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Abstract

The record of what occurred during a surgical procedure is typically represented in the
electronic health record as a combination of unstructured text blocks (the operative report)
with limited associated structured data. Billing codes fail to account for significant variance
in procedures, thus although much of this information is valuable for real-time patient safety
interventions, it is infrequently available for automated analysis.

The selection of an appropriate ontological model provides a good foundation for
effective information extraction and knowledge representation, allowing high quality inference
and knowledge based concept identification. Through gap analysis and statistical analysis of
the content of a corpus of operative notes, SNOMED CT has been selected as the most
appropriate knowledge model for automated information extraction in this domain.

To successfully apply statistical natural language processing (NLP) methods devel-
oped on one corpus to another type of text, one must assume that there is a sufficient degree
of similarity between the texts, both syntactically and semantically. From this, a determina-
tion is drawn as to the applicability of existing clinical NLP tools to the operative report.
General clinical text was found to be not representative of the writing observed in operative
reports.

From this theoretical foundation, text classifiers were developed to demonstrate the
feasibility of automatically encoding a subset of SNOMED CT terms in operative reports.
Classification performance was high for detection of surgical specialty and open or closed
procedures (f-score 0.965, 0.931 respectively); however, the detection of laterality was more
reliable through heuristic methods.
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Definitions and Abbreviations

ANZASM Australian and New Zealand Audit of Surgical Mortality

AE Adverse Event: An injury related to medical management, in contrast
to complications of disease. Medical management includes all aspects
of care, including diagnosis and treatment, failure to diagnose or treat,
and the systems and equipment used to deliver care. Adverse events
may be preventable or non-preventable [1].

CCAM Classification Commune des Actes Médicaux

CEC Clinical Excellence Commission

CHASM Collaborating Hospitals’ Audit of Surgical Mortality

CPT Current Procedural Terminology (USA)

DRG Diagnosis-Related Group

EHR Electronic Health Record

GASP GALEN model for Surgical Procedures

GALEN Generalized Architecture for Languages, Encyclopedias and
Nomenclatures

GRAIL GALEN Representation and Integration Language

HIS Health Information System: any electronic system within the clini-
cal setting that is used for data generation, compilation, analysis and
synthesis, and communication and use [2]. This includes but is not
limited to electronic health records, incident management systems,
anaesthesia information management systems, clinical decision sup-
port systems, electronic ordering and prescription systems, billing and
administrative systems, laboratory systems and centralised purpose-
specific repositories such as disease or mortality registries.
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ICD International Classification of Diseases

ICPS International Classification for Patient Safety

IHTSDO International Health Terminology Standards Development
Organisation

IIMS Incident Information Management System

KL Kullback Leibler Divergence

MBS Medicare Benefit Schedule (Australia)

MUH Macquarie University Hospital

MUHOH Macquarie University Hospital Operative Notes corpus

NLP Natural Language Processing

NSW New South Wales (Australia)

OR Operating Room

OWL Web Ontology Language

Patient Safety In-
tervention

Any strategy that is implemented in order to improve patient safety –
examples include clinician education, policy implementation guideline
development, feedback of outcomes to healthcare providers, audits and
accountability measures.

Patient Safety
System

A subset of health information systems that are used for the purpose
of surveillance, prediction or improvement of patient safety outcomes.

RACS Royal Australasian College of Surgeons

RCT Randomised Controlled Trials

SNOMED CT Systematized Nomenclature Of MEDicine – Clinical Terms
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Surgical Notes /
Operative Reports

Reports written or dictated by surgeons at the completion of a surgical
procedure. These may be unstructured or semi-structured text blocks
and typically contain details of the procedure performed, observations
and outcomes.

Surgical Proce-
dure

Procedures that are used for diagnosis or treatment that involve inci-
sion, puncture, entry into a body cavity [3]. Excluding non-surgical in-
terventional procedures, which use ionising, electromagnetic or acous-
tic energy only.

SSI Surgical Site Infections

SVM Support Vector Machine

UMLS Unified Medical Language System

WHO World Health Organization
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1 Introduction

1.1 Background

Worldwide, it has been estimated that approximately 1 in 25 people undergo a surgical
procedure annually [4]. Estimates vary as to the rate of major surgical complications, but
even the most conservative range of 3-5% (for developed and developing nations respectively)
represents a significant public health concern [4].

In order to be able to reduce rates of all kinds of surgical complications, it is first
necessary to fully understand and be able to detect these events and the context in which
they took place, if only to have a meaningful baseline against which to measure effectiveness
of interventions. These monitoring and surveillance activities are inherently rooted in the
type and quality of data that is captured to describe procedures performed and the related
patient characteristics.

When compared to the practice of pharmacovigilance and medical device monitor-
ing, the surveillance of patient safety within surgical procedures is relatively immature. This
is partially the result of legislation and oversight, which is required to control the compet-
ing financial, intellectual property and patient safety interests of pharmaceutical product
manufacturers, and is therefore well established. There is limited parallel incentive in the
development of surgical procedures, and as a consequence safety monitoring tends to be at
the institution level rather than globally or federally mandated and coordinated.

There have been recent efforts by the World Health Organization (WHO) to remedi-
ate this issue and initiate a coordinated, harmonised effort for adverse event characterisation
(for both surgical and non-surgical events) through the International Classification for Pa-
tient Safety (ICPS) [5]. This endeavour was initiated at the 55th World Health Assembly held
in 2002; however, at the date of writing ICPS remains an incomplete classification, and as
such, has yet to be taken up by any member states [6].

In New South Wales (NSW), Australia, deaths that occur whilst a patient is under
the responsibility of a surgeon (in either the public or private healthcare system) must be
reported to the Collaborating Hospitals’ Audit of Surgical Mortality (CHASM)2 program as
a requirement of the continuing professional development program of the Royal Australasian
College of Surgeons (RACS). This is then collated at a regional level by the RACS Australian
and New Zealand Audit of Surgical Mortality (ANZASM) program.

Adverse events (AEs) (surgical or otherwise) not leading to death, occurring in the
NSW public hospital system, are reported to a state-wide Incident Information Management
System (IIMS), however there does not exist similar centralised all-encompassing AE report-
ing system for the private healthcare system. Section 20L of the Health Administration Act
1982 [7] defines a subset of incidents that must have a root cause analysis report submitted
directly to the Ministry of Health, however this comprises only the most severe and egregious
events (such as wrong patient/wrong site surgery). Many serious AEs, surgical or otherwise,
are thereby subject to very limited external monitoring practices, as seen in Figure 1 [7, 8, 9].

2Under the joint remit of the Clinical Excellence Commission (CEC) and Royal Australasian College of
Surgeons.
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Additionally, drug-related adverse events tend to be simpler to characterise. Drug
formulation, dosage, frequency, route of administration, cumulative dosage and concomitant
medications, in concert with general patient characteristics, are likely to be sufficient details
to fully describe at least the causative factors of a given event [10, 11]. It is noteworthy
that all of these elements are discrete variables, which makes them attractive for centralised
data comparison, automated processing and signal analysis. This allows even rare events to
be confidently detected and causality established by centralised data analyses, such as the
international reporting systems established at the Uppsala Monitoring Centre [12].

In contrast, the reality of surgical procedures is nuanced and variable, and this
is only partially captured by the categorical nature of modern clinical coding systems. In
practice, the same coded event may represent a variety of techniques, tools, approaches,
treatment rationales and/or patient risk categories. See, for example, MBS item code 38498
for a coronary artery bypass, which may be performed either via a median sternotomy or
other minimally invasive technique. This quite explicitly does not stipulate a specific surgical
approach, tools used, number and type of incisions etc. Each of these elements may be a
contributory factor in any adverse outcomes experienced.

Clinical systems are by their nature not well suited to being restricted to entirely
structured data – both the format and content of diagnostic judgements and clinical narrative
are diverse and unpredictable. The imposition of limitations on the ability of clinical personnel
to create unstructured narrative text will necessarily degrade the scope of data captured by
these systems. This will have a significant impact on the quality and completeness of record
keeping, to the point that it may interfere with patient safety, as future diagnostic and
therapeutic decisions will be based on an incomplete picture.

The unavoidable existence of clinically significant information in an unstructured
format has lead to the design of many surgical patient safety interventions and monitoring
systems resorting to expert manual record review. This is an expensive and time-consuming
undertaking, with results not available in anything close to real-time [13]. Refer, for example,
to the CHASM Surgical Case Form [14] that provides up to two whole pages to describe
the course to patient death, which is then submitted for as many as three rounds of manual
peer-review.

It is possible under certain circumstances to build patient safety interventions based
on structured data alone, which has obvious benefits for automated analysis and therefore
cost and timeliness of the overall system. This is particularly effective for the most commonly
occurring adverse outcomes such as surgical site infections (SSI), where tools built using only
coded data may even outperform manual review [15]. Avoiding the use of unstructured data
entirely, however, is not suited to all cases, as the diagnostic and anatomical rationale for
decisions is typically unavailable within structured data, which limits the generalisability of
results.

The primary goal of this project is thus to analyse the current practice of surgical
characterisation in a tertiary care private hospital in Sydney, Australia. This will be compared

3Note that the CHASM and IIMS procedures are wholly independent, and that “Surgical Deaths” and
“Adverse Events” do not represent mutually exclusive categories – thus an incident may fall into one, other
or both categories, potentially triggering multiple reports.
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to the state of the art, and strategies will be proposed to develop a more satisfactory practice
that will facilitate the development of effective, generalisable patient safety and monitoring
systems.

1.2 Problem statement

There is a gap in the current practice for representation of surgical procedures, where char-
acterisation by free text, together with billing codes (as is typical within EHR systems) is
insufficient for many types of automated clinical inference.

This ineffective representation is particularly impactful in the monitoring of patient
safety within surgical procedures. This is a highly manual task, which is mired in inefficiencies
such as double data entry and manual notifications and reporting. There are significant
efficiency gains that can be made by the automation of this process.

Some part of the data required for automation of patient safety monitoring is present
in surgical notes and theoretically can be detected by the application of natural language
processing, however this is not commonly or systematically implemented at the time of writ-
ing. To facilitate meaningful analysis, a target structure must be carefully chosen to capture
knowledge from the text in an orderly manner. This target structure must allow statistical
epidemiological comparison both between procedures, and at the sub-procedural level.

In addition, there are many concerns regarding the systematic evaluation of the
efficacy and safety of new surgical techniques. Randomised controlled trials (RCTs) in surgi-
cal innovation are the exception rather than the rule. Particularly for incremental changes,
it is likely that the evaluation will be extremely limited and be primarily comprised of un-
controlled, low-quality data in the form of case studies [16, 17, 18]. Setting aside the larger
issues of designing acceptable RCT protocols for surgical procedures, and the reluctance of
surgeons and patients to accept randomisation, the standardisation of surgical representa-
tion will streamline the comparison of complex techniques. Automation of this task will also
greatly enrich the available data for retrospective observational studies.

It is therefore valuable to explore existing ontological models as they apply to surgi-
cal notes and identify the best fit for extracting knowledge. This is expected to reap rewards
in the form of improved accuracy of text processing.

In addition to improving patient safety monitoring practices, mapping free text
notes to a structured data format allows for:

• Access to the notes in a database form, which speeds up processing and simplifies
analysis.

• More robust de-identification – as free-text notes have limitations for protection of
patient identity, thereby increasing availability for research.

• Availability of additional data for statistical research – this is especially relevant in
studies of comparative effectiveness of surgical procedures, as researchers have histori-
cally struggled to compare incremental changes and per-clinician preferences in surgical
technique. By unlocking details of what actually occurred during a surgical procedure
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at a far higher granularity than what is currently available, this will provide a clearer
basis for empirical guideline development.

• Information retrieval – patient charts may contain many hundreds of reports, and it is
not possible for clinicians to synthesise information in a timely fashion without some
assistance via automated categorisation.

• Machine learning for the purpose of predicting patient outcomes.

• Automated monitoring and surveillance of concepts which are typically not available
as part of the coded data.

• Quantification of variance between procedures at the clinician or group level for the
dual purposes of detection of fraudulent claims and improving quality and adherence
to guidelines.

1.3 Research gap

There are many ontological models that have been proposed to represent surgical procedures
for different purposes; however, there is no clear best candidate model to capture the detail
from operative reports that is required for monitoring and safety procedures.

A robust analysis of potential target ontological models that are in common usage
within clinical systems is required. From this, the most promising candidate target struc-
ture(s) for the purpose of characterising surgeries can be identified and modifications pro-
posed as necessary.

Likewise, although natural language processing (NLP) techniques have been applied
with success to the clinical domain for a number of purposes, there is limited available work
that has dealt specifically with surgical notes.

1.4 Aim

The overall objective of this research is to perform a thorough review of current encoding
systems and NLP in the surgical domain. This will be done in order to identify limitations
in currently available methods and tools for the purpose of performing automated encoding
of surgical notes. From this basis a strategy to achieve full automation will be proposed,
prioritisation of development activities and preliminary algorithm design will be undertaken
and evaluated as a proof of concept.

When selecting the appropriate target model, priority shall be given to tasks related
to patient safety and monitoring; however, the ideal model will be flexible and reusable for
many purposes.
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2 Characterisation of surgical procedures

Before making any judgement of the adequacy of surgical procedure characterisation within
the Macquarie University Hospital (MUH) surgical department, an understanding of what is
typical, achievable and desirable is required. This section therefore details current method-
ologies used to represent surgical procedures in clinical information systems. The first part of
the chapter describes the type of data that is collected, methods of collection and purposes
for which the data is accessed at MUH. This is followed by an analysis of the types of repre-
sentations commonly used both in Australia and globally, and then concludes with selection
of the desired method of knowledge representation.

2.1 The surgical data environment at Macquarie University Hos-
pital

The capacity of a given knowledge model to provide valuable structure to the information
present in a system is highly dependent upon the ability of the designers to anticipate the
tasks for which the knowledge will be accessed. A good understanding of the eventual targets
of these data allows the selection of a flexible, extensible template-oriented knowledge model,
which closely aligns with both user goals and the data present in the system [19].

Although the goals of this project are focused in the safety and quality domain, it
must be accepted that there are many diverse users within the hospital (and beyond) who
will benefit from accessing this surgical knowledge. Allowing for their needs where possible
will increase the likelihood of successful uptake of any proposed changes. Taking the view of
the hospital as a closed system for the purpose of simplification, surgical data collection and
downstream data use cases are described below.

2.1.1 Surgical data: collection

A simplified overview of the peri-operative surgical data capture procedure at MUH is pro-
vided in Figure 2. This process was documented during the observation of two surgical pro-
cedures at MUH in March 2015, with follow-up interviews with key personnel. It does not
include ongoing post-operative data that is captured as the patient’s recovery is monitored,
nor does it include data that is captured pre-admission or in the admission clinic. The only
formal encoding system used to characterise procedures that is used during the peri-operative
phase is the MBS – all other data is stored as either semi-structured text blocks, or as discrete
data points within system-specific data models.

Under the current system, the majority of peri-operative data capture activities
are the responsibility of the scout (non-sterile) nurse and anaesthetist. The scout nurse is re-
sponsible for the capture of pre-operative checklists, counts, operation timings, post-operative
handover and nursing care instructions. Checklists will include data such as the provision of
informed consent, confirmation of correct patient, intended surgical site and other required
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preparatory checkpoints. Counts include not only the precautionary pre/post counts required
for the prevention of retained objects, but also inventory management for sterile tools, im-
plantable objects and consumable items. These latter counts are generally performed by
barcode scanning within the MUH systems. Operation timings include times entering and
leaving theatre, start and end times of the operation and other specialty-specific times such
as tourniquet start and end time.

The anaesthetist will capture details of administration of medications while the
patient is in theatre, plus details of transfusions, monitoring methods, fluid requirements and
lines placed. The systems used by the anaesthetist also monitor the patient’s vital signs,
although this information is not always stored and therefore may not be available within
the patient record for later reference, unless particular snapshots are taken and saved by the
anaesthetist.

In a typical surgical procedure, the surgeon (or assisting surgeon) does not enter
any information into the EHR system until the main portion of the procedure has concluded.
At this point, they will either dictate or transcribe detailed notes, which describe what has
occurred and been observed during the surgical procedure. These notes are captured un-
der the following synoptic headings: Operation Performed, Details of Operation, Operation
Findings, Closure, Particulars of Tubes/Drains/Catheters Left Insitu., Wound Classification,
Post-operative Instructions Surgeon. The surgeon will also make a classification of the proce-
dure as a set of MBS codes that they believe accurately represent the surgery as it occurred.
This forms the primary block of free-text known as the Operative Report, which is the object
of interest for this project.

2.1.2 Surgical data: use cases

The following use cases (Figure 3) were developed based on informal interviews with staff
members from MUH, including surgeons, nurses, IT professionals, accounting team members,
quality assurance managers and medical coders. They represent the most common day-to-day
activities within the hospital.

Use cases regarding the booking and administration of the operating rooms, con-
sumable items, implants etc. are omitted here, as they are upstream of the creation of the
surgical report. This diagram instead details those tasks that create surgical data (gold),
refer to the surgical data as a primary source (blue) or secondary/coded source (purple).
Research activities are also excluded from this analysis, as MUH does not currently have a
standardised procedure for research data requests at this time and instead deals with each
research project in an ad-hoc fashion.

Downstream of the primary surgical data capture process, secondary encoding of
the procedure is performed by a team of dedicated medical coders who derive appropriate
procedure codes from the International Classification of Diseases 10th Revision (ICD-10) on
a per-admission basis. The coders rely on the entirety of the clinical record when making a
judgement on which ICD-10 codes to apply. From the ICD-10 codes, diagnosis-related groups
(DRGs) are generated. These DRGs are the primary source of reimbursement from health
funds to the hospital. In the instance that a given DRG is outside of the negotiated agreement
between the hospital and private health fund, the MBS codes will then be implemented as a
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substitute billing method. In MUH, the surgeons bill for their services separately to the bill
that is generated by the hospital accounting department, as is typical in private hospitals in
Australia. The surgeon’s bill is based entirely on MBS procedure codes defined as described
above.

In the context of creating a more effective characterisation of surgical procedures,
it is important to understand all use cases that access the surgical data products and their
eventual downstream targets such that the needs of all users can be met. It is clear from the
use case analysis that two primary challenges are presented to the users of this data – first,
that clinical processes are highly manual, with many users referring back to blocks of text
and transcribing between systems, which requires re-familiarisation and interpretation for
each activity; and secondly, that many administrative processes rely on only on secondary,
manually created data products (i.e. MBS, ICD-10 codes, DRGs), which exposes these ac-
tivities to the risk of inadequate granularity of characterisation and potentially reduces the
validity of these analyses. ICD-10 codes and DRGs are also only available post-discharge, as
the billing activities are undertaken on a per admission basis. In the area of patient safety,
both the aggregate quality and audit activities and investigations of specific clinical incidents
would benefit from having timely, automated access to reliable structured data upon which
to base this analysis.

2.2 Knowledge representation

It is the hypothesis of this project that a better characterisation exists, or can be devel-
oped, which both increases the efficiency of clinical processes and improves the accuracy and
timeliness of inferences made by the administrative processes. This requires a survey and
evaluation of available knowledge representation methods, which will be presented here.

2.2.1 What is an ontology?

The development of ontologies can be seen as an effort to provide structure to knowledge
by formalising the definition of concepts, their relationships and behaviours. In this instance
we take a broad interpretation of the generally accepted definition of what constitutes an
ontology, which is a formal, explicit specification of a shared conceptualisation [20]. This
allows the inclusion of both the simplest code sets providing only a semantic mapping (concept
to associated code), to fully abstracted models of a domain that derive not only elements
and their definition but also their attributes, relations, restrictions and axioms, such that
complex logical inferences can be made.

In some contexts, the classification of a coding systems as ontologies is rejected as
they do not meet the open world assumption [21], and often do not contain a minimal hier-
archical relationship definition [22]. For the purposes of this project, however, it is necessary
to include the wider definition in order to adequately capture the status quo.

Ontologies typically fall along a spectrum of characterisations from the general to
the specific, depending on the type and granularity of information they contain (Figure 4).
All ontologies reviewed for this project are specific to the clinical domain and thus domain
ontologies. Domain ontologies built upon a widely implemented upper level ontology should
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Figure 4: Generalisability of ontologies

be viewed preferentially, given the subsequent capacity for integration with other systems
and uniformity of development. Data models are rejected out of hand, as they are unsuitable
for the sharing of data outside of the context in which it was collected and thus contribute
to the siloing of clinical data, which is contrary to the goals of this project.

2.2.2 Evaluation of ontologies

A trade-off must be made between the comprehensiveness of a domain ontology, allowing
effective and meaningful intersystem communication, and its simplicity, allowing greater gen-
eralisability [23]. Ontology designers seek to achieve maximal coverage with the smallest pos-
sible spanning set of concept definitions with their associated attributes and relationships,
for the closest possible approximation of the target domain. This is known as the minimal
ontological commitment.

The evaluation of ontologies presents a significant challenge, in particular due to
the fact that the goal of knowledge formalisation is typically sharing and interoperability; by
definition, ontology designers frequently do not know the full set of use cases in all possible
source and target systems in advance. This makes it difficult to create test scenarios that
provide coverage of all situations. Efforts have been made to formulate a methodology for
ontology evaluation that can achieve a high level of confidence in the quality and suitability
for a given purpose of a specified ontology.

Evaluation is required for both the content and structure of an ontology, in order to
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ensure that it is compliant to the modelled world [24]. The criteria described below have been
compiled from the reviews [25, 26, 27, 28], and together represent a thorough methodology
for systematic evaluation. Note that it may not be possible to apply all of these criteria to
every situation, and the criteria must be balanced against both what is practical given the
scope of the target ontology, and the tasks for which the ontology is designed and used.

Table 2: Evaluation of ontologies

Criteria Description

Completeness, Richness
and Granularity

For a given use case, is the definition of the modelled domain
adequate? This may not require 100% coverage if (i) use
cases are sufficiently well known or (ii) the ontology can be
post-coordinated to provide additional definitions that are
not present in the base ontology.

Conciseness Are there redundant definitions in the ontology (explicit or
inferred)?
Are irrelevant definitions included?
Is there a minimal ontological commitment – i.e. does the
ontology make as few claims as possible about the domain
in order to communicate knowledge unambiguously?

Consistency, Accuracy and
Coherence

Is it possible to create definitions or inferences that are con-
tradictory (internal or logical consistency)?
Is the conceptualisation consistent with the real world (ac-
curacy, or external consistency)?

Expandability and Adapt-
ability

How much effort is required to add new definitions, or ex-
pand existing definitions, without requiring adjustment of
properties that already exist?

Clarity Are the definitions unambiguous and independent of con-
text?
Is the ontology intelligible to a human user with domain rel-
evant expertise?

Computational Efficiency Is the ontology designed in such a way that logical inferences
are efficient?
Are measures of semantic similarity and distance possible to
calculate in a meaningful fashion?
How quickly can queries be processed?
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Organisational Fitness Does the ontology align with other ontologies that are al-
ready in use in the organisation? This ‘goodness of fit’ may
be in terms of compatibility with the same upper level ontol-
ogy, capacity for cross mapping if there is any domain over-
lap, or potentially the same ontology expression language.
Is it easy to access by all potential stakeholders? This in-
cludes a consideration of closed vs open source and how freely
accessible the licensing requirements are.

It is not feasible for this project to apply this full evaluation methodology to all
ontologies in common use for surgical representation. This is due to the prohibitive scope
of the content and detailed review required, and the fact that a number of the questions
require implementation in a real-world application in use to fully assess. This chapter will
instead apply these concepts at a high level in order to immediately rule out the majority of
candidate ontologies for obvious deficiencies. A more detailed evaluation is applied only to
those models most likely to prove effective.

Regardless of the scope of evaluation and testing applied in the ontology devel-
opment phase, it is still likely that for any non-trivial ontology errors will be present. Some
types of errors can be automatically detected [29] and should not be present in any validated,
published ontology. Importantly, circularity errors (where a class can be defined as a subclass
or superclass element of itself), grammatical redundancy errors (where a semantically equiv-
alent definition can be formed in multiple ways), and partition errors (where an element has
been defined inconsistently with respect to a parent class – such the same concept being as
defined in 2 disjoint partitions) should be detectable prior to release [30].

Other errors are a matter of inconsistent definition, semantic redundancy or omission
[31], and thus can only be detected when compared to other domain definitions – either the
knowledge of experts, or some other predefined knowledge base. This includes artifacts such
as incompleteness or semantic inconsistency errors. These errors are more likely to make it
into a production release, and there should be a well-established process for their resolution.

In addition to these measures of quality, there is of course also the measure of fitness
for purpose. It is not effective to select even the most optimal ontology if the representation
does not provide the tools required to meet the current goal.

2.2.3 Benefits of ontologies in a clinical context

Formal knowledge models are desirable in a surgical context for a number of different purposes
such as automation, simulation or clinical decision support. For all of the models described
in this chapter, a key concept is the idea of making elements of the surgical procedure
observable and understandable by computers. At some level, each of these models provides
a shared understanding of the surgical domain that can be unambiguously communicated
between computers and people [20].

A well-designed ontological model is also highly valuable in creating a representation
that is both system and language independent by providing semantic interoperability [32].
This allows users and applications from different institutions and/or countries to pool and
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exchange information seamlessly. In the patient safety domain, and especially with respect to
rare events, increasing the size of available data sets allows researchers to accurately ascribe
causality of adverse events, and to discern predictive patterns with higher confidence.

Ontologies have also been found to provide context and meaning to NLP applica-
tions, as it becomes possible to move from the purely statistical and syntactical models into
a model that understands at some level the concepts to which it is being applied [33]. Tax-
onomic NLP moves beyond a statistical lexicon and instead leverages resources containing
hierarchical semantic associations. The primary work in this field has been associated with
the Semantic Web.

An understanding of the ideal representation of the target knowledge as provided
by a well-designed ontology is also useful in the action of segmenting and categorising reports
at predefined, meaningful levels. This is an important step in an end-to-end NLP processing
pipeline.

2.3 Clinical ontologies in common usage

This section provides a description of the subdomain ontology types that are in common use
in the clinical setting, with examples. For the most part, biomedical ontologies such as the
Gene Ontology [34] are expressly excluded – although there may be some conceptual overlap,
their design for non-clinical purposes limits their applicability.

2.3.1 Administrative and operational

For the purpose of billing, the representation of procedures is relatively mature, as a limited
number of dimensions are needed to adequately represent an element or event. In fact, many
simple clinical interactions may be represented by a single code, for example, take what is
likely to be the most general of all MBS codes – 3: consultation at consulting rooms. Whilst
this is sufficient for the purposes of administration, it gives only the barest picture of what
occurred and does not represent any clinical observations or inferences. This is obviously
inadequate granularity for the purpose of monitoring patient safety.

Surgical procedures will often paint a somewhat more detailed picture, as a number
of codes are listed to capture a more complex clinical encounter. For example, a laparoscopic
total colectomy may require the MBS codes 32090, 30393, 18262 and 32012 to encode the
progression of the operation. There are still many salient clinical features which are left
uncharacterised in this instance, however – take, for example, the size, number and nature
of any polyps observed. It is outside of the scope of billing codes, however it may be relevant
when analysing the underlying features of an adverse event.

Similarly in the quality domain, billing codes are insufficient to understand the
intent and progression of a surgery. Criteria such as average surgical duration, resource utili-
sation or appropriateness of selected treatment are often applied in order to judge the perfor-
mance of the surgical team. A uni-dimensional basis for this type of analysis such as billing
codes oversimplifies the nature of the surgical process and disincentivises clinicians from ac-
cepting complex cases. This is often tempered with a risk adjustment algorithm, taking into
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account other patient factors that influence outcomes and approaches; however, there is a
significant amount of information available that is still being left out of these analyses in
most cases.

The coverage or completeness of representation provided by billing codes is not the
only issue with their use in characterising complex surgical events. In addition, the hierar-
chical structure and granularity of a given ontological system is a key factor in determining
the nature of the systems and inference engines that can be successfully built on its basis.
Systems designed purely for billing purposes tend to be relatively flat structures, where the
categorisation lacks foundational generic concepts.

Within the MBS, and its US counterpart the CPT, for example, procedures belong
to categories, groups and subgroups; however, there are no taxonomic relationships or pred-
icative rules on the basis of which any clinical inference could be reasonably made. The ICD
system, portions of which are prevalent as a billing system in a large part of the world, was
originally designed as a diagnostic classification standard for clinical and research purposes
and therefore does not suffer from this same limitation.

The DRGs, which are the basis for the hospital level billing system at MUH, are by
definition related to diagnosis rather than procedure. This may be useful in a risk-adjustment
algorithm, however has limited bearing when representing the activities undertaken during
admission in detail – the level of granularity is intentionally low in order to avoid cost-based
reimbursement and instead require hospitals to assume some of the uncertainty of resource
allocation in the process of healthcare provision.

Billing codes should also be acceptable to characterise procedures for the purposes
of order entry – in combination with clinician preference card systems and inventory/ward
management they are sufficient for operational purposes.

2.3.2 Clinical decision support

This is the development of knowledge-based systems that implement an inference engine in
order to provide decision support. These systems define the clinical reality in terms of:

1. A question to be answered.

2. The synthesis of data relevant to this question.

3. Rationale applied to the data in order to formulate an answer [35].

A well-designed ontology may be able to encode all of these elements in one, or there may
be an individual representation of each component.

The key differentiator between ontologies underpinning clinical decision support and
those designed for other purposes is the requirement to model clinical practice guidelines as
a reference standard. This must be done in a form that can be automatically compared with
the current patient state in order to formulate decisions.
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A review of clinical decision support models found that most models studied could
be simplified to the following primitives: actions, decisions, patient states and execution
states, with decisions and actions forming the critical requirements [36]. These systems are
likely to have a positive impact on patient safety, as surgical procedure variability is reduced
and practices brought in line with the best available knowledge.

A model based on these primitives is a closer approximation to the type of data
that is captured in surgical reports than billing and administration models; however, there
is no real consensus on the best model upon which to build clinical decision support applica-
tions [37]. This heterogeneity may be the result of the additional difficulty experienced when
integrating a model deeply into the clinical workflow, rather than as an endpoint. This lack
of clear direction means that it is somewhat high risk to base the goal representation on a
clinical decision support model due to the unpredictability of which models (if any) will have
continued support.

2.3.3 Adverse event reporting

The World Health Organization (WHO) has published draft guidelines for the reporting of
adverse events. The goal of this document is to provide a broadly accepted basis for steps and
systems required to allow effective reporting of adverse events beyond the institute level [1].
This guideline does not prescribe a universal model of representation of adverse events (and
the processes of care leading up to them) for the purpose of reporting – advocating a mix of
structured data and free text as appropriate to each particular situation. It does, however,
list a number of classification systems, which can be applied to facilitate post-hoc analysis.

Patient Characteristics
>Reason for Encounter

>Procedure
>International Classification of Diseases
>International Classification of Diseases (Country specific derivatives)
>OPCSClassification of Interventions and Procedures (UK)
>Nordic Medico-Statistical Committee Classification of Surgical Procedures

Figure 5: Surgical characterisation sub-hierarchy of ICPS

A more recent project by the WHO, in collaboration with the European Union (EU) is the
International Classification for Patient Safety (ICPS) [5]. The purpose of this project is to
design a model for the representation of all adverse events within national and international
reporting systems. Surgical procedures form only a small part of the representation provided
by this adverse event model. See Figure 5 for the sub-hierarchy of surgical representation
within the ICPS model. In this model, if the ‘reason for encounter’ for a given event is a ‘pro-
cedure’, the relevant national coding system (ICD-10-AM for the purposes of an Australian
provider) is leveraged directly.

This model is not suitable for the purposes of this project, as it requires significant
additional data not available directly from the operative report, and conversely does not
have the capacity to represent details of the procedures beyond the ICD (or similar) coding
systems. It does, however, implement techniques that provide a good basis for the definition
of a model of surgical procedures, namely an OWL2 representation and natural language
generation functionality for faithful translations. It is understood that at the point of writing,
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the ICPS development track has been put on indefinite hiatus due to lack of funding [38].
Despite this fact, compatibility with the ICPS model is still a desirable feature in any selected
ontology due to both its rigorous design and the fact that it is the model closest to a general
acceptance at an international level.

Current legislation in NSW requires manual reporting of surgical mortality to CHASM,
within the Clinical Excellence Commission – itself a part of NSW Health. This includes not
only adverse events, but also deaths caused by natural disease progression whilst the patient
is under the care of a surgeon, or up to 30 days post surgery. The CHASM reporting process
is initiated by either the local health district (in the public health system) or an individual
hospital (for private institutions).

The primary portion of the CHASM reporting process takes the form of a manually
completed form, filled in by the responsible surgeon. Upon receipt by the CHASM team, the
surgical procedure and event information is manually coded into the Read codes (which are a
precursor to the SNOMED CT4 classification) before progressing to an iterative peer review
process. Adverse event causality and deficiencies of care are separately classified by ‘w-codes’,
originally implemented by the Scottish Audit of Surgical Mortality [39]. This coding system
is used at the state level in all Australian states and in New Zealand, allowing regional
aggregation and reporting; however, it is not in common use elsewhere – Read codes having
been superseded by SNOMED CT in most contexts and w-codes having never had broad
uptake.

It would be natural to assume that an ontology aligned with adverse event report-
ing would be the obvious choice to meet the goals of this project, however, this is an overly
simplistic view. Specifically, adverse event reporting assumes that an event has taken place,
rather than targeting a risk-based approach or facilitating the detection of same. The gran-
ularity of an adverse event report itself is likely to be simultaneously too high (requiring
judgements of causality and probability of recurrence, which are unavailable) and too low
(losing many of the sub-procedural details, which are available for coding).

2.3.4 Provision of care, research and surveillance

Although the provision of care seems to be somewhat separate to the purposes of research
and surveillance, the nature of the knowledge being handled and observed is the same. The
goal of research and surveillance efforts can generally be viewed as the observation of the
provision of care data. As such, these purposes will be analysed jointly in this chapter.

For clinical purposes there are a number of mature ontological models that provide
significant additional meaning over the administrative models already discussed. One notable
example is SNOMED CT, which represents diagnostic and therapeutic information as a
combination of concepts, defined in a strict hierarchy. From this hierarchy, it is possible to
derive relationships and knowledge that is not evident in the equivalent atomic unit. For
example, the procedure Coronary Artery Bypass Grafting (20150531) falls under a number
of taxonomic (is-a) classifications, two of which are described in Figure 6. It also has a method
attribute (bypass) and direct procedure site (coronary artery structure).

4Systematized Nomenclature Of MEDicine - Clinical Terms.
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Procedure
>Procedure by site

>Procedure on body system
>Procedure on cardiovascular system

>Cardiovascular surgical procedure
>Operation on heart

>Repair of heart
>CABG

Procedure
>Procedure by method

>Surgical procedure
>Surgical repair

>Construction
>Construction of anastomosis

>Bypass graft
>Creation of vascular bypass

>Arterial bypass graft
>CABG

Figure 6: SNOMED CT hierarchy for coronary artery bypass graft

These classifications allow the application of logical relationships, restrictions and
properties to be applied at a number of levels – e.g. a property of all blood vessel procedures, or
all surgical repairs. This facilitates the grouping of elements across non-obvious lines, which
would require deep domain knowledge to develop manually. It also improves information-
retrieval results by the same mechanism.

Both the ubiquity of SNOMED CT and the availability of mappings into other
international standards make it a good candidate for representing surgical procedures for the
purpose of surveillance. It was, however, initially designed for purposes other than surgery
classification (by pathologists) and therefore is expected to lack some of the sub-procedural
detail that is required to fully describe the surgical reality.

As the name implies, the International Classification of Diseases (ICD) was origi-
nally designed by the WHO as a diagnostic tool. The goal of this standardisation was twofold:
to make diagnostic information available for computerised analysis; and to facilitate mean-
ingful reporting of health and mortality statistics globally.

SNOMED CT and ICD are by far the most ubiquitous clinical ontologies in use
today. Table 3 provides a comparison of some important considerations for determining how
these models should be implemented.

An important distinction to be made at this point is the typical primary purpose of
the two models. In practice, SNOMED CT is designed for input (its high level of granularity
facilitates data entry as concepts can be matched precisely and unambiguously), whereas
ICD prioritises output (with an epidemiological and reporting focus, it targets meaningful
aggregation and categorisation). This favours SNOMED CT for the purpose of extracting
meaning from natural language, as it more closely approximates a data entry task – higher
granularity terms provide more options upon which to match extracted concepts. In addition,
a complete official mapping from SNOMED CT to ICD-9-CM and ICD-10 is maintained and
released biannually by IHTSDO [40]. Therefore implementation of SNOMED CT provides
access to the benefits of ICD as well, including compatibility with ICPS.

The GALEN5 project on the other hand, has created an expressive formal concept
model, which has been successfully demonstrated to be appropriate for the representation
of surgical procedures [41]. A collaborative effort across a number of European classification

5Generalized Architecture for Languages, Encyclopedias and Nomenclatures.
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Table 3: Comparison of ICD and SNOMED CT ontologies

SNOMED CT ICD

Initial Purpose Classification of pathology
(SNOMED RT) and Gen-
eral Practice patient charac-
teristics (Read Codes)

Diagnostic tool for epidemi-
ology, health management
and clinical purposes

Current Primary
Purpose

Data entry Data aggregation, reporting
and reimbursement

Structure Poly-hierarchical Mono-hierarchical

Scope >311,000 active concepts >155,000 active codes
(ICD-10)

Maintenance
Ownership

International Health Ter-
minology Standards De-
velopment Organisation
(IHTSDO)

WHO

Licensing Royalty-free licences avail-
able throughout IHTSDO
Member Territories (includ-
ing Australia). Paid and/or
fee-exempt licences avail-
able in non-Member territo-
ries based on intended use
and income of country of
use.

Non-commercial/research,
internal and commercial
licences available at an
organisational level.
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Table 4: Paradigm shifts proposed by the GALEN model

Traditional classification models GALEN based model

Select from a fixed set of codes at the
point of data entry.

Descriptive conditions from which
codes can be generated when required.

Enumerated codes – similar to a phrase
book where each concept has an indi-
vidual definition that cannot be broken
down.

Composite descriptions – more like a
joint dictionary and grammar from
which an indefinite number of sensible
definitions can be built.

Standardisation of coding system locks
code sets to their initial designed pur-
pose, restricting flexibility.

Standard reference model allows a com-
mon means of representing coding and
classification systems in order to pro-
vide interrelations.

Static coding system. Terminology as a service – terminology
servers provide a standardised software
interface with which numerous applica-
tions can communicate.

Terminologies that are intrinsically
linked to the language in which they are
defined, leading to monolithic transla-
tion efforts.

Decouple underlying concepts from the
natural language in which they are
presented to provide truly multilingual
systems.

centres expanded the GALEN CORE6 model in order to provide the basis required to model
surgical procedures.

One of the guiding principles for the GALEN project is that other systems are
limited in that they have been developed for specific purposes (typically statistical or epi-
demiological in nature), and of insufficient flexibility of representation. They are therefore
rarely able to be successfully applied to a goal other than that for which they were developed
[42].

The solution applied by the GALEN development group in order to address these
issues is to promote a series of paradigm shifts that change the way that new classifications
are built, rather than simply a new classification system (detailed in Table 4).

This approach reflects the overarching trend in the design of clinical terminological
systems towards reusable, modular systems, delivered as terminology servers rather than
static reference lists. Older systems tend to be flat, independent and have comparatively
limited reusability [43].

6COmmon REference.
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GALEN is authored in the language GRAIL7 and the compiled model is also made
available in OWL8. The SPET9 application, which is available as part of the ClaW10 toolset,
is designed specifically for creating dissections of surgical procedure descriptions (or rubrics)
that conform to the expanded GASP11 model.

It should be noted that GALEN itself is not a classification that can be implemented
directly; rather, it provides an architecture and methodology upon which interoperable clas-
sifications can be built. It is in fact possible to create post-hoc dissections of the linguistic
expressions found within other encoding systems in order to formalise their definition. This
methodology was applied in the design of the French CCAM12 coding system for encoding
surgical procedures – a traditional domain expert consensus was achieved around the ex-
pressions available in the systems being replaced, before creating the dissections in GRAIL
[44].

By providing a strictly formalised and compositional underlying model (third gen-
eration system) the GALEN models are able to derive meaning not only by groupings and
classification such as in the SNOMED CT example above, but even to the point of under-
standing the differences (and transforming as required) between related concepts such as viral
hepatitis versus hepatitis virus [45].

To take the same example of Coronary Artery Bypass Graft and model it under
GALEN-CORE, it can be clearly seen that there is a much stronger typing of elements,
relationships and actions, where each individual sub-unit of the classification behaves in
predefined ways (see Figure 7). The detailed rules allow flexibility, as users can leverage the
compositional nature of GALEN elements to describe concepts that have not been formally
defined, whilst being restricted from creating nonsensical definitions, such as a fracture in a
location other than the skeletal system [46].

SurgicalConstructingProcess
and (Locative Attribute some

(BypassStructure
and (isSpecificPhysicalMeansOf some

(Bypassing
and (actsSpecificallyOn some CoronaryArtery)))))

and (hasPhysicalMeans some VeinAllograft)

Figure 7: GRAIL definition of coronary artery bypass graft

A key benefit of such a compositional system is that the number of formally defined
components or facts required to represent the domain is significantly fewer than the number
of semantically compatible concepts that can be classified. It also reduces the likelihood of
redundant and/or contradictory definitions, as the set of terms in the model is much smaller
and therefore more manageable. This is demonstrated by the CCAM encoding, which is
based on a GALEN formal representation – 7,478 procedures are represented using just
2,400 concepts and 59 semantic links [43].

7GALEN Representation And Integration Language
8Web Ontology Language
9Surgical Procedure Entry Tool

10Classification Workbench
11GALEN model for Surgical Procedures
12Classification Commune des Actes Médicaux
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This compositional nature also has advantages for the purposes of translation, as
the usage of each linguistic component is better defined and therefore translation of each
combined term is not required. This has been shown to have benefits for natural language
generation. In a study of input versus generated expressions, one third of the significant
differences detected were due to errors in the definition of the dissections and two thirds
were due to ambiguities in the natural language generation [44]. This is an important tool for
checking consistency, veracity and integrity of a newly defined (or newly translated) model,
which is not available when using traditional methods. It is possible that this will also present
an advantage for automated text processing, as the target structures can be fitted to observed
text more closely.

2.3.5 Automation/surgical assist systems

For the purpose of automation, surgical process modelling definitions interpret the surgical
workflow as a business process. Depending on the level of granularity that is required for a
given task, the components modelled may be actors, procedures, phases, actions, steps/sub-
steps or motions [47].

These systems typically have their basis in interpreting signals from the OR via
positional or imaging tools which observe the procedural flow of a surgical procedure – the
move towards a fully integrated and ‘aware’ operating system is generally anticipated as more
signals are made available via smart tools and systems [48].

Representations created for the purpose of automation tend to have their statistical
foundation in the temporal plane [48, 49], i.e. what is going to happen next? This may be
useful when monitoring aberrations from the typical workflow as an indicator or predictor
of adverse events. This project is, however, looking to unlock the clinical inferences of physi-
cians, which may include why things happened, and observations that were not available to
cameras or computer enabled tools, not just detection of what occurred. As such, automation
knowledge models are unlikely to be the best candidate model to apply in this instance.

2.4 Ontology selection

Based on the analysis performed in this chapter, the GALEN model is seen to be a promising
target for the surgical domain. Its appropriateness has been demonstrated by its use in the
French coding system CCAM. It is thus likely to meet domain-specific requirements that fall
outside of the scope of other more general models.

GALEN-based models are compatible with the CEN/ISO13 1828:2012 standard
(Health Informatics – Categorical structure for terminological systems of surgical procedures)
[50] and its availability in OWL means that it also has significant compatibility with ICPS
concepts.

Its linguistic formalism and compositional nature may also be beneficial in the nat-
ural language processing domain. The ability to generate natural language from the formally

13European Committee for Standardization (Comit Europen de Normalisation/International Organization
for Standardization)
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defined concepts allows for error checking when creating representation by comparison of
input and generated text.

SNOMED CT AU (or at least its predecessor, the READ codes) is in use for the
encoding of surgical concepts within both NSW and Australia-wide patient safety and surgical
mortality audit systems [39]. It is also secondarily compatible with ICPS, via a mapping to
ICD.

It is also well suited to information extraction tasks relative to other models due to
its demonstrated prioritisation of data entry. In order to maximise potential interoperability,
and in absence of any clear contraindicating factors, it will also be considered for its suitability
as a target ontology for surgical characterisation.

2.5 Textual analysis of surgical notes

Taking the current MBS encoding system (billing) as the ‘base’ pre-discharge representa-
tion, this next section provides a thorough gap analysis that compares data available within
the operative report to the coded information that is accessible for automated surveillance.
The goal of this activity is to help prioritise information extraction activities – those target
data points that are less well covered may be more valuable in extraction (assuming clinical
implications are equivalent).

This will then be compared to the coverage provided by a manual encoding into the
two selected target representations of SNOMED CT and GALEN, in order to further test
appropriateness for the representation of surgical procedures.

2.5.1 Gap analysis: methods

A corpus of operative reports was obtained from MUH that represents a mix of surgical
specialties.

The de-identified data set obtained from MUH contained data from 861 patient
records. The data collected comprises:

• Surgical notes and observations.

• MBS codes assigned to the procedure.

• Some minimal administrative data points.

In order to systematically identify all gaps in current structured data representation, 50
surgical notes were randomly selected from the available set. Each of these notes was first
annotated and then compared to the concepts available in the MBS data, and then manually
encoded into both the SNOMED CT AU and GALEN models, with the intention of quan-
tifying the adequacy of the target structures identified above, recognition of any potential
gaps, and comparison with the status quo.
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2.5.2 Annotation guideline

For the purpose of defining the base representation required for gap analysis, annotations of
operative reports were prepared by identifying the following categories of report elements.
This list was derived by reviewing the five longest (and thus assumed most detailed) reports
by word count and defining categories which encompass all concepts within.

• Action: CEN ENV 1828 defines both surgical deeds and procedures – the former being
a surgical action that can be performed to a patient’s body, irrespective of location
(e.g. cut, debride) and the latter being specific to a location (e.g. colonoscopy). In this
context, both of these subgroups are combined into the concept of a surgical action.

• Anaesthesia: Details of anaesthetic techniques or agents listed within the operative
reports e.g. GA, local anaesthetic, nerve block.

• Anatomical location: This is the body system or structure where the surgical action is
applied. This includes any anatomical location in the adjectival form such as umbilical,
epigastric.

• Approach: The method of approach for the surgical action. This may be either a tech-
nique such as robotic, or laparoscopic versus open, or mode of access such as intracranial
or transsphenoidal.

• Closure: Any information provided on the method of closure for wounds, including
method, location, length, stitch count and types.

• Defect target: In the case of a surgery involving a repair, removal or other operation
specific to a pathology, this is the identified target. This could be a tumour, tear, hernia,
occlusion etc.

• Device: A surgical device (as opposed to tool) is a non-reusable item that remains in the
patient after surgery. This includes items such as screws, stents, grommets, pacemakers
or replacement joints.

• Finding: A diagnostic observation made during surgery. This may be evidence of dis-
ease (or absence of), or the size and type of observed pathology, e.g. 5cm malignant
tumour.

• Finding location: The anatomical location of a finding, as differentiated from the
anatomical location, or target of the surgery.

• Locative: A locative concept with respect to the target anatomy may be unequiv-
ocal (left/right, anterior/posterior, superior/inferior, medial/lateral, proximal/distal,
bilateral) or mentioned but ambiguous (typically in the coded information as ‘either
side’). It is also possible to derive an unambiguous location from multiple instances of
an otherwise ambiguous code – e.g. two instances of the code 41752, a code for an in-
tranasal operation on the sphenoid sinus that does not have a specific laterality, implies
a bilateral surgical procedure.

• Positioning: Description of positioning of the patient or body-part during the proce-
dure, e.g. lithotomy, rotated.

36



• Purpose: An insight to the clinical rationale behind a surgical procedure, e.g. ex-
ploratory, diagnostic.

• Tool: This is any tool (reusable or consumable) that is required to perform the surgery
but is not left in the patient at the conclusion of the procedure.

For each report, all mentioned concepts were categorised. This was repeated for the textual
definition of each associated MBS code. A concept was defined as the smallest logical unit
that preserved the intended meaning of the phrase. For example, pars plana indicates an
anatomical site; however, in the context via pars plana sclerotomies, it is labelled jointly
with the word via as an approach for the action sclerotomy.

Cross-referencing was then performed for each concept, which was consequently
classified as covered, ambiguous or missing. If a concept was repeated identically (word for
word, and in the same context) in two separate sections of the report, the repeated text was
excluded from analysis.

If a concept was available in the coded data, but not the written report, this was
taken as assumed background knowledge for a given procedure and not counted within the
classification.

For each concept that could be unambiguously matched from report to the coded
data, this is covered. For a concept that is contained in both report and coded data, but
could not be explicitly matched, this is ambiguous – typically this occurs when a code covers
more than one type of procedure e.g. 49562: Knee: arthroscopic surgery of, involving 1 or
more of: partial or total meniscectomy, removal of loose body or lateral release. . . , or where
the written report is more specific to subtype than the coded data, e.g. Rathke’s cleft cyst
versus pituitary tumour. A missing concept is one that is present in the written report but
it would not be possible to derive from reviewing the coded data alone.

In the case of any unclear classifications, a guideline for coverage or lack thereof
was to ask the question: could one apply the research question ‘was concept <x>the tar-
get of/undertaken during the procedure’ and determine the correct answer by looking at the
coded data alone? This allows matches for concepts such as arthroscopy (action) or haemor-
rhoid (defect target) in the report to be matched to arthroscopic reconstruction (approach,
action) or haemorrhoidectomy (action) in the coded data. This was done in order to provide
an accurate picture of concept coverage, as opposed to a strict semantic matching of each
concept.

2.5.3 MBS annotation: results

One report was found to have been assigned incorrect billing codes – an elbow arthroscopy
was linked to a single code that indicated a similar procedure on the shoulder – and was
therefore excluded from analysis.

Four of the randomly selected reports contained concepts that could not be classified
into the aforementioned groups – two mentioning that the operation was a repeat or revision
of a prior operation, one which included a family history note, and the other listing pre-
operative pain characterisation. This very low miss-rate (1%) implies that the list of categories

37



chosen for this analysis is indeed representative of the information that is typically included
in operative reports at MUH.

The coverage of concepts within cardio-thoracic reports is somewhat of an outlier
(see Table 5). This is due to the inclusion of a single procedure, defined by very general
angiography procedure codes – neither specific to location nor technique. This is not the only
report of this nature – in fact, three reports contain no precisely coded elements, however its
effect is highlighted by the low number of cardio-thoracic procedures selected.

Table 6 shows the coverage properties overall, and by concept type. An operative
report that is representative of the annotated sample contains an average of 8 concepts
(mode=6, s.d.=3.8), 2.4 of which (mode=2, s.d.=1.9) can be unambiguously determined
from the billing codes. This high level of missing or ambiguous data in the MBS codes (48%
and 21% respectively) demonstrates clearly that the use of billing codes for the purposes of
surveillance or research is limited and that unlocking these free text reports for analysis is a
worthwhile goal.

The concepts that consistently demonstrate relatively high levels of coverage (action,
anatomical location and approach) are intuitive when considering that the purpose of billing
codes is to capture reimbursable actions.

Defect target concepts have patchy coverage, implying that the type of defect that
is targeted by a given procedure is only sometimes relevant to the reimbursable nature of
the procedure – e.g. codes often describe a procedure on a tumour, where reports include
more exactly which type of tumour such as macroadenoma, or codes that mention a repair,
without describing the associated defect at all. This detail may be clinically relevant, and
thus important for calculations of risk, predictive models or determination, however has no
bearing on payments made to the clinician.

Devices have extremely poor coverage in the coded data; however, in this particular
hospital, procedures dictate that all devices are recorded elsewhere in the medical record via
barcode scanning and therefore their derivation from billing codes is not required. Findings,
and finding locations are also likely to be included in diagnostic codes elsewhere in the medical
record.

Locative concepts also have very low levels of coverage in the MBS codes. Again,
this is somewhat intuitive – it is rare that it would matter for the purposes of payment
whether the left or right side of the body was the target of the operation. Indeed, most of the
instances of ‘covered’ locative items were for bilateral procedures, where it was clear from the
inclusion of two instances of the billing code that this is what had occurred. In the majority
of procedures, this is also unlikely to make a clinical difference; however, there are certain
instances where it will be relevant. Consider the following distinctions:

• Division of adhesions in the colon in either the ascending (right) colon or descending
(left) are represented by the same MBS code (30393).

• Repair of a distal or proximal dislocation of the radio-ulnar joint (47027).

• Repair of the medial or lateral collateral knee ligament (49503).

Closures have no coverage whatsoever within the billing code data. From the types
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Table 5: Annotated report sample by specialty

Specialty Count Total concepts Covered (%) Av. concepts /
report

Breast Surgery 1 8 50.0 8

Cardio-thoracic
Surgery

1 7 0 7

Colorectal
Surgery

6 38 44.7 6.3

Gastroenterology 4 39 30.7 9.75

Gynaecology 1 5 20.0 5

Hand Surgery 4 36 27.8 9

Head and Neck
Surgery

6 36 30.6 6

Neurosurgery 8 66 21.2 8.25

Ophthalmology 6 45 33.3 7.5

Orthopaedic
Surgery

10 102 33.3 10.2

Urology 2 11 18.2 5.5

Total 49 393 30.5 8.0

of closure information observed in the selected reports, it is unlikely to have primary clinical
significance; however, it may be possible to derive a secondary measure that can be associated
with risks or outcomes such as number of stitches or type of stitches used as an indicator of
size and complexity of the surgical wound.

All other concept types (anaesthesia, positioning, purpose and tool) occur with too
low frequency within the sample to make any comment on their coverage or otherwise.

2.5.4 SNOMED CT and GALEN encoding: results

Assuming the MBS encoding of approximately 31% unambiguously available concepts repre-
sents a minimum from which any proposed knowledge model must improve, manual encoding
of the experimental set of 49 records into both SNOMED CT and GALEN was performed.
The same annotations were used as detailed in the previous section.

The encoding of operative reports as SNOMED CT or GALEN models has sig-
nificantly higher coverage than observed when applying billing codes alone. This again is
intuitive, given the different purposes for which these ontologies were produced. This manual
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Table 6: Concept category frequencies

Category Count Covered Ambiguous Missing

Action 114 54 (47%) 37 (32%) 23 (20%)

Anaesthesia 2 1 (50%) 0 (0%) 1 (50%)

Anatomical lo-
cation

64 29 (45%) 17 (27%) 18 (28%)

Approach 17 9 (53%) 3 (18%) 5 (29%)

Closure 21 0 (0%) 0 (0%) 21 (100%)

Defect target 44 16 (36%) 12 (27%) 16 (36%)

Device 29 1 (3%) 9 (31%) 19 (66%)

Finding 32 2 (6%) 1 (3%) 29 (91%)

Finding loca-
tion

13 2 (15%) 1 (8%) 10 (77%)

Locative 55 6 (11%) 3 (5%) 46 (84%)

Positioning 1 0 (0%) 0 (0%) 1 (100%)

Purpose 0 0 0 0

Tool 1 0 (0%) 0 (0%) 1 (100%)

Total 393 120 (31%) 83 (21%) 190 (48%)

(Note: percentages may not add to 100 due to rounding.)
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activity is intended to provide a basis for understanding on which to build an automated
classification system, rather than to identify specific gaps or limitations as per the previous
MBS code analysis.

Within the set of included operative reports, only 16 reports contained one or more
SNOMED CT uncodable concepts (22 total uncodable concepts) and 20 reports had at
least one GALEN uncodable concept (28 total). This 5-7% miss rate clearly demonstrates
the value of targeting a knowledge model that is more fit for purpose than billing codes.
This will provide a far more reliable basis for the design and implementation of automated
surveillance tools when compared to the currently available encoding.

2.5.5 SNOMED CT and GALEN: full evaluation

As both SNOMED CT and GALEN have been demonstrated to closely align with the target
information from free-text operative reports, and since there is a very small difference in the
level of coverage provided for the available information, they will both be subjected to the
full evaluation outlined previously.

Table 7: Full evaluation of SNOMED CT and GALEN ontological models

SNOMED CT GALEN

Completeness,
Richness and
Granularity

Outperforms ICD-9-CM and
ICD-10 (among others) in ev-
ery tested category across the
clinical record, with the highest
level of difference (above both
the average of all measures and
average of ICD measures) seen
in the modifier (negation, size,
severity etc.) and treatment and
procedure categories [51].

No formal study of the cover-
age provided by the GALEN ar-
chitecture was found; however,
as demonstrated in the previ-
ous section, its coverage of con-
cepts observed in operative re-
ports approaches that provided
by SNOMED CT. There was
also no clear distinction between
categories of concepts that are
not covered by each ontology.

Conciseness An algorithmic review of
SNOMED CT (2003) [52] found
a conservative estimate of 3%
redundant concepts. It can be
presumed that later versions
include the retirement of some
of these redundant concepts;
however, it is also likely that
new redundancies have been
introduced.

GALEN prioritises the min-
imal ontological commitment
more highly than SNOMED CT,
which prioritises instead the con-
venience of description and com-
putation [53]. This is more ‘cor-
rect’ in the strict ontology mod-
elling sense, however in practice
may be found to be of limited or
even detrimental value.
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Consistency,
Accuracy and
Coherence

SNOMED CT has been found to
contain numerous errors in def-
inition of pre-coordinated con-
cepts, e.g. [52, 54]. This must
be expected for a manually de-
fined terminology of this scope.
Post-coordinated concepts rely
on these existing definitions and
thus can be assumed to cas-
cade these same limitations.
Users can, however, have rel-
ative confidence in the consis-
tency, accuracy and coherence of
the pre-coordinated concepts in
SNOMED CT – these concepts
have undergone many levels of
review, and having been widely
implemented for more than a
decade it can be assumed that
errors with clinical significance
have been reduced dramatically.

GALEN contains similar errors
of definition [55]; however, due
to far lower adoption levels,
there is much more limited anal-
ysis of these than for SNOMED
CT. Likewise, with a less ac-
tive community and mainte-
nance structure, the detection
and correction of these are less
likely. GALEN also relies more
heavily on post-coordinated defi-
nitions, and therefore errors may
take longer to surface.

Expandability and
Adaptability

Given the high level of uptake
globally, the level of resource
that is allocated to maintaining
and authoring SNOMED CT
concepts is high relative to
GALEN. As SNOMED CT is a
formally and actively managed
terminology, it has been under-
going continual updates since
its initial release in 2002. The
SNOMED International Request
Submission System provides fa-
cility for end users to propose
update/addition/retirement of
concepts.

The lack of wide adoption of
the GALEN architecture, and no
evidence of a publicly available
path to propose modifications
implies a very sluggish expan-
sion and error resolution process.
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Clarity SNOMED CT has a relatively
well-established synonym list for
each concept, which improves
usability for human users. Addi-
tionally, its prioritisation of data
entry tasks favours common-
usage versions of terms, which
increases intelligibility.

GALEN has been demonstrated
to facilitate meaningful natu-
ral language generation [41]. De-
spite the modelled concepts be-
ing difficult to parse directly, the
generation of natural language
text in multiple languages ex-
pands the audience who may
utilise and modify these con-
cepts easily. In the absence of
natural language generation ca-
pability, the intermediate nota-
tion has also been shown to pro-
vide clarity and ease of under-
standing [56].

Computational ef-
ficiency

It has been demonstrated that
even with a simplistic algo-
rithm that does not take into
account all of the richness of
the SNOMED CT classification,
a meaningful semantic similar-
ity can be calculated between
terms, based on path length, in-
formation content and context
vector [57]. Due to the signifi-
cantly higher number of terms,
SNOMED CT is likely to suf-
fer from some computational in-
efficiencies when compared to
GALEN.

It is theoretically possible to
compute semantic similarity us-
ing GALEN; however, no im-
plementation of this was found,
so it is not possible to provide
comment on the efficiency or
otherwise. The exclusively post-
coordinated nature of GALEN
lends efficiency to the implemen-
tation of logical inference and
query.

Organisational fit-
ness

SNOMED CT is freely accessi-
ble to Australian hospitals, as
an IHTSDO member state. Its
available cross mapping with
ICD-10 and thus compatibility
with ICPS also makes it a good
organisational fit for the purpose
of safety monitoring and surveil-
lance.

GALEN is an open source model
and thereby available to all po-
tential stakeholders. A repre-
sentation of ICD-10 under the
GALEN architecture has been
previously attempted and re-
jected due to difficulties of repre-
senting all anatomical concepts
[58] – this lack of compatibility is
a cause for concern with respect
to patient-safety specific goals.

In a purely ontological sense, the GALEN model provides a richer and more flexi-
ble representation of surgical procedures than SNOMED CT. Based on the full evaluation,
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however, it is clear that the broader uptake of SNOMED CT has significant advantages in
terms of compatibility, expandability and accuracy. As the performance in the test encoding
is otherwise very similar, SNOMED CT will be selected as the target ontological model for
this project. It has been demonstrated to have sufficient coverage of concepts available in
operative reports, and compatibility with adverse event reporting mechanisms.

The next chapter will provide a review of technologies and methods that are required
to move toward an automated encoding of operative reports, and the final chapter will apply
these methods to work towards the extraction of SNOMED CT concepts.
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3 Natural language processing in the surgical domain

3.1 Background

The selection of an idealised model to adequately represent surgical procedures may be
a valuable enterprise, however in practice it is unlikely to be successfully integrated with
existing systems and workflows unless its encoding can be automated.

Health information systems (HIS) have been introduced into the clinical setting at
a rapid pace, rising from less than 10% electronic health record (EHR) adoption in 2008
to over 40% in 2012 (US figures) [59], and electronic billing systems have been sufficiently
prevalent so as to be considered ubiquitous as early as 1990 [60]. These systems contain vast
quantities of data detailing patient histories, diagnoses, clinical notes, interventions applied,
test results, vital signs and billing, which present significant opportunities for the monitoring
of adverse events and assessing patient outcomes.

Despite these clear opportunities, the use of these systems for the purpose of moni-
toring or improving patient safety remains ad hoc due to the numerous challenges presented
for their systematic implementation [61] – most notably the use of free text fields for many
clinically significant notes, sparse and inconsistently coded data sets, high costs of manual
reviews where required and the use of diverse systems which lack interoperability, leading to
incomplete data and challenging longitudinal follow-up.

Patient safety systems represent a subset of health information systems that are
used for the purpose of surveillance, prediction or improvement of patient safety outcomes.
Each of these activities is inherently rooted in data analysis and therefore their effective
design and generalisability across systems is closely linked to the collection methods, quality
and accessibility of the data underlying their design.

It is therefore necessary to create patient safety systems with the ability to accu-
rately and intelligently interpret this unstructured text in an automated fashion. The use of
natural language processing (NLP) techniques to this end has been applied with varying lev-
els of success. The remainder of this chapter will first give a brief overview of NLP techniques
and the way in which they are typically applied within clinical systems, before delving more
deeply into the statistical properties of the text within operative reports, and finally present
a prototype algorithm for extraction of key concepts.

3.2 General natural language processing techniques

NLP involves the use of automated procedures to detect concepts and extract non-trivial
knowledge from unstructured text. A typical NLP system will often contain a number of
distinct sub-tasks, which are chained together to form a processing pipeline of sorts. This is
done in order to be able to handle the complexities of language that make straightforward
dictionary matching incapable of handling any but the simplest data extraction tasks.
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Table 8: Clinical NLP systems

System Initial Re-
lease

Primary Target Technology Corpus

LSP: Medical
Language
Processor
[62, 63]

Project:
1965,
clinical
special-
isation:
1987

Discharge summaries,
progress notes, radiol-
ogy reports

Sublanguage theory, Struc-
tured Health Markup Lan-
guage (SHML)

No statistical methods –
lexicon derived from pub-
licly available sources and
clinical records

MedLEE [64,
65]

1994 Radiology reports,
later expanded to
mammography, dis-
charge summaries,
electrocardiography,
echocardiography,
pathology

Semantic grammar, with
limited syntactic rules

No statistical methods –
lexicon based on UMLS,
with additional terms
drawn from clinical termi-
nologies

SymText [66,
67]

1994 Chest x-ray reports Augmented transition net-
work grammars (syntactic)
and Bayesian networks (se-
mantic)

Training documents (583,
3152 and 3152 documents
for: appliances, diseases and
findings respectively) of un-
clear origin [68]

cTAKES [69] 2006 General clinical notes Modular system combin-
ing rule-based and machine
learning components

Mayo Clinic EHR corpus
– 273 reports, of mixed
type, in addition to the
publicly available PTB
and GENIA corpora (non-
clinical/general text and
biomedical respectively)
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HITEx [70] 2006 Airway disease
(asthma, smoking
habits) in discharge
summaries

Modular system combin-
ing rule-based and machine
learning components

150 discharge summaries
containing asthma or
COPD-related billing
codes, obtained from
Bringham and Women’s
Hospital

MedKAT/P
[71]

2009 Pathology reports,
cancer-specific char-
acteristics

Modular system combin-
ing rule-based and ma-
chine learning components –
based on OpenNLP compo-
nents with domain-specific
modifications, Cancer Dis-
ease Knowledge Model

302 training documents
(201 training, 101 test) of
unclear origin
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This processing pipeline makes use of a number of machine-readable knowledge
sources, including dictionaries, thesauri, rules of grammar, linguistic properties of words,
statistical models and an ontological model of the target information.

NLP applications vary, with differing levels of complexity, knowledge sources, tech-
niques and permutations of sub-tasks, as required by the source text and target extraction.
Figure 8 describes an example implementation containing many of the common NLP pipeline
components. Systems have been proposed to absorb these subcomponents into deep neural
networks that may be jointly trained, eliminating this pipeline structure [72], however it
remains typical at the point of writing.

In early implementations of NLP, the development focused on the definition of
formal grammars by linguists, with the goal of finding a representation providing complete
coverage of the source domain. This is, however, impractical for general text as the number of
rules and exceptions becomes vast, and true ambiguity persists despite the increase in gran-
ularity. It also tends to be incapable of digesting the highly abbreviated and ungrammatical
text prevalent in clinical systems [73].

Most modern implementations have moved away from this strictly formal analysis
and tend to apply instead a statistical approach. This has the advantage of being able to ex-
plain the levels of uncertainty and incompleteness that commonly characterise the phenomena
present in natural language [74]. This means that statistical methods are robust, generalis-
able and behave more gracefully than rule based or heuristic methods when presented with
data that has not been seen previously.

3.3 Clinical domain specific resources

Many groups have developed systems tuned for biomedical texts, but a smaller amount of
work has been done on systems specifically tuned for the clinical domain. Table 8 provides
an overview of some key tools that have been released in this space.

3.4 Domain challenges

A statistical approach to NLP requires significant effort to create large, annotated corpora
in order to provide a basis for observation.

Anecdotally, clinical text is characterised by a high number of abbreviations, wide-
ranging vocabulary and idiosyncratic, staccato grammar. The use of generally available cor-
pora such as the Penn Treebank [75] is therefore unlikely to be successful when applied to
clinical NLP tasks.

It is challenging to curate a corpus of this nature for clinical text, as patient con-
fidentiality issues restrict the availability of meaningfully large sets of training data. The
capacity of groups to share data is limited for the same reason. Referring to Table 8, the only
data available for public use from this set is released by i2b2, who are behind the HITEx
application [76].
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Figure 8: Example NLP pipeline
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Operative Diagnosis: Cholecystolithiasis

Operations Performed:
MBS
Item
No(s)

Operation Name

30445 Cholecystectomy, laparoscopic
30439 Operative cholangiography

Details of Operation:
thin walled GB encased in fat
multiple small pigment GS
cholangiogram satisfactory

Subumbilical Hasson port
2X R sided 5mm ports
L-epigastric 100m port
cystic duct and artery skeletonized
transcystic cholangiogram
GB resected. Inadvertent perforation / spillage of GS
generous saline wash
spilt GS removed with irriagtion and suction

Post Operative Orders:
RPAOs,
Sips O/N as tolerated,
Analgesia,
S/C heparin,
TEDS

Figure 9: Sample operative report

In addition, the corpora underpinning the tools in this table are relatively small
when compared to biomedical or general domain corpora, e.g. the Colorado Rich Annotation
of Full Text corpus (CRAFT) at 790,000 tokens (biomedical) [77] or the Penn Treebank with
4.5 million words (general) [75].

It is not possible to reproduce an individual operative report from the experimental
data for illustrative purposes due to patient confidentiality requirements. A freely available
example from a RACS-approved audit program has been provided instead [78] (see Figure 9
– N.B. spelling and grammatical errors preserved, as these will be relevant to any processing
algorithms applied).

This sample was selected because it is of a similar nature to many of those observed
in the MUH data set. By simple inspection, it is clear that the type of language that is used
in an operative report is very different to that which is used in ordinary communication, or
even in biomedical articles. There is likely to be variability of practice between institutions,
regions, clinical specialties and even at the per-clinician level; however, it is expected that
the cohesion of the operative language will be higher than its similarity with other texts.

A study of the use of verbs within operative reports [79] demonstrates that the
sublanguage employed is clearly distinct from not only standard English-language text, but
also other types of clinical text – only 11.5% of verbs in the operative reports studied were
found to be defined within the domain-specific lexical resource UMLS.

Under the assumption that neither the vocabulary nor grammar of these reports
are typical of written language, it is expected that the text will also follow the sublanguage
behaviour as observed in subdomains of scientific literature [80]. This means that it will be
possible to observe patterns of subsets of vocabulary appearing in specified grammatical rela-
tion to one another. Defined statement types belonging to a sublanguage may be nonsensical
in general language (such as the high number of sentences that do not contain a verb seen in
Figure 9). These would be vanishingly unlikely in biomedical texts and newspaper articles,
and highly unlikely in more informal texts such as emails; however, are common in the con-
text of an operative report, and have the clear contextual implication of a temporally sorted
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list of activities describing the surgery.

When applying statistical NLP methods, the impact of the presence of a sublanguage
for clinical text, and more specifically, operative reports, is threefold [81]:

• Syntactic regularity: Classes of words can be found to behave in expected ways relative
to one another within documents of a defined sublanguage. This is relevant for relation-
ship and anaphora resolution, as it becomes possible to predict the role of each word
within a given phrase. This may help in word sense disambiguation, where a term or
abbreviation has more than one definition, and the correct interpretation is provided
statistically by context. In the instance of spelling mistakes and atypical abbreviations,
it can also allow accurate replacement of terms by the appropriate canonical form. In
the example report provided (Figure 9), the verb skeletonised, which is uncommon in
standard English text but describes a commonly employed surgical action, could be
identified as an action due to its position and relationship to other terms in the sen-
tenceCystic duct and artery skeletonised.

• Inequalities of likelihood: Within a specific sublanguage, terms have a certain proba-
bility of occurring as arguments of a given operator. See, for example, the regularity of
Subumbilical Hasson port. 2X R sided 5mm ports. L epigastric 100m port from Figure
9. The word port(s) (or nouns with statistically similar usage) at the end of a verb-free
sentence within the operation description section of the report increases the likelihood
that the preceding terms are type or size descriptors.

• Paraphrastic reductions: If a term is so likely in a given context as to be redundant, it
is considered to have zero information content. This can be clearly seen in the sentence
Inadvertent perforation with spillage of GS. In this instance, the clinician has not felt
that it is necessary to make note of which organ was inadvertently perforated – it is
clear both from the surgical target associated with a cholecystectomy procedure and the
contents of the spillage (gallstones) that it is in fact the gallbladder that was breached.
It would be unlikely that an anaphoric relationship such as this could be resolved under
general language; however, with sufficient appropriate training examples in the relevant
sublanguage it may be possible to refer a cutting action without an object back to the
target of the procedure itself.

One benefit of statistical approaches to NLP is that they can perform equally well in the face
of grammatical or ungrammatical text, on the assumption that the target text is ungram-
matical in a uniform way, i.e. the presence of a defined sublanguage. That is, limited prior
knowledge is taken into account other than the text that forms the corpus – if a corpus is
adequately representative of the text in question, and labelled items are accurate, the NLP
application will continue to perform acceptably.

3.5 Understanding the sublanguage of operative reports

It is therefore a key starting activity to understand the nature of the text that will be
processed as part of this project. In order to do this, the methodology used by Verspoor et
al. [82] to compare the nature of text between Open Access and traditional scientific journals
has been replicated here.
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Table 10: MUHON corpus properties

Paragraph type Count Non-empty count

Operation Performed 901 872
Details of Operation 852 214
Operation Findings 562 472
Closure 460 453
Tubes/Drains/Caths left insitu 263 263
Post Operative Instructions Surgeon 889 665

The goal of the methods being reproduced was to validate the use of Open Access
articles to produce generalisable results when developing biomedical text mining algorithms.
Open Access articles are commonly used due to their accessibility and free availability; how-
ever, if there were found to be significant differences in content or format, the applicability of
this work to articles published in traditional journals is limited. The authors found that the
semantic and syntactic similarity of Open Access and traditional journal text was sufficiently
high to confidently apply research results found in one type of article to the other.

The null hypothesis presented here is that the text in operative reports closely
approximates text found elsewhere in the clinical record and thus it can be expected that
clinically tuned NLP systems (such as cTAKES) can be applied directly to operative notes.
The following experiment will aim to find differences that refute this hypothesis.

3.5.1 Operative report sublanguage: methods

Four corpora were assembled for the purposes of this comparison.

• MUHON is a set of 901 operative notes that were collected from Macquarie University
Hospital between 2010 and 2015. These randomly selected operations were performed
across 874 admissions and represent data from 861 patients. The text was entered by
a member of the surgical team (typically the surgeon or assisting surgeon) as free text
under the following synoptic headings – Operation Performed, Details of Operation,
Operation Findings, Closure, Particulars of Tubes/Drains/Catheters left insitu., and
Post Operative Instructions Surgeon. This is comprised of 4349 paragraphs, 3245 of
which are not empty, totalling 6789 words.

• i2b2 Discharge Corpus [83] is a collection of fully de-identified discharge summaries,
which is made freely available for research purposes by the Informatics for Integrating
Biology and the Bedside (i2b2) group. The original purpose of this corpus was for
an automated de-identification NLP challenge. It is included here as a comparison
text collection because discharge summaries represent text drawn from a diverse cross-
section of the clinical record. This will allow comparisons of the specialised operative
notes to general clinical text. This will provide a basis to understand to what level
existing parsers tuned for clinical text can be expected to be effective. The un-annotated
data set was used for this analysis.
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The discharge summaries were collected under the synoptic headings – Admission Di-
agnosis, Principal Diagnosis, Associated Diagnosis, Discharge Diagnosis, Other Diag-
noses, History of Present Illness, Past Medical History, Reason for Admission, Medi-
cations on Admission, Allergies, Family History, Social History, Physical Examination,
Adverse Drug Reactions, Clinical Infections, Special Procedures and Operations, Labora-
tory Data, Principal Procedure, Hospital Course and Treatment, Discharge Medications,
Condition on Discharge, Discharge Disposition, Doctor Discharge Orders, Follow up,
Addendum to Discharge Summary, Additional Comments or just Preliminary Report if
the record in question was an Emergency Department admission. Minimal other data
items such as Admission/Discharge Date, Dictation Date, Report Signature Status, At-
tending/Dictating Doctor are available in the data set but were excluded from analysis
(free-text fields only were retained).

This set contains 919 reports, 97 of which contain only excluded fields. The 822 included
reports contain a total of 350,081 words.

• Reference is based on a 5% subset of the Penn Treebank [75], which contains data
from the Wall Street Journal and is available freely under fair-use for non-commercial
purposes. This text represents general non-clinical text, and comprises 199 articles and
100,676 words.

• PIL Corpus [84] is a collection of text from patient information leaflets, which was
created based on the Association of the British Pharmaceutical Industry compendium.
This corpus aims to be representative of clinical topics such as is contained in the
medical record; however, written in a style which is intended for comprehension by
the general population, as opposed to the discharge summaries and operative reports
created for later clinical reference. There are 474 files in this corpus, totalling 587,484
words.

Table 11 reports the number and incidence rate of a number of the morphosyntac-
tic/semantic phenomena in the four corpora.

For the purposes of this analysis, simple heuristic algorithms were defined as per
Verspoor et al. [82] (where available), or as described in the following list (including rationale
for any deviations). All algorithms were implemented in Python 3.4.3, based on the Natural
Language Toolkit (NLTK) [85]:

• Sentences were segmented using the nltk.tokenize.punkt module. This module uses
an unsupervised algorithm to build a model that can take into account likely abbrevia-
tions, collocations and words that typically indicate the start of sentences [86]. For each
corpus, sentence segmentation was performed using the included pre-trained English
language tokenizer. Accuracy and f-score of the pre-trained general English language
tokenizer model was then estimated by reviewing a randomly selected 5,000 character
sample.

• Tokens were counted using the nltk.tokenize.word_tokenize function, which is
based on the TreebankWordTokenizer – see for example:
s="Percutaneous insertion: 3x 1.4mm k-wires"

nltk.word_tokenize(s)

[‘Percutaneous’, ‘insertion’, ‘:’, ‘3x’, ‘1.4mm’, ‘k-wires’]
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• Type counts provided are case insensitive.

• The stopword list used was nltk.corpus.stopwords.words(‘english’).

• Negation was counted as instances of the words no, not, neither, nor and the affix n’t,
per Verspoor et al., with the addition of never, none, nothing and nowhere in order to
cover expected negation of patient history and observation items, such as the patient
has never. . . , nothing was observed. . . , none of the measurements. . . , nowhere on the
scan. . .

• The estimation of coordination, pronouns and passives were all determined as described
in Verspoor et al.

3.5.2 Operative report sublanguage: results and discussion

Table 11: Incidence of syntactic/semantic phenomena – comparison between corpora

MUHON i2b2 Reference PIL

Document count 901 822 199 474

Sentence count 183 20,819 3,970 30,389

Sentence count recall 99.32% 99.86% 99.94% 99.82%

Sentence count f-score 19.05% 92.47% 95.52% 89.16%

Avg. sentence count 0.20 25.33 19.95 64.11

Token count 6,570 327,520 100,918 604,645

Type count 1,759 16,239 12,048 14,057

Stopword count 837 93,190 30,474 218,530

Stopword % 11.88% 26.55% 30.27% 37.20%

Avg. document length 7.29 398.44 505.91 1,275.62

Avg. sentence length 35.90 20.17 25.42 19.90

Types/Tokens 25.0% 4.6% 12.3% 2.3%

Tokens/Types 44.0 21.6 8.1 41.8

Negatives 12 2,835 627 5,516

Negatives % 0.17% 0.81% 0.62% 0.94%

Coordination 168 8,624 1,859 16,525

Coordination % 2.39% 2.46% 1.85% 2.81%

Pronouns 42 14,586 5,142 58,565
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Pronouns % 0.60% 4.16% 5.10% 9.97%

Passives 1 546 12 1108

Passives % 0.014% 0.16% 0.012% 0.19%

K-L divergence: The Kullback-Leibler (K-L) divergence is a measure of the relative entropy
of two probability distributions. This can be interpreted as the expected additional number
of bits required to encode a corpus c1, using a code that is optimised for corpus c2, rather
than its own optimally devised code. This is defined for words w in the vocabulary V created
by combining unique terms in c1 and c2 as follows (and as defined in Verspoor et al):

DKL(c1||c2) =
∑

w∈V

(
p(w|c1).lnp(w|c1)

p(w|c2)

)
To allow for comparison, it is converted to a symmetric measure of divergence by taking the
minimum:

Divergence(c1, c2) = min {DKL(c1||c2), DKL(c2||c1)}

This value is undefined for terms that occur in one corpus and not the other, therefore
Laplace smoothing was implemented, which assumes a minimum frequency of 1 in each
corpus ∀w ∈ V .

As per Verspoor et al., this was calculated for the n most frequent words in the
combined vocabulary V, for different values of n, presented in Table 12. For the corpora ob-
served here; however, the limiting factor was the type count of the MUHON corpus, therefore
n was set to range from 100 to 1,500, instead of 100 to 10,000.

The disparity of size between these corpora limits the validity of calculating the K-L
divergence directly – the top n words by frequency in any combined vocabulary will skew
heavily to the larger corpus. As such, for the K-L measure only, a contiguous subsection was
randomly selected from the larger corpora to create sub-corpora matched for word count,
with the MUHON word count as the base size.

Log Likelihood: It is possible to find the terms that contribute the highest relative
frequency difference, and thus can be interpreted as identifying terms for a given body of
text using the log likelihood measure. It is calculated using the following equations, where
Ei is the expected value for a term t in ci, Oi is the number of occurrences of t and Ni is the
number of types in ci [87].

Ei =
Ni

∑
i Oi∑

i Ni

−2lnλ = 2
∑

iOiln
Oi

Ei

The log likelihood is also undefined for instances where Oi is 0; however, since
limOi→0Oiln

Oi

Ei
= 0, terms where Oi = 0 are ignored. The top 10 most distinctive words
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Figure 10: K-L divergence by number of terms considered
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when compared to the MUHON corpus are presented for each of the other experimental
corpora in Table 13.

The measures describing the MUHON corpus have the least similarity when com-
pared with the other corpora. The most notable differences can be generalised under the
following categories:

Reliability of sentence count: Sentence count f-score is extremely low for the MUHON
corpus when compared to the other three corpora. This simple measure provides strong
evidence to support the anecdotal perception that operative reports reflect a grammar that
is uncommon in the vast majority of written language. Interestingly the discharge report,
which also represents text from the clinical record, shows a far higher sentence count f-score.

The purpose of the discharge report is to communicate with other caregivers who
will interact with this patient at a later date, whereas the operative report is typically only
referred to by the team directly involved in the care of this patient for the current admission.
This change in intended audience may be the cause of this change in grammatical structure
and formalism of the text. Further analysis would be required to confirm this – including a
corpus of post-surgical letters to the referring clinician in the same analysis would provide the
most appropriate control in order to isolate the magnitude of the impact of target audience.

It is also probable that the list-like nature of the procedural descriptions contributes
to the low accuracy of the sentence segmentation – a very simple update to include hard line
breaks in sentence boundary detection algorithms may resolve a large proportion of this issue.

Due to the low reliability of the sentence segmentation within the MUHON corpus,
sentence length distribution was not analysed, as it is unlikely to be possible to draw a valid
conclusion.

High information density: Again, with respect to information density, the MUHON corpus
is seen to be the extreme outlier. Stopword density increases in an unsurprising fashion
relative to the level of assumed knowledge in the target audience – from the patient’s current
direct care team, to future clinicians, to the general public and finally to patients (drug
consumers) (MUHON, i2b2, Reference, PIL corpus respectively).

Redundant information is used to facilitate effective transmission of ideas to an
unfamiliar audience; however, for the purpose of later self-reference, this is wasteful for both
notation and review effort.

Extremely low pronoun and passivity ratios are also indicative of this increase in
information density – as the actor and target of each action is often implicit by context
(such as an action clearly performed on the patient) or by the action itself (craniotomy acts
explicitly on the skull). As such, references to it, that, (s)he, was etc. can be dropped without
impacting meaning.

This can also be seen in Table 13 – the most distinctive terms between MUHON and
the PIL and Reference corpora show a clear lexical difference, whereas the most significant
relative frequency differences between MUHON and i2b2 show the corpora to be highly
semantically related, but to differ strongly in their pronomial content. The distinctive terms
from the i2b2 corpus can all be considered redundant (with the exception of mg and no)
when applying the clipped grammar of the operative report. For example, a typical sentence
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She was afebrile, her vital signs were stable in the discharge summary is more likely to be
rendered afebrile; v.s. stable in the equivalent operative report.

High linguistic diversity: The ratio of tokens/type is significantly lower for the MUHON
corpus than any other. This can be interpreted as a high level of linguistic diversity relative
to other text types. This is unsurprising based on the high information density within this
corpus – as low information words are left out, each retained term is more likely to differ from
other included terms. This may also be indicative of a diversity of expression, such as spelling
mistakes or abbreviations of the same word, which is less common in more formal text types
such as pamphlets or published articles, e.g. resction/resection, polys/polyp, hydro/hydration.

High linguistic diversity is likely to be due also in some part to the combinatorial
nature of technical clinical language, where the scientific vocabulary is built of roots, suffixes
and prefixes to form very specific terminology (arthro-, bacterio-, cardio-, -ectomy, -graphy,
-tomy etc.). The low incidence of negation is also consistent with this characteristic, where
a precise term can be formed to indicate a negative,or more technical terms may be selected
than the simple list used in this experiment (non-, an-, absent, atypical).

The use of specific, scientific terminology can be expected to also affect the corpus
of discharge notes to some extent. The i2b2 corpus contains only a middling level of linguistic
diversity, however, and therefore the effect can be assumed to be minimal by comparison to
the contribution of the staccato grammar employed.

In Figure 10 it can be seen that none of the corpora have sufficient semantic simi-
larity to approach the identity threshold of 0.05, where it can be assumed that the samples
are sufficiently similar that they have been created from the same source. The divergence of
the MUHON frequency distribution from each of the other included corpora are the three
highest – again supporting the case for semantic and syntactic idiosyncrasy, and the need to
develop tools which are specifically tuned to this text. MUHON and the Reference corpora
have the highest level of divergence, most strikingly seen for very high frequency terms – the
slope of the increase between MUHON and PIL is much steeper for high frequency terms,
converging to a similar level of divergence as more terms are included. This is likely to be due
to the inclusion of common clinical terms in the PIL corpus, so stronger similarity is seen for
general/high level terms such as pain, blood, joint etc., but this is dwarfed by the significant
difference in structure and semantic content once lower frequency terms are included.

3.5.3 Operative report sublanguage: conclusion

The results seen here indicate that the purpose and likely the intended audience have a
stronger effect on observed linguistic features than the content or clinical nature of text.
This therefore refutes the null hypothesis, and implies that NLP applications developed for
the general clinical record will perform poorly when applied without refinement on operative
reports.

It would be valuable to collate a fifth corpus, containing post-operative letters to
referring clinicians. By providing strictly semantically matched content for operative reports,
it would be possible to confirm or contradict the hypothesis that the intended audience for
later reference is a key differentiator in the structure and composition of clinical text.
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There are many subtasks that must be tackled in order to move forward the devel-
opment/tuning of NLP tools to deal with operative reports. Based on the results seen here,
high priority should be given to resolving the unreliable performance of general purpose
sentence segmenting algorithms, thereby providing a solid basis for syntactic parsing. Once
this is achieved, domain specific lexical enrichment (both abbreviations and idiosyncratic
terms) is likely to be a worthwhile next step, given the high linguistic diversity observed.
The development of a large tagged corpus is also required in order to allow unsupervised
algorithms to perform reliable information extraction under the clipped grammar and high
level of assumed/implicit knowledge that is present in operative reports.
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Table 12: K-L divergence of term probability distributions

n terms PIL/i2b2 MUHON/PIL PIL/Ref MUHON/i2b2 i2b2/Ref MUHON/Ref
100 1.624740213 2.66765031 1.742293249 2.063121931 1.999214561 2.789538474
200 1.567467605 2.35204421 1.696258545 1.902352466 1.882862264 2.540080473
300 1.388122954 2.212521445 1.623366061 1.786785791 1.776283298 2.423724863
400 1.337323381 2.115531229 1.550393982 1.727642744 1.715199016 2.323053807
500 1.288743599 1.993618698 1.489903635 1.666077109 1.659913819 2.230949862
1,000 1.155648675 1.783619874 1.337485035 1.47932908 1.482772805 1.963735389
1,500 1.09718094 1.683349063 1.267883359 1.399923628 1.404990601 1.845728219
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Table 13: Log likelihood – 10 most distinctive terms relative to MUHON for each experimental corpus

MUHON PIL Corpus LL MUHON i2b2 LL MUHON Ref LL
. 4806.86 the 47020.00 the 1145.59

the 4620.92 and 34420.29 a 456.21
you 3750.92 was 32208.39 left 352.87
your 3233.33 of 27748.00 right 244.82
or 2173.08 to 24077.69 of 206.90
of 1926.47 a 21585.44 vicryl 191.93
to 1903.52 with 18246.12 analgesia 183.58
a 1745.01 patient 18175.01 monocryl 179.41
if 1614.18 on 16518.64 in 175.90
is 1571.25 in 13403.14 routine 167.66

and 824.12 for 11542.65 is 167.33
with 362.12 mg 10596.35 said 166.51
on 351.98 he 10004.37 to 160.58

vicryl 202.06 she 9972.85 it 142.45
analgesia 193.27 no 8651.48 knee 133.51
monocryl 188.88 is 7862.18 million 101.55

left 136.56 his 7641.64 mr. 99.43
when 134.65 discharge 7474.59 are 97.84
knee 131.84 at 7255.97 was 97.31

excision 131.78 as 4991.06 by 93.23
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4 Text mining of operative reports

The work presented in Chapter 2 provides a foundational understanding of the types of
concepts which are available in a typical operative report (see Table 6). The gap analysis
performed has demonstrated that much of this information is unavailable from standard
billing codes alone, and thus significant value is gained by the encoding of these reports into
a more appropriate knowledge model for the purpose of automated analysis, monitoring and
surveillance – SNOMED CT was established as the optimal knowledge model in this domain.
This chapter will therefore demonstrate initial work to create an automated encoding system
for SNOMED CT concepts, based on the statistical analysis of the text of operative reports
as discussed in Chapter 3.

4.1 Text mining of operative reports: methods

4.1.1 Target definition

A set of target concepts have been selected as proof of concept. Identification of the full
SNOMED CT representation is beyond the scope of both this project and the small set of
reports available for analysis, and is left for future work. The selection of tasks was prioritised
for proof of concept development based on:

1. With the chosen target structure in mind, which of the components are best suited for
the purposes of automated extraction?

2. What information is available within the written reports that is not available unam-
biguously in the billing codes?

3. Out of this available information, what is most clinically relevant for the purposes of
automated monitoring of patient safety?

Chute et al. [51] note that SNOMED CT outperforms other observed encoding
systems in all concept categories, but that this is particularly noteworthy for modifiers, which
exhibit extremely low levels of coverage elsewhere. From Table 6 it can be seen that locative
modifiers, which exhibit some of the lowest levels of coverage for identified in operative reports
also fall under this classification 14.

The target for this extraction is therefore defined as all concepts falling under the
SNOMED CT term 309825002: Spatial and relational concepts (qualifier value). There are
1110 children concepts, covering procedural approach, relative sites and surgical access val-
ues. These qualifiers are useful as input for a number of different types of automated patient
safety interventions. The approach qualifiers can form part of a relative risk calculation where

14Rejecting Devices and Findings from analysis due to their likelihood to be available elsewhere in the
EHR, and Anaesthesia, Positioning, Purpose and Tool for their overall low frequencies.
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a different surgical approach is indicative of underlying patient characteristics and are also re-
quired for comparative effectiveness measure where techniques and their associated outcomes
are evaluated. Site and relative location concepts are required for follow-up measures where
surgical revisions can be correctly matched to their initial procedures. Any of the qualifier
values may also be used for observational studies or as a measure of clinicians’ propensity to
adhere to guidelines.

4.1.2 Sentence boundary detection

It is first necessary to correct the very low performance sentence segmentation as observed
in Chapter 3. This is not a particularly complex task compared to other text mining activ-
ities; however, it is a foundational step in the NLP pipeline – errors will propagate to later
phases, where concepts may be missed which break across false-positive sentence boundaries,
or relationships may be wrongly resolved when a sentence break is missed. Consider the ab-
breviation neuro. obvs. (neurological observations) which appears 7 times in the MUHON
corpus, both with (3) and without (4) punctuation. With some domain knowledge, it is clear
to a human reader that the first period does not indicate a true sentence break as it leaves
an adjective without an associated object; however, it is unlikely to be available within a list
of known abbreviations created over standard English text, and thus will be missed by the
majority of standard sentence boundary detection algorithms.

By observation, the primary reasons for the extremely low accuracy of standard
sentence segmentation on the operative reports are (1) inconsistent use of standard capitali-
sation, which is likely to be encoded as an indicator for sentence breaks and (2) the prevalence
of short, ungrammatical sentences demarcated by newlines alone.

A freely available support vector machine (SVM) classifier [88] was trained using
10% of available data. In the evaluation data, 1202 sentences were detected correctly, with
28 false positives and no false negatives, giving a precision of 98.85%, recall of 100% and
f-score of 97.72%. This far outperforms the näıve classifier (f-score 19.05%), and approaches
the performance when applied to a more standard corpus (f-score 99.71%). The remaining
false positives fall into three categories:

1. The use of a question mark at the beginning of a sentence to indicate a query (?
discharge today)

2. Enumerated lists in the middle of otherwise normally formatted paragraphs (1. mobilise
. . . 2. drain . . . )

3. Rare abbreviations which were not identified from training data (subcut. maxolon)

The first two of these conditions are very unlikely to affect named entity recognition tasks
– despite forming false-positive sentence boundaries, no concepts are broken across them.
It is however possible that these will be important contextual clues for downstream text
processing activities such as detecting the level of certainty of a statement, and temporal
resolution respectively.

Rare abbreviations (even varying on a per-clinician basis) are likely to cause more
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issues in practice. Even extremely large corpus sizes will struggle to predict truly personal
abbreviations and therefore a more robust way of handling them must be identified.

4.2 Baseline

4.2.1 Baseline: methods

If an algorithm does not improve the accuracy of a given task above the most obvious or
base method, then its value is limited to interest only. Therefore, for the purposes of baseline,
direct dictionary matching and two popular existing tools were applied to the reports.

For these comparisons, if a term was present more than once in the text in the same
context (i.e. a modifier referring to the same element) this was counted as a single match or
miss as appropriate.

After data cleaning, 881 of 901 reports were included. Excluded reports did not have
any text in the Operation Performed, Details of Operation or Operation Findings fields.

All reports were annotated with their surgical specialty, location, surgical approach,
sidedness and whether they were an open or closed procedure. Only those elements which
could be successfully coded using the SNOMED CT sub-hierarchy identified above were
annotated. Unknown and uncodable qualifiers were therefore also included.

Direct text matching: A straightforward dictionary matching algorithm was developed
which considered terms in their raw form.

All possible n-grams were created for each sentence in each report, up to n=7
(reflecting the longest SNOMED CT term under consideration). As mentioned in the previous
section, this included a small number of false positive sentence boundaries, however this was
tolerated for the purpose of devising the simplest possible text matching method.

These n-grams were matched directly against the preferred terms of the subset of
SNOMED CT of interest. In the instance of a term being included in more than one possible
match, the longest available match was returned. A simple thesaurus was also constructed
which included all UMLS synonym terms and matched in the same manner, for the sake of
comparability against existing tools.

Existing tools: The existing tools MetaMap [89] and cTAKES [69] were applied in order
to assess performance of widely used, freely available clinical information extraction tools
against the algorithms developed here. These tools were chosen as they far outrank other
known tools by number of published PubMed articles in the last 5 years and therefore are
assumed to be the most commonly implemented.

The optional inbuilt word sense disambiguation functionality of MetaMap was used
in order to filter results. The AggregatePlaintextFastUMLSProcessor analysis engine was
used to run cTAKES.
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Table 14: Accuracy of baseline information extraction techniques

Match Count Correct Matches
(%)

False Matches (%)

MetaMap 5,972 4,821 (80.1) 1,151 (19.9)

cTAKES 6,845 6,129 (89.5) 716 (10.5)

Direct text
matching

819 792 (96.7) 27 (3.3)

4.2.2 Baseline: results and discussion

Table 14 shows the differences between the number of matches which are made when pro-
cessing the raw input text under the three strategies defined above.

MetaMap is greedy – matching all possible non-overlapping terms, irrespective of
context, and then using a scoring algorithm based on configurable settings, together with the
input text, to determine the statistically most likely match out of these candidate matches
[90]. This results in a somewhat higher false positive rate than either cTAKES or straight
dictionary matching.

cTAKES takes a more comprehensive NLP approach [69]. Where MetaMap’s pre-
processing consists of only phrase segmentation, cTAKES performs sentence boundary de-
tection, tokenization, normalization, part-of-speech (POS) tagging and shallow parsing be-
fore attempting named entity recognition. It is able to create more matches than MetaMap
over the same text while relying on the same underlying UMLS synonym dictionary by a
combination of custom lexical enrichment and by not imposing the same restriction for non-
overlapping terms.

Unsurprisingly, the simple dictionary algorithm produces far fewer matches than
either of the other tools, even with the inclusion of UMLS thesaurus terms. From this, it can
be seen that despite the differences identified in Chapter 3 between general clinical text and
the operative report, there is sufficient similarity for these tools to perform well for certain
tasks. cTAKES in particular has been developed with an architecture geared for extension
and customisation and shows potential for being adapted to the operative report.

Table 15 contains a breakdown of results where these tools were applied to four
specific subtasks: identifying surgical site, approach, sidedness and whether the procedure
was open or closed. cTAKES generally outperforms the other two tools when applied to
these targeted tasks, except in the instance of determining the side of the body on which
a procedure was performed. This task is trivial compared to some of the complex concepts
which can be recognised by this application; however, it clearly does not form part of the
cTAKES knowledge base.
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Table 15: Baseline results

Site Approach Sidedness Open/Closed

Metamap baseline

Precision 0.909 0.869 0.932 0.930

Recall 0.125 0.112 0.925 0.308

f-score 0.220 0.198 0.929 0.462

cTAKES baseline

Precision 0.994 0.992 0 0.988

Recall 0.443 0.750 0 0.676

f-score 0.613 0.854 N/A 0.796

Dictionary match baseline

Precision 0.921 0.913 0.992 0.911

Recall 0.097 0.131 1.00 0.106

f-score 0.176 0.230 0.996 0.191

4.3 Classifier development

Given the poor performance of simple term-matching seen above, this next set of experiments
was designed to determine the feasibility of using statistical text classification to automati-
cally identify concepts within text from operative reports. The tasks of identifying sidedness
(left/right/bilateral) and openness of a given procedure, if done effectively, will allow a good
automated matching to concepts from the SNOMED CT sub-hierarchy Spatial and relational
concepts.

Site of operation and surgical approach classifiers were not built – given the large
number of potential matches relative to the corpus size this was not likely to be successful.
Instead, automated identification of surgical specialty was attempted in order to provide a
meaningful filter of identified concepts that can reduce the high level of false positives seen
in the baseline methods.

4.3.1 Classifier: methods

Pre-processing: The 881 reports (plus their annotations as described above) were first pre-
processed to allow effective feature extraction. All punctuation and non-alphanumeric text
was removed from text, and numbers were replaced with a placeholder (NUM). Text case
was normalised and stop words removed.

Feature extraction: The operative reports were used to create a bag-of-words frequency
distribution as the most basic set of features. Bi-gram, tri-gram and lemmatized term features
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were also created.

A list of medical suffixes and affixes was collated to create a clinically tuned stem-
ming algorithm MedStem that is able to stem for clinically relevant matches at either the
beginning or the end of a word. If a word matched both a suffix and an affix in the source
list, both features were counted (e.g. arthroplasty matches both arthro- – of or relating to
joints – and -plasty – repair or reconstruction).

In addition, a simple spellchecking algorithm was developed. Words contained within
the source SNOMED terms were used as the dictionary of known words. If a word in the input
text was not in the dictionary of known words, common spelling errors (missing, transposed,
replaced or inserted letters) were derived and checked against this same dictionary. If more
than one alternate spelling was present in the known words, the most likely spelling was
returned (by dictionary frequency).

Classifier design: A Support Vector Machine (SVM) classifier was chosen as it was expected
to be effective in the high-dimensional space of surgical specialty. SVMs are however, sensitive
to class imbalance [91] and therefore classifier training was performed both with the original
data set and with a data set that had been balanced by undersampling.

L2 regularization was applied in order to compensate for the small number of train-
ing samples and large number of parameters used as input and avoid subsequent overfitting.

Classification: A 10-fold cross-validation methodology was followed, whereby sets of training
(60%), validation (20%) and testing (20%) data were randomly assigned 10 times, in order to
ensure generalisability to new data. The average performance over 10 trials is reported here.

4.3.2 Classifier: results and discussion

Precision, recall and f-score were calculated for each feature set when applied to each task. In
the case where the target domain was not binary true/false, the scores were averaged across
all target labels.

The results of the text classification are shown in Table 17. Overall, it can be seen
that for well-defined tasks, text classifiers outperform existing tools. Whether a surgery is
open or closed can be detected with high precision (0.945) and an f-score of 0.931, compared
to the best performing available method (cTAKES), which had an f-score of 0.796. Whilst
cTAKES has acceptable precision for this task, the poor recall reflects the significant differ-
ences that have been identified between the operative report and standard clinical text – a
high number of strings cannot be recognised due to their atypical expression, as expected.
In future work, an operative report-specific lexicon, including the detection of abbreviations
and acronyms in common usage, should be collated and integrated with the existing cTAKES
knowledge base to achieve improved performance.

Although the detection of surgical specialty is not directly comparable with the
baseline site and approach measures, the high performance of this measure on a balanced
training set indicates the potential for developing knowledge-based system which can be used
to simultaneously relax matching rules (e.g. to allow partial or misspelled matches) without
increasing false positive matches by applying smarter filters to reject extraneous matches.
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Each task clearly has a different profile for optimal classifier design. This is an impor-
tant finding, as it shows that a single approach is not going to be applicable to all problems,
instead an iterative workflow of classification and validation is required. This workflow is
expensive, as manual labelling and tuning is required for each sub-step; however, it seems
unavoidable based on the disparities seen here.

Feature set size (see Table 16) was reduced by at most 25%, by the application of
a lemmatizing algorithm. Bigram and trigram classifiers increased feature set size, however
for the sake of computational efficiency and overall classifier performance, all but the 2,609
most frequent features (equivalent in size to the raw feature set) were discarded.

Balancing the training set is an effective way of improving classifier performance in
most instances, however its effect is much more significant for the tasks of identifying surgical
specialty and laterality than for identifying whether a surgical approach is open or closed.
Surgical specialty labels, however, have the highest number of target classes, and are therefore
more affected by the undersampling technique – losing more than 80% of the training set and
having as low as 10 samples corresponding to each label. This shows that the classifiers are
somewhat resilient to the low training set size; however, further work must be done in order
to determine the learning curve of each classifier and therefore the point at which increasing
the labelling effort gives only diminishing returns.

It is intuitive that the MedStem routine is the most effective for determining whether
a procedure is open or closed (f-score 0.931) due to the way in which clinical terms are built –
laparoscopy, cystoscopy and arthroscopy being grouped together based on their suffix creates
a much more strongly indicative feature than any of these terms individually.

Similarly, the high performance of bigram and trigram features makes sense when
reviewing the most informative bigram and trigram features – many of these contain both an
action and a location, which aligns with expected surgical specialty strongly differentiating
features.

The task of identifying the side (left/right/bilateral) of a surgical procedure seems
at a surface level to be the most trivial, however, this is seen to perform the most erratically
in practice. This is likely to be due to the low number of meaningful features which are then
overwhelmed with erroneous features in this small sample size. As seen in the previous section
(Table 15), this task is better suited to an heuristic search method and performs very well
without the assistance of a classifier (f-score 0.996).

4.3.3 Classifier: conclusion

There is no one-size-fits-all approach to NLP for operative reports. These experiments have
demonstrated that for each encoding sub-task, an individually tuned approach is required,
which may be either heuristic or statistical. This is a high effort and high cost solution,
however given the restricted input domain, can be expected to pay off with high accuracy
classification.

These experiments are limited by the relatively small sample size that was made
available for development, however with a balanced training strategy it is still possible to
achieve good results. Additional data should be collected in order to understand the learning
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Table 16: Feature set size

Feature set size %

Raw input 2,609 100

Spell-checked 2,116 81

Lemmatized 1,956 75

MedStemmed 2,142 82

Bigrams 6,721 258

Trigrams 8,035 308

Table 17: Text classifier results
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curve of these classifiers and thus estimate a safe minimum training set size before producing
any production classifiers.

While it has been demonstrated that significant differences exist between the text
in operative reports and general clinical text, it is seen that tools developed for general
clinical text still perform well for certain tasks. cTAKES in particular, due to its extensible
architecture, has been identified as a good candidate upon which to base future work. It
is possible to extend the cTAKES knowledge base and analytical engines for new textual
sources and output tasks.

Based on the work done here, it is likely that the most productive next step towards
a fully automated SNOMED CT encoding of operative reports is to curate an operative
report-specific synonym knowledge base. Heuristic detection of abbreviations and acronyms
which can then be manually defined and implemented in the cTAKES processing pipeline
is expected to have significant positive impact results seen above. Given the diversity of
language seen in these reports, a large number of additional reports will be required for this
step.
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5 Conclusion

The work presented in this thesis is intended to provide a broad foundation upon which to
base efforts toward automated surveillance of patient safety in the surgical domain. This
chapter summarises the findings and then presents areas identified for future research.

5.1 Summary of findings

5.1.1 Limitations of the current practice of surgery characterisation

For the purposes of automated patient safety interventions and observational studies, the
current practice of characterisation of surgeries within a typical EHR is inadequate. A gap
analysis was performed on a set of operative reports and it was found that only 31% of the
data contained in operative reports is available unambiguously within the billing codes.

The data that is available in the written report but cannot be retrieved from the
billing codes includes clinically relevant elements such as surgical approach, relative location
and peri-operative observations. These elements are valuable for automated surveillance and
comparative effectiveness measures, both of which are lacking in current surgical practice,
which relies instead on manual reporting and case studies. Automated encoding will create
opportunities for significantly improved electronic reporting of surgical adverse events – a
process which is currently inconsistently and manually managed.

To be able to release this data for automated analysis, it is necessary to identify
an appropriate choice of target knowledge model that can effectively and completely contain
this information. Through a review of ontologies that are in use to represent surgeries for
many different purposes, SNOMED CT was identified as the best candidate model due to its
flexibility, granularity, wide adoption and hierarchical nature. Manual encoding of a test set
of operative reports into SNOMED CT demonstrated 95% unambiguous coverage of clinically
relevant concepts.

5.1.2 Empirical analysis of the text of operative reports

A review of natural language processing systems in the clinical domain was undertaken and
showed no existing tools that were built with operative reports forming part of either the
input corpus or test set. Based on this, statistical textual analysis was performed in order to
estimate the applicability of general clinical tools to the sublanguage of operative reports.

The sublanguage of operative reports was found to be not representative of the
language of general clinical text. It is characterised by extremely high information density
and linguistic diversity, with redundant information omitted – including pronouns and even
the subject and/or object of certain verbs, where these are implicit in the narrow context of
the report. There is also significant variability of expression (grammar, spelling, abbreviation),
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which can be tolerated by the target audience of the report (the immediate patient care team)
as opposed to more formal components of the clinical record.

This lack of coherence implies that tools developed for the EHR as a whole, or
other specific subsets of clinical language (such as radiology reports) cannot be assumed to
be directly applicable to the operative report.

5.1.3 Automation of encoding: proof of concept

A set of classifiers were developed that allow the automated encoding of a subset of the
target ontology. These classifiers achieved f-scores of 0.945 and 0.965 for the surgical approach
(open or closed) and surgical specialty respectively. The laterality of a procedure was more
effectively detected with a simple heuristic approach (f-score 0.996).

The experimental corpus available for this project was limited, however it was still
possible to build text classifiers with reasonable accuracy for certain well-defined classification
tasks. This demonstrates the coherence of the text and the general feasibility of classifier
design in the pursuit of the goal of automated encoding of surgical procedures.

Each classification task had a distinctly different optimal design profile, which sug-
gests that an iterative design approach is required.

Despite the distinctive sublanguage which was observed in operative reports, the
existing clinical NLP tool cTAKES was found to perform relatively well for some tasks (e.g.
f-score 0.854 for detection of surgical approach), and to have a low number of false positive
matches across the board. The high number of false negatives, by comparison, is consistent
with the observed informal spelling and casual style of abbreviation in operative reports.
Operative report-specific lexical enrichment is expected to go a long way towards resolving
this issue. There were certainly some gaps in its ability (e.g. precision and recall were both
zero for the detection of laterality of surgical procedure); however, the extensible nature of
the knowledge base and analytical engine implies that cTAKES may still provide a strong
foundation for further work.

5.2 Areas of future research

A wider project encompassing the following areas of research is planned to immediately follow
this work:

5.2.1 Corpus expansion

The corpus used in this work was restricted by coincidental EHR upgrades at MUH, reducing
the availability of personnel to provide the requested volume of reports. Now that this upgrade
effort has concluded, the opportunity to collate a much larger data set is available.

With an expanded corpus, a key initial activity is to investigate the learning curve
of these classifiers in order to determine a sensible and practically achievable corpus size that
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is necessarily to reliably build additional successful classifiers.

In addition, both theoretical and practical observations (Chapters 3 and 4 respec-
tively) have shown that lexical enrichment with operative report definitions, synonyms and
abbreviations is certainly the single most necessary step to improve the performance of NLP
tools when applied to operative reports.

5.2.2 Application of SNOMED CT encoding to real-world problems

SNOMED CT encoding was chosen in part due to the deep knowledge that is provided by
its hierarchy. The detection of surgical specialty is the first step towards a knowledge-based
NLP model, where filters and named entity recognition can become ‘smarter’ based not only
on the immediate surrounding text but also on the broader characteristics of the report and
procedure. The application of these classifiers to provide contextual clues for encoding must
be thoroughly explored.

This project has identified a theoretical best representation of surgical procedures for
the automation of surveillance, quality and comparative effectiveness measures in SNOMED
CT; however, validation of this selection in practice is still required. The successful design,
implementation and evaluation of an automated platform for one or more of these goals would
provide unequivocal evidence for this selection.

In order to achieve this, it will be valuable to expand the scope of interviews with
the quality and safety teams on the front-line at MUH to break down the incident reporting
and investigation workflow into its component steps. From this, targets for further classifier
development and other encoding subtasks can be completed and evaluated in practice. These
targets will be amalgamated into a single tool which can aggregate hospital and department
quality and safety performance.

5.3 Conclusion

Operative reports contain valuable information which is currently far from being fully ex-
ploited in the pursuit of improving patient safety. Billing codes provide only a small pro-
portion of this information in a format that is available for surveillance and research, and
therefore a system which can automatically encode a higher proportion of the written report
into structured information is required.

SNOMED CT is believed to be the best available structured format for these pur-
poses, and this project has demonstrated that it is feasible to use a combination of NLP
techniques to perform this encoding, although modifications are required if existing clinical
tools are to be used.
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[25] D. Vrandečić, “Ontology evaluation,” in Handbook on Ontologies (Second Edition),
S. Staab and R. Studer, Eds. Springer Berlin Heidelberg, 2009, pp. 293–313.
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