REMOTE REDUNDANCY: ARTIFICIAL RELIABILITY
IN A REMOTE CAMERA DEVICE

Joshua Pidgeon

Bachelor of Engineering
Mechatronics Engineering

-
bg
ey

MACQUARIE
University

SYDNEY-AUSTRALIA

Department of Engineering
Macquarie University

November 16, 2017

Supervisor: Dr. Mohsen Asadnia







ACKNOWLEDGMENTS

I would like to acknowledge Brett Richardson of Outback Tech for his assistance
in identifying a suitable application for this project.

I would like to thank Dr. Mohsen Asadnia for his supervision and academic
advice for this project.

I would like to acknowledge Dr. David Inglis, Dr. Rex Di Bona, and Andrew
Proschogo for their guidance and advice for this project.

I would also like to acknowledge the support of my wife, Amanda. Without her
support and encouragement, this project would not have reached its conclusion.

I also thank my Creator God for his design and equipping.







STATEMENT OF CANDIDATE

I, Joshua Pidgeon, declare that this report, submitted as part of the require-
ment for the award of Bachelor of Engineering in the Department of Engineering,
Macquarie University, is entirely my own work unless otherwise referenced or ac-
knowledged. This document has not previously been submitted for qualification

or assessment at any academic institution.

Student’s Name: Joshua Pidgeo

Student’s Signature:

Date: November 16, 2017







ABSTRACT

A self-supervised redundancy system has been developed for open-source mi-
crocontrollers, to tolerate hardware faults, and to recover from software faults.
This device is intended to enable reliable deployment in rural and difficult access
situations. An exclusion lock is used to prevent additional microcontrollers from
simultaneously controlling the system. Watchdog timers provide resetting capa-
bility, to enable error recovery. The implementation of this system, into a camera
monitoring device, was not completed, because of clashes in the initialisation of

the modules.







Contents

Acknowledgments iii
Abstract vii
Table of Contents ix
List of Figures XV
List of Tables xvii
1 Introduction 1
1.1 Reliability in Remote, Rural, Difficult Access Locations . . . .. ... .. 1
1.2 Project Overview . . . . . . . . . . . e 2

2 Background 5
2.1 Introduction . . . . ... 5

2.2 Background . . ... ... 5
2.3 Duplication . . . . . . 6
2.4 Master Identification and Assignment . . . . . ... ... L. 6
25 Voting . . . . . e e 7
2.6 Fault-Detection . . . . . . . . . .. ... 8
2.7 Restartability Analysis . . . . . . .. ... . ... .. .. 8
2.8 Conclusion . . ... . .. e e e 8

3 Supervised Parallel Redundancy 9
3.1 Imtroduction . . . . .. L 9

32 Control Flow . . . . . .. . . . ... 9
3.3 Circuit Design . . . . . . . . e 10
3.3.1 EnmableSignals . . .. .. .. ... ... 10

332 SystemInputs . . ... ... ... L 11

3.3.3  Experimental Inputs . . . .. ... L Lo oL 11

334 Clock Circuit . . . . .. . .. . . e e 11

3.3.5  In-System Programming . .. ... ... ... ... ... . .... 12

3.4 Arduino Software Code . . . . . . . . ... .. 12




b'e CONTENTS

341 Supervised MCU . . . . .. ... L
3.4.2 Supervisor MCU . . . ... ... . . .
3.5 Experimentation . ... . ... ... ... ... ... ... ...
3.5.1 Experimental Setup . . . . .. ... ...
3.5.2 Introduced Errors . . . .. .. ... ... L
3.5.3 Behaviour Of Enable Signals . . .. ... ... ... ......
3.54 PWM Output Without Errors . . . . . ... ... ... . ...
355 PWM Output With Errors . . . . . .. ... ... ... ....
3.5.6 Binary Outputs Without Errors . . . . . .. ... ... . ...
3.5.7 Binary Outputs With Errors . . . ... ... ... ... ....
3.6 Results . . . . .
3.6.1 Behaviour Of Enable Signals . . . . .. ... ... ... ....
3.6.2 PWM Output Without Errors . . . . .. .. ... ... ....
3.6.3 PWM Output With Errors . . . .. . . . ... ... ... ...
3.6.4 Binary Outputs Without Errors . . . . . . .. ... ... ...
3.6.5 Binary Outputs With Errors . . . . . ... ... ... .. ...
S DISCUSSION - = o = 5 o 6 6w s 5w s s s e s e S e e e R
3.7.1 Regular Enable Inversion . .. ... .. ... ..........
3.7.2  System Settling With One Affecting Error . . . . . ... . ...
3.7.3 System Settling With Two Affecting Errors . . . . . .. . ...
3.74 Reduced LED Duty Cycle . . .. . ... ... ... ... . ...
375 Servo Motor Noise . . ... .. ... .. ... ... ... ....
3.7.6 PWM Signal Alignment . . ... . ... ... ... ... ...
3.7.7 Servo Motor Alignment . . . .. ... ... ... ...
3.7.8 Experimental Input Board . . . . ... ... ... 0L
3.7.9 Input And Output Combinations . . . .. ... ... ... ...
3.7.10 Blind Looping . . . . . . . . . .. ...
3.7.11 Non-Resetting . ... ... ... ... .. .. .. .. .. ....
3.7.12 Time-Dependent Signals . . . . . . . . ... .. ... ... ...
3.7.13 Shared Power Sources . . . ... ... .. .. ... ... ....

4 Supervised Parallel Resetting Redundancy

4.1 Introduction . . . . .. ...
42 Control Flow . . . ... . . . . . . . .
4.3 Redundant Circuit . . . . . . . . . . . . . . ...
4.4 Arduino Software Code . . . . . . . .. . .. ...
4.5 Experimentation . . .. ... ... .. .. ...
4.6 Results . .. ..

4.6.1 Normal Operation . . .. ... ... . ... ... ... . ....

4.6.2  Simulated Non-Responsive MCU A . . . . .. ... ... ....

4.6.3 Simulated Wiring Errors With Automatic Response Recovery

4.6.4  Simulated Wiring Errors . . . . . . . ..o
4.7 Discussion . . .. .. e e




CONTENTS

xi

4.7.1
4.7.2
473
474
4.75
4.7.6

Normal Operation . . . ...
Limited Resetting . . . . . . .

Cycled Resetting With Errors
Cycled Resetting With Errors

Independent Resetting . . . .
Unnecessary Resetting . . . .

5 Self-Supervised Parallel Redundancy

B

5.2.1

_Ut
Sl
[~

[oh1 el Sl B |

g_:t
b
oo

5.2.9
5.3 Circuit
5.3.1
5.3.2
5.3.3
5.3.4

5.4.1

[

o oo
W= o D

n

5.4.5
5.4.6
5.4.7
5.4.8
5.4.9

5.5.1
5.5.2
5.5.3
5.5.4
5.6 Results
5.6.1
5.6.2
5.6.3

5.1 Introduction
5.2  Control Flow
Processing Flag . . . . . ..
Locked Flag . . . ... ...
Clearance Flag . . . .. ...
Primary Flag . . . ... ...
State Analysis . . ... ...
Primary Selection . . . ...
Primary MCU Response . . .

Non-Primary MCU Response
Primary MCU Decommission

Design . . .. ... . ... ..
Fixed Identification . . . . .
Pin Assignment . . .. ...
Pull-Down Resistors . . . . .
Gated Distribution . . . . . .
5.4 Arduino Software Code
Declarations . .. ... ...
Setup . ... ... ... ...
Clearance Interrupt Subroutine
Main System Loop . . . ...
Clearance Flag . . ... ...
Lock Flag . . . .. ... ...
Processing Flag . . . . . ..
WDT Setup ... ......
WDT Closing Function . . .
5.5 Experimentation
System Flag Operation . . .
Varied Triggering . . . . . . .
Prolonged Processing . . . .
WDT Timeout . . ... ...
System Flag Operation . . .
Varied Triggering . . . . . . .
Prolonged Processing . . . .

49
49
50
51
51
51
52
53

H4
54




xii CONTENTS
56.4 Watchdog Timeout . . . .. .. .. . ... ... ... ... 55

5.7 Discussion . . .. e e e o8
571 FixedID . ... . . e 58
5.7.2 Processing Flag Operation . . . . . .. ... ... ... ...... 58
5.7.3 System Flag Operation . . ... .. ... ... ... ... ..... 60
574 Varied Triggers . . . . . . . . . . . 61
575 WDT Closing Procedure . . . . . . .. ... ... ... ...... 62
5.7.6  Infinite Sequence Application . . . . . . ... ... ... ... ... 63
5.7.7 Finite Sequence Application . . . . ... ... . ... ... ..... 63
5.7.8 Sequence Feedback . . . . . .. .. ... ... .. ... ..... 63
5.7.9 Constant Sequence Application . . . . . . .. ... ... ... ... 64
5.7.10 Expected Timeframe Predictability . . . . .. ... ... ... ... 64
5711 WDT Resetting . .. ... ... ... ... ... ... ... .... 64
5.7.12 return-to-start Escapes . . . . . . . .. ..o o000 65
5.7.13 Expandability . . .. ... ... ... ... ... ... ... 65
57.14 Pin Assignment . . . . . . ... 65
5.7.15 Multiple MCU Output Management . . . ... .. ... ...... 66

6 Self-Supervised Redundant Camera Device 67
6.1 Introduction . . . . . . ... 67
6.1.1 Camera Module . . . . . .. . ... . .. .. ... . 67
6.1.2 SD Card Module . . . ... .. .. ... ... .. .. ... ..... 67
6.1.3 3G Cellular Module . . ... ... ... ... ... .. .. ..... 68
6.1.4 Development Plan . . . . . . . .. .. .. ... ... 68

6.2 Circuit Development . . . . . . . . . .. e 68
6.2.1 Pin Assignment . . . ... ... L 68
6.2.2 Camera And SD Card Proof Of Concept . . . . . ... . ... ... 68
6.2.3 Cellular Proof Of Concept . . . . . . ... .. ... ... ...... 69
6.2.4 Redundancy Integration . . . .. . . . .. ... ... ... ..... 70

6.3 Code Development . . . . . . ... ... . . ... 70
6.3.1 Camera And SD Card Proof Of Concept . . . . . . ... ... ... 70
6.3.2 Cellular Proof of Concept . . . . . . . . ... .. ... .. .. ... 71
6.3.3 Redundancy Integration . . . ... ... ... ... ... ...... 72

6.4 Experimentation . ... . .. ... . ... 73
6.4.1 Camera And SD Card Proof Of Concept . . . . . . ... ... ... 73
6.4.2 Cellular Proof Of Concept . . . . . . . . ... .. .. ... .. ... 73
6.4.3 Email Sending . . .. ... ... ... 73
6.4.4 Redundancy Integration . . . . . .. .. ... ... ... ..... 74

6.5 Results . . . . . . . . e 74
6.5.1 Camera And SD Card Proof Of Concept . . . . .. ... ... ... 74
6.5.2 Cellular Proof Of Concept . . . . . . . . ... .. ... . . ..... 76
6.5.3 Redundancy Integration . . . . . .. .. ... ... ... .. ... 76

6.6

Discussion . . . . . . e e e e 77




CONTENTS xiii

6.6.1 Image Capture Duration . . . .. .. .. ... ... .. ....... 7

6.6.2 Image Capture Response Time . . . . . ... ... ... .. .... 77

6.6.3 Cellular Proof Of Concept . . . . . . . . .. .. ... ... ..... 7

6.6.4 Redundancy Integration . . . .. .. . ... .. ... ... ... .. 7

7 Conclusions and Future Work 79
7.1 Conclusions . . . . . . . . e e e 79
7.1.1 Supervised Redundancy Model . . . . . ... .. ... ... .... 79

7.1.2 Limitations . . . . . . . . .. ... 79

7.1.3  Self-Supervised Redundancy Model . . . . . . . ... ... ... .. 30

7.1.4 Resetting . . . . . . . . ... 81

7.1.5  Camera System Redundancy Application . . .. .. ... ... .. 81

7.2 Future Work . . . . .. 82
7.2.1 Comprehensive ID Voltage Dividers . . . ... ... .. ... ... 82

7.2.2 SPI Refinement . . . . . . . . . . . 82

7.2.3 Selective Powered Module . . . .. ... ... ... ... ..... 82

7.2.4  Cellular Integration . . . . .. .. .. . . ... ... ... ..., 83

7.2.5 Soldered Prototype . . . . . . .. ... 83

7.2.6 Optimise Timing Values . . . . . . . .. ... ... ... ...... 83

7.2.7 FError I[dentification . . . . . ... ... 83

8 Abbreviations 85
A Project Plan and Attendance Form 87
Al Overview . . . . . . . e 87
A.2 Project Plan . . . . . . . e 87
A.3 Consultation Meetings Attendance Form . . . . ... ... ... .. .... 38

B Circuit Diagrams 89
B.l Overview. . . . . . . e e 89
B.2 Supervised Non-Resetting Circuit . . . . . . . . ... ... ... .. .. 90
B.3 Supervised Resetting Circuit . . . . . .. . . . ... . oL 91
B.4 Self-Supervised Parallel Circuit . . . . .. . . . ... .. ... ... .... 92
B.5 Proof Of Camera And SD Concept Circuit . . . . . . ... ... . ... .. 93
B.6 Proof Of Cellular Concept Circuit . . . . . . . ... .. ... ... .... 94
B.7 Self-Supervised Camera System Circuit . . . . . .. ... ... .. .... 95

C Arduino Code 97
C.l OVerVIEW . . . o o o e e e 97
C.2 Non-Resetting Supervised MCU . . . . .. ... ... . ... 98
C.3 Non-Resetting Supervisor MCU . . . . .. .. .. ... ... ... . .... 100
C.4 Resetting Supervised MCU . . . .. ... . . . ... . ... ... ..... 103
C.5 Resetting Supervisor MCU . . . .. ... . ... ... ... ... ..... 104

C.6 Self-Supervised Parallel MCU . . . . ... ... ... ... .. .. ..... 108




xiv CONTENTS

C.7 Proof Of Camera And SD Concept . . . . . . . ... ... 114
C.8 Proof Of Cellular Concept . . . . . . ... ... .. . ... .. .... 117
C.9 Modified Adafruit FONA Library H-File . . . . .. ... ... . ... ... 134
C.10 Modified Adafruit FONA Library CPP-File . . . .. ... .. . ... ... 140
C.11 Redundant Camera And SD . . . . . . . . ... .. ... ... . ...... 173

Bibliography 180




List of Figures

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7

3.8

3.9

3.10
3.11

4.1
4.2

4.3
4.4

4.6

4.7

o oen
bo =

Flow chart for evaluating secondary device. [2] . . . .. ... ... .. ...

Operational flow chart of supervised system. . . . .. . ... ... ... ..
Experimental input circuit diagram. . . . . . . . . ... ... ...
16 MHz oscillator clock circuit for Atmega328. . . . . . .. ... ... ...
Circuit used for communication with MCUs on a breadboard. . . . . . ..
Experimental configuration of non-resetting supervised system. . . . . . . .
Experimental input board. . . . . .. ... .. . Lo
Wires from the parallel MCUs to the optocouplers (a) connected and (b)
disconnected. . . . . ... L
The output of enable A from the supervisor MCU shown unconnected to
the circuit, connected to the circuit without the servo motor connected,
and connected to the circuit with the servo motor connected. . . . . . . . .
Output servo PWM signal alongside a stable enable signal for MCU A . . .
Output servo PWM signal alongside a cycling enable signal for MCU A .
Digital logic comparison of enable lines, button inputs and LED outputs of
non-resetting system under normal operation shown in orange, and under
simulated erroneous operation shown in blue. . . . . . . ... ... ... ..

Operational flow chart of supervised system. . . . . . . ... ... .. ...
Experimental resetting supervised circuit with a switch to simulate a non-
responsive MCU. . . . .. . . e
Binary plot of resetting supervised circuit in operation without errors. . . .
Resetting supervised circuit attempting to reset a non-responsive MCU
with signals converted into a binary plot. . . . . . . ... ... ... .. ..
Binary plots of reset input and life output for both MCU A and MCU B
under continuous cycling, with automatic response recovery. . . . . . . . .
Plots of reset input and life output for both MCU A and MCU B under
continuous cycling. . . . . ... L.
Binary plots of reset input and life output for both MCU A and MCU B

Flowchart for self-supervised parallel redundancy system. . . . . . ... ..
Voltage divider circuits used for fixing the MCU IDs according to location.

XV

17
17
18

19
26

28
29

30

32

33

36
41




xvi LIST OF FIGURES

5.3 Experimental configuration of self-supervised redundant parallel MCU sys-
(11535 50

54  All flag signals for MCU A under normal operation in the self-supervised
11 52
5.5 Behaviour of system flags. . . . . . ... . ... ... .. 53
5.6 Zoomed plot of system flag behaviour after triggering. . . . . . . . ... .. 54
5.7 Various triggering times and durations for a self-supervised system. 55
5.8 System response a prolonged processing time. . . . . ... ... ... ... 50
5.9 Behaviour of system flags after single watchdog timeout. . . . . . ... .. o7
5.10 Plot of system response to dual introduced watchdog timeouts. . . . . . .. 58
5.11 Plot of system response to an introduced watchdog timeout. . . . . . . . . 59
5.12 Spontaneous WDT timeouts together with varied triggering. . . . . . . .. 60

6.1 Experimental configuration of camera and SD card self-supervised redun-
dancy system. . . . . . . ... .. 74

6.2 Experimental example of the largest resoltion image from the Adafruit TTL
Serial Camera, 640 x 480 px. . . . . . . . . ... 75

6.3 A screenshot of the Arduino IDE serial monitor used for capturing results
of reponse time and processing duration. . . . . . ... ... ... .. ... 76




List of Tables

Structural combinations of inputs and outputs. . . . . .. ... ... .... 22

Values for calculating ID resistors. . . . . . . . . . . . ... ... .. ..., 40
Atmega3d28 pin assignment for self-supervised redundant system. . . . . . . 42
WDT control register bits [8]. . . . . .. .. ... ... L 48
Available WDT timer durations [8]. . . . . . . .. .. ... ... . ..... 49

Atmega3d28 pin assignment for self-supervised redundant camera system. . 69
Average specifications of available image sizes from the Adafruit TTL Serial
CAIMETA. . v v v v e v e e e e e e e e e e e e e 5

Xvii







Chapter 1

Introduction

This chapter deals with the introduction of the research topic in Section 1.1. The overview
of the project is discussed in Section 1.2.

1.1 Reliability in Remote, Rural, Difficult Access Lo-
cations

For as long as electronic device have existed there have been electronic devices that have
stopped working.

Some of these faults have been attributable to environmental factors such as corrosion,
user interference, or simply wear and tear.

Some devices stopped working because of manufacturing faults. These faults may be
due to oversights during quality control. They may have been from low manufacturing
standards. They may have been from sub-standard materials used for manufacturing,.

Some devices stopped working due to faulty designs, such as unforeseen interactions
between components. Sometimes the design flaws are in the software. Simple flaws may
be recursive loops that become fixed in an infinite loop. Other flaws may be more subtle,
such as neglecting to account for a counter overflow.

Other faults can only be attributed to component wear and tear. Whether it’s the
contact points on a toggle switch or the inner workings of a cellular module fixing onto a
cellular tower, all components wear out over time.

When these faults occur, they can often occur without warning, and if there’s no
backup plan, then time and effort are required to fix the problem. If a connection has
been lost, the fault may only take time and effort to resolve. If parts need to be replaced,
then direct financial cost may also be incurred. Also, if the device has a high priority
for operational uptime, other tasks may be neglected while this device is corrected. Also,
if the device is relied upon, the affected system may not be be able to operate until the
component is repaired or replaced.

The disruption caused by faults would be far less severe if a device could identify faults,
and still continue working at full capacity. This would reduce the need of interrupting

1




2 Chapter 1. Introduction

other tasks to commit resources to repairs. It would also reduce or perhaps even eliminate
any inflicted downtime due to component failure.

An even better solution would for the device to attempt to fix itself. For microcon-
trollers, this may be a simple as rebooting the microcontroller to re-initialise values, and
states.

This capability of coping with faults is called fault-tolerance. In the same way that
there is a range of causes of faults, there is a range of levels of fault-tolerance. This range
includes simple duplication, through fault identification even to the point of being able
to remedy the fault.

A very basic fault-tolerance merely duplicates some or all of the components in a
system in parallel. This approach has the effect of continuing to deliver results even if
one of the parallel circuits fails. This indifferent parallel system will continue until there
is a fault in each of the parallel paths. While some processing components may be reset
by an incidental system reboot, the system does not identify whether or not a fault has
occurred.

A more dynamic fault-tolerance is similar to the first, employing additional sensors
or monitoring lines to be able to track the occurrence of faults. This approach has the
greater benefit of being configurable to alert the user to faults. This in turn allows
flexibility in scheduling repairs that otherwise may have been urgent unscheduled repairs.
If completed before any other parallel paths have encountered faults, continuous uptime
may be achievable.

This project seeks to take this level of fault-tolerance another step further. If faults are
identified in the operation of a microcontroller, the microcontroller will be reset, allowing
overflows and infinite loops to be overcome. While this method cannot recover from
broken connections, it still has the benefit of being able to identify any identified faults
to the user.

It is believed that this capability will have particular usefulness for low-production
devices. Relevant devices include monitoring devices used for academic research as well
as prototype monitoring devices.

Fault-tolerance needs to be able to identify at least in some basic way, that a fault has
occurred.

1.2 Project Overview

This section deals with the summarisation of the entire project. The aim of the overall
project is to develop a camera monitoring device to capture images when prompted from
an external trigger. This device will employ redundant 8-bit microcontrollers to maximise
fault-tolerance in rural and remote applications. The given requirements for the device
as specified by the industry partner, Outback Tech are as follows:

1. The device must capture an image within 500 milliseconds of external triggering.

2. The triggering should accommodate a zero voltage input.




1.2 Project Overview 3

3. The device must send captured images to a specified email address via an included
3G cellular connection.

4. The included cellular connection must accommodate a detachable external antenna
for the addition of range boosting devices.

The zero voltage input is taken to mean merely that the triggering device must only
have the effect of closing a passive switch. The system is not expected to accommodate
an input voltage on the triggering input terminals.

Research was conducted in the in Session 1, 2017 at Macquarie University into the most
suitable redundancy arrangements. A combination of voting and parallel configurations
was concluded as the most resilient system.

Further research and development is being conducted at Macquarie University to de-
sign the required control algorithms, the necessary electronic circuits, and the subsequent
code to achieve this goal.




Chapter 1. Introduction




Chapter 2

Background

2.1 Introduction

A device’s reliability is a measurement of how likely the device is to fail within a certain
timeframe. Some commercial components are tested extensively, often at great cost to
the producer to be able to specify a given reliability. [tem’s produced without rigorous
attention to detail may be more likely to fail, that is they may have a higher probability
of failure within a given period.

Redundancy configurations can be seen in safety devices, for example, car braking
systems [1]. This inclusion of redundancy allows a system to achieve its purpose even if
one of the channels does not actuate or connect. In this way, a system can tolerate faults
in the system.

Incorporating redundancy into design can allow a system to continue to work even
though it encounters faults. Since no system is perfect, and wears out over time, every
system can expect to encounter faults.

Rather than focusing great energy and cost in trying to reduce the likelihood of faults
to occur in a system, a better approach may be to design a system to accomodate faults
and even to be able to recover from faults. While engineers have been aiming to design
fault-tolerance into microcontrollers for many years, fault-tolerance in a single component
does not allow for that component to completely fail [2].

This literature review aims to identify relevent factors to consider in the design of a
fault-tolerant system using embedded microcontroller redundancy.

2.2 Background

Microcontrollers have been used for many years for hobbyist projects, academic exper-
imentation, and various low-production devices. The reliability of commonly accessible
microcontrollers is sometimes not high enough for prolonged deplovment. This is partic-
ularly a problem for extended experimentation applications as well as for difficult access
situations.

o




6 Chapter 2. Background

The sometimes poor reliability can be attributed to design flaws, programming inad-
equacies, and sometimes poor physical implementation.

This project seeks to build a device that will be tolerant to these faults, through the
use of existing industrial practices. Factory safety circuits, elevator emergency brakes,
and aeroplane control systems all use redundancy to improve reliability.

The main concept of redundancy is to employ alternative communication or control
channels so that if one fails, the connection can still be completed.

2.3 Duplication

Some systems have been developed that run control systems in parallel [1,3]. These
systems incorporate communication between the parallel systems, but they also duplicate
much of the supporting circuitry. Inputs are duplicated close to the sensors, even to the
point of complete duplication of sensors. Outputs are duplicated even to the point of
separate communication buses contiuning all the way to the acuators. This approach
allows a system to operate at full functionality even if one component entirely breaks
down.

Other systems have a secondary microcontroller functioning as a checker for the pri-
mary controller [4]. Rather than taking over as the primary controller, the secondary
controller confirms or refutes the logic of the primary controller. This can be used to
guide the primary controller or even to disable the primary controller.

Some systems implement duplication of controllers, and additionally have an over-
arching master microcontroller [5]. This approach allows the master to identify a slave
controller that is functioning as required and assign the processing responsibility to that
slave controller.

Some systems incorporate a combination of these two systems where multiple systems
run in parallel with identification and assignment of the master controller being handled
concurrently by the slave controllers [5]. The master controller is the one which handles
the data processing rather than simply identifying which slave handles the processing. If
a master unit is deemed to not be operational, the identity of master passes to the next
available controller. In this way, if the main controller fails, another takes its place.

A hybrid arrangement of parallel duplication and joint evaluation can harness the
benefits of two of these arrangements [1]. This system has two paris of parallel controllers
comparing results to determine the primary set. It has the benefit of identifying errors as
in the full duplication checking. It can also reassign which set of parallel controllers will
have the primary influence over the output control.

2.4 Master Identification and Assignment

As previously mentioned, master assignment may take the form of a higher level micro-
controller choosing the primary controller from between multiple devices [2]. After an




2.5 Voting 7

Turn all primary and secondary devices on

Firmware determines whether there is a
primary device and a secondary device
associated with the primary device

Firmware turns the secondary device off |

—)I A predetermined amount of time elapses |

Operating systems instruct the secondary
device to be tested

¥

Turn on secondary device and allow it time
to obtain a steady state

v

| Check health of the secondary device |

v

| Turn off secondary device |

Figure 2.1: Flow chart for evaluating secondary device. [2]

evaluation process, as shown in Fig. 2.1, an operational device is selected as the primary
and activated.

Another form of master assignment is carried out between peer controllers [6]. This
particular application only duplicates the controller for a communication bus, however,
through an evaluation flow chart more complex than that shown in Fig. 2.1, the choice
of primary controller is decided between peers. This is achieved by defaulting to one
controller, running some initial tests, and switching to the secondary controller if the
primary fails.

2.5 Voting

For peer master assignment among equally ranked controllers, a voting system can be
implemented. This feeds input from all available controllers into digital logic which then
assigns the identity of primary controller to one of the peers [1,5,7]. For systems with
greater than two peers, this voting can be used more dynamically. Although a two con-
trollers may give an erroneous output, it is less likely than one making a erroneous ouput.




8 Chapter 2. Background

While these dual errors may be less likely, they are not impossible, and can prove difficult
to diagnose.

2.6 Fault-Detection

When one ocntroller is evaluating another controller in a two controller system, the iden-
tification of a fault may reflect a fault in the tester or the testee. If the first controller
has a problem and cannot read appropriate signals from the second controller, it may
incorrectly conclude that the second controller is not operating properly. A smoothing
predictive method has been developed for overcoming such faults of misdiagnosis [1].

This smoothing predictive redundancy method includes previous evaluations in decid-
ing whether or not a device is functioning as expected. Previous readings are included
with more recent readings given greater weight than earlier readings. This has the ef-
fect of ironing out irregularities if there was an occasional inaccurate reading. This is
particularly applicable for processing of analog signals.

2.7 Restartability Analysis

When a controller has been determined to have failed, restarting it may help to set it
running correctly again [5]. This should be part of further evaluation of the controller’s
operation. Algorithms should be implemented to make allowance for a controller to re-
enter the system upon restarting.

2.8 Conclusion

The design of a fault-tolerant system needs to consider the level of fault-detection required.
A trade-off between the number of embedded microcontrollers and the depth and accuracy
of fault-diagnosis will determine whether a system merely copes with failed components,
or the system can recover from malfunctioning components.

After the issue of identifying faults, the next biggest hurdle would be the selection and
assignment of the primary controller to take on primary responsibility within the system.

The number and arrangement of included microcontrollers will greatly shape the ef-
fectiveness of voting. The optimum arrangement is a combination of static and dynamic
redundancy.




Chapter 3

Supervised Parallel Redundancy

3.1 Introduction

This chapter details the development of a simple supervised system of parallel redundancy.
This system uses three analogue inputs to generate requirements for system outputs of a
servo motor and two light emitting diodes (LED). The outputs rely on in the inputs in
varying forms to demonstrate the capability of the system.

The chapter is arranged in the following order. In section 3.2, the control flow is
discussed. Section 3.3 describes the circuit used for this system. Section 3.4 deals with
the Arduino Code development for each of the MCUs. Section 3.5 describes the process
of experimentally testing the system. The results are presented in section 3.6, which are
then discussed in section 3.7.

3.2 Control Flow

This system consists of a dedicated supervising MCU monitoring the system output along
with two parallel supervised MCUs. The supervisor selects one of the supervised MCUs to
perform the system function, then monitors the performance. If the outputs are produced
as expected, the selected MCU maintains the primary role. If the outputs are not produced
as expected, then the primary priority is given to the other supervised MCU. This decision-
making process of the supervisor is shown as a flowchart in fig. 3.1.

Both supervised MCUs perform the same function. This means that both MCUs will
run from the same set of code. Each will assess the inputs, calculate the outputs, and
produce their outputs as expected.

The supervisor MCU also assesses the inputs in the same way as the supervised MCUs.
However, the supervisor does not produce the outputs for the overall system output.
Instead the supervisor also assesses the outputs and compares these outputs with the
caleulated outputs based on the inputs. In this way, the supervised MCUs have their
performance monitored.




10 Chapter 3. Supervised Parallel Redundancy

Perform Select next
required |« uC as
action primary.

A

Is the
primary pC acting
as expected?

no

Figure 3.1: Operational flow chart of
supervised system.

3.3 Circuit Design

The design of this supervised redundant circuit can be seen in Appendix B.2. One super-
visor MCU enables and disables the outputs of two parallel MCUs that perform the core
function. All three MCUs read the input values from a 10k{) potentiometer (pot) and
two normally open (NO) pushbuttons (PB). The processed outputs of the parallel MCUs
control a pot and two LEDs. The supervisor MCU controls these outputs through the
use of optocouplers. All three MCUs are Atmega3d28P DIP ICs.

3.3.1 Enable Signals

The supervisor outputs two enable signals which are the inverse of each other, to enable
or disable the outputs of the supervised MCUs. This control is achieved by the activation
and deactivation of the LED light source within each of the optocouplers on each output
of each parallel MCU. The output lines of the parallel MCU are each connected to the
photo diode pins of their respective optocoupler. Pull-down resistors of 252 are used for
each of the LED inputs of the optocouplers. All optocouplers are 4dN25 DIP ICs from
Fairchild Semiconductors.

The inputs and outputs of each of the parallel MCUs are monitored by the supervisor
and the appropriate MCU is selected based on the measured operation. If MCU A is
operating as expected, it remains as the designated MCU. If an error is detected in circuit
A, the enable line for its output optocouplers will be taken low, and instead the enable
line for MCU B will be taken high, enabling the outputs of MCU B. An LED with
its accompanying resistor has been added to each of the enable outputs for debugging
purposes during experimentation.




3.3 Circuit Design 11

Input 1 Pot 10k1

Gnd
AN Vee
g%um . Pot Output
Input 2 Pushbutton 1 Button 1 Output
I r———<_Button 2 Output
R1
220k0
Input 3 Pushbutton 2
o o
fritzing

Figure 3.2: Experimental input circuit diagram.

3.3.2 System Inputs

The inputs consist of a pot and two pushbuttons.The 10k pot is connected between
ground to 5V, with the wiper connected MCUs as an input. Each NO PB has a 220kQ2
resistor between the button and ground to reduce the power consumed by the experimental
system. Each button output is connected to the resistor side of the button, and is pulled
high when the button is closed.

3.3.3 Experimental Inputs

For experimental purposes, the input components of the pot and PBs can be moved to
a separate board. The diagram for this peripheral input board is shown in fig. 3.2, If
this peripheral board is connected as specified in the circuit, the button outputs behave
as NO PBs. If the Gnd and Vee supplies are swapped, the button outputs would behave
as normally closed (NC) PBs.

3.3.4 Clock Circuit

Although it has been omitted from the circuit diagram for reasons of available space, each
MCU has an independent 16 MHz crystal oscillator. Each crystal has two accompanying
20 pF ceramic capacitors. The crystals provide external clocking for the MCUs. As
each MCU has an independent crystal, the system operate on asynchronous timing. An
example of the oscillator circuit for an Atmega328 is shown in fig. 3.3.




12 Chapter 3. Supervised Parallel Redundancy

almega3ze

e
et =

fritzing

Figure 3.3: 16MHz oscillator
clock circuit for Atmega3d28.

3.3.5 In-System Programming

A method of updating the code on an Atmega328 while still fitted to a circuit enables
rapid deployment of code. The circuit shown in fig. 3.4 shows a simple method of in-
system programming (ISP) using an Arduino Uno. The Atmega328 has its own clock
circuit on the breadboard. The power for the breadboard system may be supplied from
the Arduino Uno or from an independent power supply. The Arduino Uno must have its
included MCU IC removed.

Using this method requires a maximum of only five wires to upload iterations of Ar-
duino code to the MCU. This process requires the two lines used for the serial connection,
transmit (Tx) and receive (Rx). The reset line is required for initialising the upload
sequence. The ground connection is required to complete each of these signal circuits.
Finally, the 5V output from the Arduino Uno is optional depending on alternative power
supplies. If the system has its own power supply, then only four wires are required for

ISP.

3.4 Arduino Software Code

3.4.1 Supervised MCU

The sketch for both of the parallel supervised MCUs is shown in Appendix C.2. The
sketch begins with the declaration of a servo object and the pin identifiers for the three
inputs and three outputs required for performing the main function of the circuit. Input
and output working variables are next declared. The setup initialises all declared inputs
and outputs. The servo object is also attached to its specified pin in the setup. The loop
reads the inputs, calculates the outputs, then writes the output values to their respective
output pins.

The output calculations of the circuit demonstrate three different typical controller
functions. The first function, translates an analogue pot input into an integer servo




3.4 Arduino Software Code 13

san ocFo-
Iosnon e

saas
slassonsnsns

ATmega32s

removed

i

fritzing

Figure 3.4: Circuit used for communication with
MCUs on a breadboard.

position. The second function outputs an exclusive OR (XOR) of two binary inputs. The
third function is a single output reflection of a single input.

3.4.2 Supervisor MCU

The sketch for the supervisor MCU is based on the sketch for the supervised MCU with
some significant changes as list in Appendix C.3. The supervisor does not produce the
system outputs directly. Rather the supervisor compares its calculations of the system
outputs with the measured output of the overall system. The binary outputs are either
matching or not. The PWM output value may be exact, but may only be close. Line 54
of the code in Appendix C.3 checks if the difference between the calculated output and
the measured output is within a given percentage of the possible value, 180. If any of the
three comparisons aren’t matched, then the boolean flag, allOK, is set to false.

If the system is not all OK, then the enable outputs are toggled. Once these true or
false enable values are written to the output pins, this will enable or disable the associated
optocouplers respectively. This toggling then facilitates or nullifies the effectiveness of the
parallel supervised MCUs. This process of reading, checking, comparing, and enabling is
cycled constantly within the loop function of the Arduino code.




14 Chapter 3. Supervised Parallel Redundancy

Figure 3.5: Experimental configuration of non-
resetting supervised system.

3.5 Experimentation

3.5.1 Experimental Setup

The experimental experimental configuration can be seen in fig. 3.5. The input pot and
PBs were soldered onto a prototype printed cirenit board (PCB), as seen in fig. 3.6. The
power was supplied through a laboratory benchtop power supply, GW Instek PSW-3202.
Measurements were taken using two four-channel Agilent oscilloscopes, model DSO-X
2024A. Matlab was used to build the plots from the gathered data.

Atmega328P DIP ICs from Atmel were used for all MCUs during experimentation.
4N25 optocouplers from Fairchild Semiconductors were used for this experimentation. A
Tower Pro 9g micro servo, model SG90, was used for the servo output of the system.

3.5.2 Introduced Errors

To prompt the enable lines to be toggled, errors were simulated in the circuit. The removal
of one or two wires from the optocouplers to the outputs caused the final output values
to mismatch those calculated by the supervisor MCU. If one wire was removed, the focus
fo the system would be pushed to the MCU without compromised connections.

By simulating an error for each of the parallel MCUs, on different outputs, the system
could be caused to toggle the enable lines constantly. Removing a wire from one output of
MCU A would cause the system to enable MCU B instead. Removing a different output
wire from MCU B would then cause the system to enable MCU A, again. Because the




3.5 Experimentation 15

Figure 3.6: Experimental input board.

}

s\RYRIry

Figure 3.7: Wires from the parallel MCUs to the optocouplers (a)
connected and (b) disconnected.

process of evaluation and toggling was constant, with two disconnected wires on different
MCUs, the system would rapidly toggle the enable lines.

Fig. 3.7(a) shows the wires used for simulating the faults connected according to the
circuit diagram. Fig. 3.7(b) shows the same wires disconnected to simulate the errors.
The vellow disconnected wire is the output wire from MCU A to the red LED, LED 1.
The green wire is the output wire from MCU B to the green LED, LED 2. No other
connections used the those side rails on the breadboard.

3.5.3 Behaviour Of Enable Signals

Measurements were taken of the enable signal A under different system conditions, all
using the introduced errors to prompt system cycling. A reading was taken for the open-
circuit output of enable A. A reading was taken for the closed -circuit output of enable
A without the servo motor attached to the system. Lastly, a reading was taken for the
closed-circuit output of enable A with the servo motor connected to the system. This
experiment is to observe the effects of different components of the system on each other.




16 Chapter 3. Supervised Parallel Redundancy

During this experiment serial comments were added to the Arduino code for debugging
the switching process. This also served as a regulator for time period between inversions
of the enable signals. This in provided for the various signal recordings to be plotted on
one graph.

3.5.4 PWM Output Without Errors

The PWM signals of both supervised MCUs were monitored along with the enable signal
A without any introduced system errors. This experiment is to demonstrate the alignment
of PWM outputs from two different MCUs even without introduced errors.

3.5.5 PWM Output With Errors

Measurements were taken of the system PWM output along with both enable signal
outputs, A and B while infroduced errors cause the system to constantly cycle between
primary MCUs. This experiment is to demonstrate the effects of a cycling rotation of
primary MCUs on a time sensitive digital signal.

3.5.6 Binary Outputs Without Errors

The system LED outputs were measured along with the button inputs and the enable
signals. No wiring errors were introduced during these measurements. This demonstrates
the normal operation of the system.

3.5.7 Binary Outputs With Errors

Using the simulated wiring errors, measurements were taken of the LED outputs while the
buttons were actnated in a gray code pattern. This provided observation of the behaviour
of the core switching capability of the system.

3.6 Results

3.6.1 Behaviour Of Enable Signals

Fig. 3.10 shows the variations in the level of the enable signal for controlling the outputs of
MCU A. The system is rotating between primary MCUs due to introduced wiring errors.
Subtle variations in the level can be seen in the final output with the servo connected to
the system. These variation coincided with the servo changing its angle.

The

An overall reduction in the signal level can be seen comparing the level of the uncon-
nected signal with the level of the signal when connected into the system. This reduction
is a voltage drop from 5V down to approximately 2.6 V.




3.6 Results 17

Circuit Influence on Enablement Signal
T

9 T T T T T T T T

81 — Unconnected | |

r Connected B
g 6 With Servo .
< 5 . ]
g 4r I
S 3r .
> oL f .

1 ' |

0 i —————— B T e -

71 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100

Time (ms)

Figure 3.8: The output of enable A from the supervisor MCU shown unconnected to
the circuit, connected to the circuit without the servo motor connected, and connected to
the circuit with the servo motor connected.

Behaviour of PWM Signal With Stable Enablement

8 . .
7t Enable A |
6L PWMA | _

= PWM B

s |

| — -

83 ;
2 [ - H
1+ -
0 i 1 L L 1 I ! 1 L .

0 10 20 30 40 50 60 70 80 90 100

Time (ms)

Figure 3.9: Output servo PWM signal alongside a stable enable signal for MCU A .

3.6.2 PWM Output Without Errors

The behaviour of the PWM output signals of both supervised MCUs can be seen in fig.
3.9. As shown in section 3.6.1, the enable signal is steady at approximately 2.6V, not
under constant rotation. PWM signal B has a phase offset from signal A of almost half a
period. When PWM signal B is low, the signal still has a measured level of approximately
0.6V.




18 Chapter 3. Supervised Parallel Redundancy

Behaviour of PWM Signal With Cycling Enablement

8 T T

7r Enable A A

6L Enable B i
= PWM OQutput
redi |
g4r 1
;’ 3L ) 5 Mebvamrtermiok - 1 y I .

2 - —

1l _

0 " Loial ik | . I, P hd " . Jal —— | ]

0 10 20 30 40 50 60 70 80 90 100
Time (ms)

Figure 3.10: Output servo PWM signal alongside a cycling enable signal for MCU A .

3.6.3 PWM Output With Errors

Fig. 3.10 shows the PWM signal output of the system while the enable signals are cycling
through inversions. This is the PWM signal that is received by the attached servo motor.
The signal is the combination of segments of the PWM signals of both MCUs A and
B. Because of the a synchronous timing of these two signals, shown in section 3.6.2, the
signal frequency is inconsistent from one transmitted instruction to the next. this can be
seen to align with the inversion of the enable signals. Additionally, the variation in the
voltage of low signals can also be seen.

3.6.4 Binary Outputs Without Errors

The normal operation of the system inputs and outputs can be seen in fig. 3.11, shown
in orange. This plot demonstrates the expected behaviour of the system. The output for
LED 1 behaves like an OR-gate of the two button inputs. The output for LED 2 is a copy
of button 2.

The system can be seen to invert the enable signals whenever a button is activated
or deactivated. The outputs still show their expected outcomes regardless of the primary
MCU.

3.6.5 Binary Outputs With Errors

Fig. 3.11 also shows the behaviour of the binary system outputs in blue when wiring
errors have been introduced. Because of the wires selected for errors, only one binary
output can be activated at a time. This can be seen to cause no major issues while only
one high output is required, but significant issues when two outputs are required to raise.

After button 1 is activated at 1s in fig. 3.11, there is a slight disruption before the
output goes high. There is no particular disruption of timing when button 2 is activated




3.6 Results 19

Non-Resetting Circuit With And Without Introduced Errors

Enable A

Enable B

Button 1

Button 2

LED 1

LED 2

| 1 1 1 1

0 1 2 3 4 5 6 7 8
Time (s)

Figure 3.11: Digital logic comparison of enable lines, button inputs and LED outputs
of non-resetting system under normal operation shown in orange, and under simulated
erroneous operation shown in blue.

at 3s.

When button 1 is deactivated after 5 s, both binary outputs are supposed to be active.
For the duration of this state of button inputs, the system can be seen to rapidly toggle
the enable lines. This in turn rapidly toggles the two binary outputs, as their sole sources
are connected and disconnected. The resulting output signals are at the desired levels for
a percentage of the time.




20 Chapter 3. Supervised Parallel Redundancy

3.7 Discussion

3.7.1 Regular Enable Inversion

The orange plot lines in fig. 3.11 also show that the system inverts the enable lines even
without simulated errors. At every change of buttons, the enable lines were toggled.
Asynchronous timing of the three MCUs would have contributed to the momentarily
mismatched results that have prompted this change. Button bouncing may also have an
impact.

3.7.2 System Settling With One Affecting Error

There is slight disruption at the initial activation of button 1 at approximately 1s of fig.
3.11. This is because enable A was already high when the button was pressed. When
the enable lines toggled to enable B, the system detected that the correct output was not
being produced, and so toggled back to enable A. The result of this can be seen in the
plot in blue for output LED 1. Momentarily the LED 1 output is low, then reverts to
high.

When button 2 is also selected, the system toggles to enable B. If button bouncing and
asynchronous timing had not caused this switch, the system would have switched anyway
due to the disconnected wire from MCU A to LED 2. With both of these combinations of
buttons, only one output LED is required at a time, so the system behaves in a relatively
stable state.

3.7.3 System Settling With Two Affecting Errors

Once button 1 is released after 5s in fig. 3.11, the system attempts to turn on both
output LEDs. Since both the wire from MCU A to LED 2 and the wire from MCU B to
LED 1 are disconnected, the system has to cycle the enable lines so that both LEDs are
activated as much as possible. The resulting output is effectively a partial duty cycle of
the intended output.This is clearly seen between 5s and approximately 7s. Once button
2 is released, the system resumes a stable state with all inputs and outputs low.

3.7.4 Reduced LED Duty Cycle

Without the servo connected, when the system cycled constantly due to simulated errors,
the brightness level of the LEDs was constant when viewed by the human eye. It was
noticeably duller, as it was operating at approximately half duty cycle, due to being
rapidly switched on and off.

3.7.5 Servo Motor Noise

The servo motor and the main circuit were run from the same power supply in the
laboratory. Often when there was a change in servo position, there was a brief surge in




3.7 Discussion 21

current drawn by the servo. This caused simultaneous noise for all of the other components
running from the same power supply. An example of this noise can be seen in the enable
signal in fig. 3.8.

The noise from the servo operating also caused disruption for the output LEDs. With
the servo motor reconnected to the system, variations in brightness were clearly discernible
by the human eye that coincided with the movements of the servo motor.

3.7.6 PWDM Signal Alignment

Fig. 3.10 shows the system output of the servo PWM signal while the enable lines are
being toggled. The PWM signal that results from switching between MCU outputs clearly
does not have an even period. The alignment of the PWM signals in fig. 3.10 is also
out of alignment, almost as far as a half a period. The system was restarted between
recording the values for the two plots, which would explain the difference between the
two alignments. The variations imn PWM alignment would be due to the asynchronous
clocking of the system.

3.7.7 Servo Motor Alignment

Manufacturing discrepancies between components may also have had an impact on this
variation in the matching of the PWM signals. The circuit for the peripheral components
of MCU A matched that of MCU B. Yet, it was observed the the servo motor would not
always return to exactly the same angle after the disruption of toggling the enable lines.
The estimated variation would have been only a degree or two, but it was visible to the
human eye.

This could have been caused by slight variations in the analogue to digital converters
(ADC) on the MCUs. It could also have been due to a variation in the exactness of
the oscillator circuits of the MCUs. Either way, there was slight variation between the
produced PWM signals of the two MCUs. These variations may also have been related
to the mismatched low voltage levels of the two PWM signals.

3.7.8 Experimental Input Board

The experimental input board was produced to overcome further disruptions caused by
the temporary nature of prototyping on a breadboard. The push buttons and the pot
did not locate securely enough in the breadboard to withstand movement endured under
operation. Additionally, jumper wires were bumped every time the buttons were pressed
or the pot was adjusted. Owing to the temporary nature of using a breadboard, bumping
the jumper wires could clearly be seen to have an influence on the the servo motor. This
would have been due to the sensitivity of the ADC on the MCUs. Producing the separate
input board solved the problem of loose input components. It also provided the physical
separation from the jumper wires to eliminate physical interference.




22 Chapter 3. Supervised Parallel Redundancy

Table 3.1: Structural combinations of inputs and outputs.

Structure | Definition Input(s) Output(s)
SISO Single Input, Single Output Button 2 LED 2
SIMO Single Input, Multiple Output Button 2 LED 1, LED 2

MISO Multiple Input, Single Output Button 1, Button 2 | LED 1
MIMO Multiple Input, Multiple Output | Button 1, Button 2 | LED 1, LED 2

3.7.9 Input And Output Combinations

The implemented combination of inputs and outputs served to demonstrate the versatility
of input and output combinations. All structural combinations of single and multiple
inputs and outputs were demonstrated. These combinations are listed in Table 3.1. This
set configuration of inputs and outputs serves quite well for simulating errors and then
testing the system performance.

3.7.10 Blind Looping

A significant limitation of this system is that it does not identify that a prospective
primary MCU is even functional before assigning it to be the primary MCU. Although
this wasn’t experimentally tested, if one of the MCUs was incapacitated or altogether
missing, there is nothing in this system to prevent it still being assigned as the primary
MCU in the event of a single error with the other MCU. While the system would promptly
invert back to the existing available MCU after checking the outputs, functionality would
have been significantly disrupted.

3.7.11 Non-Resetting

This system has no capacity for resetting a non-functioning MCU. While wiring errors
may be overcome, at least momentarily, a jammed MCU will not recover. Perhaps a
full system reboot may return the disfunctional MCU to operation, but this cannot be
described as self-recovering.

3.7.12 Time-Dependent Signals

Special consideration should be given to time-dependent signals, and high-accuracy sig-
nals. The included LED outputs would not necessarily be greatly affected by a brief
disruptions. A slight fade will be noticed, but may not be a dire issue for many applica-
tions. However the position of a servo motor may be a critical point in a process line. If
the position of a servo twitches and slightly changes angle every time the primary MCU




3.7 Discussion 23

is reassigned, then complications may be introduced to the machinery being operated in
a particular application.

3.7.13 Shared Power Sources

For applications with relatively high current requirement, consideration should be given
to the separation of the circuitry. Shared circuitry, particularly the power supply, can
lead to mutual degradation of both the enable signals and PWM signals.




24

Chapter 3. Supervised Parallel Redundancy




Chapter 4

Supervised Parallel Resetting
Redundancy

4.1 Introduction

Section 4.2 details the behaviour of the system through the control flowchart. Section 4.3
explains the design of the required circuit diagram. The developed Arduino code is laid
out in 4.4. The process of experimentally testing the system is explained in Section 4.5.
The plotted results in Section 4.6 are then discussed in Section 4.7

The system laid out in this chapter builds on the design of the previous chapter.
Rather than blindly switching to another available MCU, this system checks for an active
life signal from the destination MCU before switching. If the other supervised MCU is
available and showing signs of life, the system will enable the replacement MCU as the
primary and reset the former primary MCU.

The pot input and PWM servo output have been omitted from this circnit. This
takes the focus off the disruptions of the PWM signal due to switching primary control
to another MCU, and instead focuses the behaviour of the system as a whole.

This system is expected to accommodate situations where a supervised MCU becomes
inactive due to erroneous programming. This layer of resilience is intended to add to the
capability of accommodating wiring errors.

4.2 Control Flow

The foundational flowchart for the development of this system is shown in fig. 4.1. The
main cyele of analysing the inputs and responding to discrepancies can be seen on the
left-hand side. After the supervisor performs its calculations, the same as those on the
supervised MCUs, the supervisor then compares its calculations with the measured out-
puts of the system. If the outputs match expectations, the system proceeds to the next
cycle.

If the calculated outputs of the supervisor do not match what is measured from the

25




26 Chapter 4. Supervised Parallel Resetting Redundancy

l Has the

Perform L counter reached —
» required Select max?

action next v
uC as
primary. Send

Increment notification
A Counter of error to
yes Is the operator.

primary uC acting
as expected?

Has the pC
recovered?

¥
Is the
secondary pC r‘eset . Has N
responding? ormer elay perio
primary passed?

)

Figure 4.1: Operational flow chart of supervised system.

L
>

system outputs, the supervisor will try to shift primary control to the other supervised
MCU. If the replacement MCU does not produce a discernible response signal, the super-
visor won't change the primary responsibility.

If the available MCU provides a response when it is checked, two steps are conducted.
Firstly primary priority is changed to the available MCU. Secondly, the former primary
is then reset. This initiates a full restart of the MCU that produced an erronecous output
for the system.

Again, this system doesn’t blindly reset then continue on its process. The system
will wait for a prescribed length of time before checking for a response from the rebooted
MCU. If the MCU has rebooted back to operation, the reset process is completed. If no
response is detected, the process of resetting and waiting for a response.

If the MCU has succumbed to a fatal error, no amount of resetting will bring it back
to operation. So a maximum number of resets will be attempted before giving up. In a
practical situation, if this system lost the functionality of one of its MCUs, it would be
desirable to know that a non-recoverable error had occurred. So a notification step has
been added to alert the operator to the non-recoverable fault, if the maximum count is
reached.




4.3 Redundant Circuit 27

4.3 Redundant Circuit

The circuit for this resetting system is based extensively on the circuit used in the non-
resetting system of the previous chapter. The circuit is shown in Appendix B.3. The core
circuit consists of a supervisor MCU monitoring the inputs and outputs of two parallel
MCUs. The outputs of the supervised MCUs are activated and deactivated by the use of
optocouplers controlled by enable lines from the supervisor MCU. The input consists two
NO PBs. The outputs consist of two LEDs.

The modifications to this circuit are the addition of four extra wires hetween the
supervisor MCU and the two supervised MCUs as well as an alert notification LED.
Reset lines have been added to each of the supervised MCUs from the supervisor. These
are shown in the circuit diagram in an aqua colour. Life wires to indicate response from
the supervised MCUs to the supervisor are shown in a blue colour. A blue alert LED
with its accompanying resistor has been added as output of the supervisor MCU. This
LED is for notifying of a non-recovering MCU.

4.4 Arduino Software Code

The Arduino Code for the parallel supervised MCUs is listed in Appendix C.2. This sketch
is extensively based on the code for the supervised MCUs from the previous non-resetting
system. The overall system LED outputs are calculated by each of the supervised MCUs.
Since no software is required for an external reset, no additional code is required to add
that function to this sketch. The only addition is the output of a signal to indicate that
the MCU has started again after a reset. The pot input and servo output of the first
supervised sketch have been removed.

4.5 Experimentation

This circuit was experimentally implemented in a breadboard arrangement as seen in fig.
4.2, Though largely based on the experimental circuit of the previous chapter, necessary
changes were made to fit with the circuit diagram in Appendix B.3. An alert LED was
added to indicate a non-responsive MCU. Components for the servo motor were removed,
however the soldered pot remained on the experimental input board.

The system was powered from a GW Instek programmable power supply, model PWT-
3203. Measurements and plot data were captured using two four-channel henchtop oscil-
loscopes, Agilent DSO-X 2024A. The data was filtered and plotted using Matlab scripts.

Errors were simulated in the form of MCU output errors, and complete MCU failure.
The output errors were introduced as a disconnected wire from each MCU to an output
LED. A different output was used for each of the MCUs as shown in fig. 3.7(a) and fig.
3.7(b). The complete MCU failure was simulated by using a hand-held switch to pull the
reset input for MCU A to ground. By holding the reset pin for a MCU to ground, the
MCU will not respond until it is released.




28 Chapter 4. Supervised Parallel Resetting Redundancy

Figure 4.2: Experimental resetting supervised circuit with a
switch to simulate a non-responsive MCU.

Plot data was captured for the system operating without any simulated errors. This
allowed observation of the system behaviour under normal incidental cycling as had been
observed for the non-resetting system. Measurements were taken over the duration of the
input buttons being cycled in a gray code pattern.

Data was collected for the system operating with MCU A disabled temporarily using
the hand-held switch. This allowed observation of the limited reset function of the system.
The alert feature could also be checked to fit with the flowchart in fig. 4.1.

Measurements were taken with introduced wiring issues in the system, as described
above. This plot data would show the recovery pattern of the circuit after switching to
the next available MCU and resetting the former primary MCU. The system response
to multiple errors would also he shown. As each MCU had a different disconnected wire
with an outlet, the supervisor MCU cycles the primary priority between the two parallel

MCUs.

4.6 Results

4.6.1 Normal Operation

The logged data for the resetting system under normal operation can be seen in fig. 4.3.
Data is shown for the enable lines and life lines of both parallel MCUs, alongside data of
both PB inputs and both LED outputs.




4.6 Results 29

Behaviour of Sequential Resetting Circuit

LED 1 Button 2 Button 1 Enable B Enable A

LED 2

Life A

Life B

Time (s)

Figure 4.3: Binary plot of resetting supervised circuit in operation without errors.

4.6.2 Simulated Non-Responsive MCU A

The data of the outputs of enable A, reset A, life A, and the alert LED has been plotted in
binary form in fig. 4.4. This shows the behaviour of the system attempting the specified
three times to restart the erroneous MCU A. This plot also shows the system behaviour
if a non-responsive MCU returns to active operation, even after giving up on restart
attempts.




30 Chapter 4. Supervised Parallel Resetting Redundancy

Behaviour of Sequential Resetting Circuit With Non-Responsive MCU
T T T T T T T T T

Enable A

Reset A

Life A

Alert

Time (s)

Figure 4.4: Resetting supervised circuit attempting to reset a non-responsive MCU with
signals converted into a binary plot.

4.6.3 Simulated Wiring Errors With Automatic Response Re-
covery

Fig. 4.5 shows the behaviour of the system with individual wiring errors for each parallel
MCU. There is a section of the code that checks for the response of a reset MCU and if
there is no response, it proceeds to reset the erroneous MCU again. This section of code
causes a situation where it is possible for both the primary and secondary MCUs to be
reset at once. As can be seen at the 2s line, the enable signals toggle to have signal A
high, and reset B. However, an error was still detected in MCU A, so it was also reset. The
effect is that only MCU B actually spends any active time at the same time as being the
designated primary. This would have the effect of only having one output being active,
and even then on a half duty cycle.




4.7 Discussion 31

Flesetlin‘g Circuit With MCU A Disabled And Introduced Errors
T T T T T T T T

Life A Enable B Enable A

Life B

Button 1

Alert

Time (s)

Figure 4.5: Binary plots of reset input and life output for both MCU A and MCU B
under continuous cycling, with automatic response recovery.

4.6.4 Simulated Wiring Errors

In fig. 4.7, the resetting system is shown cycling between available MCUs, without the
automatic response recovery capability. As the supervisor cycles through this shortened
code, each cycle has to wait for the reset MCU to restart, reinitialise and be ready for
operation, outputting a high-active life signal.

4.7 Discussion

4.7.1 Normal Operation

As shown in fig. 4.3, under normal operating conditions, the resetting system behaves
similarly to the non-resetting system. The first output, LED 1, functions as an XOR of
the two input buttons. The second output, LED 2, is a direct forwarding of button 2.
Similar to the non-resetting system, changes in states of the inputs can trigger a change




32 Chapter 4. Supervised Parallel Resetting Redundancy

Resetting Circuit with Introduced Errors

7 I T I 1 | I

6 Reset A | 7
= O Life A E
g° I
o 2 T
=

1 ]

0 v oy |

*1 | 1 | 1 1 | 1 1 |

0 1 2 3 4 5 6 7 8 9 10
Time (s)
. Resetting Circuit With Introduced Errors
I I | I 1 I 1 | I

61 ResetB | |
. 5F LifeB | -
S
83 I
o 2r -
=

s i

0 - WMWW—M‘J s

__1 ] 1 1 1 1 | 1 1 ]

0 1 2 3 4 5 6 7 8 9 10

Time (s)

Figure 4.6: Plots of reset input and life output for both MCU A and MCU B under
continuous cycling.

of MCU priority. This can be seen in fig. 4.3 at the 1s line. This disruption most likely
results from the system operating asynchronously.

The major difference for this system is that each time the system changes to a different
primary MCU, the former primary is reset, as seen between the 1s line and the 3s line in
fig. 4.3. Assuming all wires are connected and no components are failing as in this circuit,
the system continues to operate normally while subtly restarting the former primary MCU.

4.7.2 Limited Resetting

If the restarted MCU does not respond after a specified length of time, the system resets
the MCU again. This process can be seen in fig. 4.4 repeating up to a total of 3 resets.
This number of restarts can easily be adjusted in the variable declarations in Appendix
C.5.

If the supervisor detects a response from a restarted MCU, the resetting ceases. If no




4.7 Discussion 33

Resetting Circuit with Introduced Errors
T T T T T

Reset A

Life A

Reset B

Life B

Time (s)

Figure 4.7: Binary plots of reset input and life output for both MCU A and MCU B
under continuous cycling without automatic response recovery.

response is detected by the time the maximuwumn resets is reached, an alert is issued to the
system operator. For experimental purposes, this was simplified to an illuminated LED.
In fig. 4.4 the alert signal can be seen activating at approximately 6.5s.

As this non-responsiveness was caused by experimentally holding the reset pin on
MCU A to ground, the resetting could similarly be released at a controlled time. This
reactivation was carried out, and a response can be seen in fig. 4.4 at approximately
8.5s. As the supervisor detects this response, the alert pin is deactivated, and MCU A
is available for normal operation. This can be seen by the Enable A signal switching to
high at the same time as it is given primary priority.

4.7.3 Cycled Resetting With Errors

Fig. 4.5 shows the sporadic operation of a system that has introduced wiring issues. As
the system is trying to monitor the secondary MCU and reset it as needed, the progression
of the code creates the situation that both parallel MCUs are reset at the same time. This




34 Chapter 4. Supervised Parallel Resetting Redundancy

issue was not resolved. Instead that section of code was removed to view the constant
toggling of the primary priority.

4.7.4 Cycled Resetting With Errors

With the automatic response recovery commented out from the code, the system will
continue to cycle whenever it finds errors. The resultant loop of resetting each MCU
can be seen clearly in fig. 4.7. This circuit has had one error introduced for each of
the parallel MCUs. By the time the old MCU has restarted, declared its variables, and
initialised its outputs and variables, around 1700 ms have passed. This means that the
gaps in the operation of the outputs will not only be visible to the human eye, there will
be significant gaps in the operation of the system.

4.7.5 Independent Resetting

The ideal situation would be to have necessary MCU resets completed without disruption
to other system components. However, if there is more than one error, the timing of one
MCU being reset may depend on the other MCU having completed being reset. If timing
was not an issue, both could be reset as needed, however there is a risk that both, or all
supervised MCUs could be out of operation at one time, leaving outputs without their
feeds. The solution for this is a trade-off between independence and the consistency of
availability.

4.7.6 Unnecessary Resetting

It is unlikely that resetting the MCU will resolve wiring connectivity issues, if not im-
possible. Resetting MCUs should then be reserved for instances of non-responsiveness
and possibly situations requiring re-initialisation of inputs and variables. Non-responsive
MCUs could be reset using a watchdog timer. Specific decision making would be needed
to determine the need for re-initialisation of inputs and variables. This decision-making
would probably be quite dependent on the nature of the desired system and its various
inputs and outputs.




Chapter 5

Self-Supervised Parallel Redundancy

5.1 Introduction

This system implements a system of self-supervision. Using three flag signals between the
MCUs, the primary MCU excludes other MCUs from conflicting control in performing the
system function. However, if the primary MCU does not complete the required function
within the expected time, another MCU can prompt the system to reselect a primary
MCU. This allows another MCU to take control to achieve the system function, in the
event of an error.

The content of the chapter is presented in the following order. The flow of control is
developed in section 5.2. The circuit diagram is developed in section 5.3. Section 5.4 de-
tails the components and progression of the required Arduino code. The experimentation
is documented in section 5.5 with the results presented in section 5.6. Finally the system
and its experimental performance is discussed in section 5.7.

5.2 Control Flow

This system is based on what is known as an atomic lock. In this system, once a primary
MCU is identified, other MCUs are restricted from taking access while the primary MCU
retains control. This avoids the situation of two MCUs attempting simultaneous control.
A difference from a traditional view of an atomic lock is that instead of a central circuit
or controller identifying an MCU as the active primary, this system relies on the current
primary MCU preventing the remaining MCUs from assuming control.

If multiple MCUs simultaneously controlled the main components, issues would be
experienced in the system. Conflicting electronic signals could lead to short circuits.
Conflicting data signals could lead to corrupted data being conveyed.

Fig. 5.1 shows the flowchart developed as the design basis for this system. This
flowchart shows the decision-making process for analysing the current state of the system,

35




36

Chapter 5. Selt-Supervised Parallel Redundancy

Clearance Input Handling Flow Chart

External
trigger

v ¥

Prompt clearance input
Set Processing flag

Is the
system
processing its
function within
time?

MCU identify as the
primary?

Clear lock flag
Clear processing flag
Clear primary flag

| Wait for next

yes
Did
function
successfully
complete?

no

Don't

change
Perform main Has
function of system the set
T processing time
Does this no passed?

Set Lock Flag
Set primary flag

Y

Set Processing Fla Is the

Clear Lock Fla g Flag

Set Extra Delag =» Record current time system
Staggered delay locked? /~ yes

trigger

Is
processing
flag still
set?

yes

Clear processing flag

Figure 5.1: Flowchart for self-supervised parallel redundancy system.

selecting a primary MCU, the consequent action of the selected primary MCU, and the
consequent action of the remaining available MCUs.

5.2.1 Processing Flag

A processing flag is used to identify that the function is currently being performed. This
flag can be set by any or all of the system MCUs. While one of the MCUs has set
the processing flag, the system will attempt to complete the specified function. Any
non-primary MCUs will clear their processing flag output once they have detected that
another MCU has assumed primary priority. The primary MCU will only clear its output
for the processing flag once the system function has been completed. Once all of the
MCUs have cleared their processing flag outputs, the processing flag will be cleared.




5.2 Control Flow 37

5.2.2 Locked Flag

The locked flag is used to identify that a MCU has assumed primary priority. This flag
restricts any other MCUs from assuming simultancous control with the first MCU. Like
the processing flag, any of the MCUs can set the locked flag, however only one achieves
this at a time.

5.2.3 Clearance Flag

The clearance flag is an overriding call for attention from the MCUs. Any one of the MCUs
can set the clearance flag but it is cleared immediately to prompt just one response. This
would occur anytime a non-primary MCU detects that they system is not behaving as
expected. As can be seen in the top left of fig. 5.1, the external trigger also prompts the
same process. Either of these two sources causes each MCU to evaluate the current status
of the system.

5.2.4 Primary Flag

The primary flag denotes that a particular MCU is the active primary MCU. Unlike the
processing, lock, and clearance flags, the primary flag is a software flag simply for use in
activating certain sections of the code when the MCU is the primary.

5.2.6 State Analysis

The left-hand side of the Howchart in fig. 5.1 details the process of checking the current
status of the system after triggering. This system has been designed as an on-demand
system. This means rather than looping indefinitely, it is triggered externally to perform
a set function.

Since this trigger may not wait for the current function performance to be completed,
the current progression needs to be analysed before proceeding to the function perfor-
mance. To achieve this, an expected time frame is set for completion of the specified
function. If the system is interrupted during processing, and the time frame is still within
expectations, then no changes are made to the priorities of the MCUs. The primary
MCU continues processing as before, and the non-primary MCUs continue evaluating the
timing of the completion of the system function. As will be detailed shortly, one of the
non-primary MCUs can trigger a reanalysis of the current system state if it calculates
that the function processing is taking a longer time than expected.

5.2.6 Primary Selection

The lower left of the flowchart in fig. 5.1 shows the process of selecting the MCU to take
primary priority. Assuming that the system has progressed through the state analysis
section, the system is required to commence a full process of the system function. This




38 Chapter 5. Selt-Supervised Parallel Redundancy

could be from a spontaneous triggering of the external trigger. It could also be due to
the previous process not be completed in the expected time, perhaps due to an error.

If the system had just previously been processing the system function, the primary
flag would still be set on the acting primary MCU. If there had been an error, it is
undesirable for that MCU to take control. If, however, it is the only remaining MCU,
it still needs to have opportunity to take control. Thus if the former primary MCU still
has its primary flag set, it will wait an extra period of time before attempting to assume
primary priority. This gives time for another available MCU to take priority first, without
completely deactivating the previous primary MCU.

After setting any additional delays as required, all MCUs set the processing flag and
record the current time as the start of processing. This time is used for calculating the
lapsed time taken to process the system function. This time may be used by the primary
MCU and by all of the non-primary MCUs. So this time is recorded separately by each
of the MCUs.

The first MCU to set the lock flag assumes primary priority. Complications could arise
from multiple MCUs attempting to set the lock flag simultaneously. If multiple MCUs
checked the locked flag at exactly the same moment, then set the lock flag simultaneously,
simultaneous control could be attempted. This could lead to short-circuits or corrupted
data. To alleviate this error, each MCU needs to wait a unique length of time.

To achieve a unique delay time for each MCU, either each will require individual
programming or each needs a hard-wired input to designate a unique identification (ID)
to each MCU. Whatever the means, each MCU needs a way to calculate how long it should
delay, and thus in what order it should attempt to assume control of primary priority.

After waiting for a unique period of time, each MCU will attempt to assume primary
priority. This decided by checking the lock flag. If the lock flag is not already set, the
MCU will set the lock flag and assume primary priority. If the lock flag is already set,
then the MCU will assume non-primary priority. In this way the first MCU to assume
primary priority locks out all remaining available MCUs.

5.2.7 Primary MCU Response

The subsequent response of the new primary MCU is shown in fig. 5.1 proceeding up
the central section of the flowchart. The MCU enters a loop of performing the system
function, checking for completion of the function, and performing the process again if
required.

Infinite Sequence Processing

If the system is required to perform for a particular length of time, the system could
merely be checking to see if the lapsed time has exceeded the expected timeframe. Once
this time has been reached or exceeded, the primary MCU decommissions itself as the
primary.




5.3 Circuit Design 39

Finite Sequence Processing

If the required function is a finite sequence of steps, the system can be programmed to
check the effectiveness of the processing. If the function is not completed effectively, it
may be appropriate to trigger the clearance flag to prompt another MCU to take over
primary priority. If the function has been successfully completed, the primary MCU then
decommissions itself as the primary MCU.

5.2.8 Non-Primary MCU Response

Fig. 5.1 shows the response of the non-primary MCUs after primary priority has been
assumed by one MCU. This response is shown progressing up the right-hand side of fig.
5.1. After checking that the lock flag has been set and thus an MCU has assumed primary
priority, the non-primary MCUs clear their outputs for the processing flag. They then
wait for the expected process time to pass.

5.2.9 Primary MCU Decommission

After the primary MCU has determined that the process has been completed, the system
needs to be notified. The processing flag is cleared to prevent unnecessary reprocessing.
The lock flag is cleared to enable any available MCUs to respond when the system is next
triggered. Finally, the onboard primary flag is cleared so that no extra delays are initiated
at the next triggering,.

After the expected time has passed for the system function to be completed by the
primary MCU, the non-primary MCUs check the processing flag. If the processing flag is
clear then the process is assumed to have completed. Any non-primary MCUs then wait
for the next external trigger to recommence the whole process.

If the processing flag is still set after the expected timeframe for processing has lapsed,
then it is assumed that there is an error in the primary. All non-primary MCUs will have
cleared their processing flag outputs by now. Thus if the processing flag is still set, the
system needs to be prompted to change primary priority to another MCU. The whole
state analysis is then triggered.

5.3 Circuit Design

The circuit for this system is shown in Appendix B.4. The main components of this system
are the parallel MCUs, necessary OR-gate ICs, and resistors for fixed identification of each
MCU. A 5V power supply provides the required power, and a pushbutton is used for an
input trigger.

A clock circuit is also required for each of the MCUs. This circuit is made of a 16 MHz
crystal oscillator and two accompanying 22 pF ceramic capacitors. This clock circuit
shown in fig. 3.3. This clock circuit connects to pins 9 and 10, the two oscillator input
pins of an Atmega328.




40 Chapter 5. Selt-Supervised Parallel Redundancy
Table 5.1: Values for calculating ID resistors.
D Required Actual
Voltage | Resistor 1 | Resistor 2 | Resistor 1 | Resistor 2 | Voltage
1| 167V 66 k€2 33k 68 k2 33kQ L63V
2 | 333V 33kQ 66k 33kQ 68 kO 337V
3 5V 08 00 082 0Q 5V
5.3.1 Fixed Identification

As discussed in section 5.2.6, the system requires a method of uniquely identifying each
parallel MCU. Using an analogue input pin on an Atmega328, a variety of input voltages
is used to distinguish the different IDs. Each ID input employs a non-zero input voltage.
A voltage divider is used to create the intermediate voltage values between 0V to 5V,
For this circuit three MCUs are used, so three different values are required in three
approximately even steps up from 0V to 5V.

The specifications for the resistors were calculated using (5.1) and listed in Table 5.1.
Since not all values of resistors are readily available, close available values were selected.
The resulting theoretical voltage levels are also included in Table 5.1 as calculated using
(5.2). The circuits for each of the three inputs are shown in fig. 5.2.

RQ _ [

R, wv—u,

=1 (5.1)

Ui

R )

5.3.2 Pin Assignment

The pin assignments for each parallel redundant MCU is listed in Table 5.2. The power
supply is connected to pins 7 and 8, the main power input pins of the MCU. The clock
circuit is connected to pins 9 and 10.

The clearance flag input is assigned to digital pin 2. This pin is the primary of
two available interrupt pins on an Atmega328, pins 2 and 3. The clearance input also
incorporates the main system trigger. The clearance output pin, analogue pin 1, feeds an
OR-gate so that any of the MCUs can prompt a priority assignment on clearance interrupt
pin.

The processing flag input is read through digital pin 3. Although this pin is available as
an interrupt pin, it is not used as an interrupt in this situation. Therefore the assignment
could be reassigned to a different pin if the interrupt pin was required for a chosen system




5.3 Circuit Design 41

ID1 ID 2 ID 3

+5V +5V +5V
R1 68k R1 33k
163V 337V 5V
R2 =33k R2 <gsk

Figure 5.2: Voltage divider circuits used for fixing the MCU IDs
according to location.

function. The processing input pin receives the collaborative signal of the processing
output pin, analogue pin 3, on all the parallel MCUs.

The lock flag input is received through analogue pin 4. This received signal can be set
by any of the parallel MCUs through the lock flag output, analogue pin 2. This signal is
used to exclude any other MCUs from taking on the primary role if one MCU has already
assumed that position.

Each of the analogue pins used as an input produce their read value using the onboard
analogue to digital converter (ADC). While the overall system runs on 5V, in real ap-
plications there is sometimes variation in this voltage level due to manufacturing errors
and circuit faults. These variations are taken into consideration by the Atmega328. The
system voltage rails are connected to pins 21 and 22, ground and the analogue reference
pin, respectively. This provides the MCU with an accurate value of the system voltage
for comparison to the analogue pins being read. If a 4.5V level is read on an analogue
pin, and the system reference is also 4.5V, the measure input will be at the full value.
The highest possible value from an analogue pin is 1024, using the onboard ADC. This is
because the onboard ADC uses 10 bits of resolution. If the measured input is 4.5V, but
the analogue reference input is 5V, the integer result will be 922 as shown in (5.3).

o 45V i
t;aluempuf = (210) (E) == (1024) ( 5V ) =922 (03)

5.3.3 Pull-Down Resistors

Additional pull-down resistors have been omitted from the circuit diagram that will be
included in experimental configurations of the system. These resistors should be used on
all inputs on the OR-gates, in addition to all used inputs on the MCUs. These provide
grounding whenever a signal is not high, while still preventing short-circuits when the




42 Chapter 5. Selt-Supervised Parallel Redundancy

Table 5.2: Atmegad28 pin assignment for self-supervised redundant system.

Pin | Function | Assignment Pin | Function | Assignment
1 | Reset 28 | Ab
2 | DO/Rx 27 | A4 Lock Flag In
3 | D1/Tx 26 | A3 Processing Flag Out
4 | D2 Clear Flag Interrupt | 25 | A2 Lock Flag Out
5 | D3 Processing Flag In 24 | Al Clear Flag Out
6 | D4 23 | AD Fixed ID In
7 | Vee Vee 22 | Gnd Gnd
8 | Gnd Gnd 21 | ARef 5V
9 | Oscl Clock Input 20 | AVce
10 | Osc2 Clock Input 19 | D13
11 | D5 18 | D12
12 | D6 17 | D11
13 | D7 16 | D10
14 | D8 15 | D9 Primary MCU LED

signal is high. In the event of s dislodged wire these pull-down resistors would prevent a
floating value from the input. A floating input value would give erratic readings leading
to erratic system behaviour.

Similar pull-up resistors should also be applied to the reset lines of the MCUs. Rather
than connecting between the input and ground, a pull-up resistor connects between the
input and the system voltage rail. This provides a constant high value. The reset pin on
an Atmega3d28 is low active. This means that to avoid triggering the MCU to completely
reset, the reset pin should be held high. Using a resistor rather than a jumper wire
protects from short circuits if the reset pin is used for in-system programming,.

5.3.4 GGated Distribution

OR-gates are used extensively for the collaboration of the MCUs in this parallel redun-
dancy system. The signal outputs for all of the system flags are channeled through
OR-gates before being directed back to each of the MCUs as inputs. If they were not, one
MCU may have a high output while another MCU had a low output. This would cause
a short-circuit, damaging the circuit.

For any application of this system, OR-gates or an equivalent isolation method should




5.4 Arduino Software Code 43

be used on all MCU outputs which collaborate to control a single destination. Input
pins do not require OR-gates because reading a pin signal does not pose a risk of short-
circuiting,.

5.4 Arduino Software Code

The Arduino code for this system is shown in Appendix C.6, developed using the Arduino
integrated development environment (IDE) 1.8.5. This code has been designed to be iden-
tically loaded onto all parallel MCUs in this self-supervised parallel redundancy system.
The only difference between the different MCUs in the system is that each increase in 1D
has to wait for an additional timeframe to attempt claiming primary control.

5.4.1 Declarations

The Arduino code for this system begins with the declaration of pins and variables. The
first declarations are of the system flag inputs and outputs. After these, any additional
pins are declared. For this system the only extra pins used are an LED output to indicate
the current primary status, and an input pin for a debugging button used to introduce
WDT errors.

After all the pins are declared, variables for the exclusion lock are specified. System
flag storage variables are declared here. Also, variables for keeping track of the time taken
to process the system function. Flags for controlling functionality after the occurrence of
a clearance flag or a WDT timeout are also declared here.

Some of the variables are declared with the extra specification of being volatile. This
characteristic is used for variables that may be changed within an interrupt subroutine
(ISR). By denoting the variable as volatile, the variable is recognised as being able to be
changed at any moment in the event of an interruption. Without this denotation, changes
made within the ISR may not take effect if the variable is in the middle of being modified
outside of the ISR.

Next, components for the WDT are declared. The library for the WDT is included
at this point to provide the extra coding required for implementing and adjusting the
configuration of the WDT. Here also, the flag for the WDT override is declared. This flag
is for restricting the functionality of the main loop after a WDT timeout has occurred.

Finally, any variables are declared for use in performing the desired system function.
This where any future variables should be declared for future applications of the system.
For this configuration, the only additional required variable is the specified maximum
processing time. This variable is really a core feature of the system used by non-primary
MCUs for checking the performance of the designated primary MCU. However, it is a
specification that will need to be configured to suit every application of the system. If
the maximum time is set too low, the system will never conclude its intended function.
If the variable is set to high, a primary MCU may be encountering errors without being
detected by the non-primary MCUs.




44 Chapter 5. Selt-Supervised Parallel Redundancy

5.4.2 Setup

The setup function contains all initialisation steps and process commencements required
for enabling different functions on the MCU. All required pin modes are set here according
to required inputs or outputs. The clearance ISR is attached to the required interrupt
pin, in this case, digital pin 2. Because digital pin 2 is the first of two interrupts on the
Atmega328, it can also be identified as interrupt pin 0. This provides a concise statement
of inclusion. The WDT setup function is also called here to establish the desired WDT
configuration before moving on to the system function.

The fixed ID is also set in the setup function. Line 51 of the code in Appendix C.6
includes all the steps to map an analogue input voltage to an integer ID value. The input
pin is read, using the onboard ADC. This produces a value without units in the range
of 0 to 1024. This value is then divided by 1024, giving a percentage and multiplied by
the number of parallel MCUs, in this case, 3. Converting this to an integer gives a neat
value. Since this value is later only used to determine a waiting period, a non-integer
value could also be used if desired.

5.4.3 Clearance Interrupt Subroutine

The clearance ISR is the code routine that is called whenever the interrupt pin is prompted.
When the clearance ISR is attached to the interrupt pin in setup function, the interrupt
is specified to react to any change, either rising or falling.

This interrupt is called whenever the external trigger prompts the system to perform
its function. The interrupt is also called whenever a WDT timeout occurs on any primary
or non-primary MCU. It is also called whenever a non-primary MCU calculates that the
primary MCU is taking longer than expected to conclude the specified system function.

A series of if-statements determine what situation would have caused the interruption
and what course of action to take. If the primary is still processing the system function
within the expected timeframe when the interruption occurs, no action is taken. If any
action is required, the return-to-start flag is set to skip through sections of the code.
This reduces the time taken to reach the section of code where the primary priority is
determined. If this MCU was the primary MCU when the interruption occurred and if
action is required, the lock flag is cleared. This allows another MCU to take over the
primary role when the role is assigned.

5.4.4 Main System Loop

The main system loop continues to cycle through a series of four different sections of code.
The first section of code limits the functionality of the MCU in the event of a WDT. The
second section assigns the priority of the MCU in the event of a clearance interruption
if necessary. The final two sections are either the section for the primary MCU or the
section for the non-primary MCU.




5.4 Arduino Software Code 45

WDT Timeout Response

If a WDT error has occurred, two aspects of the system require consideration. Firstly, the
MCU needs to handover to another available MCU. A clearance flag prompt is set if the
MCU was the previous primary MCU. This assumes that if this MCU was the primary
MCU, then the system is currently in the middle of processing the system function.
Whether or not the current MCU was the former primary, if the processing flag is set,
this section of code keeps it set to help ensure a handover if necessary.

The second consideration of this piece of code is a limitation. Once a WDT timeout
has occurred, if a WDT closing function is enabled, the system will continue processing
whatever function it was in the middle of just prior to the timeout. The MCU will continue
for a length of time equal to the length of the WDT timeout. If another MCU has been
assigned as the primary MCU, this could lead to conflicting control actions. Therefore
this section of code causes the MCU to return to the start of the main loop, just after
starting the loop. In this way, the MCU is prevented from performing parts of the system
function that could clash with the newly designated primary MCU. The clearance flag
output is cleared before returning to the start of the main loop.

Valid Interruption Response

If the ISR determines that an interruption is valid, the system will set the new process
flag. This enables the second section of code in the main loop. The first step is to clear
the new process flag. This prevents continued unnecessary and potentially problematic
reassignment of primary priority.

Any extra delays are specified next. If the current MCU was formerly the primary
MCU, an extra delay of 100 ms is set. This will delay the former primary MCU before it
can take on the primary role. This is designed to allow any other available MCUs to take
control first. While the former primary MCU will be delayed, in the event of it being the
last available MCU, it will still be able to regain primary control if necessary. After this
delay is set, the primary MCU flag is cleared.

If the current MCU was not formerly the primary MCU, then no extra delay is set.
This allows the non-primary MCU to attempt to gain control before the former primary
MCU attempts to regain primary control.

Having identified any extra delays, all functioning MCUs set their processing flag
outputs. This means that the processing flag will be set until an available NMCU has
taken on the primary role. This is intended to make the system resilient to hiccups that
may cause the system to forget that it had to perform the system function.

All delays are then performed. The former primary MCU waits for its extra delay, if
it was still the primary MCU when a valid interruption occurred. Next, all of the MCUs
wait for a delay period that increases according to its fixed ID. In this way, the situation is
avoided where multiple MCUs attempt to assume primary priority simultaneously. Such
clashes could damage equipment and corrupt data.

Each MCU, after its delay, will then check and respond to the lock flag input. If the
lock flag is not set, the first MCU to respond will take on the primary role. This MCU




46 Chapter 5. Selt-Supervised Parallel Redundancy

will then set its lock flag output, excluding all other available MCUs. This new primary
MCU will also set its own primary MCU flag. This set software flag then enables the
relevant section of the main code loop. It also contributes to the next assignment of
primary priority, as just discussed.

If the lock flag is already set when an MCU checks, the MCU resorts to a non-
primary role. This MCU can now clear its processing flag, since the primary MCU is now
performing the processing function. This will also mean that when the primary MCU
concludes the process and clears its processing output flag, the system processing flag
will be cleared. This prevents unnecessary takeover attempts due to perceived incomplete
processing.

Primary MCU System Function

For the primary MCU, the next main section of code is to perform the main function of
the system. This could be reading input signals, processing some form of data, or writing
outputs. The function may include combinations of all three of these options.

The section of the code for the primary MCU must also have a conclusion section. This
code identifies for the primary MCU, that the system function has successfully reached
its conclusion, and that the MCU can decommission itself as the primary MCU. For the
included configuration, the conclusion is reached when a certain time has elapsed since
the last valid interruption. For this to work effectively, the elapsed time must be updated
prior to comparing it with the desired conclusion time. For a simple example, this is
earlier in the code. For a complex application, this update should be conducted just prior
to the comparison if-statement.

As with the elapsed time update, the system function code should also include regular
resets of the WDT. The simple example used here does not perform lengthy processes to
achieve its goal, so a single reset halfway through the main loop is sufficient. However,
complex applications should include resets at a suitable regularity to prevent timeouts.

If the system function has reached its conclusion the primary MCU must decommission
itself. This involves clearing the lock flag output and the processing flag output. This
prevents another MCU from taking over primary priority when the system function has
already been concluded. The software primary MCU flag also needs to be cleared. This
prevents unnecessary delays when the system is next triggered externally.

Non-Primary MCU Function

Rather than following the system function code like the primary MCU, any non-primary
MCUs complete a short section of code, that compares the completion timeframe of the
primary MCU with an expected timeframe. If the elapsed time has surpassed the maxi-
mum allowed time for completion, non-primary MCUs check the processing flag input. If
the processing flag is still set, then it is assumed that the primary MCU has encountered
an error. The clearance flag is then toggled on and off to prompt a reassignment of pri-
mary responsibility. If the system has not yet reached the maximum time for processing,




5.4 Arduino Software Code 47

or the processing flag is not set when the maximum time is reached, then no action is
taken.

Before this checking on the primary MCU, non-primary MCUs clear their own flag
outputs for the lock and processing flags. This prevents false alarms for priority reas-
signment action. While these steps will be completed multiple times as the code for the
non-primary MCU cycles, it ensures the prevention of accidental false alarms.

Debugging Function

A debugging function has been added to the design. This function reads an input pin
from a button. If the button is pressed, the WDT reset is disabled. In this way, WDT
timeouts can be introduced for controlled testing. The code for this function can be seen
in lines 148 to 153 of Appendix C.6.

5.4.5 Clearance Flag

Throughout the Arduino code, the clearance flag can be seen as the means of prompting
action from the system. The incorporated external trigger initiates action from the sys-
tem. Whenever an error is detected, either from a WDT or from a non-primary MCU
monitoring the primary MCU, the clearance flag is used to prompt the interrupt pin of
cach MCU. All parallel MCUs contribute to the clearance flag. The clearance flag outputs
of each of the MCUs all connect to the inputs of an OR-gate arrangement along with the
external trigger signal.

The uniform output of the clearance flag OR-gate is then read by each parallel MCU.
In this way, any parallel MCU can prompt every parallel MCU to assess the current
situation. From either a primary or a non-primary MCU the system can be prompted to
reassign primary priority to another available MCU if necessary.

5.4.6 Lock Flag

The lock flag is used to exclude all remaining available MCUs from primary priority
once one MCU has gained the primary role. If a non-primary MCU reads a cleared lock
flag after a valid interruption, it will claim primary priority. If, however, a non-primary
MCU reads a set lock flag at that time, it will not be able to gain control until after the
expected processing time has elapsed. Like the clearance flag, the lock flag is facilitated
by an OR-gate(s).

5.4.7 Processing Flag

The processing flag is used for three different situations. It is used primarily for checking
if the primary MCU is still processing the system function after the expected time. The
processing flag is also used to aid the handover process from a primary MCU with errors
to an available non-primary MCU. Finally, the processing flag is used for preventing




48 Chapter 5. Selt-Supervised Parallel Redundancy

Table 5.3: WDT control register bits [8].

Bit | Label | Name Function

7 | WDIF | Watchdog Interrupt Flag Used in the operation of the WDT
6 | WDIE | Watchdog Interrupt Enable | Enables the WDT closing function
5 | WDP3 | WDT Prescaler 3 Bit 3 for setting the WDT duration
4 | WDCE | Watchdog Change Enable Enable bit for configuration access
3 WDE | WDT Reset Enable Enables the WDT to operate

2 | WDP2 | WDT Prescaler 2 Bit 2 for setting the WDT duration
1 | WDP1 | WDT Prescaler 1 Bit 1 for setting the WDT duration
0 | WDPO | WDT Prescaler 0 Bit 0 for setting the WDT duration

interruptions within the expected processing timeframe. As with the clearance flag and
lock flag, the processing flag is made possible using OR-gates.

5.4.8 WDT Setup

The WDT setup function is used for establishing and or modifying the internal WDT
of the Atmega328 MCUs used for this system. All interrupts are disabled to prevent
interruption while the WDT is configured. Next, the WDT is reset, in case a previously
installed sketch had implemented a short WDT timeout. The next step is to enter the
configuration mode of the WDT. Changes of mode and the actual configuration is achieved
by setting particular values in the WDT control register (WDTCSR). The bits of the
register, along with their names and descriptions, are listed in Table 5.3.

After the configuration mode has been accessed by setting the WDTCSR to B0O0011000,
the desired configuration is entered. This again is achieved by setting the WDTCSR . to
the desired values. The configuration used for this application is BO1001100 with the
most significant bit (MSB) on the left hand, and the least significant bit (LSB) on the
right hand. This activates the closing WDT function, called the WDT interrupt, with the
bit second from the left, bit 6. Bits 0, 1, 2, and 4 are used to set the timeout duration
in milliseconds. Here the duration is set to 250 ms. The available duration options are
listed in Table 5.4. Bit 3 is set to enable the WDT to operate, and bit 4 is cleared to
exit the configuration mode. Having setup the WDT, the interrupts are then re-enabled,
concluding the WDT setup process.




5.5 Experimentation 49

Table 5.4: Available WDT timer durations [3].

WDP3 | WDP2 | WDP1 | WDPO | Duration
0 0 16 ms
32 ms
64 ms
125ms

o

1

0

1

0 250ms
1 500 ms
0 s

1 2s

0 4s

1 8s

0

= = = o o o o o o o
s T s I s B T == T o T o
= =T T T e T e B R N

Reserved

1 1 1 1 Reserved

5.4.9 WDT Closing Function

The WDT closing function, also called the WDT ISR, is executed when a WDT timeout
occurs. This function allows concluding actions to be taken. In this application the
function is used to handover primary priority to an available non-primary MCU. This
process is set in motion in three lines of code. The first step is to set the start return flag.
This reduces the time taken for the the main loop to return to its start in the event of
an interruption. The second step sets the WDT override flag. This causes the main loop
to continuously return to the beginning of the main loop preventing interference with the
next appointed primary MCU. Finally, the lock flag is cleared to allow the next primary
MCU to take on the primary role.

5.5 Experimentation

The self-supervised parallel redundancy system was experimentally tested in a laboratory.
The experimental configuration can be seen in fig. 5.3. The Atmel Atmega328P was used
for all MCUs in this experiment. A triple 3-input OR-gate DIP IC, model CD7T4HC4075E,
from Texas Instruments was used for this experiment. A quad 2-input OR-gate DIP IC,
model 74HC32AP from Toshiba was also used. Power was supplied from a GW Instek




50 Chapter 5. Selt-Supervised Parallel Redundancy

External
Trigger

Primary Primary Primary DebligA Debug B
LED A LED B [NEDSE Button Button

Figure 5.3: Experimental configuration of self-supervised redun-
dant parallel MCU system.

programmable power supply, model PWT-3203.

An Agilent DSO-X 2024A benchtop oscilloscope was used to collect the data for plot-
ting. Plots were prepared from the raw data using Matlab. Plot data was taken in a
variety of situations, using introduced circumstances to monitor the behaviour and per-
formance of the system. All data is plotted in split binary plots to emphasise the timing
of the different system components.

5.5.1 System Flag Operation

The behaviour of the system flags was monitored with no errors in the system, to demon-
strate the basic operation of the system. Data was collected of the four system flags
produced by MCU A, the clearance flag, the lock flag, the processing flag, and the soft-
ware primary flag. The output LED of the primary MCU flag was used to gather plot
data for the primary MCU flag. Ordinarily, this flag is merely a software flag, only used
by the MCU that produces it.

Data was collected of processing flags produced by all three MCUs after initial trig-
gering. This was collected to demonstrate the staggered attempts by the parallel MCUs,
to gain primary control of the system function.

Data was also collected for the system lock flag, and the processing flags from MCUs
A and B after triggering. This further demonstrates the exclusion process for preventing
any subsequent available MCUs from taking primary priority after the primary role has




5.5 Experimentation 51

already been secured.

5.5.2 Varied Triggering

The system was subjected to a sequence of varied triggering, to observe its response
depending on the progression of the system function. The trigger was held for a length of
time greater than a second but less than the full duration of the system function. Next,
the trigger was held for a period longer than the full system function. Lastly, the system
was triggered within the duration of the system function being processed.

5.5.3 Prolonged Processing

The next experiment was to test the ability of a non-primary MCU taking over control,
if the primary MCU took longer than expected to complete the system function. For this
experiment, MCU A was programmed with a modified code sketch. The only modification
was the extension of the conclusion if-statement. Instead of concluding after 2000 ms, the
conclusion time was extended to 4000ms. The maximum processing time remained at
3000 ms on all the parallel MCUs.

5.5.4 WDT Timeout

Experiments were conducted to test the system response to WDT errors. These WDT
timeouts were introduced using the debugging button to disable the WDT resetting.
This code is specified in section 5.4.4. Using this feature, static WDT timeouts were
introduced to last the entire experiment. Dynamically introduced WDT timeouts could
then be started at a particular time. Buttons were used on MCUs A and B. The button
input wire for MCU C was connected to ground, keeping the input low.

WDT Statically Interrupted Operation

Experimental data was collected of the system flags and the primary MCU flag of MCU
A. This experiment implemented WDT timeouts on MCU A. This experiment was to
demonstrate the system continuing through to the conclusion of the system function,
even with the WDT timeout.

The same experiment was conducted with WDT timeouts on MCUs A and B. Data
was collected for the primary MCU flags of all three MCUs. This experiment was to
demonstrate the timing of the handover process between MCUs.

WDT Spontaneously Interrupted Operation

The handover process was experimentally tested using an introduced WDT timeout part-
way through the processing of the system function. The system was externally triggered
without any introduced WDT timeouts. Before the conclusion of the system process,
a WDT timeout was introduced to MCU A, in order to prompt a handover to another




52 Chapter 5. Selt-Supervised Parallel Redundancy

N?rmal O;I)eratu'.nnI Of Flag Signa I97

Trigger

Lock A

Processing A

Primary A

i
|
|
!

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5
Time (s)

Figure 5.4: All flag signals for MCU A under normal operation in the self-supervised
system.

available MCU. For this experiment, the processing output flags of MCUs A and B were
recorded alongside the system clearance and lock flags.

A similar experiment was also conducted using prolonged triggering. For this experi-
ment, the primary MCU flags were monitored for all three parallel MCUs. After a brief
external triggering, a WDT timeout was introduced to MCU A, before the conclusion of
the system function. The process was repeated with an extended external triggering.

5.6 Results

This section shows the experimental results for the self-supervised system. The collected
raw data, using the laboratory oscilloscope, has been mapped to binary values. This
mapping and the layered subfigures, have been used to emphasise the system timing.




5.6 Results 53

Normal Operation Of Processing Flags

Trigger

Processing C Processing B Processing A

] 1 ] 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160
Time (ms)

Figure 5.5: Behaviour of system flags.

5.6.1 System Flag Operation

Fig. 5.4 shows the flag signals of MCU A. The trigger input was human activated. The
processing flag is immediately raised. Shortly afterwards MCU A activates the lock flag,
and activates its own primary MCU flag. All three flags continue to just after 2s. First,
the lock flag and processing flag are cleared almost simultaneously. Then, the primary
MCU flag is cleared. All flags are then clear.

Fig. 5.5 shows the output of all three processing flags from the three parallel MCUs.
All three are activated shortly after triggering. The processing flag for MCU A continues
through and after the end of the plot. The processing flags for MCU B and MCU C clear
after increasing periods of time.

Fig. 5.6 shows the behaviour of the processing flags for both MCU A and MCU B
after triggering, along with the system lock flag. Both MCU A and MCU B activate their
processing flag outputs shortly after triggering. The processing flag for MCU A continues
throughout the plot. The processing flag for MCU B falls after approximately 30 ms. The
lock flag sets at approximately 30 ms and continues through to the end of the plot.




54 Chapter 5. Selt-Supervised Parallel Redundancy

Behaviour Of Processing Flags At Triggering
T T T

Trigger

Lock Flag

Processing B Processing A
o
1

0 20 40 60 80 100 120
Time (ms)

Figure 5.6: Zoomed plot of system flag behaviour after triggering.

5.6.2 Varied Triggering

The system response to a variety of trigger lengths can be seen in fig. 5.7. First a trigger
of approximately 1.25s is activated. Then a trigger of over 3s is received by the system.
Finally, a relatively short trigger of less than 0.25s is input. The lock flag, processing
flag A, and processing flag B are initiated, subsequent to the first and second triggering.
These three flags are all also prompted by the falling of the second triggering, however,
none of the flags are affected by the third triggering. The lock flag and processing flag
A remain set for approximately 2 seconds following each prompting. Processing flag B
clears shortly after each prompting.

5.6.3 Prolonged Processing

Fig. 5.8 shows the system response to MCU A, as it takes longer than expected to perform
the system function. After the trigger is manually activated, the processing flag is set by
both MCUs A and B, and the lock flag is set. MCUs B and C are set to perform the
system function for 2s, but to take over if the function is still progressing 3 s after the
trigger or clearance flag has been toggled. For this experiment MCU A has been modified




5.6 Results 55

T T T T varleId Trlg-gi';mg T T T T

Trigger

o
|

—_
T
1

Lock Flag

=)
[

-y
T
|

Processing B Processing A
o
I

Time (s)

Figure 5.7: Various triggering times and durations for a self-supervised system.

to perform the system function, retaining primary priority for 4 s.

After 3s of function processing by MCU A, a reassignment of primary priority is
prompted and MCU B takes over processing responsibility from MCU A. At that point
the lock flag is cleared and reset. MCU B maintains a set processing flag for 2s, then
concludes operation, clearing the system flags.

5.6.4 Watchdog Timeout
Statically Interrupted Operation

Fig. 5.9 shows the behaviour of the system flags, and the primary flag for MCU A, in
response to a WDT error. The trigger is set by human activation. The processing flag
is subsequently set, the lock flag follows shortly, and the primary flag for MCU A is the
last flag to be set. After 0.25s the lock flag is cleared. Approximately 0.2 s later the lock
flag is again set, and the primary flag for MCU A clears shortly afterwards. Just before
the primary flag for MCU is cleared, the trigger signal, incorporated into as the clearance
flag, is set for a moment. The processing flag and lock flag continue from the reset for
approximately 2s before concluding.

Fig. 5.10 shows the progression of the system finding an available MCU, when others




56 Chapter 5. Selt-Supervised Parallel Redundancy

System Response To Processing Overtime
T T T T T

Trigger

Lock Flag

Processing B Processing A
(=]
[

I I I I I 1 I I I I I I
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
Time (s)

Figure 5.8: System response a prolonged processing time.

have issues causing their WDTSs to reset them. After the initial triggering by human acti-
vation, MCU B activates primary priority. This only lasts for less than 0.5s before ending,
and MCU C taking over primary responsibility. MCU C retains control for approximately
25, before concluding.

A more complicated handover of control between MCUs is seen in the second half
of fig. 5.10. After human triggering, MCU A takes control. Primary control rotates
between MCUs A and B three times before MCU C secures primary priority, and holds
it for approximately 2s. The trigger signal, also used as the clearance signal can be
seen oscillating each time MCU A is releasing primary priority to another MCU. No such
oscillations are seen when MCU B releases primary priority to another MCU.

Spontaneously Interrupted Operation

The system response to a spontancous continued watchdog timeout is shown in fig. 5.11.
The trigger is activated briefly by human activation. The processing flags A and B are
subsequently set. The system lock flag follows shortly afterwards. The processing flag B
clears quickly after setting. The processing flag A continues to be set until almost 1.5s.




5.6 Results 57

Flag Response To Watchdog Timeout
T T T T T T
| J7 |
0

f

1 - -

Trigger

Lock Flag

Processing

—_
T
|

Primary A

0 0.25 0.5 0.75 1 1.25 15 1.75 2 2.25 2.5
Time (s)

Figure 5.9: Behaviour of system flags after single watchdog timeout.

The lock flag remains set until approximately 1.2 s, when the processing flag B sets again,
this time remaining on for approximately 2s. The processing flag A loops through a cycle
of clearing for approximately 0.3s, then setting for 2.5s.

Fig. 5.12 shows the system responding to spontaneous individual WDT resets on
MCU A. The initial human triggering prompts MCU A to secure primary priority. This
is maintained for just over 1s. At this point, a single WDT error was experimentally
introduced. MCU C takes over primary priority and concludes after approximately 2s.
No setting of the clearance flag is visible at the time of handover from MCU A to C.

The second human trigger seen in fig. 5.12 is sustained for a period of almost 3s.
Meanwhile, an ongoing WDT error was experimentally introduced after approximately
1s. The primary flag of MCU A can be seen to clear after approximately 1s of operation.
MCU B does not assume the primary priority until the trigger is released, approximately
1.5s after MCU A had released primary priority. MCU B retains control for 2s.




58 Chapter 5. Selt-Supervised Parallel Redundancy

Watchdog Timeouts On MCU A And MCU B
T T T T

T

Trigger

Primary A

Primary B

Primary C

Time (s)

Figure 5.10: Plot of system response to dual introduced watchdog timeouts.

5.7 Discussion

5.7.1 Fixed ID

Each MCU has an ID that is determined by the circuit diagram wiring. By using voltage
dividers, intermediate voltage levels can be implemented to minimise the number of pins
used for a single use feature. The fixed ID is calculated in the setup function of the
Arduino sketch, then not again until the next time the MCU powers on. Each MCU has
a non-zero ID. This allows development in the future, to incorporate checking that the
input pin does in fact have a supplied voltage level. If reading the pin returns a zero
value, the MCU could be programmed to identify this as a fault, and disable the MCU to
prevent clashes of IDs. Unless prevented, any such clashes of 1Ds would lead to conflicting
controllers, potentially causing short-circuits and corrupted data.

5.7.2 Processing Flag Operation

Fig. 5.5 shows a zoomed in view of the timing of each MCU, setting its processing output
flag. Each MCU waits for a set length of time, in order of ID, to avoid simultaneous




5.7 Discussion 59

System Response To Watchdog Timeout
T T T T

Trigger

Lock Flag

Processing B Processing A
T
1

0.5 1 1.5 2 2.5 3 3.5
Time (s)

Figure 5.11: Plot of system response to an introduced watchdog timeout.

performance of the system function. Rather than having the MCU with the first ID
waiting unnecessarily, each MCU waits for one less scalar period than its actual ID. For
these experiments, the scalar period is 30ms. All three MCUs enable their processing
output flags approximately 20 ms after the rising trigger. The processing output flag for
MCU A continues, as MCU would have set the lock flag and assumed primary priority.
By the time MCU B has waited for its single delay period, 30 ms, the lock flag would
have been set, with MCU A holding primary priority. Thus, MCU B clears its processing
output flag. Similarly MCU C clears its processing output flag after a double delay period,
60 ms.

The alignment of the setting of the processing flags from each MCU varied in its exact
initiation. This can be seen by comparing fig. 5.5 with fig. 5.6. The alignment of the
start of processing flag A, compared to the alignment of the start of processing flag B, is
vastly different. This is because the majority of the primary assignment Arduino code is
in the main loop of the code.

Although the trigger prompts an immediate response from the MCU, using an inter-
rupt pin, the code then has to skip its way to the end of the loop to return back to the
start. This skipping forwards is achieved by adding an extra check into each of the if-




60 Chapter 5. Selt-Supervised Parallel Redundancy

: Spont?neouleatcthg Tlmelouls W|1lh Varle]d Triggering

Trigger

Primary A

Primary B

Primary C

1 1 1 L 1 1 L 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10
Time (s)

Figure 5.12: Spontancous WDT timeouts together with varied triggering.

statements throughout the code. Having the assignment of priority within the main loop
is necessary to prevent delays from being performed within the interrupt subroutine. It
was also necessary for preventing the former primary MCU from retaining control, after
it has failed to complete the system function within the expected time.

Although there is some variation in the moment the processing flag is set by each
MCU, the scaled delay is sufficient to offset priority assignment, to reflect the order of
IDs most of the time. Increasing the delay time scalar would further ensure that there
was no conflict of the moment when the MCUs could assume control. However, excessive
increase of this delay scalar would cause unnecessary delays for the system. A future
development could be to optimise the length of delay, for the effective offset of MCU
priority assumption, without unnecessary delays.

5.7.3 System Flag Operation

Fig. 5.6 shows greater detail of the system locking, after the first available MCU assumes
primary priority. MCU A does not have a delay to offset from other MCUs trying to
gain control. However, as discussed in Section 5.7.2, the process of exiting from the main




5.7 Discussion 61

operation loop to the priority assignment section of the code, can cause slight offsets
in timing, as seen in fig. 5.6. With MCU A gaining control first and setting the lock
flag, MCU B continues to keep its processing flag output set until completing the system
function. By the time MCU B completes its delay from being the second ID MCU, the
lock flag is already set, preventing MCU B from taking control.

5.7.4 Varied Triggers
Clearance Triggers

The main system trigger has been incorporated into the clearance flag of the system. At
a circuit level, this is achieved by another input for the OR-gate of the clearance flag.
At a coding level, this means that either one will cause the interrupt subroutine to be
called. Each instance needs to be assessed based on the current state of the code. If it is
determined that there is no need for change, i.e. the system is still processing within the
expected time, no change is implemented. This is seen in fig. 5.7.

In this way, the trigger input and the clearance flag both serve as a wakeup call to any
active primary MCU to assess whether it is actually achieving the desired purpose. Any
non-primary MCUs set and clear the clearance flag when they detect that the process is
taking longer than expected. This effect can be seen in fig. 5.8.

Repeated Clearance Triggers

The primary MCU sets and clears the clearance flag whenever the WDT experiences a
timeout. The results of this reassignment of priority can be seen in figs. 5.9, 5.10, 5.11,
and 5.12. In some of the result plots, only the effect of the clearance prompting can be
seen, not the spike on the trigger line. This is because any prompting of the clearance
flag by MCUs is immediately reset, to avoid unnecessary interruption. The effect of this
on the data logging using the laboratory oscilloscope is that sometimes the sampling rate
is not fast enough to pick up the very brief activity. Therefore, while the spike itself may
not be visible, its effect certainly is evident in the behaviour of the accompanying system
signals.

Sustained Triggers

Sustained triggers can be seen in figs. 5.7 and 5.12. The most important consideration in
this topic, is that the interrupts on the MCU are programmed to activate for both rising
and falling signals. The first sustained trigger in fig. 5.7 is released while MCU A is still
processing the system function within the expected time. In this case, a trigger either
rising or falling will not affect the system.

The second sustained trigger in fig. 5.7 demonstrates a different situation. Where
the trigger remains set until after the primary MCU has completely processed the system
function, then a new process is commence once the trigger is released. This can be used
to the advantage of some applications. If the system was to trigger at the passing of a car




62 Chapter 5. Selt-Supervised Parallel Redundancy

through a driveway, but the car stopped in the driveway, the system would be triggered
both at the arrival and the departure of the car.

Rising And Falling Triggers

This feature of processing at the rising and falling of the trigger also has another feature
that should be considered for each application. Fig. 5.12 shows the trigger being sustained
through the failure of an MCU, due to a WDT timeout. In this case of a failed MCU,
the clearance flag was still held high by the input trigger. Therefore, the toggling of the
clearance flag by the non-primary MCUs would have no effect. The process would not be
togeled again until the trigger was released. This may cause the system to return to the
problematic MCU first, before finally reverting to an alternative MCU. The end result is,
that the process would eventually be completed, however, a potentially significant delay
would be experienced while the system is held high.

This same behaviour was observed in the laboratory with the configuration for overtime
processing. If the trigger was held for an extended period, while a primary MCU was
taking longer than expected to complete the process, a non-primary MCU could not
prompt a priority reassignment. This was not possible when the sustained external trigger
was effectively blocking the clearance flag.

An alternative solution would be to separate the trigger and clearance flags onto
separate interrupt pins. This alternative would use at least one more pin, consuming
already limited pins.

5.7.5 WDT Closing Procedure
WDT Effect on System Flags

When a WDT timeout occurs, it can be set to perform a shutdown function. As shown in
fig. 5.11, when the timeout occurs on MCU A, at approximately 1.2s, MCU A holds its
processing flag set for a further 0.25s. This is the same length of time as the timer length
set for the WDT. The WDT closing function also prompts the clearance flag to handover
primary priority to another MCU. This function is configured to clear the lock flag and to
retain the set processing flag, preparing the system for the next available MCU to assume
control. This functionality is clearly visible in fig. 5.9.

Simultaneous Primary MCU Flags

This closing function also maintains the primary flag as set. This activates the additional
delay after a reassignment of the primary priority, in turn preventing this MCU from
resuming primary operation, however briefly. This also explains why in fig. 5.11, both
MCUs A and B have their primary MCU flags set simultaneously just after the handover.
Additionally, the introduced WDT timeont was sustained for the remaining duration of
the experiment. Therefore, every time the WDT reached its timeout, it would initiate the
WDT closing function, which also activates the primary MCU flag. This is not trying to




5.7 Discussion 63

takeover primary priority. It is merely to prevent resumption of primary priority, in the
event of a subsequent clearance before it reboots.

Prevention Of System Interference

Once the WDT closing function has been executed, however, the MCU returns to the
main loop for whatever time is left of the countdown timer length, 0.25s or 250 ms. There
is a risk with a set primary MCU flag, that this MCU could try to perform some of the
system function in that small time. This is alleviated by setting the return-to-start flag.
A WDT reset flag is also set in the WD closing function. When set, this WDT reset flag
causes the main loop to return to the start immediately after starting. This has the effect
of disabling all interfering influence of the MCU, after the WDT timeout has occurred.

5.7.6 Infinite Sequence Application

The used example code is configured for an infinite progression of steps to complete the
system function. For the example, the completion comes when a certain length of time
has passed since the commencement of processing. The single function is the enabling
of an output LED for a set length of time, 2s. This doubles as a helpful debugging and
demonstration tool. The effect is an LED that is held on for the specified time. For the
MCU, though, it is cycling through the main loop including the if-statement for primary
MCUs. It will continue this until the conclusion if-statement identifies that the desired
time has been reached and decommissions the MCU as the primary.

This configuration should easily be adaptable to other infinite step applications. The
key will be in deriving the best way of identifying the conclusion if-statement. This could
be, “If a particular signal is received, conclude”. The question could be, “If a particular
combination of inputs is detected, then conclude”. The if-statement may simply remain
“If the prescribed time has passed, then conclude”. The options for this conclusion if-
statement are many and varied. Suitable queries may fit within the category of received
information or elapsed time.

5.7.7 Finite Sequence Application

This system can also be adapted to be used as a finite progression of steps. The set steps
could be programmed into the main system function section of the code. The conclusion
if-statement is again the key. This question could be, “If the new file exists, conclude”.
It could also be “If the new file has a size within an expected range, conclude”. Suitable
questions may resemble confirmation of output information.

5.7.8 Sequence Feedback

For situations of outputting particular signals or data, it would be helpful to use some
form of feedback, to feed the conclusion if-statement. If outputting a signal, another




64 Chapter 5. Selt-Supervised Parallel Redundancy

pin could be used to confirm that the signal was electronically produced. If an error
was encountered, such as a broken solder joint or a blown output pin, the MCU may
perform the correct code without achieving the desired electronic signal. A feedback loop
through a different pin could be used to detect such errors. If the output is produced
data, feedback may take the form of checking the files existence, checking the file size, or
receiving confirmation notification from another data module that receives the data.

5.7.9 Constant Sequence Application

The system could also be used in applications requiring a constant repetition of a sequence.
By programming the conclusion if-statement to prompt the clearance flag, the system
would cycle into the next iteration of the sequence. This would also reset the elapsed
time count on the non-primary MCUs.

This system would effectively operate like the WDT. MCU A would continue to op-
erate as the primary, resetting the non-primary MCU counters, while it is running as
expected. Like the WDT, the primary needs to respond to the non-primary MCUs before
the configured timer limit.

5.7.10 Expected Timeframe Predictability

For any of the sequences, an expected timeframe is required for programming the parallel
MCUs. This enables the non-primary MCUs to monitor the performance of the designated
primary at any one time. This time frame is also used to prevent untimely interference
from rapid re-triggering and clearance prompts.

5.7.11 WDT Resetting

From these experiments, the incorporation of a WDT is a useful method of resetting
errant MCUs. However, care needs to be taken to include regular WDT resets in the
code, to allow the system to continue through its desired sequence. Excessive WDT re-
setting consumes processing capability, time and power, unnecessarily. Inadequate WDT
resetting will not allow the system to function.

Care should be particularly given to applications that include if-statements, and for
loops. If all possible progressions are not considered, a particular progression path may
be encountered that consumes more time than the WDT allows for, without resetting.

The WDT timeout length should also be considered for preventing unnecessary time-
outs. If the timeout is too short, frequent resets are required. However, if the timeout
is too long, occurrence of errors won't be identified as quickly, and unnecessary time is
wasted on the WDT closing function.




5.7 Discussion 65

5.7.12 return-to-start Escapes

As with resetting the WDT, frequent inclusion of escapes for the return-to-start feature
should be included in any application sequence. This will increase the speed of response
to clearance flag prompts. This in turn also serves to prevent possible clashes caused
by MCUs simultaneously assuming primary priority. Frequent escapes for the return-to-
start function also minimise the interference, that a resetting MCU will carry out after
the WDT conclusion function.

5.7.13 Expandability

This system has been designed to be multipliable. An increased number of parallel MCUs
would require a matching set of voltage divider inputs for the fixed IDs. Suitable combi-
nations would be required to retain relatively even spacing between the different voltage
levels. This would, in turn, reduce the potential for errors in the mapping performed by
the Arduino code in the startup function.

The startup function would also need to be edited to suit the number of parallel MCUs
being used. Currently, the mapping produces discrete integer IDs for each MCU. Since
the fixed ID is only used for staggering the delay, this could be converted to a real number
with similar range between each ID.

Additional OR-gates would be required for an increased number of parallel MCUs.
This can be achieved using at least two different methods. One simplistic method is to
use OR-gates with as many inputs as there are MCUs used in parallel. A more practical
and realistic solution would be to connect multiple 2-input or 2-input OR-gates in series,
to provide a greater number of inputs. These will be required for the redundancy system.
Some OR-gates may also be required for the chosen system function.

The selected number of MCUs to install in parallel would need to be considered. Too
few parallel MCUs may pave the way for an inability to recover from errors. Excessive
numbers of parallel MCUs adds cost to the system, and complication to the production
of the system. These considerations will need to be traded-off, to determine an ideal
quantity.

5.7.14 Pin Assignment

The pin assignment for this system has mainly used the analogue pins of the MCUs for
the redundancy system. This retains the majority of the digital pins for use in performing
the system function. However, except for the fixed ID pin, the redundancy system pins
are all handled as digital pins. This is achieved using the Arduino functions digitalRead()
and digitalWrite(). Therefore, these signals can be easily reassigned to digital pins, in
order to leave the analogue pins available for use by the system function.




66 Chapter 5. Selt-Supervised Parallel Redundancy

5.7.15 Multiple MCU Output Management

Any time there is an output required from the system for the system function, a funnel
method will be required for giving all MCUs access while preventing short circuits. This
can be achieved using OR-gates for low power applications. OR-gates have a current limit
on their outputs. If this current limit prevents use for a particular application, alternatives
are available.

Relays, transistors and optocouplers can be used to facilitate the necessary isolation.
However, each of these methods require at least one extra control pin to be used for
enabling and disabling the isolation component. A simple alternative would be to use
a diode on each output, preventing reverse current flow. Any of these alternatives can
potentially be used, but the inherent voltage drop for each of these systems will need to
be considered for any application of the alternatives.




Chapter 6

Self-Supervised Redundant Camera
Device

6.1 Introduction

This chapter presents the application of the self-supervised redundant system of chapter 5
to a camera monitoring device. This device is intended to capture an image after external
triggering. This image is to be saved onto an SD card, then emailed to a specific email
address.

The circuit developement is shown in section 6.2. Section 6.3 details the code devel-
opment for this application. The experimentation is laid out in section 6.4. The results
are presented in section 6.5. The application and the results are discussed in section 6.6.

Components were selected based on their ability to operate with the Arduino com-
patible MCUs. A camera module, an SD card module, and a cellular access module were
required to achieve the desired outcomes.

6.1.1 Camera Module

The Adafruit TTL Serial camera was selected for this system. This camera can be focused
to a maximum distance of 15 m. It uses an input voltage of 5V and uses a 3.3V logic level
voltage. Both of these are within the voltage limits of an Atmega328 IC. The availability
of an Arduino library was also a significant factor in the selection of this camera.

6.1.2 SD Card Module

A Catalex micro SD card module was selected for this system. This module is readily
available and is compatible with Arduino capable MCUs. The Arduino IDE includes a
library for using with these modules.

67




68 Chapter 6. Selt-Supervised Redundant Camera Device

6.1.3 3G Cellular Module

The Adafruit FONA 3G module was selected for the cellular access module. This device
was the only 3G access module found that would work with Arduino compatible MCUs.
The datasheet for the included cellular access IC claims to be able to access the data
capabilities of a 3G cellular connection [9]. Adafruit provide a library for this module for
use in the Arduino IDE, however, with limited cellular data integration. This module was
selected with the intention of further developing this library’s capability.

6.1.4 Development Plan

This system was developed in three stages. The first stage was to confirm that the camera
and SD card modules would work in an Arduino configuration. The second stage was to
develop and test the functionality of the 3G cellular access module. The third stage would
be to integrate these two circuits along with the redundant configuration into the final
redundant camera system.

6.2 Circuit Development

6.2.1 Pin Assignment

The Atmega328 pin assignment for this project is listed in Table 6.1. This application
of the self-supervised redundancy system only requires digital pins, so no modifications
were required to the pin assignment used in the development of the redundancy system
for the system wiring.

6.2.2 Camera And SD Card Proof Of Concept

Appendix B.5 shows the circuit diagram for the proof of concept circuit for the camera
and SD card modules. The camera and SD card modules are wired to the Atmega328 as
specified in Table 6.1. A 16 MHz crystal oscillator provides the clock input along with
its required 22 pF capacitors. A NO PB provides an input trigger on the digital pin 7,
incorporating a 15 k€2 pull-down resistor. The whole system is powered from a 5V supply.

Because the camera uses a 3.3V logic level voltage, a voltage divider is required to
reduce the 5V output of the Atmega328 down under 3.3V. Using two 10k(} resistors
reduces the signal amplitude down to 2.5V. While being reduced below the maximum
input level for the camera, it will still be greater than half of that level, 1.65V, so it will
still be enough to trigger high inputs for the camera. Similarly, the 3.3V output of the
camera is greater than half of the 5V logic level voltage of the Atmega328, so the camera
output signal will still be received by the Atmega328.




6.2 Circuit Development 69

Table 6.1: Atmega328 pin assignment for self-supervised redundant camera

system.
Pin | Function | Assignment Pin | Function | Assignment
1 | Reset 28 | A5
2 | DO/Rx 27 | A4 Lock Flag In
3 | D1/Tx 26 | A3 Processing Flag Out
4 | D2 Clear Flag Interrupt | 25 | A2 Lock Flag Out
5 | D3 Processing Flag In 24 [ Al Clear Flag Out
6 | D4 Cellular Reset 23 | AO Fixed ID In
7 | Vee Vee 22 | Gnd Gnd
& | Gnd Gnd 21 | ARef 5V
9 | Oscl Clock Input 20 | AVee
10 | Osc2 Clock Input 19 | D13 SD Card Clock
11 | D5 Cellular MISO Rx 18 | D12 SD Card MISO
12 | D6 Cellular MOSI Tx 17 | D11 SD Card MOSI
13 | D7 Camera MISO Rx 16 | D10 SD Chip Select
14 | D8 Camera MOSI Tx 15 | D9 Primary MCU LED

6.2.3 Cellular Proof Of Concept

The circuit diagram for the proof of concept configuration of the FONA 3G module is
detailed in Appendix B.6. Communication in this configuration relies on a computer
connected to the circuit, using the circuit in fig. 3.4. This circuit is therefore simplified to
one Atmega328, the FONA 3G module, the clock input as the main circuit components.
A 5V provides power to the main circuit. The FONA 3G module also requires its own
lithium polymer (LiPo) battery for steady operation, as included in the circuit diagram.

This module is wired according to the example Arduino code provided by Adafruit.
The pin assignment does not therefore match that of the planned final circuit. Since
only wiring between the Atmega328 and the FONA 3G module are wires for a reset line
and the two lines used for serial, these can be easily moved to other digital pins on the
Atmega328. This is possible since any of the digital pins on an Atmega328 can be used
for a software serial connection.




70 Chapter 6. Selt-Supervised Redundant Camera Device

6.2.4 Redundancy Integration

The circuit diagram for the integrated redundant system is shown in Appendix B.7. Since
cellular data access was not accomplished through the FONA 3G module, the final config-
uration excludes the FONA 3G module from the circuit diagram. Future inclusion would
be in the same manner as the inclusion of the camera and SD card modules.

The given circuit diagram omits several portions of the circuit for clarity. The clock
input circuit as shown in fig. 3.3 is omitted from each of the MCUs. 15k pull-down
resistors on each of the OR-gate inputs and MCU inputs have also been omitted. Finally,
the flag wiring for the self-supervised redundancy system has been omitted. This wiring
should be included as shown in Appendix B.4.

The inputs and outputs of the camera and SD card modules are connected in much
the same way as in the proof of concept circuit. The main difference is that all MCU
outputs to the modules divert through OR-gates in order to avoid short-circuits. All
module outputs branch directly to the MCU inputs.

6.3 Code Development
6.3.1 Camera And SD Card Proof Of Concept

Appendix C.7 shows the Arduino code for the camera and SD card proof of concept.
This code sketch is a modified version of the snapshot example that comes with the
Adafruit library for the camera. This configuration initialises the camera and SD card
modules, then waits for the trigger PB to be pressed. Once the system is triggered, the
next sequential filename is calculated, then the captured data is read from the camera
module and written to the SD card module, at a rate of 32 bytes at a time. The time
taken to process the image is recorded and displayed on the serial monitor after the image
processing is completed.

Camera Integration

Integration of the TTL Serial camera requires the inclusion of the several additional
Arduino libraries. The Adafruit_VCO0706 library includes necessary camera function def-
initions. The SPI library is required for the communication between the MCU and the
camera. Lastly, the software serial library is included to use a serial connection on pins
other than the standard Atmega328 serial pins, digital pins 0 and 1. The camera is
initialised in the setup loop of the code using a boolean query.

After initialisation, the camera captures an image in a moment when requested. This
request takes the form of the boolean query cam.takePicture(). Once this line has been
executed, the camera will hold the data of that image until it is instructed to revert back to
video mode, even if the takePicture() function is called again. This means that the image
data can he accessed as required. Once all the image data has been recorded to the desired
destination, the camera is returned to video mode with the command cam.resumeVideo().




6.3 Code Development 71

This clears the image data from the camera and prepares the camera to take the next
image.

One of the system requirements is for the system to capture an image within 500 ms.
This proof of concept tests the response time of these components. The time is recorded
at the time of triggering already to show the duration of processing. The code compares
this timestamp with the current time once the camera has confirmed the captured image.
Using this process, the elapsed response time is measured.

Micro SD Card Integration

The SD card module also requires additional libraries for use in this configuration. The
SPI library is required for communication with this module. The SD library is required
for handling the pin connections and the necessary commands for initialising the card and
also reading and writing data on the card. The pin for the chip select signal to the card is
also required to be specified. The default pin, digital pin 10, is used in this configuration.

After the SD card connection has been initialised in the setup function, the system
can read and write data on the card. First a file name needs to be selected. This
configuration selects the next sequential file name to avoid writing over existing data,
checking the existence of previous combinations. Once a file name has been selected,
a new file is created and opened on the SD card in one command, SD.open(filename,
FILE_WRITE). While the retrieved data is collected from the camera 32 bytes per cycle,
the data is written to the SD card file at the same rate. Once all of the data has been
written, the image file is closed, to prevent further writing.

6.3.2 Cellular Proof of Concept

The Arduino code used for this proof of concept is shown in Appendix C.8. This code is a
simplification of the FONAtest example code that comes with the FONA library. Features
relevant to GPS, an FM radio, network time, and audio control have been eliminated from
this sketch. Some of these features aren’t available on the selected module. Some of the
features are unnecessary for this application. This elimination also helps to reduce the
required memory for future integration into the redundant system.

This code presents a range of available commands accessible through the serial monitor
of the Arduino IDE on a connected computer. These commands activate features such
as unlocking the SIM card, sending an SMS, making a phonecall, and controlling the
GPRS. These brief commands sent from the serial monitor to the MCU then execute the
necessary sections of the library files to accomplish the intended action.

For this configuration, the required steps for unlocking the SIM pin have been con-
densed into a custom function that is called in the setup function. This is to simplify
the process of experimentation. An arbitrary pin number has been used for the given
configuration.

To facilitate access to GPRS using the FONA module, the code requires an access
point name (APN) to be specified. While this enables GPRS, it may not be sufficient for




72 Chapter 6. Selt-Supervised Redundant Camera Device

3G data access.

Library Modification

Modifications were made to the Adafruit FONA library files in an attempt to facilitate
email access. An additional command, boolean sendTestMail(void), was added to the
h-file. This can be seen at line 173 of Appendix C.9. This connects the function call from
the programmed sketch to the detailed function in the cpp-file. Lines 804 to 830 were
added to the cpp-file, included in Appendix C.10. This function prepares the necessary
header details for an email.

The pre-filled details for the email are sent using commands specified in the datahseet
for the SIMCom IC on the Adafruit 3G module [9]. Email specifications include the
SMTP server address, SMTP account, SMTP password, sender address, recipient address,
subject, and body. The last included command is for the FONA module to send the email.
Each of the commands is checked by the code for completion before proceeding to the
next command.

6.3.3 Redundancy Integration

The integration of the code for the camera system components into the self-supervising
redundant system is listed in Appendix C.11. Since 3G data access was not accomplished
this code omits provision for the FONA 3G module.

The resultant code is constructed by fitting the camera and SD card code from section
6.3.1 into the redundant system code from section 5.4. The proof of concept code is
divided three ways for this integration. The declarations of libraries, pins, and variables
is added prior to the setup function. The necessary initialisation steps are added into the
setup function. Lastly, the main function of the proof of concept is added to the main
loop of the redundant code in the process for the primary MCU.

The main function of the proof of concept is modified to suit the redundant system.
The trigger button of the concept system is eliminated, instead using the existing trigger
capability of the self-supervised redundant system. This means that the main system
function of the redundant code now captures the image using the camera and writes that
data to the SD card, 32 bytes at a time.

The second required modification changes the conclusion if-statement of the redun-
dant system. Two options are presented for the conclusion if-statement. If the process
completed in less than half the expected time, then there is most likely an error in the
system, such as the SD card cannot be found. Therefore, if the conclusion is reached too
quickly, the clearance flag is set to prompt a hand over to another available MCU. If the
function conclusion was not reached too quickly, the primary MCU decommissions itself
as expected.




6.4 Experimentation 73

6.4 Experimentation

6.4.1 Camera And SD Card Proof Of Concept

The experimental circuit was configured using an Arduio Nano version 3. The clock circnit
was subsequently omitted. The 5V system supply was provided by the Nano. All other
wiring was connected as specified in Appendix B.5. 4 GB SanDisk micro SD cards were
used for data storage.

Several images were captured by pressing the trigger button. The serial monitor
signalled the completion of the image capture. After several images were captured, the
SD card was connected to a computer to view the captured images. This process was
repeated several times for the three different size options.

The response time was recorded for twenty consecutive images. The average of these
response times was taken as the response time of this proof of concept system. This data
was gathered using readouts on the serial monitor in the Arduino IDE.

6.4.2 Cellular Proof Of Concept

This circuit was implemented using an Arduino Nano version 3. The 5V supply was taken
from the Nano. The clock circuit was omitted as it was unnecessary. All other wiring
was configured as per the circuit diagram in Appendix B.6, including a 2200mA h LiPo
battery.

The phonecall functionality of the FONA 3G cellular module was tested using the
serial monitor access to its functions. This was achieved by entering the character “c¢”
into the serial monitor to make the phone call. A headset was connected directly to the
FONA 3G module for audio access. To end the phonecall, “h” was entered into the serial
monitor.

Similarly, SMS messages were sent, viewed, and managed through the serial monitor.
The available SMS commands listed in Appendix C.8 were tested, including read individ-
ual message, read all messages, delete individual message, and send message. The total
number of messages was also viewed.

After setting the APN for the relevant network provider, GPRS was connected. GPRS
was connected by entering “G” into the serial monitor. This command returned a positive
confirmation when it connected. The connection was disconnected by entering “g” into
the serial monitor. This also returned an affirmation after completion.

6.4.3 Email Sending

The library files were configured with static information to test the sending of an email.
Relevant configurations for two separate email addresses were entered into the sections of
code for the custom mail sending function in the library cpp-file. This function was based
on the other functions in the library, and on the commands listed in the datasheet for the
SIMCom IC [9]. This function was configured to be executed after entering “J” into the




T4 Chapter 6. Selt-Supervised Redundant Camera Device

serial monitor. An additional attempt was made to send an email without a subject or
body.

6.4.4 Redundancy Integration

Fig. 6.1 shows the experimental circuit used for testing the application of the camera and
SD card in a redundancy system. The main redundant system used the same configuration
as used in section 5.5. Triple 3-input OR-gate DIP ICs, model CD7T4HC4075E, from Texas
Instruments were used for all additional OR-gates for the camera and SD card modules.

=
Camera SD Card Trigger
Module Module Button

Figure 6.1: Experimental configuration of camera and SD card
self-supervised redundancy system.

The system trigger was humanly activated while monitoring outputs on the serial
monitor of the Arduino IDE. Several attempts were made to capture an image. The SD
cards were then connected directly to a computer to view the captured images.

6.5 Results

6.5.1 Camera And SD Card Proof Of Concept

Processing Duration

Several photos were successfully captured using the specified configuration. The average
specifications of the photos are listed in Table 6.2. The larger the photo size, the longer




6.5 Results 75

the system took to process. This however is offset by the desired image quality. A large
photo is shown in fig. 6.2. An example of the serial monitor output is shown in fig. 6.3,
as used for gathering the results.

Table 6.2: Average specifications of available image
sizes from the Adafruit TTL Serial camera.

Size Area Memory | Transfer Time
Small 160 x 120 px | 3 kB 1.5s
Medium | 320 x 240 px | 12 kB 6.5s
Large 640 x 480 px | 48 kB 258

Figure 6.2: Experimental example of the largest resoltion image
from the Adafruit TTL Serial Camera, 640 x 480 px.

Reponse Time

The average response time for the proof of concept camera system was 13.85ms. This
was the average of twenty samples taken from the moment the button was pushed to
the moment the camera responded to the MCU that the image had been captured in
the camera’s memory. There was one outlier value of 23 ms. Excluding this outlier, the




76 Chapter 6. Selt-Supervised Redundant Camera Device

L JON ] /devicu.wehusbserial1420
Send

VCO706 Comera test

Card found

Camera found

Image coptured on comera in 15 ms!
IMGRRLY , JFE

...Done in 25356 ms!

2 Autoscroll Newline B 9600 baud Clear output
B}

Figure 6.3: A screenshot of the Arduino IDE serial monitor used
for capturing results of reponse time and processing duration.

average response time for the remaining nineteen samples was 13.37 ms, with a minimum
of 13ms, and a maximum of 15ms. An example of the completion time can be seen in
fig. 6.3.

6.5.2 Cellular Proof Of Concept

Multiple outgoing phonecalls were successfully made, although they were mono-directional.
The receiver of the phonecall could not hear the voice of the caller. However, the caller
could hear the receiver's voice.

Multiple SMS messages were exchanged using the serial monitor for a user interface.
Incoming messages were received, and viewed in bulk. Some were deleted. Outgoing
messages were likewise received as expected.

The GPRS connection returned positive affirmation of a data connection, but emails
were not successfully senf. When the email sending process was initiated, the various
steps were displayed in the serial monitor. This indicated issues with setting the text of
the subject and body.

After clearing the subject and body, sending another email was attempted. This
progressed through the whole process returning a positive affirmation that the email had
been sent in the last step. However, no emails were received at their intended destination.

6.5.3 Redundancy Integration

The serial monitor was viewed while triggering the redundant camera system. The system
kept returning errors when trying to connect to the SD card module. Attempts were




6.6 Discussion 77

made to relocate the initialisation portions of the code to the main loop without success.
The result was that the system corrupted the formatting of three different micro SD
cards. Even after they were formatted, the system did not capture any images using this
configuration.

6.6 Discussion

6.6.1 Image Capture Duration

The camera and SD card worked as expected using the basic proof of concept configura-
tion. The greater the image size, the longer the processing time. Because this consumes
the whole attention of the system while processing, The system can’t capture another
image until the first is processed completely. Any applications for this configuration will
require a trade-off between the desired image quality and the available frequency of image
capture. This processing time frame is related to the speed capability of SPI.

6.6.2 Image Capture Response Time

The response time of the camera configuration is well within the specification for the
project. Even the outlier is well within the desired time. Integration into the redundancy
system may extend this response time, allowing for the system to select a primary MCU.
However, fig. 5.6 shows that the redundancy system can establish a primary MCU in
well under 100 ms. Therefore, a final configuration using these modules should have no
problem achieving a system response time under the specified 500 ms.

6.6.3 Cellular Proof Of Concept

The cullular access system has not reached its intended functionality, and will require
further research and development. This development should further determine the lines
between 2G and 3G data access. Also, the datasheet for the SIMCom IC will need to be
studied in greater detail to derive a suitable sequence to access its capabilities.

While the FONA 3G module has a thorough datasheet for the available commands,
the implementation of these commands can be difficult with limited feedback. This is
particularly an issue when dealing with a third party service provider, the relevant cellular
carrier. With outside influence, compared to a project that operates purely within a
laboratory, identifying the gaps in information flow can be difficult to troubleshoot. The
realisation of this data access may require considerable time and effort.

6.6.4 Redundancy Integration

The redundant parallel MCU-based camera system also has not achieved the planned
function. While the required code sections fitted within the anticipated code gaps. The
overall process neglected critical requirements. Not only does the SD card module require




78 Chapter 6. Selt-Supervised Redundant Camera Device

only one MCU to be writing to it at one time. It seems, also, that only one MCU can
initialise the connection with the SD card module at a time. Without considering this
requirement, this experimentation suggests that no data capture will be possible. Greater
research and development will be required for this system to become a workable solution.




Chapter 7

Conclusions and Future Work

7.1 Conclusions

7.1.1 Supervised Redundancy Model
Capability

A separately supervised redundancy system has been developed, using open-source mi-
crocontroller units (MCUs). This system uses one MCU to monitor the performance of
two parallel MCUs performing the main system function. The experimental system was
setup to process analogue inputs, driving both digital and analogue outputs.

Benefits

This system has the benefit of rapid transition between primary MCUs. This reduces the
impact experienced by the outputs from system errors. For some applications that are not
time dependent, this may provide a close approximation of the desired system function.

Another benefit of this system is the simplicity of the code. For basic applications the
parallel MCUs do not require elaborate coding to perform their function. Additionally,
the code for the supervisor MCU is largely based on the code of the parallel MCUs.

This system also has the benefit of error detection. By measuring the final system
outputs, errors are quickly identified.

7.1.2 Limitations

Although errors are identified quickly, the source of the errors is not necessarily identified.
To identify which MCU experienced the error, all output pins of all supervised MCUs
would need to be monitored. This is not possible with many outputs due to the limit of
pins on the MCU,

If the source of errors is not detected, then the system blindly switches between primary
MCUs, in an attempt to produce the expected signal. This means that switching will

79




80 Chapter 7. Conclusions and Future Work

happen even if there’s not a functional MCU being enabled, for instance if one of the
MCUs has become completely unresponsive.

If a greater number of MCUs is added in parallel, to increase the tolerance of errors,
then there is nothing to stop unresponsive MCUs from being assigned primary control.
Thus, a greater number of MCUs would not increase the tolerance of errors, but compound
the effect of errors, particularly when multiple errors are experienced.

7.1.3 Self-Supervised Redundancy Model
Capability

A dynamic redundancy system has been developed that uses the parallel MCUs to monitor
each other. This expandable system can tolerate unresponsive MCUs, reassigning primary
control to an available responsive MCU. This primary control can be assigned at the time
of external triggering, or in the middle of a process, when the existing primary MCU has
become unresponsive. This system is suited to applications requiring a finite sequence of
steps as well as an infinite sequence of steps.

Advantages Over Separate Supervision

The first benefit of this system, over a separately supervised system, is that the required
peripheral control hardware is reduced. This circuit only requires three OR-gates to
function in its simplest configuration. This is contrasted with a separately supervised
system, requiring multiple types of gates for a hardware priority selector, or a whole other
MCU to serve as the supervisor.

The second benefit of this self-supervised redundancy system, over a separately su-
pervised redundancy system, is that of single code development. Where all MCUs are
parallel, performing the same processes, and have their positions identified with hard-
ware, they can all be loaded with the same set of code. A separate MCU supervisor
would require a whole separate set of code.

Jammed MCU Recovery

Through the use of a watchdog timer (WDT), this system can recover from situations
where the MCU has become jammed in a process, and is unresponsive. In the event
of the primary MCU jamming, the primary control will be passed to the next available
MCU. The WDT will then reset the jammed MCU, in an attempt to recover back to full
operational capability.

System Requirements

The Arduino code for the main function requires elements of code to continue performing,
and to maximise its efficiency. Periodic resets of the WDT are required to prevent the
MCU from being reset. This serves to alert the WDT that the MCU is still responsive.




7.1 Conclusions 81

Additionally, a return-to-start flag will need to be checked regularly during the main
system function, in order to enable a rapid hand over in the event of a jammed MCU.

The wiring requires both OR-gates and pull-down resistors. The OR-gates are re-
quired for all outputs. This allows access to peripheral components from all MCUs, while
preventing short-circuits being caused in the process. The pull-down resistors should be
fitted to all inputs of MCUs and OR-gates, to minimise the effect of any dislodged wires,
particularly for the redundancy wiring.

Limitations

There is currently no inclusion of immediate output monitoring. This would have to be
developed with future applications. This would require an MCU to be discounted from
primary assignment if it is not producing the expected results.

7.1.4 Resetting

The first method used for facilitating MCU resets, in the event of function errors, was
using the supervising system. If a primary MCU was found to not operate properly, then
the offending MCU would be indiscriminately reset by lowering the signal to the reset pin
of that MCU. This can cause extensive unnecessary downtime for MCUs if the error is
merely a wiring error. Also, an additional output pin is required in order to individually
reset each parallel supervised MCU.

The watchdog method, by contrast, is simpler to implement, and more efficient than
the previous method. An onboard WDT listens for regular activity from each MCU. No
additional wiring is required. The necessary hardware is built into Atmega328 1Cs. The
code is easily included, provided regular resets of the WDT are included. This method
eliminates unnecessary resets due to wiring errors. This method is also independent of
supervision methods.

7.1.5 Camera System Redundancy Application

The camera monitoring device was not successfully implemented into a redundant MCU
system. Also, since the system was not successfully developed, a working prototype was
not produced. Several limitations prevented this configuration from being implemented.
This project did not achieve email capability through the cellular module. Nor was the
camera and SD card able to be successfully integrated into the code and wiring for the
redundancy system.

Additionally, implementation of the coding for the camera and SD card modules cannot
be used in the redundancy system, in the same way as a single MCU system. This
limitation is due to the inability for multiple MCUs to be connected to the modules at
once. Further research is required to include the connection initialisations into the main
loop of the system code. This would then allow the modules to be enabled only when
needed.




82 Chapter 7. Conclusions and Future Work

Even if all of these components was made to work, the system would still be limited by
the processing duration of the images. At the maximum image resolution of the camera,
the system will have a 25s gap, before it can capture another image. The gap can be
reduced at a cost of image quality, but this may similarly limit the application of this
camera system.

7.2 Future Work

7.2.1 Comprehensive ID Voltage Dividers

A future development could incorporate a voltage dividers for all ID wiring inputs. A
non-zero feature was incorporated for this system. The same method could be used at the
top end of the ID range to prevent a full value. If one of the resistors in a voltage divider
became dislodged, the input would produce either a zero value, or a full system voltage
value. This would be avoided if all ID inputs incorporated a voltage divider, neither using
purely the ground or system voltage.

The MCUs would then be coded to detect both zero voltage ID inputs, and full system
voltage 1D inputs. Any instances of detection of this error could be used to self-disqualify
the particular MCU from participating in the system’s operation.

7.2.2 SPI Refinement

The issue of multiple MCUs initialising the camera and SD modules in their setup func-
tions, is connected with the SPI protocol. In this protocol, the master device sets its card
select pin to high, also known as the slave select pin. This identifies the master. However,
if multiple MCUs do this at once, they are all identifying as the SPI master. The SD card
may not distinguish between them sufficiently well.

Research is required into the fundamental behaviour and requirements of the SPI
protocol. Perhaps then, the interface can be enabled as required, then disabled until
required next. In this way, their functionality may be able to be controlled. This approach
may extend the response time of the camera.

The transfer of data using SPI may also be increased. Further research into the
possible data speeds may reduce the transfer time required for each image. This would
help to reduce the tradeoff required between speed and image quality.

7.2.3 Selective Powered Module

Another method of controlling the functionality of the SD card and camera modules may
be the controlled disablement of their input voltage pins. By restricting the power supply
pins of the modules, they could be enabled as required. The connection would then
be initialised after they have powered up. When the function has been completed, the
modules could then be powered down by the primary controller. This control could be
implemented using optocouplers, transistors or similar isolators.




7.2 Future Work 83

7.2.4 Cellular Integration

Further research is required to make use of the expected email capability of the FONA
3G module. Such development will require custom functions to be added to the library
files. The necessary activation sequence first needs to be identified, for establishing the
cellular data connection.

7.2.5 Soldered Prototype

A soldered prototype was not completed for the self-supervised camera device. This will
have to be developed after the working circuit is successfully configured.

7.2.6 Optimise Timing Values

A future development of the self-supervised redundancy system, is to optimise the required
delay times, when the primary role is assigned to one MCU. If the delay times are too
short, there is a risk of multiple MCUs assuming simultaneous control, corrupting data.
However, if the delay time is too long, unnecessary time is wasted, increasing the gap
experienced at the hand over between MCUs.

7.2.7 Error Identification

Further development is also required to identify a suitable method of diagnosing signal
faults. A system could respond to errors more accurately if the source of the error was
clearly known. This is particularly relevant to the self-supervised system, as it has no
signal error detection.

Error detection for the self-supervised system could directly be worked into the code.
If an error can be linked to a particular MCU, then that MCU could set a software flag,
to prevent taking on the primary role. Such a flag may be best implemented as a delay,
so that if no other MCUs are available, then limited control can still be taken on.

A possible path of research for greater fault diagnosis could make use of a shift register.
This may be particularly useful for binary signals rather than PWM signals and high speed
serial signals. The use of a hardware shift register may improve the process of identifying
the primary microcontroller. This, however, may be limited to binary inputs and outputs,
excluding time-dependent signals such, as PWM inputs and outputs. and serial data.







Chapter 8

Abbreviations

2G second generation cellular telecommunications platform
3G third generation cellular telecommunications platform
ADC analogue to digital converter

APN access point name

DIP dual inline package

GPRS general packet radio service

IC integrated circuit

ID identification

IDE integrated development environment
ISP in-system programming

ISR interrupt subroutine

LED light emitting diode

LSB least significant bit

MCU microcontroller unit

MIMO multiple input, multiple output
MISO multiple input, single output

MISO master input, slave output

MOSI master output, slave input

MSB most significant bit

NC normally closed

NO normally open

PB pushbutton

PCB printed circuit board

pot potentiometer

PWM pulse width modulation

Rx receive

SD secure digital

SIM subscriber identity module

SIMO single input, multiple output

SISO single input, single output




86 Chapter 8. Abbreviations

SMS short messaging service
SMTP simple mail transfer protocol
SP1I serial peripheral interface
Tx transmit

WDT watchdog timer

WDTCSR  watchdog timer control register




Appendix A

Project Plan and Attendance Form

A.1 Overview

Section A.2 sets out the overall timeline for the project, laid out in a Gantt Chart. The
attendance form for consultation meetings is shown in section A.3.

A.2 Project Plan

ENGG411 Thesis: Remote Redundancy

Start Date: 31/7/17
Name Start Days Week
1]2[3[4]5]6]7 [HolHo 8 [ 9 [10[11][12[13[EL[E2]E3
Research 31/7 30
Design 21/8 30
Experimentation 11/9 20
Production 9/10 10
Testing 16/10 10
Reporting 2/10 30
Presentation 14711 1
Update Meetings 30/11

87




88 Chapter A. Project Plan and Attendance Form

A.3 Consultation Meetings Attendance Form

Consultation Meetings Attendance Form

Week Date Comments Student’s Supe r's
// gﬁ‘{_ g(il'haéi%‘l;le)& ﬁtm‘e Si re
2 | /ST (o lonneitunh /»%ak v
2 |98 /Zﬁ 7 %ﬁ%m@uﬁ@ﬁeﬂf# % 4 !
5 (=} e :\?
s [l Bt | %Z/
Waed for de per— W

etalsct premess
7 | e | | My
kls | oy Soop itz |t | LYy
s | 3oy (Gt g |
q |y G gl e~ | g
0 | nfiohr Gt |7~ | M,
sl g | 7ol
|agof [ g | g Ml
(2 | 1/n/17 'ﬁ;ﬁ:@% M% /M-%
ol 20 ey S V. coem




Appendix B

Circuit Diagrams

B.1 Overview

This appendix shows the circuit diagrams developed for this project. Section B.2 shows
the circuit of a supervised parallel redundancy circuit. Section B.3 shows the diagram
of a supervised parallel redundnacy circuit with incorporated resetting capability. The
circuit for a self-supervised parallel redundancy cireuit is shown in section B.4. A proof of
concept circuit for a camera and SD card system is shown in section B.5. The diagram for
a cellular module proof of concept is shown in section B.6. Section B.7 shows the circuit
designed for an implmentation of the camera and SD modules into the self-supervised
redundancy system.

89




90 Chapter B. Circuit Diagrams

B.2 Supervised Non-Resetting Circuit

PP EVELEEL ) AL PR FEEREL LT

Supply
5V

T

! | L
FFFEFFEEET] FFREFFRFFE]
Supervisor MCU MCU A | MCU B
us us
4N35 —1— 4N35 —1—
R7 RS
—— 250 SZ\\: 250 SZQ:
M — W —
OQutput 1 Serve
R5001B
* — N —— — N ——
| - - ' . 7
Input 1 Pot 10k
[12] ue
4N35 —t 4N35 ——
RS R9
Rl 250 SZ§ 50 SZ§
220k <:_ AN : %_
Input 2 PB = NC - =] NC = Output 2 LED
( R2.o Red (633nm)
M4
u1o ur e
4N35 — 4N35 —
R4 RG R10
2200 250 VY 250 AV
P —p— AW AW
Input 3 PB
=1 NC —] nC R3 Output 3 LED
| 15601 Green (565nm)
ANAN sl
VWY (=)
RN

I = I )
Enable A LED 11 Enable B LED f[ '? t Z% n g

1670 ped (633nm) 1670 Red (633nm)




B.3 Supervised Resetting Circuit 91

B.3 Supervised Resetting Circuit

Supply
sV
i
I
1 PEEEEEERRE || EEREREFEEEEREE BEFFEEEEEEEEE
é E g
g g
] =] ]
S S =
wes [ [TF[FEEFEEEET FEFRREFRRREE  FEEEFRRRFRFELD
Blue (525nm) Supervisar MCU MCU A MCU B
7
R13
1800 - s

4N35 — 4N35 —
RS R9
230 Y 250 A
R1 _M [ _M |
220k
I —] NC — —{ NC — Qutput 1 LED

#.0  Red(633nm)

Input 1 P8
MM
W

- 4N35 — 4N35 —
oo ¥ VA : 7
'—'\NW—T—' W M

Input 2 PB o 2 LD
-1 WC . - NC utput 2 LI
[ | R3
Yhen Green (565nm)
MW B>

=1
A

| -~ I ==
& A LED 1 EnableB LED f!"li tZ,'i ng

Enabi
1670 Red (633nm) Red (633nm)

L1

- ham
a1=]
=

=
<




92 Chapter B. Circuit Diagrams

B.4 Self-Supervised Parallel Circuit

2 Trigger PB
—s o L e AW I i
—— — 68k0 _—
T, +5%
[T S8 Supply -
e T
atmega3zg
MCU C
e ic1
—d 4071
. b Al voD| s
—_— : 81 =]
=F agis
. A EX
B2 15
L GND 2
4071
. 68k0
+5%
atmega32g
MCU B 33k0
p—— AVEC o +5%
e B Al s F
—' 68Kk0
5%
atmega32g
MCU A \RE 33k
- AVEC il +5%
* 15kQ resistors omitted from
each OR gate input to ground.
= L« Clock input circuits omitted.

fritzing




B.5 Proof Of Camera And SD Concept Clircuit

93

B.5 Proof Of Camera And SD Concept Circuit

22pF " 16 Mhz

[=—]
=
Carera AN
+ 10K0

Zoa | 5
l

Trigger [ 2}

. ;vnlv

amegadzs
Voo
MISO MOs! L=
SCK cshe
MicroSD Card
Madule
G

fritzing




94 Chapter B. Circuit Diagrams

B.6 Proof Of Cellular Concept Circuit

| LiPo Battery

Adafruit #2691 and #2687 —

Adafruit
36

L
T

TTTTTFTTTTTT ( T

22pF XTALL
1 16 Mhz

S

22pF

fritzing




B.7 Self-Supervised Camera System Circuit

95

B.7 Self-Supervised Camera System Circuit

+ 15k0) resistors omitted from Supely "
—t - each OR gate input to ground. —
— ——— » Clock input circuits omitted. T
E| — * System lock wiring omitted.
aumegaizs 10k0
MCU C
PR— 10k0
L 2
— — — T
— T Serlal
JPEG
— e — Camara
atmegal2s
ND MCUB
I e La
—]u | -
o Vee J
I Miso mosi |-
2! voor ~{ scK o
2 B 4
T - g pae |
e ] pe |
—= - : b, |
—tos - g e -
—_Tt - A431 MicroSD Card
X atmega3zs GHE - Module
o MCL A Al
I Gnd

fritzing




96

Chapter B. Circuit Diagrams




Appendix C
Arduino Code

C.1 Overview

This appendix contains the Arduino code for the conducted experimentation. Section C.2
shows the Arduino code for the parallel MCUs of the supervised system. Section C.3 lists
the Arduino code for the supervisor MCU for the supervised system.

The Arduino code for the supervised MCUs in the resetting supervised system is shown
in section C.4. The code for the the supervisor MCUs of the same system is shown in
section C.5.

Section C.6 shows the developed Arduion code for a self-supervised redundnacy sys-
tem. This system incorporated resetting through the use of WDTs.

The developed code for a proof of concept of a camera and SD system is shown
in section C.7. The proof of concept for a cellular commmunciation system is shown
in section C.8. The modified Arduino library h-file for the cellular system is shown in
section C.9. The modified Arduino library cpp-file required for the cellular system is
shown in section C.10. The developed code for the ingration of these components into
the self-supervised redundancy system is shown in section C.11.

97




98 Chapter C. Arduino Code

C.2 Non-Resetting Supervised MCU

1 // Declare servo object
2 #include <Servo.h>

3 Servo myservo;

1

5 // Declare pins

6 int inPinl = AO0; // Input pin 1

7 int inPinZz = 9; // Input pin 2

8 int inPin3 = 10; // Input pin 3

9 int outPinl = 11; // Output pin 1
10 int outPin2 12; // Output pin 2
11 int outPin3 13; // Output pin 3

13 // Declare variables
14 int in([3]; // Working variables for inputs
15 int out[3]; // Working variables for outputs

17 void setup() {

18 // Initialise inputs

19 pinMode (inPinl, INPUT); // Input 1, potentiometer
20 pinMode (inPinZ2, INPUT); // Input 2, button 1

21 pinMode (inPin3, INPUT); // Input 3, button 2

22

23 // Initialise outputs

24 // Attach the servo on pin 9 to the servo object
25 myservo.attach (outPinl);

26 pinMode (outPin2, OUTPUT); // Output 2, red LED.
27 pinMode (outPin3, OUTPUT); // Output 3, green LED.
28 }

29

30 void loop() {

3l // Read inputs

32 in[0] = analogRead(inPinl); // Potentiometer

33  in[l] = digitalRead(inPin2); // Button 1

34 in[2] = digitalRead(inPin3); // Button 2

35

36 // Calculate outputs

37 // Calculate servo level to imitate potentiometer level

38 cut [0] = map(in[0]), 0, 1023, 0, 180);

39 // Calculate output 2 as XOR of both button inputs
40 out[l] = in[l] * !in[2] + !'in[l] = in[2];

41 // Calculate output 3 to imitate input 3, button 2




C.2 Non-Resetting Supervised MCU

99

42
43
A4
45
46
47
48

out[2) = in[2];

// Write outputs

myservo.write(out [0]); // Servo level

digitalWrite (outPin2, out(1l]); // Red LED
1lWrite (outPin3, out[2]); // Green LED




100

Chapter C. Arduino Code

C.3 Non-Resetting Supervisor MCU

bkt
= W — O Wwoo -1 =W

—
o

Co ~J

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

// Declare supervised pins

int inPinl = A0; // Input 1 pin
int inPin2 = 9; // Input 2 pin
int inPin3 = 10; // Input 3 pin

int outPinl
int outPin2

11; // Output 1 pin
12; // Output 2 pin

int outPin3 = 13; // Output 3 pin

// Declare supervision pins
int enPinA = 5; // Enable A pin
int enPinB = 6; // Enable B pin

// Declare variables

int in[6]; // Working variables for inputs

int out[3]; // Working variables for outputs

bool enA = HIGH; // Boolean of A Enable, initialise active
bool enB = LOW; // Boolean of B Enable, initialise inactive
bool allOK; // Boolean status of system

void setup() {

}

// Initialise supervisor inputs

pinMode (inPinl, INPUT); // Input 1, potentiometer
pinMode (inPin2, INPUT); // Input 2, button 1
pinMode (inPin3, INPUT); // Input 3, button 2
pinMode (outPinl, INPUT); // Input 4, servo
pinMode (outPin2, INPUT); // Input 5, red LED
pinMode (outPin3, INPUT); // Input 6, green LED

// Initialise supervisor outputs
pinMode (enPinA, OUTPUT); // Output 1, Enable A
pinMode (enPinB, OUTPUT); // Output 2, Enable B

34 void loop() |

35
36
37
a8
39
40
41

// Read supervised inputs

in[0] = analogRead(inPinl); // Potentiometer
in[1l] = digitalRead(inPin2); // Button 1
in[2] digitalRead (inPin3); // Button 2

-
r
-
r

// Read supervised outputs
in[3] = pulseIn(outPinl, HIGH); // Servoc PWM supply




C.3 Non-Resetting Supervisor MCU 101

42
43
£
45
46
47
48
49
50

ot oon
L

[=x =T e RS, BN RS RS, By ) R R
= O W oo~

63
64
65
66
67
63
69
70
71
72
3
T4
5
76
7
3
79
80
81
82
83
84

in[4])
in[5]

digitalRead (outPin2); // Red LED supply
digitalRead (outPin3); // Green LED supply

// Calculate outputs

// Calculate servo level to imitate potentiometer level
out [0] = map(in[0], 0, 1023, 0, 180);

// Calculate output 2 as XOR of both button inputs
oat[1] = .infl] * 'in(2] # lin[l] *= inlZ);

// Calculate output 3 to imitate input 3, button 2

out [2] = in[2];

// Translate pulse width into PWM output
in[3] = map(in[3], 480, 2380, 0, 180);

// Compare measured output with calculated outputs

if (abs(in[3] - out([0]) > 10) {
// Not OK if servo level not within 10 of expectation
allORK = false;

} else if (in[4] != out[1l]) |
// Not OK if red LED level mismatches expectation
allOokK = false;

} else if (in[5] != out[2]) {
// Not OK if green LED level mismatches expectation
allOK = false;

} else {
// Otherwise reset all OK flag
allOK = true;

// If all is not OK, then toggle enable outputs
if ('allOK) {
if (enA) {// If A is currently active
enA = LOW; // Deactivate Enable A
enB HIGH; // Activate Enable B

} else if (enB) { // If B is currently active
enB = LOW; // Deactivate Enable B
enA = HIGH; // Activate Enable A




102

Chapter C. Arduino Code

85
36
87
38
89

}

// Write enable outputs as high active

digitalWrite (enPinA,
digitalWrite (enPinB,

end) ;
enB) ;




C.4 Resetting Supervised MCU

103

C.4 Resetting Supervised MCU

1 // Declare pins

2 int inPinl = 9; // Input pin 1

3 int inPin2 = 10; // Input pin 2

4 int outPinl = 12; // Output pin 1

5 13; // Output pin 2

4; // Life indicator output pin

int outPin2
6 int lifePin

& // Declare variables
9 int in[2]; // Working variables for inputs
10 int out[2]); // Working variables for outputs

12 void setup() {

13 // Initialise inputs

14 pinMode (inPinl, INPUT); // Input 1, button 1

15 pinMode (inPin2, INPUT); // Input 2, button 2

16

17 // Initialise outputs

18 pinMode (outPinl, QUTPUT); // Output 1, red LED
19 pinMode (outPin2, OUTPUT); // Output 2, green LED
20

21 //Initialise life indicator pin and turn on

22 pinMode (1ifePin, OUTPUT);

23 digitalWrite(lifePin, HIGH);

24 }

25

26 void loop() {

27 // Read inputs

28 in[0] = digitalRead(inPinl); // Button 1

29 in[1] = digitalRead(inPin2); // Button 2

30

31 // Calculate outputs

32 // Calculate output 1 as XOR of both switch inputs
33 out [0] = in[0] * !din[1] + !'in[Q] % in[1];

34 // Calculate output 2 to imitate input 3, button 2
35 out[1] = in[1l];

36

37 // Write outputs

38 digitalWrite (outPin2, out[0]); // Red LED

39 digitalWrite (outPin3, out([l]); // Green LED

40 1}




104 Chapter C. Arduino Code

C.5 Resetting Supervisor MCU

1 // Declare supervised pins

2 int inPinl = 9; // Input 1 pin

3 int inPin2 = 10; // Input 2 pin

4 int outPinl = 12; // Output 1 pin

5 int outPin2 = 13; // Output 2 pin

6

7 // Declare supervision pins

8 int enPinA = 5; // Enable A pin

9 int enPinB = 6; // Enable B pin

10 int rstPinA = 7; // Reset A pin

11 int rstPinB = 8; // Reset B pin

12 int lifePinA = 2; // Life A pin

13 int lifePinB = 3; // Life A pin
Al; // Error Alert pin

14 int alertPin
15

16 // Declare variables

17 int in[6]; // Working variables for inputs

18 int out[2]; // Working variables for outputs

19 bool enA = HIGH; // Boolean of A Enable, initialise active
20 bool enB LOW; // Boolean of B Enable, initialise unactive
21 bool allOK; // Boolean status of system

22

23 // Declare variables for resetting function

24 bool rstA = LOW; // Boolean of A Reset, initialise unactive
25 bool rstB = LOW; // Boolean of B Reset, initialise unactive
26 int rstCnt = 0; // Count of sequence of resets

27 int rstCntMax = 3; // Maximum sequence of resets

28 // Minimum period between sequential resets in milliseconds
29 int rstDelay = 2000;

30 long lastRst; // Time of last reset

31 long currDel; // Current lapsed time since last reset

32

33 void setup() {

34 // Initialise reset pins and set to high to enable the

35 // microcontrollers to start.

36 pinMode (rstPinA, OUTPUT);

37 pinMode (rstPinB, OQUTPUT) ;

38 digitalWrite (rstPinA, HIGH);

39 digitalWrite (rstPinB, HIGH);

40

41 // Initialise error alert pin




C.5 Resetting Supervisor MCU 105
42 pinMode (alertPin, OUTPUT);
43
44 // Initialise supervisor inputs
45 pinMode (inPinl, INPUT); // Input 1, button 1
46 pinMode (inPin2, INPUT); // Input 2, button 2
47 pinMode {(outPinl, INPUT); // Input 3, red LED
48 pinMode (outPin2, INPUT); // Input 4, green LED
49 pinMode (1ifePinA, INPUT); // Input 5, Life A
50 pinMode (1ifePinB, INPUT); // Input 6, Life B
51
52 // Initialise supervisor outputs
53 pinMode (enPin&, OUTPUT); // Output 1, Enable A
H4 pinMode (enPinB, QUTPUT); // Output 2, Enable B
55
56
57 wvoid loop() {
58 // Clear reset values
59 if (rstA || rstB) {
60 rstA = LOW;
61 rstB = LOW;
62 }
63
64 // Read supervised inputs
65 in[0] = digitalRead{inPinl); // Button 1
66 in[1] = digitalRead(inPin2); // Button 2
67
68 // Read supervised outputs
69 in[2] = digitalRead({outPinl); // Red LED supply
70 in[3] = digitalRead(outPin2); // Green LED supply
71
T2 // Check supervised controllers for life
T3 in[4] = digitalRead(lifePinA); // Digital read life of A
74 in[5] = digitalRead(lifePinB); // Digital read life of B
5
76 // Calculate outputs
7 // Calculate output 2 as XOR of both button inputs
78 out [0] = in[0] * !dn[1] + !4in[0] =% in[1];
79 // Calculate output 3 to imitate input 3, button 2
80 out[1] = in[1];
81
32 // Compare measured output with calculated outputs
83 if (in[2] !'= out[0]) {
84 // Not OK if red LED level mismatches expectation




106 Chapter C. Arduino Code

85 allOoK = false;

86

87 } else if (in[3] != out[l]) {

88 // Not OK if green LED level mismatches expectation
89 alloK = false;

90

91 ) else {

92 // Otherwise reset all OK flag
93 allOK = true;

94 }

95

96 // Check duration since last reset
97 currDel = millis() - lastRst;

98

99 // 1f the specified length of time has passed, perform
100 // any sequential resets
101 if (currDel > rstDelay) {

102 if (in[4] == 1 && in([5] == 1) {

103 // Deactivate alert LED output

104 digitalWrite(alertPin, LOW);

105 rstCnt = 0; // Clear count of resets
106

107 } else if (rstCnt >= rstCntMax)

108 // Activate alert LED output

109 digitalWrite(alertPin, HIGH);

110

111 } else if (enA && in[5] == 0) {

112 enB = LOW; // Dectiavte Enable B

113 enA = HIGH; // Activate Enable A

114 rstB = HIGH; // Activate Reset B

115 rstCnt++; // Increment count of resets
116 lastRst = millis();// Record time of reset
117

118 } else if (enB && in[4] == 0) {

119 enA = LOW; // Dectiavte Enable A

120 enB = HIGH; // Activate Enable B

121 rstA = HIGH; // Activate Reset A

122 rstCnt++; // Increment count of resets
123 lastRst = millis();// Record time of reset
124

125 } else if (in[5] == 0) {

126 enB = LOW; // Dectiavte Enable B

127 enA = HIGH; // Set EnA to high




C.5 Resetting Supervisor MCU 107

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169 1}

rstB = HIGH; // Activate Reset B
rstCnt++; // Increment count of resets
lastRst = millis();// Record time of reset

} else if (in[4] == 0) {
enA = LOW; // Dectiavte Enable A
enB = HIGH; // Activate Enable B
rstA = HIGH; // Activate Reset A
rstCnt++; // Increment count of resets
lastRst = millis();// Record time of reset

// 1If not all is OK and the secondary mC is alive, then
// toggle enable outputs and reset former primary mC
if ('allOK) {
if (enA && in[5] == 1) {

// If A is currently active and B is alive

enh LOW; // Dectivate Enable A

enB HIGH; // Activate Enable B

rstA = HIGH; // Activate Reset A

rstCnt ++; // Increment count of resets

lastRst = millis(); // Record time of reset

} else if (enB && in[4] == 1) |{
// If B is currently active and A is alive
enB = LOW; // Dectiavte Enable B
enA = HIGH; // Activate Enable A
rstB = HIGH; // Activate Reset B
rstCnt++; // Increment count of resets
lastRst = millis();// Record time of reset

// Write enable outputs as high active
digitalWrite (enPinA, enl);
digitalWrite (enPinB, enB);

// Write reset outputs as low active
digitalWrite(rstPinA, !rstd);
digitalWrite (rstPinB, !rstB);




108

Chapter C. Arduino Code

C.6 Self-Supervised Parallel MCU

N

© oo oL,

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
3l
32
33
34
35
36
37
a8
39
40
41

// Declare pins

int pFixedId = AOQ0; // Pin for input of fixed ID

int pClearOut = Al; // Pin for output of clearance flag
int pLockQut = AZ; // Pin for output of lock flag

int pProcOut = A3; // Pin for output of processing flag
int pLockIn = A4; // Pin for input of lock flag

int pClearIn = 2; // Pin for input of clearance flag
int pProcIn = 3; // Pin for input of processing flag
int pPrimelED = 9; // Pin for debugging LED

int pDebug = A5; // Pin for debugging button input

// Declare exclusion lock wvariables

int fixedId = 0; // Fixed ID

boolean clearance = false; // Clearance flag

boolean currPrime = false; // Current primary MCU flag
long lastClear = 0; // Time of last clearance

int extraDel = 0; // Delay of former primary in ms
boolean debug; // Stored value of debugging button input

// Declare exclusion lock variables as volatile that will
// be modified by the interrupt subroutine

// Current time taken to process

volatile long elapsedProc = 0;

// Flag to start new processing

volatile boolean newProc = false;

// Flag for returning to the start of the main loop
volatile boolean startReturn = false;

volatile boolean locked = false; // Lock flag

volatile boolean processing = false; // Processing flag

// Declare watchdog timer (WDT) components

finclude <avr/wdt.h> // Include WDT library

// Flag for disabling main loop after the WDT has timed out
boolean wdtOverRide = false;

// Declare system function variables
int maxProc = 3000; // Maximum processing time in ms

void setup() {
// Initialise pins
pinMode (pFixedId, INPUT); // Input of fixed ID voltage




C.6 Self-Supervised Parallel MCU 109

42
43
£
45
46
47
48

SIS S
2 BRI R

SOy on O o Ot
SR =R R e I B =]

63
64
65
66
67
63
69
70
71
72
3
T4
5
76
7
3
79
80
81
82
83
84

pinMode (pClearQut, OUTPUT); // Output of clearance flag
pinMode (pLockOut, OUTPUT); // Output of lock flag
pinMode (pProcOut, OUTPUT); // Output of processing flag
pinMode (pLockIn, INPUT); // Input of lock flag

pinMode (pClearIn, INPUT); // Input of clearance flag
pinMode (pProcIn, INPUT); // Input of processing flag
pinMode (pPrimelLED, OUTPUT); // Output of primary flag LED
pinMode (pDebug, INPUT); // Input for debugging button
// Map fixed ID input voltage to integer value

fixedId = int (round(analogRead (pFixedId) » 3.0 / 1024));
// Bttach clearance/trigger interrupt subroutine (ISR)
// to digital pin 2, interrupt 0

attachInterrupt (0, clear_ ISR, CHANGE);

watchdogSetup(); // Initialise WDT

// ISR for clearance flag
void clear_ ISR() {

// Calculate time elapsed since last effective clearance
elapsedProc = millis() - lastClear;
locked = digitalRead(pLockIn); // Read lock flag
// Read processing flag
processing = digitalRead(pProclIn);
if (currPrime && elapsedProc > maxProc) {
// If currently processing but longer than expected
newProc = true; // Set flag of new process
startReturn = true;
digitalWrite (pLockOut, false); // Clear lock flag
} else if (processing && !locked) ({
// Else if currently processing with clear lock flag
newProc = true; // Set flag of new process
// Set flag to return to start of main loop
startReturn = true;
} else if (processing && elapsedProc < maxProc) ({
// Else if currently processing within expected time
; // Don’t change
newProc = false; // Clear flag of new process
} else if (currPrime) { // Else if current primary
// Else if currently the primary MCU
newProc = true; // Set flag of new process
// Set flag to return to start of main loop
startReturn = true;
digitalWrite (pLockOut, false); // Clear lock flag




110 Chapter C. Arduino Code
85 } else {

86 newProc = true; // Set flag of new process

87 // Set flag to return to start of main loop

88 startReturn = true;

89 }

90 // Perform new process section in loop to avoid having
91 // delays in the interrupt subroutine.

92

93

94

95 void loop() {

96 // If WDT override flag is set, disable function of

97 // main loop

98 if (wdtOverRide) {

99 delay(10); // Brief delay

100 if (currPrime) { // If currently the prime,

101 // If currently the prime, prompt a possible primary
102 // reassignment

103 digitalWrite(pClearOut, true); // Set clearance flag
104 }

105 if (processing) {

106 // I1f the processing flag is set, maintain flag to
107 // hand over to next available MCU

108 digitalWrite (pProcQut, true); // Set processing flag
109 }

110 digitalWrite(pClearOut, false); // Clear clearance flag
111 // Return to main loop start, to prevent interference
112 // with main system function

113 return;

114 }

115 // Clear flag to return to start of main loop

116 startReturn = false;

117 if (newProc) {

118 // 1f new process, assign/reassign primary priority
119 newProc = false; // Clear new process flag

120

121 if (currPrime) { // If current primary

122 // Delay 100ms due to being previous primary

123 extraDel = 100;

124 currPrime = false; // Clear current primary flag

125 } else { // Otherwise

126 // Delay Oms due to not being previous primary

127 extraDel = 0;




C.6 Self-Supervised Parallel MCU

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

digitalWrite (pProcOut, true); // set processing flag

delay (extraDel); // Wait for any offset delay

// Delay by a scalar of fixed ID, reduced by 1 to

// prevent unnecessary delays

delay((fixedId - 1) * 30);

// Record time of start of processing

lastClear = millis();

locked = digitalRead(pLockIn); // Read lock flag

if (!'locked) { // If not locked, take on primary role
digitalWrite (pLockOut, true); // Set lock flag
locked = true; // Set internal lock flag
currPrime = true; // Set current primary flag

} else { // If locked already, remain as non-primary
// Clear processing flag
digitalWrite (pProcOut, false);

debug = digitalRead (pDebug); // Read debugging input

if (!debug && !startReturn) {
// 1f the debugging button is not pressed, reset WDT
// Also include check of return to start flag
wdt_reset (); // Reset WDT

}

// Update elapsed time since last effective clearance
elapsedProc = millis() - lastClear;

locked = digitalRead(pLockIn); // Read lock flag

// Read processing flag

processing = digitalRead (pProcln);

if (!startReturn) { // If not restarting main loop
if (currPrime) { // If current primary flagged
digitalWrite (pPrimeLED, HIGH); // Set debug pin

// Perform system function here in a single process
// or multiple cycles include resets for the WDT to
// ensure activity within the sensitivity timeframe
// Also include check for return to start flag

111




112 Chapter C. Arduino Code
171

172 // If function concluded clear all flags

173 // Also include check for return to start flag

174 if (elapsedProc > 4000 && !startReturn) {

175 digitalWrite (pLockOut, false); // Clear lock flag
176 // Clear processing flag

177 digitalWrite (pProcOut, false);

178 currPrime = false;// Clear current primary flag
179 }

180 } else { // Else, if current primary not flagged

181 digitalWrite (pPrimeLED, LOW); // Clear debug pin
132 digitalWrite (pLockQut, false); // Clear lock flag
183 // Clear processing flag

184 digitalWrite (pProcOut, false);

185 // 1f elapsed time is greater than expected

186 // Also include check for return to start flag

187 if (elapsedProc > maxProc && !startReturn) {

188 // Read processing flag

189 processing = digitalRead(pProcln);

190 if (processing && !startReturn) {

191 // 1f processing flag is still set

192 // Also include check for return to start flag
193 // Set clearance flag for reassignment of primary
194 // priority

195 digitalWrite (pClearOut, true);

196 // Immediately clear clearance flag

197 digitalWrite (pClearOut, false);

198 }

199 }

200 }

201 }

202

203

204 void watchdogSetup (veid) { // Initialise WDT configuration
205 cli(); // Disable all interrupts

206 wdt_reset (); // Reset the WDT

207 WDTCSR |= B00011000; // Enter WDT configuration mode
208 // Set WDT settings to activate closing ISR,

209 // activate WDT, and set a timeout of 250ms

210 WDTCSR = B01001100; // Write configuration to WDT

211 sei(); // Enable interrupts

212

213




C.6 Self-Supervised Parallel MCU 113

214 ISR(WDT_vect) { // Watchdog timer ISR
215 startReturn = true; // Set return to start flag
216 wdtOverRide = true; // Set flag to disable main loop

217 digitalWrite (pLockOut, false); // Clear lock flag
218 }




114 Chapter C. Arduino Code

C.7 Proof Of Camera And SD Concept

1 // Declare included libraries

2 #include <Adafruit_vC0706.h> // Camera

3 #include <SPI.h> // Serial peripheral interface

| #include <SD.h> // SD card

b #include <SoftwareSerial.h> // Additional serial port

7 // Declare new serial ports for camera, (RX, TX)

8 SoftwareSerial cameraconnection = SoftwareSerial (5, 6);

9 // Declare camera object

10 Adafruit_vC0706 cam = Adafruit_VCO0706 (&cameracconnection);

12 // Declare other pins

13 int pChipSelect = 10; // Pin for SD chip select

14 int pButton = 7; // Pin for camera trigger button
15 int startTime = 0; // Time of triggering

16 int duration = 0; // Time taken to record image

17 // Time for camera to capture after triggering

18 int responseTime = 0;

19

20 // Declare other variables

21 File imgFile; // Variable for image storage transfer
22 bool buttonPressed = false; // Variable button result
23

24

25 wvoid setup() {

26 // Initialise SD card chip select pin

27 pinMode (pChipSelect, OUTPUT); // SS on Uno, etc.
28

29 // Initialise serial connection with computer

30 Serial.begin (9600);

31 // Notify of start of testing camera system

32 Serial.println("VC0706 Camera test");

33

34 // Test SD card connection

35 if (SD.begin(pChipSelect)) {

36 Serial.println("Card found");

37 } else {

38 Serial.println("Card not found");
39 return; // Abandon attempt

40 )

41




C.7 Proof Of Camera And SD Concept

115

42
43
£
45
46

(=]

[¢s]

(SIS S WS IS WS S,
=

=]

60

62
63
64
65
66
67
63
69
70
71
72
3
T4
5
76
7
8
79
80
81
82
83
84

// Test camera connection
if (cam.begin()) {
Serial.println("Camera found");
} else {
Serial.println("Camera not found"});
return; // Abandon attempt
}
// Select desired image size
cam.setImageSize (VC0706_640x480); // Biggest
// cam.setImageSize (VC0706_320x240); // Medium
// cam.setImageSize (VC0706_160x120); // Small
// Initialise trigger button input
pinMode (pButton, INPUT);
}
void loop() {

// Read trigger button value
buttonPressed = digitalRead (pButton);
// I1If button is pushed, capture an image
if (buttonPressed) {

startTime = millis();

capturelImage () ;

void capturelImage() {
if (cam.takePicture()) {
Serial.print ("Image captured on camera in

responseTime = millis() - startTime;
Serial.print (responseTime) ;
Serjial.println(" ms!");

} else {

Serial.println("Image not captured");

}

// Create unique image file name on SD card
char filename[1l3];
strcpy (filename, "IMGO00O.JPG");

")




116

Chapter C. Arduino Code

85
36
87
38
39
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

}

for (int i = 0; i < 1000; i++) {

filename[4] = "0’ + i / 100;

filename[5] oY 4+ (i % 100) / 10;

filename[6] = "0’ + (i % 100) % 10;

// Create if does not exist, do not open existing,

// write, sync after write

if (! SD.exists(filename)) {
Serial.println(filename);
break;

}

// Initialise new image file on SD card
imgFile = SD.open(filename, FILE_WRITE);

// Identify size of image to be saved
uintlé_t Jjpglen = cam.frameLength();
// While image still has untransfered data
while (jpglen > 0) {
// Read 32 bytes at a time;
uint8_t bytesToRead = min (64, Jjpglen);
// Prepare buffer of received data
uint8_t «buffer = cam.readPicture (bytesToRead);
// Write received data from buffer to file on SD card
imgFile.write (buffer, bytesToRead);
// Deduct size of written data from remaining quantity
jpglen -= bytesToRead;
)
// Close image file
imgFile.close();
// Notify operator of conclusion

Serial.print("...Done in ");
duration = millis() - startTime;
Serial.print (duration);
Serial.println(" ms!");

// Set camera back into video mode, to clear captured
// image from camera memory, in readiness for next image
cam.resumeVideo() ;




C.8 Proof Of Cellular Concept

117

C.8 Proof Of Cellular Concept

]_ /***‘k****‘k**‘k*********'k**'k*'k'k*'k'k*'k****’k*************

2 This is an example for our Adafruit FONA Cellular Module

3

4 Designed specifically to work with the Adafruit FONA

5 -—-—-> http://www.adafruit.com/products/1946

G --—=-> http://www.adafruit.com/products/1963

7 --—=-> http://www.adafruit.com/products/2468

8 -——=> http://www.adafruit.com/products/2542

9

10 These cellular modules use TTL Serial to communicate, 2
pins are

11 required to interface

12 Adafruit invests time and resources providing this open
source code,

13 please support Adafruit and open-source hardware by
purchasing

14 products from Adafruit!

15

16 Written by Limor Fried/Ladyada for Adafruit Industries.

17 BSD license, all text above must be included in any
redistribution

18 ****************************************************/‘

19

20 /+

21 THIS CODE IS STILL IN PROGRESS!

22

23 Open up the serial console on the Arduino at 115200 baud

to interact with FONA

and

24

25 Note that if you need to set a GPRS APN, username,
password scroll down to

26 the commented section below at the end of the setup/()
functioen.

27 =/

28 #include "Adafruit_FONA.h"

29

30 #define FONA_RX 2

31 #define FONA_TX 3

32 #define FONA_RST 4

33

34 // this is a large buffer for replies




118 Chapter C. Arduino Code
35 char replybuffer[255];
36
37 // We default to using software serial. If you want to use
hardware serial
38 // (because softserial isnt supported) comment out the
following three lines
39 // and uncomment the HardwareSerial line
40 #include <SoftwareSerial.h>
41 SoftwareSerial fonaSS = SoftwareSerial (FONA_TX, FONA_RX);
42 SoftwareSerial xfonaSerial = &fonaSs;
43
44 // Hardware serial is also possible!
45 // HardwareSerial xfonaSerial = &Seriall;
46
47 // Use this for FONA 800 and 808s
48 Adafruit_FONA fona = Adafruit_FONA (FONA_RST) ;
49 // Use this one for FONA 3G
50 //Adafruit_FONA_3G fona = Adafruit_FONA_3G (FONA_RST) ;
51
52 uint8_t readline (char *buff, uint8_t maxbuff, uintlé_t
timeout = 0);
53
54 uint8_t type;
55
96 void setup() {
57 while (!Serial);
58
59 Serial.begin (115200);
60 Serial .println(F("FONA basic test"));
61 Serial.println(F("Initializing....(May take 3 seconds)"))
i
62
63 fonaSerial->begin (4800);
64 if (! fona.begin(xfonaSerial)) ({
65 Serial.println(F("Couldn’t find FONA")});
66 while (1);
67 }
68 type = fona.typel();
69 Serial . println(F("FONA is OK"));
70 Serial.print (F("Found "));
71 switch (type) {
T2 case FONA3G_A:
73 Serial.println(F ("FONA 3G (American)")); break;




C.8 Proof Of Cellular Concept

119

4
5
76
i
8
79
80
81

82
33
84
85
86
87

88

89

90

91
92
93
94

96

97
98
99
100
101
102
103
104
105

106

case FONA3G_E:
Serial.println (F("FONA 3G (European)")); break;
default:
Serial.println(F("?2??")); break;
}
// Print module IMEI number.
char imei[l16] = {0}; // MUST use a 16 character buffer
for IMET!
uint8_t imeilen = fona.getIMEI (imei);
if (imeiLen > 0) {
Serial.print ("Module IMEI: "); Serial.println(imei);
}
// Optionally configure a GPRS APN, username, and
password.
// You might need to do this to access your network’s
GPRS/data
// network. Contact your provider for the exact APN,
username,
// and password values. Username and password are
optional and
// can be removed, but APN is required.
fona.setGPRSNetworkSettings (F ("internet"), F(""), F(""));
// Optionally configure HTTP gets to follow redirects
over SSL.
// Default is not to follow SSL redirects, however if you
uncomment
// the following line then redirects over SSL will be
followed.
//fona.setHTTPSRedirect (true);
unlockPin () ;
printMenu () ;
}
void printMenu (void) ({

Serial .printIn (F(Yerrormomrmer e e e e e e e e )

Vi
Serial.println(F("[?] Print this menu"));




120 Chapter C. Arduino Code

107 Serial.println(F("[b] read the Battery V and % charged"))
r

108 Serial.println(F("[C] read the SIM CCID"));

109 // Serial.println(F("[U] Unlock SIM with PIN code"));

110 Serial.println(F("[i] read RSSI"));

111 Serial.println(F("[n] get Network status"));

112

113 // Phone

114 Serial.println(F("[c] make phone Call"}};

115 Serijial.println(F("[A] get call status"));

116 Serial.println(F("[h] Hang up phone"));

117 Serial.println(F("[p] Pick up phone"));

118

119 // SMS

120 Serial . println(F (" [N] Number of SMSs"));

121 Serial.println(F("[r] Read SMS #"));

122 Serial.println(F("[R] Read ALl SMS"));

123 Serial.println(F("[d] Delete SMS #"));

124 Serial.println(F("[s] Send SMS"));

125 Serial.println(F("[u] Send USSD"));

126

127 // Email

128 Serial.println(F("[J] Send email™));

129

130 // GPRS

131 Serial.println(F("[G] Enable GPRS"));

132 Serial.println(F("[g] Disable GPRS"));

133 Serial.println(F("[1l] Query GSMLOC (GPRS)")}};

134 Serial.println(F("[w] Read webpage (GPRS)"));

135 Serial.println(F("[W] Post to website (GPRS)"));

136

137 Serial.println(F("[S] create Serial passthru tunnel"));

138 Serial . println (P (- e s e s e s e e e e ")
)i

139 Serial.println(F(""));

140

141 }

142 wvoid loop() {

143 Serial .print (F("FONA> "));

144 while (! Serial.available() ) {

145 if (fona.available()) {

146 Serial.write(fona.read());

147




C.8 Proof Of Cellular Concept 121

148 }

149

150 char command = Serial.read();

151 Serial.println (command) ;

152

153

154 switch (command) {

155 Cage Tary |

156 printMenu() ;

157 break;

158 }

159

160 case 'J": |

161 if (! fona.sendTestMail (true)) {

162 Serial.println(F("Failed to send email"));

163 } else {

164 Serial.print (F("Sent email"));

165 }

166 break;

167 }

168

169

170 case 'a’": {

171 // read the ADC

172 uintlée_t adc;

173 if (! fona.getADCVoltage (&adc)) {

174 Serial.println(F("Failed to read ADC"));

175 } else {

176 Serial.print (F("ADC = ")); Serial.print (adc);
Serial.println(F(" mv"));

177 }

178 break;

179 }

180

181 case "b": {

182 // read the battery voltage and percentage

183 uintle t wbats

184 if (! fona.getBattVoltage (&vbat)) {

185 Serial . println(F("Failed to read Batt"));

186 } else {

187 Serial.print (F("VBat = ")); Serial.print (vbat);

Serial.println(F(" mV"));
188 }




122 Chapter C. Arduino Code

189

190

191 if (! fona.getBattPercent (&vbat)) {

192 Serial.println(F("Failed to read Batt"));

193 } else {

194 Serial.print (F{"VPct = ")); Serial.print (vbat);

Serial.println(F("%"));

195 }

196

197 break;

198 }

199

200 case 'U": {

201 // Unlock the SIM with a PIN code

202 char PIN[5];

203 flushSerial();

204 Serial.println (F("Enter 4-digit PIN"));

205 readline (PIN, 3);

206 Serial.println (PIN);

207 Serial.print (F{"Unlocking SIM card: "}};

208 if (! fona.unlockSIM(PIN)) {

209 Serial.println(F("Failed"));

210 } else {

211 Serial.println(F("OK!"));

212 }

213 break;

214 }

215

216 case 'Cr: {

217 // read the CCID

218 fona.getSIMCCID (replybuffer); // make sure
replybuffer is at least 21 bytes!

219 Serial.print (F("SIM CCID = ")); Serial.println(
replybuffer);

220 break;

221 }

222

223 case "i": {

224 // read the RSSI

225 uint8_t n = fona.getRSSI();

226 inE8. £ T;

227




C.8 Proof Of Cellular Concept 123

228

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

249
250
251

Serial.print (F("RSSI = ")); Serial.print (n); Serial
<print (e %) ;

if (n == 0) r = -115;

if (n == 1) r = -111;

if (n == 31) r = -52;
if ((n >= 2) && (n <= 30)) {
r = map(n, 2, 30, -110, -54);
}
Serial.print (r); Serial.println(F({" dBm"));

break;

|

// read the network/cellular status
uint8_t n = fona.getNetworkStatus();
Serial.print (F("Network status "));

Serial.print (n);

Serial .print (F(": "});

if (n == 0) Serial.println(F("Not registered"));

if (n == 1) Serial.println(F("Registered (home)"));

if (n == 2) Serial.println(F ("Not registered (
searching)"));

if (n == 3) Serial.println(F("Denied"));

if (n == 4) Serial.println(F("Unknown"));

if (n == 5) Serial.println(F("Registered rocaming"))
i

break;

Jxxx Call xwx/

gle |
// call a phone!
char number[30];
flushSerial();
Serial.print (F("Call #"));
readline (number, 30);
Serial.println();
Serial.print (F("Calling ")); Serial.println (number)

r
if (!fona.callPhone (number)) {
Serial.println(F("Failed"));




124 Chapter C. Arduino Code

267 } else {

268 Serial.println(F("Sent!"));

269 }

270

271 break;

272 }

273 case 'A": {

274 // get call status

275 int8_t callstat = fona.getCallStatus();

276 switch (callstat) ({

277 case 0: Serial.println(F("Ready")); break;

278 case 1l: Serial.println(F("Could not get status"))
; break;

279 case 3: Serial.println(F("Ringing (incoming)"));
break;

280 case 4: Serial.println(F("Ringing/in progress (
outgoing) ")) ; break;

281 default: Serial.println(F("Unknown")); break;

282 }

283 break;

284 }

285

286 case 'h’': {

287 // hang up!

288 if (! fona.hangUp()) {

289 Serial.println(F ("Failed"));

290 } else {

291 Serial.println(F("OK!"));

292 }

293 break;

294 }

295

296 case 'p": {

297 /f pick up!

208 if (! fona.pickUp()) {

299 Serial.println(F("Failed"));

300 } else {

301 Serial.println(F("OK!"));

302 }

303 break;

304 }

305

306 S xxx SMS wwxw/




C.8 Proof Of Cellular Concept 125

307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324

325
326
327
328
329
330
331

332
333
334
335

336
337
338
339
340

341
342
343
344
345

Nt
// read the number of SMS’s!
int8_t smsnum = fona.getNumSMS();

if (smsnum < 0) {

Serial.println(F("Could not read # SMS"});
} else {

Serial.print (smsnum);

Serial.println(F(" SMS’s on SIM card!"));
}
break;

s |
// read an SMS
flushSerial();
Serial.print (F("Read #"));
uint8_t smsn = readnumber();
Serial.print (F("\n\rReading SMS #")); Serial.
println (smsn);

// Retrieve SMS sender address/phone number.

if (! fona.getSMSSender (smsn, replybuffer, 250)) {
Serial.println("Failed!");
break;

}

Serial.print (F("FROM: ")); Serial.println/(
replybuffer);

// Retrieve SMS value.

uintlé_t smslen;

if (! fona.readSMS(smsn, replvbuffer, 250, &smslen)
)y { // pass in buffer and max len!
Serial.println("Failed!");
break;

}

Serial.print (F("x**%% SMS #")); Serial.print (smsn);

Serial.print (" ("); Serial.print(smslen); Serial.
println(F (") bytes xxx%xx"}};

Serial.println(replybuffer);

Serial .println(F ("sx+xx+"));

break;




126 Chapter C. Arduino Code

346 case 'R": {

347 // read all SMS

348 int8_t smsnum = fona.getNumSMS () ;

349 uintl6_t smslen;

350 int8_t smsn;

351

352 if ( (type == FONA3G_A) || (type == FONA3G_E) ) {

353 smsn = 0; // zero indexed

354 smsnum--;

355 } else {

356 smsn = 1; // 1 indexed

357 }

358

359 for ( ; smsn <= smsnum; smsn++) {

360 Serial.print (F ("\n\rReading SMS #")); Serial.
println(smsn);

361 if (!fona.readSMS (smsn, replybuffer, 250, &smslen
) { // pass in buffer and max len!

362 Serial.println(F("Failed!"));

363 break;

364 }

365 // if the length is zero, its a special case
where the index number is higher

366 // so increase the max we’ll look at!

367 if (smslen == 0) {

368 Serial.println(F (" [empty slot]"));

369 smsnum++;

370 continue;

371 }

372

373 Serial.print (F{("*%»+* SMS #")); Serial.print (smsn
)i

374 Serial.print (" ("); Serial.print (smslen); Serial.
println{(F (") bytes *+x%x%xx%x"));

375 Serial.println(replybuffer);

376 Serial.printIn(F ("xx**x%x"));

ST }

378 break;

379 }

380

381 case 'd": {

382 // delete an SMS

383 flushSerial () ;




C.8 Proof Of Cellular Concept 127

384 Serial.print (F("Delete #"));

385 uint8_t smsn = readnumber ();

386

387 Serial.print (F("\n\rDeleting SMS #")); Serial.
println (smsn);

388 if (fona.deleteSMS (smsn)) {

389 Serial .println(F("OK!"}));

390 } else {

391 Serial.println(F("Couldn’t delete"));

392 }

393 break;

394 }

395

396 case "s’s |

397 // send an SMS!

398 char sendto[21], message[l41];

399 flushSerial();

400 Serial .print (F("Send to #"));

401 readline (sendto, 20);

402 Serial.println(sendto);

403 Serial.print (F("Type out one-line message (140 char
R

404 readline (message, 140);

405 Serial.println (message);

406 if (!fona.sendSMS(sendto, message)) {

407 Serial.println (F ("Failed"));

408 } else {

409 Serial.println(F("Sent!"));

410 }

411

412 break;

413 }

414

415 case 'u’: |{

416 // send a USSD!

417 char message[141];

418 flushSerial();

419 Serial.print (F("Type out one—-line message (140 char
Y TEY;

420 readline (message, 140);

421 Serial.println (message);

422

423 uintlé6_t ussdlen;




128 Chapter C. Arduino Code
424 if (!fona.sendUSSD (message, replybuffer, 250, &
ussdlen)) { // pass in buffer and max len!

425 Serial.println(F("Failed"));

426 } else {

427 Serial.println(F("Sent!"));

428 Serial.print (F{"+xx+x* USSD Reply"));

429 Serial.print (" ("); Serial.print (ussdlen); Serial
println(F (") bytes *x*x*x"));

430 Serial.println (replybuffer);

431 Serial.println(F("+xxx+x"));

432 }

433 }

434

435

436 [hkdkkkkkhhkkxhhkkhhhhrhhrhhkkahkrhk*r* GPRS #/

437

438 case 'g": {

439 // turn GPRS off

440 if (!fona.enableGPRS(false))

441 Serial.println(F("Failed to turn off"));

442 break;

443 }

444 case 'G": {

445 // turn GPRS on

446 if (!fona.enableGPRS(true))

447 Serial.println(F("Failed to turn on"));

448 break;

449 }

450 case "1ft: {

451 // check for GSMLOC (requires GPRS)

452 uintlé_t returncode;

453

454 if (!fona.getGSMLoc (&returncode, replybuffer, 250))

455 Serial.println(F("Failed!"));

456 if (returncode == 0) {

457 Serial.println(replybuffer);

458 } else {

459 Serial.print (F{"Fail code #")}; Serial.println(
returncode) ;

460 }

461

462 break;

463




C.8 Proof Of Cellular Concept 129

464
465
466
467
468
469
470
471

472

473
474
475
476
477

478
479
480
481
482
483
484
485

486

487

488
489
490
491
492
493
494
495
496
497
498
499
500

case

whs |
// read website URL
uintlé6_t statuscode;
intl1l6_t length;
char url([80];

flushSerial();
Serial.println(F("NOTE: in beta! Use small webpages
to read!™));
Serial.println(F("URL to read (e.g. www.adafruit.
com/testwifi/index.html):"});
Serial.print (F("http://")); readline(url, 79);
Serial.println(url);

Serial println(F("*xxx"));
if (!fona.HTTP_GET_start (url, &statuscode, |
uintl6 t =) &length)) {
Serial.println("Failed!");
break;
}
while (length > 0} {
while (fona.available()) {
char ¢ = fona.read();

// Serial.write is too slow, we'll write
directly to Serial register!

#if defined(___AVR _ATmega328P__) || defined(
__AVR_ATmegal68__)

telse

fendif

loop_until_bit_is_set (UCSROA, UDREQ); /% Wait
until data register empty. =/
UDRO = ¢;

Serial.write(c);

length—--;
if (! length) break;
}
}
Serial.println(F ("\nx*xxx")};
fona.HTTP_GET_end() ;
break;




130 Chapter C. Arduino Code

501 case "W': {

502 // Post data to website

503 uintl6_t statuscode;

504 intl6_t length;

505 char url[80];

506 char datal[80];

507

508 flushSerial () ;

509 Serial.println(F("NOTE: in beta! Use simple
websites to post!"));

510 Serial.println({F{"URL to post (e.g. httpbin.org/
post) ")),

511 Serial.print (F("http://")); readline(url, 79);

512 Serial.println(url);

|4

Serial.println(F("Data to post (e.g. \"foo\" or
YA Msimple\ " e\ " gsanf MR £ )

514 readline (data, 79);

515 Serial.println(data);

51

017 Serial.println(F("+x*xx"));

if (!fona.HTTP_POST_start(url, F("text/plain"), (
uint8_t =*) data, strlen(data), &statuscode, (
uintlé_t =#)&length)) {

519 Serial.println("Failed!");

520 break;

521 }

522 while (length > 0) {

523 while (fona.available()) {

524 char ¢ = fona.read();

525

526 #if defined(__ AVR _ATmega328P_ ) || defined(
__AVR_ATmegal68__)

527 loop_until_bit_is_set (UCSROA, UDREQ); /* Wait

until data register empty. =/

528 UDRO = c;

529 f#else

530 Serial.write(c);

531 f#endif

532

533 length--;

534 if (! length) break;

535 }

336 }




C.8 Proof Of Cellular Concept

131

537
538
539
540
541
542
543
544
545
546
547
548

=

o
<
by

by e I |
an on On Ot Ot Ot
S )

=~ L

[ B
[=r R ]

=1

nog

[ B
o on

560
261
562
563
564
565
566
567
568
569 1}
570

Serial . pElintIn(B(MNa*aEx"} )
fona.HTTP_POST end () ;
break;

}

/‘k'k‘k‘k‘k‘k‘k‘k‘k'k**‘k****\k***‘k*‘k‘k‘k‘k*‘k‘k***\k**‘k****/

case '5": {
Serial.println(F("Creating SERIAL TUBE"));
while (1) {
while (Serial.available()) {
delay(1l);
fona.write(Serial.read());
}
if (fona.available()) {
Serial.write(fona.read());

}
}
break;
}
default: {

Serial.println(F ("Unknown command"));
printMenu () ;
break;

}

// flush input
flushSerial ();
while (fona.available()) {

Serial.write(fona.read());

571 void flushSerial() {

572
573
BYEI
575

while (Serial.available())

Serial.read();

576 char readBlocking() {

577
578
579 '}

while (!Serial.available());
return Serial.read();




132 Chapter C. Arduino Code
580 uintlé_t readnumber () {
581 uintlé_t x = 0;
582 char c;
583 while (! isdigit(c = readBlocking())) {
584 //Serial.print(c);
585 }
586 Serial.print (c);
587 % = g = e
588  while (isdigit(c = readBlocking())) {
589 Serial.print (c);
590 x x= 10;
591 x +=c¢ - "0";
592 }
593 return x;
594 }
595
596 uint8_t readline(char xbuff, uint8_t maxbuff, uintlé_t
timeout) {
597 uintlé_t buffidx = 0;
598 boolean timeoutvalid = true;
599 if (timeout == 0) timeoutwvalid = false;
600
601 while (true) |
602 if (buffidx > maxbuff) {
603 //Serial.println (F ("SPACE"));
604 break;
605 }
606
607 while (Serial.available()) {
608 char ¢ = Serial.read();
609
610 //Serial.print(c, HEX); Serial.print("#"); Serial.
printlni(ec);
611
612 if (¢ == '"\r') continue;
613 if (c == 0xA) |
614 if (buffidx == () // the first 0x0A is ignored
615 continue;
616
617 timeout = 0; // the second 0x0A is the end
of the line
618 timeoutvalid = true;
619 break;




C.8 Proof Of Cellular Concept 133

620 }

621 buff[buffidx] = c;

622 buffidx++;

623 1

624

625 if (timeoutvalid && timecut == 0) {
626 //Serial.println(F ("TIMEOUT")) ;
627 break;

0628 }

629 delay (1) ;

630 }

631 buff[buffidx] = 0; // null term
632 return buffidx;

633}

634

635 void unlockPin() {

636 //void unlockPin (String input) {
637 char PIN[S5] = {’'0", 0", "0, "0"};

638 if (! fona.unlockSIM(PIN)) {

639 Serial.println(F("Sim Unlocking Failed"));
640 } else {

641 Serial.println(F("Sim Unlocked!"));

642 }
643 '}




134

Chapter C. Arduino Code

C.9 DModified Adafruit FONA Library H-File

N

oo~ O

10

11

12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

/***************************************************

This is a library for our Adafruit FONA Cellular Module

Designed specifically to work with the Adafruit FONA
—-——=> http://www.adafruit.com/products/1946
—-——=> http://www.adafruit.com/products/1963

These displays use TTL Serial to communicate, 2 pins are
required to

interface

Adafruit invests time and resources providing this open
source code,

please support Adafruit and open-source hardware by
purchasing

products from Adafruit!

Written by Limor Fried/Ladyada for Adafruit Industries.
BSD license, all text above must be included in any
redistribution
****************************************************/
#ifndef ADAFRUIT_FONA_H
#define ADAFRUIT_FONA_H

#include "includes/FONAConfig.h"

#include

"includes/FONAExtIncludes.h"

finclude "includes/platform/FONAPlatform.h"

#define
#define

#define
#define

#define
#define

FONASOOL 1
FONASOOH 6

FONABO8_V1 2
FONABOS_V2 3

FONA3G_A 4
FONA3G_E 5

// Set the preferred SMS storage.

// Use
/7 Use

"SM" for storage on the SIM,
"ME" for internal storage on the FONA chip




C.9 Modified Adafruit FONA Library H-File

135

38 #define FONA_PREF_SMS_STORAGE "\"SM\""
39 //#define FONA_PREF_SMS_STORAGE "\"ME\""
40

41 #define FONA_HEADSETAUDIO 0

42 #define FONA_EXTAUDIO 1

43

44 #define FONA_STTONE_DIALTONE 1

45 #define FONA_STTONE_BUSY 2

46 #define FONA_STTONE_CONGESTION 3

47 #define FONA_STTONE_PATHACK 4

48 #define FONA_STTONE_DROPPED 5

49 #define FONA_STTONE_ERROR 6

0 #define FONA_STTONE_CALLWAIT 7

#define FONA_STTONE_RINGING 8

#define FONA_STTONE_BEEP 16

#define FONA_STTONE_POSTONE 17

#define FONA_STTONE_ERRTONE 18

#define FONA_STTONE_INDIANDIALTONE 19
#define FONA_STTONE_USADIALTONE 20

[l Gk S b By By ol el o
0o =1 O O o= W o —

#define FONA_DEFAULT_TIMEOUT_MS 500

o ¢
3
D

o

60 #define FONA_HTTP_GET
61 #define FONA_HTTP_POST
62 #define FONA_HTTP_HEAD 2

63

64 #define FONA_CALL_READY 0

65 #define FONA_CALL_FAILED 1

66 #define FONA_CALL_UNKNOWN 2

67 #define FONA_CALL_RINGING 3

68 #define FONA_CALL_INPROGRESS 4

69

70 class Adafruit_FONA : public FONAStreamType
71l public:

T2 Adafruit_FONA(int8_t r);

73 boolean begin(FONAStreamType &port);

T4 uint8_t type();

=

75

76 // Stream

rird int available(void);

78 size_t write(uint8_t x);

79 int read(void);
80 int peek(void);




136 Chapter C. Arduino Code

81 void flush();

82

83 // FONA 3G requirements

84 boolean setBaudrate (uintlé_t baud);

85

86

87 // Battery and ADC

88 boolean getADCVoltage (uintlée_t »*v);

89 boolean getBattPercent (uintl6_t «p);

90 boolean getBattVoltage{uintl6_t =»v);

91

92 // SIM query

93 uint8_t unlockSIM(char *pin);

94 uint8_t getSIMCCID (char =xccid);

95 uint8_t getNetworkStatus (void);

96 uint8_t getRSSI (void);

97

98 // IMEI

99 uint8_t getIMEI (char =*imei);

100

101 // SMS handling

102 boolean setSMSInterrupt (uint8_t 1);

103 uint8_t getSMSInterrupt (void);

104 int8_t getNumSMS (void) ;

105 boolean readSMS (uint8_t i, char ssmsbuff, uintlé6_t max,
uintlé_t =*readsize);

106 boolean sendSMS (char xsmsaddr, char #smsmsqg);

107 boolean deleteSMS (uint8_t i);

108 boolean getSMSSender (uint8_t i, char ssender, int
senderlen);

109 boolean sendUSSD(char *ussdmsg, char *ussdbuff, uintlé_t
maxlen, uintlé6_t =xreadlen);

110

111

112 // GPRS handling

113 boolean enableGPRS (boolean onoff);

114 uint8_t GPRSstate(void);

115 boolean getGSMLoc (uintl6_t =replycode, char xbuff,
uintl6_t maxlen);

116 boolean getGSMLoc (float xlat, float «lon);

117 void setGPRSNetworkSettings (FONAFlashStringPtr apn,

FONAFlashStringPtr username=0, FONAFlashStringPtr
password=0) ;




C.9 Modified Adafruit FONA Library H-File

137

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

134
135
136
137
138
139
140

141

142

143

144
145
146
147
148
149
150
151
152
153
154

// TCP raw connections

boolean TCPconnect (char xserver, uintlé_t port);
boolean TCPclose (void);

boolean TCPconnected (void);

boolean TCPsend(char xpacket, uint8_t len);
uintlé_t TCPavailable (wvoid);

uintlé_t TCPread(uint8_t +buff, uint8_t len);

// Phone calls

boolean callPhone (char xphonenum);

uint8_t getCallStatus (void);

boolean hangUp (void);

boolean pickUp (void);

boolean callerIdNotification(boclean enable, uint8_t
interrupt = 0);

boolean incomingCallNumber (char* phonenum) ;

// SMTP Mail
boolean sendTestMail (void);

// Helper functions to verify responses.
boolean expectReply (FONAFlashStringPtr reply, uintlé_t
timeout = 10000);

boolean sendCheckReply (char xsend, char *reply, uintlé_t

timeout = FONA_DEFAULT_TIMEOUT_MS) ;

boolean sendCheckReply (FONAFlashStringPtr send,
FONAFlashStringPtr reply, uintl6_t timeout =
FONA_DEFAULT_TIMEOQUT_MS) ;

boolean sendCheckReply(char* send, FONAFlashStringPtr
reply, uintlé_t timeout = FONA_DEFAULT_TIMEOQUT_MS) ;

protected:
int8_t _rstpin;
uint8_t _type;

char replybuffer([255];
FONAFlashStringPtr apn;
FONAFlashStringPtr apnusername;
FONAFlashStringPtr apnpassword;
boolean httpsredirect;




138

Chapter C. Arduino Code

155
156
157
158
159
160
161
162
163

164

166

167

168

169

170
171

172

173

174

175
176
177
178

179

FONAFlashStringPtr useragent;
FONAFlashStringPtr ok_reply;

// HTTP helpers
boolean HTTP_setup(char =*url);

void flushInput ();

uintlé_t readRaw(uintlée_t b);

uint8_t readline(uintlé_t timeout =
FONA_DEFAULT_TIMEOUT_MS, boolean multiline = false);

uint8_t getReply(char =xsend, uintlé6_t timeout =
FONA_DEFAULT TIMEOUT_MS) ;

uint8_t getReply (FONAFlashStringPtr send, uintlé6_t
timeout = FONA_DEFAULT_TIMEOUT_MS);

uint8_t getReply (FONAFlashStringPtr prefix, char *suffix,
uintl6é_t timeocut = FONA_DEFAULT_TIMEOUT_MS) ;

uint8 t getReply (FONAFlashStringPtr prefix, int32 t
suffix, uintlé_t timeout = FONA_DEFAULT_TIMEQUT_MS);

uint8_t getReply (FONAFlashStringPtr prefix, int32_t
suffixl, int32_t suffix2, uintlé_t timeout); // Don't
set default value or else function call is ambiguous.

uint8_t getReplyQuoted (FONAFlashStringPtr prefix,
FONAFlashStringPtr suffix, uintlé_t timecut =
FONA_DEFAULT_TIMEQUT_MS);

boolean sendCheckReply (FONAFlashStringPtr prefix, char =
suffix, FONAFlashStringPtr reply, uintlé_t timeocut =
FONA_DEFAULT_TIMEQUT_MS) ;
boolean sendCheckReply (FONAFlashStringPtr prefix, int32_t
suffix, FONAFlashStringPtr reply, uintl6_t timeout =
FONA_DEFAULT_TIMEQUT_MS) ;
boolean sendCheckReply (FONAFlashStringPtr prefix, int3Z2_t
suffix, int32_t suffix2, FONAFlashStringPtr reply,
uintl6_t timeout = FONA_DEFAULT_TIMEQUT_MS);
boolean sendCheckReplyQuoted (FONAFlashStringPtr prefix,
FONAFlashStringPtr suffix, FONAFlashStringPtr reply,
uintlée_t timeout = FONA_DEFAULT_TIMEOUT_MS) ;

boolean parseReply (FONAFlashStringPtr toreply,
uintlé_t =»v, char divider = ',’, uint8_t index
=0);
boolean parseReply (FONAFlashStringPtr toreply,




C.9 Modified Adafruit FONA Library H-File 139

180 char *v, char divider = ",’, uint8_t index=0);

181 boolean parseReplyQuoted (FONAFlashStringPtr toreply,

182 char *v, int maxlen, char divider, uint8_t index)

;

183

184 boclean sendParseReply (FONAFlashStringPtr tosend,

185 FONAFlashStringPtr toreply,

186 uintlé_t *v, char divider = ',’, uint8_t index=0);

187

188 static boolean _incomingCall;

189 static void onIncomingCall () ;

190

191 FONAStreamType *mySerial;

192 };

193

194 class Adafruit_FONA_3G : public Adafruit_FONA {

195

196 public:

197 Adafruit_FONA_3G (int8_t r) : Adafruit_FONA(r) { _type =
FONA3G_A; }

198

199 boolean getBattVoltage(uintlé_t =v);

200 boolean playToolkitTone (uint8_t t, uintlé_t len);

201 boolean hangUp(void);

202 boclean pickUp(void);

203 boolean enableGPRS (boolean onoff);

204 boolean enableGPS (boolean onoff);

205

206 protected:

207 boolean parseReply (FONAFlashStringPtr toreply,

208 float *f, char divider, uint8_t index);

209

210 boolean sendParseReply (FONAFlashStringPtr tosend,

211 FONAFlashStringPtr toreply,

212 float +f, char divider = 7,’, uint8_t index=0);

213 };

214

215 #endif




140

Chapter C. Arduino Code

C.10 Modified Adafruit FONA Library CPP-File

N

» O

-1

10

11

12
13
14
15

16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

/***************************************************

This is a library for our Adafruit FONA Cellular Module

Designed specifically to work with the Adafruit FONA
—-——=> http://www.adafruit.com/products/1946
—-——=> http://www.adafruit.com/products/1963

These displays use TTL Serial to communicate, 2 pins are
required to

interface

Adafruit invests time and resources providing this open
source code,

please support Adafruit and open-source hardware by
purchasing

products from Adafruit!

Written by Limor Fried/Ladyada for Adafruit Industries.
BSD license, all text above must be included in any
redistribution
****************************************************/
// next line per http://postwarrior.com/arduino-
ethershield-error-prog_char-does—not-name-a-type/

#include "Adafruit_FONA.h"

Adafruit_FONA::Adafruit_FONA(int8_t rst)

{

_rstpin = rst;

apn = F("FONAnet");
apnusername = 0;
apnpassword = 0;
mySerial = 0;
httpsredirect = false;
useragent = F ("FONA");
ok_reply = F("OK");




C.10 Modified Adafruit FONA Library CPP-File

141

37
38
39
40
41
42
43
45

[

[ BTN

[=2]

o Ot On O O O O O b
[N

=1

67
63

69
70
71
72
73
74
5
76
rife
8

uint8_t Adafruit_FONA::type (void) {
return _type;

}

boolean Adafruit_FONA::begin(Stream &port) {
mySerial = &port;

pinMode (_rstpin, OUTPUT);
digitalWrite(_rstpin, HIGH);
delay (10);
digitalWrite{_rstpin, LOW);
delay (100);
digitalWrite(_rstpin, HIGH);

DEBUG_PRINTLN(F ("Attempting to open comm with ATs"));

// give 7 seconds to reboot
intlé_t timeout = 7000;

while (timeout > 0) {

while (mySerial->available()) mySerial->read();
if (sendCheckReply (F ("AT"), ok_reply))

break;
while (mySerial->available()) mySerial->read();
if (sendCheckReply(F ("AT"), EF("AT")))

break;
delay (500);
timeocut-=500;

if (timeout <= 0) {
#ifdef ADAFRUIT_FONA_DEBUG

DEBUG_PRINTLN(F ("Timeocut: No response to AT...

ditch attempt."));
#endif
sendCheckReply (F ("AT"), ok_reply);
delay (100);
sendCheckReply (F ("AT"), ok_reply);
delay (100);
sendCheckReply (F ("AT"), ok_reply);
delay (100);
}

// turn off Echo!

last




142 Chapter C. Arduino Code

79 sendCheckReply (F ("ATEO"), ok_reply);

80 delay(100);

81

82 if (! sendCheckReply (F("ATEO"), ok_reply)) {

83 return false;

84 }

85

36 // turn on hangupitude

87 sendCheckReply (F ("AT+CVHU=0"), ok_reply);

88

89 delay (100);

90 flushInput();

91

92

93 DEBUG_PRINT (F("\t-——> ")); DEBUG_PRINTLN ("ATI");

94

95 mySerial->println ("ATI");

96 readline (500, true);

97

98 DEBUG_PRINT (F("\t<-—-— ")); DEBUG_PRINTLN (replybuffer);

99

100

101

102 if (prog_char_strstr(replybuffer, (prog_char *)F("SIM808
R14")) != 0) {

103 _type = FONABO08_V2;

104 )} else if (prog_char_strstr(replybuffer, (procg_char =*)F("
SIMB808 R13")) != 0) {

105 _type = FONABO08_V1;

106 } else if (prog_char_strstr(replybuffer, (prog_char =)F("
SIM800 R13™)) != 0) {

107 _type = FONABOOL;

108 ) else if (prog_char_strstr(replybuffer, (prog_char x)F("
SIMCOM_SIM5320A")) = 0) {

109 _type = FONA3G_A;

110 } else if (prog_char_strstr(replybuffer, (prog_char =*=)F("
SIMCOM_SIMS5320E")) != 0) {

111 _type = FONA3G_E;

112 }

113

114  if (_type == FONABOOL) {

115 // determine if L or H

116




C.10 Modified Adafruit FONA Library CPP-File 143

117 DEBUG_PRINT (F("\t——-> ")); DEBUG_PRINTLN ("AT+GMM") ;

118

119 mySerial->println ("AT+GMM") ;

120 readline (500, true);

121

122 DEBUG_PRINT (F("\t<--— ")); DEBUG_PRINTLN(replybuffer);

123

124

125 if (prog_char_strstr(replybuffer, (prog_char =)F ("
SIMBOQH")) != 0) {

126 _type = FONASBOOH;

127 }

128 }

129

130 #if defined (FONA_PREF_SMS_STORAGE)

131 sendCheckReply (F ("AT+CPMS=" FONA_PREF_SMS_STORAGE ",k "
FONA_PREF_ SMS_STORAGE "," FONA_PREF_SMS_STORAGE),
ok_reply);

132 #endif

133

134 return true;

135 1}

136

137

138 /%*xxxx#xxx% BATTERY & ADC

****++++++++++**********+*+++++++*+*********/

139

140 /+ returns value in mV (uintlé6_t) =/

141 boolean Adafruit_FONA::getBattVoltage (uintl6_t =v) {

142 return sendParseReply (F("AT+CBC"), F("+CBC: "), v, 7,’,

2);

143 }

144

145 /* returns value in mV (uintle_t) =/

146 boolean Adafruit_FONA_3G::getBattVoltage (uintl6_t =v) {

147 float f;

148 boolean b = sendParseReply (F("AT+CBC"), F("+CBC: "), &f,

! r ! r 2) f‘

149 xv = £x1000;

150 return b;

151 }

152

153




144 Chapter C. Arduino Code

154 /* returns the percentage charge of battery as reported by
sim800 =/

55 boolean Adafruit_FONA::getBattPercent (uintlé_t =*p) {

56 return sendParseReply (F ("AT+CBC"), F("+CBC: "), p, ",’,

1);

157 '}

158

159 boolean Adafruit_FONA::getADCVoltage (uintlée_t xv)

160 return sendParseReply (F ("AT+CADC?"), F("+CADC: 1,"), Vv);

161 3}

162

163 /##x*sxksxx SIM
AAkKEAARKARKKAARAARIAARA kAR ArhARkhbAhhkhhbhhhhkkhkhkrtkhkkhkhkkkihkhhkkhhk&xkkl*,
®/

164

165 uint8_t Adafruit_FONA::unlockSIM(char +*pin)

166 {

167 char sendbuff[14] = "AT+CPIN=";

168 sendbuff[8] = pin[0];

169 sendbuff[29] = pin[l];

170 sendbuff[10] = pin[2];

171 sendbuff[11] = pin[3];

172 sendbuff[l12] = "\0’;

173

174 return sendCheckReply (sendbuff, ok_reply);

175 '}

176

177 uint8_t Adafruit_ FONA::getSIMCCID (char =*ccid) {

178 getReply (F ("AT+CCID") ) ;

179 // up to 28 chars for reply, 20 char total ccid

180 if (replybuffer[0] == "+') {

181 // fona 3g?

182 strncpy (ccid, replybuffer+8, 20);

183 } else {

184 // fona 800 or 800

185 strncpy (ccid, replybuffer, 20);

186 }

187 ccid([20] = 0;

188

189 readline(); // eat ’OK’

190

191 return strlen(ccid);

192

}




C.10 Modified Adafruit FONA Library CPP-File

145

193
194 /xxsskxxxxx IMEIL

AR KA AR A A A A AT A A A A AT AR A AR A AT AL A RRA AR A AA A AR A AT A AT AR AT X k&K %k %%

*/
195
196 uint8 t Adafruit_ FONA::getIMEI (char *imei) {
197 getReply (F ("AT+GSN") ) ;
198
199 // up to 15 chars
200 strncpy (imei, replybuffer, 15);
201 imei[15] = 0;
202
203 readline(); // eat ’'OK’
204
205 return strlen(imei);
206}
207
208 /xwxxxxxxxx NETWORK

*******************‘k*‘k***************‘k*****************/

209
210 vwint8_t Adafruit_FONA::getNetworkStatus (void)

{

211 uintlé_t status;

212

213 if (! sendParseReply(F("AT+CREG?"), F("+CREG:
, "7, 1)) return 0;

214

215 return status;

216}

217

218

219 uint8_t Adafruit_FONA::getRSSI (void) {

220 uintlé_t reply;

221

222 if (! sendParseReply (F ("AT+CSQ"), F("+CSQ:
return 0;

223

224 return reply;

225 1}

226

227

228

229

rr,’

"), &status

&reply)

)




146 Chapter C. Arduino Code
230 /##xx*%xx* CALL PHONES
*****+********************************************/

231 boolean Adafruit_FONA::callPhone (char snumber) {

232 char sendbuff[35] = "ATD";

233 strncpy (sendbuff+3, number, min (30, strlen (number)));

234 uint8 t x = strlen({sendbuff);

235 sendbuff[x] = ";’;

256 sendbuff[x+1] = 0;

237 //DEBUG_PRINTLN (sendbuff) ;

238

239 return sendCheckReply (sendbuff, ok_reply);

240 1}

241

242

243 uint8_t Adafruit_FONA::getCallStatus (void) {

244 uintlé_t phoneStatus;

245

246 if (! sendParseReply (F("AT+CPAS"), F("+CPAS: "), &
phoneStatus) )

247 return FONA_CALL_FAILED; // 1, since 0 is actually a

known, good reply

248

249 return phoneStatus; // 0 ready, 2 unkown, 3 ringing, 4
call in progress

250 }

251

252 boclean Adafruit_FONA: :hangUp(void) {

253 return sendCheckReply (F ("ATHO"), ok_reply);

254 '}

255

256 boolean Adafruit_FONA_3G::hangUp (void) {

257 getReply (F ("ATH")) ;

258

259 return (prog_char_strstr(replybuffer, (prog_char *)F ("
VOICE CALL: END"}) != 0};

260 1}

261

262 booclean Adafruit_FONA: :pickUp(void) {

263 return sendCheckReply (F ("ATA"), ok_reply);

264 }

265

266 boolean Adafruit_FONA_3G::pickUp(void) {

267 return sendCheckReply (F ("ATA"), F("VOICE CALL: BEGIN"));




C.10 Modified Adafruit FONA Library CPP-File 147

268 '}

269

270

271 void Adafruit_FONA::onIncomingCall () {

272

273 DEBUG_PRINT (F("> ")); DEBUG_PRINTLN(F ("Incoming call...")

):

274

275 Adafruit_FONA::

276}

277

278 boolean Adafruit_FONA::_incomingCall = false;

279

280 boolean Adafruit_FONA::callerIdNotification(boolean enable,
uint8_t interrupt) {

281 if (enable) {

incomingCall = true;

282 attachInterrupt (interrupt, onlIncomingCall, FALLING);
283 return sendCheckReply (F ("AT+CLIP=1"), ok_reply);

284 }

285

286 detachInterrupt (interrupt) ;

287 return sendCheckReply (F("AT+CLIP=0"), ok_reply);

288 '}

289

290 boolean Adafruit_FONA::incomingCallNumber (charx phonenum) {
291 //+CLIP: "<incoming phone number>",145,"",0,"",0
292 if (!Adafruit_FONA::_incomingCall)

293 return false;

294

295 readline () ;

296 while (!prog_char_strcmp (replybuffer, (prog_char+)F ("RING"
)y == 0y H

207 flushInput ();

298 readline () ;

299 }

300

301 readline(); //reads incoming phone number line

302

303 parseReply (F ("+CLIP: \""), phonenum, ’'"');
304

305

306 DEBUG_PRINT (F("Phone Number: "));

307 DEBUG_PRINTLN (replybuffer) ;




148 Chapter C. Arduino Code

308

309

310 Adafruit_FONA::_incomingCall = false;

311 return true;

312 }

313

314 /xxsxxxkxxx SMS

Hhhkdkhhkdhbhdhbdrhhbdrhhrhhbhbhhbhbhhbhbhdhhbddhddhhddhkhdkhhkdkhkdkkddkddkdddk ok
*/

315

316 uint8_t Adafruit_FONA::getSMSInterrupt (void) {

317 uintlé_t reply;

318

319 if (! sendParseReply (F("AT+CFGRI?"), F("+CFGRI: "), &
reply) ) return 0;

320

321 return reply;

322}

323

324 boolean Adafruit_FONA::setSMSInterrupt(uint8_t i) {

325 return sendCheckReply (F ("AT+CFGRI="), i, ok_reply);

326}

327

328 int8_t Adafruit_FONA::getNumSMS (void) {

329 uintl6_t numsms;

330

331 // get into text mode

332 if (! sendCheckReply (F("AT+CMGF=1"), ok_reply)) return
-1;

333

334 // ask how many sms are stored

335 if (sendParseReply(F("AT+CPMS?"), F(FONA_PREF_SMS_STORAGE

", "), &numsms))

336 return numsms;

337 if (sendParseReply (F ("AT+CPMS?"), F("\"SM\","), &numsms))

338 return numsmns;

339 if (sendParseReply(F ("AT+CPMS?"), F("\"SM_P\","), &numsms
))

340 return numsms;

341 return -1;

342}

343




C.10 Modified Adafruit FONA Library CPP-File 149

344 // Reading SMS’s is a bit involved so we don’t use helpers
that may cause delays or debug

345 // printouts!

346 boolean Adafruit_FONA::readSMS(uint8_t i, char xsmsbuff,

347 uintl6é_t maxlen, uintlé_t *readlen) {

348 // text mode

349 if (! sendCheckReply (F("AT+CMGF=1"), ok_reply)) return

false;

350

351 // show all text mode parameters

352 if (! sendCheckReply (F("AT+CSDH=1"), ok_reply)) return
false;

353

354 // parse out the SMS len

355 uintlé_t thesmslen = 0;

356

357

358 DEBUG_PRINT (F ("AT+CMGR=")) ;

359 DEBUG_PRINTLN (i) ;

360

361

362 //getReply (F ("AT+CMGR="), i, 1000); // do not print
debug!

363 mySerial->print (F ("AT+CMGR="));

364 mySerial->println(i);
365 readline (1000); // timeout

366

367 //DEBUG_PRINT (F ("Reply: ")); DEBUG_PRINTLN (replybuffer);
368 // parse it out...

369

370

371 DEBUG_PRINTLN (replybuffer);

372

373

374 if (! parseReply(F("+CMGR:"), &thesmslen, ’',’, 11))}) {
375 xreadlen = 0;

376 return false;

377 }

378

379 readRaw (thesmslen);

380

381 flushlInput () ;
382




150 Chapter C. Arduino Code

383 uintl6_t thelen = min(maxlen, strlen(replybuffer));

384 strncpy (smsbuff, replybuffer, thelen);

385 smsbuff[thelen] = 0; // end the string

386

387

388 DEBUG_PRINTLN (replybuffer);

389

390 *readlen = thelen;

391 return true;

392 }

393

394 // Retrieve the sender of the specified SMS message and
copy it as a string to

395 // the sender buffer. Up to senderlen characters of the
sender will be copied

396 // and a null terminator will be added if less than
senderlen charactesr are

397 // copied to the result. Returns true if a result was
successfully retrieved,

398 // otherwise false.

399 boolean Adafruit_FONA::getSMSSender (uint8_t i, char *sender

400

401

402

403
404
405
406
407
408
409

410
411
412
413
414
415
416

, 1int senderlen) {
// Ensure text mode and all text mode parameters are sent

if (! sendCheckReply (F ("AT+CMGF=1"), ok_reply)) return
false;

if (! sendCheckReply (F("AT+CSDH=1"), ok_reply)) return
false;

DEBUG_PRINT (F ("AT+CMGR=")) ;
DEBUG_PRINTLN (i) ;

// Send command to retrieve SMS message and parse a line
of response.

mySerial->print (F ("AT+CMGR="));

mySerial->println(i);

readline (1000);

DEBUG_PRINTLN (replybuffer);




C.10 Modified Adafruit FONA Library CPP-File 151

417
418
419

420
421
422
423
424
425

426

427
428
429

430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445

446
447

448
449

}

// Parse the second field in the response.

boolean result = parseReplyQuoted(F("+CMGR:"), sender,
senderlen, ',’, 1);

// Drop any remaining data from the response.

flushlInput () ;

return result;

boolean Adafruit_FONA::sendSMS (char *smsaddr, char xsmsmsg)

{

if (! sendCheckReply (F ("AT+CMGF=1"), ok_reply)) return
false;
char sendemd[30] = "AT+CMGS=\"";

strncpy (sendemd+9, smsaddr, 30-9-2); // 9 bytes
beginning, 2 bytes for close quote + null
sendemd[strlen (sendcmd)] = "\"’;

if (! sendCheckReply(sendcmd, F ("> "))) return false;
DEBUG_PRINT (F ("> ")); DEBUG_PRINTLN (smsmsqg);

mySerial->println (smsmsg) ;
mySerial->println();
mySerial->write (0x1A);

DEBUG_PRINTLN(""2");

if ( (_type == FONA3G_A) || (_type == FONA3G_E) ) {
// Eat two sets of CRLF
readline (200) ;
//DEBUG_PRINT ("Line 1: "); DEBUG_PRINTLN (strlen (
replybuffer));
readline (200);
//DEBUG_PRINT ("Line 2: "); DEBUG_PRINTLN (strlen (
replybuffer));
}
readline (10000); // read the +CMGS reply, wait up to 10
seconds!!!
//DEBUG_PRINT ("Line 3: "); DEBUG_PRINTLN (strlen (
replybuffer));
if (strstr(replybuffer, "+CMGS") == 0) ({




152 Chapter C. Arduino Code

452 return false;

453 }

454 readline (1000); // read OK

455 //DEBUG_PRINT (" "); DEBUG_PRINTLN (replybuffer);
456

457 if (strcmp(replybuffer, "OK") != 0) {

458 return false;

459 }

460

461 return true;

462 }

163

464

465 boolean Adafruit_FONA::deleteSMS (uint8_t i) {

466 if (! sendCheckReply (F ("AT+CMGF=1"), ok_reply)) return
false;

467 // read an sms

468 char sendbuff([12] = "AT+CMGD=000";

469 sendbuff[8] = (i / 100) + "07;

470 i %= 100;

471 sendbuff[9] = (i / 10) + "0";

472 i %= 10;

473 sendbuff[10] = 1 + "0’;

475 return sendCheckReply (sendbuff, ok_reply, 2000);

476}

477

478

479 /x*xxxx+x%x+* GPRS
Ahhkhkhhkdhbkhbdbhbkdhkhbdrhkhrkhkhbhbhhbhbhhbhbhhhhbdbdhhbdkhddhhdhhhhkdhhdkhddkhkdkkkdkk
*/

480

481

482 boolean Adafruit_FONA::enableGPRS (boolean onoff) {

483

484 if (onoff) {

485 // disconnect all sockets

486 // sendCheckReply (F ("AT+CIPSHUT"), F("SHUT OK"), 20000)
487

488 if (! sendCheckReply (F("AT+CGATT=1"), ok_reply, 10000))
489 return false;

490




C.10 Modified Adafruit FONA Library CPP-File 153

491 // set bearer profile! connection type GPRS
492 if (! sendCheckReply (F ("AT+SAPBR=3, 1, \"CONTYPE\", \"GPRS
Ny

493 ok_reply, 10000))

494 return false;

495

496 // set bearer profile access point name

497 if (apn) {

498 // Send command AT+SAPBR=3,1,"APN", "<apn value>"
where <apn value> is the configured APN value.

499 if (! sendCheckReplyQuoted (F ("AT+SAPBR=3,1, \"APN\", ")
, apn, ok_reply, 10000))

500 return false;

501

502 // send AT+CSTT, "apn", "user", "pass"

503 flushInput () ;

504

505 mySerial->print (F("AT+CSTT=\""));

506 mySerial->print (apn);

507 if (apnusername) {

o08 mySerial=>print (YN, \"");

509 mySerial->print (apnusername);

510 }

511 if (apnpassword) {

012 mySerial=>print{("\",\"");

513 mySerial->print (apnpassword) ;

514 }

515 mySerial->println("\"");

516

517 DEBUG_PRINT (F("\t———> ")); DEBUG_PRINT (F("AT+CSTT=\""
V)i

518 DEBUG_PRINT (apn) ;

519

520 if (apnusername) {

521 DEBUG_PRINT ("\",\"");

522 DEBUG_PRINT (apnusername) ;
523 }

524 if (apnpassword) {
525 DEBUG_PRINT ("\",\"");

526 DEBUG_PRINT (apnpassword) ;
527 }

528 DEBUG_PRINTLN ("\"") ;
529




154 Chapter C. Arduino Code
530 if (! expectReply(ok_reply)) return false;
531
532 // set username/password
533 if (apnusername) ({
534 // Send command AT+SAPBR=3,1, "USER", "<user>" where
<user> is the configured APN username.
535 if (! sendCheckReplyQuoted(F ("AT+SAPBR=3,1, \"USER
\", "), apnusername, ok_reply, 10000))
536 return false;
53T }
538 if (apnpassword) {
539 // Send command AT+SAPBR=3,1,"PWD", "<password>"
where <password> is the configured APN password.
540 if (! sendCheckReplyQuoted(F ("AT+SAPBR=3,1,\"PWD\",
"), apnpassword, ok_reply, 10000))
541 return false;
542 }
543 }
544
545 // open GPRS context
546 if (! sendCheckReply (F ("AT+SAPBR=1,1"), ok_reply,
30000))
547 return false;
548
549 // bring up wireless connection
550 if (! sendCheckReply (F("AT+CIICR"), ok_reply, 10000))
551 return false;
552
553 )} else {
554 // disconnect all sockets
555 if (! sendCheckReply (F ("AT+CIPSHUT"), F("SHUT OK"}),
20000))
556 return false;
557
558 // close GPRS context
559 if (! sendCheckReply (F ("AT+SAPBR=0,1"), ok_reply,
10000))
560 return false;
561
562 if (! sendCheckReply (F ("AT+CGATT=0"), ok_reply, 10000))
563 return false;
564

365




C.10 Modified Adafruit FONA Library CPP-File 155

566 return true;

567 }

568

569 boolean Adafruit_FONA_3G::enableGPRS (boolean onoff) {
570

571 if {onoff) |

572 // disconnect all sockets

573 //sendCheckReply (F ("AT+CIPSHUT"), F("SHUT OK"), 5000);

574

575 if (! sendCheckReply (F ("AT+CGATT=1"), ok_reply, 10000))

576 return false;

57T

578

579 // set bearer profile access point name

580 if (apn) {

581 // Send command AT+CGSOCKCONT=1,"IP","<apn value>"
where <apn value> is the configured APN name.

582 if (! sendCheckReplyQuoted (F ("AT+CGSOCKCONT=1, \"IP\",
"), apn, ok_reply, 10000))

H83 return false;

584

585 // set username/password

586 if (apnusername) {

H87 char authstring[100] = "AT+CGAUTH=1,1,\"";

o88 char xstrp = authstring + strlen(authstring);

589 prog_char_strcpy(strp, (prog_char x)apnusername);

590 strp+=prog_char_strlen((prog_char =)apnusername);

591 StEp[0] = “\"";

592 strp++;

593 strp[0] = 0;

094

595 if (apnpassword) {

596 strpl[0] = 7,"; strp++;

897 strpl[0] = "\"'; strp++;

598 prog_char_strcpy (strp, (prog_char =*)apnpassword);

599 strpt+=prog_char_strlen((prog_char =x)apnpassword);

600 strpl0] = 7\"";

601 strp++;

602 strp[0] = 0;

603 }

604

605 if (! sendCheckReply(authstring, ok_reply, 10000))
606 return false;




156 Chapter C. Arduino Code

607 }

608 }

609

610 // connect in transparent

611 if (! sendCheckReply (F ("AT+CIPMODE=1"), ok_reply,
10000))

612 return false;

613 // open network (?)

614 if (! sendCheckReply (F ("AT+NETOPEN=,,1"), F ("Network
opened"), 10000))

615 return false;

616

617 readline(); // eat 'OK'

618 )} else {

619 // close GPRS context

620 if (! sendCheckReply (F ("AT+NETCLOSE"), F("Network
closed"), 10000})

621 return false;

622

623 readline(); // eat 'OK'

624 }

625

626 return true;

627 }

628

629 uint8_t Adafruit_FONA::GPRSstate(void) {
630 uintlé_t state;

631

632 if (! sendParseReply (F ("AT+CGATT?"), F("+CGATT: "), &
state) )

633 return -1;

634

635 return state;

636}

637

638 void Adafruit_FONA: :setGPRSNetworkSettings (
FONAFlashStringPtr apn,

639 FONAFlashStringPtr username,

FONAFlashStringPtr password) {

640 this->apn = apn;

641 this—>apnusername = username;

642 this—>apnpassword = password;

643 '}




C.10 Modified Adafruit FONA Library CPP-File 157

644
645

G646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685

boolean Adafruit_FONA::getGSMLoc (uintl6_t =*errorcode, char

spuff, uintlé_t maxlen) {
getReply (F ("AT+CIPGSMLOC=1,1"), (uintlé_t)10000);

if (! parseReply (F("+CIPGSMLOC: "), errorcode))
return false;

char xp = replybuffer+14;
uintlé_t lentocopy = min(maxlen-1, strlen(p));
strncpy (buff, p, lentocopy+l);

readline(); // eat OK

return true;

boolean Adafruit_FONA::getGSMLoc (float =*lat, float =xlon) ({

uintlé_t returncode;
char gpsbuffer[120];

// make sure we could get a response
if (! getGSMLoc(&returncode, gpsbuffer, 120))
return false;

// make sure we have a valid return code
if (returncode !'= 0)
return false;

// +CIPGSMLOC: 0,-74.007729,40.730160,2015/10/15,19:24:55
// tokenize the gps buffer to locate the lat & long

char *longp = strtok(gpsbuffer, ",");

if (! longp) return false;

char xlatp = strtok (NULL, ",");
if (! latp) return false;

*lat
*lon

atof (latp);
atof (longp);

return true;




158 Chapter C. Arduino Code

686

637 '}

688 /##xxxx+xxx+ TCP FUNCTIONS

‘k‘k‘k‘k*'k‘k*‘k*******‘k‘k‘k‘k‘k*‘k‘k********‘k***/

689

690

691 boolean Adafruit_FONA::TCPconnect (char xserver, uintlé_t

port) {

692 flushInput () ;

693

694 // close all old connections

695 if (! sendCheckReply (F ("AT+CIPSHUT"), F("SHUT OK"),
20000) ) return false;

696

697 // single connection at a time

698 if (! sendCheckReply (F ("AT+CIPMUX=0"), ok_reply) return

false;

699

700 // manually read data

701 if (! sendCheckReply (F("AT+CIPRXGET=1"), ok_reply) )
return false;

702

703

704 DEBUG_PRINT (F ("AT+CIPSTART=\"TCP\",\""));

705 DEBUG_PRINT (server) ;

706 DEBUG_PRINT (F ("\",\"")};

707 DEBUG_PRINT (port);

708 DEBUG_PRINTLN (F ("\""));

709

710

711 mySerial->print (F ("AT+CIPSTART=\"TCP\",\""});

2 mySerial->print (server);

713  mySerial->print (F("\",\""));

714 mySerial->print (port);

715 mySerial->println (F("\""));

716

717 if (! expectReply(ok_reply)) return false;

718 if (! expectReply (F("CONNECT OK"))) return false;

719

720 // looks like it was a success (?)

721 return true;

722 '}

723




C.10 Modified Adafruit FONA Library CPP-File 159

724 boolean Adafruit FONA::TCPclose(void) {

725
726
727
728
729

730
731
732
733
734
735
736

}

return sendCheckReply (F("AT+CIPCLOSE"), ok_reply);

boolean Adafruit_FONA::TCPconnected(void) {

}

if (! sendCheckReply (F("AT+CIPSTATUS"), ok_reply, 100) )
return false;

readline (100);

DEBUG_PRINT (F("\t<--- ")); DEBUG_PRINTLN(replybuffer);

return (strcmp (replvbuffer, "STATE: CONNECT OK") == 0);

737 boolean Adafruit_FONA::TCPsend(char wxpacket, uint8_t len) {

738
739
740
741
742
743
744
745
746
747
748

DEBUG_PRINT (F ("AT+CIPSEND="));
DEBUG_PRINTLN (len) ;

#ifdef ADAFRUIT_FONA_DEBUG

for (uintlé_t i=0; i<len; i++) {
DEBUG_PRINT(F (" 0x"));
DEBUG_PRINT (packet [i], HEX);

}

#endif

DEBUG_PRINTLN () ;

mySerial->print (F("AT+CIPSEND="));
mySerial->println(len);

readline () ;

DEBUG_PRINT (F("\t<--- ")); DEBUG_PRINTLN(replybuffer);

if (replybuffer([0] != ">") return false;

mySerial->write(packet, len);
readline (3000); // wait up to 3 seconds to send the data

DEBUG_PRINT (F("\t<-—— ")); DEBUG_PRINTLN (replybuffer);

return (strcmp (replybuffer, "SEND OK") == 0);




160 Chapter C. Arduino Code

766

767 uintlé_t Adafruit_FONA::TCPavailable(void) {

768 uintlé_t avail;

769

770 if (! sendParseReply (F ("AT+CIPRXGET=4"), F("+CIPRXGET: 4,
"y, &avail, ’,’, 0) ) return false;

771

772

773 DEBUG_PRINT (avail); DEBUG_PRINTLN(F(" bytes available"))

774

775

776 return avail;

777}

778

779

780 uintlé_t Adafruit FONA::TCPread(uint8_t xbuff, uint8_t len)
{

781 uintlé_t avail;

732

783 mySerial->print (F ("AT+CIPRXGET=2,"));

784 mySerial->println (len);

785 readline () ;

786  if (! parseReply(F ("+CIPRXGET: 2,"), &avail, ’,’, 0))
return false;

787

788 readRaw (avail) ;

789

790 #ifdef ADAFRUIT_FONA_DEBUG

791 DEBUG_PRINT (avail); DEBUG_PRINTLN(F (" bytes read"));

792 for (uint8_t i=0;i<avail;i++) {

793 DEBUG_PRINT (F (" 0x")); DEBUG_PRINT (replybuffer[i], HEX);

794 }

795  DEBUG_PRINTLN () ;

796 #endif

797

798 memcpy (buff, replybuffer, avail);

799

800 return avail;

801 1}

802

803




C.10 Modified Adafruit FONA Library CPP-File 161

804 /x**xxxxxx SMTP Mail

805
306
307

808
809
810

811
812
813

314
815
816

817
318
319
820

821
322

323
824
825

326
327
828
329
830
331
332

833

*********************************************/

boolean Adafruit_FONA::sendTestMail () {
if (!sendCheckReply (F ("AT+CSMTPSSRV=\"smtp.mail.yahoo.com

\",587,2"), ok_reply)) // ==> returns OK
return false;

if (!sendCheckReply (F ("AT+CSMTPSAUTH=1, \"
joshuapidgeon@yahoo.com.aul ,\ password\ }
ok_reply)) // ==> returns OK

return false;

if (!sendCheckReply (F ("AT+CSMTPSFROM=\"
joshuapidgeon@yahoo.com.au\", \"Joshua Pidgeon\""),
ok_reply)) // ==> returns OK

return false;

if (!sendCheckReply (F ("AT+CSMIPSRCPT=0,0,\ joshua.
pidgeon@students.mg.edu.aul % «Joaik MoN Y
ok_reply)) // ==> returns OK

return false;

if (!sendCheckReply (F ("AT+CSMTPSSUB=5, \"utf-8\"\r\n\"
FONA email\""), ">")) // ==> returns OK
return false;

if (!sendCheckReply (F ("AT+CSMTPSBODY=16\r\n\"Test email
from Fona for Josh Pidgeon\""), ok_reply)) // ==
returns OK

return false;

if (!sendCheckReply (F ("AT+CSMTPSSEND"), ok_reply)) //
==> returns ok

return false;

return true;

S xxxxxrxxrx HELPERS

****'k‘k‘k‘k‘k*‘k*'k‘k*******‘k**‘k‘k‘k*‘k‘k**‘k‘k‘k**‘k*******/




162 Chapter C. Arduino Code

834 boolean Adafruit_FONA::expectReply (FONAFlashStringPtr reply
I

835 uintlé_t timeout) {

3836 readline (timeout);

837

838 DEBUG_PRINT(F ("\t<——- ")); DEBUG_PRINTLN (replybuffer);

839

840 return (prog_char_strcmp (replybuffer, (prog_char*)reply)

== By

841 }

842

843 /x*xxxxxxxx LOW LEVEL

*******k***********************************/

844

845 inline int Adafruit_FONA::available (void) {
846 return mySerial->available();

847 '}

848

849 inline size_t Adafruit_ FONA::write(uint8_t x) {
850 return mySerial->write (x);

801 }

352

853 inline int Adafruit_FONA::read(void) {

854 return mySerial->read();

855 '}

856

857 inline int Adafruit_FONA::peek(void) {

858 return mySerial->peek();

859 '}

860

861 inline void Adafruit_ FONA::flush() {
862 mySerial->flush();

863 }

864

865 void Adafruit_FONA::flushInput () {

866 // Read all available serial input to flush pending
data.

867 uintlé_t timeoutloop = 0;

868 while (timeoutloop++ < 40) {

869 while (available()) {

870 read () ;

871 timeoutlcop = 0; // If char was received reset

the timer




C.10 Modified Adafruit FONA Library CPP-File 163

872 }

873 delay (1) ;

874 1

875 '}

876

877 uintlé_t Adafruit_ FONA::readRaw(uintlé_t b) {

878 uintlé_t idx = 0;

879

880 while (b && (idx < sizeof (replybuffer)-1)) {

881 if (mySerial->available()) {

882 replybuffer[idx] = mySerial->read();

883 idx++;

884 b==;

885 }

886 }

887 replybuffer[idx] = 0;

888

889 return idx;

890 }

891

892 uint8_t Adafruit_FONA::readline(uintl6_t timeout, boolean
multiline) |

893 uintlé_t replyidx = 0;

894

895 while (timeout--) {

896 if (replyidx >= 254) {

897 //DEBUG_PRINTLN (F ("SPACE")) ;

898 break;

899 1

900

901 while (mySerial->available()) {

902 char ¢ = mySerial->read();

903 if (¢ == ’"\r’) continue;

904 if (¢ == 0xA) {

905 if (replyidx == 0) // the first 0x0A is ignored

906 continue;

907

908 if (!multiline) {

909 timeout = 0; // the second 0x0A is the

end of the line
910 break;
911 }

912 }




164 Chapter C. Arduino Code

913 replybuffer[replyidx] = c;

914 //DEBUG_PRINT (c, HEX); DEBUG_PRINT ("#");
DEBUG_PRINTLN (c) ;

915 replyidx++;

916 }

917

918 if (timeout == 0) {

019 //DEBUG_PRINTLN (F ("TIMEQUT")) ;

920 break;

921 }

922 delay (1) ;

923 }

924 replybuffer[replyidx] = 0; // null term

925 return replyidx;

926}

927

928 uint8_t Adafruit_FONA::getReply(char *send, uintlé_t

timeout) {

929 flushInput ();

930

931

932 DEBUG_PRINT (F ("\t-——> ")); DEBUG_PRINTLN (send);

933

934

935 mySerial->println (send);

936

937 uint8 t 1 = readline(timeout);

938

939 DEBUG_PRINT (F("\t<-—-- ")); DEBUG_PRINTLN (replybuffer);

940

941 return 1;

942 }

943

944 uint8_t Adafruit_FONA::getReply (FONAFlashStringPtr send,

uintlé_t timeout) {

945 flushInput () ;

946

947

948 DEBUG_PRINT(F ("\t—-——> ")); DEBUG_PRINTLN (send);

949

950

951 mySerial->println (send);

952




C.10 Modified Adafruit FONA Library CPP-File 165

953 uint8_t 1 = readline(timeout);

954

955 DEBUG_PRINT (F("\t<-—— ")); DEBUG_PRINTLN (replybuffer);

956

957 return 1;

958 '}

959

960 // Send prefix, suffix, and newline. Return response (and
also set replybuffer with response).

961 uint8_t Adafruit_FONA::getReply (FONAFlashStringPtr prefix,
char xsuffix, uintlé_t timeocut) {

962 flushInput () ;

963

964

965 DEBUG_PRINT (F ("\t——-> ")) ; DEBUG_PRINT (prefix);
DEBUG_PRINTLN (suffix);

966

967

968 mySerial->print (prefix);

969 mySerial->println (suffix);

970

971 uint8_t 1 = readline(timeout);

972

973 DEBUG_PRINT (F("\t<-—-— ")); DEBUG_PRINTLN (replybuffer);

974

975 return 1;

976}

977

978 // Send prefix, suffix, and newline. Return response (and
also set replybuffer with response).

979 uint8_t Adafruit_FONA::getReply (FONAFlashStringPtr prefix,
int32_t suffix, uintlé_t timeout)} {

980 flushInput () ;

981

982

983 DEBUG_PRINT (F ("\t---> ")); DEBUG_PRINT (prefix);
DERUG_PRINTLN (suffix, DEC);

984

985

986 mySerial->print (prefix);

987 mySerial->println(suffix, DEC);
988

989 uint8_t 1 = readline(timeout);




166 Chapter C. Arduino Code

990

991 DEBUG_PRINT (F("\t<-—-— ")); DEBUG_PRINTLN (replybuffer);

992

993 return 1;

994 }

995

996 // Send prefix, suffix, suffix2, and newline. Return
response (and also set replybuffer with response).

997 uwint8_t Adafruit_FONA::getReply (FONAFlashStringPtr prefix,
int32_t suffixl, int32_t suffix2, uintlé_t timeout) {

998 flushInput () ;

999

1000

1001 DEBUG_PRINT (F ("\t-——> ")); DEBUG_PRINT (prefix);

1002 DEBUG_PRINT (suffixl, DEC); DEBUG_PRINT(',");

DEBUG_PRINTLN (suffix2, DEC);

1003

1004

1005 mySerial->print (prefix);

1006 mySerial->print (suffixl);

1007 mySerial->print (’,’);

1008 mySerial->println(suffix2, DEC);

1009

1010 uint8 t 1 = readline (timeout);

1011

1012 DEBUG_PRINT (F("\t<-—-— ")); DEBUG_PRINTLN (replybuffer);

1013

1014 return 1;

1015 '}

1016

1017 // Send prefix, ", suffix, ", and newline. Return response
(and also set replybuffer with response).

1018 uint8_t Adafruit_FONA::getReplyQuoted (FONAFlashStringPtr
prefix, FONAFlashStringPtr suffix, uintlé6_t timeout) ({

1019 flushInput () ;

1020

1021

1022 DEBUG_PRINT(F("\t—-——> ")); DEBUG_PRINT (prefix);

1023 DEBUG_PRINT (" "’"); DEBUG_PRINT (suffix); DEBUG_PRINTLN('"")

.

r

1024
1025
1026 mySerial->print (prefix);




C.10 Modified Adafruit FONA Library CPP-File

167

1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038

1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054

1055
1056
L1057
1058

1059
1060
1061

1062
1063
1064

mySerial->print (' "’);
mySerial->print (suffix);
nySerial=>println{'"");

uint8_t 1 = readline(timeout);

DEBUG_PRINT (F("\t<-—— ")); DEBUG_PRINTLN (replybuffer);

return 1;

}

boolean Adafruit_FONA::sendCheckReply (char *send, char =*
reply, uintlé_t timeout) {

if (! getReply(send, timeout) )
return false;
/%
for (uint8_t i=0; i<strlen(replybuffer); i++) {
DEBUG_PRINT (replybuffer([i], HEX); DEBUG_PRINT(" ");
}
DEBUG_PRINTLN () ;
for (uint8_t i=0; i<strlen(reply); i++) {
DEBUG_PRINT (reply[i], HEX); DEBUG_PRINT(" ");
}
DEBUG_PRINTLN () ;
*/
return (strcmp(replybuffer, reply) == 0);
}
boolean Adafruit_FONA::sendCheckReply (FONAFlashStringPtr

send, FONAFlashStringPtr reply, uintlé6_t timeout) {
if (! getReply(send, timeout) )

return false;
return (prog_char_strcmp (replybuffer, (prog_char#*)reply)
== (};
}
boolean Adafruit_FONA::sendCheckReply (char+ send,

FONAFlashStringPtr reply, uintl6_t timeocut) {
if (! getReply(send, timeout) )
return false;

return (prog_char_strcmp(replybuffer, (prog_chars)reply)

== 0);




168 Chapter C. Arduino Code

1065 1}

1066

1067

1068 // Send prefix, suffix, and newline. Verify FONA response
matches reply parameter.

1069 boolean Adafruit_ FONA::sendCheckReply (FONAFlashStringPtr
prefix, char xsuffix, FONAFlashStringPtr reply, uintlé_t

timeout) {

1070 getReply (prefix, suffix, timeout);

1071 return (prog_char_strcmp (replybuffer, (prog_char+)reply)

== 0);

1072 }

1073

1074 // Send prefix, suffix, and newline. Verify FONA response
matches reply parameter.

1075 boolean Adafruit_FONA::sendCheckReply (FONAFlashStringPtr
prefix, int32 t suffix, FONAFlashStringPtr reply,
uintl6_t timeout) {

1076 getReply (prefix, suffix, timeout);

1077 return (prog_char_strcmp (replybuffer, (prog_char+)reply)

== 0);

1078 }

1079

1080 // Send prefix, suffix, suffix2, and newline. Verify FONA
response matches reply parameter.

1081 boolean Adafruit_FONA::sendCheckReply (FONAFlashStringPtr
prefix, int32_t suffixl, int32_t suffix2,
FONAFlashStringPtr reply, uintlé_t timeout) {

1082 getReply (prefix, suffixl, suffix2, timeout);

1083 return (prog_char_strcmp (replybuffer, (prog_chars)reply)

== 0);

1084 }

1085

1086 // Send prefix, ", suffix, ", and newline. Verify FONA
response matches reply parameter.

1087 boolean Adafruit_FONA::sendCheckReplyQuoted (

1088
1039

1090
1091

FONAFlashStringPtr prefix, FONAFlashStringPtr suffix,

FONAFlashStringPtr reply, uintlé_t timeout) {

getReplyQuoted (prefix, suffix, timeout);

return (prog_char_strcmp(replybuffer, (prog_charx)reply)
== 0);




C.10 Modified Adafruit FONA Library CPP-File

169

1092

1093 boolean Adafruit_FONA::parseReply (FONAFlashStringPtr
toreply,

1094 uintlé_t v, char divider, uint8_t index) {

1095 char *p = prog_char_strstr (replybuffer, (prog_charx)
toreply); // get the pointer to the voltage

1096 if (p == 0) return false;

1097 p+=prog_char_strlen((prog_charx)toreply);

1098 //DEBUG_PRINTLN (p) ;

1099 for (uintB8_t i=0; i<index;i++) {

1100 // dincrement dividers

1101 p = strchr(p, divider);

1102 if (!p) return false;

1103 pt+;

1104 / /DEBUG_PRINTLN (p) ;

1105

1106

1107 *v = atoi(p);

1108

1109 return true;

1110 }

1111

1112 boolean Adafruit_FONA::parseReply (FONAFlashStringPtr
toreply,

1113 char *v, char divider, uint8_t index) {

1114 uint8_t i=0;

1115 char #*p = prog_char_strstr(replybuffer, (prog_charx)
toreply) ;

1116 if (p == 0) return false;

1117 pt+=prog_char_strlen( (prog_charx)toreply);

1118

1119 for (1=0; i<index;i++) {
1120 // increment dividers
1121 p = strchr(p, divider);
1122 if (!p) return false;
1123 pt++;

1124 }

1125

1126 for (i=0; i<strlen(p);i++) {
1127 if(p[i] == divider)

1128 break;

1129 vIi] = pl[il;

1130 }




170

Chapter C. Arduino Code

1131
1132
1133
1134
1135
1156
1137

1138

1139

1140
1141

1142

1143
1144
1145

1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157

1158
1159
1160
1161
1162
1163
1164
1165
1166

v[i] = "\O";

return true;

}

// Parse a quoted string in the response fields and copy
its value (without quotes)
// to the specified character array (v). Only up to maxlen
characters are copied
// into the result buffer, so make sure to pass a large
enough buffer to handle the
// response.
boolean Adafruit_FONA::parseReplyQuoted (FONAFlashStringPtr
toreply,
char v, int maxlen, char divider, uint8_t index)
{
uint8_t i=0, 3J;
// Verify response starts with toreply.
char *p = prog_char_strstr(replybuffer, (prog_char+)
toreply);
if (p == 0) return false;
pt=prog_char_strlen((prog_char«)toreply);

// Find location of desired response field.
for (i=0; i<index;i++) {

// increment dividers

p = strchr(p, divider);

if (!p) return false;

pt++;

// Copy characters from response field into result string
for(i=0, j=0; Jj<maxlen && i<strlen(p); ++i) {
// Stop if a divier is found.
if(p[i] == divider)
break;
// Skip any quotation marks.
else if(p[i] == """)
continue;
v[jt+] = plil;




C.10 Modified Adafruit FONA Library CPP-File

1167
1168

1169
1170
1171
1172
1173
1174
1175

1176
1177
1178
1179
1180

1181
1182
1183
1184
1185
1186
1187
1188
1189
1190

1191
1192
1193
1194
1195

1196
1197
1198
1199
1200
1201
1202
1203

// Add a null terminator if result string buffer was not
filled.
if (j < maxlen)
v[i]l = "\0";
return true;
}
boolean Adafruit_FONA::sendParseReply (FONAFlashStringPtr
tosend,
FONAFlashStringPtr toreply,
uintl6é_t =*v, char divider, uint8_t index) {
getReply (tosend) ;
if (! parseReply(toreply, v, divider, index)) return
false;
readline(); // eat "OK’
return true;
}
// needed for CBC and others

boolean Adafruit_FONA_3G::sendParseReply (FONAFlashStringPtr

tosend,
FONAFlashStringPtr toreply,
float *f, char diwvider, uint8_t index) {
getReply (tosend) ;
if (! parseReply (toreply, f, divider, index)) return
false;
readline(); // eat ’'OK’
return true;
}
boolean Adafruit FONA_3G::parseReply (FONAFlashStringPtr

toreply,

171




172 Chapter C. Arduino Code

1204 float *f, char divider, uint8_t index) {

1205 char *p = prog_char_strstr(replybuffer, (prog_char*)
toreply); // get the pointer to the voltage

1206 if (p == 0) return false;

1207 p+=prog_char_strlen ((prog_char*)toreply);

1208 / /DEBUG_PRINTLN (p) ;

1209 for (uint8_t i=0; i<index;i++) {
1210 // increment dividers
1211 p = strchr(p, divider);
1212 if (!p) return false;
1213 pt+;

1214 / /DEBUG_PRINTLN (p) ;

1215

1216

1217 *f = atof (p);

1218

1219 return true;

1220 }




C.11 Redundant Camera And SD 173

C.11 Redundant Camera And SD

L

ot el d
= O W oo~

—
)

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

// Declare pins

int pFixedId = A0; // Pin for input of fixed ID

int pClearQut = Al; // Pin for output of clearance flag
int pLockQut = AZ; // Pin for output of lock flag

int pProcOut = A3; // Pin for output of processing flag
int pLockIn = A4; // Pin for input of lock flag

int pClearIn = 2; // Pin for input of clearance flag
int pProcIn = 3; // Pin for input of processing flag
int pPrimeLED = 9; // Pin for debugging LED

// Declare exclusion lock wvariables

int fixedId = 0; // Fixed ID

boolean clearance = false; // Clearance flag

boolean currPrime = false; // Current primary MCU flag
long lastClear = 0; // Time of last clearance

int extraDel = 0; // Delay of former primary in ms
boolean debug; // Stored value of debugging button input

// Declare exclusion lock variables as volatile that will
// be modified by the interrupt subroutine

// Current time taken to process

volatile long elapsedProc = 0;

// Flag to start new processing

volatile boolean newProc = false;

// Flag for returning to the start of the main loop
volatile boolean startReturn = false;

volatile boolean locked = false; // Lock flag

volatile boolean processing = false; // Processing flag

// Declare watchdog timer (WDT) components

#include <avr/wdt.h> // Include WDT library

// Flag for disabling main loop after the WDT has timed out
boolean wdtOverRide = false;

// Declare included libraries

#include <Adafruit_VvC0706.h> // Camera

#include <SPI.h> // Serial peripheral interface
#include <8D.h> // SD card

#include <SoftwareSerial.h> // Additional serial port

// Declare new serial ports for camera, (RX, TX)




174

Chapter C. Arduino Code

42
43
44
45
46
47
48
49
50
51
52

O S Lo At O Cn QN
= o O e =S O e W

I~~~ D
OG0 =1 U W= O W00 =] U = WD

80
31
32
33
84

SoftwareSerial cameraconnection = SoftwareSerial(7, 8);
// Declare camera object
Adafruit_VC0706 cam = Adafruit_VCO0706 (&cameraconnection);

// Declare other pins
int pChipSelect = 10; // Pin for SD chip select
int pButton = 7; // Pin for camera trigger button

// Declare system function variables

File imgFile; // Variable for image storage transfer
bool buttonPressed = false; // Variable button result
int maxProc = 8000; // Maximum processing time in ms

void setup () {
// Initialise pins
pinMode (pFixedId, INPUT); // Input of fixed ID voltage
pinMode (pClearOut, OUTPUT); // Output of clearance flag
pinMcde (pLockOut, OUTPUT); // Output of lock flag
pinMode (pProcOut, OUTPUT); // Output of processing flag
pinMode (pLockIn, INPUT); // Input of lock flag
pinMode (pClearIn, INPUT); // Input of clearance flag
pinMode (pProcIn, INPUT); // Input of processing flag
pinMode (pPrimeLED, OUTPUT); // Output of primary flag LED
// Map fixed ID input voltage to integer wvalue
fixedId = int (round(analogRead(pFixedId) * 3.0 / 1024));
// Attach clearance/trigger interrupt subroutine (ISR)
// to digital pin 2, interrupt 0
attachInterrupt (0, clear_ISR, CHANGE);
watchdogSetup (); // Initialise WDT

// Initialise camera & SD pins
pinMode (pChipSelect, OUTPUT); // $S on Uno, etc.

// Initialise serial connection with computer
Serial.begin (9600) ;

// Notify of start of testing camera system
Serial.println("VC0706 Camera test");

// Test SD card cocnnection

if (SD.begin(pChipSelect)) {
Serial.println("Card found");

} else {




C.11 Redundant Camera And SD 175

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

}

Serial.println("Card not found");
return; // Abandon attempt

wdt_reset (); // Reset WDT

// Test camera connection

if (cam.begin()) {
Serial.println("Camera found");
} else {

Serijial.println("Camera not found");
return; // Abandon attempt

}

wdt_reset (); // Reset WDT

// Select desired image size
//cam.setImageSize (VC0706_640x480); // Biggest
cam.setImageSize (VC0706_320x240); // Medium
//cam.setImageSize (VC0706_160x120); // Small

// Initialise trigger button input
pinMode (pButton, INPUT);

// ISR for clearance flag
void clear_ISR() {

// Calculate time elapsed since last effective clearance

elapsedProc = millis() - lastClear;

locked = digitalRead(pLockIn); // Read lock flag

// Read processing flag

processing = digitalRead (pProclIn);

if (currPrime && elapsedProc > maxProc) {
// 1If currently processing but longer than expected
newProc = true; // Set flag of new process
startReturn = true;
digitalWrite (pLockQut, false); // Clear lock flag

} else if (processing && !locked) ({
// Else if currently processing with clear lock flag
newProc = true; // Set flag of new process
// Set flag to return to start of main loop
startReturn = true;

} else if (processing && elapsedProc < maxProc) {
// Else if currently processing within expected time




176 Chapter C. Arduino Code
128 ; // Don’t change

129 newProc = false; // Clear flag of new process

130 } else if (currPrime) { // Else if current primary

131 // Else if currently the primary MCU

132 newProc = true; // Set flag of new process

133 // Set flag to return to start of main loop

134 startReturn = true;

135 digitalWrite (pLockOut, false); // Clear lock flag

136 } else {

137 newProc = true; // Set flag of new process

138 // Set flag to return to start of main loop

139 startReturn = true;

140 }

141 // Perform new process section in loop to avoid having
142 // delays in the interrupt subroutine.

143 '}

144

145

146 wvoid loop() {

147 // 1f WDT override flag is set, disable function of

148 // main loop

149 if (wdtOverRide)

150 delay(10); // Brief delay

151 if (currPrime) { // If currently the prime,

152 // If currently the prime, prompt a possible primary
153 // reassignment

154 digitalWrite (pClearOut, true); // Set clearance flag
155 }

156 if (processing) {

157 // If the processing flag is set, maintain flag to
158 // hand over to next available MCU

159 digitalWrite (pProcOut, true); // Set processing flag
160 }

161 digitalWrite (pClearOut, false); // Clear clearance flag
162 // Return to main loop start, to prevent interference
163 // with main system function

164 return;

165 }

166 // Clear flag to return to start of main loop

167 startReturn = false;

168 if (newProc) {

169 // 1f new process, assign/reassign primary priority
170 newProc = false; // Clear new process flag




C.11 Redundant Camera And SD 177

171

172 if (currPrime) { // If current primary

173 // Delay 100ms due to being previous primary

174 extraDel = 100;

175 currPrime = false; // Clear current primary flag
176 } else { // Otherwise

177 // Delay Oms due to not being previous primary

178 extraDel = 0;

179 }

180

181 digitalWrite (pProcOut, true); // set processing flag
182 delay (extraDel); // Wait for any offset delay

183 // Delay by a scalar of fixed ID, reduced by 1 to
184 // prevent unnecessary delays

185 delay((fixedId - 1) = 30);

186 // Record time of start of processing

187 lastClear = millis();

188 locked = digitalRead (pLockIn); // Read lock flag

189 if (!locked) { // If not locked, take on primary role
190 digitalWrite (pLockOut, true); // Set lock flag

191 locked = true; // Set internal lock flag

192 currPrime = true; // Set current primary flag

193 } else { // If locked already, remain as non-primary
194 // Clear processing flag

195 digitalWrite (pProcOut, false);

196 1

197 }

198

199

200 // Update elapsed time since last effective clearance

201 elapsedProc = millis() - lastClear;
202 locked = digitalRead(pLockIn); // Read lock flag
203 // Read processing flag

204 processing = digitalRead (pProcln);
205

206 // Serial.print (fixedId);

207 £ f Serialwprint (FNE");

208 // Serial.print (locked);

209 // Serial.print (processing);

210 // Serial.print (currPrime);

211 £ Serial.print('\t’);

212 // Serial.print (lapsedProc);

213 // Serial.print("\t’);




178 Chapter C. Arduino Code

214 // Serial.println(startReturn);
215 // delay(10);
216 wdt_reset (); // Reset WDT

217

218

219 if (!startReturn) { // If not restarting main loop
220 if (currPrime) { // If current primary flagged
221 digitalWrite (pPrimelLED, HIGH); // Set debug pin
222

223

224 if (cam.takePicture()) {

225 Serial.println("Image captured on camera");
226 } else {

227 Serial.println("Image not captured");

228 }

229 wdt_reset (); // Reset WDT

230

231 // Create unique image file name on SD card
232 char filename[13];

253 strcpy(filename, "IMGQO0O0O.JPG");

234 for (int i = 0; i < 1000; i++) {

235 filename[4] = 0’ + i / 100;

236 filename[5] = "0’ + (i % 100) / 10;

237 filename[6] = "0’ + (i1 % 100) % 10;

238 // Create if does not exist, do not open existing,
239 // write, sync after write

240 if (! SD.exists(filename)) {

241 break;

242 }

243 }

244 Serial.println(filename);

245 wdt_reset (); // Reset WDT

246

247 // Initialise new image file on SD card

248 imgFile = SD.open(filename, FILE_WRITE) ;

249

250 // Identify size of image to be saved

251 uintlé_t jpglen = cam.framelength();

252 // While image still has untransfered data
253 while (jpglen > 0) {

254 // Read 32 bytes at a time;

2565 uint8_t bytesToRead = min (32, jpglen);

256 // Prepare buffer of received data




C.11 Redundant Camera And SD 179

257
258
259
260
261
262
263
2064
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

uint8_t xbuffer = cam.readPicture (bytesToRead);
// Write received data from buffer to file on card
imgFile.write(buffer, bytesToRead);
// Deduct size of written data from data remainder
jpglen —= bytesToRead;
wdt_reset (); // Reset WDT
}
// Close image file
imgFile.close();
// Notify operator of conclusion
Serial.println("...Done!");
// Set camera back into video mode, to clear captured
// image from camera memory, ready for next image
cam.resumeVideo () ;

// If function concluded later than half the expected
// time, clear all flags
// Also include check for return to start flag
if (elapsedProc > int (.5 x maxProc) && !startReturn)
digitalWrite (pLockOut, false); // Clear lock flag
// Clear processing flag
digitalWrite (pProcOut, false);
currPrime = false; // Clear current primary flag
} else if (!startReturn) {
// Check for return to start flag
digitalWrite (pLockOut, false); // Clear lock flag
// Set clearance flag
digitalWrite (pClearOut, true);
// Clear clearance flag
digitalWrite (pClearQut, false);
}
else { // Else, if current primary not flagged
digitalWrite (pPrimeLED, LOW); // Clear debug pin
digitalWrite (pLockOut, false); // Clear lock flag
// Clear processing flag
digitalWrite (pProcOut, false);
// If elapsed time is greater than expected
// Also include check for return to start flag
if (elapsedProc > maxProc && !startReturn) |{
// Read processing flag
processing = digitalRead({pProclIn);
if (processing && !startReturn) {
// 1f processing flag is still set




180 Chapter C. Arduino Code
300 // Also include check for return to start flag
301 // Set clearance flag for reassignment of primary
302 1Y Priority

303 digitalWrite (pClearOut, true);

304 // Immediately clear clearance flag

305 digitalWrite (pClearOut, false);

306 }

307 }

308 }

309 }

310 }

311

312 void watchdogSetup(void) { // Initialise WDT configuration
313 cli(); // Disable all interrupts

314 wdt_reset (); // Reset the WDT

315 WDTCSR |= B00011000; // Enter WDT configuration mode

316 // Set WDT settings to activate closing ISR,

317 // activate WDT, and set a timeout of 250ms

318 WDTCSR = B01001100; // Write configuration to WDT

319 sei(); // Enable interrupts

320}

321

322 ISR(WDT_vect) { // Watchdog timer ISR

323 startReturn = true; // Set return to start flag

324 wdtOverRide = true; // Set flag to disable main loop

325 digitalWrite (pLockOut, false); // Clear lock flag

326

}




Bibliography

1

M. H. Kim, S. Lee, and K. C. Lee, “Experimental performance evaluation of smoothing

predictive redundancy using embedded microcontroller unit,” IEEE Transactions on
Industrial Electronics, vol. 58, no. 3, pp. 784-791, March 2011.

S. Tavallaei, J. Autor, A. Vu, and J. Lacombe, “Computer system comprising a
method and apparatus for periodic testing of redundant devices,” Nov. 10 1998, uS
Patent 5,834,856. [Online]. Available: https://www.google.com/patents/US5834856

C.-S. Yoon and W.-P. Hong, “Design of network-based induction motors fault diagnosis
system using redundant dsp microcontroller with integrated can module,” Journal of
the Korean Institute of Illuminating and Electrical Installation Engineers, vol. 19,
no. 5, pp. 80-86, July 2005.

T. Kifuku, K. Tsutsumi, and C. Fujimoto, “Electric power steering apparatus,”
Feb. 3 2004, uS Patent 6,687,590. [Online]. Available: https://www.google.com/
patents/US6687590

D. A. Rennels, D. W. Caldwell, R. Hwang, and M. Mesarina, “A fault-tolerant embed-

ded microcontroller testbed,” in Proceedings Pacific Rim International Symposium on
Fault-Tolerant Systems, Dec 1997, pp. T-14.

K. Dickson and W. Stonehouse, “Method for operating redundant master i/o
controllers,” Jul. 1 1997, uS Patent 5,644,700. [Online]. Available:  https:
/ /www.google.com/patents/US5644700

D. A. Rennels and R. Hwang, “Recovery in fault-tolerant distributed microcon-
trollers,” in 2001 International Conference on Dependable Systems and Networks, July
2001, pp. 475-480.

Atmel, “Atmega328/P 8-bit AVR microcontrollers.” Datasheet, Nov. 2016.

SIMCom, “A T Command Set: SIM5320." Datasheet, Feb. 2016.

181




	ExtensionGranted
	by Joshua Pidgeon


