An investigation into the *hex1* gene and gene promoter for the enhancement of protein production in *Trichoderma reesei*

Natalie Claire Curach

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

Macquarie University, Australia January 2005

Table of Contents

List of Figure		vi
List of Tables		1X
Abbreviations Attachments to this thesis		X
	to this thesis	Xi
Declaration		xii
Acknowledge	ements	xiii
Abstract		xiv
Chapter 1	Introduction	1
	e biology of filamentous fungi	1
1.1.1		2 2 3
1.1.2	Enzymes in industrial processes	2
1.1.3	The genus Trichoderma	
1.2 The	e cellulolytic enzyme system of Trichoderma reesei	6
1.2.1	Heterologous protein production in Trichoderma reesei	6
1.3 A r	eview of the secretory pathway	8
1.3.1		9
1.3.2	Secretion of protein from the mycelium into the extracellular	
	matrix	12
1.3.2	2.1 The site of protein secretion from the mycelium	13
1.4 The	e effects of proteolysis on protein production	14
1.4.1	Prosequences in protein production	16
1.5 Fur	ngal promoters - the driving force for protein production	17
1.5.1	The <i>cbh1</i> gene promoter of <i>Trichoderma reesei</i>	18
1.5.2	The glucoamylase A gene promoter of Aspergillus niger var.	
	awamori	20
1.5.3	The glyceraldehyde-3-phosphate dehydrogenase gene promoter of	
	Aspergillus nidulans	22
1.5.3		24
151	proteins	24
1.5.4	The <i>pki1</i> gene promoter of <i>Trichoderma reesei</i>	25 26
1.5.5	The <i>alcA</i> gene promoter of <i>Aspergillus nidulans</i>	
1.5.6 1.5.7	The <i>amdS</i> gene promoter of <i>Aspergillus nidulans</i>	27 30
	The concept of a constitutive promoter	
1.5.8	Regulatory elements of <i>Trichoderma reesei</i> gene promoters	31
1.5.8	1	36
1.5.8	1	38 39
1.5.8	1 8	
	e need for novel promoters in industrially-relevant fungi	41
1.6.1	Methods employed in the search for novel promoters	43
1.7 The 1.7.1	e HEX1 protein and Woronin bodies The function of Woronin bodies	48 48
1.7.1	The intracellular localisation of HEX1	40 52
1.7.2		53
1.7.3	The assembly of Woronin bodies	55

1.8 Flu	orescent reporter proteins	55
1.8.1		57
1.8.2	Methods for the detection of fluorescent reporters	59
1.9 Air	ns of this project	61
Chapter 2	Materials and Methods	63
2.1 Fre	quently used reagents and solutions	63
2.1.1	Antibiotics and reagents for the selection of recombinants	64
2.2 Fu	ngal growth media	64
2.2.1	Minimal medium	64
2.2.2	Cellulose medium	64
2.2.3	Cellobiose/Lactose/Soy hydrolysate medium	65
2.2.4	Glycerol medium	65
	Protoplast regeneration medium	66
2.3 Fu	ngal strains and culture conditions	66
2.3.1	Fungal strains	66
	Culture conditions	66
2.3.2	2.1 Inhibition of protease activity	67
2.3.3	Determination of Trichoderma reesei growth rate on different	
	carbon sources	67
	neral molecular techniques	67
2.4.1	8 8	68
	Restriction endonuclease digestion	68
2.4.3	Ligations	69
	Phosphatase treatment of DNA fragments	69
	Polymerase chain reaction	69
	5.1 Primers for PCR	70
2.4.6	1 0	70
	romosome walking	70
2.5.1	Isolation of <i>hex1</i> gene consensus DNA fragment from	
	Trichoderma reesei and Ophiostoma floccosum	70
2.5.2	Generation of genomic DNA linker libraries for chromosome	
	walking PCR	73
2.5.3	Isolation of a consensus fragment of the Trichoderma reesei qde-2	
	gene	75
	nstruction of gene expression plasmids	75
2.6.1	Amplification and screening of DsRed1-E5-encoding DNA	
	fragments	76
2.6.2	The <i>cbh1</i> promoter driven expression plasmid	76
2.6.3	The <i>hex1</i> promoter driven expression plasmid	77
2.6.4	The <i>hex1</i> fusion expression plasmids	79
2.6.5	The <i>hex1</i> fusion expression plasmid containing the <i>cbh1</i> signal	0.1
	sequence	81
2.6.6	The <i>hex1</i> open reading frame knockout plasmid	81
	ngal transformation	82
2.7.1	Standard Biolistic Bombardment procedure	82
2.7.1	1 1 5	82
2.7.1	1	83
2.7.1	1.3 Biolistic Bombardment	83

2.7.2 Standard protoplasting procedure	84
2.7.2.1 Preparation of protoplasts	84
2.7.2.2 Transformation of protoplasts	85
2.8 Extraction of fungal genomic DNA	85
2.9 Extraction of fungal total RNA	86
2.10 RNA ligase mediated rapid amplification of cDNA ends (RLM-RACE)	
PCR	87
2.11 Nucleic acid hybridisation techniques	88
2.11.1 Generation of DNA probes	88
2.11.2 Preparation of genomic DNA for Southern blotting	88
2.11.3 Detection of RNA transcripts by northern blotting	89
2.11.3.1 Preparation of RNase–free solutions	89
2.11.3.2 Preparation of RNA for northern blotting	90
2.11.4 Blotting and detection procedure	90
2.12 Extraction of fungal proteins	91
2.12.1 Extraction of soluble cellular proteins	91
2.12.2 Extraction of insoluble cellular proteins	92
2.13 Detection of DsRed protein by Western blotting	92
2.14 N-terminal sequencing of <i>Trichoderma reesei</i> HEX1 proteins separated	
by two dimensional gel electrophoresis	93
2.15 Fluorescence measurements of supernatants	93
2.15.1 Quantitation of DsRed fluorescence	94
2.15.1.1 Expression of DsRed in <i>E. coli</i>	94
2.15.1.2 Determination of DsRed concentration in <i>E. coli</i> cell extract	94
2.15.1.3 DsRed protein concentration and the fluorescence ratio	95
2.16 Confocal fluorescence microscopy	95
2.16.1 Sample preparation for microscopy	96
Chapter 3 Isolation of the <i>hex1</i> gene from <i>Trichoderma reesei</i>	
and Ophiostoma floccosum	97
3.1 Introduction	97
3.1.1 The <i>hex1</i> gene from filamentous fungi	97
3.1.2 The filamentous fungus <i>Ophiostoma floccosum</i>	98
3.2 Results and discussion	99
3.2.1 The <i>hex1</i> gene sequence of <i>Trichoderma reesei</i> and <i>Ophiostoma</i>	
floccosum	99
3.2.2 Alternative forms of <i>hex1</i> transcript in <i>Trichoderma reesei</i>	101
3.2.3 Alternative forms of HEX1 protein	105
3.2.4 Further <i>in silico</i> analysis of <i>Trichoderma reesei</i> HEX1 protein	108
3.2.5 Conserved putative regulatory motifs within the <i>hex1</i> promoter	
region	110
3.2.5.1 Analysis of the intron sequences	111
3.2.6 Expression of <i>Trichoderma reesei hex1</i> during growth	113
3.2.7 Post-translational modifications of HEX1	117
3.2.7.1 Interpretation of <i>hex1</i> gene sequence data in relation to a	
previous study of HEX1	117
3.3 List of main findings	120

Chapter 4	Expression of DsRed under the <i>cbh1</i> promoter and	
-	the <i>hex1</i> promoter with random integration	121
4.1 Intr	oduction	121
4.1.1	Comparison of the <i>cbh1</i> promoter and the <i>hex1</i> promoter	121
	sults and discussion	123
4.2.1	Expression vectors	123
4.2.1	1	125
4.2.2	Generation and screening of transformants	125
4.2.3	Fluorescence microscopy observations	127
4.2.3	19	120
1.2.0	preparation	128
4.2.3	1 1	120
1.2.0	transformants	129
423	5.3 Fluorescent microscopy observations of pHEN54RQDsR	127
1.2.5	transformants	132
4.2.4	The copy number of integrated expression cassettes	132
4.2.5	The expression of DsRed as determined by transcript levels	136
4.2.6	Secretion of DsRed into the culture supernatants monitored by	100
1.2.0	fluorescence	138
4.2.6		142
4.2.6	-	1.2
	the fluorescence ratio	142
4.3 Lis	t of main findings	145
2		1.0
Chapter 5	Modified expression vectors containing a fusion to a	
	portion of <i>hex1</i> gene sequence	147
5.1 Intr	oduction	147
5.1.1	Considerations for improvement of the phexDsR expression	
	cassette	148
5.1.1	.1 Kozac sequence	148
5.1.1	•	148
5.1.2	The construction of fusion expression vectors for improved protein	
	yields	152
5.2 Res	sults and discussion	154
5.2.1	The hex1 fusion expression plasmids	154
5.2.2	Screening of transformants	154
5.2.3	Fluorescence microscopy observations of transformants containing	
	the fusion expression cassettes	155
5.2.4	The secretion of DsRed by transformants carrying a <i>hex1</i> fusion	
	expression cassette	161
5.2.5	Secretion of DsRed under the <i>hex1</i> promoter determined by	
	Western blotting	162
5.2.6	The stability of DsRed in culture supernatants of Trichoderma	
	reesei	164
5.2.6	5.1 Innate features of the DsRed protein	166
5.2.7	•	
	Further analysis of the expression of DsRed under the <i>hex1</i> and	

5.2.7.1 Genomic characterisation of transformants hes8 and c1	168
5.2.7.2 Determination of DsRed expression by RNA analysis	168
5.3 Post-transcriptional gene silencing	171
5.3.1 The mechanism of quelling or interference RNA	171
5.3.2 Quelling and the expression of HEX1 and DsRed	173
5.3.3 Evidence for the quelling mechanism in <i>Trichoderma reesei</i>	176
5.3.3.1 QDE-2 protein sequence alignment	178
5.4 List of main findings	180
Chapter 6 Expression of DsRed from the <i>hex1</i> locus and the	
phenotypic characteristics of a <i>hex1</i> deletion mutant	182
6.1 Introduction	182
6.1.1 The application potential of <i>hex1</i> knockouts and leaky hyphae	183
6.1.2 Transformation of <i>Trichoderma reesei</i>	184
6.2 Results and discussion	185
6.2.1 Generation of <i>hex1</i> deletion mutants	185
6.2.2 Modification of the biolistic bombardment method	187
6.2.3 Transformation and homologous recombination efficiency in	100
protoplast transformation	189
6.2.3.1 Generation of a $hexl$ deletion mutant	189
6.2.3.2 The replacement of the <i>hex1</i> coding sequence with the <i>dsRed</i>	100
coding sequence $(2,2,2)$	190
6.2.3.3 Further characterisation of the <i>hex1</i> knockout mutants 6.2.4 DsRed expression in the absence of endogenous <i>hex1</i>	191 193
 6.2.4 DsRed expression in the absence of endogenous <i>hex1</i> 6.2.5 Fluorescence microscopy observations of transformants expressing 	195
DsRed from the <i>hex1</i> locus	195
6.2.6 Protein secretion by the <i>T. reesei hex1</i> ⁻ mutant	195
6.2.7 The vulnerability of <i>hex1</i> deletion strains to cellular damage	203
6.2.7.1 The effects of hypotonic shock on <i>Trichoderma reesei</i>	203
6.2.7.2 The effects of physical damage on <i>Trichoderma reesei</i>	205
6.2.8 The potential implications of leaky hyphae	207
6.3 List of main findings	209
Chapter 7 Summary and concluding discussion	210
7.1 Isolation and transcriptional regulation of the <i>hex1</i> gene	210
7.1.1 The expression profile of <i>hex1</i>	211
7.1.2 The <i>hex1</i> gene produced alternative transcripts	212
7.2 Expression of a heterologous protein under the <i>hex1</i> promoter	213
7.2.1 Localised expression of <i>hex1</i>	215
7.3 Expression of DsRed from the <i>hex1</i> locus	217
7.4 Secretion of DsRed into the culture supernatants	218
7.5 Leaky hyphae in the absence of Woronin bodies	219
7.6 Conclusions	220
Bibliography	221

List of Figures

Figure 1-1.	A hyphal apex showing an overview of the secretory pathway.	8
Figure 1-2.	The positioning of regulatory motifs along the promoter of the <i>amds</i> gene.	28
Figure 1-3.	Schematic representation of the assembly of the HAP complex in <i>A. nidulans</i> .	37
Figure 1-4.	Two dimensional gel separation of proteins from the cell envelope of <i>T. reesei</i> grown on glucose medium.	47
Figure 1-5.	Woronin bodies surrounding the septal pore within a hyphae of <i>Glomerella cingulata</i> f. sp. <i>phaseoli</i> .	49
Figure 1-6.	Organisation of HEX1 molecules within a Woronin body.	53
Figure 2-1.	Plasmids constructed in the process of assembling the expression plasmid phexDsR.	78
Figure 2-2.	Construction of the <i>hex1</i> fusion expression plasmids phexeDsR, phexiDsR, phexhDsR and phexesDsR.	80
Figure 2-3.	Construction of the <i>hex1</i> gene knockout plasmid phexnull.	82
Figure 3-1.	Sequence of the hex1 gene of T. reesei.	100
Figure 3-2.	Southern blot of <i>T. reesei</i> strain VTT-D-79125 probed for <i>hex1</i> .	101
Figure 3-3.	The 5' RLM-RACE PCR products amplified from full length <i>hex1</i> cDNAs.	102
Figure 3-4.	Schematic representation of the 5' and 3' ends of alternative <i>hex1</i> cDNAs.	104
Figure 3-5.	Alignment of HEX1 proteins from filamentous fungi.	106
Figure 3-6.	The growth rate and expression of <i>hex1</i> and <i>cbh1</i> over a 154 h culture period in various media.	115
Figure 3-7.	Two dimensional gels showing proteins separated from the cell membrane of <i>T. reesei</i> grown in CLS medium (A) or glucose medium (B).	118
Figure 4-1.	DsRed expression vectors pHEN54RQDsR containing the <i>cbh1</i> promoter, and phexDsR containing the <i>hex1</i> promoter.	124
Figure 4-2.	Production of DsRed protein in E. coli.	126
Figure 4-3.	Hyphal tip of a phexDsR transformant expressing DsRed at day two grown in cellulase medium.	130
Figure 4-4.	Hyphae of a pHEN54RQDsR transformant after three days of culture in cellulose medium.	132
Figure 4-5.	Mycelia of pHEN54RQ transformant after four days of culture in cellulose medium.	133

Figure 4-6.	. Southern blot of phexDsR transformants h1 and h24, pHEN54RQDsR transformants c23, c24 and c20, and a nontransformant (non) probed with <i>dsRed</i> .	
Figure 4-7.	Expression of <i>hex1</i> and DsRed in phexDsR transformants h1 and h24.	137
Figure 4-8.	Figure 4-8. Level of DsRed secreted into the supernatant when expressed under the <i>cbh1</i> or <i>hex1</i> promoters.	
Figure 4-9.	Figure 4-9. DsRed expression in pHEN54DsR transformants c24, c23 and c20.	
Figure 4-10.	igure 4-10. The relationship between DsRed protein concentration and the fluorescence ratio.	
Figure 5-1.	Modified phex vectors incorporating exon 2, intron 2 and the extended intron 2.	150
Figure 5-2.	The <i>cbh1</i> ss was inserted into the phexeDsR expression vector to create phexesDsR.	151
Figure 5-3.	Fluorescence CLSM images of fluorescent hyphae typical for transformants carrying the expression cassettes phexhDsR (A-C), phexiDsR (D-F) and phexeDsR (G-I).	157
Figure 5-4.	Hyphae of a transformant containing the phexesDsR expression cassette after two days growth in cellulose medium.	158
Figure 5-5.	Two day old mycelia of a transformant of the phexesDsR expression cassette.	159
Figure 5-6.	Western blots of culture supernatants probed for DsRed.	163
Figure 5-7.	Western blot of supernatants spiked with DsRed.	165
Figure 5-8.	Southern blot of genomic DNA from transformants c1 and hes8 digested with <i>Hind</i> III (H) and <i>BamH</i> I (B), probed for the <i>dsRed</i> gene.	168
Figure 5-9.	Northern blot of total RNA probed for <i>act1</i> , <i>dsRed</i> and <i>hex1</i> .	170
Figure 5-10.	Overview of the RNAi pathway.	172
Figure 5-11.	Amplification of a portion of the <i>T. reesei</i> gene which is similar to the <i>N. crassa qde-2</i> .	177
Figure 5-12.	Homologous QDE-2 proteins from fungi. Highly conserved residues are in reverse font.	178
Figure 6-1.	The integration cassette phexnull.	186
Figure 6-2.	The location of primers used in PCR to screen for the interruption of the endogenous <i>hex1</i> gene.	186
Figure 6-3.	PCR screening of transformants with integration of the phexesDsR or phexnull cassette into the <i>hex1</i> locus.	190
Figure 6-4.	Northern blot demonstrating the absence of <i>hex1</i> transcript in <i>hex1</i> knockout mutants hes4 and hes6 compared to the nontransformant (n).	191

Figure 6-5.	Analysis of the expression of $hex1$ and growth pattern in the $hex1$ strain.	192
Figure 6-6.	Northern blot showing the expression of DsRed from the <i>hex1</i> locus in <i>hex1</i> knockout strains hes4 (4) and hes6 (6).	193
Figure 6-7.	Fluorescence CLSM images of hyphae typical for hes4 at day 3 (A-D) and day 5 (E-H).	197
Figure 6-8.	Total protein in the supernatants of <i>hex1</i> ⁻ (light grey) and VTT-D-79125 (dark grey) and cultures grown in cellulose medium.	199
Figure 6-9.	Total protein in the supernatants of <i>hex1</i> ⁻ (light grey) and VTT-D-79125 (dark grey) cultures after hypotonic shock.	201
Figure 6-10.	The appearance of hyphae following hypotonic shock.	202
Figure 6-11.	The appearance of hyphae, grown on PDA medium, immediately after flooding with water.	204
Figure 6-12.	Hyphal tips of <i>T. reesei</i> strain VTT-D-79125 after flooding with water.	205
Figure 6-13.	Hyphae of VTT-D-79125 (A) and the <i>hex1</i> ⁻ mutant (B), immediately after slicing the edge of the colony with a scalpel	200
	blade.	206
Figure 6-14.	The passage of protoplasm through a septum of the $hex1^{-}$ mutant.	207

List of Tables

Table 1-1.	Commercially available enzymes and their industrial applications.	4
Table 1-2.	The extracellular cellulolytic enzymes of <i>Trichoderma reesei</i> known to date.	7
Table 1-3.	Examples of proteins which have been expressed under the <i>cbh1</i> promoter in <i>T. reesei</i> .	19
Table 1-4.	Overview of some transcription factors characterised in filamentous fungi.	32
Table 1-5.	Examples of the uses of fluorescent reporter proteins in fungal biology.	56
Table 2-1.	Solutions frequently used throughout experimental work for this thesis.	63
Table 2-2.	Summary of the primers used in PCR.	71
Table 2-3.	Primers designed for chromosome walking of the <i>T. reesei hex1</i> gene.	74
Table 2-4.	Primers designed for chromosome walking of the O. floccosum hex1 gene.	74
Table 4-1.	Summary of the screening procedures of transformants of the expression cassettes phexDsR and pHEN54RQDsR.	127
Table 5-1.	Summary of the analysis for transformants carrying the expression cassettes phexeDsR, phexiDsR, phexhDsR and phexesDsR.	154
Table 5-2.	Fluorescence ratio of supernatants of phexesDsR transformants.	161
Table 6-1.	Summary of the conditions and outcomes of biolistic bombardment of pre-germinated conidia at a range of pressures.	188

Abbreviations

Abbreviations frequently used in the text are:

bp	Base pairs
BSA	Bovine serum albumin
CLSM	Confocal laser scanning microscopy
DAPI	4'-6-Diamidino-2-phenylindole
DEPC	Diethylpyrocarbonate
DIC	Differential interference contrast
DNA	Deoxyribonucleic acid
dNTP	Deoxynucleotide triphosphate
EDTA	Ethylenediamine-tetra-acetic acid
EM	Electron microscopy
ER	Endoplasmic reticulum
g	Specific gravity
h	Hour
IPTG	Isopropyl-beta-D-thiogalactopyranoside
kb	Kilobase pairs
kDa	Kilodalton
LB	Luria Broth
М	Moles per litre
min	Minute
MOPS	3-(N-morpholino) propanesulfonic acid
ORF	Open reading frame
PAGE	Polyacrylamide gel electrophoresis
PBS	Phosphate-buffered saline
PCR	Polymerase chain reaction
PDA	Potato dextrose agar
RNA	Ribonucleic acid
RT	Room temperature
S	Second
SDS	Sodium dodecyl sulphate
SS	Signal sequence
TBE	Tris-borate-EDTA buffer
TBS	Tris-buffered saline
TEM	Transmission electron microscopy
Tris	[2-amino-2-(hydroxymethyl) propane-1,3-diol, (tris)]
tsp	Transcription start point
V	Volt
v/v	Volume per volume
w/v	Weight per volume
X-Gal	5-bromo-4-chloro-3-inodyl-beta-D-galactopyranoside
xyn1	Gene encoding xylanase I enzyme

Attachments to this thesis

Curach, N. C., Te'o, V. S. J., Gibbs, M. D., Bergquist, P. L. Nevalainen, K. M. H. (2004). Isolation, characterisation and expression of the *hex1* gene from *Trichoderma reesei*. Gene, **331**: 133-140.

DVD - Supplementary Material to Figures.

CD – Thesis in PDF format.

Declaration

The research presented in this thesis is original work conducted between January 2001 and January 2005 by the author. This material has not been submitted as part of the requirement for any other degree or course to any other institution. To the best of my knowledge it contains no material previously published or written by any other person except where due reference is made in the text.

Natalie Claire Curach

Acknowledgements

Completing a Ph.D. is no simple task and this thesis is the product of the support from a network of people.

I would like to thank my supervisors Professor Peter Bergquist, Associate Professor Helena Nevalainen and Dr. Junior Te'o, for their direction, time, commitment, and for providing me with this opportunity.

A special thank you to Debra Birch, for generously bestowing her microscopy expertise and for creating the calming ambience in the basement. Also, a special thank you to the all-knowing Dr. Moreland Gibbs, for his scientific expertise, invaluable IT skills, and his willingness to share them. Thank you to all members of the EDGE team, who created a cooperative and supportive work environment. In particular, to my office buddies Kate Griffiths, Roz Reeves and Bernie Ng for their cheery companionship, entertaining conversations and encouragement. Thank you also to Georgina Learmonth for insisting on "perspective".

Furthermore, I would like to thank Liisa Kautto and Thomas Häßler for their dependable technical assistance, Dr. Nina Aro for providing the protoplasting method (with the additional tidbits of useful information), and Greg Joss for his advice and assistance with the animations included in this thesis.

I would also like to acknowledge the heart-felt love and support from my family, especially mum, who is the ultimate "meals-on-wheels" and Philip Curach, for adding an artist's touch to some of the figures. Their encouragement and support was instrumental to the completion of this thesis. The support provided by my family was matched, if not superseded by the kindness and solace of Brent Gordon - who, if he only knew, might have chosen for himself a "proper wife". Thank you for your continual selfless support, patience and faith.

Abstract

For *Trichoderma reesei* to be developed as an efficient producer of a large variety of proteins, the expression system requires diversification. In particular, the choice of promoters available needs to be broadened to include promoters which are active in conditions other than those conducive to induction of cellulase expression. Using proteomics, the HEX1 protein was identified as an abundant protein of the cell envelope of *T. reesei* when grown on a range of carbon sources, suggesting that a strong constitutive promoter drives the expression of this physiologically important protein. This thesis is an exploration into the *hex1* gene promoter and the role of *hex1* in the maintenance of mycelium integrity in *T. reesei* with consideration for the application of this gene in the further development of filamentous fungi as protein expression systems.

The single copy *hex1* gene and flanking regions were isolated from *T. reesei* and another biotechnologically important fungus, *Ophiostoma floccosum*. The fluorescent reporter protein DsRed1-E5 was expressed under the *T. reesei hex1* promoter and promoter activity was monitored by fluorescence CLSM and RNA analysis. During the rapid growth phase of a culture, the *hex1* promoter was active in a range of carbon sources and three transcript types with alternative *tsp* and splicing sites were discovered for the *hex1* gene. The distribution of fluorescence throughout the mycelium suggested spatial regulation of the *hex1* promoter as well as temporal regulation. The promoter was continually active in the absence of a functional *hex1* gene product suggesting that the *hex1* promoter is regulated in part, by negative feedback from the endogenous gene product. Interruption of the *hex1* gene produced hyphae that leaked excessive volumes of cytoplasm when physically damaged which may be advantageous for the

externalisation of selected protein products. The results indicate that the regulation of the *hex1* gene promoter is complex and that the *hex1* gene is integral to the maintenance of the integrity of the fungal mycelium.