
Algebraic Verification of Probabilistic and

Concurrent Systems

Mananjanahary Tahiry Rabehaja

Supervisors

A/Prof. Annabelle McIver Dr. Georg Struth

Department of Computing Department of Computer Science

Macquarie University The University of Sheffield

Australia United Kingdom

A Thesis Submitted in Partial Fulfilment of the Requirements for the Joint

Degree of Doctor of Philosophy in Computer Science

March 2014

mailto:tahiry.rabehaja@gmail.com

Abstract

This thesis provides an algebraic modelling and verification of probabilistic con-

current systems in the style of Kleene algebra. Without concurrency, it is shown

that the equational theory of continuous probabilistic Kleene algebra is complete

with respect to an automata model under standard simulation equivalence. This

yields a minimisation-based decision procedure for the algebra. Without prob-

ability, an event structure model of Hoare et al.’s concurrent Kleene algebra is

constructed. These two algebras are then “merged” to provide probabilistic con-

current Kleene algebra which is used to discover and prove development rules for

probabilistic concurrent systems (e.g. rely/guarantee calculus). Soundness of the

new algebra is ensured by models based on probabilistic automata (interleaving)

and probabilistic bundle event structures (true concurrency) quotiented with the

respective simulation equivalences. Lastly, event structures with implicit proba-

bilities are constructed to provide a state based model for the soundness of the

probabilistic rely/guarantee rules.

Statement

The research presented in this thesis is my original work, except where otherwise

indicated. Some parts of the thesis include revised versions of published papers.

This work has not been submitted for a higher degree to any other University or

Institution.

Tahiry Rabehaja

Signed :

Date :

Acknowledgements

First and foremost, I thank God for giving me the opportunity to pursue such

an exciting life as a researcher, enabling me to test and expand the boundaries of

our knowledge. I am grateful to my parents and family for their support through

the ups and downs during this journey. My sincere thanks and appreciation

to my supervisors, Annabelle McIver and Georg Struth, who have never turned

their mind away from my babbling and numerous mistakes. They have always

been happy to correct, share their experiences and give me more to read so as to

increase my limited understanding. Their help was not just constrained to the

academic area but extended to the social aspect of my life as well. I am more than

thankful to the iMQRES support from Macquarie University and the EPRSC from

The University of Sheffield. Without these funds, I would not have been able to

support myself and my family during my PhD enrolment. I am grateful to Jeffrey

Sanders for being the first person who introduced me to the world of research

and co-authored my first paper, to Gerard Razafinamantsoa and Alain Ralambo

who made me understand the power of rigorous abstract mathematical thinking,

to AIMS for giving me the opportunity to invest myself in Theoretical Computer

Science — a discipline that does not exist (yet) at my home university —, to

UNU-IIST Macao for supporting me while I applied for a PhD position and to

all the staff at the Department of Computing at Macquarie University and the

University of Sheffield. They were always keen to help with any administrative

issues. I am so grateful to Hazel Baker for helping me on ensuring the literary

quality of this document. She has found all of my hidden commas. My sincere

apologies to anyone I have not explicitly mentioned, including friends, colleagues

and the anonymous reviewers of my publications who have contributed widely to

the technicalities of this thesis.

“There are two ways of constructing a software design: One way is to

make it so simple that there are obviously no deficiencies, and the other

way is to make it so complicated that there are no obvious deficiencies.

The first method is far more difficult.”

C. A. R. Hoare (Source: Wikipedia).

Contents

1 Introduction 1

2 Continuity in Probabilistic Kleene Algebra 9

2.1 Probabilistic Kleene algebra . 10

2.2 Nondeterministic automata and simulation 12

2.3 A completeness result for continuous pKA 30

2.4 Minimisation and decision procedure 34

2.5 Discussion . 44

3 Event Structures and Concurrent Kleene Algebra 47

3.1 Concurrent Kleene algebra . 47

3.2 Bundle event structures . 50

3.3 Soundess of concurrent Kleene algebra 53

3.4 Schedulers and finishers on bundle event structures 58

3.5 Discussion . 72

4 Probabilistic Concurrent Kleene Algebra 75

4.1 Axiomatisation of probabilistic concurrent Kleene algebra 76

4.2 Operations on probabilistic automata 78

4.3 Probabilistic forward simulation 82

4.4 Interleaving interpretation of pCKA 88

4.5 Completing a proof of correctness 94

4.6 Discussion . 97

i

ii CONTENTS

5 True Concurrency in Probabilistic Concurrent Kleene Algebra 99

5.1 Probabilistic bundle event structure 100

5.2 Probabilistic simulation on pBES 106

5.3 True concurrent interpretation of pCKA 108

5.4 Discussion . 112

6 Bundle Event Structure with Implicit Probability 115

6.1 Sequential probabilistic programs 115

6.2 Probabilistic scheduler on ipBES 120

6.3 Computation function on ipBES 122

6.4 Sequential semantics from ipBES 124

6.5 Simulation for ipBES with tests 129

6.6 Discussion . 140

7 Probabilistic Rely/guarantee Calculus 143

7.1 Standard rely/guarantee technique 143

7.2 Probabilistic rely and guarantee conditions 145

7.3 Probabilistic rely/guarantee rules 148

7.4 R,G-Preorder and extension to action refinement 155

7.5 Concurrent Eratosthenes sieve . 157

8 Conclusion 161

Chapter 1

Introduction

Formal Methods is amongst the branches of science that aim to make the art

of programming, software development, system design and verification a meticu-

lous mathematical subject. It offers an impartial view of the studied or developed

system whose crucial properties are to be proven using a clear and rigorous form

of mathematical reasoning. A very detailed proof is usually hard to achieve, es-

pecially when the underlying system is complex but, once established, it removes

any doubt about its correctness, including aspects related to safety, security and

prediction regarding performance. Formal Methods contains a large number of

concepts and techniques that range from the denotation of programs using math-

ematical objects, the development of refinement rules that allow the stepwise

construction of a system and the use of mechanised tools towards an automated

proof of correctness, to the more recent application of algebraic techniques that

provide further abstractions to denotational and logical semantics. More recently,

the algebraic tools became more popular because they bring simplicity, expres-

siveness and proof mechanisation within their elegant formalism, sometimes at

the cost of losing low-level details.

Successes have been observed on the application of algebras to the formal

treatment of probabilistic systems [32,46,53,76]. In such a system, the probability

is either required for the correctness of the protocol (e.g. for symmetry breaking as

1

2 CHAPTER 1. INTRODUCTION

used in Herman’s solution to the Leader Election Problem on the ring network [26,

34, 47, 48]), or it is the result of a measurable fault or error (e.g. noisy channels

and faulty systems [48]). Algebras have also been applied to the specification

and verification of concurrent systems [3, 28, 56, 81]. Many physical systems are

naturally modelled using concurrency due to collaborations and the distribution of

resources (e.g. controllers of a railway network [59]). This thesis aims to provide

a unified algebraic setting for the treatment of probabilistic concurrent programs.

Background

The use of algebras in computing was firstly motivated by the correspon-

dence between logic, semigroup structures and automata theory [62, 72]. An al-

gebra is usually obtained by a layer of abstraction on a given structure such as

the set of recognizable languages or automata endowed with the regular opera-

tions. Salomaa developed the first known complete axiomatisations of language

equivalence between automata using a finite number of equations and equational

implications [70]. However, Salomaa’s empty word property is not algebraic in

the sense that it is not preserved by substitution. So, the search for a fully

algebraic axiomatisation of regular languages remained unanswered. A decade

later, Conway worked extensively on regular algebras, more precisely on idempo-

tent semirings [12], which provided more insights and understanding about the

power of these algebras. Moreover, he conjectured some complete axiomatisa-

tions of the equality of regular languages that does not make use of Salomaa’s

empty word property. Many of Conway’s conjectures were verified in the early

1990s by Krob [41] and Buffa [4]. However, the proofs were very complicated

and long. In 1994, Kozen provided an alternative proof of completeness for a

simplified axiomatisation using Conway’s large collection of results and the min-

imisation technique from automata theory [38]. Since Conway’s influential mono-

graph, Kleene algebras have become a fundamental tool with application ranging

from the development and verification of programs to the theory of finite ma-

chines [9, 16, 28,39,40,49,52,53,66,67,86].

3

Kleene algebras have been extended into various forms to increase their expres-

siveness. A specific extension I studied in this thesis is the probabilistic Kleene

algebra of McIver and Weber [53] which allows us to consider the presence of

probabilistic behaviours implicitly. This variant of Kleene algebras was designed

primarily to provide a concise and compact algebraic framework for probabilistic

programs and has been used for verification purposes [46, 48]. Concrete mod-

els of probabilistic Kleene algebra include aspects of the probabilistic powerdo-

main [30, 48, 80], continuous expectation transformers [48], sets of up-closed mul-

tirelations [21] which are isomorphic to monotone predicate transformers [60], and

automata modulo simulation [10, 49]. Jones’ powerdomain [30] was refined and

generalised to correspond to a Dijkstra-like calculus by McIver and Morgan to ac-

count for a successful interaction between nondeterminism (seen as a worst-case

scenario) and probability [48]. This extension resulted in a powerful specifica-

tion language for every probabilistic sequential program. Moreover, McIver and

Morgan established that most of the fundamental mathematical tools, such as

invariant and variant techniques, from the non-probabilistic models of programs

are preserved by the probabilistic extension. In multiple cases, these tools have

algebraic translation [53].

Another variant of Kleene algebra has emerged more recently to deal with

concurrency. The concurrent Kleene algebra of Hoare et al. [28] is an elegant

framework to reason about grainless concurrency. It is an expansion of Gischer’s

concurrent semiring that underlies the interaction between a concurrency opera-

tion and the other regular operations of Kleene algebra using an interchange law

that defines Gischer’s subsumption property [23], i.e. the refinement of a truly

concurrent composition with a partially interleaved implementation. Fundamental

examples of concurrent systems include communicating processes, distributed and

embedded systems where smaller components evolve dynamically within a host

system or an environment. More recently, tremendous efforts have been observed

to improve the reliability of multi-threaded programs due to the fast evolution of

multi-cored microprocessors for multitasking as well as to improve efficiency. It

4 CHAPTER 1. INTRODUCTION

has been noted early in the development of a theory for concurrency that com-

positionality is the key to an efficient and rigorous development and verification

of concurrent programs. Compositionality ensures that the desired property of a

complex system can be deduced logically from the properties of its components,

therefore, offering smaller and simpler chunks of formal verification that, usually,

can be automated efficiently. Jones’ rely/guarantee calculus is an example of such

techniques and it is sound with respect to the execution traces semantics [11, 31]

(see [17,24,35,43] for other related approaches). Rely/guarantee rules are particu-

larly important when reasoning about interference in shared variable concurrency

to circumvent the problems associated to locking mechanisms. They also offer

a refinement calculus for the stepwise development of concurrent programs from

a formal specification [17, 24]. Moreover, most of these rules can be derived al-

gebraically within the context of concurrent Kleene algebra [28]. Hence, every

concrete model of concurrent Kleene algebra possesses a rely/guarantee frame-

work.

Many practical problems lie within the intersection of probabilistic and con-

current systems, that is, the implementation of a solution requires programs that

involve quantitative information as well as concurrent execution. Primary ex-

amples include Rabin’s choice coordination which is an important probabilistic

resource management algorithm [68]. It should be noted that powerful techniques

such as model checking have been successfully extended to handle probabilistic be-

haviours using quantitative extensions of the underlying logics [2,13,42]. However,

they have limited expressiveness and usually suffer from the state space explosion

problem as the size of the system increases exponentially with respect to the num-

ber of components due to non-compositionality. At the time of writing this thesis,

many lines of research are being investigated to achieve compositionality in the

setting of model checking [35, 43]. Therefore, a unified compositional framework

is the bridge towards a successful development of robust and reliable quantitative

concurrent solutions. Moreover, since these kinds of problems are usually highly

complex, it is legitimate to seek for a formal technique with high levels of simplic-

5

ity and abstraction while maintaining its full power to reason about quantitative

concurrency. Hence, one asks the question:

Can we verify algebraically and compositionally probabilistic programs

in the presence of interference?

Contributions

To answer that question, this thesis contributes to the problem of analysing

large, complex probabilistic and concurrent systems by proposing a unifying al-

gebraic technique with high level of abstraction. Its main contributions are:

1. a new completeness result for continuous probabilistic Kleene algebra en-

abling a decision procedure based on minimisation modulo simulation [49],

2. a new model for concurrent Kleene algebra and a novel perspective about

the partial order approach to the theory of concurrency,

3. a novel extension of Kleene algebra that is suitable for reasoning about quan-

titative programs with interferences. The algebra captures the interleaving

approach as well as true concurrency [50,52],

4. the development of the first extension of Jones’ rely/guarantee calculus to

probabilistic programs.

The first contribution is the product of our attempt to fill the gap in the

completeness result conjectured by Takai and Furusawa in [79]. We show that

Kozen’s correspondence between equations in Kleene algebras and the equality of

regular languages can be translated to continuous probabilistic Kleene algebra and

regular “tree languages”, which unsurprisingly characterise the simulation order.

From this completeness result, we construct a decision procedure for continuous

probabilistic Kleene algebra by minimising automata while preserving simulation

equivalence. Hence, provable equality in continuous probabilistic Kleene algebra

corresponds to isomorphism on minimal automata.

6 CHAPTER 1. INTRODUCTION

Secondly, I provide an alternative model for concurrent Kleene algebra using

Langerak’s bundle event structure [44] and a variant of Gischer’s pomset equiva-

lence. Pomsets are isomorphism classes of labelled partially ordered sets and can

be compared with each other using label preserving bijections whose inverses are

monotonic (this is called subsumption by Gischer [23]). Similar to the original

non-dependence model of concurrent Kleene algebra [28], the new model provides a

true concurrent interpretation and can be alternatively characterised using sched-

ulers and finishers. Note that interleaving models exist and can be obtained using

a specific class of finishers.

Probabilistic concurrent Kleene algebra then emerges from these two kinds of

algebraic structures. We furthermore incorporate an explicit probabilistic choice,

constrained by its own axioms, to achieve a direct control on probabilistic infor-

mation. Concrete models of probabilistic concurrent Kleene algebra include an

interleaving interpretation of concurrency based on probabilistic automata and

Segala’s probabilistic forward simulation [73] as well as a true concurrent model

using probabilistic bundle event structures [33]. In the interleaving case, our ap-

proach is closely related to the work of Segala and Prima [64] as well as Deng et

al. [15]. The main difference is our focus on a Kleene algebraic approach, which

provide a grainless treatment of concurrency, rather than using process algebras

in the style of Milner [18, 56, 57]. This thesis includes small examples that show

the use of the algebra in proving properties of quantitative systems. But more im-

portantly, it also contains a probabilistic extension of the standard rely/guarantee

calculus to treat concurrency from a compositional and algebraic point of view.

In the standard formalisation of rely/guarantee calculus, a component is spec-

ified by the usual Hoare triple specification augmented with a rely condition that

specifies the impact of the environment in which the component runs, and a guar-

antee condition that constrains the effect of the component on the environment.

An environment can be thought of as a “background” program that has access to

the global or shared variables. In the algebraic formalisation, rely and guarantee

conditions have a very specific closure property that is expressed using the type

7

of concurrency considered [27]. More precisely, a rely condition contains all of the

behaviours found in its duplicated concurrent execution. That closure property is

preserved by special forms of probabilistic rely conditions and this thesis presents

the first extension of rely/guarantee reasoning to the study of state-based quanti-

tative concurrent programs. Notice that other researchers have also applied and

extended such techniques to action-based systems [35,43]. However, since the set

of probabilistic automata under the simulation equivalence described in this thesis

forms a model of probabilistic concurrent Kleene algebra, the rely/guarantee rules

can directly be used in that model.

Synopsis

The structure of this thesis adheres tightly to the sequence of contributions. In

Chapter 2, all necessary background from Kleene algebra, automata theory and

simulation are revised. Moreover, it contains sections on the soundness as well

as completeness of the automata/simulation model with respect to continuous

probabilistic Kleene algebra. Section 2.4 describes the minimisation technique

that is a translation of Bustan and Grumberg’s work on Kripke structures [6].

Finally, a decision procedure is described.

Chapter 3 provides the necessary background about concurrent Kleene algebra

as well a new model based on bundle event structures. The refinement order of

that model is then characterised using the notion of resolution which is obtained

from the interaction of a scheduler and a finisher on a given event structure.

The axiomatisation of probabilistic concurrent Kleene algebra is given in Chap-

ter 4 where its soundness is established with respect to an interleaving model:

probabilistic automata modulo simulation equivalence.

Chapters 5 and 6 contain the development of true concurrent models of prob-

abilistic concurrent Kleene algebra with respectively explicit and implicit prob-

ability. The first truly concurrent model offers a true-concurrent definition of

probabilistic simulation while the second model is fundamental for the state-based

approach to the probabilistic rely/guarantee of Chapter 7.

8 CHAPTER 1. INTRODUCTION

Publications

The materials presented in Chapters 2, 4 and 5 (with the soundness result of

Chapter 3) have been published respectively in:

[49] A. K. McIver, T. M. Rabehaja, and G. Struth. On probabilistic Kleene

algebras, automata and simulations. In Proceedings of RAMICS11, pages

264-279, 2011.

[50] A. K. McIver, T. M. Rabehaja, and G. Struth. An event structure model for

probabilistic concurrent Kleene algebra. In Proceedings of LPAR19, pages

653-667, 2013.

[52] A. K. McIver, T. M. Rabehaja, and G. Struth. Probabilistic concurrent

Kleene algebra. In Proceedings of QAPL11, volume 117 of EPTCS, pages

97-115, 2013.

Chapter 2

Continuity in Probabilistic

Kleene Algebra

Kleene algebras are a family of mathematical structures that are fundamental

to many computing applications. Variants for specific models and tasks include

processes [57,70], probabilistic analysis [46,53], program refinement [54,55,67,86]

or grainless concurrency [28]. The best studied variant, whose equational theory

is completely characterised, has been introduced by Kozen [38]. A classical result

relates Kozen’s Kleene algebras to regular languages and the regular expressions

that represent them. In other words, regular languages are models of this alge-

bra and every valid identity between regular expressions can be derived from its

axioms. However, much less is known about other variants of Kleene algebras

where completeness results and decision procedures would be of comparable in-

terest. In this chapter, we show that a completeness result similar to Kozen’s can

be achieved for probabilistic Kleene algebra.

The axioms of probabilistic Kleene algebra have been developed by McIver

and Weber [53] to study probabilistic programs in the style of Conway [12]. The

axiomatisation admits many concrete interpretations, ranging from probabilistic

powerdomains [48] to the set of up-closed multirelations [20,21]. It also possesses

9

10 CHAPTER 2. CONTINUITY IN PROBABILISTIC KLEENE ALGEBRA

transition-based models such as the set of automata modulo simulation equiv-

alence [10, 49]. In particular, this chapter shows that continuous probabilistic

Kleene algebra completely axiomatises simulation equivalence between automata,

hence providing a solution to the same completeness property conjectured by Takai

and Furusawa [79]. Continuity is the special ingredient here and we will estab-

lish it for the sequential composition of automata in Proposition 2.2.10. Equiv-

alently, an equation u = v is provable in continuous probabilistic Kleene algebra

iff the automata associated to u and v are simulation equivalent. Hence, the

existence/absence of a simulation between two automata can be used to decide

the provability of the equality of two algebraic terms (without free variables). In

Section 2.4, we refine the checking of a simulation by minimising the automata

while preserving simulation equivalence. It is shown that minimal automata are

simulation equivalent iff they are isomorphic. Hence a decision procedure for con-

tinuous probabilistic Kleene algebra is achieved by isomorphism checking on the

corresponding minimal automata.

2.1 Probabilistic Kleene algebra

Probabilistic Kleene algebras have been introduced for resolving nondetermin-

istic choice as they occur, for instance, in probabilistic protocols that involve

adversarial scheduling [46, 53]. They are very similar to process algebras like

CCS or ACP, but do not consider parallelism, communication or the notion of

atomic action. In probabilistic Kleene algebra, simulation equivalence instead of

bisimilarity is the underlying notion of equivalence which ensures that all defined

algebraic operations are monotone.

2.1.1 Axiomatisation

Two axiomatisations of Kleene algebras were firstly suggested by Salomaa in

his quest for a complete algebraic characterisation of the equality of regular lan-

guages [70]. Salomaa’s original aximatisations were later refined by Conway [12],

2.1. PROBABILISTIC KLEENE ALGEBRA 11

then by Kozen, who gave a simplified proof of completeness with respect to regular

language equivalence [38]. Many other variants emerged out of Kozen’s axioma-

tisation, including probabilistic concurrent Kleene algebras.

Formally, a probabilistic Kleene algebra is a structure (K,+, ·, 0, 1, ∗) where

- (K,+, 0) is a commutative idempotent monoid (axioms 2.1-2.4),

- (K, ·, 1) is a monoid (axioms 2.5-2.7),

- 0 is a left and right anihilator (axioms 2.8-2.9),

- the sequential composition (·) right-distributes and left-subdistributes through

addition (axioms 2.10-2.11),

- the Kleene star (∗) satisfies the unfold (2.12), the left induction (2.13) and

the right induction (2.14) axioms.

X +X = X (2.1)
X + Y = Y +X (2.2)

X + (Y + Z) = (X + Y) + Z (2.3)
X + 0 = X (2.4)
X · 1 = X (2.5)
1 ·X = X (2.6)

X · (Y · Z) = (X · Y) · Z (2.7)
0 ·X = 0 (2.8)
X · 0 = 0 (2.9)

(X + Y) · Z = X · Z + Y · Z (2.10)
X · Y +X · Z ≤ X · (Y + Z) (2.11)

X∗ = 1 +X ·X∗ (2.12)
X · Y ≤ Y ⇒ X∗ · Y ≤ Y (2.13)

Y · (X + 1) ≤ Y ⇒ Y ·X∗ ≤ Y (2.14)

We assume that (∗) has priority over (·) which in turn has priority over (+).

Table 2.1: Axioms of probabilistic Kleene algebra.

Notice that the unfold axiom (2.12) postulates the existence of a fixed point for

the function f(Y) = 1+X ·Y and the left induction axiom (2.13) ensures that X∗

12 CHAPTER 2. CONTINUITY IN PROBABILISTIC KLEENE ALGEBRA

is the least fixed point of that function with respect to the semilattice order ≤ such

that X ≤ Y iff X + Y = Y . In particular, the function Y 7→ X + Y is monotonic

because if Y ≤ Z then (X+Y)+(X+Z) = X+(Y +Z) by the associativity (2.3)

and idempotence (2.1) axioms. Therefore (X + Y) + (X + Z) = (X + Z), i.e.,

X + Y ≤ X + Z.

2.2 Nondeterministic automata and simulation

Each variant of Kleene algebras usually axiomatises a different form of equiv-

alence on automata. In Boffa [4], Krob [41] and Kozen’s [38] completeness the-

orems, the set of automata modulo the equality of recognisable languages is the

main axiomatised model. In Kozen’s proof, the distributivity law

X · Y +X · Z = X · (Y + Z) (2.15)

plays a primary role in lifting the Kleene algebraic structure to the set of matrices

over the algebra. Moreover, that distributivity law is necessary to ensure that

a nondeterministic automaton and its deterministic version are representing the

same Kleene algebra term.

However, only a subdistributivity law (Equation 2.11) holds in probabilistic

Kleene algebra, because if X has a probabilistic outcome, then its output can

be additionally used in the resolution of the nondeterministic choice Y + Z in

the expression X · (Y + Z). Such a resolution is impossible in the distributed

expression X ·Y +X ·Z because the choice is resolved before the execution of X.

The subdistributivity axiom ensures that sequential composition is monotonic. In

fact, they are equivalent because if Y ≤ Z, i.e. Y +Z = Z, then X · Y +X ·Z ≤
X ·(Y +Z) = X ·Z, i.e. X ·Y ≤ X ·Z. Conversely, if the multiplication by X from

the left is monotonic, then X · Y ≤ X · (Y + Z) because Y ≤ Y + Z. Similarly,

X ·Z ≤ X ·(Y +Z) and thus X ·Y +X ·Z ≤ X ·(Y +Z)+X ·(Y +Z) = X ·(Y +Z),

by the idempotence axiom 2.1.

2.2. NONDETERMINISTIC AUTOMATA AND SIMULATION 13

Therefore, a stronger form of equivalence is needed for the soundness with

respect to an automata model. This section presents a Kleene-style construction of

an automata-theoretic model for probabilistic Kleene algebras, hence a soundness

result. It makes use of Cohen’s coalgebraic construction [10] using a variant of

Brzozowski derivatives [5], which is perhaps more elegant, more explicit. The main

difference between our approach and Cohen’s is that we show and rely heavily on

the continuity of sequential composition (Proposition 2.2.10).

If the left distributivity is altogether missing, then the resulting Kleene alge-

braic structure can be adapted to axiomatise bisimulation equivalence [18,58,69,

81,82].

Definition 2.2.1. A nondeterministic finite automaton is a tuple (G,→, xG, F)

where G is a finite set of states and→⊆ G×(Σ∪{ε})×G is a transition relation.

The set Σ is a fixed finite alphabet which is the same for all automata. The symbol

ε denotes the empty word, xG ∈ G the initial state and F ⊆ G the set of final

states, which are underlined when drawing the automaton.

In this thesis, an automaton is usually identified by its set of states (i.e. we

simply denote an automaton by G instead of the tuple in Definition 2.2.1). The

transition relation is indexed with G when confusions may arise.

An automaton is accessible if every state is reachable from the initial state

and every other state reaches some final state. We will only consider accessible

automata. We follow the standard construction in Kleene’s theorem and induc-

tively interpret terms of probablisitic Kleene algebras by nondeterministic finite

automata.

2.2.1 Inductive construction of automata

Basic automata are defined as follows:

- The constant 0 corresponds to ({x}, ∅, x, ∅). Diagrammatically, we have a

single initial state x and no final state.

14 CHAPTER 2. CONTINUITY IN PROBABILISTIC KLEENE ALGEBRA

- The constant 1 corresponds to ({x}, ∅, x, {x}). Diagrammatically, we have a

single initial and final state x .

- The basic automaton a is drawn as ({x, x′}, {x a−→ x′}, x, {x′}). Diagram-

matically, it corresponds to

x a // x′ .

In the reminder of this section, we fix two automata (G,→G, xG, FG) and

(H,→H , xH , FH). We also assume that the state spaces of G and H are disjoint.

We now give an automata construction for each of the operations in (+, ·, ∗).

- The nondeterministic choice between G and H is defined by:

G+H = (G ∪H ∪ {x},→G ∪ →H ∪{x
ε−→ xG, z

ε−→ xH}, x, FG ∪ FH)

where x /∈ G ∪ H. That is, we obtain the following diagram (where initial

states of G and H have been abstracted away):

x
ε

~~

ε

G H

- The sequential composition of G followed by H is defined by:

G ·H = (G ∪H,→G·H , xG, FH)

where

→G·H=→G ∪ →H ∪{x
ε−→ xH | x ∈ FG}.

That is, we obtain the following diagram

G
ε // H

2.2. NONDETERMINISTIC AUTOMATA AND SIMULATION 15

- The tail iteration or Kleene star of G is G∗ = (G ∪ {x},→G∗ , x, {x}) where

→G∗=→G ∪{x
ε−→ xG, y

ε−→ x | y ∈ FG}

and x /∈ G. That is, we obtain the following diagram: x
ε))

G
ε

hh

To obtain all axioms of probabilistic Kleene algebra on the set of automata

endowed with these operations, it is sometimes necessary to reduce the resulting

automaton to its accessible part after the application of any of these constructions.

This is, for instance, required in the product 0 ·G or G · 0, where every state of G

becomes inaccessible.

2.2.2 Simulation and ε-closure

Given an automaton G and a state x, the ε-closure ε(x) of x is the set of

states which are reachable by ε-transitions only from x (including itself). The

ε-extension of a transition x
a−→ y is obtained by performing a finite number of ε-

transitions before the execution of the action a. That is, we write x
a

=⇒ y (more

precisely x
a

=⇒G y) iff there exists x′ ∈ ε(x) such that x′
a−→ y. Similarly, we

define F = {x | ε(x) ∩ F 6= ∅}.

Definition 2.2.2. Let (G,→G, xH , FG) and (H,→H , xH , FH) be two automata. A

relation R ⊆ G×H is a simulation from G to H if

- (xG, xH) ∈ R,

- for all a ∈ Σ, if (x, y) ∈ R and x
a

=⇒G x
′ then (x′, y′) ∈ R for some y′ such

that y
a

=⇒H y
′,

- if (x, y) ∈ R and x ∈ FG, then y ∈ FH .

We write G � H and say that H simulates G whenever there is a simulation

R ⊆ G × H. Simulations need not be total. There can be x ∈ G on which

a simulation is undefined (see Figure 2.1). The reason is that in the second

16 CHAPTER 2. CONTINUITY IN PROBABILISTIC KLEENE ALGEBRA

ε

��

ε

��

//

a

��

a

��
a

��
ε

��

ε

��

33

ε

��

55

ε

��

ε

��

b

��
c

��
b

��
c

��33 33

(a)

ε

��

ε

��

//

a

��

a

��

22

a

��

44

ε

��

ε

��

22

ε

��

44

ε

��

ε

��

b

��

55

c

��

88

b

��
c

��22 22

(b)

Figure 2.1: Simulations from a · b+ a · c to a · (b+ c).

condition above, ε-transitions have not been considered. But every simulation R

can be totalised by settingR′ = R∪{(x, y) |R.x = ∅∧∃x′·(x ∈ ε(x′)∧(x′, y) ∈ R)}.

Example 2.2.3. Figure 2.1 (a) provides an example of simulation from a · b+a · c
to a · (b + c). The total version is drawn in Figure 2.1 (b). Notice that the

ε-transitions were introduced by the definition of (·) and (+) and they can be

removed “safely” using Proposition 2.2.5. �

It is well known that simulations on G×H are closed under union and relational

composition. It follows that all simulations can be extended to maximal ones.

It is also well known that simulations induce preorders and equivalences. Two

automata G and H are simulation equivalent, written G ∼= H, if G � H and

H � G. The simulation equivalence and simulation order corresponds to the

algebraic constructs = and ≤.

Lemma 2.2.4. Given to automata G,H, we have G � H iff G+H ∼= H.

Proof. If G � H then G+H � H+H � H (the last simulation is essentially the

identity on H). Since H � G+H, we have H ∼= G+H. Conversely, if G+H � H

then the restriction of the simulation on the states of G will generate a simulation

from G to H. �

2.2. NONDETERMINISTIC AUTOMATA AND SIMULATION 17

We close this subsection by showing that ε-elimination is possible in our au-

tomata model, using the standard technique. The general idea is shown in the

following diagram:

a

��
a

��

//

a

��

ε

��

//

b

		
b

��

77

b

��//

The ε-transition on the left-hand automaton is remove and a new transition la-

belled by b is introduced. Indeed, the state to which the discarded ε-transition

pointed to becomes unreachable, but the right-hand automata is made accessible

by removing all unreachable states.

Proposition 2.2.5. Each accessible automaton is simulation equivalent to an

accessible ε-free automaton.

Proof. Let G be an (accessible) automaton and let Gε be an automaton such

that x
a−→Gε x

′ iff there exists y ∈ ε(x) such that y
a−→G x

′. The automaton Gε

has the same initial state xG as G and its set of final states is:

FGε = {y ∈ FG | y accessible in Gε}.

Notice Gε has no transition labelled with ε and that it is further reduced to its

accessible part if required.

First, we show that G � Gε. Consider the relation R ⊆ G × Gε such that

(x, y) ∈ R iff x ∈ ε(y) in G. We must show that R is indeed a simulation. We

have (xG, xG) ∈ R because xG ∈ ε(xG).

- Assume (x, y) ∈ R and x ∈ FG, by definition ε(x) ∩ FG 6= ∅ but ε(x) ⊆ ε(y)

so y ∈ FGε .

- Let a ∈ Σ, x
a−→ x′ be a transition of G and (x, y) ∈ R. Since x ∈ ε(y), we

deduce that y
a−→ x′ is a transition of Gε by definition of its set of transition.

18 CHAPTER 2. CONTINUITY IN PROBABILISTIC KLEENE ALGEBRA

x ε // y

a

��
z

ε

__ x
a

��
z

a

mm z

a

mm

The ε-free automaton can further be reduced to the right-most automaton while
preserving simulation equivalence. Hence counterexamples will be expressed using
the compact transition system.

Figure 2.2: Removing ε-transitions in a∗.

With similar argument, we can further show that R−1 is also a simulation. Hence

Gε � G and we deduce G ∼= Gε. �

The reduction of an automaton to an ε-free version highly simplifies the inter-

pretation of a pKA term with an automaton. For example, given an action a, the

automaton associated to a∗ is reduced to a self loop (Figure 2.2).

2.2.3 Soundness of probabilistic Kleene algebra

The following soundness theorem shows that the set Aut of accessible au-

tomata ordered by simulation is “almost” a probabilistic Kleene algebra. In fact,

Aut satisfies all axioms of Figure 2.1 but we only establish all axioms other than

the equational implication (2.14) in Theorem 2.2.6. The unfold (2.12) and the

left induction law (2.13) ensure that the construction of Kleene star G∗ in Sub-

section (2.2.1) coincides (up to simulation equivalence) with the supremum of the

sequence fn(0) where f(X) = 1 + G · X. Notice that G∗ is a finite automaton

while computing the limit of fn(0) directly may result in an automaton with in-

finitely many states. The implication 2.14 is then a consequence of continuity and

Lemma 2.2.8.

Theorem 2.2.6. The structure (Aut,+, ·,∗ , 0, 1) modulo simulation equivalence

satisfies Axioms (2.1-2.13).

Proof. Let G,H,K be automata. The following proofs show sketches of the

simulations between the expressions involved in each of the axioms.

2.2. NONDETERMINISTIC AUTOMATA AND SIMULATION 19

- Axioms (2.1-2.2): the simulations for G + H ∼= H + G and G + G ∼= G are

trivial.

- Axiom (2.3): the relation R ⊆ ((G + H) + K) × (G + (H + K)) defined by

the following diagram is a simulation.

x
ε

��

ε

��

,, x′

ε

��

ε

��
z1

ε

��

ε

��

11

K

--

G z′1
ε

��

ε

��
G

55

H 22 H K

We can use a similar construction for the converse direction.

- Axiom (2.4): we can use the identity simulation because 0+G is transformed

into G by making the automaton accessible.

- Axioms (2.5-2.6). For 1 ·G ∼= G, we use the simulation

x

ε
��
G // G

and its converse. The simulation for G · 1 ∼= G is similar.

- Axiom (2.7): the automata corresponding to the left-hand and the right-hand

side expressions are identical by construction.

- Axiom (2.8-2.9): the automata G · 0 and 0 have no final state. By making

the left-hand side accessible, it becomes identical to the right-hand side.

Similarly for 0 · G ∼= 0. In the left-hand side, G is not reachable and the

automaton becomes 0 by making it accessible.

20 CHAPTER 2. CONTINUITY IN PROBABILISTIC KLEENE ALGEBRA

- Axiom (2.10): the following figure gives a simulation that works both ways.

x
ε

��

ε

��

// x′

ε

~~

ε

G

ε
��

,,H

ε
��

22G

ε

H

ε~~
K 11K // K

- Axiom (2.11): the simulation is shown in the following diagram.

x
ε

��

ε

��

,, G

ε

��G

ε
��

33

G

ε
��

77

ε

~~

ε

H 22K 22H K

The initial state x is mapped to the initial state of G and the dotted arrows

from G to G (resp. H to H, resp. K to K) are the identity relations on G

(resp. H, resp. K).

- Axioms (2.12): the following construction yields a simulation 1+G ·G∗ � G∗

for one unfold of G∗.

x′ ε // ,,G

ε

�� ''

x

ε

��
x

ε))

77

G
ε

ii // G

ε

UU

where x′ is the initial state of 1 + G · G∗. Moreover, the presented relation

is a bisimulation (i.e. its inverse is also a simulation). Hence we have both

1 +G ·G∗ � G∗ and G∗ � 1 +G ·G∗.

- Axioms (2.13): let R ⊆ (G · H) × H be the maximal simulation. We write

Gn = Gn · · ·G1, where Gn is the n-th copy of the automaton G. We write

2.2. NONDETERMINISTIC AUTOMATA AND SIMULATION 21

xn for the copy of state x in Gn. The notation in the following diagram has

been changed to show the construction more clearly.

· · · xG

G

��

// xG

G

��

// xG

G

��

R0
1 // xH

H

��

ε

��

//

ε

��

//

ε

��

R0
1 // ×

G

��

//

G

��

//

H

��

R0
2

;;

ε

��

//

ε

��

// ×

G

��

//

H

��

;;

ε

��

// ×

H

��

;;

· · · // //
R0

2

//

We define R = R0 = R0
1 ∪ R0

2 where R0
1 ⊆ G · ε×H and R0

2 ⊆ H ×H as in

the diagram, so that R0 is a simulation. We inductively define Rn = Rn
1 ∪Rn

2

where Rn
1 = R0

1 and Rn
2 = Rn−1 ◦ · · · ◦ R0 ◦ R0

2. It follows by induction that

each Rn is a simulation for Gn ·H � H.

We now define R∗ ⊆ G∗·H×H and show that it is a simulation forG∗·H � H.

For x, y ∈ G ∪H we define

(x, y) ∈ R∗ iff

 (xj, y) ∈ Rn for some j, n with j ≤ n, if x ∈ G,
(x, y) ∈ R, if x ∈ H.

The initial state xG∗ of G∗ is mapped to every state of H in the image of a

copy of the initial state xG of G under Rn. The final states of G∗ · H are

related to those of H. We now prove that R∗ is a simulation by inspecting

22 CHAPTER 2. CONTINUITY IN PROBABILISTIC KLEENE ALGEBRA

transitions in the automata.

First, (xG∗ , xH) ∈ R∗ since (xG, xH) ∈ R0.

Next, suppose x ∈ FG∗·H and (x, y) ∈ R∗. There are two cases: (i) If

x ∈ H, then (x, y) is already in R. (ii) If x ∈ G ∪ {xG∗} then 1 � H, so

x ∈ FG ∪ {xG∗}. By definition (xi, y) ∈ Rn for some i and n. Therefore

xi ∈ FGn·H and consequently y ∈ FH because Rn is a simulation (consider

the diagram).

Next, suppose (x, y) ∈ R∗ and x
a−→ x′ is the result of a transition in the

automaton G∗ · H, that is, it is either a transition in H or a transition in

G∗ or a transition from some final state of G∗ to some state in H. We

distinguish three cases. (i) If x ∈ H, then we are done since the simulation

used for the step is R by definition. Otherwise, let us assume that x is not

in H. There exists i, n such that (xi, y) ∈ Rn. (ii) x
a−→ x′ is obtained

by a transition in G. Then, since Rn is a simulation, there exists y
a−→ y′

such that (x′i, y
′) ∈ Rn. Hence (x′, y′) ∈ R∗. (iii) y

a−→ y′ is obtained by a

transition of the form x
ε−→ xG∗

εa−→ x′. In the diagram, by ε-closure, there

will therefore be additional edges that can either loop back into G or lead

into H. That is, xi
a−→ x′i−1 or x′ ∈ H and i = 1. In the first case, when we

loop back into G, there exists a state y′ such that (x′i−1, y
′) ∈ Rn. Therefore,

by definition, (x′, y′) ∈ R∗. In the second case, when the transition leads

into H, there exists a state y′ such that (x′, y′) ∈ R, by definition. Again,

(x′, y′) ∈ R∗. �

The following examples show that the axioms for automata under simulation

equivalence can neither be weakened nor strengthened.

Example 2.2.7.

1. It is clear by considering the diagram for subdistributivity in the proof of

Theorem 2.2.6 that a simulation from the right-hand automaton to the left-

hand automaton is impossible. This refutes left distributivity for our model.

2.2. NONDETERMINISTIC AUTOMATA AND SIMULATION 23

x0

ε

��
x

a

,, x1 ahh

a

��
x2

Figure 2.3: There is no simulation from a∗ to 1 + a∗ · a.

x0

ε

��
x

a

,, //

88

x1 ahh

a

��
x2

Figure 2.4: A simulation between compact interpretations of a∗ and 1+a∗ ·(a+1).

2. The left star unfold axiom can be strengthened to 1 +X ·X∗ = X∗, but the

inequality X∗ ≤ 1 +X∗ ·X is not valid.

It is clear that there cannot be a simulation between the automata of Fig-

ure 2.3 because x0, x2 and x are the final states (underlined) and hence x

cannot be simulated by x1. But Figure 2.4 shows the existence of a simula-

tion from a∗ to 1 + a∗(a+ 1), because x1 is now a final state.

3. A right star induction law Y ·X ≤ Y ⇒ Y ·X∗ ≤ Y does not hold.

x0

a

��

a

��

// y0

a

a

��
x1

a

��

88

y1

x2

88

x0

a

��

a

��

y0

a

a

��
x1

a
II

y1

The left diagram shows a simulation from a∗ · a · a to a∗ · a though there

24 CHAPTER 2. CONTINUITY IN PROBABILISTIC KLEENE ALGEBRA

is no simulation between the automata in the right-hand side i.e. refuting

a∗ · a · a∗ ≤ a∗ · a.

4. Kozen’s counter-example [36] on Kleene algebras possessing a least fixpoint

for 1 +a ·X but not for 1 +X ·a still holds in our setting (i.e. for 1 +X · (a+

1)). Therefore the right induction axiom of probabilistic Kleene algebras is

independent.

�

2.2.4 Continuity of sequential composition

The star unfold (Axiom 2.12) and left induction law (Axiom 2.13) postulate

that the least fixed point of f(Y) = 1+X ·Y exists. The standard computation of

the least fixed point can be achieved by iterating the monotonic function f from

the bottom 0 on the considered mathematical model. In general, the least fixed

point cannot be obtained by accumulating finite behaviours only. However, with

a stronger hypothesis, such as continuity, it can be expressed as the aggregation

of all finite iterations of f , i.e., X∗ = supn∈N f
n(0). In the work of Kozen [37],

the sequence involved in the computation of the Kleene star is described in his

star-continuity property. That is, Y ·X∗ · Y ′ = supn(Y · fn(0) · Y ′).
In this subsection, we present a more general form of continuity using directed

sets. A set A is directed if for every X, Y ∈ A, there exists Z ∈ A such that

X ≤ Z and Y ≤ Z. A probabilistic Kleene algebra K is continuous if the

sequential composition is continuous from the left and the right, that is, if it

distributes over left and right directed joins:

X · (supA) = sup{X · Y | Y ∈ A} and (supA) ·X = sup{Y ·X | Y ∈ A}

hold for all elements X and directed subsets A of the carrier set K with supre-

mum supA. It should be noted that we only need conditional continuity, that

is, only existing suprema of directed sets need to be preserved. In particular, if

2.2. NONDETERMINISTIC AUTOMATA AND SIMULATION 25

the supremum of the increasing powers of the function f above exists then it is

preserved by sequential composition from the left and the right. This corresponds

to Kozen’s star-continuity.

Lemma 2.2.8. In every continuous probabilistic Kleene algebra

X∗ = sup
n∈N

(1 +X)n.

Proof. The continuity hypothesis implies that X∗ = supn f
n(0). It then suffices

to prove by induction that fn+1(0) = (1 +X)n. For n = 0, f 1(0) = 1 +X · 0 = 1

and (1 + X)0 by convention. Assume that fn(0) = (1 + X)n. On the one hand,

we have (1 +X)n+1 = (1 +X) · (1 +X)n = (1 +X)n+X · (1 +X)n ≥ 1 +X ·fn(0)

because of the induction hypothesis and the fact that (1 +X)n ≥ 1. On the other

hand, since f is monotonic, we have fn+1(0) ≥ fn(0). But fn+1(0) ≥ X · fn(0),

therefore, fn+1(0) = fn(0) +X · fn(0) = (1 +X)n. �

Lemma 2.2.9. The operation + distributes through arbitrary suprema.

Proof. Consider a family Yi such that supi Yi = Y . Then supi(X+Yi) ≤ X+Y by

monotonicity. Conversely, if Z ≥ X+Yi for all i, then Z+X+Y ≥ X+Yi+X+Y =

X + Y , hence supi(X + Yi) ≥ X + Y . �

We now establish the continuity of the sequential composition in the set of

accessible automata modulo simulation equivalence.

Proposition 2.2.10. The sequential composition of automata is conditionally

continuous i.e. multiplication from left and right preserves the supremum of every

directed set (if it exists).

Proof. We first define a notion of residuation on automata. We then establish

that the residuation (/) and sequential composition (·) form a Galois connection,

that is, for every automata G,H and K: K · H � G iff K � G/H. Right

continuity follows from this property because if a family (Ki)i with supremum K

satisfies Ki ·H ≤ G for every i, then Ki � G/H for every i. Hence we deduce, by

definition of suprema, that K � G/H i.e. K ·H � G.

26 CHAPTER 2. CONTINUITY IN PROBABILISTIC KLEENE ALGEBRA

Let us construct the residuation. For automata G and H 6= 0 we define the

automaton G/H with initial state xG/H = xG (the initial state of G), final states

FG/H = {x ∈ G | H � Gx}, where Gx is constructed from G by translating its

initial state into x. We make the resulting automaton accessible by discarding all

states and edges that do not lead to a final state.

We now show that K · H � G iff K � G/H. Assume R is a simulation from

K ·H to G. That means R is in particular a simulation from H to Gx for some

state x of G. By definition of G/H, therefore, R is a simulation from K to G/H

because the state x of G becomes final state of G/H and they are images of the

final states of K under R.

For the converse direction, suppose that R is a simulation from K to G/H. By

axioms 2.11 and 2.10, multiplication is monotonic, hence K ·H � (G/H) ·H, and

it remains to show that (G/H) ·H � G.

First, if FG/H is empty then G/H = 0 (after making it accessible) and the result

follows.

Otherwise, assume that R′ is the simulation from K · H to (G/H) · H. By

construction of G/H, we also know that there exists a simulation Sx from H to

Gx for all final state x of G/H and that there is a simulation (except for the

final state property) between G/H and G, namely the identity relation id. Hence

S ′ = (∪xSx) ∪ id is indeed a simulation from (G/H) · H to G and R′ ◦ S ′ is a

simulation from K ·H to G.

It then follows from general properties of Galois connections [1] that L 7→ L ·H
is (conditionally) completely additive, hence right continuous.

It remains to show left continuity. Let (Gi)i be a directed set of automata such

that supiGi = G and let H be any automaton. Then supi(H ·Gi) � H ·G because

multiplication is monotone and it remains to show H · G � supi(H · Gi). Let us

assume that supi(H ·Gi) � K. We will show that H ·G � K.

By definition of supremum, H · Gi � K for all i, hence there is a set of states

Xi = {x ∈ K | Gi � Kx}, that is, the set of all those states in K from which Gi

is simulated. Obviously, Xi ⊆ Xj if Gj � Gi in the directed set. But since K has

2.2. NONDETERMINISTIC AUTOMATA AND SIMULATION 27

only finitely many states, there must be a minimal non-empty set X in the directed

set (Xi)i such that all Gi are simulated by Kx for x ∈ X. By definition, therefore,

G = supiGi � Kx for all x ∈ X. There exists a simulation SX ⊆ (H · Gi) × K
for some i such that the residual automaton K/Gi has precisely X as its set of

final states. We can thus take the union of SX restricted to H and all simulations

yielding G � Kx for all x ∈ X and verify that this is indeed a simulation of H ·G
to K. �

2.2.5 Constructing automata from pKA terms

Let Σ be fixed alphabet. It is standard knowledge that regular expressions are

mainly constructed inductively from Σ using the operations (+, ·,∗) and constants

0, 1. We write TΣ for the set of such terms and equate them modulo provability

using the axioms of Table 2.1. Each regular expression can then be transformed

into an automaton by directly translating each term and sub-terms with the op-

erations of Section 2.2.1 followed by ε-removal (Proposition 2.2.5). Concretely, if

we denote this correspondence by G, then

- G(0) = 0, G(1) = 1 and G(a) is the basic automaton created from a, whose

initial state is labelled by a and the final state is labelled by 1.

- G(u+ v) is the ε-free version of G(u) +G(v). The initial state is labelled by

u+ v.

- G(u · v) is the ε-free version of G(u) ·G(v) where a state of G(u) labelled by

w is relabelled with w · v in the automaton G(u · v). The initial state is u · v.

- G(u∗) is the ε-free version of G(u)∗. The initial state is labelled by u∗ and

all other state of G(u) labelled by w is relabelled to w · u∗ in the automaton

G(u∗).

It is clear that G is a homomorphism, i.e. G(u+ v) ∼= G(u) +G(v), G(u · v) ∼=
G(u) · G(v) and G(u∗) ∼= G(u)∗ for all terms u, v. In other words, each state of

G(u) is again labelled by a term, say v, and G(u) translated to that state is G(v).

28 CHAPTER 2. CONTINUITY IN PROBABILISTIC KLEENE ALGEBRA

a · b+ a · c
a

~~

a

a · (b+ c)

a

��
b

b
��

c

c
��

b+ c
b

~~

c

1 1 1 1

(b · c)∗ · a

b

a

$$
c · (b · c)∗ · a

c

JJ

1

Figure 2.5: The automata G(a · b+ a · c), G(a · (b+ c)) and G((b · c)∗ · a).

Hence, we will denote each state of G(u) by the term associated with it. Notice

that this labelling is a straightforward adaptation of Brzozowski derivatives [5]

and a similar technique was used by Cohen [10].

Example 2.2.11. G(a · b+ a · c), G(a · (b+ c)) and G((b · c)∗ · a) are depicted in

Figure 2.5. Since the ε-removal technique of Proposition 2.2.5 preserves simulation

equivalence, the first two pictured automata are respectively simulation equivalent

to the ones detailed in Figure 2.1. �

Final states of G(u) are characterised by the following endomorphism [5]:

- o(1) = 1, o(0) = 0, and o(a) = 0 for each action a ∈ Σ.

- o(u+ v) = o(u) + o(v), o(u · v) = o(u) · o(v) and o(u∗) = 1.

The following proposition says that each regular expression is equivalent (up

to provability by the axioms of probabilistic Kleene algebra) to a decomposition

produced by the transition relation of the associated automaton G(u). It adapts

a similar statement and proof by Milner [56] and Cohen [10].

Proposition 2.2.12. For every term u, it can be proved in probabilistic Kleene

algebra that

u =
∑
a∈Σ

∑
u
a−→G(u) u

′

a · u′ + o(u)

where −→G(u) is the of the transition relation of G(u).

Proof. By structural induction. We only consider the induction steps.

2.2. NONDETERMINISTIC AUTOMATA AND SIMULATION 29

- If the term is of the form u+ v, then

u =
∑
a∈Σ

∑
u
a−→G(u) u

′

a · u′ + o(u) and v =
∑
a∈Σ

∑
v
a−→G(v) v

′

a · v′ + o(v).

By definition of ε-removal, u+ v
a−→G(u+v)w iff either u

a−→G(u)w or v
a−→G(v)w

holds. It then follows that

∑
a∈Σ

∑
u+v

a−→G(u+v) w

a·w+o(u+v) =
∑
a∈Σ

∑
u
a−→G(u) w

a·w+o(u)+
∑
a∈Σ

∑
v
a−→G(v) w

a·w+o(v).

The right hand side evaluates to u+ v.

- In the product case u · v, we assume the same sums for u and v as before.

We have

u · v =

∑
a∈Σ

∑
u
a−→G(u) u

′

a · u′ + o(u)

 · v
=
∑
a∈Σ

∑
u
a−→G(u) u

′

a · u′ · v + o(u) ·

∑
a∈Σ

∑
v
a−→G(v) v

′

a · v′ + o(v)


Since, o(u) ∈ {0, 1}, it can be distributed through the bracketed sum. More-

over, u · v a−→G(u·v)w holds iff

– u
a−→G(u) u

′ and u′ · v = w or

– o(u) = 1 and v
a−→G(v)w holds.

Hence,

u · v =
∑
a∈Σ

∑
u·v a−→G(u·v) w

a · w + o(u · v)

- Finally, for the case of ∗, we can assume without loss of generality that

30 CHAPTER 2. CONTINUITY IN PROBABILISTIC KLEENE ALGEBRA

o(u) = 0 because (u+ 1)∗ = u∗ in probabilistic Kleene algebras. Therefore

u∗ = u · u∗ + 1 =

∑
a∈Σ

∑
u
a−→G(u) u

′

a · u′

 · u∗ + 1 =
∑
a

∑
u
a−→G(u∗) w

a · w + o(u∗).

The second step uses the induction hypothesis. The third step follows from

the construction of transitions in G(u∗) and the fact that o(u∗) = 1. �

2.3 A completeness result for continuous pKA

In this section we simply call a tree an automaton whose graph is a directed

acyclic graph1. In the case of accessible automata, all leaves (nodes without any

child) are final states, but there may also be some internal final states. In contrast

to Furusawa and Takai’s approach [79], where the soundness of the axioms of

probabilistic automata is proven against a particular set of tree-automata, we

are dealing with standard automata. Our approach is therefore more similar to

Cohen’s [10].

It is clear from our inductive construction of automata that each tree is the

interpretation of some ∗-free term in probabilistic Kleene algebra. If T is a tree

then uT denotes a ∗-free term such that T ∼= G(uT).

Proposition 2.3.1. Let T and T ′ be trees and v be a term.

1. If T � G(v), then uT ≤ v is provable in probabilistic Kleene algebra.

2. If T � T ′, then uT ≤ uT ′ is provable in probabilistic Kleene algebra.

Proof. Let T � G(v), without loss of generality we assume that the automaton

T is also ε-free.

Assume that T ∼= G(uT) for some ∗-free term uT and consider a leaf in G(uT).

Let x be a state of G(uT) and y be a state of G(v) such that G(uT)x � G(v)y. We

1Notice that G((a+ b) · c) is not a tree but a dag. However, it is simulation equivalent to a tree.

2.3. A COMPLETENESS RESULT FOR CONTINUOUS PKA 31

reason by induction on the maximal distance between x and all leaves accessible

from x.

- if x is a leaf then x = 1 and y is a final state of G(v). Hence x = 1 ≤ y.

- Otherwise, by Proposition 2.2.12,

x =
∑
a

∑
x
a−→G(uT) x

′

a · x′ + o(x) (2.16)

where x′ is strictly closer to a leaf than x. Similarly y =
∑

a

∑
y
a−→G(v) y

′ a ·
y′ + o(y) and by definition of simulation and the induction hypothesis, for

every x′ in Equation (2.16), there exists a corresponding y′ such that x′ ≤ y′

is provable in probabilistic Kleene algebra. Hence x ≤ y is also provable by

monotonicity of (+) and (·).

The case where both automata are trees is an instance. �

As a consequence of this proposition, we will denote a ∗-free term and a tree

by the same notation, usually t. For each automaton G, consider the set of trees

τ(G) = {t | t � G ∧ t is a tree}.

This set is stable under addition and is down-closed by definition. We define the

operations

τ + τ ′ = {t+ t′ | t ∈ τ ∧ t′ ∈ τ ′},

ττ ′ = ↓{t · t′ | t ∈ τ ∧ t′ ∈ τ ′},

τ ∗ = ↓{(t+ 1)n | t ∈ τ ∧ n ∈ N},

where ↓τ denotes the down-closure of τ . All these sets are again stable under

addition and are down-closed.

The previous proposition implies that τ(G(u)) = {G(t) | t ≤ u ∧ t is ∗ -free}.
We denote τ(u) = {t | t ≤ u ∧ t is ∗ -free}.

Proposition 2.3.2. τ is a homomorphism to sets of ∗-free terms.

32 CHAPTER 2. CONTINUITY IN PROBABILISTIC KLEENE ALGEBRA

Proof. It is clear that τ(u)+ τ(v) ⊆ τ(u+v). For the converse inclusion suppose

t ∈ τ(u + v), that is, t ≤ u + v so G(t) � G(u + v) ∼= G(u) + G(v). Since the

automata are disjoint, we can decompose t into tu+tv such that tu ≤ u and tv ≤ v

(this is possible because t is a tree). Therefore t ∈ τ(u) + τ(v).

We have τ(u)τ(v) ⊆ τ(u · v) by monotonicity. If t ∈ τ(u · v) then G(t) �
G(u · v) ∼= G(u)G(v). Then t = tu · (tv1 , . . . , tvn) for some tu ∈ τ(u) and tvi ∈ τ(v).

So t ≤ tu · (
∑

i tvi) ∈ τ(u)τ(v).

By monotonicity of (∗), τ(u)∗ ⊆ τ(u∗). Conversely, let t ∈ τ(u∗), then G(t) �
G(u)∗ so t ≤ (t′ + 1)n for some t′ ∈ τ(u) and n ∈ N. In fact, since t has finite

depth, we may unfold u∗ finitely many times and reason as in the case of sequential

composition to construct t′. �

The following theorem shows that the simulation order � corresponds to tree

language inclusion.

Theorem 2.3.3. G � H iff τ(G) ⊆ τ(H).

Proof. The forward implication is clear by transitivity of �. For the converse

implication, suppose τ(G) ⊆ τ(H) and consider the relation R ⊆ G × H such

that (x, y) ∈ R iff τ(Gx) ⊆ τ(Hy). We show that R is a simulation (the maximal

simulation, in fact). We must check the three defining conditions. (i) The initial

states are indeed in R. (ii) If (x, y) ∈ R and x ∈ FG, then 1 ∈ τ(Gx) ⊆ τ(Hy), so

y ∈ FH . (iii) Assume, by contradiction, that (x, y) ∈ R, x
a−→ x′ and for every y′i

such that y
a−→ y′i holds in H, there exists ti ∈ τ(x′) such that ti /∈ τ(y′i). Since

there are only finitely many such y′i, we define t =
∑

i ti ∈ τ(x′) and therefore,

a · t ∈ τ(x) ⊆ τ(y). Thus, there exists y′i0 such that y
a−→ y′i0 and t � Gy′i0

.

Since τ(Gy′i0
) is down-close and ti0 ≤ t, one obtains ti0 ∈ τ(Gy′i0

) which is a

contradiction. �

We now characterise terms in continuous probabilistic Kleene algebras by the

set of (∗-free) terms or trees that approximate them from below.

Proposition 2.3.4. Every term u of a continuous probabilistic Kleene algebra

satisfies u = sup τ(u).

2.3. A COMPLETENESS RESULT FOR CONTINUOUS PKA 33

Proof. By structural induction. We already know that sup τ(u) ≤ u and that

τ(u) is directed.

- For the base case, if u is a tree then u ∈ τ(u) and we have sup τ(u) = u.

- If u = u1 + u2 then by Proposition 6.4.3, τ(u) = τ(u1) + τ(u2) so sup τ(u) =

sup{t1+t2 | t1 ∈ τ(u1)∧t2 ∈ τ(u2)}. Let t1 ≤ u1, by continuity and induction

hypothesis t1 +u2 = sup{t1 +t | t ≤ u2} ≤ sup τ(u). Therefore, by continuity

again u ≤ sup{t1 + u2 | t1 ≤ u1} ≤ sup τ(u). Hence u = sup τ(u).

- Let u = u1 · u2, we have τ(u) = τ(u1)τ(u2) and we use the same reasoning

as before. Let t1 ∈ τ(u1), then by continuity and induction hypothesis,

t1 · u2 = sup{t1 · t | t ≤ u2} ≤ sup τ(u). By continuity again, u1u2 = sup{t1 ·
u2 | t1 ≤ u1} ≤ sup τ(u). we conclude u ≤ sup τ(u). Hence u = sup τ(u).

- Let u = v∗. Then by Proposition 6.4.3, τ(u) = τ(v)∗ and we have to show

u ≤ sup{(t+ 1)n | t ≤ v ∧ n ∈ N} by definition of τ ∗. But sup{(t+ 1)n | t ≤
v} = (v+1)n ≤ sup τ(u) (induction on n and using the case of multiplication).

So, sup{(v + 1)n | n ∈ N} ≤ τ(u) and therefore, by continuity (existence of

supn(v + 1)n), v∗ ≤ τ(u). �

Finally, we can prove our completeness theorem; the main result of this chapter.

Theorem 2.3.5. If G(u) � G(v), then u ≤ v is derivable in continuous proba-

bilistic Kleene algebra.

Proof. If G(u) � G(v), then τ(u) ⊆ τ(v) by Theorem 2.3.3. It follows from

Proposition 2.3.4 that u = sup τ(u) ≤ sup τ(v) = v. �

Notice that G is a continuous mapping (i.e. it preserves directed limits) due

to Proposition 2.3.4 and Theorem 2.3.3.

Theorem 2.3.6. An equation u = v is derivable in continuous probabilistic Kleene

algebra iff G(u) ∼= G(v).

Proof. Theorem 2.2.6 and Theorem 2.3.5. �

34 CHAPTER 2. CONTINUITY IN PROBABILISTIC KLEENE ALGEBRA

In other words, proving an equation in continuous probabilistic Kleene algebra

is exactly the same as checking for simulation equivalence in Aut. Since, by defini-

tion, we consider finite automata only, Theorem 2.3.6 implies that the equational

theory of continuous probabilistic Kleene algebra is decidable. In the following

section, we reduce such a decision using a minimisation of automata modulo sim-

ulation. That is, proving an equation in continuous probabilistic Kleene algebra

is equivalent to comparing minimal automata which, as it turns out, is the same

as isomorphism checking.

2.4 Minimisation and decision procedure

In Figure 2.2, it was shown that the automaton corresponding to a∗ is simulation

equivalent to a self loop labelled by a. In fact, the self loop is the minimal automa-

ton simulation equivalent to G(a∗) and such a result holds in general. Moreover,

we show that minimal automata are unique up to isomorphism. Therefore, de-

ciding whether an equation u = v holds or not in continuous probabilistic Kleene

algebra can be reduced to checking the existence or absence of isomorphisms be-

tween minimal automata. This section presents a minimisation algorithm modulo

simulation equivalence for automata. The algorithm has three steps.

The first step deals with simulation equivalent states which are “merged” via

quotient. This is related to the reduction of automata under bisimulation equiv-

alence. However, there are two crucial differences: (a) two simulation equivalent

states may not be bisimilar, so a quotient with respect to simulation equivalence

produces an automaton with a smaller number of states (see Figure 2.6). (b) Sim-

ulation equivalence is not a congruence. That is, given an automaton G, if two

states x1, x2 ∈ G are simulation equivalent and that x1
a−→ x′1 is a transition of

G, then it is possible that there is no transition labelled by a from x2 to any state

in the equivalence class of x′1. This makes the definition of the quotient structure

for simulation equivalence much more difficult.

2.4. MINIMISATION AND DECISION PROCEDURE 35

The second step consists of removing any irrelevant transition. Removing such

a transition is equivalent to using the equation

X · Y +X · (Y + Z) = X · (Y + Z) (2.17)

as a rewrite rule in the algebraic proof, where the sub-graph containing X · Y is

pruned out by monotonicity. Since the left distributivity law (2.15) does not hold

in probabilistic Kleene algebra, the determinisation of automata cannot be used.

We can however use the subdistributivity axiom (2.11) to prove Equation (2.17)

and remove the redundant branches.

The last step makes the automaton accessible which is a standard normalisation

technique that has been used quite widely in this chapter.

2.4.1 Minimal automata

In this subsection, we explore in more details the simulation order and equiv-

alence on the set of automata. Since we may remove ε-transitions using Proposi-

tion 2.2.5, we will only deal with ε-free automata so that the definition of simu-

lation relation is simpler. Notice that a simulation between two ε-free automata

is always total.

We denote SGH the maximal simulation (with respect to the set inclusion ⊆)

from G to H which exists whenever G � H. In particular, since the identity

relation on G is a simulation, the maximal simulation of G, denoted by SG or

simply S, always exists. Simulation equivalence of states is then given by the set

B = S ∩ S−1, that is, two states x, y ∈ G are simulation equivalent iff (x, y) and

(y, x) are both in S. We write [x] to represent the set of states that are simulation

equivalent to x. If x and y are bisimilar states then they belong to B. However,

the relation B is in general not a bisimulation, as illustrated by the following

example:

36 CHAPTER 2. CONTINUITY IN PROBABILISTIC KLEENE ALGEBRA

x0

d

}}

e

!!
x1

a

��

a

!!

x2

a

��
x3

b ''

c

��

x4

b

��

x5
b

�� cww
x6

Figure 2.6: An automaton where the set of pairs of simulation equivalent states
is strictly larger than the maximal bisimulation.

Example 2.4.1. Consider the automaton of Figure 2.6. We have

S = id ∪ {(x1, x2), (x2, x1), (x3, x5), (x5, x3), (x4, x3), (x4, x5)}

and

B = id ∪ {(x1, x2), (x2, x1), (x3, x5), (x5, x3)}

though the maximal bisimulation does not contain (x1, x2) nor (x2, x1). �

Since S is a preorder, we say that an element x ∈ A ⊆ G is maximal in A iff

∀y ∈ A : (x, y) ∈ S ⇒ (x, y) ∈ B.

The relation B is an equivalence relation but not usually a congruence. Therefore,

we have to define the quotient structure (G/B,→G/B, [xG], {[x] | x ∈ F}) explicitly

where

[x]
a−→ [x′] iff ∀y ∈ [x]∃y′ ∈ [x′] : y

a−→ y′.

Notice that the set of final states of G/B satisfies [x] ∈ FG/B iff [x] ⊆ F iff x ∈ F .

Proving that this quotient structure produces an automaton simulation equivalent

to G is not as straightforward as in the quotient with respect to bisimulation.

The following proposition is an adaptation of Bustan and Grumberg’s on the

2.4. MINIMISATION AND DECISION PROCEDURE 37

quotient of Kripke structures with respect to simulation equivalence to finite au-

tomata [6].

Proposition 2.4.2. Let G be an automaton, then G/B ∼= G.

Proof. We prove this proposition by constructing two simulations, namely,

G/B � G and G � G/B.

To prove G/B � G, we show that the inverse of the map π : G → G/B such

that π(x) = [x] is a simulation. We have ([xG], xG) ∈ π−1, that is, the initial

states of G/B and G belong to π−1. Let x, x′, y ∈ G such that [x]
a−→ [x′] and

([x], y) ∈ π−1 i.e. y ∈ [x]. By definition of →G/B and the fact that y ∈ [x], there

exists y′ ∈ [x′] such that y
a−→ y′. This establishes the second property in the

definition of simulation because y′ ∈ [x′] is the equivalent to ([x′], y′) ∈ π−1. The

property about final states is clear because [x] ∈ FG/B iff x ∈ FG. Hence, π−1 is a

simulation from G/B to G.

To prove that G � G/B, let S be the maximal simulation of G and consider

the relation

R = {(x, [y]) | ∃z ∈ [y] : (x, z) ∈ S} ⊆ G×G/B.

It is clear that (xG, [xG]) ∈ R because (xG, xG) ∈ S. Let (x, [y]) ∈ R and x
a−→ x′

be a fixed transition of G. We need to find a state [m] ∈ G/B such that [y]
a−→ [m]

is a transition of G/B and (x′, [m]) ∈ R. We consider two cases:

1. if x ∈ [y], then the set

ga(x
′, [y]) = {z′ ∈ G | ∃z ∈ [y] : z

a−→ z′ ∧ (x′, z′) ∈ S}

is not empty since it contains x′. Let m be a maximal element of ga(x
′, [y])

(maximality is taken with respect to the simulation S). Let us show that

[y]
a−→ [m] is the transition of G/B corresponding to x

a−→ x′ by R. We

know that m ∈ ga(x
′, [y]) (because it is a finite set) so there exists z ∈ [y]

such that z
a−→ m and (x′,m) ∈ S. Let y′ ∈ [y], then (z, y′) ∈ B because

[z] = [y] = [y′]. By definition of simulation S, since (z, y′) ∈ B ⊆ S and

38 CHAPTER 2. CONTINUITY IN PROBABILISTIC KLEENE ALGEBRA

z
a−→ m, there exists m′ such that y′

a−→ m′ and (m,m′) ∈ S. By maximality

of m, (m,m′) ∈ B i.e. m′ ∈ [m]. Therefore, by definition of the quotient,

[y]
a−→ [m] is a transition of G/B. Moreover, since m ∈ ga(x′, [y]), we deduce

that (x′,m) ∈ S and hence (x′, [m]) ∈ R.

2. If x /∈ [y], there exists z ∈ [y] such that (x, z) ∈ S. By hypothesis x
a−→ x′

is a transition of G, then there exists z′ such that z
a−→ z′ and (x′, z′) ∈ S.

Since z ∈ [y], Case 1 ensures that there exists m such that [y]
a−→ [m] and

(z′, [m]) ∈ R. By definition of R, (z′, [m]) ∈ R implies the existence of

z′′ ∈ [m] such that (z′, z′′) ∈ S. Thus, (x′, z′′) ∈ S by transitivity. Hence

(x′, [m]) ∈ R by definition of R.

The conservation of final states by R is again clear. In fact, if (x, [y]) ∈ R and

x ∈ FG then there exists z ∈ [y] such that (x, z) ∈ S which implies that z ∈ FG.

Hence, [y] = [z] ∈ FG/B. �

The next proposition says that there are no more simulation equivalent states

in the quotient structure G/B.

Proposition 2.4.3. Let G be an automaton, then BG/B is the identity of G/B.

Proof. It suffices to show that the relation

R = {(x, y) | ∃m : (x, z) ∈ SG ∧ ([z], [y]) ∈ SG/B} ⊆ G×G

is a simulation on G. In fact, if R is a simulation, then it is included in the maximal

simulation SG. Therefore, if ([x], [y]) ∈ BG/B, then (x, y), (y, x) ∈ R ⊆ SG because

SG contains the identity relation of G. That is, (x, y) ∈ BG i.e. [x] = [y].

Let us then show that R satisfies the three properties of a simulation:

- It is clear that (xG, xG) ∈ R because (xG, xG) ∈ SG (the maximal simulation

of G) and ([xG], [xG]) ∈ SG/B (the maximal simulation of G/B).

- Let (x, y) ∈ R and x
a−→ x′ be a transition of G. By definition of R, let z

be a state of G such that (x, z) ∈ SG and ([z], [y]) ∈ SG/B. From the fact

2.4. MINIMISATION AND DECISION PROCEDURE 39

that x
a−→ x′ is a transition of G and (x, z) ∈ SG, we obtain a transition

z
a−→ z′ of G for some z′ ∈ G such that (x′, z′) ∈ SG. Using the set ga(z

′, [z])

defined in the proof of the previous proposition and the fact that z ∈ [z], we

have a transition [z]
a−→ [m] of the quotient G/B for some maximal state m ∈

ga(z
′, [z]). Moreover, since z′ ∈ ga(z′, [z]), m can be chosen such that (z′,m) ∈

SG. Therefore, we have ([z], [y]) ∈ SG/B and [z]
a−→ [m] is a transition of

G/B. By definition of the simulation SG/B, there exists a state y′ ∈ G such

that [y]
a−→ [y′] and ([m], [y′]) ∈ SG/B. By definition of the transitions of

G/B, there exists y′′ ∈ [y′] such that y
a−→ y′′ is a transition of G. From

(z′,m) ∈ SG, ([m], [y′]) ∈ SG/B and [y′′] = [y′], we deduce that (z′, y′′) ∈ R.

Hence, by transitivity of SG and the fact that (x′, z′) ∈ SG, we have found a

state y′′ ∈ G such that y
a−→ y′′ is a transition of G and (x′, y′′) ∈ R.

- Let (x, y) ∈ R and x be a final state of G. Then there exists a state m ∈ G
such that (x,m) ∈ SG and ([m], [y]) ∈ SG/B. Since SG is a simulation, m is

also a final state of G and hence [m], and consequently [y], is a final state of

G/B.

Therefore, R is indeed a simulation. �

Example 2.4.4. The quotient of the automaton of Figure 2.6 by its simulation

equivalence is illustrated in Figure 2.7. Notice that the transition x1
a−→ x4 has

been “broken” in the quotient structure because there is no transition labelled

by a from x2 ∈ [x1] to any state in [x4] = {x4}. A different sort of quotient

based on an existential-existential rather than a universal-existential is described

in Bustan and Grumberg’s work [6]. That is, a transition [x]
a−→ [x′] holds in

G/B iff there exists a pair of states (x1, x
′
1) ∈ [x] × [x′] such that x1

a−→ x′1 is

a transition of G. In the existential-existential version, the resulting quotient

will have a transition [x1]
a−→ [x4]. However, both types of quotient result in

automata simulation equivalent to the original automaton. Hence, we use the

universal-existential because it has fewer transitions. �

We now develop the second step of our minimisation process. We define a

40 CHAPTER 2. CONTINUITY IN PROBABILISTIC KLEENE ALGEBRA

[x0]

d
��

e

[x1]

a

��
[x3]

b
��

c

[x4]

b}}
[x6]

Figure 2.7: The quotient of an automaton by simulation equivalence.

preorder on the set of transitions using the maximal simulation S of G. Given

two transitions of G, we define

x
a−→ y ≤G x′

a′−→ y′ iff x = x′ ∧ a = a′ ∧ (y, y′) ∈ S

In general ≤G is a preorder but we can check easily that it is a partial order iff

B = id . A minimal automaton is then designed to have transitions which are

pairwise incomparable.

Definition 2.4.5. G is minimal if ≤G is the discrete order (i.e. x
a−→ y ≤G

x′
a′−→ y′ implies x = x′ ∧ a = a′ ∧ y = y′) and BG = id.

By Proposition 2.4.2, we work with (ε-free) automata satisfying BG = id only.

Definition 2.4.6. We say that two automata (G,→G, xH , FG) and (H,→H , xH , FH)

are isomorphic if there exists a bijection f : G→ H such that

1. f(xG) = xH ,

2. for all a ∈ Σ, a transition x
a−→G x

′ holds iff the transition f(x)
a−→H f(x′)

holds,

3. x ∈ FG iff f(x) ∈ FH .

2.4. MINIMISATION AND DECISION PROCEDURE 41

Proposition 2.4.7. If G,H are minimal accessible automata and G ∼= H, then

they are isomorphic.

Proof. We will show that the relation f = SGH ∩ SHG−1 ⊆ G × H is an iso-

morphism i.e. it is a bijective function from G to H such that both f and f−1

preserve the initial state, all transitions and every final states.

Let us firstly show that f is indeed a function by showing that f−1 is an injective

relation. Let (y, x) and (y, x′) be related by f−1 ⊆ H × G i.e. (x, y) and (x′, y)

are related by f . From the definition of f , (x, y) ∈ SGH and (x′, y) ∈ S−1
HG.

Therefore, (x, x′) and (x′, x) are elements of the composition SGHSHG ⊆ SG,

which implies that (x, x′) ∈ BG. Thus, x = x′ because BG = idG and f−1 is

injective. Symmetrically, we show that f is an injective function.

Secondly, let us show that f is a simulation, from which the totality of f follows

(because we restrict to ε-free accessible automata). It is clear that (xG, xF) ∈ f
and since f ⊆ SGH , f preserves final states. Let (x, y) ∈ f and x

a−→G x
′ for some

x′ ∈ G. We need to find a state y′ ∈ H such that y
a−→H y

′ and (x′, y′) ∈ f . On

the one hand, since f ⊆ SGH and SGH is a simulation, there is some y′ ∈ H such

that y
a−→H y

′ and (x′, y′) ∈ SGH . On the other hand, (y, x) ∈ SHG and y
a−→H y

′

implies that x
a−→G x

′′ and (y′, x′′) ∈ SHG for some x′′ ∈ G. Thus, (x′, x′′) ∈ SG
follows from (x′, y′) ∈ SGH and (y′, x′′) ∈ SHG. Therefore x

a−→G x
′ ≤G x

a−→G x
′′

and since G is reduced, x′ = x′′. Hence, we found a y′ ∈ H such that y
a−→H y

′,

(y′, x′) ∈ SHG and (x′, y′) ∈ SHG i.e. (x′, y′) ∈ f .

Symmetrically, we show that f−1 is a simulation and then total. Therefore, f

is a surjective function and we conclude that f is indeed an isomorphism. �

Notice that the isomorphism between two minimal automata is unique, if it

exists. In fact, if f, g are isomorphisms between the minimal automata G and

H then f ◦ g−1 is a bisimulation on H. Therefore it is necessarily the identity

function of H. Hence f = g.

42 CHAPTER 2. CONTINUITY IN PROBABILISTIC KLEENE ALGEBRA

2.4.2 Minimisation of automata modulo simulation

It now remains to transform each automaton into a minimal one. The min-

imisation algorithm we present here is an immediate application of the previous

results and is a translation of Bustan and Grumberg’s minimisation of Kripke

structures to accessible nondeterministic finite automata [6].

- input: an accessible automaton G.

- output: a minimal accessible automaton G′ simulation equivalent to G.

Step 1. Quotient by B, so that ≤G becomes a partial order:

This step follows from Proposition 2.4.2.

Step 2. Reduction of ≤G to make it trivial (flat ordering):

In this step, we remove any transition x
a−→G y

′ where x
a−→G y

′ ≤ x
a−→G y

for some state y such that (y, y′) /∈ SG.

Step 3. Elimination of unreachable non-terminating states:

This step consists of making the automaton obtained from 2 accessible as

required.

Theorem 2.4.8. Let G be an accessible automaton, a unique (up to isomorphism)

minimal automaton G′ can be constructed such that G ∼= G′.

Proof. We can assume that BG = id so it suffices to show that the application

of Steps 2 and 3 result in a minimal automaton simulation equivalent to G.

We reason step by step for Step 2, that is, we remove one by one each transition

ej which is strictly less than some other transition. Let Gj, for some j ∈ N, be the

transition system obtained by removing ej = xj
aj−→ yj, we prove that Gj

∼= G for

any j. Let xj
aj−→ zj be a maximal element of {e | ej <G e}. Consider the relation

idj ∪ {(yj, zj)} ⊆ G×Gj where

idj =

 idG if yj is accessible in Gj

idG\{yj} otherwise

2.4. MINIMISATION AND DECISION PROCEDURE 43

and since (yj, zj) ∈ SG, it generates a simulation Sj from G to Gj. That is,

idj ∪ {(yj, zj)} is a subset of a simulation which yields G � Gj.

On the other hand, the injection of Gj in G is a simulation (Gj is just a subgraph

of G), so G ∼= Gj.

Now, we notice that if e <G e
′ in Gj, then e <G e

′ in G. So we apply the above

construction again on Gj. That is, we choose a transition ek such that ek <G e
′ for

some transition e′ of G and remove it to obtain an automaton Gjk. The removal

of ek from Gj is associated with a simulation Sjk ⊆ Gj × Gjk. Therefore we

can iteratively construct a sequence of transition systems G1, G12, G123, Since

there are only finitely many such transitions, say r, we consider the range G′ of

the composition of simulations S1S12S123 · · ·S1...r which is a sub-structure of G.

The transition system G′ is of course an accessible automaton (by definition of

simulation). It is minimal since its transitions are pairwise incomparable by ≤′G,

and G ∼= G′. �

2.4.3 Decision procedure

Deciding the existence of a simulation between two automata G and H can

be achieved by computing the maximal simulation S of G + H using techniques

such as partition refinement [6, 25] and then checking that the restriction S ∩
G × H is indeed a simulation from G to H. Notice however that the size of the

automata G and H, and thus G+H, may be very big. Hence minimisation enables

the computation of the maximal simulation of G′ + H ′, the sum of the minimal

automata computed from G and H, which are usually considerably smaller.

The steps involved in a decision procedure for the equality u = v in contin-

uous probabilistic Kleene algebra are described as follows. Firstly, we convert

the terms u and v into the automata G(u) and G(v) using the correspondence of

Section 2.2.5 or Cohen’s variation of Brzozowski derivatives [10] (which is more

efficient because no ε-elimination is needed). Secondly, the automata G(u) and

G(v) are minimised to G(u)′ and G(v)′ using the construction of Section 2.4.

This step will reduce the size of the automata considerably as it will factor simu-

44 CHAPTER 2. CONTINUITY IN PROBABILISTIC KLEENE ALGEBRA

lation equivalent states as well as remove “redundant” transitions and inaccessible

states. Lastly, it suffices to check the existence or absence of an isomorphism be-

tween the minimal accessible automata G(u)′ and G(v)′. The construction of

the isomorphism f in the proof of Proposition 2.4.7 can be used to achieve this

step. In fact, computing the maximal simulation SG(v)′G(u)′ (resp. SG(u)′G(v)′)

amounts to finding the maximal simulation S of G(v)′+G(u)′ and observing that

SG(v)′G(u)′ = S ∩ [G(v)′ × G(u)′] (resp. SG(u)′G(v)′ = S ∩ [G(u)′ × G(v)′]). Hence,

it remains to check if f = SG(u)′G(v)′ ∩ SG(v)′G(u)′ is indeed an isomorphism. If it

is, then the equation u = v is provable in continuous probabilistic Kleene algebra.

Otherwise, u = v is not provable and a counter-example is given by the automata

G(u) and G(v).

For the details about the time and space complexity of the implementation of

these procedures, we refer the reader to the related works on Kripke structures [6,

25].

2.5 Discussion

The main result of this chapter is the Completeness Theorem 2.3.5 which

uses the fundamental properties and consequences of the continuity of sequential

composition. Notice that other axiomatisations of simulation order exist in the

literature. Frendrup and Jensen [19] have given an alternative complete set of

axioms using the recursive version of equational implication

o(X) = 0 ∧ Y ≤ 1 +X · Y ⇒ Y ≤ X∗ (2.18)

where o is the 0, 1-valued endomorphism defined in Section 2.2.5. However, the

use of the condition o(X) = 0 is equivalent to Salomaa’s notion of “X does not

have the empty word property”. Together with the left induction (2.13), the

implication (2.18) ensures that the function f(Y) = 1 +X · Y has a unique fixed

point, namely X∗, when o(X) = 0. Hence, the characterisation presented in this

2.5. DISCUSSION 45

thesis rather uses the continuity condition to obtain a well-behaved Kleene star.

Chapter 3

Event Structures and Concurrent

Kleene Algebra

This chapter provides a review of concurrent Kleene algebra (CKA) that will

handle the concurrency in our proposed probabilistic concurrent extension. The

soundness of concurrent Kleene algebra with respect to an event structure model

and a detailed study of that model are provided from Section 3.3. In particular,

we develop a new concept called finisher, which formalises the intuitive notion

of when an event has terminated. We then show that every labelled partially

ordered set representing a possible run of an event structure can be obtained from

a scheduler and finisher.

3.1 Concurrent Kleene algebra

Concurrent Kleene algebra was introduced in [28] to provide an algebraic ap-

proach to the theory of concurrency. The algebra is an expansion of Gischer’s work

on concurrent semirings [23]. A concrete example of a concurrent semiring is the

set of regular languages endowed with a shuffle operation [22] and the usual union

(+) and concatenation (·). The shuffle product X‖Y of two regular languages X

47

48 CHAPTER 3. EVENT STRUCTURES AND CKA

and Y is formed of all possible interleavings of every pair of words from X and Y .

It was shown by Gischer that the shuffle operation possesses many natural proper-

ties such as commutativity (3.15), associativity (3.18), distributivity with respect

to (+) (3.19) and the interchange law (3.20). The concurrent semiring structure

was extended by Hoare et al. to account for the Kleene star operation [28].

Definition 3.1.1 ([28]). A concurrent Kleene algebra is an algebraic structure

(K,+, ·, ‖, ∗, 0, 1) such that (K,+, ·, ∗, 0, 1) is a Kleene algebra (i.e. satisfies all

axioms in Table 3.1) and where all equations from Table 3.2 hold.

All the axioms of concurrent Kleene algebra are standard except, perhaps, for

the interchange law (3.20). The essence of this axiom can be explained in terms

of concretely using the regular languages with shuffle operation outlined before.

In the expression (X‖Y) · (X ′‖Y ′), the position of the operation (·) induces a

sequential ordering between words from X and Y ′, i.e. they are only concatenated

but not shuffled. However, the expression (X ·X ′)‖(Y ·Y ′) allows words fromX and

Y ′ to be shuffled. Hence, the inequality says that all words from (X‖Y) · (X ′‖Y ′)
are present in (X ·X ′)‖(Y ·Y ′). This can be seen as Gischer’s subsumption property

that highlights the implementation of concurrency with a partially interleaved

behaviour.

A particularly important example of concurrent Kleene algebra is given by a

concurrent quantale [28]. A quantale is an idempotent semiring which is a com-

plete lattice under the natural order X ≤ Y iff X+Y = Y and the multiplication

distributes over arbitrary infima and suprema. In particular, a quantale satisfies

the distributivity law (2.15) which, recall from Chapter 2, is not valid in proba-

bilistic Kleene algebra. Hoare et al. [28] define a concurrent quantale as follows:

Definition 3.1.2. A concurrent quantale is formed of a quantale (K, 0, 1,+, ·)
and a commutative quantale (K, 0, 1,+, ‖) linked by the interchange law (3.20).

In concurrent quantales, the continuity of sequential composition which follows

from the distributivity over arbitrary suprema ensures that the Kleene star X∗

can be defined as the least fixed point of the function f(Y) = 1 +X · Y .

3.1. CONCURRENT KLEENE ALGEBRA 49

X +X = X (3.1)

X + Y = Y +X (3.2)

X + (Y + Z) = (X + Y) + Z (3.3)

X + 0 = X (3.4)

X · 1 = X (3.5)

1 ·X = X (3.6)

X · (Y · Z) = (X · Y) · Z (3.7)

0 ·X = 0 (3.8)

X · 0 = 0 (3.9)

(X + Y) · Z = X · Z + Y · Z (3.10)

X · Y +X · Z = X · (Y + Z) (3.11)

X∗ = 1 +X ·X∗ (3.12)

X · Y ≤ Y ⇒ X∗ · Y ≤ Y (3.13)

Y ·X ≤ Y ⇒ Y ·X∗ ≤ Y (3.14)

Table 3.1: Kozen’s axioms for Kleene algebras

X‖Y = Y ‖X (3.15)
1‖X = X (3.16)
0‖X = 0 (3.17)

X‖(Y ‖Z) = (X‖Y)‖Z (3.18)
X‖Y +X‖Z = X‖(Y + Z) (3.19)

(X‖Y) · (X ′‖Y ′) ≤ (X ·X ′)‖(Y · Y ′) (3.20)

Table 3.2: Basic axioms for ‖ making (K,+, ‖, 0, 1) an idempotent commutative
semiring and the interchange law (3.20) which links it to the original Kleene
algebra.

50 CHAPTER 3. EVENT STRUCTURES AND CKA

3.2 Bundle event structures

In this section, we construct a new mathematical model that satisfies the

axioms of concurrent Kleene algebra. More precisely, the model will be composed

of bundle event structures and will form a concurrent quantale.

The event structure semantics of concurrent systems were introduced in Winskel’s

thesis to obtain a truly concurrent abstraction of parallel execution without en-

forcing one particular interleaving [87]. It was later refined and extended by

various authors [33, 83, 84, 85, 88], in particular by Langerak [44], to obtain the

so-called bundle event structures, which offer a rich framework for the interpre-

tation of concurrent programs without the limited expressiveness of prime event

structures. Unlike the interleaving semantics where behaviours are specified by

totally ordered sequence of actions, event structures are considered modulo par-

tially ordered sets of events which reflects the causal dependencies between events

as well as concurrent executions.

3.2.1 Basic definitions

The fundamental objects in event structures are the events. The following

definitions extend Langerak’s original operations on bundle event structure [44]

with final events. The set of final events is mainly used to define the sequential

composition as in the case of automata (Chapter 2 Section 2.2).

Definition 3.2.1. A bundle event structure (BES) E is a tuple (E,#, 7→, λ,Φ),

such that E is a set of events, the conflict relation # ⊆ E × E is an irreflexive

and symmetric binary relation, 7→⊆ P(E)× E is called a bundle relation where

∀x ⊆ E ∀e ∈ E : x 7→ e⇒ x#x, (3.21)

where x#x holds iff for every e, e′ ∈ x such that e 6= e′, we have e#e′. The map

λ : E → Σ is a labelling (partial) function and Φ ⊆ E is a set of events such that

Φ#Φ. Elements of Φ are called final events and P(E) is the powerset of E.

3.2. BUNDLE EVENT STRUCTURES 51

The conflict relation # contains pairs of events that cannot occur simulta-

neously in a consistent behaviour of a system. That is, if e#e′ holds and e has

occurred, then e′ has not happened nor will it ever occur at any time in the future.

Conflicts then need to be resolved. The bundle relation 7→ specifies the causal

dependency between events. If x 7→ e holds, then at least one event from x has

occurred before e can happen. In fact, Property 3.21 ensures that exactly one

event from x needs to have happened before the event e. The function λ labels

events with actions that are executed with the occurrence of the event. Lastly, fi-

nal events usually mark the boundary between two sequentially composed bundle

event structures. That is, in the composition E · E ′ (Definition 3.3.2), all events

of E ′ are causally dependent on all final events of E . The set of labels or actions

Σ is fixed and the collection of all bundle event structures is denoted by BES.

Example 3.2.2. Let us assume a register that can hold a single bit and has an

initial value 0. Let us denote by w:b and r:b the respective action of writing and

reading a bit b ∈ {0, 1} on the register. In the event structure

({ew, er}, ∅, {{ew} 7→ er}, {(ew, w:1), (er, r:1)}, {er}),

the event that occurs when reading 1 cannot happen before 1 has been written to

the register. �

Let E be a BES and x ⊆ E be a set of events. We denote cfl(x) the set of

events of E that are in conflict with some event in x

cfl(x) = {e | ∃e′ ∈ x : e#e′}.

A set of events x ⊆ E is conflict-free if x ∩ cfl(x) = ∅. We will use widely the

set cfl(x) = x ∪ cfl(x) instead of cfl(x) to obtain a simplified presentation of

the results depending on the conflict relation. Given an event e ∈ E, we write

cfl(e) = cfl({e}). It follows immediately that cfl(x) = ∪e∈xcfl(e) (and similarly

for cfl).

52 CHAPTER 3. EVENT STRUCTURES AND CKA

3.2.2 Trace, configuration and lposet

The semantics of bundle event structures can be expressed using three equiva-

lent techniques, namely: event traces, configurations and labelled partially ordered

sets (lposet) [44].

Definition 3.2.3 ([44]). A (finite) sequence of events e1e2 · · · en from E is called

an event trace if for every i ≥ 1 and every bundle relation y 7→ ei, there exists

j < i such that ej ∈ y and ei /∈ cfl({e1, . . . , ei−1}). The set of all traces of E is

denoted by T (E).

Given a trace α = e1e2 · · · en, we write ≤α the order such that e1 ≤α e2 ≤α
e3 · · · en−1 ≤α en. A configuration is obtained by forgetting the order of a trace.

Definition 3.2.4 ([44]). A configuration is a subset x ⊆ E such that x =

{e1, . . . , en} for some event trace e1 · · · en referred to as a linearisation of x. The

set of all configurations of E is denoted by C(E).

Example 3.2.5. Assume again the register and the read and write operations

defined in example 3.2.2. Consider the bundle event structure E defined by

({ew, e′w, er, e′r, e},#, 7→, {(e′w, w:0)(ew, w:1), (er, r:1), (e′r, r:1)}, {e, e′w})

where the bundles {ew} 7→ er, {ew} 7→ e′r, {er} 7→ e, {e′r} 7→ e and the conflicts

ew#e′w and e′w#e hold. The reading of 1 associated to the events er, e
′
r can occur

concurrently (or even simultaneously if the hardware allows it). The configurations

of E are ∅,{ew}, {ew, er}, {ew, e′r}, {ew, er, e′r} and {ew, er, e′r, e}. Every trace that

contains both er and e′r will interleave the readings. The bundle event structure

E specifies a (concurrent) program that writes once on the register and will read

the value after writing 1. Notice that the final event e is unlabelled. �

A labelled partially ordered set (lposet) is constructed from a configuration

by recovering a minimal order on events. More precisely, an lposet is a tuple

(x,≤, λ) such that ≤ is a partial order on x and λ : x → Σ is a labelling of

3.3. SOUNDESS OF CONCURRENT KLEENE ALGEBRA 53

events in x. Recall, from order theory, that a partial order is the intersection of

its linearisations. If x is a configuration of a bundle event structure E , then the

lposet generated by x is defined by (x,≤, λ), such that

≤ =
⋂

α linearisation of x

≤α

and λ is the restriction of the labelling function of E to x. We refer to this

order as the canonical order of x and we usually identify a configuration with the

associated lposet. The set of lposets of E is denoted by L(E).

Unlabelled events of a lposet u = (x,≤, λ) can be removed to obtain the

sub-lposet û = (x̂,≤x̂, λx̂), such that x̂ = {e ∈ x | λ(e) is defined} and where

≤x̂ and λx̂ are the respective restrictions of ≤ and λ to the set x̂. A lposet

u = (x,≤x, λx) implements another lposet v = (y,≤y, λy) if there exists a label-

preserving monotonic bijection f : ŷ → x̂. If u implements v then we write u vs v
or simply x vs y if no confusion arises (s stands for subsumption [23]). Two

lposets u, v are s-equivalent if u vs v and v vs u. For finite lposets, which we

assume unless otherwise specified, s-equivalence is the same as isomorphism. Two

lposets (x,≤x, λx) and (y,≤y, λy) are isomorphic if there exists a label preserving

bijective function f : x→ y such that f and f−1 are monotonic.

3.3 Soundess of concurrent Kleene algebra

In this section, we provide the operations and comparison of bundle event

structures based on partially ordered multisets (pomset) following the works of

Pratt [65] and Gischer [23]. The main difference is that primary objects are

composed of event structures rather than collections of pomsets.

3.3.1 Pomset language of a bundle event structure

A pomset is an isomorphism class of lposets, denoted by [u] for some lposet

u. The pomset language of a bundle event structure E is obtained by taking all

54 CHAPTER 3. EVENT STRUCTURES AND CKA

pomsets that implement some lposet in L(E), that is,

P(E) = {[û] | ∃v ∈ L(E) : u vs v} (3.22)

Notice that the language P(E) is down closed. It is then clear that the pomset-

language of E is included in that of F iff for every u ∈ L(E) there exists v ∈ L(F)

such that u vs v.

3.3.2 Operations on BES

We now provide the definition of the operations and constants of concurrent

Kleene algebra on the set of bundle event structures. The constant 0 corresponds

to an special object defined such that 0 + E = E , 0‖E = 0 and 0 · E = E · 0 = 0

for every BES E (we convene that P(0) = ∅). The constant 1 is interpreted as

({e}, ∅, ∅, ∅, {e}) (thus P(1) = {∅}). For each a ∈ Σ, a basic bundle event struc-

ture ({e}, ∅, ∅, {(e, a)}, {e}), which we usually denote again by a, is constructed.

We fix E = (E,#E , 7→E , λE ,ΦE) and F = (F,#F , 7→F , λF ,ΦF), such that their

sets of events are disjoint. We define, in(E) = {e | @x ⊆ E : x 7→ e} the set of

initial events of E . The following operations are akin to the definitions given by

Langerak [44], where special care is taken for the newly introduced set of final

events.

Definition 3.3.1. The nondeterministic choice E + F is the disjoint union

(E ∪ F,#E+F , 7→E ∪ 7→F , λE ∪ λF ,ΦE ∪ΦF)

where #E+F = #E∪#F∪sym(in(E)×in(F)∪ΦE×ΦF) and sym is the symmetric

closure.

The construction of the nondeterministic choice between two bundle event

structures outlined by the above definition is conceptually different from the cor-

responding construction on automata (Chapter 2 Definition 2.2.1) where ε tran-

sitions have been introduced to separate the two operands. Rather than using

3.3. SOUNDNESS OF CKA 55

such a device, Definition 3.3.1 defines the set of initial events of E + F to be the

disjoint union in(E)∪ in(F). The general effects of both constructions are similar,

i.e., they both force a choice between the operands. However, the choice between

E and F here is resolved at exactly the same time as the occurrence of an event

from in(E + F).

Definition 3.3.2. The sequential composition E · F is defined by the BES

(E ∪ F,#E ∪#F , 7→E ∪ 7→F ∪{ΦE 7→ e | e ∈ in(F)}, λE ∪ λF ,ΦF).

We define the asynchronous concurrency operation as follows.

Definition 3.3.3. The concurrent composition E‖F is defined by the BES

(E ∪ F ∪ {e, f},#E ∪#F , 7→E‖F , λE ∪ λF , {f})

where e, f /∈ E ∪ F and

7→E‖F=7→E ∪ 7→F ∪{{e} 7→ e′ | e′ ∈ in(E) ∪ in(F)} ∪ {ΦE 7→ f,ΦF 7→ f}.

The fresh events e, f are unlabelled and are called delimiters. We assume that

(‖) has higher priority than (+) but lower priority than (·) when parsing expres-

sions involving multiple operations.

Example 3.3.4. The event structure of Example 3.2.5 is algebraically expressed

as w:0 +w:1 · (r:1‖r:1) up to a delimiting event (the initial event produced by (‖)).
�

3.3.3 Substructure of a bundle event structure

To compute the Kleene star of a given bundle event structure, we define the

sub-BES order E / F in Figure 3.1.

Proposition 3.3.5. (BES, /) is an ω-complete partially ordered set, that is, any

countable ascending chain has a least upper bound in BES.

56 CHAPTER 3. EVENT STRUCTURES AND CKA

E ⊆ F (3.23)

#E = #F ∩ (E × E) (3.24)

7→E ⊆7→F (3.25)

x 7→F e ∧ e ∈ E ⇒x ⊆ E ∧ x 7→E e (3.26)

λE = λF |E (3.27)

ΦE = ΦF ∩ E (3.28)

Figure 3.1: Definition of sub-BES relation E / F .

a0 / a0 # b0_

��
a1

/ a0 # b0_

��

�

��
a1 # b1

��
a2

An arrow 7→ denotes a bundle relation and # is the conflict relation. The events
ai are labelled by a while the bis are labelled by b.

Figure 3.2: The first three terms in the construction of b ∗ a.

Proof. The proof that / is a partial order amounts to checking reflexivity,

antisymmetry and transitivity which is clear. As for ω-completeness, given a

countable increasing sequence of BES E0 / E1 / E2 / · · · , we construct a BES

E = (∪iEi,∪i#i,∪i 7→i,∪iλi,∪Φi). It follows from standard set theory that E is

indeed the least upper bound with respect to / of the countable sequence (Ei)i. �

Definition 3.3.6. Let E ,F be two BES. The Kleene product of E by F , denoted

by E ∗ F , is the limit of the /-increasing (countable) sequence of BES

F / F + E · F / F + E · (F + E · F) / · · ·

where adequate events renaming is needed to ensure that the bundle event struc-

tures in sequence are syntactically similar (see Figure 3.2 for a concrete example).

Equivalently, E ∗ F is the least fixed point of λX.F + E ·X in (BES, /). The

3.3. SOUNDNESS OF CKA 57

Kleene star of E is then defined by E∗ = E ∗ 1. For convenience, we denote

each component of the above sequence by E ∗≤0 F = F , E ∗≤1 F = F + E · F ,

E ∗≤2 F = F + E · (F + E · F),. . . . The following proposition ensures that these

operations are well defined.

3.3.4 A soundness result

This section shows that the set of bundle event structure endowed with the

previous operations is indeed a model of concurrent Kleene algebra. Firstly, we

show that the operations (+, ·, ‖, ∗) are well defined. We only show that the set

of final events Φ contains mutually conflicting events as required.

Proposition 3.3.7. Let E ,F be BES. Then for every ◦ ∈ {+, ·, ‖, ∗} ΦE◦F#ΦE◦F .

Proof. We have ΦE+F = ΦE ∪ ΦF and since ΦE × ΦF ⊆ #E+F , it follows

that ΦE+F#E+FΦE+F . The result is clear for the case of E · F and E‖F because

ΦE·F = ΦF and ΦE‖F = {f} where f is the fresh final event in the construction

of E‖F . For the Kleene star, we have ΦE∗F = ∪iΦE∗≤iF (increasing union).

Therefore, for every pair of events (e, e′) ∈ ΦE∗≤iF × ΦE∗≤jF , e and e′ are in

conflict with respect to the conflict relation of E ∗≤max(i,j) F . �

We end this section by observing that (BES,+, ·, ‖, 0, 1) is a concurrent quan-

tale where the operation ◦ ∈ {·, ‖} was defined so that E ◦ 0 = 0 ◦ E = 0. The

following proposition essentially follows from Gischer’s results [23]. In fact, Gis-

cher proves that the axioms of concurrent Kleene algebra without the Kleene star

completely axiomatise the pomset-language equivalence.

Proposition 3.3.8. For each ◦ ∈ {·, ‖}, the structure (BES,+, ◦, 0, 1) is a quan-

tale under the pomset language equivalence.

Proof. The Axioms (3.1-3.11) and (3.15-3.19) of Tables 3.1 and 3.2, outlining the

semiring structures, were proven by Gischer [23] for the pomset language and his

proofs can be translated to bundle event structures in a straightforward manner.

Similarly for the interchange law (3.20).

58 CHAPTER 3. EVENT STRUCTURES AND CKA

Existence of arbitrary suprema (resp. infinima) is obtained by constructing a

bundle event structure ∪iEi whose pomset language is the union (resp. intersec-

tion) of the languages of the family Ei. A straightforward way is to create disjoint

lposets for each distinct maximal pomsets. The bundle relation is then obtained

from the order of the lposet and two events belonging to two different lposets are

in conflict. To obtain a proper set of final events, we can append a fresh maximal

unlabelled event for each of the lposets constructed. These fresh events are in

conflict with each other.

The proof of the distribution of (·) and (‖) through (+) follows a standard

construction from set theory. Let us show it for the case of F · ∪iEi and ∪i(F ·
Ei); the other cases are proven in similar ways. It follows from the definition of

sequential composition that if u′ ∈ P(F · ∪iEi) (the pomset language of F · ∪iEi),
then u′ = u · v (that is, all events in u precede every event of v) for some finite

maximal lposet u ∈ P(F) and v ∈ P(∪iEi). But P(∪iE) = ∪i(P(Ei)), so there

exists i such that v ∈ P(Ei). Hence, P(F · ∪iEi) ⊆ ∪iP(F · Ei) and the other

inclusion is shown similarly. �

Corollary 3.3.9. The structure (BES,+, ·, ‖, ∗, 0, 1) modulo the pomset-language

equivalence is a concurrent Kleene algebra, where E∗ = E ∗ 1.

The interchange law (3.20) is ensured by the subsumption property in the def-

inition of the pomset-language (Equation 3.22).

3.4 Schedulers and finishers on bundle event structures

In this section, we provide a novel technique to express the lposet semantics of

a bundle event structure. We show how every finite (subsumed) lposet of a bundle

event structure (i.e. every member of the set ↓L defined below) is computed by a

particular scheduler and finisher.

Given a set of lposets L, we define ↓L = {u | ∃v ∈ L : u vs v} as the set of all

lposets subsumed by some element of L. Down-closure is a main property for ob-

taining the interchange law (3.20). As a consequence, the inclusion ↓L(E) ⊆↓L(F)

3.4. SCHEDULERS AND FINISHERS ON BES 59

means that E implements F with partially interleaved behaviours. Throughout

this section, E is a fixed bundle event structure whose set of finite lposets (resp.

event traces and configurations) is denoted by L (resp. T and C).

3.4.1 Prefix of an lposet

Similar to the case of traces, we can define a prefixing on lposets which is

analogous to the sub-bundle event structure relation of Figure 3.1.

Definition 3.4.1. We say that (x,≤, λ) is a prefix of (y,≤′, λ′), written (x,≤
, λ) E (y,≤′, λ′), if x ⊆ y and λ = λ′ ∩ (x× Σ) and

e ≤′ e′ ∧ e′ ∈ x⇒ e ∈ x ∧ e ≤ e′. (3.29)

The first two conditions in Definition 3.4.1 say that a prefix u of v is a restriction

of v. The third property ensures that no new causal dependencies are introduced

in u when it “evolves” into v (i.e. u E v).

Proposition 3.4.4 stated below shows that prefixing entails configuration in-

clusion when restricted to configurations endowed with their respective canonical

orders. Consequently, the lposets (with the canonical order) associated to two

configurations x, y are comparable iff x and y are comparable with respect to set

inclusion. Let us first prove two technical lemmas.

Given a trace α ∈ T , we write α for the set of events occurring in α.

Lemma 3.4.2. Let α ∈ T and x ∈ C such that x ⊆ ᾱ, then the restriction α|x of

α to events in x is an event trace.

Proof. Let α = e1e2 · · · en, x ∈ C and write α|x = ei1ei2 · · · eim . Let us show that

α|x is an event trace of E . Let eik ∈ x and z 7→ eik be a bundle of E . Since α

is an event trace, there exists an event ej such that ej ∈ z and j < ik. Since x

is a configuration and eik ∈ x, there exists eil ∈ z and l < k. By definition, the

bundle set z contains mutually conflicting events only and since α is conflict free,

eil = ej. That is, z ∩ {ei1 , . . . , eik−1
} 6= ∅ for every bundle z 7→ eik . Hence, α|x is

60 CHAPTER 3. EVENT STRUCTURES AND CKA

an event trace because it is conflict free. �

Lemma 3.4.3. Let x, y ∈ C such that x ⊆ y. For every event trace α such that

α = x, there exists an event trace α′ satisfying α′ = y and α′|x = α.

Proof. Let α, β be any event traces such that α = x, β = y and x ⊆ y. Let β′

be the concatenation of two sequences β1β2, where events in β1 are exactly those

of x ordered with ≤β and β2 is composed of events from y \ x ordered again with

≤β. We now show that the concatenation α′ = αβ2 is an event trace. That α′

is conflict-free comes from the configuration y. To show the second property of

an event trace, we need to show that every bundle pointing to an event e2 in β2

has to intersect α ∪ β2 at an event occurring before e2 with respect to the order

≤β. That is clear because β is an event trace (notice that if z 7→ e2 holds, it is

possible that the sole event in z∩β belongs to α). Moreover, it is enough to show

the property for events in β2 only because α is already an event trace. Hence α′

is an event trace and α′|x = α. �

With the aid of these two lemmas, we now prove the aimed characterisation of

prefixing with configuration inclusion.

Proposition 3.4.4. If x, y ∈ C and x ⊆ y, then (x,≤x, λx) E (y,≤y, λy) where

≤x and ≤y are the respective canonical orders of x and y.

Proof. Let x ⊆ y. Let us first show that ≤x=≤y ∩(x × x). Let e, e′ ∈ x such

that e ≤x e′. Lemma 3.4.2 implies that e ≤y e′ because every event trace for y

restricts to an event trace for x. For the converse inclusion, let e, e′ ∈ x such that

e ≤y e′. Lemma 3.4.3 implies that every event trace for x can be obtained as a

restriction of some event trace for y. Hence, e ≤x e′. Therefore ≤x=≤y ∩(x× x).

It remains to show that Property (3.29) holds. Let e, e′ ∈ y, e ≤y e′ and

e′ ∈ x. It now suffices to show that e ∈ x because once that is established, we

use ≤x=≤y ∩(x × x) to deduce that e ≤x e′. For a contradiction, assume that

e /∈ x. Then there exists an event trace β′ = β1β2 as specified in the proof of

Lemma 3.4.3, that is, β′ = y, β1 = x and e ∈ β2. Therefore, e �β′ e
′, which

contradicts the fact that e ≤y e′. �

3.4. SCHEDULERS AND FINISHERS ON BES 61

3.4.2 Scheduling and finishing events in BES

The notion of scheduler is a standard technique in theoretical studies as well as

the practical implementation of software. It is particularly useful when generating

averaged, worst-case, best-case or other specific behaviours.

In this thesis, a scheduler is used to generate a particular configuration from

a given bundle event structure. In contrast to the interleaving concept, where

generated behaviours are totally ordered execution traces, we assume that when

an event is scheduled, then the action associated with it is ready to run (or has

partially run) but has not necessarily terminated. Therefore, we introduce the

dual notion of finisher to account for terminated events.

Definition 3.4.5. A scheduler on the BES E is a map σ : ↓L → P(E) such that

for every u = (x,≤, λ) ∈ ↓L, we have:

- σ(u) ∩ x = ∅, and

- σ[u] = (x ∪ σ(u),≤ ∪ ≤x∪σ(u), λx∪σ(u)) is in ↓L

where ≤x∪σ(u) is the canonical order associated to the configuration x ∪ σ(u) ∈ C
and λx∪σ(u) is the restriction of λE to x ∪ σ(u).

Iterating from the empty lposet, a scheduler σ generates a (countable) sequence

of (finite) lposets ∅ E σ[∅] E σ[σ[∅]] E · · · .
A finisher is a way to determine when events have terminated. A finisher can

only say that an event has finished if it started sometime in the past.

Definition 3.4.6. A finisher is a map ϕ :↓L → ↓L such that for every u, v ∈↓L,

we have:

- ϕ(u) E u, and

- ϕ is E-monotonic.

Intuitively, an lposet u can be thought of as a set of scheduled events ordered

by causal dependencies. The lposet ϕ(u) then captures the set of events in u

that have terminated (when the last event in u was scheduled). Therefore, all

62 CHAPTER 3. EVENT STRUCTURES AND CKA

events scheduled after this “point of time” will causally depend on the events in

ϕ(u). Monotonicity ensures that, as we schedule new events, we cannot unfinish

terminated events but can only finish the scheduled ones.

Observe that a special case of finisher is the identity function on ↓L. Intuitively,

this finisher ensures that every scheduled event will be finished “instantaneously”.

When the identity is used with a scheduler that schedules one event at a time,

the resulting model reduces to an interleaving model of concurrency.

Example 3.4.7. Recall the bundle event structure

E = ({ew, e′w, er, e′r, e},#, 7→, {(e′w, w:0)(ew, w:1), (er, r:1), (e′r, r:1)}, {e, e′w})

outlined in the previous examples. We define a scheduler σ on E such that σ(∅) =

{ew}, σ({ew}) = {er}, σ({ew, er}) = {e′r} and σ({ew, er, e′r}) = ∅ where each set

in the argument of σ should be read as the lposet composed of the configuration

and its canonical order. This scheduler schedules er before e′r but that does not

mean that er will happen before e′r because that order is not enforced by the

bundle relation of E . A scheduled event should be thought of as “ready to happen

anytime from now”.

An example of a finisher on E is given by the map ϕ such that ϕ(∅) = ∅,
ϕ({ew}) = {ew},ϕ({e′w}) = {e′w}, ϕ({ew, er}) = {ew}, ϕ({ew, e′r}) = {ew},
ϕ({ew, er, e′r}) = {ew, er, e′r} and ϕ({ew, er, e′r, e}) = {ew, er, e′r, e}. Again, the

sets in the argument of ϕ and on the right hand side of the equality should be

read as the lposet composed of the configurations and their respective canonical

orders. This finisher specifies that er and e′r will only happen once both have been

scheduled. �

3.4.3 Generating lposets from schedulers and finishers

The dynamic of a bundle event structure is traced through the interaction

between a fixed pair of a scheduler and a finisher. The state of the bundle event

structure E is described by a tuple (u, v) ∈↓L2 such that v E u (↓L2 stands

3.4. SCHEDULERS AND FINISHERS ON BES 63

for (↓ L) × (↓ L)). Intuitively, u is the scheduled lposet while the carrier set

of v describes all “finished” events (the order in which these events occurred is

constrained by the order of v).

Example 3.4.8. By Proposition 3.4.4, the pair ({ew, e′r, er}, {ew}) is a state of

the bundle event structure E of Example 3.2.5 (both components of the pair are

lposets with the corresponding canonical orders). Intuitively, it says that the

events ew, er and e′r have been scheduled and ew has happened. �

In the remainder of this chapter, if u is a lposet, then we write set(u) for its

carrier. Let σ be a scheduler on E , we define σ :↓L2 →↓L2 such that σ(u, v) =

(u′, v) if

set(u′) = set(u) ∪ σ(u)

≤u′ = ≤u ∪ ≤set(u′) ∪ (set(v)× σ(u))

λu′ = λset(u′)

where u = (set(u),≤u, λu), u′ = (set(u′),≤u′ , λu′), ≤set(u′) is the canonical order

of the configuration set(u′) and λset(u′) is the restriction of the labelling function

of E to set(u′).

In other words, e ≤u′ e′ holds in the new lposet u′ if:

- either e and e′ have been scheduled (i.e. they belong to set(u)) and e ≤u e′,

- or e′ is a newly scheduled event and the order e ≤u′ e′ is enforced by the

transitive closure of the bundle relation of E (i.e. e ≤set(u′) e
′),

- or e has already happened (i.e. e ∈ set(v)) and e′ is newly scheduled after u.

In the sequel, we denote the lposet u′ in this construction by σ[u←v]. Notice that

if v E u then u E σ[u←v].

Similarly, every finisher ϕ generates a map ϕ :↓L2 →↓L2 such that ϕ(u, v) =

(u, ϕ(u)). It is clear from these definitions that if (u, v) is a state of E , i.e. v E u,

then σ(u, v) and ϕ(u, v) are also states of E . The following propositions and lemma

provide a “sanity check” for the scheduler-finisher definition. The prefix relation

E is applied to tuples in a component-wise manner.

64 CHAPTER 3. EVENT STRUCTURES AND CKA

Lemma 3.4.9. For every m,n ∈ N and (u, v) ∈↓L2, if n ≥ 1 then σm◦ϕn(u, v) =

σm ◦ ϕ(u, v)

Proof. ϕ is idempotent. �

Hence, computing the repeated application of σ and ϕ in the expression (u, v) E

(σm ◦ ϕn)k(u, v) is the same as computing (u, v) E (σm ◦ ϕ)k(u, v) when n ≥ 1.

Proposition 3.4.10. Given σ and ϕ, if v E ϕ(u) then

(u, v) E (σm ◦ ϕ)n(u, v)

for every m,n ∈ N and E is defined component-wise.

Proof. It suffices to show that (u, v) E σ(u, v), (u, v) E ϕ(u, v), (u, v) E (σ ◦
ϕ)(u, v) and (u, v) E (ϕ◦σ)(u, v). The result with arbitrary m and n then follows

by a double induction and the transitivity of E.

The first two cases are clear from the definition of σ and the hypothesis v E

ϕ(u). For the third case, we have

(u, v) E (σ[u←ϕ(u)], ϕ(u)) = σ(u, ϕ(u)) = σ ◦ ϕ(u, v)

and similarly for the last case. �

Proposition 3.4.11. For every (u, v) ∈↓L2 such that v E u, if v E ϕ(u) then

vnm E ϕ(unm) where (unm, v
n
m) = (σm ◦ ϕ)n(u, v) and m,n ∈ N.

Proof. The case m = n = 0 is clear because u0
0 = u, v0

0 = v and v E ϕ(u).

Now, assume that vlk E ϕ(ulk) holds for every k ≤ m and and l ≤ n. We need

to show that vn+1
m E ϕ(un+1

m) and vnm+1 E ϕ(unm+1). For the first case, we have

(σm ◦ ϕ)n+1(u, v) = (σ ◦ ϕ)(unm, v
n
m) = (σ[unm←vnm], ϕ(unm)).

Since unm E σ[unm←vnm] (because vnm E unm follows from the induction hypothesis

3.4. SCHEDULERS AND FINISHERS ON BES 65

vnm E ϕ(unm)) and ϕ is monotonic, we obtain

vn+1
m = ϕ(unm) E ϕ(σ[unm←vnm]) = ϕ(un+1

m).

For the second case, we have

(σm+1 ◦ ϕ)n(u, v) = σm+1 ◦ ϕ(un−1
m+1, v

n−1
m+1) = σm+1(un−1

m+1, ϕ(un−1
m+1)).

Notice that σm+1 acts only on the first component un−1
m+1 and since ϕ(un−1

m−1) E

un−1
m−1, it follows that

un−1
m−1 E σ[un−1

m−1←ϕ(un−1
m−1)] E w

where w = σ[σ[. . . σ[un−1
m−1←ϕ(un−1

m−1)]←ϕ(un−1
m−1)]←ϕ(un−1

m−1)]. The second inequal-

ity can be shown easily by induction. Hence, we deduce

vnm+1 = ϕ(un−1
m−1) E ϕ(w) = ϕ(unm+1)

from the monotonicity of ϕ. �

The above proposition says that the property v E ϕ(u) is an invariant for every

state (u, v) generated from schedulers and finishers. In particular, if v was finished

when u was scheduled then v remains finished after any subsequent scheduling and

finishing applied to E from u.

We now define the resolution of E with respect to σ ◦ ϕ.

Definition 3.4.12. Given a finisher ϕ and scheduler σ, the resolution of E with

σ◦ϕ is the directed graph whose nodes are states of E and whose edges are specified

by the set {((u, v), σ ◦ ϕ(u, v)) | (u, v) is a state of E}. The subgraph composed of

states that are reachable with a finite path from (∅, ∅) is denoted σ ◦ ϕ(E).

Example 3.4.13. Reconsider again the bundle event structure defined in Exam-

ple 3.2.5. The scheduler σ and finisher ϕ of Example 3.4.7 generate the resolution

illustrated in Figure 3.3 (a). The limit lposet will order the events as ew ≤ er and

66 CHAPTER 3. EVENT STRUCTURES AND CKA

(∅, ∅)

σ
��

({ew}, ∅)
ϕ

��
({ew}, {ew})

σ
��

({ew, er}, {ew})
ϕ

��
({ew, er}, {ew})

σ
��

({ew, er, e′r}, {ew})
ϕ

��
({ew, er, e′r}, {ew, er, e′r})

(a)

(∅, ∅)

σ
��

({ew}, ∅)
ϕ

��
({ew}, {ew})

σ
��

({ew, er}, {ew})
ϕ

��
({ew, er}, {ew, er})

σ
��

({ew, er, e′r}, {ew, er})
ϕ

��
({ew, er, e′r}, {ew, er, e′r})

(b)

For simplification, we only write the carrier set of the lposets involved in the
states. The ordering between events can be recovered from the bundle relation of
E and the interaction between the scheduler and the finisher.

Figure 3.3: Two examples of resolution σ ◦ ϕ(E) and σ ◦ id(E).

ew ≤ e′r, that is, the reading can happen concurrently. In contrast to that con-

current reading, Figure 3.3 (b) shows the resolution of E with the same scheduler

and the identity function as a finisher. It is clear from the diagram that when e′r

is scheduled, the events ew and er are already on the right hand side of the state.

Hence, e′r is forced to occur only after er has happened. The limit lposet will have

the order ew ≤ er ≤ e′r. �

A pair of scheduler/finisher σ ◦ ϕ generates an increasing sequence of states

(∅, ∅) E σ ◦ ϕ(∅, ∅) E · · · . If we denote by (u0, v0) E (u1, v1) E · · · the states

involved in that sequence, then we write lim(σ ◦ ϕ(E)) = (∪iui,∪ivi) where the

3.4. SCHEDULERS AND FINISHERS ON BES 67

union of two lposets is obtained by taking the union of the carrier sets, the union

of the orders relations and the union of the labelling functions. Each labelling

function λi of ui is usually the restriction of the labelling function of a given event

structure. Hence the union of the λi will again be a function. Moreover, since

the sequence is increasing, the union of the order relations will again be a partial

order on the union of the carrier sets.

Every pair of lposets that occurs in a resolution has a particular property which

is established by the following proposition:

Proposition 3.4.14. Let σ be a scheduler, ϕ a finisher on E and (u, v) a node of

σ ◦ ϕ(E). The implication

∀e, e′ ∈ set(u) : e ≤u e′ ⇒ e ≤set(u) e
′ ∨ e ∈ set(v) (3.30)

holds where ≤set(u) is the canonical order of the carrier set set(u) of u.

Proof. By induction on the reachability of (u, v). �

Proposition 3.4.14 states that every state in σ ◦ϕ(E) satisfies Property (3.30).

In fact, that condition is necessary and sufficient for a pair (u, v) satisfying v E u

to be a node in some resolution as the following theorem shows. In particular,

for every u ∈↓L, there exists a scheduler σ and a finisher ϕ such that (u, u) =

limσ ◦ ϕ(E).

Theorem 3.4.15. Let (u, v) ↓L2 such that v E u. If u and v satisfy Property 3.30,

then there exists a scheduler σ and a finisher ϕ such that (u, v) = lim(σ ◦ ϕ(E)).

Proof. We reason by induction on the size of set(u):

- the empty pair (∅, ∅) is obtained from the empty scheduler u 7→ ∅ and the

finisher id↓L.

- Let u be a finite lposet and v E u. Let e be a maximal event in the lposet

u = (x,≤, λ), therefore lposet u′ obtained by removing e from set(u) belongs

to ↓L. We denote by ↓e = ({e′ | e′ < e},≤e, λe) where ≤e is the restriction

68 CHAPTER 3. EVENT STRUCTURES AND CKA

of ≤ on the downclosed set of events and similarly for λe. The lposet v′ =

v ∩ ↓e (component-wise intersection) is again a lposet in ↓L and v′ E u′. By

induction hypothesis, there exists a scheduler σ′ and a finisher ϕ′ such that

(u′, v′) = lim(σ′ ◦ ϕ′(E)) and σ′(u′) = ∅. We construct a scheduler σ such

that σ(u′) = {e}, σ(u) = ∅ and it coincides with σ′ otherwise. As for the

finisher, we have ϕ(u) = v and it coincides with ϕ′ otherwise. Since the u′

and v′ are finite lposets, σ′ ◦ ϕ′ will generate a finite resolution that can be

extended to cover (u, v). In fact, we have

– set(σ[u′←v′]) = set(u′) ∪ {e} = set(u),

– ≤σ[u′←v′]= ≤u′ ∪ ≤set(u) ∪ set(v′) × {e} which coincides with the order

of u because of prefixing and if e′ ≤u e then e′ ≤u e or e′ ∈ v′ (Prop-

erty (3.30)).

– λσ[u′,v′] = λu = λset(u).

Since ϕ(u) = v, we deduce that (u, v) = lim(σ ◦ ϕ(E)). �

3.4.4 Full resolution of a bundle event structure

In the previous subsection, the interaction between a scheduler and a finisher

was sequential in the sense that scheduling always happens before finishing. In

general, these two processes can happen in any order (or even concurrently) and

the most important feature is that scheduled events causally depend on finished

events.

The goal of this subsection is to prove that the sequential resolution can be

used to generate all possible interaction between a scheduler and a finisher.

Definition 3.4.16. Given a finisher ϕ and a scheduler σ, the full resolution of E
with σ and ϕ is the directed graph

(↓L2, {((u, v), ϕ(u, v)), ((u, v), σ(u, v)) | (u, v) ∈↓L2}).

3.4. SCHEDULERS AND FINISHERS ON BES 69

The subgraph composed of nodes that are reachable with a finite path from (∅, ∅)
is denoted by σ‖ϕ(E) where self-loops (generated by ϕ) are removed.

We start by showing that σ‖ϕ(E) is a directed acyclic graph.

Proposition 3.4.17. σ‖ϕ(E) is acyclic.

Proof. Assume that σ‖ϕ(E) has a cycle that is not a self-loop. Since ϕ is

idempotent, that cycle needs to contain at least one application of σ. Moreover,

if there is such a cycle, then it contains a state (u, v) such that u is exactly the

same as the first component of the state obtained after a finite application of σ

and ϕ. But σ strictly increases the left lposet of an arbitrary pair, which makes

it impossible to find such a state (u, v). �

To prove the main result of this section, we need the following lemma.

Lemma 3.4.18. Let E be a BES, if f :↓L →↓L is a partial function defined on a

increasing sequence of lposet ∅ = u0 E u1 E · · · and satisfies the properties of a

finisher then there exists a finisher ϕ (i.e. totally defined) such that ϕ(ui) = f(ui)

for every i.

Proof. Let E be a BES and f be a function satisfying the hypothesis of the

lemma. We construct ϕ as follows

ϕ(u) =


f(ui) if there is a maximal i such that ui E u

u if ui E u for every i

∅ otherwise

Firstly, we show the prefixing property of finishers. Let u ∈↓L:

- If there exists a maximal i such that ui E u then ϕ(u) = f(ui) E ui E u.

- If ui E u for all i, then ϕ(u) = u E u.

- Otherwise, ϕ(u) = ∅ E u.

Secondly, we show that ϕ is monotonic. Let u E v.

70 CHAPTER 3. EVENT STRUCTURES AND CKA

- If there exists a maximal i such that ui E u, then ϕ(u) = f(ui). There are

three cases based on the value of ϕ(v).

- There exists a maximal j such that uj E v and ϕ(v) = f(uj). Since

u E v, maximality of j implies that ui E uj and hence ϕ(u) = f(ui) E

f(uj) = ϕ(v) by monotonicity of f .

- For all j, uj E v and therefore ϕ(u) = f(ui) E ui E v = ϕ(v).

- The empty case is impossible because ui E v.

- If ui E u for all i, then ui E v for all i because u E v. Hence ϕ(u) = u E

v = ϕ(v).

- Otherwise, ϕ(u) = ∅ E ϕ(v), whatever ϕ(v) is. �

Theorem 3.4.19. For every scheduler σ and finisher ϕ, there exists a (countable)

family of finishers ϕ0, ϕ1, . . . such that the full resolution σ‖ϕ(E) is the union of

the family of resolutions σ ◦ ϕ0(E), σ ◦ ϕ1(E),

Proof. Let σ and ϕ be some scheduler and finisher on a BES E . The full resolution

of σ‖ϕ(E) is depicted in Figure 3.4.

Given a path π in the dag of Figure 3.4, we generate a partial function fπ

such that f(u) = v iff (u, v) ∈ π. Therefore, fπ satisfies the first property of a

finisher because each node of the tree is a state of E and it is monotonic because

if (ui, vi), (uj, vj) ∈ π such that ui E uj, then there exist two indices ki, kj such

that f(ui) = ϕ(uki) and f(uj) = ϕ(ukj) and uki E ukj . Hence f(ui) E f(uj) and

it extends to a finisher ϕπ by the previous lemma. Since the dag can be recovered

from the union of all paths, we deduce that

σ‖ϕ(E) = ∪πσ ◦ ϕπ(E)

where π ranges over all paths in σ‖ϕ(E) (which is of course countable). �

Example 3.4.20. The full resolution of our running example using the scheduler

and finisher of Example 3.4.7 is depicted in Figure 3.5. �

3.4. SCHEDULERS AND FINISHERS ON BES 71

(∅, ∅)

σ

��
(u1, ∅)

**

ϕ

ss
(u1, ϕ(u1))

σ

��

(u1, ∅)

σ

��
(u12, ϕ(u1))

''

ϕ

ww

(u02, ∅)

%%

ϕ

xx
(u12, ϕ(u12))

σ

��

(u12, ϕ(u1))

σ

��

(u02, ϕ(u02))

σ

��

(u02, ∅))

σ

��
· · · · · · · · · · · ·

Figure 3.4: Full resolution where unlabelled arrows are added for unchanging
states.

(∅, ∅)

σ
��

({ew}, ∅)
ϕ

��

σ

uu
({ew, er}, ∅)

σ

tt
ϕ

��

({ew}, {ew})

σuu
({ew, er, e′r}, ∅)

ϕ

��

({ew, er}, {ew})

σ
��

({ew, er, e′r}, {ew, er, e′r}) ({ew, er, e′r}, {ew})
ϕoo

Figure 3.5: The full resolution of bundle event structure.

72 CHAPTER 3. EVENT STRUCTURES AND CKA

3.5 Discussion

The main contribution of this chapter is twofold. Firstly, it provides an alterna-

tive concrete model for Hoare et al.’s axiomatisation of concurrent Kleene algebra.

It should be noted that only a soundness result was given and the completeness of

such an axiomatisation is still an open question. The most comprehensive work

on this problem dates back to Gischer in his paper on the axiomatic characterisa-

tion of the subsumption theory of pomsets [23]. Note however that his result only

holds for the bi-semiring fragment of concurrent Kleene algebra i.e., without the

Kleene star. Indeed, continuity (in the style of Chapter 2) may be of tremendous

use for the general case but a complete axiomatisation in the style of Kozen, as

in standard Kleene algebra, is much more desirable.

Secondly, the notion of finisher developed in Section 3.4 is a novel idea in

its own right. Together with our definition of scheduler, it provides a complete

characterisation of the lposet semantics for bundle event structures. That is, it

provides an alternative view of the same computational model. Moreover, we have

shown in Theorem 3.4.19 that a limited form of interaction between schedulers

and finishers is enough. That is, all states involved in a full resolution σ‖ϕ(E) can

be locally studied within the resolutions σ ◦ ϕπ(E)) where π ranges on the set of

paths containing the observed state. Indeed, the limited interaction σ ◦ ϕ(E) was

used to establish that every (subsumed) lposet of ↓L is effectively computed from

a scheduler and a finisher.

The notion of finisher can be used to define properties such as “acceptable”

lposets. For instance, in our read/write examples, we can define a lposet u =

({ew, er}, {(ew, er)}, {(ew, w:1), (er, r:1)}) to be acceptable because the reading of 1

indeed occurs after the writing of 1. The lposets v = ({ew, er}, ∅, {(ew, w:1), (er, r:

1)}) and w = ({ew, er}, {(er, ew)}, {(ew, w:1), (er, r:1)}) are not acceptable. In the

first case, the reading is not guaranteed to happen after the writing. In the second

case, the writing and reading are achieved in the wrong order. Then a finisher can

be defined such that ϕ(u) = u, ϕ(v) = {ew} (endowed with the canonical order)

3.5. DISCUSSION 73

and ϕ(w) = ∅. Hence, a restricted class of schedulers and finishers can be used to

study specific properties of systems.

Finally, further and deeper explorations are needed to relate the concept of

scheduler/finisher to other mature techniques, such as interval logics. This will

however go beyond the original scope of the present thesis and we leave it for

future works.

Chapter 4

Probabilistic Concurrent Kleene

Algebra

In this chapter, we set out the algebraic foundation of probabilistic concur-

rent Kleene algebra, which combines probabilistic Kleene algebra and concurrent

Kleene algebra from Chapters 2 and 3. We start by outlining the axiomatisation

of the “combined algebra” in Section 4.1, whose soundness is proved with respect

to the set of probabilistic automata modulo forward simulation equivalence. Most

of the axioms are derived respectively from probabilistic and concurrent Kleene

algebra, where the properties captured by each individual axiom were motivated

and discussed in the previous respective chapters. The new piece that we add

is the probabilistic choice, which is shown to satisfy the usual properties such as

idempotence and quasi-associativity [15, 73, 77]. An important property of prob-

abilistic choice operation ⊕p is given by the Inequality 4.21 which intuitively says

that an early resolution of a probabilistic choice provides an over-specification to

a late resolution. This usually allows us to write a specification in the form of

good⊕pbad or good⊕p(good + bad), which provides a probabilistic bound on the

occurrence of a bad behaviour. Small examples will be provided to illustrate that

point as well as the general use of the algebra for the verification of action-based

75

76 CHAPTER 4. PROBABILISTIC CONCURRENT KLEENE ALGEBRA

X +X = X (4.1)

X + Y = Y +X (4.2)

X + (Y + Z) = (X + Y) + Z (4.3)

X + 0 = X (4.4)

X · 1 = X (4.5)

1 ·X = X (4.6)

X · (Y · Z) = (X · Y) · Z (4.7)

0 ·X = 0 (4.8)

(X + Y) · Z = X · Z + Y · Z (4.9)

X · Y +X · Z ≤ X · (Y + Z) (4.10)

X∗ = 1 +X ·X∗ (4.11)

X · Y ≤ Y ⇒ X∗ · Y ≤ Y (4.12)

X‖Y = Y ‖X (4.13)

X‖(Y ‖Z) = (X‖Y)‖Z (4.14)

(X‖Y) · (X ′‖Y ′) ≤ (X ·X ′)‖(Y · Y ′) (4.15)

X‖Y +X‖Z ≤ X‖(Y + Z) (4.16)

Figure 4.1: Axioms of weak concurrent probabilistic Kleene algebra.

probabilistic systems.

4.1 Axiomatisation of probabilistic concurrent Kleene al-

gebra

A concurrent Kleene algebra has four algebraic operations, namely, (+, ·, ‖)
and (∗). These operations were given a bundle event structure semantics in Sec-

tion 3.3 but the axiomatisation with respect to pomset equivalence does not allow

a successful manipulation of probability. In contrast, a probabilistic Kleene alge-

bra has the usual operations of Kleene algebra, namely, (+, ·, ∗) (c.f. Section 2.1)

where probabilities are treated implicitly. We provide a new probabilistic concur-

rent Kleene algebra that extends both structures. Without explicit probabilistic

choice, we refer to such a structure as a weak concurrent Kleene Algebra.

4.1. AXIOMATISATION OF PROBABILISTIC CONCURRENTKLEENE ALGEBRA77

Definition 4.1.1. A weak concurrent Kleene algebra is an algebraic structure

with signature (K,+, ·, ‖, ∗, 0, 1) where K is a set closed under the operations and

satisfies the axioms for Figure 4.1.

The equation 1‖X = X is not usually satisfied if X is an automaton which

contains actions that are synchronised by the CSP parallel composition. Similarly,

the right annihilator axiom X · 0 = 0 is left out because, in the automata model

of weak concurrent Kleene algebra, the entity 0 will capture deadlocks instead of

the abort of relational and logical interpretation. Finally, the distribution of ‖
through + also fails in the automata model(c.f. [15] Axiom L6).

To gain complete control over the quantitative information, we append explicit

probabilistic choices to weak concurrent Kleene algebras. That is, the choice

operation ⊕p satisfies the axioms shown in Figure 4.2.

X = X⊕pX (4.17)

X⊕pY = Y⊕1−pX (4.18)

X⊕p(Y⊕qZ) = (X⊕p′Y)⊕q′Z (4.19)

(X⊕pY) · Z = (X · Z)⊕p(Y · Z) (4.20)

X · (Y⊕pZ) ≤ (X · Y)⊕p(X · Z) (4.21)

X‖(Y⊕pZ) ≤ (X‖Y)⊕p(X‖Z) (4.22)

where p, q, p′, q′ ∈ [0, 1] such that q′ = pq and (1 − q′)p′ = (1 − q)p. We assume
the following precedence between the operations. The Kleene star ∗ binds more
tightly than · which binds more tightly than ‖. The operation ‖ binds more tightly
than + and ⊕p and we use parenthesis to parse expressions having + and ⊕p at
the same level.

Figure 4.2: Axioms for the probabilistic choice ⊕p.

Definition 4.1.2. A probabilistic concurrent Kleene algebra is a weak concurrent

Kleene algebra with a collection of probabilistic choices ⊕p, p ∈ [0, 1], satisfying

the axioms of Figure 4.2.

78 CHAPTER 4. PROBABILISTIC CONCURRENT KLEENE ALGEBRA

4.2 Operations on probabilistic automata

The standard constructions from automata theory have been generalised to

capture probabilistic behaviour. We summarise these constructions briefly in this

subsection.

4.2.1 Basic definitions

Probabilistic information is encoded as distributions over the set of states. A

transition in a (nondeterministic) probabilistic automaton starts from a source

state, executes an action from a given alphabet Σ and ends in a target distribu-

tion [73]. Such a distribution is then resolved into a probabilistic choice which

specifies the new state of the automaton. Given a countable set P , DP denotes

the set of probability distributions over P .

Definition 4.2.1. A probabilistic automaton is a tuple (P,→, µ0, FP) where

- P is a set of states,

- →: P × Σ× DP is a set of probabilistic transitions where,

- µ0 ∈ DP is the start or initial distribution of P ,

- and FP ⊆ P is a set of final states.

The set of labels or actions Σ is the same for all probabilistic automata we

consider. As in Chapter 2, we identify an automaton with its set of states and

explicit distinction will be made only when confusion could arise.

Definition 4.2.1 provides a specialised version of probabilistic automata. Gen-

erally, a transition is composed of a state and a distribution over Σ × P but we

restrict ourselves to automata with simple transitions (a subset of P ×Σ×DP) so

that the parallel composition of two automata is easily defined. Moreover, simple

probabilistic automata are expressive enough to model most practical applications.

We denote by PAut the set of simple probabilistic automata.

4.2. OPERATIONS ON PROBABILISTIC AUTOMATA 79

The set of actions Σ is divided into two parts, namely, internal and external

actions. Internal actions are either local or invisible and are usually intrinsic to

the automaton where they are defined. They are not shared with other automata

in the sense that they can be executed independently from the environment. A

special case is the silent action τ which does not belong to the set of internal

actions I and we write Iτ = I ∪ {τ}. The silent action τ is treated differently

from the ε label of Definition 2.2.1. The main difference is that τ usually carries

internal computation while ε is just a device to simplify the definition of the

regular operations on non-probabilistic automata. Moreover, ε could be removed

while preserving standard simulation equivalence but τ cannot usually be removed

without violating our definition of probabilistic automata.1

External actions are visible to the environment and may be synchronised. We

denote the set of external actions by E, and define Σ = I ∪ E and Στ = Iτ ∪ E.

The set Σ is assumed implicitly and is fixed for every automaton.

Example 4.2.2. Figure 4.3 depicts two probabilistic automata. The automaton

V on the left represents a faulty vending machine with a button called tea which

gets stuck with probability 0.2. The automaton U on the right represents the

behaviours of a user interacting with the vending machine by kicking it if he fails

to get his tea. Two kicks means the machine is broken.2

The states of the two automata are labelled by xi, yi respectively and distribu-

tions are not labelled unless they are initial and their components correspond to

dotted arrows labelled with the probability. The set of actions is

Σ = {coin, tea, kick, fail, stuck}

where stuck is the only internal action. Notice both automata have no final state

and a failure is tracked with occurrences of the action fail. �

The linear run of a probabilistic automaton yields a path, as in the standard

1For instance, the τs introduced by + in the expression (a⊕pb) + c cannot be removed unless a probabilistic
automata is defined to have more than a single initial distribution.

2This example was suggested by Steve Schneider [71].

80 CHAPTER 4. PROBABILISTIC CONCURRENT KLEENE ALGEBRA

x0

coin

��

0.2 0.8

x1

stuck

��

x2

tea

��
x3

kick

JJ

x4

y1

coin

��
y2

kick

~~

tea

y3

kick

��

tea
// y4

y5

fail

kk

Figure 4.3: A probabilistic vending machine V = coin·M and a user U = coin·U ′
who is kicking the machine if it gets stuck and expecting his tea after the first
kick.

case, which is quantified with respect to a family of probability measures. For-

mally,

Definition 4.2.3. A path is a sequence x0a1x1a2x2 · · · of alternating states and

actions such that there is a sequence of transitions xi
ai+1−→ µi+1, i ≥ 0, where

xi ∈ supp(µi) (the support of µi) for every i ≥ 0.

A path α always starts with a state and, if it is finite, ends with another state

denoted by last(α). Usually, we want a path to start from a state in the support

of the initial distribution. We denote Path(P) the set of all finite paths of the

automaton P .

4.2.2 Algebraic operations on probabilistic automata

This section revises and extends the definition of algebraic operations over

probabilistic automata. The standard operations of Section 2.2 are still valid up

to replacing each initial state x with the point distribution δx in the automata

0, 1, a, P + Q and P ∗ and using τ instead of ε. The reason we use τ instead of ε

is that, in this transition model, we assume that τ is actually doing some internal

computation, unlike the syntactic construct ε. Secondly, we cannot usually re-

move the τs in our definition of probabilistic automata. In the case of sequential

4.2. OPERATIONS ON PROBABILISTIC AUTOMATA 81

composition, the initial distribution of P becomes the initial distribution of P ·Q.

Therefore, we only give explicit definitions for the probabilistic choice ⊕p and the

framed parallel composition ‖A.

4.2.2.1 Probabilistic choice

The implementation of a probabilistic choice P⊕pQ between two automata is

obtained from the convex combination pµ0 + (1− p)ν0 of the initial distributions

µ0 of P and ν0 of Q.

Definition 4.2.4. Given two probabilistic automata P and Q, we define

P⊕pQ = (P ∪Q,→P ∪ →Q, pµ0 + (1− p)ν0, FP ∪ FQ).

4.2.2.2 Parallel composition

Let P and Q be two probabilistic automata. The parallel composition is

defined using a probabilistic version of CSP parallel composition operation that

synchronises the actions in some fixed A ⊆ E [14, 15, 76]. Given µ ∈ DP and

ν ∈ DQ, the product µ× ν is a distribution over P ×Q such that (µ× ν)(x, y) =

µ(x)ν(y).

Definition 4.2.5. We define the parallel composition of P and Q as

P‖AQ = (P ×Q,→P‖AQ, µ0 × ν0, FP × FQ)

where, for each a ∈ Στ , a transition (x, y)
a−→ µ× ν belongs to →P‖Q if one of

the following conditions holds:

- a ∈ A and x
a−→ µ and y

a−→ ν,

- a /∈ A and x
a−→ µ and ν = δy,

- a /∈ A and y
a−→ ν and µ = δx.

where δx is the point mass distribution centred at x i.e. δx(y) = 1 if x = y and

δx(y) = 0 otherwise.

82 CHAPTER 4. PROBABILISTIC CONCURRENT KLEENE ALGEBRA

Intuitively, transitions labelled with the same action from the frame set A are

synchronised while transitions labelled with actions from Στ \ A are interleaved.

Example 4.2.6. We can express the automata from Figure 4.3 using the alge-

braic language provided. The right hand side automaton of Figure 4.3 corresponds

to the algebraic expression

coin · (kick · (kick · fail∗ + tea) + tea)

where we have abused notation by denoting the automaton that does a single

action, say coin, and then terminates successfully with the same notation coin.

The left hand side is obtained as a sequential composition coin ·M where M

corresponds to the least fixed point of

f(X) = stuck · kick ·X · 0 ⊕0.8tea · 0.

We will compute the least fixed point of f algebraically in Section 4.4. �

4.3 Probabilistic forward simulation

In this section, we define an inequality ≤ on the set PAut as per the con-

structions of [14, 15, 45, 74]. The equivalence relation associated with ≤ is based

on weak forward simulation. We are mainly interested in the soundness of prob-

abilistic concurrent Kleene algebras with respect to this model.

We give two equivalent definitions of simulation. The first definition is based

on the probabilistic simulation of Deng et al. [15], while the second is Segala’s

probabilistic weak forward simulation [74]. The equivalence ensures that the re-

sults can be translated from one to the other. Both definitions of simulation rely

on the lifting of relations from states to distributions.

4.3. PROBABILISTIC FORWARD SIMULATION 83

4.3.1 Lifting from X × DY to DX × DY

Let X, Y be two (countable) sets.

Definition 4.3.1 ([15]). Given a relation S ⊆ X × DY , the lifting of S is a

relation S ⊆ DX × DY such that (µ, ν) ∈ S iff there exists a (countable) family

of real number {pi | i ∈ I} ⊆ [0, 1] such that
∑

i pi = 1 and

1. µ =
∑

i piδxi, for some family of xi ∈ X and

2. for each i ∈ I, there exists νi ∈ DY such that (xi, νi) ∈ S, and

3. ν =
∑

i piνi.

These sums are over the set I, which we leave implicit to simplify the notations.

Lifting is a probability preserving function that associates to each probabilistic

relation S a relation S over the set of distributions. It is important to notice that

the decomposition of µ is not necessarily canonical, that is, there may be some

repetition in the xi.

The most important properties of the lifting transformation is summarised by

the following proposition (the proof is given in [15]) where the sums run over a

fixed finite set of indices.

Proposition 4.3.2 ([15]). Let S ⊆ X × DY be a relation and
∑

i pi = 1. We

have

- if the tuple (µi, νi) is in S for all i, then (
∑

i piµi,
∑

i piνi) ∈ S,

- if (
∑

i piµi, ν) ∈ S then there exists a finite collection of distributions νi such

that (µi, νi) ∈ S and ν =
∑

i piνi.

Lifting also applies to labelled transitions because · a−→ · ⊆ P × DP for any

probabilistic automaton P and any action a ∈ Στ . Hence, we denote
a−→ the

lifting of this transition relation, which corresponds to the notion of combined tran-

sition [45,74]. That is, a family of transitions xi
a−→ µi induces a lifted transition∑

i piδxi
a−→
∑

i piµi.

84 CHAPTER 4. PROBABILISTIC CONCURRENT KLEENE ALGEBRA

We extend internal transitions with stuttering, that is, we write x
τ−→ µ if

such a transition exists in the automaton or µ = δx. Stuttering implies that

a simulation allows a sequence of τs to be executed in one automaton while

staying in the same state in the other. The lifted version is again denoted
τ−→ ⊆

DP × DP . Finally, weak transitions are obtained from the reflexive transitive

closure of
τ−→ , denoted =⇒ , and we write µ

a
=⇒ µ′ if there exist µ1, µ2 such that

µ =⇒ µ1
a−→ µ2 =⇒ µ′. We now give the formal definition of simulation by

straightforwardly generalising [15] to automata with final states.

Definition 4.3.3 ([15]). A probabilistic simulation S from P to Q is a relation

S ⊆ P × DQ satisfying the following properties:

1. there exists ν ′0 such that (µ0, ν
′
0) ∈ S and ν0 =⇒ ν ′0,

2. if x
a−→ µ′ is a valid transition of P and (x, ν) ∈ S, there exists ν ′ ∈ DQ

such that ν
a

=⇒ ν ′ and (µ′, ν ′) ∈ S,

3. if x ∈ FP and (x, ν) ∈ S then there exists ν ′ ∈ DFQ such that ν =⇒ ν ′.

Property (1) ensures that preceding τ actions do not interfere with probabilistic

choices (i.e. P⊕pQ and τ · (P⊕pQ) are simulation equivalent). Property (2) is the

usual co-inductive definition of simulation and property (3) ensures that if a state

x ∈ P is simulated by a distribution ν ∈ DQ and P can terminate successfully at

x, then Q can also terminate successfully from ν after a finite number of internal

transitions.

A simulation is always total on reachable states, that is, if S ⊆ P × DQ is a

simulation and x ∈ P such that x0a1x1 · · ·x is a path that occurs with positive

maximal probability, then there exists ν ∈ DQ such that (x, ν) ∈ S.

Example 4.3.4. Figure 4.4 depicts two automata related by a simulation relation

i.e. M ≤ H whereM (resp. H) is the left (resp. right) automaton. The simulation

is obtained from the relation S = S ′ ∪ {(x3, µ) | (x1, µ) ∈ S ′} where

S ′ = {(x1, 0.2δz0 + 0.8δz1), (x1, δz2), (x1, δz4), (x2, δz1), (x2, δz3), (x4, δz5)}.

4.3. PROBABILISTIC FORWARD SIMULATION 85

µ0

0.2 0.8

ν0

0.04 0.96

x1

..

++

0.2
110.8 ..

stuck

��

x2

..

11

tea

��

z0

kick

��

z1

kick

||
tea

��

z2

kick

��

z3

tea
""

x3

kick

KK

x4 11z4

kick,tea,fail

33 z5

(M) (H)

The action stuck is an internal action so we have removed the arrows from x3

because they are exactly the same as for x1. The dotted arrow represents non-
trivial distribution again.

Figure 4.4: Two automata related by a simulation.

where we recall that δx is the point distribution concentrated at the state x. To

see that S is indeed a simulation, let us write ν0 = 0.2(0.2δz0 + 0.8δz1) + 0.8δz1

where (x1, (0.2δz0 + 0.8δz1)) ∈ S and (x2, δz1) ∈ S. Hence, (µ0, ν0) ∈ S. Since

stuck is an internal action, it follows that (x3, µ) ∈ S for every distribution µ

such that (x1, µ) ∈ S. Next, we have (x3, (0.2δz0 + 0.8δz1)) ∈ S and x3
kick−→ µ0.

Since µ0 = 0.2δx1 + 0.8δx2 and (x1, δz2) ∈ S and (x2, δz3) ∈ S, it follows that

(µ0, (0.2δz2 + 0.8δz3)) ∈ S and (0.2δz0 + 0.8δz1)
kick
=⇒ (0.2δz2 + 0.8δz3). The other

inductive cases are proved in similar fashion. Moreover, an algebraic proof is

given in the next section. �

We write P ≤ Q if there is a simulation from P to Q and P ≡ Q iff P ≤ Q

and Q ≤ P and it is indeed a preorder [15].

In this chapter, any probabilistic relation satisfying Definition 4.3.3 will be

referred to as a simulation.

4.3.1.1 Segala’s simulation

Another formulation is given by Segala’s probabilistic forward simulation which

corresponds to the coarsest precongruence included in the trace distribution equiv-

86 CHAPTER 4. PROBABILISTIC CONCURRENT KLEENE ALGEBRA

alence [74].

This notion of simulation relies on double-liftings. Given two countable sets

X, Y and a relation S ⊆ X × Y , the double-lifting of S, denoted Ŝ, is a subset of

DX×DY where (µ, ν) ∈ Ŝ iff there exists a function w : X×Y → [0, 1] such that

1. if w(x, y) > 0 then (x, y) ∈ S,

2. for every x ∈ X,
∑

y∈Y w(x, y) = µ(x),

3. for every y ∈ Y ,
∑

x∈X w(x, y) = ν(y).

The function w is a probability preserving function that provides corresponding

decompositions for µ and ν. Since a probabilistic weak forward simulation is again

defined as a subset of P ×DQ, double-lifting generates an element of DP ×DDQ
which complicates the lifting of transitions. To obtain a standard relation over

the set of distributions, Segala [45, 74] provided a flat version of a distribution in

DDQ through the use of a projection π : DDQ→ DQ such that

π(φ) =
∑

µ∈supp(φ)

φ(µ)µ.

where φ ∈ DDQ. We now give the modified version of Segala’s probabilistic weak

forward simulation.

Definition 4.3.5. A relation S ⊆ P × DQ is a probabilistic weak forward simu-

lation if

1. there exists ψ0 ∈ DDQ, such that (µ0, ψ0) ∈ Ŝ and ν0 =⇒ π(ψ0),

2. if x
a−→ µ′ is a valid transition of P and (x, ν) ∈ S, there exists ψ ∈ DDQ

such that ν
a

=⇒ π(ψ) and (µ′, ψ) ∈ Ŝ.

3. if x ∈ FP and (x, ν) ∈ S, then there exists ψ ∈ DDFQ such that ν =⇒ π(ψ).

We now show that Definitions 4.3.5 and 4.3.3 are equivalent.

Proposition 4.3.6. Let X, Y be two sets, S ⊆ X ×DY , µ ∈ DX and ψ ∈ DDY .

If (µ, ψ) ∈ Ŝ then (µ, π(ψ)) ∈ S.

4.3. PROBABILISTIC FORWARD SIMULATION 87

Proof. If (µ, ψ) ∈ Ŝ, then there exists w : X×DY → [0, 1] satisfying the condition

above. Then by considering I = supp(w), it directly follows that µ =
∑

i∈I w(i)δxi ,

each xi is related to some νi by S and π(ψ) =
∑

i∈I w(i)νi. �

Corollary 4.3.7. A relation is a probabilistic simulation iff it is a probabilistic

weak forward simulation on PAut.

Proof. That Definition 4.3.5 implies Definition 4.3.3 follows directly from the

previous proposition.

Conversely, assume that S ⊆ P × DQ satisfies Definition 4.3.3. If (µ, ν) ∈
S, then there exits a decomposition µ =

∑
i∈I piδxi such that for each i, there

exists νi ∈ DQ such that (xi, νi) ∈ S for each i, and ν =
∑

i∈I piνi. Hence

(µ,
∑

i∈I piδνi) ∈ Ŝ. We just apply this simple construction to each of the three

cases of Definition 4.3.5. �

We conclude this section with a remark about the two definitions of probabilis-

tic simulation and their relationship to the theory of testing [63]. Corollary 4.3.7

shows that the corresponding definitions of [73] and [15] coincide (notice that we

can replace final states with some special external action and obtain a formulation

closer to those given in [15,74]).

On one hand, Segala has shown that the largest precongruence included in

the trace distribution equivalence coincides with “vector may testing” [74]. On

the other hand, Deng et al. have shown that vector and scalar testings coincide

on the recursion-free fragment of probabilistic automata and that with the same

restriction, Definition 4.3.3 is complete for testing equivalence [14]. Using Propo-

sition 4.3.7 and Segala’s result, we conclude that Deng’s completeness for may

testing extends to automata with countable state spaces (this is particularly im-

portant when unfolding the automata P ∗). However, it is still unknown whether

the equivalence between scalar and vector testing in the infinite case is valid.

These equivalences are the main motivation for our use of simulation in order to

create an interleaving model for our algebra. It should be noted that probabilistic

simulation equivalence is decidable for finite automata but it is unknown whether

88 CHAPTER 4. PROBABILISTIC CONCURRENT KLEENE ALGEBRA

an efficient decision procedure exists. This is in contrast to other related results in

the literature showing that strong simulation is decidable in polynomial time [35].

4.4 Interleaving interpretation of pCKA

In this section, we show that the set of PAut of simple probabilistic automata

yields a denotational model for probabilistic concurrent Kleene algebra. For sim-

plification, we assume synchronisation over all external actions and denote that

operation simply with ‖ without any frame set.

Equations (4.1-4.4) of Figure 4.1 amd (4.17-4.19) of Figure 4.2 are standard

and the proofs are omitted (they can be found in [15]). Moreover, the equivalence

P ≤ Q iff P + Q ≡ Q follows from these equations, that is, simulation coincides

with the natural order of the algebra. Recall that in our interpretation Q has more

behaviours than P . A complete characterisation of the consequences of Equa-

tion (4.17-4.19) defining the probabilistic choice ⊕p with respect to probabilistic

bisimulation can be found in the work of Stark and Smolka on the axiomatisation

of finite state probabilistic processes [77].

We now verify the axioms of probabilistic concurrent Kleene algebra against

the structure (PAut,+, ·,⊕p, ‖, ∗, 0, 1).

Proposition 4.4.1. The structure (PAut,+, ·,⊕p,≤) satisfies equations (4.5-

4.10) of Figure 4.1 and (4.20-4.21) of Figure 4.2.

Proof. In this proof, we mostly show the construction of the simulations as the

proofs of their properties are achieved by straightforward case analysis on the

definition of simulation.

Equation (4.5) and (4.6) are clear and (4.8) follows form the fact that P ≡ Q

iff their reachable parts are simulation equivalent.

Associativity (4.7) is evident because the left and right hand side automata are

exactly the same.

For distributivity (4.9), let us write the left hand side term as P · R + Q · Rc

where Rc is a copy of R whose states are renamed to xc for every state x of R. We

4.4. INTERLEAVING INTERPRETATION OF PCKA 89

construct a relation S ⊆ (P ∪Q∪ {z} ∪R ∪Rc)×D(P ∪Q∪ {z} ∪R) such that

S = {(x, δx), (xc, δx) | x ∈ R ∧ xc is the copy of x} ∪ idP+Q. It is straightforward

to show that S is a simulation and so is its inverse.

For subdistributivity (4.10), we consider the relation

S = {(x, δx), (xc, δx) | x ∈ P ∧ xc is the copy of x} ∪ {(z, µ0)} ∪ idQ ∪ idR

where z is the initial state of P ·Q+ P ·R and µ0 is the initial distribution of P .

It is again straightforward to prove that S is indeed a simulation.

We refer to Stark and Smolka [77] or the more recent work of Deng et al. [15]

for the proof of equations (4.17-4.19).

Equation (4.20) is proved using the exact same simulation constructed in the

case of Equation (4.9).

For the last equation 4.21, let

S = {(x, δx⊕pδxc) | x ∈ P ∧ xc is the copy of x} ∪ idQ ∪ idR

This simulation essentially says that we carry down the probabilistic choice ⊕p on

the left hand side until it needs to be resolved.

- By construction of the simulation, we have (µ0, (µ0⊕pµ0c)) ∈ S where µ0 and

µ0c are the respective initial distributions of P and Pc.

- Let x
a−→P ·(Q⊕pR) µ and (x, ν) ∈ S, there are three cases:

– x
a−→P µ, therefore ν = δx⊕pδxc and ν

a−→P ·Q⊕pP ·R µ⊕pµc where µc is the

copy of µ.

– x
a−→Q µ or x

a−→R µ, then we obtain the desired result because idQ ∪
idR ⊆ S.

– x
τ−→P ·(Q⊕pR) µ0Q⊕pµ0R and x ∈ FP , then x

τ−→P ·Q µ0Q and x
τ−→Pc·R µ0R

are valid transitions of P ·Q and Pc ·R. But ν = δx⊕pδxc because x ∈ P ,

therefore ν
τ−→P ·Q⊕pP ·R µ0Q⊕pµ0R.

90 CHAPTER 4. PROBABILISTIC CONCURRENT KLEENE ALGEBRA

- Let xSν and x is a final state. By definition of ⊕p, x ∈ FQ ∪ FR and hence

ν = δx ∈ DFQ ∪ DFR. �

Proposition 4.4.2. The structure (PAut,+, ·, ∗,≤) satisfies the unfolding ax-

iom (4.11) and induction law 4.12.

Proof. Let x0 be the initial state of 1 + P · P ∗ and y0 be the initial state of

P ∗. Since we add only one state and some transition in the construction of P ∗,

we denote x∗ ∈ P ∗ the state corresponding to x, for each x ∈ P . To prove

Equation (4.11), we consider the relation

S = {(x∗, δx∗), (x∗, δx) | x ∈ P} ∪ {(y0, δy0), (y0, δx0)}

from P ∗ to 1 +P ·P ∗ (Notice that y0 is a state of 1 +P ·P ∗). We now prove that

S is a simulation.

- For the initial distribution, we have (y0, δx0) ∈ S.

- Let y
a−→ µ be a valid transition in P ∗ and (y, ν) ∈ S. There are two cases:

– y = y0 and the transition is y0
τ−→ µ0 where µ0 is the initial distribution

of P . If ν = δy0 then we are done because {(y0, δy0)} ∪ {(x∗, δx∗) | x ∈
P} = idP ∗ . Else, ν = δx0 and x0

τ−→ µ0 is a valid transition in 1+P ·P ∗.

– y = x∗ for some x ∈ P and:

∗ x∗
a−→ µ∗ is the copy of a transition of P . Therefore, if ν = δx∗ then

the same transition belongs to P · P ∗. If ν = δx then x
a−→ µ is a

transition of P and µ∗Sµ.

∗ or, x∗
τ−→ δy0 and in this case, if ν = δx∗ then that transition belongs

to P · P ∗ again, else ν = δx and x ∈ FP . Therefore, δx
τ−→ δy0 is a

lifted transition in P · P ∗.

- The preservation of final state is obvious because FP ∗ = {y0} and x0
τ−→ δz

where z is the final state of 1 in 1+P ·P ∗ (which justify the case (y0, δx0) ∈ S).

4.4. INTERLEAVING INTERPRETATION OF PCKA 91

With the similar reasoning, it holds that the inverse relation S−1 of S is a

simulation from 1 + P · P ∗ to P ∗.

We now prove the induction law (4.12). Firstly, let us introduce the notion of

unfolding which will simplify the proof considerably. 3

We denote unfold(P) the unfold of any automaton P [45], that is, the automa-

ton

(Path(P),→, µ0, F)

where a transition α
a−→ µ holds for α ∈ Path(P) and µ ∈ DPath(P) iff there

exists µ′ ∈ DP such that last(α)
a−→P µ

′ and µ(αax) = µ′(x)}. The set of final

states is

F = {α ∈ Path(P) | last(α) ∈ FP}.

and µ0 is the initial distribution of P . This construction provides us with an

automaton whose states are finite paths in P and there is a transition between

two paths α, α′ iff α′ = αax where a ∈ Στ and x ∈ P . Such a transition is labelled

by a. It is now easy to show that the relation {(α, δlast(α)) | α ∈ Path(P)} is a

simulation from unfold(P) to P and the inverse is also a simulation from P to

unfold(P) [45].

Now, we can assume that P is loop-free by unfolding it and therefore 1 +

P · unfold(P ∗) is again loop-free and simulation equivalent to P ∗. Let f(X) =

1 + P · X. Since P · 0 ≤ P , we show easily by induction that unfold(fn(0)) ⊂
unfold(fn+1(0)) where ⊂ is the inclusion of automata. We define X ⊂ Y if the

state space of X is a subset of the state space of Y , transitions of X are transitions

of Y and FX ⊆ FY . We can then construct a limit automaton supn f
n(0) = f ∗(0)

obtained as the countable union of component by component (the set of states

is the union of the sets of states, the set of transitions is the union of sets of

transitions,. . .). Since P has no cycle, it follows that f ∗(0) = unfold(P ∗).

Now assume that P · Q ≤ Q, then (1 + P · 0) · Q ≤ (1 + P) · Q ≤ Q and

by induction, fn(0) · Q ≤ Q for every n ∈ N. Moreover, since unfold(fn(0)) ⊂
3It is essentially a cleaner version of our construction in [49]

92 CHAPTER 4. PROBABILISTIC CONCURRENT KLEENE ALGEBRA

unfold(fn+1(0)), we have unfold(fn(0)) · Q ⊂ unfold(fn+1(0)) · Q and since

Funfold(fn(0)) ⊆ Funfold(fn+1(0)) (inclusion of final states), supn(unfold(fn(0))·Q) =

f ∗(0) ·Q (the two automaton are equal by construction). Hence f ∗(0) ·Q ≤ Q. �

The proof that the simulation order provided by Definition 4.3.3 is indeed a

pre-congruence respecting (+,⊕p) and (‖) occurs abundantly in the literature [14,

15,73,75].

Proposition 4.4.3. Simulation is a precongruence i.e. if P ≤ Q then P + R ≤
Q+R, P ·R ≤ Q ·R, P ∗ ≤ Q∗, P⊕pR ≤ Q⊕pR, P‖R ≤ Q‖R and the same holds

for binary operations when the order of the arguments is reversed.

Proof. We only provide algebraic proofs of congruence for the sequential compo-

sition and Kleene star, which depends on the explicit construction of simulations

in the proof of Proposition 4.4.1 and 4.4.2.

Congruence with respect to the sequential composition (·) is a standard conse-

quences of Equation 4.9 and 4.10.

For Kleene star, Let P ≤ Q. By Equation 4.11, we have Q·Q∗ ≤ Q∗. Therefore,

the congruence of ≤ with respect to (·) (or monotonicity of (·)) implies that

P · Q∗ ≤ Q · Q∗ ≤ Q∗. By the induction law 4.12, we obtain P ∗ · Q∗ ≤ Q∗ and

since 1 ≤ Q∗, we deduce P ∗ ≤ P ∗ ·Q∗ ≤ Q∗ using Equation 4.5. �

Proposition 4.4.4. The structure (PAut,+, ·, ‖,⊕p) satisfies equations (4.13-

4.16) of Figure 4.1 and ‖ distributes through ⊕p

P‖Q⊕pP‖R ≡ P‖(Q⊕pR) (4.23)

Proof. Proof of Equation (4.13),(4.16) and (4.23) follows from a simple adapta-

tion of the proofs in [15] (where final states need to be taken care of).

For the associativity (4.14), recall that when the frame is fixed, then there is

a standard simulation between P‖(Q‖R) and (P‖Q)‖R by associating each tuple

(x, (y, z)) to ((x, y), z). That simulation is lifted to (P×(Q×R))×D((P×Q)×R)

using point distributions. The converse simulation is obtained by symmetry.

4.4. INTERLEAVING INTERPRETATION OF PCKA 93

As for the interchange law (4.15), we consider the injection

S = {((x, y), δ(x,y)) | (x, y) ∈ (P ×Q) ∪ (P ′ ×Q′)}

from U = (P‖Q) · (P ′‖Q′) to V = P · P ′‖Q ·Q′.

- Using the definition of ‖ and ·, we deduce that the initial distributions of U

and V are the same.

- Let ((x, y), δ(x,y)) ∈ S and (x, y)
a−→U µ. There are three cases:

– (x, y) ∈ P × Q and µ = µP × µQ ∈ D(P × Q). In all three cases in the

definition of ‖, we have (x, y)
a−→V µP × µQ.

– (x, y) ∈ P ′ × Q′ and µ = µP ′ × µQ′ ∈ D(P ′ × Q′). This is the same as

the previous case.

– (x, y) ∈ FP × FQ and the transition is (x, y)
τ−→U µ0P ′ × µ0Q′ where

µ0P ′ , µ0Q′ are the respective initial distributions of P ′, Q′. Since x ∈ FP ,

x
τ−→P ·P ′ µ0P ′ and similarly for y ∈ FQ. Therefore,

(x, y)
τ−→V µ0P ′ × δy

τ−→V µ0P ′ × µ0Q′

i.e. (x, y) =⇒V µ0P ′ × µ0Q′ is a weak lifted transition in V .

- Finally, FU = FV , so the preservation of final states is clear. �

Notice that we cannot have equality for the interchange law (4.15) even with

a fully synchronised ‖. For example, if we let a ∈ Σ be an external synchronised

action, we have (a · 1)‖(1 · a) > (a‖1) · (1‖a). On the left hand side of the

inequality, the sequential composition 1 · a will generate a single τ action which

is not synchronised. Hence, the action a will be synchronised. On the right hand

side, the action a appears only in one side of the ‖ in the expression a‖1. Hence,

it will be “blocked”, resulting in a deadlock. Indeed, this happens because of our

CSP style parallel composition.

The previous three propositions are summarised in the following theorem:

94 CHAPTER 4. PROBABILISTIC CONCURRENT KLEENE ALGEBRA

Theorem 4.4.5. The structure (PAut,+, ·, ‖, ∗, 0, 1) forms a probabilistic con-

current Kleene algebra.

Example 4.4.6. We end this section by providing an algebraic proof for the

existence of a simulation between the automata in Figure 4.4. First, we compute

the least fixed point of the function f of Example 4.2.6 algebraically. We have

f(X) = (stuck · kick⊕0.8tea · 0) ·X · 0

using equations (4.8) and (4.20). Next, we show that the least fixed point of

f(X) = P ·X · 0 is P ∗ · 0, where P = stuck · kick⊕0.8tea · 0. In fact f(P ∗ · 0) =

P · P ∗ · 0 = (1 + P · P ∗) · 0 = P ∗ · 0 because of equations (4.6), (4.9) and (4.11).

Now let Q be a suffix-point of f , i.e., P · Q · 0 ≤ Q, then monotonicity and

Equation (4.8) imply P ·Q · 0 ≤ Q · 0. Therefore, P ∗ ·Q · 0 ≤ Q · 0 ≤ Q because of

the induction law (4.12) and 0 ≤ 1. Hence P ∗ · 0 ≤ Q follows from Equation (4.8)

and monotonicity of (·).
Therefore, the left hand side automaton is simulation equivalent to

M = (stuck · kick⊕0.8tea · 0)∗ · 0

The algebraic proof in Figure 4.5 shows that M ≤ H. �

4.5 Completing a proof of correctness

Our ultimate goal for the system illustrated by Example 4.2.2 is to compute the

probability that the client will successfully obtain his tea. Indeed, it is possible

to compute that probability by a direct computation of the parallel composition

between the specification of the machine V and the user U . However, we will

establish the postcondition Q described in Figure 4.6 using the algebraically es-

tablished simulation M ≤ H of Figure 4.5. In plain English, the postcondition Q

says that a user will fail to get his tea with (maximal) probability 0.04.

4.5. COMPLETING A PROOF OF CORRECTNESS 95

M
= One unfold of M

(stuck · kick⊕0.8tea · 0) ·M
≡ Equations (4.20) and (4.8)
stuck · kick ·M⊕0.8tea · 0
≡ Unfolding of (∗) and definition of M

stuck · kick · (stuck · kick⊕0.8tea · 0) ·M⊕0.8tea · 0
≤ Equation (4.21)

(stuck · kick · stuck · kick ·M⊕0.8stuck · kick · tea · 0)⊕0.8tea · 0
≡ Equation (4.19)

stuck · kick · stuck · kick ·M⊕0.96(stuck · kick · tea · 0⊕0.8/0.96tea · 0)

≤ P⊕pQ ≤ P +Q

stuck · kick · stuck · kick ·M⊕0.96(stuck · kick · tea · 0 + tea · 0)

≤ M ≤ Run({kick, tea, fail})
kick · kick ·Run({kick, tea, fail})⊕0.96(kick · tea · 0 + tea · 0)
= Definition of H
H

where Run(A) = (+a∈Aa)∗ where A ⊆ Σ.

Figure 4.5: Example of algebraic proof in pCKA.

96 CHAPTER 4. PROBABILISTIC CONCURRENT KLEENE ALGEBRA

w0

coin

��

0.04 0.96

w1

kick

��

w2

kick,tea

��
w3

kick

��

w4

tea

jj

w5

fail

44

Figure 4.6: The postcondition for the system in the formQ = coin·(bad⊕0.96good).

By computing the straightforward parallel composition H‖U ′ (where we recall

that U ′ is the subsequent behaviour of a user in its specification U = coin · U ′),
we readily obtain the simulation

coin · (H‖U ′) ≤ Q.

Therefore, by the congruence properties of ≤ (Proposition 4.4.3), we have

V ‖U = coin · (M‖U ′) ≤ coin · (H‖U ′) ≤ Q.

The reasoning used here to establish V ‖U ≤ Q is a particular case of a more

general framework, namely, the rely/guarantee calculus or, more precisely, as-

sume/guarantee technique in the case of action-based systems [35, 43]. In other

words, H can be seen as a rely condition for the user and a guarantee condition

for the machine (coin and Q are the usual pre/postconditions). The full develop-

ment of such a tool in the probabilistic case is delayed until Chapter 7 where all

algebraic proof is done within the framework of probabilistic concurrent Kleene

algebra, hence establishing the various rely/guarantee rules in all models of that

algebra. In particular, these rules can be used in the context of probabilistic

4.6. DISCUSSION 97

automata modulo probabilistic simulation.

4.6 Discussion

This chapter established our foundation of probabilistic concurrent Kleene alge-

bra and illustrated how it can be used in verification tasks. The axiom system was

proven sound with respect to the set of probabilistic automata under simulation

equivalence and no completeness result is inferred whatsoever. Segala and Parma

have given a complete axiomatisation of probabilistic simulation where they have

used general recursion instead of the tail iteration resulting from the use of Kleene

star [64]. It should be noted that the restriction to the regular operations (+, ·, ∗)
(in addition to (‖)) usually complicates the algebraic characterisation. That issue

dates back to Milner [56]. Moreover, the exchange law does not appear in Segala

and Parma’s axiomatisation but it is an essential ingredient for an algebraic view

of concurrency as shown by Gischer’s completeness result [23]. In the next chapter,

we introduce a true concurrent model of probabilistic concurrent Kleene algebra.

Chapter 5

True Concurrency in

Probabilistic Concurrent Kleene

Algebra

This chapter gives an adaptation and extension of Katoen’s [33] and Varacca’s

[85] approaches to probabilistic event structures. The aim is to obtain a truly

concurrent semantics for the axioms of probabilistic Kleene algebra.

The main idea of the probabilistic bundle event structure model hinges tightly

on the notion of clusters. Clusters are sets of events that are in conflict with

each other. Therefore, only a single event from a cluster can occur in a consistent

behaviour. Hence, clusters were first introduced by Katoen to provide supports for

probabilistic distributions. Notice that clusters are also used to obtain a successful

algebraic interpretation of nondeterminism on event structures, as discussed in

Definition 3.3.1.

This chapter is based on Katoen’s probabilistic bundle event structure. How-

ever, Katoen did not provide an adequate equality or inequality for comparing

these structures and Varacca [85] has given a semantics based on valuation on

configurations which is the counterpart of Segala’s trace distribution for prime

99

100 CHAPTER 5. TRUE CONCURRENCY IN PCKA

event structures. In this thesis, we adapt the notion of probabilistic simulation

for true concurrency and devise a slightly different definition of a probabilistic

bundle event structure.

5.1 Probabilistic bundle event structure

The key idea in adding probabilistic information to event structures is to use

probability as a mechanism to resolve a conflict between events. However, not

all conflicts can be resolved probabilistically [33]. The cases when this occurs are

referred to as confusions.

Example 5.1.1. A typical example of confusion is given by three events e1, e2

and e3 where e1#e2, e2#e3 and ¬e1#e3 hold, allowing e1 and e3 to occur simul-

taneously in a single run. If the conflict e1#e2 is resolved with a coin flip and if

it yields e2, then e2#e3 cannot be resolved probabilistically as it may produce e3.

In contrast, if e1 happens then e2#e3 has to be resolved into e3. �

The goal of this section is to eliminate these confusions by introducing the

notion of confusion-free bundle event structures and obtain the desired Defini-

tion 5.1.13 of probabilistic bundle event structures.

5.1.1 Immediate conflict

Following Varacca [85], we start by characterising conflicts that may be resolved

probabilistically.

Definition 5.1.2. Given a BES E, two events e, e′ ∈ E are in immediate conflict

if e#e′ and there exists a configuration x such that x∪{e} and x∪{e′} are again

configurations. We write e#µe
′ when e and e′ are in immediate conflict.

Immediate conflict represents a conflict that has not been resolved by the

execution history. When there is no confusion, these conflicts are obtained from

nondeterministic constructs and ultimately from probabilistic choices.

5.1. PROBABILISTIC BUNDLE EVENT STRUCTURE 101

e1

#µ e2

��

#µ e3_

��
e4 #µ e5

In this BES, the bundles are {e1, e2} 7→ e4 and {e3} 7→ e5. The conflict relation
is e1#e2 and e2#e3. Therefore, e1 and e3 are concurrent. An arrow → represents
some part of a bundle (i.e. {e1, e2} 7→ e4 is the completed bundle) whilst 7→
represents a bundle.

Figure 5.1: Immediate conflict in a BES.

Example 5.1.3. In Figure 5.1, e4 and e5 are in immediate conflict because

{e1, e3, e4} and {e1, e3, e5} are configurations. In fact, every conflict in that BES

is immediate. Notice that the conflict e4#µe5 is resolved when e2 occurs. �

5.1.2 Clusters

Events can be grouped into clusters of events that are pairwise in immediate

conflict. Moreover, if an event in a cluster can occur (i.e. all preceding event have

happened) then every other event in that cluster may occur. More precisely, we

define a cluster as follow.

Definition 5.1.4. A partial cluster is a set of events K ⊆ E satisfying

∀e, e′ ∈ K : e 6= e′ ⇒ e#µe
′ and

∀e, e′ ∈ K, x ⊆ E : x 7→ e ⇒ x 7→ e′

A cluster is a maximal partial cluster (with respect to set inclusion).

Given an event e ∈ E, the singleton {e} is a partial cluster. Therefore, there

is always at least one cluster (i.e. maximal) containing e and we write 〈e〉 the

intersection of all clusters containing e.

Example 5.1.5. In Figure 5.1, {e1, e2} and {e2, e3} are clusters and 〈e2〉 = {e2}.
�

The following proposition characterises clusters:

102 CHAPTER 5. TRUE CONCURRENCY IN PCKA

e1_

��

#µ e2<

~~

_

��

e4

#µ

e3 # e5

Figure 5.2: A BES where {e1, e2}, {e3} and {e4, e5} are clusters.

Proposition 5.1.6. A partial cluster K is maximal (i.e. a cluster) iff

∀e ∈ E : (∀e′ ∈ K : e#µe
′ ∧ ∀x ⊆ E : x 7→ e⇔ x 7→ e′)⇒ e ∈ K

Proof. The forward implication follows from Definition 5.1.4 and maximality

of K. Conversely, let us assume that K is a partial cluster satisfying the above

property. Let H be a partial cluster such that K ⊆ H and e ∈ H. Then, for all

e′ ∈ K, e#µe
′ and

∀x ⊆ E : x 7→ e⇔ x 7→ e′

because H is a partial cluster. By the hypothesis, e ∈ K and hence H = K. �

Similar to Katoen’s and Varacca’s approaches, clusters are used to carry prob-

ability and they can be intuitively seen as providing a choice between events

where the chosen event happens instantaneously. Our notion of cluster is weaker

than Katoen’s original definition [33]: the BES in Fig. 5.2 contains three clusters

{e1, e2}, {e3} and {e4, e5} and only {e1, e2} satisfies Katoen’s definition. This

modification ensures that we can use clusters to partition the set of events in

all confusion-free bundle event structures defined in the next section (Proposi-

tion 5.1.8).

5.1.3 Confusion-free bundle event structure

We are now ready to define confusion freeness on bundle event structures.

Definition 5.1.7. A BES E is confusion free if for all events e, e′ ∈ E,

5.1. PROBABILISTIC BUNDLE EVENT STRUCTURE 103

- if e#µe
′ then e ∈ 〈e′〉, and

- if 〈e〉 ∩ x = ∅ and x ∪ {e} ∈ C(E) for some configuration x ∈ C(E), then

x ∪ {e′′} ∈ C(E) for all events e′′ ∈ 〈e〉.

The first property implies that 〈e〉 contains all events in immediate conflict with

e and hence the confusion introduced by e1, e2 and e3 in Fig. 5.1 is avoided. The

second property says that all events in 〈e〉 are enabled at the same time. Hence,

confusion freeness ensures that all conflicts in 〈e〉 can be resolved probabilistically

regardless of the execution history.

The proof of the following proposition is the same as for prime event struc-

tures [85].

Proposition 5.1.8. For a confusion free BES E, the set {〈e〉 | e ∈ E} defines a

partition of E. That is, the reflexive closure of #µ is an equivalence relation and

the equivalence classes are of the form 〈e〉.

The second property of Definition 5.1.7 is usually hard to check. We give a

static and simpler sufficient condition for confusion freeness.

Proposition 5.1.9. If a BES E satisfies

∀e, e′ ∈ E : (e#µe
′ ⇒ e ∈ 〈e′〉) ∧ (〈e〉 ∩ cfl(e′) 6= ∅ ⇒ 〈e〉 ⊆ cfl(e′)),

then it is confusion free.

Proof. Let e ∈ E and x ∈ C(E) such that 〈e〉 ∩ x = ∅ and x ∪ {e} ∈ C(E). We

need to show that x ∪ {e′} ∈ C(E) for every e′ ∈ 〈e〉.
Let e′ ∈ 〈e〉 and z 7→ e′ be a bundle of E . By Definition 5.1.4, z 7→ e is also a

bundle and since x and x∪{e} are configurations, e1 · · · ene is again a linearisation

of x ∪ {e} for every linearisation e1 · · · en of x. Therefore, z ∩ {e1, . . . , en} 6= ∅. If

e′ ∈ cfl(ei) for some i, then 〈e〉 ⊆ cfl(ei) by the hypothesis and hence e ∈ cfl(ei),

which is impossible because e1 · · · ene is an event trace. Hence e1 · · · ene′ is also

an event trace, that is, x ∪ {e′} ∈ C(E). �

104 CHAPTER 5. TRUE CONCURRENCY IN PCKA

The second argument of the conjunction says that if some event in 〈e〉 is in

conflict with an event e′, then all events in 〈e〉 are in conflict with e′.

Example 5.1.10. Figure 5.2 depicts a confusion free BES that satisfies Propo-

sition 5.1.9. The partition generated by #µ contains 〈e1〉 = 〈e2〉, 〈e4〉 = 〈e5〉 and

〈e3〉. We can see from Figure 5.2 that 〈e4〉 ∩ cfl(e3) = {e3} and 〈e4〉 = {e4, e5} ⊆
cfl(e3). �

A more interesting application of Proposition 5.1.9 is to prove that any regular

bundle event structure is confusion free. A bundle event structure E is regular if

it is inductively constructed from the basic constructs 0, 1 and the event structure

associated to each a ∈ Σ, with the operations of Section 3.3.

Lemma 5.1.11. If E is a regular bundle event structure with set of events E then

the properties

∀e ∈ E : e ∈ in(E)⇒ 〈e〉 = in(E) (5.1)

and

∀e ∈ E : cfl(e) ∩ in(E) 6= ∅ ⇒ e ∈ in(E) (5.2)

hold. The same result holds if we replace in(E) with ΦE .

Proof. These two properties are clear by induction on the structure of E and the

definition of in(E). �

Proposition 5.1.12. A regular bundle event structure is confusion free.

Proof. The result follows by induction on the structure of E . We show that the

property

∀e, e′ ∈ E : 〈e〉 ∩ cfl(e′) 6= ∅ ⇒ 〈e〉 ⊆ cfl(e′) (5.3)

is preserved by the operations (+, ·, ‖) and (∗). The base cases are clear. Let E ,F
be two regular bundle event structures satisfying the Property 5.3. Let e, e′ be

two events from E ∪ F (the set of events of E + F) such that 〈e〉 ∩ cfl(e′) 6= ∅
holds in E + F . Let us assume that e ∈ E, then there are three cases:

5.1. PROBABILISTIC BUNDLE EVENT STRUCTURE 105

- If e ∈ in(E), then 〈e〉 = in(E +F) by Property 5.1 because E +F is regular.

By Property 5.2, we have cfl(e′)∩ in(E +F) 6= ∅. Hence, e′ ∈ in(E +F) and

we are done because 〈e〉 = cfl(e′).

- Similarly for e ∈ ΦE .

- If e ∈ E \ (in(E) \Φ(E), then 〈e〉 ⊆ E (by definition of the conflict relation

#E+F). Thus, e′ ∈ E and the result follows directly from the induction

hypothesis on E .

The cases of the operations (·, ‖, ∗) are proven in the similar ways. �

5.1.4 Probabilistic bundle event structure

With confusion freeness, we are now able to define probability distributions

supported by clusters. Given an event structure E = (E,#, 7→, λ,Φ), we say that

µ ∈ DE is a probability distribution on E if supp(µ) ⊆ 〈e〉 for some event e ∈ E.

That is, if µ is supported in 〈e〉, then it is used to resolve probabilistically the

immediate conflict between events in 〈e〉.

Definition 5.1.13. A probabilistic BES is a tuple (E , π) where E is a confusion

free BES and π is a set of probability distributions on E such that for every e ∈ E,

there exists µ ∈ π such that e ∈ supp(µ).

We write pBES for the collection of all probabilistic bundle event structures

that are constructed from a given countable set of actions Σ (this set of actions

is usually left implicit).

The intuition behind this definition is simple: if there is no µ ∈ π such that

e ∈ supp(µ), then e is an impossible event and it can be removed (this may affect

any event e′ such that e �x e′ for some x ∈ C(E)). The set of configurations of

(E , π) is defined to be C(E).

Our approach differs from both Varacca’s [85] and Katoen’s [33] in that non-

determinism is modelled concretely as a set of probabilistic choices. This is a

106 CHAPTER 5. TRUE CONCURRENCY IN PCKA

usual concept in sequential probabilistic programs where nondeterminism is in-

troduced from the fact that we have partial information about the distribution

(rather than the state) [48]. This approach will mainly contribute to the defini-

tion of the probabilistic choice operation ⊕p, p ∈ [0, 1]. For instance, while the

expression a+ (b⊕pc) does not have any meaning in Katoen’s probabilistic bundle

event structure, we will see that it has a precise semantics in our case.

5.2 Probabilistic simulation on pBES

The weakest interpretation of a refinement order on pBES is Varacca’s con-

figuration distributions inclusion [85]. However, as in the interleaving case, that

order is not a congruence with respect to the concurrency operation ‖ [73], that

is, it is possible to construct three event structures E ,F and G such that E is a

refinement of F but E‖G is not a refinement of F‖G. We then use probabilistic

simulations which are based on the notion of lifting given in Definition 4.3.1.

We start by defining the analogue of transition applied to pBES.

5.2.1 Prefixing on Distributions over Configurations

Since the notion of configuration for a pBES (E , π) is independent of π, we keep

the notation C(E) for the set of all finite configurations. An example of relation

on C(E) × DC(E) is given by the probabilistic prefixing which is an extension of

Chapter 3 Definition 3.4.1.

Definition 5.2.1. We say that x ∈ C(E) is a prefix of ∆ ∈ DC(E), denoted

(again) by x E ∆, if there exists µ ∈ π such that supp(µ) ∩ x = ∅ and ∆ =∑
e∈supp(µ)(µ(e))δx∪{e}.

In particular, if 〈e〉 = {e}, e /∈ x and x ∪ {e} ∈ C(E) then x E δx∪{e}.

The relation E is lifted to E ⊆ DC(E) × DC(E) and the reflexive transitive

closure of the lifted relation is denoted by E
∗
. Probabilistic prefixing allows us to

5.2. PROBABILISTIC SIMULATION ON PBES 107

construct a configuration-tree for every pBES. An example is depicted in Fig. 5.3.

∅

��
{e}

��

0.2

&&

0.8

xx
{e, e2}

��

{e, e1}

0.8

xx

0.2

&&

{e, e3}

��
{e, e1, e2}

��

{e, e1, e3}

��
{e, e1, e2, f} {e, e1, e3, f}

The dotted arrows with common source are parts of a probabilistic prefix relation
(e.g. {e} E 0.8δ{e,e2} + 0.2δ{e,e3}). The events e, f are the delimiters introduced
by ‖.

Figure 5.3: The configurations-tree of the pBES e1‖(e2⊕0.2e3) (⊕0.2 is defined
later).

5.2.2 Probabilistic Simulation on pBES

To simplify the presentation, we restrict ourselves to bundle event structures

satisfying

∀x ⊆ E : (∃e ∈ E : x 7→ e)⇒ Φ ∩ x = ∅ (5.4)

In other words, no event is enabled by a final event. This allows a simpler speci-

fication of the preservation of final events by a simulation. Notice that all regular

bundle event structures satisfy the property 5.4.

Recall from Chapter 3 Section 3.2 that configurations (endowed with the canon-

ical order) are compared using the subsumption order vs.

Definition 5.2.2. A (probabilistic) simulation from (E , π) to (F , ρ) is a relation

S ⊆ C(E)× DC(F) such that:

- (∅, δ∅) ∈ S,

108 CHAPTER 5. TRUE CONCURRENCY IN PCKA

- if (x,Θ) ∈ S then for every y ∈ supp(Θ), x vs y,

- if (x,Θ) ∈ S and x E ∆′ then there exists Θ′ ∈ DC(F) such that ΘE
∗
Θ′ and

(∆′,Θ′) ∈ S.

- if (x,Θ) ∈ S and x∩ΦE 6= ∅ then for every y ∈ supp(Θ) we have y∩ΦF 6= ∅.

We write (E , π) vpsim (F , ρ) if there is a simulation from (E , π) to (F , ρ).

Indeed, Definition 5.2.2 is akin to probabilistic forward simulation on automata

(Definition 4.3.3). The main difference is the use of the order x vs y which holds iff

there exists a label preserving monotonic bijection from (ŷ,�y, λy) to (x̂,�x, λx).
Another consequence of this definition is that concurrent events can be lin-

earised while preserving simulation.

Proposition 5.2.3. vpsim is a preorder.

The proof is the same as in [15], hence, we provide only a sketch.

Proof. Reflexivity is clear by considering the relation {(x, δx) | x ∈ C(E)}, which

is indeed a simulation. If R, S are probabilistic simulations from (E , π) to (F , ρ)

and (F , ρ) to (G, r) respectively, then we can show, using Proposition 4.3.2 and a

similar proof as in the interleaving case, that R ◦ S is a probabilistic simulation

from (E , π) to (G, r). �

The following example shows that our notion of simulation differentiates be-

tween interleaving and true concurrency.

Example 5.2.4. In Figure 5.4, it is shown that a · b + b · a vpsim a‖b, but the

converse does not hold. �

5.3 True concurrent interpretation of pCKA

In this section, we show that the set pBES endowed with (+, ·, ‖, ∗, 0, 1) satisfies

the axioms of a probabilistic concurrent Kleene algebra.

5.3. TRUE CONCURRENT INTERPRETATION OF PCKA 109

∅

{{ ##

-- ∅

��
{ea}

�� ,,

{e′b}

�� **

{e}

yy %%
{ea � eb}

,,

{e′b � e
′
a}

$$

{e, fa}

%%

{e, fb}

yy
{e, fa, fb}

��
{e, fa, fb, f}

Since {e, fa, fb, f} 6vs {ea � eb} nor {e, fa, fb, f} 6vs {e′b � e′a}, it is impossible to
find a simulation from a‖b to a · b+ b · a. In the configuration tree on the left, the
order � is made explicit and primes are introduced for disjointness.

Figure 5.4: A simulation from a · b+ b · a to a‖b.

5.3.1 Operations on probabilistic bundle event structures

We start by defining and extending the constants and operations defined on

bundle event structures.

We generate the probabilistic bundle event structures (0, ∅), (1, {δe}) and (a, {δea})
from the basic bundle event structures. To simplify the notations, these basic

pBES are again denoted by 0, 1 and a. The other standard operations are ex-

tended as follows:

(E , π) + (F , ρ) = (E + F , π ∪ ρ)

(E , π) · (F , ρ) = (E · F , π ∪ ρ)

(E , π)‖(F , ρ) = (E‖F , π ∪ ρ ∪ {δe, δf})

where e and f are the fresh events delimiting E‖F . Recall that E and F are

assumed to be disjoint in these definitions. The probabilistic choice that chooses

E with probability 1− p and F with probability p is

(E , π)⊕p(F , ρ) = (E + F , π⊕pρ)

110 CHAPTER 5. TRUE CONCURRENCY IN PCKA

where µ ∈ π⊕pρ iff:

- if supp(µ) ⊆ in(E) ∪ in(F) then µ = (1 − p)µ0 + pν0 for some µ0 ∈ π and

ν0 ∈ ρ,

- else µ ∈ π ∪ ρ.

Intuitively, nondeterminism is resolved first by choosing a probability distri-

bution, then a probabilistic choice is resolved based on that distribution. Indeed,

the nondeterministic and probabilisic choices introduce clusters.

Example 5.3.1. The bundle event structure a‖(b⊕0.2c) contains four clusters

〈e〉, 〈eb, ec〉, 〈ea〉 and 〈f〉 where e, f are the delimiter events. It has a set of prob-

ability distributions {0.8δeb + 0.2δec , δea , δe, δf}. In contrast, the event structure

a + (b⊕0.2c) has a single cluster 〈ea, eb, ec〉 with a set of probability distributions

{0.8δeb + 0.2δec , δea}. �

To construct the binary Kleene star, we need the following partial order:

(E , π) / (F , ρ) iff E / F ∧ π = {p ∈ ρ | supp(p) ⊆ E}.

The proof that / is indeed ω-complete is essentially the same as in the standard

case (Chapter 3 Section 3.3). Hence the Kleene product (E , π) ∗ (F , ρ) is again

the limit of the increasing sequence of probabilistic bundle event structures:

(F , ρ) / (F , ρ) + (E , π) · (F , ρ) / (F , ρ) + (E , π) · ((F , ρ) + (E , π)) / · · · .

More precisely, (E , π) ∗ (F , ρ) = (E ∗ F , π ∗ ρ) where π ∗ ρ = ∪iπ ∗≤i ρ and each

set π ∗≤i ρ is obtained from the construction of E ∗≤i F .

5.3.2 Proof of soundness for (pBES,vpsim)

We start by ensuring that vpsim is indeed a precongruence with respect to

all the algebraic operations on pBES. We write ≡psim the equivalence relation

associated to vpsim.

5.3. TRUE CONCURRENT INTERPRETATION OF PCKA 111

Proposition 5.3.2. The order vpsim is a precongruence, i.e., for every pBES

(E , π), (F , ρ) and (G, η), if (E , π) vpsim (F , ρ) then (E , π) ◦ (G, η) vpsim (F , ρ) ◦
(G, η) (and symmetrically) for every ◦ ∈ {+, ·, ‖, ∗}.

Proof. Let (E , π) vpsim (F , ρ) be witnessed by a simulation S ⊆ C(E) × DC(F)

and (G, η) be any pBES. The congruence properties are proven by extending

the simulation S to the events of G. For instance, that (E , π) + (G, η) vpsim
(F , ρ) + (G, η) is deduced by showing that S ∪ {(x, δx) | x ∈ C(G)} is indeed a

simulation and similarly for the other operations. �

The axioms (4.1-4.10) referring to the left semiring property and the standard

properties of (‖) such as the interchange law (4.15), the commutativity (4.13), the

associativity (4.14) and the subdistributivity (4.16) are proven using simulations

akin to the interleaving case. The same is achieved for the properties of ⊕p (axioms

4.17-4.22) [51]. The proof similarities are due to the fact that the extra change

introduced in Definition 5.2.2 is the property x vs y for every (x,Θ) ∈ S and

y ∈ Θ, where S is a simulation. Hence, it suffices to check only that property

for each of the cases, and this usually is a direct consequence of the construction.

Moreover, the definition of the operations (+, ·,⊕p) and (∗) are conceptually the

same.

The existence of simulations that establishes that 1 is a unit for ‖ (Axiom 3.16)

is clear from the definitions of ‖ and 1. It follows from the axioms of + and

Proposition 5.3.2 that (E , π) vpsim (F , ρ) iff (E , π) + (F , ρ) ≡psim (F , ρ).

Proposition 5.3.3. The binary Kleene star satisfies the fixed point equations:

F + E · (E ∗ F) ≡psim (E ∗ F), (5.5)

G + E · F vpsim F ⇒ E ∗ G vpsim F (5.6)

Proof. The first equation is proven using the simulation construction of Chapter 4

Theorem 4.4.2. For the second implication, let S ⊆ C(E · F) × DC(F) be a

probabilistic simulation from G + (E , π) · (F , ρ) to (F , π). By monotonicity of ·

112 CHAPTER 5. TRUE CONCURRENCY IN PCKA

and +, there exists a simulation S(i) ⊆ C(E ∗≤i G)× DC(F) from (E , π) ∗≤i (G, ρ)

to (F , ρ), for every i ∈ N. Moreover, we can find a family of simulations such

that S(i−1) is the restriction of S(i) to (E , π) ∗≤i−1 (G, ρ). Thus, we can consider

the union S = ∪iS(i) and show that it is indeed a simulation from (E , π) ∗ (G, ρ)

to (F , ρ). Hence, Equation (5.6) holds. �

These results are then summarised in the following soundness theorem.

Theorem 5.3.4. The structure (pBES,+, ·, ∗, ‖, 0, 1) modulo probabilistic simu-

lation forms a probabilistic concurrent Kleene algebra with a binary Kleene star.

Notice that this theorem includes the properties of the binary Kleene star rather

than the unary Kleene star for probabilistic concurrent Kleene Algebra. The un-

fold Axiom 4.11 follows immediately from the definition E∗ = E ∗ 1 and substi-

tuting F with 1 in 5.5. As for the induction Axiom 4.12, if E · F vpsim F , then

F + E · F vpsim F . Therefore, E ∗ F vpsim F . A simulation from (E ∗ 1) · F
to E ∗ F can be constructed because the expression 1 will introduce unlabelled

events, which are removed when comparing configurations with vs. A configura-

tion x of (E ∗ 1) · F is then implemented by the corresponding configuration of

F (i.e. removing the event introduced by 1 from x). Moreover, the probabilistic

prefixing is preserved. Hence, we have (E ∗ 1) · F vpsim (E ∗ F) vpsim F . 1

5.4 Discussion

This chapter shows that our proposed axiomatisation of probabilistic concur-

rent Kleene algebra is sound with respect to a true concurrent interpretation.

That is, the axiom systems presented in Chapter 4 Figure 4.1 and Figure 4.2

can be used to verify probabilistic systems having truly concurrent behaviours.

To obtain a congruence, we have redefined the notion of probabilistic simulation

which can be seen as a probabilistic extension of Ferroudja’s construction [7] on

a variation of Katoen’s probabilistic bundle event structure. Simulation is used
1A better proof is obtained by applying the fixed point fusion theorem [1]. However, we do not need to

construct the Galois connection needed for that theorem to show this particular case.

5.4. DISCUSSION 113

because the configuration distribution equivalence is not a congruence as in the

case of trace distribution [73]. However, simulation is usually a very strong form

of refinement order and usually unsuitable for systems modelled primarily using

relations or predicates transformers. Therefore, we introduce the notion of event

structure with implicit probability where both sequential and simulation orders

are defined. Such a model will be used to provide a suitable denotational semantics

for probabilistic rely/guarantee calculus.

Chapter 6

Bundle Event Structure with

Implicit Probability

In this section, we provide an alternative definition of probabilistic bundle

event structures by assuming implicit probabilities (ipBES). That is, on a higher

level, the event structure is a standard bundle event structure where each event

is labelled with a probabilistic program on a finite state space.

The set of bundle event structures with implicit probabilities is essential to the

development of probabilistic rely/guarantee calculus in the style of [31]. These

structures are studied modulo two forms of equivalence: a simulation (qualitative)

order which is a particular case of Definition 5.2.2, and a sequential (quantitative)

order based on inclusion of the set of distributions.

6.1 Sequential probabilistic programs

In this section, we give a brief summary of the denotation of sequential proba-

bilistic programs using the powerdomain construction of McIver and Morgan [48].

All probabilistic programs will be considered to have a finite state space denoted

by Ω. A distribution over the set Ω is a function µ : Ω → [0, 1] such that

115

116 CHAPTER 6. BES WITH IMPLICIT PROBABILITY∑
s∈Ω µ(s) = 1. The set of distributions over Ω is denoted by DΩ. Since Ω is a

finite set, we will identify a distribution with the associated measure. For every

µ ∈ DΩ and O ⊆ Ω, we write µ(O) =
∑

s∈O µ(s). An important example of

distribution is the point mass distribution δs, centred at the state s ∈ Ω, such

that

δs(s
′) =

 1 if s = s′,

0 otherwise.

A (nondeterministic) probabilistic program r is denoted by a map of type

Ω → PDΩ such that r(s) is a non-empty, topologically closed and convex subset

of DΩ for every s ∈ Ω. The set DΩ is a topological sub-space of the finite product

RΩ (endowed with the usual product topology), and the topological closure is con-

sidered with respect to the induced topology on Ω. 1 We denote by H1Ω the set of

probabilistic programs. Notice that the set DΩ contains only distributions instead

of the subdistributions considered by McIver and Morgan [48]. Therefore, we can

only model nondeterministic programs that are terminating with probability 1.

Programs in H1Ω are ordered by pointwise inclusion, i.e., r vH r′ if for every

s ∈ Ω, r(s) ⊆ r′(s). A program r is deterministic if, for every s, r(s) = {µs} (i.e.

a singleton) for some distribution µs ∈ DΩ. The set of deterministic programs is

denoted by J1Ω (as in Jones’ spaces [30]). If f ∈ J1Ω is a deterministic program

such that f(s) = {µs}, then we usually just write f(s) = µs.

Example 6.1.1. Let us consider the assignment x := h⊕0.5t which assigns the

value h to x with probability 0.5. The value t is assigned to x with the same

probability. The state space is defined by the set Ω = {h, t} containing all possible

values for x. This assignment is denoted by a deterministic program r such that

r(h) = 0.5δh + 0.5δt. �

The probabilistic combination of two probabilistic programs r and r′ is defined

1These healthiness conditions are set out and fully explained in the work of McIver and Morgan [48]. In
Example 6.1.3, we show another motivation behind the topological closure.

6.1. SEQUENTIAL PROBABILISTIC PROGRAMS 117

as ([48] Definition 5.4.5)

(r⊕pr′)(s) = {µ⊕pµ′ | µ ∈ r(s) ∧ µ′ ∈ r′(s)}, (6.1)

where (µ⊕pµ′)(s) = pµ(s) + (1− p)µ′(s) for every state s ∈ Ω.

Nondeterminism is obtained as the set of all probabilistic choices ([48] Defini-

tion 5.4.6). That is,

(r + r′)(s) = ∪p∈[0,1](r⊕pr′)(s). (6.2)

The sequential composition of r by r′ is defined as ([48] Definition 5.4.7):

r · r′(s) = {f ? µ| f vH r′ ∧ f ∈ J1Ω ∧ µ ∈ r(s)} (6.3)

where

(f ? µ)(s′) =
∑
s′′∈Ω

f(s′′)(s′)µ(s′′)

for every state s′ ∈ Ω.

A particularly important example of probabilistic program is the ineffectual

program skip, which we denote by δ. That is, δ(s) = {δs}.

Example 6.1.2. We reconsider the program r associated to the probabilistic

assignment x := h⊕0.5t of Example 6.1.1. A deterministic refinement f of δ+ r is

characterised by choosing a weight function w : {h, t} → [0, 1] such that f(s) =

w(s)δh + (1− w(s))(0.5δh + 0.5δt) for every state s ∈ Ω.

A distribution ν ∈ [r · (δ + r)](h) satisfies

ν(s) = (f ? [0.5δh + 0.5δt])(h)(s) = 0.5f(h)(s) + 0.5f(t)(s)

where f vH 1 + r. We have f(h)(h) = w(h) + 0.5(1− w(h)) = 0.5(1 + w(h)) and

f(t)(h) = 0.5(1 − w(t)). Therefore, the quantity ν(h) attains its maximal value

with the weight function w(h) = 1 and w(t) = 0. Intuitively, if the output of the

first run of r is t, then we execute the second r. This gives a maximal probability

of ν(h) = 0.5 + 0.52 as expected.

118 CHAPTER 6. BES WITH IMPLICIT PROBABILITY

Dually, that weight function will minimise the probability of getting t to the

lowest bound 1− 0.5− 0.52 = 0.52. �

The algebraic constant 1 is defined to be δ. We define the constant ⊥ such

that r · ⊥ = ⊥ · r = ⊥, ⊥+ r = r and ⊥ vH r for every r ∈ H1Ω ∪ {⊥}.
Let r ∈ H1Ω, the binary Kleene star r ∗ r′ is again the least fixed point of

the function fr,r′(X) = r′ + r ·X in H1Ω. The function r′ 7→ r · r′ is continuous

—it preserves directed suprema (c.f. Section 2.2.4)— because of the bounded

continuity of the associated expectation transformer ([48] Lemma 5.6.6). Notice

that a topological closure is sometimes needed to ensure that we obtain an element

of H1Ω (c.f. Example 6.1.3). Hence, the Kleene star r ∗ r′ is the program such

that

r ∗ r′(s) = ∪nfnr,r′(⊥)(s)

where A is the topological closure of the set A ⊆ DΩ. The unary Kleene star

is defined as r∗ = r ∗ 1. Notice that ⊥ ∗ δ = δ follows from ⊥ · ⊥ ∗ δ = ⊥ and

δ + ⊥ = δ. When endowed with these operations and constants, the set H1(Ω)

forms a model of probabilistic Kleene algebra [53].

Example 6.1.3. We use again the program r denoting the probabilistic assign-

ment x := h⊕0.5t. From the reasoning in Example 6.1.2, the set [r · (δ + r)](t)

is formed of probability distribution µ such that 0.5 ≥ µ(t) ≥ 0.52. Therefore,

[δ+ r · (δ+ r)](t) = {pδt + (1− p)µ2 | p ∈ [0, 1]} where µ2 = (0.5 + 0.52)δh + 0.52δt.

By reapplying the reasoning in Example 6.1.2 inductively, we can show that

[δ + r · (δ + r · · · · · (δ + r))︸ ︷︷ ︸
r occurs n times

](s) = {pδt + (1− p)µn | p ∈ [0, 1]}

where µn = (1− 0.5n)δh + 0.5nδt. Notice that the union ∪n{pδt + (1− p)µn | p ∈
[0, 1]} does not contain the distribution δh. Therefore, a topological closure is

necessary to obtain the expected equality r∗ = {pδt + (1 − p)δh | p ∈ [0, 1]},
which states that r∗ indeed behaves in the same way as the nondeterministic

choice between t and h. In other words, the topological closure ensures that we

6.1. SEQUENTIAL PROBABILISTIC PROGRAMS 119

do not differentiate between a program that terminates with probability 1 (such

as the assignment x := h) and a program that terminates with a probability that

“converges” to 1 (such as the program x := t; while(x 6= h){x := h⊕0.5t}) . �

We introduce tests, that are used for conditional constructs, following the idea

adopted in algebras. We define a test to be a map b : Ω → PDΩ such that

b(s) ⊆ {δs}. Indeed, an “if statement” is modelled algebraically as b · r+ (¬b) · r′.
The sub-expression b · r(s) still evaluates to ∅ if b(s) is empty, but care should

be taken to avoid expressions such as r · b (if f is a deterministic refinement of b,

then f(s′′)(s′) may have no meaning if b(s′′) = ∅).
We denote by H1Ω the set of tests together with the set of probabilistic pro-

grams. The refinement order vH is extended to H1Ω in a straightforward manner.

For every test b, we have b vH δ, hence, we refer to tests as subidentities. We refer

to the elements of H1Ω as programs, unless otherwise specified.

Definition 6.1.4. A structure E = (E, 7→,#, λ,Φ) is a bundle event structure

with implicit probability (i.e. an ipBES) if

- λ : E → H1Ω, i.e. λ labels event with (atomic) probabilistic programs.

- Φ ⊆ PΩ such that, for every x ∈ Φ, we have x#x.

The finite state space Ω of the programs used as labels is fixed.

The intuition behind this definition is that, if a program fragment is considered

atomic (i.e. it will happen without interferences from an environment), then it is

the label of an event. Hence, we need to distinguish all atomic program fragments

when translating a program into a bundle event structure. Atomic programs can

be achieved by creating a construct that forces atomicity. Examples of such a

technique include the “atomic bracket” used by Jones and Hayes [24]. In this

chapter and the next, we will state which actions are atomic rather than using

such a device.

In Chapter 5, the set ΦE contained events that are pairwise in conflict. In

Definition 6.1.4, ΦE contains sets of events, and each x ∈ ΦE is seen as a (local)

120 CHAPTER 6. BES WITH IMPLICIT PROBABILITY

set of final events. The intuition is that, in the sequential composition E ·F , each

of these sets x ∈ ΦE will become a bundle set pointing to all initial events of F .

This new definition is mainly used to simplify the construction of the operation

(‖), which is necessary to obtain the associativity with respect to the t-simulation

of Section 6.5.

6.2 Probabilistic scheduler on ipBES

To obtain a sequential equivalence on bundle event structures with implicit

probability, we define the notion of scheduler that will provide a distribution on

states, from maximal execution traces.

Firstly, we need the notion of subdistributions [48]. A subdistribution is a map

µ : Ω → [0, 1] such that
∑

s∈Ω µ(s) ≤ 1. The set of subdistributions over Ω is

denoted by D≤1Ω.

Definition 6.2.1. A scheduler σ on an ipBES E is a map

σ : T (E)→ [(E × Ω) ⇁ D≤1Ω]

such that for all α ∈ T (E):

1. dom(σ(α)) = {(e, s) | αe ∈ T (E) ∧ s ∈ Ω},

2. there exists a function w : E × Ω → [0, 1] such that, for every (e, s) ∈
dom(σ(α)), σ(α)(e, s) = w(e, s)µ for some µ ∈ λ(e)(s).

3. for every s ∈ Ω, we have
∑

(e,s)∈dom(σ(α))w(e, s) = 1,

4. for every (e, s) ∈ dom(σ(α)), if λ(e) = ∅, then w(e, s) = 0 and σ(α)(e, s) = 0

(the subdistribution that evaluates to 0 everywhere).

The set of all schedulers on E is denoted by Sched(E).

Property 1 says that we may schedule an event if it does not depend on un-

scheduled events.

6.2. PROBABILISTIC SCHEDULER ON IPBES 121

Property 2 states that, given a trace α, the scheduler will resolve the nondeter-

minism between events enabled after α, using the weight function w. This may

include immediate conflicts (Chapter 5 Definition 5.1.2) or interleaving of concur-

rent events. Moreover, the scheduler has access to the current program state when

resolving that nondeterminism. That is, w(e, s) is the probability that the event

e is scheduled, knowing that the program state is s. If the event e is successfully

scheduled, then the scheduler performs a last choice of distribution, say µ from

λ(e), to generate the next state of the program.

Property 3 ensures that when the state s is known, then the choice between the

events, enabled after the trace α, is indeed probabilistic.

Property 4 says that a scheduler is forced to choose events whose label does not

evaluate to the empty set, at the current state of the program. This is particularly

important when the program contains conditionals and the label of an event is a

test. A scheduler is forced to choose the branch whose test holds. If two tests

hold at state s, then a branch is chosen probabilistically.

The motivation behind Property 4 is to ensure that, for every trace α such

that dom(α) 6= ∅, and every state s ∈ Ω, we have

∑
(e,s)∈dom(σ(α))

σ(α)(e, s) ∈ DΩ

i.e. that sum is indeed a distribution. To ensure that a scheduler satisfying that

condition can be constructed, we restrict ourselves to feasible event structures.

Given an element r ∈ H1Ω, we write dom(r) = {s | r(s) 6= ∅}.

Definition 6.2.2. A BES E is feasible if for every α ∈ T (E) such that dom(α) 6=
∅, we have ∪αe∈T (E)dom(λ(e)) = Ω.

A consequence of this assumption is that an “if clause” always needs to have a

corresponding “else clause”.

Example 6.2.3. The bundle event structure with implicit probability associated

to the program if x = h then x = h⊕0.5t else skip fi is directly translated as

122 CHAPTER 6. BES WITH IMPLICIT PROBABILITY

bh_

��

¬bh_

��
e # e′

Figure 6.1: A simple example of bundle event structure with implicit probability.

the bundle event structure of Figure 6.1. The construct skip is the ineffectual

program interpreted as δ. The events bh and ¬bh are respectively labelled by the

subidentities associated to the tests x = h and x 6= h. The event e is labelled

by r and e′ is labelled by δ. In this example, the checking of the test x = h

and the execution of the probabilistic assignment r are both atomic. The only

scheduler of this event structure satisfies σ(∅)(bh, h) = δh, σ(∅)(bh, t) = 0 and

σ(bh)(e, s) = 0.5δh + 0.5δt. �

6.3 Computation function on ipBES

We define the runs of a bundle event structure E against a given scheduler σ

as follows. Let Tn(E) be the set of traces of length n ∈ N. Let σ ∈ Sched(E),

the computation sequence of E with respect to σ is a sequence of partial functions

ϕn : T (E) ⇁ D≤1Ω such that dom(ϕn) = ∪k≤nTn(E)

1. ϕ0(∅) = δs where s is the initial state,

2. if αe ∈ Tn+1(E) then

ϕn+1(αe)(s) =
∑
t∈Ω

σ(α)(e, t)(s)ϕn(α)(t)

and ϕn+1(αe) = ϕn(αe) otherwise.

In this inductive construction, the initial term ϕ0 is defined using a given initial

state s. Therefore, all subsequent terms also depend on s. When emphasis about

s is needed, we write ϕn,s instead of ϕn. This notation is mainly used when

considering sequential compositions.

6.3. COMPUTATION FUNCTION ON IPBES 123

The complete run of E with respect to σ is the limit ϕ of that sequence i.e.

ϕ = ∪nϕn which exists because ϕn defines a sequence of partial functions such

that ϕn is the restriction of ϕn+1 on dom(ϕn). Since we consider finite traces only,

we have dom(ϕ) = T (E). The behaviour of E with respect to σ from the initial

state s is defined by the sum

σs(E) =
∑

α∈Tmax(E)

ϕ(α),

where Tmax(E) is the set of finite, maximal (with respect to the prefix ordering E)

traces of E .

Proposition 6.3.1. For every bundle event structure E, scheduler σ ∈ Sched(E)

and initial state s, σs(E) is a subdistribution.

Proof. Let ϕ be the complete run of E with respect to a given scheduler σ. We

show by induction on n that

µn(Ω) =
∑

α∈Tn∪(Tmax∩dom(ϕn))

ϕ(α)(Ω) =
∑
t∈Ω

∑
α∈Tn∪(Tmax∩dom(ϕn))

ϕ(α)(t) = 1

The set Tn contains all traces of length n and the set Tmax ∩ dom(ϕn) contains

maximal traces that may be of size less than n.

For the base case n = 0, we have µ0(Ω) = ϕ(∅)(Ω) = δs(Ω) = 1, where s is the

initial state. Assume the induction hypothesis µn(Ω) = 1. We have

µn+1(Ω) =
∑

α∈Tn+1∪(Tmax∩dom(ϕn+1)

ϕ(α)(Ω)

=
∑

α∈Tn+1

ϕ(α)(Ω) +
∑

α∈Tmax∩dom(ϕn)

ϕ(α)(Ω)

=
∑

αe∈Tn+1

∑
t∈Ω

σ(α)(e, t)(Ω)ϕ(α)(t) +
∑

α∈Tmax∩dom(ϕn)

ϕ(α)(Ω)

=
∑

α∈Tn\Tmax

∑
αe∈T

∑
t∈Ω

σ(α)(e, t)(Ω)ϕ(α)(t) +
∑

α∈Tmax∩dom(ϕn)

ϕ(α)(Ω)

124 CHAPTER 6. BES WITH IMPLICIT PROBABILITY

=
∑

α∈Tn\Tmax

 ∑
(e,t)∈dom(σ(α))

σ(α)(e, t)(Ω)

ϕ(α)(t) +
∑

α∈Tmax∩dom(ϕn)

ϕ(α)(Ω)

=
∑

α∈Tn\Tmax

ϕ(α)(Ω) +
∑

Tmax∩dom(ϕn)

ϕ(α)(Ω)

= µn(Ω) = 1.

The square-bracketed term equals 1 because of Properties 2 and 3 of the scheduler

σ. Therefore, each partial computation ϕn is a probability distribution when

restricted on Tn ∪ (Tmax ∩ dom(ϕn)), and hence the limit ϕ is a subdistribution

on Tmax. It does not necessarily add up to 1 because elements of Tmax are finite

maximal traces only and non-termination will decrease that quantity. 2 �

As a consequence of this proposition, we will denote by Sched1(E) the set of

schedulers of E such that, for every initial state s, σs(E) is a distribution. A

scheduler from Sched1(E) will generate a sequential behaviour that terminates

with probability 1.

Example 6.3.2. Let us reconsider the program r · (δ + r). In this program,

r is an atomic action, so the associated event structure is again constructed in

a straightforward manner. Let us denote by ri the event associated to the ith

occurrence of r (i ∈ {1, 2}). A scheduler σ on the event structure associated to

r · (δ + r) is characterised by the weight function w of Example 6.1.3. In fact we

can write σ(r1)(r1, s) = (1− w(s))[0.5δh + 0.5δt]. �

6.4 Sequential semantics from ipBES

In this section, the sequential behaviour of a bundle event structure with

implicit probability is computed as a sequential probabilistic program from H1Ω.

2We assume that the empty sum is 0. This occurs when there are no maximal traces.

6.4. SEQUENTIAL SEMANTICS FROM IPBES 125

6.4.1 Functional Interpretation of ipBES

We construct a semantics map [[]] that transforms each event structure to

an element of H1Ω. Recall that H1Ω can express probabilistic programs that

terminate with probability 1. Hence, this thesis is restricted to partial correctness.

Given a feasible event structure E , we define

[[E]](s) = conv{σs(E) | σ ∈ Sched1(E)}

where conv(A) (resp. A) is the convex (resp. topological) closure of the set of

distributions A. We restrict ourselves to feasible and terminating event structures,

i.e., such that Sched1(E) is non-empty (except for the special element 0 defined

below, which will not be interpreted sequentially).

Definition 6.4.1. Let E ,F be two feasible event structures, we say that E (se-

quentially) refines F , denoted by E v F , if [[E]] vH [[F]] holds in H1Ω.

The relation v is indeed a preorder on bundle event structure with implicit

probabilities. Whilst this order is not a congruence, it is used to specify the

desired sequential correctness using event structures.

Recall that the operations (+, ·, ∗) and constants 0, 1 have been defined in

Chapter 3 Section 3.3. We provide a simplified version as follows.

- The algebraic constant 1 is interpreted as (e, ∅, ∅, {(e, 1)}, {e}) where the 1

in the expression (e, 1) is the identity of H1Ω.

- The algebraic constant 0 is interpreted as (∅, ∅, ∅, ∅, ∅).

- Each atomic action r ∈ H1Ω is associated to ({e}, ∅, ∅, {(e, r)}, {e}). This

event structure is again denoted by r.

- The nondeterministic choice between E and F is constructed in a similar way

as Definition 3.3.1, that is,

E + F = (E ∪ F,#E+F , 7→E ∪ 7→F , λE ∪ λF , {x ∪ y | x ∈ ΦE ∧ y ∈ ΦF})

126 CHAPTER 6. BES WITH IMPLICIT PROBABILITY

where #E+F = [∪x∈ΦE∧yΦF sym(x× y)]∪#E ∪#F ∪ sym(in(E)× in(F)) and

sym is again the symmetric closure of a relation on E ∪ F . The square-

bracketed set ensures that every final event in E is in conflict with every final

event in F . This ensures that, if z ∈ ΦE+F , then z#z.

- The sequential composition is

E·F = (E∪F,#E∪#F , 7→E ∪ 7→F ∪{x 7→ e | e ∈ in(F)∧x ∈ ΦE}, λE∪λF ,ΦF).

- The concurrent composition of E and F is

E‖F = (E ∪ F,#E ∪#F , 7→E ∪ 7→F , λE ∪ λF ,ΦE ∪ΦF)

In the application of each of these binary operations, we assume that the set

of events of the operands are again disjoint.

Example 6.4.2. Given a program r1, r2, r3 ∈ H1Ω, the event structure associate

to (r1‖r2) + r3 is

({e1, e2, e3}, sym({(ei, e3) | i ∈ {1, 2}}), ∅, λ, {{ei, e3} | i ∈ {1, 2}})

where λ(ei) = ri. Notice that e1#e3 and e2#e3, but e1 and e2 are concurrent. This

generates a “confusion” from the point of view of the previous chapter but, that

is not a problem in this variant of bundle event structures because probabilities

are associated to labels instead of clusters. �

These changes ensure that all events of a bundle event structure with implicit

probability are labelled with an element of H1Ω. This is necessary when con-

structing schedulers. Notice that, for every bundle event structure E , 0 + E = E ,

0·E = E ·0 = E , and in particular, 0·1 = 1. The constant 0 was only introduced to

have a bottom element on the set of bundle event structures with implicit proba-

bilities, rather than to obtain all equations valid in probabilistic concurrent Kleene

algebra. It will again ensures that we can compute the Kleene star inductively

6.4. SEQUENTIAL SEMANTICS FROM IPBES 127

from the least element. Moreover, 0 will disappear in mixed expressions because

of these properties. The important algebraic properties that are necessary for the

rely/guarantee setting of the next section are proven in Proposition 6.5.4.

We now show that the operations (+, ·) are preserved by the map [[]]. The case

of the binary Kleene star (∗) is proven in Proposition 6.5.7.

Proposition 6.4.3. Let E ,F be non-zero, feasible and terminating event struc-

tures, for every operation ◦ ∈ {+, ·}, we have [[E ◦ F]] = [[E]] ◦ [[F]].

Proof. For the case of nondeterminism (+), let s ∈ Ω be the initial state and

µ ∈ [[E+F]](s). Let us firstly assume that µ = σs(E) for some σ ∈ Sched1(E+F).

By definition of the sum E +F , the set of events E and F are disjoint, so we can

define two schedulers σE ∈ Sched1(E) and σF ∈ Sched1(F) as follows. Let

α ∈ T (E + F) and (e, t) ∈ dom(σ(α)), we define

σE(α)(e, t) =

 σ(α)(e, t) if α ∈ T (E) \ {∅},
σ(∅)(e,t)

pEt
if α = ∅

where pEt =
∑

e′∈in(E) w(e, t), w is the weight function associated to σ at the

trace ∅ and s is the initial state. The real number pEt is just a normalisation

constant required by Property 3 in the definition of schedulers. 3 The scheduler

σF is similarly defined. It follows directly from these definition of σE and σF that

σ(∅)(e, t) = pEt σ(∅)(e, t) + pFt σ(∅)(e, t) where pEt + pFt = 1 because of Property 3.

Hence, σs(E) = pEsσ
E
s (E) + pFs σ

F
s (F) i.e. σs(E) ∈ [[E]] + [[F]]. Since [[E]] + [[F]] is

convex and topologically closed, we deduce that [[E + F]](s) ⊆ ([[E]] + [[F]])(s).

For the converse inclusion ([[E]] + [[F]])(s) ⊆ [[E + F]](s), notice that conv(A) =

conv(A) holds for every subset A ⊆ RΩ. If we write A = {σs(E) | σ ∈ Sched1(E)}
and B = {σs(F) | σ ∈ Sched1(F)}, then

([[E]] + [[F]])(s) = conv(conv(A) ∪ conv(B)) = conv(A ∪B)

But it is clear that A ⊆ [[E + F]](s) (a scheduler that does not choose F is

3If pEt = 0, then σ ∈ Sched1(F).

128 CHAPTER 6. BES WITH IMPLICIT PROBABILITY

possible because E is feasible) and B ⊆ [[E + F]](s). Therefore, ([[E]] + [[F]])(s) =

conv(A ∪B) ⊆ [[E +F]](s) because the last set is convex and topologically closed.

The sequential composition is proven using a similar reasoning. Let E ,F be

two bundle event structures satisfying the hypothesis, and µ ∈ [[E ·F]](s) for some

initial state s ∈ Ω. Firstly, let us assume that there is a scheduler σ on E · F
such that µ = σs(E ·F). Since schedulers are inductively constructed, there exists

σE ∈ Sched(E) and σF ∈ Sched(F) such that

σ(α)(e, t) =

 σE(α)(e, t) if αe ∈ T (E),

σF(α′′)(e, t) if α = α′α′′ and (α′, α′′) ∈ Tmax(E)× T (F).

Let us denote by ϕn and ϕEn (resp. ϕFn,t) the computation sequences associated to

the respective schedulers σ and σE (resp. σF) from the initial state s (resp. t). It

follows directly that ϕn(α) = ϕEn(α) for every α ∈ Tn(E). If α′ ∈ Tmax(E) ∩ Tn(E)

and e ∈ in(F) then, for every state u ∈ Ω,

ϕn+1(α′e)(u) =
∑
t∈Ω

σF(∅)(e, t)(u)ϕE(α′)(t).

Similarly, we have

ϕn+1(α′ee′)(u) =
∑
t′∈Ω

σF(e)(e, t′)(u)

[∑
t∈Ω

σF(∅)(e, t)(t′)ϕE(α′)(t)

]

=
∑
t∈Ω

[∑
t′∈Ω

σF(e)(e, t′)(u)σF(∅)(e, t)(t′)

]
ϕE(α′)(t)

=
∑
t∈Ω

ϕF2,t(u)ϕE(α′)(t).

By simple induction on the length of α′′, we deduce that

ϕ(α′α′′)(u) =
∑
t∈Ω

ϕFt (α′′)(u)ϕE(α′)(t),

6.5. SIMULATION FOR IPBES WITH TESTS 129

where ϕFt is the complete run obtained from the sequence ϕFn,t
4. It follows by

definition of the sequential composition on H1Ω (Equation 6.3), that

σs(E)(u) =
∑
t∈Ω

σFt (F)(u)σEs (E)(t) ∈ [[E]] · [[F]](s),

for every state u ∈ Ω. Secondly, since [[E]] · [[F]](s) is upclosed and topologically

closed, we deduce that [[E · F]](s) ⊆ [[E]] · [[F]](s). Conversely, if µ ∈ [[E]] · [[F]](s),

then either µ(u) =
∑

t∈Ω σ
F
t (F)(u)σEs (E)(t) or µ is in the closure of the set of

these distributions. Either way, the closure properties of [[E · F]](s) imply that

[[E]] · [[F]](s) ⊆ [[E · F]](s). �

6.5 Simulation for ipBES with tests

The simulation order constructed in this subsection remedies to the congruence

problem of the sequential refinement given in Definition 6.4.1.

We say that a trace α is weakly maximal if it is maximal or there exist some

events e1, . . . , en such that αe1 · · · en ∈ Tmax(E) and δ vH λ(ei) for every 1 ≤ i ≤ n.

Definition 6.5.1. A function f : T (E)→ T (F) is called a t-simulation:

- if f(∅) = ∅ and f−1(β) is a finite set for every β ∈ T (F),

- if αe ∈ T (E) then either:

– f(αe) = f(α) and λ(e) vH δ holds in H1Ω,

– or there exists e′ ∈ F such that λ(e) vH λ(e′) and f(αe) = f(α)e′.

- if αe is maximal in T (E) then f(αe) = f(α)e′, for some e′ (with λ(e) vH
λ(e′)), and f(αe) is weakly maximal in T (F).

We say that E is simulated by F , written E vsim F , if there exists a simulation

from E to F . The equivalence generated by this preorder is denoted ≡sim.

4Remind that ϕn,t is the computation sequence that starts with ϕ0,t(∅) = δt.

130 CHAPTER 6. BES WITH IMPLICIT PROBABILITY

Notice that if f(α) is maximal then α is necessarily maximal.

The notion of t-simulation has been designed to correctly simulate event struc-

tures in presence of tests. For instance, given a test b, the simulation δ vsim (b+¬b)
fails. A t-simulation is a total function and it does not allow the removal of “inter-

nal” events labelled with sub-identities during a refinement step . The finiteness

condition on f−1(β) ensures that we do not refine a terminating specification with

a diverging implementation. For instance, without that constraint, we may write

the refinement

if (0 == 1) then s := 0 else[if (0 == 1) then s := 0 else[. . .]] vsim s := 0.

This should not hold because the left hand side is a non-terminating program and

cannot refine the terminating assignment s := 0.

A t-simulation is used to compare bundle event structures without looking in

details at the labels of events. It can be seen as a refinement order on the higher

level structure of a concurrent program. Once a sequential behaviour has to be

checked, we use the previously defined functional equivalence (Definition 6.4.1)

on event structures with implicit probabilities.

Example 6.5.2. A t-simulation from b + ¬b · r to 1 + r is given by the dotted

arrow in the following diagram:

∅

�� ""

// ∅

�� ��
eb 11e¬b

��

44

e1 er

e¬ber

33

This shows the refinement of a nondeterministic choice with a conditional. Notice

that t-simulations allow the introduction of subidentities. �

Lemma 6.5.3. The t-simulation relation vsim is a preorder.

Proof. Reflexivity follows from the identity function and transitivity is obtained

6.5. SIMULATION FOR IPBES WITH TESTS 131

by composing t-simulation which will generate a new t-simulation. Notice that

care should be taken with respect to the third property of a t-simulation. If

f : T (E) → T (F), g : T (F) → T (G) are t-simulations, αe ∈ Tmax(E) and

λ(e) vH δ, then f(αe) = f(α)e′ for some e′ ∈ F such that λ(e) vH λ(e′). If

λ(e′) vH δ, then it is possible that g(f(α)e′) = g(f(α)). However, since f(α)e′

is weakly maximal, g(f(α)e′) is also weakly maximal and we can find an event

e′′ ∈ G such that f(α)e′′ is weakly maximal and λ(e′) vH λ(e′′). We then map αe

to g(f(α))e′′ in the generated t-simulation. �

Proposition 6.5.4. If E ,F ,G are bundle event structures with implicit probabil-

ity, then

E‖F ≡sim F‖E (6.4)

E‖(F‖G) ≡sim (E‖F)‖G (6.5)

E vsim F ⇒ E‖G vsim F‖G (6.6)

E vsim F ⇒ G · E vsim G · F (6.7)

Proof. The constructions E‖F and F‖E result in the same event structure and

similarly for the associativity.

For the Implication 6.6, let f : T (E) → T (F) be a t-simulation. Let us con-

struct a t-simulation g : T (E‖G) → T (F‖G) inductively. We set g(∅) = ∅. Let

α ∈ T (E‖G) and e ∈ E ∪ G such that αe is a trace of E‖G. We write α|E the

restriction of α to the events occurring in E . The inductive definition of g is:

g(αe) =


g(α)e if e ∈ G,
g(α) if e ∈ E and f(α|Ee) = f(α|E),

g(α)e′ if e ∈ E and f(α|Ee) = f(α|E)e′

Since the set of events of E and G are disjoint, the cases in the above definition of

g are disjoint. That is, g is indeed a function and it satisfies the second property

of a t-simulation. The last property is clear because if αe is maximal in T (E‖G),

132 CHAPTER 6. BES WITH IMPLICIT PROBABILITY

then either α|E is maximal in E and α|Ge is maximal in T (G), or α|Ee is maximal

in T (E) and α|G is maximal in T (G). In both cases, g(αe) = g(α)e′ for some

e′ ∈ E ∪G and g(αe) is weakly maximal in T (F‖G).

For the last case, let f be a t-simulation from E to F . It is clear that the function

g : T (G · E)→ T (G · F), such that g(α) = α|Gf(α|E) is a t-simulation. �

We now prove the main result of this chapter, which is the backbone of our

probabilistic rely/guarantee calculus.

Theorem 6.5.5. Let E and F be feasible and terminating, if E vsim F then

E v F .

Proof. Let f be a t-simulation from E to F , s ∈ Ω be the initial state, σ ∈
Sched1(E) and ϕ is the complete run of σ on E from s. We have to generate a

scheduler τ ∈ Sched1(F) such that the measures σs(E) and τs(F) are equal i.e.

they produce the same value for every state u ∈ Ω.

For every β ∈ T (F), we define f−1
min(β) to be the set of minimal traces in f−1(β),

that is,

f−1
min(β) = {α | ∀e ∈ E : α = α′e ∈ f−1(β)⇒ α′ /∈ f−1(β)}.

We now construct the scheduler τ . Let β ∈ T (F). We consider two cases:

- If f−1(β) = ∅ then we set τ(β)(e, t) = 0 ∈ D≤1Ω (the subdistribution that

produces 0 on every state), except for some particular maximal traces that

are handled in (†) below.

- Otherwise, given a state t ∈ Ω, we define a normalisation factor

Cβ,t =
∑

α∈f−1
min(β)

ϕ(α)(t),

6.5. SIMULATION FOR IPBES WITH TESTS 133

and we set 5

τ(β)(e, t) =
1

Cβ,t

 ∑
α∈f−1

min(β)

ϕ(α)(t)
∑

αe1···ek∈f−1
min(βe)

k∏
i=1

wi−1(ei, t)µk


where wi−1(ei, t) is the quantity such that σ(αe1 · · · ei−1)(ei, t) = wi−1(ei)µ, and

µ ∈ λ(ei) (if λ(ei)(t) is empty then wi−1(ei, t) = 0). The distribution µk is chosen

by σ from λ(ek)(t), when scheduling ek.

Firstly, we show that τ is indeed a scheduler on F . Definition 6.2.1 Property 1

is clear. Let us show the other properties. Let βe ∈ T (E) and let W : E×Ω→ R
be the weight function such that

W (e, t) =
1

Cβ,t

∑
α∈f−1

min(β)

ϕ(α)(t)
∑

αe1···ek∈f−1
min(βe)

k∏
i=1

wi−1(ei, t)

Indeed, µ = τ(β)(e,t)
W (e,t)

∈ λ(e)(t) 6 because λ(e)(t) is convex and for each αe1 · · · ek ∈
f−1

min(βe), µk ∈ λ(ek)(t) ⊆ λ(e)(t). Hence τ(β)(e) = Wefe and τ satisfies the

Definition 6.2.1 Property 2. As for Definition 6.2.1 Property 3, let s ∈ Ω and let

us compute the quantity

V (t) =
∑

(e,t)∈dom(τ(β))

W (e, t),

5Notice if Cβ,t = 0 for some t ∈ Ω then ϕ(α)(t) = 0 for every α ∈ f−1
min(β). In other words, none of these α

will be scheduled at all. Hence, β need not be scheduled either.
6The case W (e, t) = 0 can be adapted easily because the numerator in the definition of τ(β)(e) is also 0. For

instance, we can assume that 0
0

= 1.

134 CHAPTER 6. BES WITH IMPLICIT PROBABILITY

α
w0(e′1,t)

{{

w0(e1,t)

##

// β

W (e,t)

��
αe′1 11αe1

w1(e′2,t)

||

w1(e2,t)

""

77

e

αe1e
′
2

55

αe1e2

==

we have V (t) = w0(e′1, t) + w0(e1, t)w1(e′2, t)w0(e1, t)w1(e2, t) = 1 because
w1(e′2, t) +w1(e2, t) = 1 and w0(e′1, t) +w0(e1, t) = 1 (Definition 6.2.1 Property 3).

Figure 6.2: An example showing that V (t) = 1

for a fixed t ∈ Ω. Let us write dom(β) = {e | βe ∈ T (F)}.

V (t) =
∑

(e,t)∈dom(τ(β))

1

Cβ,t

∑
α∈f−1

min(β)

ϕ(α)(t)
∑

αe1···ek∈f−1
min(βe)

k∏
i=1

wi−1(ei, t)

=
1

Cβ,t

∑
α∈f−1

min(β)

ϕ(α)(t)
∑

(e,t)∈dom(τ(β))

∑
αe1···ek∈f−1

min(βe)

k∏
i=1

wi−1(ei, t)

=
1

Cβ,t

∑
α∈f−1

min(β)

ϕ(α)(t)
∑

αe1···ek∈∪e∈dom(β)f
−1
min(βe)

k∏
i=1

wi−1(ei, t)

From the second to the third expression, the two rightmost sums were merged

into a single one because f−1
min(βe)∩f−1(βe′) = ∅ (f is a function). It follows from

Definition 6.2.1 Property 3, applied on the weight wi−1(ei, t) of σ, that

∑
αe1···ek∈∪e∈dom(β)f

−1
min(βe)

k∏
i=1

wi−1(ei, s) = 1

and hence V = 1 (c.f. Figure 6.2 for a concrete example). Definition 6.2.1 Property

4 is clear because if λ(e)(t) = ∅, then the coefficient of σ(αe1 · · · ek−1)(ek, t) is 0

because λ(ek)(t) = ∅. Hence, the product is also 0.

Secondly, let ψ be the complete run of F with respect to τ . We now show by

6.5. SIMULATION FOR IPBES WITH TESTS 135

induction on β that

ψ(β) =
∑

α∈f−1
min(β)

ϕ(α) = Cβ,t, (6.8)

where the empty sum evaluates to the identically zero distribution. The base case

is clear because ψ(∅) = δs = φ(∅) where s is the initial state. Let us assume the

above identity for β ∈ T (F) and let e ∈ F such that βe = T (E) and f−1
min(βe) 6= ∅.

By definition of ψ, if u ∈ Ω, we have:

ψ(βe)(u) =
∑
t∈Ω

1

Cβ,t

∑
α∈f−1

min(β)

ϕ(α)(t)
∑

αe1···ek∈f−1
min(βe)

k∏
i=1

wi−1(ei, t)µk(u)ψ(β)(t)

=
∑
t∈Ω

∑
α∈f−1

min(β)

∑
αe1···ek∈f−1

min(βe)

k∏
i=1

wi−1(ei, t)µk(u)ϕ(α)(t)

=
∑

α∈f−1
min(β)

∑
αe1···ek∈f−1

min(βe)

∑
t∈Ω

k∏
i=1

wi−1(ei, t)µk(u)ϕ(α)(t)

=
∑

α∈f−1
min(β)

∑
αe1···ek∈f−1

min(βe)

∑
t∈Ω

∑
t′∈Ω

w0(e1, t
′)δt′(t)

[
k∏
i=2

wi−1(ei, t)µk(u)

]
ϕ(α)(t′)

=
∑

α∈f−1
min(β)

∑
αe1···ek∈f−1

min(βe)

∑
t∈Ω

k∏
i=2

wi−1(ei, t)µk(u)ϕ(αe1)(t)

=
∑

α∈f−1
min(β)

∑
αe1···ek∈f−1

min(βe)

∑
t∈Ω

∑
t′∈Ω

w1(e2, t
′)δt′(t)

[
k∏
i=3

wi−1(ei, t)µk(u)

]
ϕ(αe1)(t′)

= · · · .

By continuing the above reasoning for all ei (induction), i ≤ k − 1, we obtain

ψ(βe)(u) =
∑

α∈f−1
min(β)

∑
αe1···ek∈f−1

min(βe)

∑
t∈Ω

wk−1(ek, t)µk(u)ϕ(αe1 · · · ek−1)(t)

=
∑

α∈f−1
min(β)

∑
αe1···ek∈f−1

min(βe)

ϕ(αe1 · · · ek)(u)

136 CHAPTER 6. BES WITH IMPLICIT PROBABILITY

Hence,

ψ(βe)(u) =
∑

α′∈f−1
min(βe)

ϕ(α′)(u).

(†) We finally compute the sum τs(F) =
∑

β∈Tmax(F) ψ(β). Notice firstly that

τ may not schedule some traces of F . In particular, the third property in the

definition of simulation implies that a maximal element of T (E) may be mapped

to a weakly maximal element of T (F). Hence, we need to extend the scheduler τ

so that it is non-zero for exactly one maximal element from that weakly maximal

trace. More precisely, if β′ = f(α) is weakly maximal for some maximal trace

α ∈ Tmax(E), then there exists a sequence e1, . . . , en such that β = β′e1 · · · en ∈
Tmax(F) and δ vH λ(ei). We extend τ such that τ(β′e1 · · · ei)(ei+1, t) = δt. This

implies that ψ(β)(t) = ψ(β′)(t). The other case is that β is maximal and belongs

to the image of f . In both cases, we have

ψ(β)(t) =
∑
α∈Aβ

ϕ(α)(t),

where Aβ = f−1
min(β) if β is in the image of f , or Aβ = f−1

min(β′) if there is such a

β′ as above, otherwise, Aβ = ∅. Thus, Aβ contains maximal traces only (if it is

not empty). Since, f is a total function, the set {Aβ | β ∈ Tmax(F)} is a partition

of Tmax(E) and we have

∑
β∈Tmax(E)

ψ(β)(t) =
∑

β∈Tmax(E)

∑
α∈Aβ

ϕ(α)(t) =
∑

α∈Tmax(E)

ϕ(α)(t),

i.e., we obtain τs(F) = σs(E). �

Example 6.5.6. Let us reconsider the simulation of Example 6.5.2. By definition,

the unique scheduler σ on b+¬b · r is characterised by the weight function w such

that, w(∅)(eb, t) = 1 if b(t) holds and 0 otherwise. From the illustrated simulation

f , we have f−1
min(er) = {e¬ber} and hence, τ(∅)(er, t) = w(e¬b, t)µ where µ ∈ r(t)

6.5. SIMULATION FOR IPBES WITH TESTS 137

is the distribution chosen by σ. Similarly, for τ(∅)(eb, t). �

We now show that the binary Kleene star is preserved by the semantics map.

Proposition 6.5.7. For every non-zero, feasible and terminating event structure

E and F , we have [[E ∗ F]] = [[E]] ∗ [[F]].

Proof. For the binary Kleene product, since [[E]] ∗ [[F]] is the least fixed point of

f(X) = [[F]] + [[E]] ·X in H1Ω, 7 and E ∗ F satisfies

F + E · (E ∗ F) ≡sim E ∗ F

by construction of the sequences of bundle event structures defining E ∗F . There-

fore, Theorem 6.5.5 and Proposition 6.4.3 imply that [[E]] ∗ [[F]] vH [[E ∗ F]].

Conversely, let µ ∈ [[E ∗ F]](s) for some initial state s ∈ Ω. As in the case of

Proposition 6.4.3, we assume that µ is computed from a scheduler σ on E ∗ F .

We construct a sequence of schedulers σn that “converges” to σ as follows. We

set σ0 to be any element of Sched1(F), σ1(α) = σ(α) if α is a trace of F or

E , otherwise, we set σ1(α′α′′) = σ0(α′′) where α′ ∈ Tmax(E) (notice that σ0 is

applied to a different copy of F but this is not important as event names can be

abstracted.). Inductively, we define

σn(α) =


σ(α) if α ∈ T (F + E · (. . . E · (F + E))︸ ︷︷ ︸

n occurrences of E

),

σ0(α|F) otherwise

Again, σ0 is applied to the n+ 1th copy of F . Indeed, we have

σn ∈ Sched1(F + E · (· · · E · (F + E · F))︸ ︷︷ ︸
n occurrences of E

)

by construction. On the one hand, the sequence of distributions σn,s(E) forms a

7Notice that the least fixed point is in H1Ω but not H1Ω. The reason is that [[E]] and [[F]] are elements of H1Ω
because of feasibility and termination.

138 CHAPTER 6. BES WITH IMPLICIT PROBABILITY

subset of [[E]] ∗ [[F]](s). On the other hand, let u ∈ Ω and let us denote

T≤n = T (F + E · (. . . E · (F + E · F))︸ ︷︷ ︸
n occurrences of E

).

If we denote by ϕn the complete run of σn on E ∗ F , then we have

|σs(E)(u)− σn,s(α)(u)| =

∣∣∣∣∣∣
∑

α∈Tmax(E∗F)

ϕ(α)(u)−
∑

α∈Tn∩Tmax(E∗F)

ϕn(α)(u)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

α∈Tmax(E∗F)\T≤n−1

(ϕ(α)(u)− ϕn(α)(u))

∣∣∣∣∣∣
≤

∑
α∈Tmax(E∗F)\T≤n−1

|ϕ(α)(u)− ϕn(α)(u)|

The set Tmax(E ∗F)\T≤n−1 is strictly decreasing, when n increases, because every

finite trace of E ∗ F belongs to some set T≤k. Therefore, the last sum above is

decreasing to 0. Hence, since Ω is a finite set, the sequence σn,s(E ∗ F) converges

to σs(E ∗ F) in DΩ. Since [[E]] ∗ [[F]](s) is topologically closed, we deduce that

σs(E) ∈ [[E]] ∗ [[F]](s). Therefore, [[E ∗ F]] vH [[E]] ∗ [[F]]. �

The main properties of t-simulation are summarised in the following proposi-

tion.

Proposition 6.5.8. Let r, r′ ∈ H1Ω be two atomic programs and let E ,F be two

bundle event structures with implicit probability, then

r∗‖r∗ vsim r∗ (6.9)

r∗‖r′ vsim r ∗ (r′ · r∗) (6.10)

r∗‖(b · E + c · F) vsim r ∗ (b · (r∗‖E) (6.11)

r∗‖(r′ · E) vsim r ∗ (r′ · (r∗‖E)) (6.12)

where r∗ = r ∗ 1.

6.5. SIMULATION FOR IPBES WITH TESTS 139

∅

���� ((

// ∅

�� ��
δ

��

00

r ..

���� %%

r′ //

�� ��

r′

�� ��

r

����
δr′

00

rδ

��

00

rr ..

�� �� ��

rr′ 11

�� ��

r′δ r′r

�� ��

r′δ r′r

�� ��

rr′

����

rr

����
rδr′

11

rrδ

��

22

rrr 00

��

rrr′ ..

��

rr′δ rr′r

��

r′rδ r′rr

��

r′rδ rr′r

��
��

rr′δ rr′r

��
��

rrr′

��

rrr

��
rrδr′ r′rrδ . . . r′rrδ

The “obvious” arrows, such as an arrow from r′δ to r′δ, have been left out to
keep the picture clear.

Figure 6.3: The t-simulation from r∗‖r′ to r ∗ (r′ · r∗).

Proof. Let us denote by e1 and e2 (resp. e) the events that are labelled by δ in

the event structure associated to r∗‖r∗ (resp. r∗). Given a trace α of r∗‖r∗ that

does not contain any of the eis, we denote by α′ unique trace corresponding to α

in r∗ (i.e. with the same number of events labelled by r).

A t-simulation from r∗‖r∗ to r∗ is obtained by considering a function f such

that

f(α) =

 (α \ {e1, e2})′ if e1 /∈ αore2 /∈ α
(α \ {e1, e2})′e if e1, e2 ∈ α

The Simulation (6.10) is constructed as follows. Let us abstract the event

names, i.e., rk would be a trace where each r is the label of a unique event. Every

trace of r∗‖r′ is a prefix of rmr′rnδ or rmδr′, for some m,n ≥ 0. Every prefix of

either trace corresponds to a unique trace of r∗(r′ ·r∗). For instance, the maximal

trace rmδr′ is associated to the weakly maximal trace rmr′ of r∗(r′ ·r∗). Figure 6.3

shows an explicit construction of the t-simulation.

The Simulation (6.11)is similar. Every trace of r∗‖(b · E + c · F) is a prefix of

rmbα or rmcβ or rmδbγ or rmδcζ, where α ∈ T (r∗‖E), β ∈ T (r∗‖F), γ ∈ T (E),

ζ ∈ F and n ≥ 0. Again, prefixes of the first two traces correspond to a unique

140 CHAPTER 6. BES WITH IMPLICIT PROBABILITY

trace of r ∗ (b · (r∗‖E) + c · (r∗‖F)). The maximal trace rmδbγ is again mapped to

the weakly maximal trace rmbγ. Similarly for the fourth case. This indeed results

in a t-simulation.

The Simulation (6.12) is constructed as follows. Every trace of r∗‖(r′ · E) is a

prefix of rmr′α or rmδr′β for some trace α ∈ T (r∗‖E) and β ∈ T (E). We continue

as in the previous case. �

Notice that the binary Kleene star is used on the right hand side of Equa-

tion (6.10-6.12). The reason is that the expression r∗ · r′ · r∗ will introduce two

events labelled by δ while r∗‖r′ will contain only one. The binary Kleene star

enables the construction of the t-simulation in the previous proposition.

The Proposition 6.5.8 is used mainly to interleave the right operand r∗ sys-

tematically through the internal structure of E , while preserving the simulation

order. More precisely, these equations are applied to generate algebraic proofs for

the reduction of one expression into another where the occurrence of ‖ is pushed

deeper into the sub-expressions (and possibly removed).

6.6 Discussion

This chapter presented a new denotational model for probabilistic concurrent

systems. It uses a simulation to refine or rewrite the specification of a concurrent

program, mainly using the congruence properties of Proposition 6.5.4 and the in-

equalities of Proposition 6.5.8. The latter proposition ensures that all interleaving

behaviours, in the left hand side of vsim, are present in the right hand side ex-

pression. Equivalently, it can be used to remove every occurrence of the operation

(‖) in the expression r∗‖E , when E denotes a probabilistic concurrent program.

Multiple applications of Proposition 6.5.8 on that expression will result in a prob-

abilistic sequential program. Hence, all the beautiful techniques developed in [48]

are applicable to the H1Ω-denotation of that expression.

The constructed semantics space has two main restrictions. (a) The state space

Ω is assumed to be finite. In the infinite (countable) case, McIver and Morgan

6.6. DISCUSSION 141

have presented an extension of the space H1Ω by assuming the compactness of the

convex set of distributions r(s) [48]. This allows the modelling of programs having

variables ranging over the natural numbers, without any upper bound restriction.

With the compactness condition, it should be possible to work with concurrent

probabilistic programs whose state space is a countable set. (b) The semantic map

[[]] does not model non-terminating behaviours. The sequential behaviours of a

program are expressed by schedulers that are generating probability distributions.

Total correctness is achieved by considering all possible schedulers, which are

generating subdistributions. However, care should be taken in the interpretation

of Proposition 6.5.8, where the set [[r ∗ 1]](s) will contain the identically zero

subdistribution. In other words, some “fairness condition” should be assumed

about the parallel composition r∗‖E , so that r∗ indeed behaves sequentially as the

Kleene star. These two problems will be part of our future works.

The main motivation of this chapter is to provide a denotational semantics

for the extension of rely/guarantee calculus in the next chapter. The two orders

v (Definition 6.4.1) and vsim (Definition 6.5.1) are of primordial importance in

the definition of a rely/guarantee specification. These two orders are linked by

Theorem 6.5.5, which ensures a transition from a concurrent specification to the

quantification of all sequential behaviours.

Chapter 7

Probabilistic Rely/guarantee

Calculus

7.1 Standard rely/guarantee technique

The algebraic formulation of rely/guarantee was first achieved by Hoare et al.

and is based on an algebraic axiomatisation of Hoare triples as follows. A system

E satisfies a postcondition Q when run from precondition P iff the triple {P}E{Q}
holds with respect to a given semantics. A rely/guarantee specification, denoted

by {P R}E{G Q}, holds iff the triple {P}R‖E{Q} holds and E guarantees G,

for a given rely condition R and a guarantee condition G. The precise semantics

of this notation will be given in Section 7.3 and it should be noted that, in the

non-probabilistic case, R,G (resp. Q) are interpreted as binary relations between

current (resp. initial) and next (resp. final) states, while P is a unary predicate.

The semantics of these notations depend on the interpretation of the concur-

rency operation ‖ and the meaning given to “E guarantees G”. With Jones’s

original definition, ‖ interleaves the rely condition R through the internal struc-

ture of E and E guarantees G iff every (atomic) action in E satisfies the property

G.

143

144 CHAPTER 7. PROBABILISTIC RELY/GUARANTEE CALCULUS

In the standard case, Jones [24, 31], as well as others [17, 28], have proven the

following composition rule:

{P R}E{G Q} {P R′}E ′{G′ Q′} G guarantees R′ G′ guarantees R

{P R ∩R′}E‖E ′{G ∪G′ Q ∩Q′, }
. (7.1)

This rule implies if E and E ′ satisfy the premises then E‖E ′ will satisfy both Q and

Q′ when run in an environment satisfying R ∩R′. Moreover, E‖E ′ will guarantee

the condition G ∪G′.

Example 7.1.1. Consider the program x := x + 2 that increments a variable

x by 2. If the program is executed in a single step, then it satisfies the guar-

antee conditions “x never decreases” and “x is always even” (assuming x ini-

tially holds an even value). If this program is implemented with the sequence

x := x + 1;x := x + 1, then the first condition is still preserved while the second

condition is not. Consequently, both programs will behave in the same way when

run concurrently with another program r that relies on the property “x never de-

creases”. In contrast, if r needs “x is always even” to perform its tasks correctly,

then r‖(x := x + 1;x := x + 1) may result in unexpected behaviours because x

can hold an odd value in-between the two increments. �

While the approaches taken in [17,24,28,31] are all related to non-probabilistic

programs, the main difference can be found in the respective proofs of the rely/gua-

rantee rules. Jones and Dingel’s proofs are directly based on the semantics of

concurrent programs, namely, sets of execution traces. In contrast, Hoare et al.

provided an algebraic proof which is more elegant and is valid for all models satis-

fying the basic algebraic axioms. The goal of this chapter is then to follow Hoare

et al.’s development but for probabilistic programs.

7.2. PROBABILISTIC RELY AND GUARANTEE CONDITIONS 145

7.2 Probabilistic rely and guarantee conditions

7.2.1 Using standard conditions

Our first task towards the extension of rely/guarantee to probabilistic systems

is to provide a suitable definition for a rely condition that contains sufficient

quantitative information about the environment and the components of a system.

Such an extension should reduce to the standard properties of rely and guarantee

when probabilities are not present.

From a relational point of view, as in Jones’s thesis, a guarantee condition

expresses a constraint between a state and its successor by running the relation

as a nondeterministic program. Therefore, it is important to know when some

action is executed atomically or is split into smaller components. For instance,

when run in the same environment, a probabilistic choice between x := x+ 1 and

x := x − 1 produced from an if...then...else clause may behave differently

from an atomic probabilistic assignment that assigns x + 1 and x − 1 to x with

the exact same probability.

In this chapter, the implementation of a probabilistic concurrent program is

directly denoted by the bundle event structure with implicit probability corre-

sponding to it. In a given implementation, all atomic events are always explicitly

stated and, unless otherwise specified, all assignments are considered atomic.1

They will be used as the labels of the event and every other program construct is

translated to the corresponding operation in (+, ·, ‖, ∗).

Example 7.2.1. Let us consider the programs

E1
def
= if(0.7 < rand()) then x := x+ 1 else x := x− 1,

where rand() is a procedure that returns a uniformly distributed random number

between 0 and 1, and

E2
def
= x := x+ 1⊕0.7x− 1,

1This provides a higher level look at concurrent programs rather than the low level examples of Chapter 3.

146 CHAPTER 7. PROBABILISTIC RELY/GUARANTEE CALCULUS

which resolves the probabilistic choice and assigns the value x + 1 or x − 1 to

x atomically. Thus E2 will have a single event and E1 will have four events,

corresponding to 0.7 < rand(), 0.7 6=< rand(), x := x+1 and x := x−1. Assume

that both programs are run concurrently with x := 2∗x from an initial state x = 0.

Assume furthermore that each assignment is executed without any interference

between the reading and writing to the variable x. On the one hand, E1‖(x := 2∗x)

may terminate with a value of x in {1,−2} with maximal probability 1 because

it is bounded from below by the interleaving behaviour

if(0.7 < rand()) then x := 2 ∗ x;x := x+ 1 else x := x− 1;x := 2 ∗ x.

On the other hand, E2‖(x := 2 ∗ x) will yield a state in {1,−2} with maximal

probability 0.7, because the only possible sequential behaviours are x := 2 ∗ x; E2

(which yields a state in {1,−2} with probability 0.3) and E2;x := 2∗x (that yields

a state in {1,−2} with probability 0.7). �

In the standard case, a common example of a guarantee condition for a given

program is the reflexive transitive closure with respect to (‖) of the union of all

atomic actions in that program. That closure property plays a crucial role in the

algebraic proof of Rule 7.1 and is achieved through Proposition 6.5.8.

The transitive closure with respect to (·) is another desirable property. To

obtain a probabilistic guarantee condition from a total relation ρ ⊆ Ω × Ω, we

construct a probabilistic program r ∈ H1Ω such that

r(s) = {µ ∈ DΩ | µ({s′ | (s, s′) /∈ ρ}) = 0},

where DΩ is the set of probability distribution over Ω. Equivalently, r is the convex

closure of ρ. The following proposition then follows easily from that construction.

Proposition 7.2.2. If a relation ρ ⊆ Ω× Ω is transitive then r · (r + δ) vH r.

Proof. Let ρ be a transitive relation, r its associated probabilistic program,

s ∈ Ω a state and µ ∈ [r · (r + δ)](s). We need to show that µ ∈ r(s). By

7.2. PROBABILISTIC RELY AND GUARANTEE CONDITIONS 147

definition of the sequential composition (·) (Equation 6.3), there exists ν ∈ r(s)
and a deterministic program f vH (1 + r) such that µ = f ? ν. Let u ∈ Ω such

that (s, u) /∈ ρ, we are going to show that µ(u) = 0. We have:

µ(u) =
∑
t∈Ω

f(t)(s)ν(t) =
∑

t∈Ω∧(s,t)∈ρ

f(t)(u)ν(t) =
∑

t∈Ω∧(s,t)∈ρ∧(t,u)∈ρ

f(t)(u)ν(t).

The second equality follows from ν(t) = 0 for every (s, t) /∈ ρ. Similarly, the

last equality follows from f(t)(u) = 0 for (t, u) /∈ ρ. The last expression reduces

to
∑

t∈Ω∧(s,u)∈ρ f(t)(u)ν(t), by transitivity of ρ, which is an empty sum because

(s, u) /∈ ρ. Therefore, µ(u) = 0 for every (u, s) /∈ ρ, which is equivalent to

µ ∈ r(s). �

7.2.2 Limitations of standard rely/guarantee conditions

The convex closure of a relation provided by the previous subsection sometimes

provides a very general rely condition that is not very useful in the probabilistic

case.

In practice, a probabilistic assignment is considered atomic and the correctness

of many protocols is based on that crucial assumption. That is, the random choice

and the writing of the chosen value into x is assumed to happen instantaneously

and no other program can modify x during and in-between these two operations.

Thus, probabilistic rely and guarantee conditions need to capture the probabilistic

information in such an assignment.

Example 7.2.3. Let us write x := uniform(0, x) the program that assigns a

random integer between two integers 0 and x to the variable x. A probabilistic

guarantee condition for that assignment is obtained from the probabilistic program

r such that

r(x) =

{
µ | µ({0, n}) ≥ 1

n+ 1

}
. (7.2)

The condition r specifies the convex set of all probabilistic deterministic programs

148 CHAPTER 7. PROBABILISTIC RELY/GUARANTEE CALCULUS

whose atomic actions establish a state in {0, n} with probability at least 1
n+1

.

Notice that the exact probability for the assignment to yield a state in {0, n} is

1
x+1

. The condition r is transitive and “completely” probabilistic. �

In practice, constructing a useful transitive probabilistic rely/guarantee condi-

tion is difficult but the standard technique is still valid. That is, the strongest guar-

antee condition of a given program is the nondeterministic choice of all one-step

actions found in that program. This construction was introduced by Jones [31]

and later refined by others [17, 24, 27] and in this thesis, is extended to the prob-

abilistic case. In general, we define:

Definition 7.2.4. A probabilistic rely or guarantee condition R is a bundle event

structure with implicit probability such that R‖R vsim R.

In particular, the bundle event structure r∗ = r ∗ 1, where r is an atomic

program, is a rely condition. This illustrates the idea that a rely condition specifies

an environment that can stutter or execute a sequence of actions that are bounded

by r. The targeted properties of rely and guarantee conditions are then ensured

by Proposition 6.5.8.

7.3 Probabilistic rely/guarantee rules

In this section, we develop the rely guarantee rules governing programs in-

volving probability and concurrency. An example is given by Rule 7.1, which

allows us to compositionally check the safety properties of the subsystems and

infer the correctness of the whole system. Hence, we will provide a probabilistic

counterpart for that rule.

In the previous chapter, we have developed the mathematical foundations

that are needed for our interpretation of Hoare triple and guarantee relation,

namely, the sequential refinement in Definition 6.4.1 and simulation relation of

Definition 6.5.1. Following [27], a rely/guarantee quintuple {P R}E{G Q} is

7.3. PROBABILISTIC RELY/GUARANTEE RULES 149

valid iff

P · (R‖E) v Q and E vsim G,

where P,R, E , G and Q are programs denoted by bundle event structures with

implicit probability.

The terms R and G specify how the component E interacts with its environ-

ment. As we have discussed in the previous section, rely and guarantee conditions

are obtained by taking r∗ for some atomic probabilistic program r. Therefore,

E vsim r∗ implies that all actions carried by events in E are either stuttering

or satisfying the specification r. This corresponds to the standard approach of

Jones [24, 31].

The following rules are probabilistic extensions of the related rely/guarantee

rules developed in [28].

7.3.1 Atomic action

The rely/guarantee rule for atomic statements is provided by the equation

r∗‖r′ vsim r ∗ (r′ · r∗)

of Proposition 6.5.8. This equation shows that a (background) program satisfying

the rely condition r will not interfere with the low level operations involved in the

atomic execution of r′. The programs will be interleaved.

7.3.2 Conditional statement

The rely/guarantee rule for conditional statement is provided by the equation

r∗‖(b · E + c · F) vsim r ∗ (b · (r∗‖E) + c · (r∗‖F))

of Proposition 6.5.8. This equation shows how a rely condition r∗ distributes

through branching structures. In this rule, the tests b and c are assumed to be

150 CHAPTER 7. PROBABILISTIC RELY/GUARANTEE CALCULUS

atomic and their disjunction is be always true (this is necessary for feasibility).

This assumption may be too strong in general because b may involve the reading

of some large data that is too expensive to be performed atomically. However,

we may assume that such a reading is done before the guard b is checked and

the non-atomic evaluation of the variables involved in b may be assigned to some

auxiliary variable that is then checked atomically by b.

7.3.3 Prefixing

The sequential rely/guarantee rule for a probabilistic program expressed using

prefixing. That is,

r∗‖(r′ · E) vsim r ∗ (r′ · (r∗‖E).

It tells us that a rely condition r∗ can be distributed through a prefixing operation.

In other words, the program r′ and E should tolerate the same rely condition in

order to prove any meaningful property of r · E . This is mainly a consequence of

our interpretation of ‖ where no synchronisation is assumed.

7.3.4 Concurrent execution

In Rule 7.1, the concurrent composition E‖E ′ requires an environment that

satisfies R∩R′ to establish the postcondition Q∩Q′. However, such an intersection

is not readily accessible at the structural level of event structures. Therefore, the

most general probabilistic extension of Rule 7.1 which applies in the setting of

bundle event structures is:

{P R}E{G Q} {P R′}E ′{G′ Q′} G vsim R′ G′ vsim R

{P R′′}E‖E ′{G‖G′ Q}
, (7.3)

where R′′ is a rely condition such that R′′ vsim R and R′′ vsim R′. The proof of

this rule is exactly the same as in [27,52].

We have R′′ vsim R, E ′ vsim R, R‖R vsim R, therefore Equations 6.5 and 6.6

7.3. PROBABILISTIC RELY/GUARANTEE RULES 151

imply

R′′‖(E ′‖E) vsim R‖(R‖E) vsim R‖E ,

and we obtain P · R′′‖(E ′‖E) vsim P · (R‖E) by Equation (6.7). It follows from

Theorem 6.5.5 that P ·R′′‖(E ′‖E) v Q.

The conclusion does not contain any occurrence of Q′, but by symmetry, it

is also valid if Q is substituted with Q′. The combined rely condition R′′ is

constructed such that it is below R and R′. Indeed, if R,R′ have a greatest lower

bound with respect to vsim, then R′′ is that lower bound so that the strengthening

of the rely is not too strong.

The above rule can be specialised by considering rely/guarantee conditions of

the form r∗, where r is an atomic probabilistic program.

The following rule is expressed in exactly the same way as the standard case [28].

This is due to the fact that probabilities are implicit.

Proposition 7.3.1. The following rule is valid in BES

{P r∗1}E1{g∗1 Q1} {P r∗2}E2{g∗2 Q2} g1 vH r2 g2 vH r1

{P (r1 ∩ r2)∗}E1‖E2{(g1 + g2)∗ Q1}
(7.4)

where r, r′, g, g′ ∈ H1Ω, g+ g′ is the nondeterministic choice on H1Ω and ∩ is the

pointwise intersection of two probabilistic denotations of programs.

Proof. This follows from substituting R and G by respectively r∗ and g∗ in

Rule 7.3. Moreover g∗‖g′∗ vsim (g + g′)∗ holds because (g + g′)∗‖(g + g′)∗ vsim

(g + g′)∗ (Proposition 6.5.8 Equation 6.9). �

Recall that the nondeterministic choice of H1Ω is obtained by the pointwise

union followed by the necessary closure properties for the elements of H1Ω. The

intersection r ∩ r′ is obtained by pointwise intersection which also preserves the

same closure properties.

Rule 7.4 can further be specialised to give us some statistical information

about the system E‖E ′. Our second formulation shows how the probabilities of

correctness are combined.

152 CHAPTER 7. PROBABILISTIC RELY/GUARANTEE CALCULUS

Given a BES E , an initial state s satisfying the precondition, a subset O ⊆ Ω

and p ∈ [0, 1], we write [[E]](s)(O) ≥ p, if for every µ ∈ [[E]](s), µ(O) ≥ p i.e. the

correctness property O is established by E with probability at least p.

We assume that the precondition P is standard, i.e., a set of initial states. The

corresponding probabilistic program maps s /∈ P , to ∅ ⊆ DΩ and s ∈ P to {δs}.

Proposition 7.3.2. For every s ∈ P and subsets O1, O2 ⊆ Ω, we have

[[r∗1‖E1]](s)(O1) ≥ p1 [[r∗2‖E2]](s)(O2) ≥ p2 E1 vsim g∗ vsim r∗2 E2 vsim g′∗ vsim r∗1
[[(r1 ∩ r2)∗‖E1‖E2]](s)(O1 ∩O2) ≥ p1 + p2 − q E1‖E2 vsim (g + g′)∗

where q ≥ supµ∈[[(r1∩r2)∗‖E1‖E2]](s) µ(O1 ∪O2).

Proof. Let µ ∈ [[(r1∩r2)∗‖E‖E2]](s), we need to show that µ(O1∩O2) ≥ p1+p2−q
with the above definition of p1, p2 and q.

Let us define Q1 to be the (single event) BES associated to the probabilistic

program u1 such that if s ∈ P , then u1(s) = {µ | µ(O) ≥ p} else u1(s) =

∅. Similarly, we define Q2. Then the premises imply P · (r∗1‖E1) v Q1 and

P · (r∗2‖E2) v Q2. By Proposition 7.3.1, we have

[[P · ((r1 ∩ r2)∗‖E1‖E2)]] vH [[Q1]] and [[P · ((r1 ∩ r2)∗‖E1‖E2)]] vH [[Q2]].

Therefore µ(O1) ≥ p1 and µ(O2) ≥ p2. Modularity of finite measures implies

that µ(O1 ∩ O2) + µ(O1 ∪ O2) = µ(O1) + µ(O2) ≥ p1 + p2. Hence, µ(O1 ∩ O2) ≥
p1 + p2 − µ(O1 ∪O2) ≥ p1 + p2 − supµ∈[[(r1∩r2)∗‖E1‖E2]](s) µ(O1 ∪O2). �

The lower bound given in this proposition is the best we can achieve in the most

general case. Consequently, any improvement in that bound has to depend on

particular properties of the system E1‖E2 (e.g. commutativity of atomic actions).

Proposition 7.3.4 provides an example of a such case.

Example 7.3.3. Let E1 (resp. E2) be the event structure associated to the atomic

assignment x := x+ 1⊕pskip (resp. x := 1) on the state space Z2 = {0, 1} which

represents the parity of integers, and where p ≤ 1/2. Let the respective rely

7.3. PROBABILISTIC RELY/GUARANTEE RULES 153

conditions be obtained from r1 and r2 such that r1(1) = {δ1}, r1(0) = {δ1, δ0} and

r2(x) = D1Z2 for every state x ∈ Z2. Let us assume that we run the program

E1‖E2 from the initial state 0. We have [[r∗1||E1]](0)({1}) ≥ inf(p, 1 − p) = p and

[[r∗2||E2]](0)(Z2) ≥ 1. We can verify easily that E2 vsim r∗2 and E1 vsim r∗1 and by

applying Proposition 7.3.2, we have [[r1‖E1‖E2]](x)({1}) ≥ p. However, it is clear

that [[E1‖E2]](x)({1}) = p, i.e., the lower bound given by Proposition 7.3.2 cannot

be improved in this example. �

The last rule we establish for the case of concurrency explores some special

properties of the studied system. We assumed that both components E1 and E2

have the same rely condition, that all sequential behaviours of E1‖E2 are subsumed

in E1 · E2 and that O1 is an invariant of E2.

Proposition 7.3.4. For every s ∈ P and subsets O1, O2 ⊆ Ω, if the sequential

refinement r∗‖E1‖E2 v (r∗‖E1) · (r∗‖E2) and, for every t ∈ O1, [[r∗‖E2]](t)(O1) = 1

hold, then the rule

[[r∗‖E1]](s)(O1) ≥ p1 inft∈O1 [[r
∗‖E2]](t)(O2) ≥ p2

E1 vsim g∗ vsim r∗ E2 vsim g′∗ vsim r∗

[[r∗‖E1‖E2]](s)(O1 ∩O2) ≥ p1p2 E1‖E2 vsim (g + g′)∗

is valid.

154 CHAPTER 7. PROBABILISTIC RELY/GUARANTEE CALCULUS

Proof. We reason as follows:

[[r∗‖E1‖E2]](s)(O1 ∩O2)

≥ r∗‖E1‖E2 v (r∗‖E1) · (r∗‖E2).

inf
µ∈[[r∗‖E1]](s)

inf
fvH[[r∗‖E2]]

∑
t∈Ω

f(t)(O1 ∩O2)µ(t)

≥ O1 ⊆ Ω, [[r∗‖E2]](t)(O1) = 1 for every t ∈ O1 and modularity of measure.

inf
µ∈[[r∗‖E1]](s)

inf
fvH[[r∗‖E2]]

∑
t∈O1

f(t)(O2)µ(t)

≥ Expectation is monotonic.

inf
µ∈[[r∗‖E1]](s)

inf
fvH[[r∗‖E2]]

∑
t∈O1

inf
t′∈O1

f(t′)(O2)µ(t)

= The factor inft′∈O1 f(t′)(O2) is independent of t.

inf
µ∈[[r∗‖E1]](s)

inf
fvH[[r∗‖E2]]

inf
t′∈O1

f(t′)(O2)µ(O1)

= Swapping the second and last inf (†).

inf
µ∈[[r∗‖E1]](s)

inf
t′∈O1

[[r∗‖E2]](t′)(O2)µ(O1)

= Both infs are attained for some value of t′ and µ, we can separate them.

[[r∗‖E1]](s)(O1) inf
t′∈O1

[[r∗‖E2]](t′)(O2)

≥ Definitions of p1 and p2.

p1p2

(†) To ensure the replacement of the internal inf with [[r∗‖E2]](t′)(O2) in the pres-

ence of the multiplied constant µ(O1), we can use the fact that the infinimum is

attained for some deterministic refinement f vH [[r∗‖E]] because Ω if a finite set

and [[r∗‖E]](s) is a compact subset of RΩ.

The guarantee part has been established in Proposition 7.3.1. �

7.4. R,G-PREORDER AND EXTENSION TO ACTION REFINEMENT 155

7.3.5 While loop

A while program is modelled using the binary Kleene star. The idea is to unfold

the whole structure of the loop to obtain an event structure with infinitely many

events. Proposition 6.5.8 can be applied on the unfolded structure to distribute

the rely condition. That is, we write

r∗‖((b · E) ∗ c) = r∗‖(c+ b · E · (b · E ∗ c))

vsim r ∗ (c · r∗ + b · (r∗‖[E · (b · E ∗ c)]))2

vsim · · · .

The sequential correctness is achieved by the usual generation of probability dis-

tributions using terminating schedulers, or using the semantic map [[]] and then

apply other algebraic techniques. A bounded loop, such as a for loop, should be

modelled using a sequence of sequential compositions or prefixing.

7.4 R,G-Preorder and extension to action refinement

The rely/guarantee rules that were developed in the previous section are most

helpful when the implementations of components of the system are given in full.

However, they do not tell us when we are allowed to refine parts of the given

implementation into sequential components.

Example 7.1.1 provides a good illustration of this problem. It is obvious that

x := x + 2 and x := x + 1;x := x + 1 have the exact same sequential behaviour.

However, the condition “x is always even” is not satisfied by the second program.

Therefore, it is unsafe to replace the implementation x := x+2 with x := x+1; x :=

x + 1 when it is part of an environment that is bound by the rely condition “x

is always even”. Hence, the guarantee condition should be preserved by the new

implementation.

Definition 7.4.1. Let r, g be two probabilistic programs, we say that F is a (r, g)-

refinement of E, written F vr,g E, if for every event structures P and Q, we

156 CHAPTER 7. PROBABILISTIC RELY/GUARANTEE CALCULUS

have

{P r∗}E{g∗ Q} ⇒ {P r∗}F{g∗ Q}.

This is indeed a straightforward generalisation of the preorder obtained from

the standard Hoare triple which reduces to the sequential refinement order v.

When the rely/guarantee parameters are allowed to be arbitrary event struc-

tures then (∀R,G : E vR,G E ′) ⇔ E vsim E ′, which is also our interpretation of

the guarantee satisfaction relation. However, Definition 7.4.1 provides a weaker

comparison that allows us to establish a relationship between programs up to

some assumption about the environment.

It follows directly from Definition 7.4.1 that vR,G is a preorder and if F vr,g E
then E can be replaced by F in all the conclusions of the rely/guarantee rules of

the previous sections. More importantly, since the concurrency operation provided

by the event structure framework supports refinement of an action with another

bundle event structure, it is then possible to replace any atomic action with a

composition of actions that preserve the guarantee condition.

Example 7.4.2. Let us show that the assignment x := uniform(0, x) can be

refined to y := x;x := uniform(0, y) while preserving the overall correctness of

the original assignment. To ensure that both programs have the same underlying

state space, we assume that y is present in the first assignment but is unused. It

is then clear that

y := x;x := uniform(0, y) vr∗,r∗ x := uniform(0, x),

where r is the probabilistic program such that

r((x, y)) =

{
µ ∈ D({0, n}2) | µ({(0, y), (n, y) | y ∈ {0, n}}) ≥ 1

n+ 1

}
�

We conclude this chapter with an example that uses the developed rely/guarantee

techniques of this chapter. We study the probabilistic correctness of an adaptation

7.5. CONCURRENT ERATOSTHENES SIEVE 157

of the Eratosthenes sieve, where a measurable fault is introduced when remov-

ing a multiple of a given integer. The goal is to obtain a sensible bound for the

probability of removing all composite numbers.

7.5 Concurrent Eratosthenes sieve

Let n ≥ 2 be a natural number and s0 = {2, 3, . . . , n}. We present a variant of

the concurrent Eratosthenes sieve that is originally due to Jones [31]. To obtain

a quantitative system, we modify Jones’s example by introducing a probabilistic

failure. That is, the atomic action that removes a particular composite number

may fail with a given probability. Indeed, the rely and guarantee conditions

we generate are closely related to Jones’s originals which have been modified to

account for quantitative properties.

For each integer i ∈ [2,
√
n], we consider a program thdi that sequentially

removes all (strict) multiples of i from the shared set variable s with a fixed

probability p. More precisely, each thread thdi is be implemented as the following

program:

for(j = 2 to n/i)

ui,j : skip ⊕p (remove i*j from s);

where n/i is the integer division of n by i. Each ui,j can be seen as a faulty action

that removes the product ij from the current value of s with probability p. The

state space of each atomic deterministic program ui,j is Ω = {s | s ⊆ s0}. In H1Ω,

ui,j is defined by ui,j(s) = (1 − p)δs + pδs\{ij}. The whole system is specified by

the concurrent execution

thd2‖...‖thd√n = ‖
√
n

i=2(ui,2 · · ·ui,n/i).

where, in the sequel,
√
n is computed without decimal.

Let us denote by π = {2, 3, 5 . . . , pn} the set of prime numbers less than or

equal to n (the largest being pn). Our goal is to compute the minimal probability

158 CHAPTER 7. PROBABILISTIC RELY/GUARANTEE CALCULUS

that the final state is π, after executing the threads thdi concurrently, from the

initial state s0.

Let us denote by Oi,j = {s | ij /∈ s}, Oi = ∩n/ij=2Oi,j and r be the probabilistic

program such that r(s) is the convex closure of {δs′ | s′ ⊆ s}. It is clear that

ui,j vH r, for every i, j, and thus thdi vsim r∗. Multiple applications of the

prefix-case of Proposition 6.5.8 give us

r∗‖thdi vsim r ∗ (ui,2 · (r ∗ (ui,3 · (. . . r ∗ (ui,n/i · r∗)))).

Since the right multiplication X 7→ X · r, by any program r′ ∈ H1Ω, is the lower

adjoint in a Galois connection [48], the fixed point fusion theorem [1] implies that

r ∗ (ui,2 · (r ∗ (ui,3 · (. . . r ∗ (ui,n/i · r∗)))) = r∗ · ui,2 · r∗ · ui,3 · . . . r∗ · ui,n/i · r∗

(the equivalence is in H1Ω). Thus,

r∗‖thdi v r∗ · ui,2 · r∗ · ui,3 · . . . r∗ · ui,n/i · r∗

follows from Theorem 6.5.5. The right hand side explicitly states the interleaving

of the rely condition r∗ in-between the atomic executions in thdi as in [24].

Moreover, since r is the probabilistic version of a transitive standard relation,

Proposition 7.2.2 implies that r · (r + δ) vH r. But H1Ω is a probabilistic Kleene

algebra [53], therefore the right induction law (2.14) (Chapter 2 Figure 2.1) implies

that r · r∗ vH δ+ r and therefore r∗ = δ+ r · r∗ vH δ+ r. The converse refinement

also holds because r vH r∗, δ vH r∗ and (+) is idempotent. That reduction of r∗

to δ + r shows the main use of a transitive rely condition. Therefore,

r∗‖thdi v (δ + r) · ui,2 · (δ + r) · ui,3 · . . . (δ + r) · ui,n/i · (δ + r).

Let us first focus on computing [[ui,j · (1+r)]](s)(Oi,j) and [[(δ+r) ·ui,j]](s)(Oi,j).

7.5. CONCURRENT ERATOSTHENES SIEVE 159

By Proposition 6.4.3, we have [[ui,j · (δ+ r)]] = [[ui,j]] · [[(δ+ r)]] = ui,j · (δ+ r), and

[ui,j · (δ + r)](s)(Oi,j) = inf
fvHδ+r

∑
t∈Ω

f(t)(Oi,j)ui,j(s)(t)

The definition ui,j = (1− p)δs + pδs\{ij} implies that the sum is restricted to the

set {t | t = s ∨ t = s \ {ij}}. Therefore, we have

[ui,j·(δ+r)](s)(Oi,j) =

 inffvHδ+r f(s)(Oi,j) if ij /∈ s
inffvHδ+r(1− p)f(s)(Oi,j) + pf(s \ {ij})(Oi,j) if ij ∈ s

The first case evaluates to 1, because the output state obtained by executing r from

s will not contain ij. Therefore, we obtain lower bound [ui,j · (δ+ r)](s)(Oi,j) ≥ p.

A similar reasoning can be applied to prove that [(δ + r) · ui,j](s)(Oi,j) ≥ p.

More generally, for every j 6= j′, Oi,j is an invariant for ui,j′ , i.e., ui,j′(s)(Oi,j) = 1

for every s ∈ Oi,j. Therefore, the reasoning in the proof of Proposition 7.3.4 can

be used to show that

[ui,j · (δ + r) · ui,j+1](s)(Oi,j ∩Oi,j+1) ≥ p2

By induction, we obtain the expected lower bound

[[r∗‖thdi]](s0)(Oi) ≥ pn/i−1

Applying Proposition 7.3.2 (with q = 1 because r can be used to establish any

particular state in O2 ∪O3) on thd2‖thd3 gives

[[r∗‖thd2‖thd3]](s0)(O2 ∩O3) ≥ pn/2−1 + pn/3−1 − 1.

In fact, by repeating the process
√
n− 1 times (Corollary 7.3), we deduce that

[[r∗‖
√
n

i=2thdi]](s0)(∩
√
n

i=2Oi) ≥

√
n∑

i=2

pn/i−1 − (
√
n− 2) = f(p, n).

160 CHAPTER 7. PROBABILISTIC RELY/GUARANTEE CALCULUS

Figure 7.1: Comparison of the quantity f(p, 15) (dotted), g(p, 15) (dashed) and
the actual probability p10 + 4p9(1− p) + 4p8(1− p)2 (solid).

Firstly, the lower bound f(p, n) is not usually the best approximation for the

probability that the system establishes ∩
√
n

i=2Oi, mainly because of the presence of

r∗. However, it is clear that limp→1 f(p, n) = f(1, n) = 1.

In the particular case of n = 15, f(p, 15) = p6 + p4 − 1. A simple numerical

calculation shows that f(p, 15) gives a positive lower bound when p ≥ 0.868, the

exact probability being p10 + 4p9(1− p) + 4p8(1− p)2.

We can use Proposition 7.3.4 to obtain a better lower bound. It is clear that

Oi is an invariant for every thdj (for j 6= i) and that all actions ui,j (sequentially)

commute with each other. Therefore, the assumption of Proposition 7.3.4 can be

established easily. Inductively, we have

[[r∗‖
√
n

i=2thdi]](s0)(∩
√
n

i=2Oi) ≥ pn/2−1

(
pn/3−1

pn/6

)(
pn/4−1

pn/4−1

)(
pn/5−1

pn/10 + pn/15

)
· · · = g(p, n)

In the particular case of n = 15, g(p, 15) = p8. A graphic comparison of f, g and

the actual probability is displayed in Figure 7.1 for this particular value of n.

Secondly, ∅ ∈ ∩
√
n

i=2Oi which means that r∗‖
√
n

i=2thdi can establish s = ∅ with

positive probability. This issue is resolved by using proper guarantee relation such

as ui,j never removes i and refining r∗ to 1 in the concurrent execution. Therefore,

‖mi=2thdi never removes any prime numbers i.e. any element of ∩
√
n

i=2Oi that does

not contain all the prime numbers less than or equal to n are impossible states.

Chapter 8

Conclusion

The present thesis aimed to develop an algebraic framework for probabilistic

concurrent systems. The goal was to provide an algebraic framework for a uniform

treatment of concurrent programs that exhibit probabilistic behaviours. The pro-

posed solution was divided into two parts: (a) a suitable “merging” of concurrent

and probabilistic Kleene algebra that unifies these two computational behaviours

into a single, algebraic setting, and (b) an extension of rely/guarantee rules for

the verification of probabilistic concurrent programs. Most of the rules are again

expressed and proven using algebraic properties. Both solutions depended heavily

on the use of algebraic techniques. Therefore, this thesis does provide an answer

to the question asked in the introduction:

Can we verify algebraically and compositionally probabilistic programs

in the presence of interference?

Results

Firstly, the development of probabilistic concurrent Kleene algebra required a

deep understanding of both the probabilistic and the concurrent components. A

completeness result, about the equational theory of probabilistic Kleene algebra,

161

162 CHAPTER 8. CONCLUSION

was conjecture by Takai and Furusawa in [79]. Our first result was to prove that

that conjecture holds for continuous probabilistic Kleene algebra and the set of

automata modulo simulation equivalence. This then entailed a decision procedure,

refined using a minimisation technique that preserves simulation, for the equality

of two terms in a continuous probabilistic Kleene algebra.

Secondly, the other component, concurrent Kleene algebra, was also shown to

be sound with respect to a bundle event structure model. An important result of

that work is the characterisation of lposet semantics, of a bundle event structure,

with schedulers and finishers. This characterisation was achieved by the definition

of the resolution of a bundle event structure with respect to a pair of scheduler and

finisher. In particular, we have shown that a special kind of interaction between

schedulers and finishers is enough to generate “full interaction”. Moreover, it was

shown how a finishers can be used to define “acceptable behaviours”, in the sense

that unacceptable behaviour will never be finished.

Thirdly, the probabilistic concurrent Kleene algebra of Chapter 4 was devised

to provide a unified framework for probabilistic concurrent systems. The new

algebra underlines the interaction between nondeterminism, probability and con-

currency and is sound with respect to an interleaving as well as a true concurrent

model of computation. In contrast to the previous results on probabilistic Kleene

algebra, no completeness property is conjectured or claimed but an answer to

such a question would increase greatly the understanding of the axiomatisation of

probabilistic concurrent Kleene algebra.

Lastly, we illustrated the utility of the developed algebraic frameworks by the

derivation of a rely/guarantee technique for probabilistic programs with interfer-

ences. This forms a new extension of Jones rely guarantee calculus that allows

the verification of probabilistic properties. The mathematical foundations of the

extended calculus were laid out in Chapter 6, where a variant of bundle event

structures labelled with atomic, probabilistic, sequential programs was developed.

The main results include: the definition of the order v and vsim, which are the

fundamental semantics used for the definition of a rely/guarantee specification;

163

a theorem (Theorem 6.5.5) linking these two orders that is, in particular, a nec-

essary ingredient in the proof of the concurrency rules; and the rely/guarantee

rules themselves. In the example, these rules were shown to be powerful enough

to provide a sensible bound for the probability of correctness of a faulty simple

system.

Limitations and future work

These contributions are by no mean a panacea for the formal study and verifi-

cation of probabilistic and concurrent systems. The solutions have limitations as

well as room for improvement.

In the constructions of bundle event structures with implicit probability, the

state space of programs was assumed to be a finite set. Even if computer memories

are finite, it is sometimes desirable to have a model that supports an infinite state

space so as to ensure a more general correctness property. Indeed, sequential

probabilistic programs on countable state spaces are already accounted for, using

the denotational model of McIver and Morgan [48]. Therefore, an extension of

the results on bundle event structures with implicit probability is part of our

future works. Moreover, a further extension to probabilistic programs running on

continuous state spaces (such ar R) will be investigated.

The semantic map [[]] that interprets concurrent probabilistic programs into a

sequential one does not account for termination. This is due to the fact that [[]]

only allows schedulers that are terminating with probability 1 (i.e. a scheduler that

generates a distribution over the state space). Non-termination can be achieved

by considering all possible schedulers, which may generate subdistributions. This

however requires a constraint on the definition of the concurrent composition so

as to obtain a meaningful extension of the presented probabilistic rely/guarantee

calculus. More precisely, the notion of “fair scheduler” should be formally defined

to ensure that in the concurrent composition r∗‖E , the rely condition r∗ is indeed

treated as the Kleene star (i.e. terminating behaviours only).

Another important use of rely/guarantee calculus is to provide a refinement

calculus for the stepwise development of concurrent programs [61]. That is, a

program should be correct by construction rather than by verification. Such a

framework has been investigated for standard concurrent programs [17,24] and a

probabilistic version is of comparable interest.

Finally, automation should be part of any serious theory of development and

verification of systems, because a formal proof of correctness usually consists of a

formidable number of easily mechanised steps. No automation has been attempted

in this thesis as such a task would constitute an additional large amount of work

on top of the presented theoretical development. However, reasoning within prob-

abilistic Kleene algebra has been automated within Isabelle/HOL, which is a part

of the proof archive on Kleene abgelras by Struth and Weber [78]. Additionally,

a different approach which is directly based on the implementation of expecta-

tion transformer in Isabelle/HOL can also be achieved by following the works of

Hurd [29] or the more recent implementation by Cock [8].

164

Notations

R Set of real numbers

Z Set of positive and negative integers

N Set of natural numbers

ω The first infinite ordinal number

Ω State space

H1Ω Set of sequential probabilistic programs with state space Ω (He spaces)

J1Ω Set of sequential probabilistic deterministic programs with state space Ω

H1Ω Set of sequential probabilistic programs and tests

DX Set of probability distributions over X

D≤1X Set of subdistributions over X

Σ Set of labels or actions

PAut Set of simple probabilistic automata

BES Set of bundle event structures

pBES Set of probabilistic bundle event structures

ipBES Set of bundle event structures with implicit probability

POMSet Set of pomsets

T (E) Set of traces of E
Tn(E) Set of traces of E that are of length n

Tmax(E) Set of maximal traces of E
C(E) Set of configurations of E
L(E) Set of lposets of E
P(E) Set of pomsets of E
Sched1(E) Set of schedulers of E that are generating distributions

↓X Down-closure of X with respect to a given order

↑X Up-closure of X with respect to a given order

conv(X) Convex closure of X

X Topological closure of X

sym(R) Symmetric closure of the homogeneous relation R

supp(f) Support of the real valued function f

dom(f) Domain of the function or relation f

τ(P) Set of trees (or dags) simulated by the automaton P

unfold(P) Unfolding of an automaton P

Path(P) Set of paths of an automaton P

SP The maximal simulation of a standard automaton P

B The intersection of a maximal simulation and its inverse (standard case)

−→P Set of transitions of an automaton P

=⇒P Set of extended (or weak) transitions of an automaton P

set(u) The carrier set x of a partial order structure u = (x,≤)

∼= Standard simulation equivalence

� Standard simulation order

≤ A preorder or a partial order

E Prefix order on traces, lposets and configurations

/ Sub-bundle event structure order

Conflict relation

#µ Immediate conflict relation

cfl(x) The set of events that are in conflict with some event of x

cfl(x) The set cfl(x) ∪ {x}
〈e〉 Intersection of clusters containing the event e

vs Subsumption (or implementation) order between lposets

vH Refinement order in H1Ω

v Sequential refinment in ipBES

vsim (Funcional) Simulation order on ipBES

vpsim Probabilistic simulation order on pBES

X → Y Function from X to Y

X ⇁ Y Partial function from X to Y

Bibliography

[1] R. Backhouse. Galois connections and fixed point calculus. In R. Backhouse,

R. Crole, and J. Gibbons, editors, ACM/MPC, volume 2297 of LNCS, pages

89–150. Springer Berlin Heidelberg, 2002.

[2] C. Baier and J. P. Katoen. Principles of Model Checking (Representation and

Mind Series). The MIT Press, 2008.

[3] J. A. Bergstra, A. Ponse, and S. A. Smolka, editors. Handbook of Process

Algebra. Elsevier, 2001.

[4] M. Boffa. Une remarque sur les systmes complets d’identits rationnelles. ITA,

24:419–428, 1990.

[5] J. A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494,

1964.

[6] D. Bustan and O. Grumberg. Simulation-based minimization. ACM Trans.

Comput. Logic, 4:181–206, April 2003.

[7] F. Cherief. Back and forth bisimulations on prime event structures. In

D. Etiemble and J. C. Syre, editors, PARLE, volume 605 of LNCS, pages

843–858. Springer, 1992.

[8] D. Cock. Verifying probabilistic correctness in isabelle with pgcl. In F. Cassez,

R. Huuck, G. Klein, and B. Schlich, editors, SSV, EPTCS, pages 167–178,

2012.

167

168 BIBLIOGRAPHY

[9] E. Cohen. Separation and reduction. In R. C. Backhouse and J. N. Oliveira,

editors, MPC, volume 1837 of LNCS, pages 45–59. Springer, 2000.

[10] E. Cohen. Weak Kleene algebra is sound and (possibly) complete for simula-

tion. CoRR, abs/0910.1028, 2009.

[11] J. W. Coleman and C. B. Jones. A structural proof of the soundness of

rely/guarantee rules. J. Log. Comput., 17(4):807–841, 2007.

[12] J. H. Conway. Regular Algebra and Finite Machines. Chapman and Hall,

Mathematics series, 1971.

[13] L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Sym-

bolic model checking of probabilistic processes using MTBDDs and the Kro-

necker representation. In S. Graf and M. Schwartzbach, editors, TACAS’00,

volume 1785 of LNCS, pages 395–410. Springer, 2000.

[14] Y. Deng, R. J. van Glabbeek, M. Hennessy, C. Morgan, and C. Zhang. Char-

acterising testing preorders for finite probabilistic processes. In LICS, pages

313–325. IEEE Computer Society, 2007.

[15] Y. Deng, R. J. van Glabbeek, M. Hennessy, C. Morgan, and C. Zhang. Re-

marks on testing probabilistic processes. Electron. Notes Theor. Comput.

Sci., 172:359–397, 2007.

[16] J. Desharnais and G. Struth. Internal axioms for domain semirings. Sci.

Comput. Program., 76(3):181–203, 2011.

[17] J. Dingel. A refinement calculus for shared-variable parallel and distributed

programming. Formal Asp. Comput., 14(2):123–197, 2002.

[18] W. Fokkink and H. Zantema. Basic process algebra with iteration: Com-

pleteness of its equational axioms. Comput. J., 37(4):259–268, 1994.

[19] U. Frendrup and J. N. Jensen. A complete axiomatization of simulation for

regular CCS expressions. Technical report, University of Aarhus, 2001.

BIBLIOGRAPHY 169

[20] H. Furusawa and K. Nishizawa. Relational and multirelational representation

theorems for complete idempotent left semirings. In H. C. M. de Swart, editor,

RAMICS 2011, LNCS. Springer, 2011.

[21] H. Furusawa, N. Tsumagari, and K. Nishizawa. A non-probabilistic re-

lational model of probabilistic Kleene algebras. In RelMiCS’08/AKA’08,

RelMiCS’08/AKA’08, pages 110–122. Springer-Verlag, 2008.

[22] J. L. Gischer. Partial Orders and the Axiomatic Theory of Shuffle (Pomsets).

PhD thesis, Stanford University, Stanford, CA, USA, 1985.

[23] J. L. Gischer. The equational theory of pomsets. Theor. Comput. Sci.,

61(23):199 – 224, 1988.

[24] I. J. Hayes, C. B. Jones, and Colvin R. J. Refining rely-guarantee thinking.

Technical Report CS-TR-1334, Newcastle University, United Kingdom, 2012.

[25] M. R. Henzinger, T. A. Henzinger, and P. W Kopke. Computing simulations

on finite and infinite graphs. pages 453–462. IEEE Computer Society Press,

1996.

[26] T. Herman. Probabilistic self-stabilization. Inf. Process. Lett., 35(2):63–67,

June 1990.

[27] C. A. R. Hoare, B. Möller, G. Struth, and I. Wehrman. Concurrent Kleene

algebra. In M. Bravetti and G. Zavattaro, editors, CONCUR, volume 5710

of LNCS, pages 399–414. Springer, 2009.

[28] C. A. R. Hoare, B. Möller, G. Struth, and I. Wehrman. Concurrent Kleene

algebra and its foundations. J. Log. Algebr. Program., 80(6):266–296, 2011.

[29] J. Hurd, A. K. McIver, and C. Morgan. Probabilistic guarded commands

mechanized in hol. Electr. Notes Theor. Comput. Sci., 112:95–111, 2005.

[30] C. Jones. Probabilistic non-determinism. PhD thesis, Edinburgh, Scotland,

UK, 1989. UMI Order No. GAXDX-94930.

170 BIBLIOGRAPHY

[31] C. B. Jones. Development Methods for Computer Programs including a Notion

of Interference. PhD thesis, Oxford University, June 1981.

[32] B. Jonsson, K. G. Larsen, and W. Yi. Probabilistic Extensions of Process

Algebras, chapter 11. Elsevier, 2001.

[33] J. P. Katoen. Quantitative and qualitative extensions of event structures.

PhD thesis, University of Twente, 1996.

[34] S. Kiefer, A. S. Murawski, J. Ouaknine, J.and Worrell, and L. Zhang. On

stabilization in herman’s algorithm. In L. Aceto, M. Henzinger, and J. Sgall,

editors, ICALP, volume 6756 of LNCS, pages 466–477. Springer, 2011.

[35] A. Komuravelli, C. S. Pasareanu, and E. M. Clarke. Assume-guarantee ab-

straction refinement for probabilistic systems. In P. Madhusudan and S. A.

Seshia, editors, CAV, volume 7358 of LNCS, pages 310–326. Springer, 2012.

[36] D. Kozen. On Kleene algebras and closed semirings. In Rovan, editor, Proc.

Math. Found. Comput. Sci., volume 452 of LNCS, pages 26–47. Springer-

Verlag, 1990.

[37] D. Kozen. The Design and Analysis of Algorithms. Springer-Verlag, New

York, 1991.

[38] D. Kozen. A completeness theorem for Kleene algebras and the algebra of

regular events. Infor. and Comput., 110(2):366–390, May 1994.

[39] D. Kozen. Kleene algebras with tests and the static analysis of programs.

Technical Report TR2003-1915, Computer Science Department, Cornell Uni-

versity, November 2003.

[40] D. Kozen and M. C. Patron. Certification of compiler optimizations using

kleene algebra with tests. In J. W. Lloyd, V. Dahl, U. Furbach, M. Kerber,

K. Lau, C. Palamidessi, L. M. Pereira, and P. J. Sagiv, Y.and Stuckey, editors,

Computational Logic, volume 1861 of LNCS, pages 568–582. Springer, 2000.

BIBLIOGRAPHY 171

[41] D. Krob. Complete systems of b-rational identities. Theor. Comput. Sci.,

89(2):207–343, 1991.

[42] M. Kwiatkowska, G. Norman, and D. Parker. Prism: Probabilistic symbolic

model checker. In T. Field, P.G. Harrison, J. T. Bradley, and U. Harder,

editors, CPE/TOOLS, volume 2324 of LNCS, pages 200–204. Springer, 2002.

[43] M. Z. Kwiatkowska, G. Norman, D. Parker, and H. Qu. Assume-guarantee

verification for probabilistic systems. In J. Esparza and R. Majumdar, editors,

TACAS, volume 6015 of LNCS, pages 23–37. Springer, 2010.

[44] R. Langerak. Bundle event structures: a non-interleaving semantics for LO-

TOS. Memoranda informatica. University of Twente, 1992.

[45] N. A. Lynch, R. Segala, and F. W. Vaandrager. Compositionality for proba-

bilistic automata. In CONCUR, pages 204–222, 2003.

[46] A. K. McIver, E. Cohen, and C. Morgan. Using probabilistic kleene algebra

for protocol verification. In R. A. Schmidt, editor, RelMiCS, volume 4136 of

LNCS, pages 296–310. Springer, 2006.

[47] A. K. McIver and C. Morgan. An elementary proof that Herman’s ring is

Theta (N2). Inf. Process. Lett., 94(2):79–84, 2005.

[48] A. K. McIver and C. C. Morgan. Abstraction, Refinement And Proof For

Probabilistic Systems (Monographs in Computer Science). SpringerVerlag,

2004.

[49] A. K. McIver, T. M. Rabehaja, and G. Struth. On probabilistic Kleene

algebras, automata and simulations. In H. C. M. de Swart, editor, RAMICS,

volume 6663 of LNCS, pages 264–279. Springer, 2011.

[50] A. K. McIver, T. M. Rabehaja, and G. Struth. An event structure model

for probabilistic concurrent Kleene algebra. In K. L. McMillan, A. Middel-

dorp, and A. Voronkov, editors, LPAR, volume 8312 of LNCS, pages 653–667.

Springer, 2013.

172 BIBLIOGRAPHY

[51] A. K. McIver, T. M. Rabehaja, and G. Struth. An event structure

model for probabilistic concurrent Kleene algebra (with appendix). CoRR,

abs/1310.2320, 2013.

[52] A. K. McIver, T. M. Rabehaja, and G. Struth. Probabilistic concurrent

Kleene algebra. In L. Bortolussi and H. Wiklicky, editors, QAPL, volume 117

of EPTCS, pages 97–115, 2013.

[53] A. K. McIver and T. Weber. Towards automated proof support for proba-

bilistic distributed systems. In G. Sutcliffe and A. Voronkov, editors, LPAR,

volume 3835 of LNAI, pages 534–548. Springer, 2005.

[54] L. Meinicke and K. Solin. Probabilistic demonic refinement algebra. Technical

Report SSE-2006-04, University of Queensland, Australia, 2006.

[55] L. Meinicke and K. Solin. Refinement algebra for probabilistic programs.

Electron. Notes Theor. Comput. Sci., 201:177–195, March 2008.

[56] R. Milner. An algebraic definition of simulation between programs. Technical

report, Stanford, CA, USA, 1971.

[57] R. Milner. A complete inference system for a class of regular behaviours. J.

Comput. Syst. Sci., 28(3):439–466, 1984.

[58] R. Milner. A complete axiomatisation for observational congruence of finite-

state behaviors. Inf. Comput., 81(2):227–247, May 1989.

[59] R. Mittermayr, J. Blieberger, and A. Schöbel. Kronecker Algebra based

Deadlock Analysis for Railway Systems. PROMET - Traffic & Transporta-

tion, 24(5):359–369, 2012.

[60] B. Möller. Kleene getting lazy. Sci. Comput. Program., 65:195–214, March

2007.

[61] C. C. Morgan. On the Refinement Calculus. Springer-Verlag New York, Inc.,

Secaucus, NJ, USA, 1992.

BIBLIOGRAPHY 173

[62] A. Nerode. Linear automaton transformations. Proceedings of the American

Mathematical Society, 9(4):pp. 541–544, 1958.

[63] R. De Nicola and M. Hennessy. Testing equivalence for processes. In J. Daz,

editor, ICALP, volume 154 of LNCS, pages 548–560. Springer, 1983.

[64] A. Parma and R. Segala. Axiomatization of trace semantics for stochastic

nondeterministic processes. In B. R. Franceschinis, G.and Haverkort, J. P.

Katoen, and M. Woodside, editors, QEST, pages 294–303. IEEE Computer

Society, 2004.

[65] V. Pratt. Modeling concurrency with partial orders. International Journal

of Parallel Programming, 15(1):33–71, 1986.

[66] R. Qiao, Y. Wang, G. Gao, and J. Wu. Operational semantics of probabilistic

Kleene algebra with tests. In ISCC, pages 706–713. IEEE, 2008.

[67] T. M. Rabehaja and Jeff W. Sanders. Refinement algebra with explicit prob-

abilism. In W. N. Chin and S. Qin, editors, TASE, pages 63–70. IEEE, 2009.

[68] M. O. Rabin. The choice coordination problem. Acta Inf., 17:121–134, 1982.

[69] J. J. M. M. Rutten. Automata and coinduction (an exercise in coalgebra). In

D. Sangiorgi and R. de Simone, editors, CONCUR’98, volume 1466 of LNCS,

pages 194–218. Springer, 1998.

[70] A. Salomaa. Two complete axiom systems for the algebra of regular events.

J. ACM, 13:158–169, January 1966.

[71] S. Schneider. Incorporating time to an integrated formal method, 2012. Pre-

sentation at the NII Shonan Meeting on Quantitative Methods in Security

and Safety Critical Applications, Japan.

[72] M. P. Schtzenberger. On finite monoids having only trivial subgroups. Infor-

mation and Control, 8(2):190 – 194, 1965.

174 BIBLIOGRAPHY

[73] R. Segala. A compositional trace-based semantics for probabilistic automata.

In I. Lee and S. A. Smolka, editors, CONCUR, volume 962 of LNCS, pages

234–248. Springer, 1995.

[74] R. Segala. Testing probabilistic automata. In U. Montanari and V. Sassone,

editors, CONCUR, volume 1119 of LNCS, pages 299–314. Springer, 1996.

[75] R. Segala and N. A. Lynch. Probabilistic simulations for probabilistic pro-

cesses. Nord. J. Comput., 2(2):250–273, 1995.

[76] K. Seidel and C. C. Morgan. Hierarchical reasoning in probabilistic CSP. Pro-

grammirovanie (Russian Journal of Programming and Computer Software),

23, 1996.

[77] E. W. Stark and S. A. Smolka. A complete axiom system for finite-state

probabilistic processes. In G. D. Plotkin, C. Stirling, and M. Tofte, editors,

Proof, Language, and Interaction, pages 571–596. The MIT Press, 2000.

[78] G. Struth. Isabelle Repository for Kleene algebras.

http://staffwww.dcs.shef.ac.uk/people/G.Struth/, 2010.

[79] T. Takai and H. Furusawa. Monodic tree Kleene algebra. In R. A. Schmidt,

editor, Relations and Kleene Algebra in Computer Science, volume 4136 of

LNCS, pages 402–416. Springer Berlin Heidelberg, 2006.

[80] R. Tix, K. Keimel, and G. Plotkin. Semantic domains for combining proba-

bility and non-determinism. Electron. Notes Theor. Comput. Sci., 222:3–99,

February 2009.

[81] R. J. van Glabbeek. The linear time-branching time spectrum (extended

abstract). In J. C. M. Baeten and J. W. Klop, editors, CONCUR 1990,

volume 458 of LNCS, pages 278–297. Springer, 1990.

[82] R. J. van Glabbeek. A complete axiomatization for branching bisimula-

tion congruence of finite-state behaviours. In A. M. Borzyszkowski and

BIBLIOGRAPHY 175

S. Sokoowski, editors, MFCS, volume 711 of LNCS, pages 473–484. Springer

Berlin Heidelberg, 1993.

[83] R. J. van Glabbeek and G. D. Plotkin. Configuration structures, event struc-

tures and Petri nets. Theor. Comput. Sci., 410(41):4111–4159, 2009.

[84] R. J. van Glabbeek and F. W. Vaandrager. Bundle event structures and

CCSP. In R. M. Amadio and D. Lugiez, editors, CONCUR, volume 2761 of

LNCS, pages 57–71. Springer, 2003.

[85] D. Varacca. Probability, nondeterminism and concurrency: two denotational

models for probabilistic computation. BRICS Dissertation Series. 2003.

[86] J. von Wright. Towards a refinement algebra. Sci. Comput. Program., 51:23–

45, May 2004.

[87] G. Winskel. Events in Computation. PhD thesis, Edinburgh, Scotland, UK,

1980.

[88] G. Winskel. Event structures. In W. Brauer, W. Reisig, and G. Rozenberg,

editors, Advances in Petri Nets, pages 325–392, 1986.

	Introduction
	Continuity in Probabilistic Kleene Algebra
	Probabilistic Kleene algebra
	Nondeterministic automata and simulation
	A completeness result for continuous pKA
	Minimisation and decision procedure
	Discussion

	Event Structures and Concurrent Kleene Algebra
	Concurrent Kleene algebra
	Bundle event structures
	Soundess of concurrent Kleene algebra
	Schedulers and finishers on bundle event structures
	Discussion

	Probabilistic Concurrent Kleene Algebra
	Axiomatisation of probabilistic concurrent Kleene algebra
	Operations on probabilistic automata
	Probabilistic forward simulation
	Interleaving interpretation of pCKA
	Completing a proof of correctness
	Discussion

	True Concurrency in Probabilistic Concurrent Kleene Algebra
	Probabilistic bundle event structure
	Probabilistic simulation on pBES
	True concurrent interpretation of pCKA
	Discussion

	Bundle Event Structure with Implicit Probability
	Sequential probabilistic programs
	Probabilistic scheduler on ipBES
	Computation function on ipBES
	Sequential semantics from ipBES
	Simulation for ipBES with tests
	Discussion

	Probabilistic Rely/guarantee Calculus
	Standard rely/guarantee technique
	Probabilistic rely and guarantee conditions
	Probabilistic rely/guarantee rules
	R,G-Preorder and extension to action refinement
	Concurrent Eratosthenes sieve

	Conclusion

