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Abstract

In most existing model selection criteria, a constant penalty multiplier is usually

paired with a penalty function. A model selection criterion based on a single value

of penalty multiplier, such as Akaike information criterion (AIC) and Bayesian infor-

mation criterion (BIC), can be “unstable” as a different model may be selected if the

penalty multiplier changes even by a small arbitrary amount. This thesis extends a

recently developed model selection approach for (generalised) linear models, known as

model selection curves (MSC), to accelerated failure time (AFT) models for survival

data. In this approach, penalty multiplier in a predetermined range, instead of a single

value, is considered. Model selection criteria based on this approach are thus consid-

ered more stable as the selected model is the least likely not to be selected even when

the penalty multiplier changes. In addition to the two recently introduced longest

cathetus criterion and longest hypotenuse criterion, a new criterion, called the triangle

area criterion, is proposed in this thesis. Under some conditions, these three criteria

are consistent in selecting a specified AFT model, similar to BIC. It is shown that the

consistency result seems to hold even when sample size is only reasonably large using

simulations. A model selection framework including these three MSC based criteria,

as well as BIC and AIC, is proposed for AFT models of survival data.

The framework was investigated through simulations considering survival data of

various sizes and censoring proportions from different specified models. Moreover, the

performance of those model selection criteria based on the MSC was examined in com-

parison to AIC and BIC. The results indicate that those criteria have the potential to

outperform AIC and BIC in selecting the correct model. The model selection frame-

work has also been applied to several real world survival data. A tool in R program is
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developed to visualise the results from applying the framework.
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1
Introduction

1.1 Background

Often in medical studies, information is collected on many variables (known as risk

factors, predictors and covariates) that are possibly associated with outcome variables

of interest. In many of those studies, one of the aims is to obtain a parsimonious model

containing only important variables, which can be used for predicting the outcome and

estimating the effect of each covariate in the model. This is to identify a good subset

of the covariates to be included in the model for the outcome variable, or equivalently,

select a model from all possible models with different subsets of the covariates available

in the data, known as model selection. Statistical model selection is an integral and

generally challenging part of almost any data analysis (Claeskens and Hjort, 2008).

Model selection becomes even more challenging in survival analysis where the outcome

variable in the data, survival time, may be censored (i.e., incomplete) for some subjects

in the study.
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Most existing model selection criteria are based on two components: loss function

and penalty term. Loss function measures the goodness of fit of a model, while the

complexity of a model is addressed by the penalty term. Several loss functions have

been considered and discussed in the literature, including residual sum of squares and

log-likelihood function. A penalty term usually consists of a constant multiplier λ

and a penalty function fn
(
pα

)
, where pα is number of parameters in model α and

n is sample size. The constant multiplier, also known as penalty multiplier, often

determines the properties of a model selection criterion. For a specific penalty function,

say fn
(
pα

)
= pα that measures the model complexity in its simplest form, we can

obtain several well-known model selection criteria if we restrict λ to some single value.

For example, when the penalty multiplier λ = 2, it gives Akaike information criterion

(AIC) (Akaike, 1973), and λ = log(n) leads to Bayesian information criterion (BIC)

(Schwarz, 1978). Moreover, generalised information criterion (GIC) by Konishi and

Kitagawa (1996) allows any single value of λ ∈ R to be used. These model selection

criteria have been well studied in the literature and used extensively in linear and

nonlinear regression models.

Model selection for models in survival analysis, on the other hand, has also gained

much attention for decades. Model selection procedures for exponential survival models

were developed by Krall et al. (1975) and by Greenberg et al. (1974). A stepwise

selection procedure for survival models was discussed by Peduzzi et al. (1980). They

proposed an algorithm for the stepwise selection procedure for nonlinear regression

models. The algorithm was applied to the analysis of survival data using exponential

regression model.

Several commonly used model selection criteria, such as BIC and AIC, have been

extended to survival analysis. Volinsky and Raftery (2000) extended the BIC to the

Cox proportional hazards model (Cox, 1972). They proposed to use the number of

uncensored observations (i.e., events) as the penalty term in BIC, instead of the number

of all observations in the data studied. Hurvich and Tsai (1989) obtained a bias-

corrected version of AIC for nonlinear regression and autoregressive time series models.

Based on their study, an improved AIC selection strategy for survival analysis was later

suggested by Liang and Zou (2008). They particularly focused on model selection with

accelerated failure time (AFT) model for data with a small sample size.
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There was also a Bayesian variable selection method for models of survival data

with censoring, based on the sufficiency and asymptotic normality of the maximum

partial likelihood estimator, which was proposed by Faraggi and Simon (1998). This

method is an extension of Lindley’s (1968) variable selection criterion for the linear

models.

Tibshirani (1997) extended his least absolute shrinkage and selection operator (lasso)

technique to the Cox model. Fan and Li (2002) proposed a nonconcave penalised likeli-

hood method for the Cox model and the Cox frailty model (Hougaard, 1995), in which

a penalty known as smoothly clipped absolute deviation (SCAD) was used. Further-

more, there is no shortage of model selection studies in the literature, dealing with

high dimensional data in survival analysis (e.g., Gui and Li (2005), Ma and Huang

(2007), Wang et al. (2008), Huang and Ma (2010) etc.), which we are not focusing in

this thesis.

1.2 Motivation

Many of the model selection criteria mentioned in Section 1.1, such as AIC and

BIC, are based on only a single fixed value of the penalty multiplier. Recently, Müller

and Welsh (2010), and Murray, Heritier and Müller (2013) proposed and studied model

selection criteria as a function of penalty multiplier, known as the model selection curves

(MSC). Two criteria based on their model selection curves approach were suggested.

In the MSC approach, possible models were evaluated and ranked over a range of λ

values before selecting a model. The consideration of a range of λ values in a model

selection criterion function allows to examine if the model selection procedure (i.e.,

criterion) is considered stable. Stability can be defined in various ways (Meinshausen

and Bühlmann, 2010; Müller and Welsh, 2010). According to Müller and Welsh, a

model selection criterion is defined as unstable if a model selected with a particular

dimension at a specific λ value is no longer selected due to a small change in λ value.

They also showed that in the case of (generalised) linear regression models, criteria

based on the model selection curves have the potential to outperform model selection

criteria that use only a single value for the penalty multiplier. This has motivated us

to consider the MSC approach for models of survival data, such as AFT models.
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Here we would like to demonstrate with “ovarian” data from R package “survival”

(Therneau, 2015; Therneau and Grambsch, 2000) that some existing model selection

criteria such as AIC, based on only single value of penalty multiplier, can be unstable

for selecting AFT models. The data contains survival time (outcome variable) with

approximately 50% censoring and four covariates. The four covariates are age of pa-

tient in years (age), extent of residual disease (resid.ds; 1=incomplete, 2=complete),

treatment (rx; 1=single and, 2=combined) and performance status (ecog.ps; 1=good

and, 2=poor). The data is given in Appendix D.

Generalised information criterion (GIC), which is a linear combination of loss func-

tion and penalty term, has been calculated for each of 15 possible Weibull AFT models

fitted to the“ovarian”data at three different values of λ (1.5, 2 and 2.5). The resulting

GIC values along with the possible models are presented in Table 1.1. For λ = 2, the

GIC is equivalent to AIC.

Table 1.1: GIC values at λ = 1.5, 2 and 2.5.

Variable(s) GIC(λ = 1.5) GIC(λ = 2) GIC(λ = 2.5)
age 183.00 184.00 185.00

resid.ds 194.76 195.76 196.76
rx 197.73 198.73 199.73

ecog.ps 198.22 199.22 200.22
age+resid.ds 182.54 184.04 185.54

age+rx 182.02 183.52 185.02
age+ecog.ps 184.43 185.93 187.43
resid.ds+rx 194.56 196.06 197.56

resid.ds+ecog.ps 195.36 196.86 198.36
rx+ecog.ps 198.67 200.17 201.67

age+resid.ds+rx 181.74 183.74 185.74
age+resid.ds+ecog.ps 184.03 186.03 188.03

age+rx+ecog.ps 183.49 185.49 187.49
resid.ds+rx+ecog.ps 195.46 197.46 199.46

age+resid.ds+rx+ecog.ps 183.19 185.69 188.19

From Table 1.1, one would choose the model with age, resid.ds and rx when using

the model selection criterion at λ = 1.5 because of its lowest GIC value of 181.74. Now,

suppose the value of λ increases by 0.5 to 2 ( i.e., AIC), the model with age and rx

(no longer including resid.ds) would be selected. If we increase λ further to 2.5, the

model selected is different again. The researcher would end up picking a smaller model

with age only. It is evident that the model selected has changed due to a change in λ
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value. This change is considered relatively small as the λ values used in this case can

potentially be between 0 and 13. This indicates that model selection criteria that based

on a single value of λ, such as AIC, may lack stability. However, choosing a model

based on a range of λ values may give some protection against such lack of stability in

model selection.

We would also like to investigate how the extent of censoring proportion in survival

data affects the performance of some existing model selection procedures, such as AIC

and BIC, in identifying the true accelerated failure time (AFT) model of survival data.

To do this we followed the footsteps of the studies by Braun (2015) and Tarr et al.

(2015) by generating several hypothetical data sets. Similar to these two studies, we

considered nine predictors x1, x2, . . . , x9. The survival time in each of two survival data

sets was generated using a single predictor x8 and based on a Weibull AFT model. Both

data sets have a sample size of 50 with 10% and 50% censoring respectively. Note that

x8 is actually a linear function of the rest eight covariates x1, x2, . . . , x7 and x9 with a

small random component added, and the other eight covariates in the model are also

correlated.

Table 1.2: AIC and BIC values for Weibull AFT models of survival data.

Variable(s) 10% censoring 50% censoring
AIC BIC AIC BIC

x8 32.56 36.38 51.85 55.67
x4 + x8 33.49 39.23 49.21 54.94
x8 + x9 32.39 38.13 51.82 57.56

x1 + x8 + x9 32.47 40.11 51.38 59.03
x1 + x3 + x8 + x9 33.08 42.64 52.58 62.14

AIC and BIC values for Weibull AFT models with different combinations of pre-

dictors have been computed and reported in Table 1.2. It shows that for data with

10% censoring AIC fails to pick the true model (i.e., model with only x8), but a bigger

model with both x8 and x9 having the lowest AIC value (32.39). On the other hand,

BIC manages to select the true model. For data with 50% censoring, both AIC and

BIC select the model with two predictors of x4 and x8, which is not the true model.

Similar results were reported in Tarr et al. (2015) for the case of linear models.

This example indicates that censoring proportion may have some impact on the

performance of AIC and BIC in model selection for AFT models of survival data. This
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needs further investigation.

1.3 Aims and outline of this thesis

The fundamental theme of this thesis is to study several model selection criteria

and develop a tool in R program, which can be used in survival analysis, particularly

for accelerated failure time (AFT) models. It encompasses a few relatively new, and

two commonly used model selection criteria, Akaike information criterion and Bayesian

information criterion.

This thesis extends the model selection curves approach to accelerated failure time

models for censored survival data. In this approach, model selection criteria are studied

as a function of penalty multiplier. This means that penalty multiplier values within

a predetermined range, instead of a single fixed value, are considered. Moreover, a

candidate model can be assessed for how frequently it is selected since all possible

models are studied and ranked over a range of λ values. Model selection via such an

approach is therefore more emphasising on the stability of the model selection criterion

and the model selected is least likely not to be selected even when the penalty multiplier

changes considerably.

A new model selection criterion based on the MSC approach, called the triangle area

criterion (TAC), is proposed for AFT model selection, in addition to the two recent

criteria by Müller and Welsh (2010), namely the longest cathetus criterion (LCC)

and longest hypotenuse criterion (LHC). It is shown in this thesis that, under some

conditions, these three related but yet different criteria based on the MSC are all

consistent in selecting a specified or true AFT model, similar to BIC.

A model selection framework is proposed for AFT models of survival data, con-

sisting of the three MSC based model selection criteria as well as AIC and BIC. This

proposed framework is investigated extensively through a comprehensive simulation

study, considering survival data sets generated from different true AFT models with

various sizes and censoring proportions. A stratified bootstrapping technique is pro-

posed in this thesis for generating survival data with specified censoring proportion. In

particular, the performance of those model selection criteria based on MSC is examined

in comparison to AIC and BIC. The AFT model selection framework is also applied
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to some published survival data sets, as well as a recent data obtained from a study of

survival following ovarian cancer. Moreover, bootstrapping replications are used, when

necessary, to provide additional information for and thus improve model selection.

We also intend to develop a user-friendly tool in the statistical computing project R

(R Core Team, 2015) for performing our AFT model selection framework and producing

tables and/or graphs with relevant results. This encourages the application of the

proposed method.

The rest of the thesis is organised as follows. Chapter 2 is a brief review of some

basic functions of survival analysis, accelerated failure time model and several typical

distributions for modelling survival times. The materials presented in this chapter form

a basis for subsequent chapters of this thesis.

Chapter 3 focuses on the methodology. The MSC approach has been discussed

thoroughly in this chapter. Based on this approach, a new model selection criterion is

devised. A model selection framework is proposed for AFT models.

Chapter 4 investigates the proposed model selection framework with a comprehen-

sive simulation study. For each type of AFT models (Weibull, log-logistic and log-

normal), data sets generated from several specified models with different sample sizes

and censoring proportions are considered in the simulation study. The performance of

the model selection criteria within the framework has been evaluated through Monte

Carlo simulation. Bootstrapping technique is also considered for some cases to get

more information for model selection.

Chapter 5 introduces the R tool for the AFT model selection framework. Examples

based on three published data are used to illustrate the R tool.

Chapter 6 presents a case study in which the framework has been applied to a

recently obtained data on patients with ovarian cancer, who were treated in Royal

Prince Alfred (RPA) hospital, Sydney.

Chapter 7 gives a conclusion about the model selection framework for the AFT

models. Possible directions for future research are also discussed.
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2
Accelerated Failure Time Models for

Survival Analysis

In this chapter we describe a class of parametric models, known as accelerated failure

time (AFT) models that are specifically designed for survival data with censoring.

Three typical AFT models, Weibull, log-logistic and log-normal are considered in our

study of the model selection framework presented in next chapter, and are discussed

here.

2.1 Introduction

Survival analysis refers to any statistical analysis of data where the outcome variable

of interest is survival or failure time, i.e., time until an event (e.g., death) occurs. Such

data is known as survival data. Survival analysis plays an important role in many

fields, particularly medical research. Survival times for some subjects in a follow-up
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study may not be fully observed, known as censoring. This makes survival analysis

distinctive from other statistical analyses because of its ability to allow for or handle

censored survival times. Censoring is often due to lost to follow up, withdrawal from

the study or not having experienced the event before the end of the study. This kind

of censoring is known as ‘right censoring’, a most common type of censoring (Hosmer

and Lemeshow, 1999). In this case, the time to the last contact time point is used for

each censored subject, which is only part of true survival time (time to event), and it

is called censored survival time. Thus the true survival time for a right-censored case

is always greater than the observed censored survival time. There are also other types

of censoring, left censoring and interval censoring (Klein and Moeschberger, 2003), but

in this thesis, only survival data with right censoring is considered.

Note that many traditional statistical and graphical procedures may not be ap-

propriate for survival data with censoring as they depend on the data set being fully

observed. Kaplan-Meier estimator of the survivor function due to Kaplan and Meier

(1958) is a major step in the development of suitable procedures or methods for survival

data with censoring. Cox proportional hazards (PH) model, specifically designed for

modelling survival data with censoring, has been widely used for survival analysis since

its introduction in 1972 (Cox, 1972), where effects of covariates, measured in hazard

ratios, can be estimated. Moreover, the Cox model does not make a particular assump-

tion for the distribution of survival time other than assumes proportional hazards. It

is considered robust in the sense that it usually fits the data well no matter which

parametric model is appropriate for the underlying data (Kleinbaum and Klein, 2012).

However, when the proportional hazards assumption is not held by the data, the results

from fitting a Cox model can be misleading and may lead to incorrect conclusions. Un-

der some conditions (e.g., survival time follows a particular distribution), AFT model

can be used as an alternative to fit the data (Orbe et al, 2002). From fitting an AFT

model, the coefficient of each covariate/factor in the model can be estimated, and it

gives an interpretation for the effect of the corresponding covariate on the survival time.

In addition, an AFT model that assumes the Weibull (or exponential as a special case

of Weibull) distribution for the survival time in the data is also a proportional hazards

model, and thus gives an interpretation of covariate effect on the risk of the event using

hazards ratio, similar to the Cox model.
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2.2 Basic functions of survival analysis

Several basic but important functions of survival time in survival analysis, including

distribution function F (t), survivor function S(t) and hazard function h(t), are defined

and described here. They are often used to characterise the distribution of survival time,

denoted by T . We assume that T is a continuous, nonnegative random variable and

all functions of T described below are defined over the interval [0,∞), unless otherwise

specified.

Suppose the survival time T has a probability density function (pdf) f (t). Then

the distribution function of T is defined as

F (t) = Pr(T ≤ t) =
∫ t

0
f (x) dx, (2.1)

where t (t ≥ 0) is a value of T for an individual. The qth quantile of the distribution

of T , denoted by tq, can be obtained from F (tq) = q, or, tq = F−1(q).

Survivor function, also known as survival function, is defined as the probability that

an individual will survive beyond time t and is expressed as below

S(t) = 1 − F (t) = Pr(T > t) =
∫ ∞

t
f (x) dx. (2.2)

The survivor function is a monotonically nonincreasing function, which takes a value

1 at t = 0 and a value 0 as t → ∞. The qth quantile of the distribution of T can be

obtained from S(t), and it is the smallest t such that S(tq) ≤ 1 − q, i.e., tq = inf{t :

S(t) ≤ (1 − q)}. For example, median survival time t0.5 can be obtained by solving

S(t0.5) = 0.5. Median is considered a more reasonable summary measure than mean for

survival time, and thus has often been used in practice. One reason is, as mentioned by

Lee and Wang (2003), a small number of individuals with exceptionally long or short

lifetimes in a survival data will cause the mean survival time to be disproportionately

large or small. Mean is rather sensitive, while median is more robust, to extreme values.

Hazard function evaluates the instantaneous rate of failutre at time t given that an
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individual survives up till time t. It is defined as

h(t) = lim
∆t→0

Pr(t ≤ T < t + ∆t |T ≥ t)
∆t

= lim
∆t→0

Pr(t ≤ T < t + ∆t)
Pr(T ≥ t) ∆t

,

= lim
∆t→0

[F (t + ∆t) − F (t)
∆t

] 1
S(t)

=
f (t)
S(t)

, (2.3)

where ∆t is a small interval of time, and lim∆t→0
[

F (t+∆t)−F (t)
∆t

]
is the first derivative of

F (t) with respect to t, d
dt F (t), which is f (t).

The hazard function h(t) may have different shapes depending on whether the haz-

ard rate is increasing, decreasing, constant over time or a mixture of them. More infor-

mation about this can be found in Lee and Wang (2003) and Klein and Moeschberger

(2003). Note that the hazard function is nonnegative, i.e., h(t) ≥ 0, and

∫ ∞

0
h(t) dt = ∞.

Cumulative hazard function is defined as follows

H (t) =
∫ t

0
h(x) dx. (2.4)

It can be shown that these basic functions of survival time are related. Using

equations (2.1) and (2.2), the pdf f (t) can be expressed in terms of S(t) as below:

f (t) =
d
dt

[1 − S(t)] = −
d
dt

S(t).

The hazard function h(t) in equation (2.3) can be then expressed in terms of S(t) as

follows

h(t) =
− d

dt S(t)
S(t)

= −
d
dt

log S(t).

Since S(0) = 1, the cumulative hazard, defined in equation (2.4), can be also expressed

as ∫ t

0
h(x) dx = − log S(t).
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Then the survivor function S(t), in terms of the hazard function, is given by

S(t) = exp
(
−

∫ t

0
h(x) dx

)
= exp

(
− H (t)

)
.

Moreover, the pdf of survival time can be also expressed in terms of hazard function as

f (t) = h(t) exp
(
−

∫ t

0
h(x) dx

)
.

It is clear that F (t), f (t), S(t), h(t) and H (t) are functionally related. Therefore, based

on one of these functions, other function can be obtained (see Lawless, 1982).

2.3 Distribution of survival time

There are several distributions that may be assumed for the survival time under

an AFT model. Among them, three commonly used distributions, Weibull, log-logistic

and log-normal, are considered in this study. Here we review their basic properties.

2.3.1 Weibull distribution

Weibull distribution was introduced by Weibull (1939). Its applications to lifetime

data were illustrated and advocated by Weibull (1951) and Berretoni (1964). Since

then, it has been used in many studies including biomedical applications where time to

the event of interest is of prime importance. See, for example, Pike (1966), Whittemore

and Altshuler (1976).

The pdf of a Weibull distribution is given by

f (t) = νκ(νt)κ−1 exp[−(νt)κ],

where ν > 0 and κ > 0 are known as scale and shape parameters of the distribution.

Using the functional relations in equations (2.2) and (2.3), the survivor and hazard

function of survival time t under the Weibull distribution can be expressed as

S(t) = exp[−(νt)κ] (2.5)



14 Accelerated Failure Time Models for Survival Analysis

0 1 2 3 4

0
.0

0
.5

1
.0

1
.5

2
.0

t

f(
t)

κ = 3

κ = 2

κ = 1

κ = 0.5

Figure 2.1: Weibull pdf’s with ν = 1 and various κ values.

and

h(t) = νκ(νt)κ−1, (2.6)

respectively. It is clear that the hazard function under the Weibull distribution is

monotonically increasing if κ > 1, monotonically decreasing if κ < 1 and remained a

constant if κ = 1. According to Lawless (1982), the shape parameter value κ typically

varies from application to application, but in many practical situations Weibull distri-

butions with shape parameter in the range of 1 to 3 seem appropriate. A slightly wider

range of values for the shape parameter will be considered in our simulation study

presented in Chapter 4. Figure 2.1 shows the pdf’s of four Weibull distributions with

different values of the shape parameter κ while the scale parameter ν is fixed at 1. All

four distributions are right-skewed and the level of skewness of a Weibull distribution

is decreasing with the increasing value in κ, as shown in the figure.

Moments of the distribution of a random variable can be used to numerically de-

scribe the variable with respect to its characteristics, such as location and variation
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(Rinne, 2008). The rth raw moment, denoted by µ′r , of a Weibull distribution is

µ′r = E(X r ) = ν−r
Γ

(
1 +

r
κ

)
,

where Γ(a) =
∫ ∞

0 ua−1e−udu (a > 0) is a gamma function. The mean and variance of

the distribution are ν−1Γ
(
1 + 1

κ

)
and ν−2 [Γ (

1 + 2
κ

)
− {Γ

(
1 + 1

κ

)
}2

]
respectively.

2.3.2 Log-logistic distribution

The mathematical formulation of log-logistic distribution was first studied by Fisk

(1961), which is also known as the Fisk distribution in economics. This distribution

has been used in survival analysis due to its simple algebraic expressions for different

survival functions. See, for example, O’Quigley and Struthers (1982), Bennet (1983),

Cox and Oakes (1984). Some important properties of log-logistic random variable in

health care studies were discussed by Clark and El-Taha (2015).
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Figure 2.2: Log-logistic pdf’s with ω = 1 and various ξ values.
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A random variable is said to follow a log-logistic distribution if the logarithm of

the random variable follows a logistic distribution. Note that logistic distribution is

very similar to normal distribution but has somewhat heavier tails. A log-logistic

distribution possesses similar characteristics and is a positively skewed like a log-normal

distribution (Aitkin et al., 2009).

The pdf of a log-logistic distribution is

f (t) =
ωξtξ−1

(1 + ωtξ )2 ,

which is characterised by two parameters ω > 0 and ξ > 0. The pdf’s of log-logistic

distributions with ω = 1 and four different values of ξ are shown in Figure 2.2. It can

be seen in the figure that log-logistic distribution is positively/right skewed.

Using equations (2.2) and (2.3), the survivor and hazard functions of the log-logistic

distribution can be expressed as

S(t) =
1

1 + ωtξ

and

h(t) =
ωξtξ−1

1 + ωtξ

respectively. When ξ > 1, the hazard function of the log-logistic distribution takes a

value 0 at t = 0, increases to a maximum at t = ( ξ−1
ω )

1
ξ and then decreases to 0 as

t → ∞. Moreover, when ξ ≤ 1, the hazard is monotonically decreasing with t.

Variance and other characteristics of a log-logistic distribution can be obtained using

its first few moments. The rth raw moment of T about zero, according to Tadikamalla

and Johnson (1982), is

µ′r =
rπ
ξωr/ξ csc

(
rπ
ξ

)
, r < ξ.

The 1st moment is the mean of the log-logistic distribution, given by

E(T ) =
π

ξω1/ξ csc
(
π

ξ

)
, ξ > 1. (2.7)
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The 2nd moment is

E(T2) =
2π
ξω2/ξ csc

(
2π
ξ

)
, ξ > 2. (2.8)

Therefore, the variance of the log-logistic distribution is given by

V ar (T ) =
2π
ξω2/ξ csc

(
2π
ξ

)
−

[
π

ξω1/ξ csc
(
π

ξ

)]2

, ξ > 2.

2.3.3 Log-normal distribution

Log-normal distribution has been widely used in survival analysis since its applica-

tion in cancer research was discussed in Boag (1949). Nelson and Hahn (1972) used

this distribution in the analysis of failure times of electrical insulation, while Whitte-

more and Altshuler (1976) fitted the log-normal distribution to Doll and Hill’s Data

for British Physicians.

A random variable is said to have a log-normal distribution if its logarithm is nor-

mally distributed. That is, survival time T follows a log-normal distribution if log T is

normally distributed with mean µ ∈ R and variance σ2 > 0. The pdf of the log-normal

distribution is therefore,

f (t) =
1

σt
√

2π
exp

[
−

1
2

( log t − µ
σ

)2]
, for t > 0.

Note that µ is a location parameter in the normal distribution, and exp(µ) is the

scale parameter in the log-normal distribution. So change in the value of µ does not

change the shape of log-normal distribution, but changes the scale on the horizontal

axis. Moreover, the other scale parameter σ2 determines the shape of the log-normal

distribution. The pdf’s of four log-normal distributions of survival time t, with four

different values of σ (0.25, 1, 1.5 and 3) and µ = 0, are shown in Figure 2.3. Note

that as σ increases the level of skewness also increases. The effects of different values

of µ and σ on the shape of log-normal distributions were investigated extensively by

Lawless (1982) and Lee and Wang (2003).

Using equation (2.2), the survivor function of a log-normal distribution is expressed
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Figure 2.3: Log-normal pdf’s with µ = 0 and various σ values.

as

S(t) = 1 − Φ
( log t − µ

σ

)
,

where Φ(·) is the cumulative distribution function of a standard normal random vari-

able. Moreover, the hazard function of the log-normal distribution, using equation

(2.3), has the following form

h(t) =
1

σt
√

2π
exp

[
− 1

2

( log t−µ
σ

)2]

1 − Φ
( log t−µ

σ

) .

This hazard function takes a value of 0 at t = 0, and increases to a maximum before

decreases to 0 as t → ∞. Since the hazard function is decreasing for large t, which is

not realistic in many practical situations, using log-normal distribution as a survival

distribution was criticised by Klein and Moeschberger (2003). However, it may be

suitable for studies where large values of T are of no or little interest.
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Moments of a log-normal distribution, similar to moments of Weibull and log-logistic

distribution, describe the log-normal variable with respect to some characteristics (e.g.,

mean and variance). The rth raw moment of the log-normal distribution is given by

µ′r = E(X r ) = erµ+ 1
2 r2σ2

.

The mean and variance of this distribution are eµ+
1
2σ

2
and (eσ

2
− 1)e2µ+σ2

respectively.

It is obvious from the mathematical expressions for the moments, log-logistic dis-

tribution is the only distribution considered here that may not have finite mean nor

variance.

2.4 Accelerated failure time model

In this section, we would like to describe three types of accelerated failure time

(AFT) models, Weibull, log-logistic and log-normal, in which the effects of covariates

are multiplicative on time scale. Besides reviewing the mathematical background of

the AFT models, parameter estimation of those models is also discussed.

2.4.1 The AFT model and underlying distributions

An explicit regression model for the log of survival time T can be written as:

log T = β>x +W, (2.9)

where x> = (1, x1, x2, . . . , xp) represents p covariates, β> = (β0, β1, β2, . . . , βp) is a

vector of coefficients and W is error term in the model. Here the logged value of T

is considered because the distribution of survival time tends to be right skewed. The

model in equation (2.9) can also be expressed as

T = exp(β>x) U,

where U = exp(W ).

Unlike classical (log-) linear regression model where its error term is assumed to
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follow a normal distribution, the error term in equation (2.9) can have other distribu-

tions. For the model above if we assume that W follows an extreme value distribution,

it is equivalent to U follows an exponential distribution. More explicitly, the density

function of U is

f (u) = ν exp(−νu); u ≥ 0, ν > 0.

Since u = exp(w) and du = exp(w)dw, the density function of W is

f (w) = ν exp
(
w − ν exp(w)

)
, w ∈ R, ν > 0.

We can write

W = log T − β>x.

It implies that the differences between the observed log T and its fitted (predicted)

values (β>x), i.e., residuals, follow an extreme value distribution.

The error term W can have different distributions. This has opened up opportunities

for a wide variety of models to be studied. Therefore, for a given distribution of W, a

different type of AFT models is considered for survival data.

A general form of an AFT model is usually expressed as

Y = log T = β0 + β1x1 + · · · + βpxp + τW

= β>x + τW, (2.10)

where x and β are defined as before, τ > 0 is a scale parameter, and W is the random

error term.This model can also be expressed as

T = exp(β>x) exp(τW ).

The expression above is often interpreted as accelerated effect on survival time as the

effect of covariate x is multiplicative on the time scale (Hosmer and Lemeshow, 1999).

For this very reason, this model is called accelerated failure time model.

Here we outline the probability density function and survivor function of T under

the AFT regression model as they play important roles for making inferences about

the model parameters. Let g0(w) and G0(w) be the probability density function and



2.4 Accelerated failure time model 21

survivor function of W respectively. Then the survivor function of t (t ∈ T) given x can

be expressed as

S(t; x) = Pr (T ≥ t) = Pr
(
Y ≥ log t

)
= Pr

(
w ≥

log t − β>x

τ

)
= G0

(
log t − β>x

τ

)
. (2.11)

Therefore, the corresponding probability density function of t is

f (t; x) = −
d
dt

G0

(
log t − β>x

τ

)
= −

1
tτ

G
′

0

(
log t − β>x

τ

)
=

1
tτ

g0

(
log t − β>x

τ

)
. (2.12)

As mentioned above, there are various distributions that can be assumed for an

AFT regression model, although here we only consider Weibull, log-logistic and log-

normal distributions. Under the Weibull AFT model, the random variable W has the

following density function and survivor function,

g0 (w) = exp
(
w − exp (w)

)
, w ∈ R (2.13)

and

G0 (w) = exp
(
− exp (w)

)
(2.14)

respectively. Then the Weibull AFT regression model has the following survivor and

density functions of t

S (t; x) = exp
[
− exp

(
log t − β>x

τ

)]

and

f (t; x) =
1
tτ

exp
[(

log t − β>x

τ

)
− exp

(
log t − β>x

τ

)]
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respectively. Note that for a Weibull AFT model, the parameters of the Weibull dis-

tribution can be expressed using β and τ in the following way, as shown in Lee and

Wang (2003):

ν = exp
(
−
β>x

τ

)
and κ =

1
τ
. (2.15)

Therefore, the hazard and survivor functions under the Weibull AFT model can

be expressed in terms of covariates via ν. Moreover, once the parameters of a Weibull

regression model, β and τ, are specified, the distribution of W is completely known.

Similar to Weibull AFT model, the parameters of a distribution under other AFT

models, such as log-logistic and log-normal, can be also expressed in terms of β and τ,

and thus its hazard and survivor functions are also a function of covariates.

The random variable W under the log-logistic AFT model has density and survivor

function

g0 (w) =
exp (w)[

1 + exp (w)
]2 (2.16)

and

G0 (w) =
1

1 + exp (w)
(2.17)

respectively. It follows that we have the following survivor and density functions

S (t; x) =
[
1 + exp

(
log t − β>x

τ

)]−1

and

f (t; x) =
1
tτ

exp
(

log t − β>x

τ

) [
1 + exp

(
log t − β>x

τ

)]−2

for the log-logistic AFT model respectively.

The random variable W under the log-normal AFT model has the following density

function

g0(w) =
1
√

2π
exp

(
−

1
2
w2

)
. (2.18)
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Then its survivor function is

G0(w) = 1 − Φ(w), (2.19)

where Φ(w) is the cumulative distribution function of W . For the log-normal AFT

regression model, the survivor and density functions are

S (t; x) = 1 − Φ
(

log t − β>x

τ

)

and

f (t; x) =
1

tτ
√

2π
exp

(
−

(log t − β>x)2

2τ2

)
respectively.

The probability density function and survivor function of T under the AFT re-

gression model are important for parameter estimation via maximum likelihood. The

likelihood function is obtained using the pdf’s and survivor functions described above

in such a way that it becomes a function of all the relevant parameters under the AFT

model considered.

2.4.2 Inference about model parameters

The parameters in an AFT model can be estimated based on a likelihood function.

However, constructing the likelihood function for survival data with censoring need to

be handled differently for complete and censored observations in the data.

Suppose we have n observations t1, t2, . . . , tn, which may come from same or different

distributions and all of them have complete information. Let θ =
(
θ1, θ2, . . . , θp

)>
de-

note the vector of unknown parameters associated with the distribution(s) of t1, t2, . . . , tn.

The likelihood function of θ, L(θ), based on a set of observed data is the probability

of observing the data given θ, i.e.,

L (θ) = Pr (data; θ) .

Assuming that all the observations are independent, the log-likelihood function can be
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then written in the following form

l (θ) =
n∑

i=1

log Li (θ) =
n∑

i=1

li (θ),

where Li (θ) is the probability density function for the continuous data or the probability

mass function for the discrete data.

In a survival data, we may have censored observations. This means we only know

incomplete or partial information of survival time for some subjects in the data, which

is a special feature of survival data. Such censoring issue needs to be taken into

consideration in the construction of a likelihood function in survival analysis.

Let us consider data
{(
yi, δi

)
, i = 1,2, . . . ,n

}
containing right censoring. Here

yi = min (Ti,Ci) , δi = I (Ti ≤ Ci) , (2.20)

where the survival time of ith subject is Ti if fully observed (i.e., δi = 1) or Ci if censored

(i.e., δi = 0), and δi is the censoring indicator. Assume that censored survival time Ci

is fixed. In this case yi ∈ (0,Ci). When δi = 0 then yi = Ci and their joint distribution

is

Pr
(
yi = Ci, δi = 0

)
= Pr (Ti > Ci)

= S(Ci).

The cumulative distribution function of yi jointly with δi = 1 is

Pr
(
yi ≤ y, δi = 1

)
= Pr

(
Ti ≤ y

)
= F (y), y ≤ Ci .

So the density function of yi jointly with δi = 1 is

d
dy

Pr
(
yi ≤ y, δi = 1

)
= f (y).

Note that uncensored observations (δi = 1) give information on both the hazard of the

event and the survival of individuals prior to that event, while censored observations
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(δi = 0) only give information on the survival of individuals no further than Ci. Thus

uncensored observations contribute to the likelihood function via their density function,

but censored observations contribute to it through their survivor function. It follows

that the likelihood for ith observation can be expressed as

Li = f
(
yi
)δi S (Ci)1−δi

= f
(
yi
)δi S

(
yi
)1−δi ,

as yi = Ci when δi = 0. If the pairs
(
yi, δi

)
are independent, the likelihood function of

the whole data of size n is given by

L =
n∏

i=1

f
(
yi
)δi S

(
yi
)1−δi . (2.21)

It is natural to choose likelihood approach for the parameter estimation and infer-

ence for AFT regression models. Consider a sample of n independent subjects with p

explanatory variables xi, i = 1,2, . . . ,n. Following equation (2.21), its log-likelihood

function is

l (θ) =
n∑

i=1

(
δi log f (yi; xi) + (1 − δi) log S(yi; xi)

)
,

where θ =
(
β>, τ

)>
and xi (i = 1,2, . . . ,n) is the vector of values on the p covariates

for ith subject. In terms of g0 (w) and G0 (w), using equations (2.11) and (2.12), the

log-likelihood function then takes the following form

l (θ) =
n∑

i=1

(
δi log

( 1
yiτ

g0(wi)
)
+ (1 − δi) log G0(wi)

)

= − log τ
n∑

i=1

δi +

n∑
i=1

(
δi log g0(wi) + (1 − δi) log G0(wi)

)
−

n∑
i=1

δi log yi, (2.22)

where

wi =
log yi − β>xi

τ
, i = 1,2, . . . ,n.

Now we can find the score vectors by considering the derivative of the log-likelihood
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function above. We have

∂wi

∂ β j
= −

1
τ

xi j for j = 0,1,2, . . . ,p

and
∂wi

∂τ
= −

1
τ
wi .

Note that xi j = 1 when j = 0 ∀ i. Therefore, the score vector U (θ) has the following

components

Uj (θ) =
∂l (θ)
∂ β j

= −
1
τ

n∑
i=1

bi xi j , j = 0,1,2, . . . ,p,

Up+1 (θ) =
∂l (θ)
∂τ

= −
1
τ

n∑
i=1

(δi + biwi) ,

where

bi =
d

dwi

(
δi log g0 (wi) + (1 − δi) log G0 (wi)

)
, i = 1,2, . . . ,n.

An iterative procedure such as Newton-Raphson method can be used to solve the equa-

tion U (θ) = 0, and thus the maximum likelihood estimates (MLE) of the parameters

of interest (θ) can be obtained for an AFT regression model.

The observed Fisher information matrix, denoted by I0, can be determined by an

evaluation of the following derivatives:

−
∂2l (θ)
∂ β j∂ βk

= −
1
τ2

n∑
i=1

Bi xi j xik , j, k = 0,1,2, . . . ,p;

−
∂2l (θ)
∂ β j∂τ

= −
1
τ2

n∑
i=1

(bi + Biwi)xi j =
1
τ

Uj (θ) −
1
τ2

n∑
i=1

Biwi xi j ;

−
∂2l (θ)
∂τ2 =

2
τ

Up+1(θ) +
1
τ2

n∑
i=1

(δi − Biw
2
i );

where

Bi =
∂bi

∂wi
=

∂2

∂w2
i

(
δi log g0 (wi) + (1 − δi) log G0 (wi)

)
.

Since the MLEs satisfy U (θ) = 0, the expression of the observed information matrix
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becomes a bit simpler. The observed information matrix is

I0 =

*.....
,

− 1
τ2

∑n
i=1 Bi −

1
τ2

∑n
i=1 Bi xik − 1

τ2

∑n
i=1 Biwi

− 1
τ2

∑n
i=1 Bi x2

i j − 1
τ2

∑n
i=1 Biwi xi j

1
τ2

∑n
i=1(δi − Biw

2
i )

+/////
-

.

Now using the entries from the information matrix above, standard errors (SE) of

estimates and confidence intervals (CI) of relevant parameters can be obtained.

In next chapter, the methodology devised and used in this thesis is presented and

explained.
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3
Model Selection Framework

In this chapter, a recently developed model selection approach by Müller and Welsh

(2010), and also by Murray, Heritier and Müller (2013) for (generalised) linear regres-

sion models, known as model selection curves (MSC), is extended to AFT models for

censored survival data. In addition to two existing criteria based on the MSC, a new

criterion is derived and proposed for AFT model selection. Utilising these MSC based

model selection criteria, a model selection framework is proposed for the AFT models.

Almost all commonly known model selection approaches are based on a linear

combination of loss function and penalty term. Often an expression in the form

“Loss function + Penalty term” is minimised over a set of models for the construction

of a model selection criterion. These two components for AFT models are considered

in Section 3.1.
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3.1 Loss function and penalty term for AFT model

For many models, including accelerated failure time model in survival analysis,

log-likelihood based loss function is often a choice, and it has been used to compare

models ever since the original AIC introduced by Akaike (1973). Hurvich and Tsai

(1989) also used log-likelihood as part of their derivation of a bias-corrected version

of AIC for nonlinear regression and autoregressive time series models. Later, Liang

and Zou (2008) used this bias-corrected version of AIC to compare AFT models for

survival analysis. Murray et al. (2012) developed a number of graphical tools for model

selection in generalised linear models, where a log-likelihood based loss function was

also used. Müller and Welsh (2010), however, used residual sum of squares as the loss

function when illustrating model selection curves approach for linear regression model.

In this case, it can be shown that the residual sum of squares is proportional to the

log-likelihood function and thus using residual sum of squares based loss function is

equivalent to using log-likelihood based loss function. In our study of model selection

framework for AFT models, a log-likelihood based loss function is chosen.

Loss functions alone may be used in the evaluation of model performance. However,

comparing the values of loss function only may not be sufficient for model comparison.

For example, if only maximisation of log-likelihood (l) is considered, incorporating

more parameters in a model will almost result in a larger value of l, and thus model

with the largest number of parameters will always be chosen. This does not seem to

be consistent with the idea of model selection to obtain a parsimonious and optimal

model. Therefore, an extra term that can penalise models with respect to the number

of parameters, known as penalty term, is considered in many existing model selection

approaches for comparing models. There are also other forms of penalty term. For

example, the lasso penalty, fn(β) =
∑p

k=1 | βk | and the ridge penalty fn(β) =
∑p

k=1 β
2
k ,

where β is a vector of parameters and p is the number of the parameters in a model.

In our investigation of model selection framework for AFT models, a penalty term

in the form of λn fn(pα) is considered. Here, λn, known as penalty multiplier, is a

non-stochastic sequence. A range between 0 and 4 log(n) for λn, i.e., λn ∈ [0, 4 log(n)],

is considered in our study. Though the upper bound of this interval is arbitrary, it has

been chosen in such a way that values of penalty multipliers in many existing model

selection criteria are covered by the interval. The other component in the penalty term,
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fn(·), known as penalty function, is a non-stochastic sequence of functions of number

of parameters (i.e., pα) in model α. Different forms of fn(·), such as fn(p) = p and

fn(p) = p+1
n−p−2 have been investigated in the literature. We have chosen fn(pα) = pα,

same as Müller and Welsh’s study. In the formulation of model selection framework

in this thesis, generalised information criterion that is expressed as a function of the

penalty multiplier λn is considered.

3.2 A brief introduction to model selection curves

Suppose we wish to choose one model from the set of all possible models A. To do

this, an expression of generalised information criterion (GIC) for model α is expressed

as follows:

M (λ; α) = −2l + λpα, α ∈ A, (3.1)

where l is log-likelihood function. Note that residual sum of squares was used in

Müller and Welsh’s paper (2010) where model selection curves approach was applied

to classical linear regression model. For each specified λ > 0, a model is chosen by

minimising M (λ; α) over α ∈ A in equation (3.1). The function M (λ; α) is computed

for each α ∈ A at each λ over a range from 0 to 4 log(n). The models are then ranked

at each λ in an increasing order of M (λ; α) values.

Let us define a rank function as below:

r (λ; α) = rank
(
M (λ; α)

)
. (3.2)

Note that rank functions are step functions, pairs of which have jumps at the values of

λ where the ranks of models change. Now, assuming no ties in M (λ; α)’s for α ∈ A,

the k rank model selection curve can be defined by

γ(k)
(
λ;A

)
= max

(
M (λ; α); α ∈ A∧r (λ; α) ≤ k

)
,

where 1 ≤ k ≤ m, and m is the number of models in A. This definition can be extended

to M (λ; α)’s with ties for α ∈ A by considering continuous locus of γ(k) (λ;A) at each

λ > 0. The 1 rank (k = 1) model selection curve is then the lower enveloping curve
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Figure 3.1: An illustration of the construction of model selection curves: (a) plot of
M (λ; α) against λ; (b) plot of r (λ; α) against λ; (c) lower enveloping curve; (d) the 1
rank model selection curve.

defined by the expression below:

γ(1)
(
λ;A

)
= min

(
M (λ; α); α ∈ A

)
. (3.3)

Let us illustrate how to construct model selection curves with a simple example

where only four models (m = 4) are considered and denoted by M1 to M4 respectively.

The M (λ; α)’s for all these four models are computed at each λ as in equation (3.1)
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over λ ∈
[
0, 4 log(n)

]
, and then plotted against λ as shown in Figure 3.1(a). The four

models are ranked at each λ and then the resulting ranks of the four models (r (λ,α)

in equation (3.2)) are plotted against λ. This plot is known as rank plot and shown

in Figure 3.1(b). Note that M1, M2 and M4 have achieved rank 1 over low, middle

and high λ values respectively and each corresponds to one of the three sections of the

lower enveloping curve presented in bold line on Figure 3.1(c). This lower enveloping

curve as shown in Figure 3.1(d) is known as model selection curve. It is the nucleus of

all the MSC based model selection criteria considered in this thesis. We will return to

this hypothetical example later.

3.3 Model selection criteria based on the MSC

Two model selection criteria based on the MSC approach, longest cathetus criterion

and longest hypotenuse criterion, were suggested, and the former was also applied to

linear models in Müller and Welsh (2010). The longest cathetus criterion was investi-

gated for AFT models in survival analysis by Karami, Luo and Fung (2015). In this

thesis, a new model selection criterion based on the MSC approach is proposed. It

is named triangle area criterion. To describe and illustrate each of these three model

selection criteria, let us consider another hypothetical example. Figure 3.2 shows an

artificially constructed 1 rank model selection curve according to equation (3.3). The

lower enveloping curve above the truncated polygons shown in the figure is often re-

ferred as model selection curve. There are three models appeared on this 1 rank model

selection curve, the full model α f and submodels of α1 and α2.

3.3.1 The longest cathetus criterion

The longest cathetus criterion (LCC) was first studied based on the MSC by Müller

and Welsh (2010) for linear regression model. The basics of the LCC is given below.

The 1 rank model selection curve in Figure 3.2 may be regarded as a convex polygon

with the maximum number of knot points N (pα) − 1, where N (pα) is the number of

distinct values of pα for α ∈ A. The other model selection curves (rank k; k , 1 )

might be considered as piecewise convex polygon, at least on the consecutive points of

γ(i) ∩ γ( j) for i , j and γ(i) ∩ γ( j) , ∅, an empty set. Therefore, they are all bounded
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γ(1) (λ;A)

λmin
n

α f

λ1

α1

λ2

α2

λmax
n

Figure 3.2: The truncated polygon on the 1 rank model selection curve.

from below by γ(1) (λ;A), the 1 rank model selection curve.

Model α appears on the 1 rank model selection curve if r (λ; α) = 1 for some λ values.

The model being selected based on this criterion may be obtained by minimising

∫
ψα (r (λ; α))d∆n, (3.4)

where ψα (x) = 1−1{x = 1} so that 1{x = 1} takes value 1 if x = 1, and 0 otherwise, and

∆n is the Dirac measure that puts mass 1 on the point λ = λn, a specific value of λ. The

penalty multiplier λ can be used instead of Dirac measure. This leads to a consideration

of using a measure that might contain a range of λ values [λmin
n , λmax

n ] at the same time.

In this study, we consider uniform distribution on an interval [0,4 log(n)]. Minimising

the expression (3.4) means that model α achieves rank 1 over the largest range of λ.

Geometrically this measure (i.e., using uniform distribution over the λ interval) would

select a model α, for which the length of its cathetus is the longest. That is why, this

criterion is called longest cathetus criterion. Cathetus here is defined as the horizontal

edge of a right-angled triangle (truncated polygon as shown in Figure 3.2) that has its

hypotenuse being a segment on 1 rank model selection curve γ(1) (λ;A). Note that the

cathetus length of model α, denoted by CLα , is determined by the difference between

the x−coordinates of the upper and lower end points of the cathetus.

As shown in Figure 3.2, α f achieves rank 1 from λmin
n and λ1, α1 from λ1 and λ2,

α2 from λ2 and λmax
n . The cathetus lengths corresponding to models α f , α1 and α2 are



3.3 Model selection criteria based on the MSC 35

(λ1 − λ
min
n ), (λ2 − λ1) and (λmax

n − λ2), respectively. Note that the length of cathetus

of a model indicates the stability of that model, i.e., how long the model preserves its

1 rank position throughout the entire range of the penalty multiplier.

3.3.2 The longest hypotenuse criterion

Besides the cathetus, the hypotenuse of the triangle can also be utilised as a model

selection criterion. A model may be selected on the basis of having the longest hy-

potenuse, which is the longest edge of all truncated polygon on the 1 rank model

selection curve where catheti are obtained (Müller and Welsh, 2010). This criterion is

referred to as the longest hypotenuse criterion (LHC). Mathematically, a model α with

the longest hypotenuse is selected by minimising the following expression:

∫ λmax
n

λmin
n

√
1 + p2

α f
−

√
1 + p2

α · 1{r (λ; α) = 1} dλ, (3.5)

where pα f is the column rank (number of predictors + 1) under full model α f .

In order to minimise expression (3.5) we have to evaluate the integral for all models

appearing on the 1 rank model selection curve. As an example, suppose there are only

three models, α f , α1 and α2 that achieve rank 1 over the interval [λmin
n , λmax

n ] as

shown in Figure 3.2. For the full model α f , the expression (3.5) can be written as

(λmax
n − λmin

n )
√

1 + p2
α f
− (λ1 − λ

min
n )

√
1 + p2

α f
, (3.6)

where λ1 is the abscissa of the point at which legs of the right-angled triangle associated

with model α f intersect. Clearly, (λ1 − λ
min
n ) is the length of cathetus and (λ1 −

λmin
n )

√
1 + p2

α f
is the length of hypotenuse of the right-angled triangle.

For the model α1, the legs of the right-angled triangle intersect at a point whose

abscissa is λ2. Then the expression (3.5) becomes

(λmax
n − λmin

n )
√

1 + p2
α f
− (λ2 − λ1)

√
1 + p2

α1 . (3.7)

Here (λ2 − λ1)
√

1 + p2
α1 is the length of hypotenuse of the right-angled triangle, and

(λ2 − λ1) is the corresponding cathetus length.
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For the model α2 that achieves rank 1, the expression (3.5) integrates to

(λmax
n − λmin

n )
√

1 + p2
α f
− (λmax

n − λ2)
√

1 + p2
α2 . (3.8)

In this case, the length of hypotenuse is (λmax
n − λ2)

√
1 + p2

α2 , and (λmax
n − λ2) is the

corresponding cathetus length. Hypotenuse lengths for models in other scenarios on

the 1 rank model selection curve can be determined similarly. Note that if the full

model α f is the only model that achieves rank 1, the expression (3.5) goes down to its

minimum value zero. For a model never achieving rank 1, the expression (3.5) reduces

to its maximum value (λmax
n − λmin

n )
√

1 + p2
α f

.

We can see that first terms in expressions (3.6), (3.7) and (3.8) are exactly the

same, but second terms vary. So minimisation of expression (3.5) can be done by

maximisation of these second terms because of its negative sign. Note that each second

term in expressions (3.6), (3.7) and (3.8) corresponds to the hypotenuse length of the

right-angled triangle produced by the 1 rank model α f , α1 and α2 respectively. Clearly,

model with the longest hypotenuse has the lowest value in expression (3.5) and thus

may be selected accordingly.

There are some philosophical differences between models selected by the longest

hypotenuse criterion and the longest cathetus criterion, as the minimisation of expres-

sion (3.5) for the longest hypotenuse selection criterion generally favours a larger model

than the longest cathetus criterion. It can be seen that larger pα or slope of generalised

information criterion, leads to a larger angle or steeper hypotenuse for a right-angled

triangle. However, a right-angled triangle with a steeper hypotenuse or even the longest

hypotenuse does not necessarily mean that the cathetus is the longest among a set of

right-angled triangles. On the other hand, the right-angled triangle with the longest

cathetus must have a relatively long hypotenuse. This hypotenuse is very likely to

be the longest among right-angled triangles of all models having ever achieved rank 1

over the range of λ. When the longest hypotenuse and cathetus criteria select different

models, the longest hypotenuse criterion usually picks a larger model. In other words,

the longest cathetus criterion tends to select more parsimonious model than the longest

hypotenuse criterion.
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3.3.3 The triangle area criterion

Besides the cathetus and hypotenuse, we believe the area of the triangle can also be

used to construct a new model selection criterion as it utilises most of the information

on the 1 rank model selection curve. This new criterion should have a good ability to

identify an appropriate model. Since the criterion is based on the area of a triangle,

we name this triangle area criterion (TAC).

Suppose the cathetus length in the truncated polygon of model α, as one of the

models in Figure 3.2, is denoted by CLα . The hypotenuse length is determined by

CLα

√
1 + p2

α. Clearly, these two criteria depend on the λ values for a specific model α

with dimension pα, which is also a slope parameter of generalised information criterion

as mentioned earlier. Now let θ (0 ≤ θ ≤ π
2 ) be the angle between the cathetus and the

hypotenuse of the right-angled triangle for model α.

A model α can be selected according to the following expression

max
α∈A

"
(λ, M (λ;α))∈R

1
{
r (λ; α) = 1

}
dM (λ; α) dλ,

or equivalently,

max
α∈A

1
2
· CLα ·

[
CLα

√
1 + p2

α
]

sin θ · 1
{
%(CLα ; α) = 1

}
, (3.9)

where 1{%(CLα ; α) = 1} takes a value 1 if model α with cathetus length CLα achieves

rank 1 and 0 otherwise. Note that the part to be maximised in the expression (3.9) is

the area of a right-angled triangle associated with model α in the truncated polygon.

Since the model α ∈ A appears in γ(1) (λ;A), the area of the triangle related with

model α in expression (3.9), denoted by ATα, can be written as

ATα =
1
2

C2
Lα

√
1 + p2

α sin θ

=
1
2

C2
Lα

√
1 + tan2 θ sin θ

=
1
2

C2
Lα

√
cos2 θ + sin2 θ

cos2 θ
sin θ

=
1
2

C2
Lα

1
cos θ

sin θ,
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so, the area becomes

ATα =
1
2

C2
Lα

tan θ

=
1
2

C2
Lα

pα .

The measurement unit of an area is naturally in square of the original unit. For

easy comparison with the other two MSC based criteria in this study, the square root

of the triangle area may be considered, and it takes the following form:

√
T AC = max

α∈A
CLα

√
pα
2
.

Therefore, a model α is chosen for which TAC or
√

T AC value is the maximum among

all models α ∈ A having ever achieved rank 1.

Note that
√

T AC is a product of cathetus length and a simple function of model

dimension, pα; it is reduced to LCC when a model with pα = 2 attains the longest

cathetus. Furthermore, TAC is less likely to pick an intercept-only model, which is

obvious from the expression of this criterion. TAC can thus shed extra light in se-

lecting model when several candidate models have similar cathetus length, becasue of

its relation with the model dimension illustrated. For example, if two or more models

with different dimensions have similar cathetus length that is the longest among all,

LCC cannot distinguish those models because this criterion is solely based on cathetus

length. So a researcher will have difficulty in selecting a model if LCC is used alone.

However, in this situation, TAC may be able to distinguish those models and is more

likely to pick the model with larger dimension. Although LHC also has model dimen-

sion in its expression, it may pick a model with even larger dimension than TAC. The

advantage of TAC over LCC and LHC in this circumstances is quite obvious. Moreover,

in the special case where those models with exact the same dimension (when pα ≥ 2),

based on the 1 rank model selection curve, all three criteria will perform similarly. In

this case we recommend to use bootstrap replications (see Section 4.2) of the data to

get more information and thus reach more concrete decision in choosing an appropriate

model.

Under some conditions for AFT models in survival analysis, it is shown below



3.3 Model selection criteria based on the MSC 39

that LCC is consistent for AFT model selection. Therefore, LHC and TAC are also

consistent since both are functions of the cathetus length on which LCC is based.

Lemma 1 Given a true AFT model α0 with dimension pα0, assume the generalised

information criterion (GIC) is consistent when λn → ∞ and λn/n → 0 as n → ∞. Let

ξn < λmax
n be a nonnegative quantity that satisfies ξn → ∞, λmax

n /n → 0 as n → ∞

such that the penalty measure Λn([λmin
n + ξn, λ

max
n ]) → 1. Then the longest cathetus

criterion is consistent for the true AFT model α0.

Proof. Since the GIC, defined for AFT model with fixed pα0, is consistent when

λn → ∞ and λn/n → 0 as n → ∞, it is consistent for λn = λmin
n + ξn and also for

λn = λ
max
n . Now we can write

∫ λmax
n

λmin
n

(1 − 1{r (λ; α0) = 1})dΛn

=

∫ λmin
n +ξn

λmin
n

(1 − 1{r (λ; α0) = 1})dΛn +

∫ λmax
n

λmin
n +ξn

(1 − 1{r (λ; α0) = 1})dΛn

≤

∫ λmin
n +ξn

λmin
n

1dΛn +

∫ λmax
n

λmin
n +ξn

(1 − 1{r (λ; α0) = 1})dΛn.

The first term in the above relation is op(1) since Λn( [λmin
n +ξn, λ

max
n ]) → 1, ξn < λmax

n

satisfy ξn → ∞ and λmax
n /n → 0 as n → ∞ for the true AFT model α0. The second

term is bounded from above and can be written as

∫ λmax
n

λmin
n +ξn

(1 − 1{r (λ; α0) = 1})dΛn

≤

∫ λmax
n

λmin
n +ξn

(1 − 1{r (λmin
n + ξn; α0) = 1})dΛn +

∫ λmax
n

λmin
n +ξn

(1 − 1{r (λmax
n ; α0) = 1})dΛn

= op(1) + op(1)

= op(1),

since the GIC for the true AFT model α0 is consistent over the limits and also by dint

of Λn([λmin
n +ξn, λ

max
n ]) → 1, the penalty measure puts mass 1 both at λn = λ

min
n +ξn and

at λn = λ
max
n , and because if r (λmin

n + ξn; α0) = 1, it is not possible that r (λ∗; α0) , 1,

where λ∗ ∈ [λmin
n + ξn, λ

max
n ] is any specific value of λ (e.g., λ∗ =

λmin
n +ξn+λ

max
n

2 ) and

r (λ∗; α0) converges to rank 1 faster than r (λmin
n + ξn; α0) as n → ∞.

Now consider a model α , α0. Under the assumptions as stated, we have the
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following:

∫ λmax
n

λmin
n

(1 − 1{r (λ; α) = 1})dΛn

=

∫ λmin
n +ξn

λmin
n

(1 − 1{r (λ; α) = 1})dΛn +

∫ λmax
n

λmin
n +ξn

(1 − 1{r (λ; α) = 1})dΛn. (3.10)

The first term of the right hand side of equation (3.10) is bounded from below by zero.

This is because the integrand is non-negative, and so the integrated value cannot be

negative. Thus it can be written as

∫ λmin
n +ξn

λmin
n

(1 − 1{r (λ; α) = 1})dΛn ≥ 0.

The second term of the right hand side of equation (3.10) is

∫ λmax
n

λmin
n +ξn

(1 − 1{r (λ; α) = 1})dΛn

=

∫ λmax
n

λmin
n +ξn

1dΛn −

∫ λmax
n

λmin
n +ξn

1{r (λ; α) = 1}dΛn

≥ 1 − op(1).

Therefore, equation (3.10) becomes

∫ λmax
n

λmin
n

(1 − 1{r (λ; α) = 1})dΛn

=

∫ λmin
n +ξn

λmin
n

(1 − 1{r (λ; α) = 1})dΛn +

∫ λmax
n

λmin
n +ξn

(1 − 1{r (λ; α) = 1})dΛn

≥ 1 − op(1),

when a model α , α0. Hence the longest cathetus criterion is consistent for selecting a

true model α0.

3.4 Model selection framework for AFT models

Here we propose a model selection framework for AFT models in survival analysis.

It consists of all three MSC based model selection criteria, discussed and derived in the
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previous section, as well as two commonly used criteria AIC and BIC. Let us continue

using the example in Section 3.2, in particular Figure 3.1, to illustrate how each model

selection criterion under this framework is displayed and interpreted. In Figure 3.1(d),

if perpendiculars are drawn from the vertices of the lower enveloping curve to the

horizontal axis, the horizontal yellow, red and green dotted line segments correspond

to the lengths of cathetus for models M1, M2 and M4 respectively. This is illustrated

in Figure 3.3.
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Figure 3.3: Model selection criteria under study.

The length of a cathetus for model α is CLα = cuα − clα where cuα and clα are

respectively the x−coordinates of the upper and lower end points of the cathetus. So,

the relative length of the cathetus over λ ∈
[
0,4 log(n)

]
is

CLα

4 log(n) . The cathetus length

of a model may indicate the stability of the model as explained earlier in this thesis.

Based on Figure 3.3, model M2 (in red dotted line) has the longest cathetus and is thus

selected by LCC from the four models considered. Note that model M2 is also selected

by BIC because the vertical line at λ = log(n) for n = 50 in the example crosses over
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the model M2 segment of the 1 rank model selection curve. However, using AIC in this

instance leads to selection of model M1 (in yellow dotted line) instead. It is because

the vertical line at λ = 2 for AIC in the figure crosses over with the part of the 1 rank

model selection curve that corresponds to M1.

It is obvious that the lengths of catheti in Figure 3.3 can also be observed in the

rank plot in Figure 3.1(b), where they are presented as intervals of λ on horizontal axis

for models achieved rank 1. So, the 1 rank plot that only contains models that have

achieved rank 1 is considered a sufficient display for model selection using LCC.

The segments on the lower enveloping curve are the hypotenuses of the right-angled

triangle as shown in Figure 3.3. Here model M2 clearly has the longest hypotenuse

and thus is selected by LHC. Note that the model selection via LHC is simply based

on segments of the 1 rank model selection curve as shown in Figure 3.1(d).

It can be seen in Figure 3.3 that the triangle corresponding to model M2 seems

to have the maximum value (i.e., largest area) and is thus selected according to TAC.

The TAC for a model can be presented graphically by the triangle area corresponding

to the model. For the example shown in Figure 3.3, all three criteria LCC, LHC and

TAC select model M2 same as BIC, while AIC picks a different model M1. For this

example, it is not difficult to decide which model should be selected using each of the

three criteria based on the MSC. It is possible in some cases that two or more of the

models considered have similar length of cathetus and may thus be difficult to decide

which one to choose using LCC. In this case, we may use TAC or LHC. Similarly, when

TAC or LHC falls into similar situation, the other MSC based criteria may be used.

Bootstrap technique can be incorporated to provide additional information, such as

the chance of selecting a particular model, a variable and/or models with a particular

dimension. This helps with the exploration on the stability of a candidate model

through multiple perspectives, which can enhance model selection.

In this thesis, we adopted similar bootstrap technique used in Müller and Welsh

(2010). In this technique, the empirical bootstrap estimate of the probability of select-

ing model α, denoted by π∗ (λ; α), is obtained by computing proportion of this model

being selected by LCC across all bootstrap replications for each λ values within its

range. The π∗ (λ; α)’s of all models can be plotted against λ, and used as an additional

model detection plot. Note that to avoid having too many curves in the plot, we can
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include only models that appear frequently in 1 rank model selection curve. The fre-

quency can be measured by the marginal probability of selecting a model α over the

range of λ denoted by π∗ (α). It is defined by

π∗ (α) =
∫
Λ

π∗ (λ; α) dΛ,

where Λ is assumed to be uniformly distributed over the interval [0, 4 log(n)]. Here

we consider a model α appeared frequently if π∗(α) > 4%, same as Müller and Welsh’s

study. If π∗ (α) for model α is the largest among all possible models and also very

large, say greater than 0.50, this is considered as the best model on the specified range

of λ values.

Bootstrapping can also be used to quantify the importance of each variable con-

sidered in a study. To do this, the probability of including a variable in a model at

each λ, denoted by π∗
(
λ, x j

)
, j = 1,2, . . . ,p, is computed. It is simply the proportion

of times when the variable is included in a model across all bootstrap replications for

each λ. Then π∗
(
λ, x j

)
’s can be plotted against λ to indicate the order of importance

of covariates over the range of λ. This plot is known as variable inclusion plot. A

diagnostic measure for the inclusion or exclusion of variable x j can be obtained by

summing π∗
(
λ; x j

)
over λ, i.e., π∗x j

=
∑
λ π
∗
(
λ, x j

)
.

The whole model selection framework, including LCC, LHC, TAC, AIC and BIC

will be investigated through simulations and real world data examples in subsequent

chapters.

3.5 Construction of the model selection curves for

AFT models

Depending on the distribution function of the error term W in equation (2.10), the

type of AFT model is assumed. Here Weibull AFT model is used as an example to

illustrate how to construct model selection curves. Note that the error term W in a

Weibull AFT model expressed in equation (2.10) follows an extreme value distribution.

The density and survivor functions are given in equations (2.13) and (2.14) respectively.

Substituting these two functions into equation (2.22), the log-likelihood for the Weibull
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AFT model is thus

l (θ) = − log τ
n∑

i=1

δi +

n∑
i=1

(
δi (wi − exp(wi)) + (1 − δi)(− exp(wi))

)
−

n∑
i=1

δi log yi

= − log τ
n∑

i=1

δi +

n∑
i=1

δi

(
log yi − β>xi

τ

)
−

n∑
i=1

exp
(

log yi − β>xi

τ

)
−

n∑
i=1

δi log yi

=

(
1 − τ
τ

) n∑
i=1

δi log yi −

n∑
i=1

exp
(

log yi − β>xi

τ

)
−

n∑
i=1

δi

(
log τ +

β>xi

τ

)
. (3.11)

The MLEs (θ̂) of the parameters in equation (3.11) can be obtained using an iterative

procedure (e.g., Newton-Raphson). Using the MLEs the loss + penalty form for the

Weibull AFT model is

M (λ; α) = −2l
(
θ̂
)
+ λpα, λ > 0. (3.12)

This provides a basis for the construction of model selection curves under the Weibull

AFT model. This approach works similarly for log-logistic and log-normal AFT mod-

els considered in our study. The only difference is they have different log-likelihood

functions.

The log-likelihood function for the log-logistic AFT model, after substituting equa-

tions (2.16) and (2.17) into equation (2.22), is

l (θ) = − log τ
n∑

i=1

δi +

n∑
i=1

(
δi (wi − 2 log(1 + exp(wi))) + (1 − δi)(− log(1 + exp(wi)))

)
−

n∑
i=1

δi log yi,

=

n∑
i=1

δi

(
log yi − β>xi

τ
− log yi − log τ

)

−

n∑
i=1

(1 + δi) log
(
1 + exp

(
log yi − β>xi

τ

))
.

Similarly, the log-likelihood function for the log-normal AFT model can be obtained

by substituting equations (2.18) and (2.19) into equation (2.22), and is expressed as
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l (θ) = − log τ
n∑

i=1

δi +

n∑
i=1

(
δi

(
log(

1
√

2π
) −

1
2
w2

i
)
+ (1 − δi) log

(
1 − Φ(wi)

))

−

n∑
i=1

δi log yi

=

n∑
i=1

δi

(
log(

1
√

2π
) − log τ

)
−

1
2

n∑
i=1

δi

(
log yi − β>xi

τ

)2

+

n∑
i=1

(1 − δi) log
(
1 − Φ

(
log yi − β>xi

τ

))
−

n∑
i=1

δi log yi .

For constructing model selection curves, we have chosen λ ∈
[
0, 4 log(n)

]
in equa-

tion (3.12), same as Müller and Welsh’s study (2010). As mentioned earlier, such range

of λ would cover most of existing model selection criteria that are based on single values

of λ, such as AIC (λ = 2) and BIC (λ = log(n)). Both AIC and BIC would appear as

single points on the model selection curves.

The model selection framework for AFT models proposed in this chapter is studied

extensively through simulations in next chapter.
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4
Simulation Study

In this chapter, the model selection framework, proposed in Section 3.4, is inves-

tigated via a comprehensive simulation study. The mechanism of generating survival

data with censoring is also discussed. A number of survival data sets are generated

from three types of distributions, Weibull, log-logistic and log-normal. Different sam-

ple sizes ranging from 30 to 300, various censoring proportions such as 10% and 50%,

and different sets of AFT regression coefficients are considered in the simulations. The

performance of all the model selection criteria included in the AFT model selection

framework is examined for Weibull, log-logistic and log-normal AFT models using the

data sets simulated. The Weibull AFT models are chosen to illustrate how to interpret

the graphs and the tables of the results that are produced under the model selection

framework for AFT models.
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4.1 Parameterisation of distributions under study

For simulating survival data from three different distributions of Weibull, log-logistic

and log-normal, our emphasis was placed on generating data sets that are compara-

ble across these three distributions to allow for easy comparison. Each of the three

distributions considered here can exhibit four different shapes as explained in Chapter

2. In our simulation study, four Weibull distributions are chosen to cover those four

different shapes. These four distributions with specified parameters ν = exp(0.1) and

κ = (1, 2, 3, 4) are shown in Figure 4.1, and the four shapes shown on the figure will

be referred as severely right-skewed, moderately right-skewed, nearly symmetric and

moderately left-skewed, respectively. Note that the horizontal axis there is based on the

99th percentile of the respective Weibull distribution. For each of these four Weibull

distributions, a data set is generated, and a comparable data set with log-logistic and

one with log-normal distribution are then generated.

Suppose the Weibull distribution shown in Figure 4.1(a) was chosen first, and then

a data set was generated. Our initial scheme was to find the parameters for each of

the other two distributions by trial and error so that data sets generated from these

three distributions have comparable mean and standard deviation (SD). This approach

did not work well for this particular case as the resulting data sets have exhibited

vastly different range across these three heavily right-skewed distribution. This can be

explained by the fact that, when those three distributions are all right skewed with

extreme observations, the right side tail of the log-logistic can be much heavier than

other two distributions as log-logistic distribution is the only distribution here that

may not have finite first and/or second moments (see equations 2.7 and 2.8 in Section

2.3). This means neither sample mean nor sample SD is an appropriate summary

measure for comparisons across those skewed distributions, and more robust summary

measures such as median, inter-quartile range (IQR) and median absolute deviation

(MAD) should be used instead. Keeping this in mind, we have come up with a modified

scheme for generating data sets from the three distributions.

Here is our modified scheme. At first a large number of observations (say, N =

500,000) is drawn from a Weibull distribution parameterised by one of the set-ups

shown in Table 4.2. Note that main reason for simulating a very large data is to ensure

the data is close to its population distribution specified. To work out the parameters
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to be used for generating data from another distribution, say a log-logistic distribution,

an intercept only log-logistic AFT model is fitted by maximum likelihood to the large

number of observations drawn from the specified Weibull distribution. Based on the

MLEs, observations are generated from the log-logistic distribution. Similar procedure

can be followed to generate data from log-normal distribution. We found out that the

data generated through this scheme would have comparable robust summary measures.
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Figure 4.1: Weibull density curves (plots) for fixed ν = exp(0.1): (a) κ = 1; (b) κ = 2;
(c) κ = 3; (d) κ = 4.
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Table 4.1: Summary measures of simulated data.

Statistic Weibull sample Log-logistic sample Log-normal sample
Mean 0.979 1.083 1.013

Median 0.920 0.877 0.827
SD 0.511 0.941 0.720

IQR 0.707 0.689 0.736
MAD 0.519 0.481 0.504

To demonstrate that the data sets generated via our modified scheme are compara-

ble across the three distributions of interest, 500,000 observations were simulated from

the Weibull distribution corresponding to Figure 4.1(a). Then the data sets with the

same size were generated from the matching log-logistic and log-normal distributions.

Summary measures of the three data sets are presented in Table 4.1. As shown in

this table, median, MAD and IQR values are very close to each other across those

three distributions. However, SD for the generated log-logistic data is almost double

of, and the log-normal data is about 40% higher than the SD of the Weibull data. As

mentioned earlier, mean and SD are not appropriate summary measures for survival

data if skewed and/or censored. However, to generate comparable survival data with

censored observations, median and MAD are thus more suitable summary measures to

be used.

Table 4.2: Parameterisation of distributions.

Set-up Weibull Log-logistic Log-normal
(κ, ν) (ξ,ω) (µ,σ)

1 (2,exp(0.1)) ( 1
0.35 ,exp(−0.13)) (−0.19,0.64)

2 (1,exp(0.1)) ( 1
0.69 ,exp(−0.36)) (−0.48,1.28)

3 (3,exp(0.1)) ( 1
0.23 ,exp(−0.05)) (−0.09,0.43)

4 (4,exp(0.1)) ( 1
0.17 ,exp(−0.02)) (−0.04,0.32)

Using this modified scheme, the parameter settings of the four Weibull and its

matching log-logistic and log-normal distributions considered are summarised in Table

4.2. These four settings are used throughout our study. The set-up 1 is for moderately

right-skewed distribution, the set-up 2 corresponds to severely right-skewed distribu-

tion, the set-up 3 is for nearly symmetric distribution and the last set-up corresponds

to moderately left-skewed distributions. For example, Figure 4.1 shows different levels

of skewness for four different Weibull distributions considered in the simulation study.
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4.2 Method of generating survival data with cen-

soring

In the previous section, simulation of identically and independently distributed

complete data (without censoring) was discussed. In this section, the method and

process for generating samples of survival data with specified censoring proportion

while incorporating covariates for simulation study are described. The method for

obtaining bootstrap samples is also explained.

4.2.1 Generating survival data with specified censoring pro-

portion

Suppose we want to simulate data of size n containing survival time with censoring

and several covariates. In order to control the properties of the sample, we will go

through a two stage process by first simulating a much larger number of observations

(say N) and then using stratified sampling via proportional allocation.

General speaking, two survival distributions are required to generate survival times

in the data. One corresponds to the uncensored (complete) survival times (T) and the

other corresponds to the censored (incomplete) survival times (C) as described in the

paper by Moriña and Navarro (2014). Since both censored and uncensored survival

time distributions considered under the AFT model are functionally related with the

linear predictors as explained in Section 2.4, not only we need to assign values for the

coefficients of the assumed AFT model, but also need to simulate a set of covariates

for each survival time. To simulate the covariates, we first specify its mean vector µ

and dispersion matrix Σ and then the covariates are drawn from a multivariate normal

distribution with the specified µ and Σ. Once the linear predictors are generated one

of the parameters (e.g., scale) of the distribution is computed using the functional

relation. On the other hand, to generate a censored survival time a constant term is

added to each of the linear predictors of the uncensored survival time and the functional

relation with the linear predictor is used once again to evaluate the specific values of

scale and shape parameters of the distribution of the censored survival time. The

survival times with censoring are then generated and defined using equation (2.20) and
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censoring status determined accordingly. Note that the sample censoring proportion is

controlled via the size of the constant term mentioned above. As such relationship is

implicit, for a specific censoring proportion the size of the constant term is determined

by trial and error such that the sample censoring proportion over a large sample is as

close as possible to the desired population censoring proportion. This is the basis for

further sampling to get data sets of different sizes n.

Notice that even if we can control the censoring proportion in the much larger

sample with size N , simply drawing random samples of a particular size n from there,

the censoring proportion across these samples can vary. In some instances, the censoring

proportions can be far off the desired proportion, especially when the sample size is

small. For example, when the desired censoring proportion is 50%, the censoring

proportion in the sample drawn can be as low as 36%, according to our simulations.

In order to control the censoring proportion even in a sample of size n, we consider

stratified random sampling technique. Here is how to get a sample of survival data

of size n with a desired censoring proportion p, 0 < p < 1. Suppose we have a very

large number of N observations such that the censoring proportion is very close to the

specified censoring proportion p. In those N observations, there are two subgroups,

defined by censoring status, which can be used as strata in our proposed stratified

sampling. Stratum one consists of all the uncensored observations, say N1, and stratum

two consists of all the censored observations with size N2 = N − N1. A simple random

sample of size n1 = bn ∗ (1 − p)c, where b·c is the integer part of the number, is

drawn from the N1 uncensored observations, and another simple random sample of size

n2 = n − n1 is drawn from the N2 censored observations. These two samples obtained

are then merged to form one data set of size n, which will have the censoring proportion

p as desired for any given sample size n.

4.2.2 Bootstrap sampling schemes

As discussed in Section 3.4, bootstrap replications can be used in some cases to pro-

vide additional information to enhance model selection. Two bootstrapping schemes,

ordinary and stratified, are used in this study. Ordinary bootstrap sampling is simply

resampling from the original data (Davison and Hinkley, 1997). One limitation of this

sampling for survival data is that its resulting bootstrap samples may not have the same
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censoring proportion as the original data. To overcome this problem, i.e., obtain all

bootstrap samples with the same censoring proportion as the original sample, we have

used stratified sampling by censoring status. In this approach, a stratified bootstrap

sample is drawn from censored and uncensored portion of the original data, separately,

with respect to the censoring proportion in the data. For our simulation study in

next section, 1,000 bootstrap replications are used whenever bootstrap technique is

considered.

4.3 An Illustration of the model selection frame-

work

In this section, we describe the details of specific Weibull model for simulating

data based on set-up 1 (see Table 4.2). Although covariates in most of the data sets

generated for our simulations in this chapter are almost uncorrelated, we have also

considered an example where few of the covariates are highly correlated. Our proposed

model selection framework is applied to all these data sets generated as illustration. In

addition, how MSC based criteria are used to handle AFT models with a combination

of continuous and categorical covariates with more than two levels have been addressed

in this section.

4.3.1 Simulating data for Weibull AFT models

Suppose we want to simulate some data from the Weibull AFT model below with

four continuous covariates/predictors,

log Ti = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + τWi, i = 1, 2, . . . , n. (4.1)

Firstly, observations for the almost uncorrelated predictors (ρ = 0.001) x1, x2, x3

and x4 are drawn from a multivariate normal distribution with mean vector µ0 and
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dispersion matrix Σ0 as given below

µ>0 = (0, 0, 0, 0) and Σ0 =

*.........
,

1 0.001 0.001 0.001

0.001 1 0.001 0.001

0.001 0.001 1 0.001

0.001 0.001 0.001 1

+/////////
-

.

We consider three different sets of coefficients (0.1, 1, 0.7, 0.9, 0.8), (0.1, 0, 0, 0.9, 0.8)

and (0.1, 0, 0, 0.9, 0) corresponding to specified Weibull AFT models for gener-

ating survival times in different data sets. These coefficients correspond to models

{1, 2, 3, 4, 5} (full model with all predictors), {1, 4, 5} (model with x3 and x4) and

{1, 4} (model with x3) respectively. The “1” inside the curly brackets represents the

intercept term that is included in all models considered in our simulations. Note that

the scale parameter of a Weibull distribution can be computed in equation (2.15) after

specifying the shape parameter.

One particular important aspect in simulating survival data with right censoring

is to simulate a complete survival time vector and, independently, a censored survival

time vector (Moriña and Navarro, 2014). Therefore, we draw separately two sets of

observations (i.e., T ’s and C’s) from two different Weibull distributions with different

scale but same shape parameter κ = 2. This is achieved by creating the censored time

vector C through adding some constant value to the intercept term of the AFT model

under consideration as explained earlier. Then survival times with censoring status are

defined according to equation (2.20). This together with the covariates drawn from the

multivariate normal distribution as mentioned in previous section constitute a survival

data to be used in this section.

It is possible that two or more predictors considered in a model may be correlated.

In this case, a subset of these may be sufficient to represent the rest of them in the

model. Suppose that two covariates x3 and x4 in equation (4.1) are highly correlated.

Let the correlation coefficient between x3 and x4 is ρ = 0.90. Then entries of cell (3, 4)

and (4, 3) in Σ0 are 0.9. Based on specified model coefficients (0.1, 1, 0, 0.8, 0.9),

survival data with some correlated predictors can be generated in a similar manner

as described above. Note that the strength of correlation may have impact on model

selection. This can be investigated via bootstrapping, where a variable inclusion plot



4.3 An Illustration of the model selection framework 55

as discussed in Section 3.4, can be constructed and used to assist model selection.

In survival analysis, it is very common that some of the covariates in the data are

categorical with more than two levels. In this section, we have considered a case where

covariates x1 and x2 in the model given by equation (4.1) are categorical variables with

three levels, coded 1, 2 and 3, while x3 and x4 are continuous or binary. In this case,

the Weibull AFT model in equation (4.1) can be expressed as

log Ti = β0+β12xi12+β13xi13+β22xi22+β23xi23+β3xi3+β4xi4+τWi, i = 1, 2, · · · ,n, (4.2)

where the 1st level of the categorical variables x11 and x21 serves as a reference group,

respectively. Then based on specified model coefficients, (0.1, 0.7, 0.5, 0, 0, 1, 0),

survival times can be generated similarly as discussed before. Note that the R tool

developed for the model selection framework in Chapter 5 can handle this kind of

data. Unlike the model with continuous or binary covariates only where the number

of parameters is simply the number of covariates plus 1, the number of parameters

in the model with categorical covariate(s) having more than two levels is not easily

determined based on the number of covariates. If a categorical covariate with more

than two levels is included in a model, the number of parameters for the covariate

presented in this model is one less than the number of levels (i.e., s − 1, where s is

the number of categories) in this covariate. If this covariate is then removed from the

model, the number of parameters in the model goes down by s − 1.

4.3.2 Study of the criteria under the model selection frame-

work

Here we intend to examine the performance of the criteria under the model selection

framework for AFT models, using several survival data sets generated based on Weibull

AFT models as described in previous section.

Suppose that a sample survival data of size 50 with 10% censoring is generated

from a Weibull AFT model {1, 4, 5}, that is, the Weibull AFT model that contains

two covariates x3 and x4 out of the four covariates in the data. Based on this sample,

GIC values for all possible models are computed and ordered to determine ranks of these

models. Based on the GIC values, ranks for the models that have ever achieved rank 1
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Figure 4.2: Rank plots for data with low censoring (10%) and small sample sizes.

over range of λ are plotted against λ to get rank plot (see Figure 4.2(a)). Similarly, for

another even smaller sample of size 30 with 10% censoring the rank plot is obtained

as shown in Figure 4.2(c). Similar samples of size 50 and 30 are also simulated based

on Weibull AFT model {1, 4}. The corresponding rank plots are obtained as shown in

Figure 4.2(b) and Figure 4.2(d). It was mentioned earlier that rank plot is a sufficient

display for model selection via LCC (see Section 3.4). On these four rank plots, AIC

and BIC are marked using the dotted vertical lines.

As shown in Figure 4.2(b), all the three criteria LCC, AIC and BIC, have identified

the specified or true model {1, 4}. Both LCC and BIC identify the specified model
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Figure 4.3: Plots from the model selection framework for data with low censoring
(10%) when true model is {1, 4, 5} and n = 30: (a) model selection curve and cathetus
lengths; (b) rank plot; (c) hypotenuse plot; (d) TAC plot.

{1, 4, 5} in Figure 4.2(a), but AIC does not. It is seen from Figure 4.2(c) and Figure

4.2(d) that the specified (true) model is selected if using LCC. However, in these two

cases, both AIC and BIC have failed to identify the specified model but selected model

{1, 2, 3, 4, 5} and model {1, 3, 4, 5} respectively.

It is interesting to note that different criteria have selected different models as

shown in Figure 4.2(c). So, we are eager to look into this case again in more details

by also considering two additional criteria under the model selection framework. The

plots are generated, including hypotenuse plot and TAC plot, and shown in Figure
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Figure 4.4: Plots from ordinary and stratified bootstrapping for data with low censoring
(10%) when true Weibull AFT model is {1, 4, 5} and n = 30: (a) model detection plot
from ordinary bootstrapping; (b) model detection plot from stratified bootstrapping;
(c) variable inclusion plot from ordinary bootstrapping; (d) variable inclusion plot from
stratified bootstrapping.

4.3. Note that all the five model selection criteria under the framework are presented

in the figure. The model selection curve in Figure 4.3(a) shows all the models that

have achieved rank 1 along with their catheti. Clearly, the specified model {1, 4, 5}

has the longest cathetus and thus is selected by LCC. This is also evident in Figure

4.3(b). LHC and TAC also select the specified model {1, 4, 5} because of its longest
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Figure 4.5: Rank and TAC plots for data (n = 50 and 50% censoring) with correlated
covariates (x3 and x4) when the true Weibull AFT model is {1, 2, 4, 5}: (a) rank plot;
(b) TAC plot.

hypotenuse and largest triangle area (see Figure 4.3(c) and 4.3(d)).

We have also considered using bootstrap replications for the case presented in Figure

4.2(c). Both ordinary and stratified bootstrap samples, 1,000 each, are generated

to investigate the likelihood that LCC correctly identifies the true model. Based on

bootstrapping both the model detection plots and variable inclusion plots are obtained

and shown in Figure 4.4. It is evident that ordinary and stratified bootstrapping give

similar model detection plots and variable inclusion plots. The true model {1, 4, 5} is

highly likely to be selected as the area under the curve corresponding to this model is

the largest among candidate models as shown in Figure 4.4(a) and 4.4(b). Moreover,

the variable inclusion plots in Figure 4.4(c) and 4.4(d) show that covariates x3 and x4

are highly likely to be included in the model. This agrees with the fact that covariates

x1 and x2 are not included in the specified model.

Now let us consider a survival data with strongly correlated covariates. Suppose x3

and x4 in equation (4.1) are strongly correlated (ρ = 0.90). The data with sample size

of 50 was generated from the AFT model {1, 2, 4, 5}. The results from applying the

model selection framework to this data is summarised graphically in Figure 4.5. It is

seen in this figure that TAC, LCC and LHC select the same model, model {1, 2, 5} that
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Figure 4.6: Variable inclusion plot for data (n = 50 and 50% censoring) with correlated
covariates at various levels (ρ = 0.5, 0.75, 0.9 and 0.99).

includes only x1 and x4. This model does not include the covariate x3 that is in the

specified model and also highly correlated with x4. However, both AIC and BIC select

the specified model {1, 2, 4, 5} containing the two highly correlated covariates. In order

to understand the effects of the correlation between covariates, 1,000 bootstrap samples

have been generated to construct the variable inclusion plot shown in Figure 4.6 for

each of four samples with two correlated covariates of various correlation coefficients.

It is clear from the figure that, as the strength of correlation increases, one of the two
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Figure 4.7: Plots from applying model selection framework for Weibull AFT model of
data with continuous and categorical covariates at high censoring (50%) and n = 150
when true model is {1, 2, 4}: (a) model selection curve and cathetus lengths; (b) rank
plot; (c) hypotenuse plot; (d) TAC plot.

highly correlated predictors is becoming less likely to be included in the model. This

means that model to be selected may only include one of the two highly correlated

covariates.

Now we consider Weibull AFT model with both continuous (or binary) and cate-

gorical variables with more than two levels as shown in the model given by equation

(4.2). The true model is specified using the coefficients (0.1, 0.7, 0.5, 0, 0, 1, 0), i.e.,



62 Simulation Study

model {1, 2, 4}. The results from applying model selection framework for this data

is graphed in Figure 4.7. It is seen that models {1, 2, 4}, {1, 4}, {1, 2, 3, 4} and

{1, 2, 3, 4, 5} have appeared in the model selection curve due to achieving rank 1 with

respect to GIC values (Figure 4.7(a)). Although the true model is selected if using LCC

and BIC, it is not selected if using AIC, as shown in the rank plot (Figure 4.7(b)). The

longest hypotenuse in Figure 4.7(c) and triangle with the largest area in Figure 4.7(d)

correspond to the specified model. Accordingly, the specified Weibull AFT model is

selected if using LHC and TAC.

Note that if data are generated based on a specified full model, all model selection

criteria under the AFT model selection framework can identify it irrespective of sample

size and censoring proportion. These results are not shown here. It should be pointed

out that the graphical results, shown and discussed in this section, are based on only

one sample simulated under the Weibull AFT model. Therefore, it is possible that

if a different sample is used, the results may change considerably. To address this,

similar samples are drawn repeatedly for hundred or more times, known as Monte

Carlo simulation. This would provide more convincing results. This is done in the

following section.

4.4 Performance of model selection criteria under

the framework for AFT models

The performance of TAC, LHC and LCC in selecting AFT models for survival data

has been investigated in this section using Monte Carlo simulation, which considers the

data simulated repeatedly, in comparison to two commonly used model selection crite-

ria, BIC and AIC. Simulated data sets have been generated and studied under many

settings: three types of AFT models (Weibull, log-logistic and log-normal); several sets

of model parameters (one for each true model considered); low (10%) and high (50%)

censoring proportions; different sample sizes (30, 50, 150 and 300). Each simulated

data here contains six columns: a column of survival times that are generated under a

specified distribution (Weibull, log-logistic or log-normal), a column of censoring status,

and four columns for almost uncorrelated covariates, unless otherwise stated.
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For each combination of those AFT model types, true models, censoring propor-

tions and sample sizes under each set-up listed in Table 4.2, one hundred simulation

runs have been carried out and studied. To evaluate the performance of TAC, LHC

and LCC in comparison to BIC and AIC, percentage of selecting the specified (true)

model using each of these five model selection criteria under the framework proposed

in Chapter 3 has been computed for each set of 100 simulation runs. These percentages

are presented in Tables 4.3–4.14.

Set-up 1: Data based on moderately right-skewed distribution

The results in Table 4.3 are based on simulated data sets from each of two Weibull

AFT models {1, 4, 5} and {1, 4}. The survival times are generated under these

two models and from Weibull distribution with shape parameter value of 2 and scale

parameter values that are computed based on the covariates. In Table 4.3, when the

Weibull AFT model {1, 4, 5} is the true model, TAC identifies it highly frequently

irrespective of sample size or censoring proportion. Only in few instances, the true

model is not detected by TAC. Similar results are observed when LHC or LCC is used.

For BIC, proportions of identifying the true model are also high across different sample

sizes, but it has more instances of not detecting the true model than TAC, LHC and

LCC. On the other hand, proportions of correctly identifying the true model are much

lower if using AIC than any of the other criteria under the model selection framework.

Table 4.3: Proportions of identifying true Weibull (κ = 2) AFT model.

Censoring n {1, 4, 5} {1, 4}
LCC LHC TAC BIC AIC LCC LHC TAC BIC AIC

30 0.90 0.93 0.93 0.88 0.60 0.98 0.97 0.97 0.86 0.56
50 0.99 1.00 1.00 0.96 0.78 1.00 1.00 1.00 0.90 0.64

10% 150 1.00 0.99 1.00 0.93 0.72 1.00 0.98 1.00 0.93 0.65
300 1.00 1.00 1.00 0.96 0.74 1.00 1.00 1.00 0.92 0.59

30 0.91 0.89 0.91 0.81 0.66 0.95 0.93 0.95 0.73 0.52
50 0.97 0.93 0.95 0.82 0.60 0.98 0.95 0.97 0.76 0.47

50% 150 1.00 1.00 1.00 0.94 0.71 1.00 1.00 1.00 0.93 0.61
300 1.00 1.00 1.00 0.96 0.73 1.00 1.00 1.00 0.95 0.60

At both 10% and 50% censoring proportions, if the true model is {1, 4}, proportions

of selecting the true model obtained using TAC, LHC or LCC are similar and close to
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100% across all sample sizes. Although BIC has a higher proportion of selecting the

true model than AIC, as expected, its proportion is generally much lower than that via

TAC, LHC or LCC as shown in Table 4.3.

Another interesting observation is that the performance of AIC and BIC decreases

when a smaller model is specified. The proportions have gone down remarkably when

true model is {1, 4}, instead of the larger true model {1, 4, 5}, particularly for AIC.

Such reduction in proportion of selecting the true model ranges from 7% to 22% approx-

imately for AIC, and can be up to 10% for BIC across all sample sizes and censoring

proportions considered. Also note that from the true model {1, 4, 5} to {1, 4}, the

proportions for TAC, LHC and LCC tend to increase or remain 100% in all simulated

instances.

It is also noted that as sample size gets larger the proportion of detecting the true

model using TAC, LHC or LCC gets higher. This empirical result agrees with what

we have mentioned in the Lemma 1 of chapter 3, where it is shown that these three

model selection criteria are consistent.

Table 4.4: Proportions of identifying true log-logistic (ξ = 1
0.35) AFT model.

Censoring n {1, 4, 5} {1, 4}
LCC LHC TAC BIC AIC LCC LHC TAC BIC AIC

30 0.93 0.90 0.91 0.77 0.63 0.97 0.95 0.95 0.75 0.56
50 0.97 0.96 0.97 0.86 0.68 0.98 0.95 0.97 0.79 0.56

10% 150 1.00 1.00 1.00 0.95 0.76 1.00 1.00 1.00 0.94 0.66
300 1.00 1.00 1.00 0.97 0.71 1.00 1.00 1.00 0.95 0.62

30 0.90 0.93 0.94 0.78 0.64 0.96 0.94 0.94 0.76 0.61
50 0.97 0.97 0.97 0.86 0.63 0.96 0.96 0.96 0.85 0.52

50% 150 1.00 1.00 1.00 0.94 0.73 1.00 0.99 1.00 0.89 0.59
300 1.00 1.00 1.00 0.98 0.73 1.00 1.00 1.00 0.95 0.66

The proportions of selecting true model for log-logistic AFT model are presented in

Table 4.4. The survival times are again generated under two different models {1, 4, 5}

and {1, 4} from log-logistic distribution with shape parameter value of 1
0.35 and varying

scale parameter values. At both 10% and 50% censoring proportions, when the true

model is {1, 4, 5}, the proportions of selecting the true model using TAC, LHC and

LCC are very high across all sample sizes. The proportions for these three criteria vary

between 90% and 100%. BIC also has high proportions of selecting the true model {1,
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4, 5} although lower than those by LCC, LHC or TAC. These proportions obtained

via AIC are the smallest among all the five criteria. Similar pattern is upheld when

the true model is {1, 4}.

Note that the proportions of identifying the true model using BIC and AIC at both

10% and 50% censoring have gone down when the true model is smaller. For example,

if the true model is reduced from {1, 4, 5} to {1, 4}, the proportions for BIC decrease

between 1% and 8% approximately; and for AIC they decrease even more, between

5% and 19% approximately. However, there is almost no reduction in performance for

TAC, LHC and LCC at both censoring proportions when the smaller model is specified.

The proportions of identifying the true model for each of the criteria studied do not

differ much across censoring proportions at a specific sample size. Except for AIC, the

proportions get larger as sample size increases, particularly for BIC. Also as n increases,

the proportions of identifying the true model for TAC and LCC approach to unity.

Table 4.5: Proportions of identifying true log-normal (σ = 0.64) AFT model.

Censoring n {1, 4, 5} {1, 4}
LCC LHC TAC BIC AIC LCC LHC TAC BIC AIC

30 0.97 0.91 0.94 0.76 0.62 0.98 0.92 0.93 0.74 0.54
50 0.99 0.97 0.98 0.82 0.61 0.99 0.97 0.98 0.76 0.49

10% 150 1.00 1.00 1.00 0.96 0.70 1.00 1.00 1.00 0.93 0.55
300 1.00 1.00 1.00 0.97 0.66 1.00 1.00 1.00 0.96 0.57

30 0.89 0.88 0.91 0.81 0.63 0.93 0.92 0.93 0.75 0.54
50 0.99 0.96 0.99 0.89 0.65 0.99 0.97 0.98 0.84 0.62

50% 150 1.00 1.00 1.00 0.93 0.72 1.00 1.00 1.00 0.91 0.57
300 0.99 0.99 0.99 0.97 0.71 0.99 0.99 0.99 0.96 0.62

The proportions of selecting a true model in the case of log-normal AFT model are

presented in Table 4.5. The survival times are generated from log-normal distribution

with scale of 0.64 (σ) and varying mean values. At both 10% and 50% censoring,

when the true model is {1, 4, 5} or {1, 4}, TAC, LHC and LCC can identify the true

model in 90% or higher proportions of all runs for all sample sizes (small to large). BIC

also has high proportions of selecting the true model at these censoring proportions.

However, the proportions of identifying the true model are the smallest if using AIC.

When the true model is {1, 4} or {1, 4, 5}, the proportions of selecting the true

model are reasonably similar for TAC, LHC and LCC but are much lower for BIC
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and AIC. This difference in the proportions ranges between 1% and 7% approximately

for BIC, and between 5% and 21% approximately for AIC across the two censoring

proportions.

Based on the above discussion of results in Tables 4.3–4.5, the proportion of se-

lecting the true model for moderately skewed survival data using TAC, LHC or LCC

is generally higher or at least same as BIC; often much better than BIC and far ex-

ceeds AIC. This indicates these three MSC based model selection criteria TAC, LHC

and LCC have outperformed both AIC and BIC in selecting the true model across all

sample sizes at the low or high censoring proportions considered.
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Set-up 2: Data based on severely right-skewed distribution

From Figure 4.1(a), we can see that the Weibull density is severely right-skewed

for this set-up. The results in Table 4.6 are based on simulated data from two Weibull

AFT models {1, 4, 5} and {1, 4}. The survival times are generated under these two

models from Weibull distribution with shape parameter value of 1 and varying scale

parameter values. We see in the table that at both 10% and 50% censoring when true

model is {1, 4, 5} or {1, 4} and sample size is large (n = 150 or n = 300), proportions

of selecting the true model obtained using TAC, LHC, LCC or BIC are all very high

(> 90%). However, for small sample size such as n = 30, the proportions for all these

criteria are considerably low, disregarding the censoring proportion in the data.

For small sample size, the proportions of selecting the true model {1, 4, 5} obtained

using LCC is the lowest among all criteria (Table 4.6). It seems that the severely right-

skewed distribution of the data is likely the reason for LCC not to perform as well as it

usually does. For these severely skewed cases, LHC or TAC may substantially improve

the performance of selecting the true model over LCC. The proportions obtained using

LHC are closer to those of obtained using BIC.

Table 4.6: Proportions of identifying true Weibull (κ = 1) AFT model.

Censoring n {1, 4, 5} {1, 4}
LCC LHC TAC BIC AIC LCC LHC TAC BIC AIC

30 0.24 0.40 0.35 0.55 0.49 0.53 0.60 0.61 0.78 0.54
50 0.65 0.74 0.73 0.85 0.75 0.85 0.88 0.87 0.89 0.64

10% 150 1.00 1.00 1.00 0.93 0.66 1.00 1.00 1.00 0.92 0.60
300 1.00 1.00 1.00 0.90 0.62 0.99 0.98 0.99 0.86 0.50

30 0.35 0.49 0.44 0.57 0.57 0.52 0.58 0.59 0.60 0.49
50 0.57 0.70 0.64 0.72 0.60 0.79 0.80 0.81 0.72 0.47

50% 150 0.99 0.99 0.99 0.94 0.71 1.00 1.00 1.00 0.93 0.61
300 1.00 1.00 1.00 0.96 0.73 1.00 1.00 1.00 0.95 0.60

The proportions of selecting the true log-logistic AFT model, based on data gen-

erated under log-logistic distribution with shape parameter value of 1
0.69 and varying

scale parameter values are presented in Table 4.7. At both 10% and 50% censoring,

when the sample size is large (n = 150, 300), the proportions of identifying the true

model using TAC, LHC, LCC or BIC are high, disregarding if the true model is {1, 4,

5} or {1, 4}. Moreover, the proportions for data with low censoring and small sample
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size (n = 50 or 30) are higher than those at high censoring with small samples. The

proportions obtained using AIC are relatively low. Proportions for TAC, LHC and

LCC are relatively high and close to those if using BIC for small sample size and when

the smaller model {1, 4} is true. At 50% censoring and when sample size is very small

(n = 30), the proportion of selecting true model {1, 4, 5} using LCC is the lowest

among all model selection criteria considered (Table 4.7). However, this proportion is

higher if LHC or TAC is used. This scenario is also observed if the true model is {1,

4}.

Table 4.7: Proportions of identifying true log-logistic (ξ = 1
0.69) AFT model.

Censoring n {1, 4, 5} {1, 4}
LCC LHC TAC BIC AIC LCC LHC TAC BIC AIC

30 0.61 0.67 0.65 0.67 0.57 0.75 0.76 0.77 0.71 0.49
50 0.83 0.86 0.86 0.83 0.71 0.91 0.94 0.94 0.80 0.59

10% 150 0.99 0.99 0.99 0.95 0.74 1.00 0.99 1.00 0.92 0.66
300 1.00 1.00 1.00 0.97 0.76 1.00 1.00 1.00 0.97 0.67

30 0.37 0.48 0.44 0.60 0.58 0.60 0.65 0.64 0.72 0.61
50 0.66 0.78 0.74 0.82 0.62 0.79 0.84 0.83 0.84 0.52

50% 150 1.00 1.00 1.00 0.94 0.73 1.00 0.99 1.00 0.89 0.59
300 1.00 1.00 1.00 0.98 0.73 1.00 1.00 1.00 0.95 0.66

For the log-normal AFT models, data are generated from the log-normal distribu-

tion with scale σ = 1.28 and varying mean values. Proportions for identifying the true

model are computed and reported in Table 4.8. The proportions for small sample size

(n = 30, 50) have similar patterns to those reported above for log-logistic models (see

Table 4.7). Although the proportions of selecting the true model {1, 4, 5} or {1, 4}

obtained using TAC, LHC or LCC are very high (100% or close) at 10% or 50% cen-

soring for data with large sample size (n = 150 or 300), and higher than those for BIC.

However, those proportions at high censoring with small sample size are considerably

low (Table 4.8). The lowest proportions are obtained if LCC is used in identifying

the true model. Note that higher proportions are obtained if using other MSC based

criteria, LHC and TAC.

From the results in Table 4.6–4.8, we see that LCC may not perform very well when

dealing with data containing extreme observations, especially when the sample size is
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Table 4.8: Proportions of identifying true log-normal (σ = 1.28) AFT model.

Censoring n {1, 4, 5} {1, 4}
LCC LHC TAC BIC AIC LCC LHC TAC BIC AIC

30 0.42 0.60 0.52 0.72 0.55 0.56 0.67 0.64 0.73 0.53
50 0.80 0.87 0.85 0.84 0.61 0.88 0.89 0.88 0.83 0.52

10% 150 1.00 0.99 1.00 0.95 0.67 1.00 0.99 1.00 0.91 0.58
300 0.99 0.99 0.99 0.96 0.64 0.99 0.99 0.99 0.95 0.46

30 0.29 0.42 0.38 0.50 0.52 0.51 0.56 0.54 0.61 0.50
50 0.47 0.60 0.58 0.76 0.64 0.78 0.82 0.81 0.81 0.61

50% 150 1.00 1.00 1.00 0.93 0.72 1.00 1.00 1.00 0.91 0.57
300 0.99 0.99 0.99 0.97 0.71 0.99 0.99 0.99 0.96 0.62

small. However, using LHC or TAC may improve, to some extent, this situation. The

performance of identifying the true model using LHC or TAC in this special case is

thus advisable.

Set-up 3: Data based on nearly symmetric distribution

A Weibull density with this set-up is close to symmetric as shown in Figure 4.1(c).

The proportions in Table 4.9 are based on simulated data from two Weibull AFT

models {1, 4, 5} and {1, 4}. The survival times are generated under these two models

from Weibull distribution with shape parameter value of 3 and varying scale parameter

values. From Table 4.9, one can see that the proportions of selecting the true model

{1, 4, 5} or {1, 4} using TAC, LHC and LCC are high in all combinations of censoring

proportions and sample sizes. BIC, on the other hand, is not performing as well

particularly for small samples, but increasing censoring proportion does not seem to

impair its performance. However, when smaller model {1, 4} instead of bigger model

{1, 4, 5} is true, proportions obtained using BIC are relatively low. These proportions

for AIC are much lower than those obtained using other model selection criteria.

We can see that as the sample sizes get larger, the proportions of identifying the

true model using TAC, LHC and LCC also get larger, close to unity (Table 4.9). This

is because these criteria are consistent in selecting the true model.

The proportions of selecting the true model in Table 4.10 are based on simulated

data from two log-logistic AFT models {1, 4, 5} and {1, 4}. The survival times are

generated under these two different models from log-logistic distribution with shape



70 Simulation Study

Table 4.9: Proportions of identifying true Weibull (κ = 3) AFT model.

Censoring n {1, 4, 5} {1, 4}
LCC LHC TAC BIC AIC LCC LHC TAC BIC AIC

30 0.95 0.95 0.95 0.83 0.66 0.94 0.92 0.93 0.77 0.61
50 0.99 0.99 0.99 0.92 0.64 0.99 0.98 0.99 0.90 0.51

10% 150 1.00 1.00 1.00 0.94 0.77 1.00 0.99 1.00 0.93 0.68
300 1.00 1.00 1.00 0.98 0.77 1.00 1.00 1.00 0.97 0.63

30 0.96 0.95 0.95 0.83 0.66 0.97 0.94 0.97 0.73 0.52
50 0.99 0.95 0.97 0.82 0.60 0.99 0.96 0.98 0.76 0.47

50% 150 1.00 1.00 1.00 0.94 0.71 1.00 1.00 1.00 0.93 0.61
300 1.00 1.00 1.00 0.96 0.73 1.00 1.00 1.00 0.95 0.60

parameter value of 1
0.23 and varying scale parameter values. At both 10% and 50%

censoring, when the true model is {1, 4, 5} or {1, 4}, the proportions of selecting the

true model using TAC, LHC and LCC are very close to each other at each sample size.

The proportions obtained using BIC are also high, but the proportions are considerably

low if using AIC.

Table 4.10: Proportions of identifying true log-logistic (ξ = 1
0.23) AFT model.

Censoring n {1, 4, 5} {1, 4}
LCC LHC TAC BIC AIC LCC LHC TAC BIC AIC

30 0.94 0.94 0.94 0.83 0.64 0.95 0.90 0.94 0.74 0.53
50 1.00 0.99 0.99 0.91 0.69 0.99 0.94 0.97 0.83 0.55

10% 150 1.00 1.00 1.00 0.96 0.73 1.00 0.99 0.99 0.94 0.56
300 1.00 1.00 1.00 0.97 0.73 1.00 1.00 1.00 0.95 0.61

30 0.97 0.96 0.97 0.78 0.64 0.97 0.95 0.95 0.76 0.61
50 0.97 0.97 0.97 0.86 0.63 0.96 0.96 0.96 0.85 0.52

50% 150 1.00 1.00 1.00 0.94 0.73 1.00 0.99 1.00 0.89 0.59
300 1.00 1.00 1.00 0.98 0.73 1.00 1.00 1.00 0.95 0.66

The proportions of identifying the true model in Table 4.11 are based on simulated

data from two log-normal AFT models {1, 4, 5} and {1, 4}. The survival times are

generated under these models from log-normal distribution with scale of 0.43 (σ) and

varying µ values. In Table 4.11, the pattern of proportions of selecting the true model

based on the model selection criteria under the framework are similar to the pattern

described for Tables 4.9–4.10.

Based on the results for Weibull, log-normal and log-logistic AFT models as shown
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Table 4.11: Proportions of identifying true log-normal (σ = 0.43) AFT model.

Censoring n {1, 4, 5} {1, 4}
LCC LHC TAC BIC AIC LCC LHC TAC BIC AIC

30 0.97 0.97 0.97 0.74 0.54 0.97 0.89 0.96 0.73 0.44
50 0.98 0.97 0.97 0.85 0.63 0.99 0.98 0.98 0.79 0.48

10% 150 1.00 1.00 1.00 0.97 0.70 1.00 1.00 1.00 0.94 0.54
300 1.00 1.00 1.00 0.95 0.71 1.00 1.00 1.00 0.94 0.63

30 0.95 0.95 0.95 0.81 0.63 0.95 0.93 0.95 0.75 0.54
50 1.00 0.96 0.99 0.89 0.65 0.99 0.97 0.98 0.84 0.62

50% 150 1.00 1.00 1.00 0.93 0.72 1.00 1.00 1.00 0.91 0.57
300 0.99 0.99 0.99 0.97 0.71 0.99 0.99 0.99 0.96 0.62

in Tables 4.9–4.11, we see that TAC, LHC and LCC have clearly outperformed BIC and

AIC in most of the cases, irrespective of sample size and censoring proportions, when

the data is less skewed or close to symmetric. Since TAC, LHC and LCC perform fairly

similarly, especially when the data is less chaotic such as the current set-up (set-up 3),

any of them can be used for choosing a suitable model.

Set-up 4: Data based on moderately left-skewed distribution

The results in Table 4.12 are based on simulated data from two Weibull AFT

models {1, 4, 5} and {1, 4}. The survival times are generated under these two models

from Weibull distribution with shape parameter value of 4 and varying scale parameter

values. In Table 4.12, when the Weibull AFT model {1, 4, 5} or {1, 4} is true, TAC,

LCC and LHC can identify it with very high proportions (> 94%) irrespective of sample

size and censoring proportion. Although the proportions of identifying the true model

using BIC are also high across different sample sizes, it cannot detect the true model

as often as TAC, LHC and LCC can. On the other hand, the proportions of correctly

identifying the true model using AIC are the lowest of all, irrespective of sample size

and censoring proportion.

Each of the MSC based criteria TAC, LHC and LCC, for moderately left-skewed

data has outperformed both AIC and BIC in identifying the true model irrespective of

sample size and censoring proportion as observed from Table 4.12. Moreover, we can

see as the sample size gets larger the proportions of detecting the true model using

TAC, LHC and LCC get larger too. This empirical result agrees with what we have
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Table 4.12: Proportions of identifying true Weibull (κ = 4) AFT model.

Censoring n {1, 4, 5} {1, 4}
LCC LHC TAC BIC AIC LCC LHC TAC BIC AIC

30 0.96 0.94 0.94 0.84 0.60 0.97 0.90 0.94 0.80 0.48
50 0.97 0.97 0.97 0.85 0.70 0.99 0.96 0.98 0.81 0.60

10% 150 0.99 0.98 0.99 0.93 0.66 1.00 0.99 0.99 0.91 0.62
300 1.00 1.00 1.00 0.92 0.68 1.00 1.00 1.00 0.92 0.56

30 0.97 0.95 0.96 0.82 0.65 0.97 0.94 0.97 0.73 0.52
50 0.98 0.94 0.95 0.81 0.59 0.99 0.96 0.98 0.76 0.47

50% 150 1.00 1.00 1.00 0.94 0.71 1.00 1.00 1.00 0.93 0.61
300 1.00 1.00 1.00 0.96 0.73 1.00 1.00 1.00 0.95 0.60

mentioned in the Lemma 1 in Chapter 3, where it is shown that these criteria are

consistent.

Table 4.13: Proportions of identifying true log-logistic (ξ = 1
0.17) AFT model.

Censoring n {1, 4, 5} {1, 4}
LCC LHC TAC BIC AIC LCC LHC TAC BIC AIC

30 0.97 0.95 0.96 0.85 0.60 0.96 0.94 0.94 0.78 0.51
50 0.99 0.98 0.98 0.87 0.63 0.99 0.96 0.98 0.85 0.56

10% 150 0.99 0.98 0.99 0.97 0.71 0.99 0.98 0.99 0.96 0.65
300 1.00 1.00 1.00 0.98 0.69 1.00 1.00 1.00 0.98 0.58

30 0.97 0.96 0.97 0.78 0.64 0.97 0.95 0.95 0.76 0.61
50 0.97 0.97 0.97 0.86 0.63 0.96 0.96 0.96 0.85 0.52

50% 150 1.00 1.00 1.00 0.94 0.73 1.00 0.99 1.00 0.89 0.59
300 1.00 1.00 1.00 0.98 0.73 1.00 1.00 1.00 0.95 0.66

The proportions of selecting true log-logistic AFT model are presented in Table

4.13. The survival times are generated under two different models {1, 4, 5} and {1, 4}

from log-logistic distribution with ξ = 1
0.17 and varying scale parameter values. At both

10% and 50% censoring, when the true model is {1, 4, 5}, the proportions of selecting

the true model using TAC, LHC or LCC are very high, close to 1, across all sample

sizes. BIC also has high proportions of selecting the true model {1, 4, 5} although

much lower than those by TAC, LHC or LCC. The proportions obtained using AIC are

the smallest among all as usual. Similar pattern is seen when {1, 4} is the true model.

Note that the proportions of identifying the true model using BIC and AIC at both

10% and 50% censoring are lower if the true model is smaller. For example, if the



4.4 Performance of model selection criteria under the framework for AFT models 73

true model is reduced from {1, 4, 5} to {1, 4}, the proportions for BIC decrease up

to 8% approximately; and for AIC they decrease even more, between 5% and 19%

approximately. However, changes in proportions, when smaller model is true, are very

little for TAC, LHC or LCC across all sample sizes at both censoring proportions.

Table 4.14: Proportions of identifying true log-normal (σ = 0.32) AFT model.

Censoring n {1, 4, 5} {1, 4}
LCC LHC TAC BIC AIC LCC LHC TAC BIC AIC

30 0.99 0.98 0.99 0.83 0.70 0.98 0.97 0.97 0.81 0.61
50 1.00 0.99 1.00 0.92 0.72 1.00 0.99 1.00 0.89 0.64

10% 150 1.00 1.00 1.00 0.92 0.73 1.00 1.00 1.00 0.92 0.65
300 1.00 0.99 1.00 0.99 0.72 1.00 0.99 0.99 0.97 0.61

30 0.96 0.95 0.95 0.81 0.63 0.94 0.93 0.94 0.75 0.54
50 1.00 0.96 0.99 0.89 0.65 0.99 0.97 0.98 0.84 0.62

50% 150 1.00 1.00 1.00 0.93 0.72 1.00 1.00 1.00 0.91 0.57
300 0.99 0.99 0.99 0.97 0.71 0.99 0.99 0.99 0.96 0.62

A large number of survival times are also generated from log-normal distribution

with scale of 0.32 (σ) and varying mean values under log-normal AFT models {1, 4,

5} and {1, 4}, similarly as discussed before. The proportions of selecting a true model

based on samples from the simulated data are computed and presented in Table 4.14.

When the true model is {1, 4, 5} or {1, 4}, TAC, LHC and LCC can identify the true

model almost in all cases irrespective of sample size and censoring proportion. BIC has

also moderately high proportions of selecting the true model. However, the proportions

of identifying the true model are the smallest if using AIC. Another observation from

the Table 4.14 is that when the true model is {1, 4} instead of {1, 4, 5}, the proportions

of selecting the true smaller model are similar for TAC, LHC, LCC and BIC, but are

much lower for AIC.

From the above discussion and based on the results in Tables 4.12–4.14, each of

the criteria, TAC, LHC and LCC outperforms both AIC and BIC in selecting the true

model across all sample sizes and censoring proportions considered in this study. Note

that TAC always lies in between LCC and LHC as expected. Moreover, it upholds its

conservative nature among these three MSC based criteria and is, therefore, advisable

for the AFT model selection under the proposed framework.

Overall, the MSC based criteria, TAC, LHC and LCC, are consistent in selecting
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the true model irrespective of censoring proportion and sample size. They can also

outperform other criteria if the data is not severely chaotic. In the next chapter, the

model selection framework has been implemented through constructing a user-friendly

tool in R.



5
A Tool in R for AFT Model Selection

A model selection framework for the AFT models of survival data with right cen-

soring has been established in the previous chapters of this thesis, based on the MSC

approach (Müller and Welsh, 2010; Murray, Heritier and Müller, 2013). To visualise

the results from applying the framework, a user-friendly tool has been developed in

the statistical computing project R. This tool consists of several functions, and it is

explained and illustrated with three published data sets: the ovarian cancer data (Ed-

munson et al., 1979), the lung cancer data (Lawless, 1982) and the Stanford heart

transplant data (Crowley and Hu, 1977). Note that R packages, including survival

and mplot have been utilised in writing up the R codes for implementing the model

selection framework for AFT models.
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5.1 Functions and programs developed in R

In this section, the functions and programs are described, which are developed

to construct a tool in R program for the AFT model selection framework proposed

in Chapter 3. The constructed R tool is then trialled and illustrated using several

examples.

5.1.1 Functions in the R tool

Several main functions developed for the R tool are discussed in details in this

section. Among these functions, aftmsc is the most important one as it executes all

the required calculations of the model selection, provides arguments to be used in the

plot functions for visualisation. The description of a few important sub-functions under

the main functions can be found in the Appendix B.

aftmsc: aftmsc is the principal function as it executes all the required calculations.

A call to this function is

aftmsc(formula, data, distn=‘weibull’, lambda).

The arguments in this function are summarised as follows:

• formula: an expression like in other regression models, which consists of response

variable and predictors. The response lies on the left of the ∼ operator and

the predictors lie on the right of that operator, separated by + operators. The

response must be a survival object obtained from the Surv function in the

survival package. See the documentation for Surv, lm and formula in R for

more details.

• data: a data frame for full or subset of data to be specified. The name of the

variables in the data frame should be consistent with variables named in the

formula argument. If all the variables in formula are defined individually, data

in aftmsc can be left unspecified.

• distn: assumed distribution for log of survival time. The default distribution is

set to ‘Weibull’. However, other distributions such as ‘exponential’ (special case

of ‘Weibull’), ‘log-normal’, ‘log-logistic’, ‘Gaussian’ and ‘logistic’ can be
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assumed. Any distribution accepted by the survreg.distributions function in

the survival package can be utilised here.

• lambda: a sequence of values or a single value can be assigned to lambda, which

is the penalty multiplier in a model selection procedure. The default value for

lambda is a sequence between 0 and 4 log(n) with a step size of 0.01, where n is

the number of observations (or rows) in a data frame. A step size of 0.01 is used

to balance the computational time and accuracy of the process.

The aftmsc function returns an object of class“msc”, which includes several items, such

as a table of 1 rank models with their frequencies of appearing on the model selection

curve, a table of models according to LHC and TAC, a table containing numerical

values of cathetus lengths, hypotenuse lengths and
√

T AC, etc.

There are four main functions for visualising the results of the model selection

process: plot_cat, plot_msc, plot_hyp and plot_tac.

plot cat: plot_cat gives the catheus plot, which is equivalent to the plot of ranks

of models that achieve rank 1. It can be used as follows:

plot_cat(object, location=“topright”, inset=0, defaults_number).

The arguments in the function are described as below:

• object: an object of class “msc”, obtained from a call to the aftmsc function.

• location: a position to be specified for the legend to appear on the cathetus

plot. The default position is “topright”. However, it can be changed to other

positions such as “topleft”, “right”, “center”, “left” etc. See the document

style of legend in R for more details.

• inset: a numerical value used to adjust the position of the legend box inside a

graphical frame. See the document style of legend in R for more details.

• defaults_number: a numerical value that indicates how many models to be

shown on the plot from the set of models appearing on the 1 rank model selection

curve. If nothing is specified, the plot will by default show all models that have

appeared on the model selection curve.
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The plot_msc, plot_hyp and plot_tac are used almost identically to plot_cat except

that the default position of the legend in the plot_msc is “topleft”. The plot_msc

function returns the plot of model selection curve and shows the model number on the

curve and models on the legend.

The plot_hyp function returns the plot of hypotenuses, which are segments on the

model selection curve. On this plot, a model corresponding to each segment is shown

on the legend in the order of the highest to lowest length of hypotenuse.

The plot_tac function returns the TAC plot, i.e., plot of the areas of triangles.

Each triangle represents a model that achieves rank 1 and appears on the model selec-

tion curve. The legend of this plot shows the models ordered from largest to smallest

area of triangles (TAC values).

Finally, print.msc and plot.msc are two generic functions for object of class“msc”.

The print.msc is the print method for class “msc”. This function summarises impor-

tant information from the object of class “msc”. It can be called by

print(object).

On the other hand, plot.msc displays rank plot, model selection curve plot, hypotenuse

plot and TAC plot from the model selection framework, numbered 1 to 4 respectively.

By default, all four plots are provided. A call to this function can be

plot(object, defaults_number, which=c(1L,2L,3L,4L), ask =

prod(par(“mfcol”)<length(which)) && dev.interactive()).

The first two arguments are described earlier. The which in the plot function is a

numerical argument, and is used if a subset of the plots is required. The ask is a

logical argument such that if it is TRUE, the user is asked before producing each plot

(see the documentation of par(ask=·) in R for more details).

There are also a few sub-functions in this tool, to help with some computations,

such as DSM and surv.gic. These sub-functions are considered very important in the

Monte Carlo simulation and bootstrapping technique. The descriptions for these and

sample R codes that we wrote and used in this thesis can be found in Appendix B and

Appendix C.
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5.1.2 Programs in the R tool

The functions described in this chapter are designed for graphical presentation of

the model selection framework for AFT models. Besides this, several programs were

written to carry out Monte Carlo simulation, which were mainly used for comparing the

performance of model selection criteria considered in the framework (see Section 4.4).

Moreover, programing codes were also written for carrying out bootstrap replications

to help to get additional information and assist with the model selection process as

suggested in Section 3.4 and Section 4.2. These codes can also be found in Appendix

C.

5.2 Examples

In this section, our R tool for AFT model selection framework is trialled and illus-

trated using several published data sets mentioned at the beginning of this chapter.

5.2.1 Ovarian cancer data

A set of ovarian cancer data from a study by Edmunson et al. (1979) is considered

here. In this study, anti-tumour effects of two different forms of chemotherapy follow-

ing the surgical treatment of ovarian cancer were compared. Only 26 patients were

included in the study. The response variable was survival time in days (T), and the

covariates considered were age in years (x1), residual disease (incomplete or complete)

(x2), treatment (single or combined) (x3) and performance status (good or poor) (x4).

This data is available in an R package “survival” under the name “ovarian”. Using

Weibull AFT model, Collett (2003) analysed the data and suggested a final model for

the data. Here, we have also used Weibull AFT model for this data to illustrate the

model selection framework.

The output from applying the functions in R tool to the ovarian cancer data is

presented below. Any line starting with the prompt sign (>) indicates R code and the

relevant output is beneath the prompt sign.

> out=aftmsc(Surv(futime,fustat)~.,data=ovarian)

> out
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Model.num cat.length hyp.length TAC.sqrt Intercept age ... ecog.ps

1 5 10.55 23.590517 10.55000000 1 1 ... 0

2 15 1.74 7.174204 2.46073160 1 1 ... 0

3 10 0.69 2.181972 0.84507396 1 1 ... 0

4 16 0.05 0.254951 0.07905694 1 1 ... 1

> plot_msc(out)

Model.num Model cat.length Intercept age resid.ds rx ecog.ps

1 5 {1,2} 10.55 1 1 0 0 0

2 15 {1,2,3,4} 1.74 1 1 1 1 0

3 10 {1,2,4} 0.69 1 1 0 1 0

4 16 {1,2,3,4,5} 0.05 1 1 1 1 1

> plot_cat(out)

Model.num Model cat.length Intercept age resid.ds rx ecog.ps

1 5 {1,2} 10.55 1 1 0 0 0

2 15 {1,2,3,4} 1.74 1 1 1 1 0

3 10 {1,2,4} 0.69 1 1 0 1 0

4 16 {1,2,3,4,5} 0.05 1 1 1 1 1

> plot_hyp(out)

Model.num Model hyp.length Intercept age resid.ds rx ecog.ps

1 5 {1,2} 23.590517 1 1 0 0 0

2 15 {1,2,3,4} 7.174204 1 1 1 1 0

3 10 {1,2,4} 2.181972 1 1 0 1 0

4 16 {1,2,3,4,5} 0.254951 1 1 1 1 1

> plot_tac(out)

Model.num Model TAC.sqrt Intercept age resid.ds rx ecog.ps

1 5 {1,2} 10.55000000 1 1 0 0 0

2 15 {1,2,3,4} 2.46073160 1 1 1 1 0

3 10 {1,2,4} 0.84507396 1 1 0 1 0

4 16 {1,2,3,4,5} 0.07905694 1 1 1 1 1
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Figure 5.1: Model selection framework for the AFT model with ovarian data: (a)
model selection curve with the model number; (b) rank plot based on 1 rank models;
(c) hypotenuse plot; (d) TAC plot.

After executing the code mentioned, numerical summaries of important measures

of model selection framework are obtained. Moreover, the plots that are generated by

running the four plot functions are given in Figure 5.1. It is obvious from the output

above that the model {1, 2} is selected by all the three model selection criteria LCC,

LHC and TAC based on the MSC. This model was also the final model suggested by

Collett (2003). BIC selected the same model, but AIC did not.

It was mentioned before that bootstrapping could be used to provide additional
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Figure 5.2: Plots based on bootstrap of 1,000 replications: (a) model detection plot (or-
dinary bootstrap); (b) variable inclusion plot (ordinary bootstrap); (c) model detection
plot (stratified bootstrap); (d) variable inclusion plot (stratified bootstrap).

information to enhance the model selection process. As an illustration, based on the

ordinary and stratified bootstrapping technique respectively, corresponding model de-

tection and variable inclusion plots are presented in Figure 5.2. The plots that based

on ordinary and stratified bootstrap replications look very similar for this data. As

mentioned before, the bootstrap procedure has not been included in the R tool devel-

oped.
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5.2.2 Lung cancer survival data

Survival data on 137 advanced lung cancer patients were initially reported and

discussed by Prentice (1973). The data include survival time and censoring status,

as well as several covariates. A subset of 40 patients from this data was presented

and analysed in Lawless (1982). The subset consisted of all patients who received

prior therapy and were then randomly assigned to one of the two chemotherapeutic

agents, i.e., treatments, labelled as ‘standard’ and ‘test’. In this subset of data, there

were 21 patients who received ‘standard’ treatment and 19 patients received the other

treatment ‘test’. The goal was to compare the effects of chemotherapeutic treatment on

prolonging survival time, while accounting for possible effects due to other covariates.

In other words, a suitable model was sought to represent the relations between survival

time and the covariates under the study.

One of the covariates in the data is tumour cell type with four types, squamous,

small, adeno, and large. Another covariate is performance status at the time of diagno-

sis, which is a measure of general medical status on a scale of 10, 20, 30, . . . , 90. Here

the scores 10, 20, and 30 indicate that the patient has been completely hospitalised;

40, 50, and 60 indicate that the patient has been partially confined to hospital; and

70, 80, and 90 indicate that the patient is able to care for self. Other covariates are

patient’s age and time in months from the diagnosis of lung cancer to the entry into

the study. Lawless (1982) used both exponential and Weibull AFT models to analyse

this subset data of 40 patients. Similar conclusions were drawn for both models in his

analysis, suggesting that performance status was very important to be considered in

the model.

Here we consider fitting Weibull AFT model for the same subset of lung cancer

data used by Lawless, which includes performance status (x1), age (x2), time in months

from diagnosis of lung cancer to entry into the study (x3), treatment (test vs standard)

(x4), and tumour cell type (x5). Note that covariates considered here not only include

continuous and binary variables but also a variable (x5) with more than two categories.

We have applied the model selection framework for AFT models to this data, to choose a

final model. Since five covariates are considered, there are 32 possible models including

intercept only model and the model with all five covariates. Note that we are not

considering interactions terms in the models being considered in this thesis.
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Figure 5.3: Model selection framework for the AFT model with lung cancer data: (a)
model selection curve with the model number; (b) rank plot based on 1 rank models;
(c) hypotenuse plot; (d) TAC plot.

Main graphical outputs obtained from applying the model selection framework to

the lung cancer survival data are presented in Figure 5.3. We can see that 5 out of

32 possible models have achieved rank 1 and appeared on the model selection curve

in Figure 5.3(a). However, only the top four models are shown in the other plots in

Figure 5.3 to limit the clutter on these graphs. The model with performance status

only, model {1, 2}, has the longest cathetus as shown in Figure 5.3(b), and is thus

selected according to LCC. If LHC is used, same model {1, 2} is selected as shown in
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Figure 5.3(c). Also the same model {1, 2} is identified by TAC (see Figure 5.3(d)),

since the triangle for model {1,2} has the largest area among all models. Note that

AIC and BIC, each is represented by a single point on the model selection curves (see

Figure 5.3(b)), select the same model as the three MSC based criteria in this instance.

Table 5.1: Summary statistics extracted from model selection framework for AFT
model with lung cancer survival data.

Model α pα CLα HLα

√
T AC π∗ (α)

{1,2,3,4,5,6} 6 0.16 0.97 0.28 0.03
{1,2,3,5,6} 5 0.23 1.72 0.36 0.01
{1,2,5,6} 4 0.24 0.99 0.34 0.03
{1,2,6} 3 1.01 3.19 1.24 0.04
{1,2} 2 13.11 29.31 13.11 0.69

Summary statistics, from applying the AFT model selection framework to the lung

cancer survival data, are presented in Table 5.1. The first five columns of this table

are obtained from the analysis of the subset lung cancer survival data via the R tool.

Obviously, the same conclusion can be drawn as each of the model selection criteria,

LCC, LHC, and TAC, achieves the maximum value corresponding to model {1, 2} and

thus this model is chosen as the best model. Note that the cathetus length CLα and
√

T AC value for the chosen model are identical as expected. This is because this model,

selected by both LCC and TAC, has dimension two, i.e., pα = 2 (see the explanation

in Section 3.3). Moreover,
√

T AC values shown in Table 5.1 lie in between LCC and

LHC values
(√

T AC ∈ (CLα , HLα )
)
. This supports the conservative nature of TAC as

a model selection criterion, which was also reported in our simulation study in Section

4.4.

Now let’s run 1,000 ordinary bootstrap replications of the lung cancer survival data

(n = 40). From this, the marginal probabilities of selecting model α, π∗(α), obtained

using LCC are reported in the last column of Table 5.1. Clearly, model {1, 2} is

confirmed as the best model for this data set since it occurs most frequently in the

1,000 bootstrap replications with a high π∗(α) value (see Table 5.1). Besides the five

models presented in column 1 of Table 5.1, other models also appeared on the model

selection curves for some of the bootstrapped samples, but we did not report here as

its π∗(α) values are generally very small. This explains why
∑
π∗(α) , 1 in Table 5.1.
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5.2.3 Stanford heart transplant data

The Stanford heart transplant data on 103 patients was reported by Crowley and

Hu (1977) who analysed the data using piecewise exponential models. Later, Aitkin,

Laird and Francis (1983) reanalysed this survival data to explore parametric models

(e.g., Weibull AFT). We obtained a subset of the Stanford heart transplant data from

R package SMIR (Aitkin et al., 2012), which only contains data on 65 post-transplant

patients, studied by Crowley and Hu (1977). In this subset, the survival time was

measured in days after transplant (surv) and censoring status (an indicator variable) is

given in the variable ‘died’ with 1 for ‘yes’ and 0 for ‘no’. Other variables in the data are:

age of the patient at time of transplantation (age); whether a patient has prior open-

heart surgery (surg); the number of mismatches alleles between donor and recipient

(nmm); hla that is a dichotomous variable with 1 if the donor has the antigen HLA-

A2 and the recipient has neither HLA-A2 nor the similar HLA-A28, and 0 otherwise;

mismatch score (mm) representing mismatch between the patient’s and donor’s tissue

type; time of acceptance into the program (acc); and an indicator for death by rejection

(rej). There were also other variables in the original data, however, they are not

considered in our analysis because of its limited importance on the prognosis of survival

for the transplanted patients.

Following the discussion by Aitkin, Laird and Francis (1983) in which the same data

was analysed, we have applied Weibull AFT model to the same data. Here we consider

four covariates age (x1), surg (x2), acc (x3) and hla (x4). In this data on 65 patients,

there are 41 deaths and 24 censored survivals. The data has a censoring proportion of

almost 37%. The Weibull model for this data showed a declining hazard, also known

as monotonically decreasing hazard, as the estimated shape parameter of the Weibull

distribution is below 1 (Aitkin, Laird and Francis, 1983). In this circumstance (i.e.,

declining hazard), the Weibull distribution assumed for this data is considered heavily

right-skewed. For data with such a chaotic nature, our simulation study in Section 4.4

showed that LCC could not perform as good as other criteria, and thus we suggested

to use LHC and TAC instead, which performs very closely to BIC in identifying a

specified (or true) model (see Section 4.4).

Given four covariates considered in the Weibull AFT model, there are 16 possible

models, including from the intercept only model to the model with all four covariates.
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Figure 5.4: Model selection framework for the AFT model with Stanford heart trans-
plant data: (a) model selection curve with the model number; (b) rank plot based on
1 rank models; (c) hypotenuse plot; (d) TAC plot.

Important outputs from our analysis of the data are shown in Figure 5.4 and sum-

marised in Table 5.2. Out of the 16 possible models, 5 models have achieved rank 1

and thus appeared in the model selection curve (Figure 5.4(a)), however, only the top

four models are shown in the Figure 5.4(b)–5.4(d) to limit the clutter on these graphs.

From Figure 5.4(b), we can see that the intercept only model {1} having the longest

cathetus is selected by LCC (see also CLα column in Table 5.2). According to LHC

and TAC, the model with covariates age and surgery, model {1, 2, 3}, is selected as
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shown in Figure 5.4(c) and Figure 5.4(d). Note that the same model is also selected if

the model selection criteria, AIC and BIC, are used.

Table 5.2: Summary statistics extracted from MSC for heart transplant data.

Model α pα CLα HLα

√
T AC π∗ (α)

{1,2,3,4,5} 5 0.12 0.61 0.19 0.03
{1,2,3,4} 4 0.85 3.50 1.20 0.06
{1,2,3} 3 4.17 13.19 5.11 0.18
{1,2} 2 4.99 11.16 4.99 0.30
{1} 1 6.56 9.28 4.64 0.29

The results of the model selection procedure can also be summarised numerically.

Numerical results from the AFT model selection for the heart transplant data are

presented in Table 5.2. The first five columns of this table are obtained from the

application of the R tool to the data. We see that
√

T AC and LHC reach maximum

value by the model {1, 2, 3}. It is notable that the variation in the
√

T AC value is the

smallest among the three MSC based criteria within the framework.

We have also run 1,000 bootstrap replications of the heart transplant data. The

marginal probabilities of selecting model α, π∗(α), obtained using LCC are reported

in the last column of Table 5.2. As we mentioned earlier that for heavily skewed data,

LCC may not perform well, we are thus expecting these marginal probabilities provide

some additional insight. According to these, models {1, 2}, {1} or {1, 2, 3} may be

considered.



6
A Case Study Using the Model Selection

Framework

The model selection framework for the AFT model was illustrated and investigated

in simulations as well as several published examples of survival data in the previous

chapters. In this chapter, we apply this framework to some survival data on ovarian

cancer, which was recently obtained from the Royal Prince Alfred (RPA) hospital,

Sydney, Australia, aiming to identify and select important prognostic factors from a

number of variables available in the data. This is part of a collaborative project with

researchers at the hospital.

6.1 Background

Ovarian cancer is the leading cause of gynaecological cancer related deaths in many

countries of the world. In general, women with ovarian cancer have poor prognosis
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with short survival. Winter et al. (2008) estimated an overall median survival of 29

months among patients with advanced ovarian cancer.

The prognosis is worse when the cancer is diagnosed at a late stage, which is quite

common for ovarian cancer as there are not many clear symptoms for the cancer until

tumour has metastasised. Therefore, it is very important to investigate and identify key

prognostic factors of survival following a diagnosis of ovarian cancer. This may provide

doctors with a better understanding of their patients’ prognosis and potentially enable

doctors to understand patients’ survival prospects and thus treat them appropriately.

Ovarian cancer is not a homogeneous disease but rather a group of diseases, each

with different morphology and biologic behaviour. There have been a large number of

studies on ovarian cancer over the last few decades. Many of them aimed to predict or

estimate survival rate and identify the prognostic factors associated with the survival

for women with ovarian cancer, using various methods of survival analysis such as the

Cox proportional hazards model. However, the results from those studies are not all

that consistent. According to Colombo et al. (2009), the survival of patients with

ovarian cancer at advanced stage is mainly influenced by a few factors, such as the

biology and chemosensitivity of the tumour, the size of the residual disease as well as

the extent of the disease at the time of diagnosis.

Ovarian cancer can be broadly divided into two main types, epithelial and non-

epithelial ovarian cancer. Any ovarian cancer that started in the surface layer covering

the ovary is called epithelial ovarian cancer and the rest is non-epithelial.

There are many factors that may be associated with the prognosis of ovarian cancer,

including residual disease, histology, stage of cancer, grade of tumour, CA125 and age.

Detailed definition for each of these variables/factors is given in Section 6.2. It is also

of interest to identify possible change in survival prospect over time. Note that a set

of covariates with a specified relationship with survival represents the true prognostic

importance of each covariate, according to Burton et al. (2006).

A number of previous studies (for example, Polterauer et al., 2012; Tingulstad et

al., 2003 etc) showed that residual disease is one of the most important prognostic

factors. In a study of patients with advanced ovarian cancer, Colombo et al. (2009)

found that patients with no residual disease after the debulking procedure, i.e., surgery,

had experienced a better prognosis with a greater 5-year survival rate.
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There are a number of different histologic types of tumour, including serous, mu-

cinous, endometrioid, clear cell and other epithelial type. Women with mucinous

and endometriod tumours had better 5-year survival than the other histologic types

(Barnholtz-Sloan et al., 2003).

Ovarian cancer can also be classified by stages, known as FIGO stages. FIGO stage

is another important prognostic factor reported in the previous studies (e.g., Obermair

et al., 2013; Kotsopoulos et al., 2012; and Chan et al., 2006, etc). Different FIGO

stages may indicate differing prognoses.

Grade of ovarian cancer was considered as an important prognostic variable for

ovarian cancer by Eisenhauer et al. (1999) and also by Seiden (2001). Also, it was

reported that older women (age > 60) experienced worse prognosis with a shorter sur-

vival following the diagnosis of ovarian cancer (Barnholtz-Sloan et al., 2003; Colombo

et al., 2009).

CA125 (Cancer Antigen 125) was discovered in early 1980s (Bast et al., 1981). It

has been considered as a biomarker to monitor epithelial ovarian cancer (Felder et al.,

2014). It is usually found in a greater concentration in tumour cells than other part

of the body. The plausibility of CA125 as a prognostic factor for ovarian cancer was

evaluated in a number of previous studies. Markmann et al. (2007) found that the level

of CA125 was correlated with overall survival. According to this study, level around 100

U/l is an indication of a bad prognosis. Nowadays, CA125 is routinely used to monitor

the response to chemotherapy for patients with ovarian cancer (Schmidt, 2011).

A number of other prognostic factors of ovarian cancer were also investigated in

the literature. Among them, the following prognostic factors are worth noting: per-

formance status, physician’s speciality, race, oestrogen receptor, progesterone receptor,

HER-2/neu (c-erb-B2), epidermal growth factor receptor (EGFR), p53, mitotic activ-

ity index, volume percentage epithelium, morphometric groups, marital status, height,

weight, BMI, alkaline phosphatise (ALP), albumin, presence or absence of ascites,

GST-pi etc.

When there are many potential prognostic factors of survival following ovarian can-

cer studied under a statistical method (model), it is likely that only a small subset of

them is sufficient in describing or predicting the survival of ovarian cancer. A natural
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query is which combination of prognostic factors better describes or predicts the sur-

vival sufficiently and thus should be included in the model, i.e., the final model. Model

selection is thus an important part in the study of ovarian cancer data or any other

data.

The Cox proportional hazards model has often been used in the literature for ovarian

cancer survival, or cancer survival in general. Under certain distributions of the survival

time, such as Weibull, the AFT model is also a proportional hazards model and thus

may be used as a parametric alternative to the Cox model. An AFT model is used to

analyse the ovarian cancer survival data using our model selection framework for AFT

models.

6.2 The RPA data and variable definitions

As mentioned earlier, data used in this chapter was obtained from the RPA hospital,

Sydney. An ethical application was submitted and approved by the relevant committee

of the hospital. Then a formal request was made to get the information on clinical and

other prognostic factors of the ovarian cancer for patients being treated in the hospital.

Unfortunately, not all information requested were available in its hospital database

of ovarian cancer. Cases and variables from a number of sources were merged and

matched to get a reasonably complete data on those ovarian cancer patients.

6.2.1 Data

Data used here are confined to patients with epithelial ovarian cancer, which is

the common and serene type of ovarian cancer. It counts for 85%–95% of patients

with ovarian cancer (Roett and Evans, 2009). Considering possible reporting delay and

problems in data acquisition and entry in some years, only patients who were diagnosed

with epithelial ovarian cancer during the two decades between 1990 and 2009 were

considered in this study. After remove patients without sufficient information, only

347 epithelial ovarian cancer patients were included. Although this only represents

a subset of all patients treated in the RPA hospital over the study period, there is

no reason to suggest that this subset is biased. Furthermore, the main focus in our

analysis of this data is to show how well the AFT model selection works.
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6.2.2 Variable definitions

Variables considered in the data include survival time, residual disease, histology,

FIGO stages, grade, CA125, age and year of diagnosis, and they are defined as follows.

The survival time (T) is defined as time from the diagnosis of ovarian cancer to

death or last medical contact, whichever comes first. Note that a survival time is

considered censored in this study if a patient did not have date of death recorded or

did not die from ovarian cancer or was lost to follow up. As the record of one of the

patients showed the same diagnosis date and date of death, one day was added to

the survival time to all patients to get rid of zero survival time, and thus allow for

logarithmic transformation when applying the AFT model.

Residual disease (RD) is defined as size of the residual tumour after surgery (i.e.,

debulking procedure). It is categorised into the following three groups in our analysis:

microscopic (i.e., not visible to naked eyes), ≤ 1 cm and > 1 cm.

According to the histology of ovarian cancer tumour, there are several subtypes of

epithelial ovarian cancer. In this study, it is classified into the following six groups:

high-grade serous, low-grade serous, mucinous, endometrioid, clear cell and other ep-

ithelial type.

FIGO stage describes how advanced the cancer is and how far it has spread at the

time of diagnosis for all types of cancer. For ovarian cancer, the staging is based on

the location of cancer in the ovary and in other parts of body. There are four main

FIGO stages, stage I–stage IV, where FIGO stages III and IV are known as advanced

stage of ovarian cancer.

Grade of ovarian cancer is defined according to how similar (or different) the cancer

cells are to normal cells. In this study, three broad grades, grade 1–grade 3 of epithelial

ovarian cancer, are considered.

CA125 is a biomarker used for monitoring epithelial ovarian cancer. It is classified

into two groups, normal and elevated. A CA125 level below 35 U/l is considered normal

(see Markmann et al., 2007), otherwise elevated in our study.

Age is patient’s age (in years) at diagnosis of ovarian cancer. It is a continuous

variable. Like most of previous studies (e.g., Chan et al., 2006; Zhang et al., 2005), it

is also considered in this study as a categorical variable of three groups: < 50, ≥ 50

but < 70, and ≥ 70.
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Year of diagnosis in our data is between 1990 and 2009. In our study, it is grouped

into two broad periods of 1990 to 1997 and 1998 to 2009. This grouping was made

based on a preliminary analysis of the data.

6.3 Preliminary analysis of the RPA data

In this part, each variable considered in our analysis is explored, followed by an

examination of survival patterns by each variable. The inter-relationships between

possible prognostic factors of the survival are also investigated to indicate possible

confounding effects.

6.3.1 Brief summary of survival times

More than 50% of survival times in the RPA data studied are censored, which

is considered very high. Note that survival data with relatively high censoring was

investigated in our simulation study in Section 4.4, where it was shown that our AFT

model selection framework would work well even for survival data like this.

The Kaplan-Meier (K-M) survival curve for all 347 patients with a 95% confidence

interval (illustrated with dotted lines) is presented in Figure 6.1, where short vertical

bar indicates one or more observations censored. The estimated survival curve drops

down sharply till about four years of survival, and then falls gradually. Overall, the

chance of surviving 5 years or more is about 60%.

Let us assume that the survival times in the RPA ovarian cancer data follow a

Weibull distribution with a pdf as expressed in Section 2.3. In order to justify the

parametric Weibull assumption, we will take a closer look at its survivor and hazard

functions given in equations (2.5) and (2.6) respectively. The log(− log) of the estimated

survivor function for Weibull distribution can be expressed as a linear function of log

time:

log{− log Ŝ(t)} = κ̂ log λ̂ + κ̂ log t,

where, Ŝ(t) is the Kaplan-Meier estimator of S(t). A plot of log{− log Ŝ(t)} (log of

cumulative hazard) against log(t) (log of survival times) for the RPA ovarian cancer

data is presented in Figure 6.2. Since the plot appears approximately a straight line,
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Figure 6.1: K-M survival curves for all 347 patients.

the Weibull AFT model would be a sensible choice for the data. Note that among the

three commonly used distributions in AFT model, Weibull, log-normal and log-logistic,

only under Weibull distribution, log{− log Ŝ(t)} is a linear function of log(t). Moreover,

Weibull AFT is the only parametric survival model that has both a proportional haz-

ards representation and an accelerated failure time representation as explained earlier.

Parameters of assumed Weibull distribution for the RPA data can be estimated via

fitting an intercept only Weibull AFT model to the data. The estimated shape and

scale parameters from the RPA ovarian cancer data are about 0.812 (κ̂) and 0.118 (ν̂)

respectively. According to the results from our simulation study, LHC and TAC are

expected to perform better than other criteria for data like this. As a comparison,

we have still considered all three MSC based model selection criteria, as well as AIC

and BIC, for this data by applying our constructed R tool for the AFT model selection

framework.
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Figure 6.2: Log-cumulative hazard plot for the ovarian cancer patients studied.

6.3.2 Exploration of potential prognostic factors

As noticed, the RPA ovarian cancer data contains both continuous and categorical

prognostic factors (variables). Most of the categorical variables in the data have more

than two categories, so this data would be a nice example of survival data for us

to demonstrate the features of our model selection framework as well as the R tool

developed.

Summary statistics of the prognostic factors studied and group mean age are pre-

sented in Table 6.1. It can be seen that proportion of patients with residual disease

(RD) > 1 cm is three times of that who have RD ≤ 1 cm in the RPA ovarian cancer

data although more than 50% patients belong to the microscopic group. Note that

patients in group (RD > 1 cm) are older on average than the other two residual disease

groups.

Across the six histology groups studied, over 50% of patients belong to high-grade

serous group, who are also oldest. With respect to FIGO stage, over 50% are classified
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Table 6.1: Summary of prognostic factors for RPA ovarian cancer patients.

Factor Levels No. of patients % distribution Mean Age

Microscopic 190 54.76 53.10
Residual disease ≤ 1 cm 38 10.95 55.75

> 1 cm 119 34.29 60.45

High-grade serous 183 52.74 58.77
Low-grade serous 28 8.07 49.84

Mucinous 47 13.54 51.25
Histology

Endometrioid 25 7.20 50.96
Clear cell 23 6.63 54.91

Other epithelial type 41 11.82 56.32

Stage I 108 31.12 51.77
Stage II 38 10.95 54.87

FIGO stage
Stage III 167 48.13 57.40
Stage IV 34 9.80 63.06

Grade 1 71 20.46 51.47
Grade Grade 2 28 8.07 51.00

Grade 3 248 71.47 57.76

Normal 58 16.71 52.92
CA125

Elevated 289 83.29 56.53

Below 50 116 33.43 40.83
Age group 50–69.99 169 48.70 59.00

70 or above 62 17.87 75.78

1990–1997 228 65.71 56.47
Diagnosis year

1998–2009 119 34.29 54.87

as advanced stages, i.e., Stage III (48.13%) and Stage IV (9.80%). The proportion of

patients who belong to Stage II and Stage IV are similar around 10%. The mean age

for patients within Stage III or IV is higher.

Majority of patients (71.47%) were classified as Grade 3 with a higher average age.

Patients in Grade 1 or Grade 2 have similar age on average. With respect to the level

of CA125, more than 80% of patients have CA125 elevated at the time of diagnosis of

ovarian cancer. These patients are older on average when compared with the patients

with normal level of CA125.

Almost 50% of the patients belong to the age group 50 to 69 in the RPA ovarian

cancer data, about 33% were diagnosed with ovarian cancer before 50 years old and

about 18% were diagnosed with the disease at 70 years or older. The proportion of

younger ovarian cancer patients (below 50 years) is almost twice the proportion of older

patients (70 years or above). With respect to diagnosis year, 65.71% were diagnosed

in earlier years (1990–1997) and the rest of patients (34.29%) were diagnosed in later
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years (1998–2009) in this data. Note that mean ages do not differ much between these

two groups of patients.

6.3.3 Survival by each prognostic factor

Since the distribution of survival times is usually skewed, an appropriate summary

measure of survival times is median survival time, which is often of interest in sur-

vival analysis. Median survival times can be approximated from Kaplan-Meier survival

curves. The Kaplan-Meier survival curves for various prognostic factors are shown in

Figure 6.3–Figure 6.6.
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Figure 6.3: K-M curves by residual disease.

In Figure 6.3, the survival curve for patients with residual tumour greater than 1

cm falls much sharply compared to the survival curves for patients with smaller sizes

of residual tumour. This group of patients has experienced relatively poorer survival

with a median survival time of 1.9 years, while the median survival time for patients

with residual tumour size less than or equal to 1 cm is around 2.5 to 3 years. The



6.3 Preliminary analysis of the RPA data 99

microscopic group has a much better survival as its survival curve is well above the

other two residual disease groups.
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Figure 6.4: (a) K-M curves by histology; (b) K-M curves by CA125.
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Figure 6.5: (a) K-M curves by FIGO stage; (b) K-M curves by grade.

From Figure 6.4(a), patients with high-grade serous had experienced the worst

survival among all the histology groups considered. The median survival time for this

group is 3.9 years approximately. Patients with normal CA125 level had better survival
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Figure 6.6: (a) K-M curves for three age groups; (b) K-M curves for two diagnosis
periods.

than those whose CA125 level were elevated (see Figure 6.4(b)) as expected.

The survival prospect of patients with FIGO stage I is similar to that for those

with Stage II, and both these two groups have a much better survival than those

patients at advanced stages (stages III and IV) as shown in Figure 6.5(a). Patients

with FIGO stage IV had experienced the worst survival across the four stages with a

median survival time of only 1.8 years. With respect to grade, patients with Grade

3 have experienced the worst survival among the three grades of ovarian cancer for

patients included in this study (Figure 6.5(b)).

It can be seen from Figure 6.6(a) that patients diagnosed relatively younger (below

50 years) had better survival than older patients. Patients who were diagnosed at

70 years or older had experienced the worst survival as expected. With respect to

diagnosis year, patients who were diagnosed after 1997 had experienced better survival

than patients who were diagnosed earlier as seen in Figure 6.6(b). This may be, at least

to some extent, due to improved treatment (surgery) scheme, and care and quality of

treatment following the surgery.

6.3.4 Inter-relation between prognostic factors

To measure of the possible association between prognostic factors in RPA ovarian

cancer data, chi-square test is used. P-values based on chi-square tests for each pair
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of categorised prognostic variables are given in Table 6.2 only as an indication for

association. Note that when expected cell frequencies in some cases were less than 5,

Monte Carlo simulations are used to determine the p-values, marked with asterisk (∗)

in Table 6.2.

Table 6.2: Results from assessing associations between prognostic factors.

FIGO Histology Grade CA125 Age group Diagnosis year
RD < 0.001∗ < 0.001∗ < 0.001∗ < 0.001 < 0.001 0.018
FIGO < 0.001∗ < 0.001∗ < 0.001 < 0.001 0.775
Histology < 0.001∗ < 0.001∗ < 0.001∗ 0.886
Grade < 0.001∗ 0.004 0.751
CA125 0.176 0.429
Age group 0.369

As shown in the table, RD, FIGO stage, histology, grade and CA125 are highly

associated with each other (p-values � 0.05, the usual level of significance). Diagnosis

year appears only associated with RD (p-value < 0.05). This may reflect that some

changes might have occurred in surgical procedure in debulking ovarian cancer tumour

from the earlier to the later period. Moreover, RD is the only prognostic factor that

is highly associated with all other factors in RPA data. Therefore, it may have a

dominant place in the model for the RPA data.

The fact that most of the factors in the RPA data are associated implies that a few

of them may be sufficient in representing the others in explaining the survival time in a

model. We may only consider a subset of them in our analysis to avoid possible multi-

collinearity problem. This is one of common approaches to deal with multicollinearity

in practice. Also note that, according to Allison (2010), multicollinearity is more about

linear relations among the covariates, but not necessary to be evaluated within the con-

text of a survival analysis. Moreover, our focus here is to illustrate our established AFT

model selection framework.

6.4 Application of the AFT model selection frame-

work to the RPA data

For the RPA ovarian cancer data, survival time T , with censoring status, is used as

the response variable, and the covariates (i.e., prognostic factors) considered are RD,
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FIGO stage, histology, grade, CA125, age, and diagnosis year (see definitions in Section

6.2). Note that this survival data contains continuous (e.g., age), binary (e.g., CA125)

and categorical (ordinal or nominal) covariates with more than two categories (e.g.,

FIGO). We denote the model with all the seven covariates by {1, 2, 3, 4, 5, 6, 7, 8},

where “1” indicates the intercept term of the model and other numbers (2− 8) indicate

the covariates mentioned in the respective order. For example, {1, 2} represents the

model with intercept term and RD, and {1, 2, 3} for the model with intercept term,

RD and FIGO stage. Note that all models considered here include an intercept term.

0 5 10 15 20

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

λ

R
a

n
k
 o

f 
m

o
d

e
l

{1,2}

{1,2,3,5,8}

{1,2,3,8}

{1,2,5}

{1,2,3,4,5,6,7,8}

{1,2,3,5,6,7,8}

{1,2,3,5,6,8}

AIC BIC

Figure 6.7: Rank 1 plots showing cathetus for the RPA ovarian cancer data.

With seven covariates considered, there are 128 possible AFT models to be fit-

ted (see Section 4.3 for how a categorical covariate with more than two categories is

handled), containing none (0) to all the seven (7) covariates. Our model selection

framework for AFT models is applied to compare these 128 models and select the best

model, i.e., the most stable model (see Section 1.1). Among all 128 possible models,

models that have achieved rank 1 within the range of λ (0 to 4 log(n)) with respect to



6.4 Application of the AFT model selection framework to the RPA data 103

their GIC values are shown in Figure 6.7. It can be seen that 7 models from the 128

possible models have reached rank 1 at some λ values or intervals such as model {1, 2}

shown on the top of the list. The model with a single covariate RD has the longest

cathetus, so it is picked if using LCC. However, model with three covariates RD, FIGO

stage and diagnosis year is selected if using BIC.
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Figure 6.8: Model selected by TAC and other criteria under the model selection frame-
work for the RPA ovarian cancer data.

Beside LCC, let us examine the other two model selection criteria LHC and TAC

under the model selection framework. As shown in Figure 6.8, seven (7) of the 128

possible models have achieved rank 1, and thus appear on the model selection curve

(the locus of hypotenuses of all triangles in the Figure 6.8). The model with single

covariate RD, i.e., model {1, 2}, is selected not only by TAC but also LHC and LCC

as the area of triangle, hypotenuse length and cathetus length corresponding to this

model is the largest across all candidate models. However, AIC and BIC select different

models, {1, 2, 3, 5, 8} and {1, 2, 3, 8} respectively (see Figure 6.7).
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Alternatively, the same conclusion can be drawn from the summary statistics of

these criteria. Summary statistics, including model dimension, cathetus length, hy-

potenuse length and
√

T AC, for the seven models that have achieved rank 1 are pre-

sented in Table 6.3. Clearly, the maximum values of cathetus length, hypotenuse length

and
√

T AC all correspond to model {1, 2}, as illustrated in Figure 6.8. As expected,

the cathetus length CLα and
√

T AC for the chosen model {1, 2} coincide in this case

where pα = 2. It was shown earlier that LCC and
√

T AC would be identical if both

of them select a model with dimension pα = 2. Another interesting point to note from

Table 6.3 is that the
√

T AC value always lies in between the corresponding LCC and

LHC values as expected
(√

T AC ∈ (CLα ,HLα )
)
. This supports the conservative nature

of TAC as a model selection criterion, which was also reported in our simulation study

in Chapter 4, i.e., TAC is affected less by large variation in the data compared to LCC

and LHC.

Table 6.3: Summary statistics extracted from the model selection framework for RPA
ovarian cancer data.

Model α pα CLα HLα

√
T AC

{1,2} 2 15.89 35.53 15.89
{1,2,5} 3 0.83 2.62 1.02
{1,2,3,8} 4 1.59 6.56 2.25
{1,2,3,5,8} 5 3.38 17.23 5.34
{1,2,3,5,6,8} 6 0.42 2.55 0.73
{1,2,3,5,6,7,8} 7 0.60 4.24 1.12
{1,2,3,4,5,6,7,8} 8 0.68 5.48 1.36

Table 6.4: Models with π∗ (α) > 4% based on 1,000 bootstrap replications of RPA
ovarian cancer data.

Model α pα π∗ (α)

Ordinary bootstrap Stratified bootstrap
{1,2} 2 0.402 0.395
{1,3} 2 − 0.045
{1,2,5} 3 0.051 0.058
{1,2,8} 3 0.048 0.048
{1,3,8} 3 0.041 −

We have also repeated the model selection framework for AFT model on 1,000

bootstrap replications of the RPA ovarian cancer data. Both ordinary and stratified



6.4 Application of the AFT model selection framework to the RPA data 105

bootstrapping schemes are considered. In ordinary bootstrapping, censoring propor-

tions may not be similar across all bootstrap samples while the stratified bootstrapping

samples are also obtained to ensure censoring proportions matching with the original

RPA ovarian data. The marginal probability of selecting a model across the 1,000

replications via LCC is presented in Table 6.4, only for models that have π∗(α) > 4%

under either the ordinary or stratified bootstrapping scheme. Many other models, not

appeared when using original RPA data, have also shown up in the rank 1 model selec-

tion curves in one or more of those 1,000 bootstrap replications, but are not reported

here because of very small π∗(α) values. Among all 128 possible models, model {1, 2}

has the highest chance (about 40%) of being selected across 1,000 replications using

the LCC. This can be visualised using the model detection plot as shown in Figure

6.9. Clearly, the area under the curve for model {1, 2} is the largest, i.e., the most

frequently selected model. This is also evident in Table 6.4. Note that this model has

also been selected by TAC and LHC, as shown in Figure 6.8.
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Figure 6.9: The model detection plot contains only models with π∗(α) > 4%: (a) based
on ordinary bootstrap replications; (b) based on stratified bootstrap replications.

The proportion for each studied covariate that has been included in rank 1 models

across 1,000 bootstrap replications is computed. The proportions of all covariates

considered are then plotted against the penalty multiplier as shown in Figure 6.10.

This plot, known as variable inclusion plot, provides information about the importance
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Figure 6.10: Variable inclusion plot: (a) based on ordinary bootstrap replications; (b)
based on stratified bootstrap replications.

of each variable considered. The residual disease (RD) is the covariate (i.e., prognostic

factor) that appeared most frequently in rank 1 models across all bootstrap replications,

and other covariates have relatively much lower chances of being included in rank 1

models. As mentioned earlier, RD is also the only covariate selected by LCC, LHC and

TAC (see Figure 6.8) and one of the covariates selected by AIC and BIC (see Figure

6.7). The next probable covariates being included in rank 1 models are FIGO stage and

diagnosis year, which were included in the model selected by AIC or BIC. Note that RD

is highly associated with all other prognostic factors, as discussed earlier. Therefore,

it may sufficiently represent its related prognostic factors in the model, similar to the

example where the data contains highly correlated covariates as shown in the simulation

study.
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Conclusion

A model selection framework for AFT models of survival data with right censoring

has been established in this thesis. It consists of two recently suggested model selection

criteria by Müller and Welsh (2010), LCC and LHC, and one newly developed criterion

in our study, TAC. It also includes two commonly known criteria, AIC and BIC. Under

this framework, the general information criterion is studied as a function of penalty

multiplier over a range of values rather than only at a single value. This framework

enables, to some extent, an evaluation on the stability of a model selection criterion

used in a model selection process.

Similar to the findings reported on linear regression models in Müller and Welsh’s

paper, our study shows that a combination of the three MSC based criteria, LCC, LHC

and TAC, has the potential to outperform other model selection criteria, such as AIC

and BIC, in selecting the specificied or true (i.e., correct) AFT model. Our proposed

model selection criterion, TAC, as well as LHC by Müller and Welsh, tends to do better

than LCC or other model selection criteria in identifying the correct model, especially
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if the survival data studied is heavily right-skewed. Furthermore, TAC has displayed

a more consistent performance and appeared less affected by the distribution shape of

the data.

The three MSC based model selection criteria under our framework often (> 50%)

select same model although not always. When they do not select same model, we

suggest that a model may be chosen on the basis of voting, i.e., the model selected by

more criteria may be chosen. This may lead to the study of model averaging approach

studied by Claeskens and Hjort (2008).

A user-friendly tool for our model selection framework established has been devel-

oped in the statistical computing project R. The tool incorporates all model selection

criteria under the framework, and results in a few graphs and tables. This makes model

selection using our framework relatively easy. Users only need to apply the tool in R

appropriately, and then examine the graphs and tables generated from it to identify the

model to be selected. Having the tool ready for use would encourage the application

of our model selection framework in practice.

Two bootstrapping schemes suggested in this thesis can be utilised to provide addi-

tional information for model or variable selection. Using one of the two bootstrapping

schemes, a model detection plot can be constructed to help selecting the best model. In

addition, the order of importance among covariates considered can be visualised via a

variable inclusion plot that can be produced. These are particularly useful when there

are more than one best models identified by the framework. The programming codes

written and used for those bootstrapping schemes have not yet been included into the

R tool developed for our AFT model selection framework, since running these program-

ming codes for bootstrapping requires impractically long time. Thus including those

programming codes into the tool would limit its use in practice, unless some parallel

computing techniques can be utilised in the future to make it more efficient (Matloff,

2016).

The model selection framework for AFT models has opened up new insight into

model selection in survival analysis. This framework can handle models that have

continuous, binary and general categorical (ordinal or nominal with more than two

categories) covariates. Using this framework, a large number of covariates can be han-

dled, although the number of possible models increases exponentially with the number
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of covariates considered. One way to overcome this problem is to reduce the number of

models considered via some initial screening of all possible models, such as incorporat-

ing the lasso approach (Tibshirani, 1997) inside the model selection framework. This

can be investigated in a future study. Note that the model selection framework for

AFT models established in this thesis has not been applied to models with interaction

terms between covariates due to time limit, but will be investigated in the future. The

study of group lasso by Meier et al. (2008) may give some ideas for investigation of

such interactions. It is also notable that the bootstrapping for model selection used in

this thesis is based on LCC. However, the potential of using TAC in the bootstrapping

for model selection is worth to be investigated in the future. This may be done by

computing, for each model considered, the proportion that the model appears on the 1

rank model selection curve with the largest triangle area across all bootstrap replica-

tions. It needs to mention again that the three MSC based model selection criteria may

not be suitable for data with relatively small sample size (n) and very large number of

covariates (p), i.e., p � n. Model selection for such high dimensional data in survival

analysis has been considered in the literature (e.g., Gui and Li (2005), Ma and Huang

(2007), Wang et al. (2008), Huang and Ma (2010) etc.) and combining them with the

three MSC based model selection criteria will again be a future research topic.

To conclude, our established model selection framework for AFT models is consid-

ered a good addition for handling model selection problems in survival analysis. The

user-friendly R tool developed for this framework improves the model selection process

for users and makes the framework reasonably easy to apply in practice.
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A
Main Functions for the R Tool

aftmsc is the main function of the R tool developed for the proposed model selection

framework for AFT model selection. R code for this function is given below.

require(survival) # Need survreg and Surv

aftmsc = function(formula, data, distn = 'weibull'

,lambda, intercept = TRUE){

Call <- match.call()

indx <- match(c("formula", "data"), names(Call), nomatch = 0)

if (indx[1]==0)

stop("A formula argument is required")

temp <- Call[c(1L, indx)]

temp[[1L]] = quote(stats::model.frame)

if (missing(data))

{ temp$formula <- terms(formula)}

else{ temp$formula = terms(formula,data=data)}
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m <- eval(temp,parent.frame())

Terms <- attr(m, "terms")

Xlabels = attr(Terms,"term.labels")

Y <- model.extract(m, "response")

if (!inherits(Y, "Surv"))

{stop("Response must be a survival object")}

X <- model.matrix(Terms, m)

mu = length(unique(attr(X,"assign")))-1

n = nrow(X)

if (intercept == TRUE) {D=DSM(mu)} else

{D = DSM(mu+1,FALSE)} #No. of covariates without the intercept

if (missing(lambda)){lambda=seq(0,4*log(n),.01)}

M=surv.gic(Y,X,distn,lambda,D)

r=apply(M,2,rank)

# models that have rank 1 at each lambda

rank1model = which(r == 1, arr.ind=TRUE)[,1]

# finding out where the changes of model occur

lambdaindex.changeinmodel = (1:length(rank1model))

[c(FALSE, diff(rank1model)!=0)]

if (length(lambdaindex.changeinmodel)>1){

if (lambdaindex.changeinmodel[length(lambdaindex.changeinmodel)

-1] == lambdaindex.changeinmodel[length(lambdaindex.changeinmodel)

]){

lambdaindex.changeinmodel = lambdaindex.changeinmodel

[-length(lambdaindex.changeinmodel)]

}

}

q=sort(table(which(r == 1, arr.ind=TRUE)[,1]),decreasing = TRUE)

if (sum(duplicated(q))!=0){

duplicatedmodel = names(q[q[duplicated(q)] == q])

orderedduplicatedmodel = duplicatedmodel[order(apply

(D[as.numeric(duplicatedmodel),],1,sum))]
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q[duplicatedmodel] = q[orderedduplicatedmodel]

}

rank1model.sub = rank1model[c(1,lambdaindex.changeinmodel)]

#Finding lambda values where models have rank 1

new.l.v=sort(lambda[c(1,lambdaindex.changeinmodel

, length(lambda))],decreasing=TRUE)

#Determining Cathetus lengths, hypotenuse lengths, and TAC values

cat.length=sort(-diff(new.l.v),decreasing=TRUE)

# palpha in hypotenuse formula

if (is.null(dim(D[c(as.numeric(names(q))),])))

{model.dim = sum(D)} else

{model.dim=apply(D[c(as.numeric(names(q))),],1,sum)}

if (length(cat.length) != length(model.dim))

{cat.length = cat.length[1:length(model.dim)]}

hyp.length=cat.length*sqrt(1+model.dim^2)

TAC=(1/2)*cat.length^2*model.dim

TAC.sqrt=sqrt(TAC)

Model.num=as.numeric(names(q))

lengths=cbind(Model.num,cat.length,hyp.length,TAC.sqrt)

#Used in TAC and hyp plot to get legends_row according to ascending

q.TAC=q[order(-TAC.sqrt)]

q.hyp=q[order(-hyp.length)]

out=list(M = M, r = r, D = D, rank1model.sub = rank1model.sub

, lambda = lambda, mu=mu , rank1model=rank1model

, lambdaindex.changeinmode l= lambdaindex.changeinmodel

, q = q, q.hyp = q.hyp, q.TAC = q.TAC

, new.l.v=new.l.v,cathetus.hypotenuse.TAC = lengths,

Y = Y, X = X, Xlab = c("Intercept",Xlabels))

class(out) = "msc"

return(out)

}
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B
Sub-functions in the R Tool

Two important sub-functions, DSM and surv.gic, are described below.

DSM: DSM is an internal sub-function to generate a list of all submodels. This

sub-function is meant to be used within some other function and sub-function (e.g.,

aftmsc and surv.gic). A call to this function is

DSM(n.s, intcpt = TRUE).

Here, n.s is the number of variables to be considered in the model selection framework.

If intcpt = TRUE, then an intercept term will be added to all submodels. For example,

if we have four covariates and all models include the intercept term, then we set n.s

= 4 in the DSM sub-function to get list of models. It returns an indicator matrix of 0’s

and 1’s with 0’s indicating the variable is not included and 1 the variable is included.

surv.gic: surv.gic is also a sub-function, which is used within a main function

(e.g., aftmsc). This function is called by

surv.gic(Y, X, distn, lambda, D).
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Here Y is a response variable, and it must be a survival object, which may be obtained

by using the Surv function from the R package “survival”, X is the covariate matrix,

any distribution of response variable is specified at distn. The argument lambda (λ)

is the penalty multiplier, which can take a range of values (e.g., λ ∈ [0, 4 log(n)]),

and D is the matrix obtained from the DSM sub-function. The sub-function surv.gic

computes the GIC under the AFT model.

The R code for the two sub-functions are given below.

DSM = function(n.s,intcpt = TRUE){

D = NULL

for(i in 1:n.s){

D0 = cbind(0L,D)

D1 = cbind(1L,D)

D = rbind(D0,D1)

}

if (intcpt == TRUE){D = cbind(1L,D)} else {D = D[-1,]}

return(D[order(apply(D,1,sum)),])

} # end DSM function

surv.gic=function(Y,X,distn,lambda,D){

RES = NULL;

nr.D = dim(D)[1];

n = nrow(X);

D.temp = NULL

for (i in 1:nr.D){

D.temp = rbind(D.temp,rep(D[i,],table(attr(X,"assign"))))}

nc.D = dim(D.temp)[2];

D.c = D.temp %*% diag(1:nc.D)

for(d in 1:nr.D){

d.c = D.c[d,]

d.c = d.c[d.c>0]

X.dat = X[,d.c]

out=survreg(Y~-1+X.dat,dist=distn)
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p=ncol(model.matrix(out))

gic=-2*out$loglik[2]+lambda*p

RES = rbind(RES,gic)

}

return(RES)

} # end surv.gic function
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C
Additional R Programs

In order to run the following codes we require several R packages, including survival,

boot (Canty and Ripley, 2015; Davison and Hinkley, 1997), plyr (Wickham, 2011) and

data.table (Dowle et al., 2015), MASS (Venables and Ripley, 2002) and matrixcalc

(Novomestky, 2012).

C.1 Sample R codes for bootstrapping

##some R Packages required

require(survival);require(boot); require(plyr); require(data.table)

surv.gic.simul=function(D,dat,lambda){

RES = NULL;

nr.D = dim(D)[1];

nc.D = dim(D)[2];

n = nrow(dat);
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D.c = D %*% diag(1:nc.D)

for(d in 1:nr.D){

d.c = D.c[d,]

d.c = d.c[d.c>0]

X=dat[,-c(1,2)]

Xdata = cbind(1L,X)

X.dat = Xdata[,d.c]

if(dim(as.matrix(X.dat))[2] == 1)

out = survreg(Surv(time =T, event = event) ~ -1+., data = data.frame(T

= dat$T, event=dat$event,X.dat)) else

out=survreg(Surv(time=T,event=event)~., data = data.frame(T

=dat$T, event = dat$event, X.dat[,-1]))

p=ncol(model.matrix(out))

gic=-2*out$loglik[2]+lambda*p

RES = rbind(RES,gic)

}

return(RES)

}

T = ovarian$futime; event = ovarian$fustat

work.dat = data.frame(T, event, ovarian$age, ovarian$resid.ds

, ovarian$rx, ovarian$ecog.ps)

n = nrow(work.dat)

lambda = seq(0, 4*log(n), .01)

mu = ncol(work.dat)-2

D = DSM(mu)

##Bootstraping

R=1000

b.fun <- function(data) {

mean.dat=mean(data$T)

mean.dat

}

set.seed(100)



C.1 Sample R codes for bootstrapping 121

#Ordinary bootstrapping

b.work.dat <- censboot(work.dat, b.fun, R)

#stratified bootstrapping

#b.work.dat <- censboot(work.dat, b.fun, R, strata = work.dat$event)

bt = boot.array(b.work.dat, indices = TRUE)

#prob function calculates probability of selecting a model

prob = function(V){

out = matrix(data = NA, nrow = nrow(D), ncol = 1)

for (j in 1:1){

for (i in 1:nrow(D)){

r = apply(V, 2, rank)

out[i, j] = ifelse(length(V[i, ][r[i, ] == 1]) > 0

, length(V[i, ][r[i, ] == 1])/length(lambda), 0)

}}

return(out)

}

Pmat = matrix(0, nrow = nrow(D), ncol = R)

for (h in 1:R){

boot.dat = work.dat[bt[h, ], ]

M2=surv.gic.simul(D, boot.dat, lambda)

Pmat[,h]=prob(M2)

}

Pmat

P.alpha = matrix(0, nrow = nrow(D), ncol = 1)

for (q in 1:nrow(D)){

pbar=mean(Pmat[q, ])

P.alpha[q, ]=pbar

}

P.alpha

model.show = function(W){

test = matrix(0, nrow = length(lambda), ncol = 1)

for (t in 1:1){
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for (s in 1:length(lambda)){

test[s, t]=order(W[, s])[1]

}}

return(test)

}

Mmat = matrix(0, nrow = length(lambda), ncol = R)

for (h in 1:R){

boot.dat=work.dat[bt[h, ], ]

M3=surv.gic.simul(D, boot.dat, lambda)

Mmat[, h]=model.show(M3)

}

Mmat

Mcount.lambda = function(Mmat){

Model.freq=matrix(0, nrow = nrow(Mmat), ncol = max(Mmat))

Model.freq

for (k in 1:nrow(Mmat)){

for (i in 1:max(Mmat)){

for (j in 1:ncol(Mmat)){

if (Mmat[k, j] == i){Model.freq[k, i] = count(Mmat[k, ] == i)[2, 2]}

}

}

Model.freq

for (l in 1:max(Mmat)){

index = which(is.na(Model.freq[, l]) == TRUE)

Model.freq[index, l] = length(Mmat[index, ])

}

}

Model.freq

}

Modelcount = Mcount.lambda(Mmat)

Model.p = Modelcount/R

#Find model which have selection probaility >4%
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mdl.no = c()

for (e in 1:nrow(D)){

if (P.alpha[e, ] > .04) mdl = e else mdl = 0

mdl.no = c(mdl.no, mdl)

mdl.no

}

mdl.no[mdl.no > 0]

M1.p = Model.p[, 1]; M5.p = Model.p[, 5]

M10.p = Model.p[, 10]; M11.p = Model.p[, 11]

M15.p = Model.p[, 15]; M16.p = Model.p[,16]

plot(lambda, M5.p, type = 'l', col =1, ylim = c(0,1),

xlab = expression(paste(lambda)), ylab = "Bootstrapped probability")

lines(lambda,M1.p, lty = 2, col = 2)

lines(lambda, M10.p, lty = 3, col = 3)

lines(lambda, M11.p, lty = 4, col = 4)

lines(lambda, M15.p, lty = 5, col = 5)

lines(lambda,M16.p, lty = 6, col = 6)

legend("topright", legend = c("{1,2}", "{1}", "{1,2,4}", "{1,2,3}"

, "{1,2,3,4}", "{1,2,3,4,5}"), lty = 1:6, col = 1:6)

Vcount = matrix(0, nrow = nrow(Modelcount), ncol = ncol(D))

for (i in 1:nrow(Modelcount)){

L12 = matrix(0, nrow = ncol(Modelcount), ncol = ncol(D))

for (j in 1:ncol(Modelcount)){

L12[j, ] = Modelcount[i, j]*D[j, ]

}

L12

L1 = colSums(L12)

L1

Vcount[i, ] = L1

}

Vcount

V.p = Vcount/R
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x1.p = V.p[, 2]

x2.p = V.p[, 3]

x3.p = V.p[, 4]

x4.p = V.p[, 5]

plot(lambda, x1.p, type = 'l', xlab = expression(paste(lambda))

,ylab = "Bootstrapped probability", ylim = c(0, 1), col=1)

lines(lambda, x2.p, lty = 2, col = 2)

lines(lambda, x3.p, lty = 3, col = 3)

lines(lambda, x4.p, lty = 4, col = 4)

legend("topright", legend = c("x1","x2","x3","x4")

, lty = 1:4, col = c(1,2,3,4))

C.2 Sample R codes for Monte Carlo simulation

library(boot)

library(plyr) #for count function

library("survival")

library("MASS")

library("data.table")

library("matrixcalc")

DSM = function(n.s,intcpt = TRUE){

if (intcpt == FALSE){n.s = n.s}

D = NULL

for(i in 1:n.s){

D0 = cbind(0L,D)

D1 = cbind(1L,D)

D = rbind(D0,D1)

}

if (intcpt == TRUE){D = cbind(1L,D)}

return(D[order(apply(D,1,sum)),])

}

surv.gic.simul=function(D,dat,lambda){
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RES = NULL;

nr.D = dim(D)[1];

nc.D = dim(D)[2];

n = nrow(dat);

D.c = D %*% diag(1:nc.D)

for(d in 1:nr.D){

d.c = D.c[d,]

d.c = d.c[d.c>0]

X=dat[,-c(1,2)]

Xdata=cbind(1L,X)

X.dat = Xdata[,d.c]

if(dim(as.matrix(X.dat))[2]==1)

out=survreg(Surv(time=T,event=event)~-1+.,data=data.frame

(T=dat$T,event=dat$event,X.dat)) else

out=survreg(Surv(time=T,event=event)~.,data=data.frame

(T=dat$T,event=dat$event,X.dat[,-1]))

p=ncol(model.matrix(out))

gic=-2*out$loglik[2]+lambda*p

RES = rbind(RES,gic)

}

return(RES)

}

#generating observations for model {1, 4, 5}

n=500000

mu=c(0,0,0,0)

cor.mat=as.matrix(rbind(c(1,.001,.001,.001),

c(.001,1,.001,.001),

c(.001,.001,1,.001),

c(.001,.001,.001,1)))

SD<-rep(1,length(mu))

S<-cor.mat*(SD%*%t(SD))

if (is.positive.definite(S)==!TRUE)
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stop("A positive definite S is required")

set.seed(600)

X=mvrnorm(n,mu,S)

colnames(X)=c("X1","X2","X3","X4")

y=1:nrow(X)

d=data.frame(y,X)

out5=lm(y~.,data=d)

designX=model.matrix(out5)

beta=c(0.1, 0, 0, 0.9, 0.8)

inter=log(3)

scale.event=exp((designX%*%beta))

scale.cens=scale.event*exp(inter*rep(1,n))

T = rweibull(n, shape=2, scale=scale.event)

C = rweibull(n, shape=2, scale=scale.cens)

time = pmin(T,C)

event = time==T

cens.prop=1-mean(event)

newd=d[,-1]

gen.dat_145<-data.frame(T=time,event,newd)

set.seed(600)

r1.model=NULL;AIC.m=NULL;BIC.m=NULL

LHC.m_300s1=NULL;TAC.m_300s1=NULL

for (s in 1:100){

n1=300

s1_270=gen.dat_145[sample(which(gen.dat_145$event=="TRUE")

,n1*.90,replace=TRUE),]

s2_30=gen.dat_145[sample(which(gen.dat_145$event=="FALSE")

,n1*.10,replace=TRUE),]

work.dat1=rbind(s1_270,s2_30)

D=DSM(length(mu))

lambda=seq(0,4*log(n1),.01)

M1_300s1=surv.gic.simul(D,work.dat1,lambda)
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r_300s1=apply(M1_300s1,2,rank)

q_300s1=table(which(r_300s1 == 1, arr.ind=TRUE)[,1])

q_300s1

lam.r1.300s1=c()

for (i in 1:nrow(D)){

lam.r1.300s1[i]=max(lambda[r_300s1[i,]<=1])

}

lam.r1.300s1

lam.r1.300s1[which(lam.r1.300s1!=-Inf)]

hyp.length.300s1=c()

cat.length.300s1=c()

for (i in 1:length(lam.r1.300s1[which(lam.r1.300s1!=-Inf)])){

if (i+1>length(lam.r1.300s1[which(lam.r1.300s1!=-Inf)]))

c1=min(lam.r1.300s1[which(lam.r1.300s1!=-Inf)])*sqrt(1+(sum(D

[which(lam.r1.300s1!=-Inf)[i],]))^2) else

c1=(lam.r1.300s1[which(lam.r1.300s1!=-Inf)][i]-lam.r1.300s1[which

(lam.r1.300s1!=-Inf)][i+1])*sqrt(1+(sum(D

[which(lam.r1.300s1!=-Inf)[i],]))^2)

hyp.length.300s1[i]=c1

if (i+1>length(lam.r1.300s1[which(lam.r1.300s1!=-Inf)]))

cat.length=min(lam.r1.300s1[which(lam.r1.300s1!=-Inf)]) else

cat.length=(lam.r1.300s1[which(lam.r1.300s1!=-Inf)][i]

-lam.r1.300s1[which(lam.r1.300s1!=-Inf)][i+1])

cat.length.300s1[i]=cat.length

}

hyp.length.300s1

cat.length.300s1

hyp.longest.m=which(lam.r1.300s1!=-Inf)[which

(hyp.length.300s1==max(hyp.length.300s1))]

LHC.m_300s1=c(hyp.longest.m,LHC.m_300s1)

LHC.m_300s1

if (is.matrix(D[which(lam.r1.300s1!=-Inf),])==TRUE)
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area=(1/2)*(cat.length.300s1^2)*apply(D

[which(lam.r1.300s1!=-Inf),],1,sum) else

area=(1/2)*(cat.length.300s1^2)*sum(D[which(lam.r1.300s1!=-Inf),])

area.largest=which(lam.r1.300s1!=-Inf)[which(area==max(area))]

TAC.m_300s1=c(area.largest,TAC.m_300s1)

TAC.m_300s1

BICm=which(r_300s1==1,arr.ind=TRUE)[,1][lambda==round(log(n1),1)]

BIC.m=c(BIC.m,BICm)

BIC.m

AICm=which(r_300s1==1,arr.ind=TRUE)[,1][lambda==2]

AIC.m=c(AIC.m,AICm)

AIC.m

o=order(q_300s1);bc=q_300s1[o[length(q_300s1)]];

r1.model=c(r1.model,bc)

}

r1.model;f=count(labels(r1.model))

LCC.ppn_300s1=count(labels(r1.model))$freq/sum(count

(labels(r1.model))$freq)

LCC.tab_300s1=cbind(f,LCC.ppn_300s1)

a1=data.table(LCC.tab_300s1)

LCC.tab_300s1=a1[order(-a1$LCC.ppn_300s1)]

LCC.tab_300s1

LHC.ppn_300s1=table(LHC.m_300s1)/sum(table(LHC.m_300s1))

LHC.tab_300s1=sort(LHC.ppn_300s1,decreasing=TRUE)

LHC.tab_300s1

TAC.ppn_300s1=table(TAC.m_300s1)/sum(table(TAC.m_300s1))

TAC.tab_300s1=sort(TAC.ppn_300s1,decreasing=TRUE)

TAC.tab_300s1

freq.AIC=count(AIC.m)

AIC.ppn_300s1=freq.AIC$freq/sum(freq.AIC$freq)

AIC.tab_300s1=cbind(freq.AIC,AIC.ppn_300s1)

a2=data.table(AIC.tab_300s1)
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AIC.tab_300s1=a2[order(-a2$AIC.ppn_300s1)]

AIC.tab_300s1

freq.BIC=count(BIC.m)

BIC.ppn_300s1=freq.BIC$freq/sum(freq.BIC$freq)

BIC.tab_300s1=cbind(freq.BIC,BIC.ppn_300s1)

a3=data.table(BIC.tab_300s1)

BIC.tab_300s1=a3[order(-a3$BIC.ppn_300s1)]

BIC.tab_300s1

#generating observations for model {1, 4}

n=500000

mu=c(0,0,0,0)

cor.mat=as.matrix(rbind(c(1,.001,.001,.001),

c(.001,1,.001,.001),

c(.001,.001,1,.001),

c(.001,.001,.001,1)))

SD<-rep(1,length(mu))

S<-cor.mat*(SD%*%t(SD))

if (is.positive.definite(S)==!TRUE)

stop("A positive definite S is required")

set.seed(600)

X=mvrnorm(n,mu,S)

colnames(X)=c("X1","X2","X3","X4")

y=1:nrow(X)

d=data.frame(y,X)

out5=lm(y~.,data=d)

designX=model.matrix(out5)

beta=c(0.1, 0, 0, 0.9, 0)

inter=log(3)

scale.event=exp((designX%*%beta))

scale.cens=scale.event*exp(inter*rep(1,n))

T = rweibull(n, shape=2, scale=scale.event)

C = rweibull(n, shape=2, scale=scale.cens)
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time = pmin(T,C)

event = time==T

cens.prop=1-mean(event)

newd=d[,-1]

gen.dat_14<-data.frame(T=time,event,newd)

set.seed(600)

r1.model=NULL; AIC.m=NULL; BIC.m=NULL

LHC.m_300s2=NULL;TAC.m_300s2=NULL;

for (s in 1:100){

n2=300

s1_270=gen.dat_14[sample(which(gen.dat_14$event=="TRUE")

,n2*.90,replace=TRUE),]

s2_30=gen.dat_14[sample(which(gen.dat_14$event=="FALSE")

,n2*.10,replace=TRUE),]

work.dat2=rbind(s1_270,s2_30)

D=DSM(length(mu))

lambda=seq(0,4*log(n2),.01)

M1_300s2=surv.gic.simul(D,work.dat2,lambda)

r_300s2=apply(M1_300s2,2,rank)

q_300s2=table(which(r_300s2 == 1, arr.ind=TRUE)[,1])

q_300s2

lam.r1.300s2=c()

for (i in 1:nrow(D)){

lam.r1.300s2[i]=max(lambda[r_300s2[i,]<=1])

}

lam.r1.300s2

hyp.length.300s2=c()

cat.length.300s2=c()

for (i in 1:length(lam.r1.300s2[which(lam.r1.300s2!=-Inf)])){

if (i+1>length(lam.r1.300s2[which(lam.r1.300s2!=-Inf)]))

c1=min(lam.r1.300s2[which(lam.r1.300s2!=-Inf)])*sqrt(1+(sum(D

[which(lam.r1.300s2!=-Inf)[i],]))^2) else
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c1=(lam.r1.300s2[which(lam.r1.300s2!=-Inf)][i]

-lam.r1.300s2[which(lam.r1.300s2!=-Inf)][i+1])*sqrt(1+(sum(D

[which(lam.r1.300s2!=-Inf)[i],]))^2)

hyp.length.300s2[i]=c1

if (i+1>length(lam.r1.300s2[which(lam.r1.300s2!=-Inf)]))

cat.length=min(lam.r1.300s2[which(lam.r1.300s2!=-Inf)]) else

cat.length=(lam.r1.300s2[which(lam.r1.300s2!=-Inf)][i]

-lam.r1.300s2[which(lam.r1.300s2!=-Inf)][i+1])

cat.length.300s2[i]=cat.length

}

hyp.length.300s2

cat.length.300s2

hyp.longest.m=which(lam.r1.300s2!=-Inf)[which

(hyp.length.300s2==max(hyp.length.300s2))]

LHC.m_300s2=c(hyp.longest.m,LHC.m_300s2)

LHC.m_300s2

if (is.matrix(D[which(lam.r1.300s2!=-Inf),])==TRUE)

area=(1/2)*(cat.length.300s2^2)*apply(D

[which(lam.r1.300s2!=-Inf),],1,sum) else

area=(1/2)*(cat.length.300s2^2)*sum(D[which(lam.r1.300s2!=-Inf),])

area.largest=which(lam.r1.300s2!=-Inf)[which(area==max(area))]

TAC.m_300s2=c(area.largest,TAC.m_300s2)

TAC.m_300s2

BICm=which(r_300s2==1,arr.ind=TRUE)[,1][lambda==round(log(n2),1)]

BIC.m=c(BIC.m,BICm)

BIC.m

AICm=which(r_300s2==1,arr.ind=TRUE)[,1][lambda==2]

AIC.m=c(AIC.m,AICm)

AIC.m

o=order(q_300s2);bc=q_300s2[o[length(q_300s2)]];

r1.model=c(r1.model,bc)

}
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r1.model;f=count(labels(r1.model))

LCC.ppn_300s2=count(labels(r1.model))$freq/sum(count

(labels(r1.model))$freq);

LCC.tab_300s2=cbind(f,LCC.ppn_300s2)

a4=data.table(LCC.tab_300s2)

LCC.tab_300s2=a4[order(-a4$LCC.ppn_300s2)]

LCC.tab_300s2

LHC.ppn_300s2=table(LHC.m_300s2)/sum(table(LHC.m_300s2))

LHC.tab_300s2=sort(LHC.ppn_300s2,decreasing=TRUE)

LHC.tab_300s2

TAC.ppn_300s2=table(TAC.m_300s2)/sum(table(TAC.m_300s2))

TAC.tab_300s2=sort(TAC.ppn_300s2,decreasing=TRUE)

TAC.tab_300s2

freq.AIC=count(AIC.m)

AIC.ppn_300s2=freq.AIC$freq/sum(freq.AIC$freq)

AIC.tab_300s2=cbind(freq.AIC,AIC.ppn_300s2)

a5=data.table(AIC.tab_300s2)

AIC.tab_300s2=a5[order(-a5$AIC.ppn_300s2)]

AIC.tab_300s2

freq.BIC=count(BIC.m)

BIC.ppn_300s2=freq.BIC$freq/sum(freq.BIC$freq)

BIC.tab_300s2=cbind(freq.BIC,BIC.ppn_300s2)

a6=data.table(BIC.tab_300s2)

BIC.tab_300s2=a6[order(-a6$BIC.ppn_300s2)]

BIC.tab_300s2

set.seed(600)

r1.model=NULL; AIC.m=NULL; BIC.m=NULL

LHC.m_150s1=NULL;TAC.m_150s1=NULL

for (s in 1:100){

n3=150

s1_135=gen.dat_145[sample(which(gen.dat_145$event=="TRUE")

,n3*.90,replace=TRUE),]
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s2_15=gen.dat_145[sample(which(gen.dat_145$event=="FALSE")

,n3*.10,replace=TRUE),]

work.dat3=rbind(s1_135,s2_15)

D=DSM(length(mu))

lambda=seq(0,4*log(n3),.01)

M1_150s1=surv.gic.simul(D,work.dat3,lambda)

r_150s1=apply(M1_150s1,2,rank)

q_150s1=table(which(r_150s1 == 1, arr.ind=TRUE)[,1])

q_150s1

lam.r1.150s1=c()

for (i in 1:nrow(D)){

lam.r1.150s1[i]=max(lambda[r_150s1[i,]<=1])

}

lam.r1.150s1

hyp.length.150s1=c()

cat.length.150s1=c()

for (i in 1:length(lam.r1.150s1[which(lam.r1.150s1!=-Inf)])){

if (i+1>length(lam.r1.150s1[which(lam.r1.150s1!=-Inf)]))

c1=min(lam.r1.150s1[which(lam.r1.150s1!=-Inf)])*sqrt(1+(sum(D

[which(lam.r1.150s1!=-Inf)[i],]))^2) else

c1=(lam.r1.150s1[which(lam.r1.150s1!=-Inf)][i]

-lam.r1.150s1[which(lam.r1.150s1!=-Inf)][i+1])*sqrt(1+(sum(D

[which(lam.r1.150s1!=-Inf)[i],]))^2)

hyp.length.150s1[i]=c1

if (i+1>length(lam.r1.150s1[which(lam.r1.150s1!=-Inf)]))

cat.length=min(lam.r1.150s1[which(lam.r1.150s1!=-Inf)]) else

cat.length=(lam.r1.150s1[which(lam.r1.150s1!=-Inf)][i]

-lam.r1.150s1[which(lam.r1.150s1!=-Inf)][i+1])

cat.length.150s1[i]=cat.length

}

hyp.length.150s1

cat.length.150s1
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hyp.longest.m=which(lam.r1.150s1!=-Inf)[which

(hyp.length.150s1==max(hyp.length.150s1))]

LHC.m_150s1=c(hyp.longest.m,LHC.m_150s1)

LHC.m_150s1

if (is.matrix(D[which(lam.r1.150s1!=-Inf),])==TRUE)

area=(1/2)*(cat.length.150s1^2)*apply(D

[which(lam.r1.150s1!=-Inf),],1,sum) else

area=(1/2)*(cat.length.150s1^2)*sum(D[which(lam.r1.150s1!=-Inf),])

area.largest=which(lam.r1.150s1!=-Inf)[which(area==max(area))]

TAC.m_150s1=c(area.largest,TAC.m_150s1)

TAC.m_150s1

BICm=which(r_150s1==1,arr.ind=TRUE)[,1][lambda==round(log(n3),1)]

BIC.m=c(BIC.m,BICm)

BIC.m

AICm=which(r_150s1==1,arr.ind=TRUE)[,1][lambda==2]

AIC.m=c(AIC.m,AICm)

AIC.m

o=order(q_150s1);bc=q_150s1[o[length(q_150s1)]];

r1.model=c(r1.model,bc)

}

r1.model;f=count(labels(r1.model))

LCC.ppn_150s1=count(labels(r1.model))$freq/sum(count

(labels(r1.model))$freq);

LCC.tab_150s1=cbind(f,LCC.ppn_150s1)

a7=data.table(LCC.tab_150s1)

LCC.tab_150s1=a7[order(-a7$LCC.ppn_150s1)]

LCC.tab_150s1

LHC.ppn_150s1=table(LHC.m_150s1)/sum(table(LHC.m_150s1))

LHC.tab_150s1=sort(LHC.ppn_150s1,decreasing=TRUE)

LHC.tab_150s1

TAC.ppn_150s1=table(TAC.m_150s1)/sum(table(TAC.m_150s1))

TAC.tab_150s1=sort(TAC.ppn_150s1,decreasing=TRUE)
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TAC.tab_150s1

freq.AIC=count(AIC.m)

AIC.ppn_150s1=freq.AIC$freq/sum(freq.AIC$freq)

AIC.tab_150s1=cbind(freq.AIC,AIC.ppn_150s1)

a8=data.table(AIC.tab_150s1)

AIC.tab_150s1=a8[order(-a8$AIC.ppn_150s1)]

AIC.tab_150s1

freq.BIC=count(BIC.m)

BIC.ppn_150s1=freq.BIC$freq/sum(freq.BIC$freq)

BIC.tab_150s1=cbind(freq.BIC,BIC.ppn_150s1)

a9=data.table(BIC.tab_150s1)

BIC.tab_150s1=a9[order(-a9$BIC.ppn_150s1)]

BIC.tab_150s1

set.seed(600)

r1.model=NULL; AIC.m=NULL; BIC.m=NULL

LHC.m_150s2=NULL;TAC.m_150s2=NULL;

for (s in 1:100){

n4=150

s1_135=gen.dat_14[sample(which(gen.dat_14$event=="TRUE")

,n4*.90,replace=TRUE),]

s2_15=gen.dat_14[sample(which(gen.dat_14$event=="FALSE")

,n4*.10,replace=TRUE),]

work.dat4=rbind(s1_135,s2_15)

D=DSM(length(mu))

lambda=seq(0,4*log(n4),.01)

M1_150s2=surv.gic.simul(D,work.dat4,lambda)

r_150s2=apply(M1_150s2,2,rank)

q_150s2=table(which(r_150s2 == 1, arr.ind=TRUE)[,1])

q_150s2

lam.r1.150s2=c()

for (i in 1:nrow(D)){

lam.r1.150s2[i]=max(lambda[r_150s2[i,]<=1])
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}

lam.r1.150s2

hyp.length.150s2=c()

cat.length.150s2=c()

for (i in 1:length(lam.r1.150s2[which(lam.r1.150s2!=-Inf)])){

if (i+1>length(lam.r1.150s2[which(lam.r1.150s2!=-Inf)]))

c1=min(lam.r1.150s2[which(lam.r1.150s2!=-Inf)])*sqrt(1+(sum(D

[which(lam.r1.150s2!=-Inf)[i],]))^2) else

c1=(lam.r1.150s2[which(lam.r1.150s2!=-Inf)][i]

-lam.r1.150s2[which(lam.r1.150s2!=-Inf)][i+1])*sqrt(1+(sum(D

[which(lam.r1.150s2!=-Inf)[i],]))^2)

hyp.length.150s2[i]=c1

if (i+1>length(lam.r1.150s2[which(lam.r1.150s2!=-Inf)]))

cat.length=min(lam.r1.150s2[which(lam.r1.150s2!=-Inf)]) else

cat.length=(lam.r1.150s2[which(lam.r1.150s2!=-Inf)][i]

-lam.r1.150s2[which(lam.r1.150s2!=-Inf)][i+1])

cat.length.150s2[i]=cat.length

}

hyp.length.150s2

cat.length.150s2

hyp.longest.m=which(lam.r1.150s2!=-Inf)[which

(hyp.length.150s2==max(hyp.length.150s2))]

LHC.m_150s2=c(hyp.longest.m,LHC.m_150s2)

LHC.m_150s2

if (is.matrix(D[which(lam.r1.150s2!=-Inf),])==TRUE)

area=(1/2)*(cat.length.150s2^2)*apply(D

[which(lam.r1.150s2!=-Inf),],1,sum) else

area=(1/2)*(cat.length.150s2^2)*sum(D[which(lam.r1.150s2!=-Inf),])

area.largest=which(lam.r1.150s2!=-Inf)[which(area==max(area))]

TAC.m_150s2=c(area.largest,TAC.m_150s2)

TAC.m_150s2

BICm=which(r_150s2==1,arr.ind=TRUE)[,1][lambda==round(log(n4),1)]
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BIC.m=c(BIC.m,BICm)

BIC.m

AICm=which(r_150s2==1,arr.ind=TRUE)[,1][lambda==2]

AIC.m=c(AIC.m,AICm)

AIC.m

o=order(q_150s2);bc=q_150s2[o[length(q_150s2)]];

r1.model=c(r1.model,bc)

}

r1.model;f=count(labels(r1.model))

LCC.ppn_150s2=count(labels(r1.model))$freq/sum(count

(labels(r1.model))$freq);

LCC.tab_150s2=cbind(f,LCC.ppn_150s2)

LCC.tab_150s2

a10=data.table(LCC.tab_150s2)

LCC.tab_150s2=a10[order(-a10$LCC.ppn_150s2)]

LCC.tab_150s2

LHC.ppn_150s2=table(LHC.m_150s2)/sum(table(LHC.m_150s2))

LHC.tab_150s2=sort(LHC.ppn_150s2,decreasing=TRUE)

LHC.tab_150s2

TAC.ppn_150s2=table(TAC.m_150s2)/sum(table(TAC.m_150s2))

TAC.tab_150s2=sort(TAC.ppn_150s2,decreasing=TRUE)

TAC.tab_150s2

freq.AIC=count(AIC.m)

AIC.ppn_150s2=freq.AIC$freq/sum(freq.AIC$freq)

AIC.tab_150s2=cbind(freq.AIC,AIC.ppn_150s2)

a11=data.table(AIC.tab_150s2)

AIC.tab_150s2=a11[order(-a11$AIC.ppn_150s2)]

AIC.tab_150s2

freq.BIC=count(BIC.m)

BIC.ppn_150s2=freq.BIC$freq/sum(freq.BIC$freq)

BIC.tab_150s2=cbind(freq.BIC,BIC.ppn_150s2)

a12=data.table(BIC.tab_150s2)
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BIC.tab_150s2=a12[order(-a12$BIC.ppn_150s2)]

BIC.tab_150s2

LiM=list(LCC.tab_300s1,LHC.tab_300s1,TAC.tab_300s1

,AIC.tab_300s1,BIC.tab_300s1,

LCC.tab_300s2,LHC.tab_300s2,TAC.tab_300s2

,AIC.tab_300s2,BIC.tab_300s2,

LCC.tab_150s1,LHC.tab_150s1,TAC.tab_150s1

,AIC.tab_150s1,BIC.tab_150s1,

LCC.tab_150s2,LHC.tab_150s2,TAC.tab_150s2

,AIC.tab_150s2,BIC.tab_150s2)

LiM

my_names=c("LCC","LHC","TAC","AIC","BIC"

,"LCC","LHC","TAC","AIC","BIC"

,"LCC","LHC","TAC","AIC","BIC"

,"LCC","LHC","TAC","AIC","BIC")

setNames(LiM, my_names)
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D.1 Ovarian cancer data from R package survival

> library(survival)

> ovarian

futime fustat age resid.ds rx ecog.ps

1 59 1 72.3315 2 1 1

2 115 1 74.4932 2 1 1

3 156 1 66.4658 2 1 2

4 421 0 53.3644 2 2 1

5 431 1 50.3397 2 1 1

6 448 0 56.4301 1 1 2

7 464 1 56.9370 2 2 2

8 475 1 59.8548 2 2 2

9 477 0 64.1753 2 1 1
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10 563 1 55.1781 1 2 2

11 638 1 56.7562 1 1 2

12 744 0 50.1096 1 2 1

13 769 0 59.6301 2 2 2

14 770 0 57.0521 2 2 1

15 803 0 39.2712 1 1 1

16 855 0 43.1233 1 1 2

17 1040 0 38.8932 2 1 2

18 1106 0 44.6000 1 1 1

19 1129 0 53.9068 1 2 1

20 1206 0 44.2055 2 2 1

21 1227 0 59.5890 1 2 2

22 268 1 74.5041 2 1 2

23 329 1 43.1370 2 1 1

24 353 1 63.2192 1 2 2

25 365 1 64.4247 2 2 1

26 377 0 58.3096 1 2 1
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D.2 List of abbreviations and acronyms

Table D.1: Abbreviations and acronyms

AFT Accelerated failure time
AIC Akaike information criterion
ALP Alkaline phosphatise
BIC Bayesian information criterion

CA125 Cancer Antigen 125
CI Confidence interval

EGFR Epidermal growth factor receptor
GIC Generalised information criterion
IQR Inter-quartile range
K-M Kaplan-Meier
lasso least absolute shrinkage and selection operator
LCC Longest cathetus criterion
LHC Longest hypotenuse criterion
MAD Median absolute deviation
MLE Maximum likelihood estimate
MSC Model selection curves
pdf probability density function
RD Residual disease

RPA Royal Prince Alfred
SCAD Smoothly clipped absolute deviation

SD Standard deviation
SE Standard error

TAC Triangle area criterion
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D.3 Number of patients at risk (n.risk) and dy-

ing (n.event) at each time point, Ŝ(t) (survival

function) with SE and 95% CI for RPA data

time n.risk n.event survival SE lower 95% CI upper 95% CI

0.0438 333 1 0.997 0.00300 0.979 1.000

0.0575 331 1 0.994 0.00424 0.976 0.998

0.0767 329 1 0.991 0.00519 0.972 0.997

0.0794 328 1 0.988 0.00599 0.968 0.995

0.1314 324 1 0.985 0.00670 0.964 0.994

0.1834 322 1 0.982 0.00735 0.960 0.992

0.1971 321 1 0.979 0.00794 0.956 0.990

0.2218 319 1 0.976 0.00848 0.952 0.988

0.2245 318 1 0.973 0.00900 0.948 0.986

0.2656 314 1 0.970 0.00949 0.944 0.983

0.2683 312 1 0.966 0.00995 0.940 0.981

0.3066 309 1 0.963 0.01040 0.936 0.979

0.3368 307 1 0.960 0.01083 0.932 0.977

0.3641 305 1 0.957 0.01124 0.928 0.974

0.3723 304 1 0.954 0.01164 0.925 0.972

0.4873 291 1 0.951 0.01205 0.921 0.969

0.5339 287 1 0.947 0.01245 0.917 0.967

0.5941 284 1 0.944 0.01285 0.912 0.964

0.6379 281 1 0.941 0.01323 0.908 0.962

0.6845 273 1 0.937 0.01363 0.904 0.959

0.7365 269 1 0.934 0.01402 0.900 0.956

0.7474 268 1 0.930 0.01439 0.896 0.954

0.7584 266 1 0.927 0.01475 0.892 0.951

0.7693 264 2 0.920 0.01545 0.883 0.945

0.7776 262 1 0.916 0.01579 0.879 0.942

0.8433 259 1 0.913 0.01612 0.875 0.939
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time n.risk n.event survival SE lower 95% CI upper 95% CI

0.9172 258 1 0.909 0.01644 0.871 0.936

0.9254 257 1 0.906 0.01675 0.867 0.933

0.9473 255 1 0.902 0.01706 0.863 0.931

0.9829 254 1 0.898 0.01736 0.859 0.928

1.0705 246 1 0.895 0.01767 0.854 0.925

1.1006 245 1 0.891 0.01797 0.850 0.921

1.1362 243 1 0.887 0.01827 0.846 0.918

1.2183 239 1 0.884 0.01856 0.842 0.915

1.2238 238 1 0.880 0.01885 0.837 0.912

1.2704 236 1 0.876 0.01914 0.833 0.909

1.2923 235 1 0.873 0.01942 0.829 0.906

1.3114 233 1 0.869 0.01969 0.825 0.903

1.3142 232 1 0.865 0.01996 0.820 0.899

1.3443 227 1 0.861 0.02023 0.816 0.896

1.3635 226 1 0.857 0.02050 0.812 0.893

1.3881 223 1 0.854 0.02076 0.807 0.889

1.4073 220 1 0.850 0.02103 0.803 0.886

1.4620 218 1 0.846 0.02129 0.799 0.883

1.4702 217 1 0.842 0.02155 0.794 0.879

1.4894 216 1 0.838 0.02180 0.790 0.876

1.5031 212 1 0.834 0.02205 0.786 0.873

1.5524 210 1 0.830 0.02230 0.781 0.869

1.5770 208 1 0.826 0.02255 0.777 0.866

1.6400 207 1 0.822 0.02279 0.772 0.862

1.6756 204 1 0.818 0.02303 0.768 0.859

1.7084 202 1 0.814 0.02327 0.763 0.855

1.7112 201 1 0.810 0.02350 0.759 0.851

1.7468 198 2 0.802 0.02397 0.750 0.844

1.7878 195 1 0.798 0.02419 0.745 0.841

1.8398 192 1 0.794 0.02442 0.741 0.837

1.9302 185 1 0.789 0.02466 0.736 0.833
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time n.risk n.event survival SE lower 95% CI upper 95% CI

1.9795 183 1 0.785 0.02490 0.731 0.829

1.9932 182 2 0.776 0.02537 0.722 0.822

2.0479 178 1 0.772 0.02560 0.717 0.818

2.0589 176 1 0.768 0.02582 0.712 0.814

2.0862 175 1 0.763 0.02605 0.707 0.810

2.0999 173 1 0.759 0.02627 0.703 0.806

2.1766 170 1 0.754 0.02649 0.698 0.802

2.2971 167 1 0.750 0.02671 0.693 0.798

2.3381 165 1 0.745 0.02693 0.688 0.794

2.3847 164 1 0.741 0.02715 0.683 0.790

2.5051 157 1 0.736 0.02738 0.678 0.785

2.5489 155 1 0.731 0.02762 0.673 0.781

2.5599 154 1 0.727 0.02784 0.668 0.777

2.5763 153 1 0.722 0.02806 0.662 0.773

2.6639 151 1 0.717 0.02828 0.657 0.768

2.7351 147 1 0.712 0.02851 0.652 0.764

2.7844 145 1 0.707 0.02873 0.647 0.759

2.8939 142 1 0.702 0.02895 0.641 0.755

2.9487 140 1 0.697 0.02918 0.636 0.750

2.9952 137 1 0.692 0.02941 0.630 0.746

3.0527 133 1 0.687 0.02964 0.625 0.741

3.0554 132 1 0.682 0.02987 0.619 0.736

3.0992 130 1 0.676 0.03010 0.613 0.731

3.1266 126 1 0.671 0.03033 0.608 0.727

3.1321 124 1 0.666 0.03057 0.602 0.722

3.1485 123 1 0.660 0.03080 0.596 0.717

3.1759 122 1 0.655 0.03101 0.590 0.712

3.3265 119 1 0.649 0.03124 0.584 0.707

3.6112 116 1 0.644 0.03147 0.578 0.702

3.6550 114 1 0.638 0.03169 0.572 0.696

3.8877 110 1 0.632 0.03193 0.566 0.691



D.3 Number of patients at risk (n.risk) and dying (n.event) at each time point, Ŝ(t)
(survival function) with SE and 95% CI for RPA data 145

time n.risk n.event survival SE lower 95% CI upper 95% CI

4.0876 104 1 0.626 0.03220 0.560 0.686

4.6133 96 1 0.620 0.03252 0.553 0.680

4.8789 90 1 0.613 0.03288 0.545 0.674

5.0541 83 1 0.605 0.03330 0.537 0.667

5.4894 71 1 0.597 0.03390 0.527 0.660

5.8809 65 1 0.588 0.03460 0.517 0.652

7.6003 41 1 0.573 0.03661 0.498 0.641

8.7912 25 1 0.550 0.04171 0.465 0.628

9.9302 13 1 0.508 0.05601 0.394 0.611
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