
 
 

  

Seasonal Forecasting of Tropical Cyclone 
Formation in the Australian Region 

 
Angelika Werner 

Dipl. Met. 
 
 

A thesis submitted in fulfilment 
 of the requirements for the degree of  

Doctor of Philosophy (Ph.D) 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 

 
Department of Environment and Geography 

Faculty of Science 
Macquarie University 

Sydney, Australia 
 

May 2011 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
“I've lived in good climate,  
and it bores the hell out of me.  
I like weather rather than climate.”  
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ABSTRACT 

The hazard of tropical cyclones (TCs) is a very relevant topic to the Australian economy 
and to the welfare of its northern population. Australia’s climate and the interannual 
variability of Australian region TC formation (genesis; TCG) is strongly dominated by 
the ocean-atmosphere interannual climate pattern El Niño-Southern Oscillation (ENSO) 
and to a lesser extent by other climate modes of variability. This thesis investigates new 
ways of seasonal forecasting Australian region TCG counts and distribution by 
identifying potentially skilful climatological predictors and applying more advanced 
statistical modelling methods than previous models for the region. 

 
ENSO is known to be the most important predictor of seasonal variations in TCG for the 
Australian region. To investigate the ENSO-independent effects of the Indian Ocean 
Dipole (IOD) on Australian TCG, a simple, but effective method has been developed to 
separate the IOD from ENSO. Results demonstrate, that there is reasonable individual 
forecast skill afforded by the influence of the isolated IOD. In combination with common 
ENSO metrics, however, the IOD does not significantly improve seasonal forecasting of 
seasonal TCG counts in the Australian region or subregions.  
 
A Poisson regression model using Bayesian inference and the Markov chain Monte Carlo 
(MCMC) method was developed to forecast seasonal TCG counts in the Australian 
region. The final three-predictor model based on derived indices of subtropical Central 
Pacific June-July-August average convective available potential energy (CAPE), the 
tropical northeast Pacific May-June-July average meridional winds at 850 hPa (v850) and 
subtropical central South Pacific June-July-August geopotential height at 500 hPa 
performs best with the corresponding correlation coefficient between observed annual 
TCG totals and cross-validated model hindcasts of r = 0.73 over the 40-year record 
between 1968/89-2007/08. The model is adaptable for hindcasting seasonal TCG totals in 
Australia’s Eastern (Coral Sea) TC subregion, while it lacks skill in the Western (eastern 
Indian Ocean) TC subregion (r = 0.79 and r = 0.38 respectively). To improve forecasts of 
annual TCG counts in the Western region (90°-135°E), a separate model was developed 
with correlations between cross-validated hindcasts and observed annual TCG count of r 
= 0.67 using the June-July-August tropical Central Pacific sea level pressure (SLP) and 
the above used index of v850 as predictors. 
 
A logistic regression approach applied in the Bayesian seasonal forecast model was found 
to be successful in forecasting spatial probabilities of Australian region TCG on a 2.5° x 
2.5° grid for the upcoming season. The most skilful model is based on the SLP, NINO4 
and v850 indices, combined with spatial information from CAPE and shows an average 
improvement over the climatological average of 25%. The average distribution of TCG 
probabilities over the study period, as well as the hindcasted strong variations of 
probabilities and distribution of TCG during ENSO events match remarkably well against 
observations over most of the study domain. 
 
Results demonstrate that the combination of dynamic with synoptic and/or 
thermodynamic features is most useful to identify climatic influences on the seasonal 
frequency and spatial distribution of TC development in the Australian region. 
Independent forecasts using the three introduced models and comparisons with current 
operational models demonstrate the relatively high skill of the models presented in this 
thesis. 
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I INTRODUCTION AND METHODOLOGY 

1 INTRODUCTION 

The hazard of tropical cyclones (TCs) affecting the Australian region is a topic 

of considerable importance to the Australian economy and to the welfare of its 

northern populations. TCs are one of the most devastating natural disasters affecting 

Australia every year. With winds of up to 200-300 kmh-1, accompanying storm surges 

and severe rainfall, severe damage and loss of life are expected. In the most recent 

2010/11 tropical cyclone season, the Queensland coast was crossed by a number of 

TCs, with two storms causing severe economic loss. In December 2010, TC Tasha 

and its remnants caused widespread flooding, which marked the beginning of the now 

well-known Queensland floods of 2011. On February 2nd 2011, TC Yasi made 

landfall just south of Innisfail on Australia’s northeast coast as a Category 5 tropical 

cyclone, producing wind gusts as high as 300 kmh-1 and an accompanying storm 

surge of 3 m and more. The fact that there was no loss of life was due to a remarkably 

impressive model performance of the track and intensity forecasts, and a good 

preparedness and early action by authorities regarding the hazard. However, despite 

the model performance of this single event being particularly impressive, seasonal 

forecasts of tropical cyclone numbers for the Australian region in the upcoming 

season have considerable room for improvement. For the most recent Australian TC 

season, 2010/11, the Australian Bureau of Meteorology (BoM) forecast 20-22 TCs for 

the Australian TC region (0°-30°S and 90°-160°E) due to the very strong La Niña 

conditions (http://www.bom.gov.au/climate/ahead/tc.shtml) evident and developing at 

the time. The actual observed number of TCs originating in, or moving into the 

Australian region, turned out to be 11 which fell well short of the BoM forecast total, 

and was only slightly above the climatological average.  

Australia’s climate is strongly affected by the ocean-atmosphere interannual 

climate pattern El Niño-Southern Oscillation (ENSO). ENSO modulates the climate 

in the tropical and subtropical Pacific Ocean regions, but also shows strong climatic 

connections with the Indian Ocean region. Most previous research on Australian 
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region TCs have concentrated on tropical cyclone relationships with classical ENSO 

indices and therefore seasonal TC forecast models in the Australian region are mostly 

limited to the potential forecast skill of common ENSO-measures. Large-scale ENSO-

related changes to the climatic environment have been mostly neglected regarding the 

possible effects on Australian region TCs. Further, the possible Indian Ocean effects 

on Australian region TCs has not previously been investigated in any comprehensive 

way.  

 

The key aims of this thesis are: 

1. to improve our understanding of Australian region TC formation (genesis: 

TCG) and the relationship with large-scale climate variables; 

2. to investigate the importance of ENSO-independent variables on TCG, 

specifically the role of the ENSO-independent Indian Ocean Dipole; and 

3. to build statistical forecasting models that improve seasonal forecast skill 

of TCG for the Australian region, both in terms of annual counts and 

spatial probabilistic estimates. 

 

These aims set the scene for the project to build a set of statistical seasonal 

forecast models for the number of TCs expected to form in the Australian region and 

subregions in the upcoming season, but also the spatial distribution where TCs are 

likely to form. The project aims to build tools that substantially improve upon 

previous and existing operational forecast models, so that vulnerable populations 

might better prepare for tropical cyclone risks in the upcoming season(s). 
Chapter 1 is structured into four sections. Section 1 addresses the leading 

atmospheric and oceanic modes in the Indo-Pacific region and their large-scale effects 

on the climatology of the Australian region. Section 2 describes the physical 

mechanisms of a tropical cyclone and the necessary conditions for development. 

Section 2 also provides a statistical overview of TCs in the Australian region. Section 

3 gives a history of statistical seasonal forecasting and Section 4 presents the 

objectives and structure of the thesis.  
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1.1 Interannual Ocean-Atmosphere Modes in the Tropical Indo-Pacific 

Region  

Australia’s tropical climate is dominated by two large-scale interannual climate 

modes: ENSO in the Pacific basin and Indian Ocean Dipole (IOD) in the Indian 

Ocean (e.g., Philander 1990; Saji et al. 1999; Webster et al. 1999). The dominant 

mode of monthly SSTA (1979-2004) in the tropical Pacific (30°N-30°S, 110°E-

70°W) explains 45% of the tropical Pacific SSTA variance, and identifies the classic 

canonical (cold tongue) El Niño pattern (Ashok et al. 2007). In the Indian Ocean, 30% 

of the total SST variability can be attributed to ENSO, while the IOD explains around 

12 %. (Saji et al. 1999) These modes and their effects on the Australian climate have 

been the subject of numerous studies (e.g., Cai et al. 2001; Ashok et al. 2003; Meyers 

et al. 2007; Ramsay et al. 2008; Hendon et al. 2009; Ummenhofer et al. 2009). 

Importantly, rainfall variability in Australia is shown to be associated with the IOD 

almost as significantly as with ENSO (Saji and Yamagata 2003). Nevertheless, there 

remains much ongoing debate over the extent to which the IOD is indeed a unique 

‘mode’ of the climate system and hence whether it is therefore really independent of 

ENSO (e.g., Saji et al. 1999; Allan et al. 2001; Meyers et al. 2007; Risbey et al. 

2009). In the following both of these large-scale ocean-atmosphere signals, ENSO 

and IOD, and their interannual modulation of the large-scale tropical and subtropical 

atmosphere and the effects on the Australian climate are discussed. As this study 

focuses on seasonal variations, intra-seasonal signals, such as the Madden-Julian-

Oscillation are not further investigated. 

 

1.1.1 The El Niño-Southern Oscillation 

ENSO is the most important ocean-atmosphere phenomenon in the Pacific and 

affects the large-scale climate all over the globe (e.g., Philander 1985, 1990, 1991; 

Lau 1985; Cane et al. 1986; Ropelewski and Halpert 1986; Allan 1988). Its effects, 

particularly on precipitation distribution, and also on tropical cyclones, are felt in 

many regions, particularly in Central and South America, South Asia and Australia. 
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The normal conditions in the tropical Pacific can be described by an extended 

warm pool area with a deep thermocline (around 200m) in the western equatorial 

Pacific and a cold dipole extending zonally from the tropical western into the central 

Pacific. The reason for this (around 6°C colder) ‘cold tongue’ is a shallow 

thermocline in the western tropical Pacific allowing upwelling of cold deep water. 

Due to this ocean temperature dipole, a low pressure system and convection occurs in 

the West Pacific warm pool region and a high pressure system and subsidence at the 

eastern rim of the tropical Pacific. These pressure systems form a closed circulation, 

called the Walker circulation – or the Southern Oscillation. The induced surface-near 

trade winds further enhance the SST dipole by piling up water in the tropical West 

Pacific and further pushing down the thermocline in that region (Philander 1990). 

The mechanism of ENSO can be traced back to a positive feedback on an initial 

perturbation at the equatorial thermocline (Bjerknes 1969). The equatorial SST dipole 

in the Pacific initiates zonal easterly trade winds towards the tropical Western Pacific 

warm pool. This enables a further enhancement of the SST dipole, as the slope in the 

tropical thermocline increases, allowing more upwelling of cold water in the East 

Pacific and establishes at the same time the warm pool in the Western Pacific. How 

strong this Bjerknes feedback between ocean and atmosphere in the normal 

climatological conditions or in the ENSO phases is therefore strongly dependent on 

the structure of the tropical thermocline. Applying the Bjerknes feedback theory to 

explain an El Niño event, consider a warm perturbation in the equatorial East Pacific. 

The resulting reduction in SST gradient between the Pacific SST dipoles leads to a 

weakening of the pressure gradient induced by the SSTs and therefore a weakening of 

Figure 1.1 A schematic diagram showing 
spatial distributions of surface wind 
stress, sea surface temperature, and heat 
storage at peak phases of El Niño and La 
Niña. The arrows indicate wind 
anomalies during El Niño. They depress 
the thermocline in the east where sea 
surface temperature anomalies are large. 
In the west they elevate the thermocline 
primarily off the equator, in the areas 
indicated by the contours, because of 
their curl (Philander 1991). 
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the easterly trade winds and a flattening of the thermocline slope. This mechanism 

eventually ends with a complete breakdown of the Walker circulation and an 

interruption of the deepwater upwelling in the Eastern Pacific leading to El Niño 

conditions. Accordingly a La Niña event is induced with a cold source perturbation in 

the equatorial East Pacific. A resulting enhancement of the SSTA gradient and 

subsequently a stronger pressure gradient enforces the easterly trade winds. Figure 1.1 

shows an idealized schematic of the interaction between the thermocline and the 

induced wind stress leading to El Niño and La Niña conditions (Philander 1991). 

Various studies have shown the interannual nature of the ENSO signal, in the 

range of 2-8 years. The duration of a single ENSO event is 1.5-2 years (Rasmusson 

1984; Wright et al. 1985) and tends to oscillate with the seasonal cycle (Philander, 

1985). An event can first be recognized during late austral spring as SST anomaly in 

the tropical Southwest Pacific regions (Nicholls 1984a,b, 1985b). Figure 1.2 shows 

the two leading empirical orthogonal functions (EOFs) of monthly SSTs over 1979-

2004. While the first EOF clearly reveals the classical ENSO pattern with the 

equatorial cold-tongue and out-of–phase off-equatorial boomerang (Rasmusson and 

Carpenter 1982) explaining 45% of the total monthly SST anomalies, the second EOF 

shows the El Niño Modoki pattern (Ashok et al. 2007) which accounts for 12% of the 

total SST variations. This pattern is associated with an anomalous SST in the tropical 

central Pacific with a horse-shoe-shaped extension into higher latitudes, while the 

eastern and western equatorial Pacific have the same sign, but out-of-phase with the 

central Pacific anomaly. In this study, we want to focus on the classical ENSO 

pattern, due to its known strong impact on the Australian climate, which will be 

reviewed below. 

Figure 1.2 Top two EOF modes of tropical Pacific SSTA (1979-2004) 
multiplied by respective standard deviations of the principal components; units 
in °C (Ashok et al. 2007). 
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Many classical ENSO indices describe the signal based on the sea level pressure 

(SLP) or SST anomalies (SSTA) responsible for the large-scale changes in the 

climatology due to ENSO. The classical index used in many older studies is the 

Southern Oscillation Index (SOI), which is defined as the pressure gradient between 

Darwin in Australia and Tahiti and was already recognized by Sir Gilbert Walker in 

the early 20th century. Recent studies prefer to use SST indices, as the ocean is 

considered the physical driver of ENSO. Figure 1.3 shows the locations of the SSTA 

indices NINO 1+2 (0°-10°S, 80°-90°W), as the region where it is first recognized if 

the upwelling process is interrupted, NINO 3 (5°S-5°N; 150°-90°W) as the usual 

location of the East pacific cold tongue and the more central to central East Pacific 

indices NINO 3.4 (5°S-5°N; 170°-120°W) and NINO4 (5°S-5°N; 160°E-150°W). 

Another SSTA measure is the larger cold tongue index defined from 6°N-6°S; 180°-

90°W. There are also various newer ENSO indices based on different climate 

variables such as zonal wind components (trade wind index) or outgoing longwave 

radiation (ORL). 

There are various studies looking into the large-scale modulation of the 

atmosphere as a result of ENSO on different time-scales (e.g., van Loon and Shea 

1985, 1987; Karoly 1989; Drosdowsky and Williams 1991; Zhang et al. 1997; 

Garreaud and Battisti 1999; Seager et al. 2003; Lu et al. 2008). As this thesis focuses 

on seasonal forecasting, we focus henceforth on the inter-annual ENSO variations. 

Seager et al. (2003) showed an El Niño-accompanied consistent warming of the 

tropical atmosphere as a result of the anomalous ocean-atmosphere heat flux from 

 

Figure 1.3 Location of prominent SSTA ENSO indices 
(http://iri.columbia.edu/climate/ENSO/background/monitoring.html). 
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increased SSTs. Poleward from the tropics, between 25° and 40° in the Northern 

Hemisphere (NH) and 35° and 50° in the Southern Hemisphere (SH) an eddy-driven 

upward motion cools the troposphere in a boomerang-shape around the central Pacific 

(Lu et al. 2008). Also during El Niño conditions the Hadley circulation is more 

compressed and intensified, resulting in an equatorward shift of the strengthened 

Subtropical Jets. The change in the quasi-barotropic zonal winds poleward of 20°N 

and 30°S can be traced back to a feedback mechanism (Robinson 2002; Seager et al. 

2003). Gaurreaud and Battisti (1999) investigated the interannual effects of ENSO on 

climate variables. A 6-year high-pass filter was applied to the cold tongue index to 

filter out all possible interdecadal variations (CT*). Spatial fields of climate variables 

were then regressed on the CT* time series (Figure 1.4). The regressed SST field 

(Figure 1.4a) reveals the above shown (see Figure 1.2) classical ENSO SSTA-tongue 

pattern with the boomerang shaped out-of-phase SSTAs in the central Pacific centred 

around 30 degrees. In the Indian Ocean an extended anomaly of the same sign as the 

cold-tongue is associated with the ENSO. The regressed surface winds (Figure 1.4b) 

show the change in trade winds along the equator, but also the increased meridional 

inflow in the central and East Pacific from the Northern Hemisphere during warm 

events. Also strong anomalies can be seen along the East Australian Current with an 

increased surface inflow in the central and west Pacific from the Southern 

Hemisphere. In the midlatitudes, the strongest anomalies can be seen in both 

hemispheres around the subtropical highs. ENSO related surface wind anomalies in 

the other ocean basins appear marginal. The SLP pattern shows the strong dipole 

between the tropical and subtropical East Pacific with the other pole extending from 

the tropical and subtropical West Pacific across the Australian continent into the 

Western Indian Ocean. In the mid-latitudes we find the dominant patterns centred 

around 60°S with a barotropic character. During El Niño, this pressure anomaly 

blocks the westerly flow in conjunction with the weakening of the Subtropical High 

(Figure 1.4c; Garreaud and Battisti 1999). Another salient characteristic during an El 

Niño can be observed in the 500 hPa geopotential height anomalies. A midlatitude 

trough with an accompanying poleward high pattern in the geopotential height field 

(Figure 1.5) has been intensively discussed in the literature (e.g., van Loon and Shea, 

1985; Garreaud and Battisti 1999; Lu et al. 2008). In the Southern Hemisphere, this 

trough is located east of New Zealand. The pattern is strongest in austral winter and  
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autumn and fades towards summer. It was found that during La Niña-like conditions, 

these midlatitude anomalies are positive with a lesser-pronounced negative summer-

anomaly during an El Niño-like state (Garreaud and Battisti 1999). 

ENSO affects synoptic conditions in the Australian region in numerous ways. 

Evans and Allan (1992) found that during El Niño the Australian monsoon trough 

displaced equatorward with a convection maximum northwest of Australia. During La 

Niña, the monsoon trough is stronger and more coherent while monsoonal activity 

over northern Australia is enhanced. Simultaneously, an equatorial convergence zone 

is active over the Southeast Asian region, which during El Niño, is located over the 

West Pacific. The impact of ENSO on Australian precipitation has long been known 

(e.g., Nicholls 1979a, 1984a,b; Streten 1981, 1983; Wright 1984; Meehl 1987; 

Hackert and Hastenrath 1987). Pittock (1975) was the first to find strong correlations 

Figure 1.4 Global reanalyzed fields regressed upon CT*. (top) Sea surface 
temperature (SST). Contour interval is 0.1 K per standard deviation of CT* (std 
dev)-1. The zero contour is omitted and negative contours are dashed. (middle) 
Surface winds. The reference vector is 1.5 m s-1 (std dev)-1. (bottom) Sea level 
pressure (SLP). Contour interval is 0.25 hPa (std dev)-1. The zero contour is 
omitted and negative contours are dashed. Regressions are based on all calendar 
months, from Jan 1958 to Dec 1993 (Garreaud and Battisti 1999). 
 

Figure 1.5 DJF 500 hPa geopotential height field (m) for El Niño–La Niña 
composite. The right side panel is the zonal mean of the corresponding field (Lu 
et al. 2008). 
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between SOI and precipitation in North and East Australia. Later, McBride and 

Nicholls (1983) investigated lagged correlations between Australian rainfall and SOI 

and demonstrated that the most persistent and strong correlations were to be found 

during winter and spring. Nicholls (1984c) stipulated that SST anomalies north of 

Australia were highly correlated with both ENSO and East Australian rainfall. From 

very early on, the importance of ENSO for Australian precipitation rate and 

distribution was understood to be related to the seasonal changes to the tropical 

Pacific Warm Pool and associated changes in ocean-atmosphere coupling over 

Australasia (e.g., Nicholls 1984a,b; Hackert and Hastenrath 1986). Additionally, the 

temperature variations over Australia were shown to be strongly related to ENSO 

(e.g., Coughlan 1979; Kiladis and Diaz 1989; Jones 1991; Halpert and Ropelewski 

1992; Lough 1995; Jones 1999) with El Niño conditions leading to higher than 

normal temperatures and La Niña conditions to negative anomalies. However, there is 

a well-known covariability of rainfall and surface temperature with a negative 

relationship between rainfall and maximum temperatures (Deacon 1953; Jones 1991; 

Lough 1995; Nicholls et al. 1997; Power et al. 1998; Jones 1999). Model results link 

this relationship to local changes in the latent heat flux and changes in the radiation 

budget (Simmonds and Lynch 1992; Watterson 1997; Power et al. 1998). 

 

1.1.2 The Indian Ocean Dipole  

In the Indian Ocean a basin-scale internal variability exists with anomalously 

low sea surface temperatures off Sumatra and high sea surface temperatures in the 

western Indian Ocean, known as the Indian Ocean Dipole IOD (Saji et al. 1999, 

Webster et al. 1999). An IOD event is accompanied by large-scale wind, moisture 

transport and precipitation anomalies (Saji et al. 1999, Ummenhofer et al. 2009). The 

SST mode and its evolution from early austral winter to early austral summer is 

shown in Figure 1.6. The dipole intensifies rapidly over the austral summer and 

usually peaks around September/October with a short phase of rapid decaying 

thereafter (Yamagata et al. 2004). The dipole behaviour is so robust that an SST 

gradient index can be built between a western pole (50°-70°E, 10°N-10°S) and an 

eastern pole (90°E-110°E, 0-10°S). This index is highly correlated (>0.7) with the 2nd 

EOF in the Indian Ocean, which accounts for 12% of the SST variations (Saji et al. 
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1999).  A positive dipole event is when anomalously cool SSTs occur in the eastern 

pole, while the western pole appears anomalous warm. The zonal equatorial winds in 

the eastern and central Indian Ocean are highly correlated with the SSTA pattern and 

correspond to easterlies during the positive IOD event, blowing from cooler to 

warmer waters. There is some co-occurrence with ENSO events observed with 

positive IOD events tending to occur during the same year as El Niño and negative 

IOD events during La Niña years (Yamagata et al. 2004). 

Normally, in the Indian Ocean basin, southeast trade winds converge into the 

South equatorial trough and cause high precipitation in the Southeast Asian region. In 

Figure 1.7 composites of 6 positive events are presented: 1961, 1967, 1972, 1982, 

1994 and 1997. In the early austral summer, the first cold SST anomalies in the 

tropical East Pacific can be observed with the convection in that area weakening. This 

leads to a higher surface pressure and a subsequent extension and shift of the 

southeast trade winds. During the austral winter the cold anomalies intensify and 

extend towards the equator and further westward so that more moisture is transported 

to the downstream end of the trade winds. At the same time the western Indian Ocean 

develops anomalous warm SSTs around the equator and zonal easterly winds pick up. 

Figure 1.6 A composite dipole mode event. a-d) Evolution of composite SST 
and surface wind anomalies from May-June a) to Nov-Dec. The statistical 
significance of the analysed anomalies were estimated by the two tailed t-test. 
Anomalies of SSTs and winds exceeding 90% significance are indicated by 
shading and bold arrows, respectively (Saji et al. 1999). 
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Rapid decay of the signal begins after the peak of the mode around 

September/October, (Saji et al. 1999). It has been shown that upwelling in the Java–

Sumatra region is an essential controlling factor in the growth of IOD anomalies 

(Meyers et al. 2007). Prior to this, the thermocline experiences large vertical 

displacements beneath both poles of the dipole, and the displacements are correlated 

to the local SST anomalies (Rao et al. 2002; Xie et al. 2002; Feng and Meyers 2003).  

There is much debate over the extent to which the Indian Ocean Dipole mode, is 

independent of ENSO (e.g., Saji et al. 1999; Allan et al. 2001; Ashok et al. 2003; 

Meyers et al. 2007; Risbey et al. 2009). Webster et al. (1999) initially showed that 

both signals appear to be independent despite the strong positive IOD event in 

1997/98 co-occurring with a strong El Niño in that year. To investigate the 

dependency of IOD on ENSO, various studies have explored methods to separate the 

pure IOD mode from ENSO, or otherwise investigated the effect of the IOD on key 

climate variables over Australia such as precipitation and temperature (e.g., Ashok et 

al. 2003; Saji et al. 2005; Meyers et al. 2007; Risbey et al. 2009; Ummenhofer et al. 

2009). For example, Meyers et al. (2007) applied a lagged empirical orthogonal 

function (EOF) analysis to remove the direct or lagged effects of ENSO from the 

IOD. This approach has since been applied in other studies (Risbey et al. 2009; 

Ummenhofer et al. 2009), although it only removes ENSO at a single lag from the 

IOD. Table 1.1 shows recent IOD and ENSO events as classified by Meyers et al. 

(2007). An ENSO year is defined as exceeding one standard deviation for two or 

more consecutive months between and including June and February of the following 

year from the derived lagged ENSO EOF time series. A year is classified as an IOD 

year if the time series derived by Meyers et al. (2007) exceeds one standard deviation 

for two or more consecutive months between and including June and December. The 

IOD time series are corrected between 1954-1960 due to a climate anomaly and both 

time series are shifted to compensate for ocean warming effects. The detailed 

description of the IOD time series and the corrections can be found in Meyers et al. 

(2007). Other studies have used partial correlations to remove the direct ENSO and 

IOD effects from Australian temperature and rainfall data (Ashok et al. 2003; Saji et 

al. 2005; Risbey et al. 2009). In short, these studies have been able to demonstrate 

some degree of independence of the IOD from ENSO regarding the timing of 

Australian region precipitation rate variability, despite the difficulties in removing the 
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more complete lag/lead effects of ENSO.  

The effect of the IOD on Australian climate has been the subject of a series of 

studies (e.g., Saji et al. 1999; Saji and Yamagata 2003; Ashok et al. 2003, Meyers et 

al. 2007; Ummenhofer et al. 2009, Risbey et al. 2007). They all found a particularly 

strong effect on the South and Southeast Australian winter rainfall with drought 

conditions during positive IOD events. The large-scale effects can be associated with 

a baroclinic response to the low-level anticyclonic circulation over the eastern and 

central Indian Ocean. This results in anomalous subsidence and therefore reduced 

precipitation over the southern parts of the Australian continent (Ashok et al. 2003). 

Meyers et al. (2007) related the low rainfall rate during positive IOD events to 

changes in the Northwest Cloud Band over Australia (e.g., Tapp and Berell 1984). 

Recent studies concentrated on IOD induced changes in the large-scale variability of 

 Negative IOD 
 

No event 
 

Positive IOD 

El Niño 1930 1877, 1888, 1899, 1911, 
1914, 1918, 1925, 1940, 
1941, 1965, 1986, 1987 
 

1896, 1902, 1905, 
1923, 1957, 1963, 
1972, 1982, 1991,  
1997 

No 
event 
 

1880, 1958, 1968, 
1974, 1980, 1985, 
1989, 1992 
 

1881, 1882, 1883, 1884, 
1895, 1898, 1901, 1904, 
1907, 1908, 1912, 1915, 
1920, 1921, 1927, 1929, 
1931, 1932, 1934, 1936, 
1937, 1939, 1943, 1947, 
1948, 1951, 1952, 1953, 
1956, 1959, 1960, 1962, 
1966, 1969, 1976, 1979, 
1990, 1993, 1995 
 

1885, 1887, 1891, 
1894, 1900, 1913, 
1919, 1926, 1935, 
1944, 1945, 1946, 
1961, 1967, 1977, 
1983, 1994 

La Niña 
 

1906, 1909, 1910, 
1916, 1917, 1928, 
1933, 1942, 1950, 
1975, 1981 

1878, 1879, 1886, 1889, 
1890, 1892, 1893, 1897, 
1903, 1922, 1924, 1938, 
1949, 1954, 1955, 1964, 
1970, 1971, 1973, 1978, 
1984, 1988, 1996, 1998 
 

 

TABLE 1.1 Classification of years when El Niño or La Niña and/or positive or 
negative Indian Ocean dipole occurred. Boldface (lightface) indicates a higher 
(lower) level of certainty in the classification as explained in the text. The 
classification is given lower certainty if either the ENSO phenomenon or the 
IOD phenomenon is not clear (Meyers et al 2007). 
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the atmospheric thickness between 1000 and 500 hPa as response to anomalous SSTs 

(Risbey et al. 2009) and moisture flow integrated to 500 hPa (Ummenhofer et al. 

2009). Both studies confirmed the strong effects of the IOD and Southeast Australian 

precipitation rate and related drought periods in this area to positive IOD events. 

Figure 1.7 shows the composites of SSTs and the corresponding moisture flux and 

precipitation rate over the Australian continent during positive and negative IOD 

events. All these studies confirmed a strong sensitivity of the atmosphere over 

Australia due to large-scale SST changes in both, the South Pacific and the Indian 

Oceans. 

 

 

1.2 Tropical Cyclone Development 

1.2.1 Tropical Cyclone Structure 

In the Southern Hemisphere, tropical cyclones (TCs) are clockwise rotating 
tropical storm systems exceeding a predefined minimum central pressure and  
 

Figure 1.7 Characteristic climate conditions during pure IOD years. Composite 
of anomalies in (a, b) SST (°C) and (c, d) moisture flux (kg m!1s!1) June–
October months during pure positive and negative IOD years (Ummenhofer et al. 
2008). 
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Table 1.2 Tropical cyclone categories and corresponding values of approximate 
average maximum wind speeds and central pressures, modified for the Australian 
region from the Saffir-Simpson scale (Simpson 1974; Dare and Davidson 2004). 
   Avg max wind   Central pressure  
  Category       (km h-1)            (hPa)    

        1            63-90      >985 
        2            90-125        985-970 
        3          125-165        970-955 
        4          165-225        955-930 
        5        >225      <930 

 

maximum wind speeds. Since 1973, the intensity of these storms is traditionally 

classified in 5 categories distinguished by the intensities of their sustained winds by 

the Saffir-Simpson-Scale (Simpson 1974). The Australian region utilises a more 

contemporary intensity scale for all TCs of gale intensity and higher, with 10-minutes 

average mean surface winds (MSW) exceeding 34 kts (63 km h-1). Severe TCs are 

then defined with MSWs exceeding 65 kts (125 km h-1; Table 1.2). 

The system is divided into three parts, the eye, the eyewall and the widespread 

rainbands. The eye can be identified by a dry adiabatic downstream flow, in which 

convection is suppressed. The strongest winds can be found in the eyewall near the 

surface, where the highest pressure gradients towards the storm centre can be found. 

The radius of maximum winds (RMW) varies strongly from system to system and 

between the different TC basins from 10-100 km with an increase of the radius with 

height. Inside the RMW an approximate solid-body rotation can be observed, while 

outside the RMW the winds successively weaken with increasing radius following the 

rx-law. The cloud and rainbands around the eyewall are a common structure, 

organised as spiral bands with approximately 10 km width and a height between 3 and 

15 km (Emanuel 1991). The energy source of a mature TC is the thermodynamic 

disequilibrium between the lower atmosphere and the oceans (Kleinschmidt 1951).  

This disequilibrium is not reflected in an actual temperature difference between the 

lower troposphere and the ocean, but in the undersaturation of surface-near air. 

Emanuel (1986) described an idealized TC as a Carnot machine, in which heat gets 

converted into mechanical energy. To achieve a more thermodynamic equilibrium of 

the ocean and lower troposphere, surface air flows cyclonically (Southern Hemisphere 

(SH)) towards the boundary layer of the storm center. There it rises close to the moist 

adiabatic state into the mid- and high troposphere (Emanuel 1991). Therefore 
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increased surface winds lead to increased heat transfer from the ocean and to a 

subsequent intensification and so on. The idealised process is shown in Figure 1.8. 

 

1.2.2 Tropical Cyclogenesis 

Tropical cyclone (TC) formation only occurs when certain atmospheric and 

oceanic conditions are present. Gray (1968) defined basic favourable environmental 

conditions for tropical cyclone formation including sea surface temperature (SST), 

conditional instability in the lower to mid-troposphere, absolute vorticity in the lower 

troposphere, mid-troposphere relative humidity, divergence in the upper troposphere, 

and vertical shear of the horizontal winds between the lower and upper troposphere. 

These parameters were further enhanced in several studies (e.g., Gray 1975, 1992, 

1993; McBride and Zehr 1981), but the general dynamic and thermal requirements on 

the state of the atmosphere and ocean remains the same.  

Dynamic parameters include (i) environmental vertical wind shear (EVWS), (ii) 

low-level relative vorticity and (iii) planetary vorticity and the thermal parameters, 

consist of (iv) mid-tropospheric relative humidity, (v) ocean thermal energy and (vi) 

Figure 1.8 The hurricane Carnot cycle. Air begins spiraling in toward the storm 
center at point a, acquiring entropy from the ocean surface at fixed temperature 
TS. It then ascends adiabatically from point c, flowing out near the storm top to 
some large radius, denoted symbolically by point o. The excess entropy is lost by 
export or by electromagnetic radiation to space between o and o’ at a much 
lower temperature T0. The cycle is closed by integrating along an absolute vortex 
line between o’ and a. The curves c-o and o’-a also represent surfaces of 
constant absolute angular momentum about the storm’s axis (Emanuel 1991). 
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equivalent potential temperature gradient. All six conditions need to be met to allow 

the development of a TC. (i) It is imperative that the EVWS between the lower and 

upper atmosphere is weak, otherwise the convective system of the eyewall cannot 

develop or persist. The critical value for the magnitude of EVWS is 10 ms-1 (Landsea 

2000). (ii) A pre-existing negative (SH) low-level relative vorticity anomaly, like a 

small anticyclonic atmospheric disturbance, a tropical wave or a monsoonal trough 

with convergence provides the initial conditions to develop a TC. The attendant 

upper-troposphere divergence supports the development of a deep convection, which 

in turn intensifies the disturbance into a low-pressure system (Cheung 2004). (iii) The 

Coriolisparameter f is the measure for the planetary vorticity and is strongly 

dependent on the latitude. Up to a distance of about 500 km from the equator (< 5°S), 

the Coriolis force is not strong enough to keep a system rotating. The Coriolis effect 

causes rotating systems to turn polewards in the absence of strong steering currents. 

The westerly winds on the equatorward portion of the cyclone pull slightly to lower 

latitudes, but as the Coriolis effect weakens towards the equator, the net drag on the 

cyclone is poleward. Thus, TCs in the SH usually turn south, before being blown east, 

when no other effects counteract the Coriolis effect. (iv) Relatively moist layers in the 

lower- and mid-troposphere (relative humidity at 500 hPa) are essential, as dry mid 

levels suppress the continuing development of widespread deep convection. Further, a 

dry lower troposphere cools down due to evaporation, which leads to a slight descent  

(Cheung 2004).  (v) The Ocean Heat Content (OHC) given by the area of sea surface 

temperature (SST) warmer than 26°C and the depth of the 26°C isotherm (Shay et al. 

2006) determines the amount of warm water supporting tropical evaporation. A 

minimum of 26.5°C throughout a sufficient depth of at least 50m (Gray 1968) 

guarantees the required heat-flux into the troposphere. Additionally the evaporation 

contributes to intensify the low-level disturbance. (vi) The gradient of equivalent 

potential temperature between 1000 hPa and 500 hPa describes the enthalpy between 

these two layers and hence the likelihood to form cloud clusters. It is necessary that 

the atmosphere cools fast enough with height such that it is potentially unstable to 

moist convection (Gray 1968). However, understanding the physical processes of TC 

formation during these favourable conditions is still a subject of ongoing research, 

particularly with respect to the various climate signals, which also influence the 

conditions. 
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1.2.3 Tropical Cyclones in the Australian Region  

The Australian TC region is usually defined from 90°-160°E and 0-30°S (e.g., 

Kuleshov and de Hoedt 2003; Ramsay et al. 2008) with greater variability of TC 

frequency, speed and trajectory than in other TC basins (Bessafi et al. 2002). This is a 

result of some unique climatological features including the major landmass in the 

region (Holland 1984), the existence of the Australian monsoon trough (McBride and 

Keenan 1982, Evans and Allan 1992) and the close approach of the midlatitude 

westerlies to low latitudes (Dare and Davidson 2004). Dare and Davidson (2004) 

performed an extensive study on the TC climatology in the Australian region, as well 

as on its three subregions West (90°-125°E), North (125°-142.3°E) and East (142.3°-

160°E) by comparing the characteristics of 500 TCs in the time period from 1963/64-

2002/03. The seasons are defined as from June to July in the following year with the 

highest TC activity observed from December to April with an average of 12.5 storms 

per season but with significant individual seasonal standard deviations. In general 

Australian TCs have an average lifetime of 7.5 days, reach its maximum intensity 

after 3.5 days and originate between 5° and 15°S. The mean lifetime is longer in the 

Pacific regions, as storms tend to stay over the ocean, while in the Indian Ocean the 

storms recurve towards the Australian landmass. However, the most intense storms 

were found over the Indian Ocean, while the storms over the Pacific have faster 

translation speeds, further steering up after intensification.  

Most TCs form in a worldwide band of thunderstorm activity, for example, 

within the ITCZ or a monsoon trough. The Australian region TC behaviour is 

characterised by its strong dependence on the monsoon trough (McBride and Keenan 

1982; Evans and Allan 1992; Dare and Davidson 2004; Ramsay et al. 2008). The 

monsoon trough is an area of strong negative low-level vorticity. The upper-level 

ridge is located around 12°S, accompanied by weak environmental vertical wind 

shear leading to a zone extremely favourable for TC development and intensification 

(Dare and Davidson 2004). Additionally Australian TC development is affected by 

continental effects. If warm, dry continental air in Western Australia extends offshore, 

it implies extensive dry ambient conditions for Australian west coast TCs. On the 

other hand, when the monthly average of relative humidity is concentrated in the west 
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coast region, extremely intense TCs can be expected (Tonkin et al. 1997). During the 

Southern Hemisphere TC season, Camargo et al. (2007) showed that mid-tropospheric 

relative humidity and vertical wind shear are important contributors to variations in 

TCG in the Southern Hemisphere. While investigating ENSO effects on TCG in 

Australia, Kuleshov et al. (2009) found relative humidity at 500hPa and low-level 

relative vorticity to be most important for TCG.  

The deviation of mean TCs in the Australian region depends strongly on 

atmospheric and oceanic patterns, primarily ENSO. There have been numerous 

studies on the influence of ENSO on tropical cyclone formation in the Australian 

region (e.g. Nicholls 1984d, 1992; Basher and Zheng 1995; Kuleshov and de Hoedt 

2003; Kuleshov et al. 2009). Ramsay et al. (2008) presented a comprehensive study 

on the statistical effects of ENSO on seasonal TCG frequency in the Australian 

region. There it was shown, that out of all ENSO indices, August-September-October 

(ASO) averaged NINO4 captured Australian region TCG variability best with a 

correlation coefficent of -0.73 between 1970-2005. The link between ENSO dynamics 

Figure 1.9 Schematic showing the connection between anomalously warm SST 
in the Niño 3.4 and Niño4 regions (pink shading) associated with El Niño events 
and the corresponding atmospheric response: increased 200 hPa zonal westerly 
winds (blue horizontal arrows) around 15°S resulting in increased vertical shear 
of the zonal wind, co-located with decreased 850 hPa relative cyclonic vorticity 
(green) associated a weakened monsoon trough over the Australian region. Light 
blue vertical arrows indicate anomalous subsidence over the northern Australian 
region and anomalous ascent over the central equatorial Pacific (Ramsay et al. 
2008). 
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and TCG occurrence is the strong relationship between the Australian monsoon 

trough and ENSO through atmospheric bridge processes (Figure 1.9; Evans and Allan 

1992; Ramsay et al. 2008). Nicholls (1992) also found correlations of r = 0.72 

between September-October-November (SON) values of the Southern Oscillation 

Index and the ‘first differences’ of consecutive seasons instead of the total number of 

TC counts between 1959/60 and 1990/91. Liu and Chan (2010) identified ENSO-

related strong correlations between Australian region TCG count and the July-August-

September (JAS) averaged trade wind index (5°N-5°S, 135°-180°E) of r = 0.68 and 

the ASO averaged equatorial longwave outgoing radiation between 160°E-160°W 

with r = 0.60. During la Niña events an increase of TC numbers east of 70°E has been 

observed (Kuleshov and de Hoedt 2003) with the maximum TC frequency in the 

Southern Hemisphere occurring at the end of January during La Niña years and about 

one month later during El Niño years. Also the onset of the South Indian Ocean TC 

season occurs one month earlier during La Niña years. The distribution of TCG shifts 

eastward during warm ENSO phases (Evans and Allan 1992; Basher and Zeng 1995; 

Sinclair et al. 1997; Kuleshov and de Hoedt 2003; Camargo et al. 2007). This leads to 

increased TC formation in the central Pacific during El Niño years. In contrast, during 

La Niña events TCG shifts westward resulting in a higher likelihood of TCs making 

landfall along the Queensland coastline (Evans and Allan 1992). Also increased 

activity can then be observed over the Southeast Indian Ocean (Sinclair et al. 1997; 

Kuleshov et al. 2008). Figure 1.9 highlights the interaction between central tropical 

Pacific SST anomalies (here Niño 3.4 region) and the atmospheric response and 

modulation of TC development conditions in the Australian TC region. Next to the 

strong correlations of direct ENSO indices, an early study by Nicholls (1984) showed 

correlations of r = 0.78 between SON SST in a region north of Australia (5°–15°S, 

120°–160°E) and Australian region TC counts from 1964-1982. However this 
relationship has been shown to degrade over time and is not robust for the more recent 
years (Ramsay et al. 2008). Liu and Chan (2010) also showed a strong correlation 

between Australian region TCG and the September-October averaged DMI of 0.60. 

The relationship of western Australian TCs with ENSO is weaker than the one 

for the whole Australian region (Broadbridge and Hanstrum 1998; Goebbert and 

Leslie 2010). However, Liu and Chan (2010) also found significant relationships 

between western Australian (90°-135°E) TCG and NINO4, the trade wind index, the 
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OLR index and DMI. In contrast, due to the weak ENSO correlations Goebbert and 

Leslie (2010) suggest indices based on persistent and significant relationships with 

spatial atmospheric variables to better explain TCG variations in the Southeast Indian 

Ocean basin. They found the strongest correlations between variations in 

northwestern Australian TCG (105°-135°E) and April-May-June averaged 700 hPa 

geopotential height over North America and JJA 925 hPa geopotential height over the 

South Atlantic Ocean basin. 

Finally, the tracks of TCs in the Australian region are also affected by ENSO. 

During El Niño, the westerly zonal component is dominant, which leads to more 

landfalling storms in northwestern and northern Australia, while the landfall rate on 

the Queensland coast is reduced. Westerly flow is weaker and less coherent during la 

Niña and the westerly zonal motion is not observed. Then the dominant path is along 

the east Australian coast and TCs persist further south in both, the Indian Ocean and 

the Pacific (Figure 1.5; Evans and Allan 1992) basins. 

 

 

1.3 Statistical Forecast Modelling of Tropical Cyclones  

1.3.1 Statistical Seasonal Forecasting 

Statistical modelling of variations of TCG counts is a common approach of 

developing seasonal forecast models. As we have seen in the previous section, the 

development of TCs is strongly dependent on the climatic environment and this in 

turn is modulated by intra-seasonal to inter-decadal climate modes and signals, but 

also by long-term changes of the climate. The advantage of using climate variations 

prior to the onset of a TC season is at the same time its limitation. A detailed 

knowledge of the climate signals itself, as well as how they modulate the atmospheric 

and oceanic conditions for TC development is essential to make the most use of the 

statistical approach. Another limitation is the fact that TC development is a rather 

random event. Even though the conditions may be favourable on a large-scale, the 

actual TC development is dependent on more than just purely seasonal climatic 

variations, but also on local conditions. 
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Since the early 1980s a number of statistical seasonal forecast schemes have 

been developed and improved to predict TC activity in various basins and sub-basins 

(Klotzbach et al. 2010). Seasonal forecast modelling of TC activity was first 

undertaken by Nicholls (1979a) for the Australian region and Gray (1984) for the 

North Atlantic. In later studies by Gray et al. (1992, 1994) climatic relationships with 

hurricane activity in the North Atlantic are based on metrics, such as the Quasi-

Biennial Oscillation and African rainfall. A relationship between intense hurricanes 

and the Sahel monsoon rainfall was also established (Landsea and Gray 1992). The 

skill of Gray’s operational Atlantic seasonal TC forecasts for the analyzed period 

from 1984–2001 relative to climatology and persistence was confirmed and improved 

(e.g., Owens and Landsea 2003; Saunders and Lea 2005; Klotzbach 2007). Other 

relevant North Atlantic statistical forecasts include model predictions of hurricane 

counts using Poisson regression models (e.g., Elsner and Schmertmann 1993; 

Lehmiller et al. 1997). The Poisson method was later extended using a Bayesian 

approach to investigate seasonal TC counts and landfall over the USA (e.g., Elsner 

and Jagger 2004, 2006). This approach was also used most recently to improve multi-

season forecasting of Atlantic hurricane activity (Elsner et al. 2008), and seasonal 

forecasting of TCs affecting the Fiji, Samoa and Tonga regions (Chand et al. 2010) 

and the central North Pacific (Chu and Zhao 2007). In the northwest Pacific and 

Australian region, projection pursuit regression (PPR) has been used to forecast 

seasonal TC totals and associated TC predictands (e.g., Chan et al. 1998; Chan and 

Shi 1999; Chan et al. 2001; Liu and Chan 2010). Also, a statistical scheme based on 

ENSO related indices has been developed for predicting the annual number of TCs 

making landfall along the south China coast (Liu and Chan 2003). Most recently, 

modes from an empirical orthogonal analysis of climate factors have been used as 

predictors of TC behavior in a statistical model also for the South China region (Goh 

and Chan 2010). 

One major difficulty with developing seasonal tropical cyclone prediction 

equations for other basins lies in the lack of good data. Except for the North Atlantic 

and the western North Pacific, direct measurements of tropical cyclone intensity (e.g., 

by aircraft reconnaissance) are not available and the resulting data base has to be 

considered unreliable (Holland, 1981). The use of satellite estimates since the 1970s 

has improved the quality enormously, but questions remain on the reliability of 
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analyses of intense tropical cyclones.  

 

1.3.2  Statistical Seasonal Forecasting in the Australian Region  

For the Australian region, Nicholls (1979b) showed that the austral winter to 

spring anomalies of sea level pressure at Darwin are highly correlated with early 

season Australian region tropical cyclone activity, and to a lesser extent with total 

seasonal TC activity. Subsequent research and operational testing, confirmed the 

strong link with the ENSO-related Southern Oscillation index (SOI; Nicholls 1984d, 

1985a, 1992; Drosdowsky and Woodcock 1991; Ready and Woodcock, 1992). Solow 

and Nicholls (1990) presented the first Poisson regression based statistical forecast 

model for the Australian region. They used the SOI as a predictor of Australian region 

total TC counts. More recently, a Poisson regression model using the September lead 

saturated equivalent potential temperature gradient between 1000hPa and 500hPa and 

SOI was developed to forecast upcoming season TCG totals across the Australian 

region (McDonnell and Holbrook 2004a,b). This model has also been applied to 

forecast subregional TCG totals in the eastern Indian Ocean, Northern Australia and 

southwest Pacific regions (e.g., McDonnell et al. 2006). A more recent study of Liu 

and Chan (2010) presented a seasonal forecast model for the Australian region based 

on a PPR using generally known predictors such as the NINO4, trade wind index, 

DMI and the outgoing long-wave radiation index from the U.S. Climate Prediction 

Centre. For the validation of the model results, the jackknife method is used. The 

model skill is then measured as the improvement of the RMSE over the RMSE 

calculated for the climatology. This skill score was 51% for Australian region (90°-

160°E), 39% for Western region (90°-135°E) and 37% for Eastern region (135°-

160°E) TCG counts. For seasonal TC variations in the northwestern Australian region 

(105°-135°E), a preliminary linear multiple regression model result was presented by 

Goebbert and Leslie (2010). They pointed out the different climatology for this 

particular region only showing weak correlations with commonly known climate 

indices. As predictors they suggest derived indices of geopotential height at 1000hPa 

and 850hPa, as well as Southern Hemisphere meridional winds at 100hPa. Using a 

skill score based on the improvement of MSE over MSE of climatology they achieved 

a score of 64%. On intra-seasonal time scales, Leroy and Wheeler (2008) developed a 
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logistic regression model for TC development in the Australian region. As predictors, 

they used the two dominant varimax rotated SSTA modes for the Indo-Pacific region, 

as well as an index describing variations in the Madden-Julian Oscillation. 

Despite all these model studies, only three models have been used, at least in an 

experimental capacity, for operational forecasts of Australian region TCG counts and 

its distribution (McDonnell and Holbrook 2004a,b; Liu and Chan 2010). A separate 

model, based on the ENSO indices Southern Oscillation index (SOI) and NINO3.4, is 

in use at the Australian Bureau of Meteorology (BoM 2011: 

http://www.bom.gov.au/climate/ahead/tc.shtml). Although the McDonnell and 

Holbrook (2004a,b) model is the only one that has made serious attempts to capture 

the spatial distribution of TCGs, a spatial bias has restricted its effective use for 

operational spatial probabilistic predictions. In recent years, this model has not been 

used further in experimental forecasts, albeit that its skill in forecasting annual 

aggregated counts is reasonably good. The Liu and Chan (2010) and BoM models 

failed in forecasting correctly the only available reference forecast of the previous 

Australian TC season of 2010/11. 

 

 

1.4 Thesis Objectives and Structure  

As seen in the review above, to investigate the dependency of the IOD on 

ENSO, various studies have explored methods to separate the pure IOD mode from 

ENSO, or otherwise investigated the effect of the IOD on key climate variables over 

Australia such as precipitation and temperature (e.g., Ashok et al. 2003; Saji et al. 

2005; Meyers et al. 2007; Risbey et al. 2009; Ummenhofer et al. 2009). Even though 

these studies have been able to demonstrate some degree of independence of the IOD 

from ENSO regarding the timing of Australian region precipitation rate variability, 

they had difficulties in removing the more complete lag/lead effects from ENSO. 

Also, the more advanced methods (Meyers et al. 2007; Ummenhofer et al. 2009) are 

quite laborious to repeat. A more recent study (Liu and Chan 2010) combined various 

ENSO indices with the IOD index as predictors in a seasonal forecast model. 

However, the quantification if, or of how strong the DMI improves an ENSO-only 

forecast, had not been investigated. 
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In the past three decades, seasonal TC forecasting was often limited to MLR or 

Poisson regression models using ENSO indices only (e.g., Nicholls 1979a, 1984d, 

1985a, 1992; Solow and Nicholls 1990; Drosdowsky and Woodcock 1991; Ready and 

Woodcock, 1992; McDonnell and Holbrook 2004a,b; Goebbert and Leslie 2010). Liu 

and Chan (2010) recently applied a project-pursuit regression (PPR) technique, 

including the DMI index as predictor. Bayesian model approaches, as used in various 

other TC basins (e.g., Elsner and Jagger 2004, 2006; Elsner et al. 2008; Chu and Zhao 

2007; Chand et al. 2010), have not been applied to the Australian region yet. Also, 

forecasting the spatial distribution of TCs in the Australian region is a very sparse 

investigated field in the literature. Only McDonnell and Holbrook (2004a,b) applied a 

Poisson regression model approach on a 5°longitude x 2°latitude grid, but had limited 

success regarding grid-scale forecasting. 

 

The main aim of this thesis is to improve our understanding of how climatic 

signals and variables affect TC occurrences observed in the Australian region. Of 

special interest is how to quantify the role of interannual large-scale climate signals 

such as ENSO and IOD in variations of TCG counts. Also, our belief is that the use of 

indices based purely on ENSO or IOD dynamics is limited. A particular goal was then 

to improve existing seasonal statistical forecast models to evaluate the TC hazard for 

the Australian region for the upcoming season. On the basis of the analysed climatic 

signals and variables, a statistical seasonal TC forecast model for TC counts, and also 

for the spatial probability of TCs forming was developed. The main aims are as 

follows: 

 

1. Develop a simple, but effective method to separate the IOD from ENSO to 

estimate the statistical independency of IOD from ENSO.  

 

2. Quantify the individual IOD and with ENSO measures combined forecast skill 

of the original IOD signal and the ENSO-independent IOD predictor of 

seasonal variations in TCG for the Australian region and subregions. 

  

3. Identify important prediction schemes of climate variables for seasonal 

variations of TCG counts in the Australian region and subregions.  
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4. Develop a skilful seasonal forecast model for TCG counts in the Australian 

region and subregions with a Bayesian Poisson regression model. 

 

5. Develop a skilful seasonal forecast model for spatial probabilities of TCG in 

the Australian region with a Bayesian logistic regression model.  

 

The rest of the thesis is organised as follows. Chapter 2 gives a short review of 

the statistical methods and tools used in this study. Chapter 3 is presented in the form 

of a paper currently under review at the Journal Climate Dynamics (under minor 

revisions) that addresses whether the Indian Ocean Dipole plays a role as a potential 

predictor for seasonal TCG counts in the Australian region. For this reason the 

ENSO-independent DMI component was extracted with a lagged regression method 

and compared to the contributions of the original time series. Finally a multiple linear 

regression model was applied to investigate the roles of ENSO and IOD alone, but 

also in combination with each other as potential seasonal forecast predictors. Chapter 

4 comprises an accepted paper from the Journal of Climate that exploits a more 

sophisticated, stochastically advanced, Bayesian seasonal forecast model for TCG 

counts in the Australian region. The model uses a Poisson regression and incorporates 

predictor indices extracted from analysed climate variables. The data is validated on a 

40-year observational data set and presents significant improvements over existing 

statistical seasonal forecast models for that region. Also presented is a paper being 

prepared for submission to the Geophysical Research Letters introducing a separate 

model for seasonal forecasting of Southeast Indian Ocean TCG counts. Chapter 5 

investigates the potential to forecast seasonal variations via spatial probability of 

TCG occurring on the basis of a Bayesian logistic regression model. This chapter is a 

manuscript in preparation for the Journal Climate Dynamics. Chapter 6 discusses the 

results with respect to the literature and applies the developed forecast models 

operationally to the last three seasons, which are all outside of the training data set. 

Finally some of preliminary results and future research is outline before we summarize 

the key achievements of this study.  
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2 STATISTICAL TOOLS 

Understanding the climate system, its changes and effects on different time- and 

space scales is a complex research field. Nevertheless, statistical techniques provide 

very useful tools for investigating climate system relationships and possible 

interactions between variables, such as temperature, precipitation and storm 

frequency. In the present thesis, interannual variations in different large-scale climate 

parameters across the Indo-Pacific are used to build a forecast system for Australian 

region tropical cyclone genesis (TCG). As this thesis has a strong statistical focus, 

some of the standard expressions and regression methods are explained here. A basic 

introduction to machine learning is also presented.  

 

 

2.1 Basic Statistical Expressions 

2.1.1 Time Series Analysis 

First, various standard techniques are used in this thesis to estimate the scale of 

a data set and its relative variation from the mean. The standard deviation has the 

same physical dimensions as the underlying data and is defined as  

! 

" =
1

n #1
xi # x ( )2

i=1

n
$
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& ' 
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) * 

1
2
  ,     (2.1)   

where n is the sample size, xi is the ith data point, and 

! 

x  is the mean value of the n data 

points. The squaring process in equation (2.1) results in a special weight on data points 
far away from the data mean as the difference. The standard deviation is an integrated 
part in a set of statistical expressions. The square of the data standard deviation, !2, is 

the sample variance of a time series or data set (Hsieh 2009). The variance can also be 
used to quantify an extracted or decomposed fraction of a time series against its 
background signal. 

When measuring the variance of two time series x and y together, the covariance is 
calculated, which is defined as  
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! 

Cov(x,y) =
1

n "1
(xi " x )(yi " y )[ ]

i=1

n
#   .   (2.2) 

The sample variance is the special case of the covariance, when x = y. The correlation 

coefficient calculates the similarities of the variations within the two time series x and 

y. In the present study, the Pearson product-moment coefficient of linear correlation is 
applied. One way – and the way it used in this thesis - is to view the Pearson correlation 
as the ratio of the sample covariance of the two variables to the product of the two 
standard deviations 

! 

rxy =
Cov(x,y)
"x"y

 .      (2.3) 

The Pearson product-moment correlation coefficient takes on values between -1 and 

1. It is important to note, that nonlinear relationships between the two time series may 

not be recognised. Also, as the Pearson correlation coefficient is essentially a non-

dimensionalised covariance, it can be extremely sensitive to one or a few outlying point 

pairs (Wilks 1995). To evaluate if a correlation is significant, e.g., different from 0, a 

null hypothesis test can be performed. A common approach is the Student’s t-test, in 

which t is defined as 

! 

t = r n " 2
1" r2

  ,       (2.4) 

with f = n!2 identifies the number of degrees of freedom, assuming independent 

sampling across all data values (Student 1907). On basis of t and f, the p-value can be 

calculated as calculated as  

! 

p2 =
t2

f + t2
  .       (2.5) 

The confidence level is defined as 1-p. The smaller p is, the higher the significance of 

the correlation - taking account of the number of degrees of freedom. In geophysical 

data, such as climate data (e.g., temperature, humidity, ocean salinity, etc), serial 

correlation in time (time dependency) can be expected. For that purpose, often a serial 

correlation analysis is applied to address and remove the temporal autocorrelations of 

the variable with itself to obtain a better estimate of the effective number of degrees 

of freedom (e.g., Hsieh 2009). The value of n used in the significance tests will then 

have to be adjusted to represent the effective sample size. To compute the serial 

correlation, lagged data pairs n-k are integrated into the formula for the Pearson 

correlation (Formula 2.3) so that 
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where k is the lag autocorrelation and the sample mean of the first n!k values are 

denoted with the subscript “!”, while that of the last n!k values are denoted with the 

subscript “+” (Wilks 1995). 

 

2.1.2 Validation Techniques 

To validate the quality of model hindcasts against the observed data, various 

validation methods are applied in this thesis. A measure, which is based on the 

standard deviation between two time series, is the standard error. The standard error 

se is written as   

! 

se =
"
n

         (2.7) 

(Everitt 2003). The standard error does not take into account how good variations 

within the time series are captured (as the correlation coefficient does), but is a 

measure of how strong the two time series differ depending on the length of the time 

series. Similar measures are the mean-squared error (MSE) defined as 

! 

MSE =
1
n

hi " oi( )2
i"1

n
#  ,     (2.8) 

and the root-MSE (RMSE), which is simply the square-root of the MSE, with hi being 

the hindcast for the data point i and oi the corresponding observation (Hsieh 2009). 

The RMSE is a commonly used metric for the potential utility of a predictor or 

predictor combination in a model, with small values indicating good performance. If 

hindcasts are obtained as a hindcast probability distribution, and not as fixed numbers 

(i.e., the probability for a number of events occurring), the accuracy of the hindcasts 

can be estimated by taking the probability distribution into account. In this case, the 

MSE is defined as 
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1
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with pi being the predicted probability that k events occur at the data point i. For 

comparison purposes, the skill-score (SS) provides an excellent measure. There, the 
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improvement of the hindcast over the climatology is calculated using the MSEClim for 

the climatology average field and MSE for a chosen predictor combination both 

calculated from equation (2.8). The skill score is then  

! 

SS =1"
MSE(i)

i=1

n
#

MSEC lim(i)
i"1

n
#

  .     (2.10)

 

 

2.2 Regression Techniques 

Regression is used to estimate the relationship between a dependent variable, y, 

and one or more independent variables, x (Wilks 1995). Moreover, regression is a 

prediction tool, where the given predictor(s) is/are x and y is the response variable, or 

predictand. There are two essentially different regression methods, linear and 

nonlinear regression. The linear regression group only contains the single predictor 

linear regression and the multiple linear regression approach, with two or more 

predictors – both typically using a least squares fit approach. Nonlinear regression 

approaches are applied when the predictand is defined in a limited space and /or the 

residuals are not distributed in a Gaussian way. The fitting, in this case, uses a 

maximum likelihood estimate approach. The most commonly used nonlinear 

regressions are the logistic and Poisson regression. 

 

2.2.1 Multiple Linear Regression 

The multiple linear regression (MLR) is one of the simplest regression methods, 

and is particularly useful for quick estimates of predictor skill. The response variable, 

y, is then regressed on the predictors, x, in the form 

! 

yi = "0 + xij" j + ei
j=1

k
#   ,     (2.11) 

where !o and !j are the corresponding regression coefficients, k is the number of 

predictors, and ei is the error or residual unaccounted for by the regression. 

Graphically (or geometrically), !o is also called the intercept, while !j are the slopes. 
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To estimate the optimal coefficients, the least squares method is applied to minimise 

the error ei. For that purpose, the sum of the squared errors (SSE) is calculated as 

 

! 

SSE = ei
2

i=1

n
"  .      (2.12) 

Additionally, the sum of the errors has to be zero, so that the residual distributions are 

centred on the predictands (Wilks 1995). A limitation of MLR is the possibility of 

‘overfitting’ the data. That means, even though a large number of possible predictors 

may be available, not all of them would have a significant effect. This can result in 

fitting ‘noise’ into the data and the model performance degrades (Hsieh 2009). 

 

2.2.2 Logistic Regression  

 The logistic regression model is an appropriate method that can be used to model 
the probabilities of an event, i.e., when the outcome variable is binary. The difficulty 

when events are given as integer numbers, rather than probabilities, can be solved 

with Regression Estimation of Event Probabilities (REEP; Glahn 1985). In REEP, an 

assumption based on the underlying data set or experience is made, so the predictand 

takes on values between 0 and 1. One issue associated with this approach is that 

dependent on the assumption, the resulting forecasts can lie outside of the interval [0 

1]. This is the case if the limit of the assumption is close around the range of the data. 

However, this is usually a marginal problem as the final forecast will not differ 

strongly from the probability interval and can be approximated towards the limits 

(Wilks 1995). With REEP, a Binomial distribution can be applied to the observational 

data as   
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where n is the REEP assumption for the total number defined as p = 1 and k is the 

number of observed events. P in 2.13 is obtained from the logistic regression  

! 

P(Yi = y | xi,") =
exp(µi)
1+ exp(µi)

  ,    (2.14) 

where µi provides the multiple linear regression estimates on the predictors. The 

logistic regression is defined for all positive and negative discrete numbers. When the 

model coefficients are obtained with the approach described above, forecasts can be 

obtained by using the Bernoulli distribution on the logistic regression. The Bernoulli 
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distribution is a special case of the Binomial function, in which n = 1, and allows us to 

obtain a result for the probability of a 0 and 1.  

 

2.2.3 Poisson Regression 

 The Poisson distribution is often used to model the occurrence of rare, discrete 
events, such as tornado counts and the occurrences of droughts or cold spells (e.g., 
Wilks 1995). The Poisson distribution also restricts the possible outcomes to non-
negative integers, making it ideal for modelling tropical cyclone occurrences (Elsner and 
Schmertmann 1993). The Poisson distribution is defined as  

   

! 

P(Yi = y) =
µi

y exp("µi)
y!

  , y = 0,1,2,…,!  ,   (2.15) 

where y = 0, 1, …, ! are the number of events, and 

   

! 

µi = exp("o + (" j xij
j
# ))   .      (2.16) 

Here, if Y has a Poisson distribution, the logarithm of the expected number of TCG 

occurrences, µ, can be modelled as a linear combination of the predictors, xij, with j 

being the specified predictor during the season i. !j is the corresponding Poisson 

regression coefficient, !0 is the intercept, and y is the observed TCG count. In a 

Poisson model, the variance is equal to the mean (µ), and the standard deviation is the 

square root of µ.  

 

 

2.3 Machine Learning 

2.3.1 Bayesian Inference 

Bayes’ theorem represents a quantification of uncertainty provided by 

probabilities. By comparison, in the frequentist approach probabilities are seen in 

terms of frequencies of random repeatable events (Wilks 1995). In this study, the 

Bayesian approach is used to predict the seasonal number or spatial probabilies of 

TCG occurrences. The Bayesian theorem is applied to find the best possible model 

coefficient representation, and this information is used to predict the seasonal TCG 

totals. The observed predictor set is denoted as x1:T = {x1,…,xT} and the corresponding 
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seasonal number of TCG occurrences, or TCG probability, as y1:T = {y1,…,yT} during 

the observations 1:T. We are interested to find the conditional probability of yT+1 

given xT+1 and the model coefficients !, p(y|xT+1,!). The model coefficients, !, are 

estimated using the posterior distribution p(!|x1:T,y1:T).  

The assumptions about the prior knowledge of the model coefficients are 

stated before observing the data x1:T and y1:T in the form of a prior probability p(!). As 

we have no, or only little, prior information on the climatic effects of our chosen 

predictors on TCG occurrences, we chose the conservative way of defining the prior 

probability of the model coefficients as almost flat priors. The priors are defined as a 

Gaussian distribution  
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with the mean selected as µ = 0 and the standard deviation ! = 100, with !j 

representing the j model coefficients. For the TCG occurrences model, we consider 

the Poisson distribution 

),|(),|( !! iiii xyPoissxyp =   .    (2.18) 

Following Bayes’ rule, we get the posterior distribution 
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The posterior probability (Equation 2.19) allows us to take uncertainties into account 

and predictions are then obtained from 

  

! 

p(yT+1 | xT+1,") =
1
N

p(yT+1 | xT+1,")
i=1

N
#   ,   (2.20) 

with N being the total number of obtained samples from the posterior distribution. 

When applying a logistic regression, the likelihood function is replaced as  

  ,   (2.21) 

where the assumption of REEP is included, so the Bernoulli distribution can be 

applied in the sample estimate of the posterior distribution. Besides these adjustments, 

the model set-up stays the same. 
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2.3.2 Markov Chain Monte Carlo 

 To usefully apply the Bayesian approach, and obtain the appropriate values for the 
model coefficients, the use of a sampling method like the Markov Chain Monte Carlo 

(MCMC; Hastings 1970) method is indispensable (Larget and Simon 1999). The 

MCMC method simulates direct draws from a probability distribution. There, the 

previous sample values generate randomly the next sample value, which means 

generating a Markov chain. Unlike previous studies (e.g., Elsner and Jagger 2004, 2006; 

Chu and Zhao 2007; Chand et al. 2010), which applied the Gibbs sampler via the open 
source software WinBUGS, we instead used the multivariate slice sampler (Neal 2003), 
which is a form of auxiliary variable technique (Roberts and Rosenthal 1999). The slice 
sampler (Neal 2003) avoids specifying the proposal densities as in Metropolis-Hastings 
algorithms (e.g., Hastings 1970; Gelman 1992). In that way, after finding the 
appropriate augmentation scheme, the method can be applied to all data sets without any 
computational difficulties (Ntzoufras 2009). The slice sampler is defined by 
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where 

! 

Zp = ˜ p (")d"# . The marginal distribution over ! is given by 
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so we can sample from p(!) by sampling from 

! 

ˆ p (",u) and then ignoring the u values. 

Given the value of ! we evaluate

! 

˜ p (")  and then sample u uniformly in the range 0 ! u 

!

! 

˜ p (") . Afterward, u is uniformly fixed from the ‘slice’ through the distribution 

defined by {!: 

! 

˜ p (")  > u}. Slice sampling is applied to multivariate distributions by 

repeatedly sampling each of the n variables in turn, in the manner of the Gibbs 

sampling (Bishop 2006), where one needs n iterations to get from !j
(i) to !j

(i+1)  
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The model standard deviation was then calculated from the expected number of events 

! 

E(yT+1 | xT+1,") as estimated using the average of the mean µ obtained from the 

MCMC samples. The model standard deviation " is then defined as 

! 

"(yT+1 | y1:T ) = E["(yT+1 | xT+1,#i) | y1:T ]
+"[E(yT+1 | xT+1,#) | yT:1]

 ,    (2.25) 

where the first term is the average process standard deviation and the second term is the 
coefficient uncertainty (Peters et al. 2008). The hindcasted TCG totals are taken as the 
number with the maximum probability from the hindcast distribution. 
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II PAPERS 

3 THE SEPARATED EFFECTS OF THE EL NIÑO-SOUTHERN 

OSCILLATION AND INDIAN OCEAN DIPOLE ON AUSTRALIAN 

REGION TROPICAL CYCLONE COUNTS 

3.1 Chapter Overview 

 This chapter addresses whether the Indian Ocean Dipole (IOD) is a useful 

predictor of seasonal variations in Australian region annual tropical cyclone (TC) 

counts. The Australian region TCG counts were taken from a 40-year record 

(1968/69-2007/08) in the region 0-30°S, 90°-170°E. To be able to investigate the IOD 

effects on TCs independently from ENSO, a simple but effective measure was 

introduced to separate the IOD from ENSO dependence. The then ENSO-independent 

IOD index, DMINOENSO, was utilised in a simple multiple linear regression model to 

analyse the hindcast skill of the ENSO-independent IOD, as well as with ENSO.  

 
 The main text of this chapter is a paper under minor revisions for the Journal 

Climate Dynamics (Werner et al. 2011: A new method for extracting the ENSO-

independent Indian Ocean Dipole: application to Australian region tropical cyclone 

counts, Climate Dynamics, under minor revisions). 

 

Candidate’s contribution to this paper 

The experiment design and analysis methods were the candidate’s ideas and then 

jointly discussed between Dr Holbrook, Dr Maharaj and myself. I also performed all 

of the data analysis, however input from Dr Holbrook and Dr Maharaj was attained 

regularly throughout the process. All sections of the coauthored Climate Dynamics 

paper and the ongoing review process were led by myself under the guidance of both 

coauthors. 
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Abstract 

We introduce a simple but effective means of removing ENSO-related variations from the 

Indian Ocean Dipole (IOD) in order to better evaluate the ENSO-independent IOD 

contribution to Australian climate – specifically here interannual variations in Australian 

region tropical cyclogensis (TCG) counts. The ENSO time contribution is removed from the 

Indian Ocean Dipole Mode index (DMI) by first calculating the lagged regression of the DMI 

on the sea surface temperature anomaly (SSTA) index NINO3.4 to maximum leads and lags 

of 8 months, and then removing this ENSO portion. The new ENSO-independent time series, 

DMINOENSO, correlates strongly with the original DMI at r = 0.87 (significant at >99% level). 

Despite the strength of the correlation between these series, the IOD events classified based 

on DMINOENSO provide important differences from previously identified IOD events, which 

are more closely aligned with ENSO phases. IOD event composite maps of SSTAs regressed 

on DMINOENSO reveal a much greater ENSO-independence than the original DMI-related 

SSTA pattern. This approach is used to explore relationships between Australian region TCG 

and IOD from 1968-2007. While we show that both the DMI and DMINOENSO have 

significant hindcast skill (on the 95% level) when used as predictors in a multiple linear 

regression model for Australian region annual TCG counts, the IOD does not add any 

significant hindcast skill over an ENSO-only predictor model, based on NINO4. Correlations 

between the time series of annual TCG count observations and ENSO+IOD model cross-

validated hindcasts achieve r = 0.68 (significant at the 99% level). 
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1 Introduction 

Australia’s tropical climate is dominated by two large-scale interannual climate 

modes: El Niño-Southern Oscillation (ENSO) in the Pacific basin and Indian Ocean 

Dipole (IOD) in the Indian Ocean (e.g., Philander 1990; Saji et al. 1999; Webster et 

al. 1999). These modes and their effects on Australian’s climate have been the subject 

of numerous studies (e.g., Cai et al. 2001; Ashok et al. 2003; Meyers et al. 2007; 

Ramsay et al. 2008; Hendon et al. 2009; Ummenhofer et al. 2009). Importantly, 

rainfall variability in Australia is shown to be associated with the IOD almost as 

significantly as with ENSO (Saji and Yamagata 2003). Nevertheless, there remains 

much ongoing debate over the extent to which the IOD is indeed a unique ‘mode’ of 

the climate system and hence whether it is therefore really independent of ENSO 

(e.g., Saji et al. 1999; Allan et al. 2001; Meyers et al. 2007; Risbey et al. 2009).  

Various studies have explored methods to separate the pure IOD mode from 

ENSO, or otherwise investigated the effect of the IOD on key climate variables over 

Australia such as precipitation and temperature (e.g., Ashok et al. 2003; Saji et al. 

2005; Meyers et al. 2007; Risbey et al. 2009; Ummenhofer et al. 2009). For example, 

Meyers et al. (2007) applied a lagged empirical orthogonal function (EOF) analysis to 

remove the direct or lagged effects of ENSO from the IOD. This approach has since 

been applied in other studies (Risbey et al. 2009; Ummenhofer et al. 2009), although 

it only removes ENSO at a single lag from the IOD. Other studies have used partial 

correlations to remove the direct ENSO and IOD effects from Australian temperature 

and rainfall data (Ashok et al. 2003; Saji et al. 2005; Risbey et al. 2009). In short, 

these studies have been able to demonstrate some degree of independence of the IOD 
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from ENSO regarding the timing of Australian region precipitation rate variability, 

despite the difficulties in removing the more complete lag/lead effects of ENSO.  

There have also been numerous studies of the influence of ENSO on tropical 

cyclone formation in the Australian region (e.g., Nicholls 1984; Solow and Nicholls 

1990; Basher and Zheng 1995; Kuleshov and de Hoedt 2003; Ramsay et al. 2008; 

Kuleshov et al. 2009). We are aware of only one previous study that has investigated 

TC activity in the Australian region considering the IOD as well as ENSO (Liu and 

Chan 2010). Their study inferred that there may be an IOD contribution to Australian 

region TC activity, degeneracy in the empirical orthogonal functions 

presented together with ENSO/IOD linkages in the composite analyses. However, Liu 

and Chan (2010) had not been separated the signals into true ENSO and IOD modes, 

moreover they have not quantified the contribution of IOD to ENSO in terms of 

predictability of annual variations of TC measures.  

In this paper, we introduce a simple method to remove the direct and lagged 

ENSO signal from the IOD - a method that can be usefully applied more generally to 

the separation of climate mode effects from the time series of different parameter sets. 

Our approach uses lagged regression and allows us to quantify the contributions from 

a relatively ‘pure’ Indian Ocean Dipole on annual TCG counts in the Australian 

region, i.e., independently from ENSO. While we show that the timing of the ENSO-

independent IOD index, DMINOENSO, is significantly correlated (at the 99% 

confidence level) with variations in annual TCG counts in the Australian TC region, 

application of a multiple linear regression model demonstrates that the IOD alone has 

significant hindcast skill (on the 95% confidence level), but does not add any 

significant skill for hindcasting Australian region TCG counts over an ENSO-only 

predictor model. Correlation coefficients between the cross-validated hindcasts and 
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the of the combined ENSO+IOD model and TCG counts are as high as r = 0.68, 

which translates to approximately 46% of the explained variance in Australian region 

annual TCG counts.  

The paper is structured as follows. Section 2 describes the data and variables 

used. Our climate signal separation method and its advantages over previous 

techniques will be explained in section 3. In section 4, we investigate the effect of the 

ENSO-independent IOD on variations in Australian region TCG counts. The 

approach uses multiple linear regression to build a statistical forecast model that 

investigates the importance of the IOD on Australian region annual TCG counts using 

leave-one out cross-validation with the ENSO-independent IOD (DMINOENSO) as a 

predictor. Finally, section 5 discusses and summarises the quality and improvements 

of the method and provides some conclusions regarding the importance of the large-

scale IOD as a climate mode forcing for Australian region tropical cyclone formation. 

2 Data and variables 

2.1 Ocean data and indices 

The statistical analysis is based on standard sea surface temperature anomaly 

(SSTA) indices. These were calculated from SST data provided in the Hadley Centre 

Global Sea Ice and Sea Surface Temperature (HadISST1) dataset (Rayner et al. 2003), 

compiled by the UK Met Office Hadley Centre. HadISST1 is a combination of global 

monthly SST fields and sea ice concentrations, and on a 1° " 1° grid from 1870 to the 

present. To quantify ENSO timing from an oceanic perspective, we used region-

averaged NINO3.4 (5°N-5°S, 120°W-170°W) and NINO4 (5°N-5°S, 160°E-150°W) 

monthly SSTAs calculated from HadISST1. ENSO events are classified according to 
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the definition used by the U.S. National Weather Service 

(<http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.sh

tml>). El Niño (La Niña) events are defined by the NINO3.4 SSTA exceeding 

thresholds of ±0.5oC for a minimum of five consecutive three-month average 

overlapping periods. The NINO3.4 index enables us to capture both the classical 

“cold-tongue” ENSO and the more ENSO Modoki-like variations. The Dipole Mode 

index (DMI) is used to quantify the timing of IOD variations and represents the SSTA 

gradient between the Western (50°-70°E, 10°N-10°S) and Eastern Indian Ocean (90°-

110°E, 0°-10°S) (Saji and Yamagata 2003).  

 All monthly SSTAs are calculated against the climatological monthly means 

derived from the 30-year base period 1970-1999. Correlation analyses take into 

account serial correlations and the effective number of degrees of freedom in the time 

series according to Davis (1976), and significance is tested at the 95% confidence 

level.  

2.2 Tropical cyclogenesis observations  

This study takes advantage of the global tropical cyclone (TC) best track data 

set IBTrACS (Knapp et al. 2010) provided by the U.S. National Oceanic and 

Atmospheric Administration (NOAA). TCG is defined as the spatial location where a 

tropical storm system with winds exceeding 34 knots (17.5 ms-1) was first recorded.  

For the purpose of this study, the Australian tropical cyclone region is defined 

as spanning between 0°-30°S and 90°-170°E. TCG occurrences identified over land 

have been removed in the quality control process. Also, only TCG events during the 

Australian TC season from November to April are taken into account. Overall, a total 

of 570 TCs during the 40-year period from 1968/69 to 2007/08 are analysed following 
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the quality control. Fig. 1 shows the spatial distribution of all TCG occurrences 

included in this study together with the time series of Australian region annual TCG 

counts from 1968/1969 to 2007/2008. 

3 A method for removing ENSO  

3.1 Lagged regression 

 In an early study of the independence of the IOD, Allan et al. (2001) argued that 

the IOD is highly correlated with ENSO. Fig. 2 shows the absolute value of cross-

correlations between the three-monthly averaged NINO3.4 SSTA and DMI at 

monthly leads and lags up to a maximum of 10-months over the 40-year period 1968-

2007. Statistically significant correlations (at the p<0.05 level) can be seen between 

the one-month lead to five-months lagged NINO3.4 to the DMI. We find that by 

regressing the DMI on the monthly NINO3.4 time series at leads and lags up to eight 

months, and subtracting the sum of these contributions from the IOD time series, the 

method is most effective and efficient in removing the ENSO signal from the Indian 

Ocean Dipole SSTA index. This technique takes account of the significant lead and 

lag effects of the ENSO signal that we wish to remove from the complementary co-

existing (non-ENSO) variable, here the DMI. Hence, our ENSO-independent monthly 

SSTA Dipole mode index is calculated as:  

DMINOENSO(t) = DMI(t) - #bk NINO3.4(t+m(k))  ,                 (1) 
                         k  

where t is the month in the full time series, k = 1, 2, …, 17 is the regression number, 

m = -8, …, 8 is the corresponding regression monthly lead or lag, and bk is the 

regression coefficient on the kth NINO3.4 predictor. The original DMI time series and 
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the newly derived time series (Fig. 3a) are significantly correlated at the 99% 

confidence level, with a correlation coefficient of r = 0.87. Cross-correlating the 

three-month averaged DMINOENSO to other ENSO metrics, including the SSTA indices 

NINO3, NINO4 and the sea level pressure gradient index the Southern Oscillation 

index, we found no remaining significant correlation within lead and lags of up to 12 

months. Conversely, the residuals between DMI and DMINOENSO were highly and 

significant correlated with NINO3.4 at r = 0.62 at the 99% confidence level (Fig. 3b). 

The individual variance of the DMINOENSO time series is reduced to 76% of the 

original DMI time series. From this point on, DMINOENSO refers to our newly 

formulated ENSO-independent normalised Indian Ocean Dipole SSTA index monthly 

time series. 

3.2 Identification of ENSO-independent Indian Ocean Dipole events   

 The normalised DMINOENSO SSTA time series (Fig. 3a) is used here to identify 

the IOD event years. Following Meyers et al. (2007), an IOD event is considered to 

have occurred when two consecutive three-month average overlapping periods in any 

eight-month period between June and the following January exceed values higher 

than one standard deviation. In total, we identified 10 positive and 14 negative IOD 

events during the study period (Table 1). Differences in IOD event classification 

compared with Ummenhofer et al. (2009) are identified. Our ENSO-independent IOD 

time series identifies IOD event years quite different to previous studies (Saji et al. 

2005; Meyers et al. 2007; Ummenhofer et al. 2009). While positive (negative) IOD 

events in these previous studies rarely coincide with La Niña (El Niño), we identify 

both positive and negative IOD events occurring throughout all ENSO-phases, which 

may be described as a greater ‘randomness’ in the co-variances between IOD and 
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ENSO events (Table 1). In our study period from 1968-2007, we only match 50% of 

both the positive negative events as identified in Ummenhofer et al. (2009).  

 Fig. 4a,b shows the SSTA composite maps of the tropical and subtropical Indo-

Pacific Ocean for the peak IOD period of September-October-November (SON; Saji 

and Yamagata 2003). The SSTA maps corresponding to IOD event year composites 

are characteristic of the corresponding EOF patterns described previously (e.g. Saji et 

al. 1999). However, we believe these composite maps do not characterise the IOD 

pattern in isolation from other climate signals – in particular, ENSO. Rather, these 

IOD event year composites contain substantial ENSO dependence, which dominates 

the Indo-Pacific region, as well as SSTA contributions from the subtropical Indian 

Ocean. In the following section, we provide and trial a method that isolates the Indian 

Ocean Dipole signal from ENSO in the spatial domain.  

3.3 Decomposing climate data 

 For a better understanding of the net influence of the primary Indian Ocean 

climate signal on the larger Indian to Southwest Pacific Ocean region, we regressed 

monthly SSTAs across all spatial grid cells (2.5˚x2.5˚) across the region, on DMI and 

DMINOENSO. This approach allows us to examine the ENSO-independent IOD event 

year contributions as a composite of SSTAs across the Indo-Pacific region. The on 

DMINOENSO regressed SSTA fields (Fig. 4e,f), corresponding to the peak timing 

(SON) of the characteristic IOD pattern, reveal that most of the spatial pattern 

contributions from the Pacific that were evident in the original (cf. Fig. 4a,b) and on 

the DMI regressed composite SSTA fields (cf. Fig. 4c,d) for the IOD event years have 

been filtered out. The extension of the dipole pattern towards the subtropical regions 

of the Indian Ocean that existed previously within the IOD composite maps also 
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disappears, suggesting that this extended feature is an ENSO-linked response. This 

method has great utility as it can be applied usefully to any climate variable in order 

to extract the ENSO-independent climatic field contributions in space and time. 

Further the method is generic as it can be applied to separate out any climate signals, 

specified by the framing and context of the task. 

4 IOD effect on Australian region TCG counts 

4.1 Effects of ENSO and IOD on Australian region TCG counts 

 The effect of ENSO on TC occurrences in the Australian region has been 

analysed extensively (e.g., Nicholls 1984; Evans and Allan 1992; Basher and Zheng 

1995; Kuleshov et al. 2008; Ramsay et al. 2008; Kuleshov et al. 2009). Ramsay et al. 

(2008) demonstrated that the NINO4 index provides a useful simple metric of ENSO 

that relates most strongly with TCG in the Australian region. Taking account of this 

finding, we also used NINO4 in the present study as the regional-specific ENSO 

index most appropriate to forecast Australian region TCG. 

 Fig. 5 provides an inventory of correlations between three-monthly means of the 

selected climate indices and Australian region annual TCG occurrences. In Table 2 

the strongest correlations between annual TCG counts and the three-month averaged 

climate indices prior to the Australian TC season onset (November) are provided. It is 

not surprising that NINO4 provides the strongest correlations with annual TCG counts 

in the Australian region with a correlation coefficient of r = -0.69 during August-

September-October (ASO). These results corroborate findings from previous studies 

(e.g., Nicholls 1984; Ramsay et al. 2008).  
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 Notwithstanding the dominant pre-seasonal ENSO contribution to Australian 

region annual TCG counts provided by NINO4, which explains 48% of the variance 

in annual TCG frequency, the DMINOENSO correlates most strongly with annual TCG 

counts around its peak also during ASO ahead of the upcoming season (r = -0.45; 

significant at the 99% confidence level), with the ENSO-independent IOD explaining 

20% of the variance in annual TCG counts. The original (standard) DMI time series is 

mere strongly correlated with annual TCG counts during JAS/ASO with correlation 

coefficients as high as -0.6. While the sign (-) and timing is consistent with our 

DMINOENSO from early austral winter to early summer, the far stronger correlations 

between the standard DMI and TCG over DMINOENSO is due to the implicit 

contribution from ENSO in the original DMI time series that represents the stronger 

predictor of Australian region TCG occurrences.  

4.2 Predictive model of TCG counts  

Our results suggest that a combination of complementary Pacific and Indian 

Ocean centred indices may have the potential to forecast annual TCG counts in the 

Australian region better than an ENSO-only based model. To investigate this further, 

we perform a multiple linear regression analysis of annual TCG counts on the ENSO 

and non-ENSO predictor indices and their combinations. We chose the TC pre-

seasonal three-monthly indices averaged over ASO, as then all indices correlated most 

strongly with the Australian region TCG time series (Table 2; Fig. 5). These predictor 

indices were used in the multiple linear regression model TCGtotals(t) = bo + 

#bn*predictorn(t), where predictorn is the nth SSTA predictor time series for the 

upcoming TC season t, and bo and bn are the corresponding regression coefficients. To 

quality assure the TCG forecast (hindcast) estimates and to identify the best model, a 
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leave-one-out cross-validation technique was applied. This method trains the model 

on n-1 years to ‘hindcast’ the left-out year (e.g., Stone 1974) and quantifies the 

potential predictive skill of the selected climate predictor indices by calculating the 

root-mean-squared error (RMSE; e.g., Elsner and Jagger 2006) and the standard error 

(se). Correlation coefficients between the observations and the cross-validated 

hindcasts are indicative of the quality and potential forecast utility of the selected 

climate variables for TCG occurrence (Table 2). Despite the stronger individual 

hindcast skill of DMI over DMINOENSO, we find the NINO4+DMINOENSO model 

performs just as good as NINO4+DMI, with both not adding significant skill to the 

NINO4-only model. Fig. 6a presents the observed annual TCG counts and leave-one 

out cross-validated model hindcasts of annual TCG counts for the 

NINO4+DMINOENSO model. Fig. 6b illustrates the relatively small differences 

between the combined and the NINO4-only models via the residuals between the 

TCG observations and model hindcasts. In 10 of the 40 investigated seasons (25%), 

the DMINOENSO improves the hindcast, hile in 10 seasons (25%) the NINO4-only 

model is more skilful. Hence, overall the ENSO-independent IOD provides only 

marginal additive skill that is insignificant above the ENSO variance. Correlations 

between the observed Australian region TCG counts and the cross-validated model 

hindcasts improved only slightly from r = 0.67 (NINO4-only model) to r = 0.68 

(NINO4+DMINOENSO model), with corresponding small reductions in the standard 

error and RMSE (Table 2).  

5 Summary and Discussion 

The dominant large-scale modes of interannual SST variablility in the tropical 

Pacific and Indian Oceans during austral spring and summer are El Niño-Southern 
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Oscillation (ENSO) and the Indian Ocean Dipole (IOD). Both climate modes have 

been shown to affect the climate and precipitation of Australia (Meyers et al. 2007). 

In the present study, we isolated and combined the contributions from the IOD and 

ENSO to understand their respective roles in influencing tropical cyclone formation 

(genesis; TCG) annual counts in the Australian region.  

Previous research suggests that El Niño usually occurs in combination with 

positive IOD events, and conversely La Niña with negative IOD events, albeit with 

exceptions (Meyers et al. 2007). Various studies have attempted to untangle the 

relationship between ENSO and the IOD, and have endeavoured to evaluate the 

relative independence of these climate signals as modes of variability (e.g., Saji et al. 

2005; Meyers et al. 2007; Ummenhofer et al. 2009). For example, previous studies 

have shown that using a partial correlation approach applied to rainfall or temperature 

variations (Ashok et al. 2003; Saji et al. 2005; Risbey et al. 2009) removes only the 

direct (zero-lag) effects of ENSO (in terms of the widely used sea level pressure 

gradient, the Southern Oscillation index) or IOD (through the Dipole Mode index). 

Hence, lag and lead effects were ignored. Meyers et al. (2007) instead used a lagged 

EOF approach to remove lagged correlations, by firstly shifting the time series 

describing ENSO and IOD toward the highest correlations with the NINO3 SSTA 

time series, and then decomposing the data using an EOF analysis on the entire time 

series. The first EOF (the ENSO mode) was then removed. While this method 

demonstrates one way of addressing the problem of lagged interactions between the 

IOD and ENSO, it only removes one fixed lag or lead-time shift despite its 

complexity. It is also well understood that ENSO and IOD events do not evolve at 

exactly the same ‘rate’, i.e., ENSO and IOD events peak at different times (Meyers et 

al. 2007). Consequently, we cannot assume that lagged interactions between events, 
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taken individually or collectively, will always occur on the same timescale. Hence, 

this method is unable to capture the substantial variances in physical interactions 

between ENSO and the IOD spanning over multiple phases. We further note that 

using the EOF method to decompose these time series means that interannual and 

inter-decadal variations in the Pacific will be expected to separate into two different 

modes. Even after removing the leading EOF, decadal variations of ENSO are still 

present in the IOD time series (Meyers et al. 2007).  

 All these problems are avoided in the approach introduced in the present study, 

which applies a lagged regression of NINO3.4 on the IOD index, the DMI, and 

removes the ENSO-dependent lagged components to produce an ENSO-independent 

IOD index, which we call DMINOENSO. Lead and lag relationships between ENSO and 

the IOD are taken into account up to eight months prior and post, and can be readily 

extended to shorter or longer lead/lags where deemed to be important. Further, the 

method can be potentially applied usefully to any climate variable in order to extract 

the ENSO-independent IOD climatic field contributions in both space and time. 

Another advantage of this method is its utility to extract any climate signal in order to 

isolate selected climate effects. In our application of the method, we found significant 

cross-correlations between NINO3.4 and the DMI of from one-month lead to five-

months lag. We found that by regressing the DMI on the NINO3.4 time series at leads 

and lags up to eight months, and subtracting the sum of these contributions from the 

DMI time series, the method is effective and efficient in removing the ENSO signal 

from the Indian Ocean Dipole SSTA index. In comparison to the previous study by 

Ummenhofer et al. (2009), we found important differences in the classification of 

IOD events. Notwithstanding, the September-October-November averaged SSTA 

composite maps of IOD-events presented here (Fig. 4) clearly show the isolated IOD 
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SSTA variations as being concentrated in the tropical Indian Ocean. This method is 

successful in better separating the influences of ENSO and IOD in order to investigate 

the importance of the Indian Ocean Dipole on Australian region TCG. 

Ramsay et al. (2008) recently showed that out of all ENSO indices readily 

available, NINO4 is the best climate index predictor of Australian region annual TCG 

counts with a correlation coefficient between August-September-October (ASO) 

averaged NINO4 region SSTA and annual TCG counts of r = -0.73 for the 36-year 

period 1970-2005. For our longer 40-year period of 1968-2007, there remains a 

strong, albeit weaker, relationship between ASO averaged NINO4 and the Australian 

region annual TCG counts with r = -0.69 (significant at the 99% level). We attribute a 

proportion of the difference between these correlations to the longer time period of 

this study, and our use of the more recent released and quality-improved IBTrACS TC 

data set. We also found significant correlations (at the 99% level) between the pre-

seasonal ASO averaged DMI and DMINOENSO with Australian region TCG, with r = -

0.60 and r = -0.45 respectively.  

To evaluate the contribution of various climate drivers on Australian region 

TCG, we developed a multiple linear regression model using a leave-one-out cross-

validation approach. We found that IOD has significant hindcast skill (on the 95% 

confidence level) of Australian annual TCG counts, with the original DMI performing 

better than DMINOENSO (Table 2). An ENSO+IOD multiple linear regression model 

provides a slight improvement of potential forecast skill over an ENSO-only model 

(Fig. 6). Correlations between model cross-validated hindcasts and observations of 

TCG counts are r = 0.68 for the NINO4+DMINOENSO model compared to r = 0.67 for 

the NINO4-only model. Liu and Chan (2010) included both the original DMI and 

NINO4 as predictors in their seasonal forecast model for Australian region TCG 
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counts, however they remained inconclusive about the role of the IOD on TC activity 

and did not investigate the additional contribution of DMI over NINO4. Also they 

indicate that while the IOD may influence TC activity in the Australian region, the 

mechanisms are unclear and that further work was required to understand any 

potential IOD mechanisms. Our study provides extra work showing that a truly 

ENSO-independent IOD is relatively unimportant to Australian region TCG 

compared with ENSO, but nevertheless improves the model slightly, albeit 

insignificantly. More importantly, the ASO averaged original DMI time series alone 

shows good hindcast skill of observed Australian TCG counts, but did not add more 

value to the ENSO-models as did the ENSO-independent DMINOENSO. This highlights, 

that the better TCG hindcast skill of DMI over DMINOENSO is solely due to the 

original DMI’s inter-dependency to ENSO. We note that, this analysis is simply, 

nevertheless one application of the approach introduced in this paper.  

In summary, we have presented a simple and effective method for removing 

ENSO-related variations from the IOD signal using lagged regression. A new ENSO-

independent Indian Ocean Dipole SSTA index (DMINOENSO) has been generated that 

has important differences to the original Dipole Mode index, providing an IOD event 

classification that differs from previous definitions. Regression of DMINOENSO on SST 

across space and time isolates a much purer Indian Ocean pattern contribution than 

has been shown previously. We believe there is great utility in this approach 

presented, with the new time series being of value for other public research. Finally, 

our study shows that Australian region tropical cyclone formation appears to be 

influenced by our purer Indian Ocean ‘mode’ (significant at the 99% confidence 

level). Further it has significant hindcast skill (on the 95% confidence level) of 

Australian TCG counts and adds value to an ENSO-only TCG forecast model. 
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However, ENSO remains the dominant climate player in Australian region TCG, with 

the IOD only adds marginal hindcast skill that is not significant above the background 

ENSO variance. 
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Table 1 Positive and negative IOD events and their coincidence with El Niño or 

La Niña years between 1968-2007. The year identified as El Niño/La Niña 

corresponds to its year of onset. Also indicated are the IOD event years as classified 

by Ummenhofer et al. (2009), with matching event years indicated in bold. The +/- 

sign in brackets indicate the positive/negative IOD event as classified in that previous 

study 

 

 

 

 El Niño  neutral La Niña 

IOD+ 1972, 1976, 1991, 
1994, 1997, 2006 
 

 1983, 1999, 2000,  
2007 

neutral 1977, 1982(+), 1987 1978(+),1979,1993,  
2001, 2003, 2005 

1970, 1971, 1973,  
1975(-), 1988(-), 1995, 
1998 

IOD- 1968, 1969, 1986, 
2002, 2004  

1980, 1981, 1989,  
1990, 1992, 1996 

1974, 1984, 1985 
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Table 2 Strongest correlation coefficients r(max) between three-month SSTA 

index means (prior to the Australian TC season onset; here ASO) and Australian 

region annual TCG counts (all significant at the 99% confidence level). Also shown 

are correlation coefficients r(CV) between the model cross-validated hindcasts of 

annual TCG counts (using the leave-one out method) and the observed annual TCG 

counts over the 40-year record 1968/69-2007/08 (all significant at the 95% confidence 

level). The standard error (se) and root-mean-squared error (RMSE) for each of the 

models are also provided. The strongest models are indicated in bold. Statistical 

significance takes account of serial correlation according to Davis (1976) 

 r(max) r(CV) se RMSE 

NINO3.4 -0.58 0.50 0.68 4.23 
NINO4 -0.69 0.67 0.59 4.65 
DMI -0.60 0.54 0.66 4.13 
DMINOENSO -0.45 0.39 0.72 4.50 
NINO3.4+DMI   0.58 0.64 4.02 
NINO3.4+DMINOENSO  0.58 0.64 4.02 
NINO4+DMI   0.68 0.58 3.60 
NINO4+DMINOENSO  0.68 0.58 3.60 
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FIG. CAPTIONS 

Fig.1 (a) Spatial distribution of the first recorded location of tropical storm 

systems with winds exceeding 34 knots (17.5 ms-1) in the Australian region from 

1968/69-2007/08. (b) The corresponding time series of annual Australian region TCG 

counts 

Fig.2 Absolute values of cross-correlation coefficients between the three-

monthly averaged NINO3.4 SSTA and DMI from 1968-2007, at monthly leads and 

lags up to a maximum of 10 months. Dashed lines show the p-values of the 

correlations, while the solid horizontal line indicates the p = 0.05 level. Positive 

(negative) lags indicate the DMI leading (lagging) NINO3.4. Note that the p-value 

axis is flipped for visualisation purposes 

Fig.3 Normalised three-month running mean SSTA time series for the 40-year 

period 1968-2007. Dashed lines indicate one standard deviation in the time series, to 

be used as thresholds for the identification of ENSO-independent IOD events. (a) 

DMI and DMINOENSO time series are shown (r = 0.87, significant at 99% level). (b) The 

NINO3.4 and ‘residual’ time series, DMIRESIDUAL (removed following lagged 

regression of DMI on NINO3.4) are shown (r = 0.62, significant at the 99% level) 

Fig.4 Composite maps of SSTA (°C) during the peak IOD (SON) period for (a) 

positive IOD events, and (b) negative IOD events. Events are classified as in Table 1. 

(c),(d) as in (a),(b) but with SSTA (°C) regressed on the original DMI and (e),(f) 

SSTA (˚C) regressed on DMINOENSO 

Fig.5 Correlation coefficient between Australian region annual TCG counts and 

selected SSTA index time series from January-February-March (JFM) prior to the 
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onset of the TCG season through to the post-TCG period of April-May-June (AMJ). 

The vertical dashed lines indicate the start and end of the IOD season 

Fig.6 (a) Time series of observed annual TCG counts (solid line) and hold-one 

out cross-validated hindcasts of Australian region annual TCG counts (dashed line) 

for the NINO4+DMINOENSO model. Shading indicates the variance in the model results. 

(b) Residuals between the annual TCG observations and model hindcasts of the 

NINO4-only and the NINO4+DMINOENSO models 
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FIGURES 

 
Fig.1 (a) Spatial distribution of the first recorded location of tropical storm 

systems with winds exceeding 34 knots (17.5 ms-1) in the Australian region from 
1968/69-2007/08. (b) The corresponding time series of annual Australian region TCG 
counts 
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Fig.2 Absolute values of cross-correlation coefficients between the three-

monthly averaged NINO3.4 SSTA and DMI from 1968-2007, at monthly leads and 
lags up to a maximum of 10 months. Dashed lines show the p-values of the 
correlations, while the solid horizontal line indicates the p = 0.05 level. Positive 
(negative) lags indicate the DMI leading (lagging) NINO3.4. Note that the p-value 
axis is flipped for visualisation purposes 
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Fig.3 Normalised three-month running mean SSTA time series for the 40-year 

period 1968-2007. Dashed lines indicate one standard deviation in the time series, to 
be used as thresholds for the identification of ENSO-independent IOD events. (a) 
DMI and DMINOENSO time series are shown (r = 0.87, significant at 99% level). (b) The 
NINO3.4 and ‘residual’ time series, DMIRESIDUAL (removed following lagged 
regression of DMI on NINO3.4) are shown (r = 0.62, significant at the 99% level) 
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Fig.4 Composite maps of SSTA (°C) during the peak IOD (SON) period for (a) 

positive IOD events, and (b) negative IOD events. Events are classified as in Table 1. 
(c),(d) as in (a),(b) but with SSTA (°C) regressed on the original DMI and (e),(f) 
SSTA (˚C) regressed on DMINOENSO 
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Fig.5 Correlation coefficient between Australian region annual TCG counts and 

selected SSTA index time series from January-February-March (JFM) prior to the 
onset of the TCG season through to the post-TCG period of April-May-June (AMJ). 
The vertical dashed lines indicate the start and end of the IOD season 
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Fig.6 (a) Time series of observed annual TCG counts (solid line) and hold-one 

out cross-validated hindcasts of Australian region annual TCG counts (dashed line) 
for the NINO4+DMINOENSO model. Shading indicates the variance in the model results. 
(b) Residuals between the annual TCG observations and model hindcasts of the 
NINO4-only and the NINO4+DMINOENSO models 
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3.3 Further Discussion 

The IOD is a large-scale ocean-atmosphere phenomenon in the tropical Indian 

Ocean, with impacts that extend over to the tropical and subtropical Pacific regions. 

Therefore it is of interest if the IOD is a useful predictor, not only for the all-

Australian TC region but also for seasonal variations of TCG counts in its subregions. 

For this reason we present here the method introduced in the previous section to test 

the seasonal forecast skill of the ENSO-independent IOD for seasonal variations of 

TCG count in the Western and Eastern Australian subregions. Following Kuleshov et 

al. (2010), the two subregions are divided at 135°E where the least number of TC 

tracks were crossed in the historical records. 

 Fig. 3.1 provides an inventory of correlations between three-monthly means of 

the selected climate indices and annual TCG occurrences in the Australian subregions. 

In Table 3.1 the strongest correlations between annual TCG counts and the three-

month averaged climate indices prior to the Australian TC season onset (November) 

are provided. While correlation coefficients between climate indices and annual TCG 

counts in the Western region show similar correlation coefficients with both NINO3.4 

and NINO4 during August-September-October (ASO), NINO4 correlates strongly 

Figure 3.1 Correlation coefficient between Australian region annual TCG counts 
and selected SSTA index time series from January-February-March (JFM) prior 
to the onset of the TCG season through to the post-TCG period of April-May-
June (AMJ). The vertical dashed lines indicate the start and end of the IOD 
season (JFM) prior to the onset of the TCG season through to the post-TCG 
period of AMJ.  
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with Eastern region TCG during May-June-July (MJJ) with r = -0.64 (significant at 

the 95% confidence level) explaining 41% of the total variance of seasonal TCG 

counts. As for the seasonal variation of TCG counts in the Australian region, the 

original (standard) DMI time series is more strongly correlated with annual TCG 

counts during ASO/September-October-November (SON) with correlation 

coefficients as high as r = -0.54 for the Eastern region and r = -0.44 for the Western 

region, explaining 29% and 19% of the total seasonal TCG count variance 

respectively. As for correlations of Australian region TCG, the sign (-) and timing is 

consistent with our DMINOENSO from early austral winter to early summer, the far 

stronger correlations between the standard DMI and TCG over DMINOENSO is due to 

the implicit contribution from ENSO in the original DMI time series that represents 

the stronger predictor of Australian region TCG occurrences (see Figure 3.1). 

 

 Western region Eastern region 

 R(max) R(CV) se RMSE r(max) r(CV) se RMSE 

NINO3.4 -0.49 
(ASO) 

0.42 0.43 2.69 -0.49 
(MJJ) 

0.40 0.46 2.85 

NINO4 -0.50 
(ASO) 

0.38 0.44 2.77 -0.64 
(JJA) 

0.56 0.41 2.55 

DMI -0.44 
(ASO) 

0.39 0.44 2.73 -0.54 
(ASO) 

0.48 0.43 2.72 

DMINOENSO -0.30 
(ASO) 

0.16 0.47 2.96 -0.43 
(ASO) 

0.39 0.45 2.84 

NINO3.4+DMI  0.38 0.44 2.76  0.47 0.44 2.77 

NINO3.4+DMINOENSO  0.37 0.44 2.77  0.48 0.44 2.74 

NINO4+ DMI  0.35 0.45 2.83  0.56 0.41 2.58 

NINO4+DMINOENSO  0.39 0.44 2.77  0.61 0.39 2.44 

Table 3.1 Strongest correlation coefficients r(max) between three-month SSTA 
index means (prior to the Australian TC season onset; here ASO) and Western 
and Eastern Australian region annual TCG counts (all significant at the 95% 
confidence level are indicated bold). Also shown are the correlations, r(CV), 
between the model cross-validated hindcasts of annual TCG counts (using the 
leave-one out method) and the observed annual TCG counts over the 40-year 
record 1968/69-2007/08 (all significant at the 95% confidence level). The 
standard error (se) and root-mean-squared error (RMSE) for each of the models 
are also provided. The strongest models are indicated in bold. Statistical 
significance takes account of serial correlation according to Davis (1976). 
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 A multiple linear regression was applied and the cross-validated (leave-one out 

method) forecast skill of the predictor indices are shown in Table 3.1. In the Western 

Australian (eastern Indian Ocean) region, the NINO3.4 model provides the strongest 

correlations between observed annual TCG counts and cross-validated hindcasts with 

r = 0.42, a skill score of SS = 18.3% and the smallest RMSE = 2.69. Despite the 

stronger individual hindcast skill of DMI over DMINOENSO, we find the 

NINO4+DMINOENSO model performs best for the Eastern Australian (southwest 

Pacific) subregion with the correlation between annual TCG count observations and 

cross-validated hindcast of r = 0.61 and a RMSE = 2.44 (Table 3.1). A total skill score 

of SS = 36.9% was achieved with the NINO4+DMINOENSO model in the eastern 

Australian TC region over SS = 31.4% with the NINO4-only model.  

 In summary, the IOD – while showing some individual hindcast skill - does 

not have any additional hindcast skill over ENSO for annual TCG counts in the 

Western Australian region. In the Eastern region, the IOD adds skill, with the ENSO-

independent IOD being even more skilful than the original ENSO-dependent DMI 

time-series. There the strongest predictor combination was shown to be 

NINO4+DMINOENSO. 
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3.4 Chapter Summary 

 This chapter addressed the thesis aims of the development of a simple, but 

effective method to separate the IOD from ENSO to estimate the statistical 

independency of IOD from ENSO. Also the individual and with ENSO measures 

combined forecast skill of the original IOD signal and the ENSO-independent IOD 

predictor of seasonal variations in TCG for the Australian region and subregions were 

quantified. 

 In detail we have presented a new method for extracting ENSO from the IOD 

and have shown that the IOD has a statistical ENSO-independent component 

important for Australian region TCG count variations. The IOD has relevant pre-

seasonal cross-validated hindcast skill of annual TCG counts in the Australian region, 

but also in its subregions. When combining the skill with ENSO indices in a multiple 

linear regression model, additional hindcast skill of the IOD is marginal over the 

standard ENSO predictors for the Australian region and Western Australian subregion. 

In the Eastern Australian subregion, DMINOENSO adds substantial skill and hence 

improves the cross-validated TCG count hindcasts. 
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4. DEVELOPMENT OF STATISTICAL SEASONAL FORECAST MODELS 

FOR TROPICAL CYCLONE OCCURRENCES IN THE AUSTRALIAN 

REGION AND SUBREGIONS 

4.1 Chapter Overview 

 This chapter introduces a Bayesian forecast model of Australian region annual 

TCG counts based on observational data from 1968/69-2007/08. To include 

climatological information in the most meaningful way possible, spatial correlations 

(prior to the TC season) between climate variables and seasonal TCG counts were 

analysed on the basis of persistent pattern indices derived and tested as predictors. A 

step-by-step predictor selection based on the probabilistic root-mean squared error 

(RMSE) ensured the most skilful model was taken into account. The final model, 

based on indices of convective available potential energy, meridional winds at 850hPa 

and geopotential height at 500hPa, shows considerable skill in hindcasting annual TCG 

counts for both the Australian region and Eastern Australian subregions. A separate 

model for the Western Australian subregion, based on indices of sea level pressure and 

meridional winds at 850hPa, substantially improves the hindcast skill in the eastern 

Indian Ocean (Western Australian) region. 

 

 The main text of this section is a paper accepted by the Journal of Climate 

(Werner and Holbrook 2011a: A Bayesian forecast model of Australian region tropical 

cyclone formation - accepted by the Journal of Climate). The second part of this 

chapter discusses the differences between the frequentist and Bayesian approaches, 

and the model skill for Australian subregions when divided at 135°E. The final part of 

this chapter is a paper being prepared for submission to the Geophysical Research 

Letters (Werner and Holbrook 2011b: How to improve seasonal forecast modelling of 

tropical cyclone formation in the southeast Indian Ocean, in preparation for 

Geophysical Research Letters) with a subsequent further discussion. 
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Candidate’s contribution to the papers 

The experiment design and analysis methods were the candidate’s ideas and then 

jointly discussed between Dr Holbrook and myself. I also performed all of the data 

analysis. All sections of the coauthored Journal of Climate and Geophysical Research 

Letters papers and the ongoing review process were led by myself under the guidance 

of Dr Holbrook. 
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Abstract 

A new and potentially skilful seasonal forecast model of tropical cyclone formation 

(genesis, TCG) is developed for the Australian region. The model is based on Poisson 

regression using the Bayesian approach. Predictor combinations are chosen using a 

step-by-step predictor selection. The three-predictor model based on derived indices 

of June-July-August average convective available potential energy, May-June-July 

average meridional winds at 850 hPa (v850) and July-August-September geopotential 

height at 500 hPa produces the smallest standard error (se = 0.36) and root-mean-

squared error (RMSE = 5.20) for the leave-one-out cross-validated TCG hindcasts 

over the 40-year record between 1968/89-2007/08. The corresponding correlation 

coefficient between observed annual TCG totals and cross-validated model hindcasts is 

r = 0.73. Using four-fold cross-validation, model hindcast skill is robust with 85% of 

the observed seasonal TCG totals hindcast within the model standard deviations. 

Seasonal TCG totals during ENSO events are typically well captured with RMSE = 

5.14 during El Niño and RMSE = 6.04 during La Niña years.  The model is shown to 

be valuable in hindcasting seasonal TCG totals in the Eastern Australian subregion (r 

= 0.73) and also provides some skill for the Western Australian region (r = 42), while 

it not useful for the Northern region. In summary, we find that the three-predictor 

Bayesian model provides substantial improvement over existing statistical TCG 

forecast models, with remarkably skilful hindcasts (forecasts) of Australian region and 

subregional seasonal TCG totals provided one month ahead of the TC season. 
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1. Introduction   
 
Australia’s tropical climate is dominated by the El Niño-Southern Oscillation 

(ENSO), that is driven largely from the Pacific basin (e.g., Allan et al. 1996). The 

relationship between ENSO and Australian region tropical cyclone formation 

(genesis, TCG) has been reported extensively (e.g., Nicholls 1984; Basher and Zheng 

1995; Kuleshov and de Hoedt 2003; Ramsay et al. 2008; Kuleshov et al. 2009). 

Ramsay et al. (2008) argue that, next to sea surface temperature (SST), vertical zonal 

wind shear from 850 hPa to 200 hPa and low-level relative vorticity are the main 

ENSO-related factors affecting Australian region TCG. Kuleshov et al. (2009) 

confirmed these results, but added relative humidity in the mid-troposphere as a major 

contributor. Seasonally, the Australian monsoon trough (Intertropical Convergence 

Zone) plays an important role in TCG in this region (McBride and Keenan 1982). It 

has also been shown that the effect of ENSO-linked dynamics on TCG occurs through 

a strong relationship between the monsoon trough and ENSO via atmospheric bridge 

processes (Evans and Allan 1992). 

Since the late 1970s/early 1980s, a number of statistical seasonal forecast 

schemes have been developed and improved to predict TC activity in various basins 

and sub-basins (Klotzbach et al. 2010). In particular, seasonal forecast modeling of 

TC activity was first undertaken by Nicholls (1979) for the Australian region and 

Gray (1984) for the North Atlantic. In later studies by Gray et al. (1992, 1994), 

climatic relationships with hurricane activity in the North Atlantic are based on 

metrics, such as the Quasi-Biennial Oscillation and African rainfall. A link between 

intense hurricanes and the Sahel monsoon rainfall was also established (Landsea and 

Gray 1992). The skill of Gray’s operational Atlantic seasonal TC forecasts for the 
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analyzed period from 1984–2001 relative to climatology and persistence was 

confirmed and improved (e.g., Owens and Landsea 2003; Saunders and Lea 2005; 

Klotzbach 2007). Other relevant North Atlantic statistical forecasts include model 

predictions of hurricane counts using Poisson regression models (e.g., Elsner and 

Schmertmann 1993; Lehmiller et al. 1997). The Poisson method was later extended 

using a Bayesian approach to investigate seasonal TC counts and landfall over the 

USA (e.g., Elsner and Jagger 2004, 2006). This approach has also been used most 

recently to improve multi-season forecasting of Atlantic hurricane activity (Elsner et 

al. 2008) and seasonal forecasting of TCs affecting the Fiji, Samoa and Tonga regions 

(Chand et al. 2010) and the central North Pacific (Chu and Zhao 2007). In the 

northwest Pacific, projection pursuit regression has been used to forecast seasonal TC 

totals and associated TC predictands (e.g., Chan et al. 1998; Chan and Shi 1999; Chan 

et al. 2001). A statistical scheme based on ENSO related indices was later developed 

for predicting the annual number of TCs making landfall along the south China coast 

(Liu and Chan 2003). Most recently, modes from an empirical orthogonal analysis of 

climate factors have been used as predictors of TC behavior in a statistical model also 

for the South China region (Goh and Chan 2010). 

For the Australian region, Nicholls (1979) showed that the austral winter to 

spring anomalies of sea level pressure at Darwin are highly correlated with early 

season Australian region tropical cyclone activity, and to a lesser extent with total 

seasonal TC activity. Subsequent research, and operational testing, confirmed the 

strong link with the ENSO metric, the Southern Oscillation index (SOI; Nicholls 

1984, 1985, 1992; Drosdowsky and Woodcock 1991; Ready and Woodcock, 1992). 

Solow and Nicholls (1990) presented the first Poisson regression based statistical 

forecast model for the Australian region. They used the SOI as the predictor of 
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Australian region total TC counts. More recently, a Poisson regression model using 

SOI and the September lead saturated equivalent potential temperature gradient 

between 1000 hPa and 500 hPa was developed to forecast upcoming season TCG 

totals across the Australian region (McDonnell and Holbrook 2004a,b). This model 

has also been applied to forecast subregional TCG totals in the eastern Indian Ocean, 

Northern Australia and southwest Pacific regions (e.g., McDonnell et al. 2006). On 

intra-seasonal time scales, Leroy and Wheeler (2008) developed a logistic regression 

model for TC development in the Australian region. As predictors, they used the two 

dominant varimax rotated modes of SST anomalies for the Indo-Pacific region, as 

well as an index describing variations in the Madden-Julian Oscillation. 

This paper presents a new Australian region statistical seasonal TCG 

forecasting scheme that shows considerable promise based on a comprehensive 

assessment of its cross-validated hindcast skill, with high correlations identified 

between hindcast and observed seasonal TCG counts (r = 0.73) and a low standard 

error (se = 0.36). This is a substantial improvement in cross-validated hindcast skill 

over previous studies with correlations between cross-validated hindcasts and 

observations of TC counts ranging from r = 0.44 to r = 0.60 (e.g., Solow and Nicholls 

1990; Nicholls 1992; McDonnell and Holbrook 2004b). Following previous 

successful studies across different basins (e.g., Elsner and Jagger 2006; Chu and Zhao 

2007; Chand et al. 2010), the model developed here is based on the Poisson regression 

using a Bayesian approach. The Bayesian inference enables us to characterize the 

uncertainties of the model parameters by a posterior distribution after taking observed 

data into account. Predictors for the model are carefully selected indices of 

atmospheric parameters known to affect TC formation. A step-by-step predictor 

selection based on the RMSE calculated from the cross-validated hindcasts ensures 
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the best combination of predictors. We show that this model makes significant 

advances on previous statistical schemes used in the Australian region. 

The paper is structured as follows. Section 2 describes the data and variables 

used. Section 3 introduces the prediction schemes applied as the basis for predictor 

selection. The model set-up and the techniques used are outlined in section 4. Section 

5 presents the model results, and finally section 6 discusses and summarizes the 

quality and improvements of the models presented over existing models.  

2. Data 

a. Tropical cyclone observations 

This study takes advantage of the global TC best track data set IBTrACS.v02 (Knapp 

et al. 2010) provided by the U.S. National Oceanic and Atmospheric Administration. 

TCG is defined to occur when and where a tropical storm system with winds 

exceeding 34 knots (17.5 ms-1) is first recorded.  

The Australian (tropical cyclone) region is defined here as spanning between 0°-

30°S and 90°-170°E. Following Dare and Davidson (2004), the Australian region is 

also divided into three subregions: a Western region from 90°-125°E, a Northern 

region from 125°-142.5°E, and an Eastern region from 142.5°-170°E (Fig. 1). TCG 

occurrences identified poleward of 30°S, or over land, have been removed in the 

quality assessment process. Only storms during the Australian TC season from 

November to April are taken into account. Overall, a total of 570 TCs during the 40-

year period from 1968/69-2007/08 are analyzed following the quality control. Figure 

1 shows the spatial distribution of quality assured TCG points and corresponding time 

series of seasonal TCG totals in the 40-year record. 
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b. Oceanic and atmospheric data 

In this study, SST data were taken from uniformly gridded temperature observations 

provided in the Hadley Centre Global Sea Ice and Sea Surface Temperature 

(HadISST1) dataset (Rayner et al. 2003), compiled by the UK Met Office Hadley 

Centre. HadISST1 is a combination of global monthly SST fields and sea ice 

concentrations on a 1° ! 1° grid from 1870 to the present.  

 The atmospheric data analyzed in this study are from the NCEP/NCAR monthly 

mean upper-air reanalyses, with 2.5° horizontal resolution on 17 pressure levels 

(Kalnay et al. 1996). In total, eight variables were analyzed as potential TCG 

predictors describing the thermodynamic and dynamic condition of the ocean and 

atmosphere across a large portion of the Indo-Pacific region from 30°N-50°S, 30°E-

70°W. Monthly anomalies of all variables were determined against a 30-year base 

period of 1970-1999. Statistical significances of the correlation coefficients are based 

on the reduced effective number of degrees of freedom method outlined by Davis 

(1976).  

c. Thermodynamic and dynamic parameters 

1) THERMODYNAMIC PARAMETERS 

Four thermodynamic parameters were selected. These are SST, geopotential height at 

500 hPa (GPH), convective available potential energy calculated between 850 hPa 

and 300 hPa (CAPE), and the (non-saturated) equivalent potential temperature 

gradient between 1000 hPa and 500 hPa (EPT). The ocean temperature, and therefore 

the potentially available moist convection due to evaporation, is described by the SST 

(oC or K). To identify the low to mid-troposphere temperature, we examined the GPH 

(m). The stability of the troposphere, which characterizes the likelihood of deep 
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convection, is measured by CAPE (m2 s-2) defined as  

! 

CAPE = g Tm "T
T

dz
z(850hPa )

z(300hPa )

#   ,      (1) 

where z(850hPa) is assumed the approximate level of free convection and z(300hPa) 

the level of neutral buoyancy. T is a function of pressure level height (z) and is 

defined as the environmental temperature, Tm is the temperature of an idealized rising 

air parcel which is assumed to be saturated at the 850 hPa level, and g = 9.81 m s-2 is 

the standard gravity constant. 

EPT (K) describes the enthalpy between two layers and, in the present context, 

the likelihood to form cloud clusters. It is defined as 
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where T (K) is the temperature and RH (%) the relative humidity – with both variables 

dependent on the pressure level. The constants are: the latent heat of vaporization Lv = 

2.5 x 106 J kg-1, the specific heat at constant pressure cp = 1004 J kg-1 K-1, the 

saturation vapor pressure at triple point estr = 6.11 hPa, the gas constant for vapor Rv = 

461 J kg-1 K-1, and the triple point temperature Ttr = 273.16 K. Relatively moist layers 

in the lower- and mid-troposphere (RH between 700 hPa and 500 hPa) are essential, 

as dry mid levels suppress the continuing development of widespread deep convection 

– i.e., EPT is highly dependent on RH.  

2) DYNAMIC PARAMETERS 
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Four dynamic parameters were also analyzed. These are the zonal and meridional 

winds at 850 hPa (u850, v850), the environmental vertical wind shear between 850 hPa 

and 200 hPa (EVWS), and the relative vorticity at 850 hPa (RV). The 850 hPa 

pressure level was chosen as the lower dynamic level to avoid effects of the boundary 

layer and thus focus on atmospheric interior geostrophic flows. It is imperative that 

EVWS (m s-1), defined as  

  

! 

EVWS = u200 " u850( )2 + v200 " v850( )2   ,      (4) 

is weak, otherwise convection within the TC eyewall cannot develop or persist. Also 

an existing negative (Southern Hemisphere) RV - such as a small cyclonic 

atmospheric disturbance, a tropical wave, or a monsoonal trough with convergence - 

is a necessary initial factor to develop a TC. RV (s-1) is defined as:  

  

! 

RV =
"v
"x

#
"u
"y

 ,         (5) 

where u,v (m s-1) are the east and north components of velocity, and x,y (m) are the 

east and north Cartesian displacement directions respectively. Attendant strong 

divergence supports the development of deep convection, which in turn intensifies the 

disturbance into a low-pressure system.  

d. ENSO definitions and effects on TCG  

Ramsay et al. (2008) found the NINO4 SST anomaly (SSTA) index to be the 

strongest ENSO predictor of interannual TC frequency in the Australian region and is 

therefore also included in the present study. NINO4 is defined as the SSTA time 

series averaged spatially between 5°S-5°N and 160°E-150°W.  

 ENSO events are classified according to the definition used by the U.S. National 

Weather Service 



4.2 Werner and Holbrook 2011a; Journal of Climate (accepted) 
 
 

 86 

(<http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.s

html>) using the three-month running mean in the NINO3.4 region. El Niño (La Niña) 

events are defined by the NINO3.4 SSTA exceeding thresholds of ±0.5°C for a 

minimum of five consecutive three-month average overlapping periods (see 

APPENDIX 1).  

3. Prediction schemes 

Figure 2 shows spatial correlation maps between Australian region annual TCG totals 

and the individual predictor variables shown for the June-July-August (JJA) period 

prior to the upcoming TC season. The correlation patterns with the thermal variables 

EPT, CAPE and SST (see corresponding panels in Fig. 2) are characterized by the 

developing ENSO (e.g., Drosdowsky and Chambers 2001) ‘boomerang’ pattern 

across the tropical/subtropical Pacific. This pattern defines regions of enhanced 

convection, contrasted by suppressed convection over the Indian Ocean. GPH shows a 

strong negative correlation pattern throughout the tropics that is maximized in the 

central Indian Ocean. The pattern is consistent with variations in the Intertropical 

Convergence Zone (ITCZ) whereby colder lower- and mid-troposphere air masses 

support convection and the development of TCs. The positive correlations in the 

central subtropical South Pacific are located at the southern tip of the South Pacific 

Convergence Zone and the warm advection region of the semi-permanent South 

Pacific subtropical High. However, interannual variations of the air column in that 

region are mainly driven by changes of the trough in the mid-latitude westerlies 

between 15°S and 45°S in the central South Pacific (Van Loon and Shea 1985). The 

dynamic variables tend to show similar patterns as CAPE, EPT and SST, with a 

change of sign at the eastern boundary of the Australian TC region (bottom four 
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panels of Fig. 2). These patterns describe changes in the Walker and Hadley 

circulations due to changes in ENSO phases. The correlation pattern in the tropical 

Pacific and Indian Ocean between annual TCG totals and u850 imply enhanced TCG in 

the Australian region with a strengthening of the Walker circulation and trade winds. 

The v850 correlation patterns North of the equator in the far eastern Pacific and western 

Indian Ocean suggest enhanced TCG with increased meridional surface inflow into 

the equatorial regions of the eastern and central Pacific, but also into the tropical 

western Indian Ocean. In contrast, the correlation patterns of v850 also describe 

enhanced TCG with weakening of the Hadley circulation in the Pacific warmpool and 

West Pacific regions. The correlation pattern of EVWS and RV with Australian 

region TCG totals mostly reflects the correlation pattern of u850 over the tropical 

central Pacific. Our results imply a stronger (weaker) Walker circulation leading to 

increased (decreased) convection in the Western Pacific Warm Pool area, which is 

more (less) favorable to Australian region TCG.  

 To achieve climatologically relevant predictors, we derived indices for each 

climate predictor variable on the basis of persistence and strength of pre-seasonal 

spatial correlation coefficients. Spatial correlation maps for October-November-

December (OND; Fig. 3) help to identify patterns, which continue to be significant 

after the austral winter till the start of the Australian TC season. The most persistent 

correlations observed for CAPE, EPT and GPH are all located in the subtropical 

central South Pacific, while the used SSTA index (NINO4), u850 and EVWS describe 

variations in the equatorial central Pacific region. The v850 and RV indices correspond 

to the northern inflow region of the Walker cell in the tropical East Pacific. 

Figure 4 presents the correlation coefficients from all three-month overlapping 

periods from January-February-March (JFM), ahead of the following TC season, 
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through to OND at the start of the TC season. We found that all thermal predictors 

generate a strong increase of correlations from March-April-May (MAM) to JJA and 

stay highly correlated with around r = +/-0.5 to the start of the TC season. Correlation 

coefficients between annual TCG totals and CAPE, EPT and NINO4 are all 

statistically significant (at the 95% confidence level) from early spring on, while 

correlation coefficients with GPH only reach 95% significance by May-June-July 

(MJJ). The two wind component indices generate increased correlations with annual 

TCG totals from April-May-June (AMJ; v850) and MJJ (u850), and peak during MJJ and 

June-August-September (JAS), respectively. Correlations between TCG totals and u850 

are statistically significant from AMJ while the ones with v850 only reach correlation 

coefficients significant on 90% confidence level from AMJ on. EVWS shows a strong 

increase in the correlation coefficients from AMJ to JJA (significant at the 95% 

confidence level from MJJ on), and peaks during JAS, slowly decreasing thereafter. 

RV reaches its maximum correlations during JAS (significant at the 95% confidence 

level from AMJ on) and reduces subsequently. The definition of each predictor index, 

as well as the three-month mean of each index best relating to variations in TCG 

totals during the upcoming season, are provided in Table 1. In total, eight predictor 

indices were further investigated. Possible combinations of predictors should be 

complementary and contribute information that adds value. For that reason, predictor 

combinations with correlations of more than ± 0.8 with each other were not included 

in any further analysis due to their collinearity. Here, collinearity was observed 

between RV and v850, as well as between CAPE and EPT. 

4. Bayesian Regression Model 

a. Poisson Regression 
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The Poisson distribution is often used to model the occurrence of rare, discrete events, 

such as tornado counts and the occurrences of droughts or cold spells (e.g., Wilks 

1995). The Poisson distribution also restricts the possible outcomes to non-negative 

integers, making it ideal for modeling tropical cyclone occurrences (Elsner and 

Schmertmann 1993). 

 Following previous studies (e.g., Solow and Nicholls 1990; Elsner and 

Schmertmann 1993; McDonnell and Holbrook 2004a,b; Elsner and Jagger 2006; Chu 

and Zhao 2007; Chand et al. 2010), we applied a Poisson regression approach to 

model TCG totals satisfying  

  

! 

P(Yi = y) =
µi

y exp("µi)
y!

  , y = 0,1,2,…,! ,     (6) 

where 

  

! 

µi = exp("o + (" j xij
j
# ))   .        (7) 

Here, if Y has a Poisson distribution, the logarithm of the expected number of TCG 

occurrences, µ, can be modeled as a linear combination of the predictors xij, with j 

being the specified predictor during the season i. !j is the corresponding Poisson 

regression coefficient, !0 the intercept and y the observed TCG count. In a Poisson 

model, the variance is equal to the mean (µ), with the standard deviation being the 

square root of µ.  

b. Bayesian analysis 

Bayes’ theorem represents a quantification of uncertainty provided by probabilities. 

By comparison, in the frequentist approach, probabilities are seen in terms of 

frequencies of random repeatable events (Wilks 1995). In this study, the Bayesian 

approach is used to predict the seasonal number of TCG occurrences. The Bayes’ 
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theorem is applied to find the best possible model coefficient representation and this 

information is then used to predict the seasonal TCG totals. The observed predictor 

set is denoted as x1:T = {x1,…,xT} and the corresponding seasonal number of TCG 

occurrences, or TCG probability, as y1:T = {y1,…,yT} during the observations 1:T. We 

are interested to find the conditional probability of yT+1 given xT+1 and the model 

coefficients !, p(y|xT+1, !). The model coefficients, !, will be estimated using the 

posterior distribution p(! |x1:T, y1:T).  

The assumptions about the prior knowledge of the model coefficients are 

stated before observing the data xi and yi in the form of a prior probability p(!). As we 

have no, or only little, prior information on the climatic effects of our chosen 

predictors on TCG occurrences, we chose the conservative way of defining the prior 

probability of the model coefficients as almost flat priors. The priors are defined as a 

Gaussian distribution  

! 

p(" j ) = N(" j | µ,# ) =
1
2$# 2

exp %
1
2# 2

(" j % µ)2
& 

' 
( 

) 

* 
+  ,  (8) 

with the mean selected as µ = 0 and the standard deviation ! =100, with !j 

representing the j model coefficients. For the TCG occurrences model, we consider 

the Poisson distribution 

),|(),|( !! iiii xyPoissxyp = .     (9) 

Following Bayes’ rule we get the posterior distribution 
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=
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The posterior probability (Equation 10) allows us to take uncertainties into account 

and predictions are then obtained from 

! 

p(yT+1 | xT+1,") =
1
N

p(yT+1 | xT+1,")
i=1

N
#   ,                       (11) 
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with N being the total number of obtained samples from the posterior distribution. 

To usefully apply the Bayesian approach, and obtain the appropriate values for 

the model coefficients, the use of a sampling method like the Markov Chain Monte 

Carlo (MCMC; Hastings 1970) method is indispensable (Larget and Simon 1999). The 

MCMC simulates direct draws from a probability distribution. There, the previous 

sample values generate randomly the next sample value, which means generating a 

Markov chain. Unlike previous studies (e.g., Elsner and Jagger 2004, 2006; Chu and 

Zhao 2007; Chand et al. 2010), which applied the Gibbs sampler via the open source 

software WinBUGS, we instead used the multivariate slice sampler (Neal 2003), which 

is a form of auxiliary variable technique (Roberts and Rosenthal 1999; see APPENDIX 

2). The model standard deviation was then calculated from the expected number of 

events 

! 

E(yT+1 | xT+1,") as estimated using the average of the mean µ obtained from the 

MCMC samples. The model standard deviation " is then defined as 

! 

"(yT+1 | y1:T ) = E["(yT+1 | xT+1,#) | y1:T ]
+"[E(yT+1 | xT+1,#) | y1:T ]

 ,               (12) 

where the first term is the average process standard deviation and the second term is the 

coefficient uncertainty (Peters et al. 2009). The hindcasted TCG totals are taken as the 

number with the maximum probability from the hindcast distribution. 

To discard the effects of the chosen initial conditions we applied a model burn-in 

of 500 iterations. This relatively short iterative burn-in achieves a quick convergence (see 

Fig. 5). Also, to avoid high autocorrelations and gain statistically independent samples 

out of the iteration process, the samples were thinned so that only every fifth sample was 

taken into account. Finally 5,000 samples were used to estimate the model coefficients 

and obtain the predictions. 

c. Model skill 

To compare the skill of the possible model predictors, a leave-one-out cross-
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validation (e.g., Stone 1974; Elsner and Schmertmann 1993) was performed. In this 

method, the model gets trained using n-1 seasons to hindcast the number of storms 

expected for the one season that has been withheld from the training data set. The 

train-and-test approach is successively repeated to hindcast every season across the 

40-year data set. This enables us to perform an independent hindcast of every season. 

For a better understanding of the robustness of the model results over time, we also 

performed a k-fold cross-validation technique with k = 4. The method splits the data 

into k equal-sized subsets (e.g., Stone 1974; Efron and Gong 1983). For the kth subset, 

the model is developed using the other k-1 data subsets, and then the fitted model is used 

to predict the kth data subset. To validate the skill of the models, the root-mean-square 

error (RMSE) of each model hindcast was calculated (e.g., Elsner and Jagger 2006; 

Chand et al. 2010). The MSE is defined as 

   

! 

MSE =
1
n

pi (k) k " oi( )
k
#

i
#

2
  ,                        (13) 

where n is the total number of seasons and i is the particular season being hindcast 

and used for cross validation, i = 1,…,n. pi is the predicted probability that k TCs 

develop in the hindcast season i, and oi is the number of TCs that were actually 

observed to form in that season. The RMSE is a commonly used metric for the 

potential utility of a predictor or predictor combination in a probabilistic model, with 

small values indicating a good model. It is calculated using the probabilities of the 

independent hindcasts in the leave-one-out cross-validation method. 

 The standard error (se) and the cross-correlation (r) between the predicted and 

observed number of TCs formed in each region provide a measure of the overall 

hindcast skill at the first-order level of the seasonal time series. The final model 

coefficients were estimated based on data from the training period between 1968/69-
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2007/08. 

5. Results 

a. Model predictor selection 

The kernel distributions of the estimated posterior densities of the model coefficients 

aid verification of the likely merit of the predictors. They give an indication of the 

quality of each of the tested predictors. In the ideal case, all sampled coefficients lie 

on either side of the zero line. This shows that the chosen predictor is playing a 

significant role in predicting the events given the sign of the chosen predictor. 

The posterior densities of the climatology and the tested single-predictors over 

the 40-year record are shown in Figure 6. We find that all indices in the present study 

are suitable as TCG predictors. Using the leave-one-out cross-validation technique, 

we calculated the RMSE to help evaluate the model skill. The climatology-only 

model was determined as the uncertainties of the intercept and hindcasts of TCG 

numbers are close to the observational long-term average, with a high RMSE = 6.20 

and se = 0.38. The climatology-only model does not contain any predictive power 

beyond the background state. The best single-predictor is CAPE (RMSE = 5.39, se = 

0.33), while the predictor with the least utility as a single predictor was found to be 

GPH (RMSE = 5.70, se = 0.41; Table 2a). 

In an attempt to further improve the model, we investigated predictor 

combination models using a step-by-step predictor selection based on the calculated 

RMSEs. CAPE was used as the key single-predictor based on its lowest RMSE and 

strongest correlation with TCG. With CAPE as the base, we found that the two-

predictor combinations, CAPE+v850, CAPE+EVWS and CAPE+RV provided further 

reductions to the RMSE to 5.21, 5.33 and 5.21 respectively. The three-predictor 
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model CAPE+v850+GPH provided the lowest errors, with RMSE = 5.20 and se = 0.36 

(Table 2b/3a). Figure 7 shows the 40-year leave-one-out cross-validated (hereafter 

CV40) hindcasts for that model plotted against the observed total number of TCs 

formed in each season. The hindcasted annual TCG count is the number of TCG 

occurrences with the maximum probability in the hindcast distribution as obtained by 

Equation (11). We find that the CAPE+v850+GPH model captures the variability in 

number of cyclones formed within its boundaries of standard deviation, with 80% 

success rate of the CV40 hindcasts and very favourable performance against the 

observed total of TCG occurrences, with the correlation coefficient being r = 0.73 

(Table 2b). This is a substantial improvement in cross-validated hindcast skill of at 

least 21.5% over previous models with correlations between cross-validated hindcasts 

and observations of TC counts ranging from r = 0.44 to r = 0.60 (e.g. Solow and 

Nicholls 1990; Nicholls 1992; McDonnell and Holbrook 2004b). 

b. Four-fold cross-validation 

For a better evaluation of the robustness of the predictor-set, we applied a four-fold 

cross-validation technique. In this method, the data are split into four consecutive 10-

year subsets. The model is then trained on three of the four subsets to hindcast the 

left-out 10 years. This procedure was used to hindcast the 10-year periods 1968/69-

1977/78, 1978/79-1987/88, 1988/89-1997/98 and 1998/99-2007/08. The RMSEs for 

each independent 10-year hindcast were calculated for the CAPE+v850+GPH model 

and compared to the average RMSE of the CV40 hindcast results (Figure 8a). We 

found that the RMSEs calculated on the hindcasts did not deviate strongly from the 

CV40 hindcasts. We also found that the lowest RMSE corresponded to the 1988/89-

1997/98 10-year hindcast. The highest RMSE was for the 1968/69-1977/78 decade. 
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Figure 8b shows the annual RMSEs for the CAPE+v850+GPH model as obtained from 

the four-fold cross validated hindcast distributions. We note that there is a slight trend 

towards reduced errors of the model hindcasts over time. The model captures ENSO 

seasons quite well, except for the 1985/86 La Niña event year (RMSE = 7.67), when 

the TCG totals of 19 storms were substantially underestimated and the 1987/88 El 

Niño event year (RMSE = 7.44) in which the low TCG occurrences of 6 was not 

reproduced. The highest RMSEs can be observed during the La Niña of 1971/72 

(RMSE = 9.47), in which a rather low number of events (15) was observed and 

1974/75 (RMSE = 8.26), for which the RMSE is particularly high due to the high 

number of TCG and therefore broad hindcast probability. The other periods showing 

very high RMSEs (> 7) are the underestimated ENSO-neutral years of 1979/80 and 

1993/94 and the 1973/74 La Niña year which had a high number of TCG occurrences 

and broad hindcast probability.  

Figures 9 and 10 present the hindcast distributions obtained from the four-fold 

cross-validation. We find that the hindcast distributions of Australian region TC 

seasons with an expected high number of TCG events are broader than the ones for 

seasons with a lower number of occurrences hindcasted. This is particuarly the case in 

the first hindcast decade and explains the high RMSE for the 1968/69-1977/78 

decade, in which six out of 10 seasons had 19 TCG occurrences or more. Also during 

this decade, we observe large values of standard deviation, especially in the process 

uncertainty term (not shown), indicating lower skill of the model hindcasts. Figure 11 

shows the four independent four-fold 10-year hindcasts, as well as the fitted 30-year 

hindcasts on which the model was trained. The results are compelling with the model 

displaying considerable skill. The independent hindcasts of the left-out 10 years are 

mostly very accurate, with only six out of 40 (15%) of the seasonal hindcasts outside 
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of the model standard deviation. The model lacks skill when an unusually high 

number of TCGs occurred during ENSO-neutral or El Niño conditions (1979/80, 

1993/94; see Figs. 9 and 10). Another issue is correctly capturing the very low 

number of cyclones during the identified unusual weak seasons (1982/83, 1987/88, 

2003/04) - a recognized issue in trying to capture extremes using regression 

modelling. Only the 1985/86 La Niña event year were not well presented by the 

model.  

In the following section, we demonstrate that despite ENSO years being by 

their nature somewhat ‘extreme’, the model performs very well in capturing the TCG 

occurrences across most of these events. 

c. ENSO years  

To assess the skill of hindcasting TCG totals during strong El Niño and La Niña years 

between 1968/69-2007/08, we evaluate the model performance based on the CV40 

hindcasts (refer Fig. 7) for the CAPE+v850+GPH model. We find the model performs 

very well during ENSO event years (Figure 8a), with RMSEs only little higher than 

the 40-year average. The model skilfully hindcasts the low TCG numbers during El 

Niño years (RMSE = 5.14), as well as the high TCG numbers during La Niña years 

(RMSE  = 6.04; Fig. 8). Figure 12 shows the hindcast distribution for TCG totals 

using the CAPE+v850+GPH model for all El Niño and La Niña event years. The model 

accurately hindcasts the number of TCG occurrences during El Niño years (79% 

success) and is particularly skilful in hindcasting TCG totals during La Niña event 

years, with 84% of the La Niña year TCG hindcasts falling within hindcast standard 

deviation statistics. We note that the higher RMSE for La Niña compared to El Niño 
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years results from a broader hindcast distribution of the annual hindcasts due to the 

higher numbers of TCG occurrences, rather than a poor performance of the model.  

d. Subregional hindcasts 

We also examined the skill of the CAPE+v850+GPH model for the three Australian 

subregions: in the West, North and East. To achieve that aim, the model was trained 

on the subregional seasonal TCG totals with the model skills verified using the CV40 

approach (Fig. 13). In Table 3 the subregional model coefficients, as well as their 

standard deviations, are listed. We find that the model performs well at the sub-

regional scale for the Western and Eastern Australian region with 87.5% of the 

observed seasonal TCG counts being hindcast within the model standard deviation. 

For the Northern region, TCG hindcast skill was found to be little better than 

climatology-only. Due to the different averages of annual TCG counts in each region, 

the RMSEs and standard errors cannot be used as a comparative measure, as both are 

directly linked to the average or the standard deviation of the TCG totals and hence 

have different amplitudes for each subregion. Correlating the CV40 hindcasts with the 

observed seasonal TCG totals for each subregion however provides a measure of the 

model’s skill in capturing the correct phase of the hindcast variability. Correlation 

coefficients in the Eastern region are as high as r = 0.73 (se = 0.22). For the Western 

region, the model is also strong with correlations between the hindcasts and 

observations of r = 0.42 (se = 0.27). The Northern region TCG totals, however, are 

hindcast poorly with model outputs varying marginal from the average TCG 

occurences (Fig. 13b).  

6. Summary and Discussion  
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This study represents a substantial improvement in the potential for more accurate 

statistical seasonal forecasting of tropical cyclone formation (genesis, TCG) for the 

Australian region. It is well understood that TCs in the Australian region are strongly 

affected by the phase of El Niño-Southern Oscillation (ENSO). Nevertheless, models 

based purely on ENSO metric predictors typically fail to forecast seasonal TCG totals 

in both the eastern Indian and southwest Pacific Ocean regions.  

Our approach comprises of an extended analysis using well-known climate 

indices together with the identification of new and potentially skilful indices that 

represent metrics important for predicting TC formation. These include: three 

subtropical central South Pacific indices of the convective available potential energy 

between 850 hPa and 300 hPa (CAPE), the (un-saturated) equivalent potential 

temperature gradient between 1000 hPa and 500 hPa (EPT) and geopotential height at 

500 hPa (GPH); two tropical central Pacific indices of the zonal winds at 850 hPa 

(u850) and environmental vertical wind shear between 850 hPa and 200 hPa (EVWS); 

and, two tropical northeast Pacific indices including the meridional wind at 850 hPa 

(v850) and low-level relative vorticity at 850 hPa (RV; see Fig. 3). Additionally, the 

ENSO sea surface temperature anomaly (SSTA) index NINO4 was used. As a result 

of correlating pre-seasonal three-month climate index means with TCG totals in the 

upcoming season, we found that three-month austral winter mean indices showed the 

greatest overall potential for forecasting Australian region TCG totals in the up-

coming TC season. The best eight predictor variables (Table 1) were incorporated into 

a Poisson regression model developed on TCG totals. Following recent studies (e.g., 

Elsner and Jagger 2004, 2006; Chu and Zhao 2007; Elsner et al. 2008; Chand et al. 

2010), we applied a Bayesian approach using the Markov Chain Monte Carlo method. 

The Bayesian approach is beneficial as it allows for incorporation of prior beliefs, and 
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is convenient to account for the uncertainties in model parameters. The final model 

runs generated a total of 5,000 independent samples using a slice sampler with a burn-

in of 500 and a thinning of five.  

Using a three-predictor Bayesian model on key indices of CAPE, v850 and 

GPH, we have been able to create a substantial improvement in cross-validated 

hindcast skill over previous studies. Previous published studies produced correlations 

between cross-validated hindcasts and observations of TCG counts ranging from r = 

0.44 to r = 0.60 (e.g. Solow and Nicholls 1990; Nicholls 1992; McDonnell and 

Holbrook 2004b). Nicholls (1992) also found correlations of r = 0.72 between 

September-October-November (SON) values of the Southern Oscillation Index and 

the ‘first differences’ of consecutive seasons instead of the total number of TC counts 

between 1959/60 and 1990/91. An earlier study by Nicholls (1984) showed 

correlations of r = 0.78 between SON SST in a region North of Australia (5°–15°S, 

120°–160°E) and Australian region TC counts from 1964-1982. However this 

relationship has been shown to degrade over time and is not robust for the more recent 

years (Ramsay et al. 2008). With the leave-one-out cross-validated hindcast approach 

we achieve correlations of r = 0.73 and a standard error of se = 0.36 using a three-

predictor model of CAPE+v850+GPH for the period 1968/69-2007/08. In comparison 

to the skill of the climatology-only model, the CAPE+v850+GPH model shows a 19% 

improvement in RMSE. Using a four-fold cross-validation approach, we achieved 

highly skilled hindcasts for entire decades that were left out, highlighting the 

robustness and potential skill of the model. 

The CAPE, v850 and GPH indices derived in this study are ENSO-linked. 

Combining convective available potential energy and geopotential height from the 

subtropical central South Pacific with the lower-troposphere meridional tropical 
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inflow from the Northern Hemisphere in the eastern Pacific, was found to produce a 

valuable and complementary predictor set. Figure 14 shows the anomalies of all 

model-relevant predictor variables (CAPE, wind flow at 850 hPa, GPH) between 

active TC seasons (TCGs " 17) and rather inactive TC seasons (TCGs # 11) and 

indicates the index locations used in the three-predictor model. Active and inactive 

seasons were here chosen to represent around 25% of the investigated seasons, 

respectively. The CAPE index is located in the subtropical central South Pacific and 

embedded in the South Pacific Convergence Zone of ENSO-related convection. 

CAPE, as a measure of the instability of the atmosphere, provides a likelihood metric 

of deep convection within the zone of TC formation. The relationship between TCG 

occurrence and the ITCZ-linked North Pacific index, v850, is negative, which means a 

strengthening of the low-level equatorward trade wind inflow (Walker circulation) 

leads to enhanced TCG. Finally, the positive sign of the GPH model coefficient, as an 

indication for heating and atmospheric layer expansion, relates warmer airmasses in 

the lower and mid-troposphere of the subtropical central Pacific during austral winter 

to enhanced TCG in the following season. The GPH index is located in the warm 

advection zone of the South Pacific subtropical High. Van Loon and Shea (1985) 

identified this region to be linked to the Southern Oscillation. In autumn (fall) and 

winter prior to a warm event, the trough in the westerlies, located west of New 

Zealand, fails to develop to its usual amplitude, allowing colder air from the mid-

latitudes intrude the Australian Pacific region. These conditions are suppressed the 

year after a warm event took place. 

Based on the assessment of various quality controls in the leave-one-out and 

four-fold cross-validated hindcasts, we found that the three-predictor 

CAPE+v850+GPH Poisson model is the most skilful in our model suite. The lowest 
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RMSE corresponded to the 1988/89-1997/98 decade (RMSE = 4.41), while the largest 

corresponded to the 1968/69-77/78 decade (RMSE = 6.34). During ENSO event years 

(El Niño or La Niña), the three-predictor model demonstrated high skill, performing 

generally very well during El Niño, with the RMSE slightly below the average 

(RMSE(CV40) = 5.20; RMSE(El Niño) = 5.14). The higher than average RMSE 

during La Niña (RMSE(La Niña) = 6.04) is due to a broader hindcast distribution of 

high numbers of TCG totals rather than a deficiency in the model. In fact, all except 

two of the hindcasts during La Niña event years captured the observed seasonal TCG 

totals within its standard deviation. Further, the independent hindcasts of the four 

separate decades using four-fold cross-validation is impressive, with only six seasons 

(15%) out of a total of 40 being outside of the model standard deviation. We believe 

these results are quite compelling. 

Finally, we tested the three-predictor model on three smaller subregions, West, 

North and East. We found that the model is adaptable to forecast seasonal TCG totals 

in the Eastern region (r = 0.73), while there is also some skill for TCG in the Western 

region (r = 0.42). For the Northern region, however, the hindcasts are not very 

different from the average number of seasonal TCG occurrences adding up to 

correlations between hindcasts and observed TCG totals of r = -0.23. The regional 

scale complexities associated with this shallow sea region are problematic for our 

large-scale model. It may also be, that a component of the poor performance in this 

Northern region is due to northern Australian TCG being inherently unpredictable for 

statistical schemes. 

In summary, we have developed a new and potentially skilful seasonal 

forecast model of tropical cyclogenesis for the Australian region. We find that a three-

predictor CAPE+v850+GPH Poisson model produces remarkably skilful hindcasts of 
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Australian region seasonal TCG totals by September of each year, one month prior to 

the onset of the Australian region TC season (November-April). The predictor 

variables identified in this study are physically meaningful and appropriate to 

condition the model forecasts of TCG. By combining information from useful 

dynamic and thermal variables as predictors in a Bayesian approach Poisson model 

system, we are able to demonstrate skilful cross-validated hindcasts of Australian 

region seasonal TCG totals with high correlation (r = 0.73) and low RMSE (5.20) 

against a 40-year record of observations.  
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APPENDIX 1 

ENSO event years  

This study defined ENSO events as defined by the Climate Prediction Center of the 

National Weather Service from three-month SSTA means in the NINO3.4 region.  

El Niño: {1968/69, 1969/70, 1972/73, 1976/77, 1977/78, 1982/83, 1986/87, 1987/88, 

1991/92, 1994/95, 1997/98, 2002/03, 2004/05, 2006/07}  

La Niña: {1970/71, 1971/72, 1973/74, 1974/75, 1975/76, 1983/84, 1984/85, 1985/86, 

1988/89, 1995/96, 1998/99, 1999/2000, 2000/01, 2007/08}  
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APPENDIX 2 

Slice sampling 

The slice sampler (Neal 2003) avoids specifying the proposal densities as in 

Metropolis-Hastings algorithms (e.g., Hastings 1970; Gelman 1992). In that way, after 

finding the appropriate augmentation scheme, the method can be applied to all data sets 

without any computational difficulties (Ntzoufras 2009). The slice sampler is defined by 
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TABLE CAPTIONS 

TABLE 1. Regional average defined by all predictor indices, as well as the three-

month average index period with the strongest correlation (r) with annual TCG totals 

in the upcoming season. All correlations presented here are significant at the 95% 

confidence level. 

........................... Page 42 

TABLE 2. a) Comparison of the model skill calculated from the leave-one out cross-

validated hindcasts of the Climatology and the single-predictors. Root-mean-square 

errors (RMSEs) are used to evaluate the quality of the predictor. Next to the RMSEs, 

standard errors (se) and significant correlation coefficients (r) between hindcasts and 

observed number of TCs help to further validate the skill of the model. Bold indicates 

the model with the lowest RMSE. b) as a) but for two- and three-predictor 

combinations based on step-by-step model selection. For the multi-predictor models, 

bold indicates improvement over the best single predictor CAPE model and the best 

three-predictor model. 

........................... Page 43 

TABLE 3. Posterior means of model coefficients and standard deviations for selected 

predictor combinations, as well as the mean Bayesian model coefficients and standard 

deviations for the subregional three-predictor CAPE+v850+GPH TCG model.  

........................... Page 44 



4 Seasonal forecasting of TCG count 
 
 

 
 

115 

FIGURE CAPTIONS  

FIG 1. a) Spatial distribution of the first recorded location of tropical storm systems 

that later developed into tropical cyclones in the Australian region from 1968/69-

2007/08 with subregions indicated (separated by the dashed lines), and b) 

corresponding time series of annual TCG totals across the region.  

           ............................ Page 45 

FIG 2. Spatial map of correlations between annual TCG totals and dynamic and 

thermal predictor variables for June-July-August (JJA). The bold box indicates the 

Australian TC region and the dashed box identifies the predictor region with 

maximum relationship with Australian region seasonal TCG. The thin lines outline 

spatial pattern correlations significant at the 95% level. 

........................... Page 46 

FIG 3. As in Fig. 2, but for October-November-December (OND). 

........................... Page 47 

FIG 4. Correlations between annual TCG totals and the a) thermal predictor indices, 

and b) dynamic predictor indices – where the climate indices are three-monthly 

averages leading the TC season. 

........................... Page 48 

FIG 5. Example of first 5,000 iterations of the CAPE+v850+GPH model. Thin black 

lines show the sampled model coefficients, with $0 the model intercept and $1 and $2 

being the corresponding model coefficients for the predictors CAPE, v850 and GPH. 

The grey line gives the cumulative means of the coefficients. Also indicated is the 

chosen burn-in at 500 iterations. 

........................... Page 49 
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FIG 6. Corresponding Kernel densities of posterior distributions for Climatology and 

single-predictor variables for the MCMC samples. 

........................... Page 50 

FIG 7. Variations in observed annual TCG totals (dashed line) and leave-one out 

cross-validation hindcasts (solid line) using the CAPE+v850+GPH predictor model 

over the 40-year record from 1968/69-2007/08. Model standard deviations are 

indicated by the shading. 

........................... Page 51 

 

FIG 8. a) Comparison of RMSEs between the leave-one-out (CV40) and four-fold 

cross-validated hindcasts, as well as for ENSO events based on the leave-one-out 

cross-validation of the CAPE+v850+GPH predictor model. b) Annual RMSEs of the 

four four-fold cross-validated hindcasts. The bold solid horizontal line represents the 

averaged RMSE from the leave-one-out cross-validated data. The thinner lines 

represent the averaged RMSEs of each of the four 10-year four-fold cross-validation 

hindcasts. 

........................... Page 52 

FIG 9. Probability distributions of the annual total number of TCG occurrences 

independently hindcast (four-folded cross-validation) for individual TC seasons 

between 1968/69-1987/88 occurrences using the three-predictor CAPE+v850+GPH 

model. Asterisks indicate the observed number of TCGs in that season, while the 

model standard deviations are indicated by the shading. 

........................... Page 53 

FIG 10. As in Fig. 9, but for individual TC seasons between 1988/89-2007/08. 

........................... Page 54 
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FIG 11. Variations in observed seasonal TCG totals (dashed line) and regressed 

hindcasts (solid line) using the CAPE+v850+GPH predictor model trained on 30 years 

and independently hindcasting the 10 left-out years (circle; four-fold cross-

validation), with error bars indicating the standard deviation. Crosses indicate the 

observed TCG totals during the independent hindcast period. Model standard 

deviations of the 30-year training period are indicated by the shading.  

........................... Page 55 

FIG 12. As in Fig. 9, but for individual TC seasons during El Niño and La Niña event 

years. 

........................... Page 56 

FIG 13. As in Fig. 6, but for the CAPE+v850+GPH model applied to Australia’s 

subregions a) West, b) North and c) East. 

........................... Page 57 

FIG 14. Map of composite anomalies for active Australian TC seasons minus 

composite anomalies for inactive Australian TC seasons during June-July-August. 

Wind vectors describe the wind flow anomalies at 850 hPa. Grey shaded areas 

represent changes of CAPE (m2 s-2), while full contour lines show positive anomalies 

and dashed lines negative anomalies of geopotential height anomalies at 500 hPa (m). 

Also indicated are the locations of the predictor indices CAPE, v850 and GPH and the 

Australian TC region.  

........................... Page 58 
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TABLES 

TABLE 1. Regional average defined by all predictor indices, as well as the three-

month average index period with the strongest correlation (r) with annual TCG 

totals in the upcoming season. All correlations presented here are significant at the 

95% confidence level. 

 

Index  Latitude Longitude   3-month mean    r  
_____________________________________________________________      
CAPE  20°-30°S 160°E-160°W  JJA   0.73 
EPT  15°-25°S 160°E-160°W  JAS   0.68 
GPH  25°-45°S 170°-130°W  JAS   0.57 
NINO4  5°N-5°S 160°E-150°W  JAS  -0.68  
u850   5°N-5°S 170°-130°W  JAS  -0.65 
v850   15°-5°N 120°-80°W  MJJ  -0.65 
EVWS  0°-10°S 170°-130°W  JAS   0.67 
RV   20°-10°N 125°-85°W  JAS  -0.65 
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TABLE 2. a) Comparison of the model skill calculated from the leave-one out cross-

validated hindcasts of the Climatology and the single-predictors. Root-mean-square 

errors (RMSEs) are used to evaluate the quality of the predictor. Next to the RMSEs, 

standard errors (se) and significant correlation coefficients (r) between hindcasts and 

observed number of TCs help to further validate the skill of the model. Bold indicates 

the model with the lowest RMSE. b) as a) but for two- and three-predictor 

combinations based on step-by-step model selection. For the multi-predictor models, 

bold indicates improvement over the best single predictor CAPE model and the best 

three-predictor model. 

 

a) predictor RMSE      se          r        b) predictor              RMSE    se       r      
    __________________________          ___________________________________ 

Climatology   6.20   0.38       0.24         CAPE+GPH               5.42  0.36     0.66 
CAPE   5.39   0.33    0.65         CAPE+NINO4     5.48      0.34     0.64 
EPT    5.53   0.37    0.61         CAPE+ u850               5.38  0.37     0.67 

     GPH    5.70   0.41    0.53         CAPE+ v850     5.21  0.35     0.72 
NINO4   5.59   0.33    0.58         CAPE+EVWS     5.33  0.35     0.69 
u850                5.54   0.37    0.61         CAPE+RV      5.21  0.36     0.72 
v850                 5.61   0.36    0.56         ---------------------------------------------------------- 
EVWS       5.50   0.38    0.60         CAPE+ v850 + GPH   5.20  0.36    0.73  
RV             5.55   0.40    0.59        CAPE+ v850 +EVWS   5.26  0.38     0.71 

 CAPE+ RV+ GPH   5.33  0.37     0.69 
 CAPE+ RV+ EVWS  5.24  0.36     0.72 

             
        
 
 

 



4.2 Werner and Holbrook 2011a; Journal of Climate (accepted) 
 
 

 120 

TABLE 3. Posterior means of model coefficients and standard deviations for selected 

predictor combinations, as well as the mean Bayesian model coefficients and standard 

deviations for the subregional three-predictor CAPE+v850+GPH TCG model.  

 

  predictor            

! 

" 0      SD($0)    

! 

" 1      SD($1)    

! 

" 2     SD($2)     

! 

" 3    SD($3)    
   _________________________________________________________________________________                      
  CAPE     2.650   0.042    0.018    0.003   
  CAPE + v850   2.676   0.043    0.014    0.003   -0.222   0.082 
  CAPE + EVWS  2.649   0.042    0.012    0.004   -0.015   0.007 
  CAPE + RV   2.644   0.042    0.013    0.004   -0.011   0.006    
  CAPE + v850 + GPH   2.666   0.044    0.010    0.004   -0.244   0.084    0.004   0.002 
  CAPE + RV + EVWS   2.643   0.042    0.011    0.004   -0.014   0.007    0.005   0.009 
_________________________________________________________________________________ 

  CAPE + v850 + GPH (West) 1.777   0.069    0.001    0.007   -0.197   0.127    0.008   0.003 
  CAPE + v850 + GPH (North) 1.063   0.094    0.006    0.010   -0.116   0.183   -0.002   0.005 
  CAPE + v850 + GPH (East) 1.667   0.074    0.020    0.007   -0.385   0.139    0.002   0.004 
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FIGURES 

 
FIG 1. a) Spatial distribution of the first recorded location of tropical storm systems 
that later develop into tropical cyclones in the Australian region from 1968/69-
2007/08 with subregions indicated (separated by the dashed lines), and b) 
corresponding time series of annual TCG totals across the region.  
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FIG 2. Spatial map of correlations between annual TCG totals and dynamic and 
thermal predictor variables for June-July-August (JJA). The bold box indicates the 
Australian TC region and the dashed box identifies the predictor region with 
maximum relationship with Australian region seasonal TCG. The thin lines outline 
spatial pattern correlations significant at the 95% level. 
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FIG 3. As in Fig. 2, but for October-November-December (OND). 
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FIG 4. Correlations between annual TCG totals and the a) thermal predictor indices 
and b) dynamic predictor indices – where the climate indices are three-monthly 
averages leading the TC season. 
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FIG 5. Example of first 5,000 iterations of the CAPE+V850+GPH model. Thin black 
lines show the sampled model coefficients, with $0 the model intercept and $1, $2 and 
$3 being the corresponding model coefficients for the predictors CAPE, v850 and GPH. 
The grey line gives the cumulative means of the coefficients. Also indicated is the 
chosen burn-in at 500 iterations. 
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FIG 6. Corresponding Kernel densities of posterior distributions for Climatology and 
single-predictor variables for the MCMC samples. 
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FIG 7. Variations in observed annual TCG totals (dashed line) and leave-one out 
cross-validation hindcasts (solid line) using the CAPE+v850+GPH predictor model 
over the 40-year record from 1968/69-2007/08. Model standard deviations are 
indicated by the shading. 
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FIG 8. a) Comparison of RMSEs between the leave-one-out (CV40) and four-fold 
cross-validated hindcasts, as well as for ENSO events based on the leave-one-out 
cross-validation of the CAPE+v850+GPH predictor model. b) Annual RMSEs of the 
four four-fold cross-validated hindcasts. The bold solid horizontal line represents the 
averaged RMSE from the leave-one-out cross-validated data. The thinner lines 
represent the averaged RMSEs of each of the four 10-year four-fold cross-validation 
hindcasts. 
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FIG 9. Probability distributions of the annual total number of TCG occurrences 
independently hindcast (four-folded cross-validation) for individual TC seasons 
between 1968/69-1987/88 occurrences using the three-predictor CAPE+V850+GPH 
model. Asterisks indicate the observed number of TCGs in that season, while the 
model standard deviations are indicated by the shading. 
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FIG 10. As in Fig. 9, but for individual TC seasons between 1988/89-2007/08. 
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FIG 11. Variations in observed seasonal TCG totals (dashed line) and regressed 
hindcasts (solid line) using the CAPE+v850+GPH predictor model trained on 30 years 
and independently hindcasting the 10 left-out years (circle; four-fold cross-
validation), with error bars indicating the standard deviation. Crosses indicate the 
observed TCG totals during the independent hindcast period. Model standard 
deviations of the 30-year training period are indicated by the shading.  
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FIG 12. As in Fig. 9, but for individual TC seasons during El Niño and La Niña event 
years. 
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FIG 13. As in Fig. 6, but for the CAPE+v850+GPH model applied to Australia’s 
subregions a) West, b) North and c) East. 
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FIG 14. Map of composite anomalies for active Australian TC seasons minus 
composite anomalies for inactive Australian TC seasons during June-July-August. 
Wind vectors describe the wind flow anomalies at 850 hPa. Grey shaded areas 
represent changes of CAPE (m2 s-2), while full contour lines show positive anomalies 
and dashed lines negative anomalies of geopotential height anomalies at 500 hPa (m). 
Also indicated are the locations of the predictor indices CAPE, v850 and GPH and the 
Australian TC region. 
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4.3 Further Discussion 

The advantage of the Bayesian approach over the frequentist is that it takes 

into account the uncertainties of the model coefficients. This enables us to predict 

TCG counts also outside the boundaries of our observed data set and improves the 

consideration of uncertainties of the model hindcasts. Additionally, the Markov Chain 

Monte Carlo (MCMC) method helps to successively train the model to get a better 

estimate of the model posterior distributions. Figure 4.1 shows the prior distribution, 

likelihood probability based on the observed data, and the posterior distribution of the 

four model coefficients of the Bayesian model, presented in the previous section. We 

find a more Gamma distribution-like posterior probability of the model coefficients 

subsequent to the MCMC method. In the following section, the Bayesian model 

presented in the Journal of Climate paper is compared to a Poisson regression 

frequentist model using the same predictor combination. Also analysed is the 

subregional hindcast skill of the Bayesian model for the Western and Eastern 

Australian subregions divided at 135°E. 

 The frequentist Poisson model, using the selected predictor combination 

CAPE+v850+GPH, is applied to the available observed TCG data and the leave-one 

Figure 4.1 Prior probabilities, likelihood estimate from the observed data, and 
the posterior distribution for the model coefficients of the Bayesian model. 
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out cross-validated model hindcasts are compared to those generated by the 

previously introduced Bayesian model. The frequentist approach results in model 

coefficient estimates on the basis of least squares regression. As we obtain the Poisson 

hindcast distribution by one single coefficient combination, the hindcast distribution is 

narrower than the one obtained from the complete sample set of uncertainties from the 

posterior distribution in the Bayesian model. This means RMSE is not an adequate 

measure to compare the two statistical modelling methods. While both approaches 

result in the same correlation coefficient, the skill score between the model hindcasts 

and the annual TCG observations of the Bayesian model improves to SSBay = 51.5% 

from SSFre = 42.8% with the frequentist model. Figure 4.2 shows the residuals 

between the annual TCG counts and hindcasts for both the frequentist and Bayesian 

models. It can be seen that the Bayesian model hindcasts tend to produce a lower 

number of TCG occurrences than the frequentist model hindcasts and shows reduced 

residuals between hindcasts and TCG count observations. The reduced residuals in the 

cross-validated hindcasts imply a possible improvement in forecasting potential using 

the Bayesian model over the frequentist method.  

Figure 4.2 Residuals of the annual TCG count observations and the leave-one 
out cross-validated hindcasts from the Frequentist and Bayesian models from 
1968/69-2007/08. 
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 The subregional skill was further shown for three subregions, West, North and 

East separated at 125°E and 142.5°E. Here, TCG variations in the Northern region 

appear to be particularly difficult to hindcast. This lack of skill led to the choice of the 

two-subregion approach presented previously, with the Pacifc Ocean and Indian 

Ocean TC regions separated at 135°E.  

 Figure 4.3 shows the posterior distributions of the model coefficients when the 

CAPE+v850+GPH predictor combination model is applied to hindcast annual TCG 

counts in the Western and Eastern Australian subregions. For TCG variations in the 

eastern Indian Ocean (Western) region, we find that the CAPE predictor has the least 

skill, with the sampled model coefficients changing signs in almost 50% of the 

sampled cases. Conversely, the v850 and GPH predictors appear to have good skill. For 

the Eastern Australian region, CAPE and v850 appear to be very useful predictors, 

while the contribution from GPH is lower. In Figure 4.4 hindcast results from the 

leave-one out cross-validated hindcasts are shown. We find the presented model is 

adaptable for forecasting southwest Pacific Ocean (Eastern) region TCG counts with a 

correlation coefficient between cross-validated hindcats and annual TCG count 

observations of r = 0.79, with 87.5% of the observed TCG counts being within the 

model’s standard deviation and a skill score of SS = 57.8%. However, the skill of 

hindcasting eastern Indian Ocean TCG counts appears to be limited with correlations 

of only r = 0.38 and SS = 9.0%. This suggests that it is beneficial to build a separate 

seasonal forecast model for that region on the basis of different predictor indices.  

 

Figure 4.3 Posterior distributions of model coefficients for a) the Western 
Australian, and b) Eastern Australian TC regions. The dashed line indicates the 
zero-line for the model coefficients. 
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Figure 4.4 Variations in observed annual TCG totals (dashed line) and leave-one 
out cross-validation hindcasts (solid line) using the CAPE+v850+GPH predictor 
model over the 40-year record from 1968/69-2007/08 applied to Australia’s 
subregions a) West and b) East. Model standard deviations are indicated by the 
shading. 
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Abstract 

A new and potentially skilful seasonal forecast model of tropical cyclone formation 

(genesis, TCG) is developed for the Southeast Indian Ocean region. The model is 

based on Poisson regression using the Bayesian approach. Predictor combinations are 

chosen using a step-by-step predictor selection. The two-predictor model based on 

derived indices of June-July-August sea level pressure and May-June-July meridional 

winds at 850hPa in the tropical East Pacific Ocean produces the smallest RMSE = 

3.74 for the leave-one-out cross-validated TCG hindcasts over the 40-year record 

between 1968/89-2007/08. The corresponding correlation coefficient between 

observed annual TCG totals and cross-validated model hindcasts is r = 0.57 with 

82.5% of the observed seasonal TCG totals hindcast within the model standard 

deviations. In summary, we find that the two-predictor Bayesian model provides 

substantially improved skill over the climatology, with remarkably skilful hindcasts 

(forecasts) of Australian region and subregional seasonal TCG totals provided two 

months ahead of the TC season. 
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1. Introduction   
 

The southeast Indian Ocean is the most active Australian tropical cyclone 

(TC) subbasin, with the most intense TCs occurring and a higher chance of the storms 

to make landfall [Goebbert and Leslie, 2010; Dare and Davidson, 2004]. Also the 

western Australian region is of high economic importance due to extensive reservoirs 

of oil and other natural resources. Nevertheless there have been very few studies on 

TC activity in the southeast Indian Ocean or northwest Australian region [e.g., 

Broadbridge and Hanstrum, 1998; Goebbert and Leslie, 2010]. They found that the 

relationship of western Australian TCs with ENSO is weaker than the one for the 

whole Australian region. That complicates accurate seasonal forecasting of tropical 

cyclones in the southeast Indian Ocean, as commonly used ENSO metrics are shown 

to have no significant correlation with TC activity in that region [e.g., McDonnell and 

Holbrook, 2004b; Goebbert and Leslie, 2010; Werner and Holbrook, 2011].  

Here, we develop a very recent statistical seasonal forecast model of 

Australian region tropical cyclone formation [genesis; TCG; Werner and Holbrook, 

2011] for the smaller southeast Indian Ocean subregion (0-30°S, 90°-135°E). While 

the larger-scale Australian region TC statistical forecast model performed well in 

Australia’s East TC subregion (i.e., the southwest Pacific Ocean), the model cross-

validated skill of seasonal (annual) TCG counts in Australia’s West TC subregion 

(i.e., the southeast Indian Ocean) was poor – consistent with a previous statistical 

forecast study of TC activity in this subregion [McDonnell and Holbrook, 2004b]. 

Previous studies demonstrate that seasonal TCG count variations off northwest 

Australia (southeast Indian Ocean) are less related to El Niño-Southern Oscillation 

(ENSO) than for the entire Australian TC region, where it otherwise dominates 

[Broadbridge and Hanstrum, 1998; Goebbert and Leslie, 2010]. Most recently it has 
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been shown that other climate indices, describing large-scale climate patterns in both 

the Southern and Northern Hemisphere, are not significantly correlated with 

northwest Australian seasonal TCG counts, suggesting that it will be important to 

look for new measures in spatial atmospheric data [Goebbert and Leslie, 2010].  

Since the early 1980s, a number of statistical seasonal forecast schemes have 

been developed and improved to predict TC activity in various basins and sub-basins 

[Klotzbach et al., 2011]. Statistical seasonal forecast modelling of TC activity was 

first undertaken by Nicholls [1979] for the Australian region and Gray [1984] for the 

North Atlantic – both using linear regression methods. Solow and Nicholls [1990] 

presented the first nonlinear statistical forecast model of TC activity based on the 

Poisson regression for the Australian region. There, they used the large-scale 

atmospheric sea level pressure gradient time series between Tahiti and Darwin – the 

Southern Oscillation index (SOI) - as a predictor of Australian region annual TC 

counts. More recently, a Poisson regression model using spatial grid-point estimates 

(on a 5o x 2.5o longitude-latitude grid) of the September lead saturated equivalent 

potential temperature gradient between 1000hPa and 500hPa and the SOI was 

developed to forecast upcoming season TCG totals across the Australian region 

[McDonnell and Holbrook, 2004a,b]. Their study was informed by Gray’s [1968] 

seasonal genesis parameters. To extend this work, Werner and Holbrook [2011] also 

developed a Poisson regression model for forecasting seasonal TCG events, but 

instead used a Bayesian approach and explored different predictor variables scoped 

out through a large-scale correlation analysis on Australian region TCG. The final 

predictor variables selected and derived by virtue of a systematic step-by-step process 

include indices (time series) of the subtropical central South Pacific convective 

available potential energy, meridional winds at 850 hPa in the tropical East Pacific 
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(the Walker circulation inflow region), and the central South Pacific geopotential 

height at 500 hPa. Both the McDonnell and Holbrook (2004b) and Werner and 

Holbrook [2011] models have been applied to forecast TCG totals in Australian 

region subsets (subregions). However, while both models showed considerable 

improvement in annual TCG count forecasts over climatology of 25% [McDonnell 

and Holbrook, 2004b] and 58% [Werner, 2011] in the southwest Pacific Ocean 

(Australian East subregion), only the Werner and Holbrook [2011] model some skill 

in forecasting annual TCG count forecasts in the southeast Indian Ocean region 

(Australian West subregion). Liu and Chan [2010] applied a project-pursuit regression 

model to forecast seasonal variations in TCG counts for the Australian region and its 

two important subregions using well-known climate indices – the western equatorial 

Pacific sea surface temperature anomaly (SSTA) index - NINO4, the Indian Ocean 

Dipole Mode index (DMI), the trade wind index, and outgoing long-wave radiation 

(OLR) index. Using the jackknife method, they achieved a 51% improvement in the 

root-mean-square error (RMSE) over climatology for the Australian region and a 39% 

improvement for the northwest Australian region (southeast Indian Ocean). For the 

southeast Indian Ocean-only region, Goebbert and Leslie [2010] also presented some 

very preliminary results from a multiple linear regression model approach 

investigating TC frequency and TC days in the northwest Australian region (105°-

135°E, 0-35°S). As results using the more standard climate indices were found not to 

be significant, the model instead took advantage of derived indices and achieved 

considerable skill in doing so. However, it is important to note that since the results 

were only preliminary, the predictors were not comprehensively investigated due their 

climatological relevance or persistence of the correlation patterns. So, we are cautious 

here about the robustness of the apparent model skill presented in their results, which 

may be artificial. 
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This paper presents an application of the Werner and Holbrook [2011] 

Australian-region statistical TCG count forecast model developed further for the 

southeast Indian Ocean region (90°-135°E, 0-30°S). The forecasting scheme 

presented here shows considerable promise based on a comprehensive assessment of 

its cross-validated hindcast skill, with relatively high correlations identified between 

observed and hindcast seasonal TCG counts (r = 0.57) and a low standard error (se = 

0.26) – an improvement in mean-squared error (MSE) of 30% over the climatological 

average. We demonstrate that this model makes significant advances on previous 

statistical schemes used to forecast TC activity in the southeast Indian Ocean 

(Australian West subregion). 

2. Data 

a. Tropical cyclone observations 

This study takes advantage of the global TC best track data set IBTrACS.v02 

[Knapp et al., 2010] provided by the U.S. National Oceanic and Atmospheric 

Administration. TCG is defined as the spatial location where a tropical storm system 

with winds exceeding 34 knots (17.5 ms-1) is first recorded.  

The southeast Indian Ocean (tropical cyclone) region is defined here as 

spanning between 0°-30°S and 90°-135°E. The 135°E eastern border was chosen 

following Kuleshov et al. [2010], as it represents the longitude with the fewest TC 

tracks crossing it. TCG occurrences identified poleward of 30°S have been removed 

in the quality assessment process. Only storms during the Australian TC season from 

November to April are taken into account. Overall, a total of 322 TCs during the 40-

year period from 1968/69-2007/08 are analyzed following the quality control. Figure 

1 shows the spatial distribution of the first noted locations of tropical storm systems 
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that later developed into TCs and the corresponding time series of seasonal TCG 

totals in the 40-year record. 

b. Oceanic and atmospheric data 

 In this study, sea surface temperature (SST) data were taken from the uniformly 

gridded observations provided in the Hadley Centre Global Sea Ice and Sea Surface 

Temperature (HadISST1) dataset [Rayner et al., 2003], compiled by the UK Met 

Office Hadley Centre. HadISST1 is a combination of global monthly SST fields and 

sea ice concentrations on a 1° ! 1° grid from 1870 to the present.  

 The atmospheric data analyzed in this study are the NCEP/NCAR monthly 

mean upper-air reanalysis, with 2.5° horizontal resolution on 17 pressure levels 

[Kalnay et al., 1996]. In total, eight variables were analyzed as potential TCG 

predictors, describing the thermodynamic and dynamic condition of the ocean and 

atmosphere across a large portion of the Indo-Pacific region identified as 30°N-50°S, 

30°E-70°W. The four thermodynamic parameters considered are SST, sea level 

pressure (SLP), geopotential height at 500 hPa (GPH), and the (non-saturated) 

equivalent potential temperature gradient between 1000hPa and 500hPa (EPT). The 

four dynamic parameters investigated are the meridional winds at 850hPa (v850), zonal 

winds at 200hPa (u200), the environmental vertical wind shear between 850hPa and 

200hPa (EVWS), and the relative vorticity at 850hPa (RV). Monthly anomalies of all 

variables were determined against a 30-year base period of 1970-1999. Statistical 

significance of the correlation coefficients takes account of serial correlation in the 

time series and is based on the reduced effective number of degrees of freedom 

method outlined by Davis [1976]. 

c. Statistical model 
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Following previous studies [e.g., Elsner and Jagger, 2006; Chu and Zhao, 2007; 

Chand et al., 2010; Werner and Holbrook, 2011], we applied a Bayesian Poisson 

regression approach to predict the seasonal number of TCG occurrences. Bayes’ 

theorem allows us to find the best possible model coefficient representation – 

specifically, this information is used here to develop model forecast estimates of 

southeast Indian Ocean region seasonal TCG totals. Following Werner and Holbrook 

[2011], we used diffusive prior information, selecting a Gaussian distribution with 

zero mean and standard deviation of 100 for all model coefficients. A Markov Chain 

Monte Carlo (MCMC) method was performed using slice sampling. The posterior 

probability quantifies the uncertainty in the model coefficients provided by the 

probabilities. To discard the effects of the chosen initial conditions, we applied a 

model burn-in of 500 iterations. To avoid high autocorrelations, aiming to achieve 

effective statistical independence of the samples in the iteration process, the samples 

were thinned so that only every n+2 sample was taken into account, with n being the 

number of predictors in the model. In summary, 5,000 samples were used to estimate 

the model coefficients and obtain the model forecasts. For detailed information about 

the modelling approach, see Werner and Holbrook [2011]. 

 To assess potential model skill using the selection of predictors, a leave-one-out 

cross-validation was performed [e.g., Stone, 1974; Werner and Holbrook, 2011]. 

Here, the model is trained using n-1 tropical cyclone seasons to hindcast the number 

of TCG events expected for the single tropical cyclone season that has been withheld 

from the training data set. This train-and-test approach is successively repeated to 

hindcast each TC season across the 40-year data set. This enables us to perform an 

independent hindcast of every TC season. To evaluate model skill, the probabilistic 

RMSE of each model hindcast was calculated [e.g., Elsner and Jagger, 2004, 2006; 
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Chu and Zhao, 2007; Chand et al., 2010; Werner and Holbrook, 2011]. The RMSE is 

a commonly used metric for the potential utility of a predictor (or predictor 

combination) in a probabilistic model, where a smaller RMSE typically means a 

better model. The RMSE is calculated using the probabilities of the independent 

hindcasts in the leave-one-out cross-validation method. Another measure is the skill-

score (SS), calculated from the common MSE improvement of the cross-validated 

model hindcasts over the climatological average MSE. The climatology-only model 

(as used in table 2a) was determined as the uncertainties of the intercept and with 

hindcasts of TCG numbers close to the observational long-term average. 

 The standard error (se) and cross-correlation (r) between predicted and observed 

number of TCs formed in the region provide measures of the first-order hindcast skill. 

The final model coefficients were estimated based on data from the training period 

1968/69-2007/08. 

3. Prediction schemes 

 Figure 2 shows spatial correlation maps between southeast Indian Ocean region 

annual TCG totals and the individual predictor variables shown for the June-July-

August (JJA) period prior to the upcoming TC season. The correlation patterns with 

the thermal variables EPT and SST (see corresponding panels in Figure 2) are 

characterized by the developing ENSO [e.g., Gaurreaud and Battisti, 1999; 

Drosdowsky and Chambers, 2001] ‘boomerang’ pattern across the tropical/subtropical 

Pacific. This pattern defines regions of enhanced convection in the Pacific, contrasted 

by suppressed convection over the Indian Ocean. SLP shows a strong positive 

correlation pattern throughout the Pacific that is strongest in the tropical and 

subtropical central Pacific, while negative correlations exist over much of the 
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Australian continent, south of Australia, and in the southeast Indian Ocean associated 

with large-scale ENSO. The positive correlations of GPH with southeast Indian Ocean 

TCG counts in the central subtropical South Pacific are located at the southern tip of 

the South Pacific Convergence Zone and the warm advection region of the semi-

permanent South Pacific subtropical High. However, interannual variations of the air 

column in that region are driven mainly by changes of the trough in the mid-latitude 

westerlies between 15°S and 45°S in the central South Pacific [Van Loon and Shea, 

1985]. 

 The dynamic variables u200, EVWS and RV, tend to show similar patterns to 

GPH, EPT and SST, with a change of sign in the southeast Indian Ocean (bottom four 

panels of Figure 2). These patterns describe changes in the Walker and Hadley 

circulations due to ENSO phase changes. The correlation pattern in the tropical 

Pacific and Indian Ocean between annual southeast Indian Ocean TCG totals and u200 

imply enhanced TCG with a strengthening of the Walker circulation and trade winds. 

The correlation patterns of v850, EVWS and RV with southeast Indian Ocean region 

TCG totals imply a stronger (weaker) Walker circulation leading to increased 

(decreased) convection in the Warm Pool, which is more (less) favorable to TCG in 

the southeast Indian Ocean.  

 To achieve climatologically relevant predictors, we derived single indices for 

each climate predictor based on the persistence and magnitude of the spatial 

correlation coefficients. Spatial correlation maps for October-November-December 

(OND; not shown) also help to identify patterns, which remain significant after the 

austral winter till the start of the Australian region TC season. The most persistent 

correlation patterns observed for GPH and EPT with southeast Indian Ocean TCG are 

both located in the subtropical central South Pacific, while the NINO4 SSTA index, 
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SLP, u200 and EVWS describe variations in the equatorial central-western Pacific 

region. The v850 and RV indices correspond to the northern inflow region of the 

Walker cell in the tropical East Pacific. 

We found that all predictors generate persistent strong correlations with 

upcoming seasonal TCG by JJA at the latest, with correlations r > |± 0.4|. The 

strongest correlations between the climate index three-month means and annual TCG 

totals are provided in Table 1. All correlations are significant at the 95% confidence 

level. Predictor combinations should be complementary and contribute information 

that adds value. For that reason, predictor combinations where r > |± 0.8| with each 

other were not included in any further analysis. In total, eight predictor indices were 

further investigated. 

4. Results 

Using the leave-one-out cross-validation technique, we calculated the RMSE 

as a metric of model skill. The best single-predictor is SLP (RMSE = 3.79, se = 0.26; 

Table 2a). In an attempt to further improve the model, we investigated predictor 

combination models using a step-by-step predictor selection based on the calculated 

RMSEs. SLP was used as the key single-predictor based on its lowest RMSE and 

strongest correlation with annual TCG totals. The two-predictor combination of 

SLP+v850 provided a further 1% reduction in RMSE to 3.74 and se = 0.26 (Table 2b). 

No further reductions were gained from extra predictors. Figure 2 shows the 40-year 

leave-one-out cross-validated hindcasts for the two-predictor SLP+v850 model plotted 

against the observed total number of TCs formed in each season. The hindcasted 

annual TCG count identifies the total number of TCG occurrences with maximum 

probability in the hindcast distribution. We find that this two-predictor model captures 
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the variability in number of cyclones formed within the boundaries of standard 

deviation, with 82.5% success rate of the cross-validated hindcasts (Figure 3). The 

model performed well overall, with favourable cross-validated hindcast totals (using 

the leave-one out method) against the observed annual TCG totals, with r = 0.57 

(Table 2b) and a skill score of 30%. While the model is skilful for this otherwise 

challenging region of low predictability, there are nevertheless problems capturing 

unusually high or low TCG counts (1971/72, 1985/86, 1986/87, 1993/94, 2003/04) or 

unusually high counts during certain El Niño years (1972/73, 2004/05). We find, 

however, that the phase of ENSO does not appear to be as important for the number 

of observed southeast Indian Ocean TCG occurrences as it is for the southwest Pacific 

(not shown), which is consistent with previous analyses [Broadbridge and Hanstrum, 

1998; Goebbert and Leslie, 2010]. 

5. Discussion and Summary 

This paper presents a new Bayesian seasonal forecasting model of tropical 

cyclone formation (genesis, TCG) for the southeast Indian Ocean region that provides 

substantial improvement (SS = 30%) over climatology. It is well understood that TC 

activity in the Australian region is strongly affected by the phase of ENSO. While 

there is clear evidence for this relationship across the broader Australian tropical 

cyclone region, recent work indicates that there are no significant correlations 

between standard ENSO indices and seasonal TCG variations in the northwest 

Australian region [Goebbert and Leslie, 2010].  

In the present study, we extended the statistical analysis to include a suite of 

other predictor variables. These included: two subtropical central South Pacific 

indices - the geopotential height at 500 hPa (GPH), and (un-saturated) equivalent 
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potential temperature gradient between 1000 hPa and 500 hPa (EPT); three central 

tropical Pacific indices - the sea level pressure (SLP), zonal winds at 200 hPa (u200), 

and environmental vertical wind shear between 850 hPa and 200 hPa (EVWS); and 

two northeast tropical Pacific indices - the meridional wind speed at 850 hPa (v850), 

and low-level relative vorticity at 850 hPa (RV; see Figure 2). Additionally, the 

ENSO SSTA index NINO4 was used. As a result of correlating pre-TC season three-

month climate index means with southeast Indian Ocean TCG totals in the upcoming 

season, we found that the three-month austral winter mean indices showed the 

greatest overall TCG forecast potential. The best eight predictor variables (Table 1) 

were incorporated into a Poisson regression model developed on TCG totals. 

Following recent studies [e.g., Elsner and Jagger, 2004, 2006; Chu and Zhao, 2007; 

Chand et al., 2010; Werner and Holbrook, 2011], we applied a Bayesian approach 

using the Markov Chain Monte Carlo method. This approach is beneficial as it 

permits the incorporation of prior beliefs, and is convenient to account for the 

uncertainties in model parameters.  

Using a two-predictor Bayes’ model on key indices of SLP and v850, we 

provide substantial improvement in cross-validated hindcast skill over climatology. 

Recently published seasonal forecast modelling studies of southeast Indian Ocean and 

northwest Australian region TC activity showed improvements of 39% in RMSE over 

climatology [90°-135°E; Liu and Chan, 2010] using a project-pursuit regression 

model and the jackknife validation method and preliminary results by Goebbert and 

Leslie [2010] using a multiple linear regression model approach suggest 64% in MSE 

over climatology in the northwest Australian region defined as 105°-135°E. While the 

second result is apparently impressive, the authors clearly note the preliminary nature 

of their model approach, in which predictors are derived on basis of correlation 
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patterns between climate variables and annual TCG variablility in the northwest 

Australian region. However, the predictors are located in large distance to the 

investigated region and are not analysed due their persistence of the correlation 

patterns and their climatological relevance to TCs in the northwest Australian region. 

Here, using the leave-one-out cross-validated hindcast approach, we achieve 

correlations of r = 0.57 with observed TCG totals using the two-predictor model of 

SLP+v850 for the period 1968/69-2007/08. In comparison to the skill of the 

climatology-only model, the SLP+v850 model shows a 30% improvement in MSE.  

It is interesting to finally note that while ENSO is arguably less important to 

southeast Indian Ocean region TC activity [Broadbridge and Hanstrum, 1998; 

Goebbert and Leslie, 2010], at least the SLP index derived in this study is ENSO-

linked, while the v850 index appears to vary due to a different mechanism. Combining 

SLP with the lower-troposphere meridional inflow from the northeast tropical Pacific 

produced a valuable and complementary predictor set. The East Pacific tropical SLP 

index is embedded in a large-scale pressure pattern associated with ENSO. The 

significant negative relationship between southeast Indian Ocean TCG annual totals 

and the ITCZ-linked North Pacific v850 index means a strengthening of the low-level 

equatorward trade wind inflow (Walker circulation) leads to enhanced TCG. 

In summary, we have showed improved seasonal forecasting of TCG counts in 

the southeast Indian Ocean region by using meaningful indices of climate variables in 

a Bayesian Poisson model. We find that a two-predictor SLP+v850 Poisson model 

produces relatively skilful cross-validated hindcasts of southeast Indian Ocean region 

annual TCG totals, with the ‘forecasts’ available at least two months prior to the onset 

of the Australian (including southeast Indian Ocean) region TC season from 

November-April. The predictor variables identified in this study are physically 
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meaningful and appropriate to condition the model TCG forecasts. With the Poisson 

model system using a Bayesian approach, we generate cross-validated hindcasts of 

southeast Indian Ocean region seasonal TCG totals (r = 0.57) with low RMSE (3.74) 

against a 40-year record of observations – that compare favourably against previous 

model attempts in the literature for this region.  
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Figures and Tables 

 

Figure 1: a) Spatial distribution of the first recorded location of tropical storm systems 

that later develop into tropical cyclones in the southeast Indian Ocean region from 

1968/69- 2007/08, and b) corresponding time series of annual TCG totals across the 

region. 
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Figure 2: Spatial map of correlations between annual TCG totals and dynamic and 

thermal predictor variables for June-July-August (JJA). The bold box indicates the 

southeast Indian Ocean TC region and the dashed box identifies the predictor region 

with maximum relationship with southeast Indian Ocean TCG. The thin lines outline 

spatial pattern correlations significant at the 95% level. 
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Figure 3: Variations in observed seasonal TCG totals (dashed line) and leave-one out 

cross-validation hindcasts (solid line) using the SLP+v850 predictor model over the 40-

year record from 1968/69-2007/08. Model standard deviations are indicated by the 

shading. 
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Table 1: Regional average defined by all predictor indices, as well as the three-

month average index period with the strongest correlation (r) with annual TCG 

totals in the upcoming season. All correlations presented here are significant at the 

95% confidence level. 

 

Index  Latitude Longitude   3-month mean    r  
_____________________________________________________________      
SLP  5°-15°N 165°-125°W  JJA   0.57 
GPH  25°-45°S 170°-130°W  JAS   0.47 
EPT  20°-30°S 160°E-160°W  JAS   0.38 
NINO4  5°N-5°S 160°E-150°W  JAS  -0.47  
v850   15-5°N  120°-80°W  MJJ   0.37 
u200   5°N-5°S 170°E-150°W  JJA   0.38 
EVWS  0°-10°S 170°-130°W  JAS   0.50 
RV   15°-5°N 145°-105°W  JJA  -0.49 
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Table 2: a) Model cross-validated hindcast skill (based on the leave-one out method 

and three skill metrics) for different predictors and combinations. RMSEs are used to 

evaluate the quality of the predictor. Next to the RMSEs, standard errors (se) and 

significant correlation coefficients (r) between hindcasts and observed number of TCs 

help to further validate the skill of the model. Bold indicates the model with the 

lowest RMSE. b) as a) but for two- and three-predictor combinations based on step-

by-step model selection. For the multi-predictor models, bold indicates improvement 

over the best single predictor SLP model and the best two-predictor model. 

 

a) predictor RMSE    se          r        b) predictor            RMSE   se       r      
    __________________________          ___________________________________ 

Climatology   4.04   0.24       NaN         SLP+GPH    3.86  0.26     0.50 
SLP      3.79   0.26    0.53         SLP+EPT               3.88  0.28     0.47 
GPH   3.92   0.25    0.37         SLP+NINO4  3.92      0.28     0.49 

      EPT   4.06   0.27    0.29         SLP+ v850               3.74  0.26     0.57 
NINO4   4.04   0.28    0.31         SLP+ u200     3.87  0.27     0.49 
v850                4.03   0.26    0.17         SLP+EVWS  3.79  0.26     0.55 
u200                 4.03   0.28    0.24         SLP+RV                 3.83  0.27     0.50 
EVWS       3.96   0.27    0.47            

     RV             3.87   0.27    0.39         
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4.5 Further Discussion 

 For a better evaluation of the robustness of the predictor-set for annual TCG 

counts in the eastern Indian Ocean region, we applied a four-fold cross-validation 

technique. In this method, the data are split into four consecutive 10-year subsets. The 

model is then trained on three of the four subsets to hindcast the left-out 10 years. 

This procedure was used to hindcast the 10-year periods 1968/69-1977/78, 1978/79-

1987/88, 1988/89-1997/98 and 1998/99-2007/08. Figure 4.5 shows the four 

independent four-fold 10-year hindcasts, as well as the fitted 30-year hindcasts on 

which the model was trained. The results are compelling with the model displaying 

considerable skill. The independent hindcasts of the left-out 10 years are mostly very 

accurate, with only five out of 40 (12.5%) of the annual (seasonal) hindcasts outside 

of the model standard deviation. As for the leave-one out cross-validated data, the 

model lacks skill when an unusually high or low number of TCGs occurred (1985/86, 

1986/87, 1993/94, 2003/04). For the year 2004/05, the unusually high number of 9 

TCs during an El Niño year was not well represented by the model. The fewer seasons 

in which the observed number of TCG counts is within the model standard deviation 

are due to larger model coefficient uncertainties.  

Figure 4.5 Variations in observed annual TCG totals (dashed line) and regressed 
hindcasts (solid line) using the SLP+v850 predictor model trained on 30 years and 
independently hindcasting the 10 left-out years (circle; four-fold cross-
validation), with error bars indicating the standard deviation. Crosses indicate the 
observed TCG totals during the independent hindcast period. Model standard 
deviations of the 30-year training period are indicated by the shading. 
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The SLP and v850 indices derived in this study are ENSO-linked. Combining 

central tropical North Pacific sea level pressure with the lower-troposphere meridional 

tropical inflow from the eastern North Pacific, was found to produce a valuable and 

complementary predictor set. Figure 4.6 shows the anomalies of the model-relevant 

predictor variables (SLP, wind flow at 850 hPa) between hindcasted active TC 

seasons (TCGs " 9) and relatively inactive TC seasons (TCGs # 4) and indicates the 

index locations used in the two-predictor model. Based on this definition, active and 

inactive seasons represent around 25% of the investigated seasons, respectively. The 

SLP index location is embedded in an ENSO-related large-scale SLP anomaly. The 

relationship between TCG occurrence and the ITCZ-linked North Pacific v850 index is 

negative, which means a strengthening of the low-level equatorward inflow (Hadley 

circulation) leads to enhanced TCG. 

  

 

 

Figure 4.6 Map of composite anomalies for active Australian TC seasons minus 
composite anomalies for inactive eastern Indian Ocean TC seasons during June-
July-August. Wind vectors describe the wind flow anomalies at 850 hPa. Grey 
shaded areas represent changes of SLP (hPa). Also indicated are the locations of 
the predictor indices SLP and v850 and the eastern Indian Ocean TC region. 
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4.6 Chapter Summary 

 This chapter has addressed the thesis aims identifying important prediction 

schemes of climate variables for seasonal variations of TCG counts in the Australian 

region and subregions and on its basis, seasonal forecast models for TCG counts using 

a Bayesian Poisson model was built. 

 We presented a new Bayesian seasonal forecast model of Australian region 

TCG counts. We showed substantial improvement over previous seasonal forecast 

models of TCG counts in the Australian region, as well as the advantage of the 

Bayesian method over the frequentist approach. The model has been shown to be 

adaptable for forecasting of southwest Pacific (Eastern Australian) region TCG 

counts. Applying the model to hindcast seasonal TCG counts in the eastern Indian 

Ocean (Western) region lacks sufficient skill and suggests that it is beneficial to build 

a separate seasonal forecast model for that region on the basis of different predictor 

indices. 
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5 DEVELOPMENT OF A SEASONAL FORECAST MODEL FOR THE 

SPATIAL PROBABILITY OF TROPICAL CYCLONE OCCURRENCES IN 

THE AUSTRALIAN REGION  

5.1 Chapter Overview 

 This chapter applies the Bayesian forecast model introduced in Chapter 4 to 

build a forecast model for the spatial probability of TCs forming in the Australian 

region. As we are now interested in the probability of an event occurring, instead of 

the expected number of events, the Poisson likelihood function is replaced by a 

logistic regression applied with a Bernoulli distribution. An accurate representation of 

the seasonal variations of the probability of TCs forming is achieved, as well as the 

spatial variations. The model is based on the previously introduced indices of SLP and 

v850, as well as the ENSO SSTA index NINO4 and spatial information CAPE. 

 

 The main text of this chapter is a paper being prepared for submission to the 

Journal Climate Dynamics (Werner and Holbrook 2011c: A spatial statistical forecast 

model of seasonal probabilities for Australian region tropical cyclone formation - in 

preparation for submission to Climate Dynamics).  

 

Candidate’s contribution to the papers 

The experiment design and analysis methods were the candidate’s idea and then 

jointly discussed between Dr Holbrook and myself. I also performed all of the data 

analysis. All sections of the coauthored paper in preparation were led by myself 

under the guidance of Dr Holbrook. 
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Abstract 

 
A new and potentially skilful seasonal forecast model for the spatial distribution of 

tropical cyclone development (genesis; TCG) in the Australian region on a 2.5° x 2.5° 

grid is developed for the Australian region. The model is based on logistic regression 

using the Bayesian approach. Predictor combinations are chosen using a step-by-step 

predictor selection. The four-predictor model based on indices of June-July-August 

averaged tropical central Pacific sea level pressure, July-August-September averaged 

NINO4, May-June-July averaged tropical North Pacific meridional winds at 850 hPa 

and the spatially-varying (grid-point estimates) of April-May-June averaged 

convective available potential energy shows an average improvement over the 

climatological average of 25.2% and a spatially averaged root mean-squared error of 

0.41. The average distribution of TCG probabilities over the study period, as well as 

the hindcasted strong variations of probabilities and distribution of TCG during El 

Niño-Southern Oscillation events match remarkably well against observations over 

most of the study domain, with a high skill for the whole range of probabilities.  
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1. Introduction   

 

Australia’s tropical climate is dominated by El Niño-Southern Oscillation (ENSO), 

driven largely from the Pacific basin (e.g., Allan et al. 1996). The number of observed 

Australian region tropical cyclones (TCs) in any particular year depends strongly on 

ENSO. Consequently, numerous studies have been undertaken previously regarding  

the influence of ENSO on tropical cyclone formation in this region (e.g., Nicholls 

1984, 1992; Basher and Zheng 1995; Kuleshov and de Hoedt 2003; Ramsay et al. 

2008; Kuleshov et al. 2009). The Australian TC region has greater variability of TC 

frequency, speeds and trajectories compared with other TC basins (Bessafi et al. 

2002). This is the result of unique climatological and other features, including the 

Australian landmass in the region (Holland 1984), the existence of the Australian 

monsoon trough (McBride and Keenan 1982; Evans and Allan 1992), and the 

relatively close approach of the mid-latitude westerlies into the tropics (Dare and 

Davidson 2004). While the monsoon trough is an area of strong negative low-level 

relative vorticity, the upper-level ridge located around 12°S is accompanied by weak 

environmental vertical wind shear in a zone that is extremely favourable for TC 

formation and intensification (Dare and Davidson 2004). Additionally, Australian 

region TC formation (genesis; TCG) is affected by continental effects. When warm, 

dry continental air from Western Australia extends offshore, extensive dry ambient 

conditions are less conducive to the formation of Australian’s west coast TCs. On the 

other hand, when the monthly-averaged relative humidity is increased and 

concentrated in the west coast region, intense TCs can be expected (Tonkin et al. 

1997). During the tropical cyclone season, mid-tropospheric relative humidity and 
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vertical wind shear are important contributors to variations in TCG in the Southern 

Hemisphere (Camargo et al. 2007). Furthermore, relative humidity at 500hPa and 

low-level relative vorticity appear to be the most important variables for Australian 

region TCG on interannual time scales (Kuleshov et al. 2009).  

Since the late 1970s/early 1980s, a number of statistical seasonal forecast 

schemes have been developed and improved to predict TC activity in various basins 

and sub-basins (Klotzbach et al. 2010). Seasonal forecast modelling of TC activity 

was first undertaken by Nicholls (1979) for the Australian region and Gray (1984) for 

the North Atlantic. The first nonlinear statistical forecast model of Australian region 

tropical cyclone frequency was developed 20 years ago, based on the Poisson 

regression (Solow and Nicholls 1990). In that study, the large-scale atmospheric sea 

level pressure gradient between Darwin and Tahiti – the Southern Oscillation index 

(SOI) – was used as the predictor of Australian region TC counts. More recently, a 

Poisson regression model using spatial grid-point estimates of the September lead 

saturated equivalent potential temperature gradient between 1000hPa and 500hPa, as 

well as the SOI, was developed to forecast upcoming season TCG totals across the 

Australian tropical cyclone region (McDonnell and Holbrook 2004a,b). Werner and 

Holbrook (2011) built on that study with the development of a Poisson regression 

model using a Bayesian approach, with predictor variables that include the subtropical 

central South Pacific convective available potential energy, meridional winds at 850 

hPa in the tropical East Pacific (the Walker circulation inflow region), and the central 

South Pacific geopotential height at 500 hPa. Both the McDonnell and Holbrook 

(2004b) and Werner and Holbrook (2011) models have also been applied to forecast 

TCG totals within three Australian subregions. In each case, the TCG model forecasts 

showed considerable improvement over climatology of 25% (McDonnell and 
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Holbrook 2004b) and 58% (Werner 2011) for the southwest Pacific, while neither 

achieves significant skill in the eastern Indian Ocean subregion. Liu and Chan (2010) 

applied a project-pursuit regression model to forecast seasonal variations in TCG 

counts for the Australian region and two subregions using well-known climate indices 

- NINO4, the Indian Ocean Dipole Mode index (DMI), the trade wind index, and 

outgoing long-wave radiation (OLR) index. Using the jackknife method, they 

achieved 51% improvement in the root-mean-square error (RMSE) over climatology 

for the Australian region and 39% improvement for the Western Australian (eastern 

Indian Ocean) region. McDonnell and Holbrook (2004a,b) took account of (grid-

scale) spatial variations in saturated equivalent potential temperature gradient in their 

Poisson regression model on a 5°longitude x 2°latitude grid. While they achieved a 

22% improvement of RMSE over climatology in expected TCG totals at the basin-

wide scale, they were unable to accurately capture the spatial distribution of seasonal 

TCG probabilities at the grid-point scale. Most recently, a statistical model developed 

for the Australian subregions by Leroy and Wheeler (2008), based on logistic 

regression, has had some success in forecasting TCG probabilities of occurrence at 

the intra-seasonal time-scale. 

The present paper introduces a new and novel spatial statistical forecast model 

of Australian region TCG seasonal probabilities on a 2.5° x 2.5° grid. Our logistic 

regression model is developed here using a Bayesian Markov Chain Monte Carlo 

(MCMC) approach, and takes account of recently derived climate indices shown to be 

useful for predicting Australian region TCG (Werner and Holbrook 2011). As an 

average, the model provides a 25% improvement over climatology. The model utility 

is in the fact that we are able to now provide forecasted TCG event probabilities at the 

grid-point scale across the entire Australian tropical cyclone region. Model skill is 
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also assessed through hindcasts of TCG probabilities during ENSO events (both El 

Niño and La Niña year), where we find that TCG hindcast probabilities match 

remarkably well against observations over most of the study domain.  

The paper is structured as follows. Section 2 describes the data and model 

predictors used. The model details are provided in Section 3. Section 4 presents the 

model results, and finally Section 5 discusses and summarizes the quality and 

improvements of the models presented over existing models.  

2. Data 

a. Tropical cyclone observations 

This study takes advantage of the global TC best track data set IBTrACS.v02 (Knapp 

et al. 2010) provided by the U.S. National Oceanic and Atmospheric Administration. 

TCG is here defined as the location where a tropical storm system with winds 

exceeding 34 knots (17.5 ms-1) was originating.  

The Australian tropical cyclone region is defined here as 0°-30°S and 90°-

170°E. TCG occurrences identified poleward of 30°S, or over land, have been 

removed in the quality assessment process. Only storms during the Australian TC 

season from November to April are taken into account. Overall, a total of 570 TCs 

during the 40-year period from 1968/69-2007/08 are analyzed following the quality 

control. Figure 1 shows the spatial distribution of the first noted locations of tropical 

storm systems that later developed into TCs and the corresponding time series of 

seasonal TCG totals in the 40-year record. TCG locations were subsequently binned 

into their corresponding 2.5° x 2.5° grid cells. This results in a 33 x 13 grid cells 

within the Australian TC region. With an average of 14 TCGs occurring per season, 

this leads to very few data points with TCG " 1 in the time-space grid. To increase the 
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spatial information, but also to smooth the randomness of the location of TCG due to 

favourable local conditions, we applied a spatial running grid of three zonal and 

meridional grid boxes. This results in spatial running grid consisting of a total of nine 

grid cells, for which the TCG occurrences are added up to better estimate the 

likelihood for TCG in the centred box. 

b. Oceanic and atmospheric data 

Sea surface temperature (SST) data were taken from uniformly gridded temperature 

observations provided in the Hadley Centre Global Sea Ice and Sea Surface 

Temperature (HadISST1) dataset (Rayner et al. 2003), compiled by the UK Met 

Office Hadley Centre. HadISST1 is a combination of global monthly SST fields and 

sea ice concentrations on a 1° ! 1° grid from 1870 to the present.  

 The atmospheric data analyzed in this study are from the NCEP/NCAR monthly 

mean upper-air reanalyses, with 2.5° horizontal resolution on 17 pressure levels 

(Kalnay et al. 1996). Monthly anomalies of all variables and indices were determined 

against a 30-year base period of 1970-1999. Statistical significances of the correlation 

coefficients are based on the reduced effective number of degrees of freedom method 

outlined by Davis (1976).  

c. ENSO definitions and effects on TCG  

Ramsay et al. (2008) found the NINO4 SST anomaly (SSTA) index to be the 

strongest ENSO predictor of interannual TC frequency in the Australian region and is 

therefore also included in the present study. NINO4 is defined as the SSTA time 

series averaged spatially between 5°S-5°N and 160°E-150°W.  

 ENSO events are classified according to the definition used by the U.S. National 
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Weather Service 

(<http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.s

html>) using the three-month running mean in the NINO3.4 region. El Niño (La Niña) 

events are defined by the NINO3.4 SSTA exceeding thresholds of ±0.5°C for a 

minimum of five consecutive three-month average overlapping periods. 

d. Model predictors 

Next to the ENSO metric NINO4, two additional indices are used, derived on the 

basis of significant and persistent correlation patterns between sea level pressure 

(SLP) and meridional winds at 850 hPa (v850) with seasonal variations of Australian 

region TCG counts. Figure 2 shows spatial correlation maps between Australian 

region annual TCG totals and June-July-August (JJA) averaged SST, SLP and v850, 

prior to the upcoming TC season. SLP shows a strong positive correlation pattern 

throughout the Pacific that is strongest in the tropical and subtropical central Pacific, 

while negative correlations exist over much of the Australian continent, south of 

Australia, and in the southeast Indian Ocean associated with large-scale ENSO 

(Garreaud and Battisti 1999). The SST correlation pattern is characterized by the 

developing ENSO (e.g., Drosdowsky and Chambers 2001) with a weak boomerang-

shaped negative SSTA pattern featured in the central Pacific. An extended anomaly, 

of the same negative sign as in the central Pacific, is also observed in the Indian 

Ocean. The correlation patterns with v850 also describe enhanced Australian region 

TCG being related to a weakening of the Hadley circulation in the Western Pacific 

Warm Pool (WPWP) region, and a strengthening of the Hadley circulation in the 

northeast Pacific.  

 To use climatologically relevant predictors, we applied indices derived in 
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previous studies on the basis of the persistence and strength of the pre-seasonal spatial 

correlation coefficients between climate variables and Australian and southeast Indian 

Ocean region TCG variability (Werner and Holbrook 2011a,b). The three-month 

averaged predictors were chosen based on the strongest correlations between pre-TC 

season indices and upcoming season Australian region TCG. We found that the 

strongest predictor indices based on our assessment are the central tropical Pacific 

SLP (SLP; 5°-15°N, 165°-125°W), the western Pacific ENSO SSTA index - NINO4 

(5°N-5°S, 160°E-150°W), and the meridional winds at 850 hPa in the northeast 

tropical Pacific (v850; 15-5°N, 120°-80°W). Also used are the 2.5° x 2.5° grid-scale 

spatial estimates of April-May-June (AMJ)-averaged convective available potential 

energy calculated between 850 hPa and 300 hPa (CAPE). CAPE (m2 s-2) describes the 

stability of the troposphere, and is defined as  

! 

CAPE = g Tm "T
T

dz
z(850hPa )

z(300hPa )

#   ,     (1) 

where z(850hPa) is assumed to approximate the level of free convection, and 

z(300hPa) the level of neutral buoyancy. T (oC) is a function of the pressure level 

height (z) – and defined as the environmental temperature, Tm (oC) is the temperature 

of an idealized rising air parcel which is assumed to be saturated at the 850 hPa level, 

and g = 9.81 m s-2 is the standard gravity constant. 

 Figure 3 shows correlation maps between the four selected predictor variables 

and the spatial running means of upcoming season TCG totals across the Australian 

region. While SLP and NINO4 correlate significantly with TCG in the Pacific and 

parts of the Indian Ocean, v850 and CAPE only show broad significant relationships in 

the southwest Pacific sector. There are two regions where none of the indices or 

CAPE appears to have any skill on the basis of the spatial correlation coefficients. 
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These regions are located in the Indian Ocean between 105° and 115°E and over the 

northern Australia between 125° and 145°E, and therefore in proximity or around 

local minima of TC activity (Goebbert and Leslie 2010). 

3. Bayesian Regression Model 

a. Logistic Regression 

The logistic regression model is an appropriate method that can be used to model the 

probabilities of an event, i.e., the outcome variable is binary. Following previous studies 

(e.g., Leroy and Wheeler 2008), we applied the logistic regression approach to model 

the probability of TCG events. The apparent difficulty that seasonal TCG events are 

integer numbers, rather than probabilities, can be solved with Regression Estimation 

of Event Probabilities (REEP; Glahn 1985). In REEP, an assumption based on the 

underlying data set or experience is made, so the predictand takes on values between 

0 and 1. This enables us to treat the predictand as the probability of an event 

occurring, and therefore the application of a Bernoulli distribution (Wilks 1995). The 

relevant assumption made in our case study is that, for the nine grid boxes used in the 

spatial running grid, the TCG event probabilities within each running spatial grid-

space are divided by nine. If the total number of observed TCG occurrences then 

exceeds 9, the probability of occurrence would be theoretically higher than one, but is 

assumed as 1. With REEP, a Binomial distribution can be applied to the observational 

data as 

   

! 

P(Yi = y) =
n!

k!(n " k)!
# 

$ 
% 

& 

' 
( pi

k (1" pi)
n"k   ,    (2) 

where n is the REEP assumption for the total number defined as p=1, k identifies the 

number of observed events and pi is the logistic regression as in 
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! 

P(Yi = y | xi,") =
exp(µi)
1+ exp(µi)

  ,    (3) 

where µi provides the multiple linear regression estimates on the predictors. The 

logistic regression is defined for all positive and negative discrete numbers. With the 

here described approach, we can consider the response variable Yi as a set of i 

independent Bernoulli trials with different success probabilities of an event occurring.  

b. Bayesian analysis 

Bayes’ theorem allows us to find the best possible model coefficient representation – 

specifically, this information is used here to develop model forecast estimates of 

Australian region TCG annual totals. Following Werner and Holbrook (2011), we 

used diffusive prior information, selecting a Gaussian distribution with zero mean and 

standard deviation of 100 for all model coefficients. For the likelihood function, we 

consider the Bernoulli model resulting from Equation (2) and (3) in 

! 

p(yi | xi,") =
exp(µi )
1+ exp(µi )
# 

$ 
% 

& 

' 
( 

y

1)
exp(µi)
1+ exp(µi)

# 

$ 
% 

& 

' 
( 

1)y

.  (4) 

A Markov Chain Monte Carlo (MCMC) method was then applied using slice 

sampling. The posterior probability quantifies the uncertainty in the model 

coefficients provided by the probabilities. To discard the effects of the chosen initial 

conditions, we applied a model burn-in of 500 iterations. To avoid high 

autocorrelations, and hence aiming to achieve effective statistical independence of the 

samples in the iteration process, the samples were thinned so that only every sixth 

sample was taken into account. In summary, 5,000 samples were used to estimate the 

model coefficients and obtain the model forecasts. For detailed information about the 

modelling approach, see Werner and Holbrook (2011). 
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d. Model skill 

The final model coefficients were estimated based on data from the 40-year training 

period of 1968/69-2007/08. To evaluate the model skill, a skill-score (SS) is 

calculated from the mean-squared error (MSE) improvement of the model hindcasts 

over the climatological-average MSE. The root mean-squared error (RMSE) and 

correlation coefficient (r) between the predicted and observed number of TCs formed 

in the region provides an additional measure of the first-order hindcast skill.  

4. Results 

Based on a systematic step-by-step assessment of the utility of the model 

predictors, and through a series of cross-validated hindcasts, we found a four-

predictor SLP+NINO4+v850+CAPE logistic regression model using Bayesian 

probabilities displays the greatest potential for skilful spatial forecasts of TCG 

seasonal probabilities. Figure 4 shows the 40-year average observed and hindcasted 

probabilities for Australian region TCG. Clearly, the average distribution is accurately 

captured in the model hindcasts. The model shows improvements (30-50%) over 

climatology in both the Pacific and western border region of the eastern Indian Ocean, 

with a mean average skill score of SS=25.2% (Figure 5). The model provides modest 

improvements in the Australian North subregion and eastern Indian Ocean between 

105° and 115°E. The RMSEs (Fig. 5, lower panel) highlight first-order hindcast skill 

and the relative TC activity spatially, with the area-averaged RMSE = 0.41. The 

highest RMSEs, and hence the strongest deviation of model hindcasts and 

observations, are in the far western region around 90°E. High RMSEs are also found 

in the Australian North subregion, where skill levels are typically poor – not only 

here, but also in all previous literature we have been able to scope. This is further 
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quantified by correlations between the observations and hindcasts of r < 0.3 in that 

subregion. Nevertheless, across most of the southwest Pacific and eastern Indian 

Ocean regions, the very good correlations affirm that the model performs well overall 

as a spatial forecasting tool of seasonal TCG probabilities at scales of only a few 

degrees of latitude and longitude. Furthermore, we find the model is potentially skilful 

across a range of probabilities (Figure 6), albeit that there appears to be a tendency to 

underestimate higher probability TCG events. However, despite this apparent bias, the 

overall hindcast performance is remarkably good.  

Due to the strong influence of ENSO climate variations on TCG counts and 

their distribution across the tropical Indo-Pacific Ocean regions, we also assess the 

spatially-varying hindcast skill of seasonal TCG probabilities during El Niño and La 

Niña years from 1968/69-2007/08. To evaluate model performance, we compare El 

Nino and La Nina event composites of observed and hindcast TCG event probabilities 

using the four-predictor SLP+NINO4+v850+CAPE logistic model (Figure 7).  We find 

that the spatial distributions of TCG-event probabilities in both phases of ENSO are 

remarkably well captured overall. Despite a slight underestimation of the probabilities 

just off the North Queensland coast, and in the Australian North subregion for both 

phases of ENSO, the model performs very well in capturing the changing TCG 

probabilities and distributions according to the large climatic swings associated with 

ENSO event phase-changes. 

5. Summary and Discussion  

This paper provides a new and novel Bayesian seasonal forecasting model, 

based on the logistic regression, giving spatially-varying grid-scale forecasted 

estimates of seasonal tropical cyclone formation (genesis; TCG) probabilities across 
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the Australian tropical cyclone region. We have demonstrated that this model 

provides substantial improvement in potential forecast skill over climatology (SS = 

25.2%, RMSE = 0.41). 

We are aware of only one previous body of work that has attempted to develop 

a spatial forecast model of TCG for the Australian region (McDonnell and Holbrook 

2004a,b). In that study, they applied a Poisson regression model on a 5°longitude x 

2°latitude grid based on the SOI and grid-scale estimates of the saturated equivalent 

potential temperature as predictors. Despite providing a 22% improvement of RMSE 

over climatology in expected TCG totals at the basin-wide scale, they were unable to 

accurately capture the spatial distribution of seasonal TCG probabilities at the grid-

point scale.  

To avoid the problem of data sparsity and randomness, a spatial running-mean 

grid of three horizontal and vertical grid boxes was applied. This enables us to regress 

on probabilistic predictands by dividing the total number of seasonal TCG events in 

each of the running grids by the number of subgrids, where we assume the probability 

represented in the centred box of the spatial running grid is representative of the 

aggregate of boxes. Following recent studies (e.g., Elsner and Jagger 2006; Chu and 

Zhao 2007; Chand et al. 2010; Werner and Holbrook 2011), we applied Bayes’ 

theorem using the Markov Chain Monte Carlo method to estimate seasonal TCG 

event totals. The Bayesian approach is beneficial as it permits the incorporation of 

prior beliefs, and is convenient to account for the uncertainties in model parameters. 

To respond to the binary outcome variable, a logistic regression model is then applied. 

We found that the most skilful predictor combination of both standard and derived 

indices (i.e., area-averaged time-series that summarize large-scale climate changes) 

are the June-July-August (JJA)-averaged central tropical Pacific SLP, July-August-
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September (JAS)-averaged NINO4, May-June-July (MJJ)-averaged tropical North 

Pacific v850, as well as the spatially-varying (grid-point estimates) April-May-June 

(AMJ)-averaged CAPE.  

The SLP and NINO4 indices used in the model are ENSO-linked, while the 

v850 index appears to vary due to a different mechanism. Combining central tropical 

Pacific SLP with central tropical Pacific SST anomalies and the lower-troposphere 

meridional tropical inflow from the Northern Hemisphere into the eastern tropical 

Pacific, produced a valuable and complementary predictor set. The East Pacific 

tropical SLP index is embedded in a large-scale pressure pattern associated with 

ENSO. The NINO4 index provides a time history of SSTA changes in the western 

tropical Pacific (at the western end of the equatorial cold tongue connected to 

interannual ENSO variations) that has been previously shown to be important for 

capturing Australian region TCG variability (e.g., Ramsay et al. 2008; Liu and Chan 

2010). The significant negative relationship between eastern Indian Ocean TCG 

annual totals and the ITCZ-linked North Pacific index, v850, means that a 

strengthening of the low-level equatorward inflow from the Northern Hemisphere 

leads to enhanced TCG. CAPE, as a measure of tropospheric instability, is used to 

provide grid-scale (spatially-varying) estimates of the tendency for deep convection.  

The model developed here shows improvements (30-50%) over climatology in 

both the Pacific and western border region of the eastern Indian Ocean, with a mean 

average skill score of SS=25.2%. This is a substantial improvement over the 

frequentist Poisson regression model results provided by McDonnell and Holbrook 

(2004b), who showed an RMSE improvement over the climatology of 22%. Further, 

the almost grid-scale seasonal TCG probabilistic estimates accurately provided here, 

including ENSO TCG event probabilities that are well-captured as composite El Nino 
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and La Nina phases, should represent a substantial step forward in forecast potential 

for Australian region TCG. We note, however, important forecast difficulties evident 

in the eastern Indian Ocean region between 105° and 115°E and in the Northern 

Australian region. This historically low forecast skill eastern Indian Ocean region is 

also notably an area of local minimum TC activity around 105°E (Goebbert and 

Leslie 2010). In our attribution diagram (Fig. 6), we show that overall our model 

provides relatively high skills for all selected probabilities, albeit that there is a trend 

towards slightly underestimating the higher probability events that are observed. 

In summary, we have developed a new and potentially skilful seasonal 

forecast model for the spatial probability of tropical cyclogenesis for the Australian 

region on a 2.5° x 2.5° resolution. We find that a four-predictor 

SLP+NINO4+v850+CAPE logistic regression model produces remarkably skilful 

hindcasts of Australian region seasonal spatial TCG probability by September of each 

year, one month prior to the onset of the Australian region TC season (November-

April). The predictor variables identified in this study are physically meaningful and 

appropriate to condition the model forecasts of TCG. By combining information from 

useful dynamic and thermal and synoptic variables as predictors in a Bayesian 

Bernoulli approach, we are able to demonstrate skilful cross-validated hindcasts of 

Australian region seasonal spatial TCG probability with strong average improvement 

over the climatological average of 25% against a 40-year record of observations.  



5.2 Werner and Holbrook 2011c; for submission to Climate Dynamics 
 
 

 184 

References 

Allan R, Lindesay J, Parker D (1996) El Niño: Southern Oscillation and Climatic 

Variability. CSIRO Publishing, 416pp 

Basher RE, Zheng X (1995) Tropical cyclones in the southwest Pacific: Spatial 

patterns and relationships to Southern Oscillation and sea surface temperature. J 

Climate 8: 1249-1260 

Bessafi M, Lasserre-Bigorry A, Neumann CJ, Pignolet-Tardan F, Payet D, Lee-

Ching-Ken M (2002) Statistical prediction of tropical cyclone motion: An 

analog-CLIPER approach. Wea Forecasting, 17, 821–831 

Camargo SJ, Emanuel KA, Sobel AH (2007) Use of a genesis potential index to 

diagnose ENSO effects of tropical cyclone genesis. J Climate 20: 4819–4834, 

doi:10.1175/JCLI4282.1 

Chand S, Walsh KJE, Chan JCL (2010) A Bayesian Regression Approach to Seasonal 

Prediction of Tropical Cyclones Affecting the Fiji Region. J Climate, 23: 3425-

3445 

Chu P-S, Zhao X (2007) A Bayesian regression approach for predicting tropical 

cyclone activity over the central North Pacific. J Climate, 20, 4002–4013 

Dare RA, Davidson NE (2004) Characteristics of Tropical Cyclones in the Australian 

Region. Mon Wea Rev, 132, 3049-3065 

Davis RE (1976) Predictability of sea surface temperatures and sea level pressure 

anomalies over the North Pacific Ocean. J Phys Oceanogr 6: 249-266 

Drosdowsky W, Chambers LE (2001) Near global scale sea surface temperature 

anomalies as predictors of Australian seasonal rainfall. J Climate, 14, 1677-

1687 



5 Seasonal forecasting of spatial TCG probability 
 
 

 
 

185 

Elsner JB, TH Jagger (2006) Prediction models for annual U.S hurricane counts. J. 

Climate 19: 2935–2952 

Evans JL, Allan RL (1992) El Nino/Southern Oscillation modification to the structure 

of the monsoon and tropical cyclone activity in the Australasian region. Int J 

Climatol 12: 611-623 

Garreaud RD, Battisti DS (1999) Interannual (ENSO) and interdecadal (ENSO-like) 

variability in the Southern Hemisphere tropospheric circulation. J Climate, 12, 

2113–2123 

Glahn HR (1985) Statistical weather forecasting. In: A.H. Murphy and R.W. Katz, 

eds., Probability, Statistics, and Decision Making in the Atmospheric Sciences. 

Boulder, Westview, 289–335 

Goebbert KH, Leslie LM (2010) Interannual Variability of Northwest Australian 

Tropical Cyclones. J Climate, 23, 4538-4555 

Gray WM (1984) Atlantic seasonal hurricane frequency. Part II: Forecasting its 

variability. Mon Wea Rev, 112, 1669–1683 

Holland GJ (1984) On the climatology and structure of tropical cyclones in the 

Australian/southwest Pacific region: I. Data and tropical storms. Aust Meteor 

Mag, 32, 1–15 

Kalnay E et al (1996) The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. 

Meteor. Soc. 77: 437-471  

Klotzbach, PJ, Barnston A, Bell G, Camargo SJ, Chan JCL, Lea A, Saunders M, 

Vitart F (2010) Seasonal Forecasting of Tropical Cyclones. Global Guide to 

Tropical Cyclone Forecasting, 2nd edition, C. Guard, editor, WMO, in press 

Knapp KR, Kruk MC, Levinson DH, Diamond HJ, Neumann CJ (2010) The 

international best track archive for climate stewardship (IBTrACS). Bull Amer 



5.2 Werner and Holbrook 2011c; for submission to Climate Dynamics 
 
 

 186 

Meteor Soc 91: 363-376  

Kuleshov Y, de Hoedt G (2003) Tropical cyclone activity in the Southern 

Hemisphere. Bull Austral Meteor Oceanogr Soc, 16, 135-137 

Kuleshov Y, Chane Ming F, Qi L, Chouaibou I, Hoareaux C, Roux F (2009) Tropical 

cyclone genesis in the southern hemisphere and its relationship with the ENSO. 

Ann Geophys 27: 2523–2538 

Leroy A, Wheeler MC (2008) Statistical Prediction of Weekly Tropical Cyclone 

Activity in the Southern Hemisphere. Mon Wea Rev, 136, 3637-3654 

Liu KS, Chan JCL (2010) Interannual variation of Southern Hemisphere tropical 

cyclone activity and seasonal forecast of tropical cyclone number in the 

Australian region. Int J Climatol (2010), DOI: 10.1002/joc.2259 

McBride JL, Keenan TD (1982) Climatology of tropical cyclone genesis in the 

Australian region. Int J Climatol, 1, 13-33 

McDonnell KA, Holbrook NJ (2004a) A Poisson regression model of tropical 

cyclogenesis for the Australian-southwest Pacific Ocean region. We. 

Forecasting, 19, 440-455 

McDonnell KA, Holbrook NJ (2004b) A Poisson regression model approach to 

predicting tropical cyclogenesis in the Australian/southwest Pacific Ocean 

region using the SOI and saturated equivalent potential temperature gradient as 

predictors. Geophys Res Lett, 31, L20110, doi:10.1029/2004GL020843 

Nicholls N (1979) A possible method for predicting seasonal tropical cyclone activity 

in the Australian region. Mon Wea Rev, 107, 1221–1224 

Nicholls N (1984) The Southern Oscillation, sea-surface temperature, and interannual 

fluctuations in Australian tropical cyclone activity. J Climatol. 4: 661-1149 



5 Seasonal forecasting of spatial TCG probability 
 
 

 
 

187 

Nicholls N (1992) Recent performance of a method for forecasting Australian 

seasonal tropical cyclone activity, Aust Meteor Mag, 40, 105–110 

Ramsay HA, Leslie LM, Lamb PJ, Richman MB, Leplastrier M (2008) Interannual 

variability of tropical cyclones in the Australian region: Role of large-scale 

environment. J Climate 21: 1083-1103  

Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent 

EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and 

night marine air temperature since the late nineteenth century. J Geophys Res 

108: (D14) 

Solow A, Nicholls N (1990) The relationship between the Southern Oscillation and 

tropical cyclone frequency in the Australian region. J Climate 3: 1097-1101 

Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J 

Royal Stat Soc 36(2): 111–147 

Tonkin H, Landsea C, Holland GJ, Li S (1997) Tropical Cyclones and Climate 

Change: A preliminary Assessment. Assessing Climate Change: Results from 

the Model Evaluation Consortium for Climate Assessment (Ed. W. Howe and 

A. Henderson-Sellers). Gordon and Breach, Australia, ISBN: 90- 5699-067-5, 

pp 323-354 

Werner A (2011) Seasonal Forecasting of Australian region tropical cyclone 

formation. Ph.D thesis, Macquarie University. 240pp (submitted, 23 May 2011) 

Werner A, Holbrook NJ (2011a) A Bayesian forecast model of Australian region 

tropical cyclone formation. J Climate (accepted, 13 May 2011) 

Werner A, Holbrook NJ (2011b) How to improve seasonal forecast modeling of 

tropical cyclone formation in the southeast Indian Ocean. in preparation  

Wilks DS (1995) Statistical Methods in the Atmospheric Sciences. Academic Press, 

467 pp 



5.2 Werner and Holbrook 2011c; for submission to Climate Dynamics 
 
 

 188 

FIG. CAPTIONS 

Fig.1 Spatial distribution of the origins of tropical storm systems with winds 

exceeding 34 knots (17.5 ms-1) in the Australian region from 1968/69-2007/08 

Fig. 2 Spatial maps of correlations between three different June-July-August 

(JJA)-averaged large-scale climate variables with upcoming Australian region TCG 

seasonal totals. The bold box indicates the Australian TC region and the dashed box 

identifies the predictor region with maximum relationship with Australian region 

seasonal TCG. The thin lines outline the spatial pattern correlations significant at the 

95% confidence level, taking account of serial correlation 

Fig. 3 Spatial maps of correlations between the spatial running grid (binned in 

nine 2.5o x 2.5o grid-cells) of observed TCG counts across the Australian tropical 

cyclone region and four separate climate predictor variables. The thin lines outline 

spatial pattern correlations significant at the 95% confidence level, taking account of 

serial correlation 

Fig. 4 Spatial distribution of 40-year record-average TCG: (a) observed 

probabilities; and (b) hindcasted probabilities; across the Australian region from 

1968/69-2007/08 

Fig. 5 (upper panel) Spatial distribution of skill scores based on model 

hindcasts of seasonal TCG event probabilities using the four-predictor 

SLP+NINO4+v850+CAPE model. (lower panel) Spatial distribution of corresponding 

RMSEs shaded in red - the overlying contour lines outline the correlation coefficient 

distribution between the observed and hindcasted TCG event probabilities for the period 

1968/69-2007/08 

Fig. 6 Attributes diagram of model hindcasts. In the subpanel, the bar diagram 

summarizes the total distribution of hindcast probabilities, while the large outer diagram 

compares the observed probabilities with the hindcasted probabilities, within the 

probability range 
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Fig. 7 El Nino and La Nina event composite maps of observed and hindcasted 

TCG probabilities across the Australian region 
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FIGURES 

 

Fig.1 Spatial distribution of the origins of tropical storm systems with winds 

exceeding 34 knots (17.5 ms-1) in the Australian region from 1968/69-2007/08 
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Fig. 2 Spatial maps of correlations between three different June-July-August 

(JJA)-averaged large-scale climate variables with upcoming Australian region TCG 

seasonal totals. The bold box indicates the Australian TC region and the dashed box 

identifies the predictor region with maximum relationship with Australian region 

seasonal TCG. The thin lines outline the spatial pattern correlations significant at the 

95% confidence level, taking account of serial correlation 
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Fig. 3 Spatial maps of correlations between the spatial running grid (binned in 

nine 2.5o x 2.5o grid-cells) of observed TCG counts across the Australian tropical 

cyclone region and four separate climate predictor variables. The thin lines outline 

spatial pattern correlations significant at the 95% confidence level, taking account of 

serial correlation 
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Fig. 4 Spatial distribution of 40-year record-average TCG: (a) observed 

probabilities; and (b) hindcasted probabilities; across the Australian region from 

1968/69-2007/08 
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Fig. 5 (upper panel) Spatial distribution of skill scores based on model 

hindcasts of seasonal TCG event probabilities using the four-predictor 

SLP+NINO4+v850+CAPE model. (lower panel) Spatial distribution of corresponding 

RMSEs shaded in red - the overlying contour lines outline the correlation coefficient 

distribution between the observed and hindcasted TCG event probabilities for the period 

1968/69-2007/08 
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Fig. 6 Attributes diagram of model hindcasts. In the subpanel, the bar diagram 

summarizes the total distribution of hindcast probabilities, while the large outer diagram 

compares the observed probabilities with the hindcasted probabilities, within the 

probability range 
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Fig. 7 El Nino and La Nina event composite maps of observed and hindcasted 

TCG probabilities across the Australian region 
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5.3 Chapter Summary 

This chapter has addressed the thesis aim to develop a seasonal forecast model 

for the spatial probability of TCG. 

The model applies the Bayesian approach on a logistic regression model with a 

Bernoulli distribution. The model shows substantial cross-validated skill in 

hindcasting the average spatial distribution and magnitude of the seasonal variations. 

In particular the strong probability variations due to ENSO events are accurately 

captured.  
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III DISCUSSION AND SUMMARY 

6 DISCUSSION OF RESULTS 

6.1 Objectives 

This thesis comprises studies that have attempted to improve seasonal 

forecasting of Australian region tropical cyclone formation (genesis: TCG). First the 

contribution from, and forecast skill of, classical El Niño-Southern Oscillation (ENSO) 

and Indian Ocean Dipole (IOD) indices on Australian region annual TCG counts were 

quantified. Prediction schemes were also identified to build skilful seasonal forecast 

models of TCG for the Australian region, its subregions (West and East), and their 

probabilistic distribution. For this purpose, it was important to validate the 

importance of large-scale climate signals for Australian region TCG, but also to 

improve the understanding of seasonal variations of the Australian region climatology 

and how it is affecting the formation of TCs. Skilful seasonal tropical cyclone 

forecasts are essential for populations in vulnerable regions to provide advanced 

information for emergency services and insurance industries to be better prepared for 

the risks associated with the upcoming TC season. 

 

The Australian climate is affected by two tropical large-scale ocean-

atmosphere modes operating in the Indo-Pacific region, ENSO and the IOD. A strong 

link between ENSO and TCG counts in the Australian region is well-established (e.g., 

Nicholls 1984d, 1992; Basher and Zheng 1995; Sinclair et al. 1997; Kuleshov and de 

Hoedt 2003; Ramsay et al. 2008; Kuleshov et al. 2009) and therefore ENSO metrics 

are the basis for all seasonal TC model forecasts for the Australian region. The earlier 

seasonal forecast models for the Australian region all used SLP-based ENSO indices 

such as the SOI (e.g., Nicholls 1979b, 1984d, 1985a, 1992; Solow and Nicholls 1990; 

Drosdowsky and Woodcock 1991; Ready and Woodcock, 1992; McDonnell and 

Holbrook 2004a,b) with McDonnell and Holbrook (2004a,b) additionally 
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incorporating spatial information of saturated equivalent potential temperature (EPT) 

to forecast TCG annual totals. A more recent study (Liu and Chan 2010) included 

various ENSO indices such as NINO4, the trade wind and outgoing longwave 

radiation (OLR) index, as well as the IOD index (the Dipole Mode index, DMI) as 

predictors in a seasonal forecast model. However, the quantification of, or of how 

strong the DMI improves an ENSO-only forecast, had not been investigated. 

Goebbert and Leslie (2010), however, have recently discussed the possible use of 

alternative indices on the basis of correlations between TCG variations in the 

Northwestern Australian region and climate variables, in a preliminary model 

approach. The seasonal TC forecast models techniques used for the Australian region 

differ between multiple linear regression (MLR) models (e.g., Nicholls 1979a, 1984d, 

1985a, 1992; Drosdowsky and Woodcock 1991; Ready and Woodcock, 1992; 

Goebbert and Leslie 2010) and Poisson regression models (Solow and Nicholls 1990; 

McDonnell and Holbrook 2004a,b), all using the frequentist approach. Liu and Chan 

(2010) recently applied a project-pursuit regression (PPR) technique.  

 Despite all these model studies, only three models have been used, at least in 

an experimental capacity, for operational forecasts of Australian region TCG counts 

and its distribution (McDonnell and Holbrook 2004a,b; Liu and Chan 2010). A 

separate model, based on the ENSO indices Southern Oscillation Index (SOI) and 

NINO3.4, has been used recently by the Australian Bureau of Meteorology (BoM 

2011: http://www.bom.gov.au/climate/ahead/tc.shtml). Although the McDonnell and 

Holbrook (2004a,b) model is the only one that has made serious attempts to capture 

the spatial distribution of TCGs, a spatial bias has restricted its effective use for 

operational spatial probabilistic predictions. In recent years, this model has not been 

used further in experimental forecasts, albeit that its skill in forecasting annual 

aggregated counts is reasonably good. The Liu and Chan (2010) and BoM models 

failed in correctly forecasting the only available reference forecast of the previous 

Australian TC season 2010/11. In summary it appears that all these models have some 

reasonable skill over their training period. However, the inaccuracy of operational 

forecasts of TCG for the most recent TC season (2010/11), highlight the need for an 

improved model.  

The goal of this thesis has been to investigate whether there is an important 

contribution from the IOD on seasonal variations in Australian region or subregional 
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TCG counts, and whether this adds skill to that provided by classical ENSO metrics. 

Moreover, the primary objective of this thesis was to develop an advanced statistical 

seasonal forecast system for TCG counts in the Australian region and subregions, as 

well as to develop a seasonal forecast model of the spatial distribution of TCG 

probabilities. For this reason, we have focused on important prediction schemes 

identified in this thesis and incorporated these in a Bayesian model approach to enable 

skilful forecasts for the Australian TC season regarding the number and distribution of 

TCG events. 

 

 

6.2 Key Findings 

To address the key objective of this thesis, the influence of the two tropical 

large-scale ocean-atmosphere modes, ENSO and IOD, operating in the Indo-Pacific 

region on Australian region TCG were investigated. Previous attempts to separate out 

the two signals either concentrated purely on the climatological effects (e.g. Saji et al. 

2003, Ashok et al. 2004; Saji et al. 2005; Risbey et al. 2009) or are rather laborious to 

repeat (Meyers et al. 2007; Ummenhofer et al. 2009). Alternative prediction schemes 

for seasonal forecasting of Australian region TCG on the basis of various synoptic, 

dynamic and thermal climate variables, were not investigated before. Instead seasonal 

forecasting was based on traditional ENSO- or IOD metrics (e.g., Nicholls 1979b 

1984d, 1985a, 1992; Solow and Nicholls 1990; Drosdowsky and Woodcock 1991; 

Ready and Woodcock, 1992; McDonnell and Holbrook 2004a,b; Liu and Chan 2010). 

Forecast models of seasonal TCG occurrences in the Australian region were thus far 

based on frequentist statistics applying MLR or Poisson regression schemes, with 

only Liu and Chan (2010) having most recently used the Monte Carlo based jackknife 

method for validation of their PPR model. In previous years a couple of seasonal TCG 

Poisson forecast models have been introduced using Bayesian statistics in various TC 

basins (e.g., Elsner and Jagger 2004, 2006; Elsner et al. 2008; Chu and Zhao 2007; 

Chand et al. 2010), however, this approach had not yet been applied to the Australian 

region. In the past, there have been only a few statistical seasonal forecast models of 
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the spatial distribution of TCG developed. For the Australian region, McDonnell and 

Holbrook (2004a,b) applied a Poisson regression model approach on a 5°longitude x 

2°latitude grid, but had limited success regarding grid-scale forecasting. More 

recently, Leroy and Wheeler (2008) developed an intra-seasonal TCG forecast model 

for the Australian subregions. To correspond to the low numbers of TCG events 

expected at the shorter time scales, the model is based on the logistic regression 

forecasting the probability of occurrence. 

 

  In Chapter 3 a simple but effective statistical mean to remove ENSO from the 

IOD was presented, which extracts the ENSO-independent component of the IOD and 

its effects on seasonal variations of Australian region TCG. There is much debate 

over the extent to which the Indian Ocean Dipole mode is independent of ENSO (e.g., 

Saji et al. 1999; Allan et al. 2001; Ashok et al. 2003; Meyers et al. 2007; Risbey et al. 

2009). To investigate the dependency of the IOD on ENSO, various studies have 

explored methods to separate the pure IOD mode from ENSO, or otherwise 

investigated the effect of the IOD on key climate variables over Australia such as 

precipitation and temperature (e.g., Ashok et al. 2003; Saji et al. 2005; Meyers et al. 

2007; Risbey et al. 2009; Ummenhofer et al. 2009). Even though these studies have 

been able to demonstrate some degree of independence of the IOD from ENSO 

regarding the timing of Australian region precipitation rate variability, they had 

difficulties in removing the more complete lag/lead effects from ENSO. Also, the 

more advanced methods (Meyers et al. 2007; Ummenhofer et al. 2009) are quite 

laborious to repeat. We applied a lagged regression of NINO3.4 on DMI and removed 

the NINO3.4 contributions within leads and lags of up to 8 months from the 40-year 

(1969-2008) record. From the original DMI time series, 24% of the variations were 

removed in that process. We regressed the resulting DMINOENSO time series on a 

spatial SST field and were able to confirm the successful removal of ENSO from the 

spatial SST pattern, when isolating the IOD-typical SST anomalies during the peak-

season in austral spring (Saji et al. 1999). Subsequently, we analysed the forecast 

potential from NINO3.4 and NINO4, as well as from the original DMI and the 

ENSO-independent DMINOENSO for seasonal variations of Australian region and 

subregional TCG.  No additional skill was found from the DMI or DMINOENSO when 

applying a MLR model to forecast seasonal variations of Australian region TCG. 
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When applying a leave-one out cross-validation, the skill score (SS) over climatology 

only improves from 44% for the NINO4-only model to 45.5% for the 

NINO4+DMINOENSO model. For the Eastern Australian subregion, some additional 

skill was gained from the NINO4+DMINOENSO model (SS = 36.9%) over the NINO4-

only model (SS = 31.4%) when forecasting seasonal TCG counts, while TCG 

variations in the western Australian region were best forecasted by the NINO3.4-only 

predictor model.  

  

 In Chapter 4, a Bayesian seasonal TCG forecast model for the Australian 

region was developed. Previous models were all based on well-known ENSO indices 

derived from anomalies of seas surface temperature (SST), sea level pressure (SLP), 

SLP gradients, the trade winds or OLR (e.g., Nicholls 1984d; Solow and Nicholls 

1990; McDonnell and Holbrook 2004a,b; Liu and Chan 2010; BoM 2011: 

http://www.bom.gov.au/climate/ahead/tc.shtml). Our belief is that the use of indices 

based purely on ENSO dynamics is limited. To study the effects of ENSO, or the 

large-scale climatology in general, on Australia’s climate more effectively, it is 

beneficial to look into possible relationships between various patterns of climate 

variables and how they affect Australia’s climate, e.g., TCs, rainfall patterns. Here 

various prediction schemes were identified based on persistent spatial correlation 

patterns between Australian region annual TCG totals and climate variables of 

convective available potential energy (CAPE), EPT, geopotential height at 500 hPa 

(GPH), zonal and meridional winds at 850 hPa (u850, v850), environmental vertical 

wind shear between 850 hPa and 200 hPa, and low-level relative vorticity (RV). The 

derived indices were then tested in a Bayesian MCMC model applied with a Poisson 

regression, to evaluate potential forecast accuracy. A step-by-step predictor selection 

ensured that the most skilful model was chosen. The final three-predictor model is 

based on June-July-August (JJA) averaged central subtropical South Pacific CAPE, 

May-June-July (MJJ) averaged tropical Northeast Pacific meridional winds at 850 

hPa (v850), and July-August-September (JAS) averaged central subtropical South 

Pacific GPH. To evaluate our model results, a leave-one out cross-validation 

(LOOCV) method was applied. For the LOOCV TCG hindcasts over the 40-year 

record from 1968/89-2007/08, the corresponding probabilistic RMSE = 5.20 and the 

correlation coefficient between observed annual TCG totals and LOOCV model 
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hindcasts is r = 0.73. This is a substantial improvement in cross-validated hindcast 

skill of at least 21.5% over previous models, with correlations between cross-

validated hindcasts and observations of TC counts ranging from r = 0.44 to r = 0.60 

(e.g., Solow and Nicholls 1990; Nicholls 1992; McDonnell and Holbrook 2004b). 

Using four-fold cross-validation, model hindcast skill is robust with 85% of the 

observed seasonal (annual) TCG totals hindcast within the model standard deviations. 

Also, the seasonal TCG totals during ENSO events are typically well captured. 

Comparing the LOOCV results of the Bayesian model for final predictor selection 

with the LOOCV results of a Poisson regression frequentist model, the SS shows an 

improvement over the climatological average - ranging from SS = 42.8% for the 

frequentist approach to 51.5% for the Bayesian model. These results are similar to 

improvements shown by Liu and Chan (2010). However, their 51% improvement 

over climatology is based on a slightly smaller region (90°-160°E), and the PPR 

technique and the jackknife validation method, making it difficult to directly compare 

the results. The model presented here is also shown to be valuable in hindcasting 

seasonal TCG totals in the Eastern Australian subregion (r = 0.73, SS = 49.3%) and 

provides some skill for the Western Australian region (r = 42, SS = 10.7%), while it 

not useful for the Northern region. Applying the model to only two subregions, 

subdivided at 135°E, the model shows remarkable skill in the southwest Pacific (r = 

0.79, SS = 57.8%), while forecasts show only little improvement over climatology in 

the eastern Indian Ocean region (r = 0.38, SS = 9.0%). For this reason, we looked for 

different predictors for the Bayesian model used in the eastern Indian Ocean 

(Australian Western) subregion (90°-135°E). We found that a two-predictor model 

based on JJA-averaged tropical central Pacific SLP and the above-mentioned MJJ-

averaged v850 index was the most useful predictor combination. The corresponding 

correlation coefficient between observed annual TCG totals and LOOCV model 

hindcasts is r = 0.57, with SS = 29.6%. The subregional results presented in Chapter 4 

differ quite strongly from the ones presented by Liu and Chan (2010). They found 

improvements of 37% and 39% for the Western and Eastern Australian subregions, 

respectively, when using the PPR technique with the jackknife validation method.  

 

In Chapter 5, a model for the spatial distribution of TCG probabilities in the 

Australian region on a 2.5°x2.5° grid is presented. The challenge in forecasting the 
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spatial distribution of TCG probabilities, is to find skilful predictors for all grid cells 

and to solve the issue of sparse data points. There has been only one previous study 

that has made serious attempts to spatially forecast TCG occurrences for the 

Australian region - that is, by McDonnell and Holbrook 2004(a,b). They applied a 

Poisson regression model on a 5°longitude x 2°latitude grid based on the SOI and 

spatially-dependent grid-point EPT values as predictors. However, despite achieving a 

22% improvement of RMSE over climatology at the subregional scales, they had 

difficulties in providing unbiased forecast estimates of the grid-scale spatial 

distribution of TCs formed. The model presented in this thesis has little in common 

with the McDonnell and Holbrook (2004a,b) formulation. First, to better take account 

of data sparsity, a spatial running mean of three horizontal and vertical grid boxes was 

applied. This enables us to regress probabilistically on the predictands, which are 

estimated at the centred box of the spatial mean. To model the probabilities, logistic 

regression was applied using a Bayesian MCMC approach to each of the spatial 

means. The most skilful model predictor combination uses the JJA-averaged tropical 

central Pacific SLP, JAS-averaged NINO4, MJJ-averaged v850 and the spatial 

information of AMJ-averaged CAPE. The model shows an average skill-score 

improvement over climatology of SS = 25.2%. The average distribution, as well as 

the changing probabilities for occurrences during ENSO events, is well-captured 

while there are forecast difficulties for the eastern Indian Ocean region between 105° 

and 120°E. An attribution diagram (Chapter 5.2; Fig. 6) identifies relatively high skill 

for all probabilities. However, there is a trend towards slight underestimation for the 

higher probability occurrences that are observed. 

  

 

6.3 Operational Model Forecasts 

 The robust outcome of this thesis is not only a relatively skilful and improved 

TCG statistical forecast model system for the annual number of TCG events in the 

Australian region and its subregions, but also a new probabilistic model of the likely 

location of origin of tropical cyclones in the upcoming season. In this section, these 

forecast models are tested in an experimental ‘operational’ forecast mode for the 
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Australian region tropical cyclone seasons 2008/09, 2009/10 and 2010/11 - seasons 

that are outside of our model training data set. Additionally, results from the most 

recent Australian TC season of 2010/11 are discussed in comparison to the two 

available operational seasonal forecast models used respectively by the Australian 

BoM (2011: http://www.bom.gov.au/climate/ahead/tc.shtml) and the City University 

of Hong Kong (Liu and Chan 2011: 

http://weather.cityu.edu.hk/tc_forecast/2010_forecast_NOV.htm) - forecasts that were 

made and released prior to the onset of the 2010/11 Australian tropical cyclone 

season. While the BoM model uses the SOI and NINO3.4 as predictors, the latter 

model is based on the Liu and Chan (2010) formulation. Observations are taken from 

the UNISYS (http://weather.unisys.com/hurricane/) database, which include TC Best 

track data provided by the Joint Typhoon Warning Center. Note that the observed 

TCG locations here are locations where the system first reached TC strength 

(maximum sustained winds " 34 kts), while the model was trained on storm origins. 

This may result in a slight shift of the TCG numbers, but certainly results in a 

southward shift of the observed TCG locations against the model forecasts. 

 

6.3.1 TCG Forecasting of the 2008/09 Season for the Australian Region 

a. Climatic conditions  

The climatic conditions during austral winter (JJA) 2008, and therefore prior to 

the onset of the Australian TC season 2008/09, are classified as an ENSO neutral year 

based on classifications from the National Oceanic and Atmospheric Administration 

(NOAA) using NINO3.4 anomalies 

(http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.sht

ml). Figure 6.1 shows the climatologies of all climate variables used to derive our 

model predictors. Interestingly, the SST pattern shown in the lower panel reveals 

almost negative El Niño Modoki conditions in the Pacific, with weak positive SLP 

anomalies across most of the tropical and subtropical Pacific. There are strong SLP 

anomalies in the Southern mid-latitudes which are also evident in the geopotential 

height field at 500 hPa (upper panel), indicating stronger pressure systems as a result 

of increased blocking of the mid-latitude air masses towards lower latitudes. The 

central Indian Ocean was warmer than normal with weak negative SLP anomalies in 
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the Arabian Sea and in the subtropical western Indian Ocean. There are clock-wise 

surface wind anomalies in the Arabian Sea around the negative SLP anomalies. Also, 

a reduced trade wind component can be seen in the tropical east Pacific corresponding 

to the warm SST anomalies and the reduced SLP gradient between East and West 

Pacific. The CAPE anomaly pattern (upper panel) shows enhanced convection in the 

tropical central to East Pacific and in the tropical central and subtropical eastern 

Indian Ocean. The mid-latitudes show negative anomalies throughout - a result of the 

lower intensity of the atmospheric Rossby wave train. 

 For the predictors used in our models, the CAPE index is almost neutral, v850 

is slightly positive indicating a reduced inflow into the East Pacific tropics, and GPH 

is positive resulting in the increased blocking of mid-latitudinal air-masses. The SLP 

index is neutral and NINO4 is weak negative. Spatially, in the TC formation regions, 

there are very neutral conditions of CAPE, with a negative anomaly over North 

Figure 6.1 upper panel: Map of anomalies during June-July-August 2008. Wind 
vectors describe the wind flow anomalies at 850 hPa. Shaded areas represent 
changes of CAPE (m2 s-2), contour lines show positive anomalies and dashed 
contour lines negative anomalies of geopotential height anomalies at 500 hPa 
(m). Also indicated are the locations of the predictor indices CAPE, v850 and 
GPH and the Australian TC region. lower panel: As above, but shaded areas 
represent changes of SST (°C), contour lines show positive anomalies and 
dashed contour lines negative anomalies of SLP (hPa). Also indicated are the 
locations of the predictor indices NINO4, v850 and SLP and the Australian TC 
region. 
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Australia and weak positive anomalies at the outer East and West boundaries of the 

Australian region. Generally, all predictors are close to neutral conditions with only 

GPH suggesting more than average activity. In this case, therefore, the 2008/09 

forecasts are expected to be close to the climatological average. 

 

b. Model Forecasts 

Figure 6.2 shows the model forecasts for the Australian TC season of 2008/09 

as obtained by the models presented in Chapters 4.2, 4.4 and 5.2. The forecasted 

2008/09 TCG total is 13 for the Australian region, with 7 TCG events forecast for the 

Western region and 5 for the Eastern region. The spatial pattern shows TCG 

probability maxima in the eastern Indian Ocean around 10°-15°S, 95°E and 5°-15°S, 

115°-135°E. Table 6.1 lists all observed TCG events and locations for the Australian 

TC season 2008/09. Comparing the model forecast results with observations (Fig. 6.2, 

Table 6.1), we note that 12 TCG events were observed in the Australian region with 5 

and 7 in the Western and Eastern regions, respectively, are all are within the model 

Figure 6.2 left side: Probability distributions of the annual total number of 
TCG occurrences forecasted for the season 2008/09 for the Australian TC 
region and its subregions West and East. Asterisks indicate the observed 
number of TCGs in that region, while the model standard deviations are 
indicated by the shading. Right side: Spatial (2.5°x2.5° resolution) probability 
of TCG forecasted for the season 2008/09 for the Australian TC region. Blue 
dots indicate observed location of TCs first noted 34 kts. 
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standard deviations. The genesis locations for the observed events have the expected 

southward shift, but the general distribution is well captured.  

We conclude that the TCG total for the 2008/09 season was successfully 

forecasted for the Australian region and its two subregions. The spatial distribution of 

TCG probabilities is, besides the southward shift of observed TCG locations due to 

the different definition, also remarkably well captured.  

 

6.3.2 TCG Forecasting of the 2009/10 Season for the Australian Region 

a. Climatic conditions  

The climatic conditions during the astral winter (JJA) of 2009, prior to the onset 

of the Australian TC season of 2009/10, were evolving towards an El Niño year based 

on classifications from NOAA using NINO3.4 anomalies. Figure 6.3 shows the 

climatologies of all climate variables used to derive our model predictors. In the SST 

pattern (lower panel), the El Niño conditions are evident with warming throughout the 

Indo-Pacific tropics. However, tropical SLP anomalies are weak, with strong negative 

anomalies of SLP and geopotential height at 500 hPa in the southern mid-latitudes, 

and decreased blocking of the mid-latitudinal air. In the Indian Ocean, a weak SLP 

dipole is evident with positive anomalies in the subtropical eastern Indian Ocean and 

negative anomalies in the tropical western Indian Ocean. Surface winds appear as 

anomalies from the positive SLP pole to the negative one. Also a weakening of the 

Table 6.1 Tropical Cyclogenesis points (taken from UNISYS 2011) observed in 
the Australian region (0-30°S, 90°-170°E) during the Australian TC season 
2008/2009 (November to April). Here noted location is, where the storm system 
first reached 34 kts. Maximum sustained winds (MSW) and the Category (Cat) 
describe the maximum observed Intensity of the TCs. 

2008/09 
South Indian Ocean   South Pacific  
Name Date lat long MSW Cat Name Date  lat long  MSW Cat 
Anika 18/11/08 -10.3 94.5 50 2 Charlotte 11/1/09 -16.7 140.0 35  1 
Billy 18/12/08 -14.5 128.9 105 4 Ellie 31/1/09 -16.7  147.5 40  1 
Dominic 25/1/09 -19.3 117 50 2 Innis 17/2/09 -20.7 165.1 35  1 
Freddy 6/2/09 -16.0 113.1 55 2 Hamish 5/3/09 -13.7 146.9 130  5 
Gabrielle 2/3/09 -13.2 105.6 35 1 Jasper 24/3/09 -17.3 159.2 45 1 
Ilsa 18/3/09 -13.7 113.3 100 4 
Kirrily 26/4/09 -7.3 133.0 40 1 
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trade winds is observed in both the tropical Pacific and the Indian Ocean. The CAPE 

anomaly pattern (upper panel) shows enhanced convection in the tropical central to 

East Pacific and a mirrored negative anomaly in the subtropical South Pacific. There 

is a CAPE dipole over the subtropical to mid-latitude Australian continent with 

positive anomalies in the east and negative in the Western Australian regions 

extending into the Southern Ocean. Positive anomalies of CAPE can also be observed 

in the western Indian Ocean.  

For the predictors used in our models, the CAPE index is weak negative, v850 

shows positive anomalies indicating a reduced inflow into the East Pacific tropics, 

and GPH is negative resulting in the decreased blocking of mid-latitudinal air-masses. 

The SLP index is neutral, while NINO4 is strong positive. Spatially, in the TC 

formation regions, there are very neutral conditions of CAPE, with the above-

mentioned dipole in the subtropics.  

 

b. Model Forecasts 

Figure 6.4 shows the model forecasts for the Australian TC season of 2009/10 

as obtained by the models presented in Chapters 4.2, 4.4 and 5.2. The TCG count 

forecasts are 11 for the entire Australian region, with 6 TCG events forecast for the 

Western region and 4 in the Eastern region. The spatial pattern shows probability 

Figure 6.3 As Figure 6.1, but for 2009. 
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maxima for TCG mostly in the eastern Indian Ocean at the northwestern corner of the 

Australian region, around 10°-15°S, 95°E, at the western Australian coastline around 

20°S, 115°S, and in the northern Australian regions. Table 6.2 lists all observed TCG 

events and locations for the Australian TC season of 2009/10. Comparing the model 

forecast results with observations (Fig. 6.4, Table 6.2), we note that there were 8 TCG 

events observed in the Australian region with 5 and 3 in the Western and Eastern 

regions, respectively, all being within the model standard deviations. The locations of 

the observed TCG events have the expected southward shift. However, the two 

Pacific TCs formed in regions with very low TCG probability forecasted. In contrast 

the Indian Ocean TCG events appear to have their origins in the proximity of 

probability maxima.  

 

Figure 6.4 As Figure 6.2, but for season 2009/10. 

TABLE 6.2 As Table 6.1, but for season 2009/10. Storm in brackets developed 
outside of the Australian region, but in its close proximity (<1° longitude). 

2009/10 
South Indian Ocean  South Pacific  
Name Date lat long MSW Cat Name Date lat long MSW
 Cat 
Laurence 13/12/09 -12.7 128.0 115 4 Olga 23/1/10 -16.6 150.2 50  2  
Magda 20/1/10 -13.1 122.5 60 2 Ului 11/3/10 -14.7 166.4 140  5  
(Imani 22/3/10 -11.5 89.2 70 3) Paul    27/3/10 -12.9 136.6 60  2  
Robyn 2/4/10 -11.3 92.5 60 2 
Sean 22/4/10 -11.8 115.7 55 2  
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We conclude that the TCG totals for the TC season of 2009/10 were 

successfully forecasted for the Australian region and its two subregions. The spatial 

distribution of TCs formed is, besides the southward shift of the observed TCG 

location due to the different definitions, well captured in the eastern Indian Ocean, but 

had difficulties in the Pacific regions. 

 

6.3.3  TCG Forecasting of the 2010/11 Season for the Australian Region 

a. Climatic conditions  

The climatic conditions during the austral winter (JJA) of 2010, prior to the 

onset of the Australian TC season of 2010/11, were evolving towards a moderate to 

strong La Niña year based on classifications from NOAA using NINO3.4 anomalies 

(http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.sht

ml). Figure 6.5 shows the climatologies of all climate variables used to derive our 

model predictors. In the SST pattern (lower panel), the strong La Niña conditions are 

evident with warming in the subtropical Pacific, the West Pacific, and all of the 

Indian Ocean. However, tropical SLP anomalies are weak with negative anomalies 

over central and northern Australia and slight positive anomalies in the eastern 

Figure 6.5 As Figure 6.1, but for 2010. 
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Pacific. Strong positive anomalies of SLP and geopotential height at 500 hPa are 

observed in the southern mid-latitudes, with reduced blocking of the mid-latitude air. 

Surface winds indicate a weakening of the trade winds in the eastern Pacific and 

Indian Ocean and a strengthening in the western Pacific. There are strong wind 

anomalies around the stronger than normal semi-stationary high-pressure cells in the 

South Indian Ocean and Pacific increasing blocking of the mid-latitude air masses. 

The CAPE anomaly pattern (upper panel) is strongly negative over the Southern 

Ocean and East Pacific. There is only a small line of enhanced instability from the 

subtropical southwest Pacific into the central Pacific. Anomalies in the Indian Ocean 

are weak with a tendency towards a more stable mid-upper troposphere.  

 For the predictors used in our models, the CAPE index is weak positive, v850 

shows positive anomalies indicating a reduced inflow into the East Pacific tropics, 

and GPH is strongly positive resulting in the enhanced blocking of mid-latitude air-

masses. The SLP index is slightly positive, while NINO4 is strong negative. Spatially, 

in the TC formation regions, there are neutral conditions of CAPE, with a positive 

anomaly east of northern Queensland.  

 

b. Model Forecasts 

Figure 6.6 shows the model forecasts for the Australian TC season of 2010/11 

as obtained by the models presented in Chapters 4.2, 4.4 and 5.2. The TCG count 

Figure 6.6 As Figure 6.2, but for 2010/11. 
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forecasts are 13 for the entire Australian region, with 11 TCG events forecast for the 

Western region and 4 for the Eastern region. The spatial forecast pattern shows high 

TCG probabilities east and west of 110°E in the Indian Ocean. In the Pacific, there is 

a prominent probability maximum between 10° and 15°S slightly off the coast in 

North Queensland. For the most recent season of 2010/11, two model forecasts were 

provided for each of the expected number of TCG counts in the Australian region and 

its subregions. Both forecasts predicted above normal TCG counts due to the strong 

La Niña conditions expected. The BoM released a forecast of 20-22 TCG counts for 

the Australian region (90°-160°E) in the 2010/11 season, with 11-12 for the Western 

region (90°-125°E), 5 for the Northern region (125°-142.5°E), and 6-7 for the Eastern 

region (142.5°-160°E). Liu and Chan (2011) forecasted 19 TCG events for the 

Australian region (90°-160°E), with 14 in the Western region (90°-135°E) and 7 in 

the Eastern region (135°-160°E).  

Table 6.3 lists all observed TCG events and their locations for the Australian 

TC season of 2010/11. Comparing the model forecast results with observations (Fig. 

6.6, Table 6.3) we note 11 TCG events were observed in the Australian region, with 6 

and 5 in the Western and Eastern regions, respectively. While the TCG count 

observations in the Australian and Eastern regions are within the model standard 

deviations, the 6 TCG events observed in the Western region are just outside the 

model uncertainty. Nevertheless, the seasonal forecasts provided here are 

substantially more accurate than those released by the BoM and using the Liu and 

Chan (2011) schemes, which both strongly overestimated the activity of the 

Australian TC season for 2010/11. The observed TCG event total for the Australian 

TABLE 6.3 As Table 6.1, but for season 2010/11. Storm in brackets developed 
outside of the Australian region, but in its close proximity (<1° longitude). 
 

2010/11 
South Indian Ocean  South Pacific    
Name Date lat long MSW Cat Name Date  lat longMSW
 Cat 
Vince 12/1/11 -15.1 108.3 40 1 Tasha 24/12/10 -17.1 146.3 35  1  
Bianca 25/1/11 -17.4 121.8 115 4 Vania 11/1/11 -19.0 168.9 35  1  
Carlos 15/2/11 -12.3 130.7 65 2 Zelia 14/1/11 -12.2 150.9 90  4  
Dianne 16/2/11 -19.1 111.2 85 3 Anthony 23/1/11 -15.5 148.7 45  1  
Twenty 2/4/11 -13.5 127.6 35 1  (Yasi 30/1/11 -13.2 170.5 135  5) 
Errol   15/4/11      -13.1   126.3   55        2           Atu         18/2/11     -15.4  169.4 115      4  
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region (90°-160°E) was 9, with 3 in each of the BoM subregions, and 6 and 3 in the 

Liu and Chan (2011) subregions, respectively. The locations of observed TCG events 

are remarkably well captured using our model. It is also interesting to note that even 

though TC Yasi developed outside of the Australian region (13.2°S, 170.5°E), its 

TCG location was observed around the northeastern side of the Pacific probability 

maximum for TCG. In summary, both operational models, BoM (2011) and Liu and 

Chan (2011), forecasted a much more active TC season by comparison with the 

models presented here in this thesis – the observed and forecasted numbers of each of 

the models is also shown in Table 6.4. 

We conclude that the TCG totals in the 2010/11 season was successfully 

forecasted for the Australian region and the Eastern subregion. Even though the TCG 

count forecasted for the Western Australian subregion was overestimated, it was still 

far closer to the observed number of TCs in comparison to other operational seasonal 

TC forecast models. The two discussed operational models also failed to forecast 

TCG counts in the Australian region and all other subregions. However, the 2010/11 

Australian TC season was particularly difficult to forecast. Despite the presence of 

extremely strong La Niña conditions, suggesting very high TC activity, only average 

TC activity, in terms of total counts (not intensity!), was observed. The spatial 

distribution of cyclone formation was also well forecasted. 

 

 

TABLE 6.4 Seasonal forecasts of tropical cyclone counts for the Australian 
region and individual subregions from the three models from the BoM (2011), 
Liu and Chan (2011) and as obtained from the models presented in this thesis. In 
brackets and italic are the corresponding observed tropical cyclone counts for 
each region (taken from UNISYS 2011). 

TC season 2010/11 
 BoM  

2011 
Liu & Chan  

2011 
Werner & 

Holbrook 2011 
 Forecast (Obs.) Forecast (Obs.) Forecast (Obs.) 
Australia region 20-22 (9) 19 (9) 13 (11) 
Western region 11-12 (3)   14 (6) 11 (6) 
Northern region 5 (3) xxx xxx 
Eastern region 6-7 (3) 7 (3) 4 (5) 
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6.4 Future Work 

 An important outcome of this thesis is the identification of skilful prediction 

schemes and the development of the Bayesian forecast model. The results of Chapter 

5 show that the Bayesian Poisson model introduced in Chapter 4 can be adapted to 

statistical forecasting using logistic regression. Compared to previously introduced 

prediction schemes the spatial probability of seasonal TCG is successfully forecasted.  

 

 Future efforts are under way to adapt the presented model approach to forecast 

the seasonal TC hazard to different categories for the Australian region. To build the 

model on the most useful predictors, the best predictor selection for the spatial TC 

hazard independently from the intensity was identified using the Bayesian Poisson 

regression model. Then, to forecast the probability of the spatial hazard of different 

categories the selected predictor combination is applied with a logistic regression to 

each of the intensity subcategories. Preliminary results suggest the best predictor 

selection is a three-predictor model using previously identified indices of low-level 

relative vorticity, environmental wind shear and SLP (see in Chapter 4.2, 4.4) reaching 

a skill score of SS = 58% for the total spatial TC hazard in Australia for the regressed 

data between 1968/69-2007/08. 

 

Another interesting future potential is to further investigate the prediction 

schemes identified here. It is of interest to understand how the areas of the indices are 

modulated by ENSO, but also if and how they interact with each other. Possible 

future efforts could then regard the predictors not purely independently as in this 

study, but use the information of the dependencies between the model predictors in 

the model approach. 
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6.5 Summary 

The aim of this thesis was to improve understanding of how climatic signals and 

variables affect TCG occurrences observed in the Australian region and to develop, 

on this basis, skilful statistical seasonal forecast models of TCG counts and 

probability distribution. Of special interest was to quantify the role of interannual 

large-scale climate signals such as ENSO and IOD in informing TCG count forecasts. 

The thesis questions and analyses are addressed using a variety of regression methods, 

climate analysis tools and Bayesian statistics for the seasonal forecast models. The 

main findings are as follows: 

 

1. A simple, but effective method has been developed to separate the IOD from 

ENSO. This thesis demonstrates that it is possible to isolate a statistically 

significant ENSO-independent IOD that is potentially useful for future climate 

studies, and that has been used here to investigate the role of IOD on TCG in 

the Australian region. 

 

2. ENSO is known to be the most important predictor of seasonal variations in 

TCG for the Australian region. This thesis demonstrates, nevertheless, that 

there is also reasonable individual forecast skill afforded by the influence of 

the IOD. In combination with common ENSO metrics, however, the IOD does 

not add significant forecast skill of seasonal TCG counts for either the 

Australian region or Western subregion. Marginal improvements were found 

for hindcasted TCG counts in the Eastern subregion. 

 

3. TCG counts in the Australian region and subregions can be successfully 

forecasted with a Bayesian Poisson regression model using a Markov chain 

Monte Carlo method applied with a multivariate slice sampler.  

 

4. Next to NINO4, four climate indices resulting from persistent prediction 

schemes of CAPE, v850, GPH and SLP were found to represent skilful 

predictors of TCG for the Australian region and its subregions. 
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5. A logistic regression approach applied in a Bayesian seasonal forecast model 

was found to be successful in generating spatial probabilities of TCG for the 

upcoming season. The most skilful model is based on SLP, NINO4 and v850 

indices, combined with spatial information from CAPE. 

 

6. Independent forecasts using the three introduced models and comparisons with 

current operational models demonstrate the relatively high skill of the models 

presented in this thesis. 

 

These results demonstrate that ENSO-related derived indices, on the basis of 

persistent correlation patterns between climate variables and seasonal variations of 

TCG, add important skill to the more-standard ENSO metrics as predictors of 

Australian region seasonal TCG count and spatial probability. As such, we believe 

that a more comprehensive understanding of the effects of ENSO on climate variables 

can help to improve predictions of seasonal TCG variability in the Australian region. 

Further to this, we believe that with some refinement, the proposed Bayesian 

framework for seasonal TCG forecasting could be used to forecast the spatial seasonal 

TC hazard in the Australian region. 
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