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Abstract

The Catalan numbers 1, 2, 5, 14, 42, 132, . . . count all sorts of interesting objects: for example, the nth
Catalan number enumerates both the set of Tn of rooted finitely branching trees with n + 1 vertices,
and the set Bn of rooted binary trees with n+ 1 leaves. In fact for each n, the sets Tn and Bn are in
bijection in a natural way.

The objective of this thesis is to study these bijections, and similar ones, through the lens of category
theory. The set of rooted finitely branching trees can be characterised as an initial motor; where a
motor is a monoid endowed with a endofunction (not preserving the monoid structure). The set of
rooted binary trees can be characterised as an initial pointed magma; where a pointed magma is a set
endowed with a constant and a binary operation.

We first give an account of the bijection between rooted trees and binary trees which uses only the
universal properties of the initial motor and the initial pointed magma. We then generalise this in various
directions; our most general result identifies the initial T -motor with the initial pointed T -magma, when
T is an arbitrary endofunctor of a closed monoidal category C; here, a T -motor is a monoid X endowed
with a mapping TX → X, while a pointed T -magma is an object with a map I + TX ⊗X → X. We
will also give numerous examples and applications.
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CHAPTER 1

Introduction and Motivation

The Catalan numbers are a sequence of numbers that arise as a solution to many counting problems in
combinatorics; Stanley in [1] lists 214 such problems. The nth Catalan number is given by

Cn = 1
n+ 1

(
2n
n

)
= (2n)!

(n+ 1)!n!
for which the first few terms are Cn = 1, 1, 2, 5, 14, 42, 132, . . . [2, A000108]

Consider the following examples of N-indexed families of sets:

(1) The set of rooted, planar, finitely branching trees with n edges.

(2) The set of Dyck words of length 2n. A Dyck word is a word on the symbols U and D which
have the same number of Us and Ds, but never more Ds than Us when reading from left to
right.

(3) The set of (full) binary trees with n+ 1 leaves (alternatively n internal vertices or 2n edges).

(4) The set of well bracketed expressions involving associating n applications of a binary operation.

In each case the nth set has cardinality Cn, so each of these structures is counted by the Catalan
numbers.

There is a clear correspondence between the sets in the first two examples which is given by traversing
along the tree in a fixed orientation (clockwise) from the root and denoting each “upwards” movement
as a U , and each “downwards” movement as a D, as shown below.

7−−−→ UDUUDD

In fact both of these types of object can be readily built in a recursive fashion.

Observe the following structure which generates the set of rooted, finitely branching trees T :

• The trivial tree: e =

• An associative binary operation with unit e, which is given by merging two trees at the root:
u , v ∗7−−→ u v

• An endofunction which is given by growing the tree up from the root:

u σ7−−→
u
.
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This motivates the following definition: A motor, (A, e, ∗, σ), consists of a monoid, (A, e, ∗), and an
endofunction, σ : A → A (not necessarily preserving the monoid structure). The structure described
above makes the T into a freely generated motor. The natural numbers also have an obvious motor
structure, (N, 0,+, s), where s is the usual successor function, s(n) = n+ 1.

The free generation of the motor of rooted, finitely branching trees means that there is a unique function
f from T to the natural numbers that preserves the motor structure, which is given by:

f(e) = 0

f(x ∗ y) = f(x) + f(y)

f ◦ σ(x) = s ◦ f(x) = f(x) + 1.

This function counts the number of branches in the tree, and hence we see that the cardinality of the
set given by the preimage of n under f is actually Cn.

There is also a clear correspondence between examples (3) and (4) on page 1, which is given by
denoting each branching in the tree as performing the binary operation. The set of binary trees B can
be recursively built up via:

• The trivial tree: e =

• A binary operation:
u , v β7−−→

u v
.

A pointed magma, (M,m, •), consists of a set, M , a designated point, m ∈M , and a binary operation,
_ • _ : M ×M →M . The structure indicated above makes B into a freely generated pointed magma.
The natural numbers form a pointed magma, (N, 0, t), where t(x, y) = x + y + 1. Like before, free
generation of the pointed magma of binary trees gives us a unique grading, g, from the initial pointed
magma, (B, e, •), to the natural numbers using the rules:

g(e) = 0,

g(x • y) = t ◦
(
g(x), g(y)

)
= g(x) + g(y) + 1.

It is also again the case that the cardinality of the set given by the preimage of n under g is the nth
Catalan number.

There is also a less clear, but nevertheless very interesting, correspondence between the first pair of
examples, the ones with a motor structure, and the second pair, the ones with a pointed magma
structure. This correspondence shows that while a given set which exhibits a Catalan counting scheme
may be readily given either a pointed magma or a motor structure, we can always give it the other
structure if we want to.

As this correspondence is between two different types of algebraic structure it is natural to use category
theory and universal properties as a tool for exploring the correspondence. The benefit of using category
theory becomes apparent when we generalise beyond the set-based situation.
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In chapter 2 we give a category-theoretic proof that the freely generated motor and the freely generated
pointed magma coincide. Specifically, defining Motor to be the category of motors together with their
structure preserving morphisms, and Magma∗ to be the category of pointed magmas together with
their structure preserving morphisms, we prove:

Theorem 1.1. There exists a faithful functor F : Motor → Magma∗ that both preserves and lifts
initial objects.

In chapter 3 we give a generalisation of motors and magmas using the notion of algebras for an
endofunctor T in Set, and show that we get a similar correspondence between these generalised notions
of initial “T -motor” and an initial “pointed T -magma”. That is, we define categories T -Motor and
T -Magma∗, and then prove:

Theorem 1.2. There exists a faithful functor F : T -Motor → T -Magma∗ that both preserves and
lifts initial objects.

In chapter 4 we give a generalisation for T -motors and pointed T -magmas in a monoidal category
with certain conditions, and show that the previous theorem still holds. Specifically, if C is a closed
monoidal category with equalisers, and T is an endofunctor in C, then we define categories T -Motor
and T -Magma∗, and prove:

Theorem 1.3. There exists a faithful functor F : T -Motor → T -Magma∗ that both preserves and
lifts initial objects.

We then conclude with some examples of where this general theorem is useful.
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CHAPTER 2

A First Case

1. Introduction

In this chapter we explore the correspondence between the two given structures that exhibit a Catalan
counting scheme; the initial motor and the initial pointed magma. This is done by first showing that the
initial motor may be turned into a pointed magma in such a way as to preserve the Catalan counting
scheme. Once we have established that the initial motor is a pointed magma, we then show it is the
initial such, and therefore we have shown that there is a bijection between the two underlying sets.

Definition 2.1. If (M,m, ∗) is a monoid, and σ : M → M is an endofunction, then we call
the quadruple M = (M,m, ∗, σ) a motor. A motor morphism f : M → N between motors
M = (M,m, ∗, σ) and N = (N, n, ?, τ) is a function f : M → N such that

• f(m) = n

• f(x ∗ y) = f(x) ? f(y),∀x, y ∈M

• fσ(x) = τf(x),∀x ∈M .

This yields a category of motors and motor morphisms which we call Motor.

Recall that a Dyck word is a word on the symbols U and D which have the same number of Us and
Ds, but never more Ds than Us when reading from left to right. The set of Dyck words on {U,D} has
a motor structure, A = (D, e, ∗, σ), where e is the empty word, ∗ is concatenation, and σ : D→ D is
given by σ(w) = UwD. The following shows that A is freely generated by its motor structure.

Given a Dyck word of length 2n we can define a height function h : {0, . . . , 2n} → N where a U
increases the height by 1 and a D decreases the height by 1. For example we have the following Dyck
word and its associated sequence of heights:

0 1 2 1 0
U U D D

We now define a Dyck word to be connected if it is non-empty, and h(i) > 0 for all 0 < i < 2n. Using
this we see that every non-empty Dyck word can be uniquely decomposed as w = w1 ∗ . . . ∗wn, where
each wi is a connected word. We also see that every connected word is uniquely the successor σ(w) of
another, possibly empty, word w. Hence every Dyck word can be built up from the empty word using
repeated applications of ∗ and σ, uniquely up to the monoid axioms, i.e. e, ∗ and σ freely generate A.
We can make this precise via the category-theoretic notion of initiality:
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Definition 2.2. Let C be a category. An object I ∈ C is called initial in C if given any object X in C,
there exists a unique morphism f : I → X.

Any motor map out of A is determined by its action on e, ∗ and σ, and since the Dyck words in A are
freely generated by e, ∗ and σ, any motor map out of A must be unique. Hence A is the initial motor.

We now relate this to the other kind of structure considered in the introduction.

Definition 2.3. Given a set M , an element m ∈ M , and a binary operation _ • _ : M ×M → M

on M , then we call the triple M = (M,m, •) a pointed magma. The collection of pointed magmas
forms a category, Magma∗, with morphisms f : M → N between pointed magmas M = (M,m, •)
and N = (N, n, ∗) being functions f : M → N such that

• f(m) = n

• f(x • y) = f(x) ∗ f(y),∀x, y ∈M .

Earlier we saw that every Dyck word can be uniquely decomposed into connected words, and that every
connected word is of the form UwD for some w. This means that every non-empty Dyck word is
uniquely of the form UwDx = σ(w) ∗ x for some other Dyck words w and x. This gives us a binary
operation on D, x • y = σ(x) ∗ y, and hence a freely generated pointed magma B = (D, e, •). This
observation plays a crucial role in [3].

Note that the pointed magma structure on D is purely defined in terms of the motor structure on D.
In fact this works for any motor as witnessed by:

Proposition 2.4. There exists a faithful functor F : Motor → Magma∗ whose action on objects,
M = (M,m, ∗, σ), is given by:

FM =
(
M,m, (x, y) 7→ σ(x) ∗ y

)
Proof. Given a motor morphism f : M → N between M = (M,m, ∗, σ) and N = (N, n, ?, τ), we
have that f(m) = n and that

f
(
σ(x) ∗ y

)
= fσ(x) ? f(y) = τf(x) ? f(y)

as required for Ff : FM → FN to be a pointed magma morphism. F preserves identities and
compositions since Ff has the same action on elements as f , and so F is a functor. Lastly, F renders
commutative the diagram

Motor Magma∗

Set

F

U V

where U and V are the forgetful functors. hence F is faithful since U is. �
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2. The Initial Motor is the Initial Pointed Magma

The argument given above shows that F sends the initial motor A to an initial pointed magma FA,
or in other words, F preserves initial objects. We would now like to study this phenomenon and its
generalisations using category theory.

An obvious reason why F might preserve initial objects would be that F has a right adjoint. However
with some effort one may show that F doesn’t preserve coproducts, so this argument does not apply.

We instead try the more direct approach of showing that given an arbitrary pointed magma B, there
exists a unique pointed magma morphism g from FA to B. To construct g we transform B into a
motor B̂, and then show that the unique motor map from A to B̂ induces the required unique map g.

To this end we require a way of constructing a motor out of an arbitrary pointed magma, and this is
done as follows.

Let B = (B, b, •) be an arbitrary pointed magma, and now consider the following stack machine, which
for every Dyck word w gives instructions for a function hw : B → B.

(1) First initialise the empty stack by pushing the function input x ∈ B onto the stack.

(2) Next read the Dyck word from right to left with the following instruction set:
• D : Push b onto the stack

• U : Take the top two elements off the stack, say y and z, and push their product y • z back
onto the stack

(3) When every instruction is read, the remaining element on the stack is hw(x).

This machine gives us the data for a map from the initial motor to the set of functions from B to B.
We might hope to induce this map using initiality of the motor A, as long as we can find a suitable
motor structure on BB. To do so let us examine the behaviour of the stack machine on words of the
form e, w1 ∗ w2, σ(w).

If we run the machine with the empty instruction set e, then the resulting function is the identity
function 1B. Suppose we have Dyck words w1 and w2, then running the machine with instruction set
w1∗w2 will result in a function that first evaluates hw2(x), and then will evaluate hw1 with input hw2(x),
i.e. the resulting function will be hw1 ◦ hw2 . Running the machine with instruction set σ(w) will mean
that the resulting function will now evaluate hw(b), and then take a product with x.

This tells us that if we define the motor of endomorphisms as B̂ =
(
BB, 1B, ◦,Θ

)
, where Θ: BB → BB

is the function given by
Θ(f)(x) = f(b) • x, ∀f ∈ BB, x ∈ B,

then the unique map f : A→ B̂ sends w to hw.
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We now exploit the above construction to prove that if A is the initial motor, then FA is the initial
pointed magma. As this is a purely algebraic construction we don’t need a specific representation of
A, so from now on we write A = (A, e, ∗, σ) for the initial motor.

Proposition 2.5. Let A be the initial motor, let B = (B, b, •) be an arbitrary pointed magma, and
let f : A → B̂ be the unique motor map given by the universal property of the initial object, then
g : FA→ B given by g(x) = f(x)(b) is a pointed magma map.

Proof. In order for g to be a pointed magma map we require that

g(e) = b (1)

g
(
σ(x) ∗ y

)
= g(x) • g(y), (2)

and since is f a motor map we have that

f(e) = 1B (3)

f(x ∗ y) = f(x) ◦ f(y) (4)

f
(
σ(x)

)
= Θ

(
f(x)

)
. (5)

By definition of g and (3) we get that

g(e) = f(e)(b) = 1B(b) = b

and so (1) holds. As for (2) we have that

g
(
σ(x) ∗ y

)
= f

(
σ(x) ∗ y

)
(b) by definition of g

= f
(
σ(x)

)
◦ f(y)(b) by (4)

= Θ
(
f(x)

)(
f(y)(b)

)
by (5)

= f(x)(b) • f(y)(b) by definition of Θ

= g(x) • g(y) by definition of g

as required. �

We have now established that for every pointed magma, B, there is a pointed magma map, g : FA→
B, so proving this map is unique will establish that FA is the initial pointed magma.

The next proof is done by induction in the initial motor A. This will be discussed in more detail at a
later stage, but for now it should be clear that if a statement is true for e, and if the statement being
true for x and y in A implies that it is also true for x ∗ y and σ(x), then the statement must be true
for all x in A.
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Proposition 2.6. Let B = (B, b, •) be a pointed magma, let h : FA→ B be a pointed magma map,
and let f : A→ B̂ be as before. For all x ∈ A, the following diagram commutes.

A A

B B

x ∗ (−)

h h

f(x)

Proof. This shall be proved by induction on x ∈ A.

We have that e ∗ (−) : A→ A = 1A, and f(e) = 1B, so

A A

B B

e ∗ (−)

h h

f(e)

commutes.

Suppose x ∈ A, and that
A A

B B

x ∗ (−)

h h

f(x)

commutes, i.e.
h(x ∗ y) = f(x)

(
h(y)

)
, ∀y ∈ A

and in particular
h(x) = h(x ∗ e) = f(x)

(
h(e)

)
= f(x)(b) (6)

which gives us

f
(
σ(x)

)(
h(y)

)
= Θ

(
f(x)

)(
h(y)

)
by (5)

= f(x)(b) • h(y) by definition of Θ

= h(x) • h(y) by (6)

= h
(
σ(x) ∗ y

)
since h is a pointed magma map

for all y in A. We have therefore shown that if the left square commutes, then so must the right:

A A

B B

x ∗ (−)

h h

f(x)

=⇒
A A

B B.

σ(x) ∗ (−)

h h

f
(
σ(x)

)
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Now suppose both
A A

B B

x ∗ (−)

h h

f(x)

(7)

and
A A

B B

y ∗ (−)

h h

f
(
y
)

(8)

commute. Then for all z in A,

f(x ∗ y)
(
h(z)

)
= f(x)

(
f(y) ◦ h(z)

)
by (4)

= f(x)
(
h(y ∗ z)

)
by (8)

= h(x ∗ y ∗ z) by (7)

Therefore we have shown that if the leftmost two squares commute, then so must the right.

A A

B B

x ∗ (−)

h h

f(x)

∧
A A

B B

y ∗ (−)

h h

f
(
y
)

=⇒
A A

B B.

x ∗ y ∗ (−)

h h

f
(
x ∗ y

)
Therefore by induction the square

A A

B B

x ∗ (−)

h h

f(x)

commutes for all x in A. �

We now have the following:

Theorem 2.7. If A is the initial motor, then FA is the initial pointed magma.

Proof. Let B be a pointed magma. We have already shown that the map g : FA → B is a pointed
magma map, and this map is unique since given any other pointed magma map, h : FA→ B, we must
have

h(x) = h(x ∗ e) = f(x)
(
h(e)

)
= f(x)(b) = g(x), ∀x ∈ A

by Proposition 2.6. Therefore FA is the initial pointed magma. �

Note that the functor F : Motor → Magma∗ sends the motor (N, 0,+, s) to the pointed magma
(N, 0, t), where, as before, t(x, y) = x+ y + 1. This shows that FA is also a Catalan family of sets.
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3. The Initial Pointed Magma is the Initial Motor

Our aim in this section is to show that the initial pointed magma gets lifted via F to an initial motor.
First, however, we look at several properties that a functor may have.

Definition 2.8. Given a functor F : C → D we may have that:

• F preserves initial objects: If X is initial in C, then FX is initial in D.

• F reflects initial objects: If FX is initial in D, then X is initial in C.

• F lifts initial objects: If Y is initial in D, then ∃X ∈ C such that Y ∼= FX.

• F creates initial objects: If F both lifts and reflects initial objects. Explicitly If Y is initial in
D, then there exists an essentially unique X ∈ C such that Y ∼= FX and X is initial in C.

• F reflects isomorphisms: If f : X → Y in C such that Ff : FX → FY is an isomorphism in
D, then f is an isomorphism in C.

Proposition 2.9. Given a functor F : C → D we have the following:

(1) If C has an initial object and F preserves initial objects, then F lifts initial objects.

(2) If C has an initial object, F preserves initial objects, and F reflects isomorphisms, then F

reflects initial objects.

(3) If D has an initial object and F creates initial objects, then F preserves initial objects.

Proof.

(1) Suppose C has an initial objectX, and that F preserves initial objects. Now suppose Y is initial
in D. Since F preserves initial objects, FX must also be initial in D and hence Y ∼= FX.
Therefore F lifts initial objects.

(2) Suppose C has an initial object X, that F preserves initial objects, and that F reflects
isomorphisms. Now suppose Y in C is such that FY is initial in D, and let f : X → Y

be the unique map given by initiality of X in C. F preserves initial objects and hence FX
is initial in D and so Ff : FX → FY must be a unique isomorphism. f is an isomorphism
since F reflects isomorphisms and hence Y is initial in C as it is isomorphic to X. Therefore
F reflects initial objects.

(3) Suppose D has an initial object Y , and that F creates initial objects. Now suppose Z is initial
in C, since F creates initial objects there exists an initial object X in C such that Y ∼= FX.
Now X ∼= Z since X and Z are both initial, and therefore Y ∼= FX ∼= FZ, and hence FZ is
initial in D. Therefore F preserves initial objects. �

Proposition 2.10. The functor F : Motor →Magma∗ as given in Proposition 2.4 reflects isomor-
phisms.
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Proof. It is sufficient to show that the functor U : Motor → Set reflects isomorphisms since if f is
a motor morphism such that Ff is a magma isomorphism, then Uf = V Ff is an isomorphism and
hence if U reflects isomorphisms, then f is an isomorphism.

Let M = (M,m, ∗, σ) and N = (N, n, ?, τ) be motors, and f : M →N be such that f : M → N is
an invertible function. By definition of a motor morphism, f is such that all three of the diagrams

1

M N

m n

f

M ×M N ×N

M N

f × f

∗ ?

f

M N

M N

f

σ τ

f

commute. In a commuting diagram we may replace invertible arrows with their inverse as long as the
resulting diagram makes sense. That is, we have commuting diagrams

1

M N

m n

f−1

M ×M N ×N

M N

∗

f−1 × f−1

?

f−1

M N

M N .

σ

f−1

τ

f−1

Note that (f × f)−1 = f−1× f−1 by bifunctorality of the cartesian product. Therefore f−1 : N →M

is a motor morphism and hence f is a motor isomorphism. Therefore U reflects isomorphisms, and
hence so must F . �

We have shown that both Motor and Magma∗ have initial objects, and that F : Motor→Magma∗
reflects isomorphisms. Therefore we have the following:

Corollary 2.11. The functor F : Motor→Magma∗ preserves initial objects if and only if it creates
initial objects.

We have already proven that F preserves initial objects, and hence it must also create initial objects.
So that we can generalise it later, here is a direct proof that F creates initial objects.

For the rest of this chapter let B = (B, e, •) be the initial pointed magma. We want to construct a
motor structure B̃ in such a way that F B̃ = B, that is, we need an associative operation ∗ on B with
identity e, and an endofunction τ : B → B such that τ(x) ∗ y = x • y, for all x and y in B.

The associative operation ∗ is given by the following recursive definition:

e ∗ z = z

(x • y) ∗ z = x • (y ∗ z).

To prove that (B, e, ∗) is a monoid we use induction in the initial pointed magma, that is, we use the
fact that if a statement is true for e, and if the statement being true for x and y implies it is also true
for x • y, then it must be true for all x in B.

Proposition 2.12. e is the identity for ∗.
11



Proof. By definition of ∗ we have that e ∗ x = x for all x in B, and hence we just need to prove that
x ∗ e = x for all x in B. This is done by induction on x.

By definition of ∗ we have that e ∗ e = e.

Now suppose that x1 ∗ e = x1 and x2 ∗ e = x2, then by the recursive definition of ∗ we have that

(x1 • x2) ∗ e = x1 • (x2 ∗ e) = x1 • x2

as required.

Therefore by induction x ∗ e = x for all x in B, and hence e is the identity for ∗. �

Proposition 2.13. ∗ is associative.

Proof. This is also done by induction on x. For the base case we have by definition of ∗ that

(e ∗ y) ∗ z = y ∗ z = e ∗ (y ∗ z)

for all y, z in B.

Now suppose that (x1 ∗ y) ∗ z = x1 ∗ (y ∗ z) and (x2 ∗ y) ∗ z = x2 ∗ (y ∗ z) for all y, z in B. Then(
(x1 • x2) ∗ y

)
∗ z =

(
x1 • (x2 ∗ y)

)
∗ z

= x1 •
(
(x2 ∗ y) ∗ z

)
= x1 •

(
x2 ∗ (y ∗ z)

)
= (x1 • x2) ∗ (y ∗ z)

as required.

Therefore by induction (x ∗ y) ∗ z = x ∗ (y ∗ z) for all x, y, z in B, i.e. ∗ is associative. �

In order to get a motor structure on B we require an endofunction τ : B → B and this is given by
τ(x) = x • e. Hence we have the motor B̃ = (B, e, ∗, τ).

Proposition 2.14. F B̃ = B, i.e. F lifts initial objects.

Proof. All we need to show is that τ(x) ∗ y = x • y. Indeed we have:

τ(x) ∗ y = (x • e) ∗ y

= x • (e ∗ y)

= x • y. �

We now show that F reflects, and therefore creates, initial objects.

Proposition 2.15. Given a motor M = (M,m, ?, µ), the unique pointed magma map given by the
universal property of the initial pointed magma, f : B → FM , lifts to a motor map f̃ : B̃ →M .
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Proof. We must show that for all x, y in B, f satisfies

f(e) = m

f
(
τ(x)

)
= µ

(
f(x)

)
f(x ∗ y) = f(x) ? f(y).

By definition of f and FM we have that for all x, y in B

f(e) = m (9)

f(x • y) = µf(x) ? f(y). (10)

We hence see that for all x in B

f
(
τ(x)

)
= f(x • e) by definition of τ

= µ
(
f(x)

)
? f(e) by (10)

= µ
(
f(x)

)
? m by (9)

= µ
(
f(x)

)
since (M,m, ?) is a monoid.

Finally we have that
f(e ∗ y) = f(y) = m ? f(y) = f(e) ? f(y),

and if both f(x1 ∗ y) = f(x1) ? f(y) and f(x2 ∗ y) = f(x2) ? f(y), then

f
(
(x1 • x2) ∗ y

)
= f

(
x1 • (x2 ∗ y)

)
by definition of ∗

= µ
(
f(x1)

)
? f(x2 ∗ y) by (10)

= µ
(
f(x1)

)
?
(
f(x2) ? f(y)

)
by assumption

=
(
µ
(
f(x1)

)
? f(x2)

)
? f(y) by associativity of ?

= f(x1 • x2) ? f(y) by (10)

for all y in B, and hence by induction

f(x ∗ y) = f(x) ? f(y)

for all x, y in B. �

The lifted map f̃ : B̃ → M is unique since given any other motor map g : B̃ → M , we must have
Fg = f = F f̃ by initiality of B in Magma∗, and therefore g = f̃ since F is faithful.

We have therefore proven that F creates initial objects and hence constructively shown:

Theorem 2.16. If B is the initial pointed magma, then F lifts B to the initial motor B̃.
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CHAPTER 3

A Generalisation in Set

In this chapter we present a generalisation of the results of the previous chapter using the notion of an
algebra for an endofunctor.

1. Algebras, Induction and Recursion

Definition 3.1. Let C be a category and let T : C → C be an endofunctor. A T -algebra, (A,α),
consists of an object, A ∈ C, and a morphism, α : TA → A. We call the object the carrier, and the
morphism the structure of the algebra.

A homomorphism between two T -algebras, (A,α) and (B, β), is a morphism, f : A → B in C, such
that the following square commutes:

TA TB

A B.

Tf

α β

f

We write T -Alg for the category of T -algebras and their homomorphisms.

Definition 3.2. An initial T -algebra is an initial object in T -Alg. That is, an initial T -algebra (A,α)
is one such that given any algebra (B, β), there exists a unique f : A → B in C making the following
square commute:

TA TB

A B.

Tf

α β

f

When C = Set and TX = 1 + X the T -algebras are pointed sets with an endofunction, which
are sometimes known as numerals. An initial T -algebra for this endofunctor is given by the natural
numbers together with 0 and the usual successor function. We now generalise the familiar notions of
induction and recursion in the natural numbers to an arbitrary initial algebra. These are fairly well known
constructions, see for example [4], however for completeness and readability we present the arguments
and proofs here.

Induction
Let ϕ be a proposition about the natural numbers. In order to show that ϕ is true for all natural
numbers we consider P =

{
n ∈ N : ϕ(n) = >

}
. If we can show that both 0 is in P , and that n being

14



in P implies that n + 1 is also in P , then we can conclude by induction that P = N. The hypotheses
on P are equivalent to the requirement that the upper composite in

1 + P 1 + N

P N

1 + i [
0, s
]

i

factors through i as indicated. A triple consisting of a set, a point in that set, and an endofunction
on that set is called a numeral by Freyd. We have hence shown that P is a sub numeral of N. The
conclusion that P = N now follows from initiality of N and:

Proposition 3.3. Let C be an arbitrary category and I be initial in C. If X is in C, and m : X � I is
a monomorphism in C, then m is an isomorphism.

Proof. I is initial and so there exists a map f : I → X. By the universal property of the initial
object, mf : I → I must equal 1I . Additionally, m(fm) = (mf)m = 1Im = m, and since m is a
monomorphism we must have fm = 1X . Therefore m is an isomorphism with inverse f . �

Using this result, if (A,α) is initial in T -Alg, then we have a corresponding notion of induction: If
given i : P � A for which there exists a factorisation ψ as indicated by

TP TA

P A,

T i

∃ψ α

i

then we can conclude that i : P � A is an isomorphism.

Recursion
Consider the first order recurrence relation

an+1 = f(n, an)

where the ai belong to some set X. If we are given an initial condition, a0 in X, we know that
this recurrence relation defines a unique sequence of elements of X, i.e. we have a unique function
g : N → X satisfying g(0) = a0 and g(n+ 1) = f

(
n, g(n)

)
. This can be generalised to an arbitrary

initial algebra as follows:

Theorem 3.4. Let (A,α) be the initial algebra for the endofunctor T on the category C with binary
products. GivenX in C and a morphism f : T (A×X)→ X, there exists a unique morphism g : A→ X

such that the square

TA T (A×X)

A X

T
(

1A, g
)

α f

g

commutes in C.
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Proof. In order to use initiality of (A,α) we need an algebra structure on A×X, and this is given by
the pairing (α ◦ Tπ1, f) : T (A×X)→ A×X, where π1 is the projection map. By initiality of (A,α),
there exists a unique morphism (h, g) making the square

TA T (A×X)

A A×X

T
(
h, g
)

α
(
α ◦ Tπ1, f

)
(
h, g
)

commute. Post-composing this square with the first projection map we get the commuting diagram

TA T (A×X) TA

A A×X A

T
(
h, g
)

α
(
α ◦ Tπ1, f

)
Tπ1

α

(
h, g
) π1

from which we conclude by initiality of A that h = 1A. Post-composing with the second projection
map we thus get

TA T (A×X)

A X,

T
(

1A, g
)

α f

g

for which g is the required unique morphism. �

2. The Generalisation

For the rest of this chapter we fix C = Set, let T : Set → Set be a fixed endofunctor, and make the
following definitions.

Definition 3.5. A T -motor is a quadruple M = (M,m, ∗, σ), where (M,m, ∗) is a monoid and
σ : TM → M is a function. A T -motor morphism f : M → N between M = (M,m, ∗, σ) and
N = (N, n, ?, τ) is a function such that all three of the diagrams

1

M N

m n

f

M ×M N ×N

M N

f × f

∗ ?

f

TM TN

M N

Tf

σ τ

f

commute. We call the category of T -motors and their morphisms T -Motor.

Definition 3.6. A pointed T -magma is a triple M = (M,m, µ), where M is a set, m is an element
of M , and µ : TM ×M → M is a function. A pointed T -magma morphism f : M → N between
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M = (M,m, µ) and N = (N, n, ν) is a function such that both of the diagrams

1

M N

m n

f

TM ×M TN ×N

M N

Tf × f

µ ν

f

commute.

Our motivation for making these definitions becomes apparent upon observing that if T is the identity
functor, then T -Motor = Motor and T -Magma∗ = Magma∗. We now seek to generalise the
relationship between the initial motor and the initial pointed magma to the arbitrary T -algebra case.

Proposition 3.7. There exists a faithful functor F : T -Motor → T -Magma∗ whose action on
objects, M = (M,m, ∗, σ), is given by FM = (M,m, σ̃), where σ̃(x, y) = σ(x) ∗ y.

Proof. Given a morphism f ∈ T -Motor(M ,N ) between M = (M,m, ∗, σ) and N = (N, n, ?, τ),
we have that

1

M N

m n

f

commutes by definition of f . We also have the commuting diagram

TM ×M TN ×N

M ×M N ×N

M N

Tf × f

σ × id τ × id
f × f

∗ ?

f

as required for Ff : FM → FN to be a morphism in T -Magma∗. F preserves identities and
compositions since Ff has the same action on elements as f , and so F is a functor. Lastly, F satisfies
the composition

T -Motor T -Magma∗

Set

F

U V

where U and V are the forgetful functors, and hence F is faithful. �

The major aim of this chapter is in proving the following:

Theorem 3.8. The functor F : T -Motor → T -Magma∗ as given above both preserves and creates
initial objects.

First however, we consider a few examples as motivation for why we made this generalisation.
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Example 3.9. Let A be a set, and let A∗ be the set of finite words with alphabet A. It is a well
established fact that (A∗, ε,+) is the free monoid generated by A, where ε is the empty word and + is
word concatenation. As such if we let T be be the endofunctor TX = A for all sets X with Tf = 1A
for all functions f , then we have an initial T -motor (A∗, ε,+, σ), where σ : A → A∗ is the function
which maps each element of A to its singleton list.

In computer science it is common to generate A∗ via the empty word ε and the function α : A×A∗ → A∗,
which appends an element x in A to the front of a word in A∗. This yields an initial pointed T -magma
(A∗, ε, α), and the fact that these two descriptions of A∗ agree is explained by Theorem 3.8.

Example 3.10. A special case of the previous example occurs when T is the constant functor TX = 1
for all sets X. In this case a pointed T -magma is simply a numeral. The usual description of the natural
numbers as being generated by the number 0 and the successor function s(n) = n + 1 tells us that
(N, 0, s) is an initial pointed T -magma. An initial T -motor is a free monoid on a single generator, and
Theorem 3.8 yields the fact that the natural numbers under addition is such an object.

Example 3.11. This example is closely related to the observations of [5]. A unary-binary tree is a rooted
tree in which every node has at most two children. The set of unary-binary trees, U , is generated by:

• The trivial tree: e =

• A unary operation:
u υ7−−→

u

• A binary operation:
u , v β7−−→

u v
.

We hence have an initial pointed T -magma U =
(
U , e, [υ, β]

)
, where T is the endofunctor TX = 1+X.

Now consider the set of all rooted trees having open or closed leaves, H. An example of such a tree is

.
H is generated by:

• The trivial tree: e =

• An associative binary operation with unit e:
u , v ∗7−−→ u v

• The tree consisting of a root and a single open leaf:

a =

18



• A unary operation:
u τ7−−→

u
.

In other words H =
(
H, e, ∗, [a, τ ]

)
is an initial T -motor.

Theorem 3.8 tells us that FH ∼= U , and hence there must be a bijection between the two sets H and
U . A way to see this correspondence is via the Motzkin words, that is, words on the symbols U , D,
and A which have the same number of Us and Ds, but never more Ds than Us when reading from left
to right.

The set of Motzkin words, M, is generated in a similar way to the set of Dyck words but with an
extra generator, the symbol A. That is, if T is the endofunctor given by TX = 1 + X, then we have
an initial T -motor M =

(
M, ε,+, [A, σ]

)
, where ε is the empty word, + is word concatenation, and

σ(x) = UxD. Applying Theorem 3.8 we also have that M is generated by ε, the unary operation α
which appends A to the front of a Motzkin word, and the binary operation given by x • y = UxDy.
That is, we have an initial pointed T -magma FM =

(
M, ε, [α, •]

)
.

This gives us a way of finding a bijection between H and U . If f : H → M is the unique T -motor
isomorphism given by initiality of both H and M, and g : FM→ U is the unique pointed T -magma
isomorphism given by initiality of both FM and U , then the composite g ◦ f is a bijection between H
and U .

The Motzkin numbers are a sequence with a close relationship to the Catalan numbers. The nth
Motzkin number counts the number of Motzkin words of total length n. For Motzkin words x and y,
the length of α(x) is 1 greater than the length of x, and the length of x • y is 2 greater then the sum
of the lengths of x and y. Hence if we endow the natural numbers with a pointed T -magma structure
N =

(
N, 0, [s, ?]

)
where s(n) = n + 1, and k ? m = k + m + 2, then taking fibres over the unique

pointed T -magma map f : FM→N gives sets whose cardinalityMn is the number of Motzkin words
of length n. This yields a recurrence relation for the Motzkin numbers

Mn =
n−2∑
k=0

MkMn−k−2 +Mn−1, M0 = 1,

which has first terms: 1, 1, 2, 4, 9, 21, . . . [2, A001006]

Looking back to the pointed T -magma structure on U we see that e has zero edges, and for trees u
and v, υ(u) has one more edge than u, and the number of edges of β(u, v) is two greater than the
sum of the number of edges of u and v. Hence the nth Motzkin number also counts the number of
unary-binary trees with n edges.

Looking at the T -motor structure onM we see that ε has length zero, A has length one, and for words
x and y, the length of x+ y is the sum of the lengths of x and y, and the length of σ(x) is two greater
than the length of x. Similarly if we define a half-edge to be an incident pair of a vertex and an edge,
then looking at the T -motor structure on H we see that e has zero half-edges, a has one half-edge,
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and for trees u and v, the number of half-edges of u ∗ v is the sum of the number of half-edges of u
and v, and the number of half-edges of τ(u) is two greater than the number of half-edges of u. That
is, the nth Motzkin number also counts the number of rooted trees having open or closed leaves with
n half-edges.

Another closely related sequence is the Schröder numbers. The nth Schröder number counts the
number of Motzkin words of length n where each U , D pair counts as length 1. To obtain the Schröder
numbers we modify ? to k ? m = k +m+ 1, but leave the rest of the pointed T -magma structure on
N unchanged. The nth Schröder number is then obtained through the same process as the Motzkin
numbers yielding the recurrence relation

Sn =
n−1∑
k=0

SkSn−k−1 + Sn−1, S0 = 1,

which has first terms: 1, 2, 6, 22, 90, 394, . . . [2, A006318]

Following the same process as before we see that the nth Schröder number also counts the number of
unary-binary trees with n internal vertices, and the number of rooted trees having open or closed leaves
with n edges.

Example 3.12. The set of all full ternary trees, T , is generated by:

• The trivial tree: e =

• A ternary operation:

u , v , w β7−−→
u v w

.

That is, if T is the endofunctor TX = X2, then we have an initial pointed T -magma T = (T , e, β).
Noting that the number of internal vertices of β(u, v, w) is 1 greater than the sum of the internal
vertices of u, v, and w, if we endow the natural numbers with the pointed T -magma structure
N =

(
N, 0, (x, y, z) 7→ x+ y + z + 1

)
, then taking fibres over the unique pointed T -magma map

f : T → N gives sets Tn consisting of the full ternary trees with n internal vertices. From this
we see that the recurrence relation

tn+1 =
∑

l+k+m=n
tltktm, t0 = 1

counts the number of full ternary trees with n internal vertices.

This recurrence relation has solution given by tn = 1
2n+ 1

(
3n
n

)
[6, p. 361], and yields a sequence

with first terms 1, 1, 3, 12, 55, . . . This is sequence [2, A001764] and, as stated there, also counts the
“number of rooted plane trees with 2n edges, where every vertex has even outdegree.”
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The set of rooted plane trees where every vertex has even outdegree, E has a T -motor structure
E = (E, e, ∗, σ) where e and ∗ are as in the ordinary rooted tree case, and σ : E2 → E is given by

u , v σ7−−→
u v

.

E is in fact generated by this structure and so by Theorem 3.8 we again see a correspondence between
the initial T -motor and the initial pointed T -magma.

The example on lists and the example on ternary trees show that is reasonable to suppose that the
correspondence between the initial T -motor and the initial pointed T -magma holds whenever T is any
polynomial functor. However, as we will prove, the correspondence holds for any endofunctor T .

3. The Initial T -motor is the Initial Pointed T -magma

We now follow the construction of the previous chapter to prove that F preserves initial objects. This
first requires a few definitions.

Definition 3.13. Given sets B and C we write CB for the exponential object, that is, the set of
functions from B to C. We indicate taking the transpose of a morphism f under the product-exponential
adjunction in either direction by f , i.e.

A×B C

A CB

f

f

and A CB

A×B C

g

g

.

We use ev to denote the counit of the product-exponential adjunction, that is, the evaluation map
ev : CB ×B → C such that

ev(f, b) = f(b).
Given b : 1→ B, we define evb : CB → C by the composite

evb : CB CB ×B C.
(

id, b
)

ev

That is,
evb(f) = f(b).

With these definitions in place we are now able to construct a T -motor from an arbitrary pointed
T -magma as follows: Given a pointed T -magma B = (B, b, β), we define β̂ to be the composite

β̂ : T
(
BB

)
TB BB,T evb β

and hence obtain a T -motor B̂ :=
(
BB, 1B, ◦, β̂

)
.

Proposition 3.14. If B = (B, b, β) is an arbitrary T -magma, then evb : F B̂ → B is a pointed
T -magma morphism.
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Proof. We must show that both

1

BB B

1B b

evb

and
T
(
BB

)
×BB TB ×B

BB B

T evb × evb

˜̂
β β

evb

commute.

The triangle trivially commutes, and as for the square we have

T
(
BB

)
×BB

TB ×BB TB ×B

BB ×BB BB ×B

BB B

T evb × id
T evb × evb

˜̂
β

id× evb
β × id β × id

β

◦
id× evb

ev

evb

as required. �

Corollary 3.15. Let A and B be as above. If f : A → B̂ is the unique T -motor morphism given by
initiality of A, then the function g : A→ B given by the composite

g : A BB B
f evb

is a pointed T -magma morphism, that is, g : FA→ B.

Proof. F is a functor and hence f : FA → F B̂ is a T -Magma∗ morphism, and therefore by the
previous proposition so is the composite g. �

Now that we have a pointed T -magma morphism g : FA → B, we must show that it is unique for
which we need the following:

Proposition 3.16. Let A = (A, e, ∗, σ) be the initial T -motor, let B be an arbitrary pointed T -
magma, and let fA : A → F̂A and fB : A → B̂ be the unique T -motor morphisms given by initiality
of A. If h : FA→ B is a pointed T -magma morphism, then the square

A A

B B

fA(a)

h h

fB(a)

commutes in Set for all a in A.
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Proof. Let C =
{

(u, v) ∈ AA ×BB : hu = vh
}
, that is, C is the set of all pairs of functions u and v

that make the following square commute:

A A

B B.

u

h h

v

We now need to show that
(
fA(a), fB(a)

)
is in C for all a in A. In order to do this we now consider

the set of all pairs of functions u : A → A and v : B → B, i.e. the set AA × BB. This set has a
T -motor structure given by the product

F̂A× B̂ =
(
AA ×BB, (1A, 1B), ?, τ

)
where

(u1, v1) ? (u2, v2) = (u1 ◦ v1, u2 ◦ v2)
and

τ : T
(
AA ×BB

)
T
(
AA
)
× T

(
BB

)
AA ×BB,

(
Tπ1, Tπ2

)
ˆ̃σ × β̂

and therefore (fA, fB) : A→ F̂A× B̂ is the unique T -motor morphism given by initiality of A.

We claim that C ⊆ AA×BB is in fact a sub T -motor C ⊆ F̂A×B̂, i.e. that there exists a factorisation

TC T
(
AA ×BB

)

C AA ×BB,

T i

τ

i

where i is the inclusion of C into AA ×BB.

Note that C is the equaliser of the composites

AA ×BB AA BAπ1 hA

and
AA ×BB BB BA,π2 Bh

where hA denotes post-composition by h, and Bh denotes pre-composition by h. Hence it suffices to
prove that

TC AA ×BB AA

AA ×BB BB BA

γ

γ

π1

hA

π2 Bh
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commutes, or equivalently that

TC × A
(
AA ×BB

)
× A AA × A A

(
AA ×BB

)
× A BB × A BB ×B B

γ × id

γ × id

π1 × id ev

h

π2 × id id× h ev

commutes, where γ is given by the composition:

γ : TC T
(
AA ×BB

)
AA ×BB.T i τ

By the definition of the pairing (id, e) we have that both the top and bottom trapeziums of

C × A
(
AA ×BB

)
× A AA × A

C AA ×BB AA AA × A A

C AA ×BB BB BB ×B B

C × A
(
AA ×BB

)
× A BB × A BB ×B

i× id π1 × id

ev
(

id, e
)

i

id

π1

(
id, e
) (

id, e
)

ev

h

(
id, e
) i π2 (

id, e
)

(
id, b
)

ev

i× id π2 × id id× h

ev

commute. The outside commutes by definition of C and hence we conclude that the middle square

C AA ×BB AA A

C AA ×BB BB B

i

id

π1 eve

h

i π2 evb

also commutes.

This square together with functoriality of T yields the commuting diagram

TC × A AA × A

T
(
AA ×BB

)
× A T

(
AA
)
× A TA× A A

T
(
BB

)
× A TB × A TB ×B B

BB × A BB ×B,

(
π1 ◦ γ

)
× id

(
π2 ◦ γ

)
× id

T i× id ev

Tπ1 × id

Tπ2 × id

ˆ̃σ × id

T eve × id σ̂

σ̃ × id

Th× h h

T evb × id id× h

β × id

β

β × id

id× h

ev

for which the top and leftmost squares commute by definition of γ, and the rightmost square commutes
since h is a pointed T -magma morphism. The outside of this diagram is the desired square, and hence
γ factors through C.
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This gives us a sub T -motor C =
(
C, (1A, 1B), ?, γ

)
of F̂A × B̂. Therefore by initiality of A we get

that the function (fA, fB) factors through the inclusion i, and hence for all a in A,
(
fA(a), fB(a)

)
is

in C, that is, the square
A A

B B

fA(a)

h h

fB(a)

commutes. �

Proposition 3.17. The unique T -motor morphism fA : A → F̂A given by initiality of A is ∗. That
is, fA(x)(y) = x ∗ y for all x and y in A.

Proof. We must show that ∗ is a T -motor morphism, i.e. that the following three diagrams all commute:

1

A AA

e 1A

∗

A× A AA × AA

A AA

∗ × ∗

∗ ◦

∗

TA T
(
AA
)

A AA.

T ∗

σ ˆ̃σ

∗

(A, e, ∗) is a monoid and hence we have the following commuting triangle and its transpose:

1× A A× A

A

e× id

π2
∗ ;

1 A

AA.

e

1A
∗

We also have the commuting diagram

A× A× A AA × AA × A

A× A AA × A

A,

∗ × ∗ × id

id× ∗
∗ × ∗ id× ev

◦

∗ × id

∗
ev

which by associativity of ∗ yields the following commuting square and its transpose:

A× A× A AA × AA × A

A× A A

∗ × ∗ × id

∗ × id ◦

∗

;
A× A AA × AA

A AA.

∗ × ∗

∗ ◦

∗

Lastly, by function currying and the fact that (A, e, ∗) is a monoid we get that

A AA

A× A A

∗(
e, id
) id eve

∗
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must commute, i.e. that the composite

A AA A∗ eve

is the identity map. Applying T and recalling the definition of ˆ̃σ we get that

TA TAA

TA A AA

T ∗

id ˆ̃σT eve

σ ∗

commutes, as required.

We have shown that ∗ is a T -motor morphism, and therefore fA = ∗ by initiality of A. �

We are now able to prove the following:

Theorem 3.18. If A = (A, e, ∗, σ) is an initial T -motor, then FA is an initial pointed T -magma.
That is, F preserves initial objects.

Proof. We have already shown that given an arbitrary pointed T -magma B = (B, b, β) the composite

g : FA F B̂ B
f evb

is a pointed T -magma morphism, and hence we now must show that it is the unique pointed T -magma
morphism. Let h : FA → B be a pointed T -magma morphism. By the previous two propositions we
have that the square

A A

B B

∗(a)

h h

f(a)

commutes in Set for all a in A. By currying this is equivalent to the square

A× A A

A×B B

∗

id× h h

f

also commuting. By definition of function pairing and the fact that h(e) = b, we therefore have the
commuting diagram

BB

A A× A A×B BB ×B.

A B

(
id, b
)

(
id, e
)

id

f

id× h

∗
f × id

f
ev

h

Note that the top composite is g, so we conclude that h = g, i.e. that g is unique. �
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4. The Initial Pointed T -magma is the Initial T -motor

As in the previous chapter we have that F reflects isomorphisms, and hence we know that if T -Motor
has an initial object, then F creates initial objects. We now give a proof that F creates initial objects
irrespective of knowing whether T -Motor has an initial object or not.

For the rest of this chapter let B = (B, e, β) be an initial pointed T -magma. We now show that B
also has a T -motor structure, and that B together with that T -motor structure is an initial T -motor.
To this end we require a monoid structure (B, e, ∗), and this is given by the recursive definition:

e ∗ y = y

β(w, x) ∗ y = β(w, x ∗ y).

We now make this precise.

Proposition 3.19. There exists an operation ∗ : B ×B → B such that the diagrams

1×B

B ×B B

e× id π2

∗

(11)

and
TB ×B ×B TB ×B

B ×B B

id× ∗

β × id β

∗

(12)

both commute.

Proof. To see that this is a valid recursive definition we consider the functions

1B : 1→ BB

and
f : T

(
B ×BB

)
×B ×BB → BB,

where f is the transpose of the composite

f : T
(
B ×BB

)
×
(
B ×BB

)
×B TB ×

(
BB ×B

)
TB ×B B.Tπ1 × π2 × id id× ev β

By Theorem 3.4, taking A = B, X = BB and T = 1 + T (−)× (−), there exists a unique function ϕ
making both of the digrams

1

B BB

e 1B

ϕ

and
TB ×B T

(
B ×BB

)
×B ×BB

B BB

T
(

id, ϕ
)
×
(

id, ϕ
)

β f

ϕ
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commute. Taking the transpose of the triangle yields

1×B

B ×B B,

e× id π2

ϕ

and taking the transpose of the square yields

TB ×B ×B T
(
B ×BB

)
×
(
B ×BB

)
×B

TB ×
(
BB ×B

)

TB ×B

B ×B B,

T
(

id, ϕ
)
×
(

id, ϕ
)
× id

β × id

id× ϕ× id

id× ϕ

Tπ1 × π2 × id

id× ev

β

ϕ

from which we can conclude that ϕ = ∗ satisfies the required properties. �

Now that we’ve defined ∗ we must show that it is a monoid operation with identity element e, and this
is done by induction.

Proposition 3.20. The element e is the identity for ∗.

Proof. By definition e is a left identity for ∗, so we just have to prove that e is a right identity for ∗. Let
C = {x ∈ B : x ∗ e = x}, and let i be the inclusion of C into B. By definition of ∗ we have e ∗ e = e,
and hence e is in C. We also have the commuting diagram

TC × C TB × C TB ×B

TB ×B TB ×B ×B B

B B ×B B,

T i× id

T i× i

id× i

id× i β

id×
(

id, e
)

β

id× ∗

β × id id

(
id, e
) ∗

for which the top square is the definition of i, the bottom left square is given by function pairing, and
the bottom right square is (12). This diagram shows that the composite

TC × C TB ×B B
T i× i β
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equalises B B ×B B

(
id, e
)

∗ and B B,id and hence there exists a factorisation

TC × C TB ×B

C B.

T i× i

β

i

Therefore by induction we conclude that C = B, that is, e is a right identity for ∗. �

Proposition 3.21. ∗ is associative.

Proof. Let C =
{
x ∈ B : x ∗ (y ∗ z) = (x ∗ y) ∗ z,∀y, z ∈ B

}
. Proving that ∗ is associative is now

equivalent to showing that C = B. By definition of ∗ we have that

e ∗ (y ∗ z) = y ∗ z = (e ∗ y) ∗ z,

and hence e is in C.

Now note that C is the equaliser

C B B(B×B),i
f

g

where f and g are defined by the transposes of

f : B ×B ×B B ×B B
id× ∗ ∗

and
g : B ×B ×B B ×B B.∗ × id ∗

We therefore have the commuting diagram

C × (B ×B) B ×B ×B B.i× id f

g

By bifunctorality of the product and (12) we get the commuting diagrams

TB ×B ×B ×B B ×B ×B

TB ×B ×B B ×B

TB ×B B

β × id× id

id× id× ∗

id× f

id× ∗

f
β × id

id× ∗ ∗

β
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and
TB ×B ×B ×B B ×B ×B

TB ×B ×B B ×B

TB ×B B.

β × id× id

id× ∗ × id

id× g

∗ × id

gβ × id
id× ∗ ∗

β

These diagrams together with the definition of C yield the commuting diagram

TB ×B ×B ×B B ×B ×B

TC × C ×B ×B TB × C ×B ×B TB ×B B

TB ×B ×B ×B B ×B ×B,

β × id

id× f f

T i× id

T i× i× id

T i× i× id

id× i× id

id× i× id

β

β × id

id× g g

which upon taking transposes across the clockwise and anticlockwise composites gives us the commuting
diagram

TC × C TB ×B B B(B×B).T i× i β f

g

This shows that the composite

TC × C TB ×B B
T i× i β

equalises f and g, and hence there exists a factorisation

TC × C TB ×B

C B.

T i× i

β

i

Therefore by induction we conclude that C = B, and hence ∗ is associative. �

We’ve now shown that (B, e, ∗) is a monoid, and hence we have a T -motor B̃ =
(
B, e, ∗, eve ◦ β

)
.

Our aim now is to show that B̃ is an initial T -motor.

Proposition 3.22. F B̃ = B, i.e. F lifts initial objects.

Proof. By definition of F it is sufficient to show that the triangle

TB ×B

BB ×B B ×B B

β × id β

eve × id ∗
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commutes. Indeed we have

TB ×B TB ×B ×B TB ×B

BB ×B BB ×B ×B B ×B B

(
id, e
)
× id

id×
(
e, id
)

id

β × id

id× ∗

(
β × id

)
× id

β × id
β

(
id, e
)
× id ev× id ∗

for which the outside gives the required triangle. �

Proposition 3.23. Given a T -motor M = (M,m, ?, µ), the unique pointed T -magma map given
by the universal property of the initial pointed T -magma, f : B → FM , lifts to a T -motor map
f̃ : B̃ →M .

Proof. By definition of f we have that both

1

B M

e m

f

and
TB ×B TM ×M M ×M

B M

Tf × f

β

µ× id

?

f

commute. If we can show that f is such that the following three diagrams

1

B M

e m

f

TB TM

B M

Tf

evb ◦ β µ

f

B ×B M ×M

B M

f × f

∗ ?

f

also commute, then we have shown that f lifts to a T -motor map f̃ .

We already have the triangle, and by definition of f we get the commuting diagram

TM M M ×B

TB TB ×B TM ×M M ×M

BB BB ×B B M ,

µ

(
id, e
)

id× f(
id, e
)

β

Tf

Tf × f

β × id β
µ× id

?

(
id, e
) ev f

which, since m = f(e) and (M,m, ?) is a monoid, is equivalent to the first commuting square

TB TM

B M .

Tf

evb ◦ β µ

f
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We use induction to obtain the second square. Let C =
{
x ∈ B : ∀y ∈ B, f(x ∗ y) = f(x) ? f(y)

}
,

that is, we have the equaliser diagram

C B MBi
g

h

where g and h are given by the transposes of

g : B ×B B M∗ f

and
h : B ×B M ×M M .f × f ?

We hence have the commuting diagram

C ×B B ×B M .i× id g

h

For all y in B we have
f(e ∗ y) = f(y) = m ? f(y) = f(e) ? f(y),

and hence e is in C. By (12) we have the commuting diagram

TB ×B ×B B ×B

TB ×B B

TM ×M M ×M M .

β × id

id× ∗

Tf × g

∗

g

β

Tf × f f

µ× id ?

By associativity of ? and functorality of the product we also have the commuting diagram

TB ×B ×B B ×B

TM ×M ×M M ×M ×M M ×M

TM ×M M ×M M .

β × id

Tf × f × f

Tf × h

f × f

h

µ× id

id× ?

?× id

id× ? ?

µ× id ?

Putting these two diagrams we get

TB ×B ×B B ×B

TC × C ×B TB × C ×B TM ×M M ×M M

TB ×B ×B B ×B,

β × id

Tf × g g

T i× id

T i× i× id

T i× i× id

id× i× id

id× i× id

µ× id ?

β × id

Tf × h h
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which upon taking transposes across the clockwise and anticlockwise composites gives us the commuting
diagram

TC × C TB ×B B MB.T i× i β g

h

This shows that the composite

TC × C TB ×B B
T i× i β

equalises g and h, and hence there exists a factorisation

TC × C TB ×B

C B.

T i× i

β

i

By induction we conclude that C = B, and therefore we have the commuting square

B ×B M ×M

B M .

f × f

∗ ?

f

Therefore f lifts to a T -motor map f̃ : B̃ →M . �

We now have a constructive proof of:

Theorem 3.24. If B is the initial pointed T -magma, then F lifts B to the initial T -motor B̃. That
is, F creates initial objects.

Proof. All that remains to be shown is that the lifted map f̃ : B̃ → M is unique. This is the case
since given any other motor map g : B̃ → M , we must have Fg = f = F f̃ by initiality of B in
T -Magma∗, and therefore, since F is faithful, g = f̃ . �

Most of the proofs given in this chapter have been made without reference to elements of sets. It hence
seems reasonable that the relationship between the initial T -motor and the initial pointed T -magma in
the category of sets will generalise to any finitely complete cartesian closed category. In the next chapter
we show that we can actually generalise the relationship to the case of a monoidal closed category with
equalisers.
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CHAPTER 4

A Generalisation for Monoidal Categories

In this chapter we extend the theorem that F : T -Motor→ T -Magma∗ preserves and creates initial
objects to T -algebras where T is an endofunctor on a monoidal category. There are two major properties
of Set that we used in our proof; having exponentials, and having all equalisers, and hence we require
our monoidal category to have similar properties.

1. Internal Homs

Definition 4.1. Let C = (C,⊗, I, α, λ, ρ) be a monoidal category, and let A ∈ C. If the tensor product
functor (−)⊗A has a right adjoint we denote it by [A,−] and for any object B ∈ C we call [A,B] the
internal hom of A and B.

The counit for the adjunction is called evaluation and is denoted by ev. It has the universal property
that given a map f : C ⊗ A → B in C, there exists a unique map f such that the following triangle
commutes:

[A,B]⊗ A B

C ⊗ A.

ev

f ⊗ id f

If all internal homs exist, then we say C is a right closed monoidal category. Note that many authors
use the term left closed instead of right closed. This will later be abbreviated to simply closed.

Definition 4.2. Given internal homs [A,B] and [B,C] we can define a composition map by the
following transpose:(

[B,C]⊗ [A,B]
)
⊗ A [B,C]⊗

(
[A,B]⊗ A

)
[B,C]⊗B C

cA,B,C : [B,C]⊗ [A,B] [A,C]

α−1 id⊗ ev ev

ev
(

id⊗ ev
)
α−1

When the objects that composition is defined upon are clear from context we will omit the subscripts
of c.

In Set the collection of endofunctions of a set forms a monoid; this generalises to a closed monoidal
category as follows:
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Definition 4.3. A monoid (M, e, µ) in a monoidal category consists of a unit e : I → M and a
multiplication µ : M ⊗M →M satisfying the unit laws:

I ⊗M M ⊗M M ⊗ I

M

e⊗ id

λ
µ

id⊗ e

ρ

and the associative law:

M ⊗ (M ⊗M) M ⊗M

(M ⊗M)⊗M M ⊗M M .

id⊗ µ

α µ

µ⊗ id µ

Definition 4.4. Let C be a closed monoidal category. The monoid of endomorphisms of M in C is
given by

(
[M,M ] , i, c

)
, where c is composition, and the unit is given by the following transpose:

I ⊗M M

i : I [M,M ]

λ

λ

.

An outline of a proof that the monoid of endomorphisms is actually a monoid is given in [7].

It is convenient to generalise the concept of an element and that of evaluating a function at an element
by the following:

Definition 4.5. Given objects A,B and an element a : I → A we define the evaluation at a, written
eva, by the following composition:

eva : [A,B] [A,B]⊗ I [A,B]× A B.ρ−1 id⊗ a ev

We would like c and i to behave like composition and the identity function in the category of sets. This
behaviour is exhibited in the following proposition which, due to space limitations, is left for the reader
to verify.

Proposition 4.6. Given an element a : I → A both the diagrams

I [A,A]

A

i

a
eva and

[B,C]⊗ [A,B] [B,C]⊗B

[A,C] C

id⊗ eva

c ev

eva

commute. Additionally, given f : C ⊗ A→ B the diagram

C [B,A]

C ⊗ I C ⊗ A B

f

ρ−1 eva

id⊗ a f

also commutes.
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Proposition 4.7. Given f : A⊗D → E and g : B ⊗ C → D the following diagram commutes:

(A⊗B)⊗ C
(
[D,E]⊗ [C,D]

)
⊗ C

A⊗ (B ⊗ C) A⊗D E.

(
f ⊗ g

)
⊗ id

α−1
c

id⊗ g f

Proof. By definition of composition and evaluation we have the commuting diagram

(A⊗B)⊗ C
(
[D,E]⊗ [C,D]

)
⊗ C

A⊗ (B ⊗ C) [D,E]⊗
(
[C,D]⊗ C

)

A⊗D [D,E]⊗D

E,

(
f ⊗ g

)
⊗ id

α−1 α−1

f ⊗
(
g ⊗ id

)
f ⊗ g

id⊗ g id⊗ ev

f ⊗ id

f
ev

as required. �

2. The Generalisation

For the rest of this chapter let C be a monoidal closed category with all equalisers, and let T : C → C
be a fixed endofunctor. As before we have the following:

Definition 4.8. A T -motor is a quadruple M = (M,m, µ, σ), where (M,m, µ) is a monoid and
σ : TM → M . A T -motor morphism f : M → N between M = (M,m, µ, σ) and N = (N, n, ν, τ)
is a morphism such that all three of the diagrams

I

M N

m n

f

M ⊗M N ⊗N

M N

f ⊗ f

µ ν

f

TM TN

M N

Tf

σ τ

f

commute in C. We call the category of T -motors and their morphisms T -Motor.

Definition 4.9. A pointed T -magma is a triple M = (M,m, µ), where M is an object in C, m is
an element of M , and µ : TM ⊗M → M . A pointed T -magma morphism f : M → N between
M = (M,m, µ) and N = (N, n, ν) is a morphism such that both of the diagrams

I

M N

m n

f

TM ⊗M TN ⊗N

M N

Tf × f

µ ν

f

commute in C. We call the category of pointed T -magmas and their morphisms T -Magma∗.
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Proposition 4.10. There exists a faithful functor F : T -Motor → T -Magma∗ whose action on
objects, M = (M,m, µ, σ), is given by FM =

(
M,m, µ(σ ⊗ id)

)
.

Proof. This proof is essentially the same as Proposition 3.7 with × replaced with ⊗. �

3. The Initial T -motor is the Initial Pointed T -magma

We now proceed as before to show that F preserves initial objects. Let B = (B, b, β) be an arbitrary
pointed T -magma and define β̂ as the composite

β̂ : T [B,B] TB [B,B] .T evb β

We now have a T -motor B̂ =
(

[B,B] , i, c, β̂
)
, where

(
[B,B] , i, c

)
is the monoid of endomorphisms

of B.

Proposition 4.11. If B = (B, b, β) is an arbitrary pointed T -magma, then evb : F B̂ → B is a pointed
T -magma morphism.

Proof. Using the identities given in Proposition 4.6 this proof is essentially the same as the proof given
in Proposition 3.14. �

Corollary 4.12. Let A and B be as above. If f : A → B̂ is the unique T -motor morphism given by
initiality of A, then the map g : A→ B given by the composite

g : A [B,B] B
f evb

is a pointed T -magma morphism, that is, g : FA→ B.

Proposition 4.13. The unique map fA : A→ F̂A given by initiality of A is µ.

Proof. Upon taking into account naturality of α, this proof is essentially the same as Proposition 3.17.
�

We now require an induction principle for an initial T -motor, but for this we also need the following
well known result:

Proposition 4.14. Let C be a monoidal category, (N, n, ν) be a monoid in C, and f : M � N be a
monomorphism such that n and ν ◦ (f ⊗ f) factor through f as follows

I

M N

m
n

f

and
M ⊗M N ⊗N

M N .

f ⊗ f

µ ν

f

Then (M,m, µ) is a submonoid of (N, n, ν).

We now have the following induction principle for an initial T -motor:
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Proposition 4.15. Suppose A = (A, e, µ, σ) is an initial T -motor. Let f, g : A → X in C, and
let eq : E � A be the equaliser of f and g. If all of e : 1 → A, µ(eq ⊗ eq) : E ⊗ E → A, and
σT (eq) : TE → A also equalise f and g, then f = g.

Proof. By our assumptions and the definition of an equaliser there exist factorisations

1

E A

e
h

eq

and
E ⊗ E A⊗ A

E A,

eq ⊗ eq

j µ

eq

and hence E is a submonoid of (A, e, µ) by the previous proposition. There also exists a factorisation

TE TA

E A,

T
(

eq
)

k σ

eq

and therefore (E, h, j, k) is a sub T -motor of A. By initiality of A we have the commuting diagram

A E A X,

id

∃! eq
f

g

from which we conclude that f = g. �

Proposition 4.16. Let B = (B, b, β) be a pointed T -magma, and let f : A → B̂ be the unique
T -motor map given by initiality of A. If h : FA → B is a pointed T -magma morphism, then the
following diagram commutes in C

A⊗ A A

A⊗B B.

µ

id⊗ h h

f

Proof. We shall prove this by induction. Let j and k be the maps with transposes

 : A⊗ A A B
µ h and k : A⊗ A A⊗B B,id⊗ h f

and let eq : E → A be the equaliser of j and k. We hence have the following square and its transpose:

E A

A [A,B]

eq

eq j

k

;
E ⊗ A A⊗ A A

A⊗ A A⊗B B.

eq ⊗ id

eq ⊗ id

µ

h

id⊗ h f

By our T -motor induction principle it is now sufficient to show that e : 1→ A, µ(eq ⊗ eq) : E⊗E → A,
and σT (eq) : TE → A also equalise j and k.
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(A, e, µ) is a monoid, and hence by naturality of λ we get the commuting diagram

I ⊗ A A⊗ A

A

I ⊗B B.

e⊗ id

λ

id⊗ h

µ



h

λ

By definition of f we have the commuting triangle and its transpose

I A

[B,B]

e

λ
f ;

I ⊗B A⊗B

B,

e⊗ id

λ
f

and hence by bifunctorality of ⊗ we get the commuting diagram

I ⊗ A A⊗ A

I ⊗B A⊗B

B.

e⊗ id

id⊗ h id⊗ h

k

e⊗ id

λ
f

We therefore have the commuting diagram

A⊗ A

I ⊗ A I ⊗B B

A⊗ A,



id⊗ h

e⊗ id

e⊗ id

λ

k

from which we conclude that e : I → A equalises j and k.

By associativity of µ, and the definition of eq we have the commuting diagram

A⊗ (A⊗ A) A⊗ A A⊗B

E ⊗ (A⊗ A) E ⊗ A B

A⊗ (A⊗ A) A⊗ A A

(A⊗ A)⊗ A A⊗ A,

id⊗ µ id⊗ h

f

id⊗ µ

eq ⊗ id

eq ⊗ id eq ⊗ id

eq ⊗ id

id⊗ µ

α

µ

h

µ⊗ id

µ
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which by definition of j is equivalent to the commuting diagram

E ⊗ (A⊗ A) A⊗ (A⊗ A) (A⊗ A)⊗ A A⊗ A

A⊗B B.

eq ⊗ id

eq ⊗ 

α µ⊗ id



f

(13)

By definition of f we have the commuting square and its transpose

A⊗ A [B,B]⊗ [B,B]

A [B,B]

f ⊗ f

µ c

f

;
(A⊗ A)⊗B

(
[B,B]⊗ [B,B]

)
⊗B

A⊗B B,

(
f ⊗ f

)
⊗ id

µ⊗ id c

f

which by definition of eq and naturality of α yields the commuting diagram

E ⊗ (A⊗ A) A⊗ (A⊗ A) (A⊗ A)⊗ A A⊗ A

A⊗ (A⊗B) (A⊗ A)⊗B A⊗B

(
[B,B]⊗ [B,B]

)
⊗B

A⊗B B,

eq ⊗ id

eq ⊗
(

id⊗ h
) α µ⊗ id

id⊗ h id⊗ h

α

id⊗ f

µ⊗ id

(
f ⊗ f

)
⊗ id

f

c

f

where the bottom left pentagon commutes by by Proposition 4.7. We hence by definition of k have
the commuting diagram

E ⊗ (A⊗ A) A⊗ (A⊗ A) (A⊗ A)⊗ A A⊗ A

A⊗B B.

eq ⊗ id

eq ⊗ k

α µ⊗ id

k

f

(14)
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Combining (13) and (14) and applying the definition of eq once again we obtain the commuting diagram

(A⊗ A)⊗ A

A⊗ (A⊗ A)

E ⊗ (E ⊗ A) E ⊗ (A⊗ A) A⊗ A

(E ⊗ E)⊗ A A⊗B B

E ⊗ (E ⊗ A) E ⊗ (A⊗ A) A⊗ A

A⊗ (A⊗ A)

(A⊗ A)⊗ A,

µ⊗ id

α

id⊗
(

eq ⊗ id
)

eq ⊗ id

eq ⊗  
α−1

α−1

(
eq ⊗ eq

)
⊗ id

(
eq ⊗ eq

)
⊗ id

f

id⊗
(

eq ⊗ id
)

eq ⊗ id

eq ⊗ k k

α

µ⊗ id

from which we conclude that µ(eq ⊗ eq) equalises j and k.

By definition of eq and naturality of ρ we obtain the commuting diagram

A

A A⊗ I A⊗ A

E E ⊗ I E ⊗ A

A A⊗ I A⊗ A

A⊗B

[B,B] B,

h

ρ−1

ρ

id⊗ e

µ

eq

ρ−1

eq

eq ⊗ id

eq ⊗ id

id⊗ e

eq ⊗ id

eq ⊗ id

ρ−1

f

id⊗ e

id⊗ b
id⊗ h

f

evb

where the bottom left pentagon commutes by Proposition 4.6. The outside of this diagram is

E A B

A [B,B] ,

eq

eq

h

f

evb
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which upon applying T and recalling the definitions of β̂ and f we get the commuting diagram

TE TA TB

TA T [B,B] [B,B]

A.

T eq

T eq

Th

β

Tf

σ

T evb
β̂

f

By definition of h we now have the commuting diagram

TE ⊗ A TA⊗ A A⊗ A

TE ⊗B TA⊗B TB ⊗B A

TA⊗B A⊗B B

TA⊗ A A⊗ A,

T eq ⊗ id

T eq ⊗ id

id⊗ h

σ ⊗ id

Th⊗ h µ

T eq ⊗ id

T eq ⊗ id

Th⊗ id

β
h

σ ⊗ id f

id⊗ h

σ ⊗ id

id⊗ h

whose outside is
TE ⊗ A TA⊗ A A⊗ A A

TA⊗ A A⊗ A A⊗B B,

T eq ⊗ id

T eq ⊗ id

σ ⊗ id µ

h

σ ⊗ id id⊗ h f

from which we conclude that σT eq equalises j and k.

We have therefore shown by induction that the square

A⊗ A A

A⊗B B

µ

id⊗ h h

f

commutes in C. �

We are now able to prove:

Theorem 4.17. If A = (A, e, µ, σ) is an initial T -motor, then FA is an initial pointed T -magma.
That is, F preserves initial objects.

Proof. We must show that given an arbitrary pointed T -magma B = (B, b, β) the composite

g : FA F B̂ B
f evb
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is a unique pointed T -magma morphism. Let h : FA → B be a pointed T -magma morphism. By
naturality of ρ and the previous proposition we have that the diagram

A A⊗ I

A⊗ A A

A⊗ I A⊗B B

[B,B]⊗B

ρ−1

ρ−1

id⊗ a ρ

µ

id⊗ h h

id⊗ b
f

f ⊗ id
ev

must commute. Taking the anticlockwise path around the outside of the above diagram from A to B
we see from

A [B,B] B

A⊗ I [B,B]⊗ I [B,B]⊗B

f

ρ−1

g

evb

ρ−1

f ⊗ id id⊗ b

ev

and bifunctorality of the monoidal product, that this composite is simply g.

Therefore g = h, that is, g is unique. �

4. The Initial Pointed T -magma is the Initial T -motor

We now prove that F creates initial objects. When we did this in the set based case we used recursion
and this presents a problem in the monoidal category case as general recursion requires duplication and
elimination of variables - something that can’t be done in a general monoidal category. However we
will see that there is another way of obtaining the structure which we found by recursion, and with a
slight modification, the proof can be adapted to the monoidal category case.

Let B = (B, e, β) be an initial pointed T -magma. In order to show that B lifts to an initial T -motor
we must first construct a T -motor structure on B. That is we require a multiplication µ : B ⊗B → B

for which e is the identity. In order to make this construction we once again employ the motor of
endomorphisms B̂ =

(
[B,B] , i, c, β̂

)
, where

(
[B,B] , i, c

)
is the monoid of endomorphisms of B and

β̂ is the composite:

β̂ : T [B,B] TB [B,B] .T eve β

Applying F we obtain the pointed T -magma F B̂ =
(

[B,B] , i, ˜̂
β
)
, where ˜̂

β is the composite:

˜̂
β : T [B,B]⊗ [B,B] TB ⊗ [B,B] [B,B]⊗ [B,B] [B,B] .T eve ⊗ id β ⊗ id c
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By initiality of B we obtain a unique pointed T -magma morphism µ : B → F B̂, and we now show
that its transpose µ : B ⊗B → B satisfies the conditions of Proposition 3.19.

Proposition 4.18. The composite B [B,B] B
µ eve is the identity for B.

Proof. By definition µ is a pointed T -magma morphism, and by Proposition 4.11 so is eve. Therefore
by initiality of B, their composite must be the identity for B. �

Proposition 4.19. µ renders commutative

I ⊗B

B B

e⊗ id λ

µ

and
(TB ⊗B)⊗B TB ⊗ (B ⊗B) TB ⊗B

B ×B B.

α−1

β × id

id× µ

β

µ

Proof. By definition of µ we have the commuting triangle

I

B [B,B]

e i = λ

µ

which upon taking transposes yields the required triangle.

For the square we consider the diagram

TB ⊗B T [B,B]⊗ [B,B]

TB ⊗ [B,B]

[B,B]⊗ [B,B]

B [B,B] ,

Tµ⊗ µ

β

id⊗ µ T eve ⊗ id

˜̂
β

β ⊗ id

c

µ

whose outside commutes by definition of µ, and the top triangle commutes by the previous proposition.
We hence have the commuting square

TB ⊗B [B,B]⊗ [B,B]

B [B,B] ,

β ⊗ µ

β c

µ
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which upon taking transposes yields the equivalent square

(TB ⊗B)⊗B
(
[B,B]⊗ [B,B]

)
⊗B

B ⊗B B.

(
β ⊗ µ

)
⊗ id

β ⊗ id c

µ

By Proposition 4.7 this in turn gives us the commuting diagram

(TB ⊗B)⊗B TB ⊗ (B ⊗B) TB ⊗B

(
[B,B]⊗ [B,B]

)
⊗B

B ⊗B B

α−1

(
β ⊗ µ

)
⊗ id

β ⊗ id

id⊗ µ

β

c

µ

as required. �

Now repeating the steps in Theorem 3.24, mutatis mutandis, gives:

Theorem 4.20. If B is an initial pointed T -magma, then F lifts B to an initial T -motor. That is, F
creates initial objects.

5. Examples

We now present some interesting examples of some initial T -motors and T -magmas.

Example 4.21. Consider the category SetN of natural-number-indexed families of sets and functions.
SetN can be made into a monoidal category

(
SetN,⊗, I

)
with tensor product

(X ⊗ Y )n =
∑

n=m+k
Xm × Yk,

and unit

In =


∅, if n ≥ 0
{∗}, if n = 0.

A monoid in
(
SetN,⊗, I

)
is a graded monoid consisting of an N-indexed family of sets X, together

with an element e ∈ X0, and a family of products

Xm ×Xk Xm+k
∗

for every m and k in N.

45



Now let T : SetN → SetN be the endofunctor given by

(TX)n =


Xn−1, if n ≥ 0
∅, if n = 0.

Setting Cn to be the set of all rooted finitely branching trees with n non-root vertices, then C is a
graded monoid under joining trees at the root, and also a T -algebra under adding a new root. In fact
C is freely generated by these structures, that is, C is an initial (T,⊗)-motor, and the cardinality of
each set Cn is the nth Catalan number. Correspondingly C is also an initial pointed (T,⊗)-magma.

Example 4.22. An (m, k) shuffle σ is given by a diagram

{1 < · · · < m} {1 < · · · < k}

{1 < · · · < m+ k} ,
iσ jσ

where iσ and jσ are order preserving injections that are jointly surjective. The collection of (m, k)
shuffles is denoted Sh(m, k). Note that Sh(m, k) × Sh(m + k, l) ∼= Sh(m, k + l) × Sh(k, l) via the
unique function that sends a pair of shuffles (σ, τ) to the pair of shuffles

(
σ′, τ ′

)
for which

m k l

m+ k

m+ k + l

iσ jσ

jτ

iτ

=

m k l

k + l

m+ k + l

iσ′

iτ ′ jτ ′

jσ′

. (15)

Consider now the monoidal category
(
SetN,⊗Sh, I

)
, with unit as in the previous example, and tensor

product given by
(X ⊗Sh Y )n =

∑
n=m+k
σ∈Sh(m,k)

Xm × Yk.

For the associativity constraint, note that elements of
(
(X ⊗Sh Y )⊗Sh Z

)
n
and

(
X ⊗Sh (Y ⊗Sh Z)

)
n

are respectively tuples of the form(
σ ∈ Sh(m, k), τ ∈ Sh(m+ k, l), x ∈ Xm, y ∈ Yk, z ∈ Zl

)
and (

σ′ ∈ Sh(m, k + l), τ ′ ∈ Sh(k, l), x ∈ Xm, y ∈ Yk, z ∈ Zl
)

for some m, k, l with m + k + l = n. Thus αX,Y,Z can be given by the function sending (σ, τ, x, y, z)
to
(
σ′, τ ′, x, y, z

)
, where the assignation of (σ, τ) to

(
σ′, τ ′

)
is as in (15). The unit constraint is given

in a similar manner.
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A monoid in
(
SetN,⊗Sh, I

)
now consists of an N-indexed family of sets X, together with an element

e ∈ X0, and a family of products

Xm ×Xk Xm+k
∗σ

for every m and k in N and for every σ in Sh(m, k) such that

e ∗! x = x = x ∗! e

where ! is the unique shuffle with the empty set, and

(x ∗σ y) ∗τ z = x ∗σ′ (y ∗τ ′ z)

where x ∈ Xm, y ∈ Xk, z ∈ Xl, and σ, τ, σ′, τ ′ are as in (15).

We call a tree with n + 1 vertices increasing-ordered when all the vertices are labelled by a natural
number less than or equal to n in such a way that every vertex’s label is greater than its parent’s.
Let An denote the set of all increasing-ordered rooted trees with n non-root vertices. Given an (m, k)
shuffle σ, we define the product s ∗σ t of increasing-ordered trees s ∈ Am and t ∈ Ak to be the tree
obtained by joining s and t at the root. Each non-root vertex labelled by l in s is labelled by iσ(l) in
s ∗σ t, and each non-root vertex labelled by l in t is labelled by jσ(l) in s ∗σ t. An example for this
product is given by

0

12
∗σ

0

1

32

=
0

2

53

14

with Im(iσ) = {1, 4}, and Im(jσ) = {2, 3, 5}. The trivial tree consisting of just a root is clearly a unit
for this operation. A is also a T -algebra under adding a new root and increasing the labels by 1. A is
in fact freely generated by these structures, that is, A is an initial (T,⊗Sh)-motor.

By Theorem 4.17 A is also an initial pointed (T,⊗Sh)-magma. A pointed (T,⊗Sh)-magma consists of
an N-indexed family of sets X, together with an element e ∈ X0, and a family of functions

(TX)m ×Xk Xm+k
βσ

for every m and k in N and for every σ in Sh(m, k). By definition of T this is equivalent to having
functions

Xm−1 ×Xk Xm+k
βσ

for every m and k in N with m 6= 0, and for every σ in Sh(m, k).

With this description of A it is easy to see that if an is the number of increasing-ordered rooted trees
with n non-root vertices, i.e. an = |An|, then an is given by the recurrence relation

an =
n∑

m=1

(
n
m

)
am−1an−m

with a0 = 1. This yields the sequence 1, 1, 3, 15, 105, . . . [2, A001147], which has solution given by the
double factorial of odd numbers, that is an = (2n− 1)!! = 1× 3× · · · × (2n− 1).

47



Example 4.23. Following the previous example if we modify T to be

(TX)n =


Xn−1, if n ≥ 1
X0 + {∗}, if n = 1
∅, if n = 0,

then we have the same operations as before, and also a tree consisting of the root and a single leaf of
a different colour to the root, i.e. the tree

0

1
.

The resulting initial (T,⊗Sh)-motor now freely generates the set of all increasing-ordered trees with two
possible colours of leaf.

Applying Theorem 4.17 we obtain the recurrence relation

an =
n∑

m=1

(
n
m

)
am−1an−m + n× an−1, a0 = 1,

which counts the number of increasing-ordered trees with n + 1 vertices and 2 possible colours of
non-root leaves. This is sequence [2, A112487] and has first terms 1, 2, 10, 82, . . . For example the ten
increasing ordered trees with three vertices and two possible colours of leaf are:

0

1

2

0

1

2

0

21

0

12

0

21

0

12

0

21

0

12

0

21

0

12
.

It is an easy matter to extend T to

(TX)n =


Xn−1, if n ≥ 1
X0 + k, if n = 1
∅, if n = 0,

where k is the set with k elements. The resulting initial (T,⊗Sh)-motor now freely generates the set
of all increasing-ordered trees with k+1 possible colours of leaf. Applying Theorem 4.17 we obtain the
recurrence relation

an =
n∑

m=1

(
n
m

)
am−1an−m + n(k − 1)× an−1, a0 = 1,

which counts the number of increasing-ordered trees with n + 1 vertices and k possible colours of
non-root leaves.

It is hoped that some further examples involving Joyal’s category of species [8] could also be characterised
by Theorem 4.17.
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CHAPTER 5

Further Research

The major aim of abstracting the correspondence between the initial motor and the initial magma to
more general structures in a monoidal category has now been achieved. We conclude by suggesting
some possible avenues of further research.

• Following the work of Kirby [9] there is a motor-magma type relationship with regards to the
collection of hereditarily finite sets H. The usual description is that H is generated by the recursive
definition:

- ∅ is a hereditarily finite set
- If a1, · · · , ak are hereditarily finite sets, then so is {a1, · · · , ak}.

Note that H =
(
H, ∅,∪, σ

)
is a motor where H is the set of all hereditarily finite sets, and

σ(x) = {x}. In fact, H is an initial commutative idempotent motor.
We now have that FH =

(
H, ∅, •

)
is a magma where • is the adduction operator x • y = {x} ∪ y.

Note that • has the skew-commutative property x • (y • z) = y • (x • z), and the skew-idempotent
property x • (x • y) = x • y. Kirby shows in his paper that the empty set together with adduction
generates the collection of hereditarily finite sets. In fact, FH is an initial skew-commutative
skew-idempotent pointed magma.
This suggests the following definitions. A T -magma B = (B, e, β) is called skew-commutative if
β
(
x, β(y, z)

)
=
(
y, β(x, z)

)
for all x, y ∈ TB and for all z ∈ B. B is called skew-idempotent if

β
(
x, β(x, y)

)
= β(x, y) for all x ∈ TB and for all y ∈ B. One would hope that the results of

chapter 3 would then extend to a theorem relating the initial commutative idempotent T -motors
and the initial skew-commutative skew-idempotent pointed T -magma.

• Another collection of interest is the set of all Joyce trees J . Joyce trees are increasing ordered full
binary trees and are generated by:

- The trivial Joyce tree: 0

- The binary operation given be growing both of the individual trees up from the root, and then
performing the monoidal operation as given in Example 4.22. For example

0

12
?σ 0

21
=

0

2

63

1

45

with Im(iσ) = {1, 4}, and Im(jσ) = {2, 3, 5}. J does not have a pointed T -magma structure for
some T , but has in fact an initial (1 + T ⊗Sh T )-algebra structure in

(
SetN,⊗Sh, I

)
where T is

the same endofunctor as given in Example 4.21. One might now enquire as to whether there is an
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analogous T -motor like structure for which we get a similar correspondence to the one explored in
this thesis.

• There is actually another way of generating the set of all rooted trees that differs to that of the
motor construction that we gave. A parengebra is a set equipped with a single n-ary operation
for each natural number n. Taking the nullary operation to be the trivial rooted tree, the unary
operation to be the operation that grows a tree up from a root, and any higher order n-ary
operation to be the operation that takes n trees and joins them at the root, we see that the set
of all rooted trees forms an initial parengebra. Now we might ask: In general, how does the initial
T -motor relate to the initial T -parengebra?

• Lastly one might wish to consider what happens if instead of looking at initial T -motors and initial
pointed T -magmas, we instead look at terminal co-T -motors and terminal pointed co-T -magmas.
We can then ask whether there are there any interesting instances of these, and whether we get
any correspondence between these two notions.
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