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Figure 4.1:  RP-HPLC profile of the UV filter extract from a normal lens nucleus (88 years old). 
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the reaction mixtures were taken at the indicated time points and analysed by RP-HPLC. 
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Figure 4.11:  Linear regression plot of the nuclear ( , R2 = 0.9105) and cortical (○, R2 = 0.7033) 
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product of m/z 461 (M+H+) and λmax 263/367 nm (2, double peak). RP-HPLC injection 

volumes were 50 μL for A and B. 182 

Figure 5.12:  RP-HPLC profiles at 360 nm and 254 nm (inset) of acid-hydrolysed Cys-3OHKG (1.1 
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Figure 6.1:  Concentration of peroxides generated following illumination of Kyn-modified lens protein 

(0.96 mol of Cys-Kyn per mol protein, ) at 4°C and pH ~7 and corresponding non-
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protein, ) and corresponding non-illuminated control ( ); 3OHKyn-modified lens protein 

(0.05 mol of Cys-3OHKyn per mol protein, ) and corresponding non-illuminated control 
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triplicate measurements from a single experiment typical of several. 202 

Figure 6.2:  Effect of the level of UV filter modification on peroxide yield. Concentration of peroxides 

generated following illumination of A) 3OHKG-modified lens proteins (0.40 mol of Cys-

3OHKyn per mol protein; white bar, 0.78 mol of Cys-3OHKyn per mol protein; striped bar, 

and 1.14 mol of Cys-3OHKyn per mol protein; dotted bar) and B) 3OHKyn-modified lens 

proteins (0.05 mol of Cys-3OHKyn per mol protein; white bar, 0.08 mol of Cys-3OHKyn per 

mol protein; striped bar, and 0.64 mol of Cys-3OHKyn per mol protein; dotted bar) at 4°C 

and pH ~7. Equal concentrations of protein (1 mg/mL) were used in each case. Data are 

means ± SD of triplicate measurements from a single experiment typical of several. 204 

Figure 6.3:  Effect of wavelength of illuminating light on peroxide production by 3OHKG-modified 

lens proteins (0.74 mol of Cys-3OHKyn per mol protein, 1 mg protein/mL) at 4°C and pH ~7. 

Illumination was carried out as described in the Experimental section using filters which cut-

off the transmitted light at 305 ( ), 345 ( ) and 385 (▲) nm. Data are means ± SD of 

triplicate measurements from a single experiment typical of several. 205 

- xiv - 
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min time points as assessed by Student’s t-test. Data are means ± SD of triplicate 

measurements from a single experiment typical of several. 206 

Figure 6.5:  Effect of buffers made up using H2O (white and striped bars) versus D2O (black and dotted 

bars) on peroxide formation at 4°C and pH / pD 7, from A) 3OHKG-modified lens protein 

(0.40 mol of Cys-3OHKyn per mol protein) and B) 3OHKyn-modified lens protein (0.05 mol 

of Cys-3OHKyn per mol protein). Catalase was added to some of the samples immediately 

after the cessation of illumination (striped and dotted bars); controls (white and black bars) 

did not have catalase added. 3OHKG-modified lens proteins (2 mg/mL) and 3OHKyn-

modified lens proteins (0.5 mg/mL) made up in D2O were statistically different from the 

samples made up in H2O at the 120 min time point as assessed by one-way ANOVA with 

Tukey’s post hoc-test. The samples made up in D2O and H2O at the 0 min time point were not 

significantly different from the illuminated samples with added catalase at the 120 min time 

point. Data are means ± SD of triplicate measurements from a single experiment typical of 

several. 207 

Figure 6.6:  Effect of sodium azide (10 mM; , ) on the formation of peroxides following illumination 

of 3OHKyn-modified lens protein (1 mg protein/mL, 0.05 mol of Cys-3OHKyn per mol 
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samples, with ( ) or without ( ) azide were incubated in the dark for 120 min. Data in the 

presence of sodium azide were statistically different to the samples in the absence of sodium 
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free Cys-UV filter adducts as assessed by one-way ANOVA with Tukey’s post hoc-test. Data 
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striped bars) and AHA (0.11 mol of AHA per mol protein, black and dotted bars) modified 

lens protein samples upon illumination. Control samples for AHB (striped bars) and AHA 
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(dotted bars) were kept in the dark and analysed simultaneously. Data (expressed as mM of 

modified amino acid per mol of parent Tyr) are means ± SD of triplicate (0, 15 and 30 min 

time points) and quadruplicate (60 and 120 min time points) samples. In both observations 

(AHB- and AHA-treated lens proteins) there was an UV light independent steady increase in 

DOPA levels. 225 
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ABSTRACT 
 

The kynurenine-based UV filters are unstable under physiological conditions and undergo 

side chain deamination, resulting in α,β-unsaturated carbonyl compounds. These compounds 

can react with free or protein bound nucleophiles in the lens via Michael addition. The key 

sites of the UV filters kynurenine (Kyn) and 3-hydroxykynurenine (3OHKyn) modification in 

human lenses include cysteine (Cys), and to a lesser extent, lysine (Lys) and histidine (His) 

residues. Recent in vivo studies have revealed that 3-hydroxykynurenine-O-β-D-glucoside 

(3OHKG) binds to Cys residues of lens crystallins in older normal human lenses. As a result 

of this binding, human lens proteins become progressively modified by UV filters in an age-

dependent manner, contributing to changes that occur with the development of age-related 

nuclear (ARN) cataract. Upon exposure to UV light, free UV filters are poor photosensitisers, 

however the role of protein-bound species is less clear. It has been recently demonstrated that 

Kyn, when bound to lens proteins, becomes more susceptible to photo-oxidation by UV light. 

Therefore, the investigation of 3OHKG binding to lens proteins, and the effect of UV light on 

proteins modified with 3OHKG and 3OHKyn, were major aims of this study. As a result of 

the role of these compounds as UV filters and their possible involvement in ARN cataract 

formation, it is crucial to understand the nature, concentration and modes of action of the UV 

filters and their metabolites present in the human lenses. Therefore, an additional aim was to 

investigate human lenses for the presence of novel kynurenine-based human lens metabolites 

and examine their reactivity.  

 

As 3OHKG is not commercially available, to conduct protein binding studies, an initial aim of 

this study was to synthesise 3OHKG (Chapter 2). Through the expansion and optimisation of 

a literature procedure, 3OHKG was successfully synthesised using commercially available 

and inexpensive reagents, and applying green chemistry principles, where toxic and corrosive 

reagents were replaced with benign reagents and solvent-free and microwave chemistry was 

used. A detailed investigation of different reaction conditions was also conducted, resulting in 

either the improvement of reaction yields or reaction time compared to the literature method. 

Applying the same synthetic strategy, and using key precursors from the synthesis of 

3OHKG, the UV filters 3OHKyn and 4-(2-amino-3-hydroxyphenyl)-4-oxobutanoic acid-O-β-

D-glucoside (AHBG), were also successfully synthesised (Chapter 3). 

 

Chapter 4 describes the investigation of both normal and cataractous human lenses in an 

attempt to identify novel human lens metabolites derived from deaminated Kyn and 3OHKyn 
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(Chapter 4, Part A). Initially, 4-(2-aminophenyl)-4-oxobutanoic acid (AHA), glutathionyl-

kynurenine (GSH-Kyn), kynurenine yellow (Kyn yellow), 4-(2-amino-3-hydroxyphenyl)-4-

oxobutanoic acid (AHB), glutathionyl-3-hydroxykynurenine (GSH-3OHKyn) and 3-

hydroxykynurenine yellow (3OHKyn yellow) were synthesised and human lenses were 

examined for their presence. AHA and AHB were synthesised from similar precursors to 

those used in the synthesis of 3OHKG, while the GSH adducts and yellow compounds were 

synthesised from Kyn and 3OHKyn via base induced deamination. Following isolation and 

structural elucidation, AHA, AHB and GSH-Kyn were confirmed as novel human lens 

metabolites. They were quantified in low pmol/mg lens (dry mass) levels in normal and 

cataractous lenses of all ages, while GSH-3OHKyn, Kyn yellow and 3OHKyn yellow were 

not detected. In contrast to AHA, the lens metabolites AHB, GSH-Kyn and GSH-3OHKyn 

were found to be unstable at physiological pH. The spectral properties of these compounds 

suggest that they may act as UV filters.  

 

Chapter 4 (Part B) also describes the identification and characterisation of a novel human lens 

UV filter, cysteinyl-3-hydroxykynurenine-O-β-D-glucoside (Cys-3OHKG). An authentic 

standard was synthesised via Michael addition of cysteine to deaminated 3OHKG. Cys-

3OHKG was detected in low pmol/mg lens (dry mass) levels in normal lenses only after the 

5th decade of life and was absent in cataractous lenses. Cys-3OHKG showed rapid 

decomposition at physiological pH.  

 

Chapter 5 describes the identification and quantification of amino acids involved in covalent 

binding of 3OHKG to lens proteins. Model studies with bovine lens proteins and 3OHKG at 

pH 7.2 and 9.5 were undertaken. The amino acid adducts were identified via total synthesis 

and spectral analysis, and subsequently quantified upon acid hydrolysis of the modified lens 

proteins. Under both pH conditions, 3OHKG was found to react with lens proteins 

predominantly via Cys residues with low levels of binding also detected at Lys residues. 

Comparative studies with Kyn (pH 9.5) and 3OHKyn (pH 7.2 and 9.5) resulted in modified 

lens proteins at Cys residues, with only minor modification at Lys residues at pH 9.5. The 

extent of modification was found to be significantly higher at pH 9.5 in all cases. His adducts 

were not identified. 3OHKG-, Kyn- and 3OHKyn-modified lens proteins were found to be 

coloured and fluorescent, resembling those of aged and ARN cataractous lenses. In contrast, 

AHB and AHA, which can not form α,β-unsaturated carbonyl compounds, resulted in non-

covalent modification of lens proteins. AHB may contribute to lens colouration and 

fluorescence as further reactions of this material yielded species that have similar 
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characteristics to those identified from 3OHKyn modification. These species are postulated to 

arise via auto-oxidation of the o-aminophenol moiety present in both 3OHKyn and AHB.  

 

In Chapter 6, the potential roles of 3OHKG and 3OHKyn, and the related species AHA and 

AHB, in generating reactive oxygen species and protein damage following illumination with 

UV light was examined. The UV filter compounds were examined in both their free and 

protein-bound forms. Kyn-modified proteins were used as a positive control. Exposure of 

these compounds to UV light (λ 305-385 nm) has been shown to generate H2O2 and protein-

bound peroxides in a time-dependent manner, with shorter wavelengths generating more 

peroxides. The yields of peroxides were observed to be highly dependent on the nature of the 

UV filter compound and whether these species were free or protein bound, with much higher 

levels being detected with the bound species. Thus, protein-bound 3OHKyn yielded higher 

levels of peroxide than 3OHKG, with these levels, in turn, higher than for the free UV filter 

compounds. AHB-treated lens proteins resulted in formation of low but statistically 

significant levels of peroxides, while AHA-treated lens proteins resulted in insignificant 

peroxide formation. The consequences of these photochemical reactions have been examined 

by quantifying protein-bound tyrosine oxidation products (3,4-dihydroxyphenylalanine 

[DOPA], di-tyrosine [di-Tyr]) and protein cross-linking. 3OHKG-modified proteins gave 

elevated levels of di-Tyr, but not DOPA, whereas 3OHKyn-modified protein gave the inverse. 

DOPA formation was observed to be independent of illumination and most likely arose via o-

aminophenol auto-oxidation. AHB- and AHA-treated lens proteins resulted in statistically 

insignificant di-Tyr formation, while a light independent increase in DOPA was observed for 

both samples. Both reducible (disulfide) and non-reducible cross-links were detected in 

modified proteins following illumination. These linkages were present at lower levels in 

modified, but non-illuminated proteins, and absent from unmodified protein samples.  

 

This work has provided an optimised synthetic procedure for 3OHKG and other lens 

metabolites (Chapters 2 and 3). Four novel lens metabolites have been identified and 

quantified in normal and cataractous human lenses (Chapter 4). Subsequent experiments, 

described in Chapter 5, identified the major covalent binding sites of 3OHKG to lens proteins, 

while AHA and AHB showed non-covalent binding. Further work described in Chapter 6 

showed that protein-bound 3OHKG, Kyn and 3OHKyn were better photosensitisers of 

oxidative damage than in their unbound state. Together, this research has provided strong 

evidence that post-translational modifications of lens proteins by kynurenine-based 

metabolites and their interaction with UV light appear, at least in part, responsible for the age-
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dependent colouration of human lenses and an elevated level of oxidative stress in older 

lenses. These processes may contribute to the progression of ARN cataract. 
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