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PETROLOGY, DIAGENESIS, AND RESERVOIR POTENTIAL OF THE SURAT BASIN

SANDSTONES WITH SPECIAL REFERENCE TO HYDROCARBON EXPLORATION

ABSTRACT

The detrital composition of the Jurassic and Lower Cretaceous Surat 

Basin sandstones comprises a wide spectrum ranging from quartzarenite 

through sublitharenite and feldsarenite/lithic feldsarenite to feldspathic 

litharenite. The sandstones are subdivided into two petrofacies: quartzose 

having more than 50% QFR detrital quartz, and labile having less than 50% 

detrital quartz. The results of petrographic modal analyses illustrate the 

characteristically dual-provenance basin-fill pattern of the succession, 

namely, an andesitic magmatic arc to the east-northeast and a stable craton 

consisting of plutono-metamorphic terrains and sedimentary and silicic 

volcanic rocks in older basins and platforms in the flanking cratonic 

regions. The labile sandstones are derived from the magmatic arc which 

intermittently shed volcanogenic detritus into the subsiding foreland 

basin. Conversely, the quartzose facies received predominantly cratonic 

input (deposited during waning phases of magmatism in the arc and 

concomitant gentle rise of the foreland) with some additional sediments 

from the arc which presumably was dissected to varying degrees during these 

periods of relative tectonic quiescence. Sandstones of the whole Mesozoic 

succession in the Surat Basin comprise several petrologic cycles each of 

which begins with a craton-derived quartzose facies and ends with an arc- 

derived quartz-poor labile facies. These cycles reflect the episodic 

tectonic activity of the arc-craton couplet during basin evolution.

A study of the geologic evolution of sandstone reservoir 

characteristics suggests that compaction and cementation have both reduced 

primary porosity and permeability to an extent that is dependent on 

detrital composition and texture. On the other hand, subsequent
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dissolution of framework grains and cement have created secondary porosity 

that is present in varying proportions in sandstones of all mineralogic 

compositions. Two mechanisms are thought to have been especially important 

in the development of secondary dissolution porosity in the Surat Basin 

sandstones: firstly, selective framework-grain and interstitial cement 

dissolution caused by organic maturation products emanating from 

intercalated mudrocks prior to the onset of hydrocarbon generation; and 

secondly, meteoric flushing of the basin consequent upon the inception of 

its artesian character (i.e., as a geographic component of the Great 

Artesian Basin) in the Tertiary.

Diagenetic clay minerals are present in all stratigraphic units, 

either as individual species or in preferred species associations, and 

invariably are found to have reduced porosity and permeability. Their 

effects on reservoir characteristics are a function of the abundance, 

mineralogy, crystallographic habits, and geometry of distribution of the 

clay within the reservoir. Some of the clay minerals are fresh-water- 

and/or acid-sensitive whereas others are prone to effect a mechanical 

migration-of-fines problem due to pressure-differential between the 

formation and the well during drilling, testing and hydrocarbon production. 

Furthermore, the presence of interstitial clays, whether detrital or 

authigenic, has drastically increased the proportion of microporosty while 

at the same time reduced effective (macro-) porosity - information about 

which phenomena is crucial for reliable estimation of hydrocarbon reserves.

The diagenetic clay minerals in the Surat Basin are found to follow 

certain stratigraphic and geographic trends: the relatively quartzose 

sandstones contain mainly kaolinite with some minor smectite, illite- 

smectite and chlorite whereas formations rich in volcanogenic detritus are 

characterised by smectite, mixed-layer smectite-illite, and minor 

kaolinite.
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A quantitative study employing multiple regression analysis 

indicates that the present-day porosity of the Surat Basin sandstones is 

primarily a function of five variables; in order of decreasing importance 

they are the diagenetic cement, detrital mineralogy, geologic age, burial 

depth and depositional environments. The present study also confirmed in a 

quantitative manner the notion and observations of various workers that: in 

a retro-arc foreland basin, hydrocarbon reservoirs occur preferentially in 

the craton-derived mineralogically mature quartzose sandstones; and 

conversely, petroleum source-rocks preferentially comprise the arc-derived 

finer-grained lithic/labile volcanogenic rocks that are prone to be 'tight' 

because of their greater physical and chemical reactivities. A literature 

survey of the Mesozoic Western Canada Basin indicates a similar pattern of 

association suggesting that the occurrence of hydrocarbons in retro-arc 

foreland basins probably follows this general pattern world-wide.
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