MACQUARIE UNIVERSITY

HIGHER DEGREE THESIS (PhD) AUTHOR'S CONSENT

This is to certify that I, ... Hawlader. being a candidate for the degree of Doctor of Philosophy am aware of the policy of the University relating to the retention and use of higher degree theses as contained in the University's PhD Regulations generally, and in particular, Regulation 21(2).

In the light of this policy and the provisions of the above Regulations, I agree to allow a copy of my thesis to be deposited in the University Library for consultation, loan and photocopying forthwith.

P.J. Lonegha

Signature of Witness

Signature of Candidate

The Academic Senate on 28 November 1989 resolved that the candidate had satisfied requirements for admission to this degree. This thesis represents a major part of the prescribed program of study.

QE 471 .15 .525 D033634 -H39 copy1 • . • °.... ÷ . n de service Angeles A :

PETROLOGY, DIAGENESIS, AND RESERVOIR POTENTIAL OF THE SURAT BASIN SANDSTONES WITH SPECIAL REFERENCE TO HYDROCARBON EXPLORATION

.

by

Hanif M. Hawlader, M.Sc (Hons) (Moscow) School of Earth Sciences Macquarie University

A thesis submitted to Macquarie University in fulfilment of the requirements for the degree of Doctor of Philosophy.

CERTIFICATE OF ORIGINALITY

I hereby certify that the work in this thesis is original, except where acknowledged in the customary manner, and has not been submitted for a higher degree to any other University or Institution.

.

H. M. Hawlader H. M. Hawlader March, 1989.

CONTENTS

•

		Page
ABSTRAC	r .	xviii
ACKNOWL	EDGEMENTS	xxi
CHAPTER	1 INTRODUCTION	1
	OBJECTIVES AND METHODOLOGY	2
	GEOLOGIC SETTING	7
	STRATIGRAPHY	8
	PETROLEUM EXPLORATION HISTORY	8
	HYDROCARBON OCCURRENCE	10
	REFERENCES	11
CHAPTER	2 PETROLOGY AND PROVENANCE OF THE SURAT BASIN SANDSTONES	14
	ABSTRACT	15
	INTRODUCTION	15
	FACTORS AFFECTING SANDSTONE COMPOSITION	16
	The effect of depositional environment	17
	Dagenetic alterations	18
	GRAINSIZE - COMPOSITION RELATIONSHIPS AND THE POINT- COUNTING METHOD	19
	DETRITAL GRAIN-TYPES	20
	The types of rock-fragments	24
	The types of feldspar	27
	SEDIMENT COMPOSITION AND PROVENANCE	33
	Existing concepts on sediment provenance in the Surat Basin	33
	Mineralogy and classification of the Surat Basin sandstones	38
	Provenance fingerprints from framework-grain composition	38

ii

	Evidence from facies relationships	47
	Possible sources of the volcanic rock-fragments in the quartzose facies	50
	Upsequence and lateral petrographic trends	55
	SEDIMENTARY AND PETROLOGIC CYCLES WITH RESPECT TO PROVENANCE	59
	DISCUSSION	63
	REFERENCES	67
CHAPTER	3 DIAGNESIS AND THE GEOLOGIC EVOLUTION OF POROSITY AND PERMEABILITY OF THE SURAT BASIN SANDSTONES	71
	ABSTRACT	72
	INTRODUCTION	73
	FACTORS AFFECTING THE GEOLOGIC EVOLUTION OF POROSITY	76
	Burial depth	76
	Temperature	79
	Geologic age	82
	Depositional environment	83
	Detrital mineralogy	84
	Sediment texture	84
	THE EFFECT OF TEMPERATURE ON RESERVOIR QUALITY: AN ALTERNATIVE APPROACH	86
	DIAGENETIC PROCESSES	92
	The relative importance of compaction and cementation	92
	Dissolution and cementation	98
	DIAGENETIC MINERALS	99
	Silica cement	103

	Page
Clay minerals	110
Kaolinite	110
The mode of fluid flow and crystallographic habits of kaolinite	111
Smectite	115
Chlorite	117
Zeolites	123
TYPES OF POROSITY	123
Identification of secondary porosity	128
Microporosity	131
An empirical algorithm to estimate microporosity	132
CORE POROSITY AND THIN-SECTION POROSITY RELATIONSHIPS	135
POROSITY - PERMEABILITY RELATIONSHIPS	137
SECONDARY POROSITY: IMPORTANCE AND POSSIBLE MECHANISMS OF FORMATION	
Importance of secondary porosity in the Surat Basin succession	140
Secondary porosity in other basins	147
Mechanisms of secondary porosity development	147
Secondary porosity development controlled by burial depth in the Surat Basin	149
The role of kerogen type on levels of thermal maturity	151
The effect of kerogen type on secondary porosity development	156
The role of meteoric flushing	158
PARAGENETIC SEQUENCE	161
CONCLUSIONS	161
REFERENCES	163

٠

.

iii

CHAPTER	4	RESERVOIR PROPERTIES OF SOME SURAT BASIN SANDSTONES AS A FUNCTION OF DIAGENETIC CLAY-MINERAL ASSEMBLAGE: IMPLICATIONS FOR HYDROCARBON EXPLORATION AND EXPLOITATION	171
	ABST	RACT	172
	INTRO	DUCTION	172
		ENETIC CLAYS AND POROSITY – PERMEABILITY TIONSHIPS	176
		CT OF DIAGENETIC CLAYS ON PORE-SIZE DISTRIBUTION OF TIC RESERVOIRS	186
	RELA	TIVE PERMEABILITY AND WATER SATURATION	193
	FORM	ATION DAMAGE AND RESERVOIR MANAGEMENT	197
		ONSE OF GEOPHYSICAL WELL LOGS AS A FUNCTION OF IGENIC CLAYS	198
	HEIGI	HT OF THE OIL-COLUMN	200
	DIAG	ENETIC-PERMEABILITY TRAPS	203
	TILT	ED OIL/WATER CONTACT	205
	CONCI	LUSIONS	205
	REFE	RENCES	207
CHAPTER	5	DIAGENESIS AND RESERVOIR POTENTIAL OF VOLCANOGENIC SANDSTONES - CRETACEOUS OF THE SURAT BASIN	210
	ABSTI	RACT	211
	INTRO	DUCTION	211
	AUTH	IGENIC MINERALS	212
		ROLE OF TEMPERATURE AND/OR PORE-FLUID CHEMISTRY ON IGENIC MINERAL SPECIES	215
	POROS	SITY AND PERMEABILITY	218
		ANISMS OF SECONDARY POROSITY DEVELOPMENT: NCEPTUAL APPROACH	220
		EFFECT OF POROSITY TYPES ON PERMEABILITY AND OTHER OPHYSICAL PARAMETERS	223
	DISC	USSION	226
	REFE	RENCES	227

iv

Page

		Page	
CHAPTER	6 MULTIPLE LINEAR REGRESSION - A QUANTITATIVE APPROACH TO THE STUDY OF SANDSTONE POROSITY	230	
	INTRODUCTION	231	
	THE ILL-EFFECTS OF MULTICOLLINEARITY ON REGRESSION ANALYSIS	234	
	METHOD OF VARIABLE SELECTION	235	
	THE RELATIVE IMPORTANCE OF PREDICTOR VARIABLES	236	
	THE OUTCOME AND INTERPRETATION OF THE ANALYSIS	238	
	REFERENCES	242	
CHAPTER	7 FACTOR ANALYSIS OF PETROGRAPHIC AND PETROPHYSICAL DATA	245	
	INTRODUCTION	246	
	CHOICE OF VARIABLES AND DATA CONSIDERATIONS	248	
	MULTICOLLINEARITY AND ILL-CONDITIONED CORRELATION MATRIX	250 _.	
	AN OVERVIEW OF THE CORRELATION MATRIX AND THE METHOD OF FACTOR EXTRACTION	254	
	THE NUMBER OF IMPORTANT FACTORS	258	
	FACTOR ROTATION	261	
	THE GEOLOGICAL MEANING OF THE FACTORS	265	
	REFERENCES	266	
CHAPTER	8 A REVIEW OF THE HYDROCARBON POTENTIAL OF SOME SOURCE ROCKS WITH SPECIAL REFERENCE TO THE SURAT BASIN: IMPLICATIONS FOR PETROLEUM EXPLORATION	268	
	ABSTRACT	269	
	INTRODUCTION	269	
	THE TYPES OF ORGANIC MATTER AND THEIR HYDROCARBON GENERATION POTENTIAL	272	
	Oil potential of liptinite	272	
	Response of resinites and suberinites to thermal stress	279	

.

v

		Page
	Geochemical characteristics of oil derived from liptinite-rich source rocks	281
	Hydrocarbon potential of vitrinite and inertinite	282
	HYDROCARBON POTENTIAL OF COAL	285
	Type of hydrocarbons - oil or gas	286
	PRINCIPAL ZONE OF GAS FORMATION	288
	LIMITATIONS AND SHORTCOMINGS OF SOME COMMON PETROLOGIC/ORGANIC GEOCHEMICAL PARAMETERS	290
	Use of Ro as a maturation indicator - a reappraisal	291
	Elemental composition	291
	Laboratory pyrolysis of source rocks	292
	HYDROCARBON GENERATION FROM A MULTICOMPONENT SYSTEM	293
	BOUNDARIES OF THE OIL WINDOW	295
	POTENTIAL SOURCE ROCKS OF THE SURAT BASIN HYDROCARBONS	295
	Macerals of the Evergreen Formation	296
	Oil-prone source rocks of the Walloon Coal Measures	300
	DISCUSSION	301
	CONCLUSIONS	303
	REFERENCES	304
CHAPTER	9 COMPARATIVE HYDROCARBON GEOLOGY OF TWO MESOZOIC CIRCUM-PACIFIC FORELAND BASINS AS A FUNCTION OF SEDIMENT PROVENANCE: SURAT BASIN, EASTERN AUSTRALIA AND WESTERN CANADA BASIN	310
	ABSTRACT	311
	INTRODUCTION	312
	SURAT BASIN	313
	Geologic history	313
	Sediment composition, provenance, and depositional environments	318

vi

Page

٠

Page

•

Hydrocarbon reservoirs and source rocks	319
Cyclicity and global sea-level stand	321
Clay minerals	322
Hydrocarbon traps	323
WESTERN CANADA BASIN	323
Geologic history	326
Sediment composition and depositional environments	329
Provenance	334
Reservoir characteristics and hydrocarbon occurrence	337
Clay minerals	341
DISCUSSION	342
CONCLUSIONS	
REFERENCES	

٤

.

APPENDICES

	Page
Appendix 1.1. Thin-section point-count format for provenance and porosity characteristics of the Surat Basin sandstones.	353
Appendix 1.2. Operational thin-section criteria for discrimination between some lithic grain-types of intergradational petrographic character.	359
Appendix 1.3. Amounts of mono and polycrystalline quartz, volcanic, sedimentary and metamorphic rock-fragments in the Surat Basin sandstones.	383
Appendix 1.4. Amounts of alkali feldspar based on point-counting of stained thin-sections.	393
Appendix 1.5. Petrographic modal analyses and porosity- permeability data.	395
Appendix 1.6. Electron microprobe analyses of zoned and twinned plagioclase feldspars.	410
Appendix 1.7. Electron microprobe analyses of untwinned altered feldspars.	415
Appendix 1.8.1. Detailed petrographic modal anlyses data.	421
Appendix 1.8.2. Detailed mica and heavy mineral content.	431
Appendic 1.8.3. Total volcanic component of the Surat Basin sandstones.	442
Appendix 1.9. Detailed thin-section porosity categories.	447
Appendix 1.10.1. Petrographic modal analyses of the Surat Basin sandstones recalculated to QFR and LvLsLm components.	462
Appendix 1.10.2. QFR triangular plots of sandstones in different formations in the Surat Basin.	472
Appendix 1.11. Methodology employed in the report.	485
Appendix 1.12. Upsequence and lateral petrographic trends in some Surat Basin sandstones.	490
Appendix 1.13. Petrographic correlation charts through GSQ stratigraphic wells based on detrital megaquartz content (Appendix 1.13.1), total volcanic content (Appendix 1.13.2), and detrital megaquartz and total volcanic content together (Appendix 1.13.3).	In back
Appendix 1.14. Reconnaissance palaeocurrent data from surface outcrops of some Surat Basin formations.	497

	Page
Appendix 2.1. Electron microprobe analyses of cockscomb skeletal feldspars.	499
Appendix 2.2. Energy dispersiver X-ray (EDX) diffractograms of some authigenic mineral species.	502
Appendix 2.3. X-ray diffractograms of less than 2 um fractions of some selected samples of the Surat Basin sandstones.	508
Appendix 2.4. Electron microprobe analyses of authigenic zeolites.	519
Appendix 2.5.1. Hisogram of secondary porosity index (SPI) distribution in the Surat Basin sandstones.	524
Appendix 2.5.2. A west-east cross-section of the Surat Basin showing the principal zones of secondary porosity development.	526
Appendix 2.6. Electron microprobe analyses of authigenic kaolinite.	528
Appendix 2.7. Core porosity - permeability relationships of different formations.	534
Appendix 2.8. Vitrinite reflectance - depth relationship in the Surat Basin.	541
Appendix 3.1. Glossary of text mnemonics and mathematical symbols used in Chapter 4.	547
Appendix 4.1. Correlation matrix and relevant multiple regression statistics for different formations and subset of samples.	550
Appendix 5.1. Correlation matrix, anti-image correlation (AIC) matrix, unrotated and rotated varimax and oblimin factor pattern/structure matrices of different formations and subset of samples.	560

.

Appendices 6 - 12

.

. . ._

In supplement

	Page
Figure 1.1. Location (A) and major structural elements (B) of the Surat Basin.	3
Figure 1.2. Generalised stratigraphic column and the distribution of hydrocarbons and aquifers in the Surat Basin.	9
Figure 2.1. Thin-section photomicrographs showing the composition and detrital grain-types of some Surat Basin sandstones.	25
Figure 2.2. Schematic diagrams showing a single-cycle evolution of a foreland basin and the resulting basin-fill pattern.	36
Figure 2.3. Average QFR detrital composition of the Surat Basin sandstones on a formation basis.	39
Figure 2.4A-C. Means and one standard deviation of the Lower Jurassic (A), Middle and Upper Jurassic (B), and Lower Cretaceous sandstones (C) of the Surat Basin.	40
Figure 2.5A. Average rock-fragment composition of the Surat Basin sandstones on a %LvLsLm plot.	43
Figure 2.5B-C. Means and envelopes of one standard deviation of Surat Basin sandstones on %LvLsLm plot.	44
Figure 2.6. Time-space diagram of the Surat and Maryborough Basins (section AA' in Figure 9.1) showing the distribution of preserved petrofacies and lacunae.	48
Figure 2.7. Generalized stratigraphy of the Eromanga and Surat Basins showing the distribution of different petrofacies and occurrence of hydrocarbons.	49
Figure 2.8. Schematic time-space cross-section (B) of a retro-arc foreland basin (A) showing the distribution of gross petrofacies and sediment-transport directions within a single petrologic cycle.	56
Figure 2.9. Stratigraphic distribution of mean and one standard deviation of the detrital quartz content (%QFR) for each formation in the Surat Basin succession.	60
Figure 2.10. Average K-feldspar to total feldspar (K/Ft), and common (plutonic) quartz to total megaquartz (Qc/Q) ratios in sandstones of each formation of the Surat Basin succession.	61
Figure 2.11. Stratigraphic distribution of the mean and one standard deviation of the volcanic rock-fragment content (Lv, as %LvLsLm) (A), and total volcanic component, Lvt (B), in the Surat Basin sandstones.	62

	Page
Figure 2.12. Geologic setting of the Surat-Eromanga Basins with interpreted areas of sediment input.	64
Figure 2.13. Speculative Jurassic-Cretaceous palaeogeographies of eastern Australia.	65
Figure 3.1. A general classification of diagenetic processes.	74
Figure 3.2. Distribution of overburden pressure as a function of pore-fluid pressure and grain-to-grain pressure.	75
Figure 3.3. Core porosity - depth relationship of the Surat Basin sandstones (all formations) superimposed on vitrinite reflectance.	77
Figure 3. 4. Depth - porosity relationship of sandstones with different mineralogic compositions.	80
Figure 3. 5. Thin-section porosity as a function of detrital quartz content in the Hutton Sandstone.	85
Figure 3. 6. Relationship between the occurrence of secondary dissolution porosity and grainsize of the Surat Basin sandstones .	87
Figure 3.7. Relationship between geothermal gradient and sandstone porosity.	89
Figure 3.8. Schematic diagram showing the geologic evolution of porosity in sandstones with contrasting detrital composition.	91
Figure 3. 9. Thin-section photomicrographs illustrating ductile deformation of soft framework grains.	93
Figure 3.10. Plot of minus-cement porosity against total diagenetic cement of the Surat Basin sandstones (all formations).	95
Figure 3.11. Plot of minus-cement porosity against total diagenetic cement for the Evergreen Formation and Hutton Sandstone.	96
Figure 3.12. Thin-section and SEM photomicrographs showing varieties of skeletal feldspar (A-D) and carbonate cement (E-G).	100
Figure 3.13. Thin-section and SEM photomicrographs illustrating various aspects of silica cementation.	105
Figure 3. 14. Thin-section and SEM photomicrographs of different types of authigenic kaolinite.	112
Figure 3. 15. X-ray diffractograms of authigenic nontronite.	116

•

xi

	raye
Figure 3. 16. Thin-section and SEM photomicrographs of authigenic nontronite and chlorite.	118
Figure 3. 17. SEM photomicrographs illustrating various aspects of authigenic smectitle (montmorillonite).	120
Figure 3.18. A genetic classification of porosity types in sandstones.	125
Figure 3. 19. Thin-section photomicrographs showing different genetic pore-types.	126
Figure 3.20. SEM photomicrographs showing geometric V-shaped notch- and groove-like features on quartz overgrowth surfaces.	129
Figure 3. 21. Types of porosity in the Hutton Sandstone and Griman Creek Formation superimposed on the QFR compositional triangle.	133
Figure 3. 22. Plot of core porosity against thin-section porosity of the Surat Basin sandstones.	136
Figure 3.23. Plot of measured core porosity against permeability of the Surat Basin sandstones.	138
Figure 3. 24. Plot of measured thin-section porosity against permeability of the Surat Basin sandstones.	139
Figure 3. 25. A log-log plot of thin-section porosity and permeability of the Surat Basin sandstones.	141
Figure 3. 26. Thin-section porosity - depth relationship of the Surat Basin sandstones.	142
Figure 3. 27. Plot of secondary dissolution porosity against depth of the Surat Basin sandstones superimposed on vitrinite reflectance.	143
Figure 3. 28. Plot of secondary porosity index (SPI) of the Surat Basin sandstones against depth.	144
Figure 3.29. Means (asterisks) and bars defined by plus and minus one standard deviation of secondary porosity in different stratigraphic units of the Surat Basin succession.	145
Figure 3.30. Stratigraphic distribution of secondary porosity index (SPI) in the Surat Basin successsion.	146
Figure 3. 31. Schematic diagram showing the geologic evolution of sandstone porosity.	148
Figure 3. 32. Schematic diagram showing the zone of maximum secondary porosity development at depth as a function of carboxylic acid concentration.	150

xii

Page

xiii

Page

Figu	re 3	3.	33. P	ermeability	y - dept	h relation	ship of	the	Surat	152
]	Basir	n	sandston	es superimp	posed on	vitrinite	reflect	ance.		

- Figure 3. 34. Schematic diagram showing the general composition 154 and evolutionary pathways of different types of kerogen as a function of thermal maturation with the concomitant liberation of various functional groups prior to hydrocarbon generation.
- Figure 3. 35. Amounts of oxygen engaged in various functional 155 groups in different types of immature kerogens.
- Figure 3.36. Maceral composition of the Evergreen Formation, 157 Surat Basin, and of Permian coals of the underlying Bowen Basin.
- Figure 3.37. Relative yield of gases from different types of 159 organic matter.
- Figure 3.38. Inferred paragenetic sequence of diagenetic events 160 in the Surat Basin sandstones.
- Figure 4.1. Stratigraphic distribution of major diagenetic 174 minerals in the Surat Basin sandstones.
- Figure 4.2. Schematic diagram illustrating the modes of 175 occurrence of authigenic and allogenic clays.
- Figure 4.3. SEM photomicrographs showing the different 177 morphology and geometry of distribution of diagenetic clayminerals.
- Figure 4.4. Porosity-permeability plots of some Hutton Sandstone 181 samples containing different amounts of authigenic kaolinite.
- Figure 4.5. SEM photomicrographs showing microporosity within 182 different species of diagenetic minerals.
- Figure 4.6. Porosity-permeability plots of two formations with 185 comparable texture but characterized by different species of diagenetic minerals.
- Figure 4.7. SEM photomicrographs of two sandstones of very 187 similar texture but having different type and morphology of diagenetic clays.
- Figure 4.8. Oil-water relative permeability curves of three 189 sandstones of comparable texture.
- Figure 4.9. Relationship between specific surface area and 190 cation-excange capacity (CEC).
- Figure 4.10. SEM photomicrogaphs showing the abundance of 191 micropores due to the presence of ubiquitous diagenetic clays.

•
17119
ALV.

•

•

Figure 4.11. Schematic diagram showing the importance of interstitial diagenetic clays on the length of the oil-column in two adjacent structural traps (A and B).	202
Figure 5.1. Framework grain composition of the Lower Cretaceous sandstones of the Surat Basin.	213
Figure 5.2. Diagenetic mineral assemblages and porosity- permeability of the Lower Cretaceous sandstones of the Surat Basin.	214
Figure 5.3. Thin-section and SEM photomicrographs illustrating the morphology of diagenetic minerals and secondary dissolution porosity in some Lower Cretaceous sandstones of the Surat Basin.	216
Figure 5.4. Plot of thin-section porosity against depth of the Lower Cretaceous sandstones, Surat Basin.	219
Figure 5.5. Plot of secondary porosity index (SPI) against depth, Lower Cretaceous sandstones, Surat Basin.	221
Figure 5.6. Ternary plot of porosity types of the Lower Cretaceous sdandstones of the Surat Basin.	225
Figure 7.1. Plot of principal components (PC)-extracted eigen values (scree plot).	259
Figure 7. 2. Plots of varimax rotated factors.	262
Figure 7. 3. Plots of oblimin rotated factors.	263
Figure 8.1. Location (A) and major structural elements (B) of the Surat Basin.	270
Figure 8.2. Generalised stratigraphic column of the Surat and Bowen Basins showing the occurrence of hydrocarbons and possible source rocks.	271
Figure 8.3. General scheme of kerogen evolution in the van Krevlen diagram.	274
Figure 8.4. Elemental composition of selected plant and coal materials in the van Krevlen diagram.	275
Figure 8.5. Diagram showing the evolution of the land-plants.	276
Figure 8.6. Schematic diagram showing the different stages of organic maturation and generation of hydrocarbons.	287
Figure 8.7. Ternary diagram showing the different types of terrestrially-derived organic matter and their thresholds of liquid hydrocarbon generation	294

	Page
Figure 8.8. Basin-wide vitrinite reflectance of the Evergreen Formation.	297
Figure 8.9. Maceral composition of the Evergreen Formation.	298
Figure 8.10. Type of organic matter in the Walloon coals based on Rock-Eval pyrolysis plotted on a modified van Krevlen diagram.	298
Figure 9.1. Regional setting (A) and major structural elements (B) of the Surat Basin.	314
Figure 9.2. Generalised stratigraphic column of the Surat Basin showing the detrital mineralogy, depositional environments, and hydrocarbon source and reservoir potentials.	316
Figure 9.3. SW-NE time-space diagram of the Surat and Maryborough Basins showing the distribution of preserved lithofacies and of lacunae.	317
Figure 9.4. Surat Basin, Eastern Australia (A), and Western Canada Basin (B), drawn at same scale for comparison.	324
Figure 9.5. Schematic transverse cross-sections of the Surat and Western Canada Basins, drawn at same scale for comparison.	325
Figure 9.6. Schematic west - east cross-section showing the tectonic setting of the Western Canada Basin during the Cretaceous.	327
Figure 9.7. Generalised stratigraphic correlation chart of the Lower Cretaceous succession of the Western Canada Basin showing the distribution of major petrofacies and hydrocarbon occurrence.	328
Figure 9.8. Stratigraphic reference areas for Figure 9.7.	331
Figure 9.9. Palaeotectonic setting of North America during the Late Jurassic - Cretaceous time showing the detrital composition of the sandstone suites in QFL and QmFLt diagrams.	333
Figure 9.10. Schematic cross-section of a foreland basin showing the distribution of organic matter type across the foreland and epicratonic basins during a relatively high water table.	346

.

xv

Table 1.1. Name and location of the GSQ stratigraphic test wells with sample distribution on formation basis.	4
Table 2.1. A classification scheme of petrographic grain-types of the Jurassic - Lower Cretaceous snadstones of the Surat Basin.	21
Table 2.2. Average detrital quartz percentage and K-feldspar to total feldspar ratio of some Surat Basin sandstones based on a count of 600 points in each thin-section.	28
Table 2.3. Means of modal analyses (whole-rock %) of the Surat Basin sandstones based on thin-section point-counting.	30
Table 2.4. Mean and one standard deviation of \$QFL and \$LvLsLm of the Surat Basin sandstones based on a consistent count of 1000 points in each thin-section.	51
Table 3.1. Correlation matrix, its 1-tailed significance, multiple correlation coefficient (R), R ² and other relevant statistics of the multiple regression analysis on the Hutton Sandstone with microporosity as the dependent variable.	134
Table 4.1. Cation-exchange capacity and specific surface area of some common diagenetic minerals.	196 [.]
Table 4.2. Relationship between permeability, pore-throat sorting (PTS) and the minimum height of the oil-column relative to free-water level (FWL), and trap-relief of some actual hydrocarbon reservoirs.	204
Table 6.1. Factors controlling porosity in clastic reservoirs.	233
Table 6.2. Correlation matrix, 1-tailed significance of correlation coefficients, and relevant statistics of the multiple regression analysis. Data reperent all formations.	237
Table 6.3. Correlation matrix, 1-tailed significance of correlation coefficients, and relevant statistics of the multiple regression analysis. Data repersent samples with less than 5% cement.	239
Table 6.4. Correlation matrix, 1-tailed significance of correlation coefficients, and relevant statistics of the multiple regression analysis. Data reperent samples with \$50% detrital quartz.	240
Table 7.1. Correlation matrix, KMO MSA, Bartlett's test of sphericity and 1- tailed significance of correlation matrix. Data represent all formations.	249
Table 7.2. Anti-image correlation matrix and the reproduced correlation matrix. Data represent all formations.	251

Page

Ρ	ao	e

Table 7.3.	Principal components (PC)-extracted	eigen values,	253
factor	(loading) matrix and initial and final	communalities.	
Data re	present all formations.		

- Table 7.4. Varimax rotated factor matrix and oblimin rotated255factor pattern and structure matrices (all formations).
- Table 8.1. A general classification of sedimentary organic 278 matter.
- Table 8.2. Main stages of the evolution of sedimentary organic280matter.
- Table9.1.Detrital composition of the Lower Cretaceous336sandstonesof the Foothills and the Plains, Western CanadaBasin.
- Table 9.2. Comparison of average porosity and permeability of 339 Lower Cretacoues sandstones in the Deep Basin and the Peace River/Alberta Shelf area.
- Table 9.3. Occurrence of hydrocarbon in the Athabasca Tar Sands 340 (McMurry Formation and its equivalents) as a function of sandstone mineralogy, texture, clay minerals and depositional environments.
- Table 9.4. Analogous morphotectonic elements and comparative343features of the Surat and Western Canada Basins.

PETROLOGY, DIAGENESIS, AND RESERVOIR POTENTIAL OF THE SURAT BASIN SANDSTONES WITH SPECIAL REFERENCE TO HYDROCARBON EXPLORATION

ABSTRACT

The detrital composition of the Jurassic and Lower Cretaceous Surat Basin sandstones comprises a wide spectrum ranging from quartzarenite through sublitharenite and feldsarenite/lithic feldsarenite to feldspathic litharenite. The sandstones are subdivided into two petrofacies: quartzose having more than 50% QFR detrital quartz, and labile having less than 50% detrital quartz. The results of petrographic modal analyses illustrate the characteristically dual-provenance basin-fill pattern of the succession, namely, an andesitic magmatic arc to the east-northeast and a stable craton consisting of plutono-metamorphic terrains and sedimentary and silicic volcanic rocks in older basins and platforms in the flanking cratonic regions. The labile sandstones are derived from the magmatic arc which intermittently shed volcanogenic detritus into the subsiding foreland basin. Conversely, the quartzose facies received predominantly cratonic input (deposited during waning phases of magmatism in the arc and concomitant gentle rise of the foreland) with some additional sediments from the arc which presumably was dissected to varying degrees during these periods of relative tectonic quiescence. Sandstones of the whole Mesozoic succession in the Surat Basin comprise several petrologic cycles each of which begins with a craton-derived quartzose facies and ends with an arcderived quartz-poor labile facies. These cycles reflect the episodic tectonic activity of the arc-craton couplet during basin evolution.

A study of the geologic evolution of sandstone reservoir characteristics suggests that compaction and cementation have both reduced primary porosity and permeability to an extent that is dependent on detrital composition and texture. On the other hand, subsequent dissolution of framework grains and cement have created secondary porosity that is present in varying proportions in sandstones of all mineralogic compositions. Two mechanisms are thought to have been especially important in the development of secondary dissolution porosity in the Surat Basin sandstones: firstly, selective framework-grain and interstitial cement dissolution caused by organic maturation products emanating from intercalated mudrocks prior to the onset of hydrocarbon generation; and secondly, meteoric flushing of the basin consequent upon the inception of its artesian character (i.e., as a geographic component of the Great Artesian Basin) in the Tertiary.

Diagenetic clay minerals are present in all stratigraphic units, either as individual species or in preferred species associations, and invariably are found to have reduced porosity and permeability. Their effects on reservoir characteristics are a function of the abundance, mineralogy, crystallographic habits, and geometry of distribution of the clay within the reservoir. Some of the clay minerals are fresh-waterand/or acid-sensitive whereas others are prone to effect a mechanical migration-of-fines problem due to pressure-differential between the formation and the well during drilling, testing and hydrocarbon production. Furthermore, the presence of interstitial clays, whether detrital or authigenic, has drastically increased the proportion of microporosty while at the same time reduced effective (macro-) porosity - information about which phenomena is crucial for reliable estimation of hydrocarbon reserves.

The diagenetic clay minerals in the Surat Basin are found to follow certain stratigraphic and geographic trends: the relatively quartzose sandstones contain mainly kaolinite with some minor smectite, illitesmectite and chlorite whereas formations rich in volcanogenic detritus are characterised by smectite, mixed-layer smectite-illite, and minor kaolinite.

quantitative study employing multiple regression A analysis indicates that the present-day porosity of the Surat Basin sandstones is primarily a function of five variables; in order of decreasing importance they are the diagenetic cement, detrital mineralogy, geologic age, burial depth and depositional environments. The present study also confirmed in a quantitative manner the notion and observations of various workers that: in a retro-arc foreland basin, hydrocarbon reservoirs occur preferentially in craton-derived mineralogically mature quartzose sandstones; the and conversely, petroleum source-rocks preferentially comprise the arc-derived finer-grained lithic/labile volcanogenic rocks that are prone to be `tight' because of their greater physical and chemical reactivities. A literature survey of the Mesozoic Western Canada Basin indicates a similar pattern of association suggesting that the occurrence of hydrocarbons in retro-arc foreland basins probably follows this general pattern world-wide.

xx

ACKNOWLEDGEMENTS

I wish to thank the successive Heads of the School of Earth Sciences, Professor Blair Hostetler and Assoc. Professor Chris Powell for provision of the facilities of the School for this research. The cooperation of the Geological Survey of Queensland (GSQ) in providing me with core materials from their stratigraphic test wells is greatfully acknowledged. I express my sincere thanks to John White and Brian Mackay of the Bureau of Mineral Resources (BMR) staff for access to their facilities and to Paul Duff and Stephen Clarke of the BMR Petrophysical Laboratory at Fyshwick, Canberra, for helping me with the porositypermeability measurements. I am grateful to Jim Conaghan of Roma and June Beattie of Brisbane who provided hospitality during an orientation field trip in the northern Surat Basin, the Clarence-Moreton Basin, and during sampling of core materials in the GSQ core library at Zillmere, Brisbane.

The late Roland Beaugeais made high-quality thin-sections for petrography and microprobing. Neils Munksgaard assisted with the electron microprobing analyses, and Sue Doyle of the School of Biology helped with the Scanning Electron Microscopy. Assoc. Prof. Ron Vernon allowed me access to his thin-section photographic equipment. Alan Ferguson and Dr. Ervin Slansky of the Geological Survey of NSW assisted with XRD analyses of clay minerals. Dr. Jock Keene of the Dept. of Geology and Geophysics of the University of Sydney helped with EDX analyses. To all these people I express my thanks. Tim Watson and Olga Zackroczymski and other technical and clerical staff of the School of Earth Sciences provided various support, and the staff of the Macquarie University Library, especially the inter-library loans section helped in aquiring numerous publications for my research. Assoc. Prof. John Veevers is thanked for stimulating discussions.

xxi

Finally I wish to record me gratitude to Dr. Patrick Conaghan who suggested and supervised the project, for his patient guidance all through my candidature, for meticulously teaching me the petrographic skills, for providing logistic support in various stages of the project and for his guidance during a six-week-long orientation field trip in the northern Surat Basin, southern Bowen Basin, and the Clarence-Moreton Basin in January and February, 1986, and assistance with core inspection and sample collection at the GSQ core library at Zillmere, Brisbane, during this same period.

The financial assistance of Macquarie University in the form of a Postgraduate Researh Award and associated grants-in-aid is greatfully acknowledged.