Natural Products Applied in Reverse Chemical Proteomics

Michael Gotsbacher

Master of Pharmacy University of Vienna, Austria

A thesis submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

Department of Chemistry and Biomolecular Sciences,

Macquarie University

Sydney 2109, Australia

2012

Thesis Abstract

Natural products are a rich source of structurally diverse and biologically active small molecules. They constitute a useful class of compounds as leads in rational drug design and development. However, drug discovery faces a major bottleneck due to the lack of knowledge about the active compounds' cellular targets and mode of action. For this thesis, several natural products with interesting biological activity have been applied as ligands in a technique we refer to as reverse chemical proteomics. This method rapidly generates protein-ligand pairs, which will be useful for the rational design of new and more potent therapeutics, identification of druggable targets as well as for understanding the underlying biochemical pathways of these active ligands. This thesis is divided into four main chapters. Chapter 1 introduces the techniques behind reverse chemical proteomics. Chapter 2 describes the bioassay-guided fractionation of eleven marine sponges, the isolation and characterisation of two new and seven known bromotyrosines of the highly antibacterial active extract from the marine sponge *Pseudoceratina purpurea*, as well as isolation of bromotyrosines from the opisthobranch *Tylodina corticalis*, which was collected while feeding on *P. purpurea*. In Chapter 3, the chemical derivatisation of natural products is presented alongside the synthesis and characterisation of novel, linkers and reagents required for performing reverse chemical proteomics. Chapter 4 describes the application of T7 phage display utilising the immunosuppressant natural product FK506 as a model affinity probe. Consecutively, protein binding partners for biotinylated artesunate, daptomycin and manzamine are isolated from various T7 phage-displayed human cDNA libraries. An experimental chapter and concluding remarks follow thereafter.

Graphical Abstract

Chapter 2

Table of Contents

Thesis Abstract	i
Graphical Abstract	iii
Table of Contents	
List of Tables	viii
List of Figures	іх
Abbreviations	
Declaration	xvii
Acknowledgements	xviii
Introduction	1
1.1 Overview	2
1.1.1 Natural products	2
1.1.2 Methods for the isolation of natural product receptors	3
1.2 Previous work on cDNA libraries in T7 phage display	22
1.2.1 Platforms for phage display selection	22
1.2.2 Examples for the identification of targets of small-molecule natural products	24
1.3 Relevance of studies	31
Marine Natural Products	33
2.1 Introduction	34
2.1.1 Marine natural products	34
2.1.2 Ecological aspects of secondary metabolites in marine organisms	37
2.1.3 Biological activity as a concept in drug discovery	38
2.1.4 Considering the phylogenetic origin of MNP drug leads	38
2.1.5 Sponge-derived marine natural products	39
2.1.6 Transfer of chemical defence compounds between species	43
2.1.7 Symbionts as potential source for bioactive small molecules	43
2.1.8 Order Verongida	44
2.1.9 Bioassay guided fractionation	45
2.2 Results and discussion	50
2.2.1 General extraction	50
2.2.2 Screening of crude sponge partitions	50
2.2.3 Pseudoceratina purpurea	54
2.2.4 Tylodina corticalis	68
Synthesis of Linkers, Reagents and Biotinvlated Probes	79
3.1 Overview	80
3.2 Linkers and reagents	80

3.2.1 3.2.2	Poly(ethyleneglycol) linkers Biotinylated linkers	80 83
3.2.3	Biotinylated natural products	89
3.3 Sui	nmary	135
Display	Cloning	137
4.1 Ov	erview	138
4.2 FK	506	139
4.2.1	Introduction	139
4.2.2	Results and discussion	139
4.3 Ma	anzamine A	147
4.3.1	Introduction	147
4.3.2	Results and discussion	147
4.4 Da	ptomycin	159
4.4.1	Introduction	159
4.4.2	Results and discussion	159
4.5 Art	resunate	170
4.5.1	Introduction	170
4.5.2	Results and discussion	170
Evnorin	aental	191
Experim		101
5.1 Mc	iterials and methods	182
5.1.1	Equipment	182
5.2 Na	tural products	184
5.2.1	Handling of sponge material and preparation for their identification	184
5.2.2	General extraction procedure for sponges	184
5.2.3	Antibacterial Assays	185
5.2.4	Herbicidal	188
5.2.5	Isolation of bioactive marine natural products	189
5.3 Lin	kers and reagents	197
5.3.1	General remarks	197
5.3.2	Biotinylated poly(ethyleneglycol) (PEG) linkers and reagents	198
5.4 Ph	age Display	220
5.4.1	Overview	220
5.4.2	Materials	220
5.4.3	Equipment	222
5.4.4	Preparation of bacterial cultures	222
5.4.5	Growth of T7 lysates	223
5.4.6	Preparation of natural product derivatised microtitre plates	223
5.4.7	Affinity selections	223
5.4.8	Titring	224
5.4.9	Picking plaques	224
5.4.10	Amplification, sequencing and fingerprinting of cDNA inserts	225
5.4.11	Gel electrophoresis	225
5.4.12		226
5.4.13	rarget validation (binding studies) - non-specific elution	226

Conclu	sions and Future Directions	227
Bibliog	raphy	231
Append	dices	243
8.1 Ma	arine natural products	244
8.1.1	Pseudoceratina purpurea	244
8.1.2	UV trace and MS data of ethyl acetate fractions of P. purpurea and T. corticalis	245
8.1.3	NMR spectra of bromotyrosine (55; ceratinadin D)	248
8.1.4	NMR spectra of bromotyrosine (60)	254
8.2 Syl	nthesis of reagents and linkers	260
8.2.1	NMR spectra of biotin-manzamine (98)	260
8.2.2	NMR spectra of biotin-daptomycin (101)	266
8.2.3	NMR spectra of biotin-artemisinin derivative (109)	272
8.2.4	NMR spectra of biotin-artesunate (123)	277
8.3 Dis	splay cloning	284
8.3.1	Physical data for PCR primers	284
8.3.2	Agarose gels from round-15 biopanning	285
8.3.3	DNA sequences of rescued clones	291

List of Tables

Table 1: Marine natural products marketed as drugs or drug candidates in clinical trials (reproduced fro)m
Mayer <i>et al</i> . ^{125,126} , and updated from the NIH database "clinicaltrials.gov" ¹²⁷)	35
Table 2: Examples of antimicrobial substances from marine sponges (from Laport et al. ¹⁵¹)	41
Table 3: List of investigated marine sponge samples including original weight and weights of different	
extracts	50
Table 4: Results from disc diffusion assay of sponge fractions are displayed in diameter (in mm) of zone	e of
inhibition	51
Table 5: Herbicidal activity of sponge partitions tested against W. arrhiza.	53
Table 6: The Sephadex fractions of JB07-S1 (P. purpurea) were tested for antibacterial activity in the di	SC
diffusion assay and fractions showing activity are summarised below.	55
Table 7: NMR (DMSO-d ₆ , 600 MHz) data for new bromotyrosine compound (55)	61
Table 8: ¹ H- and ¹³ C-NMR data of bromotyrosine aplysamine-4 in d_4 -methanol (reproduced from Jurek 1993 ²²¹).	et al. 62
Table 9: NMR (DMSO-d ₆ , 600 MHz) data for new bromotyrosine compound (60)	65
Table 10: MICs determined from MTT assay of HPLC purified bromotyrosines from <i>P. purpurea</i>	66
Table 11: Comparison of HPLC retention times, UV and MS data from brominated compounds of P.	
purpurea (JB07-S1-EA-S9-22) and T. corticalis (EtOAc)	72
Table 12: High resolution MS data matched to the compounds described in Table 11. The molecular	
formulas were calulated based on <i>n</i> atoms of bromine.	76
Table 13: NMR (DMSO-d ₆ , 600 MHz) data for compound (87)	87
Table 14: GSK-3 Inhibition by Manzamine A and Analogues ^a taken from Hamann et al. ²⁶⁵	92
Table 15: Selected NMR (CDCl ₃ , 600 MHz) data for biotin-manzamine (98)	97
Table 16: Selected NMR(DMSO-d ₆ , 600 MHz) data for biotinylated artemisinin derivative (109)	126
Table 17: Selected NMR (DMSO-d ₆ , 600 MHz) data for biotin-artesunate (123).	132
Table 19: DNA sequencing of PCR products obtained from individual plaques after 15 rounds of selection	on
with biotin-manzamine immobilised on a neutravidin-coated PS microtitre plate	157
Table 20: DNA sequencing of PCR products obtained from individaul plaques after nine rounds of selec	tion
with biotin-daptomycin immobilised on a neutravidin-coated PS microtitre plate.	164
Table 21: Amino acid composition of RPS19 and its smallest analogue isolated from plaque E1 from live	۶r
tumour library using biotin-daptomycin immobilised on neutravidin-coated plates	167
Table 22: DNA sequencing of PCR products obtained from individual plaques after 15 rounds of selection	วท
with biotin-daptomycin immobilised on a neutravidin-coated PS microtitre plate	169
Table 23: DNA sequencing of PCR products obtained from individaul plaques after nine rounds of selec	tion
with biotin-artesunate immobilised on a neutravidin-coated PS microtitre plate	175
Table 24: Amino acid composition of BAD and phage-displayed protein from the isolated plaque B9 fro	m
Alzheimer's brain library using biotin-artesunate immobilised on neutravidin-coated plates	178
Table 25: Preparation of media required for bioassays	186
Table 26: Preparation of reagents and media used in display cloning	221
Table 27: Standard thermocycler program for PCR of cDNA inserts	225

List of Figures

Figure 1: Two flavours of chemical proteomics: Activity-based probe profiling (ABPP) and compound-centric
chemical proteomics (CCCP). Figure reproduced from Rix and Superti-Furga , with authors consent8
Figure 2: Schematic representation of M13 bacteriophage with different display types based on pill coat
protein. (a) The protein of interest (POI) is directly fused to a truncated pIII. (b) The POI is indirectly
fused to pIII by means of a leucine zipper structure (from Georgieva and Konthur ⁴⁰)14
Figure 3: (a) A stylised representation of a T7 phage particle indicating the icosahedral shape of the capsid,
the tail and the six fibres (Novagen Inc.). (b) A schematic representation of a T7 phage particle
indicating the tight DNA packaging inside the capsid and the various proteins constituting different
parts of the particle. (c) A transmission electron micrograph of a T7 phage particle (Spires and Brown,
University of Texas)16
Figure 4: Protoxin isoxazoline alkaloids isofistularine-3 (43) and aerophobin-2 (44) from Aplysina aerophoba
and bioconversion into toxins aeroplysinin-2 (45) and dienone (46). When isofistularin-3 (43) is used as
a substrate, the bisoxazolidinone derivative (47) is recovered as a second product of the reaction
(reproduced from Ebel <i>et al.</i> ¹⁵⁰)
Figure 5: MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) (yellow) is converted to
formazan (dark blue) through mitochondrial reductase in live cells.
Figure 6: HPLC trace of bioactive Sephadex fractions 9-22 isolated from <i>Pseudoceratina purpurea</i> .
Numbered peaks indicate isolated and structurally elucidated compounds. A gradient of 18-40 %
acetonitrile in aqueous TFA (0.05 %) was run over 41 min on a preparative Gemini C18 column and
peaks were detected at 210 nm. The structures of compounds 44 and 54-61 were elucidated by NMR
and MS
Figure 7: Structures of nine brominated tyrosine derivatives isolated from the ethyl acetate nartition of the
marine snonge <i>Pseudocerating nurnureg</i> . Compounds 55 and 60 have not previously been described
in literature
III literature.
rigure 8. Structure and selected 2D-Nink correlations of new bromotyrosine compound (55).
Figure 9: Selected HMBC correlations of compound 55 (DMSO- a_6 , 600 MHz): (a) from H-19 (δ 2.51) to C-20
(δ 122.4) and C-24 (δ 117.8) of the imidazole moiety. H-19 lies under the large DMSO peak (2.49 ppm)
and (b) from H-8' (δ 6.83) ³ J couplings to C-24 (δ 117.8) of the imidazole moiety, and to C-6' (δ 149.6),
C-10' (δ 128.9) and a 2 J coupling to C-9' (δ 137.4) of the uranidine structure60
Figure 10: Structure and selected 2D-NMR correlations of new bromotyrosine compound (60).
Colours: orange (HMBC), blue (ROESY), black (COSY). 63
Figure 11: Selected HMBC correlations found in the unknown bromotyrosine (60; DMSO- <i>d</i> ₆ , 600 MHz). A
weak correlation between H-16 (δ 3.88) and C-18 (δ 151.3) indicates the link of substructures B and C.
Figure 12: RP-C18 HPLC UV traces (at 210 nm) of bioactive Sephadex fractions of ethyl acetate partitions of
<i>P. purpurea</i> and the crude EtOAc-partition of <i>T. corticalis</i>
Figure 13: UV traces of the bioactive Sephadex fractions from the ethyl acetate extract of <i>P. purpureg</i> at 210
nm (a) and 280 nm (b) and of the crude ethyl acetate fraction of <i>T. corticulis</i> at 210 nm (c) and 280 nm
(d)
Figure 14: MS chromatograms (TIC) and selective ion traces of ethyl acetate extracts of (a) P. nurnureg and
(b) T corticalis For brominated compounds the selective ion fragments represent the lowest control
(b) 7. controllins. For bronningted compounds, the selective for magnetics represent the lowest centre
Figure 15: Promotyroging derivatives identified from the other extents of 0, numerical and T
Figure 15. Diomotyrosine derivatives identified from the ethyl acetate extracts of <i>P. purpurea</i> and <i>T.</i>
<i>corticalis</i> based on UV and IVIS analysis. Stereochemistry shown as reported in literature
nartitions of <i>P. nurnurea</i> (IR07-S1-EA-S- Q -22) and the crude EtOAc-partition of <i>T. corticalic</i> 74
partitions of <i>r. parparea</i> (3007 ST ER-3-3-22) and the chude EtORt-partition of <i>r. conticuits</i>

Figure 17: Selected 1D and 2D NMR correlations of the 1,4 disubstituted triazole 87. Colours of arrows:
Figure 18: Selective 1D selective ROE of triazole (87) with spin lock on H-30 (8.06 ppm), showing ROE to both H-31 (s. 4.51) and H25 (t. 4.50)
Figure 19: Structure of the selected manzamine alkaloids: manzamine A (91), 8-Hydroxymanzamine A (92), ircinol A (93), and <i>ent</i> -8-hydroxymanzamine A (94)
Figure 20: Structure of biotin-manzamine (98) and selected 2D-NMR correlations. Key correlations confirming the site of alkylation and stereochemistry of the triazole are shown. HMBC in red, ROESY in blue and COSY in black
Figure 21: Selected 2D-NMR correlations of biotin-manzamine (98; CDCl ₃ , 600 MHz). (a) ROE cross peak between H-7 and (H-38) ₂ . (b) HMBC correlations of C-55 to both (H-50) ₂ and (H-56) ₂
Figure 22: RP-HPLC chromatogram of biotin-manzamine (98; 0.5 mg/mL) at 223 nm and the compounds UV spectrum indicating the absorbance maxima at 223 nm, 277 nm and 362 nm
Figure 23: RP-HPLC traces of biotin-manzamine (98) in PBS (0.5 mg/mL) detected at 223nm after 0 h, 3 h, 6 h and 9 h relative to time zero (100%)
Figure 24: Structure and amino acid sequence of daptomycin (100)
daptomycin (101; δ_{H} 6.42, 6.37) and biotinsulfoxide-daptomycin (102; δ_{H} 6.78, 6.69)
 daptomycin (missing the ornithine amine) as the two major fragments
Figure 30: Reverse phase HPLC analysis of purified biotin-daptomycin including UV traces at 224 nm and 365 nm and the compound's UV spectrum
Figure 31: Antibacterial assay of daptomycin (100) and biotin-daptomycin (101) on <i>S. aureus</i> , displayed as percent growth versus concentration in mol/L. Data was fitted to a sigmoidal dose-response curve with variable slope (Hill plot) with the top and bottom values set to 100 and 0 respectively.
Figure 32: Structure of artemisinin (104), and synthesis of the reduction product dihydroartemisinin (105) and the succinic acid hemiester: α-artesunate (106)
Figure 33: Structure and selected 2D-NMR correlations of biotinylated DHA-derivative (109). The numbering of the artemisinin-moiety was adapted from literature ³⁵⁹ . Colours: orange (HMBC), blue (ROESY), black (COSY)
 Figure 34: Selected 2D-NMR correlations of compound 109 (600 MHz, DMSO-d₆). (a) HMBC couplings of H-13 and C-3, and long range couplings of H-13 and C-12. (b) ROESY correlations between H-12 and H-5, H-6, H-7, H-8, H-8a, H-9, H-13, H-16 and H-17.
Figure 35: Structure and selected NMR correlations of biotin-artesunate (123; 600 MHz, DMSO- <i>d</i> ₆). HMBC in red, ROESY in blue and COSY in black
 Figure 36: Selected 2D-NMR correlations of biotin-artesunate (123; 600 MHz, DMSO-d₆). (a) ROESY correlations between H-18/H-19a and H-45/H-43a. (b) ROESY correlations between H-5 and H-12. (c) HMBC coupling of H-12 and C-16. (d) HMBC long range coupling of H-20 and C-19
Figure 37: Stability test of biotin-artesunate in PBS over 8 h monitored via RP-HPLC (at 210 nm) in comparison to background and sample containing biotin-PEG-succinic acid as major hydrolysis product
Figure 38: Single peak RP-HPLC trace and UV spectrum of biotin-artesunate (123)

Figure 39: Phage titre of each round of selection using human brain cDNA phage library and biotinylated
FK506 immobilised on neutravidin-coated plates fitted to a sigmoidal curve (Dynafit)142
Figure 40: Agarose gel electrophoresis of phage DNA inserts amplified by PCR from human brain cDNA
library after seven rounds of selection with biotin-FK506 immobilised on a neutravidin-coated
polystyrene plate. (a) 1.5% agarose gel and generic T7 primers. (b) 3% SFR agarose gel and specific
primers for FKBP1a, FKBP1b, FKBP2 and FKBP3 (mixed)142
Figure 41: Agarose gel electrophoresis (3% SFR agarose) of PCR products obtained from single plaques after
seven rounds of selection with biotinylated FK506 immobilised on a neutravidin-coated polystyrene
plate. DNA inserts were (a) amplified with FKBP primer mix or (b) T7 generic primers; (c) products
from (a) were enzymatically digested with the restriction endonuclease Hinfl
Figure 42: Alignment of T7 phage-displayed FKBP1a and FKBP1b protein sequences with the human
analogues (UniProtKB: P62942 and P68106)145
Figure 43: Agarose gel electrophoresis of phage DNA inserts amplified by PCR from colon, Alzheimer's brain,
colon tumour and liver tumour cDNA libraries after nine rounds of selection with biotinylated 8-
hydroxymanzamine immobilsed on a neutravidin-coated microtitre plate
Figure 44: Agarose gel electrophoresis of phage DNA inserts amplified by PCR from lung tumour and breast
tumour cDNA libraries as well as Pseudomonas stutzeri gDNA library after nine rounds of selection
with biotinylated 8-hydroxymanzamine immobilsed on a neutravidin-coated microtitre plate150
Figure 45: Agarose gel electrophoresis of PCR products obtained from colon, Alzheimer's brain and colon
tumour individual plaques after nine rounds of selection with biotinylated 8-hydroxymanzamine
immobilised on a neutravidin-coated plate. The DNA inserts, which were amplified using generic T7
primers, were also digested with Hinfl to produce unique DNA fingerprints of each clone
Figure 46: Agarose gel electrophoresis of PCR products obtained from liver tumour, lung tumour and breast
tumour individual plaques after nine rounds of selection with biotinylated 8-hydroxymanzamine
immobilised on a neutravidin-coated plate. The DNA inserts, which were amplified using generic T7
primers, were also digested with Hinfl to produce unique DNA fingerprints of each clone
Figure 47: Agarose gel electrophoresis of PCR products obtained from Pseudomonas stutzeri individual
plaques after nine rounds of selection with biotinylated 8-hydroxymanzamine immobilised on a
neutravidin-coated plate. The DNA inserts, which were amplified using generic T7 primers, were also
digested with <i>Hin</i> fl to produce unique DNA fingerprints of each clone
Figure 48: Agarose gel electrophoresis of phage DNA inserts amplified by PCR from colon, Alzheimer's brain,
colon tumour and liver tumour cDNA libraries after twelve or nine rounds of selection with
biotinylated daptomycin immobilised on a neutravidin-coated microtitre plate
Figure 49: Agarose gel electrophoresis of phage DNA inserts amplified by PCR from lung tumour and breast
tumour cDNA, and Pseudomonas stutzeri gDNA-libraries after nine rounds of selection with
biotinylated daptomycin immobilised on a neutravidin-coated microtitre plate
Figure 50: Agarose gel electrophoresis of PCR products obtained from colon, colon tumour and liver tumour
individual plaques after twelve or nine rounds of selection with biotinylated daptomycin immobilised
on a neutravidin-coated plate. The DNA inserts, which were amplified using generic T7 primers, were
also digested with <i>Hin</i> fl to produce unique DNA fingerprints of each clone162
Figure 51: Agarose gel electrophoresis of PCR products obtained from lung tumour, breast tumour and P.
stutzeri individual plaques after nine rounds of selection with biotinylated daptomycin immobilised on
a neutravidin-coated plate. The DNA inserts, which were amplified using generic T7 primers, were also
digested with Hinfl to produce unique DNA fingerprints of each clone
Figure 52: Alignment of T7 phage-displayed RPS19 protein sequences isolated from colon tumour, liver
tumour, lung tumour and breast tumour libraries with the human RPS19 analogue (NCBI ID:
NP_001013.1)165
Figure 53: On-phage binding study comparing the affinity of the RPS19-displaying phage clone C1 (from liver
tumour sublibrary of round-9) for neutravidin-coated plates derivatised with a control compound and
a similar plate derivatised with biotinylated daptomycin

Figure 54: Agarose gel electrophoresis of phage DNA inserts amplified by PCR from colon and Alzheimer's
brain cDNA libraries after nine or twelve rounds of selection with biotinylated artesunate immobilised
on a neutravidin-coated microtitre plate171
Figure 55: Agarose gel electrophoresis of phage DNA inserts amplified by PCR from colon tumour, liver
tumour, lung tumour and breast tumour cDNA libraries after nine rounds of selection with
biotinylated artesunate immobilsed on a neutravidin-coated microtitre plate
Figure 56: Agarose gel electrophoresis of PCR products obtained from Alzheimer's brain, colon tumour and
liver tumour individual plaques after twelve or nine rounds of selection with biotinylated artesunate
immobilised on a neutravidin-coated plate. The DNA inserts, which were amplified using generic T7
primers, were also digested with Hinfl to produce unique DNA fingerprints of each clone
Figure 57: Agarose gel electrophoresis of PCR products obtained from lung and breast tumour individual
plaques after nine rounds of selection with biotinylated artesunate immobilised on a neutravidin-
coated plate. The DNA inserts, which were amplified using generic T7 primers, were also digested with
Hinfl to produce unique DNA fingerprints of each clone174
Figure 58: Alignment of T7 phage-displayed BAD protein sequences isolated from Alzheimer's brain, colon
tumour, liver tumour, lung tumour and breast tumour libraries with the human BAD analogue (EMBL
bank entry: BC095431.1). The clone isolated from breast tumour resulted in a very short sequence and
has not been included in the consensus alignment176
Figure 59: On-phage binding study comparing the affinity of the BAD-displaying phage clone B1 (from colon
tumour sublibrary of round-9) for neutravidin-coated plates derivatised with a control compound and
a similar plate derivatised with biotinylated artesunate

Abbreviations

aa	amino acids
amu	atomic mass unit
ATP	adenosine triphosphate
AUC	area under curve
BES	N,N-Bis(2-hydroxyethyl)-2-aminoethanesulfonic acid
Boc	<i>tert</i> -butoxycarbonyl
bp	base pairs
br	broad (IR, NMR)
BuOH	1-butanol
CDCl ₃	deuterated chloroform
CHCl ₃	chloroform
cDNA	complementary DNA
CDS	coding sequence
COSY	correlated spectroscopy
d	doublet (NMR)
DCC	1,3-dicyclohexylcarbodiimide
DCM	dichloromethane
DHA	dihydroartemisinin
DMAP	4-dimethylaminopyridine
DMSO	dimethylsulfoxide
DMSO- d_6	deuterated dimethylsulfoxide
DNA	deoxyribonucleic acid
dNTP	deoxyribonucleotide triphosphate
DSC	<i>N,N'</i> -disuccinimidyl carbonate
dsDNA	double-stranded DNA
E. coli	Escherichia coli
EDC	1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride
EDTA	ethylenediaminetetraacetic acid
ESI	electrospray ionisation
FDA	US Food and Drug Administration
FKBP	FK506 binding protein
FTIR	Fourier transform infrared
gp	gene product
Grubbs' catalyst	benzylidine-bis(tricyclohexylphosphine) dichlororuthenium

НМВС	heteronuclear multiple bond coherence
HOBt	hydroxybenzotriazole
HPLC	high performance liquid chromatography
HRESI	high resolution electrospray ionisation (mass spectrometry)
HSQC	heteronuclear single quantum coherence
Hünig's base	N,N-diisopropylethylamine
IL	interleukin
IPTG	isopropyl-β-D-thiogalactopyranoside
IR	infrared
kb	kilobase pairs
LB	Luria Media
LC-MS	liquid chromatography - mass spectrometry
LR-MS	low resolution - mass spectrometry
m	multiplet (NMR), medium (IR)
MCS	multiple cloning site
MeCN	acetonitrile
МеОН	methanol
MOA	mode of action
mRNA	messenger RNA
MS	mass spectrometry
MTT	Thiazolyl Blue Tetrazolium Bromide [or (3-(4,5 Dimethylthiazol-2-yl)-
	2,5 diphenyltetrazolium bromide]
NaBH(OAc) ₃	sodium(triacetoxy)borohydride
NHS	N-hydroxysuccinimide
NMR	nuclear magnetic resonance
ODn	optical density at 'n' nanometres
PBS	phosphate buffered saline
PCR	polymerase chain reaction
PE	petroleum ether
PEG	poly(ethylene glycol)
PEG-n	poly(ethylene glycol) with average molecular weight of 'n'
P. aeruginosa	Pseudomonas aeruginosa
PWB	phage wash buffer (PBS + 0.05% Tween-20)
q	quartet (NMR)
RNA	ribonucleic acid
RP-HPLC	reverse phase – high performance liquid chromatography

rpm	revolutions per minute
RPS19	ribosomal protein S19
rRNA	ribosomal RNA
S	singlet (NMR), sharp (IR)
SAR	structure-activity relationship
S. aureus	Staphylococcus aureus
SCUBA	self contained underwater breathing apparatus
SDS	sodium dodecyl sulfate
sp.	species
spp	species (pl.)
ssDNA	single-stranded DNA
t	triplet (NMR)
Taq	Thermus aquaticus
TEA	triethylamine
TEG	tetra(ethylene glycol)
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TLC	thin layer chromatography
TNF	tumour necrosis factor
TOCSY	totally correlated spectroscopy
Tris	tris(hydroxymethyl)aminomethane
UV	ultraviolet
UV-Vis	ultraviolet-visible
WHO	World Health Organisation
W	weak (IR, NMR)
λ_{max}	wavelength of maximal UV absorption
ν_{max}	frequency of maximal IR absorption

Declaration

I certify that the work in this thesis entitled "Natural Products Applied in Reverse Chemical Proteomics" has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree to any other university or institution other than Macquarie University.

I also certify that the thesis is an original piece of research and it has been written by me. Any help and assistance that I have received in my research work and the preparation of the thesis itself have been appropriately acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

The research presented in this thesis was approved by Macquarie University Biosafety Review Committee, reference number: 5201001557 NLRD on the 8.12.2010.

Michael Gotsbacher (SN 41130758) 5 July 2012

Acknowledgements

I want to thank Macquarie University for granting me an iMQRES scholarship to undertake my research and my supervisor Prof. Peter Karuso for the intellectual and laboratory framework to pursue my project. I very much appreciate his professional honesty and academic vision and am very grateful that he introduced me to the very exciting topic of reverse chemical proteomics . I would also like to thank my adjunct supervisor Dr. Fei Liu for her continuous feedback on both my achievements and shortfalls.

My thanks also go to my colleagues within the department who became part of my academic journey: Rob and Sudhir for showing me how to graduate under meticulous supervision; Wendy, Soumit, Chris, Ben, Jean-Marc and Nima for their solidarity; Alpesh for the small amount of work we've done together and the prospect of great collaborations to come; Jason for help with MOE; Jens for his supportive comments on the projects I meant to do, but never got round to. Mattias as a dear friend and for his incredibly useful and detailed hints on molecular biology lab issues; many thanks to Dr. Daniel Kolarich, who kindly offered me his help with MS-MS studies on various occasions, and also welcomed me into his personal life; he furthermore introduced me to his successor Dr. Morten Thaysen-Anderson, who then kindly accepted the "inheritance" of helping me with my MS-MS samples. Dr. Josie Lategan for her advises on my microbiological work.

I would like to thank all the general staff from within the CBMS and Biology departments: Tony Wang, who always had a helpful hand and good advice, when once again the intrumentation had it's own will (often contrary to mine); Mark Tran, Elsa Mardones and Catherine Wong; I particularly want to thank Maria Hyland, for her efforts to keep paperwork out of my way.

The summer vacation scholarship students I'm also thankful to, whom assisted me with parts of my work on marine natural products, in particular Mark, Simone and Nim; and to Mark for his technical assistance during my phage display experiments. And I would like to give a collective thanks to all those people, whose recommendations turned out to be right, yet learning through my own experiences helped to shaped my life in many educational ways.

During the years I've spent on this degree, there were many people entering my life and most of them have chosen to stay. I would like to thank all of those, who became an integral part of my life and welcomed me into theirs. I wouldn't have started this course if it weren't for Janja, whose influence dates back a long way and triggered my fascination for *marine* natural products. I'm glad I followed this interest and therefore persued a carrier vastly different than I had envisaged otherwise.

Special thanks go out to the Sydney share-house market, which allowed me to experience this city in all its cultural diversity. I got to know a great variety of lifestyles; and a number of flatmates who've been an invaluable addition to my life in Sydney.

My circle of friends, near and far, always proved as a strong support, so thanks to Irene, Günther, Stefan, Flo, Dimitri, Irena, Suma, Sandra, Kim and Philip for all their support; to Felix, for his editorial comments at different stages of my manuscripts. I wish to thank my dear friend Dan Moran to educate me in the soft skill of *letting go* (which triggered strong responses depending on which side I was on); Arne Geschke for showing me how to do a PhD in time and still have a great life on the side, and of course for the scuba-dives, which were exhilirating, scary, and refreshingly unrelated to work. Thanks to Ruth for her particularly detailed editorial skills and proof reading of my thesis; Nansi for her advice both linguistic and scientific on my manuscripts, but mostly for being the best friend to my partner Karla; Consequently providing a deeper understanding to her about the challenges one encounters while doing a PhD.

Jo Packer for being the most reliable colleague I've worked with and becoming a true and valuable friend. Thanks for all the positive feedback, the stoic patience with which you've addressed me during our coffee breaks, the help on antimicrobial assays and countless overnight cultures, the lifts to uni, the treats, and overall fantastic times. I wish to thank my family for their generosity and their life long support, my brother Gerald, for his endless positive feedback. Mr. Crohnicle, who stands back when I'm on top of things, but leads me to who I am in case I forget to look after myself.

Finally, my thanks go to Karla, my loving partner, who kindly accepted this three-way relationship with my thesis and I. There is simply no way to express my gratitude for all the love, kindness and generosity you've provided me with throughout the years. I would not have made this deadline if it wasn't for you. Thanks for all your help with editorial and formatting issues and more imporantly the fact that you kept my back free of everyday issues for the last months and sacrificed so many evenings and weekends so I could enwrap myself in my thoughts for days on end.