸=i

θ̃gij(H). (4.16)

Similarly, the gross directional spillover transmitted from market i (i.e. the ‘To

others’ row) is measured as the ith off-diagonal column sum:

Sg
•←i(H) =

N∑
j=1,j ̸=i

θ̃gji(H). (4.17)

Total Net Directional Spillover

Next, by calculating the difference between the gross spillovers transmitted from

and received by a certain market i, a net spillover from market i to all other markets

is obtained:

Sg
i (H) = Sg

•←i(H)− Sg
i←•(H). (4.18)

Aggregated Spillover Index

Finally, an aggregated spillover index is calculated where the sum of all off-diagonal

elements is divided by the sum of all elements:

Sg(H) =

∑N
i,j=1;i ̸=j θ̃

g
ij(H)∑N

i,j=1 θ̃
g
ij(H)

∗ 100 =

∑N
i,j=1;i ̸=j θ̃

g
ij(H)

N
∗ 100. (4.19)

In this equation, the numerator measures the total cross-variance shares or spillovers,

and the denominator refers to the total forecast error variance. This aggregated

spillover index measures the overall degree of spillover effects in the whole system.
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In practice, different parties may be more interested in different measures. For

example, market participants who aim to hedge risk or earn revenue might be more

interested in the spillovers between particular regions. In contrast, regulators could

be more concerned with monitoring the overall spillover magnitude, or identifying the

most systemically influential market.
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Data

This chapter introduces the data used in this study. In particular, Chapter 5 is con-

cerned with the data description and its preliminary statistical analysis.

5.1 Electricity Price Data

In the price spillover analysis, the data used are daily spot prices of the five regional

electricity markets (NSW, QLD, SA, TAS and VIC)8 in the Australian NEM from 1

January 2010 to 31 December 2015. The original data are recorded on a half-hourly

basis, obtained from the Australian Energy Market Operator9. A series of daily prices

for each regional market (2,191 observations) is then yielded by calculating the arith-

metic mean of 48 half-hourly spot prices for each day. This treatment could lose some

information contained in intra-day data; however, as argued by Worthington et al.

(2005), daily average prices are important for electricity markets, especially with re-

8 These regions have been considered by, for example, Clements et al. (2015); Higgs et al. (2015);
Ignatieva and Trück (2016); Nepal et al. (2016); Smith (2015); Smith et al. (2012); and four of them
(except TAS) have been used in Higgs (2009); Higgs and Worthington (2005); Worthington et al.
(2005).

9 Australian Energy Market Operator (AEMO) website, https://www.aemo.com.au/, accessed April
2016.
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gard to financial contracts10. Logarithm transformation is then applied to normalise the

data. As introduced in Chapter 4, wavelet decomposition is used to remove long-term

seasonality, while a moving-average filter is used to subtract the short-term seasonal

component (weekly). We choose 25 = 32 (J = 5) as maximum scale in wavelet decom-

position, which roughly corresponds to a monthly smoothing11.

Accordingly, Figure 5.1 plots the raw daily electricity prices Pt (top panel), the

log-prices together with the fitted long-term seasonal pattern obtained by the wavelet

filter (middle panel), and the deseasonalised log-prices after removal of both long-term

and short-term seasonal components (bottom panel) for the NSW and QLD electricity

markets12. The stylised facts of electricity prices as discussed in Chapter 3, Section 3.3

are reflected in the figure. Specifically, significant price spikes can be observed in raw

prices. There are also several joint spikes that appear at similar locations in different

markets (for example, the joint spike in NSW and QLD on 31 January 2011). Because

of the logarithm transformation, electricity price features such as mean-reversion and

seasonality can be more easily observed in the middle panel of Figure 5.1. The fitted

long-term seasonal patterns appear irregular. They contain several cycles with different

periods (monthly, half-yearly, yearly, etc.). In addition, similarities can be found in the

long-term seasonal pattern for NSW and QLD. After deseasonalisation, most seasonal

components are removed, and the stochastic component of the price data is extracted

for further spillover analysis.

10Daily electricity spot prices are also used in, for example, De Vany and Walls (1999a,b); Higgs (2009);
Ignatieva and Trück (2016) and Worthington et al. (2005).

11Higher scales (e.g. 28 = 256 (J = 8)) sometimes introduce a large deviation from the long-term
seasonal pattern from the actual price series, see, for example, Ignatieva and Trück (2016). On the
other hand, if J is too low, the approximation is too close to the actual price series. Some stochastic
components would be eliminated together with seasonality. Therefore, J=5 referring to monthly
smoothing could be the most appropriate choice.

12To reserve space, only the graphs for two regional markets are presented here. The graphs for SA,
TAS and VIC are provided in Figure A1 in Appendix A.1.
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(a) NSW (b) QLD

Figure 5.1: Daily raw prices, log-prices and deseasonalised log-prices of NSW and QLD from 1 January
2010 to 31 December 2015. The top panel plots raw daily prices. The middle panel plots log-prices
with a long-term seasonal component (LTSC) obtained through wavelet decomposition. The bottom
panel plots the deseasonalised log-prices (both long-term and short-term seasonal components are
removed).

51



Chapter 5. Data

5.2 Electricity Price Volatility Data

In the volatility spillover analysis, we use realised or historical volatility calculated from

high frequency (half-hourly) intra-day prices13 of the Australian NEM.

We define our daily volatility of electricity price as the standard deviation of log-

prices over the 48 half-hour intervals during each day, as represented in equation 5.1:

σi =

√
ΣN

t=1(pit − p̄i)2

N
, (5.1)

where σi measures the market volatility on day i, pit is the half-hourly log-price at

time t on day i, p̄i is the average half-hourly log-price on day i, and N equals 48. The

calculated volatility for each day is only relevant to the intra-day prices on this day14.

Figure 5.2 depicts the daily volatilities of prices for the NSW, QLD, SA, TAS and

VIC electricity markets. From a visual inspection, three facts can be observed. Firstly,

the SA market is generally more volatile than the other markets. This is due to sev-

eral unique market conditions in this region, including a relatively high concentration

of generator ownership, strategic rebidding behaviours by generators aiming for more

favourable electricity prices, and the tight demand-supply balance due to limited im-

port capacity and the recent thermal plant withdrawals (Australian Energy Regulator,

2015). The high penetration of wind generation in SA also contributes to the volatile

spot prices in this market, because of the intermittent nature of wind energy. Secondly,

volatilities appear to be highly persistent or serially correlated, which justifies the use

of autoregressive models. Thirdly, for all five regional electricity markets, price volatil-

ities are positively skewed and leptokurtic. Hence, we take the natural logarithm to

obtain approximate normality, which is consistent with Diebold and Yilmaz (2014).

13 In the calculation of volatility, the input price data are not deseasonalised because the seasonal com-
ponents are mostly removed when calculating the standard deviation of prices.

14We choose to use the standard deviation of prices as the volatility estimator rather than that of price
changes (or returns), because price-based functions contain information on the present price level. For
electricity spot markets, our analysis is more concerned with the price jumps during extreme price
periods, whereas volatility during low or normal price periods is not of such concern.
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This transformation is helpful not only because of the superior statistical properties of

the normal distribution, but also because normality is invoked by generalised variance

decompositions that are applied in the following spillover analysis (Koop et al., 1996;

Pesaran and Shin, 1998).

Figure 5.2: Daily volatilities of prices in NSW, QLD, SA, TAS and VIC electricity spot markets, from
1 January 2010 to 31 December 2015

5.3 Summary of Descriptive Statistics

Table 5.1 presents the summary of descriptive statistics for electricity prices (raw prices,

log-prices and deseasonalised log-prices in Panel (a)) and volatilities (before and after

log transformation in Panel (b)) for each regional market in the Australian NEM.

Price

For price data shown in Panel (a) of Table 5.1, although the average electricity price

is around $40 per MWh, extreme price outcomes can be observed in the ‘Maximum’

column, which can be as high as $2,437.70 per MWh, as seen in SA. Meanwhile, during

the considered period, negative price spikes (observed in the ‘Minimum’ column) appear
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in SA, TAS and VIC due to the failure of generators to adjust to reduced demand levels.

Over the sample period, the standard deviations of the price series in SA and QLD are

much higher than those of the other markets, indicating that these two markets are

more volatile than the rest. In addition, the distributions of all price series generally

are positively skewed (except for log-prices and deseasonalised log-prices in SA and log-

prices in TAS) with fat tails. Accordingly, the Jarque-Bera statistics and corresponding

p-values strongly reject the null hypothesis of normality (at the 1% significance level)

for each data series15. Although both skewness and kurtosis are substantially reduced

after the logarithm transformation and the deseasonalisation step, in Panel (a) of Table

5.1, p-values for the J-B test for these price data remain smaller than the significance

level α = 0.01.

Furthermore, given that the application of a VAR model requires stationarity of the

input data series, the augmented Dickey-Fuller (ADF) test (Dickey and Fuller, 1979)

is used to assess the stationarity of the data series16. The null hypothesis of the ADF

test is that a unit root exists in the univariate time series or the data series is non-

stationary. The test is based on an ordinary least squares (OLS) regression, where the

first differences of the prices (or volatilities) for each regional market are regressed on

a lag of the price (or volatility) variable in level, and a series of lags of the dependent

variable. An intercept is included in the ADF regression. The lag length is determined

by the significance of the coefficients of the lagged terms. As shown in Table 5.1, Panel

(a), the respective p-value of the ADF test for each price data series is much lower than

α = 0.01. The null hypothesis of the ADF test (unit root and non-stationarity) can be

rejected at the 1% significance level. This indicates that the data series of electricity

price for the five Australian regional markets are all stationary. This result on the

stationarity of electricity prices in the NEM is consistent with results in Higgs (2009)

and Worthington et al. (2005) who also use the Australian NEM data.

15Jarque-Bera test (Jarque and Bera, 1987) is a goodness-of-fit test (H0: The data distribution matches
a normal distribution. H1: The data distribution does not match a normal distribution). It has a
joint hypothesis that the data is from a distribution where skewness equals zero and kurtosis equals
three. Under the null hypothesis, the J-B statistic asymptotically follows a χ2 distribution with two
degrees of freedom.

16The outputs of the ADF tests are provided in Appendix A.1, Table A1
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Volatility

For volatility data shown in Panel (b) of Table 5.1, SA has the highest mean and

median volatility among the five Australian regional electricity markets, as well as the

highest standard deviation.

In addition, all volatility series are positively skewed and leptokurtic. After the

natural logarithm transformation, the skewness and kurtosis of volatility are reduced;

and the data distributions are closer to normal distribution. However, for both raw

and log- volatilities in all regions, Jarque-Bera tests reject the null hypothesis that

the data series are normally distributed at the 1% significance level. Furthermore,

based on ADF tests with p-values less than α = 0.01 we reject the null hypothesis of

non-stationarity. In other words, the raw volatility and log-volatility data used in this

study for all regions in the NEM are stationary.

Further in this study we will concentrate on the deseasonalised log-price and log-

volatility data of the five regional electricity markets (NSW, QLD, SA, TAS and VIC)

from 1 January 2010 to 31 December 2015.
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Table 5.1: Descriptive statistics

Mean Median Max. Min. Std.dev Skew. Excess Kurt. J-B test 1 ADF test 2

Panel (a) : Price

NSW
raw 41.4487 35.0140 1282.0 17.3610 44.3571 20.0651 509.6698 23905000

(<0.001)
-14.9220
(<0.001)

log. 3.6161 3.5557 7.1562 2.8542 0.3872 1.6420 9.5408 9315.90
(<0.001)

-6.5548
(<0.001)

des. 3.6003 3.5816 6.6642 2.8542 0.2368 5.6323 54.7999 286270
(<0.001)

-19.9014
(<0.001)

QLD
raw 45.7805 33.4370 1885.9 -13.9790 73.7870 15.8358 320.6543 9495900

(<0.001)
-12.5474
(<0.001)

log3. 3.6033 3.5097 7.5422 -1.1106 0.5576 0.5438 10.7114 10607
(<0.001)

-6.8387
(<0.001)

des. 2.8215 2.7908 6.3674 -1.1106 0.3766 0.8389 33.1443 100750
(<0.001)

-26.1694
(<0.001)

SA
raw 48.5463 37.0300 2347.7 -103.1600 81.2063 18.6110 442.4623 18032000

(<0.001)
-14.9019
(<0.001)

log. 3.6546 3.6117 7.7612 0.1102 0.6085 -0.2225 9.0103 7447.80
(<0.001)

-7.7857
(<0.001)

des. 3.7206 3.7108 7.7610 0.1102 0.4553 -0.2747 22.4240 46026
(<0.001)

-20.2696
(<0.001)

TAS
raw 39.1508 36.6040 805.06 -94.6700 27.5360 14.3794 339.1757 10597000

(<0.001)
-7.0703

(<0.001)

log. 3.5762 3.6002 6.6909 1.1935 0.4118 -0.0543 7.2903 4865.80
(<0.001)

-4.5366
(<0.001)

des. 3.5519 3.5424 6.8357 1.1935 0.2698 0.8121 37.6522 129910
(<0.001)

-13.8845
(<0.001)

VIC
raw. 39.4260 33.1970 1276.9 -4.8887 46.6428 17.8835 406.9201 15261000

(<0.001)
-14.3397
(<0.001)

log. 3.5393 3.5025 7.1522 1.9012 0.4383 1.2508 7.3898 5570.30
(<0.001)

-6.3573
(<0.001)

des. 3.1165 3.1025 6.8676 1.9012 0.2674 4.7289 51.4999 250760
(<0.001)

-20.1187
(<0.001)

Panel (b) : Volatility

NSWraw 0.1682 0.1412 1.8564 0.0081 0.1478 4.6242 35.4444 122740
(<0.001)

-8.7650
(<0.001)

log. -2.0345 -1.9572 0.6186 -4.8114 0.7136 -0.1763 0.5288 37.2102
(<0.001)

-6.0599
(<0.001)

QLD raw 0.2720 0.2034 2.2486 0.0226 0.2498 3.2395 14.9928 24404
(<0.001)

-9.8414
(<0.001)

log. -1.5726 -1.5927 0.8103 -3.7892 0.7075 0.3047 0.3696 46.6218
(<0.001)

-8.2656
(<0.001)

SA raw 0.4141 0.2389 3.8103 0.0299 0.5395 3.2267 11.2902 15471
(<0.001)

-11.6007
(<0.001)

log. -1.3164 -1.4316 1.3377 -3.5095 0.8368 0.8194 0.8447 311.1946
(<0.001)

-8.6215
(<0.001)

TAS raw 0.2747 0.1626 4.1082 0.0002 0.4154 4.8712 29.0344 85790
(<0.001)

-12.6814
(<0.001)

log. -1.7646 -1.8168 1.4130 -8.5344 0.9114 -0.1674 5.3076 2589.40
(<0.001)

-9.3495
(<0.001)

VIC
raw 0.2521 0.2067 3.1316 0.0153 0.2395 4.4293 29.2312 8533.40

(<0.001)
-9.2576

(<0.001)

log. -1.6455 -1.5764 1.1415 -4.1797 0.7190 -0.0078 0.7064 46.0120
(<0.001

-6.5998
(<0.001)

Notes: Descriptive statistics for the electricity market data of NSW, QLD, SA, TAS and VIC, from
1 January 2010 to 31 December 2015. Panel (a) summarises raw prices ($/MWh), log-prices and
deseasonalised log-prices. Panel (b) summarises raw volatilities and log-volatilities (raw volatilities
are calculated as the standard deviation of half-hourly prices over each day). There are 2191 daily
observations for each data series.
1 This column shows the results of Jarque-Bera (J-B) test for the normality of each data series. The
test statistics as well as the corresponding p-values (in the parentheses) are presented.
H0: normal; H1: non-normal.
2 This column shows the results of augmented Dickey-Fuller (ADF) test for the stationarity of each
data series. The test statistics as well as the corresponding p-values (in the parentheses) are presented.
H0: a unit root (non-stationary); H1: no unit root (stationary).
Critical values: -2.57% (10%), -2.87 (5%), and -3.44 (1%).
3 In our sample period there are negative prices in QLD, SA, TAS and VIC. These negative values are
replaced by the minimum positive price value of the corresponding market before taking the natural
logarithm.
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Unconditional Pairwise Correlation

Table 5.2 reports the pairwise correlation coefficients of deseasonalised log-prices

(Panel (a)) and log-volatilities (Panel (b)) among the five markets. Overall, all pairwise

correlations are positive according to the table. In addition, volatility data generally

have higher correlations than price data do. In particular, there are two key results to

note.

Firstly, the pairwise correlations for price data observed here are much lower than

those found in Aderounmu and Wolff (2014a,b), Higgs (2009), Ignatieva and Trück

(2016) and Smith et al. (2012), where the same regions are investigated. There are

three possible reasons to explain these lower correlations. The first reason is that the

Pearson correlations calculated here have a poor performance in measuring tail depen-

dence (Aderounmu and Wolff, 2014a,b). Given that the pairs of regional markets in

the Australian NEM are considered to be asymptotically dependent (Aderounmu and

Wolff, 2014a,b; Ignatieva and Trück, 2016; Smith et al., 2012), the Pearson correla-

tions could have underestimated the risk of joint tail events (spikes) in electricity spot

prices, and therefore generate lower correlations. The second reason is that, in contrast

to Aderounmu and Wolff (2014a,b), Higgs (2009) and Smith et al. (2012), the price

data used here are unfiltered data. No region-specific stochasticity has been removed

from these data17, which could result in the correlations being low. The third reason is

that the sample period used in this study is more recent compared to the cited litera-

ture. The correlations between different regional spot markets in the NEM could have

decreased in this time period.

Secondly, higher correlations are found between regions where there are direct in-

terconnections. For both price and volatility data, the highest correlations are found

between NSW and VIC, SA and VIC, and NSW and QLD, which are well intercon-

nected (refer to Chapter 3, Section 3.2.2). With one undersea interconnector in place,

17 In comparison, for example, GARCH-type models are used in Aderounmu and Wolff (2014a,b); Higgs
(2009); Ignatieva and Trück (2016); Smith et al. (2012), which filter out spike clusters caused by
volatility persistence.
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the correlation between VIC and TAS is also relatively high. In contrast, the lowest

and second lowest correlations for both prices and volatilities are between QLD and

TAS, and between QLD and SA, which are relatively distant in the NEM and not

physically connected.

Table 5.2: Unconditional Pairwise Correlation

Panel (a) : Price
NSW QLD SA TAS VIC

NSW 1.0000
QLD 0.2918 1.0000
SA 0.2458 0.0835 1.0000
TAS 0.1610 0.0746 0.2248 1.0000
VIC 0.3866 0.1780 0.5895 0.2163 1.0000
Panel (b) : Volatility

NSW 1.0000
QLD 0.6012 1.0000
SA 0.4986 0.2427 1.0000
TAS 0.3507 0.1760 0.3425 1.0000
VIC 0.7930 0.4406 0.6492 0.4511 1.0000

Notes: This table shows unconditional pairwise correlations (Pearson correlation coefficients)
between each pair of regional electricity markets in the NEM. Panel (a) shows correlations of
deseasonalised log-prices. Panel (b) shows correlations of log-volatilities. The sample period is from
1 January 2010 to 31 December 2015.
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Empirical Results

The previous chapter introduces the data in this study. Deseasonalised daily log-prices

and daily log-volatilities are used in the further analysis. This chapter provides the

main empirical findings of this study. First, based on the specified model (Section 6.1),

static levels of spillover effects of prices and volatilities in the NEM are assessed through

a full-sample spillover table (Section 6.2). Second, by rolling the sample period, time

variations of the price and volatility spillovers in the NEM are tracked and discussed

(Section 6.3). Finally, the robustness of the empirical findings is assessed in Section

6.4.

6.1 Model Specification

As the first step of the spillover analysis, the specification of the VAR model is required.

Overall, there are three main parameters to be decided: the optimal lag length (p) of

the VAR model (Section 6.1.1), the forecasting horizon (H) in VAR forecast error

variance decompositions (Section 6.1.2), and the window length (w) in the dynamic

spillover analysis (Section 6.1.3).
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6.1.1 Choice of VAR Lag Length p

The optimal lag length (p) is selected based on Bayesian information criterion (BIC)

(Schwarz et al., 1978). BIC provides a relative estimate for the information lost when

fitting a data series to a given model, as shown in Equation 6.1:

BIC =
−2

T
× ln(L) +

ln(T )

T
× q, (6.1)

where T is the sample size, L is the maximum likelihood estimates, and q denotes the

number of parameters in the fitted model. The first term of BIC function (−2
T
× ln(L))

rewards the goodness-of-fit, and the latter term ( ln(T )
T

× q) gives penalty for increased

model complexity. Model selection based on BIC provides a trade-off between the two

terms. When the number of parameters of a model increases, the value of goodness-

of-fit term decreases and a higher penalty is imposed. Therefore, the optimal model

should minimise the BIC value.

Based on BIC values, a VAR model with one lag (i.e. VAR (1)) is chosen for the

price spillover analysis, while a VAR (2) model is chosen for the volatility spillover

analysis. However, alternative choices of p are used for the robustness check.

6.1.2 Choice of Forecasting Horizon H

The choice of the forecasting horizon H in variance decomposition allows us to decide

whether ‘long-run’ or ‘short-run’ spillover effects are to be assessed. As H lengthens,

the conditioning information is becoming less valuable; and an unconditional variance

decomposition will be obtained if h → ∞ (Diebold and Yilmaz, 2014). Intuitively,

there are more chances for spillovers to appear in a relatively longer horizon. However,

in this study we choose H = 1 because we are more interested in short-term price

and volatility transmissions in highly volatile electricity markets18. Longer forecasting
18As explained in Diebold and Yilmaz (2014), the selection of H usually relates to specific considerations

in certain contexts. For example, H = 10, which corresponds to the 10-day Value-at-Risk required by
the Basel accord, is commonly used in the risk management context. Similarly, H might be related
to the rebalancing period in the portfolio management context.
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horizons are explored in the robustness assessment.

6.1.3 Choice of Window Length w

In order to track the dynamics of the various spillover effects in real time, a rolling-

window approach is employed, which requires a choice of window length w. The optimal

window length reflects a trade-off between the reliability of the estimated results and

the amount of information obtained. On the one hand, a longer sample provides more

robust estimates. On the other hand, by using more windows with shorter samples,

more information could be gained (i.e. information on the build-up of spillovers across

time) (Alter and Beyer, 2014). We choose a window length w = 365 days (one calendar

year) in the main analysis, and use a shorter window (180 days) and a longer window

(540 days) to examine the robustness of the results. In particular, we use a one sided

estimation window of 365 days to sweep through the entire sample. In each window,

the same VAR model is estimated and the spillover measures are calculated so that

time series data can be generated and indexed by the end date of each window.

6.2 Static Spillover Analysis

6.2.1 Full Sample Spillover Table

Table 6.1 provides a full-sample analysis of the static spillover patterns for both prices

(Panel (a)) and volatilities (Panel (b)) of the five regional electricity markets in the

Australian NEM. In each panel, an aggregated spillover index is shown in the lower

right corner of the table. It measures the overall spillover level of the whole NEM over

the entire sample period as explained in Section 4.2.

The other elements of Table 6.1 can be viewed as an ‘input-output’ decomposition

of the total spillovers. Specifically, the 5×5 upper left block is the one-step-ahead VAR
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forecast error variance decomposition matrix. The off-diagonal elements of this matrix

measure pairwise directional spillovers. The ijth element is the estimated spillover from

market j to market i (Sg
i←j). It should be noted that since the forecast error variance

decomposition matrix is normalised by rows, each row sum of this matrix equals 100%,

which is not the case for each column sum. Furthermore, the row sums of pairwise

spillovers estimate gross directional spillovers received by each of the five Australian

regional electricity markets from all other markets. These results are given in the last

column (‘From Others’) of Table 6.1. Similarly, the ‘To Others’ row refers to the column

sums of pairwise spillovers, and estimates gross directional spillovers transmitted by

each of the five Australian regional electricity markets to all other markets.

Spillover Table: Price

In Table 6.1 Panel (a), the aggregated price spillover index in Australian electricity

markets equals 21.64%. Thus, on average, spillover effects contribute 21.64% of the

price forecast error variance in the Australian NEM across the full sample period. In

terms of the pairwise decomposition of the total spillover, the highest spillover is from

SA to VIC (Sg
V IC←SA = 35.69%), which is much higher than any other pairwise price

spillover. That means that a 35.69% error variance in forecasting VIC prices comes from

shocks to SA. In turn, the spillover from VIC to SA is also relatively high (Sg
SA←V IC =

14.06%). However, the difference between the two spillover measures indicates that net

spillover is from SA to VIC, rather than from VIC to SA. The second highest pairwise

price spillover is from VIC to NSW (Sg
NSW←V IC = 14.43%); and another relatively high

pairwise spillover is from SA to NSW (Sg
NSW←SA = 12.42%). In contrast, much lower

pairwise price spillovers are observed between QLD and TAS (Sg
TAS←QLD = 0.48%,

Sg
QLD←TAS = 0.25%), and between QLD and SA (Sg

SA←QLD = 0.22%, Sg
QLD←SA =

0.63%).

According to the ‘From Others’ column and the ‘To Others’ row of Table 6.1 Panel

(a), VIC and NSW are identified as two major spillover receivers because these two

markets receive much higher spillovers (Sg
V IC←• = 41.40%, Sg

NSW←• = 33.55%) than
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other markets do. Meanwhile, SA and VIC are major price spillover givers, transmit-

ting 54.58% (Sg
•←SA) and 33.45% (Sg

•←V IC ) spillovers to other markets, respectively.

Relating the total gross directional spillovers to pairwise spillovers, price spillovers re-

ceived by NSW mainly come from VIC and SA; and price spillovers received by VIC

mainly come from SA. On the other hand, price spillovers from VIC mostly flow to

NSW and SA; and price spillovers from SA mainly flow to VIC.

With regard to the ‘Net Spillover’ row, SA (37.51%) and QLD (1.80%) are net

price spillover givers, while NSW (-26.09%), TAS (-5.27%) and VIC (-7.95%) are net

price spillover receivers. In particular, SA is the largest net price spillover giver. The

positive net positions of SA and QLD are reasonable given the spiky and volatile spot

prices in these two markets19.

Spillover Table: Volatility

For the volatilities of electricity price (Table 6.1 Panel (b)), overall a 36.61% forecast

error variance comes from spillover effects. Specifically, the highest pairwise volatil-

ity spillover is from SA to VIC (Sg
V IC←SA = 23.05%). That is followed by spillovers

from VIC to NSW (Sg
NSW←V IC = 22.99%), while the opposite is the third highest

(Sg
V IC←NSW = 17.28%). In addition, relatively high pairwise volatility spillovers can

also be observed from VIC to SA (Sg
SA←V IC = 16.39%), and between NSW and

QLD (Sg
QLD←NSW = 17.19%, Sg

NSW←QLD = 13.70%). In contrast, much lower pair-

wise volatility spillovers are observed between QLD and TAS (Sg
TAS←QLD = 0.52%,

Sg
QLD←TAS = 1.19%), and between QLD and SA (Sg

SA←QLD = 1.07%, Sg
QLD←SA =

1.77%).

With regard to gross directional spillovers, the major volatility spillover receivers

are VIC and NSW (Sg
V IC←• = 54.25%, Sg

NSW←• = 52.52%), while the major volatility

spillover givers are VIC (Sg
•←V IC=54.65% ), SA (Sg

•←SA=44.05%), and NSW (Sg
•←NSW

=43.74% ). More specifically, volatility spillovers received by NSW mainly come from

VIC, and volatility spillovers received by VIC mainly come from SA and NSW. In

19See time series plots for SA and QLD prices in Figure A1
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contrast, volatility spillovers from VIC mostly flow to NSW and SA, volatility spillovers

from SA mainly flow to VIC, and those from NSW mainly flow to QLD and VIC.

In net terms, SA (14.56%), TAS (0.85%), and VIC (0.40%) are net volatility

spillover givers, while NSW (-8.78%) and QLD (-7.03%) are net volatility spillover

receivers.

Table 6.1: Full sample spillover table

From
NSW QLD SA TAS VIC From Others

Panel (a) : Price spillover (in percentage)

To

NSW 66.45 5.56 12.42 1.14 14.43 33.55
QLD 2.91 94.28 0.63 0.25 1.93 5.72

SA 0.87 0.22 82.93 1.92 14.06 17.07
TAS 1.10 0.48 5.84 89.55 3.03 10.45
VIC 2.58 1.26 35.69 1.87 58.60 41.40

To Others 7.46 7.52 54.58 5.18 33.45 108.19
Net Spillovers -26.09 1.80 37.51 -5.27 -7.95

Spillover Index = 108.19
500.00 = 21.64%

Panel (b) : Volatility spillover (in percentage)

To

NSW 47.48 13.70 11.47 4.36 22.99 52.52
QLD 17.19 73.51 1.77 1.19 6.35 26.49

SA 6.18 1.07 70.51 5.85 16.39 29.49
TAS 3.09 0.52 7.76 79.70 8.92 20.30
VIC 17.28 4.17 23.05 9.75 45.75 54.25

To Others 43.74 19.46 44.05 21.15 54.65 183.05
Net Spillovers -8.78 -7.03 14.56 0.85 0.40

Spillover Index = 183.05
500.00 = 36.61%

Notes: Spillover table for NSW, QLD, SA, TAS and VIC electricity markets, 1 January 2010 to 31
December 2015, generated based on the generalised forecast error variance decomposition of VAR
(1) (for prices in Panel (a)) and VAR (2) (for volatilities in Panel (b)). The ijth entry estimates the
fraction of 1-day ahead error variance in forecasting market i due to exogenous shocks to market j
(i.e. the spillover from market j to market i: Sg

ij).
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6.2.2 Static Spillover Analysis: Summary and Indications

In summary, for Australian electricity markets, spillover effects are on average more

significant in volatilities than in prices. Compared to price spillovers, the aggregated

volatility spillovers and most of the pairwise volatility spillovers are of a higher magni-

tude. This suggests more transmissions of price volatilities than transmissions of price

shocks in the NEM.

For directional spillovers, SA and VIC transmit out the most price spillovers, indi-

cating the most significant influence on prices in other markets. On the other hand,

the most significant volatility spillover givers are VIC, SA and NSW.

In net terms, for both price and volatility spillovers, SA is the most important net

giver, while NSW is the most significant net receiver.

Also of note in the full-sample static analysis is that the spillover effects in electricity

prices and volatilities generally appear in a similar pattern. The interaction between

adjoining markets that are physically connected tends to be higher since more spillover

effects can be observed, such as the high price spillovers between the pairs NSW–

VIC (one interconnector) and VIC–SA (two interconnectors), and the high volatility

spillovers between the pairs VIC–SA (two interconnectors), NSW–VIC (one intercon-

nector) and NSW–QLD (two interconnectors).
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6.3 Dynamic Spillover Analysis

The analysis based on the full-sample spillover table in the previous section has pro-

vided a summary of the average pattern of spillover effects among different regional

markets in the Australian NEM. This analysis is static because it assumes that the

intensity of interdependence between markets remains constant. However, during our

sample period (January 2010 to December 2015), many events took place in the Aus-

tralian NEM. These included long-term evolutions, such as changes in market policies

and integration level, and also short-term extraordinary events, such as temporary gen-

eration outages and transmission failures. These changes or market events are likely

to cause variations (both long-term and event-specific) in the patterns of both price

and volatility spillovers over time. Therefore, it is inadequate to assume that spillovers

are time-invariant. Thus, in the following sections, a series of dynamic analyses are

conducted to investigate the time-varying patterns of various spillover effects. In par-

ticular, we summarise the general patterns of the spillover dynamics and relate these

patterns to the market structure and events. We also consider the important policy

of the carbon pricing scheme in our dynamic spillover analysis, because this regula-

tory change triggered various effects (such as alternations of the generation mix in

the NEM and the import/export position of each regional market) during its two-year

period from July 2012 to June 2014.

6.3.1 Aggregated Spillover Plots

Figure 6.1 presents the time-varying plots of the aggregated spillover index for price

(Panel (b)) and volatility (Panel (c)) respectively, which allows the time-variations of

the overall market spillover effects to be assessed graphically against the raw log-prices

(Panel (a)). These results are generated by dynamically estimating the aggregated

price and volatility spillover indexes with a VAR (1) model for prices and a VAR (2)

model for volatilities, a 1-day forecasting horizon, and a 365-day rolling window. As
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shown in the figure, the levels of both price and volatility spillover effects are not

constant but time-varying. Overall, the intensity of both price spillovers and volatility

spillovers can largely deviate from the average (static) spillover index (21.64% for price

and 36.61% for volatility). Several major patterns can be identified from those time

variations, including short-term fluctuations and long-term trend and cycles.

Some short-term fluctuations of the spillover plots could be related to significant

market events. In particular, the daily log-price plots in of Figure 6.1(a) identify several

extreme price outcomes and high volatility periods in the NEM. They are typically

caused by extraordinary market events such as extremely high demand, congestion of

transmission lines and generation outages (Events A to K). The spillover plots (Figures

6.1(b) and 6.1(c)) are found to indicate responses to these market events. We can

correspondingly identify several periods of increased spillover effects that lasted for

one to two months, as well as some so-called short-lived ‘bursts’ that occurred and

subsequently subsided, usually within several hours or days.

In particular, price spillover plots are more efficient in capturing events during which

there were joint price spikes among different markets (e.g. Events A, B and E), while

volatility spillover plots more efficiently capture occasions of highly volatile prices in

the NEM (e.g. Events C, D, J and K).

The long-term trends of price and volatility spillovers are described as follows.

In Figure 6.1(b), the aggregated price spillover index started from approximately

17% in the first window (ended on 31 December 2010), and ranged between 13% and

40%. Overall, the index had a marginally increasing trend over the entire sample. This

may indicate a slight increase in the whole market integration level of the NEM. In

addition, there were roughly three big cycles in the plot. Before the launch of the carbon

taxation system in Australia (July 2012), the price spillover index experienced a first

big cycle from February 2010 to March 2012. In this cycle, the index began at around

25% and peaked at almost 40% around the end of 2011 before sharply dropping back

to the original level. The second cycle of price spillover index started at the beginning
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of the carbon pricing period and ended by the end of 2013. The third cycle was during

2015, ranging between 30% and 38%. In between these cycles, there were some tranquil

periods with several small cycles.

The aggregated volatility spillover index (Figure 6.1(c)) initiated at 39% in the first

window, and ranged between 28% and 45%. Across the sample period, no obvious trend

is observed from the aggregated volatility spillover plot; however, three large cycles are

identified before, during and after the carbon pricing period. The first cycle took place

in the pre-carbon pricing period and began in April 2011 when the aggregated spillover

index of the NEM was around 37% (which is close to the unconditional spillover level).

The spillover index peaked at almost 45% in mid-2011 and dropped back to 37% until

the beginning of 2012. Noticeably, the period before the establishment of carbon pricing

in Australia (January 2012 to June 2012) witnessed a significant drop in the level of

the aggregated spillover index. In June 2012, this index reached the lowest level (28%)

across our sample period. The second cycle was from July 2012 to December 2013,

which was during the carbon pricing period. In this cycle, the aggregated volatility

spillover index moved between 30% and 35%. After the cycle, the index jumped to

above 35% in January 2014 and remained at around 36% for the first half of 2014. The

third cycle began in July 2014 when the carbon taxation system was removed. The

aggregated volatility spillover index climbed from 35% to 43% by the end of 2014. It

then went back to 35% in mid-2015 and remained at around this level for the second

half of 2015.

It is worth noting that at the overall market level, price spillovers and volatil-

ity spillovers appeared differently in the carbon taxation period. The index of price

spillovers varied in a relatively similar pattern and range before, during and after the

carbon pricing period, despite the fact that it dropped and remained at a lower level

only around the beginning and the end of the period. In comparison, the level of the ag-

gregated volatility spillover in the NEM was generally lower during the carbon pricing

period than during the periods before and after. In particular, given the unconditional

aggregated volatility spillover index (36.61%) calculated from the entire sample (Table
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6.1), in the periods before and after the carbon taxation, the index mostly fluctuated

well above this average level, while during the carbon taxation period, the index was

mostly below this level.
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(a) Log-prices

(b) Aggregated spillover index (price)

(c) Aggregated spillover index (volatility)

Figure 6.1: Plots of log-prices, aggregated price spillover index, and aggregated volatility spillover
index. The shaded areas (A to K) represent identified short-term events in the NEM according to
Australian Energy Regulator (2015), which are specified as follows:
A: record demand (NSW and SA); B: outages of Basslink interconnector (VIC-TAS); C: high demand
(SA and VIC); D: congestion (QLD); E: temporary shutdown and tight supply conditions (SA); F:
high demand and rebidding (SA), high demand and network issue (NSW); G: high demand (SA and
VIC); H: rebidding (QLD); I: record demand (QLD); J: tight supply conditions and rebidding (SA);
K: network issues (NSW)
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6.3.2 Net Directional Spillover Plots

In this section we investigate the dynamic spillovers for each single regional market

in the Australian NEM, including the pairwise net spillovers between each pair of

regional markets and the total net directional spillovers contributed by each region.

These results are generated by dynamically estimating the spillover table with a 365-day

rolling window. Panel (a) of Figure 6.2 plots the time-variations of total net directional

price spillovers for each of the five regional markets in the NEM. It corresponds to the

dynamic estimation of the ‘Net Spillovers’ row of the spillover table (Table 6.1), which

is the difference between the ‘To Others’ row and the ‘From Others’ column20. Below

this, Panel (b) of Figure 6.2 provides the time-varying plots of pairwise net price

spillovers between each pair of regional markets, which are calculated using Equation

4.15. Similarly, the plots of total and pairwise net spillovers for volatility are shown in

Figure 6.3.

From a visual inspection, for both prices and volatilities in the Australian NEM,

three main features are noticeable. Firstly, both the level and direction of the spillover

effect are not constant but time-varying. Secondly, the transmission of shocks between

markets is asymmetric. For example, the total net spillovers from SA are always

positive with relatively large magnitude. This means that the interactions between SA

and other markets are dominated by the transmission of price and volatility shocks

from SA to others. In contrast, NSW is always a net receiver of price and volatility

shocks with negative net spillovers. Thirdly, some temporary market events can still be

captured and reflected as short-term bursts by directional spillover plots (both for price

and volatility spillovers) in net terms, although these effects are less obvious compared

to those in aggregated spillover plots21.

20The dynamics of gross directional spillovers received from other markets and transmitted to other
markets by each regional market are also provided in Appendix Appendix section:grossSI. Gross and
net spillovers are substitutes, but should be considered as complements. However, in this study we
focus more on net spillovers because they are informative on the relative influencing power of different
markets.

21These effects can be observed even more clearly in gross directional spillover plots. The reason is that
during those temporary market events, both the gross spillover from a market and the gross spillover
to it tend to increase. A part of these increases is thus offset, see Appendix A.2.
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In the following, the dynamic pattern of total net spillovers for each market is

discussed together with the pairwise net spillovers, since pairwise net spillovers can be

viewed as decompositions of total net directional spillovers.

Net Directional Spillovers: Price

According to Figure 6.2, NSW was always a net price spillover receiver over the sam-

ple period (Figure 6.2(a)), mainly from SA and VIC (Figure 6.2(b)). These spillovers

were especially high between July 2012 and December 2014, which was within the

carbon taxation period.

QLD was a net price spillover receiver before 2012 and a net giver after that. In

particular, the magnitude of net spillovers for QLD, both in total and in pairwise levels,

was relatively higher before 2012, and especially high around the end of 2011. From

2012 onward, all net spillovers continued to fluctuate at a low level.

As a typical net price giver (Figure 6.2(a)), SA mainly transmitted price shocks to

NSW and VIC, which were physically connected to SA. However, the price shocks also

flowed from SA to TAS, especially during the periods of July 2012 to December 2014

and January 2015 to December 2015 (Figure 6.2(b)).

TAS typically received a relatively low level of price shocks from other markets

(Figure 6.2(a)). There were only two episodes during which TAS transmitted net

spillovers out, which were the periods around the introduction of the carbon taxation

system (around July 2012) and its abolishment (around June 2014). These net price

spillovers from TAS mainly flowed to VIC (Figure 6.2(b)).

The net position of price spillovers for VIC was also influenced by the carbon

taxation policy. Before and after the carbon taxation period, VIC was typically a net

spillover receiver (Figure 6.2(a)). However, during the carbon taxation period, VIC

was mainly a net spillover giver, transmitting price shocks to NSW and TAS (Figure

6.2(b)).
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Overall, the total net price spillovers ranged widely between -80% and 80% (Figure

6.2(a)). The magnitude of these spillovers varied quite significantly for different regions.

For example, the net price spillovers of NSW and SA could have a magnitude as large

as 80%, while the magnitude for QLD net spillovers was typically below 10%. A similar

pattern is also observed in pairwise net price spillovers (Figure 6.2(b)).
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(a) Total net price spillovers
Figure 6.2: continued on next page
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(b) Pairwise net price spillovers

Figure 6.2: Total net price spillovers and pairwise net price spillovers in the NEM over 1 January
2010 to 31 December 2015, estimated from a VAR(1) model with a 1-day forecasting horizon and a
365-day rolling window. Positive net spillovers from a market mean that the spillovers transmitted
by that market are higher than the spillovers received by it. Negative net spillovers from a market
mean that the spillovers transmitted by that market are lower than the spillovers received by it. The
two dashed lines on each plot refer to the beginning and end dates of the carbon taxation policy. The
shaded areas indicate identified temporary market events. For each market in Panel (a), the events
that originated in that market are coloured pink. From left to right, these events are:
1: record demand (NSW and SA); 2: outages of Basslink interconnector (VIC-TAS); 3: high demand
(SA and VIC); 4: congestion (QLD); 5: temporary shutdown and tight supply condition (SA); 6: high
demand and rebidding (SA), high demand and network issue (NSW); 7: high demand (SA and VIC);
8: rebidding (QLD); 9: record demand (QLD); 10: tight supply conditions and rebidding (SA); 11:
network issues (NSW).
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Net Directional Spillovers: Volatility

Compared to net directional spillovers for price, the net volatility spillovers varied

within a relatively small range between -15% and 20% (Figure 6.3(a)). Meanwhile, the

ranges of the spillover magnitude for different regions were similar.

More specifically, according to Figure 6.3(a), NSW was a net volatility spillover

receiver across the sample period. However, in pairwise spillover plots (Figure 6.3(b)),

while NSW typically received volatility spillovers from SA and VIC, there were several

episodes during which NSW transmitted net positive volatility spillovers to certain

markets (QLD and TAS). Specifically, the volatility spillovers were always transmitted

from NSW to QLD, except in 2012. Furthermore, NSW transmitted some net volatility

spillovers to TAS throughout 2013 (during the carbon pricing period).

Typically, QLD was a volatility spillover receiver (Figure 6.3(a)). The magnitude

of spillovers received by QLD was much higher during 2011 (around 15%) than during

the rest of the studied period, where it was below 8%. Furthermore, only one episode

can be identified (from April 2012 to December 2012) during which QLD was a net

volatility spillover giver. During this period, the volatility shocks to QLD mostly

spilled over to NSW (Figure 6.3(b)). While the magnitude of spillovers between QLD

and NSW remained relatively stable, the interactions between QLD and each other

market reduced significantly from the beginning of 2012.

Much as in the case of price spillover effects (Figure 6.2(a)), SA transmitted out net

volatility spillovers throughout the sample period (Figure 6.3(a)). In particular, the

total net spillovers of volatility transmitted from SA to other markets were relatively

higher in the periods before and after the carbon taxation. According to Figure 6.3(b),

before the carbon taxation period, volatility shocks from SA were mainly transmitted to

VIC (around 10%) and NSW (around 8%). After the carbon taxation period, although

VIC and NSW were still the major net recipients of volatility shocks from SA, there was

a period (the second half of 2014) during which the volatility spillovers from SA to TAS

were relatively high. In comparison, during the carbon taxation period, the volatility
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spillovers (both net total and net pairwise) transmitted from SA were much lower.

Furthermore, volatility spillovers between SA and QLD were typically the lowest. This

conforms to the fact that they are located at the extremities of the NEM and not

physically connected.

For TAS, there were two periods during which the net volatility spillovers were

positive (Figure 6.3(a)). The first period was from January 2011 to July 2012. Net

volatility spillovers from TAS mostly went to VIC, but also flowed to NSW and QLD

(Figure 6.3(b)). The second period was during 2015. Net volatility spillovers from

TAS mostly went to NSW and VIC. The net volatility spillovers from TAS were more

obviously impacted by the establishment and abolishment of the carbon taxation policy.

While TAS was typically a net spillover transmitter before and after the carbon taxation

period, during carbon taxation, the position of TAS was reversed to be a net receiver.

For VIC, there was one episode of positive net volatility spillover (Figure 6.3(a)):

from October 2012 to December 2014. During this period, TAS and NSW were the

major net recipients of volatility shocks from VIC (Figure 6.3(b)). During other pe-

riods, VIC generally received volatility spillovers from SA and TAS, and transmitted

spillovers to NSW and QLD. Similarly to TAS, net spillovers from VIC appeared dif-

ferent during and outside the carbon taxation period. While VIC was typically a net

volatility spillover receiver before and after the carbon pricing period, during that pe-

riod its position was reversed to be a net transmitter. In particular, the launch of

the carbon taxation system seemed to exert a significant influence on the interaction

between VIC and TAS. During the carbon taxation period, volatility shocks spilled

over from VIC to TAS, while before and after this period the net volatility spillovers

between these two markets were in the opposite direction.
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(a) Total net volatility spillovers
Figure 6.3: continued on next page
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(b) Pairwise net volatility spillovers

Figure 6.3: Total net volatility spillovers and pairwise net volatility spillovers in the NEM over 1 Jan-
uary 2010 to 31 December 2015, estimated from a VAR(2) model with a 1-day forecasting horizon and
a 365-day rolling window. Positive net spillovers from a market mean that the spillovers transmitted
by that market are higher than the spillovers received by it. Negative net spillovers from a market
mean that the spillovers transmitted by that market are lower than the spillovers received by it. The
two dashed lines on each plot refer to the beginning and end dates of the carbon taxation policy. The
shaded areas indicate identified temporary market events. For each market in Panel (a), the events
that originated in that market are coloured in pink. From left to right, these events are:
1: record demand (NSW and SA), 2: outages of Basslink interconnector (VIC-TAS), 3: high demand
(SA and VIC), 4: congestion (QLD), 5: temporary shutdown and tight supply condition (SA), 6: high
demand and rebidding (SA), high demand and network issue (NSW), 7: high demand (SA and VIC),
8: rebidding (QLD), 9: record demand (QLD), 10: tight supply conditions and rebidding (SA), 11:
network issues (NSW).
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6.3.3 Dynamic Spillover Analysis: Summary and Indications

Important findings from the above dynamic spillover analysis are summarised below.

Firstly, the dynamic analysis is able to capture some information that cannot be

conveyed in the static analysis. For example, while the static analysis (Table 6.1 Panel

(a)) identifies QLD as a net price spillover giver, the dynamic analysis can denote

episodes wherein QLD received net price spillovers from other markets (Figure 6.2(a)).

Similarly, although the static analysis in Section 6.2 suggests two net price spillover

givers (SA and QLD) and three net volatility spillover givers (SA, TAS and VIC) on

a full-sample basis, according to the dynamic examination, only SA is always found to

have transmitted out net price and volatility spillovers, while the net spillover position

for QLD, TAS and VIC varied over different periods. In contrast, NSW always received

net price and volatility spillovers over time. Moreover, among the five regions in the

NEM, the net price and volatility spillovers from SA both have time-varying patterns

that are the closest to those of the corresponding aggregated spillovers. It indicates that

overall spillover pattern in the NEM is largely dominated by the shocks transmitted

from SA to other markets.

Secondly, the patterns of directional spillovers appear similar in static and dynamic

analyses. Whether on an average or on a time-varying basis, a higher level of spillover

effects exists between markets that are well interconnected, for example, between the

pairs NSW–VIC, SA–VIC, and VIC–TAS. However, QLD is a special regional market

in the NEM. Both price and volatility spillovers from and to QLD are low compared to

other markets, which is especially obvious in the conducted dynamic analysis. Although

there are two interconnectors in place between QLD and NSW, price and volatility

transmissions between these two markets are relatively low. The interactions between

QLD and other markets are even lower. A possible reason is the local structural

factors in the QLD market in recent years. The electricity generation sector in QLD

is more concentrated than in any other region in the NEM. The high degree of local

generator power makes QLD relatively isolated from other markets, which explains the
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low level of spillover effects from and to QLD. The degree of QLD electricity market

concentration increased even further in 2011 (Australian Energy Regulator, 2015) due

to the integration of two local generators; this could also explain the decrease of the

spillover magnitude for QLD from 2012 onwards.

Thirdly, the carbon taxation system had impacts on the spillover effects in the

NEM, possibly by influencing interregional trade. The changing direction of net volatil-

ity spillovers between TAS and VIC during and outside the carbon pricing period is

a clear example (Figure 6.3(b)). In particular, before the establishment of carbon

taxation, TAS typically imported electricity from VIC. During that period, TAS was

a net volatility spillover giver that transmitted volatilities mainly to VIC, while VIC

was a net spillover receiver. When carbon taxation was in place, TAS became a net

electricity exporter because of its relatively low regional prices, exporting electricity to

VIC as well as other regions. Along with the reverse of trade positions of TAS and

VIC, between July 2012 and June 2014, TAS became a net volatility spillover receiver,

while VIC became a net transmitter. After the abolition of the carbon taxation policy,

the trade position and net spillover direction between TAS and VIC both returned

to those before July 2012. Another example is the net volatility spillover received by

NSW. Due to high local fuel costs, NSW is typically an electricity importer. However,

carbon taxation reduced the reliance of NSW on imports. Accordingly, with a lower

level of electricity imports, NSW received lower levels of volatility transmissions from

other markets during the carbon pricing period.

Furthermore, there are other time variations of the spillover effects which could be

related to specific events in the NEM. For example, the minor upward trend in the

aggregated price spillover plots (Figure 6.1(b)) could reflect a gradual increase in the

integration level of the NEM. In addition, the eventful bursts reflect specific issues such

as increased electricity demand, generation outage and transmission failure.
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6.4 Robustness Assessment

Finally, we investigate the robustness of the results in this study. This assessment

includes two parts. Firstly, we examine the reliability of our findings regarding the

impacts of the carbon taxation (Section 6.4.1). Secondly, we check the robustness of

our results to different choices of the parameters of the model (Section 6.4.2).

6.4.1 Carbon Taxation Period

In this section, the static spillover analysis introduced in Section 6.2 is re-performed

for the three subperiods (before, during and after carbon taxation) separately. It is

worth noting that all the data transformation including logarithm transformation and

deseasonalisation are re-performed for the three periods. The corresponding descriptive

data are provided in Appendix (Tables A2 and A3) to preserve space. As discussed in

Section 3.5, it can be observed from Table A2 that during the carbon pricing period,

electricity spot prices in all regions were generally high, with a higher mean and median

compared to other periods. The TAS market had relatively low spot prices during this

period, which made it the major net electricity exporter.

In the following, the price and volatility spillover effects for the periods before,

during and after the carbon taxation periods are discussed.
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Price

Table 6.2 shows the static spillover analysis results for price, where the overall

spillover patterns for the entire sample (Panel (a), January 2010 to December 2015)

can be compared with the patterns in three subperiods: before carbon taxation (Panel

(b), January 2010 to June 2012), during carbon taxation (Panel (c), July 2012 to June

2014), and after taxation (Panel (d), July 2014 to December 2015).

Overall, the aggregated price spillover indexes in the three periods before, during

and after the implementation of carbon pricing are 20.36%, 29.08% and 31.25% re-

spectively. This confirms our finding that over our sample period, the aggregated price

spillover index depicts an increasing trend.

With regard to directional price spillovers, for all three subperiods, the patterns

are similar to that for the entire sample. SA and VIC are the largest price spillover

transmitters that are the most influential in the Australian NEM, while NSW and VIC

are the largest spillover receivers that are the most vulnerable. However, the price

spillovers received by TAS are worth noting. Although the price shocks received by

TAS from others were lower than 10% before and during the carbon taxation period,

in the last period TAS received price spillovers as high as 36.15%, mainly due to the

increased level of influence of SA (21.79%) and VIC (12.96%) on TAS. This pattern is

also observed previously in Figure 6.2 in dynamic spillover analysis.

In net terms, the patterns of price spillovers for the entire sample are closer to

those for the periods before and after carbon taxation. In particular, for all periods,

NSW received the most net price spillovers, while SA spilled over the most. Before and

after carbon taxation, TAS and VIC were net price spillover receivers; however, during

the carbon taxation period the net spillover positions of TAS and VIC were reversed.

Again, these patterns are consistent with Figure 6.2 in dynamic spillover analysis.
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Table 6.2: Spillover table for prices before, during and after the carbon taxation period

From
NSW QLD SA TAS VIC From Others

Panel (a) : Price spillovers (in percentage) during the full sample (01/2010 - 12/2015)

To

NSW 66.45 5.56 12.42 1.14 14.43 33.55
QLD 2.91 94.28 0.63 0.25 1.93 5.72

SA 0.87 0.22 82.93 1.92 14.06 17.07
TAS 1.10 0.48 5.84 89.55 3.03 10.45
VIC 2.58 1.26 35.69 1.87 58.60 41.40

To Others 7.46 7.52 54.58 5.18 33.45 108.19
Net Spillovers -26.09 1.80 37.51 -5.27 -7.95

Spillover Index = 108.19
500.00 = 21.64%

Panel (b) : Price spillovers (in percentage) before the carbon taxation (01/2010 - 06/2012)

To

NSW 70.25 6.35 10.13 1.34 11.93 29.75
QLD 5.26 89.79 1.19 0.98 2.77 10.21

SA 0.44 0.44 84.29 1.79 13.04 15.71
TAS 1.45 1.08 4.17 91.26 2.04 8.74
VIC 1.58 1.00 33.42 1.37 62.63 37.37

To Others 8.73 8.87 48.91 5.48 29.79 101.78
Net Spillovers -21.02 -1.34 33.20 -3.26 -7.58

Spillover Index = 101.78
500.00 = 20.36%

Panel (c) : Price spillovers (in percentage) during the carbon taxation (07/2012 - 06/2014)

To

NSW 32.87 4.54 31.84 1.25 29.50 67.13
QLD 1.01 98.56 0.00 0.10 0.33 1.44

SA 0.74 0.00 75.01 0.40 23.85 24.99
TAS 0.95 0.82 1.70 92.38 4.16 7.62
VIC 1.75 0.32 41.14 1.01 55.78 44.22

To Others 4.45 5.68 74.68 2.77 57.84 145.42
Net Spillovers -62.68 4.24 49.69 -4.85 13.62

Spillover Index = 145.42
500.00 = 29.08%

Panel (d) : Price spillovers (in percentage) after the carbon taxation (07/2014 - 12/2015)

To

NSW 56.81 7.58 16.87 1.28 17.46 43.19
QLD 3.37 93.18 1.33 0.01 2.11 6.82

SA 2.66 0.31 82.47 3.65 10.92 17.53
TAS 1.36 0.03 21.79 63.85 12.96 36.15
VIC 8.13 2.05 35.58 6.81 47.43 52.57

To Others 15.52 9.97 75.58 11.75 43.45 156.27
Net Spillovers -27.67 3.15 58.05 -24.40 -9.12

Spillover Index = 156.27
500.00 = 31.25%
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Volatility

Table 6.3 shows the static spillover analysis results for volatility, where the overall

spillover patterns for the entire sample (Panel (a), January 2010 to December 2015)

can be compared with the patterns in three subperiods: before carbon taxation (Panel

(b), January 2010 to June 2012), during carbon taxation (Panel (c), July 2012 to June

2014), and after taxation (Panel (d), July 2014 to December 2015).

The aggregated volatility spillover indexes in the three periods before, during and

after the implementation of carbon pricing are 35.62%, 33.81% and 34.17% respectively.

This confirms our findings that the aggregated volatility spillover index was lower

during the carbon pricing period compared to other time horizons.

For all three subperiods, the patterns of directional volatility spillovers are similar

to those of the entire sample. NSW, SA and VIC are the largest volatility spillover

transmitters, while NSW and VIC receive the most volatility spillovers.

In net terms, the positions of NSW, QLD, and SA were the same for all subperi-

ods. However, consistent with Figure 6.3 in dynamic volatility analysis, Table 6.3 also

indicates that the net spillover positions of TAS and VIC during the carbon taxation

period were contrary to those during other periods.

In summary, the separate assessment of electricity price and volatility spillover ef-

fects before, during and after the carbon taxation period confirms the empirical findings

of this study presented in Sections 6.2 and 6.3.
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Table 6.3: Spillover table for price volatility before, during and after the carbon taxation period

From
NSW QLD SA TAS VIC From Others

Panel (a) : Volatility spillovers (in percentage) during the full sample (01/2010 - 12/2015)

To

NSW 47.48 13.70 11.47 4.36 22.99 52.52
QLD 17.19 73.51 1.77 1.19 6.35 26.49

SA 6.18 1.07 70.51 5.85 16.39 29.49
TAS 3.09 0.52 7.76 79.70 8.92 20.30
VIC 17.28 4.17 23.05 9.75 45.75 54.25

To Others 43.74 19.46 44.05 21.15 54.65 183.05
Net Spillovers -8.78 -7.03 14.56 0.85 0.40

Spillover Index = 183.05
500.00 = 36.61%

Panel (b) : Volatility spillovers (in percentage) before the carbon taxation (01/2010 - 06/2012)

To

NSW 52.53 20.00 9.38 2.56 15.53 47.47
QLD 21.93 64.97 2.66 1.09 9.35 35.03

SA 4.18 1.35 74.99 5.13 14.35 25.01
TAS 1.44 0.47 5.72 84.93 7.44 15.07
VIC 11.98 6.83 24.40 12.30 44.50 55.50

To Others 39.52 28.65 42.16 21.08 46.68 178.09
Net Spillovers -7.95 -6.38 17.15 6.01 -8.82

Spillover Index = 178.09
500.00 = 35.62%

Panel (c) : Volatility spillovers (in percentage) during the carbon taxation (07/2012 - 06/2014)

To

NSW 49.36 9.85 9.88 3.72 27.19 50.64
QLD 11.36 84.88 0.23 0.82 2.71 15.12

SA 6.07 0.26 73.48 3.44 16.76 26.52
TAS 4.29 0.68 6.94 74.93 13.14 25.07
VIC 20.45 2.06 20.10 9.09 48.31 51.69

To Others 42.17 12.85 37.16 17.06 59.80 169.05
Net Spillovers -8.47 -2.27 10.64 -8.01 8.11

Spillover Index = 169.05
500.00 = 33.81%

Panel (d) : Volatility spillovers (in percentage) after the carbon taxation (07/2014 - 12/2015)

To

NSW 48.36 12.72 12.57 9.00 17.35 51.64
QLD 15.77 80.48 1.01 1.00 1.74 19.52

SA 4.58 0.29 72.13 9.90 13.11 27.87
TAS 2.85 0.11 10.13 81.45 5.47 18.55
VIC 13.11 1.19 27.99 11.00 46.71 53.29

To Others 36.31 14.30 51.70 30.90 37.66 170.87
Net Spillovers -15.33 -5.22 23.83 12.35 -15.63

Spillover Index = 170.87
500.00 = 34.17%
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6.4.2 Different Model Specification

In this section the robustness of our findings to different model specifications is assessed.

These different specifications include alternative choices of the identification method

of shocks for the forecast error variance decomposition, VAR lag length p, forecasting

horizon H, and window length w. Each of the following sections shows the effect of the

choice of one parameter, while more explorations of robustness are found in Appendix

A.3.2.

Choice of Identification Method

We assess the robustness of our results to the choice of shock identification method

in this section. In particular, we compare the earlier version of the DY method (2009)

with the version (Diebold and Yilmaz, 2012) that is employed in the main analysis of

this study. The 2009 version of the DY method uses Cholesky decomposition to identify

shocks, while the 2012 version uses the generalised variance decomposition (GVD).

Figure 6.4 plots the aggregated price and volatility spillover indexes generated by

the two versions (i.e. 2009 and 2012) of the DY method. The Cholesky decomposition

is sensitive to the variable ordering; therefore, for the 2009 version, we employ the ‘fast

spillover method’ developed by Klößner and Wagner (2014) to compute the results for

all possible orderings in each window, and show the interval between the minimum and

maximum values of the spillover index in the plots.

The dynamic moves of the spillover indexes generated by the two versions of the DY

method are in accordance with each other over time. However, it is observed that the

aggregated spillover index obtained from the DY method (2012) is at a higher level than

that obtained from the DY method (2009). This is because the generalised forecast

error variance decomposition treats each variable as the first variable in the Cholesky-

based decomposition and thus tends to give higher spillover estimations (Diebold and

Yilmaz, 2014; Klößner and Wagner, 2014). In addition, as can be seen in Figure A4

in Appendix A.3.2, with the decrease of the window length w or the increase of the
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forecasting horizon H, the gap between the spillover indexes based on the two versions

of the DY methods narrows.

(a) Price

(b) Volatility

Figure 6.4: Robustness to the choice of identification method. The solid line refer to the spillover
indexes calculated from generalised variance decomposition (Diebold and Yilmaz, 2012). The grey
band corresponds to a interval between the minimum and maximum values of the spillover index
calculated from Cholesky decomposition (Diebold and Yilmaz, 2009) based on all possible orderings.
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Choice of VAR Lag Length p

In addition to p = 1 for the price VAR model (and p = 2 for volatility VAR), we

examine alternative lag orders 1 (for volatility), 2 (for price), 7, 14 and 28. The results

are plotted in Figure 6.5. It is observed that the change in VAR lag length does not

make a significant difference in the spillover pattern for p=2, 7, 14, whereas for p =

1 and 28 the spillover plots are more volatile and the extreme patterns tend to be

more frequent. This is particular for the volatility spillover analysis as indicated in the

bottom panel of Figure 6.5. However, the overall qualitative patterns of spillover plots

are similar for different VAR lag lengths.

(a) Price

(b) Volatility

Figure 6.5: Robustness to the choice of VAR lag length p (p = 1, 2, 7, 14 and 28)
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Choice of Forecasting Horizon H

In addition to a one-day predictive horizon in forecast error variance decomposition,

we consider a 7-day horizon. According to Figure 6.6, both price and volatility spillover

patterns are not sensitive to the choice of the forecasting horizon H, despite the fact

that spillover effects are slightly higher when H is larger. Similar results are found in,

for example, Diebold and Yilmaz (2009, 2014) and Maghyereh et al. (2015). Intuitively,

more spillover effects are expected to be observed when the forecasting horizon is higher.

The reason is that shocks in one market could spill over to others contemporaneously,

with a short lag, or only with a long lag. With a short forecasting horizon, only

contemporaneous and short-term spillover effects are considered. As the forecasting

horizon lengthens, more spillover effects, which might only happen in a longer term,

could be captured. Therefore, as indicated by Diebold and Yilmaz (2014), there is no

reason why the spillover effects should be ‘robust’ to different forecasting horizons22.

22Furthermore, we also provide the results generated by using a 30-day horizon in Figure A4 of Appendix
A.3.2, which illustrate the same patterns.
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(a) Price

(b) Volatility

Figure 6.6: Robustness to the choice of forecasting horizon H (H = 1 and 7)
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Choice of Window Length w

In addition to w = 365 days, we consider a shorter window length (180 days) and

a longer window length (540 days) for rolling-sample analyses. The results are plotted

in Figure 6.7. It is observed that spillover plots are more volatile for a shorter window

and more stable for a longer window. Overall, for the window lengths w = 180, 365

and 540 days, the qualitative features of spillover plots are relatively similar. However,

it should be noted that due to a different window length (backward-looking), different

time intervals may be classified as periods with high (low) spillover effects. This is

particular for the price spillover analysis as indicated in the upper panel of Figure

6.7. Thus, the applied window length for model estimation has to be considered as an

important factor when interpreting the results.

(a) Price

(b) Volatility

Figure 6.7: Robustness to the choice of window length w (w = 180, 365 and 540)
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6.4.3 Summary of Robustness Assessment

Overall, the reassessment of spillover effects in different time periods with regard to

the carbon taxation policy confirms the findings presented in Chapter 6. In particular,

the results of static spillover analyses for three separate periods present similar time-

varying patterns that are captured in dynamic spillover analyses (Sections 6.3.1 and

6.3.2). This confirms the ability of the dynamic spillover plots to continuously track

the changes in spillover levels over time.

Meanwhile, our results are robust to different settings of the identification method

(Cholesky factorisation versus GVD), the lag length p of the VAR model, the forecasting

horizon H, and up to a certain degree also to the sample window length w.
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Conclusion and Discussion

This study conducts a detailed examination of price and volatility spillovers in the five

regional markets of the Australian NEM with a sample period from 1 January 2010 to

31 December 2015. The objective is to provide a better understanding of electricity

spot price dynamics in a multi-regional context. In particular, we empirically assess

the specific patterns of those spillover effects, including the degree of these effects, the

direction of spillovers between regions, the time-variations in these effects, the impacts

of changing market conditions on these effects, and the divergent patterns between

price spillovers and volatility spillovers.

We employ a methodological framework that was developed by Diebold and Yil-

maz (2009, 2012). Based on forecast error variance decomposition of VAR models, it

allows us to quantify and monitor different types of spillovers (i.e. static and dynamic,

aggregated and pairwise, gross directional and net directional).

We find that across our sample period, on average, the overall magnitude of spillover

effects in the NEM is 21.64% for prices and 36.61% for volatilities. They are relatively

low compared to those in equity markets. For example, the calculated return and

volatility spillovers among nineteen global stock markets are respectively 36% and 40%

in Diebold and Yilmaz (2009). The volatility spillovers among major US financial
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institutions’ stocks aggregate to 78.3% in Diebold and Yilmaz (2014). Furthermore,

our calculated spillovers in the NEM are also lower than those in Zhang and Wang

(2014) among three oil markets (China, the US and UK) where return spillovers are

50.1% and volatility spillovers are 43.3%. The results indicate that although spillover

effects play an important role in electricity price formulation in the NEM, regional

prices are still mostly influenced by local factors.

For directional spillovers for both prices and volatilities, the static analysis suggests

that SA is the most significant net spillover giver, while NSW is the most significant

net spillover receiver in the NEM. This indicates that among the five regions in the

Australian NEM, SA is the most influential market, while the spot prices in NSW are

the most vulnerable.

In addition, we find that the spillover effects are indeed time-varying. The aggre-

gated spillover index for both price and volatility changes in level over time. The mag-

nitude and direction of spillover effects between different regions and the net spillover

position of each region also vary in different time periods. In particular, SA is con-

stantly a net spillover giver, while NSW is constantly a net spillover receiver over time.

In comparison, the net spillover positions of QLD, VIC and TAS fluctuate.

The patterns of price and volatility spillovers could be related to market events

and market structures. In particular, some of the periods of increased spillover effects

correspond to significant market events, such as extremely high demand, congestion

of transmission lines, and generation outages. These can be reflected in the dynamic

spillover analysis. The dynamic analysis also points out the differences in spillover

patterns with regard to the three episodes: before, during and after carbon taxation

periods. On the other hand, the physical interconnecting structure of the NEM also

influences the patterns of price and volatility spillovers. More spillovers can be observed

where physical interconnections exist, for example, between the pairs NSW–VIC, SA–

VIC, and VIC–TAS. In contrast, the lowest levels of spillover effects are always found

between the pairs QLD–TAS and QLD–SA, which are geographically distant and not
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well connected. These results regarding interconnectors confirm the findings of Higgs

(2009), Ignatieva and Trück (2016) and Smith (2015).

Furthermore, although the overall patterns of price and volatility spillovers are

quite similar, there are some divergences. This confirms the findings of Diebold and

Yilmaz (2009) that price (or return) and volatility spillovers could capture different

information in the considered markets. Firstly, the static spillover analysis suggests

that, on average, more spillover effects can be observed for volatilities than for prices.

Secondly, the aggregated spillover index for prices shows a slightly increasing trend,

while this is not the case for volatilities. In addition, during the carbon taxation

period, the aggregated spillover index for volatility is lower compared to other periods.

However, this is not observed for the price spillover index.

Finally, our results are robust when separate assessments are conducted for sub-

periods with regard to the introduction and repeal of the Australian carbon taxation

policy. Our results are also robust to the choice of model specification such as the shock

identification method, lag length of VAR, predictive horizon of forecast error variance

decomposition, and with some limitations also the rolling-window length.

Overall, to the best of our knowledge, this is the first study that applies the Diebold

and Yilmaz (2009, 2012) method to assess the interregional transmission of price and

volatility in the Australian NEM. We conclude that this approach can efficiently capture

the dynamics across this wholesale electricity market system.

Our results provide a detailed examination of the spillover mechanism across the

Australian NEM, including the level of price and volatility spillovers contributed by

each market and the time variations of these effects. These results are of significance

to market participants, especially those who operate in different regional markets si-

multaneously. In particular, the detailed patterns of spillover effects between different

regional markets provide important insights for those participants on the strategies of

transferring risks between the considered markets. Furthermore, the results will enable

regulators to examine the impacts of market interconnection and current market mech-
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anisms on the transmission of shocks across regions, which helps to make investment

decisions on, for example, construction of new generation plants and interconnectors.

The results also provide implications for market integration of the NEM. For example,

the overall magnitude of spillover effects seems to suggest a still relatively low degree

of integration; however, the slightly upward trend in price spillovers could indicate a

gradual increase in the whole market integration level. In addition, compared to the

previous literature, with more recent data, we consider the influence of the carbon

taxation system on electricity price and volatility spillover effects in the NEM. This

could provide regulatory indications with regard to other climate change policies that

may also exert influences on the transmission of price and price volatility shocks by

influencing electricity generation and interregional electricity flows in the NEM.

We do recognise some limitations of this study, which also present directions for

future research.

First, theoretically, the generalised forecast error variance decompositions used in

this study require VAR errors to follow a multivariate normal distribution (Koop et al.,

1996; Pesaran and Shin, 1998). However, this requirement is rarely satisfied for elec-

tricity markets where the price data are highly skewed and leptokurtic. Therefore,

multivariate analysis of VAR error terms is recommended for refinement of generalised

variance decomposition (GVD) techniques used in the study.

Second, as for volatility spillovers, different volatility measures may exert an in-

fluence on the spillover estimates. A comparison between the spillover analyses using

various volatility measures could be of interest. For example, volatilities of the elec-

tricity prices extracted from the GARCH or other heteroscedastic models could be an

alternative in future research.

In addition, in this study we used daily electricity prices and volatilities. Given that

the electricity spot prices in the NEM are originally recorded on a half-hourly basis, it is

possible that the current choice of data frequency may miss some relevant information,

especially on the short-term transmission of price dynamics. Thus, another possible

98



Chapter 7. Conclusion and Discussion

extension would be to use high-frequency data as the input, to better capture the

market information and to provide more accurate estimations for spillover effects.
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Appendix A. Supplementary Results

A.1 Data

(a) Raw prices (b) Log-prices with a long-term
seasonal component (LTSC)

(c) Deseasonalised log-prices

Figure A1: Daily raw prices, log-prices and deseasonalised log-prices of NSW, QLD, SA, TAS and
VIC from 1 January 2010 to 31 December 2015. Panel (a) plots raw daily prices. Panel (b) plots
log-prices with a long-term seasonal component (LTSC) obtained through wavelet decomposition.
Panel (c) plots the deseasonalised log-prices (both long-term and short-term seasonal components are
removed).
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Appendix A. Supplementary Results

A.2 Gross Directional Price and Volatility Spillovers

Gross spillovers measure all shocks transmitted out by one market or all shocks received

by one market from others. Overall, the plots for gross directional spillovers (Figure

A2 and Figure A3) express similar information compared with net spillovers. There

are three noticeable points in these plots.

Firstly, in gross terms, for price spillovers, SA and VIC were always the major

transmitters of shocks over the sample period, indicating that these two markets are

more influential compared to other regions in the NEM. Meanwhile, NSW and VIC

were the two major price spillover receivers, indicating that the prices in these two

markets are more dependent on conditions in other regions. For volatility spillovers,

the major gross transmitters were NSW, SA and VIC, while NSW and VIC were at

the same time the major receivers of volatilities.

Secondly, for TAS, the change in net spillover position during the carbon taxation

period can be traced to gross spillovers. During this period, two changes were significant

in gross spillovers for the TAS market. The price spillovers flowing to TAS (Figure A2)

substantially increased, while the volatility transmitted from TAS to others (Figure

A3) largely dropped. These effects led TAS to become a net receiver for both price and

volatility spillovers. It indicates that during the carbon taxation period, TAS’s more

exports to other markets made it more dependent.

Thirdly, VIC is a noteworthy market. Although the magnitude of net spillovers for

VIC has been relatively low, the gross spillover effects transmitted from and received

by this market were both large, indicating that VIC has been largely influenced by

other regions but at the same time significantly impacting other markets. During the

carbon taxation period, VIC has been transmitting out both more price shocks and

higher volatilities while those spillovers flowing to it have became much lower. These

effects have led VIC to become a net price and volatility spillover giver.
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A.3 Robustness Assessment

A.3.1 Empirical Analysis for the Periods Before, During and

After the Carbon Taxation Policy
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Table A2: Descriptive statistics for prices before, during and after the carbon taxation period

Mean Median Max. Min. Std.dev Skew. Excess Kurt. J-B test ADF test
Panel (a) : Full sample (January 2010 to December 2015, 2191 observations)

NSW
raw 41.4487 35.0140 1282.0 17.3610 44.3571 20.0651 509.6698 23905000

(<0.001)
-14.9220
(<0.001)

log. 3.6161 3.5557 7.1562 2.8542 0.3872 1.6420 9.5408 9315.90
(<0.001)

-6.5548
(<0.001)

des. 3.6003 3.5816 6.6642 2.8542 0.2368 5.6323 54.7999 286270
(<0.001)

-19.9014
(<0.001)

QLD
raw 45.7805 33.4370 1885.9 -13.9790 73.7870 15.8358 320.6543 9495900

(<0.001)
-12.5474
(<0.001)

log. 3.6033 3.5097 7.5422 -1.1106 0.5576 0.5438 10.7114 10607
(<0.001)

-6.8387
(<0.001)

des. 2.8215 2.7908 6.3674 -1.1106 0.3766 0.8389 33.1443 100750
(<0.001)

-26.1694
(<0.001)

SA
raw 48.5463 37.0300 2347.7 -103.1600 81.2063 18.6110 442.4623 18032000

(<0.001)
-14.9019
(<0.001)

log. 3.6546 3.6117 7.7612 0.1102 0.6085 -0.2225 9.0103 7447.80
(<0.001)

-7.7857
(<0.001)

des. 3.7206 3.7108 7.7610 0.1102 0.4553 -0.2747 22.4240 46026
(<0.001)

-20.2696
(<0.001)

TAS
raw 39.1508 36.6040 805.06 -94.6700 27.5360 14.3794 339.1757 10597000

(<0.001)
-7.0703

(<0.001)

log. 3.5762 3.6002 6.6909 1.1935 0.4118 -0.0543 7.2903 4865.80
(<0.001)

-4.5366
(<0.001)

des. 3.5519 3.5424 6.8357 1.1935 0.2698 0.8121 37.6522 129910
(<0.001)

-13.8845
(<0.001)

VIC
raw. 39.4260 33.1970 1276.9 -4.8887 46.6428 17.8835 406.9201 15261000

(<0.001)
-14.3397
(<0.001)

log. 3.5393 3.5025 7.1522 1.9012 0.4383 1.2508 7.3898 5570.30
(<0.001)

-6.3573
(<0.001)

des. 3.1165 3.1025 6.8676 1.9012 0.2674 4.7289 51.4999 250760
(<0.001)

-20.1187
(<0.001)

Panel (b) : Before carbon taxation (January 2010 to June 2012, 912 observations)

NSWraw 33.7707 27.0210 1282.0 17.3610 64.4992 15.6125 277.3314 2972800
(<0.001)

-6.7712
(<0.001)

log 3.3460 3.2966 7.1562 2.8542 0.3669 5.5650 41.4570 70341
(<0.001)

-12.7193
(<0.001)

des. 3.5888 3.5596 6.6236 2.8542 0.3142 4.8409 36.1526 53477
(<0.001)

-15.5144
(<0.001)

QLD raw 30.1364 24.9900 1062.4 -13.9790 53.2818 15.4321 257.0136 2557600
(<0.001)

-6.8016
(<0.001)

log 3.2468 3.2185 6.9683 -1.1106 0.4209 0.1625 44.8143 76678
(<0.001)

-10.3640
(<0.001)

des. 2.8102 2.7934 5.9868 -1.1106 0.3499 -0.5545 53.7337 110274
(<0.001)

-17.7327
(<0.001)

SA raw 36.5095 27.3490 2347.7 -103.1600 113.2392 16.0921 283.1934 3100600
(<0.001)

-8.3242
(<0.001)

log 3.3023 3.3087 7.7612 0.1102 0.5676 0.0608 22.3664 19105
(<0.001)

-14.4930
(<0.001)

des. 3.3169 3.3148 7.3412 0.1102 0.5103 0.5957 20.5594 16197
(<0.001)

-17.2187
(<0.001)

TAS raw 31.2369 27.8395 805.06 -94.6700 36.8423 14.7080 265.2052 2717600
(<0.001)

-18.6718
(<0.001)

log 3.3318 3.3264 6.6909 1.1935 0.3980 1.0553 17.0676 11297
(<0.001)

-10.1621
(<0.001)

des. 3.2976 3.2888 6.5982 1.1935 0.3314 1.7133 31.0801 37332
(<0.001)

-16.9594
(<0.001)

VIC
raw 31.1482 25.6990 1276.9 -4.8887 62.4322 16.2328 292.7558 3311500

(<0.001)
-10.8343
(<0.001)

log 3.2658 3.2465 7.1522 1.9012 0.3774 4.3439 36.4427 53585
(<0.001)

-8.1180
(<0.001)

des. 3.0797 3.0650 6.7972 1.9012 0.3137 5.6595 54.9537 120173
(<0.001)

-17.7202
(<0.001)

Continued on next page
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Table A2 – continued from previous page
Mean Median Max. Min. Std.dev Skew. Excess Kurt. J-B test ADF test

Panel (c) : During carbon taxation (July 2012 to June 2014, 730 observations)

NSWraw 53.6792 51.8420 303.12 44.3210 11.2575 15.5157 329.4433 3348900
(<0.001)

-5.3909
(<0.001)

log 3.9731 3.9482 5.7141 3.7915 0.1226 5.3542 59.0249 110084
(<0.001)

-9.6776
(<0.001)

des. 3.9339 3.9200 5.6387 3.7915 0.1001 8.2859 120.8305 454974
(<0.001)

-14.4985
(<0.001)

QLD raw 62.7191 53.7605 585.63 0.8140 42.2847 8.1764 84.3174 225640
(<0.001)

-5.9758
(<0.001)

log 4.0591 3.9845 6.3727 -0.2059 0.3491 0.0142 40.0831 49158
(<0.001)

-11.5419
(<0.001)

des. 3.8047 3.7736 5.7087 -0.2059 0.3089 -1.3137 44.9846 62123
(<0.001)

-13.4970
(<0.001)

SA raw 65.7300 54.5730 806.26 31.9280 50.6302 8.4496 95.9185 290150
(<0.001)

-5.3064
(<0.001)

log 4.0871 3.9996 6.6924 3.4635 0.3648 2.6066 10.5618 4247
(<0.001)

-9.8860
(<0.001)

des. 4.2802 4.2493 6.8826 3.4635 0.3055 2.6578 14.3923 7205
(<0.001)

-15.6145
(<0.001)

TAS raw 45.1369 43.0045 139.96 -11.0680 12.5293 3.1639 18.5008 11700
(<0.001)

-13.4646
(<0.001)

log 3.7848 3.7613 4.9414 2.9196 0.2173 1.3810 6.1333 1387
(<0.001)

-5.5858
(<0.001)

des. 3.7102 3.6897 4.7349 2.9196 0.1754 2.1291 10.1770 3727
(<0.001)

-15.3428
(<0.001)

VIC
raw 54.4629 49.3650 722.65 36.9530 34.9531 13.4162 221.0629 1516700

(<0.001)
-8.1041

(<0.001)

log 3.9468 3.8992 6.5829 3.6097 0.2450 4.8812 36.9078 44590
(<0.001)

-13.1060
(<0.001)

des. 3.9531 3.9280 6.3836 3.6097 0.2156 5.6812 48.1501 74874
(<0.001)

-14.4730
(<0.001)

Panel (d) : After carbon taxation (July 2014 to December2015, 549 observations)

NSWraw 37.9405 35.0140 472.77 19.2430 21.6536 15.3959 296.3540 2045700
(<0.001)

-5.0645
(<0.001)

log 3.5900 3.5557 6.1586 2.9572 0.2523 2.9585 22.6606 12649
(<0.001)

-10.0065
(<0.001)

des. 3.4445 3.4244 5.6928 2.9572 0.2051 3.9124 32.7522 26143
(<0.001)

-11.7418
(<0.001)

QLD raw 49.2456 33.6660 1885.9 2.7548 117.7227 12.6548 175.7182 726300
(<0.001)

-5.7243
(<0.001)

log 3.5895 3.5165 7.5422 1.0133 0.5455 2.5270 13.8050 4986
(<0.001)

-9.4006
(<0.001)

des. 3.4760 3.4437 7.0503 1.0133 0.4666 2.3956 16.3530 6698
(<0.001)

-11.0799
(<0.001)

SA raw 45.6930 36.9170 259.59 -5.8235 31.3656 3.1399 13.7416 5265.10
(<0.001)

-3.2407
(0.0184)

log 3.6702 3.6087 5.5591 1.6204 0.5298 0.2184 2.4803 147
(<0.001)

-9.3884
(<0.001)

des. 4.2166 4.2017 5.8380 1.6204 0.4576 -0.0470 4.2191 413
(<0.001)

-14.4325
(<0.001)

TAS raw 44.3377 39.0180 120.88 -0.0560 19.6451 1.6063 2.2640 356.6375
(<0.001)

-3.4283
(0.0105)

log 3.7128 3.6640 4.7948 2.2142 0.3864 0.4472 1.0353 44
(<0.001)

-1.6352
(0.1026)

des. 3.3522 3.3469 4.4259 2.2142 0.1985 -0.1032 6.5352 988
(<0.001)

-12.5187
(<0.001)

VIC
raw 33.1828 31.9670 160.94 11.6280 11.6199 3.2004 27.6322 18550

(<0.001)
-4.8058

(<0.001)

log 3.4519 3.4647 5.0810 2.4534 0.3124 0.1167 1.5196 55
(<0.001)

-4.9695
(<0.001)

des. 3.6403 3.6509 4.7383 2.4534 0.2304 -0.5477 3.6529 337
(<0.001)

-11.4516
(<0.001)

Notes: This table gives a summary of descriptive statistics for raw prices ($/MWh), log-prices and
deseasonalised log-prices of NSW, VIC, QLD, TAS and VIC, for the full sample period (Panel(a))
and for the periods before, during, and after carbon taxation (Panel (b), (c) and (d)). In augmented
Dickey-Fuller (ADF) test for the stationarity of each data series, we find a unit root for the
log-prices of TAS for the period after carbon taxation (Panel (d)).
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Table A3: Descriptive statistics for volatilities before, during and after the carbon taxation period

Mean Median Max. Min. Std.dev Skew. Excess Kurt. J-B test ADF test
Panel (a) : Full sample (January 2010 to December 2015, 2191 observations)

NSWraw 0.1682 0.1412 1.8564 0.0081 0.1478 4.6242 35.4444 122740
(<0.001)

-8.7650
(<0.001)

log. -2.0345 -1.9572 0.6186 -4.8114 0.7136 -0.1763 0.5288 37.2102
(<0.001)

-6.0599
(<0.001)

QLD raw 0.2720 0.2034 2.2486 0.0226 0.2498 3.2395 14.9928 24404
(<0.001)

-9.8414
(<0.001)

log. -1.5726 -1.5927 0.8103 -3.7892 0.7075 0.3047 0.3696 46.6218
(<0.001)

-8.2656
(<0.001)

SA raw 0.4141 0.2389 3.8103 0.0299 0.5395 3.2267 11.2902 15471
(<0.001)

-11.6007
(<0.001)

log. -1.3164 -1.4316 1.3377 -3.5095 0.8368 0.8194 0.8447 311.1946
(<0.001)

-8.6215
(<0.001)

TAS raw 0.2747 0.1626 4.1082 0.0002 0.4154 4.8712 29.0344 85790
(<0.001)

-12.6814
(<0.001)

log. -1.7646 -1.8168 1.4130 -8.5344 0.9114 -0.1674 5.3076 2589.40
(<0.001)

-9.3495
(<0.001)

VIC
raw 0.2521 0.2067 3.1316 0.0153 0.2395 4.4293 29.2312 8533.40

(<0.001)
-9.2576

(<0.001)

log. -1.6455 -1.5764 1.1415 -4.1797 0.7190 -0.0078 0.7064 46.0120
(<0.001

-6.5998
(<0.001)

Panel (b) : Before carbon taxation (January 2010 to June 2012, 912 observations)

NSWraw 0.2068 0.1693 1.8564 0.0308 0.1779 4.9869 33.1114 45654
(<0.001)

-5.2122
(<0.001)

log. -1.7547 -1.7759 0.6186 -3.4805 0.5456 0.7500 2.2492 279.9884
(<0.001)

-3.9514
(<0.001)

QLD raw 0.2885 0.2196 2.1398 0.0523 0.2345 3.3365 14.9407 10225
(<0.001)

-4.5902
(<0.001)

log. -1.4370 -1.5160 0.7607 -2.9514 0.5749 0.7778 1.0962 138.6714
(<0.001)

-4.1211
(<0.001)

SA raw 0.4501 0.2568 3.4918 0.0484 0.5555 2.8247 7.9478 3631.80
(<0.001)

-7.1917
(<0.001)

log. -1.1921 -1.3596 1.2504 -3.0282 0.7721 1.2167 1.1522 277.0225
(<0.001)

-6.5322
(<0.001)

TAS raw 0.3364 0.2217 3.5501 0.0002 0.4356 3.9985 19.0177 16252
(<0.001)

-12.6742
(<0.001)

log. -1.5097 -1.5064 1.2670 -8.5344 0.9107 -0.8713 8.9435 3173.10
(<0.001)

-11.8709
(<0.001)

VIC
raw 0.2934 0.2407 2.4301 0.0470 0.2370 4.5938 26.7195 30480

(<0.001)
-7.8243

(<0.001)

log. -1.3834 -1.4240 0.8879 -3.0574 0.5030 1.0107 3.0701 517.0612
(<0.001)

-6.1984
(<0.001)

Continued on next page
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Table A3 – continued from previous page
Mean Median Max. Min. Std.dev Skew. Excess Kurt. J-B test ADF test

Panel (c) : During carbon taxation (July 2012 to June 2014, 730 observations)

NSWraw 0.0867 0.0672 1.0372 0.0081 0.0781 5.0442 41.9912 57057
(<0.001)

-4.9868
(<0.001)

log. -2.6669 -2.6995 0.0365 -4.8114 0.6307 0.3743 1.0000 48.2001
(<0.001)

-3.5772
(<0.001)

QLD raw 0.1992 0.1162 2.2486 0.0226 0.2412 3.6455 18.4181 12008
(<0.001)

-5.3860
(<0.001)

log. -1.9874 -2.1528 0.8103 -3.7892 0.7722 0.9504 0.8208 131.3654
(<0.001)

-4.9108
(<0.001)

SA raw 0.2598 0.1569 3.4076 0.0299 0.3479 4.3544 23.8774 19765
(<0.001)

-4.9222
(<0.001)

log. -1.7377 -1.8519 1.2260 -3.5095 0.7791 0.9123 1.3022 154.2072
(<0.001)

-3.6575
(0.0050)

TAS raw 0.1842 0.1106 4.1082 0.0148 0.3706 7.8199 70.1821 158150
(<0.001)

-11.3344
(<0.001)

log. -2.1128 -2.2022 1.4130 -4.2101 0.7138 1.6283 4.8580 1048.10
(<0.001)

-10.8069
(<0.001)

VIC
raw 0.1349 0.0973 1.8833 0.0153 0.1726 6.1185 45.7440 68594

(<0.001)
-7.6715

(<0.001)

log. -2.2850 -2.3296 0.6330 -4.1797 0.6503 0.9626 2.8731 367.1077
(<0.001)

-5.6712
(<0.001)

Panel (d) : After carbon taxation (July 2014 to December 2015, 549 observations)

NSWraw 0.2123 0.1875 1.0785 0.0440 0.1150 2.8574 13.1385 4735.4
(<0.001)

-4.6154
(<0.001)

log. -1.6583 -1.6738 0.0756 -3.1247 0.4542 0.1997 1.2762 41.8468
(<0.001)

-4.1289
(<0.001)

QLD raw 0.3415 0.2687 2.1816 0.0576 0.2612 3.3887 15.6444 6703.90
(<0.001)

-4.5205
(<0.001)

log. -1.2465 -1.3141 0.7801 -2.8542 0.5396 0.8713 1.2227 104.9054
(<0.001)

-4.0266
(0.0018)

SA raw 0.5595 0.3131 3.8103 0.0770 0.6589 2.8171 7.9249 2181.30
(<0.001)

-4.7993
(<0.001)

log. -0.9624 -1.1612 1.3377 -2.5643 0.7825 0.9714 0.5825 94.9349
(<0.001)

-3.7896
(0.0039)

TAS raw 0.2925 0.1798 3.1386 0.0003 0.4169 4.1047 19.2157 10068
(<0.001)

-8.9395
(<0.001)

log. -1.7250 -1.7161 1.1438 -8.2729 0.9959 -0.6426 4.8918 591.8576
(<0.001)

-8.1610
(<0.001)

VIC
raw 0.3394 0.2829 3.1316 0.0592 0.2598 4.8817 35.5194 31281

(<0.001)
-5.8089

(<0.001)

log. -1.2307 -1.2627 1.1415 -2.8263 0.5011 0.8273 2.4614 203.8071
(<0.001)

-4.9116
(<0.001)

Notes: This table gives a summary of descriptive statistics for raw volatilities and log-volatilities of
NSW, VIC, QLD, TAS and VIC, for the full sample period (Panel (a)) and for the periods before,
during, and after carbon taxation (Panel (b), (c) and (d)).
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A.3.2 Robustness Check with Different Model Specification

(a) Robustness assessment for price spillovers (H = 1, 7 and 30 days; w = 180, 365 and 540
days)

(b) Robustness assessment for volatility spillovers (H = 1, 7 and 30 days; w = 180, 365 and
540 days)

Figure A4: Robustness to different model specifications of the aggregated spillover index plots for
price (Panel(a)) and volatility (Panel(b)). This figure explores various combinations of the choice
with regard to the forecasting horizon (H = 1, 7 and 30 days) and rolling-window length (w = 180,
365 and 540 days). A VAR(1) model for price and a VAR(2) model for volatility are constantly
applied. The blue solid lines refer to the spillover indexes calculated from Diebold and Yilmaz (2012).
The grey band corresponds to a interval between the minimum and maximum values of the spillover
index calculated from Diebold and Yilmaz (2009) based on all possible orderings.
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