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Thesis Abstract 

Spoken word production is semantically mediated, but debates remain regarding how the structure 

and complexity of semantic representations influence the spread of activation at the semantic level 

and co-activation of other items at the lexical level and how this affects the speed and accuracy of, and 

brain activity during, word production. This thesis focused on six feature-based semantic variables that 

capture aspects of semantics (number of semantic features, intercorrelational density, number of near 

semantic neighbours, semantic similarity, typicality, and distinctiveness) and investigated which of 

these variables affect picture naming performance. The underlying mechanisms of these variables were 

explored using a rich methodological approach focusing on different populations (participants with 

and without aphasia), types of data (behavioural and electrophysiological), and tasks (standard and 

speeded picture naming).  

The experimental study reported in Chapter 2 investigated effects of the semantic variables 

on picture naming in a large group of participants with aphasia. There were effects of number of 

semantic features, semantic similarity, and typicality on error types, some of which depended on the 

integrity of the participant’s semantic system. A more homogeneous subgroup showed an effect of 

number of semantic features on naming accuracy. The results were interpreted in the context of 

current theories of semantics and word production and highlighted that these theories are 

underspecified regarding the mechanisms by which item-inherent semantic variables might operate.   

Chapter 3 explored effects of the same semantic variables on picture naming in neurotypical 

participants. Number of semantic features facilitated performance, while intercorrelational density and 

distinctiveness had inhibitory effects. These findings were interpreted as being due to spreading 

activation at the semantic level and competition at the lexical level.  

In Chapter 4, electrophysiological data collected during overt picture naming was analysed 

using waveform and microstate analyses. Number of semantic features was significant in the waveform 

analysis and in the microstate analysis number of semantic features, intercorrelational density, number 

of near semantic neighbours, and semantic similarity were found to influence activity in the semantic 
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and lexical network involved in word production. This activity is suggested to be either related to the 

target word itself or distributed across a cohort of co-activated representations.   

Chapter 5 reports a comparison of effects of semantic variables in speeded deadline and 

standard picture naming to test whether their effects are systematically stronger in speeded naming. 

There was a stronger effect of distinctiveness in speeded naming and a stronger effect of number of 

semantic features in standard naming. These differences could not be explained by greater 

responsiveness to input in the speeded naming task.  

Overall, this thesis has resulted in a better understanding of the effects of semantic variables 

and underlying mechanisms in picture naming. To explain the effects, theories of word production 

require mechanisms of semantic facilitation and interference, which could be implemented as 

spreading activation at the semantic level and competition at the lexical level. However, most current 

theories of word production need further specification to explain these effects.  
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1 CHAPTER 
1:  

General Introduction 
 



2  |  GENERAL INTRODUCTION 

Verbal communication is a fundamental human skill. We often use spoken language to connect with 

other people in our environment as it allows us to share thoughts and to express feelings with relative 

ease. Verbal communication enables us to share messages with other humans, be it in a professional 

conversation about the latest business figures, in an emotional argument of a couple, or when cracking 

a joke with friends. Transmitting a message to a communication partner is usually an effortless task, 

which does not involve much conscious planning and engagement. However, despite this seemingly 

easy process, verbal communication is actually a highly complex construct, which we heavily rely on to 

function flawlessly. It involves formulating a message and translating it into a word form, which has to 

be selected amongst many thousands of words in the mental lexicon. Subsequently, this abstract word 

has to be articulated, which requires the selection of the appropriate sounds and ultimately the 

synchronised activation of oral and facial muscles is needed for production. If the message needs to be 

expressed in multiple words or sentences, these have to be assembled and connected to one another 

in a grammatically correct and coherent way. We get an insight into the full magnitude of this 

complexity when verbal communication breaks down, as can be the case in people with language 

impairments, which, for example, often occur after stroke.  

The seemingly most simple elements of verbal communication are single words. However, 

even for this apparently basic level of verbal communication, psycho- and neurolinguistic research is 

just beginning to understand the processes involved in successful word production and to grasp how 

and why the production of words might be disordered in people with language impairments. In this 

thesis, I focus on how the structure of, and relationship between, the meanings of words influence 

word production in people with and without language impairments. In this General Introduction I lay 

out the significance of the topic for the broader research context, present relevant theoretical 

frameworks, and introduce the most important concepts for the experimental chapters of this thesis.  

Theoretical accounts of word production  

Research into word production has yielded numerous attempts to formally describe the 

processes that are likely involved (e.g., Abdel Rahman & Melinger, 2009; Dell, 1986; Howard et al., 

2006; Levelt et al., 1999). These theories are intended to describe processes during word production, 
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for example the type of information processed at each level of the model, the number and 

characteristics of the levels involved in word production, and the dynamics within and between levels. 

To formalise the structures and dynamics required for word production, authors of these theories 

often drew on data from impaired word production or experimental paradigms in which participants 

name pictures in specifically designed contexts.  

The different models of spoken word production agree that it is, broadly speaking, a two-

stage process with a first meaning-based and a second phonology-based stage (Butterworth, 1989; 

Garrett, 1980; Levelt, 1989). These broad stages are concerned with different kinds of information: 

semantic, lexical/syntactic, and phonological. More specifically, processing of word meaning 

(semantics) occurs at a conceptual level, selection of an abstract word form at a lexical level, and 

access to phonemes at a phonological level. However, this broad layout quickly gains complexity with 

model-specific details on information representation and processing dynamics, most of which are not 

of direct importance for this thesis. Different models of word production disagree about the direction 

of activation flow (feedforward vs bi-directional, allowing for feedback), timing of activation spread 

within or between levels of the model (sequential vs cascading vs interactive links), and the type and 

organisation of information at the different levels of the model. For example, different models disagree 

about the number and function of sub-processes necessary for lexical-syntactic processing: While 

some models propose only one level of abstract word form (e.g., Caramazza, 1997) others suggest a 

two-stage process differentiating between lemmas (semantic-syntactic information) and lexemes 

(morphological-phonological information) (e.g., Levelt et al., 1999). In this thesis, to remain neutral in 

this debate, I use the term lexical representations and refer to processing at the lexical level, following 

Rapp and Goldrick (2000).  

Two broad distinctions can be drawn to group models of word production. The first distinction 

relates to the representation of word meaning proposed by the different models (i.e., decomposed 

into semantic features vs non-decomposed holistic representations) and the second distinction 

concerns the process underlying lexical selection (i.e., competition vs no competition). I review both of 

these concepts below before introducing the most prominent theories of word production, with a 
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focus on their proposed architecture of semantic representation and processing and the lexical 

selection process, the two elements of word production that I am most concerned with in this thesis.  

Semantic representation  

In this section, I describe how word knowledge is represented in current theories of word 

production, but do not aim to give a full account of the various theoretical debates around 

(computational) models of semantics. As argued by Vigliocco and Vinson (2007) and Vinson et al. 

(2013), current word production theories are mostly underspecified concerning a clear standpoint on 

any differentiation between non-verbal conceptual world knowledge and the part of conceptual 

knowledge that can be verbalised (i.e., semantic memory), which contains the lexical-semantic 

representations of individual words (McRae & Jones, 2013). Most theories of word production do not 

go into detail on distinctions between these concepts and start the formalisation of the word 

production process with lexical semantics (e.g., Dell, 1986; Levelt et al., 1999). As the distinction 

between conceptual and lexical-semantic representations is not a focus for most word production 

theories, I do not attempt to differentiate between them in this thesis. I generally refer to a generic 

semantic level, where processing of semantic representations (e.g., lexical concepts) takes place.   

Moreover, current theories of word production make simplified assumptions regarding the 

characteristics of semantic representations. Outside of word production research, elaborate models of 

semantic representations and semantic processing have been proposed and are heatedly discussed, 

such as connectionist attractor networks (e.g., Cree et al., 1999; Farah & McClelland, 1991; Masson, 

1995; Plaut & Shallice, 1993). However, these advances have usually not been incorporated in theories 

of word production, presumably because most experimental findings in word production research can 

be explained in the context of highly simplified semantic representations (Vinson et al., 2013). 

However, despite being underspecified regarding many of the more recent points of discussion in, and 

developments of, semantic research, current production theories do differ with respect to their 

proposed semantic representations: While some theories consider word meaning to be holistically 

represented, others assume word meaning to be decomposed into semantic features.  
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Holistic representations  

Holistic theories of semantic representations assume that word meaning is characterised as 

lexical concepts, which are abstract, unitary representations of the words of a language (e.g., ‘cat’). 

Hence, lexical concepts are a verbalisable subset of all conceptual knowledge. Relationships between 

these holistic representations are expressed via labelled links between concepts that represent various 

types of relations (e.g., hierarchical is a or part-whole relations has a: ‘cat’ is a ‘pet’ and has a ‘tail’; e.g., 

Collins & Loftus, 1975; Roelofs, 1992). Although each lexical concept maps onto a single lexical 

representation, activation that spreads between concepts via these concept-concept links can cause 

multiple lexical concepts and their lexical representations to be co-activated (e.g., ‘cat’ activates ‘pet’ 

and ‘tail’, which each activate ‘dog’; schematically represented in Figure 1, Panel A).  

Decomposed representations 

In contrast, word production theories that propose semantic representations to be 

decomposed assume that word meaning is broken down into smaller units, semantic features (e.g., 

purrs, has fur, has whiskers, has a tail, etc. for the concept ‘cat’), which, in combination, express the 

complex meaning of a word. According to theories assuming semantics to be decomposed into 

semantic features, relationships between words are driven by featural properties, such as feature 

overlap. Moreover, activation is often forwarded from each semantic feature to multiple lexical 

representations for which this given semantic feature is characteristic, causing multiple lexical 

representations to be simultaneously co-activated (e.g., Dell, 1986; schematically represented in Figure 

1, Panel B). If bidirectional excitatory connections between levels of the model are assumed, this may 

cause the semantic features of semantically related words (e.g., ‘dog’) to become activated through 

activation of the lexical form of these words via the shared semantic features with the target (e.g., Dell 

et al., 1997).  
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Figure 1 

Simplified schematic representation of the spread of activation when naming the picture ‘cat’ 

assuming a decomposed (Panel A) or a holistic semantic architecture (Panel B) 

 

Note. Semantic representation activated by the picture is represented by grey circles (lexical concept 

or semantic features, respectively). The selected lexical representation ‘cat’ is represented by a stronger 

outline.  

Picture source ‘cat’ drawing: https://bit.ly/2Smkm8n. 

 

Lexical selection  

Theories of word production generally agree that during word planning multiple lexical 

representations receive activation at the lexical level, via activation spreading between lexical concepts 

(e.g., Levelt et al., 1999) or to multiple lexical representations based on shared semantic information 

(e.g., Dell et al., 1997; Figure 1). However, there is disagreement about whether these co-activated 

representations influence the production of a target word, with some theories suggesting lexical 

selection to be a competitive process while others do not assume selection of a target word to be 

influenced by other co-activated representations.  
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Competitive lexical selection  

A prominent position is the lexical selection by competition account (e.g., Abdel Rahman & 

Melinger, 2009, 2019; Howard et al., 2006; Levelt et al., 1999; Roelofs, 2018), which proposes negative 

influences of co-activated lexical representations on the selection of the target word’s lexical 

representation, slowing this process down and making it more susceptible to error.  

However, in the class of models proposing lexical selection to be a competitive process, there 

is disagreement about the exact mechanism underlying this interference. One commonly proposed 

mechanism is the Luce ratio, a mathematical rule according to which the highest activated lexical 

representation is selected, with the selection mechanism taking both the level of activation of the 

target and the co-activated representations into account (Levelt et al., 1999; Luce, 1959). Alternatively, 

lateral inhibitory links between co-activated lexical representations have been suggested, where the 

greater the activation of another lexical representation the slower the rise in activation, and ultimately 

selection, of the target representation (e.g., Harley, 1993; McClelland & Rumelhart, 1981; Stemberger, 

1985). Yet, regardless of the exact mechanism, interference from co-activated representations should 

increase the greater the number of co-activated lexical representations and the higher their activation 

levels.  

Non-competitive lexical selection  

In contrast to theories incorporating lexical selection by competition, other theories of word 

production do not see the necessity for lexical selection to be competitive (e.g., Dell, 1986; Mahon et 

al., 2007; Oppenheim et al., 2010). In these models, a lexical representation is selected once it 

surpasses a certain threshold level of activation (e.g., Oppenheim et al., 2010). Alternatively, the highest 

active representation is selected after a fixed number of time steps (e.g., Dell, 1986). Importantly, under 

neither of these suggestions is the selected lexical representation actively affected by the activation 

levels of co-activated lexical representations.  

In models with non-competitive lexical selection, inhibitory effects observed during word 

production are linked to different mechanisms, such as processes at pre-lexical (in the form of a 
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learning mechanism; e.g., Navarrete et al., 2014; Oppenheim et al., 2010) or post-lexical levels (Mahon 

et al., 2007) (more detail in the section on the most important models of word production).  

Below, I review the most prevalent theories of word production with a special emphasis on the 

semantic representation adopted by each model and their views on lexical processing. Some theories 

of word production were designed based on or to explain data examining effects of semantic context 

in relatively complex experimental word production tasks, which, arguably, do not directly resemble 

natural word production. These tasks include the Picture-Word Interference paradigm, where 

participants name a picture while ignoring a (usually written) distractor word and Blocked Cyclic 

Naming, where participants name pictures in small blocks of semantically homogeneous (i.e., from the 

same semantic category or context) or heterogeneous (i.e., unrelated) items. Yet, if any of the theories 

reviewed below can truly claim to provide an accurate representation of the process of word 

production, it also has to be able to account for data from simple tasks, such as ‘simple’ picture 

naming, as was used in this thesis.  

The main focus of the aforementioned tasks and of theories of word production is to 

understand and describe lexical processing. From behavioural data we know that processing speed 

and naming accuracy can vary drastically, which suggests that semantic and lexical processing can be 

influenced by external (i.e., experimental paradigms) or internal (item-inherent word characteristics; 

more on this in the section “Semantic variables”) factors. This facilitation or interference of 

performance can cause responses to be faster or slower as well as more or less accurate. Experimental 

findings of semantic facilitation have mostly been associated with processes at the semantic level and 

semantic interference with processes at the lexical level (e.g., Abdel Rahman & Melinger, 2009; but this 

also depends on the specific model of word production). In contrast to semantic interference (e.g., 

Rose & Abdel Rahman, 2017; Vieth et al., 2014a), semantic facilitation in word production has rarely 

been the focus of experimental investigations (but see e.g., Python et al., 2018a). Similarly, accounting 

for semantic interference is the focus of word production theories, while semantic facilitation is often 

neglected.  
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Theories with competitive lexical selection with a focus on semantic and lexical processing  

Word-form Encoding by Activation and VERification (WEAVER++; Levelt et al., 1999) 

WEAVER++ proposes three strata (lexical concepts, lemmas, and word-forms) with activation 

spreading in a feed-forward manner between them. Importantly, the model does not assume 

inhibitory links within or between strata; however, there is competition at each level of the model to 

select only one candidate for further processing.  

When naming a picture, first the target’s lexical concept node is activated. In WEAVER++, 

word meaning is non-decomposed and representations consist of undivided wholes with links to 

related concepts. When accessing a target lexical concept (‘cat’), activation spreads to concepts related 

in meaning (‘dog’, ‘tiger’) within the semantic level, via labelled links that reflect different relationships 

between lexical concept nodes. All activated lexical concepts send activation to their corresponding 

lemmas. The connection between concepts and lemmas is bidirectional, allowing for activation to 

spread back to the lexical concepts. Importantly, selection between co-activated lemma nodes is 

competitive and achieved via the Luce choice rule. Subsequently, word-form encoding takes place, 

which involves the morpho-phonological representation of the selected lexical representation being 

retrieved and phonetic encoding taking place. Hence, while semantic interference is located at the 

lexical level, the locus and mechanism of semantic facilitation is unspecified in WEAVER++.  

Swinging Lexical Network (Abdel Rahman & Melinger, 2009, 2019)  

The Swinging Lexical Network Account was developed to explain both facilitatory and 

inhibitory effects observed in semantic context manipulation paradigms (Picture-Word Interference, 

Blocked Cyclic Naming). This theory proposes holistic lexical concept nodes, and that activation 

spreads bidirectionally between them and between the semantic and the lexical level. The general 

effect of spreading activation between lexical concepts is facilitation (conceptual priming): Mutually 

related lexical concepts enhance each other’s activation through bidirectional links. Importantly, this 

spread of activation is thought to be flexible and to depend on the specific context; for example, it can 

be based on associative relations and allows the formulation of ad hoc categories (e.g., fishing trip). 

However, if this spread of activation results in activation at the lexical level of a lexical cohort of 
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sufficient size and activation strength, competition between co-activated representations can result in 

a net inhibitory effect of the semantic context, which outweighs facilitation at the conceptual level. 

Similar to WEAVER++, competition in the Swinging Lexical Network Account is implemented based on 

the Luce ratio.  

Howard, Nickels, Coltheart, and Cole-Virtue, 2006 

Howard et al. (2006) developed a set of principles to explain effects of cumulative semantic 

interference, where word production gets increasingly harder the more words from the target’s 

semantic category were previously named in the experiment. This account proposes that semantic 

representations related to the target get co-activated via spreading activation between the concepts or 

shared semantic features (shared activation; importantly, Howard et al. (2006) modelled both a 

decomposed and a non-decomposed semantic system with comparable conclusions regarding the 

necessary characteristics of the model). The co-activated concepts in turn activate their respective 

lexical representations, which delay word production (competition) due to lateral inhibition between 

the co-activated lexical representations. Hence, responses are slower, the higher the activation of the 

target word’s competitors. Finally, previously selected (named) representations are more easily 

activated subsequently, due to strengthened conceptual-lexical connections (priming).  

Theories with non-competitive lexical selection with a focus on semantic and lexical processing 

Interactive Activation Model (Dell, 1986, 1988; Dell et al., 1997)  

In contrast to the other theories reviewed here, which were primarily developed based on 

chronometric data, Dell’s model was built on speech errors observed in naming. It is a two-step model 

with semantic activation spreading from activated semantic features to corresponding lexical 

representations and then to phonemes. All connections between levels of the model are bi-directional, 

with information spreading in a feedforward (cascading) and feedback manner. The strength of 

connections is thought to be a product of recent experience and learning (although this is not 

implemented) and they are all excitatory, with no inhibitory connections. Importantly, this model 

conceives of word meaning as being decomposed into semantic features, which, upon activation, 

activate their associated lexical representations. Feedback from the lexical level to the semantic level 
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can cause semantic features of semantically related non-target words to be co-activated. Lexical 

selection is achieved by activation converging from both semantic and phonological processing and is 

thought to be non-competitive, with the most active lexical candidate being selected after a certain 

number of activation cycles (time steps). Hence, bi-directional links between the semantic and lexical 

levels in this model architecture can explain effects of semantic facilitation, while it does not 

implement mechanisms for semantic competition.  

Incremental Learning Model (Oppenheim et al., 2010) 

Similar to Howard et al. (2006), Oppenheim et al.'s (2010) incremental learning model was 

created to explain effects of cumulative semantic interference. Semantic representations are 

decomposed into semantic features and activate the lexical representations that contain these 

semantic features, which results in multiple lexical representations getting activated at the lexical level. 

However, selection at the lexical level is non-competitive (note that Oppenheim et al. also modelled a 

variant of this account with competitive lexical selection) but rather aided by a booster mechanism, 

which amplifies the activation levels of all active lexical representations to increase activation 

differences between the co-activated representations. This continues until activation of a lexical 

representation reaches an absolute threshold and is selected for production. Consequently, any co-

activated competitors do not influence selection times. Activation boosting continues until a certain 

number of boosts have been reached. If, at that point, no lexical representation exceeds the activation 

threshold, no lexical selection takes place, resulting in an omission. Specific to this theoretical account 

is, moreover, that after selection, the semantic-to-lexical connections between the semantic 

representation and the co-activated lexical representations are adjusted by an implicit error-based 

learning mechanism: The connection between the selected lexical representation and its semantic 

representation is strengthened, which facilitates future retrieval of the same word. In contrast, 

connections between co-activated but unselected representations and their semantic representations 

are weakened, which inhibits subsequent selection of these lexical representations. Hence, under this 

theoretical account, non-competitive semantic interference takes place at a pre-lexical level and 
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semantic facilitation is argued to be associated with conscious planning processes that go beyond a 

model of word production.  

Ballistic Model of Lexical Access (Mahon & Navarrete, 2016; Navarrete et al., 2014) 

The ballistic model assumes that holistic lexical concepts are activated when the system is in a 

communicative intentional state. The selection of a lexical concept entails the lexicalisation of its 

semantic representation. Hence, the lexical level is a direct reflection of what happened at the semantic 

level. The most highly activated lexical representation will be retrieved, without competition. 

Consequently, the lexical level is not a ‘decision point’, but decisions are taken at the pre- and post-

lexical levels. Therefore, lexical processing itself cannot be slowed, however, it can be speeded by 

semantically related contexts via semantic priming. In the presence of an external non-target 

distractor, like in the Picture-Word Interference paradigm, inhibition from the distractor is thought to 

arise from a conflict between the target word and the distractor during post-lexical processing at the 

output buffer (Response Exclusion Hypothesis; Mahon et al., 2007). This process of response exclusion 

was described as being sensitive to coarse semantic characteristics of the target word (such as its 

semantic category), which facilitates the removal of non-target representations from consideration.  

If, however, no non-target distractor is present in the paradigm, as in the Blocked-Cyclic 

Naming paradigm, the authors place competitive processes in semantic-to-lexical connections (similar 

to Oppenheim et al., 2010). Both incremental strengthening of connections between the semantic 

representation and the selected lexical representation as well as incremental weakening of these 

connections to non-selected lexical representations are proposed to take place after lexical retrieval. In 

addition, within one experimental block in the Blocked-Cyclic Naming paradigm, the target’s lexical 

concept is primed from semantically related items, resulting in facilitation via a spread of activation 

between semantically related lexical concepts.  

Taken together, the models of word production reviewed above assume that picture naming is 

semantically mediated and therefore include a level that is concerned with representation and 

processing of word meaning. In addition, all models (with the exception of the Interactive Activation 

Model; e.g., Dell, 1986) predict some sort of influence from co-activated representations, albeit at 
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different levels and time-points of processing. Hence, semantic activation and spread of activation to 

other semantic representations (via links between concepts, through feedback from the lexical level, or 

even connections between semantic features; McRae et al., 1997, 1999) determines the landscape of 

further processing, especially of lexical processing. The level at which negative interference from co-

activated representations takes place is often, but not always, described as the lexical level (lexical 

selection by competition). In contrast, few models explicitly locate semantic facilitation in the model, 

however, where discussed, they are associated with spreading activation and feedback processes at the 

semantic level (e.g., Abdel Rahman & Melinger, 2009).  

Importantly, all accounts of inhibition in current word production theories are related to 

contextual influences either from distractors that are presented simultaneous to the target word (e.g., 

Levelt et al., 1999) or previously named words (e.g., Howard et al., 2006; Oppenheim et al., 2010). A 

notable exception is the updated theory by Abdel Rahman and Melinger (2019), that also considers 

mechanisms of semantic co-activation without context manipulations and also accounts for effects of 

interference and facilitation that are limited to processing of the target word itself—influences from 

endogenous word characteristics. However, it is still largely unclear which word characteristics may be 

influential during processing and what the mechanisms underlying their effects may be. Hence, more 

fine-grained analyses of aspects of semantics and their influences on word production are necessary, 

which is the aim of this thesis.  

Semantic variables 

Standard, or simple, picture naming (I call this ‘simple’ as it only involves presenting one 

picture at a time without showing potentially distracting information along with the target picture or 

explicitly manipulating the preceding context) allows one to study processing of words without the 

need to incorporate influences from other target or non-target (distractor) words in the experiment. 

This is made possible when exploring effects of item-inherent word properties (psycholinguistic 

variables) on word production. Importantly, the investigation of effects of item-inherent word property 

variations does not require any manipulation of the context a word is presented in and is consequently 



14  |  GENERAL INTRODUCTION 

unaffected by confounding influences associated with the different context manipulation paradigms 

(e.g., working memory, executive control functions, response strategies, e.g., Fieder et al., 2019). 

There has been considerable research indicating that the different levels of word production 

are influenced by several item-inherent psycholinguistic variables, such as, for example, target 

familiarity or frequency of occurrence. This influence is reflected in a relationship between the accuracy 

of a response and/or the latency of correct naming and the respective variable (e.g., Alario et al., 2004; 

Nickels, 1997; Nickels & Howard, 1994; Strijkers et al., 2010; see Perret & Bonin, 2018, for a meta-

analysis and review). However, models of word production do not always specify their predictions 

regarding effects of item-inherent properties (but see Levelt et al., 1999, who explicitly localise the 

effect of frequency at the level of accessing word forms). This may be the case because it has not fully 

been established which variables influence performance and where in the word production process 

these effects may arise. Therefore, these item-inherent variables, their mechanisms, and functional loci 

in the word production process need to be more thoroughly investigated to determine if they have 

reliable effects on word production. If they do, models of word production need to explicitly account 

for any such effects.  

What can semantic variables tell us? 

Computationally oriented research into semantic representations has led to the proposal of a 

number of semantic word characteristics that describe aspects of the semantic representation of the 

target word (e.g., McRae et al., 1997). I call these item-inherent word characteristics semantic 

variables1. Semantic variables formalise different aspects of the distribution and activation of semantic 

information of a target word and its relationship to other words using mathematical and statistical 

methods. These variables have so far mostly been tested in the context of input tasks, such as semantic 

categorisation task or feature verification (e.g., Fujihara et al., 1998; McRae et al., 1997; Mirman & 

Magnuson, 2008; Randall et al., 2004), where the focus of the investigation is semantic processing 

itself.  

 
1 Other groups of researchers (e.g., Professor Lorraine Tyler’s group at University of Cambridge) have termed them 

conceptual structure statistics.  
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In contrast, and despite the central role of semantic information in word production, so far, 

relatively little research has targeted how semantic variables may affect and modulate processes of 

word production. However, studying effects of semantic variables in word production is particularly 

interesting as they may affect both semantic and lexical processing: While effects may originate at the 

semantic level, they may have dramatic consequences for the target word’s activation at the lexical 

level as well as for the size and strength of activation of a co-activated lexical cohort. Hence, even 

without manipulating the context a target picture appears in, thoroughly investigating effects of 

semantic variables can help us to better understand processes of word production and the activation 

environment in which word production takes place. Ultimately, this may allow to ask theoretical 

questions about semantic and lexical processing, which can help to adjudicate between different 

theories of word production.  

Semantic variables that have received considerable previous attention are imageability, 

concreteness, and animacy. Imageability is the ease of creating a mental image of a concept and 

concreteness the accessibility of sensory experience related to a target concept. The two measures are 

highly correlated and are usually obtained by participant ratings. Participants with and without aphasia 

have been found to respond slower and/or less accurately for words of lower imageability and/or 

concreteness in several tasks and modalities (e.g., participants with aphasia: oral reading, Berndt et al., 

2005; picture naming, Nickels and Howard, 1995; unimpaired participants: picture naming, Alario et al., 

2004; Ellis & Morrison, 1998; lexical decision, Balota et al., 2004; semantic classification, Yap et al., 2012; 

word reading: Strain et al., 1995). In participants with aphasia, imageability has also been found to 

predict the occurrence of semantic errors (e.g., Nickels, 1995). Moreover, it has been shown that event-

related brain potentials (ERPs) differed when processing words depending on their imageability/ 

concreteness (e.g., Amsel & Cree, 2013; Binder et al., 2005; Pexman et al., 2007b; Swaab et al., 2002). 

In addition, animate and inanimate objects have been suggested to differ in their semantic 

structure (i.e., suggestions that animate and inanimate concepts differ in the composition of their 

semantic features, intercorrelations among their features, and their distinctiveness; e.g., Gonnerman et 

al., 1997; McRae et al., 1997). Effects of animacy have been found, for example, in picture naming of 
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neurotypical speeded participants (slower and less accurate responses to living things, Hodgson & 

Lambon Ralph, 2008), and there is a substantial body of literature investigating category-specific 

deficits in participants with semantic impairments (e.g., Best et al., 2006; Devlin et al., 1998; Garrard et 

al., 2001; Rico Duarte et al., 2009; Tyler & Moss, 2001).  

More recently, the interest in investigating effects of a range of semantic variables on word 

production has increased and the topic has received more attention (e.g., Fieder et al., 2019; Hameau 

et al., 2019; Rabovsky et al., 2016). Yet, much of this new knowledge has so far not explicitly been 

integrated into theories of word production (Vinson et al., 2013). Current models of word production 

are, as outlined earlier, generally underspecified regarding semantic organisation and particularly 

regarding effects of item-inherent semantic variables. While the characteristics (e.g., lexical 

competition) of some of the models allow us to tentatively interpret effects of semantic variables in the 

context of these models, others may require previously unspecified post-hoc assumptions about 

processing to be able to account for effects of semantic variables, while other effects may be 

incompatible with certain theoretical frameworks altogether. Hence, investigating semantic variables 

and their effects on word production may, on the long run, allow us to adjudicate between models of 

word production.  

Operationalising semantic knowledge and semantic variables  

The representation of a specific word in semantic memory comprises different types of 

information, including facts about the concept, perceptual information, and general world knowledge. 

This allows us to connect otherwise meaningless lexical units (e.g., words) with complex meaning 

representations, to recognise objects around us, “and to interact with the world in a knowledge-based 

manner” (Jones et al., 2015, p. 233). Yet, despite its central role in human behaviour, the exact way 

semantic information is learned and stored, and the type of information activated and retrieved in 

semantic memory during cognitive tasks has not yet been fully established. However, the hypothesised 

type of information stored about a word and the way it is presumed to be connected to other words 

has direct consequences when attempting to operationalise semantic representations or their relations 

as semantic variables.  
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One way to capture semantic knowledge is to explicitly ask participants to rate stimuli on 

certain aspects of the target’s meaning, most commonly, on Likert scales. Ratings have, for example, 

been used to estimate the number of semantic neighbours (competitors) a word has (e.g., Bormann, 

2011; Bormann et al., 2008), or its typicality within its semantic category (e.g., Rossiter & Best, 2013). 

Research using this rating-based approach has resulted in important insights, however, it is impossible 

to know on what basis participants rate the stimuli. For example, it could be that when rating the ease 

of conjuring an image for a word (imageability), other variables, like word frequency or concept 

familiarity, influence this rating process.  

More recent developments, particularly in computational linguistics, try to determine aspects 

of meaning more objectively with the help of large-scale text corpora or databases (context-based and 

association-based approaches below). These go hand in hand with theoretical proposals of the 

representation and processing of semantic information in semantic memory. In the next sections, I 

outline the proposals regarding semantics that have been utilised to operationalise semantic variables 

for word production research (e.g., Hameau et al., 2019; Kittredge et al., 2007a; Rose & Abdel Rahman, 

2016) and introduce how semantic variables are derived in the context of the different proposals. 

Finally, I explain the rationale behind selecting only feature-based semantic variables for this thesis.  

Importantly, these different proposals, with exception of the feature-based account, are at 

odds with the simplified implementation of semantics employed by current word production models 

(i.e., holistic or feature-based semantic representations). Moreover, they entail drastic differences in the 

distribution of semantic activation and in the composition of the cohort assumed to be co-activated 

during processing (see Table 2 in Hameau et al., 2019).  

Context-based approaches 

Like classical holistic theories of semantic representation, context-based accounts propose that 

the meaning of a word is represented through its relationship to other words (Vigliocco & Vinson, 

2007). What I refer to as context-based models of semantic representations are models of the nature 

and structure of semantic knowledge (see Günther et al., 2019, for review) also known as distributional, 

corpus-based, semantic space, or co-occurrence models (Jones et al., 2015). The general idea 



18  |  GENERAL INTRODUCTION 

underlying this class of approaches is that word knowledge is learned from the linguistic environment, 

with the lexical context a word occurs in being used for the computation of its meaning. Hence, 

semantic information in context-based approaches is derived from the statistical distribution of words, 

however, the particular learning mechanisms used to build semantic representations vary depending 

on the specific model. 

Two popular context-based accounts that assume different cognitive mechanisms are Latent 

Semantic Analysis (LSA, a latent inference model; e.g., Landauer, 2006; Landauer et al., 1998; Landauer 

& Dumais, 1997) and Hyperspace Analogue to Language (HAL, a passive co-occurrence model; Lund & 

Burgess, 1996) (for in-depth reviews see e.g., Bullinaria & Levy, 2007; Jones et al., 2015; Riordan & 

Jones, 2011). They use vectors of word production frequencies in large corpora of natural language 

(LSA) or in a moving window (HAL) resulting in a similarity matrix that allows the calculation of various 

measures, for example a measure of semantic neighbourhood density (e.g., Hameau et al., 2019; 

Kittredge et al., 2007a) or semantic similarity (e.g., Vigliocco et al., 2004). A drawback of such context-

based approaches is that their semantic relations emphasise associative and thematic relationships 

(Hameau et al., 2019; Reilly & Desai, 2017) as word meaning that is acquired through experience with 

the world via our senses is neglected (Vinson et al., 2013). 

Association-based approaches 

A different approach to semantic cognition is in human word association data. For example, 

De Deyne et al. (2017) proposed word knowledge to be represented by a network of word nodes that 

are connected via links reflecting associative relations between two nodes. These large-scale semantic 

networks are based on word association data, which is usually collected in free association tasks. 

Participants in experiments generating free association norms produce free associations in 

response to given target words, which allows a characterisation of the concepts that are related to a 

given target word (Mirman & Magnuson, 2008). Different groups have collected association data on a 

large-scale (e.g., University of South Florida free association norms: Nelson et al., 2004; Small Word of 

Words; De Deyne et al., 2019) to describe semantic knowledge and relationships between concepts. 

These have allowed the calculation of several measures such as number of associates (Hameau et al., 
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2019; Pexman et al., 2007a; Rabovsky et al., 2012) or the strength of the first associate (Griffiths & 

Steyvers, 2003). By now, a body of literature (e.g., Melinger & Abdel Rahman, 2013; Rose & Abdel 

Rahman, 2016) has proposed that semantic influences on word production are not restricted to 

categorical relationships but that associatively related representations are also important for word 

production.  

Feature-based approaches   

Among different accounts of the structure of semantic memory (see Jones et al., 2015; McRae 

& Jones, 2013, for reviews), the featural view is the most prevalent (Murphy, 2002). Individual features 

are understood to be verbalised proxies for the knowledge actually underlying word meaning (McRae, 

2004; Vinson et al., 2013). In other words, features are held to be the basic components of the meaning 

of a word and each feature represents a certain semantic property of the given concept (such as in the 

example ‘cat’ given earlier: purrs, has fur, has whiskers, has a tail, etc.). The idea that complex concepts 

can be decomposed into more basic elements has been criticised in the past. Important points of 

discussion in this debate are, for example, the impossibility of identifying defining features for all 

meanings, whether word meaning is analysable as smaller components at all, as well as the hyponym 

problem (i.e., if all features of ‘animal’ are part of ‘cat’, why do we not usually erroneously say “animal” 

instead of “cat”) (e.g., J. A. Fodor et al., 1980; J. D. Fodor et al., 1975; J. A. Fodor, 1976). However, going 

into more detail on this debate is beyond the scope of this General Introduction and thesis (but see 

e.g., Levelt, 1989; Roelofs, 1997, for reviews and discussions in the context of theories of word 

production).  

According to decomposed, feature-based theories of conceptual knowledge (Cree et al., 1999; 

Farah & McClelland, 1991; Masson, 1995; McRae et al., 1997; Tyler et al., 2000), a concept’s meaning is 

represented as the pattern of activation across such semantic features. McRae and colleagues (e.g., 

McRae et al., 1997, 1999) advanced the idea that semantic memory includes implicit knowledge about 

feature relationships and suggested feature-feature and feature-concept statistics to be embedded in 

the semantic representation of concepts and to play important roles during word processing (some of 

these statistics are the focus of this thesis and are further described below).  
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Case for focusing on feature-based semantic variables 

In this thesis, I focus on semantic variables that can be operationalised based on conceptual 

knowledge that is represented as semantic features. Various semantic feature norm databases using 

participant-generated features have been developed by multiple groups (e.g., Devereux et al., 2014; 

McRae et al., 2005; Rosch & Mervis, 1975; Vinson & Vigliocco, 2008) to capture word meaning and 

operationalise conceptual knowledge as semantic features. In feature-generation tasks, participants are 

usually asked to list characteristic features that describe concepts. Here, I used McRae et al.’s (2005) 

feature norm database, which is a corpus of 541 basic-level concepts. For each of the concepts, 30 

participants were asked to generate semantic features to define and describe the concept. Participants 

were provided with 10 empty lines and were instructed to generate different types of features (e.g., 

perceptual, functional, encyclopaedic). This approach is thought to make participants systematically 

analyse their semantic knowledge about a concept and to reveal the dimensions of meaning they 

considered psychologically salient (Vinson et al., 2013). Semantic feature norms are therefore thought 

to provide a window into important aspects of word meaning and to be a proxy of conceptual 

knowledge (e.g., Vigliocco & Vinson, 2007)—they provide us with a model of semantic representation 

of single words. Hence, any effects of feature-based semantic variables on word production processes 

may reflect underlying principles of semantic organisation and its consequences for lexical processing 

and therefore have to be accounted for by theories of word production. Moreover, as noted by Clarke 

and Tyler (2015), feature norms and variables derived from them are thought to share properties with 

the neural underpinnings of conceptual representation and processing in the brain, “although 

semantic features are not claimed to be the neural units of meaning” (Clarke & Tyler, 2015, p. 678).  

Critics of the use of feature norms have raised concerns that they are not direct 

representations of the true properties likely underlying word meaning. For example, they comprise 

only features that can be verbalised and have been argued to suffer from a systematic 

underrepresentation of highly frequent, shared features (e.g., breathes; e.g., Vinson et al., 2013). 

However, despite their limitations I believe that feature norms are the best currently available method 

for specifying conceptual content. Measures based on semantic features are reproducible, transparent, 
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allow for adaptation, extension, and replication by other researchers. Moreover, feature-based 

semantic variables represent a relatively objective way to operationalise conceptual knowledge: In 

contrast to rating approaches, participants are not asked to directly estimate a certain aspect of the 

semantic representation (e.g., concept typicality within its semantic category, e.g., Rossiter and Best, 

2013; number of semantic competitors, e.g., Bormann, 2011) and are hence naïve to the specific aspect 

of meaning to be measured. Rather, the feature norms can be used as a source of information from 

which different measures can be more objectively determined using mathematical and statistical 

methods. Moreover, current theories of word production mostly do not assume association-based or 

context-based relations (but see Abdel Rahman & Melinger, 2019, who also propose associative 

relationships between lexical concepts), but specify feature-based relations (i.e., feature-based 

semantics or connections between lexical concepts via shared properties), which facilitates 

interpretation of any effects of feature-based semantic variables in the context of these theories.  

In the absence of clear pointers from the literature regarding which semantic dimensions and 

relationships are encoded in our language systems, I aim to provide a thorough investigation of one 

approach to operationalising semantic knowledge and focus on semantic variables that can be 

operationalised based on semantic features. This choice was also reinforced by a study by Hameau and 

colleagues, who compared different approaches to operationalising semantic neighbourhood density 

(i.e., feature-based, association-based, context-based) and their effects on picture naming and found 

that the feature-based measure2 best captured variability in the data (Hameau et al., 2019). Moreover, I 

attempted to avoid the use of multiple databases (e.g., McRae et al.'s (2005) feature database and 

Nelson et al.'s (2004) association database), as they each contain different words, which would have 

decreased the number of items with full item information. Subsequent research may focus on effects 

of semantic variables derived from context- and association-based approaches and conduct similarly 

systematic and thorough explorations of these domains before assessing effects of variables across 

methods of operationalisation. 

 
2 Note that Hameau et al.'s (2019) feature-based measure combined the number of feature-based near semantic 

neighbours and the number of rated competitors. 
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Importantly, by utilising a semantic feature norm database to calculate semantic variables I do 

not intend to take a position in the debate regarding whether semantic representations in word 

production theories are decomposed or holistic. One could argue that the type of semantic 

representation adopted by a word production theory has direct consequences for the proposed flow 

of information and for which semantic relationships are predicted to influence word production. 

However, I do not wish to over-interpret any given effects of feature-based variables as incompatible 

with holistic architectures, as they could also reflect semantic relationships as captured in non-

decomposed theories of semantics (e.g., Collins & Loftus, 1975; Levelt et al., 1999; Roelofs, 1992) (see 

e.g., Paper 1 in Chapter 2, for a discussion). In my interpretations of significant effects, I therefore 

instead focus on explaining how the respective semantic variables might operate at the semantic and 

particularly the lexical level of word production and discuss the theoretical characteristics necessary to 

account for any effects. 

To further narrow down the scope of this thesis, I focus on feature-based semantic variables 

that describe some aspect of the meaning of the entire concept. In contrast, I do not touch on the 

contribution of specific types of features (e.g., sensory or functional) to the knowledge of words and 

the discussions about selective impairments for certain types of knowledge (e.g., debate about domain 

specific (living/nonliving) impairments).  

Throughout this thesis, I have used McRae et al.'s (2005) feature-norm database to calculate 

semantic variables. More specifically, the semantic variables that this work focusses on are number of 

semantic features, intercorrelational density, number of near semantic neighbours, typicality, semantic 

similarity, and distinctiveness.  

Previous investigations of effects of feature-based semantic variables on word processing 

The aforementioned semantic variables selected for investigation in this thesis were retrieved 

from previous work into effects of semantic variables on word production. A thorough review of the 

literature investigating effects of the six feature-based semantic variables in word production and their 

theoretical interpretations is given in Chapter 2 (Paper 1; participants with aphasia) and Chapter 3 
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(Paper 2; neurotypical participants). Below I briefly introduce each of the variables and provide an 

overview with examples of previous research into their effects outside word production.  

Number of semantic features 

Number of semantic features can be thought to indicate the richness of the semantic 

representation of the target word. This measure is almost always retrieved from feature norm 

databases (e.g., Devereux et al., 2014; McRae et al., 2005). For example, in the McRae et al. database, 

the concept ‘cat’ is represented by the features has fur, an animal, a pet, eats, has whiskers, meows, 

purrs, has four legs, has legs, has a tail, has claws, is domestic, a baby is a kitten, a feline, eats mice, has 

paws, is independent, a mammal, kills, and has eyes.  

The effect of number of semantic features generally described in the literature, which holds 

across modalities, is that concepts consisting of more semantic features are responded to faster than 

those consisting of fewer features (e.g., Grondin et al., 2009; Pexman et al., 2002, 2003, 2008; Yap et al., 

2011). Effects of number of semantic features have also been studied across receptive semantic and 

lexical tasks using electroencephalography (EEG). For example, Amsel (2011), Rabovsky et al. (2012), 

and Kounios et al. (2009) reported differences in ERPs when comparing processing of words with high 

or low numbers of semantic features in a variety of tasks (i.e., delayed imagery judgement, lexical 

decision, and semantical relatedness judgement, respectively). Differences in the number of semantic 

features associated with a word have also been suggested to underlie effects of concreteness (e.g., 

Plaut & Shallice, 1993), where concrete words are responded to more quickly than abstract words 

(Binder et al., 2005; Strain et al., 1995). However, this account has been disputed by for example Amsel 

and Cree (2013) and Kounios et al. (2009) who presented data that suggested that concreteness and 

number of semantic features are separate measures.  

Related measures capturing numbers of particular types of features (e.g., perceptual or 

functional features; e.g., Rico Duarte & Robert, 2014) or the number of distinguishing or shared 

features (see also section “Distinctiveness” below; e.g., Grondin et al., 2009; Miozzo et al., 2015) have 

also been shown to influence performance, however, in this thesis, I focus on the overall number of 
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semantic features measure (previous behavioural findings from word production studies are presented 

in detail in Chapters 2 and 3 and ERP findings in Chapter 4).  

Intercorrelational density 

The idea behind a measure of featural intercorrelation is that different semantic features tend 

to occur together. For example, the features has fur and has four legs tend to occur together across 

concepts (e.g., ‘cat’, ‘dog’, ‘wolf’, ‘caribou’, ‘cougar’). Stronger correlations between features are argued 

to allow for greater mutual co-activation in clusters of intercorrelated features, due to, for example, 

bidirectional feature-feature connections (e.g., Cree et al., 1999; McRae et al., 1997, 1999). Hence, the 

degree to which a specific feature (e.g., has fur) is correlated with the other features of a concept (e.g., 

‘cat’) (termed intercorrelational strength by McRae et al., 1997, 1999) determines the level of activation 

of that particular feature but also of the other features of the concept (e.g., has four legs, has whiskers, 

has a tail, etc.) as features in a cluster of intercorrelated features boost each other’s activity. This affects 

processing, with more strongly correlated features speeding up activation and thus decreasing 

processing times. Strength of the correlation between the feature and a concept has been shown to 

predict response times in feature verification tasks where participants were asked to verify features as 

true or false of a concept (McRae et al., 1997, 1999). For example, is hunted is more strongly correlated 

with the other features of ‘deer’ than of ‘duck’ and was therefore faster verified than for the concept 

‘deer’ than the concept ‘duck’ (for similar findings see also e.g., Garrard et al., 2005; Randall et al., 2004; 

Taylor et al., 2004). Differences in feature correlations in different semantic categories have also been 

suggested as one of the reason for domain-specific impairments in participants with language 

disorders (e.g., Devlin et al., 1998; Gonnerman et al., 1997).  

In this thesis, however, I was interested in semantic variables that capture an aspect of 

semantic information of the whole concept (i.e., concept-specific variables) and not of single features 

in relation to concepts. McRae et al. (1997) suggested the measure intercorrelational density as a 

means of capturing the relationship between all the semantic features of a concept. It indexes the 

degree of feature-feature correlations among the features of a concept. Higher intercorrelational 

density has been shown to lead to faster responses in a domain decision task (Taylor et al., 2012; note 
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that they called their measure correlational strength) and faster convergence of a computational 

model (McRae et al., 1997). Importantly though, for words with high intercorrelational density, McRae 

et al. also reported that some features were co-activated that are not really part of the concept but are 

strongly correlated with the actual features of the concept (e.g., bird-features like beak for the concept 

‘jet’ via wings and flies). Intercorrelational density has been previously investigated in a few word 

production studies (Clarke et al., 2013; Rabovsky et al., 2016, 2021; Taylor et al., 2012), some of which 

also collected evoked responses, and which are reviewed in Chapters 3 and 4.  

Number of near semantic neighbours 

Semantic neighbours of a target word are other words that share part of their semantic 

information with the target. Different ways of capturing the semantic neighbourhood of words have 

been implemented using the different approaches to operationalising semantic knowledge described 

above: feature-based (e.g., Mirman, 2011), association-based (e.g., Hameau et al., 2019), and context-

based (e.g., Kittredge et al., 2007b) neighbours, as well as ratings of the number of category 

coordinates (e.g., Bormann, 2011). Number of semantic neighbours has been reported to affect 

processing in a variety of tasks, such as visual lexical decision in unimpaired speakers (e.g., Buchanan et 

al., 2001; Pexman et al., 2008) and word production in people with aphasia (e.g., Blanken et al., 2002; 

Bormann, 2011; Bormann et al., 2008), while in unimpaired participants word production seems to 

mostly be unaffected by number of semantic neighbours (Bormann, 2011; Hameau et al., 2019).  

Looking more closely at the feature-based semantic neighbourhood variable used in the past, 

it was actually a measure of number of near semantic neighbours, which are words that share a 

relatively large proportion of their semantic features with the target word (feature vector cosine 

similarity > 0.5; Fieder et al., 2019; or > 0.4, Mirman, 2011, respectively). Mirman and Magnuson (2008; 

Experiment 1) reported that number of near semantic neighbours affected performance in lexical 

selection and category discrimination tasks. They also found longer response latencies for words with 

many near semantic neighbours in contrast to words with few near neighbours in a concreteness 

judgement task (Experiment 2). Moreover, feature-based number of near semantic neighbours has 



26  |  GENERAL INTRODUCTION 

been the focus of a number of studies investigating word production in participants with and without 

aphasia, which are reviewed in Chapters 2 and 3.  

In addition to number of near semantic neighbours, number of distant semantic neighbours 

has been used as another semantic variable in some studies. In contrast to near semantic neighbours, 

distant semantic neighbours are words that share very little semantic information with the target word 

(e.g., cosine of < .25 and > 0 in Mirman and Magnuson, 2008), but are much more abundant. In a 

semantic categorisation task, Mirman and Magnuson reported that the presence of many distant 

neighbours tended to have facilitatory effects on processing. This measure has also been used in some 

word production studies (e.g., Fieder et al., 2019; Mirman, 2011). In this thesis, number of distant 

semantic features was not included as one of the semantic variables of interest. Justification for this 

decision is provided in Chapter 2.   

Typicality 

Typicality is one of the most researched semantic variables. It indexes the items’ 

representativeness of its semantic category: ‘robin’ is a representative, a typical, bird, while ‘ostrich’ is 

an atypical bird, due to ‘robin’ having many prototypical features of the category ‘bird’ (it is small, flies, 

has wings, a beak, etc., e.g., Rossiter & Best, 2013). To operationalise typicality, researchers have most 

often used ratings in which participants rated the target’s typicality in its semantic category (e.g., 

Rossiter & Best, 2013) or other measures that have been argued to capture typicality (e.g., frequency of 

instantiation, e.g., Barsalou, 1985; category potency, e.g., Battig & Montague, 1969; dominance of the 

category superordinate, e.g., Ashcraft, 1978). However, there are also more objective approaches to 

capture typicality based on semantic feature norms (e.g., family resemblance score, Rosch & Mervis, 

1975).  

Barsalou (1985) claimed that no other variable is as important for performance on a wide 

range of tasks in participants with and without language impairments. Typicality generally facilitates 

performance such that responses are faster and/or more accurate for items with higher typicality in 

contrast to more atypical items. The typicality effect has been found for unimpaired participants in 

semantic classification and category-verification tasks. For instance, participants have been reported to 
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be faster in deciding that a ‘robin’ is a bird versus that an ‘ostrich’ is a bird (e.g., Fujihara et al., 1998; 

Holmes & Ellis, 2006; Larochelle et al., 2000; McCloskey & Glucksberg, 1979; Morrison & Gibbons, 

2006; Rips et al., 1973; Rosch & Mervis, 1975; Sandberg et al., 2012) and typicality has been shown to 

affect performance in animacy decision tasks (e.g., Morrison & Gibbons, 2006; Räling et al., 2016), 

category fluency (e.g., Hernández-Muñoz et al., 2006), and in a feature verification task (e.g., Ashcraft, 

1978). In addition to offline tasks, typicality has also been found to affect online semantic processing: 

Increased N400 amplitudes, which are associated with semantic processing, have been reported for 

atypical words in category-verification or semantic categorisation tasks (e.g., Fujihara et al., 1998; 

Heinze et al., 1998; Monetta et al., 2003; Räling et al., 2015). Typicality has also been found to affect 

picture naming accuracy and speed in unimpaired participants (e.g., Dell’Acqua et al., 2000; Holmes & 

Ellis, 2006) and these findings are reviewed in Chapter 3.  

Effects of typicality have also been studied in participants with language impairments. In 

participants with aphasia, typicality has been most commonly examined using categorisation or 

semantic decision tasks (e.g., Grober et al., 1980; Kiran et al., 2007; Kiran & Thompson, 2003; Riley & 

Thompson, 2010; Sandberg et al., 2012; Stanczak et al., 2006). Effects of typicality in aphasia have also 

been revealed in tasks that require verbal output, such as picture naming (Laiacona et al., 2001; 

Rossiter & Best, 2013; see Chapter 2, for a comprehensive review) and category-exemplar generation 

(e.g., Grossman, 1981; Hough & Pierce, 1988). However, there is disagreement about whether effects of 

typicality in people with aphasia differ depending on their type of aphasia (e.g., Grober et al., 1980; 

Grossman, 1981; Hough & Pierce, 1988; Kiran & Thompson, 2003). For individuals with Semantic 

Dementia, a neurodegenerative disorder of semantic knowledge, also known as the semantic variant of 

primary progressive aphasia (svPPA), that results in fluent progressive aphasia (Gorno-Tempini et al., 

2011), better performance for high typicality items over low typicality items have been found in a 

category selection task (Mayberry et al., 2011; "matching-to-sample") and picture naming (Woollams 

et al., 2008; Woollams, 2012), which are discussed in more detail in Chapter 2.  



28  |  GENERAL INTRODUCTION 

Semantic similarity  

Semantic similarity indexes the closeness in meaning of the target and other words in an 

experimental task or the mental lexicon more generally. The semantic similarity of two concepts can be 

expressed as the cosine similarity of their feature vectors as provided by, for example, the feature 

database by McRae et al. (2005). Cosine similarity ranges from 0 (no shared semantic features) to 1 

(identical feature vectors) and indexes the distance between the feature vectors of two concepts. 

Higher mean cosine overlap has been found to speed processing in semantic categorisation but not in 

lexical decision (Mirman & Magnuson, 2008). Moreover, Cree et al. (1999) found graded priming 

effects as a function of featural overlap between prime and target. Similarly, Mirman and Magnuson 

(2009) reported a graded semantic competition effect due to differences in semantic similarity 

between near neighbours, distant neighbours, and non-neighbours using a visual world eye tracking 

paradigm.  

In word production, semantic similarity has mostly been examined in context manipulation 

tasks that contrast the influence of semantically more similar and semantically less similar distractors 

on target word processing. Semantically more similar distractors have mostly been found to interfere 

more strongly with target processing (e.g., Rose et al., 2019; Vieth et al., 2014b; Vigliocco et al., 2004; 

but see Mahon et al., 2007, for contradictory findings). Moreover, Rose and Abdel Rahman (2017) 

found that semantic similarity influenced the cumulative semantic interference effect in continuous 

naming and associated ERP effects. Fieder et al. (2019) report the only previous investigation of item-

inherent semantic similarity (i.e., how similar the featural representation of the target is to other 

representations in the mental lexicon) on picture naming, and this study is described in more detail in 

Chapters 2 and 3.  

Distinctiveness 

Featural distinctiveness indexes the degree to which a feature is shared with many other 

concepts (e.g., has fur) or is more uniquely associated with a single or only few concepts (up to 3 in 

McRae et al., 2005) (e.g., moos). Semantic features that are relatively unique to a concept (i.e., 

distinguishing features) have been found to influence processing in various paradigms, indicating a 
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privileged role in the computation of word meaning. For example, participants verified distinguishing 

features as being appropriate for a concept faster than shared features in feature verification 

experiments (e.g., Cree et al., 2006; Randall et al., 2004) and rated them as supporting their ability to 

name from descriptions more than shared features (Marques, 2005). In line with this, for individuals 

with aphasia, Mason-Baughman and Wallace (2013a, 2013b) found that knowledge of distinguishing 

features, as identified in a feature-word sorting task, determined participants’ success in distinguishing 

target nouns from semantically related foils in a spoken to written word matching task. Moreover, it 

has been suggested that distinguishing and shared features might be lost at different rates during the 

progression of degenerative conditions like Alzheimer’s disease and Semantic Dementia, which has 

also been discussed as a reason underlying category specific impairments (e.g., Catricalà et al., 2015; 

Garrard et al., 2005; Gonnerman et al., 1997; Laisney et al., 2011; Moss et al., 1998; Rico Duarte et al., 

2009; Rogers et al., 2004; Tyler et al., 2000; Tyler & Moss, 2001; see also Caramazza & Shelton, 1998, 

for a participant with stroke aphasia). Finally, there is discussion around the role of the distinctiveness 

of part-whole distractors in the Picture Word Interference paradigm (is the part distractor a distinctive 

or shared feature of the target?) and its effect on the polarity of semantic effects (e.g., Vieth et al., 

2014a). 

However, as for intercorrelational density, previous research has also considered a concept-

based measure of distinctiveness that captures information regarding the whole concept and not on 

single semantic features. In contrast to feature distinctiveness, concept distinctiveness measures how 

special or informative the features of an item are on average, with higher distinctiveness indicating a 

higher proportion of distinguishing semantic features. In a megastudy analysis, Siew (2020) found that 

words with greater distinctiveness were acquired earlier in life. Moreover, greater distinctiveness 

inhibited visual lexical decision performance and facilitated semantic decision for concrete concepts 

while it inhibited semantic decision for abstract concepts. Concept distinctiveness has previously also 

been investigated using behavioural data and evoked responses in word production (Clarke et al., 

2013; Rabovsky et al., 2016; Taylor et al., 2012), which are reviewed more closely in Chapters 3 and 4.  
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Taking different perspectives to better understand effects of semantic variables 

Overcoming previous shortcomings  

The abundance of literature that was briefly discussed in the previous sections indicates that 

there is a strong interest in using statistical regularities of the semantic structure of concepts (i.e., 

semantic variables) to better understand semantic and word processing. However, the focus of these 

investigations has mostly been semantic representations themselves, entailing a concentration on 

semantic input tasks (e.g., semantic categorisation). In comparison, so far, relatively few studies have 

tested the effects of semantic variables on output tasks like spoken word production. However, given 

the strong interconnectivity of semantic and lexical processing in word production, word production is 

a particularly interesting area in which to study effects of semantic variables. This is because these 

variables may have significant consequences for the activation environment in which lexical selection, a 

much debated level of word production, takes place. Hence, knowledge about which semantic 

variables influence our word production behaviour may be useful to advance and test theories of word 

production. However, the critical first step is to establish which of the previously suggested semantic 

variables reliably influence performance. That was the aim of this thesis.  

Given the previous studies in this field (described in more detail in Chapters 2 and 3), one 

might ask why further investigations into which semantic variables influence word production are 

necessary. Previous research into effects of item-inherent variables, such as semantic variables, has 

often focused on one (or few) variables. However, the findings generated following such an approach 

may be misleading due to meaning being a multidimensional construct with simultaneously occurring 

effects of different dimensions of meaning, each of which may explain unique variance (Pexman et al., 

2013; Taylor et al., 2012). Therefore, here, in an attempt to identify those variables that reliably 

influence our behaviour, I follow a more comprehensive approach in which I simultaneously consider 

several different semantic variables that previous research has identified as potentially influential in 

word production.  

In addition, previous investigations did not always control sufficiently for the psycholinguistic 

variables that influence word production, nor for variation between participants and items (see 
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Chapters 2 and 3, for more in-depth discussion). However, these practices might be particularly 

problematic when trying to establish reliable effects of semantic variables as effects of semantic and 

other psycholinguistic variables vary between participants. This may cause effects of semantic variables 

to not reach significance, which is particularly likely when considering effects of naturally occurring 

semantic variations without maximising differences between items (orthogonal item sets) or using 

context manipulations. 

Studying word production in aphasia 

Most of the previous work on semantic variables has investigated word production in 

unimpaired participants with the aim to better understand word planning and the time course of 

processes involved in word production in the unimpaired system. However, studying effects of 

semantic variables in people with aphasia allows us to test how impairments to different components 

of the word production model may affect processing (Nickels, 1995). Previous work has located effects 

of semantic variables in semantic and lexical processing. This suggests that people with aphasia with 

impairments in these locations may be especially affected by the semantic variables (Shallice, 1988). 

Studying how different semantic variables predict difficulties during semantic and lexical processing in 

word production in language impaired individuals can facilitate our understanding of semantic 

representations and processing as well as their influence on lexical retrieval of words in the mental 

lexicon. Hence, studying effects of semantic variables in people with aphasia can help to better 

understand the mechanisms underlying these effects on word production.  

Previously, few semantic variables have been studied in people with aphasia. While earlier 

research targeted some of the aforementioned semantic variables (e.g., number of (near) semantic 

neighbours, typicality) in picture naming in participants with aphasia, other semantic variables have not 

been studied (e.g., number of semantic features, intercorrelational density). Hence, the experimental 

investigation reported in Chapter 2 of this thesis is the first to test effects of some semantic variables in 

people with aphasia.  
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Speed of processing 

As mentioned above, most studies investigating processes during word production have 

applied context manipulation paradigms where the experimental context a target word occurs in is 

thought to affect the processing of the target (Picture-Word Interference, Blocked Cyclic Naming) or 

where the effect of interest builds up across the course of the experiment (Cumulative Semantic 

Interference). In contrast, in this thesis I was interested in effects of item-inherent variables, which do 

not require any context manipulations to arise. The idea is that item-inherent variables may affect 

processing even under the simplest processing conditions and are thus relevant for ‘real life’ 

communication situations. Hence, all experimental chapters presented in this thesis used standard 

picture naming to study effects of the semantic variables.  

Effects of some semantic variables have previously been found in standard picture naming in 

participants with and without aphasia (evidence reviewed in Chapters 2 and 3, respectively). However, 

some effects have only been found to be significant in neurotypical participants under limited 

processing conditions in a speeded picture naming paradigm. In speeded picture naming, participants 

are asked to prioritise naming speed over the accuracy of their response and are required to name the 

pictures at a time point that is likely before their language system is ready to respond (i.e., most 

commonly around 600ms with average response latencies in standard picture naming tasks often 

being much longer, e.g., around 800ms in Valente et al. (2014) or around 900ms in the study presented 

in Chapter 3). The specific instructions used in the past have varied slightly with participants requested 

to respond at a certain point using an acoustic countdown (tempo naming; e.g., Fieder et al., 2019; 

Hodgson & Lambon Ralph, 2008; Kello, 2004; Kello & Plaut, 2000; Mirman, 2011) or before a signal (to 

‘beat the beep’; deadline naming; e.g., Damian & Dumay, 2007; Gerhand & Barry, 1999; Hodgson & 

Lambon Ralph, 2008; Kello et al., 2000; Lloyd-Jones & Nettlemill, 2007; Moses et al., 2004; Vitkovitch et 

al., 1993; Vitkovitch & Humphreys, 1991). Previous work has suggested that the time pressure engages 

a cognitive control mechanism to shorten the time course of processing (i.e., input gain account, e.g., 

Kello & Plaut, 2000; Mirman, 2011), which may modulate the sensitivity of processing units to 
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excitatory and inhibitory inputs and consequently the strength of effects of semantic variables 

(Mirman, 2011). 

And indeed, previous studies have found significant effects of number of near semantic 

neighbours in the context of a speeded picture naming task in unimpaired participants (Fieder et al., 

2019; Mirman, 2011), while studies using standard picture naming have failed to find significant effects 

of that variable (see Hameau et al., 2019; Lampe et al., 2017; and Bormann, 2011, for a similar 

measure). Hence, in Chapter 5, I investigated this observation more systematically and tested whether 

naming speed affected the impact of semantic variables on word planning by comparing effects of 

semantic variables in speeded and standard picture naming.   

Brain activity during word planning  

Most word production models and interpretations of effects of item-inherent variables are 

based on behavioural data from language impaired or unimpaired participants. Behavioural measures 

of naming allow us to hypothesise regarding what might be happening during word planning based 

on the final outcome of word production (i.e., the actual word uttered and the time it took the 

participant to do so). In contrast, brain imaging techniques like electroencephalography or 

magnetoencephalography (EEG or MEG, respectively) allow us to access information on brain activity 

during word production—they provide us with a window into online processing. Evoked responses 

such as event related potentials (ERPs) as measured with EEG or event related fields (ERFs) as 

measured with MEG hence complement behavioural data, adding an additional dimension of 

information on the word production process: insight into brain activity during word production and 

possible differences caused by experimental manipulations. In addition, the high temporal precision of 

EEG and MEG has been used as a source of information on the time course of experimental effects.  

A substantial body of work has examined evoked responses in context manipulation word 

production paradigms attempting to uncover the effects of semantic interference and facilitation and 

their time course (Picture-Word Interference, e.g., Aristei et al., 2011; Blackford et al., 2012; Dell’Acqua 

et al., 2010; Hirschfeld et al., 2008; Piai et al., 2012; Python et al., 2018b; Rose et al., 2019; Blocked Cyclic 

Naming, e.g., Aristei et al., 2011; Janssen et al., 2011, 2015; Maess et al., 2002; Python et al., 2018a; 
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Cumulative semantic interference, e.g., Costa et al., 2009; Rose & Abdel Rahman, 2017; see Nozari & 

Pinet, 2020, for a recent review and discussion). However, evoked responses also allow testing of 

effects and their time course of item-inherent variables on word production (e.g., word frequency, 

Laganaro, 2014; Levelt et al., 1998; Piai et al., 2012; Strijkers et al., 2010; name agreement, Cheng et al., 

2010; age of acquisition, Laganaro, 2014; Laganaro et al., 2012; Laganaro & Perret, 2011; several 

variables, Valente et al., 2014). 

The high temporal precision of ERP and ERF data has also been used in an attempt to 

formulate time course estimates of the processes of word production (in addition to spatial 

information on their neural correlates, Indefrey, 2011; Indefrey & Levelt, 2004). According to these time 

course estimates, semantic processing spans the first 200ms of word planning and lexical processing 

occurs between 200 and 275ms post picture onset (see also Strijkers & Costa, 2011, for a confirmation 

of the initiation of lexical access within 200ms). Lemma retrieval is followed by phonological encoding 

and articulation commences around 600ms (but see Chapter 4, for discussion of possible issues with 

this time course).  

So far, to the best of my knowledge, only three studies have been conducted that have aimed 

to understand the neural correlates and time course of effects of item-inherent semantic variables. 

Clarke et al. (2013) and Miozzo et al. (2015) studied effects of semantic variables using MEG; however, 

both studies used orthogonal components derived from Principal Component Analyses, which 

contained various measures that were grouped together. While they reported significant effects of 

(some of the) semantic components, their approach of combining variables in principal components 

unfortunately makes it impossible to comment on effects of individual semantic variables. In contrast, 

Rabovsky et al. (2021) studied effects of number of semantic features and intercorrelational density 

using EEG and reported that both variables affected semantic and lexical processing for word 

production.  

While these previous studies each investigated effects of at least two semantic variables, 

previous behavioural research has suggested other variables that also affect performance in word 

production, whose influence had been untested (and uncontrolled) in these two studies. Consequently, 
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in Chapter 4, I extend this evidence base by using EEG to explore the brain dynamics associated with 

the effects of six semantic variables in word production. 

Thesis overview  

Previous research has shown that various word characteristics, item-inherent variables, can 

influence the ease of word production, which may cause differences in response latency, naming 

accuracy, types of error produced, and in brain activity while planning a word, as uncovered with EEG 

and MEG data. However, the influence of such item-inherent variables relating to semantic information 

about the target word (i.e., semantic variables) on processes of word production are still under-

researched. Importantly, previous studies on effects of semantic variables often focused on individual 

measures but disregarded the fact that if they indeed influence our word production performance, 

different semantic and other item-inherent psycholinguistic variables would operate simultaneously.  

It is the overall aim of this thesis to contribute well-controlled studies to the evidence base 

relating to effects of semantic variables on word production by thoroughly investigating effects of six 

feature-based semantic variables: number of semantic features, intercorrelational density, number of 

near semantic neighbours, semantic similarity, typicality, and distinctiveness. Using multiple 

experimental approaches, the studies in this thesis aim to determine which feature-based semantic 

variables reliably influence behaviour and to better understand how these variables affect processing 

in the context of word production models.  

In the Discussions of the experimental papers of this thesis, as well as in the General 

Discussion, I speak to how assumptions around semantic and lexical processing in current models of 

word production can account for effects of the semantic variables, as these models have to be able to 

explain experimental findings in order to be considered comprehensive and valid theories of word 

production. Therefore, this thesis intends to bridge the gap between theoretical and computational 

approaches to semantic representation and processing and current theories of word production. By 

exploring which aspects of semantic representation influence word production, I attempt to merge 

these two schools of thought. This thesis therefore presents exploratory work, which lays the 

foundations for subsequent confirmatory research, that may utilise the insights of the work presented 
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here to more directly test models of word production or characteristics of its sub-processes (e.g., Is 

lexical selection a competitive process?). Where current theories are unable to account for effects of 

semantic variables, the findings of this thesis may be taken as a starting point to modulate and 

improve models of word production in order for them to be able to explain the presented effects; 

however, it is beyond the scope of this work to propose a new and improved theory of word 

production. 

This thesis presents four experimental chapters written in journal article format, which are 

followed by a General Discussion of the findings. In Chapter 2 (Paper 1) I explore effects of the 

feature-based semantic variables on word production in a large group of 175 participants with stroke-

induced aphasia with varied naming impairments. In a subgroup analysis with 60 participants, I focus 

on a more homogeneous group of participants with lexical and/or semantic impairments.    

Chapter 3 (Paper 2) investigates effects of the same feature-based semantic variables on 

behavioural measures of word production in 87 unimpaired participants. The same group of 

participants is again presented in Chapter 4 (Paper 3), which represents an electrophysiological 

investigation of the processes of word production. Here, two popular analysis approaches are utilised 

to test for effects of the semantic variables on the brain activity during word processing: a traditional 

wave-from analysis as well as a microstate analysis. Chapters 3 and 4 each present multiple statistical 

analyses that increase in complexity to replicate and extend previous work by Rabovsky et al. (2016, 

2021).  

In Chapter 5 (Paper 4), I test whether there are differences in the effects of the semantic 

variables depending on the processing requirements employed by the experimental paradigm. 

Specifically, I explore in 80 participants if the effects of semantic variables differ between speeded 

deadline and standard picture naming, an idea that was inspired by the patterns of findings of 

previous research into effects of number of near semantic neighbours and semantic similarity on word 

production, which found significant effects in speeded naming paradigms, but non-significant effects 

in standard naming.  
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Finally, Chapter 6, the General Discussion, summarises the main findings of each paper and 

ties together the findings of the experimental chapters. The discussion highlights consistencies and 

differences between the studies to build a new understanding of effects of feature-based semantic 

variables on word production. I discuss the overall contribution of the findings of this thesis to the 

literature and outline both limitations and future research directions. 
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162  |  SEMANTIC VARIABLES IN PICTURE NAMING 

Abstract 

This research investigated how word production is influenced by six feature-based semantic variables 

(number of semantic features, intercorrelational density, number of near semantic neighbours, 

semantic similarity, typicality, and distinctiveness). We simultaneously investigated effects of the six 

semantic variables on spoken picture naming in a large group of participants (n = 87), while 

controlling for other psycholinguistic variables. Across analyses, number of semantic features was the 

most consistent predictor with a facilitatory effect on naming latency and accuracy. In addition, 

inhibitory effects were found on naming accuracy for intercorrelational density and on naming latency 

for distinctiveness. The facilitatory effect of number of semantic features is suggested to stem from 

stronger semantic activation with an increasing number of semantic features, which results in 

facilitated selection of the word’s lexical representation. In contrast, the inhibitory effect of 

intercorrelational density is most easily accounted for by increased competition at the lexical level. The 

mechanism underlying the inhibitory effect of distinctiveness is unclear. These findings indicate that 

future research on factors affecting word retrieval should also control for effects of number of 

semantic features, intercorrelational density, and distinctiveness. They also suggest that effects of the 

other semantic variables (e.g., semantic neighbours) reported in the literature were potentially 

overestimated due to insufficient control of other semantic and/or psycholinguistic variables.  
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Introduction 

Decades of research targeted at understanding processes during word production have led to 

several theoretical accounts of word production (e.g., Abdel Rahman & Melinger, 2009, 2019; Dell, 

1986; Howard et al., 2006; Levelt et al., 1999), which mostly agree about the general architecture of 

word production and there is a consensus that it is a semantically mediated process (e.g., Bock & 

Levelt, 1994; Vitkovitch & Humphreys, 1991; but see Kremin, 1986). The most common experimental 

paradigm for these investigations is picture naming. In this paradigm, following picture processing, the 

activation of word meaning at a semantic level leads to lexical level activation, where the target word’s 

lexical representation is selected among (possibly competing) alternatives. This is followed by 

activation of the target’s word form and then by further phonological and phonetic processes that lead 

to word production. However, there is disagreement about crucial details of the model. More 

specifically, it is, for example, still unclear how exactly information is processed at each level of the 

model and researchers disagree about whether there is competition between co-activated 

representations, the mechanism underlying any such competition, and the level(s) it might affect.  

Word production processes are often investigated by manipulating the context in which a 

target word appears (Picture Word Interference, e.g., Gauvin et al., 2018; Melinger & Rahman, 2013; 

Blocked-Cyclic Naming, e.g., Ewald et al., 2012; Python et al., 2018; Continuous Naming, e.g., Howard 

et al., 2006; Rose & Abdel Rahman, 2016). Rather than manipulating the context in which words occur, 

another approach to the investigation of processes in word production is to examine the effects of 

item-inherent characteristics that naturally differ from word to word (e.g., word frequency or 

imageability, e.g., Alario et al., 2004). The principle is that information processing at the different levels 

of word production may be affected by manipulations of, or naturally occurring variability in, these 

word characteristics. Hence, the effects of these word characteristics can in turn inform and advance 

our understanding of representation and processing in word production. One set of variables that 

attracts research attention are those that capture information about the semantic representation of a 

target word and its relationship to other words in the mental lexicon (e.g., Fieder et al., 2019; Rabovsky 

et al., 2016, 2021): semantic variables. Semantic variables operationalise statistical or distributional 
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facts about the presumed semantic representation of a target word and can capture a wide range of 

aspects of the meaning of single concepts or of its relationships to other words in the mental lexicon. 

They can, for example, describe the richness of the semantic representation of the target word or the 

number of words that are closely related in meaning. It is the effects of these semantic variables on 

spoken word production that are the focus of the research presented here. 

Most of the previous research into effects of semantic variables was conducted to investigate 

the underlying semantic representations themselves and thus focused on word comprehension, using 

tasks like semantic categorisation and feature verification, or conducted computational modelling from 

this perspective (e.g., Fujihara et al., 1998; McRae et al., 1997; Mirman & Magnuson, 2008; Pexman et 

al., 2003; Randall et al., 2004). However, in word production, semantic processing precedes and 

therefore determines lexical processing. Consequently, semantic variables are hypothesised to not only 

have consequences for semantic processing but may also affect subsequent lexical processing. 

However, current theories of word production are underspecified with respect to effects of semantic 

variables and details of how they might affect processing are not clearly stated. This makes word 

production a particularly interesting and relevant modality in which to study effects of semantic 

variables. 

Given the possibility of widespread influence of semantic variables on the word production 

process, it is important to establish which semantic variables reliably affect word production (as 

measured in picture naming) and to understand the mechanisms underlying these effects. 

Understanding the influence of these semantic variables will facilitate our understanding of how 

information is represented and processed at the different stages of word production and help us to 

better understand word production mechanisms. More specifically, studying semantic variables will 

shed light on the structure of semantic representations and their influence on retrieval and selection of 

words in the mental lexicon. This also allows us to evaluate the adequacy of current theories of word 

production, given that some theories may not include the architectural elements required to explain 

the effects observed. Moreover, knowledge of the semantic variables that influence word production is 
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also of methodological importance, as it can, for example, be used to achieve improved matching and 

control of influential variables.  

Depending on the theory of semantic representation, that is, the nature of the semantic 

dimensions encoded in the human mind, various relationships are suggested to be important, each of 

which represents a different approach to specifying aspects of semantic representation. Semantic 

relationships can be described on the basis of participant-generated associations (e.g., De Deyne et al., 

2019; Nelson et al., 2004), co-occurrence patterns in text corpora (e.g., Latent Semantic Analysis, 

Landauer et al., 1998; Continuous bag-of-words model, Mikolov et al., 2013), or participant-generated 

semantic features (e.g., Devereux et al., 2014; McRae et al., 2005; Vinson & Vigliocco, 2008). 

 In this study, we focus on effects of semantic variables that can be operationalised based on 

semantic features, as provided in the feature norm database by McRae et al. (2005). Importantly, we 

believe that the use of feature-based semantic variables is not only compatible with semantic 

knowledge being decomposed into semantic features. In contrast, feature-based semantic variables 

could also be indicative of relations between holistic lexical concepts like, for example, the number or 

strength of connections between them (e.g., Abdel Rahman & Melinger, 2009; Collins & Loftus, 1975; 

Levelt et al., 1999). In our theoretical interpretations of the findings, we use a cascading, interactive 

model of word production that assumes lexical competition (Abdel Rahman & Melinger, 2009, 2019), 

however, we also assess the ability of other current theories of word production to account for the 

observed effects of semantic variables and consider both feature-based and holistic semantic 

representations.  

Previous research into effects of semantic variables was often inconclusive and subject to 

methodological flaws (discussed below). Consequently, here, we aimed to extend and improve the 

evidence base, by investigating the effects of these semantic variables on the word production 

process.  

Review of the previous literature on feature-based semantic variables  

Effects of semantic variables that can be operationalised based on semantic features were 

studied to varying degrees in previous research. Table 1 summarises effects of feature-based semantic 
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variables from studies that used simple picture naming paradigms with neurotypical adults, and, as is 

apparent, both facilitatory and inhibitory effects have been observed. While facilitation in word 

production is usually attributed to spreading activation at the semantic level (e.g., Abdel Rahman & 

Melinger, 2009) or feedback from the lexical to the semantic level (e.g., Dell et al., 1986), inhibition has 

been linked to competitive processes at the lexical (Abdel Rahman & Melinger, 2009, 2019; Howard et 

al., 2006; Levelt et al., 1999) or post-lexical stages (Mahon et al., 2007), or to a non-competitive 

learning mechanism influencing the strength of connections between semantic and lexical units 

(Oppenheim et al., 2010). We now address each of these variables in turn.  

Number of semantic features 

Number of semantic features, often referred to as semantic richness, is a simple count of the 

total number of features generated by participants in response to a target word, for example when 

producing features for a feature-norm database (e.g., McRae et al., 2005). A higher number of features 

has been consistently found to facilitate both response times in picture naming and, where 

investigated, naming accuracy (Rabovsky et al., 2016, 2021; Taylor et al., 2012). Looking at specific 

types of semantic features (e.g., distinctive perceptual or shared functional features) Rico Duarte and 

Robert (2014) also reported a facilitatory effect from a higher number of semantic features.  

Intercorrelational Density 

Intercorrelational density captures the extent to which feature pairs of a concept co-occur 

across concepts. Rabovsky and colleagues (2016, 2021) reported lower naming accuracy for items with 

higher intercorrelational density. In contrast, there is inconsistent evidence regarding an effect on 

response latencies: While Rabovsky et al. (2016) found significantly slower latencies with increasing 

intercorrelational density, this effect only reached significance in a second repetition of the item set in 

Rabovsky et al., (2021), and was non-significant in Taylor et al. (2012).  
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Table 1 

Effects of semantic variables on picture naming in neurotypical adults: previous research 

Study 
Participants 

(n) 

Items 

(n) 
Design/analyses Operationalisation RT Accuracy Semantic errors Omissions 

Number of semantic features  
Rabovsky 

et al., 2016 
16 541 continuous, (g)lmer feature database (McRae et al., 2005) ↗	 ↗	   

Rabovsky 

et al., 2021 
31 345 

continuous, lmer, 

Bayesian model  
feature database (McRae et al., 2005) ↗	 ↗	     

Taylor et al., 

2012 
20 302 continuous, (g)lmer feature database (McRae et al., 2005) ↗	 	   

Intercorrelational density 
Rabovsky 

et al., 2016 
16 541 continuous, (g)lmer feature database (McRae et al., 2005) ↙	 ↙	     

Rabovsky 

et al., 2021 
31 345 

continuous, lmer, 

Bayesian model 
feature database (McRae et al., 2005) Ø a ↙	   

Taylor et al., 

2012 
20 302 continuous, (g)lmer feature database (McRae et al., 2005) b Ø    

Number of near semantic neighbours 

Fieder et 

al., 2019 c 
30 180 continuous, (g)lmer feature database (Devereux et al., 2014) ↙	 ↙	 ↗ (also for 

coordinate errors) 
↗	

Mirman, 

2011 c 

35 older 

adults 
57 matched sets  feature database (McRae et al., 2005) 

Ø ↙	 ↗	  

Hameau et 

al., 2019  
40 84 continuous, (g)lmer 

feature database (McRae et al., 2005) 

and rating; feature-based semantic 

neighbourhood factor: number of near 

Ø d Ø d   
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Study 
Participants 

(n) 

Items 

(n) 
Design/analyses Operationalisation RT Accuracy Semantic errors Omissions 

semantic neighbours and rated 

competitors 

Lampe et 

al., 2017 

15 older 

adults 
44 matched sets feature database (McRae et al., 2005) Ø Ø   

Bormann, 

2011 
18 54 

matched sets, 

(g)lmer 
rated within category competitors e Ø    

Semantic similarity 

Fieder et 

al., 2019 c 
30 180 continuous, (g)lmer feature database (Devereux et al., 2014) Ø ↙	 ↗	 ↗	

Typicality 

Dell’Acqua 

et al., 2000 
84 266 

continuous,  

multiple regression 
rating ↗	    

Grossman 

et al., 1998 

14 older 

adults 
72 matched sets rating ↗	    

Holmes & 

Ellis, 2006 f 
25 84 matched sets  rating ↗	 Ø   

Jolicoeur et 

al., 1984 
18 48 matched sets  rating ↗	    

Fieder et 

al., 2019 c 
30 180 continuous, (g)lmer rating Ø ↗	 Ø (also for 

coordinate errors) 
↙	

Morrison et 

al., 1992 g 
20 48 

continuous, 

multiple regression 
rating Ø    

Woollams, 

2012 h 
16 80 matched sets  rating Ø Ø   

Rogers et 

al., 2015 

12 older 

adults 
48 

matched sets, no 

statistics reported 
rating  ↙	   
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Study 
Participants 

(n) 

Items 

(n) 
Design/analyses Operationalisation RT Accuracy Semantic errors Omissions 

Distinctiveness 
Rabovsky 

et al., 2016  
16 541 continuous, (g)lmer feature database (McRae et al., 2005) ↗ i ↗ i     

Taylor et al., 

2012 
31 345 continuous, (g)lmer feature database (McRae et al., 2005) ↗ j      

Miozzo et 

al., 2015 k 
17 146 

continuous, 

stepwise regression 
feature database (McRae et al., 2005)  Ø   

Humphreys 

et al., 1988 
20 76 matched sets 

category distinctiveness (“structural 

similarity”); rated features in common 

with exemplars of a category (control 

participants) 

↗	    

Note. RT = response time, (g)lmer = (generalised) linear mixed effects model analyses, RTs and accuracy: ↙ = poorer performance – slower RTs and decreased 

accuracy with higher values of the measure, ↗ = improved performance – faster RTs with increased accuracy and higher accuracy with higher values of the variable, 

Semantic errors and omissions: ↙ = reduced numbers of errors of this type with higher values of the variable, ↗ = increased numbers of errors of this type with 

higher values of the variable, Ø = no effect, blank cells = not investigated.  

Participants—where not otherwise specified, young adults (typically undergraduate students). 

a inhibitory effect on RT significant in a second round of naming. 

b correlation measure based on ‘intercorrelational strength’ in Taylor et al. (2012). 

c speeded naming paradigm (500ms deadline). 

d results based on Holm-Bonferroni corrected p-values to account for testing for multiple variables of interest. 

e Bormann's (2011) measure was based on ratings capturing the number of category coordinates of a target, which was then dichotomised into words with many 

and few competitors.  

f similar results in picture naming after familiarisation and a subsequent second round of naming. 

g rated typicality in two categories: man-made versus naturally occurring objects. 
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h pre rTMS. 

i distinctiveness added in additional analysis in discussion; non-significant when intercorrelational density was in the model at the same time. 

j naming was also faster for concepts with more highly correlated distinctive features.  

k Miozzo et al.‘s (2015) Specific Semantic Features measure contained two measures grouped through Principal Component Analysis: number of distinctive 

features and number of encyclopaedic features.  
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Number of near semantic neighbours  

Near semantic neighbours are defined as words that are semantically very similar to the target 

word and share many semantic features with it (e.g., a cosine similarity of at least 0.4 between feature 

vectors, Mirman, 2011). Increased numbers of near semantic neighbours resulted in less accurate 

picture naming accuracy and lead to more semantic errors and omissions (versus correct responses) 

under special conditions in a speeded picture naming task (a variant of simple picture naming 

designed to increase naming errors, Fieder et al., 2019; Mirman, 2011). Fieder et al. also found that a 

higher number of near semantic neighbours led to slower responses in speeded naming. However, 

Hameau et al. (2019), Lampe et al. (2017), and Bormann (2011, using a similar measure) found no 

significant effects in standard picture naming, on either errors or response latencies.  

Semantic similarity 

Fieder et al.'s (2019) semantic neighbourhood similarity measure captured the average 

similarity of a target word and its semantic neighbours, based on the cosine similarity of their feature 

vectors (note that in other research the term semantic similarity is used to refer to the relationship 

between a target and a stimulus context (e.g., Rose et al., 2019) or the semantic overlap between two 

concepts in a particular context (e.g., Rose & Abdel Rahman, 2017)). Fieder et al. were the first to 

examine effects of semantic neighbourhood similarity on participants’ picture naming performance but 

did so using speeded picture naming. They found that naming accuracy in a speeded picture naming 

task was reduced for words with higher semantic neighbourhood similarity (i.e., semantically more 

similar neighbours) and participants were more likely to make a semantic error, coordinate error, or an 

omission over a correct response. In contrast, the effect of semantic neighbourhood similarity on 

naming latencies was not significant. 

Typicality 

Typicality captures the extent to which a target word is representative of its taxonomic 

category. Previous studies investigating typicality in word production used ratings to determine 

concept typicality (e.g., Dell’Acqua et al., 2000; Holmes & Ellis, 2006); however, it can also be obtained 

using feature norms (e.g., Rosch & Mervis, 1975). Compared to the other semantic variables, a 
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relatively large body of literature has investigated effects of rated typicality on picture naming latency 

and accuracy. Where significant effects of typicality on response times were found (Dell’Acqua et al., 

2000; Grossman et al., 1998; Holmes & Ellis, 2006; Jolicoeur et al., 1984), participants responded faster 

to words of higher typicality. However, note that significant effects on response latencies are not found 

consistently (see Fieder et al., 2019; Morrison et al., 1992; Woollams, 2012, for non-significant effects). 

For naming accuracy, Rogers et al. (2015) and Fieder et al. (speeded picture naming) reported 

conflicting results, while other studies reported non-significant results (Holmes & Ellis, 2006; 

Woollams, 2012). However, the higher statistical power of Fieder et al.'s speeded naming study, the 

alignment of their effect with the facilitatory effect of typicality on response times in other studies, as 

well as the lack of statistical analyses by Rogers et al. make a strong case for a generally facilitatory 

effect of typicality.  

Distinctiveness 

Distinctiveness indicates how special or unique the features of a concept are with regard to all 

other concepts of the database. Higher concept distinctiveness has been found to lead to faster 

(Rabovsky et al., 2016; Taylor et al., 2012) and more accurate responses (Rabovsky et al., 2016), 

although the effects in Rabovsky et al. were only significant once intercorrelational density was 

excluded from the analyses. Miozzo et al. (2015) investigated a similar measure, the number of 

distinctive features of a concept. The authors used Principal Component Analysis and found that this 

measure loaded on the same component, labelled Specific Semantic Features, as the number of 

encyclopaedic features. However, there was no evidence that this Specific Semantic Features 

component predicted naming latency in a stepwise regression analysis. Finally, also Humphreys et al. 

(1988) studied a related measure, structural similarity, which captures the extent to which a category is 

rated as having members which share their features. Participants were faster to name items from 

categories that were rated as having few shared features (the members of which were therefore 

presumably of higher average distinctiveness) in contrast to items from categories with many shared 

features (and therefore lower distinctiveness). While effects of distinctiveness were not assessed at the 
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item level, the reported effect matches what Rabovsky et al. and Taylor et al. found for concept 

distinctiveness.  

Limitations of previous research 

This brief overview of the literature demonstrates that some semantic variables (e.g., typicality) 

have been investigated more than others (e.g., intercorrelational density). Despite this imbalance and 

the sparseness of the evidence base, previous research reporting significant effects of a single 

semantic variable has mostly provided a consensus on the direction of any observed effect (i.e., 

positive or negative effect), although some studies did not find conclusive (significant) effects. The 

occurrence of both significant and non-significant findings for some semantic variables could be due 

to experimental and methodological differences between the studies or shortcomings in their design. 

More specifically, studies differed widely in statistical power due to varying numbers of items and/or 

participants, characteristics of the participants (e.g., age), and experimental factors, such as the 

experimental language or the task design (e.g., speeded vs standard naming). 

However, two crucial shortcomings apply to most previous studies: First, previous studies of 

effects of semantic variables on word production have focused on only one or two types of semantic 

variable at the same time. Importantly, this approach neglects the issue that word meaning is likely to 

be a multidimensional construct and that different aspects of word meaning probably each explain 

unique variance with their effects occurring simultaneously (Pexman et al., 2013). Hence, given that 

semantic variables would be expected to operate simultaneously and not selectively, they would also 

be expected to influence participants’ picture naming behaviour simultaneously. Yet, despite this, 

previous research has not studied the joint effects of different types of semantic variables on the word 

production process.  

Second, previous research has often insufficiently controlled for (non-semantic) 

psycholinguistic variables that are known to influence word production (e.g., Alario et al., 2004; Perret 

& Bonin, 2019). This could have led to statistically significant effects of semantic variables in fact being 

artifacts of the lack of control. This is of particular concern given the intercorrelations within and 

between semantic and other psycholinguistic variables (e.g., words with more semantic features tend 
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to have higher typicality and be of lower age of acquisition). Consequently, a significant effect of a 

semantic variable in the absence of sufficient control of psycholinguistic control variables and other 

semantic variables cannot confidently be interpreted as an independent effect of the variable of 

interest and the chance of a false positive finding, a Type 1 error, is increased. It is hence crucial that 

potentially confounding variables are controlled in the experimental design (e.g., via matching) or the 

statistical analyses (e.g., by using regression analyses) to avoid false positives. Only then can the 

unique effect of a variable of interest be identified with confidence. This was the aim of our research. 

 

Two studies that deserve closer attention in the context of our research, are those of Rabovsky 

and colleagues (Rabovsky et al., 2016, 2021) who conducted behavioural and EEG analyses of number 

of semantic features and intercorrelational density. Rabovsky and colleagues (2016, 2021) improved on 

most previous research by studying these two semantic variables simultaneously. However, they only 

included familiarity, number of orthographic neighbours, and lexical frequency in their analyses 

(Rabovsky et al., 2016; visual complexity was additionally included in Rabovsky et al., 2021) and did not 

account for other psycholinguistic variables that influence word production (e.g., age of acquisition, 

name agreement, imageability, image agreement, Perret & Bonin, 2019). However, the rigorous control 

of these variables is especially crucial when the effect of interest is potentially rather small.  

Rabovsky et al. (2016, 2021) used McRae et al.'s (2005) feature database to derive stimuli and 

associated measures of number of semantic features and intercorrelational density. However, given 

that the studies were conducted with German-speaking participants, Rabovsky and colleagues 

translated the (English) database to German. While one can probably assume that cultural differences 

between English and German speakers would not have a dramatic impact on conceptual 

representations (and features) of the items in the database, some are undoubtedly problematic for a 

picture naming experiment in German. More specifically, some of the translated names for concepts 

have very low frequency in German and are unlikely to be elicited with high name agreement and 

other concepts are highly specific to North American culture (e.g., pie, gopher, cedar) (note however, 

that Rabovsky et al. (2016) familiarised half of their participants with the correct names before the 
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experiment). Importantly, such differences may arise across languages, but may also influence 

performance of participants of different cultures with the same native language. Specifically, in this 

study we tested Australian English speakers, who may be as unfamiliar with some of the North 

American concepts as German participants. Thus, in the norming study presented in Study 1 we 

identified the items in the McRae et al.'s (2005) database that had high name agreement in Australian 

English, and selected these for Study 2, in order to reduce any impact that may have arisen due to 

cultural differences between speakers of American and Australian English.  

Moreover, Rabovsky et al. (2016, 2021) used black and white photographs of the objects, 

which may have hindered recognition of some objects (e.g., lime vs lemon). Consequently, even 

though the studies by Rabovsky et al. (2016, 2021) provide some of the most comprehensive analyses 

to date, it remains unclear how reliable the effects are and, as in the other studies in the literature, 

whether some effects are miscalibrated (i.e., over- or underestimated) due to insufficient experimental 

control of psycholinguistic and semantic variables.  

The current research 

In the light of the shortcomings of the previous studies to have explored semantic variables, 

we investigated the influences of an increased number (six) of different semantic variables on picture 

naming performance. This work aimed to determine if these semantic variables affect word production 

latency and accuracy by examining their effects simultaneously, while taking into account effects of 

relevant psycholinguistic variables. As outlined above, this knowledge will inform and advance word 

production theories by clarifying and dissociating effects of these semantic variables. Hence, this 

exploratory study both aims to make methodological contributions and to further extend and 

constrain theories of word production. 

However, we also wished to ensure that our findings could be directly compared to the 

previous literature, rather than add another study with differing methodology. Consequently, as 

Rabovsky et al. (2016) provide one of the most rigorous investigations, we first replicate their analysis 

approach in order to directly compare our data to theirs and to test the reliability of their findings. 

Second, we incrementally increase the complexity of the analysis to ultimately, simultaneously, 
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examine the effects of six feature-based semantic variables (number of near semantic neighbours, 

semantic similarity, number of semantic features, typicality, intercorrelational density, distinctiveness) 

while also controlling for important psycholinguistic variables known to affect picture naming. Hence, 

a, preregistered (Open Science Framework: https://osf.io/yw6ma/, Lampe et al., 2019), threefold 

approach to the analysis was used which conceptually replicates and extends Rabovsky et al.’s study. 

The three separate analyses addressed the following two research questions: 

1. How is speech production affected by the number of semantic features1and 

intercorrelational density of the semantic representation of the target word?  

Analysis 1A: First, we conceptually replicated Rabovsky et al. (2016) and analysed effects of 

number of semantic features and intercorrelational density on naming latency and accuracy in English 

speaking participants, while controlling for concept familiarity, number of orthographic neighbours, 

and lexical frequency. In contrast to Rabovsky et al., we used only those McRae et al. (2005) items with 

high name agreement (in Australian English, as determined in Study 1). Moreover, we used an 

improved set of pictures (i.e., colour photographs instead of black and white pictures) and a slightly 

modified procedure (i.e., a familiarisation phase was used for half of the participants in the original 

study, while none of our participants were familiarised with any of the materials before the beginning 

of the task).  

Analysis 1B: Subsequently, we sought to establish if any effects of number of semantic features 

and intercorrelational density in Analysis 1A were statistical artifacts due to insufficient control of 

psycholinguistic variables. For this purpose, we extended Rabovsky et al.'s (2016) analysis (and Analysis 

1A) by controlling for the psycholinguistic variables that were identified to influence picture naming by 

Perret and Bonin (2019): name agreement, image agreement, imageability, age of acquisition, 

conceptual familiarity, and lexical frequency. Moreover, we added the ordinal category position of an 

item (e.g., Howard et al., 2006) and the item’s trial number in the experiment as independent variables 

(e.g., Baayen & Milin, 2017).  

 
1 This was termed featural richness in Rabovsky et al. (2016) and our preregistration.  



   CHAPTER 3  |  177 

 

C
H

A
PTER 6  |  177 

2. How is speech production additionally affected by other semantic variables, specifically, 

the number of near semantic neighbours, semantic similarity, concept typicality, and 

distinctiveness, when the psycholinguistic variables in Analysis 1B are also controlled for? If 

effects of the proposed semantic variables are significant, are they facilitative or inhibitory?  

Analysis 2: In this analysis, we determined if, when studied simultaneously, any of the other 

feature-based semantic variables have effects on picture naming behaviour, and whether any effects of 

number of semantic neighbours and intercorrelational density are retained. We therefore analysed 

effects of the six semantic variables of interest simultaneously while controlling for the psycholinguistic 

variables detailed in Analysis 1B.  

Study 1: Norming study  

Word and picture characteristics are known to influence performance in object naming studies 

(e.g., Alario et al., 2004; Perret & Bonin, 2019). It is therefore important to account for such variables 

when studying effects of other variables of interest. Psycholinguistic control variables can be included 

in the analysis (e.g., as fixed effects), so that any variance in performance associated with them can be 

attributed to them and subtracted from the estimates of the variables of interest. 

Some confounding variables are specific to the pictures or the population used in a study (e.g., 

name agreement) and can hence not be extracted from previously published norms. Therefore, in the 

absence of previous studies using these pictures, we collected normative data to be able to account 

for all psycholinguistic variables identified to influence picture naming behaviour in a Bayesian meta-

analysis by Perret and Bonin (2019).  

Methods  

Participants 

Name agreement, age of acquisition, and imageability ratings were collected from 45 

Macquarie University undergraduate students (21 female; M = 20.2 years old, range = 18–33 years, SD 

= 3.1) who were recruited from Macquarie University’s Psychology participant pool and participated 

for course credit. A different population of 48 undergraduate students (42 female; M = 20.9 years old, 

range = 17–35 years, SD = 4.9) provided image agreement ratings. All participants were native 
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Australian English speakers, right-handed and reported no history of neurological, cognitive, speech or 

language impairments. Participants were tested individually after giving written informed consent. The 

study was approved by Macquarie University’s Human Ethics Committee.  

Stimuli, Material, and Procedure 

Colour photographs corresponding to all 541 items of the McRae et al. (2005) feature 

database were retrieved from the internet. If necessary, the pictures were edited, such that they 

showed the object on white background.  

For the name agreement, age of acquisition, and imageability ratings, the pictures were 

divided into four lists containing 135 or 136 items each. Items from semantic categories were evenly 

distributed across the lists (e.g., buzzard, eagle, and vulture appeared in different lists). Items were 

presented in a randomised order, using Qualtrics software (Qualtrics, 2018). 

Participants were asked to write the name of the pictures to obtain a measure of Australian 

name agreement (at least 11 participants per list). Subsequently, participants were presented with the 

items from one of the other lists as written words on the computer screen. In case of a word with 

ambiguous meaning (e.g., bat), a disambiguating description was provided together with the target 

word (e.g., bat (animal) vs bat (baseball)). Participants were asked to rate the age of acquisition and 

then the imageability of each item. The age of acquisition rating followed Johnston et al. (2010) and 

Gilhooly and Logie (1980): Participants were asked to estimate the age at which they thought they had 

first learned the name of the depicted object, choosing between seven age bands ranging from 0 to 

13+ years. For the imageability rating, participants had to estimate the item’s capacity to arouse a 

mental image of an object on a 7-point Likert scale, following Cortese and Fugett (2004), Toglia and 

Battig (1978), and Paivio et al. (1968). 

Image agreement ratings were obtained in an online study also using Qualtrics software. Each 

participant saw on average 307 of the 541 pictures in a randomised order (range = 104–330 pictures, 

SD = 60.3). At least 22 participants rated each picture. The participants were asked to indicate the 

picture’s image agreement following Snodgrass and Vanderwart (1980). Participants first saw a written 

word on the screen. Once ready, they advanced to a blank screen during which they were asked to 
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create a mental image of the object they had read the name of. After 3 seconds, a single picture 

appeared on the screen and the participants were asked to judge how closely this picture matched 

their mental image of the object. Participants used a 5-point Likert scale, ranging from 1 “low 

agreement” to 5 “high agreement”. Two additional options were given to indicate that the object was 

unknown or that the participant had thought of a different object when reading the word.  

Analysis and Results  

We will first detail how the item set for the picture naming study was selected based on the 

name agreement data. Subsequently, values of the other variables will be reported for that item subset 

with high name agreement. 

As we were interested in the name associated with an item rather than the spelling accuracy of 

production, responses with typing/spelling errors were corrected (e.g., achordian for target word 

accordion) and considered as correct responses. Items where less than 75% of participants produced 

the same response to a picture were then excluded from further analyses, which led to removal of 196 

items. We retained four items where participants agreed on a different name to that used in the 

McRae et al. (2005) American English target list. For all of these items, we considered the appropriate 

Australian English labels for the same concept (i.e., “motorbike” for the target word “motorcycle”, 

“pram” for the target word “buggy”, “prawn” for the target word “shrimp”, and “teacup” for “cup”).  

From the remaining 345 items we discarded items when the agreed name:  

1. was another target word (e.g., 82% of participants used the target word “church” to name 

the picture of a chapel). 

2. was a superordinate (e.g., 91% of participants used “bird” to name the picture of a 

partridge).  

3. referred to a different concept that was not another target (e.g., 91% used “wolf” to name 

the picture of a coyote).  

This process led to a final set of 297 items. For each of these items, average age of acquisition, 

imageability, and image agreement ratings were calculated. For the image agreement ratings, 

responses where a participant had indicated that the word was unknown or that they had thought of a 
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different object were excluded from the analysis. The characteristics of the 297 items are listed in Table 

2. 

 

Table 2 

Descriptive statistics for name agreement (proportion of participants providing the target name) and 

rated variables (age of acquisition, imageability, and image agreement) for the final 297 item set 

 

Name agreement (pro-
portion of participants) 

Age of acquisition  
(7 age bands) 

Imageability  
(7-point scale) 

Image 
agreement  

(5-point scale) 

Average 0.94 3.21 5.43 4.36 
Minimum 0.75 1.25 2.09 2.91 
Maximum 1.00 6.64 6.64 5.00 
SD 0.07 1.03 0.73 0.42 

 

Study 2: Picture naming experiment 

A standard continuous picture naming experiment using simple picture naming without 

context manipulation was conducted to examine the effect of semantic variables on word production 

processes. The experimental procedure of this study and the three main analyses were preregistered 

on the Open Science Framework (Lampe et al., 2019; https://osf.io/yw6ma/) and the data and analyses 

scripts are available there. The materials are available on request from the corresponding author. The 

study was approved by the Macquarie University Human Ethics Committee.  

Methods 

Participants 

Participants were recruited from Macquarie University’s Psychology participant pool and 

received course credit or monetary compensation (AUD15 per hour) for their time. All participants 

provided informed consent. Participants were eligible to participate in this study if they were Australian 

English native speakers, were right-handed, 17–35 years old, and had normal or corrected-to-normal 

vision. Exclusion criteria were a history of neurological or cognitive impairments or a history of speech 

and language impairments. 89 participants took part in this study, of whom 2 were excluded because 

they did not fulfil the eligibility criteria or did not comply with the instructions. The data from 87 
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participants (68 female; M = 20.1 years old, range = 17–33 years, SD = 2.3) were therefore used in the 

analyses. 

Stimuli 

The stimuli consisted of pictures of the 297 items from the McRae et al. (2005) database that 

were retained following the norming process described in Study 1 above. Another feature database 

(Devereux et al., 2014) provided information on semantic categories. We used the categories assigned 

by Devereux et al. for the 267 of our items that appeared in this database and assigned the remaining 

items to one of Devereux et al.’s 24 semantic categories. As 45 of our items were allocated to the 

“miscellaneous” category by Devereux et al., we re-assigned these items to new categories where 

possible (e.g., 10 items (e.g., skis) to a category of “sport equipment”, and 7 items (e.g., pipe) to a 

category of “plumbing”). This procedure led to 35 different semantic categories, containing between 1 

and 32 items (M = 8.49 items per category). 

Stimuli were divided into four blocks (Blocks 1–4). Block 1 was designed as a set of stimuli that 

would not be prone to effects of cumulative semantic inhibition (i.e., the finding that the production of 

a target word is slower the more items from the same semantic category were previously named in the 

experiment; e.g., Howard et al., 2006) by comprising items from different semantic categories. This 

block consisted of 35 items, nine of which came from the miscellaneous category and one item of each 

of the different semantic categories, under the condition that no items in this block were near 

semantic neighbours (feature vector similarity cosine between pairs of items < .4; Mirman, 2011). The 

remaining items were divided evenly between Blocks 2–4 (Blocks 2 and 3 n = 87, Block 4 n = 88 items). 

Three pseudorandomised orders of items within each of the four blocks were created. For Blocks 2–4 a 

minimum of two items from different semantic categories intervened between items of the same 

semantic category in order to reduce interference/facilitation from closely related items. Finally, six 

different experimental lists were created by manipulating the order and pseudorandomisations of the 

different blocks. Block 1, controlling for the cumulative semantic inhibition effect, always appeared in 

the first position in each list, while Blocks 2–4 were presented in varying orders afterwards (i.e., 

positions 2–4, see Appendix A). Each participant saw one of the pseudorandomised experimental lists. 
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For all 297 items, information was available for six psycholinguistic control variables as 

suggested by Perret and Bonin (2019) to influence picture naming: name agreement, image 

agreement, imageability, age of acquisition, familiarity (all values obtained from our norming study), 

and frequency (Zipf, based on television subtitles, SUBTLEX-UK; van Heuven et al., 2014). In addition, to 

replicate Rabovsky et al.'s (2016) analysis, the number of orthographic neighbours of the items was 

retrieved from the N-Watch database (Coltheart’s N; Davis, 2005). Two further control variables were 

based on the experimental lists: A measure accounting for the number of previously seen items of the 

same semantic category to control for the cumulative semantic inhibition effect (Howard et al., 2006) 

and the rank-order of an item within the experiment to account for habituation to the experimental 

situation or fatigue (Baayen & Milin, 2010). 

Information on six feature-based semantic predictor variables was derived from information 

given in McRae et al. (2005): number of semantic features, intercorrelational density, number of near 

semantic neighbours, semantic similarity, typicality, and distinctiveness.  

Number of semantic features was a simple count of the semantic features generated for a 

target word (e.g., Rabovsky et al., 2016). For intercorrelational density, the shared variance of a 

concept’s correlated feature pairs was determined and then summed (e.g., Rabovsky et al., 2016). To 

qualify as a near semantic neighbour, the cosine feature vector similarity with the target had to be at 

least .4 (Hameau et al., 2019; Mirman, 2011; Mirman & Graziano, 2013). Following Mirman and 

Magnuson (2008), we operationalised semantic similarity as the average similarity between the feature 

vectors of the target and all other words in McRae et al.'s (2005) feature database (note that the only 

previous investigation of semantic similarity in word production (Fieder et al., 2019) excluded from the 

calculation concepts that had a feature vector similarity of 0 with the target. Other studies that have 

used measures of semantic similarity, are not relevant here as they have investigated different issues, 

e.g., the relationship between a target word and the stimulus context (e.g., Rose et al., 2019) or the 

semantic overlap between two concepts in a context (e.g., Rose & Abdel Rahman, 2017)). Typicality 

was calculated in a similar way to Rosch and Mervis' (1975) family resemblance score: Each feature of 

an item received a score based on the number of other items in the same semantic category that were 
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credited with that particular feature. This feature weight was then divided by the number of items in 

the semantic category and ultimately multiplied by its production frequency (number of participants 

who produced that feature for the item) before the feature weights of all features of an item were 

summed. Finally, distinctiveness was the inverse of the number of concepts in which a certain feature 

occurs across the database, which was then averaged across the features of a concept (e.g., Rabovsky 

et al., 2016). See Appendix B for a more detailed description of the calculation of the semantic 

variables and Appendix C for a demonstration that the variability of the semantic variables in the item 

set selected for this study was comparable to the full feature database by McRae et al. (2005).  

Procedure 

Testing took place in a quiet room at Macquarie University. In addition to naming latency and 

accuracy, a continuous EEG signal was recorded using a 64 channels ActiveTwo BioSemi system 

(BioSemi, Amsterdam, The Netherlands). The EEG data are reported elsewhere (Lampe, Bürki, et al., 

2021). The simple picture naming task analysed here was the first task in a larger study that involved 

the participants subsequently naming the same pictures twice more in different experimental 

paradigms (e.g., Lampe, Hameau, et al., 2021).  

Picture presentation and trial-sequence were controlled by Presentation® software (Version 

20.0, Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com). Trial sequence was as follows: 

First a fixation cross appeared in the centre of the screen for a random duration of between 500 and 

1000ms, such that participants would be unable to predict the exact onset of the picture. Next, a 

picture was displayed for 2000ms on a white background in the centre of the screen and the 

participants were instructed to name the picture as quickly and accurately as possible, using a single 

word only. After the picture offset the screen was blank for 1000ms before the start of the next trial.  

The experiment was presented on a Dell Precision tower 3620 running Windows 10 and using 

an AOC FreeSync LED monitor. Verbal responses and response latencies were recorded using a voice 

trigger in Presentation® and a Behringer preamplifier (Tube Ultragain Mic100) together with a Rode 

NTG1 shotgun microphone. The keyboard was used to navigate through the experiment. 
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The experiment began with 5 practice trials in which participants named pictures that were not 

part of the 297 experimental stimuli and came from different semantic categories to the experimental 

stimuli. There was a break after the practice phase and after each experimental block for the 

participants to ask questions and to rest. The first trial after each break included another practice 

picture, which again came from a different semantic category from all experimental stimuli. The task 

took about 30 minutes.  

Response coding 

After the experiment, all responses were transcribed and coded for naming accuracy. 

Response latencies recorded by the voice trigger were checked and manually adjusted as necessary by 

visual and auditory inspection of the waveform using the program Praat (Version 6.0.49; Boersma & 

Weenink, 2019). 

Accuracy of the first response was coded. Responses were coded as correct if the first 

response consisted of (only) the correctly pronounced target word. Only correct responses were 

considered for the naming latency analyses. For the accuracy analyses, in addition to correct responses, 

responses with a determiner preceding the correct name (e.g., “an octopus”), disfluencies on the 

target’s initial phoneme (e.g., “sss sofa”), hesitations (e.g.,“erm apple”), and elaborations (e.g., “yellow 

truck” for “truck”) were coded as correct. Responses consisting of a synonym or acceptable response 

(e.g., “sofa” for “couch”), abbreviations (e.g., “croc” for “crocodile”), or a response continuing from the 

previous item with subsequent correct naming of the target word (e.g., “emu .. bed” for “bed” with 

“emu” being the previous item) were coded as ‘not analysed’ (NA) and excluded from the analyses. 

Disfluencies with self-corrections (e.g., “oct squid” for “squid”), incomplete responses (e.g., “so” for 

“sofa”), incorrect responses (e.g., “chair” for “sofa”), as well as instances where the participants did not 

respond or made a comment that expressed a failure to respond (e.g., “I don’t know”; i.e., omissions) 

were coded as errors (see Appendix D, for examples and a summary of the coding system).  

Data analysis  

The data was analysed in RStudio (Version 1.2.5033; RStudio Team, 2019) using (generalised) 

linear mixed effect models ((G)LMMs) as implemented in the lme4-package (Version 1.1.21; Bates et al., 
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2017). p-values were derived using lmerTest (Version 3.1.1; Kuznetsova et al., 2017). For the 

specification of the random effects structure, we followed Bates et al. (2015) and the model fit of 

nested models was assessed using likelihood ratio tests (stats package, Version 3.6.1; R Core Team, 

2018). Plots were created using the package sjPlot (Version 2.6.3; Lüdecke, 2019).  

Ten data points from two participants had to be removed because of a programming error. 

Moreover, four items (board, bridge, racquet, and pie) were excluded from the analyses as many 

participants produced an elaboration that comprised a subordinate of the target word (e.g., tennis 

racquet). Outliers were identified for naming latency and accuracy, both for participants and items 

based on visual inspection of boxplots. Two participants who performed considerably less accurately 

than the other participants (69% and 62% naming accuracy versus mean accuracy of 86%, SD = 5%) 

were excluded from further analyses. Two items (crowbar and raft) were identified as outliers for 

naming accuracy (26% and 34% accuracy versus mean accuracy of 86%; SD = 15%) and excluded from 

further analyses.  

For the naming latency analyses, only correct responses were considered and all other 

responses (3,782 data points, 15.30% of the data) were disregarded. 20,943 data points from 291 items 

and 85 participants entered the analyses, and mean naming latency was 900.81ms. For naming 

accuracy, responses coded as NA (synonyms, acceptable alternatives, abbreviations, and continuing 

responses; see section Response coding) were not analysed (171 data points, 0.69% of the data). 

24,554 data points from 291 items and 85 participants entered the accuracy analyses, of which 85.69% 

were correct responses. 

All predictor variables were standardised using a z-transformation2. Based on the output of the 

boxcox function (EnvStats Version 2.3.1; Millard, 2013), naming latency was negative reciprocally 

transformed to approximate a normal distribution (note that the negative reciprocal transformation 

preserves order among values of the same sign). 

Three separate analyses on response latencies and naming accuracy were conducted:  

 
2 The standardisation of ordinal category position and item number in the experiment was not preregistered. 

However, standardisation of all variables was necessary to facilitate model convergence.  
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Analysis 1A: Replication of Rabovsky et al. (2016). In this analysis, the number of semantic 

features and intercorrelational density were the only semantic variables included in the model. 

Following Rabovsky et al. (2016), we also included rated familiarity, number of orthographic 

neighbours, and lexical frequency. We also replicated Rabovsky et al.’s random effects structure by 

initially including random intercepts for participants and items as well as random slopes for 

participants for both semantic variables. However, random slopes were only retained in the models if 

they were supported by the data, following the model definition approach described by Bates et al. 

(2015).  

Analysis 1B: Replication of Rabovsky et al. (2016) including more psycholinguistic 

control variables. In this analysis, the number of semantic features and intercorrelational density 

remained the only semantic predictor variables included in the model. However, in contrast to 

Rabovsky et al. (2016), we included a wider range of psycholinguistic control variables in the analysis. 

Following Perret and Bonin (2019) and Baayen and Milin (2017), the models included the control 

variables name agreement, image agreement, imageability, age of acquisition, familiarity, frequency, as 

well as a measure of ordinal category position and rank-order of an item within the list. Number of 

orthographic neighbours from Analysis 1A was not included. Again, random intercepts for participants 

and items were included in the models as well as random slopes for the two semantic variables by 

participants, which were retained if they were supported by the data.  

Analysis 2: Extension of Rabovsky et al.'s (2016) analyses to include six semantic 

variables. In the final analyses, the models included four further semantic variables (number of near 

semantic neighbours, semantic similarity, typicality, and distinctiveness), in addition to number of 

semantic features and intercorrelational density and the psycholinguistic control variables described in 

Analysis 1B. Random intercepts for participants and items were included in the models as well as 

random slopes for semantic variables by participants if they were supported by the data.  
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Results 

Correlations 

Pearson’s correlations between variables were determined (stats package Version 3.6.1; R Core 

Team, 2018) to investigate potential multicollinearity. Hutcheson and Sofroniou (1999) suggested that 

correlation coefficients of larger than .80 indicate multicollinearity. While most correlations between 

semantic predictor variables were significant (Table 3), the observed coefficients were not indicative of 

any problematic levels of collinearity between variables. In addition, we calculated variance inflation 

factors (VIF) for the fixed effects of each (G)LMM in the analyses to further identify any possibly 

problematic levels of multicollinearity between the variables entered in the individual analyses. The 

focus of those calculations were the semantic predictor variables, and not the control variables. VIFs 

for the semantic predictors in all models (Tables 4–6) were below the values that have been 

recommended as acceptable levels (depending on the author, VIFs > 2.5 (Allison, 2012), or around 5 

(Hair et al., 2014; Rogerson, 2011) indicate potentially problematic multicollinearity). Hence, 

multicollinearity was not a problem between the predictors of the models used in the analyses.  
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Table 3 

Pearson’s correlations between the semantic predictor variables and the psycholinguistic control variables 

Variable 
Number near 

semantic 
neighbours 

Semantic 
similarity 

Number 
semantic 
features 

Typicality 
Intercorrelational 

density 
Distinctiveness 

Semantic similarity 0.58***      

Number semantic features -0.08 -0.01     

Typicality 0.37*** 0.14* 0.25***    

Intercorrelational density  0.42*** 0.07 0.40*** 0.44***   

Distinctiveness -0.51*** -0.58*** 0.03 -0.25*** -0.41***  

Name agreement -0.07 -0.04 -0.01 -0.05 -0.07 0.04 
Age of acquisition 0.05 0.04 -0.20*** -0.14* -0.19*** 0.09 

Imageability -0.05 -0.08 0.24*** 0.12* 0.16** -0.02 
Image agreement 0.31*** 0.24*** 0.03 0.04 0.12* -0.19*** 

Frequency -0.22*** -0.11 0.24*** 0.03 0.09 0.09 
Familiarity -0.27*** -0.37*** 0.15* 0.12* 0.05 0.20*** 

Number orthographic neighbours  -0.12* 0.03 0.03 -0.04 -0.04 0.05 
*** p < .001, ** p < .01, * p < .05.  
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Analysis 1A: Replication of Rabovsky et al. (2016) 

Naming latency. This analysis replicated the analysis run by Rabovsky et al. (2016) and, 

therefore, we fitted a model including the same control and semantic variables as in that paper. 

Following Bates et al.'s (2015) approach to define a random effects structure that is supported by the 

data, we identified a model with number of semantic features as random slope for participants, 

including correlations between the random slope and the intercept, as the model explaining the data 

best (Table 4, Model 1A.1). Responses were faster for words that were more familiar and had higher 

word frequency, however, the two semantic variables number of semantic features and 

intercorrelational density did not reach significance (see also Figure E1, Panel A, for a graphical display 

of the fixed effects and their confidence intervals).  

Naming accuracy. To replicate the analysis of Rabovsky et al. (2016), we used a model with 

the same fixed effects structure as for the naming latency analysis of Analysis 1A.1. A model with 

crossed random intercepts for items and participants and no random slope provided the best fit of the 

data (Table 4, Model 1A.2). Increasing familiarity and frequency were found to facilitate naming 

accuracy. Moreover, response accuracy was facilitated by a higher number of semantic features (see 

also Figure E1, Panel B). 
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Table 4 

Analysis 1A replicating Rabovsky et al. (2016): Summarised output of linear mixed model analysis of picture naming latency (Models 1A.1) and naming accuracy 

(Model 1A.2) 

 

Naming latency (Model 1A.1) Naming accuracy (Model 1A.2) 

lmer(RT ~ Familiarity + OrthNeigh + Frequency + NoFeats + 
IntercorrDens + (1 | Item) + (1 + NoFeats | Participant), data = 

data, REML = FALSE) 

glmer(Accuracy ~ Familiarity + OrthNeigh + Frequency + 
NoFeats + IntercorrDens + (1 | Item) + (1 | Participant), data = 

data, family = binomial) 

Random effect Variance SD Correlation    Variance SD     

Item (Intercept) 0.02 0.16      2.46 1.57     

Participant (Intercept) 0.01 0.12      0.28 0.53     
Participant | NoFeats  0.00 0.01 0.54           

Residuals 0.05 0.23                   

Fixed effects Estimate SE CI t-value p-value VIF Estimate SE CI z-value p-value VIF 

Intercept -1.17 0.02 -1.20 – -1.14 -73.56 < .001   2.76 0.12 2.53 – 2.98 23.79 < .001  
Familiarity -0.06 0.01 -0.08 – -0.04 -5.69 < .001 1.25 0.38 0.11 0.16 – 0.59 3.44 < .001 1.24 

OrthNeigh 0.02 0.01 -0.00 – 0.04 1.85 .066  1.17 -0.13 0.11 -0.34 – 0.08 -1.19 .233 1.17 

Frequency -0.03 0.01 -0.05 – -0.00 -2.38 .018 1.47 0.48 0.12 0.25 – 0.72 4.03 < .001 1.46 

NoFeats -0.02 0.01 -0.04 – 0.00 -1.54 .125 1.25 0.23 0.11 0.01 – 0.44 2.06 .039 1.25 
IntercorrDens 0.01 0.01 -0.01 – 0.03 0.76 .448 1.19 -0.19 0.11 -0.39 – 0.02 -1.77 .076 1.20 

 
Observations: 20,943 

Marginal R2 / Conditional R2: 0.058 / 0.457 

Observations: 24,554 

Marginal R2 / Conditional R2: 0.089 / 0.503 

Note. VIF = Variance Inflation Factor, OrthNeigh = Number of orthographic neighbours, NoFeats =number of semantic features, IntercorrDens = 

intercorrelational density, Participant | X = random slope of X by participants. 

Values of significant effects (p < .05) are printed in bold. 
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Analysis 1B: Replication of Rabovsky et al. (2016) including more psycholinguistic control 

variables 

Naming latency. We extended the original Rabovsky et al. (2016) analyses by including more 

control variables, while the semantic variables remained the same. Again, a model with a by-

participants random slope for number of semantic features, including the correlation between the 

random slope and intercept, provided the best fit of the data (Table 5, Model 1B.1). 

Most control variables had a significant effect on response latencies and their effects pointed 

in the expected directions: Responses were faster for words with higher name agreement, higher 

image agreement, and higher familiarity, and responses were slower for words acquired later in life 

and the more items from the same category that had been previously seen in the experiment 

(Cumulative Semantic Interference effect). Finally, responses became slower over the course of the 

experiment. Neither of the two semantic variables showed significant effects on naming latency (Table 

5, Figure E2, Panel A).  

Naming accuracy. In replicating Rabovsky et al.'s (2016) experiment, we extended Analysis 

1A.2 with further control variables (as in Analysis 1B.1). The full complex effect structure was not 

supported by the data, and a model without by-participant random slopes provided the best fit (Table 

5, Model 1B.2). 

All control variables reached significance, except for familiarity, and their effects were in the 

expected directions: Higher name agreement, image agreement, imageability, and frequency 

facilitated naming accuracy, while higher age of acquisition and a higher number of items from the 

same semantic category previously seen in the experiment (Cumulative Semantic Interference effect) 

led to less accurate responses. Moreover, participants were more accurate as the experiment 

progressed. The two semantic variables were also significant: While higher numbers of features 

improved naming accuracy, higher intercorrelational density reduced naming accuracy (Table 5, Figure 

E2, Panel B).
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Table 5 

Analysis 1B replicating Rabovsky et al. (2016) taking more psycholinguistic control variables into account: Summarised output of linear mixed model analysis of 

picture naming latency (Models 1B.1) and naming accuracy (Model 1B.2) 

 

Naming latency (Model 1B.1) Naming accuracy (Model 1B.2) 

lmer(RT ~ NameAgr + ImageAgr + Imageability + AoA + 

Familiarity + Frequency + OrdCatPos + Order + NoFeats + 

IntercorrDens + (1 | Item) + (1 + NoFeats | Participant), data, 

REML = FALSE) 

glmer(Accuracy ~ NameAgr + ImageAgr + Imageability + AoA + 

Familiarity + Frequency + OrdCatPos + Order + NoFeats + 

IntercorrDens + (1 | Item) + (1 | Participant), data, family = 

binomial) 

Random effect Variance SD Correlation    Variance SD     

Item (Intercept) 0.02 0.13        1.43 1.20        

Participant (Intercept) 0.01 0.12      0.28 0.53     

Participant | NoFeats 0.00 0.01 0.53           

Residuals 0.05 0.23                   

Fixed effects Estimate SE CI t-value p-value VIF Estimate SE CI z-value p-value VIF 

Intercept -1.17 0.01 -1.20 – -1.14 -78.68 < .001   2.73 0.10 2.53 – 2.92 27.50 < .001  

NameAgr -0.06 0.01 -0.07 – -0.04 -6.99 < .001 1.11 0.72 0.08 0.57 – 0.88 9.11 < .001 1.08 

ImageAgr -0.05 0.01 -0.07 – -0.04 -6.44 < .001 1.17 0.34 0.08 0.18 – 0.51 4.04 < .001 1.20 

Imageability -0.02 0.01 -0.04 – 0.00 -1.91 .058 1.82 0.26 0.11 0.05 – 0.47 2.46 .014 1.78 

AoA 0.03 0.01 0.01 – 0.05 2.53 .012 2.30 -0.31 0.12 -0.54 – -0.07 -2.59 .010 2.27 

Familiarity -0.04 0.01 -0.06 – -0.02 -4.44 < .001 1.44 0.14 0.09 -0.04 – 0.32 1.54 .122 1.43 

Frequency -0.02 0.01 -0.03 – 0.00 -1.59 .114 1.54 0.27 0.10 0.08 – 0.46 2.80 .005 1.53 

OrdCatPos 0.01 0.00 0.00 – 0.02 3.17 .002 3.11 -0.13 0.05 -0.24 – -0.03 -2.59 .010 3.06 

Order 0.01 0.00 0.00 – 0.01 2.20 .028 3.08 0.11 0.05 0.02 – 0.20 2.52 .012 3.01 

NoFeats -0.02 0.01 -0.03 – 0.00 -1.70 .089 1.28 0.21 0.09 0.04 – 0.38 2.38 .017 1.29 

IntercorrDens 0.01 0.01 -0.00 – 0.03 1.45 .147 1.24 -0.22 0.09 -0.39 – -0.06 -2.61 .009 1.27 

 
Observations: 20,943 

Marginal R2 / Conditional R2: 0.139 / 0.454 

Observations: 24,554     

Marginal R2 / Conditional R2: 0.231 / 0.494 
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Note. VIF = Variance Inflation Factor, NameAgr = name agreement, ImageAgr = image agreement, AoA = age of acquisition, OrdCatPos = ordinal category 

position, NoFeats = number of semantic features, IntercorrDens = intercorrelational density, Participant | X = random slope of X by participants. 

Values of significant effects (p < .05) are printed in bold. 
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Analysis 2: Extension of Rabovsky et al.'s (2016) analyses to include six semantic variables 

Naming latency. In this analysis, we added the four additional semantic variables number of 

near semantic neighbours, semantic similarity, typicality, and distinctiveness to Analysis 1B.1. A model 

with random by-participant slopes for semantic similarity, number of near semantic neighbours, and 

number of semantic features, including correlations between the slopes and with the intercept 

provided the best fit of the data (Table 6, Model 2.1). 

Effects of the control variables (see Table 6) were comparable to the effects found in Analysis 

1B.1 with faster responses for words with higher name agreement, higher image agreement, and 

higher familiarity. Responses were slower for words with a higher age of acquisition, the more items 

from the same category were previously seen in the experiment (Cumulative Semantic Interference 

effect), and responses slowed over the course of the experiment. Importantly, the number of semantic 

features, as well as the distinctiveness of an item, significantly predicted naming latency: Responses 

were faster for items with more features and slower the higher the distinctiveness of an item.  

These findings are displayed in Figure 1 (Panel A), where red lines (left of centre) indicate a 

facilitatory effect of a variable with faster responses as that variable increases in value, while blue lines 

(right of centre) indicate an inhibitory effect with slower responses as that variable increases in value. 

Confidence intervals that cross the black zero line are indicative of non-significant effects.  

Naming accuracy. When the four additional semantic variables number of near semantic 

neighbours, semantic similarity, typicality, and distinctiveness were added to Analysis 1B.2, a model 

with a by-participant random slope for number of near semantic neighbours and its correlation with 

the intercept provided the best fit of the data (Table 6, Model 2.2).  

Effects for the control variables (Table 6) remained comparable to Analysis 1B.2, with higher 

name agreement, image agreement, imageability, and frequency facilitating naming accuracy, and 

higher age of acquisition and a higher number of items from the same semantic category previously 

seen in the experiment (Cumulative Semantic Interference effect) leading to more naming errors. 

Moreover, participants’ accuracy increased over the course of the experiment. Only two semantic 
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variables reached significance: Higher numbers of semantic features led to more correct responses, 

while higher intercorrelational density led to reduced naming accuracy.  

The findings are plotted in Figure 1 (Panel B), where red lines (right of centre) indicate a 

facilitatory effect with more accurate responses with higher values of a variable, while blue lines (left of 

centre) indicate an inhibitory effect with reduced naming accuracy with higher values of a variable. 

Again, confidence intervals that cross the black zero line are indicative of non-significant effects.  

 

Figure 1 

Analysis 2 extending Rabovsky et al. (2016) with other semantic variables: Fixed effects estimates with 

95% confidence interval of picture naming latency analysis (Panel A; Model 2.1) and accuracy analysis 

(Panel B; Model 2.2) 

 

Note. Panel A shows the output of the naming latency analysis and Panel B the output of the naming 

accuracy analysis; red lines (to the left of centre for latency, and right for accuracy) indicate increased 

values of the variable lead to better performance, and blue lines (to the right of centre for latency and 

left for accuracy) indicate worse performance.  
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Table 6 

Analysis 2 extending Rabovsky et al. (2016) with other semantic variables: Summarised output of linear mixed model analysis of picture naming latency (Model 2.1) 

and naming accuracy (Model 2.2)  

 

Naming latency (Model 2.1) Naming accuracy (Model 2.2) 
lmer(RT ~ NameAgr + ImageAgr + Imageability + AoA + 
Familiarity + Frequency + OrdCatPos + Order + NoFeats + 
IntercorrDens + NrSemNeigh + SemSim + Typicality + 
Distinct + (1 | Item) + (1 + NoFeats + NrSemNeigh + 
SemSim | Participant), data = data, REML = FALSE) 

glmer(Accuracy ~ NameAgr + ImageAgr + Imageability + AoA + 
Familiarity + Frequency + OrdCatPos + Order + NoFeats + 
IntercorrDens + NrSemNeigh + SemSim + Typicality + Distinct + 
(1 | Item) + (1 + NrSemNeigh | Participant), data = data, family = 
binomial) 

Random effect Variance SD Correlation    Variance SD Correlation    
Item (Intercept) 0.02 0.12      1.42 1.19     

Participant (Intercept) 0.01 0.12      0.28 0.53     
Participant | NoFeats  0.00 0.01 0.50           

Participant | 
NrSemNeigh  

0.00 0.02 -0.24 0.02    0.02 0.15 0.34    

Participant | SemSim  0.00 0.01 0.07 -0.61 -0.49        
Residuals 0.05 0.23                   

Fixed effects Estimate SE CI t-value p-value VIF Estimate SE CI z-value p-value VIF 
(Intercept) -1.17 0.02 -1.20 – -1.14 -78.43 < .001   2.73 0.10 2.54 – 2.92 27.67 < .001  
NameAgr -0.06 0.01 -0.07 – -0.04 -7.07 < .001 1.11 0.72 0.08 0.57 – 0.87 9.13 < .001 1.08 
ImageAgr -0.05 0.01 -0.07 – -0.04 -6.37 < .001 1.27 0.35 0.09 0.18 – 0.53 4.03 < .001 1.30 

Imageability -0.02 0.01 -0.04 – -0.00 -1.96 .051 1.86 0.26 0.11 0.05 – 0.47 2.43 .015 1.84 
AoA 0.03 0.01 0.00 – 0.05 2.24 .026 2.42 -0.30 0.12 -0.54 – -0.06 -2.45 .014 2.44 

Familiarity -0.04 0.01 -0.06 – -0.02 -4.19 < .001 1.74 0.13 0.10 -0.07 – 0.33 1.29 .198 1.75 
Frequency -0.02 0.01 -0.03 – 0.00 -1.61 .108 1.58 0.27 0.10 0.08 – 0.46 2.78 .005 1.57 
OrdCatPos 0.01 0.00 0.01 – 0.02 3.25 .001 3.18 -0.13 0.05 -0.24 – -0.03 -2.52 .011 3.14 

Order 0.01 0.00 0.00 – 0.01 2.16 .030 3.13 0.11 0.06 0.02 – 0.20 2.43 .015 3.05 
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NoFeats -0.02 0.01 -0.04 – -0.00 -1.99 .048 1.55 0.22 0.10 0.03 – 0.41 2.24 .025 1.57 
IntercorrDens 0.02 0.01 -0.00 – 0.04 1.71 .088 2.20 -0.25 0.11 -0.47 – -0.02 -2.17 .030 2.26 
NrSemNeigh 0.01 0.01 -0.01 – 0.04 1.02 .307 2.44 -0.05 0.12 -0.29 – 0.18 -0.45 .657 2.47 

SemSim 0.01 0.01 -0.01 – 0.03 0.90 .369 2.50 -0.07 0.12 -0.31 – 0.17 -0.56 .577 2.51 
Typicality 0.00 0.01 -0.01 – 0.02 0.37 .713 1.44 0.01 0.09 -0.18 – 0.19 0.08 .940 1.49 

Distinct 0.03 0.01 0.01 – 0.05 2.98 .003 2.04 -0.15 0.11 -0.36 – 0.07 -1.32 .186 2.03 

 
Observations: 20,943 
Marginal R2 / Conditional R2: 0.143 / 0.456 

Observations: 24,554     
Marginal R2 / Conditional R2: 0.231 / 0.495 

Note. VIF = Variance Inflation Factor, NameAgr = name agreement, ImageAgr = image agreement, AoA = age of acquisition, OrdCatPos = ordinal category 

position, NoFeats = number of semantic features, IntercorrDensity = intercorrelational density, NrSemNeigh = Number of near semantic neighbours, 

SemSim = Semantic similarity, Distinct = distinctiveness, Participant | X = random slope of X by participants.  

Values of significant effects (p < .05) are printed in bold. 
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Discussion 

Understanding how word-inherent semantic properties of an item affect word production is 

critical for improving our understanding of the mechanisms and refining theoretical models of spoken 

word production. However, previous research investigating effects of semantic variables on production 

has had numerous methodological and statistical limitations, which may have distorted the findings. 

Here, we overcame these shortcomings and investigated the role of six feature-based semantic 

variables on the word production process: number of semantic features, intercorrelational density, 

number of near semantic neighbours, semantic similarity, typicality, and distinctiveness, while 

controlling for other psycholinguistic variables that have been found to influence word production.  

The design of our study also enabled direct comparison with previous literature through a 

conceptual replication of Rabovsky et al. (2016) that evaluated the reliability of their findings. We 

therefore investigated effects of number of semantic features and intercorrelational density on word 

production under reduced (Analysis 1A and as in Rabovsky et al.) and subsequently under more 

adequate control of psycholinguistic variables (Analysis 1B), before investigating the effects of the six 

semantic variables of interest simultaneously (Analysis 2).  

Table 7 summarises the results of our analyses. Taken together, number of semantic features 

was the most important and consistent predictor of naming accuracy across analyses and there was 

also a relatively weak effect on naming latency in the most complex analysis (Analysis 2). Moreover, 

there were effects of intercorrelational density on naming accuracy (Analyses 1B and 2) and an effect 

of distinctiveness on latency (Analysis 2). Importantly, there was a lack of evidence for effects of 

number of near semantic neighbours, semantic similarity, or typicality on naming. Below, we first 

discuss possible reasons for the relatively restricted effects of semantic variables that were found, then 

we relate our results to those of Rabovsky et al. (2016) and discuss the changes in effects in the 

different analyses before turning to the theoretical interpretation of individual significant effects. 
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Table 7 

Summary of the findings for semantic variables across all analyses  

Semantic 

variable 

Rabovsky et al. 

(2016) Analysis 1A Analysis 1B Analysis 2 

latency accuracy latency accuracy latency accuracy latency accuracy 

NoFeats ↗	 ↗	 Ø ↗	 Ø ↗	 ↗	 ↗	
IntercorrDens ↙	 ↙	 Ø Ø Ø ↙	 Ø ↙	

NearSemNeigh       Ø Ø 

SemSim       Ø Ø 

Typicality       Ø Ø 

Distinct       ↙	 Ø 

Note. Ø = non-significant effect, ↙ = poorer performance (slower responses and decreased 

accuracy with higher values of the semantic variable), ↗ = improved performance (faster responses 

and higher accuracy with higher values of the semantic variable), blank cells were not investigated, 

NoFeats = number of semantic features, IntcorrDens = intercorrelational density, NearSemNeigh = 

number of near semantic neighbours, SemSim = semantic similarity, Distinct = distinctiveness. 

 

Limited effects of some semantic variables  

Over and above the effects of number of semantic features and intercorrelational density, as 

also investigated by Rabovsky et al. (2016), distinctiveness was the only other semantic variable to 

exert a significant effect on the participants’ naming performance (Analysis 2, Tables 6 and 7). That is, 

there was no evidence that picture naming performance was affected by number of near semantic 

neighbours, semantic similarity, and typicality. 

The absence of effects of these variables is in contrast to most previous work, where significant 

effects for these semantic variables were reported. This reinforces the validity of the concern, raised in 

the Introduction, that significant effects in some of the previous studies could have been Type 1 errors, 

false positives, arising due to a lack of control of other semantic and psycholinguistic variables (see 

below for more detail). However, particularly for effects of number of semantic neighbours and 

semantic similarity, differences in significance could also be due to task differences (i.e., speeded vs 

simple picture naming). Moreover, as evident in Table 1, compared to our study, most previous reports 

had fewer data points, due to smaller samples of participants and/or items, leading to lower statistical 

power and reliability of the results. In addition, differences in the statistical approach (i.e., taking into 
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account the variability induced by specific participants and items using mixed effects models or 

disregarding such differences in regression analyses; using semantic variables as continuous or 

categorical predictors) may have caused differences in the significance of effects of semantic variables. 

Finally, of course, there is also the very real concern that this literature, as is common, suffers from 

publication bias towards significant findings. 

Importantly, our null effects of the number of near semantic neighbours are in line with 

previous work using a simple picture naming paradigm (Hameau et al., 2019; Lampe et al., 2017); the 

studies that found significant effects used a speeded naming paradigm. Similarly, not all previous 

studies have found significant effects of typicality (Morrison et al., 1992; Woollams, 2012).  

Development of effects across analyses  

We now review how the effects of semantic variables changed across the analyses. We do not 

comment on marginally significant findings and only focus on significant effects (p < .05).  

Conceptual replication of Rabovsky et al. (2016). As is summarised in Tables 1 and 7, 

Rabovsky et al. (2016) found significant effects of both number of semantic features and 

intercorrelational density on picture naming latency and accuracy. In Analysis 1A, where we replicated 

Rabovsky et al.'s analyses by taking the same semantic and control variables into account, we 

replicated their facilitatory effect of number of semantic features on naming accuracy, while the effect 

of intercorrelational density was non-significant. Moreover, we did not replicate Rabovsky et al.'s 

results for naming latency: Neither number of features nor intercorrelational density showed significant 

effects on naming latency. However, in the more complex analyses, particularly Analysis 2 that 

accounted for further control and semantic variables, our findings were broadly consistent with those 

of Rabovsky et al.: Number of semantic features affected both naming latency and accuracy 

(facilitatory) and intercorrelational density affected accuracy (inhibitory). Hence, the only effect 

reported by Rabovsky et al. that failed to reach significance in any of our analyses was the effect of 

intercorrelational density on naming latency. However, in Rabovsky et al.‘s own work this effect also 

did not prove to be robust: While the group effect was significant in Rabovsky et al. (2016), few 
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individual participants were significantly affected, and in Rabovsky et al. (2021) the effect was non-

significant when the participants first named the pictures.  

What could be the cause of the differences between Rabovsky et al.'s (2016) results and those 

of our Analysis 1A? Given that we had almost three times as many data points as the original study 

(24,725 data points vs 8,656 data points), our failure to replicate Rabovsky et al. (and other studies 

reported in Table 1) cannot be due to lack of statistical power relative to the original study; if anything, 

our findings should be more reliable. The fact that effects that are in line with Rabovsky et al. emerged 

in our subsequent analyses may suggest that the effects of semantic variables are relatively weak and 

subject to a certain degree of variability. By including more control variables in the models of Analysis 

1B and 2 we statistically controlled some of this variability, which resulted in significant effects of more 

semantic variables (further discussion of this in the next section). Although the difference in the 

language spoken by the participants (English vs German) may have influenced the results, as the 

semantic variables are argued to reflect our underlying conceptual representation and lexical 

processing, there is no reason to expect that these factors should operate differently across languages. 

However, there are other methodological factors that may have been important: For example, we 

ensured that name agreement of the experimental items was high for our population, the features 

were generated in the same language as the experiment, and we used colour photographs, which can 

improve concept recognition for some items (e.g., lime vs lemon; Bonin et al., 2019; Rossion & 

Pourtois, 2004). We would argue that these differences are, once again, likely to make the results of 

our study more reliable but may also have led to differences in the outcomes of the two studies.  

Changes in effects across analyses. As summarised in Table 7, the significance of some 

semantic variables changed between analyses: The most significant effects of semantic variables were 

found in the most complex analysis (Analysis 2). Why do more semantic variables effects reach 

significance with improved statistical control of factors affecting naming? It is well known that (inter-) 

correlations between variables can cause the effect of one variable to be significant only when another 

variable is not included in the analysis. Moreover, mediator or suppressor variables can also influence 

the findings, potentially leading to disappearance, overestimation, or underestimation of the effect of 
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an independent variable on the dependent variable (Type 1 or 2 errors) (Hair et al., 2014). The inclusion 

of such variables in the model can increase the regression coefficient of another variable in the model 

by removing irrelevant variance from that predictor (e.g., Pandey & Elliott, 2010)3. Therefore, it is vital 

even if a certain influential variable is of no direct interest to the experiment, that it is included in the 

analysis as the omission of such confounding variables can substantially distort the effects of other 

variables and lead to spurious results. By keeping effects of independent variables (e.g., 

psycholinguistic control variables) constant by including them in the statistical analysis, we can study 

maximally pure contributions of the variables of interest.  

In our analyses, most effects were significant under conditions of maximal control (Analysis 2). 

This suggests that in Analyses 1A and 1B some effects were underestimated due to uncontrolled 

suppressor variables or correlations with variables that were not included in the analyses. As explained 

above, any effects of semantic variables emerging under more rigorous control of other variables can 

be considered more reliable, because there is less free variance that can, spuriously, be taken up by the 

variables of interest. Therefore, it seems likely that effects of the semantic variables are rather weak 

and therefore only able to cross the significance threshold when the variance of other variables is 

controlled. 

Theoretical explanations for significant effects 

The effects of the semantic variables that we observed constrain the architecture of word 

production models, as, to be considered an adequate model of word production, a theory has to be 

able to account for all these effects. Below we discuss the theoretical explanations of the significant 

 
3 For example, both familiarity and imageability affect picture naming (higher values making picture naming more 

accurate and faster) but effects of frequency tend to be stronger. Imagine the situation where in a set of items 

more familiar words tend to be of lower imageability (there is a negative correlation). If the effect of each variable 

is examined independently (in a correlation for example), the two variables are in competition. There may be an 

effect of familiarity, the variable with the strongest effects. However, as the words of higher familiarity are of lower 

imageability, the effect of imageability will be masked: Familiarity is a suppressor variable. Only when both 

variables are analysed together and the independent variance of each can be evaluated will a significant effect of 

imageability become apparent (assuming there is sufficient independent variance). 



   CHAPTER 3  |  203 

 

C
H

A
P

T
E
R

 6
  |  203

 

effects found here—effects of number of semantic features, intercorrelational density, and 

distinctiveness—in the context of current theories of word production.  

Number of semantic features. Number of semantic features represented a simple count of 

the features of a concept according to the McRae et al. (2005) feature database and was the most 

important predictor of naming accuracy and significant in all three of our analyses. Moreover, in the 

most complex analysis (Analysis 2), there was a weak effect of number of semantic features on naming 

latency. Naming was more accurate and faster for words with more semantic features, which is in 

agreement with previous work by Rabovsky et al. (2016, 2021) and Taylor et al. (2012).  

Using a neural network model, Rabovsky and McRae (2014; Simulation 2) simulated processing 

of words with high or low numbers of semantic features. For words with a higher number of semantic 

features, there was higher semantic activation, corresponding to the summed activation across all 

semantic features of an item, which Rabovsky and McRae argued could explain facilitatory behavioural 

effects of number of semantic features. In word production, this increased semantic activation is 

argued to result in stronger activation of the target word’s lexical representation, facilitating its 

selection and leading to faster and more accurate responses (see also Rabovsky et al., 2016). Current 

theories of word production would predict facilitated naming of targets with stronger lexical activation 

(e.g., Abdel Rahman & Melinger, 2009; Dell, 1986; Howard et al., 2006; Levelt et al., 1999; Oppenheim 

et al., 2010). Simultaneously, though, a higher number of semantic features may result in the co-

activation of a larger number of semantically related lexical representations as these features will be 

represented in other concepts (e.g., Rabovsky et al., 2016). However, our finding of a facilitatory effect 

of number of semantic features suggests that any increased lexical competition from co-activated 

representations (in theories that incorporate competitive mechanisms) is outweighed by the 

conceptual facilitation from the many semantic features. In contrast, concepts with a lower number of 

semantic features will result in relatively less activation of that concept’s lexical representation, with 

selection therefore being more error prone and slower.  

The facilitatory effect from higher numbers of semantic features may also be compatible with 

other theoretical frameworks: Assuming holistic concepts, the measure of number of semantic features 
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may capture the number of links between a target concept and other concepts. Activation would 

spread along those links, which ultimately facilitates target processing. Moreover, in the context of an 

attractor network, concepts with richer semantic representations (e.g., higher numbers of features) 

build stronger attractor basins, which enable the system to settle faster and more accurately into a 

stable pattern of activation (Plaut & Shallice, 1993; see also Pexman et al., 2007). 

Intercorrelational Density. Intercorrelational density had an inhibitory effect on naming 

accuracy, as found previously (Rabovsky et al., 2016, 2021): Participants made significantly more errors 

on words with higher intercorrelational density. Such words have feature pairs that tend to co-occur 

across concepts and therefore share a lot of variance. Hence, intercorrelational density measures how 

strongly the features of a concept cluster together. For example, the features has fur and has four legs 

also tend to occur with the features has a tail, has ears, etc. (McRae & Cree, 2002). Features in such 

intercorrelated clusters have been proposed to boost each other’s activation (e.g., via bidirectional 

links between the features; McRae, 2004; McRae et al., 1997) and simulations (McRae et al., 1997) and 

previous experimental work (McRae et al., 1999; see also Taylor et al., 2004) have found that 

correlations between semantic features facilitate conceptual processing. However, in word production, 

intercorrelational density may also determine the size of the co-activated lexical cohort and the 

strength of its activation as it reflects the activation that is shared between the target concept and 

related concepts (Rabovsky et al., 2016).  

In McRae et al. (2005) intercorrelational density is calculated as the summed shared variance of 

a concept’s correlated feature pairs. Therefore, higher intercorrelational density can arise in two ways: 

1) A concept has many feature pairs that are at least correlated just above threshold (6.5% of shared 

variance) or, 2) a concept has at least a few feature pairs that are strongly correlated and share 

considerable variance. In the first scenario (1), in addition to the target’s lexical representation, lexical 

representations of many other concepts that share the (slightly) correlated semantic features with the 

target word would be (slightly) co-activated, with the extent of the co-activation depending on the 

strength of the intercorrelation of their features. It is important to note that in our analyses (but not in 

all the others in the literature), this is not confounded with the number of semantic features or number 
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of near semantic neighbours as we controlled for these measures. In the second scenario (2), where an 

item has a small number of strongly correlated pairs, a different pattern emerges with lexical 

representations of few other concepts receiving activation. However, their co-activation would be 

stronger due to the stronger correlations among the feature pairs, making them stronger candidates 

for selection. These examples clearly illustrate that whether a large number of less intercorrelated 

concepts or a small number of highly intercorrelated concepts are co-activated critically depends on 

the number of concepts in which the pairs of correlated features occur and on the strength of their 

correlation. This not only suggests that the consequences of similar intercorrelational density values 

for lexical activation can vary between items, but that across sets of items the precise effects of 

intercorrelational density may be unpredictable depending on the balance of scenario 1 and scenario 2 

items. In our analyses, given the absence of evidence for an effect of number of near semantic 

neighbours, it is likely that the stronger co-activation of closely semantically related representations 

(scenario 2) is the driving force underlying the negative effects of intercorrelational feature density. 

Similarly, intercorrelational density may represent the strength of the labelled links between a 

target and other holistic lexical concepts. In that case, spreading activation along those links may cause 

the co-activation of various concepts and their lexical representations. Irrespective of the type of 

semantic representation, assuming bidirectional links between conceptual and lexical levels of word 

production (e.g., Abdel Rahman & Melinger, 2009; Dell, 1986), co-activated lexical representations will 

mutually increase their activation. This mutual increase in activation is particularly powerful for co-

activated words that are closely related, due to the strength of the correlation of their features.  

Yet, how do these co-activated representations negatively affect the production of the target 

word? The account outlined above of a negative effect of intercorrelational density on accuracy 

assumes a theoretical framework incorporating competitive lexical selection: During lexical selection, 

the co-activated lexical representations compete with the target word for selection. For words with 

higher intercorrelational density this competition is stronger, particularly when it arises from more 

closely related co-activated representations (e.g., Abdel Rahman & Melinger, 2019; Rose & Abdel 

Rahman, 2017). The stronger competition negatively impacts the selection of the target’s lexical 
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representation, leading to increased chances of incorrectly selecting a co-activated representation, 

which can ultimately cause more naming errors. The precise mechanism underlying this competition is 

still unclear and different ways have been suggested to implement it (e.g., Luce choice mechanism, 

e.g., Luce, 1959; Abdel Rahman & Melinger, 2009, 2019; Levelt et al., 1999; Roelofs, 1997; lateral 

inhibitory links between active representations at the lexical level, e.g., Howard et al., 2006; Caramazza, 

1997; McClelland & Rumelhart, 1981). However, regardless of the details of the competitive 

mechanism, the presence of more or more strongly co-activated representations will result in poorer 

performance.  

On the other hand, Oppenheim et al.'s (2010) learning mechanism may also be able to explain 

the poorer performance on items with higher intercorrelational density. According to Oppenheim et 

al., interference is due to implicit incremental learning, which causes weakening of the connections 

between the semantic representation of the target and the lexical representations of co-activated but 

unnamed alternatives after retrieval of the target word. Each act of lexical retrieval results in persistent 

learning that adjusts the weights of the connections between semantic and lexical representations. 

Importantly, in our analyses we have equated the influence of other factors, like frequency, between 

words of lower and higher intercorrelational density. Thus, in this scenario, across a lifetime, words of 

lower and higher intercorrelational density will be selected at a comparable rate. Consequently, 

strengthening of conceptual to lexical connections after successful selection would apply equally to 

words of lower and higher intercorrelational density. However, it seems possible that, everything else 

being equal, words with higher intercorrelational density would be co-activated more often via their 

strongly intercorrelated features, in contrast to words with lower intercorrelational density. When these 

items are co-activated, but not selected, the connections between their semantic and lexical 

representations would be increasingly and persistently weakened. When a word with such weakened 

connections becomes the target in the experiment, its lexical representation is harder to access, 

resulting in relatively poorer performance. In sum, although computational modelling may be needed 

to test this prediction, Oppenheim et al.’s theoretical framework also seems to be able to account for 

our finding of an inhibitory effect of intercorrelational density.  
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Finally, inhibitory effects of intercorrelational density on naming accuracy could also be 

explained in Dell's (1986) theory where the most active lexical representation is selected, irrespective of 

co-activated lexical representations. In the interactive architecture, the bi-directional information flow 

between the semantic and the lexical levels could be particularly strong amongst strongly 

intercorrelated semantic features, leading to stronger activation of non-target lexical representations, 

which can erroneously exceed the target word’s activation and therefore be selected. This would 

increase the number of naming errors for words with higher intercorrelational density, as reported 

here.  

Distinctiveness. Distinctiveness was defined as the mean uniqueness of the features of a 

concept in the feature norm database, with concepts with higher distinctiveness, by definition, having 

more unique and less shared features. The effect of distinctiveness was inhibitory4, which is in contrast 

to previous studies that have investigated an effect of concept distinctiveness in picture naming: 

Rabovsky et al. (2016) and Taylor et al. (2012) found faster and more accurate responses for words with 

higher distinctiveness (see also Humphreys et al., 1988, for a facilitatory effect of a similar measure). As 

an explanation for facilitatory effects of distinctiveness, distinctive features have been suggested to 

play a privileged role in conceptual processing (e.g., Cree et al., 2006; Taylor et al., 2012), leading to 

faster and stronger activation of such features and to stronger activation of the respective concept in 

feature verification tasks5.  

If distinctive features are preferentially processed at the conceptual level, how can our finding 

of a negative effect of higher distinctiveness on naming be explained? When processing a word with 

higher distinctiveness, due to its rather unique semantic features, only a few semantically related lexical 

representations will be co-activated via the features they share with the target word. Alternatively, in a 

 
4 The effect was also inhibitory in an exploratory, not preregistered, analysis in which intercorrelational density was 

not included in the analysis, following Rabovsky et al. (2016) (please refer to the Introduction for details on the 

analysis conducted by Rabovsky et al.). 

5 Cree et al. (2006) explained the facilitatory effect of distinctiveness in the context of an attractor network: The 

strength and speed of activation of privileged distinctive features allows the network to enter the correct attractor 

basin faster, which enables it to settle in a stable state more rapidly.  
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holistic semantic architecture, there are (holistic) concepts which represent features (e.g., seeds), which 

are connected to a range of other concepts (e.g., apple, grapes, grass). Distinctiveness of a target (e.g., 

apple) could capture the average number of these connections for each of the (feature) concepts to 

which the target is connected (e.g., red, seeds). For words with fewer connections (i.e., words with 

higher distinctiveness), target processing would result in reduced activation spreading to other holistic 

lexical concepts. Thus, irrespective of the semantic architecture, enhanced co-activation and thus 

competition for lexical selection would be expected for words with lower distinctiveness, which 

predominantly have features that are shared with other concepts (see Vieth et al., 2014 Figure 1, for a 

visualisation) or may be connected to many other concepts, which are highly connected themselves. 

Thus, our inhibitory effect of higher distinctiveness is unlikely to be due to stronger competition 

between co-activated (lexical) representations, as fewer competing candidates are expected to be co-

active when processing words with higher distinctiveness.  

Importantly, this account of competition from strongly co-activated representations is also 

heavily based on the notion of the number of near semantic neighbours (i.e., words that share many 

semantic features with the target word) competing with the target for selection. Yet, in our analyses, 

and in contrast to the previous studies by Rabovsky et al. (2016) and Taylor et al. (2012), effects of the 

number of near semantic neighbours were accounted for and held constant by including this measure 

in the analysis. Thus, our statistical approach enabled us to obtain a more precise (purer) estimate of 

the effect of mean concept distinctiveness on naming, over and above number of near semantic 

neighbours, to evaluate the effect of a concept having distinctive features.  

Critically, it has not yet been fully established exactly how numerous or closely related to the 

target co-activated lexical representations must be to compete for selection; however, there is research 

suggesting that more closely related representations cause stronger competition (e.g., Rose et al., 

2019). Thus, while competition from many co-activated competitors is unlikely to be the mechanism 

underlying the inhibitory effect of distinctiveness, it may be possible that the effect could be caused by 

few highly related co-activated representations. There may, for example, be only one or two concepts 

that are closely related to the target, sharing many of its relatively unique features, and thus acting as 
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strong competitors for selection, causing the observed inhibitory effect. In future studies, this could 

perhaps be tested by operationalising the semantic similarity between the target and its closest 

semantic neighbour(s) as a further semantic variable.  

Similarly, in Oppenheim et al.'s (2010) framework we would expect an advantage for words 

that have higher distinctiveness, through weakening of connections between shared features and non-

target lexical representations. Every time a lexical item is retrieved, when there are shared features, 

links from those features to non-target representations would be subject to increased weakening. A 

word with lower distinctiveness (which has more shared features) would be subject to this weakening 

to a higher degree than a word with higher distinctiveness, resulting in poorer performance on items 

of lower distinctiveness and not of higher distinctiveness as we found in our data.  

In contrast to the accounts of a privileged status of distinctive features described above, the 

Conceptual Structure Account (e.g., Tyler et al., 2000; Tyler & Moss, 2001) of semantic memory argues 

that there is a processing disadvantage for distinctive features of living things and an advantage for 

shared features, while there is no such dramatic difference for artifacts. The disadvantage for 

distinctive features of living things is thought to arise because they are only weakly correlated with 

other features and hence do not benefit from mutual activation among correlated features. This causes 

slowed access to such features and makes them more vulnerable to loss in impaired semantic 

processing. In contrast, distinctive features of artifacts are correlated more strongly with other features 

and are therefore thought to benefit from mutual activation among the correlated features. Hence, this 

account predicts an inhibitory effect of distinctiveness for living things, which was found in 

experimental work using feature verification and definition tasks with individuals with semantic 

impairment (Moss et al., 1998, 2002) and unimpaired participants (Randall et al., 2004). Randall et al. 

found the predicted advantage in feature verification for shared over distinctive features for living 

things (while there was no robust main effect of distinctiveness across domains on feature verification 

speed or accuracy). Moreover, distinctive features of living things were verified more slowly than 

distinctive features of non-living things and higher error rates were reported for distinctive rather than 

for shared features when this data was computationally simulated. However, Cree et al. (2006) pointed 
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out several shortcomings in Randall et al.’s work (e.g., insufficient matching), and reported findings 

that were inconsistent with Randall et al.: Effects of distinctiveness that were comparable for living and 

nonliving things.  

While the account by Randall et al. (2004) predicts an inhibitory effect for distinctiveness for 

some items (i.e., living things), it also relies heavily on intercorrelations between features to explain the 

effects. To determine whether the inhibitory effect in our data was particularly strong for living things, 

as predicted by the Conceptual Structure Account, we ran exploratory post-hoc analyses6 of the 

naming latency and accuracy data that included an interaction between distinctiveness and animacy 

(reported in Appendix F). While the interaction was non-significant for naming accuracy, it was 

significant for the naming latency analysis. However, the findings were in the opposite direction to that 

predicted by the Conceptual Structure Account: Responses to living things were unaffected by 

distinctiveness, but there was a significant inhibitory effect for non-living things. Hence, while the 

Conceptual Structure Account is consistent with the general direction of our inhibitory finding for 

distinctiveness, its more specific predictions do not hold for our data. Importantly, the Conceptual 

Structure Account and most previous investigations of distinctiveness were designed in the context of 

category specific impairments and the processing of single features, which makes it hard to generalise 

the frameworks and findings to our work. Moreover, in contrast to the current study, many previous 

studies did not test for an effect of overall concept distinctiveness and did not investigate picture 

naming.  

In our study, we held both intercorrelational density and number of near semantic neighbours 

constant and still found a significant inhibitory effect of distinctiveness. As the origin of our effect and 

its theoretical interpretation are unclear, we suggest that future computational modelling could be 

helpful for uncovering the mechanisms underlying this effect and lead to better understanding of it.  

 
6 As these were unplanned post-hoc analyses to explore a particular finding in more detail, these analyses were 

not preregistered.  
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Contributions and limitations of this research 

In this study, we determined feature-based semantic variables that are important for word 

production. Our findings of effects of semantic variables allowed us to critique theories of spoken 

word production and to evaluate how they must operate to be able to explain the results. Interestingly, 

we identified semantic variables that had both facilitatory and inhibitory influences on picture naming. 

Thus, theories of word production need mechanisms that can account for both effects. While, as 

detailed in the previous sections, semantic facilitation is implemented in current theories as spreading 

activation or feedback from lexical to semantic representations, interference can be explained via 

lexical competition or could be due to long-term adjustments of conceptual to lexical connections.  

Importantly, current theories of word production are underspecified regarding the way 

semantic variables may affect performance. Of the currently available theories of word production, 

Abdel Rahman and Melinger (2009, 2019) explicitly address word-inherent variables and their Swinging 

Lexical Network Hypothesis comprises the architectural elements (i.e., spreading activation and lexical 

competition) to parsimoniously explain both facilitatory and inhibitory effects of such variables. Other 

theories (e.g., Dell, 1986; Oppenheim et al., 2010) were able to only account for some of our results. 

Crucially, for current theories to explain the findings, we were required to make additional assumptions 

regarding processing or the encoding of semantic relations that are not explicitly specified in the 

theories. Thus, the current theories of word production need further modification and specification to 

explain effects of semantic variables.  

Important methodological contributions of this paper have been highlighted throughout this 

section: the importance of rigorous control of other variables influencing word production (i.e., both 

control and other semantic variables), highly powered statistical analyses, and considering variables of 

interest simultaneously.   

This study was also subject to some limitations. While we showed that multicollinearity 

between the measures included in our analyses did not occur at compromising levels, there were some 

relatively high correlations between semantic variables (Table 3). However, using other statistical 

techniques (e.g., Principal Component Analysis) was neither suitable for addressing our research goals, 
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nor possible given a single measure of each variable. In addition, according with our study’s aim to 

identify individual semantic variables that affect picture naming performance, in the sections above, we 

assessed how the effect of each of the significant semantic variables could be explained in the context 

of current theories of word production. While we covered a range of semantic variables that capture 

different aspects of the flow of activation at the semantic level and co-activation at the lexical level, it 

may also be the case that there are other (potentially composite) measures that outperform the 

variables used here in capturing the dynamics of activation spread and lexical co-activation. Further 

research and modelling could address this. 

Use of semantic feature norms 

We chose which semantic variables to study based on whether it was possible to quantify 

these variables objectively rather than using ratings. We chose variables that could be operationalised 

based on the information provided in semantic feature databases (and specifically that of McRae et al., 

2005). However, in theories of word production there is no theoretical agreement that conceptual 

representations are actually decomposed into semantic features: While some accounts assume 

decomposed conceptual representations (e.g., Dell, 1986; Oppenheim et al., 2010), others presume 

non-decomposed, holistic, representations of meaning (e.g., Levelt et al., 1999; Roelofs, 1992). 

While we use the context of semantic features to characterise aspects of the semantic 

representation of concepts and relationships between concepts, and to interpret our findings, this 

does not imply that we favour theories of decomposed conceptual representations over non-

decomposed theories. The semantic variables we studied here could also reflect semantic relationships 

as described by non-decomposed theories of semantics such as direct connections between concepts 

(Collins & Loftus, 1975) or indirect connections via property nodes (Collins & Quillian, 1969). 

Throughout the theoretical explanations of our significant findings, we pointed towards possible ways 

the significant variables may operate in a holistic semantic architecture. Importantly though, 

computational modelling may be helpful to further assess our hypotheses concerning the mechanisms 

underlying the effects of semantic variables in the context of different semantic architectures and to 

aid the interpretation of the effects of these variables.  
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Hence, while the effects of this study can more readily be explained in the context of models 

assuming feature-based semantic representations, our findings do not allow us to adjudicate between 

decomposed and non-decomposed semantic representations.  

Participant generated semantic features are a verbalisation and temporary abstraction of 

complex semantic representations, which have developed through multisensory experience with the 

concept in real life (e.g., McRae, 2004). While semantic feature databases provide one of the best 

currently available approaches to specifying conceptual content, researchers have also pointed out 

some limitations (e.g., Amsel & Cree, 2013; Randall et al., 2004). While operationalising our semantic 

variables based on a semantic feature database (McRae et al., 2005), we accept the shortcomings of 

this resource, such as, for example, the underrepresentation of highly frequent features (e.g., breathes) 

or the absence of features that are difficult to verbalise (Cree & McRae, 2003).  

However, in contrast to ratings, calculating semantic variables based on semantic features 

represents a more objective way of operationalising conceptual knowledge, as participants are not 

asked to directly rate a certain aspect of the semantic representation (e.g., concept typicality within its 

semantic category). Nevertheless, while measures based on semantic feature databases are transparent 

and reproducible, their calculation is based on the rather limited number of items in the corpus.  

As described in the Introduction, semantic feature databases present only one way of 

describing conceptual knowledge. Semantic relationships and similarity could also be objectively 

captured by other semantic dimensions, such as associations (e.g., De Deyne et al., 2019; Nelson et al., 

2004) or contextual co-occurences (e.g., Latent Semantic Analysis (LSA), Landauer et al., 1998; 

Continuous bag-of-words model (CBOW), Mikolov et al., 2013; Global Vectors for word representation 

(GloVe), Pennington et al., 2014). In this study, we conducted a thorough investigation of the feature-

based dimension of semantic relationships as previous research suggested a large variety of feature-

based variables that affected word production. In addition, when comparing different measures of 

semantic neighbourhood density, Hameau et al. (2019) found a feature-based measure to be a better 

predictor of picture naming in people with aphasia than association-based or contextual semantic 

neighbourhood density. Future research could extend our approach by including semantic variables 
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derived from other semantic dimensions to determine the extent to which contextual and association-

based similarity measures can also affect word production. Such an approach would also allow 

assessment of how far the observed dynamics of semantic and lexical activation in word production 

depend on the structural assumptions of semantic feature databases, and, finally, to identify the 

dimension of semantics that captures most of the variability in our data.  

Conclusion 

We have reported an investigation of effects of six feature-based semantic variables (number 

of semantic features, intercorrelational density, number of near semantic neighbours, semantic 

similarity, typicality, and distinctiveness) on the picture naming performance of a large group of young 

English speakers. We found that number of semantic features was the most important predictor of 

naming accuracy and, to a lesser extent, of naming latency, with further effects of intercorrelational 

density and distinctiveness. These semantic variables should therefore be considered in further 

research. 

This research allowed us to determine which variables influence behaviour and develop 

hypotheses regarding the mechanisms and dynamics underpinning these effects in theories of spoken 

word production. The findings of our study indicate that both aspects of the richness of the semantic 

representation and of relationships between concepts play an important role in semantic and lexical 

processing during word production. Importantly though, some previously reported effects of several 

semantic variables (namely number of near semantic neighbours and semantic similarity (in speeded 

naming), typicality, and the direction of the effect of distinctiveness) did not replicate here, which 

highlights once again the importance of a well-controlled study design, to minimise the risk of 

miscalibration in estimating such effects.  
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Appendices 

Appendix A: Composition of the six experimental lists  

Table A1 

Composition of the different experimental lists  

 Position 1 Position 2 Position 3 Position 4 

List 1 Block 1 – 

Pseudorand. 1 

Block 2 – 

Pseudorand. 1  

Block 3 – 

Pseudorand. 1 

Block 4 – 

Pseudorand. 1 

List 2 Block 1 – 

Pseudorand. 1 

Block 2 – 

Pseudorand. 1  

Block 4 – 

Pseudorand. 1 

Block 3 – 

Pseudorand. 1 

List 3 Block 1 – 

Pseudorand. 2 

Block 3 – 

Pseudorand. 2 

Block 4 – 

Pseudorand. 2 

Block 2 – 

Pseudorand. 2 

List 4 Block 1 – 

Pseudorand. 2 

Block 3 – 

Pseudorand. 2 

Block 2 – 

Pseudorand. 2 

Block 4 – 

Pseudorand. 2 

List 5 Block 1 – 

Pseudorand. 3 

Block 4 – 

Pseudorand. 3 

Block 2 – 

Pseudorand. 3 

Block 3 – 

Pseudorand. 3 

List 6 Block 1 – 

Pseudorand. 3 

Block 4 – 

Pseudorand. 3 

Block 3 – 

Pseudorand. 3 

Block 2 – 

Pseudorand. 3 

 Note. Pseudorand. = Pseudorandomisation 
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Appendix B: Detailed description of calculation of semantic variables based on information 

given in McRae et al. (2005) 

Number of semantic features  

Number of semantic features was the total number of semantic features produced by at least 

5 out of 30 participants when generating features for the concept. Taxonomic features were excluded 

from this calculation and the calculation of all other semantic variables. This measure was directly 

retrieved from McRae et al. (2005). 

Intercorrelational density 

Intercorrelational density was calculated based on Pearson’s product moment correlations 

between the pairs of features in McRae et al.'s (2005) concept-feature matrix (cells were filled with the 

production frequency of the particular feature for a concept). Features that appeared in less than three 

concepts were excluded to avoid spurious correlations.  

Feature pairs were counted as significantly correlated if the two features shared at least 6.5% 

of their variance (r2). From this information, intercorrelational density of a concept was calculated as 

the sum of the shared variance of its significantly correlated feature pairs. This measure was directly 

retrieved from the database by McRae et al. (2005). 

Number of near semantic neighbours 

A near semantic neighbour was defined as a word that had feature overlap of at least .4 

(cosine similarity between feature production frequency vectors in the database by McRae et al. 

(2005)) with the target word (following Mirman, 2011). The instances of near semantic neighbours were 

added for each concept to determine the number of near semantic neighbours.  

Semantic similarity 

Semantic similarity was the average similarity of the target word’s feature production 

frequency vector and the feature vectors of all other concepts from the McRae et al. (2005) database 

(following Mirman & Magnuson, 2008).  
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Typicality  

Typicality was calculated in a similar way to Rosch and Mervis' (1975) family resemblance 

score. First, the features of an item were weighted based on category affiliations. Each feature of an 

item was attributed with the number of other items in the same semantic category that were credited 

with that particular feature.  

This value was then divided by the number of items in the semantic category, which results in 

a proportion. Such a division was not part of the original measure by Rosch and Mervis (1975), who 

used raw values to determine the family resemblance score; however, we decided for this step because 

the number of items in each semantic category was not uniform in our data, as opposed to Rosch and 

Mervis. 

Subsequently, we amended the original family resemblance score calculations further by 

multiplying this value for each feature by its production frequency (number of participants who 

produced that feature for the target word when generating the feature norms) to account for feature 

importance (e.g., Garrard et al., 2005). As a final step, the feature weights of all features of an item were 

summed.  

We considered four different ways to operationalise typicality: 1) taking production frequency 

of individual features into account or not, and 2) using either raw values or proportions based on the 

number of items in a particular semantic category. The four versions of the typicality measure were 

highly correlated with one another, however, the measure as described above (using proportions 

based on the number of items in a particular semantic category and taking production frequencies of 

individual features into account) correlated least strongly with the other semantic variables.  

Distinctiveness  

Distinctiveness of each feature of an item was calculated as the inverse of the number of 

concepts in which that feature occurred across the database. To determine conceptual distinctiveness, 

this feature distinctiveness was then averaged across the features of a concept. This measure was also 

directly retrieved from McRae et al. (2005). 
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Appendix C: Comparison of semantic variables in the full McRae et al. (2005) database and the 

297 items included in the experimental investigation in Study 2  

The feature database by McRae et al. (2005) contains 541 concepts, however, here we only 

used a subset of these items (n = 297) with high name agreement in Australian English, as identified in 

the norming study presented in Study 1. Importantly, and as shown in Table C1, the items selected for 

the experimental investigation in Study 2 were a good representation of the items of the full McRae et 

al. set as semantic variables were largely comparable for the selected items and the whole database. 

This suggests that the selection of high name agreement items in Australian English and the resulting 

reduction of the stimuli compared to the full McRae et al. database did most likely not affect the 

comparability of the findings of Study 2 to previous work that used the full McRae et al. database (i.e., 

Rabovsky et al., 2016).   

 

Table C1 

Descriptive statistics for the semantic variables included in Study 2 and the full McRae et al. (2005) 

database 

Semantic variable 

Study 2:  

n = 297 items 

 McRae et al. (2005) full database: 

n = 541 items 

Mean SD Range  Mean SD Range 

Number of semantic 

features 
12.71 2.99 6–20 

 
12.07 3.21 5–21 

Intercorrelational density 153.40 172.19 0.00–1296.22  175.06 205.66 0.00–1419.41 

Semantic similarity 0.04 0.02 0.00–0.09  0.04 0.02 0.00–0.09 

Number of near semantic 

neighbours 
6.14 7.55 0–38 

 
7.14 8.64 0–40 

Typicality 32.64 16.14 4.22–91.25  32.47 16.85 4.22–95.44 

Distinctiveness 0.37 0.16 0.04–0.80  0.35 0.17 0.03–0.80 
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Appendix D: Detailed response coding  

Table D1 

Response coding examples 

Note. RT = Response time, NA = not analysed; responses with RT -1 were excluded from the naming 

latency analyses.  

  

Target word Response Response type RT Accuracy 

Sofa Sofa Correct RT 1 

Sofa A sofa 

(determiner) 

Correct with determiner -1 1 

Sofa S sofa Disfluency on the initial 

phoneme of target word 

-1 1 

Sofa Erm sofa Hesitation -1 1 

Sofa Red sofa Elaboration -1 1 

Sofa Couch Synonym or  

acceptable alternative 

-1 NA 

Submarine Sub Abbreviation -1 NA 

Bed Emu (previous 

item: emu) .. Bed 

Previous -1 NA 

Squid O squid or 

Oct squid 

Disfluency with self-correction -1 0 

Sofa So Incomplete response -1 0 

Sofa Chair Error -1 0 

Sofa I don’t know Omission -1 0 
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Appendix E: Visualisations of findings of Analyses 1A and 1B  

The findings of Analysis 1A are graphically displayed in Figure E1, with Model 1A.1 in Panel A 

and Model 1A.2 in Panel B. Figure E2 displays the findings of Analysis 1B, with Model 1B.1 in Panel A 

and Model 1B.2 in Panel B. Red lines indicate a facilitatory effect of a variable with speeding of naming 

latency or higher naming accuracy as that variable increases in value, while blue lines indicate an 

inhibitory effect with slowing of naming latency or reduced naming accuracy as that variable increases 

in value. Confidence intervals that cross the black zero line are indicative of non-significant effects.  

 

Figure E1  

Analysis 1A replicating Rabovsky et al. (2016): Fixed effects estimates with 95% confidence interval of 

picture naming latency analysis (Panel A; Model 1A.1) and accuracy analysis (Panel B; Model 1A.2) 

 

Note. Panel A shows the output of the naming latency analysis and Panel B the output of the naming 

accuracy analysis; red lines (to the left of centre for latency, and right for accuracy) indicate increased 

values of the variable lead to better performance, and blue lines (to the right of centre for latency, and 

left for accuracy) indicate worse performance.  

 

 

  



232  |  SEMANTIC VARIABLES IN PICTURE NAMING   

 

232  |  S
E
M

A
N

T
IC

 V
A

R
IA

B
L
E
S
 IN

 P
IC

T
U

R
E
 N

A
M

IN
G

 

Figure E2  

Analysis 1B replicating Rabovsky et al. (2016) taking more psycholinguistic control variables into 

account: Fixed effects estimates with 95% confidence interval of picture naming latency analysis (Panel 

A; Model 1B.1) and accuracy analysis (Panel B; Model 1B.2) 

 

Note. Panel A shows the output of the naming latency analysis and Panel B the output of the naming 

accuracy analysis; red lines (to the left of centre for latency, and right for accuracy) indicate increased 

values of the variable lead to better performance, and blue lines (to the right of centre for latency, and 

left for accuracy) indicate worse performance.  
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Appendix F: Post-hoc analyses of distinctiveness in living things: Testing the prediction of the 

Conceptual Structure Account  

The Conceptual Structure Account predicts a disadvantage for distinctive features of living 

things. We therefore tested the explanatory strength of this account for our inhibitory effect of 

distinctiveness on naming latency and for naming accuracy.  

We coded items of the semantic categories birds, fruit, invertebrate, land animal, plant, sea 

creature, and vegetable as living (n = 100) and all other items were coded as non-living.  

The structure of the linear mixed effect model used for this exploratory analysis included the 

same fixed effects as the model of Analysis 2.1 with an additional interaction between distinctiveness 

and animacy. A random by-participant slope for number of near semantic neighbours was included. 

The interaction between distinctiveness and animacy was significant (Estimate = -0.06, SE = 

0.02, t = -2.69, p = .008) and is displayed in Figure E1. While words of the living category were 

unaffected by distinctiveness, the inhibitory main effect of distinctiveness in Analysis 2 seemed to be 

driven by the items of the non-living category. This finding allows us to exclude the Conceptual 

Structure Account as an appropriate framework for the finding of this experiment. 

 

Figure F1 

Interaction between distinctiveness and animacy  
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For naming accuracy, the generalised linear mixed effect model included the same fixed effects 

as Analysis 2.2 with the additional interaction between distinctiveness and animacy and a random by-

participant slope for number of near semantic neighbours. The interaction between distinctiveness and 

animacy was non-significant (Estimate = 0.10, SE = 0.22, z = 0.45, p = .642). 
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Abstract  

Semantic variables capture aspects of the activation environment of semantic and lexical processing in 

word production. While there is growing evidence regarding their effects on behavioural measures of 

word production, little previous research has examined their influence on electrophysiological data. 

Here we investigated electrophysiological correlates of six feature-based semantic variables, which 

were previously found to influence behavioural measures of picture naming: number of semantic 

features, intercorrelational density, number of near semantic neighbours, semantic similarity, typicality, 

and distinctiveness. Data from 78 participants naming 291 colour photographs were analysed, while 

controlling for psycholinguistic variables affecting word production. We analysed the mean amplitude 

of event-related potential data in a posterior region of interest and conducted a microstate analysis on 

a trial-by-trial basis. Results revealed a stronger posterior positivity for words with more semantic 

features and number of semantic features, intercorrelational density, semantic similarity, and number 

of near semantic neighbours affected the number of timeframes associated with two microstates. The 

findings are interpreted as reflecting increased activity in the semantic and lexical network involved in 

word production, which was due to enhanced activation of the target word itself or activation 

distributed across a cohort of co-activated lexical representations caused by the significant semantic 

variables.  
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Introduction 

For neurotypical native speakers of a language, the production of single words is a quick and 

effortless process. However, our minds and brains have to successfully complete a number of steps 

before we can utter a word. Different aspects of this process have been the focus of considerable 

research over the past decades. Using primarily behavioural data, such as naming latencies, accuracy, 

or error types, this research led to the formulation of several theoretical models of word production 

from pictures (e.g., Abdel Rahman & Melinger, 2009; Dell, 1986; Howard et al., 2006; Levelt et al., 1999; 

Oppenheim et al., 2010; Roelofs, 1992). The different models generally agree on the broader cognitive 

processes involved in word production: Visual recognition of the to-be-named object enables the 

activation of the target’s concept in semantic memory, which in turn leads to the retrieval and 

selection of a lexical representation (lemma) and to the phonological and phonetic encoding of the 

word. However, there remain debates focusing on details of the encoding process and in particular on 

the processing of semantic information during target word planning (e.g., Abdel Rahman & Melinger, 

2009; Mahon et al., 2007; Oppenheim et al., 2010). In this research we were particularly concerned with 

the cognitive mechanisms underlying encoding of semantic information in word production.  

Semantic variables in word production 

One way of exploring processing during word production is to study effects of word-specific 

characteristics (psycholinguistic variables, e.g., word frequency, word length) on the word production 

process. Naturally or experimentally occurring differences in such word characteristics and their 

influence on tasks that involve spoken word production can inform our understanding of both 

information representation and processing during word production. A sub-group of these word-

specific characteristics are semantic variables, which describe characteristics of the semantic 

representation of the target concept and its relationship to other concepts (e.g., number of semantic 

features, intercorrelational density, number of near semantic neighbours). Recently, interest in effects 

of semantic variables on word production has increased (e.g., Fieder et al., 2019; Lampe et al., in press; 

Rabovsky et al., 2016) and semantic variables have been used to investigate details of lexical selection 

(e.g., whether lexical selection is a competitive process) and word production more generally. Research 
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conducted on item-inherent semantic variables allows researchers to use a simple and relatively 

natural task: standard picture naming. Studying semantic variables can hence provide a valuable 

alternative to frequently used complex experimental paradigms, which manipulate target context (e.g., 

Picture Word Interference, Blocked Cyclic Naming) when studying semantic effects on word 

production.  

Effects of semantic variables originate at the semantic level as they are hypothesised to relate 

to aspects of the semantic representation of the target word. In word production, activation at the 

semantic level (also referred to as the conceptual level) has direct consequences for lexical processing 

(i.e., lemma activation and selection), where semantic variables can influence the activation strength of 

the target word’s lexical representation and/or the number, or strength of activation, of co-activated 

semantically related lexical representations (e.g., Abdel Rahman & Melinger, 2019; Rabovsky et al., 

2016). Hence, knowledge about effects of semantic variables can inform our understanding of the 

activation environment in which word production takes place and thus advance models of word 

production. However, current models of word production are underspecified with regard to predicting 

and explaining effects of semantic variables. Consequently, for semantic variables to be utilised in 

targeted research that allows adjudication between different theoretical accounts, it is first necessary 

to understand which semantic variables reliably affect word production.  

Table 1 provides definitions of the semantic variables that we focus on here and summarises 

evidence from previous behavioural and evoked responses (i.e., event-related potential, ERP, from 

electroencephalography, EEG or event-related field, ERF, from magnetoencephalography, MEG) 

research (see also Lampe et al., in press, for review). There is still relatively little empirical evidence 

regarding effects of word-specific semantic variables on word production and limited understanding 

of the underlying mechanisms. Moreover, most previous research was behavioural in nature and few 

studies have complemented behavioural investigations with investigations of ERPs or ERFs. The aim of 

this study was therefore to further investigate effects of semantic variables, by examining their effects 

on electrophysiological responses during word production.  
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Different semantic variables have been found to be either positively or negatively correlated 

with response times and naming accuracy (Table 1). For example, we (Lampe et al., in press) found that 

naming was faster and more accurate for words with many semantic features (replicating Rabovsky et 

al., 2016, 2021; Taylor et al., 2012). In contrast, naming was more error-prone for words with higher 

intercorrelational density, a measure argued to capture the size and activation strength of the co-

activated lexical cohort (replicating Rabovsky et al., 2016, 2021). Positive effects of semantic variables 

(i.e., faster and more accurate responses with increasing values of a variable) are usually attributed to 

activation spreading between related concepts at the semantic level, which, in turn, increases target 

activation at the lexical level (e.g., Abdel Rahman & Melinger, 2009). However, if this spread of 

activation causes the co-activation of many semantically related lexical representations, negative 

effects arise (i.e., slower and more error prone responses with increasing values of a variable), which 

have been hypothesised to be due to enhanced competition between lexical representations (e.g., 

Abdel Rahman & Melinger, 2009, 2019). Thus, what determines the direction of the behavioural effect 

of a semantic variable is, most likely, the degree to which it captures semantic activation spread or 

lexical co-activation, and the balance between these two processes. Importantly however, not all 

theoretical accounts include competition (Dell, 1986; Oppenheim et al., 2010) and some authors argue 

that negative influences of co-activated representations on word production occur at a later, non-

lexical, stage of processing (Mahon et al., 2007).  
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Table 1 

Semantic variables: Definitions and behavioural and ERP/ERF effects on picture naming in neurotypical 

adults  

Study 
Participants

/ Items (n) 
RT Accuracy ERP/ERF evidence  

Number of semantic features 

average number of properties generated for a concept by participants in feature generation tasks; 

operationalised using feature databases  

Lampe et al., in press 85 / 291 ↗	 ↗	  

Rabovsky et al., 2016 16 / 541 ↗	 ↗	   

Rabovsky et al., 2021 31 / 345 ↗	 ↗	

enhanced posterior positivity for words 

with higher numbers of semantic 

features in mean amplitude analysis 

(200–550ms) a and in time course 

analysis ~330–600ms b 

Taylor et al., 2012 20 / 302 ↗	 		   

Clarke et al., 2013 c 11 / 350   Ø 

Intercorrelational density 
highly intercorrelated features (e.g., has fur, has four legs, has paws, has whiskers) co-occur across 

concepts and characterise clusters of closely related concepts (e.g., ‘cat’, ‘dog’, ‘tiger’); 

operationalised using feature databases 

Lampe et al., in press 85 / 291 Ø ↙	  

Rabovsky et al., 2016 16 / 541 ↙	 ↙	   

Rabovsky et al., 2021 31 / 345 Ø d ↙	

enhanced posterior positivity for words 

with higher intercorrelational density in 

mean amplitude analysis (200–550ms) a 

and in time course analysis ~335–450ms 

b 

Taylor et al., 2012 e 20 / 302 Ø    

Clarke et al., 2013 c e 11 / 350   

increased MEG response for items with 

more weakly correlated semantic 

features from ~224ms (right ventral and 

anterior temporal regions and bilateral 

prefrontal cortex) 

Number of near semantic neighbours 
number of words that share a substantial part of their semantic information with the target word 

(e.g., feature vector cosine similarity of > .4); operationalised using feature databases 

Lampe et al., in press 85 / 291 Ø Ø  

Fieder et al., 2019 f 30 / 180 ↙	 ↙	    

Mirman, 2011 f 
35 (older 

adults) / 57 
Ø ↙	   

Hameau et al., 2019  40 / 84 Ø g Ø g  

Lampe et al., 2017 
15 (older 

adults) / 44 
Ø Ø  
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Study 
Participants

/ Items (n) 
RT Accuracy ERP/ERF evidence  

Bormann, 2011 h 18 / 54 Ø     

Semantic similarity 
average featural similarity of the target word and (all) other words in the mental lexicon; 

operationalised using feature databases 

Lampe et al., in press 85 / 291 Ø Ø  

Fieder et al., 2019 f 30 / 180 Ø ↙	    

Typicality 
representativeness of a concept for its semantic category;  

often operationalised as rating, but also using feature databases 

Lampe et al., in press 85 / 291 Ø Ø  

Dell’Acqua et al., 

2000 
84 / 266 ↗	   

Grossman et al., 1998 
14 (older 

adults) / 72 
↗	   

Holmes & Ellis, 2006 i 25 / 84 ↗	 Ø  

Jolicoeur et al., 1984 18 / 48 ↗	    

Fieder et al., 2019 f 30 / 180 Ø ↗	   

Morrison et al., 1992 j 20 / 48 Ø    

Woollams, 2012 k 16 / 80 Ø Ø  

Rogers et al., 2015 
12 (older 

adults) / 48 
 ↙	  

Distinctiveness 

average degree to which the semantic features of a concept are shared with other concepts (e.g., 

has four legs) or is more unique to a particular concept (e.g., meows);  

operationalised using feature databases 

Lampe et al., in press 85 / 291 Ø ↙	  

Rabovsky et al.,  

2016 l 
16 / 541 ↗	 ↗	   

Taylor et al., 2012 31 / 345 ↗ m    

Humphreys et al., 

1988 
20 / 76 ↗	   

  

  

Miozzo et al., 2015 n 17 / 146  Ø 
effect from ~150ms (posterior inferior 

temporal area) 

Clarke et al., 2013 c 11 / 350   

increased MEG response for items with 

more shared relative to distinctive 

semantic information ~84–120ms (left 

ventral temporal cortex, anterior 

temporal lobe) and ~170–210ms and 

240–300ms (left ventral stream); 

increased MEG response for items with 

more distinctive relative to shared 

semantic information ~240–300ms (left 

ventral temporal cortex) 
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Study 
Participants

/ Items (n) 
RT Accuracy ERP/ERF evidence  

Note. RT = response time, ↙ = poorer performance (slower RTs and decreased accuracy with 

higher values of semantic variable), ↗ = improved performance (faster RTs with increased accuracy 

and higher accuracy with higher values of semantic variable), Ø = no effect, blank cells = not 

investigated, Participants = where not otherwise specified, young adults (typically undergraduate 

students). 

a mean amplitude analysis conducted on combined data of two naming rounds. 

b from visual inspection of plots with data of the first naming round. 

c no behavioural analysis conducted; MEG analysis on the first 300ms; measures obtained from 

PCA: ‘number of features’ – number of semantic features; ‘correlational strength’ – combined mean 

correlational strength of shared features within and across concepts; ‘relative distinctiveness’ – 

combined relative amount of shared to distinctive information and correlational strength of the 

distinctive features. 

d inhibitory effect on RT significant in a second round of naming. 

e correlation measure based on ‘intercorrelational strength’. 

f speeded naming paradigm (500ms deadline). 

g measure was derived from Principal Component Analysis and combined number of near feature-

based neighbours and number of rated category neighbours; results based on Holm-Bonferroni 

corrected p-values to account for testing for multiple variables. 

h measure was based on ratings capturing the number of category coordinates of a target, which 

was then dichotomised into words with many and few competitors.  

i similar results in picture naming after familiarisation and a subsequent second round of naming. 

j rated typicality in two categories: man-made versus naturally occurring objects. 

k pre rTMS. 

l distinctiveness added in additional analysis in discussion; non-significant when intercorrelational 

density was in the model at the same time. 

m naming was also faster for concepts with more highly correlated distinctive features.  

n measures obtained from PCA: ‘Specific Semantic Features’ – combined number of distinctive 

features and number of encyclopaedic features.  

 

Evidence from evoked responses 

In previous studies, the theoretical interpretations of mechanisms underlying effects of 

semantic variables have been inferred from behavioural measures, such as the duration of word 

planning (response latency), the accuracy of the response, or type of naming error produced. Yet, 
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response time and naming accuracy measures do not elucidate processes that unfold during word 

production. Therefore, EEG and MEG methods have been introduced to word production research 

aiming to provide an insight into the brain correlates underlying our behaviour and into the temporal 

development (i.e., time course) of processes in word production (e.g., Aristei et al., 2011; Clarke et al., 

2013; Costa et al., 2009; Rose & Abdel Rahman, 2017; Valente et al., 2014).   

Most previous investigations of item-inherent word characteristics using ERPs or ERFs have 

examined a limited number of (i.e., one or two) lexical variables in factorial designs to establish an 

electrophysiological index of lexical access in word production (e.g., word frequency, Laganaro, 2014; 

Levelt et al., 1998; Piai et al., 2012; Strijkers et al., 2010; name agreement, Cheng et al., 2010; age of 

acquisition, Laganaro, 2014; Laganaro et al., 2012; Laganaro & Perret, 2011). In contrast, Valente et al. 

(2014) conducted a more comprehensive study to localise effects of various variables (i.e., visual 

complexity, image agreement, familiarity, frequency, name agreement, age of acquisition, word length, 

phonological neighbourhood, and phonotactic probability) hypothesised to be associated with several 

different stages of word production (see Figure 1 in Valente et al., 2014). 

Similar to behavioural investigations of semantic effects in spoken word production, previous 

investigations using ERPs or ERFs have predominantly examined contextually-driven semantic 

facilitation and interference using manipulations like Picture Word Interference (e.g., Aristei et al., 2011; 

Blackford et al., 2012; Hirschfeld et al., 2008; Python et al., 2018b; Rose et al., 2019), Blocked Cyclic 

Naming (Aristei et al., 2011; Maess et al., 2002; Python et al., 2018a), or cumulative semantic 

interference in a Continuous Naming Paradigm (Costa et al., 2009; den Hollander et al., 2019; Rose & 

Abdel Rahman, 2017). However, in context manipulation paradigms, the observed brain responses and 

behaviours are caused by the interplay of processing the target word and the semantic context. In 

addition to often higher task demands compared to standard picture naming, processing in context 

manipulation tasks may also be influenced by control mechanisms and attentional processes. 

Consequently, findings from such paradigms may not be generalisable to standard picture naming. 

Using standard picture naming to study effects of item-inherent semantic variables provides a means 
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of gaining insight into, and further broadening our understanding of, semantic and lexical processing 

in word production without the impact of these additional cognitive demands.  

Very few previous studies have investigated effects of semantic variables on word production 

using ERPs or ERFs. In an MEG study, Clarke et al. (2013) studied how visual stimuli invoke object 

meaning by testing for effects of perceptual and feature-based semantic variables and their time 

course in the first 300ms of word planning. They used a Principal Component Analysis (PCA) to 

orthogonalize and combine variables and identified two perceptual components: image complexity 

and size, loaded on the component image complexity and concept familiarity and picture exemplarity, 

loaded on the component familiarity. In addition, there were four feature-based semantic components: 

Feature-based semantic measures capturing the amount of shared or distinctive information 

associated with a target concept and the correlation of its distinctive features loaded highly on a 

relative distinctiveness component and measures capturing the regularity with which shared features 

co-occurred, loaded on the component correlational strength. Moreover, the number of semantic 

features and proportion of visual features loaded highly on two further feature-based components. 

Clarke et al. (2013) found that shared semantic feature information as captured by the relative 

distinctiveness component affected processing as early as 84ms post picture onset. Specifically, there 

was an increased MEG signal for items with more shared relative to distinctive information, suggesting 

that shared semantic information was rapidly extracted from the visual input. Around 240–300ms this 

effect was reversed with stronger MEG signals for words with more distinctive information, suggesting 

that distinctive aspects of meaning were being accessed for more fine-grained semantic processing. 

The correlational strength component was significant from around 224ms onwards, with increased 

MEG responses for concepts with more weakly correlated features. In contrast, number of semantic 

features and proportion of visual features did not affect processing in the first 300ms of word 

planning. However, given their focus on perceptual and semantic processing, Clarke et al. did not 

discuss consequences of the semantic variables on later stages for word production, most importantly 

lexical processing.  
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Similarly, in another MEG study, Miozzo et al. (2015) tested for effects of semantic and 

phonological variables in word production. They also combined several measures in a PCA. The 

semantic component contained a measure of the number of distinctive features (a measure related to 

the mean distinctiveness measure used in this study and by Clarke et al., 2013) and number of 

encyclopaedic features. Similar to Clarke et al., they reported an early onset of the effect of this 

semantic component (from around 150ms post picture onset) but in a posterior inferior temporal area.  

Rabovsky et al. (2021) were the first to investigate effects of semantic variables on word 

production planning using EEG, studying the feature-based measures number of semantic features 

and intercorrelational density. In the context of a competitive theory of word production (Swinging 

Lexical Network Account; Abdel Rahman & Melinger, 2009, 2019), they assumed that any facilitatory 

effect of a semantic variable from semantic processing would be overpowered by inhibitory effects if a 

sufficiently strong cohort of competitors was co-activated at the lexical level. Rabovsky et al. predicted 

that number of semantic features should index the facilitatory processes associated with semantic 

processing and intercorrelational density the inhibitory processes associated with lexical processing.  

The Swinging Lexical Network Hypothesis also proposes that semantic and lexical processing 

are interactive and overlapping in time. Consequently, Rabovsky et al. (2021) predicted that the ERP 

effects of number of semantic variables and intercorrelational density would occur around the same 

time. Following previous research (Costa et al., 2009; Rose et al., 2019; Rose & Abdel Rahman, 2017), 

lexical competition (predicted for words with higher intercorrelational density) was expected to be 

reflected by an increased posterior positivity occurring roughly around 200ms post picture onset. 

However, Rabovsky et al. had no clear expectations regarding the ERP signature of the predicted 

facilitatory effect of number of semantic features. Indeed, an increased posterior positivity was found 

for words with higher intercorrelational density and for words with a larger number of semantic 

features in the pre-defined time-window of interest between 200 and 550ms post picture onset. In a 

more fine-grained analysis between picture onset and 1000ms post-picture onset, they found 

significant effects between approximately 230 and 470ms for intercorrelational density and around 320 
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and 600ms for number of semantic features (not corrected for multiple comparisons) when combining 

across two presentation cycles of the items1.  

Rabovsky et al. (2021) argued that the posterior positivity represented higher levels of 

activation in the lexical semantic system when producing words with higher intercorrelational density 

or higher numbers of semantic features, rather than competitive processes as had been claimed 

previously (Costa et al., 2009; Rose et al., 2019; Rose & Abdel Rahman, 2017). For words with a higher 

number of semantic features, this higher activation was claimed to be mostly related to the target 

word’s representation, due to its strong activation from many semantic features. In contrast, for words 

with higher intercorrelational density, it was thought to be more widespread across the target and its 

competitors. In sum, this study demonstrated that item-inherent variations in semantic variables can 

be used to investigate processes during word production using EEG. While the behavioural effects for 

number of semantic features (facilitatory) and intercorrelational density (inhibitory) were of opposing 

polarity, Rabovsky et al. (2021) found that their electrophysiological effects were very similar.  

Reproducibility is a central scientific principle (e.g., Open Science Collaboration, 2015) and it is 

crucial to test the validity of previous findings in replications. Replications also enable extension of the 

to-be-replicated analyses with additional variables and testing of the robustness of the original finding 

following a different analysis approach. This was the aim of our study.  

Rabovsky et al. (2021) included only two semantic variables and few psycholinguistic control 

variables in their analyses (i.e., familiarity, number of orthographic neighbours, lexical frequency, and 

visual complexity (subjective and objective) and their interactions with task repetition). As variables 

influencing behaviour do not operate selectively, but rather simultaneously, analyses can be 

strengthened by inclusion of a variety of variables known to have an effect on word production. This 

enables identification of the unique effect of a variable of interest and avoidance of false positive 

 
1 The effect of number of semantic features was significant in the first naming cycle between approx. 330 and 
600ms and only sporadically in the second naming cycle. In contrast, the effect of intercorrelational density was 
significant in only some time-windows between approx. 335 and 450ms in the first naming cycle and continuously 
significant between about 240 and 470ms in the second naming cycle. Rabovsky et al. (2021) did not report the 
significance of the effects of the semantic variables in the mean amplitude analysis separately for the two 
presentation cycles.  
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findings (see Lampe et al., in press; Lampe, Hameau, Fieder, et al., 2021, for more detailed discussion of 

this topic). Consequently, in our study we replicated and extended Rabovsky et al. (2021) by including 

additional semantic and control variables.   

Moreover, Rabovsky et al. (2021) only analysed a posterior ROI, which previous work (Costa et 

al., 2009; Rose et al., 2019; Rose & Abdel Rahman, 2017) had associated with competition during lexical 

selection. However, this focus risks missing effects related to semantic processing in other regions of 

the brain (e.g., Binder et al., 2009; Clarke et al., 2013; Indefrey, 2011). In addition, other research has 

also argued for additional brain regions being involved in lexical selection, particularly in the left mid 

MTG (middle temporal gyrus; see Indefrey, 2011, for a review) and the left IFG (inferior frontal gyrus; 

e.g., Schnur et al., 2005; Thompson-Schill et al., 1997). An approach that does not require pre-defined 

ROIs, but rather uses ERP data from the whole brain, can avoid these issues. One such approach that 

goes beyond descriptions of differences in waveforms depending on experimental conditions or 

variables is spatio-temporal segmentation, or microstate analysis (Lehmann et al., 1987; see e.g., 

Laganaro, 2014; Laganaro et al., 2012; Python et al., 2018a, 2018b; Valente et al., 2014). This analysis 

tests whether conditions or variables are associated with different brain configurations and does not 

require regions and time-windows of interest to be defined. Instead, it utilises the rich spatial 

information of the ERP signal (Jia, 2019).   

In microstate analysis, the ERP signal is characterised based on the topography and temporal 

dynamics of electric fields at the scalp (Brunet et al., 2011; Poulsen et al., 2018) to determine periods of 

quasi-stable EEG topographies, so called microstates. Individual microstates are thought to be caused 

by synchronised activation of large neuronal networks, which correspond to different neural processes 

in the brain (Brunet et al., 2011). Hence, the idea is that different microstates reflect different neuronal 

networks involved in word production. Processing in these neuronal networks may be influenced by 

item-inherent variables which can be investigated by testing for effects of these variables. In addition, 

if effects of item-inherent word characteristics originate during different stages of word production 

(e.g., semantic or post-lexical processing stages) they would be expected to affect different 

microstates. For example, Valente et al. (2014) took this approach and used a microstate analysis to 
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investigate effects of item-inherent word characteristics during word production. Conducting an 

analysis at the single trial level, they were able to test if different item-inherent word characteristics 

(e.g., image agreement, age of acquisition, and name agreement) affect different underlying neuronal 

networks (i.e., the different microstates). Importantly, this approach allowed the consideration of 

multiple continuous variables of interest simultaneously and to describe their influence on the whole 

word production process. Notably, microstate analyses allow researchers to go beyond the 

investigation of timing of processes of word production by investigating changes in the underlying 

networks across conditions or item sets.  

The current research  

With this study we wished to better understand the extent to which, and how, item-inherent 

semantic variables influence word production. Specifically, the aim was to determine whether, during 

word production, there were any electrophysiological signatures of particular item-inherent semantic 

variables by investigating the electrophysiological modulations they induced.  

To date, the only study to use EEG in word production to study semantic variables, Rabovsky 

et al. (2021), focused on the number of semantic features and intercorrelational density. We 

considered it important to avoid the potential difficulty interpreting any lack of replication of their 

results in the context of more complex analyses. Consequently, in our first analysis, we conceptually 

replicated Rabovsky et al.'s approach with a waveform analysis in a posterior region of interest. In this 

analysis we focused on i) the effects of the semantic variables on the mean ERP amplitude between 

200 and 550ms and ii) on the time course of effects of the semantic variables across 10ms time 

segments between 0 and 550ms. However, we also extended their approach by including additional 

feature-based semantic variables, which have been suggested by the behavioural literature to 

influence word production: number of near semantic neighbours, semantic similarity, typicality, and 

distinctiveness, in addition to number of semantic features and intercorrelational density. Hence, we 

simultaneously studied effects of the six feature-based semantic variables on brain processes during 
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word planning to account for possibly confounding effects2. Moreover, we thoroughly controlled for a 

wide range of psycholinguistic variables that impact word production (Perret & Bonin, 2019): name 

agreement, image agreement, imageability, age of acquisition, conceptual familiarity, lexical frequency 

as well as ordinal category position (Howard et al., 2006), and the item’s trial number in the experiment 

(Baayen & Milin, 2010).  

In addition to the waveform analysis, we conducted a microstate analysis to determine 

whether underlying networks (or stable configurations at the surface) were modulated by the semantic 

variables. Running a trial-by-trial multiple regression analysis (see Valente et al., 2014) we determined 

if the six semantic variables affected the durations of periods of stable electrophysiological patterns, 

while including the same psycholinguistic control variables as in the mean amplitude analysis.  

Methods 

The behavioural methods for this study were identical to Lampe et al. (in press), which reports 

analyses of the behavioural picture naming responses that were collected together with the EEG data 

analysed here. Below we give an overview of the method and refer the reader to Lampe et al. for 

further detail. The approach to the waveform analysis (replication and extension of Rabovsky et al., 

2021) was preregistered on the Open Science Framework (Lampe et al., 2019; https://osf.io/yw6ma/). 

Participants 

Eighty-nine participants took part in the picture naming study, 83 of whom had EEG data 

available (6 pilot participants were only included in the behavioural analysis in Lampe et al., in press). 

Two further participants were excluded as they did not perform the task as instructed or did not fulfil 

the eligibility criteria. In addition, three participants were excluded from the EEG analysis due to 

experimental control errors, resulting in a final sample size of 78 participants (64 female, age: M = 20.0 

 
2 Similar to the analysis of the behavioural data in Lampe, Hameau, and Nickels (in press), we conducted two 
further analyses to replicate Rabovsky et al. (2021) analyses as closely as possible by including only number of 
semantic features and intercorrelational density as semantic variables. In a first analysis, the choice of semantic 
and psycholinguistic control variables completely replicated Rabovsky et al.. Subsequently, we extended the 
analysis with further psycholinguistic control variables, and finally, in the analysis reported here, with the 
remaining semantic variables. This increasingly more complex data analysis allowed a direct comparison of our 
findings with Rabovsky et al.. The two additional analyses and their results are reported in Appendix A.     
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years, range = 17–33 years, SD = 2.2). All participants were Australian English native speakers, right-

handed, had normal or corrected-to-normal vision, and no history of neurological, cognitive speech 

and language impairments. Participants were recruited through Macquarie University’s Psychology 

participant pool and received course credit or a monetary compensation (AUD15 per hour). They were 

tested individually in a shielded room after giving informed consent. The study was approved by 

Macquarie University’s Human Research Ethics Committee. 

Stimuli  

The stimuli consisted of colour photographs on white background of 297 items with high 

name agreement for Australian English from the feature database by McRae et al. (2005) (see Lampe et 

al., in press, for a description of the selection process). The stimuli were presented in six 

pseudorandomised lists and every participant saw one list. Each list consisted of four blocks. The items 

in Block 1 (n = 35) were selected from different semantic categories such that the response latencies 

for these items would be unaffected by cumulative semantic inhibition (e.g., Howard et al., 2006). In 

Blocks 2–4 (n = 87 or n = 88 items), items from the same semantic category were separated by at least 

two intervening items from different categories to reduce the influence from semantically related 

items. Three pseudorandomisations were created of each block. After Block 1, Blocks 2–4 were 

presented in a varying order in the different Lists (e.g., Block 3 after Block 2 in List 1 but Block 2 after 

Block 3 in List 4).  

For all items, information on the six feature-based semantic variables was retrieved from, or 

calculated based on, information given in McRae et al. (2005): number of semantic features, 

intercorrelational density, number of near semantic neighbours, semantic similarity, typicality, and 

distinctiveness. 

Number of semantic features was a count of the features reported for each word in the McRae 

et al. (2005) database (e.g., Rabovsky et al., 2016). Intercorrelational density was the summed shared 

variance of all of a concept’s correlated feature pairs (e.g., Rabovsky et al., 2016). Number of near 

semantic neighbours was a count of words whose feature vectors had a similarity of at least .4 with the 

feature vector of the target (Hameau et al., 2019; Mirman, 2011; Mirman & Graziano, 2013). Semantic 
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similarity was the mean similarity between the feature vectors of the target word and all other words in 

the McRae et al. (2005) database (Mirman & Magnuson, 2008). Typicality was calculated similar to 

Rosch and Mervis' (1975) family resemblance score: First, each feature was weighted by the number of 

items of its semantic category that were also identified as having that feature by participants 

generating feature norms. Then, the feature weight was divided by the number of items in the 

semantic category, before each feature was weighted by its production frequency. Ultimately, the 

weights of all features of an item were summed to form the typicality measure. Lastly, distinctiveness 

was the inverse of the number of concepts that were credited with a particular feature in the whole 

database, which was averaged across all features of a concept (e.g., Rabovsky et al., 2016). Please refer 

to Lampe et al. (in press) and Lampe, Hameau, Fieder, et al. (2021) for more information on the 

calculation of the semantic variables.  

The psycholinguistic control variables for this experiment included the item-characteristics 

name agreement, image agreement, imageability, age of acquisition, familiarity (all from Lampe et al., 

in press), rated visual complexity, and spoken word frequency (Zipf, SUBTLEX-UK; van Heuven et al., 

2014). In addition, we derived two further control variables from the experiment itself: A category 

position measure to control for the cumulative semantic inhibition effect (Howard et al., 2006), which 

was the rank-order of an item in its same semantic category and the rank-order of an item in the 

experimental list to control for fatigue or habituation (Baayen & Milin, 2010).  

Before running the analyses, six items (i.e., raft, crowbar, bridge, pie, racquet, and board) were 

excluded either because the number of errors was high compared to that of the other items or 

because participants frequently responded with a compound noun that was a subordinate to the 

target word (e.g., pie à meat pie). This resulted in a final number of 291 items (as in Lampe et al., in 

press).  

Procedure 

Each trial began with a fixation cross in the centre of the screen. To prevent the participants 

from predicting the exact onset of the picture on the screen, the fixation cross was shown for a 

random duration between 500 and 1000ms. Next, a single picture was displayed for 2000ms on white 
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background, which participants were instructed to name as quickly and accurately as possible using a 

single word only. After the picture disappeared, the screen was blank for 1000ms before the next trial 

started.  

There was no familiarisation phase prior to the experiment but there were five practice trials at 

the beginning of the experiment and each experimental block also started with a practice item. All 

practice items came from different semantic categories to the experimental stimuli. Between blocks, 

participants were given a break to ask questions or rest. The experiment took approximately 30 

minutes to complete and, subsequently, the participants completed other tasks as part of a larger 

study (e.g., Lampe, Hameau, & Nickels, 2021).  

The EEG data acquisition was controlled on an iMac with macOS version 10.14.1, while the 

experiment was presented in Presentation® (Version 20.0, Neurobehavioral Systems, Inc., Berkeley, CA, 

www.neurobs.com) on a Dell Precision tower 3620 running Windows 10, using an AOC FreeSync LED 

monitor. Behavioural data were recorded with a Behringer preamplifier (Tube Ultragain Mic100) and a 

Rode NTG1 shotgun microphone. The spacebar of the keyboard was used to navigate through the 

experiment. 

EEG recording and pre-processing   

The continuous EEG signal was recorded using an ActiveTwo Biosemi system with 64 channels 

(Biosemi, Amsterdam, the Netherlands), positioned according to the extended 10–20 system (Jasper, 

1958) and using Biosemi’s active Ag/AgCl electrodes. Signals were sampled at 1024 Hz. EEG data 

processing was performed in MATLAB (R2016b, MathWorks Inc.) using the free EEGLAB toolbox 

(Version 14.1.2, Delorme & Makeig, 2004) for data cleaning and structuring.  

After acquisition, the EEG data were first down-sampled to 500Hz and re-referenced against 

the average reference. The data was then filtered using a Butterworth bandpass filter with a high-pass 

cut-off of 1Hz and low-pass cut-off of 30Hz. All trials that did not contain exclusively the target word 

(e.g., naming errors, disfluencies, or elaborations; see section “Behavioural data response coding”) and 

responses that were faster than 550ms were removed to get a maximally uncontaminated signal. On 

average, 57.71 trials were rejected per participant (range = 22–117, SD = 19.64). The EEG data were 
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segmented into epochs of 750ms, starting 200ms before the onset of the target stimulus on the screen 

and ending 550ms after stimulus presentation. We were interested in processes occurring during 

semantic and lexical processing, long before the onset of articulation (Indefrey, 2011). Given that very 

fast responses (< 550ms) were removed, this time-window was wider than the fastest trial. Moreover, 

as mean picture naming latencies were 900ms for correct responses (Lampe et al., in press), and 

estimates of the time course of word production (Indefrey, 2011; Indefrey & Levelt, 2004) locate 

semantic and lexical processing between picture onset and 275ms post picture onset, this time-

window was anticipated to include the processes of interest for this analysis.  

Noisy channels were identified using the PREP pipeline (Bigdely-Shamlo et al., 2015) and 

temporarily excluded for the subsequent processing steps. Eye movement, heart, and muscle artifacts 

were identified and eliminated using the automatic independent component analysis (ICA) procedure 

of EEGLAB and the plugin ICLabel (Version 1.2.4; Pion-Tonachini et al., 2019) (mean number of 

components excluded = 2.34, range = 0–5, SD = 1.23). Then, any bad channels identified with the PREP 

pipeline were interpolated (mean number of channels interpolated per participant = 4.29, range = 0–

17, SD = 3.25).  

The epochs were baseline corrected using the average amplitude of the 200ms before the 

onset of picture presentation on the screen. Individual epochs were screened to detect channels with 

absolute amplitudes exceeding 100µV. On average, 2.47 epochs were excluded per participants (range 

= 0–19, SD = 3.45). The final trial number was 236.82 on average (range = 180–273, SD = 19.96).  

Analyses 

Behavioural data response coding 

Only correct responses were included in the EEG data analyses. Correct responses were 

responses where the participant produced the exact target word as a first response (e.g., “truck”). In 

addition to overt naming errors and omissions, responses where a determiner preceded the correct 

name (e.g., “a truck”), participants were dysfluent (e.g., “t truck”) or hesitant (e.g., “erm truck”), or 

produced an elaboration (e.g., “yellow truck”), synonym (e.g., “lorry”), or abbreviation (e.g., “bike” 

instead of “motorbike”) were excluded from the analysis.  
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EEG data analysis 

Analysis 1: Waveform analysis. Based on Rabovsky et al. (2021) (and therefore following 

Costa et al., 2009; Rose et al., 2019; Rose & Abdel Rahman, 2017), we analysed a cluster of posterior 

electrode sites comprising CP3, CP4, Pz3, P3, P4, P5, P6, PO3, PO4, and POz. For this ROI, we ran single-

trial linear mixed models using the lme4 package (Version 1.1-21, Bates, Mächler, et al., 2015; p-values 

were retrieved with lmerTest, Version 3.1.1, Kuznetsova et al., 2017) for RStudio (Version 1.3.959, 

RStudio Team, 2020) on mean ERP amplitudes in a 200-550ms time-window to test for influences of 

the semantic variables (mean amplitude analysis). This time-window was chosen following Rabovsky et 

al., who based it on previous research concerning semantic context effects in language production 

research (Aristei et al., 2011). 

We extended Rabovsky et al. (2021) to new semantic variables to investigate the 

electrophysiological correlates of these semantic variables. The statistical analysis included all 6 

semantic variables of interest (number of semantic features, intercorrelational density, number of near 

semantic neighbours, semantic similarity, typicality, and distinctiveness). Moreover, the model also 

included psycholinguistic control variables that have been demonstrated to influence picture naming 

performance (name agreement, imageability, age of acquisition, familiarity, frequency, and measures 

of ordinal position within a category and within the list; Baayen & Milin, 2017; Howard et al., 2006; 

Perret & Bonin, 2019). All control and semantic variables were standardised using a z-transformation4. 

Finally, random intercepts for participants and items were included in the model as well as random 

slopes for semantic variables for participants. Following the model definition approach by Bates, Kliegl, 

et al. (2015) we only kept random slopes that increased the models’ fit, which was assessed using 

likelihood ratio tests (stats package, Version 3.6.1; R Core Team, 2019). No random slopes were kept in 

any of the waveform analyses.  

 
3 Please note that Pz was erroneously not included in our preregistration, as it was not listed in the Methods 
section of the preprint (Rabovsky et al., 2018) of Rabovsky et al. (2021).  
4 The standardisation of the measures ordinal category position and item number in the experiment was not 
preregistered. However, standardisation of all variables was necessary to facilitate model convergence. 
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In addition, we replicated Rabovsky et al.'s (2021) approach to exploring the temporal 

dynamics of the observed effects in more detail by analysing consecutive 10ms segments between 0 

and 550ms5 post-stimulus within the same ROI (time course analysis). 18,424 data points from 78 

participants and 291 items entered the analyses per time-window.  

However, studies using a time course analysis often do not correct for the fact that numerous 

models were run (e.g., Rabovsky et al., 2021; Rose & Abdel Rahman, 2017), which is problematic as the 

probability of finding erroneously significant time-windows increases with the number of tests 

conducted. One reason for the omission of correction for multiple comparison may be that it is not 

quite clear which of the numerous approaches is best suited for time course data. Here we therefore 

explored different approaches to this problem and corrected for multiple testing in several different 

ways.  

The most common correction for multiple testing is the Bonferroni correction, which corrects 

the p-value according to the family-wise error rate. To apply this correction, one divides the 

significance level (alpha) by the number of tests conducted (n = 55 in this study). In our case, this 

results in a significance level of .00091. However, importantly, the Bonferroni correction treats 

observations as independent, yet adjacent sampling points of ERP data tend to be correlated. In 

contrast, a correction of the false discovery rate estimation that controls the error rate among a set of 

tests is less conservative. One implementation is the Benjamini-Hochberg correction (Benjamini & 

Hochberg, 1995), which allows for test statistics to be positively dependent (Benjamini & Yekutieli, 

2001). For other dependencies, Benjamini and Yekutieli suggested the more conservative Benjamini-

Yekutieli method. These approaches to control the false discovery rate were applied with a q-level of 

0.05 (i.e., 95% of detections are true detections; Anders et al., 2019) and a less conservative q-level of 

0.1 (Ewald et al., 2012; Genovese et al., 2002). Another approach to correct for multiple testing is to 

accept effects as significant only if they exceed a certain duration (e.g., 10ms, Laganaro et al., 2012; 

20ms, Laganaro & Perret, 2011; 30ms, Valente & Laganaro, 2015) with effects being present at a few 

 
5 Rabovsky et al. (2021) ran this analysis on consecutive 10ms segments between 0 and 1000ms, however, we did 
not want to run an analysis on a time window larger than the shortest epoch in the dataset.  
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(e.g., at least five; Laganaro, 2014; Valente & Laganaro, 2015) adjacent electrodes at a conservative 

alpha criterion (e.g., .01). Consequently, here we also tested if effects of semantic variables survived a 

20ms cut-off at a significance criterion of .01.  

In two additional analyses, we investigated whether the effects reported by Rabovsky et al. 

(2021) were replicable when using 1) the same model structure as Rabovsky et al. or 2) improved 

control of the psycholinguistic variables. The model directly duplicating the analysis approach by 

Rabovsky et al. included number of semantic features and intercorrelational density as semantic 

variables and familiarity, frequency, orthographic neighbourhood density, and visual complexity as 

control variables. In the second analysis, we included a larger set of control variables known to 

influence spoken word production: name agreement, imageability, age of acquisition, familiarity, 

frequency, ordinal position within a category and within the list. As orthographic neighbourhood 

density and visual complexity are not commonly influential predictors of spoken word production 

(Perret & Bonin, 2019) they were excluded from this and the subsequent analysis. The results of these 

two analyses are reported in Appendix A.   

Analysis 2: Microstate analysis. Following Valente et al. (2014) we conducted a microstate 

analysis, compressing the variability in the EEG signal to form template maps of quasi-stable global 

electrophysiological patterns at the scalp using spatio-temporal clustering. We used the Microstates 

plugin (MST, Version 1.0; Poulsen et al., 2018) for EEGLAB for this analysis.  

Spatio-temporal segmentation was conducted on the subject-averaged ERP data between 50 

and 550ms using a K-means clustering algorithm with 5000 runs of randomisations. The ideal number 

of ERP maps that best explained the averaged data was selected using a combination of Global 

Estimated Variance and Cross-Validation criteria (Pascual-Marqui et al., 1995; see also Murray et al., 

2008). The sequence of maps also had to align with the maxima of the Global Field Power (i.e., the 

standard deviation of activity over all electrodes; Cohen, 2014). In order to remove maps with low 

explanatory power and periods of topographic instability, topographic maps were rejected if they were 

shorter than 20ms and it was checked that no maps were more than 97% correlated. The microstates 

determined from the group-averaged data using this procedure were then back-fitted to the single 
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trials of each participant. In this fitting procedure, each time point of the single trials was attributed to 

a microstate on the basis of the spatial correlation between the template maps and every single time 

point of the individual trial’s ERP.  

Statistical analyses comprised linear mixed effects models for each topographical map in order 

to determine the effects of semantic and psycholinguistic control variables on the summed duration 

(i.e., the number of timeframes associated with each microstate) of each stable topographical map. 

Given the relatively low temporal precision of microstate analyses, we aimed to use the effect of lexical 

frequency as a marker of lexical processes (following e.g., Piai et al., 2012; Strijkers et al., 2010). Hence, 

the neuronal network supporting lexical selection was assumed to be reflected by the microstate with 

an effect of word frequency. Following previous work, this effect was expected to commence 

somewhere between 180 (Strijkers et al., 2010) and 290ms (Piai et al., 2012) post picture onset. 

Unfortunately, in our analyses (as in Valente et al., 2014), there was no evidence of lexical frequency 

affecting the number of timeframes associated with any microstate nor a significant effect in the 

waveform analysis. This lack of a significant effect of word frequency is most likely due to this measure 

being correlated with some of the other variables included in our analyses (r up to -.49 in correlation 

with age of acquisition, r = .31 with imageability, r = -.28 with image agreement, all other r < .25). 

Hence, frequency could not be used as a marker of lexical processing. 

Results 

Summary of behavioural results (Lampe et al., in press)  

In the presence of only limited behavioural research into effects of feature-based semantic 

variables, we published a thorough investigation of the behavioural data collected in this study 

elsewhere (Lampe et al., in press; see also Table 1). When including the same six semantic variables 

that we investigated here with ERP, in models for the behavioural analysis (Analysis 2 in Lampe et al., in 

press), we found a facilitatory effect of number of semantic features on both naming latency and 

accuracy. In addition, higher intercorrelational density led to less accurate responses and higher 

distinctiveness had an inhibitory effect on naming latency. In contrast, there were no significant effects 
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of semantic similarity, number of near semantic neighbours, and typicality on naming latency or 

accuracy.  

Waveform analyses 

Mean amplitude analysis 

The results of the mean ERP amplitude analysis (200–550ms, posterior ROI) are summarised in 

Table 2 and depicted in Figure 1. There was an enhanced posterior positivity for words with higher 

image agreement, and lower age of acquisition. Moreover, the positivity was stronger the more items 

of the target word’s semantic category were seen in the experiment before the target and for words 

that appeared earlier in the experiment. In addition, the posterior positivity was enhanced for words 

with a higher number of semantic features. No other semantic variables were significant in this analysis 

(Table 2; Figure 1). 

Time course analysis 

To understand the development of the effects of the semantic variables over time, separate 

linear mixed effect models were performed for each 10ms time segment between 0 and 550ms (see 

also Appendix B for the point-by-point correlations between response latency and ERP amplitudes). 

The development of ERP amplitudes for each semantic variable at the posterior ROI is depicted in 

Figure 2.  

For all semantic variables, there were few significant time-windows in the first 200ms after 

picture onset. In addition, there were significant time windows around 200ms for number of semantic 

features, semantic similarity, typicality, and distinctiveness, as well as significant time windows around 

350-400ms for number of semantic features, semantic similarity, and number of near semantic 

neighbours. 
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Table 2 

Summarised output of linear mixed model analysis of mean amplitude   

Random effect Variance SD     

Item (Intercept) 0.06 0.24     

Subject (Intercept) 0.53 0.73     

Residuals 4.55 2.13     

Fixed effects Estimate SE CI t-value p-value VIF 

(Intercept) 1.65 0.09 1.48 – 1.81 19.31 <0.001  

Name agreement 0.01 0.02 -0.03 – 0.06 0.64 .525 1.10 

Image agreement 0.07 0.02 0.02 – 0.12 2.82 .005 1.27 

Imageability -0.01 0.03 -0.07 – 0.05 -0.44 .661 1.86 

Age of acquisition -0.07 0.03 -0.14 – -0.01 -2.14 .032 2.38 

Familiarity -0.04 0.03 -0.09 – 0.02 -1.31 .190 1.74 

Frequency 0.05 0.03 -0.00 – 0.11 1.90 .057 1.57 

Ordinal category position 0.09 0.03 0.03 – 0.15 2.92 .004 2.85 

Trial order -0.10 0.03 -0.15 – -0.05 -3.79 <.001 2.45 

Number of semantic features 0.08 0.03 0.02 – 0.13 2.83 .005 1.61 

Intercorrelational density -0.01 0.03 -0.07 – 0.05 -0.37 .715 2.21 

Semantic similarity 0.00 0.03 -0.07 – 0.06 -0.12 .904 2.52 

Number of near semantic neighbours 0.05 0.03 -0.01 – 0.12 1.59 .112 2.46 

Typicality -0.01 0.03 -0.06 – 0.05 -0.22 .825 1.56 

Distinctiveness -0.02 0.03 -0.08 – 0.04 -0.73 .463 2.09 

Observations 18,424 

0.006 / 0.120 Marginal R2 / Conditional R2 

Note. VIF = Variance Inflation Factor.  

Values of significant effects (p < .05) are printed in bold.  
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Figure 1 

Fixed effects estimates of mean amplitude analysis with 95% confidence intervals  

 

Note. Blue lines (to the right of centre) indicate that increased values of the variable lead to enhanced 

posterior positivity and red lines (to the left of centre) indicate decreased posterior positivity.  
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Figure 2 

Linear mixed model estimates of the mean voltages ± the effect sizes of each semantic variable at the 

posterior region of interest in consecutive 10ms segments between 0 and 550ms 

 

Note. Grey shading indicates levels of significance. High and low conditions of each semantic variable 

are based on the mean voltage (model Intercept) ± the effect size of the respective semantic variable.  

 

However, when applying the different methods suggested to control for multiple comparisons, 

none of the significant time-windows reported in the time course analysis survived: None of the 
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conducted tests reached the significance level of .00091 as suggested by the Bonferroni correction. 

Moreover, applying the Benjamini-Hochberg correction (Benjamini & Hochberg, 1995) or the 

Benjamini-Yekutieli method (Benjamini & Yekutieli, 2001) at q-levels of 0.05 and 0.10, again no time-

window in the time course analysis remained significant for any of the semantic variables. Only when 

using a 20ms cut-off at a significance criterion of .01, the least conservative correction for multiple 

comparisons, did the enhanced posterior positivity for words with lower semantic similarity at 90–

110ms survive. No effect of any other semantic variable met even this criterion. While the absence of 

significant effects of the semantic variables, following the different approaches to multiple comparison 

correction, cannot confirm the absence of any semantic effects in the posterior ROI, their consistent 

failure to survive multiple comparison correction suggests that the significant time-windows represent 

spurious effects and are likely false positives caused by multiple testing. 

Microstate analysis 

The mean amplitude and the time course analyses followed Rabovsky et al. (2021) and only 

included the ERP data collected at a posterior ROI. To test if any effects of semantic variables would be 

apparent when including the full spatial richness of the ERP data and to identify whether the 

underlying networks were modulated by the semantic variables, we ran a microstate analysis.  

The spatio-temporal segmentation was conducted on the grand average data between 50 and 

550ms after picture onset and yielded 6 topographic maps (Figure 3). During the back-fitting 

procedure each sampling point of every individual experimental trial was labelled with the template 

map with which it had the highest spatial correlation. The duration of each topographical map was 

then used as a dependent variable for linear mixed effects models. Note that ‘duration’ has to be 

understood as the number of timeframes associated with this map. In addition, the map onsets and 

offsets correspond to the first and last time point associated with a given map in the grand average 

ERPs. 

The six semantic variables as well as the control variables were entered as fixed effects in each 

model. As for the previous analyses, random effects for participants and items with random slopes for 

the semantic variables by participants were included in the models and the random effects structure 
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was gradually decreased following Bates, Kliegl, et al. (2015). Results of the models are summarised in 

Table 3 and Figure 3 (the complete statistical models are provided in Appendix C). To correct for 

multiple comparisons (we ran one model per topographic map), we applied the Bonferroni correction, 

resulting in a significance threshold of p < .008.  

 

Figure 3 

Microstate segmentation and summary of effects 

 

Note. Top: Results of microstate analysis. Variables in italics resulted in shorter duration of the 

respective microstate the higher the value of the variable and variables in regular font resulted in 

longer duration of the respective microstate the higher the value of the variable. Variables that also 

affected behavioural measures (RTs or naming accuracy) are in bold.  

Bottom: Topographic maps revealed by the spatio-temporal segmentation 
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Table 3 

Summary of (Bonferroni corrected) significant effects of the linear mixed effects models for the duration of periods of stable electrophysiological activity 

(topographic maps) 

Variable 
Map 1 

∼50–70ms and 
∼144–168ms 

Map 2 
∼70–144ms 

Map 3 
∼168–280ms 

Map 4 
∼280–364ms 

Map 5 
∼364–440ms 

Map 6 
∼440–550ms 

Name agreement       

Age of acquisition      β = -0.11, t = -3.09,  
p = .002 

Imageability       

Image agreement      β = 0.12, t = 4.51,  
p < .001 

Frequency       

Familiarity    β = -0.08, t = -2.86,  
p = .005 

 β = 0.11, t = 3.71,  
p < .001 

Ordinal category  
position 

 β = 0.07, t = 2.83,  
p = .005 

    

Trial order 
β = 0.10, t = 2.89, 
p = .004 

β = -0.10, t = -4.70,  
p < .001 

  β = -0.10, t = -5.05,  
p < .001 

 

Number of  
semantic features 

    β = 0.06, t = 3.26,  
p = .001 

 

Intercorrelational  
density 

    β = -0.07, t = -3.20,  
p = .002 

 

Semantic similarity     β = -0.07, t = -3.06,  
p = .002 

 

Number of near 
semantic neighbours 

   β = 0.13, t = 3.69,  
p < .001 

β = 0.07, t = 2.75,  
p = .006 

 

Typicality       

Distinctiveness       

Note. Full statistical models are provided in Appendix C.  
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The duration of Map 1, which lasted from approximately 50 to 70ms as well as from 145 to 

170ms post picture onset, increased with the position of the trial within the experiment (i.e., longer 

duration of Map 1 the later in the experiment an item occurred). In contrast, Map 2, lasting from about 

70 to 145ms, decreased with the trial order of the items in the experiment and increased with ordinal 

category position. There was no evidence that the duration of Map 3 (approx. 170–280ms) was 

affected by any of the control or semantic variables included in the analysis. The duration of Map 4, 

which started around 280ms after picture onset and lasted for about 85ms, decreased with higher 

familiarity and increased with a greater number of near semantic neighbours. Map 5, which lasted from 

approximately 365 to 440ms, was most affected by the variables: Its duration decreased the later an 

item appeared in the experiment, but also with higher semantic similarity and higher intercorrelational 

density of an item. In contrast, its duration increased with higher numbers of near semantic neighbours 

and higher numbers of semantic features. Finally, the duration of Map 6 (440–550ms) decreased with 

higher age of acquisition and increased with higher image agreement and familiarity. Importantly, 

however, findings for this last map have to be treated with caution as this map was cut off as it 

exceeded the upper boundary of 550ms of the time window included in the analysis.  

Discussion 

The present study was conducted to investigate electrophysiological correlates of six feature-

based semantic variables and to explore whether they influence the neuronal networks involved in 

word production. We studied item-inherent semantic variables, which were previously suggested to 

influence behavioural measures of picture naming when (mostly) studied individually: number of 

semantic features, intercorrelational density, number of near semantic neighbours, semantic similarity, 

typicality, and distinctiveness. Most of these variables had not previously been investigated using ERPs 

(or ERFs) in standard picture naming. We conducted three different analyses, including two waveform 

analyses (i.e., a mean amplitude analysis and a temporally more fine-grained time course analysis, 

replicating the methods of the only previous EEG study investigating item-inherent semantic variables 

in picture naming; Rabovsky et al., 2021) and a microstate analysis.  
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In the mean amplitude analysis (posterior ROI, 200–550ms), we found that number of semantic 

features, a variable that, behaviourally, leads to faster and more accurate responses, was the only 

semantic variable predicting the ERP signal: Higher numbers of semantic features resulted in an 

enhanced posterior positivity. In the time course analysis, no semantic variable resulted in an effect 

that consistently survived correction for multiple testing. Therefore, we have no basis on which to 

discuss the precise time course of the semantic variables, given that the remaining analyses provide 

insufficient temporal precision to inform understanding of the fine-grained temporal development of 

the effects.  

Moreover, four of the six semantic variables, number of semantic features, intercorrelational 

density, number of near semantic neighbours, and semantic similarity, significantly affected the 

number of timeframes associated with different periods of electrophysiological stability (topographic 

maps spanning processing between 50 and 550ms post picture onset) in the microstate analysis. 

Interestingly, all these variables affected the duration of one particular stable topographical map 

(Microstate 5; ∼364–440ms), with number of near semantic neighbours additionally affecting 

Microstate 4 (∼280–364ms). In contrast, we did not find electrophysiological correlates of typicality 

and distinctiveness in any of the analyses. The findings of this study compared to those of Rabovsky et 

al. (2021) are summarised in Table 4. 

 

Table 4 

Summary of EEG results for semantic variables 

Semantic variable 
Rabovsky et al. 

 (2021) 
Waveform 

analysis 
Microstate(s) 

affected  
Number of semantic features ↗	 ↗	 5 

Intercorrelational density  ↗	 Ø 5 
Number of near semantic neighbours   Ø 4, 5 

Semantic similarity   Ø 5 
Typicality  Ø Ø 

Distinctiveness  Ø Ø 

Note. Ø = non-significant effect, ↗ = enhanced posterior positivity with higher values of the 

variable, blank cells were not investigated. 
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The fact that the variables studied here aim to measure aspects of the representation of 

meaning implies that they influence processing when semantic information is encoded (i.e., semantic 

and/or lexical processing). Thus, our finding of significant ERP effects of number of semantic features, 

intercorrelational density, semantic similarity, and number of near semantic neighbours suggests that 

they modulate the semantic and/or lexical networks involved in word production. For number of 

semantic features and intercorrelational density, this is in line with Rabovsky et al. (2021) and some of 

the findings by Clarke et al. (2013). However, this is the first time that item-inherent measures of 

number of near semantic neighbours and semantic similarity have been shown to modulate ERPs in 

word production, thus extending the evidence base regarding evoked responses to semantic variables 

to further variables, which had not been studied with ERPs or ERFs in the past.  

The posterior positivity in the mean amplitude analysis was enhanced for words with a higher 

number of semantic features. This directly replicates the findings by Rabovsky et al. (2021) who 

reported an enhanced posterior positivity for words with higher numbers of semantic features in the 

mean amplitude analysis (200–550ms; across two presentation rounds) and in the more fine-grained 

analysis between around 330 and 600ms (first naming round; not corrected for multiple testing). 

Following Rabovsky et al. (2021), we interpret the enhanced posterior positivity as representing 

“activation in the lexical semantic system during competitive lexical selection” (p. 515). More semantic 

features result in stronger semantic activation of the target’s semantic representation in a similar way 

to semantic priming (Rabovsky et al., 2021; Rabovsky & McRae, 2014, Simulation 2 with a neural 

network model of the word recognition processes). Depending on the semantic organisation assumed 

by a word production theory, this could be due to a spread of activation through the semantic system 

via bidirectionally interconnected semantic features (e.g., McRae et al., 1997; Rabovsky & McRae, 

2014), via feedback from lexical to semantic representations (e.g., Dell, 1986), or spreading activation 

between holistic lexical concepts, where the measure ‘number of semantic features’ could be thought 

to represent the number of connections to other lexical concepts (e.g., Abdel Rahman & Melinger, 

2009; Collins & Loftus, 1975; Levelt et al., 1999; see Lampe, Hameau, Fieder, et al., 2021, for in-depth 

discussion of the possible mechanisms). The strong semantic activation of a concept with many 
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semantic features is thought to result in stronger activation of its corresponding lexical entry. Hence, 

the posterior positivity likely reflects this stronger activation of the semantic and lexical representations 

of target words with more semantic features. In contrast, number of semantic features (as well as 

proportion of visual features) was non-significant in the MEG study by Clarke et al. (2013). However, 

Clarke et al. focused on perceptual and semantic processing and only analysed the first 300ms of word 

planning and it is hence possible that our effect of number of semantic features was outside their 

analysis window.  

Given that all those semantic variables to show an influence on ERPs significantly affected the 

number of timeframes associated with Microstate 5 (with additional effects of number of near 

semantic neighbours on Microstate 4), we may conclude that the neuronal network associated with 

Microstate 5 is engaged in processing of, or influenced by, semantic information. Hence, it likely 

captured the neuronal network associated with semantic and/or lexical processing. The functional basis 

of the observed effects of semantic variables on Microstate 5 is not entirely clear. However, it is 

possible that these variables might affect the strength of activity in the neuronal network associated 

with semantic and lexical processing during word planning, similar to the argument made for the 

posterior positivity by Rabovsky et al. (2021), which we adopted above. This network may be more 

active when processing some words compared to others, depending on the item-inherent values of 

the semantic variables6. Importantly, higher activity in the network could be caused by increased 

activation of the target representation itself or increased activation distributed across a number of co-

activated competitors. For the semantic variables we found to be significant in the microstate analysis, 

this suggests that activity in the neuronal network associated with semantic and lexical processing may 

be higher when planning targets with higher numbers of semantic features (many semantic features 

strongly activate the target’s lexical representation, as explained above), words with higher 

intercorrelational density, a higher number of near semantic neighbours, and words with higher 

 
6 We do not believe that interpreting the direction of change in the number of timeframes associated with a single 
microstate induced by the semantic variables (i.e., decrease or increase of a microstate’s duration) is meaningful, 
nor that it is possible to relate that change to a change in processing time needed for naming. 
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semantic similarity. We have already addressed the proposed mechanism for number of semantic 

features and discuss the other variables below. 

Even though we did not find an effect of intercorrelational density in the mean amplitude 

analysis, the finding that this variable influenced the activity in the neuronal network associated with 

semantic and lexical processing during word planning in the microstate analysis is in line with 

Rabovsky et al. (2021). Intercorrelational density likely measures the size of the co-activated lexical 

cohort: For words with higher intercorrelational density, mutual activation via intercorrelated features 

causes an increased number of lexical competitors to be co-activated, which compete for lexical 

selection with the target word (see also Lampe et al., in press; Rabovsky et al., 2016, 2021). More 

specifically, highly intercorrelated features strongly mutually co-activate, which increases the activation 

of these features (and the target lexical representation). However, these highly intercorrelated features 

(e.g., has fur, has four legs, has paws, has whiskers) also characterise groups of closely related concepts 

(e.g., ‘cat’, ‘dog’, ‘tiger’), which are therefore also assumed to be strongly co-activated during 

processing. Hence, the effect of intercorrelational density on Microstate 5 might represent increased 

activation in the semantic and lexical network, which is mostly associated with the co-activated 

semantically related cohort. Similarly, in their MEG study, Clarke et al. (2013) found that around 224–

260ms, an increased MEG response was associated with decreased values of their correlational 

strength of shared features component (a slightly different measure to our intercorrelational density 

measure, containing two measures capturing the correlational structure of shared features). This was 

suggested to be due to additional processing being required to activate and integrate semantic 

features of words with lower intercorrelational strength in the absence of mutual activation between 

intercorrelated features, which would benefit the integration of semantic information. Indeed, both 

Clarke et al.'s semantic and Rabovsky et al.'s predominantly lexical mechanisms might both be at play: 

Semantic processing may be facilitated by higher intercorrelational density (Clarke et al., 2013) while 

lexical processing may be inhibited due to increased competition (Rabovsky et al., 2021). Both 

mechanisms might cause increased activation in the semantic and lexical network for words with 
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higher intercorrelational density, which is likely what we capture with the significant effect for 

Microstate 5.  

Similar to intercorrelational density, number of near semantic neighbours represents the size 

of a semantically closely related co-activated lexical cohort. No previous ERP or ERF investigations of 

this semantic variable in word production have been conducted, as far as we are aware. Number of 

near semantic neighbours significantly affected the number of timeframes associated with Microstates 

4 and 5. This indicates that number of semantic neighbours influenced the neuronal network 

associated with semantic and lexical processing, despite the absence of a significant behavioural effect 

of this variable (Lampe et al., in press). Based on previous behavioural findings (Fieder et al., 2019; 

Mirman, 2011), near semantic neighbours may be co-activated during processing via the many 

semantic features they share with the target. For words with higher numbers of near semantic 

neighbours, there might thus be increased activity from many co-activated competitors in the 

semantic and lexical network during processing.  

Item-inherent semantic similarity has also not previously been investigated using 

electrophysiological measures (although see Rose & Abdel Rahman, 2017, for an ERP investigation of 

effects of between items semantic similarity on cumulative semantic interference). Our measure 

captures the semantic similarity of the target word and all other words in the mental lexicon. The 

interpretation of the effect of semantic similarity on Microstate 5 is complicated by the fact that 

previous behavioural analyses of the effects of semantic similarity are inconclusive: While the 

behavioural effects were not significant in the behavioural data associated with this study (Lampe et al., 

in press), Fieder et al. (2019) reported inhibitory effects for words with higher semantic similarity in 

unimpaired participants in a speeded picture naming task, which were suggested to be due to 

increased competition during lexical processing caused by co-activated representations. This would 

indicate stronger activity in the lexical and semantic network for words with higher semantic similarity 

to be distributed across the many lexical competitors (similar to words with higher intercorrelational 

density and a higher number of near semantic neighbours). In contrast, Lampe, Hameau, Fieder, et al. 

(2021) found a facilitatory effect of semantic similarity in people with aphasia: Participants with severe 
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semantic impairments were more likely to respond correctly to words with higher semantic similarity 

and, correspondingly, more likely to make a semantic error on words with lower semantic similarity. 

This facilitation of words with higher semantic similarity was proposed to be due to increased 

spreading activation at the semantic level or due to enhanced feedback from lexical to semantic 

representations with converging activation on the target’s semantic representation. The strongly 

activated semantic representation of a target with higher semantic similarity might then activate its 

lexical representation more strongly, making it a strong candidate for lexical selection (similar to the 

argument made for words with many semantic features above). In this case, stronger activity in the 

semantic and lexical network when processing words with higher semantic similarity would be related 

to the target word itself, rather than co-activated competitors. Even though the electrophysiological 

effect of semantic similarity does not allow us to adjudicate between the two mechanisms proposed to 

explain previous behavioural data, our finding supports the two behavioural studies in that semantic 

similarity seems to be an influential variable in word production, affecting the strength of activity in the 

semantic and lexical network. Further research into this variable is warranted to better understand its 

effect.  

Neither distinctiveness nor typicality showed reliable effects in any of the ERP analyses. 

Distinctiveness had not previously been investigated using EEG. However, using MEG, Clarke et al. 

(2013) and Miozzo et al. (2015) found effects of principal components that captured the proportion of 

distinctive versus shared information related to a concept as well as other measures. However, direct 

comparison to our analyses is not possible, given that multiple measures were combined to form these 

“distinctiveness” principal components (including our measure of distinctiveness in Clarke et al. and a 

similar measure, number of distinctive features, in Miozzo et al.). Further reasons for the discrepancies 

between our and the previous findings may be the precision of the method employed (MEG vs EEG), 

the analysis conducted and, importantly, the other variables controlled for in the analyses (e.g., Clarke 

et al. only controlled for familiarity and image complexity). To our knowledge, there are no previous 

studies investigating effects of typicality on ERPs or ERFs in word production. 



274  |  SEMANTIC VARIABLES IN EEG 

 

Taken together, the findings of the mean amplitude and microstate analyses indicated that 

several semantic variables (i.e., number of semantic features, intercorrelational density, semantic 

similarity, and number of near semantic neighbours) influence brain activity during word production. 

These variables likely affect the activity of the semantic and lexical network engaged in word 

production, in line with Rabovsky et al.'s (2021) proposal. 

Previous ERP research has often used the word production time course estimates by Indefrey 

and Levelt (2004) and Indefrey (2011) to interpret the findings and to associate them with certain 

stages of word production. For example, ERP effects around 200ms have been taken to indicate that 

the experimental manipulation affects lexical processing (e.g., Aristei et al., 2011; Cheng et al., 2010; 

Dell’Acqua et al., 2010; Python et al., 2018a). Our findings suggest that semantic information must be 

required during processing at a stage (∼364–440ms) that falls beyond the time window that is usually 

associated with semantic and lexical processing (i.e., up to around 275ms following Indefrey, 2011; but 

see Strijkers & Costa, 2011, for a call to assess the reliability of this upper limit of lexical selection). 

Hence, if we compare our data to this time course for word production, it suggests that semantic and 

lexical processing are likely not completed within the first 275ms of word planning. If interpreted as 

reflecting the time course of processing, our data would suggest that semantic information is activated 

longer or that effects of semantic processing are visible in a longer time-window than originally 

proposed by Indefrey and Levelt.  

The effects of semantic variables might occur relatively late because semantic and lexical 

processing in this study may have been prolonged, also causing longer naming latencies compared to 

the time course estimates (i.e., 600ms vs around 900ms), with semantic and lexical processing possibly 

being associated with networks that are activate as late as 280–440ms (Microstates 4 and 5). Yet, the 

adaptation of Indefrey and Levelt's (2004) time course estimates to longer response latencies is far 

from straightforward and it is unknown which word production processes would have to be extended 

and by how much to accommodate for the difference in word planning duration compared to Indefrey 

and Levelt. Importantly, any attempt to rescale the time course estimates (e.g., Krott et al., 2019; Piai et 

al., 2012; Schuhmann et al., 2009; Shao et al., 2014) would be applied uniformly to all items, thus 
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possibly levelling out the fine-grained effects of word-inherent variables that we are investigating in 

this study. Alternatively, effects of semantic variables might occur relatively late in word planning, if 

semantic information cascades to later stages of word production (e.g., Python et al., 2018a, 2018b). 

Ultimately, this study adds to the accumulating evidence (e.g., Miozzo et al., 2015, who found effects of 

phonological variables much earlier than the suggested time-window for phonological processing) 

suggesting that the reliability of Indefrey and Levelt (2004) and Indefrey's (2011) time course of word 

production might require further critical assessment (see also Strijkers & Costa, 2011). 

As outlined in the Introduction, facilitatory and inhibitory effects of semantic variables in 

behavioural research have often been interpreted as reflecting either semantic facilitation or lexical 

competition (e.g., Abdel Rahman & Melinger, 2019; Fieder et al., 2019; Lampe et al., in press; Rabovsky 

et al., 2016). However, we found that the semantic variables, despite the differences in their 

behavioural effects in previous studies, influenced the number of timeframes associated with the same 

microstate, Microstate 5. One might be tempted to interpret this as suggesting an overlap, or 

interaction, between semantic and lexical processing (e.g., Abdel Rahman & Melinger, 2009; Dell, 1986; 

Indefrey, 2011; see Rabovsky et al., 2021, for a similar argument). However, our finding might also be 

compatible with a sequential architecture of semantic and lexical processing (e.g., Levelt et al., 1999): 

Words differ in their processing times, which causes different time courses of the underlying 

processing stages (i.e., jittered processing), possibly making a differentiation between semantic and 

lexical processing impossible, even if the underlying processing architecture was sequential. 

Consequently, our ERP data does not provide evidence that would allow association of effects of the 

semantic variables with either semantic or lexical processing or enable us to conclude whether 

semantic and lexical processing in word production are sequential, sequential and interactive, or 

parallel processes. To understand the effects of the semantic variables even better, future studies are 

needed to disentangle if and how semantic and lexical processing interact.  

Conclusion  

We have shown that the number of semantic features, intercorrelational density, number of 

near semantic neighbours, and semantic similarity of a target word influence ERPs during word 
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production. This extends previous research into effects of semantic variables on ERPs or ERFs (Clarke et 

al., 2013; Miozzo et al., 2015; Rabovsky et al., 2021). Our findings suggest that these semantic variables 

influence the strength of activity in the semantic and lexical network, with increased activity being 

associated either with the target word itself or distributed across a co-activated lexical cohort.  

The fact that semantic variables influenced processing as late as around 400ms may suggest 

that semantic information is important at stages later than the time windows traditionally associated 

with semantic and lexical processing. We are only just beginning to understand which variables 

influence word planning. However, the novel finding of influences of several semantic variables 

suggests that they should be studied in more detail and that theories of word production as well as 

future research should account for these variables.  
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Appendices 

Appendix A: Exact replication and extension of Rabovsky et al. (2021) with relevant 

psycholinguistic control variables  

Analogous to the behavioural analysis Lampe et al. (in press), three separate analyses of the 

EEG data were conducted: 1) Replication of the waveform EEG analysis performed by Rabovsky et al. 

(2021), 2) Replication of Rabovsky et al. taking a larger number of psycholinguistic control variables as 

well as ordinal category position into account, and 3) Extension of Rabovsky et al. to other semantic 

variables while also controlling for psycholinguistic control variables and ordinal category position. 

This approach was preregistered on the Open Science Framework (Lampe et al., 2019; 

https://osf.io/yw6ma/). The third analysis was reported in the main body of the text. Here we want to 

summarise the findings of the Analyses 1 and 2.   

Analysis 1: Replication of Rabovsky et al. (2021) to investigate the temporal dynamics of 

two semantic variables using EEG 

In this analysis, the number of semantic features and intercorrelational density were the 

semantic variables of interest. As in the original study we included the following control variables: 

familiarity (rated), number of orthographic neighbours (N-Watch database, Davis, 2005), lexical 

frequency (SUBTLEX-UK, van Heuven et al., 2014), and visual complexity (rated). Moreover, we used 

random intercepts for participants and items as well as random slopes for participants for both 

semantic variables, where appropriate (Bates, Kliegl, et al., 2015). 

Analysis 2: Replication of Rabovsky et al. (2021) to investigate the temporal dynamics of 

two semantic variables using EEG, under sufficient control of psycholinguistic variables  

Number of semantic features and intercorrelational density continued to be the only two 

semantic predictor variables in the model. In this analysis, we also took a wide range of 

psycholinguistic control variables (name agreement, imageability, age of acquisition, familiarity, 

frequency, a measure of ordinal position within a category within the list, and trial order) into account. 

Again, random intercepts for participants and items were included in the model as well as random 

slopes for the two semantic variables by participants, where supported (Bates, Kliegl, et al., 2015). 
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For the two extra analyses we each ran the mean amplitude analysis (mean ERP amplitude in 

posterior ROI between 200 and 550ms) as well as the time course analysis (consecutive 10ms 

segments between 0 and 550ms). These analyses are crucial when assessing the success to replicate 

Rabovsky et al. (2021) as they allow analysing any failure to replicate effects reported by Rabovsky et 

al. in the analysis reported in the paper: If effects are non-significant in the analysis that includes 

further semantic and/or control variables, but significant in the analyses replicating Rabovsky et al., we 

know that the difference in findings must be due to the inclusion of further psycholinguistic control 

or/or semantic variables.  

Table A1 summarises the outcome of the two additional analyses. In both analyses we 

replicated the enhanced posterior positivity for words with a higher number of semantic features. In 

contrast, the enhanced posterior positivity for words with higher intercorrelational density was non-

significant.  

Figure A1 plots the time course of the effects of the two semantic variables in 10ms time 

windows from picture onset to 550ms. In contrast to the analysis reported in the main body of the text, 

some effects survived correction for multiple comparisons. In the analysis exactly replicating the 

variables of the analysis by Rabovsky et al. (2021; Analysis 1, Panel A in Figure A1), the posterior 

positivity was enhanced for words with higher numbers of semantic features in the time-window 

between 360 and 390ms post picture onset (corrected for multiple testing with the Benjamini-

Hochberg correction and adopting a q-level of 0.05, Benjamini & Hochberg, 1995; using the less 

conservative correction of an effect lasting at least 20ms with p < 0.1, a slightly larger time-window 

between 340 and 390ms survived correction, Laganaro & Perret, 2011). Similarly, the stronger posterior 

positivity for words with higher intercorrelational density was significant between 410 and 420ms and 

430 and 440ms post picture onset after applying the Benjamini-Hochberg false discovery correction 

(410–440ms using p < 0.1).  

 In the analysis extending Rabovsky et al. (2021) with more control variables (Analysis 2, Panel B 

in Figure A1), the effect of number of semantic features survived correction in exactly the same time 



    CHAPTER 4  | 289 

 

CH
APTER 6  |  2

8
9 

window as in Analysis 1. However, the effect of intercorrelational density did not survive our attempts 

to correct for multiple testing.  

 

Figure A1  

Linear mixed model estimates of the mean voltages ± the effect sizes of each semantic variable at the 

posterior region of interest in consecutive 10ms segments between 0 and 550ms of the models 

replicating Rabovsky et al. (2021) (A) and extending their analysis with further psycholinguistic control 

variables (B) 

 

Note. Grey shading indicates levels of significance. High and low conditions of each semantic variable 

are based on the mean voltage (model Intercept) ± the effect size of the respective semantic variable.  
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Table A1 

Summarised outputs of linear mixed model analysis replicating and extending Rabovsky et al. (2021) with further control variables  

 Replicating Rabovsky et al. (2021) Extending Rabovsky et al. (2021) with control variables 
Random effect Variance SD     Variance SD     

Item (Intercept) 0.08 0.29     0.06 0.25     
Subject (Intercept) 0.53 0.73     0.53 0.73     

Residuals 4.55 2.13     4.55 2.13     
Fixed effects Estimate  SE CI t-value p-value VIF Estimate SE CI t-value p-value VIF 

(Intercept) 1.65 0.09 1.48 – 1.82 19.28 <.001  1.65 0.09 1.48 – 1.81 19.30 <.001  
Name agreement       0.01 0.02 -0.03 – 0.06 0.55 .583 1.10 
Image agreement       0.08 0.02 0.04 – 0.13 3.49 <.001 1.18 

Imageability       -0.02 0.03 -0.08 – 0.04 -0.61 .543 1.82 
Age of acquisition       -0.08 0.03 -0.15 – -0.02 -2.50 .012 2.27 

Familiarity -0.05 0.03 -0.10 – 0.01 -1.72 .086 1.38 -0.05 0.03 -0.10 – 0.00 -1.92 .055 1.51 
Frequency 0.05 0.03 -0.01 – 0.11 1.76 .078 1.47 0.05 0.03 -0.01 – 0.10 1.71 .088 1.53 

Orthographic neighbourhood 0.00 0.02 -0.05 – 0.05 -0.03 .978 1.18       
Visual complexity 0.01 0.02 -0.04 – 0.06 0.52 .605 1.15       

Ordinal category position       0.10 0.03 0.04 – 0.15 3.36 .001 2.52 
Trial order       -0.11 0.03 -0.16 – -0.05 -4.01 <.001 2.34 

Number of semantic features 0.07 0.03 0.02 – 0.12 2.80 .005 0.07 0.06 0.02 0.01 – 0.11 2.38 .017 1.30 
Intercorrelational density 0.04 0.03 -0.01 – 0.09 1.75 .080 0.04 0.02 0.02 -0.03 – 0.07 0.88 .379 1.24 

Observations 18424 
Marginal R2 / Conditional R2 0.006 / 0.120 

Note. VIF = Variance Inflation Factor. 

Values of significant effects (p < .05) are printed in bold. 
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One possible reason for the discrepancies between the findings of our study and Rabovsky et 

al. (2021) is that they accounted for fewer psycholinguistic control variables in the analyses, which may 

have distorted their findings (see Lampe et al., in press, for an in-depth discussion). In the two 

additional analyses reported here (1) exact replication of the model structure used by Rabovsky et al. 

and 2) a model that improved the control of psycholinguistic variables), we tested this possibility and 

further examined the reliability of the ERP findings by Rabovsky et al.. 

When exactly replicating Rabovsky et al.'s (2021) analysis of the EPR data (Table A1, left-hand 

part, Figure A1 Panel A), we got closer to fully replicating their findings: The effect of number of 

semantic features was significant with an enhanced posterior positivity for words with higher numbers 

of features in the mean amplitude analysis and between around 260 and 390ms in the more precise 

time course analysis. Moreover, the effect of intercorrelational density with an enhanced posterior 

positivity for words with higher intercorrelational density was significant in the time course analysis 

around 410 and 440ms. However, when improving control of nuisance variables (Table A1, right-hand 

part, Figure A1 Panel B), the effect of intercorrelational density did no longer survive correction for 

multiple testing, while the effect of number of semantic features remained significant (see also Table 

A2 for a summary).  

Hence, our findings resemble Rabovsky et al. (2021) when we exactly replicate the composition 

of their fixed effects. This suggests that their finding of an effect of intercorrelational density might 

have been a Type 1 error caused by insufficient control of variables that influence processes during 

word planning and emphasises, once again, the need for experiments to control for influential 

variables in the analyses to derive as pure measures of the effects of interest as possible. Importantly 

though, Rabovsky et al. did not report on the significance of the effect of the semantic variables in the 

single naming rounds. From visual inspection of Supplementary Figure S2 in Rabovsky et al., the effect 

of intercorrelational density might have gotten stronger in the repetition compared to the first naming 

round (but note that the interaction between ‘repetition’ and ‘intercorrelational density’ was non-

significant). In contrast, naming was significantly slower for concepts with high intercorrelational 
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density in the repetition compared to the first naming round. Further research is needed to investigate 

whether repeated naming of the same items may enhance effects of intercorrelational density. 

 
Table A2 

Summarised findings for semantic variables of all analyses  

Semantic variable 

Rabovsky et 

al. (2021) 

Exact 

replication 

Extension 

with control 

variables 

Extension with 

control and 

semantic 

variables 

Microstate 

affected 

Number of semantic 

features 

↗	
330–360ms a 

↗	
360–390ms 

↗	
360–390ms 

↗	 5 

Intercorrelational 

density 

↗	
335–450ms a 

(sporadically) 

Ø 

420–440ms 
Ø Ø 5 

Number of near 

semantic neighbours 
   Ø 4, 5 

Semantic similarity     Ø 5 

Typicality    Ø Ø 

Distinctiveness    Ø Ø 

Note. Ø = non-significant effect, ↗ = enhanced posterior positivity with higher values of the variable, 

blank cells were not investigated. 

a From visual inspection of the time course of effects in the first naming round (Supplementary 

Figure S2, Rabovsky et al., 2021). Not corrected for multiple testing.  
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Appendix B: Correlation analysis 

We calculated point-by-point correlations of every 10ms time window and naming latency to 

test whether the ERP modulations in the posterior ROI were associated with naming latency (e.g., Costa 

et al., 2009; Rose & Abdel Rahman, 2017). Following Costa et al. we would expect to find a positive 

correlation between them if both response latency and electrophysiological effects were caused by the 

same underlying processes in the brain and are related to lexical selection, which was the case in 

previous investigations (e.g., Costa et al., 2009; Dell’Acqua et al., 2010; Rose & Abdel Rahman, 2017; 

Strijkers et al., 2010). 

Figure B1 shows the time course of the correlation between response latency and the ERP 

amplitudes at the posterior ROI. Response latency was negatively correlated with EPRs between picture 

onset and 150ms as well as after 380ms post picture onset, with the earlier time windows being less 

strongly correlated. In contrast, increased naming latency was associated with more positive 

amplitudes in the posterior ROI (positive correlation) between 250 and 360ms post picture onset. This 

may be interpreted as suggesting a duration of lexical processing of about 110ms (compared to about 

75ms in Indefrey, 2011, 180ms in Costa et al., 2009, and 145ms in Rose & Abdel Rahman, 2017). This 

again shows that the duration of processing stages in word production may take longer than 

suggested by Indefrey (2011) and Indefrey and Levelt (2004) and may vary between studies.  

However, these correlations between response latency and ERP amplitude are raw correlations, 

which do not take any effect of influential variables, be it control or semantic variables, into account. 

Yet, we believe that these fine-grained influences can alter and shift the durations of all stages of word 

production, making this coarse correlation a rather unreliable measure. 

 



294  |  SEMANTIC VARIABLES IN EEG 

 

Figure B1 

Correlation between response latency and ERP amplitudes at the posterior ROI  
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Appendix C: Complete statistical models of microstate analyses  

Table C1  

Complete statistical models of microstate analyses 1–2 

 Microstate 1 Microstate 1 

Random effect Variance SD    Variance SD    

Subject (intercept) 0.80 0.89    0.44 0.66    

Item (intercept) 0.11 0.34    0.04 0.20    

Residual 6.63 2.57    2.53 1.59    

Predictors Estimate SE CI p-value VIF Estimate SE CI p-value VIF 

Intercept 8.70 0.10 8.49 – 8.90 <.001  3.75 0.08 3.60 – 3.90 <.001  

NameAgr 0.02 0.03 -0.04 – 0.08 .502 1.10 -0.04 0.02 -0.07 – -0.00 .041 1.10 

AoA 0.01 0.04 -0.08 – 0.09 .870 2.39 0.01 0.03 -0.04 – 0.07 .588 2.40 

Imageability 0.03 0.04 -0.05 – 0.10 .437 1.86 0.00 0.02 -0.04 – 0.05 .838 1.87 

ImageAgr -0.04 0.03 -0.11 – 0.02 .163 1.27 0.00 0.02 -0.04 – 0.04 .980 1.28 

Frequency -0.09 0.04 -0.16 – -0.02 .011 1.57 0.03 0.02 -0.01 – 0.08 .118 1.58 

Familiarity -0.02 0.04 -0.09 – 0.05 .643 1.74 -0.05 0.02 -0.09 – -0.00 .035 1.74 

CatPos -0.05 0.04 -0.12 – 0.02 .190 2.87 0.07 0.02 0.02 – 0.12 .005 2.84 

Order 0.10 0.03 0.03 – 0.16 .004 2.50 -0.10 0.02 -0.14 – -0.06 <.001 2.44 

NoFeats -0.09 0.03 -0.15 – -0.02 .013 1.60 -0.03 0.02 -0.07 – 0.02 .212 1.61 

IntercorrDens 0.04 0.04 -0.04 – 0.12 .330 2.21 0.01 0.03 -0.04 – 0.06 .624 2.21 

SemSim 0.08 0.04 -0.00 – 0.17 .055 2.52 -0.02 0.03 -0.07 – 0.04 .549 2.52 

NearSemNeigh -0.10 0.04 -0.18 – -0.01 .027 2.47 0.01 0.03 -0.05 – 0.06 .848 2.47 

Typicality 0.02 0.03 -0.05 – 0.09 .601 1.55 0.01 0.02 -0.03 – 0.05 .636 1.56 

Distinctiveness 0.06 0.04 -0.02 – 0.14 .143 2.09 0.01 0.02 -0.04 – 0.06 .783 2.10 

Observations 18,140  15,692  
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Marginal R2 / 

Conditional R2 

0.003 / 0.123 

 

0.003 / 0.160 

 

Note. VIF = Variance Inflation Factor; NameAgr = name agreement; ImageAgr = image agreement; AoA = age of acquisition; OrthNeigh = 

orthographic neighbourhood density; VisCom = visual complexity; OrdCatPos = ordinal category position; SemSim = Semantic similarity; 

NrSemNeigh = Number of near semantic neighbours; NoFeats = number of semantic features; IntercorrDensity = intercorrelational density; 

Distinct = distinctiveness. 

Significant effects (Bonferroni corrected for multiple comparisons, significance threshold of p < .008) are printed in bold. 

 

Table C2 

Complete statistical models of microstate analyses 3–4  

 Microstate 3 Microstate 4 

Random effect Variance SD    Variance SD    

Subject (intercept) 0.54 0.73    0.56 0.75    

Subject | 

IntercorrDens 
     0.01 0.09    

Item (intercept) 0.08 0.28    0.07 0.27    

Residual 5.63 2.37    3.85 1.96    

Predictors Estimate SE CI p-value VIF Estimate SE CI p-value VIF 

Intercept 6.99 0.09 6.82 – 7.16 <.001  5.20 0.09 5.03 – 5.37 <.001  

NameAgr -0.06 0.03 -0.11 – -0.01 .020 1.10 0.04 0.02 -0.01 – 0.08 .112 1.10 

AoA 0.10 0.04 0.03 – 0.17 .008 2.39 -0.01 0.03 -0.08 – 0.05 .699 2.37 

Imageability 0.01 0.03 -0.05 – 0.08 .676 1.86 -0.01 0.03 -0.07 – 0.05 .793 1.85 

ImageAgr -0.07 0.03 -0.13 – -0.02 .009 1.27 0.00 0.03 -0.05 – 0.05 .874 1.27 

Frequency 0.02 0.03 -0.04 – 0.08 .590 1.58 0.05 0.03 -0.01 – 0.10 .085 1.57 

Familiarity -0.05 0.03 -0.11 – 0.02 .139 1.74 -0.08 0.03 -0.14 – -0.03 .004 1.74 
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CatPos -0.02 0.03 -0.09 – 0.04 .511 2.84 0.06 0.03 0.00 – 0.12 .035 2.87 

Order 0.01 0.03 -0.05 – 0.07 .707 2.45 -0.04 0.03 -0.09 – 0.01 .113 2.51 

NoFeats -0.02 0.03 -0.08 – 0.04 .584 1.61 0.05 0.03 -0.00 – 0.10 .075 1.56 

IntercorrDens 0.04 0.04 -0.03 – 0.11 .259 2.21 0.01 0.03 -0.05 – 0.08 .668 2.00 

SemSim 0.03 0.04 -0.04 – 0.11 .394 2.52 -0.04 0.03 -0.11 – 0.03 .244 2.52 

NearSemNeigh -0.06 0.04 -0.14 – 0.01 .109 2.46 0.13 0.03 0.06 – 0.20 <.001 2.40 

Typicality 0.03 0.03 -0.03 – 0.09 .356 1.56 -0.01 0.03 -0.06 – 0.04 .678 1.50 

Distinctiveness 0.05 0.03 -0.02 – 0.12 .136 2.09 0.02 0.03 -0.04 – 0.09 .438 2.03 

Observations 17,829  17,157  
Marginal R2 / 

Conditional R2 

0.004 / 0.102 

 

0.005 / 0.147 

 

Note. VIF = Variance Inflation Factor; NameAgr = name agreement; ImageAgr = image agreement; AoA = age of acquisition; OrthNeigh = 

orthographic neighbourhood density; VisCom = visual complexity; OrdCatPos = ordinal category position; SemSim = Semantic similarity; 

NrSemNeigh = Number of near semantic neighbours; NoFeats = number of semantic features; IntercorrDensity = intercorrelational density; 

Distinct = distinctiveness. 

Significant effects (Bonferroni corrected for multiple comparisons, significance threshold of p < .008) are printed in bold. 

 

Table C3 

Complete statistical models of microstate analyses 5–6  

 Microstate 5 Microstate 6 

Random effect Variance SD    Variance SD    

Subject (intercept) 0.27 0.52    0.50 0.70    

Item (intercept) 0.02 0.14    0.05 0.23    

Residual 2.53 1.59    6.30 2.51    
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Predictors Estimate SE CI p-value VIF Estimate SE CI p-value VIF 

Intercept 3.57 0.06 3.45 – 3.69 <.001  7.25 0.08 7.08 – 7.41 <.001  

NameAgr -0.02 0.02 -0.05 – 0.02 .317 1.10 0.03 0.03 -0.02 – 0.08 .187 1.10 

AoA -0.03 0.02 -0.07 – 0.02 .286 2.37 -0.11 0.04 -0.18 – -0.04 .002 2.37 

Imageability -0.03 0.02 -0.07 – 0.02 .236 1.85 -0.01 0.03 -0.07 – 0.06 .811 1.85 

ImageAgr 0.01 0.02 -0.02 – 0.05 .400 1.27 0.12 0.03 0.07 – 0.17 <.001 1.27 

Frequency 0.03 0.02 -0.01 – 0.07 .102 1.58 -0.01 0.03 -0.07 – 0.05 .762 1.57 

Familiarity 0.03 0.02 -0.01 – 0.07 .132 1.73 0.11 0.03 0.05 – 0.17 <.001 1.73 

CatPos 0.03 0.02 -0.02 – 0.07 .243 2.80 0.01 0.03 -0.06 – 0.08 .761 2.81 

Order -0.10 0.02 -0.14 – -0.06 <.001 2.36 0.00 0.03 -0.06 – 0.06 .963 2.38 

NoFeats 0.06 0.02 0.03 – 0.10 .001 1.61 0.05 0.03 -0.01 – 0.10 .111 1.61 

IntercorrDens -0.07 0.02 -0.12 – -0.03 .001 2.20 -0.05 0.03 -0.12 – 0.01 .121 2.20 

SemSim -0.07 0.02 -0.12 – -0.03 .002 2.52 -0.04 0.04 -0.12 – 0.03 .225 2.51 

NearSemNeigh 0.07 0.02 0.02 – 0.11 .006 2.46 0.01 0.04 -0.06 – 0.08 .761 2.45 

Typicality 0.00 0.02 -0.04 – 0.03 .875 1.57 0.00 0.03 -0.06 – 0.06 .981 1.57 

Distinctiveness -0.05 0.02 -0.09 – -0.01 .027 2.10 -0.08 0.03 -0.15 – -0.02 .015 2.09 

Observations 15,847  17,790  

Marginal R2 / 
Conditional R2 

0.005 / 0.107 

 

0.007 / 0.087 
 

Note. VIF = Variance Inflation Factor; NameAgr = name agreement; ImageAgr = image agreement; AoA = age of acquisition; OrthNeigh = 

orthographic neighbourhood density; VisCom = visual complexity; OrdCatPos = ordinal category position; SemSim = Semantic similarity; 

NrSemNeigh = Number of near semantic neighbours; NoFeats = number of semantic features; IntercorrDensity = intercorrelational density; 

Distinct = distinctiveness. 

Significant effects (Bonferroni corrected for multiple comparisons, significance threshold of p < .008) are printed in bold. 
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Abstract 

Investigations of effects of semantic variables on picture naming have often been inconclusive, with 

some studies reporting significant and others non-significant effects. One potential explanation may 

relate to the specific naming tasks used: While most previous studies have used standard picture 

naming, others have used speeded naming that requires participants to prioritise naming speed over 

accuracy. Speeded naming has been suggested to cause enhanced effects of item-inherent word 

characteristics due to disruptions of cognitive control and resulting modulations of responsiveness to 

input. Consequently, this study investigated whether effects are stronger in speeded compared to 

standard picture naming, focusing on six feature-based semantic variables: number of semantic 

variables, intercorrelational density, number of near semantic neighbours, semantic similarity, 

typicality, and distinctiveness. The results showed few differences in the variables’ effects between the 

two naming tasks: In the naming latency analysis, the inhibitory effect of distinctiveness was stronger 

in the speeded naming task, while in the accuracy analysis the effect of number of semantic features 

was stronger in the standard naming task. These findings cannot, therefore, be accounted for by 

increased responsiveness to input in speeded naming and we discuss possible underlying mechanisms. 

We conclude that, while some differences in effects of semantic variables between previous studies 

may have been caused by the specific naming task used, differences between studies more likely 

depend on statistical power and control of other influential variables in the experiment. 
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Introduction 

Semantic variables capture aspects of the semantic representation of words and, in spoken 

word production, they can influence the activation environment of semantic and lexical processing. 

This influence enables researchers to use semantic variables to study the processes of word 

production, which has led to increasing interest in their effects in recent years (e.g., Bormann, 2011; 

Fieder et al., 2019; Hameau et al., 2019; Lampe, Hameau, & Nickels, in press; Mirman, 2011; Rabovsky 

et al., 2016; Taylor et al., 2012).  

Importantly, research examining effects of the same semantic variable in picture naming has 

not always resulted in converging evidence, even within neurotypical participants. For example, 

increased semantic similarity, the average featural overlap between a target word and other words in 

the mental lexicon, has been reported to have both an inhibitory (Fieder et al., 2019) and no significant 

(Lampe, Hameau, & Nickels, in press) effect. This same pattern has been found for number of near 

semantic neighbours (words that share semantic information with the target; inhibitory effects: Fieder 

et al., 2019; Mirman, 2011; no significant effect: Bormann, 2011; Hameau et al., 2019; Lampe et al., 

2017; Lampe, Hameau, & Nickels, in press). One systematic difference between the studies that yielded 

contrasting results is the specific experimental paradigm used. While all studies used standard picture 

naming tasks (i.e., picture naming of items in the absence of manipulation of the surrounding context 

or distractors, unlike the Blocked Cyclic Naming or Picture-Word Interference paradigms), those that 

yielded significant findings (Fieder et al., 2019; Mirman, 2011) used a speeded picture naming task, in 

which word planning is interfered with by enforcing a strict temporal cut-off to response initiation.  

Speeded picture naming requires participants to name pictures at an increased rate that is 

faster than they would normally respond. For example, there may be a deadline of 600ms post picture 

onset, limiting the time for processing given that non-speeded, standard picture naming latencies are 

often around 900ms on average (e.g., Lampe, Hameau, & Nickels, in press). This leads to a decrease in 

naming latencies, which is often accompanied by an increase in naming errors compared to standard 

picture naming (i.e., speed-accuracy trade-off; e.g., Damian & Dumay, 2007; Kello & Plaut, 2000 in 

word reading). Naming errors observed in speeded naming are mostly semantically and visually 
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related to the target word and resemble the naming errors made by participants with aphasia (e.g., 

Hodgson & Lambon Ralph, 2008; Mirman, 2011; Moses et al., 2004). 

However, there is debate regarding how exactly the process of word planning is altered when 

participants are asked to name pictures quickly and disagreement about which processes or level(s) of 

word production might be affected. Vitkovitch and Humphreys (1991) found that naming errors in 

speeded participants were mostly semantically related to the target word and more frequently made 

on low compared to high frequency words, which they interpreted as an indicator of lexical processing 

being limited by the external time pressure (see Starreveld & La Heij, 1999, for similar findings and 

reasoning in a speeded Picture-Word Interference task, but note that effects of word frequency also 

arise in participants in standard naming, e.g., Alario et al., 2004; Lampe, Hameau, & Nickels, in press; 

see Perret & Bonin, 2019, for a metaanalysis and review). Similarly, Moses et al. (2004) reported 

predominantly semantically related perseverative and non-perseverative errors in picture naming, 

which were interpreted as reflecting processing difficulties at the lexical semantic level that were 

evoked by the speeding of naming. Lloyd-Jones and Nettlemill (2007) and Vitkovitch et al. (1993) also 

interpreted the different types of errors made in speeded naming (i.e., visual, semantic, and visual-

semantic) as reflecting the processes being disrupted by the naming speed: visual and/or semantic 

processing.  

In contrast, Kello and colleagues associated the behaviour observed in speeded naming with 

changes to cognitive control. They used two different versions of speeded naming: speeded deadline 

(Kello et al., 2000) and tempo naming (Kello, 2004; Kello & Plaut, 2000, 2003) in reading aloud and 

Stroop colour naming. In speeded deadline naming participants are instructed to name the pictures 

before a certain response deadline (e.g., 500ms after picture onset; see also e.g., Damian & Dumay, 

2007; Kello et al., 2000; Lloyd-Jones & Nettlemill, 2007; Moses et al., 2004; Vitkovitch et al., 1993; 

Vitkovitch & Humphreys, 1991). In contrast, in tempo naming, participants are asked to respond at a 

certain point in time after the onset of the picture on screen (see also e.g., Fieder et al., 2019; Mirman, 

2011; Mirman, Kittredge, et al., 2010). Participants hear a series of three beeps, each, for example, 

500ms apart, the appearance of the picture coincides with a fourth beep, and participants are 
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instructed to keep the rhythm of the beeps by naming the picture in time with beep number five. 

Importantly, Kello and colleagues suggest that strategic control allowed for the compression of the 

processing trajectory for naming in both tasks. More specifically, they proposed that changes in 

cognitive control dynamics evoked by the task can modify the processing parameter input gain (e.g., 

Gotts & Plaut, 2002; Kello, 2004; Kello et al., 2000, 2005; Kello & Plaut, 2000, 2003). Input gain changes 

the systems’ sensitivity to new inputs and thus affects the processing units’ responsiveness to their 

input: When input gain is low, activation of a processing unit is relatively unaffected by any inputs, 

however, when input gain is high, inputs have much stronger effect on activation. A rise in input gain 

consequently accelerates processing as the processing unit’s activation reaches threshold much faster 

due to its amplified sensitivity to input. However, at high gain, processing is also less controlled, which 

results in decreased model precision and provokes processing errors (i.e., speed-accuracy trade-off). 

Therefore, this input gain proposal entails an alteration of the processing dynamics, such that the task 

requirements can be met. Alternatively, some authors have proposed a change in selection thresholds 

in speeded versus standard naming (e.g., Humphreys et al., 1995; Kello, 2004): In order to meet the 

task requirements, participants lower the threshold of activation required for information selection, 

which allows them to respond faster, however, at the expense of increased error rates due to 

incomplete processing (see also Coltheart et al., 2001).  

Hodgson and Lambon Ralph (2008) directly compared the speeded deadline and tempo 

versions of speeded naming and proposed that both reduce the time for controlled semantic 

processing. Although both tasks resulted in many naming errors, there were significantly more errors 

in the tempo naming task (20% versus 18% in speeded deadline task). Hodgson and Lambon Ralph 

suggested that the dual-task requirement of the tempo naming task (i.e., naming pictures quickly while 

keeping the required tempo) resulted in a diversion of attention and executive resources from speech 

production and ultimately insufficient executive resources to be assigned to semantic cognition for 

successful picture naming. 

Mirman (2011) also suggested a modulation of cognitive control as an explanation for his 

findings of significant effects of semantic neighbours on accuracy and the proportion of semantic 
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errors in speeded naming. However, while he also used a tempo naming task (500ms tempo), he did 

not attribute his findings to dual-task requirements (cf. Hodgson & Lambon Ralph, 2008), but argued 

more generally for disrupted cognitive control of semantic processing resulting from the forced 

increase of processing speed in this task. In addition to effects of near semantic neighbours, Mirman 

also studied effects of distant semantic neighbours (i.e., words sharing only little semantic information 

with the target word, 0.25 < features vector cosine similarity > 0). While many near semantic 

neighbours had inhibitory effects on naming accuracy and led to an increase of semantic errors, many 

distant semantic neighbours facilitated processing and resulted in more accurate responses with 

marginally significantly fewer semantic errors
1
. Mirman explained these findings in the context of an 

attractor model of semantic cognition, in which attractors represent stable states of the model, 

corresponding to the target’s pattern of activation across all semantic features. He argued that while 

near semantic neighbours interfere with the system successfully settling into the target attractor, many 

distant semantic neighbours pull towards the target and thus facilitate settling. Mirman argued that 

any effects of these semantic variables on the attractor landscape are magnified in speeded naming 

(and in participants with aphasia) due to disruptions of cognitive control mechanisms. He stated that 

disruption of control related to competition between co-activated lexical alternatives, could not 

explain the facilitatory effects of number of distant semantic neighbours and that disrupted 

competitive lexical selection in speeded naming (or aphasia) was consequently unable to explain the 

opposite effects of near and distant semantic neighbours
2
.  

 

1
 Please note that, as we have argued elsewhere (Hameau et al., 2019; Lampe, Hameau, Fieder, et al., in press), the 

effect of number of distant semantic neighbours is far from established in the literature. While Mirman (2011) 
reported effects in participants with and without aphasia, other work (Fieder et al., 2019; Hameau et al., 2019; 
Lampe, Hameau, Fieder, et al., in press), partly using the same database of picture naming data of participants 
with aphasia as Mirman (i.e., MAPP Database, Mirman, Strauss, et al., 2010), failed to replicate the significant 
effects of number of distant semantic neighbours. However, a replication of this finding would be particularly 
important as Mirman’s item sets were subject to a number of shortcomings (i.e., small item sets that were 
insufficiently matched for some psycholinguistic variables with a non-unambiguous allocation of items into the 
sets of high vs low numbers of near/distant semantic neighbours). Given this lack of reliability of any effect of 
number of distant semantic neighbours on processing, we did not include it as a semantic variable of interest in 
the analyses conducted here.  
2 Importantly, we (e.g., Lampe, Hameau, & Nickels, in press) would argue that facilitatory and inhibitory effects of 
semantic variables could indeed be explained by spreading activation dynamics at the semantic level in the 
context of competitive lexical selection in word production (see also e.g., Abdel Rahman & Melinger, 2019; 
Rabovsky et al., 2016). This interpretation may be more plausible compared to the cognitive control mechanism 
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Instead, Mirman (2011) claimed that, under time pressure, the cognitive control mechanism 

increases the rate of processing such that participants can respond faster, which, however, comes at 

the cost of precision, leading to increased naming errors. More specifically, following the proposal of 

Kello and colleagues outlined above (e.g., Kello, 2004; Kello et al., 2000, 2005; Kello & Plaut, 2000, 

2003), Mirman suggested that this change of cognitive control dynamics influenced input gain. He 

specified that the input gain parameter affects the processing units’ sensitivity to their input, be it 

excitatory or inhibitory in nature. Consequently, Mirman proposed that facilitatory and inhibitory 

effects of distant and near semantic neighbours would be amplified following modulations of the 

processing units’ responsiveness to input, such as in speeded naming.  

However, this has never been tested empirically with a direct comparison of effects of 

semantic variables on performance in standard and speeded picture naming. Indeed, to date, only a 

limited number of studies (Fieder et al., 2019; Lloyd-Jones & Nettlemill, 2007; Mirman, 2011; Mirman, 

Kittredge, et al., 2010; Vitkovitch et al., 1993; Vitkovitch & Humphreys, 1991) have investigated effects 

of any item-inherent variables on performance in either variant of the speeded naming task, and even 

fewer have compared effects of these variables between speeded and standard naming. In fact, very 

few studies have directly compared performance in the two tasks at all. In picture naming, as far as we 

are aware, only Lloyd-Jones and Nettlemill (2007) have looked at effects of psycholinguistic variables 

(i.e., complexity, decomposability, contour overlap, imageability, age of acquisition, frequency, 

animacy) in speeded deadline and standard naming. Importantly however, they examined effects on 

different dependent variables in the two tasks (i.e., naming latencies in standard naming and naming 

accuracy and error types in speeded deadline naming) and effect sizes were not directly compared 

between the tasks. To our knowledge, the only direct comparisons of effects of psycholinguistic 

variables in standard and speeded processing have been conducted in reading aloud: Gerhand and 

Barry (1999) found stronger effects of age of acquisition on latency in a speeded deadline compared to 

 

based interpretation provided by Mirman (2011), as facilitatory and inhibitory effects of semantic variables have 
also been observed in standard picture naming in neurotypical participants (e.g., Lampe, Hameau, Fieder, et al., in 
press; Rabovsky et al., 2016), thus in a context where responses were given at a normal pace, rendering 
involvement of a control mechanism to increase the naming rate unnecessary.  
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a standard word reading task, while the effect of word frequency was similar in the two tasks. In 

contrast, Kello and Plaut (2000) reported attenuated effects of word frequency and spelling-sound 

consistency on naming latency in tempo compared to standard reading. However, it is debateable how 

valid a latency measure is in the tempo task, given that in this task, in contrast to the speeded deadline 

task, participants aim to produce all responses at the same latency.  

Given the paucity of evidence, we aimed to assess Mirman's (2011) proposal that influences of 

(semantic) variables are stronger in speeded compared to standard picture naming. To facilitate 

comparability of our findings to previous work, we included the same six feature-based semantic 

variables that we have previously investigated (Lampe, Hameau, & Nickels, in press; Lampe, Bürki, et 

al., 2021; Lampe, Hameau, Fieder, et al., in press). These capture aspects of the degree of activation 

spread at the semantic level (e.g., number of semantic features, Lampe, Hameau, & Nickels, in press; 

Rabovsky et al., 2016; Taylor et al., 2012) or the size and strength of activation of a co-activated lexical 

cohort (e.g., number of near semantic neighbours, Fieder et al., 2019; Hameau et al., 2019; Lampe, 

Hameau, & Nickels, in press; Mirman, 2011). More specifically, these six variables are 1) a count of 

semantic features associated with a concept (number of semantic features), 2) the degree of 

intercorrelation of the features of a concept, which characterises clusters of closely related concepts 

(intercorrelational density), 3) the number of words that share a substantial part of their semantic 

information with the target (number of near semantic neighbours), 4) the featural similarity of the 

target with the other words in the mental lexicon (semantic similarity), 5) a concept’s 

representativeness of its semantic category (typicality), and 6) the degree to which the features of a 

concept are shared with other concepts (distinctiveness).  

Importantly, as noted above, while the tempo naming task provides useful data on accuracy, 

we believe that naming latency data from this task is not appropriate for uncovering processes during 

word production (cf. Fieder et al., 2019 and Mirman, 2011) as the participants are presented with 

explicit and precise cues for when to initiate their response. In contrast, in the speeded deadline 

naming task, participants are required to respond before a specific deadline, thus giving them more 

flexibility in their actual response speed. Consequently, we used a speeded deadline naming task 
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following the procedure suggested by Damian and Dumay (2007), in which the pictures in the speeded 

deadline task remained on the screen for the same duration (i.e., 2000ms) as in the standard naming 

task, but participants were informed on their performance with feedback that was presented after the 

picture offset (see also Kello et al., 2000, for a similar approach).  

Methods 

Participants 

Eighty-three English native speakers were recruited from Macquarie University’s Psychology 

participant pool. They provided written informed consent to participate in this study and received 

course credit or monetary compensation (AUD15 per hour) for their participation. Participants had to 

be right-handed, 17–35 years old, and had to have normal or corrected vision. Moreover, they had to 

be without a history of speech and language, neurological, or cognitive impairments.  

All 83 participants first named the pictures in a standard naming task (analysed and reported 

in Lampe, Hameau, & Nickels, in press; Lampe, Bürki, et al., 2021). Subsequently, all participants named 

the pictures again: 42 of these participants this time named the pictures in a speeded naming task, 

while the other 41 participants completed another round of standard naming. Three of the tested 

participants had to be excluded because they did not fulfil the inclusion criteria, did not follow the task 

instructions, or were outliers in terms of naming accuracy (more detail provided below). Consequently, 

the data analysed was from 39 participants (M = 20.04 years old, range = 17–26 years, SD = 1.98, 35 

females) on the speeded naming task and data from 41 participants (M = 20.18 years old, range = 17–

33 years, SD = 2.66, 29 females) on the (second) standard naming task.  

Stimuli 

Colour photographs of 297 items from the McRae et al. (2005) feature database that had high 

name agreement in Australian English (> 75%; Lampe, Hameau, & Nickels, in press) were used as 

stimuli. They were divided into four blocks (Block 1 n = 35 items, Blocks 2 and 3 n = 87, Block 4 n = 88 

items) and for each block we created three pseudorandomised orders with a minimum of two items 

from different semantic categories being presented between two items of the same category. The 
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different pseudorandomisations of the blocks were then arranged in different orders to create 6 

experimental lists (in each of the lists, Block 1 always appeared first).  

For all 297 items, information on six semantic and further psycholinguistic control variables 

(Perret & Bonin, 2019) was available. The semantic variables were derived from, or calculated based on, 

information given in the McRae et al. (2005) feature database. Number of semantic features was a 

count of semantic features generated for a target word (e.g., Rabovsky et al., 2016). Intercorrelational 

density indicated the summed shared variance of a concept’s correlated feature pairs (e.g., Rabovsky et 

al., 2016). Number of near semantic neighbours was a count of the concepts in the McRae et al. 

database that had a cosine feature vector similarity of at least .4 with the target (e.g., Hameau et al., 

2019; Mirman, 2011; Mirman & Graziano, 2013). Semantic similarity was the average similarity between 

the feature vectors of the target and all other words in the database (Mirman & Magnuson, 2008). 

Typicality was based on Rosch and Mervis' (1975) family resemblance score and was calculated by 

summing, for each concept, the values that reflect, for each of the concept’s features, the prevalence of 

that feature in the target’s semantic category as well as its production frequency and the number of 

items in the target’s category. Finally, distinctiveness was the average of the inverse number of 

concepts in which the features of a target occurred across the database (e.g., Rabovsky et al., 2016). 

Lampe, Hameau, and Nickels (in press) and Lampe, Hameau, Fieder, et al. (in press) provide more 

detailed descriptions of the calculation of the semantic variables.  

The psycholinguistic control variables were derived from different sources: name agreement, 

image agreement, imageability, age of acquisition, and familiarity were rated (Lampe, Hameau, & 

Nickels, in press), (spoken word) frequency was based on television subtitles (SUBTLEX-UK; van Heuven 

et al., 2014), and two further control variables were retrieved from the experimental lists: ordinal 

category position indicated the number of previously seen items of the same semantic category (to 

account for the cumulative semantic interference effect; Howard et al., 2006), and trial order indexed 

the rank-order of an item in the experiment (to control for habituation to the experiment or fatigue; 

Baayen & Milin, 2017). 
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Procedure 

This study was part of a larger investigation for which all participants completed three picture 

naming tasks. The first task was standard picture naming, which was analysed in Lampe, Hameau, and 

Nickels (in press) and Lampe, Bürki, et al. (2021) and will not be considered here. Subsequently, all 

participants performed the speeded deadline and standard naming tasks analysed here. Participants 

were not informed on the accuracy of their responses in the first standard naming task. We hoped that 

this approach where the participants named the stimuli in the first standard naming task would 

decrease any difficulties related to stimulus identification that could otherwise disproportionally affect 

performance on the speeded picture naming task due to the reduced processing time available (some 

of the previous speeded naming studies also provided a ‘practice’ naming round and/or familiarised 

their participants with the pictures and target names before the experiment; e.g., Damian & Dumay, 

2007).  

All participants completed the three naming tasks, and the same 297 stimuli were presented in 

all three tasks, but participants saw a different pseudorandomisation in each task. The order of 

administration of the speeded and second standard naming tasks was counterbalanced across 

participants. We had originally intended to assess the effect of naming task in within-participants 

analyses, including data of all participants for both the speeded and second standard naming task. 

However, effects of order of task administration interacted with various control and semantic variables 

and we therefore only used half of the available data and analysed only the data of the second naming 

round, which was speeded naming for one half of the participants and standard naming for the other 

half.  

Picture presentation and trial-sequence in all three tasks were controlled by Presentation® 

(Version 20.0, Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com), which also recorded 

verbal responses and naming latencies using a voice trigger with the help of a Behringer preamplifier 

(Tube Ultragain Mic100) and a Rode NTG1 shotgun microphone. All tasks were presented on an AOC 

FreeSync LED monitor with a Dell Precision tower 3620 running Windows 10. The keyboard was used 

to navigate through the tasks. 
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In addition to naming latency and accuracy, a continuous electroencephalography (EEG) signal 

was recorded in all three naming tasks using a 64 channels ActiveTwo BioSemi system (BioSemi, 

Amsterdam, the Netherlands). This data is not reported here. The study procedures, but not the 

analyses conducted here, were preregistered on the Open Science Framework (Lampe et al., 2019; 

https://osf.io/yw6ma/). The data and all analysis scripts of this study are available under 

https://osf.io/5r8fp/.  

Standard naming task  

Trial sequence in the standard naming task was as follows (see Figure 1, Panel A): A fixation 

cross was presented for a random duration between 500 and 1000ms in the middle of the screen. 

Then, a picture was displayed for 2000ms on white background. The participants were instructed to 

name the picture as quickly and accurately as possible, using a single word only, and that they would 

receive feedback regarding whether they had named the pictures fast enough. After the picture offset, 

feedback was presented for 400ms: If the participant had responded within 1500ms after onset of the 

picture on the screen, this feedback was positive, irrespective of response accuracy (i.e., “Good!” in 

green ink), else the feedback was negative (“Too slow!” in red ink). Then, the screen was blank for 

1000ms before the next trial started. The feedback was presented to keep the trial sequence of the 

standard and speeded naming tasks as comparable as possible (see also Speeded naming task section 

below) and the 1500ms deadline was chosen expecting that participants would usually not have 

difficulties adhering to it, given that mean naming latency in the first standard picture naming round 

was 900ms, and therefore would not put the participants under pressure.   

The task began with 4 practice trials in which participants named pictures that were not part of 

the 297 experimental stimuli and came from different semantic categories to the experimental stimuli. 

There was a break after the practice phase and after each experimental block for the participants to ask 

questions and to rest. The first item after each break was another practice item. Altogether, this task 

lasted about 30 minutes. 
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Figure 1 

Trial sequence in standard (Panel A) and speeded naming task (practice trials in Panel B, experimental 

trials in Panel C) 

 

Note. RT = Response time  
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Speeded deadline naming task 

In the speeded naming task, the trial sequence differed between the practice (Figure 1, Panel 

B) and experimental trials (Figure 1, Panel C). The task began with 5 practice trials to familiarise 

participants with the naming speed expected in this task. In the practice trials, a fixation cross was 

presented for a random duration between 500 and 1000ms in the middle of the screen. Subsequently, 

a picture was displayed for 600ms on a white background in the centre the screen. Then, participants 

heard a beep and the picture disappeared from the screen. They were instructed to name the picture 

as quickly as possible, ideally while it was still on the screen, and to “beat the beep”, prioritising 

naming speed over accuracy (i.e., speeded deadline naming, see also e.g., Moses et al., 2004; Vitkovitch 

& Humphreys, 1991). After the picture offset, feedback was presented for 400ms: If the participant had 

started to respond within 600ms after picture onset, this feedback was positive (i.e., “Good!” in green 

ink), else the feedback was negative (“Too slow!” in red ink). Subsequently, the screen was blank for 

1000ms before the next trial started.  

In contrast to the practice trials, in the experimental trials of the speeded naming task, the 

pictures were displayed for 2000ms and no beep was played (see Damian & Dumay, 2007, for a similar 

procedure). However, the participants were instructed to name the pictures like in the practice trials 

and as if there was a beep. Feedback after picture offset informed the participants on whether they 

had managed to initiate their response within the aspired 600ms (Figure 1, Panel C). 

A break separated the experimental blocks. After each break, the participants were presented 

with 5 different practice items following the trial sequence of the practice items to remind them of the 

necessary naming speed. Each experimental block started with a sixth practice item that was presented 

according to the experimental trial sequence. All 24 practice items were not part of the experimental 

stimuli and came from different semantic categories. This task also lasted about 30 minutes. 

Data analysis 

After the experiment, responses from both tasks were transcribed and checked for naming 

accuracy. The first response that consisted of at least one English syllable was coded for accuracy. 

Correct responses consisted of (only) the correctly named target word and these responses were 
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analysed in the naming latency analysis. For the naming accuracy analysis, responses were also coded 

as correct if they were correct responses that were preceded by a determiner (e.g., a box), a hesitation 

(e.g., umm, box), or an elaboration (e.g., cardboard box for box), or contained a dysfluency on the 

initial phoneme of the target (e.g., b..box). Abbreviations, synonyms or acceptable alternative 

responses, and trials where a response from the previous trial intruded into the current trial (but where 

the target item was subsequently named correctly) were not analysed (NA). All other response types 

(dysfluencies with production of a non-target phoneme (e.g., st raspberry), incomplete (i.e., responses 

that were not legal English syllables: a single consonant or short vowel, or CV responses of consonants 

followed by a short vowel), incorrect responses, and omissions) were coded as naming errors.  

The recorded naming latency was manually adjusted through visual and auditory inspection of 

the waveform and the voice recording using Praat (Version 6.0.49; Boersma & Weenink, 2019) to 

derive maximally accurate naming latencies. All statistical analyses were conducted in R Studio (Version 

1.3.959; RStudio Team, 2020). We ran (Generalised) Linear Mixed Effect Models on the naming latency 

and the naming accuracy data using the lme4-package (Version 1.1.25; Bates, Mächler, et al., 2015), 

with p-values being derived using lmerTest (Version 3.1.3; Kuznetsova et al., 2017). For the random 

effects structure we considered random by-participant slopes for the six semantic variables and 

followed Bates, Kliegl, et al. (2015) for the specification of a simplified random effects structure. Model 

fit was compared using likelihood ratio tests (stats package, Version 4.0.2; R Core Team, 2020). 

Interactions were plotted using the package sjPlot (Version 2.8.6, Lüdecke, 2020). 

All semantic and psycholinguistic control variables were standardised using a z-transformation. 

Based on the output of the boxcox function (EnvStats package, Version 2.4.0; Millard, 2013), naming 

latency was transformed to approximate a normal distribution (negative reciprocal transformation, 

which preserves order among values of the same sign).  

Naming accuracy outliers for the two tasks separately were identified based on visual 

inspection of boxplots. In the standard naming task, data of one participant who performed 

considerably less accurately than the other participants (68% mean naming accuracy versus mean 

accuracy of 91% in the remaining participants, range = 78–99%, SD = 5%) was excluded. No 
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participant had to be removed from the speeded naming data (M = 76% naming accuracy, range = 

59–91%, SD = 7%). Moreover, 18 items were outliers in terms of naming accuracy in the standard 

naming task with an average accuracy of 60% (range = 49–68%, SD = 6%), in contrast to an average 

naming accuracy of 93% for the remaining items (range = 70–100%, SD = 8%). However, the data 

points associated with these items were part of the tail of the distribution and their removal comes at 

the cost of statistical power. We consequently tested if their exclusion changed the findings compared 

to analyses conducted on all items. As the findings were mostly comparable, with no changes in the 

interactions between semantic variables and task in either of the analyses, we focus on the analyses 

performed on all 297 items. However, the findings of the analyses conducted after removing these 

items are reported in Appendix A.  

For the naming accuracy analysis, to be confident that any naming errors were not caused by a 

misidentification of or unfamiliarity with the depicted object, we tested whether the findings differed 

when including only trials that were named correctly by the participant in the first (standard) naming 

round that was reported in Lampe, Hameau, and Nickels (in press) (i.e., items where familiarity with and 

successful identification of the depicted object under normal processing conditions can be 

guaranteed). However, given the low number of errors in the standard naming task when focusing on 

trials that were named accurately in the first naming round (n = 254 naming errors from 10,461 data 

points), we were only able to test for such differences in the speeded naming task (n = 1,451 naming 

errors from 9,480 data points for items that were named correctly in the first standard naming task). 

No differences in the effects of semantic variables were found between Linear Mixed Effect Models on 

naming latency in speeded picture naming including or excluding trials depending on their naming 

accuracy in the first standard naming round. Consequently, we performed the analysis of naming 

accuracy on all trials, irrespective of their accuracy in the first naming round. 

The naming latency analysis was conducted on correctly named items, irrespective of their 

actual naming latency (i.e., we did not exclude trials with naming latencies > 600ms in the speeded 

naming task or trials with naming latencies > 1500ms in the standard naming task), resulting in 19,519 

data points from 297 items and 80 participants, which consisted of 10,864 data points from standard 
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naming and 8,655 data points from speeded naming. The naming accuracy analysis was conducted on 

all items, except for those coded ‘NA’ for naming accuracy, resulting in 23,608 data points from 297 

items and 80 participants (n = 3,820 naming errors), consisting of 12,100 data points from the 

standard naming task (n = 1,097 naming errors) and 11,508 data points from the speeded naming task 

(n = 2,723 naming errors). Following Mirman (2011), we also conducted an analysis that contrasted the 

proportion of semantic errors and correct responses. The findings were comparable to the naming 

accuracy analysis and can be found in Appendix B. 

To test whether effects of the six semantic and eight psycholinguistic control variables were 

larger in the speeded than in the standard naming task, we combined the data from the two tasks and 

tested for significant interactions between task and these variables. Subsequently, the significant 

interactions were unpacked in planned comparisons using the emtrends function of the R package 

emmeans (Version 1.5.2-1, Lenth, 2020) to investigate the significance of the effect in the two tasks 

separately and to determine whether the effects were indeed stronger in the speeded naming task. 

Task was treatment coded (speeded as 0.5 and standard as -0.5).  

Results 

There were main effects of task in the naming latency and accuracy analyses (Table 1 and 

Table 2, respectively), indicating that the speeded deadline naming procedure yielded the desired 

effect and caused a speed-accuracy trade-off with faster but less accurate naming compared to the 

standard naming task. More specifically, participant mean naming latency in the speeded naming task 

was 609ms (range = 506–718ms, SD = 56ms) and 760ms in the standard naming task (range = 650–

916ms, SD = 68ms), and naming accuracy in the speeded naming task was 76% (range = 59–91%, SD 

= 7%) and 91% in the standard naming task (range = 78–99%, SD = 5%). We will now address the 

findings of the naming latency and accuracy analyses.  

Naming latency  

The findings of the naming latency analysis are summarised in Table 1. The only semantic 

variable that significantly interacted with naming task was distinctiveness. Analysis of this interaction 

confirmed that the effect was significant and inhibitory in both naming tasks with a stronger effect in 
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speeded naming (Figure 2, Panel A). Moreover, all control variables, except for ordinal category 

position, significantly interacted with task. The effects were stronger in the speeded naming task than 

in the standard naming task for name agreement (facilitatory in both tasks, Figure 2, Panel B), age of 

acquisition (inhibitory only in speeded naming, Figure 2, Panel C), image agreement (facilitatory in 

both tasks, Figure 2, Panel E), frequency (facilitatory only in speeded naming, Figure 2, Panel F), 

familiarity (facilitatory in both tasks, Figure 2, Panel G), and trial order (facilitatory only in speeded 

naming, Figure 2, Panel H). In contrast, the effect of imageability was stronger in the standard naming 

task (Figure 2, Panel D), however, this facilitatory effect was non-significant in both tasks in the follow-

up analysis. This could suggest that the significant interaction was a Type 1 error, a false positive 

finding, and that there was, in reality, no difference between the two simple effects. Alternatively, this 

could be indicative of a Type 2 error, a false negative finding, incorrectly stating the absence of simple 

effects in one or both tasks. Given that we statistically controlled for Type 1 errors reasonably well (i.e., 

our significance level of .05 allowed for a 5% probability of incorrectly rejecting the null hypothesis 

that there is no difference in the effect of imageability between the two tasks), the most likely scenario 

is that we made a Type 2 error due to insufficient statistical power. However, our data is unable to 

differentiate between these options and further research is needed to do so. 

In addition, some of the main effects of semantic and control variables were significant: 

Combined across tasks, responses were slower the higher the number of near semantic neighbours, 

the greater the distinctiveness, and the higher the age of acquisition of the target. Moreover, 

responses were faster the higher the name agreement, image agreement, and familiarity of the target, 

and the later in the experiment a trial occurred. 



    CHAPTER 5  | 317 

 

C
H

A
P

T
E
R

 6
  |  317

 

Figure 2 

Significant interactions between semantic or control variables and task in the naming latency analysis   

 

Note. Naming latency was negative reciprocally transformed; all variables were standardised.  
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Table 1 

Naming latency: summarised output of Linear Mixed Model analysis for task comparison and simple effects  

Model structure  

lmer(RT ~ (NameAgr + AoA + Imageability + ImageAgr + 
Frequency + Familiarity + Order + OrdCatPos + NoFeats + 
IntercorrDens + NearSemNeigh + SemSim + Typicality + 
Distinctiveness) * Task + (1 | Item) + (NearSemNeigh + 
SemSim || Participant), data, REML = TRUE)         

Random effect Variance SD             

Item (Intercept) 0.01 0.12             

Participant (Intercept) 0.02 0.13             

Participant | 
NrSemNeigh  

0.00 0.02             

Participant | SemSim  0.00 0.01             

Residuals 0.06 0.24             

Fixed effects Estimate SE CI t- 
value 

p-
value VIF         

(Intercept) -1.54 0.02 -1.58 – -1.51 -95.53 <.001          

NameAgr -0.05 0.01 -0.06 – -0.03 -6.59 <.001 1.11         

AoA 0.02 0.01 0.00 – 0.04 2.01 .045 2.45         

Imageability -0.01 0.01 -0.03 – 0.01 -1.14 .254 1.88         

ImageAgr -0.03 0.01 -0.05 – -0.02 -4.34 <.001 1.25         

Frequency -0.01 0.01 -0.03 – 0.01 -1.18 .239 1.61         

Familiarity -0.03 0.01 -0.05 – -0.02 -3.60 <.001 1.74         

Order -0.01 0.00 -0.02 – -0.00 -2.15 .032 3.07         

OrdCatPos 0.00 0.00 -0.01 – 0.01 0.63 .531 3.14         

NoFeats -0.00 0.01 -0.02 – 0.01 -0.41 .681 1.57         

IntercorrDens 0.02 0.01 -0.00 – 0.04 1.64 .101 2.23         

NearSemNeigh 0.02 0.01 0.00 – 0.05 2.26 .024 2.37         

SemSim 0.01 0.01 -0.01 – 0.03 0.84 .404 2.40         
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Typicality -0.00 0.01 -0.02 – 0.01 -0.37 .711 1.44 Simple effects of variables in significant interactions 
Distinctiveness 0.03 0.01 0.01 – 0.05 3.11 .002 2.01 Speeded naming Standard naming 

Task -0.32 0.03 -0.38 – -0.26 -10.95 <.001 1.00 Estimate SE z-
value 

p-
value 

Estimate SE z-
value 

p-
value 

NameAgr * Task -0.01 0.00 -0.02 – -0.01 -3.46 .001 1.11 -0.05 0.01 -7.18 <.001 -0.04 0.01 -5.56 <.001 
AoA * Task 0.01 0.01 0.00 – 0.02 2.24 .025 2.38 0.03 0.01 2.47 .013 0.02 0.01 1.41 .157 

Imageability * Task 0.01 0.00 0.00 – 0.02 2.63 .009 1.85 -0.00 0.01 -0.46 .649 -0.02 0.01 -1.77 .077 
ImageAgr * Task -0.01 0.00 -0.02 – -0.00 -2.14 .032 1.20 -0.04 0.01 -4.69 <.001 -0.03 0.01 -3.71 <.001 
Frequency * Task -0.03 0.00 -0.04 – -0.02 -7.29 <.001 1.55 -0.03 0.01 -2.90 .004 0.01 0.01 0.65 .515 
Familiarity * Task -0.01 0.00 -0.02 – -0.01 -3.08 .002 1.63 -0.04 0.01 -4.21 <.001 -0.03 0.01 -2.76 .006 

Order * Task -0.03 0.01 -0.04 – -0.02 -5.74 <.001 2.24 -0.02 0.00 -4.85 <.001 0.01 0.00 1.63 .103 
OrdCatPos * Task -0.01 0.01 -0.02 – 0.00 -1.17 .241 2.68         

NoFeats * Task -0.01 0.00 -0.01 – 0.00 -1.37 .172 1.64         
IntercorrDens * Task -0.00 0.01 -0.01 – 0.01 -0.20 .845 2.04         

NearSemNeigh * Task 0.01 0.01 -0.01 – 0.02 1.09 .274 1.59         
SemSim * Task 0.01 0.01 -0.00 – 0.02 1.45 .148 1.70         

Typicality * Task -0.00 0.00 -0.01 – 0.01 -0.38 .701 1.48         
Distinctiveness * Task 0.02 0.01 0.01 – 0.03 3.92 <.001 1.67 0.04 0.01 3.95 <.001 0.02 0.01 2.08 .037 

Observations: 19,519         
Marginal R2 / Conditional R2: 0.287 / 0.531         
Note. Participant | X = random slope of X by participants, VIF = Variance Inflation Factor, NameAgr = Name agreement, AoA = Age of acquisition, ImageAgr = 

Image agreement, Order = Trial order, OrdCatPos = Ordinal category position, NoFeats = Number of semantic features, IntercorrDens = Intercorrelational 

Density, NearSemNeigh = Number of near semantic neighbours, SemSim = Semantic similarity. 

Values of significant effects (p < .05) are printed in bold; in the simple effects, the variable with the stronger effect within significant interactions is highlighted 

in grey.  
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Naming accuracy   

In the naming accuracy analyses the only semantic variable that significantly interacted with 

naming task was number of semantic features (see Table 2). The planned follow-up analysis revealed 

that the facilitatory effect was stronger in the standard naming task (Figure 3, Panel A) and non-

significant in speeded naming. Moreover, some control variables significantly interacted with task: The 

effects were stronger in the standard naming task for name agreement (facilitatory in both tasks, 

Figure 3, Panel B) and image agreement (facilitatory in both tasks, Figure 3, Panel C). In contrast, 

effects were stronger in the speeded naming task for familiarity (facilitatory only in speeded naming, 

Figure 3, Panel D) and trial order (inhibitory only in speeded naming, Figure 3, Panel E). 

When the data were combined across both tasks, responses were less accurate for words with higher 

intercorrelational density and words that are acquired later in life. In contrast, responses were more 

accurate for words with higher name agreement, imageability, image agreement, and frequency. 
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Figure 3 

Significant interactions between semantic or control variables and task in the naming accuracy analysis   

 

Note. All variables were standardised.  
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Table 2 

Naming accuracy: summarised output of Generalised Linear Mixed Model analysis for task comparison and simple effects 

Model structure  

glmer(ACC ~ (NameAgr + AoA + Imageability + ImageAgr 
+ Frequency + Familiarity + Order + CatPos + NoFeats + 
IntercorrDens + NearSemNeigh + SemSim + Typicality + 
Distinctiveness)*Task + (1 | Item) + (NearSemNeigh | 
Participant), data, family = binomial())         

Random effect Variance SD Correlation            

Item (Intercept) 0.89 0.94             

Participant (Intercept) 0.34 0.58             

Participant | 
NearSemNeigh  

0.02 0.14 0.76            

Fixed effects Estimate SE CI z- 
value 

p-
value VIF         

(Intercept) 2.39 0.09 2.21 – 2.56 26.21 <.001          

NameAgr 0.59 0.06 0.46 – 0.71 9.41 <.001 1.11         

AoA -0.21 0.10 -0.40 – -0.03 -2.24 .025 2.55         

Imageability 0.20 0.08 0.04 – 0.37 2.46 .014 1.93         

ImageAgr 0.26 0.07 0.12 – 0.39 3.75 <.001 1.29         

Frequency 0.17 0.08 0.02 – 0.32 2.22 .026 1.63         

Familiarity 0.13 0.08 -0.03 – 0.29 1.64 .101 1.80         

Order -0.07 0.04 -0.16 – 0.01 -1.70 .089 3.18         

OrdCatPos -0.01 0.05 -0.11 – 0.09 -0.25 .803 3.38         

NoFeats 0.11 0.08 -0.04 – 0.26 1.47 .141 1.61         

IntercorrDens -0.20 0.09 -0.37 – -0.02 -2.17 .030 2.27         

NearSemNeigh -0.11 0.10 -0.29 – 0.08 -1.09 .274 2.47         

SemSim -0.07 0.10 -0.26 – 0.12 -0.77 .443 2.52         

Typicality 0.05 0.08 -0.10 – 0.20 0.69 .491 1.52 Simple effects of variables in significant interactions 
Distinctiveness -0.08 0.09 -0.25 – 0.09 -0.92 .357 2.07 Speeded naming Standard naming 
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Task -1.56 0.14 -1.84 – -1.29 -11.07 <.001 1.26 Estimate SE z-
value 

p-
value 

Estimate SE z-
value 

p-
value 

NameAgr * Task -0.23 0.04 -0.31 – -0.14 -5.44 <.001 1.10 0.47 0.06 7.45 <.001 0.70 0.07 10.31 <.001 
AoA * Task 0.12 0.07 -0.02 – 0.25 1.69 .092 2.72         

Imageability * Task -0.01 0.06 -0.12 – 0.10 -0.21 .830 1.98         
ImageAgr * Task -0.17 0.05 -0.27 – -0.08 -3.67 <.001 1.34 0.17 0.07 2.44 .015 0.34 0.07 4.58 <.001 
Frequency * Task 0.10 0.05 -0.01 – 0.20 1.77 .078 1.60         
Familiarity * Task 0.23 0.06 0.11 – 0.35 3.78 <.001 1.90 0.25 0.08 3.02 .003 0.02 0.09 0.21 .835 

Order * Task -0.19 0.06 -0.32 – -0.07 -3.01 .003 2.36 -0.17 0.05 -3.59 <.001 0.02 0.06 0.38 .705 
OrdCatPos * Task 0.02 0.07 -0.12 – 0.16 0.22 .825 2.93         

NoFeats * Task -0.17 0.06 -0.28 – -0.06 -2.97 .003 1.72 0.03 0.08 0.36 .718 0.20 0.09 2.31 .021 
IntercorrDens * Task 0.10 0.06 -0.03 – 0.22 1.53 .127 2.28         

NearSemNeigh * Task 0.02 0.07 -0.13 – 0.16 0.25 .805 2.60         
SemSim * Task -0.02 0.07 -0.16 – 0.13 -0.22 .825 2.59         

Typicality * Task 0.01 0.06 -0.11 – 0.12 0.12 .904 1.78         
Distinctiveness * Task 0.06 0.06 0.07 – 0.18 0.89 .374 2.12         

Observations: 23,608         
Marginal R2 / Conditional R2: 0.261 / 0.465         
Note. Participant | X = random slope of X by participants, VIF = Variance Inflation Factor, NameAgr = Name agreement, AoA = Age of acquisition, ImageAgr = 

Image agreement, Order = Trial order, OrdCatPos = Ordinal category position, NoFeats = Number of semantic features, IntercorrDens = Intercorrelational 

Density, NearSemNeigh = Number of near semantic neighbours, SemSim = Semantic similarity. 

Values of significant effects (p < .05) are printed in bold; in the simple effects, the variable with the stronger effect within significant interactions is highlighted in 

grey. 



324  |  SEMANTIC VARIABLES IN STANDARD AND SPEEDED NAMING  

 

324  |  SEM
AN

TIC VARIABLES IN
 STAN

D
ARD

 AN
D

 SPEED
ED

 N
AM

IN
G

 

Discussion 

This research aimed to test the hypothesis that effects of semantic variables are stronger in a 

speeded deadline naming task compared to a standard picture naming task. This followed a 

suggestion by Mirman (2011) that greater responsiveness to input, due to higher input gain in the 

speeded naming task, may cause stronger inhibitory and facilitatory influences of item-inherent 

variables. We focused on six feature-based semantic variables (i.e., number of semantic features, 

intercorrelational density, number of near semantic neighbours, semantic similarity, typicality, and 

distinctiveness) and compared their effects in two groups of participants naming pictures either in 

non-speeded standard picture naming or in a speeded naming task where they had to prioritise 

naming speed over accuracy and aim to initiate their response within 600ms of picture presentation. 

Consistent with the aim of this research, in this Discussion, we focus on the interactions between 

naming tasks and the effects of the semantic variables.  

As is clear from Table 3, few interactions between semantic variables and task were significant. 

In the naming latency analysis, the only significant interaction was with distinctiveness: While the effect 

of distinctiveness was significant and inhibitory in both tasks, it was stronger in the speeded naming 

task. In the naming accuracy analysis, the only significant interaction between task and a semantic 

variable was with number of semantic features. The facilitatory effect of number of semantic features 

was significant in standard picture naming, with a non-significant effect in speeded naming.  
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Table 3 

Summary of the results of all naming latency and accuracy analyses 

  Naming latency  Naming accuracy 
   Simple effects   Simple effects 

Variable Interaction Speeded Standard  Interaction Speeded Standard 
Name agreement ✓ ↗	 ↗	  ✓ ↗	 ↗	
Age of acquisition ✓ ↙	 Ø     

Imageability ✓ Ø Ø     
Image agreement ✓ ↗	 ↗	  ✓ ↗	 ↗	

Frequency ✓ ↗	 Ø     
Familiarity ✓ ↗	 ↗	  ✓ ↗	 Ø 

Trial order ✓ ↗	 Ø  ✓ ↙	 Ø 

Ordinal category position Ø       

Number sem. features Ø    ✓ Ø ↗	
Intercorrelational density Ø       

Number near sem. 
neighbours  

Ø   
 

   

Semantic similarity Ø       
Typicality Ø       

Distinctiveness ✓ ↙	 ↙	     
Note. ✓ = significant interaction of variable and task, the simple effect of the task with the stronger 

effects is highlighted in grey, Ø = non-significant interaction or simple effect, ↙ = significantly 

poorer performance (slower responses and decreased accuracy with higher values of the measure), 

↗ = significantly improved performance (faster responses with increased accuracy and higher 

accuracy with higher values of the variable). 

 

Given the small number of significant interactions between semantic variables and task, it is 

relevant to also consider the interactions between the psycholinguistic control variables and task. In 

the naming latency analysis, effects of all the control variables that interacted with task (i.e., name 

agreement, age of acquisition, image agreement, frequency, familiarity, and trial order) were stronger 

in the speeded naming task, except for imageability (although there was no evidence for a significant 

effect of imageability in either task separately). In contrast, in the naming accuracy analysis, effects of 

name agreement and image agreement were stronger in the standard naming task and familiarity and 

trial order were stronger predictors in the speeded naming task. Interestingly, the effect of trial order 

was significant only in the speeded naming task in both analyses. It showed that participants got 

faster, but less accurate throughout the speeded naming experiment, which most likely indicates that 

participants needed time to get used to the task requirements.  
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Importantly, in the naming latency analysis, in contrast to accuracy, effects of item-inherent 

variables (semantic and control variables) were overall stronger in the speeded naming task, thus 

largely confirming our initial hypothesis. However, while the difference between the tasks were as 

predicted for latency, can Mirman’s (2011) input gain account explain the stronger effect of 

distinctiveness in the speeded naming task?  

We also reported an inhibitory effect of distinctiveness on naming latency in Lampe, Hameau, 

and Nickels (in press), where we investigated semantic variables using the data from the first standard 

naming task collected before the two tasks analysed in this study. This finding was in contrast to 

previous work that had reported a facilitatory effect of distinctiveness on picture naming (Rabovsky et 

al., 2016; Taylor et al., 2012), which was argued to be due to preferential processing of distinctive 

features at the semantic level. By definition, words with higher distinctiveness have more unique 

semantic features and thus share their features with fewer other concepts. This causes fewer 

semantically related lexical representations to be co-activated during processing of such words. Hence, 

the negative effect of distinctiveness cannot be due to enhanced lexical competition for words with 

higher distinctiveness (Lampe, Hameau, & Nickels, in press). The inhibitory effect of distinctiveness also 

cannot be explained in the context of an attractor model of semantic cognition (e.g., Cree et al., 1999; 

Rogers et al., 2004): A more distinctive concept would be further from other concepts and should 

therefore not be subject to high levels of interference from other attractors when the model is settling 

into the target attractor (similar to the argument for distant semantic neighbours provided by Mirman, 

2011). Consequently, given that enhanced competition is unlikely to underpin the inhibitory effect of 

distinctiveness, it is unclear exactly how, under the input gain account, input amplification could cause 

the stronger effect of distinctiveness in speeded naming. Further research into the effect of this 

variable is needed to understand the mechanisms underlying effects of distinctiveness before 

hypotheses can sensibly be drawn as to why the effect may be stronger in speeded naming.  

Number of semantic features was the only semantic variable that interacted with task in the 

naming accuracy analysis, with a stronger effect in the standard naming task and no evidence for a 

significant effect in speeded naming. The facilitatory effect of more semantic features in standard 
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naming is in line with previous research on naming speed and accuracy (Lampe, Hameau, & Nickels, in 

press; Rabovsky et al., 2016, 2021; Taylor et al., 2012). It has been attributed to the increased activation 

of the target’s lexical representation following enhanced semantic activation, due to the many active 

semantic features (see Rabovsky & McRae, 2014, for a simulation). Alternatively, in attractor models, it 

has been proposed that they can settle faster and more accurately for words with many semantic 

features because they are represented by stronger attractor basins, which facilitate the system’s ability 

to settle into a stable pattern of activation (Plaut & Shallice, 1993; see also Pexman et al., 2007).  

Under the input gain account, it would be expected that the facilitation of a target’s lexical 

selection would be stronger or settlement into its attractor faster in speeded naming. However, we 

found the reverse, and, in fact, there was no evidence that processing in the speeded naming task was 

affected at all by the number of semantic features in this (accuracy) analysis. In sum, it certainly was 

not the case that semantic and/or lexical processing exhibited increased sensitivity to the activation of 

many semantic features in the speeded naming task. An alternative possibility is that, in speeded 

naming, selection thresholds for processing to continue are lowered in order that the system can 

generate a response quickly (threshold account, e.g., Kello, 2004), which may result in incomplete 

processing. Thus, due to the time pressure, processing in speeded naming would not benefit from the 

activation of many semantic features associated with concepts with a higher number of semantic 

features (resulting in no significant effects). In contrast, in standard naming, where there is ample time 

to process all the available information, all semantic features are activated, facilitating performance 

(see also Kello & Plaut, 2000, for an argument that effects of variables would be predicted to be 

reduced in speeded reading).  

Critically, taken together, the data presented here does not provide evidence for systematically 

stronger effects of semantic variables in speeded compared to standard picture naming. In addition, 

even when, for distinctiveness, there was a stronger effect in speeded naming, because of the direction 

of this effect, enhanced responsiveness to inputs following disruptions of cognitive control in the 

speeded picture naming task does not seem to be a plausible underlying mechanism. Hence, 

differences in the specific naming task used are unlikely to be the exclusive source of contrasting 
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effects of semantic variables in the literature, even for number of near semantic neighbours and 

semantic similarity for which previous significant effects were only found using a speeded naming task.  

In contrast, differences between studies in the effects of semantic variables are more likely 

related to other factors. It seems that even when significant, effects of the semantic variables on 

processing are relatively small. They also show some variability between participants as demonstrated 

by the significant by-participant random slopes for number of near semantic neighbours and semantic 

similarity in our analyses (see also Hameau et al., 2019; Lampe, Hameau, & Nickels, in press, for 

discussion of between participants variability in the effects of semantic variables). It is particularly 

important to account for such variability when studying relatively small effects. This also highlights the 

importance of strongly powered investigations and adequate control of effects of other 

psycholinguistic variables in the statistical analyses. Here, we controlled for all those variables 

suggested by Perret and Bonin (2019), but many previous studies did not (see Appendix F in Lampe, 

Hameau, Fieder, et al., in press), which may have caused false positive effects of semantic variables. 

Most importantly though, the observed failures to replicate effects of semantic variables indicate that 

further work is necessary to fully establish the robustness of the effects (Bishop, 2018). 

Interestingly, while the data for the semantic variables presented here does not support the 

input gain account, we did find that effects of the control variables on naming latency were mostly 

stronger in speeded than in standard naming, as noted above. The variables with stronger effects in 

speeded naming are associated with many different stages of word production (e.g., image agreement 

with visual processing, name agreement with link between semantic to lexical processing, frequency 

with lexical processing, and age of acquisition with phonological processing, e.g., Alario et al., 2004), 

with the exception of the semantic level. This suggests that the requirement to name pictures quickly 

may modulate processing dynamics at several stages of word production. Hence, it is possible that, 

while Mirman (2011) proposed the input gain mechanism for semantic processing in word production, 

the account may (also) be applied to other levels of processing3. In speeded naming, processing units 

 
3 We believe that even Mirman’s (2011) findings of facilitatory and inhibitory effects of distant and near semantic 

neighbours, respectively, could be explained by enhanced sensitivity to input at the lexical level rather than the 

semantic level, as argued by Mirman. Specifically, the semantic representation of a target with many distant 
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at all these levels may become more sensitive to their inputs, leading to stronger effects. However, 

given that the mechanisms causing effects of many of the control variables are not fully understood, 

further research is needed to understand how exactly the stronger effects of these variables could be a 

product of enhanced sensitivity to input at any stage of the model (e.g., How exactly does age of 

acquisition affect processing to result in an inhibitory effect and can enhanced sensitivity to input 

explain the stronger effect in speeded naming?).  

However, it is also possible that the enhanced effects of the control variables in speeded 

naming are caused by a mechanism other than changes in input gain. For the enhanced effect of 

number of semantic features on standard naming, we suggested (above) that a lowered selection 

threshold in speeded naming may result in incomplete processing of the available information, 

causing the observed reduction of the effect. But could the threshold account also explain findings in 

the opposite direction: stronger effects of the control variables in speeded naming? With a lowered 

selection threshold (e.g., Coltheart et al., 2001; Humphreys et al., 1995; Kello, 2004; or selection after 

fewer time steps, e.g., Dell, 1986; Dell et al., 1997), participants would be able to generate a response 

faster, but at increased error rates, which is the case in speeded naming. However, this mechanism 

would cause faster processing of all experimental items regardless of their item characteristics (e.g., 

word frequency). Whether or not the size of effects of these item-inherent variables would remain 

comparable or change in speeded naming would depend on the precise mechanism by which these 

variables are implemented. For example, if frequency is implemented as a difference in resting levels of 

activation (e.g., Morton, 1969, 1970) or the equivalent (e.g., Coltheart et al., 2001) the effects would 

remain comparable across tasks. However, if the effects are multiplicative, for example, through a 

frequency weighting on connections, the fewer processing cycles that there are before a response, the 

 
semantic neighbours may receive converging activation following activation spread between the target and its 

many distant semantic neighbours. This may cause its lexical representation to be strongly activated, while, 

importantly, none of the distant semantic neighbours is semantically close enough to compete with the target for 

selection at the lexical level. In contrast, while the lexical representation of a target with many near semantic 

neighbours may also be facilitated following spreading activation at the semantic level, it is also subject to 

enhanced lexical competition from its co-activated near semantic neighbours. Consequently, if the lexical 

processing units are more sensitive to their inputs in speeded naming, both facilitatory and inhibitory effects may 

be localised at the lexical level, even though they originate at the semantic level.   



330  |  SEMANTIC VARIABLES IN STANDARD AND SPEEDED NAMING  

 

330  |  SEM
AN

TIC VARIABLES IN
 STAN

D
ARD

 AN
D

 SPEED
ED

 N
AM

IN
G

 

smaller the effect of the variable. A reduction in the size of the effects would also be the case if effects 

were driven by feedback, like number of semantic features, as described above. It is hard, however, to 

conceptualise a mechanism that would result in larger effects of a variable within a threshold account. 

Nevertheless, this is the result we observed: a bigger difference in naming latency between, for 

example, words of lower and higher frequency in speeded than in standard naming. Hence, the 

threshold account is an unlikely candidate to explain these findings. To better understand the 

mechanism underlying effects of semantic and other psycholinguistic variables and their modulations 

in the speeded naming task, further investigations in combination with computational simulations of 

the findings (following e.g., Humphreys et al.,1995; Kello & Plaut, 2003) are necessary.  

Finally, when interpreting the findings of this study, it must be kept in mind that, in contrast to 

most previous studies investigating effects of semantic variables, we analysed picture naming data that 

was collected following a previous naming attempt of the pictures in the first standard naming round. 

While we did not inform the participants on the accuracy of their response, the previous exposure may 

have nonetheless affected the findings. For example, Rabovsky et al. (2016) familiarised half of their 

participants with the pictures and their correct names before their experiment and found that the 

effect of number of semantic features on naming latency was attenuated (though still significant) in 

the familiarised participants. In contrast, Rabovsky et al. (2021) presented all experimental items twice 

to increase the number of data points for the analyses. In their analyses, task repetition did not interact 

with the number of semantic features or intercorrelational density in the accuracy analysis, but they 

found that the effect of intercorrelational density on naming latency was only significant in the 

repetition of the items. More research into whether and how a previous attempt at naming the same 

pictures influences effects of semantic variables is required. 

In sum, the results reported here tested the hypothesis that effects of item-inherent semantic 

variables are amplified in speeded deadline naming compared to standard picture naming due to 

increased sensitivity to inputs (i.e., higher input gain) following speed-induced disruptions of cognitive 

control (Mirman, 2011). Few effects of semantic variables differed between the two tasks, and while the 

effect of distinctiveness (and other psycholinguistic control variables) was stronger in speeded than in 
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standard naming when analysing naming latencies, the effect of number of semantic features was 

stronger in the standard naming task in the naming accuracy analysis. Therefore, the speeded naming 

task is unlikely to be the sole reason for significant effects being reported in some previous 

investigations of semantic variables and not in others that used standard picture naming.  



332  |  SEMANTIC VARIABLES IN STANDARD AND SPEEDED NAMING  

 

332  |  SEM
AN

TIC VARIABLES IN
 STAN

D
ARD

 AN
D

 SPEED
ED

 N
AM

IN
G

 

References 

Abdel Rahman, R., & Melinger, A. (2019). Semantic processing during language production: An update 

of the swinging lexical network. Language, Cognition and Neuroscience, 34(9), 1176–1192. 

https://doi.org/10.1080/23273798.2019.1599970 

Alario, F.-X., Ferrand, L., Laganaro, M., New, B., Frauenfelder, U. H., & Segui, J. (2004). Predictors of 

picture naming speed. Behavior Research Methods, Instruments, & Computers, 36(1), 140–155. 

https://doi.org/10.3758/BF03195559 

Baayen, H. R., & Milin, P. (2010). Analyzing reaction times. International Journal of Psychological 

Research, 3(2), 12–28. https://doi.org/10.21500/20112084.807 

Bates, D., Kliegl, R., Vasishth, S., & Baayen, H. (2015). Parsimonious mixed models. ArXiv, 1–27. 

https://doi.org/arXiv:1506.04967 

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. 

Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01 

Bishop, D. V. M. (2018). Fallibility in science: Responding to errors in the work of oneself and others. 

Advances in Methods and Practices in Psychological Science, 1(3), 432–438. 

https://doi.org/10.1177/2515245918776632 

Boersma, P., & Weenink, D. (2019). Praat: Doing phonetics by computer (Version 6.0.49). 

https://doi.org/http://www.praat.org/ 

Bormann, T. (2011). The role of lexical-semantic neighborhood in object naming: Implications for 

models of lexical access. Frontiers in Psychology, 2, 1–11. 

https://doi.org/10.3389/fpsyg.2011.00127 

Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). DRC: A dual route cascaded model 

of visual word recognition and reading aloud. Psychological Review, 108(1), 204–256. 

https://doi.org/10.1037/0033-295x.108.1.204 

Cree, G. S., McRae, K., & McNorgan, C. (1999). An attractor model of lexical conceptual processing: 

Simulating semantic priming. Cognitive Science, 23(3), 371–414. 

https://doi.org/10.1207/s15516709cog2303_4 



    CHAPTER 5  | 333 

 

CH
APTER 6  |  333 

Damian, M. F., & Dumay, N. (2007). Time pressure and phonological advance planning in spoken 

production. Journal of Memory and Language, 57(2), 195–209. 

https://doi.org/10.1016/j.jml.2006.11.001 

Dell, G. S. (1986). A spreading-activation theory of retrieval in sentence production. Psychological 

Review, 93(3), 283–321. https://doi.org/10.1037/0033-295X.93.3.283 

Dell, G. S., Burger, L. K., & Svec, W. R. (1997). Language production and serial order: A functional 

analysis and a model. Psychological Review, 104(1), 123–147. https://doi.org/10.1037/0033-

295X.104.1.123 

Fieder, N., Wartenburger, I., & Abdel Rahman, R. (2019). A close call: Interference from semantic 

neighbourhood density and similarity in language production. Memory & Cognition, 47(1), 145–

168. https://doi.org/10.3758/s13421-018-0856-y 

Gerhand, S., & Barry, C. (1999). Age-of-acquisition and frequency effects in speeded word naming. 

Cognition, 73(2), B27–B36. https://doi.org/10.1016/S0010-0277(99)00052-9 

Gotts, S. J., & Plaut, D. C. (2002). The impact of synaptic depression following brain damage: A 

connectionist account of “access/refractory” and “degraded-store” semantic impairments. 

Cognitive, Affective and Behavioral Neuroscience, 2(3), 187–213. 

https://doi.org/10.3758/CABN.2.3.187 

Hameau, S., Nickels, L., & Biedermann, B. (2019). Effects of semantic neighbourhood density on spoken 

word production. Quarterly Journal of Experimental Psychology, 72(12), 2752–2775. 

https://doi.org/10.1177/1747021819859850 

Hodgson, C., & Lambon Ralph, M. A. (2008). Mimicking aphasic semantic errors in normal speech 

production: Evidence from a novel experimental paradigm. Brain and Language, 104(1), 89–101. 

https://doi.org/10.1016/j.bandl.2007.03.007 

Howard, D., Nickels, L., Coltheart, M., & Cole-Virtue, J. (2006). Cumulative semantic inhibition in picture 

naming: Experimental and computational studies. Cognition, 100(3), 464–482. 

https://doi.org/10.1016/j.cognition.2005.02.006 

Humphreys, G. W., Lamote, C., & Lloyd-Jones, T. J. (1995). An interactive activation approach to object 



334  |  SEMANTIC VARIABLES IN STANDARD AND SPEEDED NAMING  

 

334  |  SEM
AN

TIC VARIABLES IN
 STAN

D
ARD

 AN
D

 SPEED
ED

 N
AM

IN
G

 

processing: Effects of structural similarity, name frequency, and task in normality and pathology. 

Memory, 3(3–4), 535–586. https://doi.org/10.1080/09658219508253164 

Kello, C. T. (2004). Control over the time course of cognition in the tempo-naming task. Journal of 

Experimental Psychology: Human Perception and Performance, 30(5), 942–955. 

https://doi.org/10.1037/0096-1523.30.5.942 

Kello, C. T., & Plaut, D. C. (2000). Strategic control in word reading: Evidence from speeded responding 

in the tempo-naming task. Journal of Experimental Psychology: Learning, Memory, and 

Cognition, 26(3), 719–750. https://doi.org/10.1037/0278-7393.26.3.719 

Kello, C. T., & Plaut, D. C. (2003). Strategic control over rate of processing in word reading: A 

computational investigation. Journal of Memory and Language, 48(1), 207–232. 

https://doi.org/10.1016/S0749-596X(02)00512-0 

Kello, C. T., Plaut, D. C., & MacWhinney, B. (2000). The task dependence of staged versus cascaded 

processing: An empirical and computational study of stroop interference in speech production. 

Journal of Experimental Psychology: General, 129(3), 340–360. https://doi.org/10.1037/0096-

3445.129.3.340 

Kello, C. T., Sibley, D. E., & Plaut, D. C. (2005). Dissociations in performance on novel versus irregular 

items: Single-route demonstrations with input gain in localist and distributed models. Cognitive 

Science, 29(4), 627–654. https://doi.org/10.1207/s15516709cog0000_16 

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed 

effects models. Journal of Statistical Software, 82(13), 1–26. https://doi.org/10.18637/jss.v082.i13 

Lampe, L. F., Fieder, N., Krajenbrink, T., & Nickels, L. (2017). Semantische Nachbarschaft in der 

Wortproduktion bei Aphasie [Semantic neighbourhood in word production in aphasia]. In A. 

Adelt, Ö. Yetim, C. Otto, & T. Fritzsche (Eds.), Spektrum Patholinguistik - Panorama 

Patholinguistik: Sprachwissenschaft trifft Sprachtherapie (Vol. 10, pp. 103–114). Universitätsverlag 

Potsdam. https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/index/index/docId/39701 

Lampe, L. F., Hameau, S., Bürki, A., Fieder, N., Sowman, P. F., & Nickels, L. (2019). Investigating effects of 

semantic variables on word production. Preregistration on the Open Science Framework. 



    CHAPTER 5  | 335 

 

CH
APTER 6  |  335 

osf.io/yw6ma 

Lampe, L. F., Bürki, A., Sowman, P. F., Hameau, S., & Nickels, L. (2021). Effects of semantic variables on 

processes during word planning for production: Evidence from electrophysiological data. 

Manuscript in Preparation. 

Lampe, L. F., Hameau, S., Fieder, N., & Nickels, L. (in press). Effects of semantic variables on word 

production in aphasia. Cortex. 

Lampe, L. F., Hameau, S., & Nickels, L. (in press). Semantic variables both help and hinder word 

production: Behavioural evidence from picture naming. Journal of Experimental Psychology: 

Learning, Memory, and Cognition. 

Lenth, R. (2020). emmeans: Estimated marginal means, aka least-squares means. (R package version 

1.5.2-1). https://cran.r-project.org/package=emmeans 

Lloyd-Jones, T. J., & Nettlemill, M. (2007). Sources of error in picture naming under time pressure. 

Memory & Cognition, 35(4), 816–836. https://doi.org/10.3758/BF03193317 

Lüdecke, D. (2020). sjPlot: Data visualization for statistics in social science. (R package version 2.8.6). 

https://cran.r-project.org/package=sjPlot 

McRae, K., Cree, G. S., Seidenberg, M. S., & McNorgan, C. (2005). Semantic feature production norms 

for a large set of living and nonliving things. Behavior Research Methods, 37(4), 547–559. 

https://doi.org/10.3758/BF03192726 

Millard, S. P. (2013). EnvStats: An R package for environmental statistics. Springer. 

Mirman, D. (2011). Effects of near and distant semantic neighbors on word production. Cognitive, 

Affective and Behavioral Neuroscience, 11(1), 32–43. https://doi.org/10.3758/s13415-010-0009-7 

Mirman, D., & Graziano, K. M. (2013). The neural basis of inhibitory effects of semantic and 

phonological neighbors in spoken word production. Journal of Cognitive Neuroscience, 25(9), 

1504–1516. https://doi.org/10.1162/jocn_a_00408 

Mirman, D., Kittredge, A. K., & Dell, G. S. (2010). Effects of near and distant phonological neighbors on 

picture naming. Proceedings of the Annual Meeting of the Cognitive Science Society, 32, 1447–

1452. 



336  |  SEMANTIC VARIABLES IN STANDARD AND SPEEDED NAMING  

 

336  |  SEM
AN

TIC VARIABLES IN
 STAN

D
ARD

 AN
D

 SPEED
ED

 N
AM

IN
G

 

Mirman, D., & Magnuson, J. S. (2008). Attractor dynamics and semantic neighborhood density: 

Processing is slowed by near neighbors and speeded by distant neighbors. Journal of 

Experimental Psychology: Learning, Memory, and Cognition, 34(1), 65–79. 

https://doi.org/10.1037/0278-7393.34.1.65 

Mirman, D., Strauss, T. J., Brecher, A., Walker, G. M., Sobel, P., Dell, G. S., & Schwartz, M. F. (2010). A 

large, searchable, web-based database of aphasic performance on picture naming and other 

tests of cognitive function. Cognitive Neuropsychology, 27(6), 495–504. 

https://doi.org/10.1080/02643294.2011.574112 

Morton, J. (1969). Interaction of information in word recognition. Psychological Review, 76(2), 165–178. 

https://doi.org/10.1037/h0027366 

Morton, J. (1970). A functional model for memory. In D. A. Norman (Ed.), Models of human memory 

(pp. 203–253). Academic Press Inc. 

Moses, M. S., Nickels, L., & Sheard, C. (2004). “I’m sitting here feeling aphasic!” A study of recurrent 

perseverative errors elicited in unimpaired speakers. Brain and Language, 89(1), 157–173. 

https://doi.org/10.1016/S0093-934X(03)00364-X 

Perret, C., & Bonin, P. (2019). Which variables should be controlled for to investigate picture naming in 

adults? A Bayesian meta-analysis. Behavior Research Methods, 51(6), 2533–2545. 

https://doi.org/10.3758/s13428-018-1100-1 

Pexman, P. M., Hargreaves, I. S., Edwards, J. D., Henry, L. C., & Goodyear, B. G. (2007). The neural 

consequences of semantic richness: When more comes to mind, less activation is observed. 

Psychological Science, 18(5), 401–406. https://doi.org/10.1111/j.1467-9280.2007.01913.x 

Plaut, D. C., & Shallice, T. (1993). Deep dyslexia: A case study of connectionist neuropsychology. 

Cognitive Neuropsychology, 10(5), 377–500. https://doi.org/10.1080/02643299308253469 

R Core Team. (2020). R: A language and environment for statistical computing (4.0.2). R Foundation for 

Statistical Computing. https://www.r-project.org/ 

Rabovsky, M., & McRae, K. (2014). Simulating the N400 ERP component as semantic network error: 

Insights from a feature-based connectionist attractor model of word meaning. Cognition, 132(1), 



    CHAPTER 5  | 337 

 

CH
APTER 6  |  337 

68–89. https://doi.org/10.1016/j.cognition.2014.03.010 

Rabovsky, M., Schad, D. J., & Abdel Rahman, R. (2016). Language production is facilitated by semantic 

richness but inhibited by semantic density: Evidence from picture naming. Cognition, 146, 240–

244. https://doi.org/10.1016/j.cognition.2015.09.016 

Rabovsky, M., Schad, D. J., & Abdel Rahman, R. (2021). Semantic richness and density effects on 

language production: Electrophysiological and behavioral evidence. Journal of Experimental 

Psychology: Learning, Memory, and Cognition, 47(3), 508–517. 

https://doi.org/10.1037/xlm0000940 

Rogers, T. T., Lambon Ralph, M. A., Garrard, P., Bozeat, S., McClelland, J. L., Hodges, J. R., & Patterson, K. 

(2004). Structure and deterioration of semantic memory: A neuropsychological and 

computational investigation. Psychological Review, 111(1), 205–235. 

https://doi.org/10.1037/0033-295X.111.1.205 

Rosch, E., & Mervis, C. B. (1975). Family resemblances: Studies in the internal structure of categories. 

Cognitive Psychology, 7(4), 573–605. https://doi.org/10.1016/0010-0285(75)90024-9 

RStudio Team. (2020). RStudio: Integrated development for R (1.3.959). RStudio, PBC. 

http://www.rstudio.com/ 

Starreveld, P. A., & La Heij, W. (1999). Word substitution errors in a speeded picture-word task. The 

American Journal of Psychology, 112(4), 521–553. 

https://doi.org/https://doi.org/10.2307/1423649 

Taylor, K. I., Devereux, B. J., Acres, K., Randall, B., & Tyler, L. K. (2012). Contrasting effects of feature-

based statistics on the categorisation and basic-level identification of visual objects. Cognition, 

122(3), 363–374. https://doi.org/10.1016/j.cognition.2011.11.001 

van Heuven, W. J. B., Mandera, P., Keuleers, E., & Brysbaert, M. (2014). SUBTLEX-UK: A new and 

improved word frequency database for British English. Quarterly Journal of Experimental 

Psychology, 67(6), 1176–1190. https://doi.org/10.1080/17470218.2013.850521 

Vitkovitch, M., & Humphreys, G. W. (1991). Perseverant responding in speeded naming of pictures: It’s 

in the links. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17(4), 664–



338  |  SEMANTIC VARIABLES IN STANDARD AND SPEEDED NAMING  

 

338  |  SEM
AN

TIC VARIABLES IN
 STAN

D
ARD

 AN
D

 SPEED
ED

 N
AM

IN
G

 

680. https://doi.org/10.1037/0278-7393.17.4.664 

Vitkovitch, M., Humphreys, G. W., & Lloyd-Jones, T. J. (1993). On naming a giraffe a zebra: Picture 

naming errors across different object categories. Journal of Experimental Psychology: Learning, 

Memory, and Cognition, 19(2), 243–259. https://doi.org/10.1037/0278-7393.19.2.243 

 

  



    CHAPTER 5  | 339 

 

CH
APTER 6  |  339 

Appendices 

Appendix A: Analyses after removal of items with lower average naming accuracy  

Removal of 18 items with lower average naming accuracy led to analysis of data from 279 

items and 80 participants. The naming latency analysis included 18,831 data points (standard naming: 

10,443 data points, speeded naming: 8,388 data points) and the naming accuracy analysis included 

22,168 data points (3,104 naming errors) (standard naming: 11,362 data points with 806 naming errors, 

speeded naming: 10,806 data points with 2,298 naming errors). 

The findings were largely comparable to the analyses conducted on all 297 items. Importantly, 

the removal of items with lower naming accuracy items caused no differences in interactions between 

semantic variables and naming task compared to the analyses on all items, thus highlighting the 

appropriateness of including all items in the analyses reported in the main text of this paper. All 

differences compared to the analyses conducted on all items are reported below.  

Naming latency 

In the latency analysis excluding items that had relatively low overall naming accuracy (n = 18), 

the same semantic and control variables as reported in Table 1 (for all items) interacted with task, 

except for age of acquisition, which was non-significant in this analysis (Table A1).  

Moreover, the main effects of age of acquisition and trial order were no longer significant 

compared to the analysis on all items. The remaining significant main effects were in the same 

directions as in the analysis including all items. 

In the follow-up analysis, the simple effect of distinctiveness was non-significant in standard 

naming, in contrast to the analysis including all items. All other simple effects were comparable to the 

analysis on all items.   
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Table A1 

Naming latency: summarised output of Linear Mixed Model analysis for task comparison and simple effects after removal of items with lower naming accuracy 

Model structure  

lmer(RT ~ (NameAgr + AoA + Imageability + ImageAgr + 
Frequency + Familiarity + Order + OrdCatPos + NoFeats + 
IntercorrDens + NearSemNeigh + SemSim + Typicality + 
Distinctiveness) * Task + (1 | Item) + (NearSemNeigh + 
SemSim || Participant), data, REML = TRUE)         

Random effect Variance SD             

Item (Intercept) 0.01 0.12             

Participant (Intercept) 0.02 0.13             

Participant | 
NrSemNeigh  0.00 0.02 

            

Participant | SemSim  0.00 0.01             

Residuals 0.06 0.24             

Fixed effects Estimate SE CI t- 
value 

p-
value VIF         

(Intercept) -1.55 0.02 -1.58 – -1.52 -95.26 <.001          

NameAgr -0.04 0.01 -0.05 – -0.03 -5.37 <.001 1.10         

AoA 0.02 0.01 -0.00 – 0.04 1.52 .128 2.45         

Imageability -0.01 0.01 -0.03 – 0.01 -1.12 .263 1.91         

ImageAgr -0.03 0.01 -0.05 – -0.02 -3.97 <.001 1.26         

Frequency -0.01 0.01 -0.03 – 0.01 -0.95 .344 1.57         

Familiarity -0.04 0.01 -0.05 – -0.02 -3.78 <.001 1.73         

Order -0.01 0.00 -0.01 – 0.00 -1.88 .060 3.07         

OrdCatPos 0.00 0.00 -0.01 – 0.01 0.23 .817 3.14         

NoFeats -0.01 0.01 -0.02 – 0.01 -0.66 .513 1.60         

IntercorrDens 0.02 0.01 -0.00 – 0.04 1.71 .087 2.18         

NearSemNeigh 0.02 0.01 0.00 – 0.05 2.22 .026 2.31         

SemSim 0.01 0.01 -0.01 – 0.03 0.90 .367 2.40         

Typicality -0.01 0.01 -0.02 – 0.01 -0.69 .490 1.41 Simple effects of variables in significant interactions 
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Distinctiveness 0.03 0.01 0.01 – 0.05 2.88 .004 2.02 Speeded naming Standard naming 

Task -0.32 0.03 -0.38 – -0.26 -10.96 <.001 1.00 Estimate SE z-
value 

p-
value Estimate SE z-

value 
p-

value 
NameAgr * Task -0.01 0.00 -0.02 – -0.01 -3.33 .001 1.09 -0.05 0.01 -5.97 <.001 -0.03 0.01 -4.42 <.001 

AoA * Task 0.01 0.01 -0.00 – 0.02 1.76 .079 2.36         
Imageability * Task 0.01 0.00 0.00 – 0.02 2.23 .025 1.86 -0.01 0.01 -0.55 .584 -0.02 0.01 -1.64 .102 

ImageAgr * Task -0.01 0.00 -0.02 – -0.00 -2.32 .020 1.19 -0.04 0.01 -4.38 <.001 -0.03 0.01 -3.32 .001 
Frequency * Task -0.03 0.00 -0.04 – -0.02 -6.67 <.001 1.53 -0.02 0.01 -2.52 .012 0.01 0.01 0.705 .481 
Familiarity * Task -0.02 0.00 -0.03 – -0.01 -3.33 .001 1.63 -0.04 0.01 -4.44 <.001 -0.03 0.01 -2.88 .004 

Order * Task -0.03 0.01 -0.04 – -0.02 -5.49 <.001 2.24 -0.02 0.00 -4.51 <.001 0.01 0.00 1.70 .089 
OrdCatPos * Task -0.01 0.01 -0.02 – 0.00 -1.47 .142 2.70         

NoFeats * Task -0.01 0.00 -0.02 – 0.00 -1.60 .109 1.65         
IntercorrDens * Task 0.00 0.01 -0.01 – 0.01 0.51 .609 2.02         

NearSemNeigh * Task 0.01 0.01 -0.00 – 0.02 1.49 .137 1.55         
SemSim * Task 0.01 0.01 -0.00 – 0.02 1.86 .062 1.70         

Typicality * Task -0.00 0.00 -0.01 – 0.01 -0.83 .405 1.46         
Distinctiveness * Task 0.02 0.01 0.01 – 0.03 4.20 <.001 1.67 0.41 0.01 3.78 <.001 0.02 0.01 1.80 .072 

Observations: 18,831         
Marginal R2 / Conditional R2: 0.280 / 0.527         
Note. Participant | X = random slope of X by participants, VIF = Variance Inflation Factor, NameAgr = Name agreement, AoA = Age of acquisition, ImageAgr = 

Image agreement, Order = Trial order, OrdCatPos = Ordinal category position, NoFeats = Number of semantic features, IntercorrDens = Intercorrelational 

Density, NearSemNeigh = Number of near semantic neighbours, SemSim = Semantic similarity. 

Values of significant effects (p < .05) are printed in bold; in the simple effects, the variable with the stronger effect within significant interactions is highlighted 

in grey.  
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Naming accuracy 

The same variables as reported in Table 2 (for all items) interacted with task in the accuracy 

analysis (Table A2). In addition, the interaction between frequency and task reached significance, with 

a stronger effect of frequency in the speeded naming task.  

Moreover, there were some changes to the main effects: the effects of age of acquisition, 

frequency, and intercorrelational density were no longer significant compared to the analysis on all 

items. Instead, effects of familiarity and number of near semantic neighbours reached significance. In 

the follow-up analysis, all simple effects were comparable to the analysis that included all items.    
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Table A2 

Naming accuracy: summarised output of Generalised Linear Mixed Model analysis for task comparison and simple effects after removal of items with lower naming 

accuracy 

Model structure  

glmer(ACC ~ (NameAgr + AoA + Imageability + ImageAgr 
+ Frequency + Familiarity + Order + CatPos + NoFeats + 
IntercorrDens + NearSemNeigh + SemSim + Typicality + 
Distinctiveness)*Task + (1 | Item) + (SemSim | Participant), 
data, family = binomial())         

Random effect Variance SD Correlation            

Item (Intercept) 0.81 0.90             

Participant (Intercept) 0.36 0.60             

Participant | SemSim 0.02 0.15 0.73            

Fixed effects Estimate SE CI z- 
value 

p-
value VIF         

(Intercept) 2.55 0.09 2.37 – 2.73 27.56 <.001          

NameAgr 0.47 0.06 0.35 – 0.59 7.56 <.001 1.11         

AoA -0.14 0.1 -0.33 – 0.04 -1.50 .135 2.59         

Imageability 0.22 0.08 0.05 – 0.38 2.61 .009 2.00         

ImageAgr 0.22 0.07 0.09 – 0.36 3.26 .001 1.31         

Frequency 0.14 0.08 -0.01 – 0.29 1.88 .060 1.60         

Familiarity 0.18 0.08 0.02 – 0.34 2.26 .024 1.79         

Order -0.05 0.05 -0.14 – 0.04 -1.10 .274 3.21         

OrdCatPos -0.03 0.05 -0.13 – 0.08 -0.50 .616 3.43         

NoFeats 0.12 0.08 -0.03 – 0.27 1.60 .109 1.67         

IntercorrDens -0.17 0.09 -0.34 – 0.01 -1.90 .058 2.26         

NearSemNeigh -0.19 0.09 -0.37 – -0.00 -2.01 .045 2.47         

SemSim 0.02 0.1 -0.17 – 0.22 0.25 .806 2.49         

Typicality 0.06 0.07 -0.09 – 0.20 0.77 .439 1.53 Simple effects of variables in significant interactions 
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Distinctiveness -0.05 0.09 -0.22 – 0.12 -0.59 .558 2.08 Speeded naming Standard naming 

Task -1.62 0.15 -1.90 – -1.33 -11.13 <.001 1.22 Estimate SE z-
value 

p-
value Estimate SE z-

value 
p-

value 
NameAgr * Task -0.15 0.04 -0.24 – -0.07 -3.47 .001 1.11 0.39 0.06 6.21 <.001 0.542 0.07 7.96 <.001 

AoA * Task 0.09 0.08 -0.06 – 0.24 1.19 .233 2.88         
Imageability * Task -0.01 0.06 -0.14 – 0.11 -0.18 .855 2.17         

ImageAgr * Task -0.16 0.05 -0.26 – -0.06 -3.16 .002 1.37 0.14 0.07 2.04 .042 0.30 0.08 3.98 <.001 
Frequency * Task 0.12 0.06 0.01 – 0.23 2.12 .034 1.56 0.20 0.08 2.63 .009 0.08 0.09 0.97 .331 
Familiarity * Task 0.21 0.06 0.08 – 0.33 3.18 .001 1.87 0.28 0.08 3.51 .001 0.08 0.09 0.86 .391 

Order * Task -0.18 0.07 -0.32 – -0.04 -2.59 .010 2.46 -0.14 0.05 -2.86 .004 0.04 0.07 0.61 .541 
OrdCatPos * Task -0.00 0.08 -0.16 – 0.15 -0.06 .949 3.02         

NoFeats * Task -0.19 0.06 -0.32 – -0.07 -3.11 .002 1.84 0.03 0.08 0.35 .730 0.22 0.09 2.50 .012 
IntercorrDens * Task 0.10 0.07 -0.04 – 0.23 1.39 .164 2.36         

NearSemNeigh * Task 0.09 0.07 -0.05 – 0.22 1.24 .216 2.65         
SemSim * Task -0.09 0.09 -0.26 – 0.08 -1.00 .316 2.71         

Typicality * Task -0.04 0.06 -0.17 – 0.09 -0.63 .530 1.87         
Distinctiveness * Task 0.02 0.07 -0.11 – 0.16 0.35 .727 2.13         

Observations: 22,168         
Marginal R2 / Conditional R2: 0.243 / 0.443         
Note. Participant | X = random slope of X by participants, VIF = Variance Inflation Factor, NameAgr = Name agreement, AoA = Age of acquisition, ImageAgr = 

Image agreement, Order = Trial order, OrdCatPos = Ordinal category position, NoFeats = Number of semantic features, IntercorrDens = Intercorrelational 

Density, NearSemNeigh = Number of near semantic neighbours, SemSim = Semantic similarity. 

Values of significant effects (p < .05) are printed in bold; in the simple effects, the variable with the stronger effect within significant interactions is highlighted in 

grey. 
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Appendix B: Semantic error versus correct responses analysis  

In addition to the overall naming accuracy analysis, we also conducted an analysis that 

contrasted the proportions of responses that were semantic errors rather than correct responses. 

While increased input gain may lead to stronger effects of semantic variables on naming accuracy in 

speeded naming, one could also expect an increase in their effects on semantic errors more 

specifically, as semantic variables have been found to affect the proportion of semantic errors in 

speeded naming (i.e., Fieder et al., 2019; Mirman, 2011), however, have not previously been examined 

in standard naming in neurotypical participants. Thus, if the influence of semantic variables is increased 

in speeded naming one could also expect stronger effects of semantic variables on semantic errors.  

We coded the following error types as semantic errors: associates, coordinates, subordinates, 

superordinates, synonyms, incomplete responses that shared at least 50% of their phonemes with a 

semantically related item (or vice-versa, e.g., oct for squid), responses with a part-whole relationship to 

the target, two-step errors involving a semantic and a phonological error (e.g., naming a picture of a 

lion riger, presumably via tiger), and other responses that had a clear semantic relationship to the 

target but were not categorically related (e.g., butterfly for bird).  

The semantic errors analysis included 22,540 data points from 297 items and 80 participants (n 

= 2,752 semantic errors). 11,800 of those data points came from the standard naming task (n = 797 

semantic errors) and 10,740 data points from the speeded naming task (n = 1,955 semantic errors). 

There was a main effect of task in this semantic error analysis indicating that there were more 

semantic errors overall in the speeded naming task than in the standard naming task. Of all responses, 

on average 17% were semantic errors in the speeded naming task (range = 6–29%, SD = 6%) and 7% 

in the standard naming task (range = 1–15%, SD = 4%). The proportion of semantic errors relative to 

all other error types was, however, relatively stable in the two tasks (speeded naming: 70%, range = 

47–88%, SD = 10%; standard naming: 69%, range = 35–92%, SD = 15%). 

All findings in the semantic errors analysis were largely comparable to the findings of the 

naming accuracy analysis (which contrasted correct responses with any other error response), 

presumably because most incorrect responses in both tasks were semantic errors. As in the overall 
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naming accuracy analysis, the only semantic variable that significantly interacted with naming task was 

number of semantic features (see Table B1). The follow-up analysis suggested that the effect was 

stronger in the standard naming task than in the speeded naming task (Figure B1, Panel A), however, 

note that there was in fact no evidence for a simple effect in either task. This indicates that there was 

either a Type 1 error when finding the significant interaction between number of semantic features 

and task, or a Type 2 error with non-significant simple effects in one or both naming tasks.  

Moreover, the same control variables significantly interacted with task as in the naming 

accuracy analysis: The effects of name agreement (facilitatory in both tasks, Figure B1, Panel A) and 

image agreement (facilitatory in both tasks, Figure B1, Panel D) were stronger in the standard naming 

task, while effects of familiarity (facilitatory in speeded naming, Figure B1, Panel F) and trial order 

(inhibitory in speeded naming, Figure B1, Panel G) were stronger in the speeded naming task. 

With the combined data from both tasks, main effects showed that semantic errors were more likely 

for words with higher intercorrelational density and responses were more accurate for words with 

higher name agreement, imageability, or image agreement. 
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Figure B1 

Significant interactions between semantic or control variables and task in the semantic errors analysis   

 

Note. All variables were standardised.  
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Table B1  

Semantic errors: summarised output of Generalised Linear Mixed Model analysis for task comparison and simple effects 

Model structure  

glmer(SEM ~ (NameAgr + AoA + Imageability + ImageAgr 
+ Frequency + Familiarity + Order + CatPos + NoFeats + 
IntercorrDens + NearSemNeigh + SemSim + Typicality + 
Distinctiveness)*Task + (1 | Item) + (NearSemNeigh | 
Participant), data, family = binomial())         

Random effect Variance SD Correlation            

Item (Intercept) 1.51 1.23             

Participant (Intercept) 0.34 0.58             

Participant | 
NearSemNeigh  

0.03 0.19 0.72            

Fixed effects Estimate SE CI z- 
value 

p-
value VIF         

(Intercept) 2.97 0.11 2.77 – 3.18 28.01 <.001          

NameAgr 0.67 0.08 0.51 – 0.83 8.32 <.001 1.10         

AoA -0.22 0.12 -0.46 – 0.03 -1.74 .082 2.54         

Imageability 0.22 0.11 0.01 – 0.43 2.09 .037 1.93         

ImageAgr 0.30 0.09 0.13 – 0.47 3.39 .001 1.29         

Frequency 0.12 0.10 -0.08 – 0.31 1.16 .244 1.63         

Familiarity 0.11 0.11 -0.10 – 0.32 1.03 .303 1.80         

Order -0.04 0.05 -0.14 – 0.05 -0.88 .381 3.23         

OrdCatPos -0.04 0.06 -0.16 – 0.07 -0.76 .448 3.41         

NoFeats 0.08 0.10 -0.11 – 0.27 0.81 .421 1.60         

IntercorrDens -0.26 0.12 -0.49 – -0.03 -2.25 .025 2.26         

NearSemNeigh -0.14 0.13 -0.38 – 0.11 -1.10 .272 2.45         

SemSim -0.02 0.13 -0.27 – 0.23 -0.18 .860 2.53         

Typicality 0.05 0.10 -0.14 – 0.24 0.52 .605 1.50 Simple effects of variables in significant interactions 
Distinctiveness 0.00 0.11 -0.22 – 0.22 0.00 .999 2.06 Speeded naming Standard naming 
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Task -1.54 0.14 -1.82 – -1.25 -10.65 <.001 1.29 Estimate SE z-
value 

p-
value Estimate SE z-

value 
p-

value 
NameAgr * Task -0.22 0.05 -0.31 – -0.13 -4.74 <.001 1.11 0.56 0.08 6.86 <.001 0.78 0.09 9.07 <.001 

AoA * Task 0.14 0.08 -0.02 – 0.30 1.77 .078 2.67         
Imageability * Task 0.04 0.07 -0.09 – 0.17 0.56 .575 1.98         

ImageAgr * Task -0.21 0.05 -0.32 – -0.11 -3.93 <.001 1.31 0.19 0.09 2.15 .031 0.41 0.10 4.27 <.001 
Frequency * Task 0.11 0.06 -0.02 – 0.23 1.70 .090 1.59         
Familiarity * Task 0.30 0.07 0.16 – 0.44 4.23 <.001 1.93 0.26 0.11 2.43 .015 -0.04 0.12 -0.35 .728 

Order * Task -0.20 0.07 -0.34 – -0.05 -2.66 .008 2.34 -0.14 0.06 -2.58 .010 0.05 0.07 0.78 .435 
OrdCatPos * Task 0.03 0.08 -0.13 – 0.19 0.41 .680 2.95         

NoFeats * Task -0.15 0.07 -0.28 – -0.02 -2.29 .022 1.73 0.00 0.10 0.04 .965 0.16 0.11 1.43 .153 
IntercorrDens * Task 0.13 0.07 -0.00 – 0.26 1.94 .053 2.21         

NearSemNeigh * Task -0.02 0.09 -0.19 – 0.15 -0.23 .819 2.48         
SemSim * Task -0.06 0.08 -0.22 – 0.11 -0.69 .493 2.53         

Typicality * Task 0.01 0.07 -0.12 – 0.14 0.09 .930 1.69         
Distinctiveness * Task 0.06 0.08 -0.09 – 0.21 0.74 .462 2.08         

Observations: 22,540         
Marginal R2 / Conditional R2: 0.250 / 0.523         
Note. Participant | X = random slope of X by participants, VIF = Variance Inflation Factor, NameAgr = Name agreement, AoA = Age of acquisition, ImageAgr = 

Image agreement, Order = Trial order, OrdCatPos = Ordinal category position, NoFeats = Number of semantic features, IntercorrDens = Intercorrelational 

Density, NearSemNeigh = Number of near semantic neighbours, SemSim = Semantic similarity. 

Values of significant effects (p < .05) are printed in bold; in the simple effects, the variable with the stronger effect within significant interactions is highlighted 

in grey. 
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Knowledge about the meaning of words is central to successful verbal communication and is the 

starting point of all current models of oral word production. Consequently, the structure of word 

knowledge, its complexity, and the way activation spreads to semantically related representations may 

have consequences for processing at other levels of word planning. This may be particularly true for 

the lexical level where aspects of the semantic representation of the target word can influence both 

the activation of the target’s lexical representation and the size and strength of activation of a cohort 

of co-activated lexical representations. Some of these aspects of meaning can be operationalised as 

semantic variables.  

However, there is relatively little previous research into effects of semantic variables on word 

production and that which there is often focused on only a few aspects of semantics thus dismissing 

the fact that meaning is multidimensional with probable simultaneous effects from different semantic 

variables (Pexman et al., 2013; Taylor et al., 2012). Yet, a clearer understanding of effects of semantic 

variables on word production can inform theories of word production as their effects allow us to better 

understand semantic and lexical processing.  

Consequently, the research presented in this thesis was important as it moved beyond the 

one-dimensional approach to semantic variables often adopted by previous research and contributed 

well-controlled studies to the evidence base of effects of semantic variables on word production. I 

focused on, and thoroughly investigated, effects of the feature-based semantic variables, number of 

semantic features, intercorrelational density, number of near semantic neighbours, semantic similarity, 

typicality, and distinctiveness. The studies in this thesis aimed to determine which feature-based 

semantic variables reliably influence behaviour and to better understand how these variables affect 

processing in the context of word production models. To achieve these aims, I followed a multifaceted 

approach that capitalised on different populations (people with aphasia in Paper 1, neurotypical 

speakers in Papers 2, 3, and 4), different types of data (behavioural data in Papers 1, 2, and 4, 

electrophysiological data in Paper 3), and different experimental paradigms (standard picture naming 

in Papers 1, 2, 3, and 4, speeded picture naming in Paper 4). The research presented in this thesis has 

yielded important findings that add to our understanding of the mechanisms underlying effects of 
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semantic variables in word production. These findings are summarised and discussed in the next 

section. Subsequently, I address methodological strengths and challenges and theoretical implications 

of this work. Possible avenues for future research are indicated throughout this General Discussion.  

Summary and discussion of the main experimental findings 

Table 1 summarises the main findings of the four studies regarding effects of the semantic 

variables. I will now summarise and discuss the most important findings of the four experimental 

studies of this thesis, structured around the research questions posed by the different studies. 

Following this, I will assess why different semantic variables influenced performance in different 

studies. 

Which semantic variables affect word production in people with and without aphasia and what 

are the underlying mechanisms? 

Papers 1, 2, and 4 investigated effects of the semantic variables on behavioural measures 

(naming speed and/or accuracy and error types) in participants with aphasia (Paper 1) and neurotypical 

speakers (Papers 2 and 4). As is clear from Table 1, the naming accuracy of the full group of 

participants with aphasia was unaffected by the semantic variables (but there was a random slope for 

number of semantic features by participants that significantly improved model fit), while participants 

with predominantly semantic and/or lexical impairments of the sub-group were more accurate on 

words with a higher number of semantic features. Additional analyses into effects of single semantic 

variables in the full group of participants also revealed a significant facilitatory effect of number of 

semantic features. Importantly, a complementary Bayesian analysis also allowed me to interpret the 

null findings for the other semantic variables: Positive evidence in favour of the null hypothesis for all 

semantic variables, except for number of semantic features, indicated that they did not influence 

naming accuracy of the full group of participants and that the absence of effects was not simply due to 

low statistical power (e.g., Dienes, 2014). Moreover, across participant groups, words with higher 

numbers of semantic features, higher semantic similarity, and lower typicality were more likely to be 

produced correctly rather than resulting in a semantic error, coordinate error, or omission, and some 

of these effects depended on the integrity of semantic processing.  
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Table 1 

Summary of the findings of all the studies reported in this thesis  

Semantic variable 

Participants with aphasia  Neurotypical speakers 

Paper 1:  

MAPP Database 

 

Paper 2:  

standard naming b Paper 3: ERPs b 

Paper 4:  

naming speed 

 

Full 

group 

Sub-

group 

Naming 

errors a 

 

Latency/Accuracy Latency/Accuracy 
 

Number of semantic features Ø ↗	 ↗	  

↗ / ↗ ✓ Ø / ✓ 

Intercorrelational density Ø Ø Ø 
 

Ø / ↙ ✓ Ø / Ø 

Semantic similarity Ø Ø ↗	  

Ø / Ø ✓ Ø / Ø 

Number of near semantic neighbours Ø Ø Ø 
 

Ø / Ø ✓ Ø / Ø 

Typicality Ø Ø ↙	  

Ø / Ø Ø Ø / Ø 

Distinctiveness Ø Ø Ø 
 

↙ / Ø Ø ✓ / Ø 

Note. ERPs = Event Related Potentials, Ø = non-significant effect, ↙ = poorer performance (slower responses or decreased accuracy with higher 

values of the semantic variable), ↗ = improved performance (faster responses and higher accuracy with higher values of the semantic variable), ✓ = 

effect of semantic variable on ERPs (Paper 3) or significant interaction with naming task (Paper 4). 

a For naming errors, the direction of the arrow indicates the change in correct responses (increased vs decreased) relative to the error type, with 

higher values of the variable; findings are combined for the full group and the sub-group and across the analyses examining correct responses 

versus semantic errors, correct responses versus coordinate errors, or correct responses versus omissions; Ø indicates non-significant effects across 

all comparisons and ↙/↗ a significant effect in at least one of the analyses.  

b Findings from the most complex analysis including all six semantic variables and all control variables. 
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In Paper 2, I investigated effects of the same semantic variables on neurotypical speakers. 

Similar to the participants with aphasia in Paper 1, naming responses of neurotypical participants were 

faster and more accurate for words with higher numbers of semantic features. In contrast, responses 

were less accurate for words with higher intercorrelational density and slower for words with higher 

distinctiveness. Paper 4, in which I compared speeded and standard naming, revealed that the effects 

of some semantic variables differed between the two tasks: While the effect of number of semantic 

features on naming accuracy was stronger in standard naming, and non-significant in speeded 

naming, the effect of distinctiveness on naming latency was stronger in speeded naming, but 

significant in both tasks.  

Taken together, across analyses in Papers 1, 2 and 4, number of semantic features most 

reliably affected naming performance and did so in both participants with and without aphasia, with 

additional effects of intercorrelational density, semantic similarity, typicality, and distinctiveness across 

the populations. While higher values of some of the variables (i.e., number of semantic features and 

semantic similarity) facilitated processing, leading to faster and/or more accurate responses, higher 

values of other variables (i.e., intercorrelational density, typicality, and distinctiveness) inhibited 

performance, leading to slower or more inaccurate responses. Hence, depending on the semantic 

variable, the aspect of the structure of the semantic representation and its consequences for the 

activation environment of lexical processing it captured either supported or hindered processing of the 

target word. This pattern of semantic facilitation and inhibition needs to be explained by theories of 

word production. Importantly, most current theories were formulated for experimental data from 

context manipulation paradigms, however, the mechanisms proposed to account for facilitatory and 

inhibitory effects from distractor words or previously named words in the experiment may also be able 

to account for effects of item-inherent variables. Possible cognitive mechanisms for the effects of the 

significant semantic variables have already been discussed in the experimental chapters of this thesis. 

The next two sections will briefly explain the repertoire of mechanisms available to current models of 

word production to explain the findings. To foreshadow the argument, facilitatory effects likely require 
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some mechanism of activation spreading which primes the target word, while inhibitory effects can 

most parsimoniously be explained when assuming a mechanism of lexical competition. 

Mechanisms of semantic facilitation 

As detailed in the General Introduction, few of the currently prevalent theories of word 

production explicitly assume a mechanism that allows for semantic facilitation (i.e., Abdel Rahman & 

Melinger, 2009; Navarrete et al., 2014). When semantic facilitation has been located in the model, it is 

placed at the level of semantic processing. For example, the Swinging Lexical Network Hypothesis 

(Abdel Rahman & Melinger, 2009) proposes holistic lexical concept nodes with activation spreading 

bidirectionally between them, which causes conceptual priming of the target concept. However, this 

was first suggested in the context of the Picture-Word Interference paradigm, where participants 

receive two stimuli: a to-be-named picture and a to-be-ignored distractor. In this paradigm, the target 

picture (e.g., ‘cat’) activates related concepts via spreading activation, for example ‘animal’ and ‘pet’ via 

is a links, ‘fur’ and ‘tail’ via has a links, and these pass activation on to related concepts that share 

(some of) these properties, causing concepts like ‘dog’, ‘rabbit’, ‘mouse’, ‘horse’, etc. to be co-

activated. Simultaneously, a categorically related distractor word (e.g., ‘dog’) spreads activation that 

converges on the same concepts. The activated lexical concepts are suggested to enhance each other’s 

activation through their mutual bidirectional links, thus priming the target word. Importantly, even in 

the absence of a distractor word, such as in standard picture naming, Abdel Rahman & Melinger 

(2019) proposed that increased spread of activation (e.g., due to many semantic features associated 

with a target) has the same facilitatory effect on target processing: Bidirectional spread of activation 

through the semantic network ‘primes’ the target concept and enhances the activation of its lexical 

representation. More specifically, when semantic activation spreads between lexical concepts (e.g., 

from ‘cat’ to ‘animal’, ‘pet’, ‘fur’, and ‘tail’, and from those concepts to ‘dog’, ‘rabbit’, ‘mouse’, and 

‘horse’), each of them sends activation back to the target concept (and other related lexical concepts) 

via the shared property concept nodes. The more related lexical concepts there are, the more feedback 

activation converges on the target concept, facilitating its selection. 
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As demonstrated by the presence of facilitatory effects of semantic variables other than 

number of semantic features, the extent of the spread of activation cannot exclusively depend on the 

number of lexical concepts a target concept is connected to. Instead, it is also important whether the 

target lexical concept is part of a cluster of similar representations (e.g., Collins & Loftus, 1975), which 

may, for example, be represented as the average number of links a target concept shares with all other 

concepts in the semantic network (effect of semantic similarity in Paper 1). However, further research is 

needed that specifically targets the mechanism of spreading activation and establishes the way 

feature-based semantic variables may operate assuming holistic semantic representations.  

In addition to the Swinging Lexical Network Hypothesis (Abdel Rahman & Melinger, 2009, 

2019), the Ballistic Model (Mahon & Navarrete, 2016; Navarrete et al., 2014) assumes semantic priming 

via spreading activation. While this theory does not account for standard picture naming (priming via 

spreading activation was suggested for the Blocked Cyclic Naming Paradigm), the mechanism could 

presumably work as described for the Swinging Lexical Network Hypothesis. Similarly, this spreading 

activation account to explain facilitatory effects of semantic variables could work in WEAVER++ (Levelt 

et al., 1999) and Howard et al. (2006), where a locus and mechanism of semantic facilitation has not 

been specified. However, when the labelled links between the target’s lexical concept and other 

concepts are assumed to be bidirectional (note that in WEAVER++ they are unidirectional), the 

mechanism of semantic facilitation could work as outlined above.  

 Alternatively, if semantic representations are indeed feature-based, clearly the presence of 

many semantic features may result in strong activation of the target’s lexical representation. 

Additionally, lexical to conceptual feedback may enhance the activation of the target word: If the 

semantic features of ‘cat’ co-activate the lexical representations of ‘dog’ and ‘tiger’ (see Figure 1 in the 

General Introduction), feedback from these lexical representations to dog’s and tiger’s semantic 

features would converge on the semantic features of ‘cat’, enhancing its activation and thus facilitating 

production of ‘cat’. This proposal applies to the Interactive Activation model (Dell, 1986, 1988; Dell et 

al., 1997). On the other hand, or in addition to the described feedback account, bidirectional feature-

feature connections (e.g., between correlated features, e.g., Cree et al., 1999; McRae et al., 1997, 1999) 
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may allow for activation to spread between semantic features at the semantic level. Similar to the 

spreading activation account for holistic lexical concepts, this may ultimately enhance the activation of 

the target’s semantic features. However, none of the current word production theories with feature-

based semantic representations proposes such connections.  

Finally, the Incremental Learning Model (Oppenheim et al., 2010) does not include a 

mechanism for semantic facilitation, but incremental strengthening after lexical selection could be 

understood as long-term facilitation. According to the Incremental Learning Model, each act of lexical 

retrieval results in persistent learning, which causes an adjustment of the weights of the connections 

between semantic and lexical representations (i.e., repetition priming or incremental weakening of 

connections). However, this was proposed in the context of the Cumulative Semantic Interference 

effect, which develops across an experiment. In contrast, it is unclear how long-term strengthening of 

semantic-to-lexical level connections after successful lexical selection would develop for item-inherent 

variables. Future research could address how semantic facilitation may work assuming long-term 

adjustments of semantic-to-lexical connections in this model.  

Mechanisms of semantic interference  

In addition to facilitatory effects, semantic variables also resulted in inhibitory effects on 

naming. Hence, even in the absence of contextual manipulations, theories of word production must 

provide an account of inhibitory effects. The prevalent account is lexical selection by competition, 

where co-activated semantic representations compete with the target word for selection (different 

implementations of the competitive selection process, e.g., Luce choice rule (Luce, 1959), were 

described in the General Introduction). A number of current theories of word production assume 

lexical selection to be competitive, however, the Swinging Lexical Network Hypothesis (Abdel Rahman 

& Melinger, 2009, 2019) is the only theory that explicitly accounts for inhibitory effects of item-

inherent variables. It proposes that semantic variables can impact the size and strength of activation of 

a cohort of co-activated lexical representation, which will compete with the target for selection. 

Importantly, as lexical representations are activated from their respective semantic representations, in a 

holistic semantic organisation, the co-activated lexical cohort depends on the spread of activation 
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between lexical concepts at the semantic level. Hence, the inhibitory effects of intercorrelational 

density, typicality, and distinctiveness observed in Papers 1, 2, and 4 likely originate at the semantic 

level and have their loci at the lexical level.  

Even though most other theories of word production that address effects of inhibition (e.g., 

Howard et al., 2006; Levelt et al., 1999) were proposed to account for inhibitory effects of semantic 

distractors or previously named items in the experiment, inhibitory effects of semantic variables can 

also be explained in these theories with only slight modification—specifically, by complementing 

lexical competition with one of the mechanisms outlined in the previous section (i.e., spreading 

activation at the semantic level or feedback between the lexical and semantic levels).  

Alternatively, long-term adjustments of semantic-to-lexical connections (Navarrete et al., 2014; 

Oppenheim et al., 2010) may also be able to account for inhibitory effects of item-inherent semantic 

variables. If the semantic representation of words causes other lexical representations to be repeatedly 

co-activated but unselected during processing, the semantic-to-lexical connection for these co-

activated words would be increasingly weakened. For example, in Paper 2, I described how that might 

be the case for words with higher intercorrelational density that are co-activated more often over the 

course of a lifetime, without being named. If the changes in their connections between semantic and 

lexical representations are persistent, words with long-term weakened connections would be harder to 

process if they become target words themselves. Consequently, even though the Incremental Learning 

Model (Oppenheim et al., 2010) and the Ballistic Model of Lexical Access (Navarrete et al., 2014) do not 

discuss influences from item-inherent variables, they may be able to account for inhibitory effects of 

the semantic variables when assuming a mechanism that permanently changes the way words are 

accessed after repeated weaking of semantic-to-lexical connections.  

Of the currently available theories of word production reviewed in the General Introduction, 

only Dell’s Interactive Activation Model (Dell, 1986, 1988; Dell et al., 1997) seems unable to account for 

inhibitory effects of semantic variables as it does not implement any mechanism of lexical competition 

or learning. While initially activated semantic features and feedback between the lexical and semantic 

levels may activate multiple lexical candidates in Dell’s model architecture, they would not interfere 



360  |  GENERAL DISCUSSION  

  

with selection as the highest activated lexical candidate is selected after a certain number of time 

steps, irrespective of the activation levels of co-activated lexical representations.  

In sum, the Swinging Lexical Network Hypothesis (Abdel Rahman & Melinger, 2009, 2019) 

seems to be the only theory of word production that is able to account for effects of item-inherent 

semantic variables without further modifications. However, with only minor adjustments, most of the 

other theories would also be able to explain such effects.  

Differences in effects of semantic variables between participants with and without aphasia  

In Papers 1, 2, and 4, I discussed effects of semantic variables on behavioural measures of 

word production separately for participants with aphasia and neurotypical speakers. However, here, I 

merge the findings from these papers and discuss the differences between effects in participants with 

and without aphasia.  

As becomes evident from Table 1, number of semantic features was the only semantic variable 

that affected the naming performance of participants with and without aphasia: It was the only 

semantic variable that affected both naming latency and accuracy of neurotypical participants in 

standard picture naming (Paper 2), its effect on naming accuracy differed between speeded and 

standard naming with a stronger facilitatory effect on standard naming (Paper 4), and number of 

semantic features was also significant across analyses in the Event Related Potential (ERP) data (Paper 

3). In addition, this was the only semantic variable that affected naming accuracy in participants with 

semantic and/or lexical impairments (Paper 1), suggesting that in participants with aphasia this effect 

of number of semantic features resembled ‘normal-like’ processing. Both participants with and without 

language impairments seem to benefit from the availability of increased semantic information for a 

concept (i.e., many semantic features).  

In addition to number of semantic features, the performance of participants with aphasia was 

affected by typicality and semantic similarity, while neurotypical participants showed effects of 

intercorrelational density and distinctiveness in standard naming (Paper 2), and the effect of 

distinctiveness was stronger in speeded than in standard naming (Paper 4). What could be the reasons 

for such discrepancies in the findings for participants with and without aphasia? In participants with 
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aphasia, variables that influenced performance, with the exception of number of semantic features, 

showed their effects in the error analyses and some of these effects interacted with the participants’ 

semantic abilities, only becoming apparent for a particular group of participants (e.g., the effect of 

semantic similarity was only present for participants with severe semantic impairments). In contrast, the 

effect of distinctiveness was only significant, or differed between tasks, in the response latency analysis 

for neurotypical participants (Papers 2 and 4). Hence, it is possible that error analyses (participants with 

aphasia, Paper 1) as well as response latency analyses (neurotypical participants, Papers 2 and 4) have 

a different sensitivity to semantic variables compared to overall naming accuracy analyses. Response 

latency data in unimpaired participants may provide a more nuanced representation of the influences 

of the variables of interest compared to the naming accuracy and error type analyses as it can capture 

even slight differences in the processing trajectory induced by the semantic variables, which may, in 

neurotypical participants, not result in a naming error (also note that, surprisingly, not even in the 

comparison between speeded and standard naming were naming accuracy and production of 

semantic errors strongly affected by the semantic variables). 

In contrast, intercorrelational density was the only semantic variable that significantly affected 

naming accuracy of neurotypical participants (Paper 2) but not participants with aphasia. One might 

think that, in participants with aphasia, the fine-grained structure of intercorrelations between 

semantic features could be impaired, which would reduce the spread of activation between semantic 

features and lead to fewer lexical representations being co-activated and thus reduced lexical 

competition. As a result, the performance of participants with aphasia may be unaffected by this 

variable. However, this account would not apply to people without semantic impairments. It is 

consequently unclear why the effect of intercorrelational density is present in neurotypical participants 

but not in people with aphasia. More research into this matter is needed.  

Further reasons for the inconsistencies in findings of the participants with and without aphasia 

may be in the slight differences of control variables included in the analyses: While Paper 1 included 

control variables that have been shown to influence performance of participants with aphasia, the 

papers with neurotypical participants (Papers 2–4) controlled for the variables that were identified in a 
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meta-analysis by Perret and Bonin (2019), which found a slightly different set of variables to 

consistently affect performance of neurotypical than those controlled in Paper 1. Finally, differences in 

the number of items included in the papers on participants with and without aphasia may have 

affected the results: While the overall number of data points included in the analyses was high in all 

studies (Paper 1: 15,573 data points from 89 items and 175 participants (full group), Paper 2: 24,554 

data points from 291 items and 85 participants, Paper 4: 23,608 data points from 297 items and 80 

participants (combined data)), the smaller number of items included in Paper 1 may have resulted in a 

decrease of statistical power. Moreover, the range of values of the semantic variables differed slightly 

between the papers, with wider ranges in Paper 2 than in Paper 1 (Table 2). 

 

Table 2 

Descriptive statistics for the semantic variables included in Papers 1 and 2 

Semantic variable 

Paper 1: Participants with 

aphasia (n = 89 items) 

 Paper 2: Neurotypical 

participants  

(n = 291 items) 

Mean SD Range  Mean SD Range 

Number of semantic 

features 
13.42 2.52 7–20 

 
12.73 3.01 6–20 

Intercorrelational density 130.33 136.66 0.00–739.15  156.07 172.86 0.00–1296.22 

Semantic similarity 0.03 0.02 0.00–0.06  0.04 0.02 0.00–0.09 

Number of near semantic 

neighbours 
3.94 4.99 0–24 

 
6.19 7.59 0–38 

Typicality 31.66 14.82 9.20–76.25  32.72 16.17 4.22–91.25 

Distinctiveness 0.42 0.15 0.14–0.80  0.37 0.16 0.04–0.80 

 

Moreover, effects of the semantic variables in the participants with aphasia may have been 

generally more heterogeneous than in the neurotypical participants. This heterogeneity was suggested 

by the marked difference in the effects between the full group and the more homogeneous sub-group 

of participants (but note that there were by-participant random slopes for semantic variables also in 

Papers 2 and 4, that significantly improved the model fit and indicated some degree of variability in 

their effects across neurotypical participants). For further discussion on this topic please also refer to 

the section below “Studying performance of people with aphasia as a group”.  



      CHAPTER 6  |  363 

 

C
H

A
P

T
ER

 6
  |  363  

C
H

A
P

T
ER

 6
  |  363

 

Taken together, the presence of effects of semantic variables shows that the semantic 

structure of target words matters and that it influences word processing. However, a different 

combination of semantic variables was significant in each of the papers reported in this thesis and 

exactly which semantic variables were significant was inconsistent across the different investigations. 

What this might mean is that while I found significant effects of individual semantic variables in the 

different analyses, it may not necessarily be the case that these particular variables are important, but 

rather what is important is what they represent more broadly: how activation flows between items at 

the semantic level and how different ways that semantic knowledge overlaps can cause co-activation 

at the lexical level. While the semantic variables studied here measure different possible aspects of 

these dynamics, it may be the case that they are not actually perfect measures of the factors 

underlying activation spread and lexical co-activation and that other measures could be found that 

might represent aspects of these dynamics even better. The inconsistency in the findings may be taken 

to suggest that the precise way to measure the factors that influence this spread of activation and the 

size and activation strength of the co-activated cohort have not yet been identified. Following this 

idea, it may be possible that new measures that capture either the spread of activation or the size and 

strength of activation of the lexical cohort may outperform any of the individual measures investigated 

here. Further research is needed address this idea.  

 An interesting follow-up to Papers 1, 2, and 4 would be to statistically compare performance 

of people with and without aphasia and to test whether the effects of semantic variables actually differ 

statistically in these populations. This, however, was not possible with the data analysed here because 

the materials, items, and testing conditions were very different in Paper 1 compared to Papers 2 and 4.  

Building on the behavioural results of Papers 1, 2, and 4, the findings of Paper 3 provide 

further insights into the possible cognitive mechanisms of effects of semantic variables on word 

production. I will first summarise the core findings of Paper 3, which used electrophysiological 

evidence to explore effects of semantic variables during online word planning, and then assess the 

contribution of the new knowledge gained to a better understanding of effects of semantic variables. 
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Which semantic variables affect processes during word planning and what might be the 

functional basis of their effects?  

In Paper 3, to explore the electrophysiological signatures of effects of semantic variables 

during overt picture naming, ERP data (from electroencephalography (EEG) recordings) was collected 

in the experiment that also provided the behavioural data analysed in Paper 2. Following the only 

previous EEG study on semantic variables (Rabovsky et al., 2021), I analysed mean ERP amplitudes at a 

posterior region of interest (ROI) in a time-window between 200 and 550ms using linear mixed effects 

models to test for effects of the semantic variables (waveform analysis). In addition, I conducted a 

microstate analysis, which enabled me to test if the underlying neuronal networks involved were 

modulated by the semantic variables. The use of two different types of analyses on the same ERP data 

allowed me to thoroughly test for influences of the semantic variables on online word planning.  

Combining across analyses, I found significant effects of number of semantic features, 

intercorrelational density, semantic similarity, and number of near semantic neighbours. Consequently, 

there was evidence for effects on brain activity during word planning of semantic variables that had 

not been tested using evoked responses before (i.e., semantic similarity and number of near semantic 

neighbours). Number of semantic features was the only semantic variable that was significant in both 

the waveform and the microstate analysis. The three remaining variables were only significant in the 

microstate analysis and all four variables affected the number of timeframes associated with 

Microstate 5.  

Following previous literature (Rabovsky et al., 2021), I interpreted the posterior positivity in the 

mean amplitude analysis as reflecting activity in the lexical and semantic system during processing and 

speculatively generalised this interpretation to the effects of semantic variables on the number of 

timeframes associated with Microstate 5. Consequently, I argued that activity in the semantic and 

lexical network was higher for words with higher numbers of semantic features (activity related to the 

target representation itself), higher intercorrelational density and higher number of near semantic 

neighbours (activity distributed across the target representation and a co-activated semantically 

related cohort), as well as for words with higher semantic similarity (the underlying mechanism is 
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unclear due to the inconsistencies in previous behavioural findings (Paper 1 of this thesis; Fieder et al., 

2019) and the activity could be either related to the target itself or distributed across a co-activated 

cohort).  

In the absence of electrophysiological markers of facilitation and interference or semantic and 

lexical processing in word production (unfortunately the effect of word frequency, which was supposed 

to act as a marker of lexical processing was non-significant), I can currently only speculate about the 

interpretation of the effects of semantic variables on the number of timeframes associated with 

Microstate 5 and alternative interpretations may be possible. Importantly though, given their semantic 

nature, we can be certain that the semantic variables affect processing where semantic information is 

required, which is during semantic and/or lexical processing in word production. Thus, even though 

the precise interpretation of the findings remains rather speculative at this point, Paper 3 revealed that 

these semantic variables, some of which did not show a significant influence in the analyses of the 

associated behavioural data (Paper 2), influence semantic and/or lexical processing. Subsequent work 

can build on this finding and further the understanding of the effects. Importantly, neither of the 

approaches to the ERP analysis yielded differences between effects that are facilitatory or inhibitory in 

the behavioural data or allowed discrimination between semantic and lexical contributions to the 

effects. Future research could attempt to disentangle these further to directly test the association of 

facilitatory effects with predominantly semantic processes and inhibitory effects with lexical processes 

(but see Paper 4 for a discussion of some of the difficulties associated with this endeavour).  

Do effects of semantic variables depend on the processing requirements of a task?  

All the studies of this thesis used overt naming, a task that people naturally engage in in their 

everyday lives, as an experimental paradigm. Importantly, this task is unlikely to trigger task-specific 

response strategies or to have major reliance on executive control functions (cf. e.g., Picture-Word 

Interference paradigm). In addition, in Paper 4, I used a speeded version of the standard picture 

naming paradigm to elicit a speed-accuracy trade-off in neurotypical participants with the aim of 

testing whether effects of semantic variables depend, at least to some degree, on the task 

requirements.  
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Two of the previous studies investigating semantic variables (Fieder et al., 2019; Mirman, 2011) 

used a speeded picture naming task and reported effects of semantic variables (i.e., number of near 

semantic neighbours and semantic similarity) that have been found to be non-significant in standard 

picture naming (e.g., Paper 2 in this thesis; Bormann, 2011; Hameau et al., 2019; Lampe et al., 2017). 

Previous research using speeded naming tasks (e.g., Kello, 2004; Mirman, 2011) had suggested that the 

time pressure in speeded naming may cause a modulation of input gain, a mechanism of cognitive 

control, making processing units more responsive to their inputs, which allows for faster responses at 

the expense of processing accuracy. In addition, Mirman proposed that this heightened sensitivity to 

input leads to stronger effects of item-inherent variables (near and distant semantic neighbours in 

Mirman, 2011).   

Motivated by this suggestion and the discrepancies between effects of some semantic 

variables in the literature, the study reported in Chapter 5 (Paper 4) aimed to investigate whether 

effects of semantic variables in neurotypical participants depended on the processing speed required 

by the experimental task and on the resulting processing difficulties. However, in contrast to the 

predictions of the input gain account, effects of semantic variables were not systematically stronger in 

speeded than in standard picture naming. In fact, of the two semantic variables that interacted with 

naming task, only the effect of distinctiveness was stronger in the speeded naming task (response 

latency analysis), while the effect of number of semantic features was stronger in the standard naming 

task (naming accuracy analysis). Neither of these effects could be explained under the input gain 

account by suggesting increased responsiveness to inputs in speeded naming.  

Consequently, I suggested, as I have throughout this thesis, that while some differences in 

effects of semantic variables between previous studies may have been caused by the specific naming 

task used, they more likely depend on differences in statistical power and control of other influential 

variables in the experiments, particularly as effects of the semantic variables were rather small with 

between participants variability.  

Interestingly, for precisely those two variables that have only been found to be significant in 

speeded picture naming by previous research (i.e., number of near semantic neighbours and semantic 
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similarity), the model selection process for the statistical analyses in Paper 4 retained random by-

participant slopes that indicated that the model with these random slopes fit the data significantly 

better than a model without them. This suggests that the effects of these variables vary between 

(neurotypical) participants and may be a reason for the failures to replicate the effects of these 

semantic variables found in previous research. It is possible that Fieder et al. (2019) and Mirman's 

(2011) participant samples may have, coincidentally, consisted of (predominantly) participants that 

were affected by the respective variables in their investigations, while the larger participant sample 

included in my studies may have been more diverse in that respect, causing an overall non-significant 

effect of the same variables. However, more research into inter-individual variability of effects of the 

semantic variables is needed to assess this suggestion.  

One aspect of Paper 4 that could be considered a shortcoming is that I did not analyse the 

simple effects of the semantic variables in the two tasks separately, which made me unable to 

comment on the effects of the semantic variables in the two tasks separately. However, given that the 

paper’s focus was on a comparison of the two tasks, an analysis of the simple effects was beyond the 

scope of Paper 4. Moreover, in the context of a task comparison, I may have encountered a statistical 

dilemma that would have exacerbated the interpretation of the simple effects for the two tasks 

separately: In the absence of a significant interaction between the two tasks, a significant simple effect 

in either of the tasks would have been impossible to interpret with confidence. The non-significant 

interaction would have indicated that the effect of a variable is not significantly different between the 

two tasks, hence, the simple effect being significant in one of the tasks but not in the other, would 

have been indicative of a statistical error. This could have been a Type 1 error, false positive, for the 

significant simple effect, or a Type 2 error, false negative, for the non-significant interaction or the 

non-significant simple effect. It would have been impossible to disentangle these options without 

further research.  

Importantly, and as mentioned in Paper 4, the findings of this study may have been influenced 

by an effect of repetition, which may make it impossible to directly compare them to other studies. As 

described in Paper 4, the participants had already completed the study reported in Papers 2 and 3 
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before completing the standard or speeded naming tasks reported in Paper 4. While I have argued 

that this experimental approach has positive effects on the internal comparability of the speeded and 

standard naming tasks analysed in Paper 4 (i.e., the speeded naming performance might otherwise be 

disproportionally affected by visual processing difficulties of the stimuli), it may also affect the findings 

in an undesired way. Previous work on semantic variables (i.e., number of semantic features and 

intercorrelational density more specifically) that used a familiarisation procedure (Rabovsky et al., 

2016) or presented the experimental items twice to increase the number of items for the analyses 

(Rabovsky et al., 2021) has reported some influence of these practices on effects of semantic variables: 

The effect of number of semantic features on naming latency was weaker for participants that had 

been familiarised and the effect of intercorrelational density on naming latency was only significant in 

the repetition.  

To assess the magnitude of any effects of repetition in my own investigations, I conducted a 

follow-up analysis where I compared the performance on the first and second standard naming tasks 

of the 41 participants that were included in the standard naming analysis of Paper 4 (i.e., participants 

that had performed tasks in the order: 1) standard naming, 2) standard naming, 3) speeded naming) 

with the 291 items included in Paper 2. I ran (Generalised) Linear Mixed Effect Models (lme4; Bates et 

al., 2015) on their naming latency and naming accuracy. The models included the same fixed effects 

that were considered in the analyses of Paper 4 and additional interactions between repetition and all 

semantic and control variables. Repetition was treatment coded (first presentation as -0.5 and second 

as 0.5). 

The findings of these analyses are reported in Table 3. Unsurprisingly, responses were faster 

and more accurate in the second standard naming round. In the naming latency analysis, I found a 

significant interaction between repetition and number of semantic features with an attenuated effect 

in the second standard naming round compared to the first exposure to the items (Figure 1). A follow-

up analysis with the emtrends function (Lenth, 2020) revealed that, in this subset of participants, the 

facilitatory effect of number of semantic features was indeed non-significant in the first naming round 

(Estimate = -0.01, SE = 0.01 , t = -1.26, p = .207), in contrast to what I had reported for all 87 
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participants in Paper 2, and also non-significant in the second standard naming round (Estimate = -

0.00, SE = 0.01, t = -0.07, p = .942), as reported in Paper 4. However, as described for the interaction of 

imageability and task in Paper 4, in the presence of a significant interaction between number of 

semantic features and repetition, at least one of the non-significant simple effects is likely subject to a 

Type 2 error and is a false negative (presumably the non-significant effect in the first naming round), 

due to insufficient statistical power. Nonetheless, the weaker effect of number of semantic features in 

the second naming round resembles the attenuated effect of number of semantic features on naming 

latency in participants that had been familiarised with the materials in Rabovsky et al. (2016), though 

their effect of number of semantic features was significant in participants that both had and had not 

been familiarised (note that Rabovsky et al. (2021) did not report the outcome of the interaction 

between number of semantic features and task repetition in the naming latency analysis).  

In contrast, in the naming accuracy analysis no semantic variable interacted with task 

repetition, which resembles the non-significant interactions of number of semantic neighbours and 

intercorrelational density and familiarisation or task repetition in Rabovsky et al. (2016) and Rabovsky 

et al. (2021), respectively. 

These findings indicate that the effects of semantic variables, particularly on naming accuracy, 

were largely robust over time and item repetitions in standard naming. However, for response 

latencies, the practice of familiarising participants with the materials for a study, which is common in 

some research laboratories, may influence behaviour (even without feedback on target names; see 

Table 3, also for significant effects of repetition on control variables). Importantly, the effect of this 

practice on speeded naming cannot be assessed due to the experimental design used. Finally, the 

disappearance of the significant effect of number of semantic features on naming accuracy that was 

reported in Paper 2 after removing the half of the participants who subsequently performed speeded 

naming as the next task, highlights the fragility of the effects of semantic variables and the importance 

of highly powered investigations.  
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Table 3 

Summarised output of picture naming latency and naming accuracy analyses comparing first and second rounds of standard naming in 41 participants. 

 Naming latency Naming accuracy 

Model structure  

lmer(RT ~ (NameAgr + AoA + Imageability + ImageAgr + 
Frequency + Familiarity + Order + OrdCatPos + NoFeats + 
IntercorrDens + NearSemNeigh + SemSim + Typicality + 
Distinctiveness) * Repetition + (1 | Item) + (NearSemNeigh + 
SemSim || Participant), data, REML = TRUE) 

glmer(ACC ~ (NameAgr + AoA + Imageability + ImageAgr + 
Frequency + Familiarity + Order + CatPos + NoFeats + 
IntercorrDens + NearSemNeigh + SemSim + Typicality + 
Distinctiveness) * Repetition + (1 | Item) + (NearSemNeigh + 
Typicality + IntercorrDens | Participant), data, family = 
binomial() 

Random effect Variance SD     Variance SD Correlation    
Item (Intercept) 0.01 0.11     1.44 1.20     

Participant (Intercept) 0.01 0.11     0.41 0.64     
Participant | NrSemNeigh  0.00 0.02     0.03 0.18 0.63    

Participant | SemSim  0.00 0.01           
Participant | Typicality       0.04 0.20 -0.02 -0.41   

Participant | IntercorrDens       0.03 0.16 -0.24 0.09 -0.61  
Residuals 0.05 0.23           

Fixed effects Estimate SE CI t-value p-value VIF Estimate SE CI t-value p-value VIF 
(Intercept) -1.29 0.02 -1.32 – -1.25 -69.76 <.001  3.13 0.13 2.88 – 3.39 24.03 <.001   
NameAgr -0.05 0.01 -0.06 – -0.03 -6.61 <.001 1.10 0.74 0.08 0.58 – 0.90 9.20 <.001 1.08 

AoA 0.02 0.01 -0.00 – 0.04 1.62 .106 2.42 -0.18 0.12 -0.42 – 0.06 -1.46 .146 2.47 
Imageability -0.02 0.01 -0.04 – -0.00 -2.18 .029 1.86 0.36 0.11 0.15 – 0.57 3.32 .001 1.84 

ImageAgr -0.04 0.01 -0.05 – -0.02 -4.98 <.001 1.25 0.29 0.09 0.12 – 0.47 3.30 .001 1.28 
Frequency -0.01 0.01 -0.02 – 0.01 -0.78 .433 1.57 0.21 0.10 0.02 – 0.40 2.14 .033 1.57 
Familiarity -0.03 0.01 -0.05 – -0.02 -3.70 <.001 1.72 0.07 0.11 -0.14 – 0.28 0.68 .500 1.76 

Order 0.00 0.00 -0.00 – 0.01 0.72 .470 3.11 -0.05 0.05 -0.15 – 0.05 -1.04 .300 3.07 
OrdCatPos 0.00 0.00 -0.01 – 0.01 -0.53 .597 3.18 0.06 0.06 -0.06 – 0.17 0.93 .355 3.16 

NoFeats -0.01 0.01 -0.02 – 0.01 -0.69 .492 1.57 0.18 0.10 -0.02 – 0.37 1.77 .078 1.55 
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IntercorrDens 0.02 0.01 0.00 – 0.04 2.13 .033 2.18 -0.26 0.12 -0.50 – -0.03 -2.23 .026 2.19 
NearSemNeigh 0.02 0.01 -0.00 – 0.04 1.57 .117 2.27 -0.09 0.13 -0.34 – 0.16 -0.71 .479 2.40 

SemSim 0.01 0.01 -0.01 – 0.03 0.65 .515 2.33 -0.06 0.13 -0.30 – 0.19 -0.45 .654 2.46 
Typicality 0.00 0.01 -0.02 – 0.01 -0.52 .601 1.43 0.03 0.10 -0.17 – 0.23 0.31 .759 1.53 

Distinctiveness 0.02 0.01 0.00 – 0.04 2.28 .023 1.97 -0.14 0.11 -0.37 – 0.08 -1.26 .207 2.00 
Repetition -0.19 0.00 -0.20 – -0.19 -60.61 <.001 1.00 0.52 0.06 0.41 – 0.63 9.28 <.001 1.40 

NameAgr * Repetition 0.01 0.00 0.00 – 0.02 2.67 .008 1.10 -0.02 0.04 -0.11 – 0.06 -0.53 .594 1.30 
AoA * Repetition -0.01 0.00 -0.02 – 0.00 -1.77 .077 2.39 -0.01 0.08 -0.16 – 0.13 -0.18 .855 2.91 

Imageability * Repetition 0.00 0.00 -0.01 – 0.01 0.59 .555 1.86 -0.02 0.06 -0.14 – 0.10 -0.32 .747 2.06 
ImageAgr * Repetition 0.02 0.00 0.02 – 0.03 6.79 <.001 1.26 -0.01 0.05 -0.11 – 0.09 -0.17 .867 1.41 
Frequency * Repetition 0.02 0.00 0.02 – 0.03 5.78 <.001 1.57 -0.06 0.06 -0.17 – 0.05 -1.02 .306 1.65 
Familiarity * Repetition 0.01 0.00 0.01 – 0.02 3.23 .001 1.76 -0.06 0.07 -0.19 – 0.07 -0.97 .330 2.08 

Order * Repetition 0.01 0.00 -0.00 – 0.02 1.36 .175 2.21 -0.02 0.07 -0.16 – 0.11 -0.34 .732 2.19 
OrdCatPos * Repetition 0.01 0.01 0.00 – 0.02 2.68 .007 2.74 0.00 0.08 -0.16 – 0.15 -0.04 .972 2.73 

NoFeats * Repetition 0.01 0.00 0.00 – 0.02 2.57 .010 1.64 0.03 0.06 -0.09 – 0.14 0.42 .673 1.73 
IntercorrDens * Repetition -0.01 0.00 -0.01 – 0.00 -1.07 .287 2.21 -0.05 0.07 -0.18 – 0.09 -0.68 .494 2.43 

NearSemNeigh * Repetition 0.01 0.00 -0.00 – 0.02 1.86 .063 2.44 -0.04 0.07 -0.18 – 0.10 -0.52 .602 2.94 
SemSim * Repetition -0.01 0.01 -0.02 – 0.00 -1.85 .065 2.50 0.00 0.08 -0.16 – 0.15 -0.06 .956 2.91 

Typicality * Repetition 0.00 0.00 -0.01 – 0.01 0.64 .520 1.60 0.05 0.06 -0.07 – 0.18 0.83 .409 1.91 
Distinctiveness * Repetition -0.01 0.00 -0.01 – 0.00 -1.11 .265 2.10 0.01 0.07 -0.13 – 0.14 0.08 .939 2.25 

Observations 20,932 23,706 
Marginal R2 / Conditional R2 0.189 / 0.449 0.216 / 0.505 
Note. VIF = Variance Inflation Factor, NameAgr = name agreement, ImageAgr = image agreement, AoA = age of acquisition, OrdCatPos = ordinal category 

position, NoFeats = number of semantic features, IntercorrDensity = intercorrelational density, NrSemNeigh = Number of near semantic neighbours, 

SemSim = Semantic similarity, Distinct = distinctiveness, Participant | X = random slope of X by participants. 

Values of significant effects (p < .05) are printed in bold. 
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Figure 1 

Significant interaction between repetition and number of semantic features in naming latency analysis  

 

Note. Number of semantic features was standardised; Naming latency was negatively reciprocally 

transformed. 

 

Methodological strengths and challenges 

The biggest strengths of the papers presented in this thesis are that effects of semantic 

variables were studied in well-controlled experimental investigations and that converging evidence 

from different populations and methodologies was used. Moreover, the data was analysed with robust 

statistical methods that accounted for variability between participants and items in all studies (i.e., 

(Generalised) Linear Mixed Effect Models). 

Nonetheless, across the studies, several methodological considerations came to light, which 

may be important for future research into effects of semantic variables on word production and their 

consideration by subsequent studies may further advance our understanding of effects of semantic 

variables. Some of these limitations were common to all papers of this thesis and are more general in 

nature, while others related to individual papers. 

Multicollinearity  

In my study of semantic variables, to decrease the risk of Type 1 errors, false positive findings 

that may have arisen by chance, and to really understand the contributions of individual semantic 
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variables to behaviour, I needed to study these variables under conditions of maximal experimental 

control for effects of other variables that can influence word production. This included other semantic 

and psycholinguistic control variables that each may account for some variability in the data (even if 

there might not have been main effects of some of these variables) and therefore, through their 

inclusion, I increased the reliability of the measurement of the effect of the semantic variables of 

interest. Yet, given the natural correlation among these item-inherent variables, a worry was that 

including all six semantic variables in the models at the same time, in addition to other control 

variables, might lead to multicollinearity, which causes unreliable and unstable estimates of regression 

coefficients (Allison, 2012).  

One way to identify harmful levels of multicollinearity is through the use of variance inflation 

factors (VIFs), which I provided for all the statistical analyses in this thesis. VIF values above a certain 

cut-off (e.g., 2.5, Allison, 2012; 5.0, Hair et al., 2014; Rogerson, 2001) indicate compromising effects of 

multicollinearity. Importantly, VIF of the studies reported in this thesis were generally low and in most 

cases under the more conservative cut-off value formulated by Allison. Therefore, including the six 

semantic as well as the control variables in the linear mixed effects models for the statistical analyses 

was acceptable and did not lead to harmful multicollinearity.  

Another approach to this issue could have been the formulation of composite scores of the 

semantic and control variables using Principal Component Analysis (PCA). However, in this thesis I 

wanted to identify every individual variables’ contribution to behaviour, which would not have been 

possible using principal components. For example Clarke et al. (2013) and Hameau et al. (2019) 

combined different semantic variables (e.g., number of feature-based near semantic neighbours and 

rated number of competitors as the feature-based neighbourhood measure in Hameau et al., and the 

relative degree of shared and distinctive features associated with the concept and the correlation of 

the distinctive features as the relative distinctiveness measure in Clarke et al.). While they were able to 

comment on the overall significance of the contribution of these components to behaviour, they were 

unable to speak to the contribution of the individual semantic variables that weighted on the 

component. Hence, following such an approach makes it impossible to know which of the variables 
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contained in a principal component drives performance and whether they are predictors of behaviour 

on their own. Consequently, this approach was unsuited for this thesis, but for future research Factor 

or Principal Component Analyses may be a way forward. However, for the data presented in Paper 1, I 

did conduct an exploratory, and unreported, Principal Component Analysis. This did not result in 

sensible components for the semantic variables, suggesting that caution may be required: It was, for 

example, not the case that those variables that showed facilitatory effects weighted on one component 

and those with inhibitory effects weighted on another. 

Including only a subset of McRae et al.’s (2005) items  

The feature database by McRae et al. (2005) contains 541 concepts, however, I only used a 

subset of these items. This was necessary given the reduced number of McRae et al. items that are also 

part of the Philadelphia Naming Test (Roach et al., 1996; Paper 1) or that had sufficiently high name 

agreement in Australian English (> 75%, Papers 2–4) (albeit it reduced statistical power). However, 

importantly, and as shown in Table C1 in Appendix C of Paper 2, the items selected for Papers 2–4 

were a good representation of the full McRae et al. set of items as the values of semantic variables of 

the selected items were largely comparable to the whole database. This suggests that the reduction of 

stimuli did most likely not affect the comparability of the findings of the papers presented here to 

previous work using the full McRae et al. (2005) database (i.e., Rabovsky et al., 2016, but note that this 

study did not account for name agreement in German for the McRae et al. items).   

Moreover, by removing items from McRae et al.'s (2005) database that had lower name 

agreement in Australian English, I believe that cultural differences between American and Australian 

English speakers have been minimised. As argued in Paper 2, one can probably assume that cultural 

differences would not have a dramatic impact on conceptual representations (and features) of the 

items in the database. However, the lower name agreement on the removed items suggests that they 

might have been unknown to the Australian participants (e.g., ‘gopher’) and that Australian 

undergraduate students were not sufficiently familiar with the concepts to name them accurately. By 

removing such items, I ensured that the experimental findings were minimally affected by them.  
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Finally, the 541 items of the McRae et al. (2005) database themselves are just a subset of the 

words in our mental lexicons and consequently represent only a segment of our word knowledge; for 

example, they do not contain abstract words. However, it is assumed that the items in the database are 

a representative sample of the concrete nouns in our lexicons such that any findings based on these 

items can be generalised to processing for noun production in general. Moreover, the semantic 

variables that I focused on are calculated either based on information on only the target concept (i.e., 

number of semantic features) or by taking information on all 541 items of the database into account 

(e.g., number of near semantic neighbours, distinctiveness). Thus, the use of a subset of items for my 

experiments does not impact on these calculations and, therefore, will not have compromised the 

generalisability of the findings to other words in the database nor other (concrete) words in our mental 

lexicons.   

Studying performance of people with aphasia as a group  

Aphasia is a heterogenous disorder with varying impairment profiles and consequently the 

‘average’ performance of a person with aphasia is not meaningful (e.g., Nickels & Howard, 1995). 

Nonetheless, in Paper 1, I studied the participants of the MAPP Database (Mirman et al., 2010) with the 

only premise being that they had word retrieval difficulties. However, these difficulties may have been 

caused by a breakdown of processing at different levels. Importantly though, as noted by Howard 

(2003), it may only be meaningful to combine the results of a number of participants if they suffer from 

the same underlying impairment(s).  

In the study on effects of semantic variables in participants with aphasia (Paper 1, Chapter 2), I 

investigated a mixed group of participants with aphasia, but rather than grouping these by underlying 

impairment, which is only possible with extensive background information that was not available here, 

I used statistical techniques to account for individual differences. My statistical approach using 

Generalised Linear Mixed Effects Models and including random slopes by participants accounted for 

differences between participants and allowed for the effects of semantic variables to differ between 

participants. Furthermore, I included the participants’ performance on the Pyramids and Palm Trees 

test (Howard & Patterson, 1992) in the analyses, as a measure of their semantic abilities. However, the 
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Pyramids and Palm Trees test has a skewed distribution with most participants performing relatively 

well, which suggests that it may have lacked the sensitivity to fully capture the participants’ semantic 

abilities. Consequently, it might not have been an ideal measure of semantic abilities, but it was the 

only measure of (input) semantic processing that was available for most of the participants of the 

MAPP Database.  

To further account for differences between participants, I attempted to create a more 

homogeneous group of participants with a common level of impairment by only considering the data 

of participants that made few phonological errors. The participants of this sub-group therefore 

presumably had a predominantly semantic and/or lexical impairment. It is possible that another 

approach to define the subgroup may have been better: Instead of selecting participants based on the 

absence of many phonological errors it may have been useful to test for the presence of semantic 

and/or lexical impairments. Consequently, more detail on the exact location of the participants’ 

processing breakdown would have been informative, yet this information was unavailable, and the 

additional administration of further assessment was impossible given that these were participants 

recruited by another research laboratory (in another country) over several years in the context of the 

MAPPD project.  

In addition, with the error type analyses, I attempted to further control for influences of the 

heterogeneity of the participant group, given that an increase in certain types of errors can point to a 

certain level of impairment (e.g., phonological errors can point to a problem of the phonological 

output buffer). However, naming errors can be multiply determined, with, for example, semantic errors 

arising from breakdown at the semantic or the lexical level or the link between the two levels, thus 

impeding association of a specific error type with a clear-cut locus of impairment.  

It may also have been beneficial for the interpretation of the findings of the group analyses to 

examine effects of semantic variables on individual participants. This would be in line with another 

approach to studying performance of participants with aphasia: single-case or case-series analyses 

(Howard, 2003; Nickels, 2002; Nickels et al., 2011; Schwartz & Dell, 2010; for examples see e.g., Hameau 

et al., 2019; Rossiter & Best, 2013). In contrast to analyses at the group level, these enable a more 
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detailed assessment of differences and similarities between individual participants, to take into 

consideration the level(s) of their underlying impairments, and to link them to the observed behaviour 

to inform theory (Nickels, 2002; Nickels et al., 2011).  

Subsequent research may follow this approach and examine the way individual participants 

with aphasia are affected by the semantic variables in more detail. This would allow identification of 

the characteristics of individuals with aphasia who are most strongly affected by semantic variables. 

Careful selection of participants with either ‘pure’ semantic (pre-lexical; or testing participants with 

Semantic Dementia) or lexical impairments may allow the researchers to further test the association of 

facilitatory and inhibitory effects of semantic variables with different levels of processing (i.e., semantic 

and lexical).  

Using electrophysiological evidence to study effects of semantic variables during online word 

processing and to inform theory  

In Paper 3 (Chapter 4) of this thesis I tested effects of the semantic variables during online 

word processing with the help of electrophysiological evidence to determine how they affect online 

word planning rather than the net outcome of processing in terms of response latencies or naming 

accuracy. This study had both strengths and limitations related to methodology and interpretation of 

the findings. In contrast to some previous work, including the study I attempted to replicate, Rabovsky 

et al. (2021), I controlled for multiple comparisons in the time course analysis, which was meant to 

provide a clearer idea of the temporal development of effects of the semantic variables. Interestingly, 

none of the effects survived correction for multiple comparisons, and I was consequently unable to 

discuss the precise temporal development of the effects. However, this highlights the necessity to treat 

claims about the time course of effects with caution, unless the respective analyses controlled for 

multiple comparisons, whenever appropriate.  

While precise timing information may have furthered our understanding of effects of the 

semantic variables, we know that they influence semantic and lexical processing as they can be 

assumed to affect processing where semantic information is required. Importantly though, a 

differentiation between effects of semantic variables on semantic and lexical processing may be 
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impossible if they, as argued before, affect both levels of processing (i.e., while they originate at the 

semantic level, they also affect lexical processing, e.g., stronger semantic activation due to spreading 

activation leads to stronger activation of the target’s lexical representation). Additionally, semantic and 

lexical processing might interact (interactive or parallel processing), impeding a differentiation 

between these two levels using ERPs or even rendering it impossible. Nevertheless, the data showed 

that effects of semantic variables occurred relatively late compared to the established time course of 

semantic and/or lexical processing (Indefrey, 2011; Indefrey & Levelt, 2004). Possible reasons for this 

were discussed in Paper 3 and, the results of this study, therefore, call for further critical assessment of 

the time course estimates provided by Indefrey and Levelt. 

Another strength of Paper 3 is that it includes a replication of a previous study by Rabovsky et 

al. (2021; similar to Paper 2 for behavioural effects). Replication is an important process in assessing 

the reliability of a cognitive phenomenon of interest and should be more widely embraced as there are 

findings in speech production that may be used as a basis of subsequent research or theory building 

that have failed to replicate (e.g., Jescheniak et al., 2009; Lee & de Zubicaray, 2010). With the waveform 

analyses, I replicated the analysis approach used by the only previous EEG study investigating effects 

of semantic variables on word production (Rabovsky et al., 2021) and used the same time-window 

included in the analysis (200–550ms in mean amplitude analysis) as well as the posterior region of 

interest (ROI). However, following the estimates of word production (Indefrey, 2011) this time-window 

did not include semantic processing, which might be disadvantageous when studying effects of 

variables that likely originate at the semantic level (please note that the time course analysis included 

the time-window traditionally associated with semantic processing (i.e., 0–200ms post picture onset), 

but, unfortunately, findings from the time course analysis could not be interpreted as they did not 

survive correction for multiple comparisons). In addition, the posterior ROI was chosen by Rabovsky et 

al. based on previous research and was assumed to reflect the sites of competition during lexical 

selection. However, this approach made it impossible to detect effects of semantic variables on 

processing that may be apparent at other scalp locations (see e.g., Binder et al., 2009; Indefrey, 2011, 

for reviews). A different approach to the waveform analysis that takes data from the entire time course 
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of word planning as well as ERP data from the whole brain into consideration may overcome some of 

these shortcomings. Importantly, these sources of information were considered in my microstate 

analysis.  

A possible way to improve the ERP analyses conducted in Paper 3 would be to refine the 

control of articulation artifacts before the statistical analysis. I used a fixed time-window approach and 

removed fast responses (< 550ms) to not include any trials where responses were given within the 

time-window considered for the analyses and to obtain a signal that was uncontaminated by 

articulatory artifacts (note that only relatively few trials were actually removed using this approach as 

the average naming latency for this study was 900ms). Given that I was interested in “earlier” encoding 

processes (i.e., semantic and lexical processing), I assumed the analysed time-window would be largely 

unaffected by articulatory influences for the remaining items. In addition, an ICA analysis was used to 

identify and remove components from the data that were related to eye, muscle, and heart activity. 

However, another approach could have been to use an algorithm which selectively removes 

articulation artifacts (e.g., residue iteration decomposition, RIDE; Ouyang et al., 2016). Similarly, I 

considered another popular approach to analysis, the combined stimulus- and response-aligned ERP 

analysis (Laganaro & Perret, 2011), which covers the word planning process form picture onset to just 

before articulation while accounting for individual differences in processing time and thus reducing the 

influence of jittered processing. However, I decided not to use this approach as it is of particular use 

when investigating late encoding processes (phonological and phonetic encoding, Laganaro, 2014), 

which was not the case here. Finally, when replicating an ERP analysis, the data cleaning procedure 

(e.g., application of filters) should ideally be identical to the original study (G. Vigliocco, personal 

communication, October 11, 2019). However, the use of an ICA analysis prevented me from applying 

exactly the same pre-processing procedure as in Rabovsky et al. (2021).  

Operationalising semantic knowledge  

For this thesis, I operationalised semantic variables based on a semantic feature database 

(McRae et al., 2005) and provided a thorough investigation of feature-based semantic variables. 

Consequently, the findings of significant effects of these variables could be interpreted as providing 
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evidence for, and a proof of concept of, feature-based models of meaning (McRae et al., 1997; Tyler & 

Moss, 2001; Vigliocco et al., 2004). However, as I have argued in the different experimental papers, it 

may be the case that the feature-based semantic variables also represent aspects of holistic semantic 

representations. For example, despite assuming holistic lexical concepts, Abdel Rahman and Melinger 

(2009, 2019) talk about related concepts (e.g., ‘cat’, ‘dog’, ‘tiger’ in Figure 1 in the General Introduction) 

sharing semantic features (such as is a pet, has a tail, and is feline) that are holistic lexical concepts 

themselves. Hence, and as I have argued in the experimental chapters of this thesis, these connections 

to other concepts may capture the semantic variables that I operationalised based on decomposed 

semantics. For example, the number of connections of a target lexical concept to other lexical concepts 

may be equivalent to the number of semantic features. Similarly, the feature-based measure of 

intercorrelational density may be representative of the strength of the labelled links between a target 

and other holistic lexical concepts and distinctiveness could capture the average number of links to 

other concepts of the lexical concepts that the target is directly connected to.  

Importantly, however, and as noted in the General Introduction, this thesis did not set out to 

differentiate between different ways to operationalise semantic knowledge. However, future work may 

explore further how feature-based semantic variables may be represented in holistic architectures of 

semantics.  

Other forms of semantic organisation besides the feature-based approach also provide 

different ways to operationalise semantic knowledge as semantic variables (e.g., association-based, 

context-based). Future work should also consider these in similarly well-controlled experimental 

investigations and integrate them with feature-based variables in exploration and interpretation of 

effects of semantic variables on word production. Association-based semantic variables may be of 

particular interest as some theories of word production (e.g., Abdel Rahman & Melinger, 2009) 

explicitly propose that not only categorical but also associative relations (via associative links) are 

encoded during processing. In addition, other researchers (e.g., De Deyne et al., 2017) have proposed 

that word knowledge is entirely represented by a network of associatively connected word nodes, and 

association norms (e.g., De Deyne et al., 2019; Nelson et al., 2004) allow the easy calculation of 
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semantic variables just as was the case for the feature-based semantic variables investigated here. 

Association-based semantic variables that have been investigated by previous research include, for 

example, the number of associates (Hameau et al., 2019; Pexman et al., 2007; Rabovsky et al., 2012) 

and the strength of the first associate (Griffiths & Steyvers, 2003).  

In addition, there is previous work on effects of different types of semantic features on 

processing, which I have not included in this thesis. For example, Clarke et al. (2013) studied influences 

of the proportion of a concept’s features that were visual features, Rico Duarte and Robert (2014) 

investigated effects of the number of perceptual or functional features on naming accuracy of 

neurotypical participants and people with Alzheimer’s Disease, and Miozzo et al. (2015) studied the 

impact of the number of encyclopaedic and action features. Future work into effects of semantic 

variables on picture naming should also account for such feature-specific information, which could 

provide further information on whether and how certain types of features are more influential than 

others. 

Moreover, interactions between semantic variables were not considered here. In the studies of 

this thesis, I only looked at main effects (and interactions of semantic variables with the semantic 

abilities of people with aphasia in Paper 1, and with task in Paper 4). However, it is likely that 

interactions between semantic variables may also be of importance. Such interactions may help to 

further understand how the semantic variables relate to one another. For example, as discussed in 

Paper 1, higher typicality has sometimes been described to be due to more shared, more frequent, or 

more strongly intercorrelated features within a semantic category (e.g., McRae et al., 1999; Pexman et 

al., 2003; Rogers et al., 2004; Woollams et al., 2008). This suggests that it may be impossible to fully 

tease apart effects of some semantic variables and highlights the difficulty understanding their effects 

when variance that is shared with other semantic variables is accounted for. Computational modelling 

might aid the interpretation of such effects.  

Further caveats relate to the operationalisations of semantic variables that were included in 

this thesis. For example, the measure of number of near semantic neighbours used an arbitrary cut-off 

to define near semantic neighbours. When calculating this measure, I followed the approach 
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suggested by Mirman (2011) and defined a near semantic neighbour as a word with feature vector 

cosine similarity of at least 0.4 with the target word. In contrast, Fieder et al. (2019) used a cosine 

similarity of 0.5 as a cut-off for near semantic neighbours. This decision drastically changes the number 

of near semantic neighbours a target has: For the 297 items of Papers 2, 3, and 4, using a cut-off of 

cosine similarity > 0.4 to define a near semantic neighbour, the items had an average of 6.14 near 

semantic neighbours (range = 0–38 items, SD = 7.56). In contrast, for the same items, the use of cosine 

similarity > 0.5 to define a near semantic neighbour reduced the average number of near semantic 

neighbours to 2.67 (range = 0–29 items, SD = 4.65). It is possible that such a difference in the measure 

(paired-samples t-test: t(296) = 15.13, p = < .001) causes a difference in the effect of this semantic 

variable depending on exactly which of these operationalisations is chosen. This severely impedes the 

ability to compare and generalise findings between studies. Future research into effects of semantic 

variables needs to be mindful of such seemingly negligible differences in the way semantic variables 

are operationalised and should systematically investigate these differences and their effects.  

Moreover, some of the semantic variables investigated in this thesis were confounded with 

other semantic measures due to the way they were operationalised. More specifically, 

intercorrelational density was calculated in McRae et al. (2005) as the summed percentage of shared 

variance across all significantly correlated feature pairs of a concept. Consequently, concepts with 

more correlated feature pairs would have a higher intercorrelational density, even if the individual 

correlations may have been just above the threshold of 6.5% shared variance. Hence, words with 

higher numbers of semantic features had an increased chance of obtaining higher intercorrelational 

density scores simply because they had more combinations of feature pairs, which could have been 

correlated above threshold (note that e.g., Taylor et al. (2012) anticipated this issue and calculated their 

intercorrelations measure as the average correlation strength instead of a sum). In a similar vein, 

typicality was calculated by summing the weighted feature values capturing a feature’s prevalence in 

its semantic category as well as its production frequency. Hence, this measure was also confounded 

with the number of semantic features of a concept (see e.g., Table 2 in Paper 1 for positive correlations 

between number of semantic features and both intercorrelational density and typicality).  
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In addition, subsequent research may investigate the relation of the feature-based semantic 

variables that I focused on and other semantic variables that were treated as covariates in this thesis. 

For instance, imageability facilitated naming accuracy of the participants with predominantly semantic 

and/or lexical impairments (Paper 1) and of the neurotypical participants of Papers 2 and 4. In contrast, 

the effect was non-significant on picture naming latency (similar to Morrison et al., 1992) in 

neurotypical participants, although it interacted with task in Paper 4, and in the ERP analyses (Paper 3).  

Finally, some of the control variables that were included in the analyses (i.e., variables that 

were rated by an independent group of participants in Study 1 of Paper 2), due to the sheer number of 

items and variables that had to be rated, were based on ratings of only relatively few participants (n = 

11–12 per item). Further norms should be collected to improve the reliability of these measures.  

Theoretical implications of the findings of this thesis  

In this thesis, I have demonstrated that the structure of the semantic representations of the 

words we say matters for word production. With the exception of investigations of rated imageability 

and concreteness, most of the previous research into this topic was conducted in word 

comprehension. However, as outlined in the General Introduction, spoken word production is a 

particularly interesting modality to study these effects because of the critical importance of semantic 

information for processing—it influences processing at both the semantic and the lexical level.  

In line with the limited previous research that is available, I have shown that some of the 

feature-based semantic variables facilitate performance in picture naming, while others inhibit 

performance. Consequently, theories of word production need to go beyond accounting for data from 

context manipulation paradigms and embrace the evidence of facilitatory and inhibitory influences 

arising from item-inherent variables. In the section “Which semantic variables affect word production 

in people with and without aphasia and what are the underlying mechanisms?” above, I detailed the 

repertoire of possible mechanisms of semantic facilitation and inhibition that might be at play. While 

facilitatory effects seem to require some variant of activation spread at the semantic level (e.g., 

spreading activation between lexical concepts, feedback from (co-activated) lexical to semantic 

representations), inhibitory effects of semantic variables are easily explained by theories assuming 
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lexical selection to be competitive and possibly even by non-competitive accounts with long-term 

adjustments of connections between the semantic and lexical representations (learning mechanism, 

Oppenheim, 2010; as discussed in Paper 2, Chapter 3), however, this hypothesis has to be tested in 

further research.  

Consequently, given their current model architectures, WEAVER++ (Levelt et al., 1999) and 

Howard et al. (2006) are able to account for the inhibitory effects and need further specifications of the 

spread of semantic activation to explain the facilitatory findings of this thesis. In contrast, the 

Interactive Activation Model (Dell, 1986; Dell et al., 1997) may be able to explain the facilitatory, but 

not the inhibitory findings presented in this thesis and would, for example, need to adopt competition 

between co-activated lexical representations to account for these findings. The Incremental Learning 

Model (Oppenheim et al., 2010) and the Ballistic Model of Lexical Access (Mahon & Navarrete, 2016; 

Navarrete et al., 2014) need further specification of the mechanism underlying weakening of semantic-

to-lexical connections but may be able to account for inhibitory effects of semantic variables, while the 

Ballistic Model seems able to explain facilitatory effects via spreading activation and the Incremental 

Learning Model explicitly moved facilitation out of the model. Of the currently available theories of 

word production, solely the Swinging Lexical Network (Abdel Rahman & Melinger, 2009, 2019) 

explicitly addressed word-inherent variables and seems to comprise the architectural elements (i.e., 

clearly stated spreading activation and lexical competition) to parsimoniously explain both facilitatory 

and inhibitory findings.  

Based on these mechanisms hypothesised on the basis of behavioural research, facilitatory 

effects are associated with semantic processing and inhibitory with lexical processing. However, the 

ERP investigations (Paper 3) did not yield evidence in favour of a separable two-step process, with no 

distinct electrophysiological signatures for behaviourally faciliatory and inhibitory variables. Moreover, 

irrespective of their behavioural effects, semantic variables influenced the same underlying neuronal 

network, which may be taken to suggest that semantic and lexical processing are interactive or parallel 

processes, however, as argued in Paper 3, the findings could also be in line with separate and 

sequential semantic and lexical processing mechanisms.  
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Importantly, irrespective of the precise mechanism underlying their effects, semantic variables 

do not seem to be restricted to influencing only one of the levels of processing. As I argued 

throughout this thesis, they likely operate at both the semantic and the lexical level of processing. 

Following Abdel Rahman and Melinger (2009, 2019), spread of activation at the semantic level may 

facilitate semantic processing by increasing the activation of the target’s semantic and, consequently, 

lexical representations. However, it also leads to the activation of lexical representations of those co-

activated lexical concepts and thereby interferes with lexical processing. Consequently, the way 

activation spreads through the semantic system determines the size and activation strength of the co-

activated lexical cohort. This ultimately determines the direction of the behavioural effect: If the size 

and strength of activation of the co-activated lexical cohort yields substantial lexical competition, the 

effect of a variable will be inhibitory, else it is facilitatory. Crucially, it has not yet been established 

exactly how close to the target or how numerous lexical competitors must be to result in interference. 

 In summary, effects of semantic variables seem to originate at the semantic level with the 

locus of the effect being the lexical level where selection is either facilitated due increased activation of 

the target’s lexical representation relative to any competitors or it is inhibited from a lexical cohort.  

This thesis has shown that it is of primary importance that theories of word production are 

more explicit about mechanisms causing semantically related lexical representations to be co-activated 

and how exactly semantic facilitation may occur in standard picture naming without context 

manipulations. I have demonstrated that effects of semantic facilitation and interference go beyond 

context manipulations and this new data must be integrated in word production theories to make 

them more accurate representations of the way we say words.  

Concluding remarks  

Throughout this thesis I have argued that semantic variables can inform models of word 

production and that it is necessary to determine exactly which semantic variables affect processing and 

to explain the mechanism underlying their effects. The four experimental studies of this thesis have 

moved us closer to better understand which feature-based semantic variables influence behaviour and 

how they affect processing in word production.  
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Firstly, as clearly shown in Table 1 of this General Discussion, all of the six feature-based 

semantic variables were important in at least one of the studies: number of semantic features, 

semantic similarity, and typicality in people with aphasia (Paper 1, Chapter 2), number of semantic 

features, intercorrelational density, and distinctiveness in neurotypical speakers (Paper 2, Chapter 3), 

number of semantic features, intercorrelational density, number of near semantic neighbours, and 

semantic similarity in ERPs (Paper 3, Chapter 4), as well as stronger effects of distinctiveness in the 

speeded naming task and stronger effects of number of semantic features in the standard naming task 

(Paper 4, Chapter 5). While number of semantic features seemed to affect performance most reliably 

across all papers, the picture is far from clear, with no set of variables consistently affecting 

performance. As I have argued earlier in this General Discussion, this might be indicative that what is 

important is what the semantic variables represent more broadly (i.e., degree of spread of activation at 

the semantic level and co-activation at the lexical level) rather than individual semantic variables 

themselves. 

Secondly, for each effect of a semantic variable I have formulated hypotheses about the 

possible underlying cognitive mechanism(s) by assessing the explanatory power of the range of 

processing mechanisms proposed by current theories of word production and by using 

neuropsychological evidence from a large group of participants with aphasia as well as behavioural 

and electrophysiological data from neurotypical speakers. I found that semantic variables can both 

facilitate and inhibit performance and that these effects presumably originate at the semantic level and 

have their locus at the lexical level of processing. Consequently, I argued, that theories of word 

production must include processing components that allow for facilitation and inhibition of 

performance, which could be mechanisms of spreading activation and lexical competition. Crucially, 

current theories of word production should use the rich evidence provided by item-inherent (semantic) 

variables and integrate findings from standard picture naming studies, like the ones of this thesis, into 

their models.   

Bringing together the spectrum of evidence generated by this thesis, the findings clearly 

highlight the importance of the role that the structure of word knowledge has for spoken word 
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production. However, they also emphasise the complexity of the underlying theoretical mechanisms 

and the dramatic lack of explicit and specific statements on effects of item-inherent variables by 

theories of word production. Importantly, the findings presented here move us closer to an 

understanding of the elements necessary to explain word-inherent effects of semantic variables and to 

understand the mechanisms underlying word production.  
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