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Abstract

This thesis investigates the problem of reliability in wireless body area net-

works (WBANs). WBANs constitute a class of wireless networks that are

composed of miniaturized wearable or implantable nodes inside or in the vi-

cinity of human body, with diverse applications in medicine, personal care,

and entertainment, or more broadly Internet of Things (IoT).

Since WBANs can potentially convey sensitive health-related signals,

high reliability of the wireless links is a necessity. Typically, reliability

of communications can be increased by leveraging node resources such as

energy or computational complexity. Nonetheless strict limitation of such

resources in small battery-operated WBAN nodes to overcome severe chan-

nel conditions unique to WBANs pose a significant challenge that demand

high transmission efficiency with low complexity. A key idea in this thesis

is that achieving an optimal transmission efficiency can relax the constraint

on node resources such that the node’s expected lifetime is increased and

it can allocate more energy and computational power to countering harsh

noise and fading conditions.

The thesis studies different types of WBANs and propose novel tech-

niques across different layers of the communication protocol to achieve high

transmission efficiency. The proposed methods rely on statistical signal pro-

cessing, adaptation, error control coding, and optimization. However, main-

taining a low computational demand at the transmitter node is a key requi-

rement that has been considered in all methods.

The main problem is addressed in two different parts of this thesis. The
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iv Abstract

first part deals with the problem of optimization of WBANs based on the

IEEE 802.15.6 recommendations, which is the state-of-the-art communica-

tion protocol for WBANs. Novel MAC-level adaptation and optimization

schemes are proposed for impulse-radio ultra-wideband systems and a the-

oretical framework to achieve the optimal energy-delay tradeoff for reliable

communications is provided. Simulations confirm that the transmission ef-

ficiency can be improved by up to a factor of two by link adaptation. Also

the energy efficiency is maximized with respect to the frame length and a

closed formula is derived.

In the second part, a more general system is considered and the problem

of optimal transmission efficiency in a typical WBAN/IoT device is addres-

sed. The thesis proposes novel coding techniques based on random linear

coding (RLC) as well as capacity-achieving low-complexity polar codes to

outperform the state-of-the-art error control techniques. Specifically, novel

hybrid-ARQ schemes based on systematic polar codes are proposed that are

designed for low complexity and short code-length implementations that

can achieve about 4 dB gain at low SNR. It is also proposed to leverage the

available receiver-side computational power to fix partially corrupted pack-

ets without asking for any further redundancy from the transmitter which

relies on transmitter-side RLC, combined with receiver-side sparse recove-

ry.This technique can lead to performance gain in point-to-point RLC coded

systems and improves transmission efficiency typically by 50% in multicast.

This thesis also proposes a novel joint sampling-quantization architec-

ture with nonuniform sampling time and numbers of bits per sample that

can represent a segment of a band-limited signal with the smallest number

of bits, compared to the state-of-the-art previously known techniques, wit-

hout performing any transform coding compression. In this way, it is shown

that node resources are utilized efficiently and the resources required for

quantization, compression, and transmission are saved since fewer bits are

produced and transmitted assuming a given segment of signal acquired by

the sensor. Simulations show that the proposed sub-Nyquist sampling sche-

me leads to only 12% of total number of bits compared to the conventional

uniform Nyquist sampling.
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Chapter 1

Introduction

The focus of this thesis is reliable communications in low-complexity, low-

power, mostly wearable or implantable wireless devices in a wireless body

area network (WBAN). A WBAN consists of a set of wireless implantable or

wearable sensor nodes that communicate with each other or to a central hub

node in the proximity of a human body. A hub node is able to handle more

complex tasks and is less constrained in terms of energy resources. The

sensor nodes are miniaturized electronic devices that are usually powered

by a small battery and consist of a sensing device as well as communication

and control circuits. They can collect various important physiological data

for diagnosis or fast emergency response, or can deliver various personalized

therapeutic-treatment-related applications and services, or can be a set of

body-centric wireless devices that enable diverse applications in the realm

of the Internet of Things (IoT).

1.1 Motivations and Challenges

There are several motivations to exploit WBANs, from health monitoring

to sport and entertainment. The growth of the elderly population, and lim-

itations in the numbers of medical staff and clinical facilities, demand an

affordable and efficient health-care system. Considering the promotion of

technology in the society and the recent advances in miniaturizing the elec-

1



2 Introduction

Table 1.1: Characteristics of In-Body and On-Body Sensor Applications [1]

Application
Type Sensor Node Data Rate

Duty
Cycle

Power
Consumption

Latency
Sensitivity Privacy

In-body
Applications

Glucose Sensor few Kbps <1% Extremely Low Yes High
Pacemaker few Kbps <1% Low Yes High

Endoscope Capsule >2Mbps <50% Low Yes Medium
On-body
Medical

Applications

ECG 3Kbps <10% Low Yes High
SpO2 32 bps <1% Low Yes High

Blood Pressure <10bps <1% High Yes High
On-body

Non-Medical
Applications

Music for Headsets 1.4 Mbps High Relatively High Yes Low
Forgotten Things Monitor 256 Kbps Medium Low No Low

Social Networking <200 Kbps <1% Low Low High

tronic devices, WBAN is a promising technology that can enable ubiquitous

IT solutions for mobile health monitoring and treatment and similar appli-

cations with minimum cost. The medical applications of WBANs can be

categorized into clinical and in-house deployments. Wireless nodes permit

live monitoring with more flexibility, mobility, and durability than wired

sensors. Furthermore, they can enable novel treatments when implanted in

body. Table 1.1 represents some in-body and on-body sensor applications.

A wide range of data rates from a dozen bits per second to several Mbps, a

demand for different levels of QoS and privacy, and heterogeneity in duty

cycle, can be observed.

Non-medical applications of WBANs vary from fitness monitoring, sport

science and research, games, and emergency response for hazardous situa-

tions and professions. However, as will be explained in this thesis, the reli-

ability of wireless links poses a challenging problem, and novel techniques

and methods are required to be able to deploy WBANs for such applica-

tions. An extensive list of applications of WBANs and their advantages can

be found in [2].

Besides all the motivations, there are several challenges that bring about

a theoretical gap between the capabilities of the current wireless networks

and those required by a reliable WBAN. It is now evident that the link qual-

ity in WBANs can dramatically change based on different factors such as

body movements and occasional signal blockages [3], body shape and gen-

der [4], posture [5], clothing and ornaments [6], existence of in-body medical

implants with unknown reflective and dispersive properties [7], transmitter-

receiver orientation [8], and finally different propagation characteristics of
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Coexistence of 
Conflicting Factors

Small 

Sensor size
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                  &
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Figure 1.1: WBAN characteristics, design factors and their interactions. Reliability
is a challenging design factor because a high level of reliability is needed with minimum
possible computational and energy resources.

tissue among different individuals and different body parts [9]. The small

form-factor of the sensor nodes as well as their limited energy resources

(mostly from a battery) poses several design constraints in terms of energy

efficiency and computational complexity. The reason why reliability is a

challenging issue in the design of WBANs is imparted in Fig. 1.1. The

nature of data in such systems is typically health-related and can be vitally

important. Hence, a high level of reliability is needed. Nevertheless, the

fact that the computational and energy resources of a typical implantable or

sensor node are scarce impose a set of constraints that complicate the relia-

bility challenge even more. Due to this complication, reliability in WBANs

poses a research challenge to achieving an optimal design in its most strict

sense.

1.2 Previous Work

Reliable communications in WBANs have been the subject of several pa-

pers as well as the recent IEEE 802.15.6 standard [10]. Indeed, [10] is a

collection of state-of-the-art techniques ideal for low-power in/on-body sen-
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sor networks, realized as a sophisticated MAC protocol that can be paired

with three different PHY technologies. The default PHY in this standard

is IR-UWB which is briefly described in Chapter 2. Nonetheless, as it will

be elaborated with further detail in the next section, there are still several

problems in this standard that should be appropriately addressed in order

to achieve the optimal performance that is expected from WBANs.

Prior to this, reliability in WBANs has been addressed using differ-

ent techniques such as cooperative diversity [11], wireless network coding

[12], adaptive modulation and power control [11, 13], or optimal design

of the MAC protocol [14]. Although the mentioned works are promising,

they mostly extend the classical approaches for energy-efficient and reli-

able design of wireless systems to WBANs and are not exclusively based on

the requirements and characteristics of WBANs. The problem of energy-

efficient compression and forwarding of physiological data considering the

heterogeneity of measurements is studied in [15], where compressive sensing

is used to reduce data size, and then the importance of each data stream is

considered for sensor selection and data transmission to obtain balanced en-

ergy consumption across different sensor nodes. The fact that implantable

sensor nodes are under strict energy and complexity constraints motivates

leveraging signal processing tasks on data-collecting (hub) nodes. This idea

is considered in [16] and the transmission power is minimized subject to

a target QoS and considering channel properties. A major problem with

approaches that rely on cooperative communications is that they require a

considerable amount of overhead and complexity for node synchronization

which is not practically possible in typical WBANs. For this reason, a max-

imum of one hub is usually considered to enable cooperation diversity gain,

as is also recommended in the default mode of [10].

The ideas of positioning, selecting and combining of the sensor nodes to

improve reliability and extend the lifetime of network has been proposed in

[17] and [11]. However, these studies are performed assuming a very specific

application, bandwidth, and data rate and cannot be generalized easily. In

addition, they only find a static state in which the observable performance

metric is optimized and don’t optimize the protocol in an effective way.
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The classic definition of reliability suggests an idealized solution where

either all information is delivered error-free or nothing can be interpreted.

Alternatively, when the total received distortion becomes proportional to

channel conditions, a gradual change of distortion can be achieved. In such

cases, if the end-user can tolerate some level of distortion, then the channel

can still be reliable, even in medium or harsh conditions. This idea is

interesting for WBAN as well since it can overcome the so called “threshold

effect”. With this objective, some joint source and channel coding schemes

have been proposed. However, very few papers have studied the problem of

merging the source and channel codes to achive graceful degradation. The

authors in [18] reveal the necessary and sufficient conditions of the basis

functions over a finite field in order to construct an orthogonal wavelet

transform that can be deployed by an error correcting code. Also in [19]

they propose a code construction algorithm based on finite field wavelets for

arbitrary-rate maximum separable block codes using spectral constraints.

The transmission protocol typically consists of different layers and an

optimization framework can be applied to all these layers. For instance, it

has been shown that packet size can be optimized to maximize throughput

or energy efficiency [20]. Generally speaking, packet size optimization is

a classic approach to achieve energy efficiency in wireless sensor networks

(WSNs). This problem is investigated for underwater and underground

WSNs in [21]. Packet size optimization is proposed to maximize energy

efficiency in cognitive radio WSNs in [22]. A similar approach is pursued

in [23], and also in [24] for WiFi-WBAN coexistence. Notwithstanding,

this technique is not exclusively studied for WBANs. As also pointed out

earlier, WBAN channels have significant and unique differences with radio

channels in other systems that should be taken into account.

An important problem in optimization of the protocol is how to opti-

mally relate different layers of the transmission scheme to each other. This

is especially important to know the relation between delay at the MAC

layer and the amount of energy consumed at the PHY layer. In the study

of delay-sensitive communications over wireless networks, cross-layer ap-

proaches combine physical layer models with queue theory to optimize the
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spectrum and energy resource allocation based on the tradeoff between radio

resource utilization and the average delay [25]-[26]. Moreover, another goal

is to adjust the scheduling policy to achieve the desired energy-delay trade-

off with an energy expenditure arbitrarily close to the optimal. Surprisingly,

this important problem has not been addressed for WBANs previously.

An elegant technique that leverages processing for reliability is recovery

of partially corrupted packets at the receiver side. It can be implemented

using various techniques. [27] and [28] propose sharing physical layer soft

information with higher layers for post-processing for recovery of lost data

due to residual channel errors. In [29] a recovery strategy based on negative

acknowledgment messages is presented that is compatible with the IEEE

802.11 standard and attempts to recover the errors by receiving further

redundancy about the corrupted parts of the corrupted packets. Later on,

some papers such as [30] propose methods to optimize this framework, for

example, by adjusting the rate of the repair packets or by applying a more

selective strategy in communicating the checksums [31]. [32] introduce an

inter-frame acknowledgment, Micro-Ack, where they improved the efficiency

of re-transmissions by adaptively changing the frame length. There are also

approaches that recover partially corrupted packets based on some specific

a priori knowledge on the content of the packets, or a form of the structure

in the packets. For instance, known pilot bits are used in [33]. A similar

scheme is suggested in [34] that exploits the algebraic consistency of the

packets to recover the message blocks without any further retransmission.

Another recent work [35] have suggested recovery of errors by estimating the

errors. Error estimation is a process to acquire the approximate number of

errors and their location by evaluating probabilistic models and a feedback

of checksums from the receiver.

A promising approach to improve efficiency is adaptation. Using adap-

tive schemes, one can leverage processing power efficiently to deal with the

difficulties inherent in WBANs. Link adaptation (LA) is an example which

has been extensively studied. LA algorithms can be categorized based on

the adaptation method and objective. Most of the existing work in this

area is related to cellular [36], and WLANs [37, 38], where adaptation is
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exploited to improve data throughput. In wireless sensor networks, how-

ever, adaptive techniques are usually proposed to reduce the total energy

consumption and improve the energy efficiency [39, 40]. However, there has

not been much work on LA in UWB systems that are regarded as the most

important transmission systems for low-power low-cost applications. The

concept of a PHY-aware medium access control (MAC) protocol in UWB

systems is presented in [41]. An LA method based on the estimated frame

error rate to improve data throughput under QoS constraints is proposed

in [42] for multiband OFDM UWB systems. Additionally, in [43] LA is

used to improve system throughput in OFDM-based UWB systems. In [44]

and [45], SNR-based LA strategies are proposed to reduce the packet error

probability in IEEE 802.15.4 networks. Also, in [46] interference mitiga-

tion in WBAN applications is performed by means of data rate adaptation.

Nonetheless, LA in impulse radio UWB systems have not been studied.

Adaptive schemes have also been used in the sensor nodes, even for col-

lecting the data. Sampling is one of the key subjects in this regard. The

reason is that if a signal could be represented with fewer bits, then the

transmission of that signal is a smaller burden for the transmission scheme

(for example in terms of energy consumption). For band-limited signals, the

Nyquist-Shannon sampling theorem addresses the minimum sampling rate

as well as the unique reconstruction method when the samples are equally

spaced. On the other hand, nonuniform sampling suggests that perfect re-

construction of the signal is still possible when the samples are not equally

spaced, in exchange for further reconstruction complexity [47]. This prob-

lem can arise for several reasons. For example, to reduce the total number

of bits required for reconstruction given a maximum acceptable distortion.

This can lead to a more energy- and bandwidth-efficient transmission.

Although data size can be reduced through compression, it incurs ex-

tra cost due to further processing, complexity, and energy consumption.

This justification has also led to the development of compressive sensing

(CS) and related techniques. Some examples are recent papers such as

[48] and [49] that apply CS to analog-to-digital converter design for sparse

band-limited signals. Note that sparsity is a necessary condition to apply
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CS methodologies. In addition, the CS reconstruction algorithms are non-

linear and usually include solving a convex optimization problem. These

new concepts in CS theory have resulted in a reconsideration of quantization

schemes that exhibit optimal performance when deployed in CS frameworks

[50, 51]. The tradeoffs between the number of quantization levels (i.e. bit

depth) and the number of samples required by the CS-based reconstruction

schemes have been investigated in [52]. Historically, it is known that if the

sampling rate satisfies the Nyquist rate on average, then nonuniform sam-

ples of a band-limited signal can uniquely represent the original signal [47].

The reconstruction algorithm usually is based on a form of interpolation.

Indeed, despite the uniform sampling where the only prior (and necessary)

information about the signal is its bandwidth, one can decrease the sam-

pling rate to even below the Nyquist rate by assuming more prior knowledge

about the signal. This knowledge can eventually narrow the reconstruction

algorithm down to the original signal. Only a few papers such as [53] have

studied this framework.

1.3 Solutions Proposed in This Thesis

The characteristics of WBANs necessitate optimal design of sensor nodes. It

should satisfy the design requirements with minimum energy consumption

and computational complexity. This principle lays out the basis for the ideas

presented in this thesis. Albeit, to achieve this objective various strategies

that suit different layers of the protocol stack are pursued, as depicted in

Fig. 1.2. It is also tried to explore approaches that are very different from

classic design principles. This is because most classic methods are based on

presumptions, such as unconstrained complexity or energy resources, that

don’t hold in WBANs. As an example, separation of source and channel

coding results in a simpler and more tractable design but can also impose

a degraded performance. While such degradation may not be significant in

general, WBANs demand strict optimality.
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Figure 1.2: Different techniques in different layers of the protocol stack as proposed
in this thesis.

1.3.1 Optimization of the Noncoherent UWB PHY

We can think of the optimal design as a distinct point in the energy-

complexity-performance tradeoff. Hence, different techniques may be used

to achieve a certain level of optimality. One approach is to adopt a sim-

ple transmitter structure and improve its performance through adaptation.

Nevertheless, the modifications should be strictly minimal since complexity

increases with adaptive capabilities. Ultra-wideband (UWB) transmitters

are very promising for WBANs due to their simple structure, localization

features and fading immunity. For this reason impulse-radio UWB is rec-

ommended in the default mode of the IEEE 802.15.6 standard. Addressing

UWB systems, techniques such as link adaptation and packet length opti-

mization with an optimal energy-efficiency constraint are proposed. Addi-

tionally, the theoretical amount of energy as well as the optimal scheduling

policy to stabilize a transmission scheme based on UWB PHY are derive.
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1.3.2 Partial Packet Recovery

One important observation in WBANs is that the amount of available re-

sources in the sensor nodes and the hub is asymmetric. This is particu-

larity the case with implantable sensor nodes, when the battery of sensor

nodes should maintain the available power for a reasonably long time. The

hub, however, can be much more computationally powerful with a less con-

strained energy resource. Thus, it is capable of more complex processing.

This fact is used to design coding schemes and algorithms that are im-

plemented at the hub and improve the link performance without imposing

further complexity on the sensor node. Therefore, the processing power at

the hub is leveraged to enhance reliability in the sensor-to-hub link. Par-

tial packet recovery (PPR) is one such method that is investigated in this

thesis. Compressive sensing and random linear coding are applied to devise

a PPR scheme that repairs a partially corrupted packet without requiring

any redundancy from the transmitter.

1.3.3 Nonuniform Sampling

Focusing on the sensor nodes alone, we can also improve the total energy

efficiency by adopting new coding algorithms and signal processing tech-

niques. Historically, the typical chain of operations in these nodes includes

uniform sampling, compression, channel coding, and transmission. These

operations are usually performed independently to simplify the design at

both transmitter and receiver. However, it may not always lead to the

optimal performance. Also it should be noted that the above chain is in-

trinsically inefficient since a huge number of samples are produced, then a

significant part of that effort is thrown away by compression. Sampling,

quantization, and compression are the most energy-hungry procedures at

the sensor node. Hence, we can improve the energy efficiency by using an

approach that takes fewer samples and omits compression. In this regard,

nonuniform sampling schemes are investigated that result in fewer total

bits to reconstruct a band-limited signal, compared to a uniform approach

with Nyquist-rate sampling. This strategy follows the idea of data reduc-
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tion presented in the previous section. However, except collecting a large

amount of data and then reducing its volume (which also requires energy

and consumes node resources), less data is produced in the first place. This

will save resources in the following ways:

• The required resources for sampling and quantization are reduced

since fewer samples and fewer bits are produced.

• The required resources for compression can be saved.

• By reducing the total number of bits, the required resources for data

transmission are reduced.

1.3.4 Coding Techniques Based on Low-Complexity Capacity-

Achieving Polar Codes

We can also improve transmission efficiency by providing a different inter-

pretation of channel reliability. This thesis combines finite-field wavelets

in Galois field of order two with polar codes to generate a new class of

lossy/lossless joint source-channel codes. This approach can be used to

construct joint source-channel codes of rate 1 (i.e. the code length is equal

to the message length) that can provide an approximation of the message

at low SNRs.

A very promising approach to enable high reliability and transmission

efficiency at the same time is to rely on efficient coding techniques. This

strategy is pursued in this thesis considering polar codes, due to their ca-

pacity achieving feature as well as their low-complexity nature. Hybrid

automatic-repeat-request (ARQ) schemes based on polar codes that are

strictly designed under the assumption of low complexity and short code

length are discussed. The thesis proposes hybrid ARQ schemes based on

systematic polar codes to achieve optimal transmission efficiencies that can

approach the Shannon limit of binary additive white Gaussian noise chan-

nels.
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Figure 1.3: Dependency diagram of the subjects presented in this thesis, and the
proposed techniques to analyze and improve transmission reliability and efficiency.

1.4 Organization of the Thesis

The thesis is organized as illustrated in Fig. 1.3. Chapters 2-4 deal with

the problem of optimization of WBANs based on the IEEE 802.15.6 stan-

dard, while Chapters 5-7 pursue cross-layer techniques in general WBANs to

improve transmission efficiency and reliability with low transmission com-

plexity.

Chapter 2 briefly introduces the system model, the recommendations

given by the standard, receiver structures, decoding algorithms, and the

physical-layer characteristics of IEEE 802.15.6 WBANs. A novel link adap-

tation scheme is also proposed in the last section of this chapter. Chapter

3 presents frame-length optimization in IEEE 802.15.6 WBANs, as well as

some more details on possible techniques to deploy the proposed scheme

adaptively. The energy-delay tradeoffs in IEEE 802.15.6 IR-UWB systems

are analyzed in Chapter 4. Using this framework, one can analytically find

the minimum required amount of energy that is required to stabilize the
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transmission queues associated with the sensors. In addition, optimal rate

scheduling policies to achieve the tradeoffs are derived.

In Chapter 5, a new sampling architecture is proposed to represent a

chunk of band-limited signal with the smallest number of bits, without

using compression. The idea is to sample the signal nonuniformly in time

and nonuniformly in the number of bits per sample, such that the bits per

sample per time are allocated adaptively.

Chapter 6 proposes a PPR framework based on compressive sensing as-

suming random linear coded transmission. The PPR problem is formulated

as a sparse recovery problem that has been solved using l0 and l1 norm

minimization, as well as a Kronecker-based approach.

Finally, Chapter 7 provides different coding techniques based on po-

lar codes. These techniques are designed with the objective of achiev-

ing smooth distortion, transmission efficiency and high reliability. A joint

source-channel technique is presented in the first section that benefits from

binary wavelets to reduce the total number of bits and at the same time

increase the information transmission rate at the sensor nodes. In the next

section, hybrid ARQ schemes based on systematic polar codes are designed

under strict assumptions of low complexity and short code length.

1.5 Contributions of the Thesis

The main contributions of this thesis can be enumerated as follows:

1. A novel link-adaptation scheme for impulse-radio noncoherent UWB

systems (ideal for low-complexity implementations). This scheme can

adapt the number of pulses per symbol to the channel conditions

to maximize energy efficiency without requiring channel knowledge.

Furthermore, unbiased estimators are given in (2.28) and (2.29) for

energy-detection and autocorrelation-based receivers, respectively, to

estimate the energy capture index given in (2.6). There are two impor-

tant diagrams in Chapter 2 (Fig. 2.6 and Fig. 2.7) that demonstrate

the energy efficiency of different PHY modes of the IEEE 802.15.6
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standard as well as the optimal adaptation maps, as a function of

SNR and energy capture index.

2. An Optimization framework for maximizing the energy efficiency in

UWB systems by adjusting the MAC frame length. An analytical

expression is given in (3.12), and Fig. 3.2 presents the optimal lengths

for default and High QoS modes in IEEE 802.15.6 systems.

3. Derivation of optimal energy-delay tradeoffs in IEEE 802.15.6 systems

with noncoherent receivers, as well as the minimum energy function

which is defined as the minimum average energy per symbol to sta-

bilize a transmission system with a given data arrival rate. This has

been done under channel-state and queue-length information scenar-

ios. Fig. 4.1 presents the minimum energy function for the default

mode of the IEEE 802.15.6 standard. Furthermore, (4.19) presents

the optimal rate scheduling policy to achieve the optimal tradeoff

while stabilizing the transmission queues.

4. A novel sampling architecture to sample band-limited signals at nonuni-

form times, and with nonuniform number of bits per sample. The

generalized architecture is presented in Fig. 5.1 with one simple real-

ization depicted in Fig. 5.3. Based on the results presented in Table

5.1, this scheme can represent a segment of band-limited ECG signal

with the least possible number of bits compared to other state-of-the-

art schemes without performing any compression.

5. A novel scheme based on compressive sensing and sparse recovery to

boost the performance of cross-packet random linear coding (RLC) by

incorporating the partial packets in the decoding algorithm, without

using any form of pre-coding or any type of cross-layer soft informa-

tion. The most important equations that mathematically describe

this scheme are (6.12) to (6.16) as well as (6.20) and (6.21). In addi-

tion, the throughput performance of RLC systems without, and with,

PPR is analytically expressed in (6.30) and (6.38) in conjunction with

a Markov chain model which is given in (6.32). There are two im-
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portant figures (Fig. 6.6 and Fig. 6.7) in Chapter 6 that illustrate

the performance advantages of the proposed PPR scheme in terms of

throughput, compared to an RLC system without PPR. Numerical

results are also tabulated in Table 6.1 and Table 6.2.

6. Proposal of two novel Hybrid ARQ schemes based on systematic polar

codes. In addition, the performance of polar decoding with incomplete

codewords is analytically derived in (7.39).

In addition to the main contributions, the following minor contributions

can be listed:

1. A new energy efficiency model assuming different energy costs for re-

ceiver and transmitter, presented in Appendix A. This model takes

into consideration the packet overhead bits, as well as bits correspond-

ing to synchronization and error control coding.

2. Analytical derivation of energy efficiency in noncoherent UWB sys-

tems with noncoherent (energy-detection and autocorrelation) receivers

in IEEE 802.15.6 systems, presented in (3.7) and (3.10).

3. Improvement the existing analytical BER performance equations for

noncoherent UWB systems by incorporating the impact of intra-symbol

interference, described in (2.17) and (2.23).

4. Two different approaches to incorporate the impact of the time-varying

channel gain in the transmission policy, aiming to improve the overall

energy efficiency of the system. The flowchart of a simple MAC-layer

technique is presented in Fig. 3.5.

5. Proposal of code inversion in polar codes as in (7.48).

6. Proposal of a novel joint source-channel code to achieve smooth distor-

tion. Fig. 7.4 represents the performance of the proposed technique

compared to separate source-channel coding, assuming a comparable

overall code rate.
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7. Proposal of FEC-assisted parallel decoding of short polar codes to

reduce the overall decoding computational complexity of polar coded

frames.
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Chapter 2

Link Adaptation in IEEE 802.15.6

WBANs

2.1 Introduction

Most of the recent studies of UWB systems have been conducted to com-

ply with the FCC spectral mask for indoor environments that allows a

maximum transmit power of −41.3 dBm, which is less than 100 nW per

MHz. Low-power operation is usually highly recommended for medical and

implantable devices. Therefore, UWB can be a standard communication

medium in the proximity of the human body. Taking into account its other

benefits, including support for high data rates due to the vast amount of

bandwidth, low complexity and strong ranging capability due to a fine time

resolution, UWB has been chosen as a mandatory physical layer technology

for on-body applications in wireless body area networks in the recent IEEE

802.15.6 standard [10].

The mandatory physical layer (PHY) scheme in this standard is impulse

radio (IR) UWB, which consists of two PHY options: the default PHY and

the high quality of service (QoS) PHY. The former is a general-purpose

PHY consisting of mandatory on-off signaling, and the latter is for high-

priority medical applications and consists of a mandatory differential phase

shift keying (DPSK) modulation and a type II hybrid automatic-repeat-

19
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request (H-ARQ) mechanism. Both PHY options allow for a set of different

modulation and coding techniques to obtain various data rates. However,

the question of how to coordinate the available data rates in an optimal

manner, referred to as rate adaptation or link adaptation (LA), remains

unanswered.

In traditional wireless systems (e.g. cellular systems and wireless local

area networks), LA techniques can improve data throughput by adapting

the physical layer parameters in response to noise, fading, and interference.

Normally, a form of channel estimation is performed at the wireless device

and is transmitted back to the coordinating node (i.e. base station/access

point) using a feedback channel. The coordinating node can then apply

a form of adaptation on the physical layer parameters (e.g. constellation

size, coding rate, etc.) in order to improve system capacity and reliabil-

ity. In WBANs, however, the main concerns include maximizing energy

efficiency and the overall lifetime of the system, as well as improving the

reliability of communications. Due to complexity and energy constraints,

channel estimation is infeasible at the transmitting node, and hence tradi-

tional methods in automatic modulation and coding (AMC) are not directly

applicable. The immensely dynamic and severe channel conditions result-

ing from body movements, occasional signal blockages, and the different

dispersive characteristics of body tissues, along with the strict design limi-

tations unique to WBANs, necessitate a significant level of optimality and

flexibility in order to satisfy the QoS requirements in a typical WBAN ap-

plication. It is believed that LA strategies are of significant importance to

attain such levels of performance [40, 54].

In this chapter, we propose a link adaptation strategy for IEEE 802.15.6

IR-UWB body area networks that does not require channel estimation at

the sensor nodes. Instead, the link quality is estimated using a novel es-

timator at the hub node which is typically more potent in in WBANs in

terms of energy resources and hardware. Assuming noncoherent reception,

we model the bit error probability of different PHY modes of the standard,

considering the imperfect energy capture caused by the multipath channel

and the intra-symbol interference caused by the multipath channel, and use
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Gaussian approximations to approximate the corresponding bit error prob-

abilities. We discuss the confidence level of the Gaussian approximation

and address the impact of the integration time on the performance of the

system. As is shown in this chapter, a significant energy loss will result

from the short integration times at higher data rates. We pursue a semi-

analytical approach to model this performance degradation and present

the so-called energy capture index in two IEEE 802.15.6 UWB body area

channel models. In order to obtain an interference model, and targeting

wireless local area network (WLAN) devices as the primary interference

source, we assume an orthogonal frequency division multiplexing (OFDM)

PHY for the interference signal and show that under the assumptions of

IEEE 802.15.6 the signal-to-noise expressions in our model can be replaced

by a signal-to-noise-plus-interference (SINR) term. The energy efficiency

of each PHY mode is calculated based on the corresponding packet success

rate (PSR) and energy consumptions of the PHY mode. We also show that

the throughput optimal adaptation method is not necessarily identical to

the energy efficiency optimal scheme. In order to approximate the amount

of captured energy, two unbiased estimators are proposed.

Fixing the transmit pulse energy, we also propose a novel LA scheme

that can adapt the number of pulses per symbol to the channel conditions

in order to maximize energy efficiency. By incorporating the impact of the

instantaneous energy capture index in the adaptation process, the system

can respond to dynamic variations in the wireless channel, noise, and inter-

ference to preserve a desired level of performance. The key fact is that, to

collect a certain amount of energy from the transmitted pulses, the nodes

should be able to adapt the number of pulses per symbol to the variations

in the channel conditions (e.g. delay spread, decay factor, etc.), and the

level of interference and noise.

To the best of our knowledge none of the existing works address LA in

IR-UWB systems. Also, there has not been a similar adaptation strategy

based on observing the amount of captured energy in UWB systems. The

benefits of such a strategy are: sensitivity to variations in channel condi-

tions, sensitivity to interference and noise, and sensitivity to signal strength,
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Table 2.1: UWB PHY modes of IEEE 802.15.6 [10]

Default High QoS
PHY mode Ts (ns) Tw (ns) Rate (Mbps) Mod. Np Ts (ns) Tw (ns) Rate (Mbps) Mod. Np

PHY 0 2051.300 64.103 0.3948 OOK 32 2051.300 64.103 0.243 DBPSK 32
PHY 1 1025.600 32.051 0.7897 OOK 16 1025.600 32.051 0.457 DBPSK 16
PHY 2 512.820 16.026 1.579 OOK 8 512.820 16.026 0.975 DBPSK 8
PHY 3 256.410 8.012 3.159 OOK 4 256.410 8.012 1.950 DBPSK 4
PHY 4 128.210 4.006 6.318 OOK 2 128.210 4.006 3.900 DBPSK 2
PHY 5 64.103 2.003 12.636 OOK 1 128.210 4.006 7.800 DQPSK 2
PHY 6 - - - - - 1794.900 8.012 0.278 DBPSK 4
PHY 7 - - - - - 1794.900 8.012 0.557 DQPSK 4

which are all crucial in WBAN applications.

This chapter is organized as follows. Section 2.2 describes the sys-

tem and channel model, and provides a brief introduction to the IR-UWB

physical layer in the IEEE 802.15.6 standard, and our interference model

for performance evaluation. Section 2.3 presents a discussion on optimal

and suboptimal UWB receivers and the impact of the integration time on

the performance of noncoherent receivers. It also provides a semi-analytic

model of the amount of collected energy in UWB channel models that we

use for performance evaluation. In Section 2.4, the bit error probabilities of

various PHY modes are derived using a Gaussian approximation, and the

impact of narrowband interference is incorporated in the analysis by mod-

eling the interference signal. Section 2.5 presents the proposed LA strategy

and energy estimators. In Section 2.6 the simulation results are provided,

and finally the conclusions are given in Section 2.7.

2.2 System Model

Assume that a set of Ns sensor nodes communicates with a master hub

node. The hub uses a downlink channel for sending its command and control

signals, and the sensors communicate their data back on the uplink channel.

The sensors can transmit two types of data: measurements, and system

parameters. The former varies depending on the application and sensor

type. The latter is specific information about the state of the sensor device

(e.g. battery, location, etc.), its measurements (e.g. data rate, queue length,

etc.), and channel. The hub can utilize the feedback from the sensors to

adjust a set of communication parameters in order to achieve a desired level
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of performance and send it to the sensors on the downlink channel. We

assume that both uplink and downlink communications use the mandatory

IR-UWB physical layer of the IEEE 802.15.6 standard.

2.2.1 Channel Model

The characteristics of UWB channels are studied in [55, 56, 57] for indoor

environments. Correlated log-normal shadowing is the most precise model

that has been proposed for representing the small-scale fading in UWB

WBANs [58, 59, 60, 5, 7]. In this model, the amplitudes of multipath com-

ponents are strongly correlated and follow the log-normal distribution. It is

believed that correlation mainly results from the frequency-selective prop-

erties of body tissues and UWB antennas. The multipath components tend

to arrive in separate clusters. This property usually results from ground

reflections or the effects of metal pieces in clothing or implants inside the

body. The UWB waves tend to disperse around the body rather than pass

through the tissue. There is a significant degradation in signal quality when

the antenna is attached to the body. Therefore, in most cases the antenna

and the body are separated by using a small dielectric spacer. We consider

the channel model for 3.1-10.6 GHz in a typical hospital environment [61]

as

h(t) =

Nmp−1∑
l=0

alδ(t− τl), (2.1)

in which Nmp is the number of resolvable multipath components and al is

a complex attenuation coefficient corresponding to the l’th multipath delay

τl. We consider two channel models CM3 and CM4 [61]. CM3 can be

used to model body-surface to body-surface channels, e.g. a sensor-sensor

or sensor-hub channel when the hub is in the vicinity of the sensors and is

less than two cm away from the body. CM4 is actually a body-surface to

external-node channel model and can be used for distances between a few

centimeters to up to five meters.
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2.2.2 IEEE 802.15.6 UWB PHY

The IEEE 802.15.6 standard is composed of two different physical layer

options. The default PHY exploits on-off signaling which is a combination of

M -ary waveform coding with on-off modulation. Such a signaling strategy

maps K information bits onto coded-pulse sequences of length 2K using

a 1/2 rate symbol mapper (K = 1 and M = 2 in the mandatory symbol

mapper). The high QoS PHY benefits from DPSK modulation as well as

a type II H-ARQ mechanism. The characteristics of both PHY options

are listed in Table 2.1. We refer to each modulation and coding scheme

(i.e. data rate) as a physical layer mode for simplicity. The PHY modes are

represented by an index m, m ∈ [0, Nm] where Nm is the number of available

modes, and are referred to by “PHY m”. The only modulation scheme in

the default PHY is on-off keying, however, the high QoS PHY can use

either DBPSK or DQPSK. As expected, the number of pulses per symbol

and the symbol duration are decreased to achieve higher data rates. Since

complexity is a serious limitation in most wireless body area applications,

we assume that the receiver can only select between PHY modes with the

same modulation. Hence, Nm = 5 in the high QoS PHY corresponding to

PHY 0-PHY 4, and Nm = 6 in the default PHY corresponding to PHY

0-PHY 5.

The transmitted IR-UWB signals corresponding to the default and high

QoS PHY can be expressed as

xD(t) =
∑
i

[diw(t− ciTw − 2i
Ts
2

)+

(1− di)w(t− ciTw − (2i+ 1)
Ts
2

)], di ∈ {0, 1}, (2.2)

xH(t) =
∑
i

diw(t− ciTw − iTs), di ∈ {+1,−1}, (2.3)

respectively, where di is the i’th data symbol transmitted within the symbol

time Ts, w(t) =
∑Np−1

k=0 p(t − kTp) is a waveform of duration Tw = NpTp,

and ci is the time hopping value in the range 0 < ci < Nh − 1, in which

Nh is the total number of hops. Regardless of the PHY option, there are

32 timeslots in each symbol duration. We assume Np pulses of form p(t),



2.2 System Model 25

duration Tp, and energy Ep are transmitted per symbol so that w(t) =∑Np−1
k=0 p(t − kTp), Tw = NpTp, and symbol energy Es = Ew = NpEp ,

which is consistent with the burst pulse option in [10]. A special case is

when only one pulse is transmitted per symbol such that w(t) = p(t),

Tw = Tp, and Es = Ep which is referred to as the single pulse option. The

data symbols {di}, depending on the modulation scheme, take different

values. Explicitly, di ∈ {0, 1} in on-off keying, di ∈ {−1,+1} in BPSK, and

di ∈ {ejπ/2, ejπ, e−jπ/2, ej0} in QPSK modulation. Note that QPSK symbols

are constructed by a combination of two in-phase and quadrature BPSK

modulated symbols given by Re{di} and Im{di}, respectively.

2.2.3 Narrowband Interference Model

The performance of IR-UWB systems in multipath fading environments and

in narrowband interference is studied in [62, 63, 64] and [65], respectively.

Narrowband interference (NBI) is a big challenge for UWB systems. The

major sources of interference for UWB devices operating in indoor environ-

ments are the very popular 802.11a WLAN devices. They operate in the 5

GHz frequency band and use an OFDM air interface to achieve data rates

of up to 54 Mbps. The multi-carrier interference signal can be modeled by

INB(t) =
Nsc−1∑
i=0

yi cos(2πfNBt+ φi), (2.4)

where Nsc, {yi}, and {φi} represent the total number of sub-carriers, and

the corresponding amplitudes and phases respectively, and fNB is the cen-

ter frequency. It is well known that OFDM signals can be approximated

by a complex Gaussian random process due to the high number of inde-

pendently modulated sub-carriers and the central limit theorem [66]. In

fact, the Gaussian approximation is valid even for a reduced number of

sub-carriers, as is shown in [67]. Due to the small bandwidth of the nar-

rowband interference process in comparison with the UWB bandwidth, its

power spectral density (PSD) represents colored characteristics. However,

it can be modeled by a PSD which is constant over the frequency band WNB

and zero elsewhere. Hence, the autocorrelation function of the narrowband
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interference process, which is the inverse Fourier transform of the above

PSD, is given by

RNB(τ) =
J0

2
sinc(WNBτ) cos(2πfNBτ), (2.5)

which is approximately equal to zero for τ > 1/WNB. This implies that the

samples of the narrowband interference process separated by a time interval

larger than 1/WNB are uncorrelated, and form a white Gaussian random

process with variance J0
2

.

2.3 UWB Receiver Structures

2.3.1 Rake Reception

Rake receivers can capture a significant portion of the received signal by re-

solving multipath components. When UWB signals pass though the body,

the received signal strength is very low since the attenuation caused by the

body is relatively high. But since there is usually a ground reflected wave

that arrives shortly after the main pulse, a rake receiver could be able to

gather this energy and detect the signal more reliably. In order to cap-

ture all of the multipath energy, a rake receiver should accurately estimate

the number of resolvable multipath components Nmp, the corresponding

channel coefficients {al}, and delays {τl} (l ∈ [0, Nmp − 1]). In general,

an exponential increase of complexity due to multipath acquisition, track-

ing and channel estimation is imposed on the receiver by increasing the

number of rake fingers. Consequently, selective or partial rake receivers,

with a limited number of fingers, are typically used instead of a full rake

receiver. Indeed, due to significant complexity concerns, even for partial

rake receivers, non-coherent receivers are more suitable in a wide range of

WBAN applications.

2.3.2 Suboptimal Receivers

Due to a high demand for low complexity and low power consumption in

WBAN applications, suboptimal noncoherent receivers are of more inter-
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Figure 2.1: Simulated mean energy capture index of CM3 and its exponential decay
fitting curves.

Table 2.2: µ(Ti) Fitting parameters

Position E[τrms] ω ν α
CM3 - 19.6 15.56 46.22 1.843

CM4

0◦ 34.8 29.13 50.31 1.115
90◦ 41.6 23.12 60.60 1.176
180◦ 42.0 16.61 57.83 1.160
270◦ 49.6 29.53 90.62 1.426

est. In noncoherent and partially coherent receivers the perfect knowledge

of channel state information (CSI) is not necessary in detection of data

symbols, and this can make the receivers significantly simpler than rake

receivers. This is however achieved by a compromise on the receiver’s per-

formance. There are two main groups of noncoherent UWB schemes: energy

detection (ED), and autocorrelation (AC). In energy detection systems the

received energy during each timeslot is measured to detect the existence

of data bits, while the AC receivers use a delayed version of a reference

pulse from the transmitter as the local template for signal correlation and

detection.
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Figure 2.2: Simulated mean energy capture index in CM4 for four different positions
and its exponential decay fitting curves.

In a noncoherent receiver (AC or ED), given g(t) the received pulse

waveform (g(t) = p(t) ∗ h(t), where ∗ denotes linear convolution), the in-

stantaneous energy of the received pulse is
∫ Ti

0
g(t)2dt = µ(Ti|h)Ep, and

the decision variable is formed by combining the sampled energy values re-

ceived in a symbol duration. The amount of collected energy depends on

the integration time Ti as well as the experienced channel h(τ), and can be

modeled by the energy capture index [63] defined as

µ(Ti|h) =

∫ Ti

0

|h(τ)|2dτ, (2.6)

where µ(Ti|h) ∈ [0, 1]. The mean value of µ(Ti|h) averaged over 1000 chan-

nel realizations of two body area channel models, CM3 and CM4, is depicted

in Fig. 2.1 and Fig. 2.2. To obtain an analytical model for µ(Ti|h), it is also
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approximated by the following exponential decay models [63, 68]

µ1(Ti) = 1− exp

[
−
(

(Ti + ω)

ν

)α]
, (2.7)

µ2(Ti) = 1− exp (−Ti/τrms), (2.8)

where τrms is the channel’s root-mean-squared delay spread, which is the

second central moment of the channel’s power delay profile.

The fitting parameters are shown in Table 2.2. It can be observed that,

while µ1(Ti) fits well to the energy capture index, the approximation pro-

vided by µ2(Ti) is not accurate, specifically for lower values of Ti. We will

use µ1 in our link adaptation strategy.

At the receiver input, first a bandpass filter with bandwidth B removes

the unwanted spectra. The filtered signal can be expressed as

r(t) =
∑
i

Nmp−1∑
l=0

aldiw̃(t− ciTw − iTs − τl) + ñ(t), (2.9)

where ñ(t) is zero-mean band-limited Gaussian noise with two-sided power

spectral density N0

2
over the frequency band B and zero elsewhere, and w̃(t)

and g̃(t) are the filtered versions of w(t) and g(t) respectively.

2.4 Physical Layer Characteristics

The error performance of the noncoherent UWB systems has already been

studied in [63] and [62]. However, since the standard uses a special ter-

minology (e.g. on-off signaling that combines on-off keying with waveform

coding), we briefly include the error analysis in this section to prevent con-

fusion. We will also require the equations to estimate the energy capture

index based on the decision statistic. Nevertheless, we complete the pre-

vious works on the error performance of noncoherent IR-UWB systems by

incorporating the impact of intra-symbol interference.

The key parameter in our analysis is the integration window in the

receiver front end. The IEEE 802.15.6 standard does not provide specific

options for pulse duration and the integration window. From Table 2.1,
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since the symbol time linearly increases with Np, it implies that a constant

pulse duration is assumed. Considering Nw = 32 timeslots (fixed by the

standard), it implies that Tp = 2.003 ns. We assume that the integration

window covers a complete timeslot such that Ti = Tw = NpTp. Therefore,

intra-symbol interference can occur in a timeslot when the channel’s RMS

delay spread is large enough compared to Tp. This is actually a constructive

property. The overall captured energy per symbol can be increased since

the multipath components of the earlier pulses can be captured during the

integration time of the proceeding pulses.

2.4.1 Energy Detection with On-Off Signaling

In energy detection, the energy of the received signal is detected by passing

through a square-law device. Combined with on-off signaling, the decision

statistic is the difference of energy in the first and the second half of the

symbol duration. Generally, the symbol decision statistic is formed by a

linear combination of Np independent pulses per symbol. The i’th decision

variable corresponding to th i’th symbol can be expressed as

ZD[i] =

∫ iTs+(ci+1)Tw

iTs+ciTw

| r(t) |2dt−
∫ (i+1/2)Ts+(ci+1)Tw

(i+1/2)Ts+ciTw

| r(t) |2dt, (2.10)

Assuming that di = 1 the decision variable can be written as

ZD[i] |di=1=

∫ Tw

0

[
Np−1∑
k=0

g̃(t− kTp) + ñ1(t)

]2

dt−
∫ Tw

0

ñ2
1(t)dt, (2.11)

Considering the Landau-Pollak theorem [69] which states that there are

2BT independent signals of bandwidth B spread in a time interval of length

T , we can re-write the decision statistic as

ZD[i] |di=1=

Np−1∑
k=0

2B(Tw−kTp)−1∑
j=0

gj,k +

2BTp−1∑
j=0

n1,j,k

2

−
Np−1∑
k=0

(
2BTp−1∑
j=0

(n1,j,k)
2

)
. (2.12)



2.4 Physical Layer Characteristics 31

which is the difference of a non-central and a central chi-squared random

variable with 2NpBTp degrees of freedom, where gj,k, and nj,k are indepen-

dent samples of the band limited signals g̃(t) and ñ(t). The conditional

mean and variance of ZD, the decision variable in the default PHY, are

mZD|1 = Ep

Np−1∑
k=0

µ(Tw − kTp | h), (2.13)

σ2
ZD|1 = 2EpN0

Np−1∑
k=0

µ(Tw − kTp | h) + 2NpBTpN
2
0 . (2.14)

When the total number of samples (2NpBTw) is large, according to

the Central Limit Theorem, the sum PDF tends to the Gaussian distribu-

tion. Based on the justification in [62] and the K-S statistic represented

in Fig. 2.3, this approximation is valid for NpBTp > 20. This implies that

when two 500 MHz channels are used (as is mandatory in the 802.15.6 stan-

dard), the approximation is valid for Tp > 2 ns. In such a case, the false

and miss detection probabilities are given by [70]

Pfd ≈ Q

(
ξ + Epµ̄t√

2EpN0µ̄t + 2NpBTpN2
0

)
, (2.15)

Pmd ≈ Q

(
Epµ̄tξ√

2EpN0µ̄t + 2NpBTpN2
0

)
, (2.16)

where ξ is the decision threshold which is set to zero due to symmetry, Q(·)
is the tail probability of the standard normal distribution and µ̄t = E{µt}
in which µt =

∑Np−1
k=0 µ(Tw − kTp | h)/Np. The bit error probability can be

approximated by

Pb ≈ Q

(
µ̄tNpEp/N0√

2µ̄tNpEp/N0 + 2NpBTp

)
. (2.17)

2.4.2 Autocorrelation with Differential Signaling

In autocorrelation receivers, the received signal is multiplied by a delayed

reference waveform. In differential signaling, the reference is the received
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Figure 2.3: Kolmogorov-Smirnov Goodness-of-fit test for Gaussian approximation
of Chi-squared variables with n degrees of freedom. The approximation is rejected at
the 5% significance level, when the test result is above the critical value (for n < 40),
and is valid for n > 40.

waveform corresponding to the last decoded symbol. Similar to (2.10), the

i’th decision variable corresponding to the i’th symbol is expressed as

ZH [i] =

∫ iTs+(ci+1)Tw

iTs+ciTw

r(t)r(t− Ts)dt, (2.18)

There are two elements of the desired signal: an information-bearing wave-

form and a reference signal. We assume that the coherence time of the

channel is greater than Ts and that these two signals experience the same

channel conditions.

ZH [i] =

∫ Tw

0

[(Np−1∑
k=0

d1g̃(t− kTp) + ñ1(t)

)

·
(
Np−1∑
k=0

d2g̃(t− kTp) + ñ2(t)

)]
dt, (2.19)

The symbol decision statistic, which is the sum of Np samples, can be



2.4 Physical Layer Characteristics 33

expressed in terms of the independent components gj,k, n1,j,k, and n2,j,k as

ZH [i] |d1,d2=+1=

Np−1∑
k=0

[2B(Tw−kTp)−1∑
j=0

g2
j,k

+

2BTp−1∑
j=0

gj,kn1,j,k + gj,kn2,j,k + n1,j,kn2,j,k

]
.

(2.20)

There are four equiprobable combinations of d1 and d2. We assume

d1 = +1, and calculate the conditional error probability for d2 = +1, which

is equal to the bit error probability due to symmetry. The conditional

mean and variance of the decision variable ZH corresponding to the high

QoS PHY are

mZH |+1 = µtNpEp +NpBTpN0, (2.21)

σ2
ZH |+1 = µtNpEpN0 +NpBTpN

2
0/2. (2.22)

The bit error probability of the DBPSK system with the Gaussian ap-

proximation is expressed as

Pb ≈ Q

(
µ̄tNpEp/N0√

µ̄tNpEp/N0 +NpBTp/2

)
. (2.23)

Note that the decision threshold is NpBTiN0 in this case.

2.4.3 Performance in Presence of Narrowband Interfer-

ence

As it is shown in Section 2.2.3, we can model the narrowband interference,

i.e. WLAN OFDM signal, by a Gaussian process which is approximately

white in a frequency band WNB and zero elsewhere. In 802.11a WLAN,

the total bandwidth WNB is equal to 20 MHz. Taking into account the

minimum symbol duration among the PHY modes of the IEEE 802.15.6

standard (64 ns), and the NBI autocorrelation function (2.5), the narrow-

band interference samples form a white Gaussian process with variance J0
2

.
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Hence, the signal-to-noise term Ep/N0 in (2.17) and (2.23) can be replaced

by the following signal-to-interference-plus-noise (SINR) term.

SINR =
Ep

N0 + J0

. (2.24)

Table 2.3: Simulation results

Np Tw (ns) µ̄t η (Default) η (High QoS)
LA - - - 0.58 0.43
PHY 0 32 64.103 0.62 0.22 0.12
PHY 1 16 32.051 0.41 0.34 0.20
PHY 2 8 16.026 0.27 0.44 0.29
PHY 3 4 8.012 0.20 0.42 0.34
PHY 4 2 4.006 0.17 0.35 0.22
PHY 5 1 2.003 0.15 0.24 -

A comparison of the bit error performance of different data rates of the

802.15.6 UWB PHY, assuming energy detection for the default PHY and

autocorrelation-differential detection for the high QoS PHY, is summarized

in Fig. 2.4. The solid lines correspond to full energy capture and the dashed

lines result by taking into account the impact of µ̄t. The corresponding

values of µ̄t for each PHY mode can be found in Table 2.3. At higher

data rates, where the symbol duration (as well as the integration time) is

shorter, the amount of the collected energy is lower. This effect leads to a

performance degradation of up to 7 dB at higher data rates.

2.4.4 Comparison of Burst and Single Pulse Options

By increasing the number of pulses per symbol the level of noise power at

the receiver’s input will increase. From this point of view, and assuming

constant symbol energy Es = NpEp in (2.17) and (2.23), the single pulse

option outperforms the error performance of the burst pulse option. On the

other hand, the burst pulse option is more immune to interference. Another

interesting property of the burst option is the fact that, when the pulse

energy Ep is constant, the average transmit energy per symbol in different

physical layer modes varies depending on the number of pulses per symbol.

Based on this property, the transmit energy per symbol is lower in PHY
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Figure 2.4: Bit error performance of various PHY modes of 802.15.6 considering
energy detection with on-off signaling in default PHY (top), and autocorrelation-
differential detection in high QoS PHY (bottom). The solid lines correspond to full
energy capture (µt = 1), and the dashed curves result by taking into account the
impact of µ̄t in CM3.

modes with higher data rates, which is consistent with traditional adaptive

modulation and coding (AMC) schemes. Normally, AMC mechanisms avoid

transmission at higher data rates in harsh channel conditions. It is because

of the reduced average transmit energy per bit due to the usually larger
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Figure 2.5: IEEE 802.15.6 UWB PHY packet structure [10].

constellation sizes at higher data rates. Indeed, high data rate PHY modes

are more prone to channel errors and should be used when errors are less

likely.

In the rest of this section, we assume a constant pulse energy and

different number of pulses per symbol for different PHY modes. We

also assume that the value of Ep is known at the hub.

2.4.5 Energy Efficiency

As illustrated in Fig. 2.5, the physical layer protocol data unit (PPDU) is

composed of three parts: a synchronization header (SHR), a physical layer

header (PHR), and the corresponding PHY service data unit (PSDU). The

SHR is used for packet detection and synchronization and is composed of

a preamble and a start of frame delimiter (SFD). The packet success rate

(PSR) is defined as the probability of successful reception of the PPDU.

The calculation of the PSR and the energy efficiency of different PHY

modes can be found in Appendix A. We can model the energy efficiency

η ∈ [0, 1] of the PHY mode m as

η =
ε1Lp

ε1(Lp + Lh(Rp/Rh)) + E0

PSR(γ, µ̄t,m) (2.25)

where γ = Ep/N0, ε1 represents the useful energy for communication of

one bit of information, Lp and Lh are the lengths of data payload and

overhead having rates Rp and Rh respectively, and E0 is the total required

extra energy which models the energy required for synchronization, data

encoding/decoding, and transmission and reception of packet acknowledg-

ment messages. For further details of the above energy efficiency model see

Appendix I. We assume that Ep is constant and is known at the hub.
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Comparing (A.9) with the throughput of the system defined by [38]

T (PSRm) =
Lp

Lp + Lh(Rh/Rp)
RpPSRm, (2.26)

one observation is that a throughput-optimal strategy is not necessarily en-

ergy efficiency optimal. However, the two performance measures are closely

related and their joint optimality is application specific. We will compare

both adaptation strategies in our simulations.

2.5 Link Adaptation

2.5.1 PHY-Aware MAC Protocol

Our LA is based on the (γ, µ̄t) pair. Assume that a sensor s (s ∈ [1, Ns])

transmits data to the hub. The task of the LA algorithm is to identify

for the hub the PHY mode m∗s a given sensor s should select in order to

maximize η in (A.9).

m∗s = arg max
m
{η | (γ, µ̄t,m)}, m ∈ [0,M − 1]. (2.27)

Assuming full energy capture (µ̄t = 1), this mechanism is straightfor-

ward and is depicted in Fig. 2.6 for default and high QoS PHY. The solid

lines represent full energy capture. The amount of captured energy depends

on the instantaneous channel as well as the integration time. Our simula-

tions for imperfect energy capture are carried out assuming channel model

CM3 and are demonstrated by dashed lines. The average statistic for µ̄t

is used, based on the approximation provided in Section 2.3.2. It can be

seen that a significant energy loss will result from a short integration time

at higher data rates.1 Therefore, the objective is to utilize the transmit-

ted energy as much as possible. However, knowledge of µ̄t is required for

selecting the optimal PHY mode.

1Typically, the RMS delay spread in a hospital environment is between 10 ns and 17
ns [71]. So, according to Chebyshev’s inequality, the integration time should be between
32 ns and 41 ns to capture 99% of the pulse energy.
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Figure 2.6: Energy efficiency of different data rates and the optimal adaptation
maps. The solid lines are for full energy capture and the dashed lines are for partial
energy capture in CM3.

2.5.2 The Proposed Adaptation Strategy

For any given sensor we first define γ = Ep/(N0 +J0), which is the received

SINR at the hub with full energy capture (µ̄t = 1), and is assumed to be

known. Note that Ep is already known at the hub and N0 + J0 should be

known for setting the detection threshold in the high QoS PHY, anyway.

The hub can measure the received energy in a null timeslot to estimate

(N0 + J0).
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Figure 2.7: Energy efficiency of different PHY modes (a,c), and the optimal adap-
tation map corresponding to maximum energy efficiency (b,d). The lines represent
the border between two neighboring PHY modes.

The LA strategy is based on a local statistic derived from the decision

variable as well as γ. Considering (2.13) and (2.21), we can use the first

moment of the decision variable to estimate µ̄t. The following estimators

over the interval A = [0, 1] can approximate the energy capture index for a
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given pulse index j, in the ED and AC receivers, respectively

µ̂D[i] = ΨA

(∑τ−1
j=0 |ZED[i− j]|

τNpEp

)
, (2.28)

µ̂H [i] = ΨA

(∑τ−1
j=0 |ZAC [i− j]−NpBTpN0|

τNpEp

)
, (2.29)

The hard-limiting function ΨA(·) is to make sure that the estimation is

within the interval A = [a, b], and is given by

ΨA(x) =

b, x ≥ b
x, a < x < b
a, x ≤ a.

(2.30)

After LA finds the optimal mode at the hub, it should send a manage-

ment/control packet to the node to provide it with the optimal PHY mode.

Fig. 2.7 demonstrates the adaptation maps and the corresponding en-

ergy efficiency values. It also shows the throughput-optimal map, which

is different from the energy efficiency optimal map. The energy efficiency

of each mode is the overall maximum only in a portion of the curve. One

observation is that in the mandatory mode of the default PHY (PHY 0),

the maximum energy efficiency is less than 30%, which is optimal at low γ.

Indeed, with static communication on PHY 0 (no adaptation), the achieved

energy efficiency is less than half that of the case with LA capability. For

the high QoS PHY, the optimal region corresponding to PHY 0 is in low

values of the curve. Consequently, there is always a better option with su-

perior energy efficiency. In other words, communication on the mandatory

mode of the high QoS PHY is not optimal when the higher data rates (e.g.

PHY 1, or PHY 2) are available. Note that our adaptation algorithm is

based on the pair (µ̂t, γ), and therefore, it is able to respond to variations

of the captured energy caused by dynamic evolutions of the channel result-

ing from body movements and other dynamic behaviors in typical WBAN

applications.
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2.6 Simulation Results

The proposed scheme has been extensively simulated assuming different

γ values and the channel model CM3. The average values of µ̄t and η are

compared with the static system, i.e. fixed communication on different PHY

modes in Table 2.3 (PHY 0 is the mandatory mode of the standard). Since

the LA scheme uses all modes in different conditions, only the overall energy

efficiencies are written for this scheme. The range of γ (in dB) is uniformly

within [-5, 25] and [4, 14] for the default and high QoS PHY simulations,

respectively. It can be seen that the proposed scheme can significantly

improve the energy efficiency of the system. To quantify the estimation

accuracy of the proposed estimators for the energy capture index, we also

used (2.13), (2.14) and (2.21), (2.22) to generate random samples of the

decision variable for a given pair (Tw, γ), assuming τ = 100 and Ep = 1 for

simplicity. The achieved mean square error (MSE), for the estimators given

in (2.28) and (2.29) are 0.0595 and 0.0523, respectively. We can summarize

the simulation results as follows:

Fixed integration time

In a given integration time, as γ increases it is optimal to shift to a higher

physical layer mode. The LA scheme can also respond to any increase/decrease

in the level of noise and interference in a fixed signal level by shifting to a

lower/higher data rate or equivalently by increasing/decreasing the trans-

mit energy per symbol.

Fixed γ

When γ is constant, as the energy capture index increases (e.g. when the

channel delay spread slightly changes to a lower value), it is optimal to

shift to higher data rates. This can be interpreted by the fact that the

transmit energy per symbol is lower in higher PHY modes and an increase

in the amount of captured energy indicates an improved channel state which

means a smaller bit-level error probability. Therefore, to preserve a certain



42 Link Adaptation in IEEE 802.15.6 WBANs

level of performance, it is more energy efficient to shift to a higher data

rate. On the other hand, as µ̄t decreases, a lower physical layer mode

(with a higher symbol energy) is necessary to increase the total amount of

captured energy per symbol.

2.7 Conclusion

Reliability and energy efficiency are two crucial requirements in WBANs,

which necessitate a sophisticated mechanism to overcome the highly dy-

namic and harsh channel conditions and strict design limitations. Achiev-

ing these requirements is more challenging in noncoherent UWB receivers,

where no channel state information is available. In this chapter, we ad-

dress this problem by proposing a novel link adaptation strategy for IEEE

802.15.6 IR-UWB systems. Assuming a constant pulse energy among dif-

ferent PHY modes, and considering the different number of pulses recom-

mended by the standard, the symbol energy decreases in higher PHY modes.

However, the higher data rates should only be selected in reliable channel

conditions, since they are more prone to channel errors. To solve this prob-

lem, the proposed adaptation scheme is based on the estimated SINR, as

well as the energy capture index which is a local statistic derived from the

decision variable. Since the energy capture index depends on several factors

including the instantaneous channel and the integration time, the proposed

scheme is sensitive to temporal variations in channel conditions, noise, and

interference. Therefore, it can correctly select the most energy efficient

PHY mode to maintain the required level of performance.



Chapter 3

Frame Length Optimization in

IEEE 802.15.6 WBANs

3.1 Introduction

In this chapter we tackle the frame length optimization to maximize the

energy efficiency of WBANs based on the impulse radio (IR) UWB [72]

physical layer (PHY), defined in the IEEE 802.15.6 standard [10]. The mo-

tivation to exploit adaptive schemes in WBANs has been discussed in [40].

Indeed, to achieve stable quality of service (QoS) performance it is indis-

pensable to design agile adaptive schemes for WBANs. One approach is

to optimize the frame body length in the MAC frame, which is addressed

here.

The IEEE 802.15.6 standard is composed of two different IR-UWB PHY

modes. The default mode is for general purpose WBAN applications and

exploits on-off signaling and the BCH(63, 51) code for forward error correc-

tion (FEC). The high QoS mode is exclusive to medical and high priority

applications and benefits from differential signaling with type II hybrid

automatic-repeat-request (H-ARQ) that combines the BCH(126, 63) code

with ARQ. In this chapter we also derive the packet success rate of both

PHY modes of the standard, which is fundamental in cross-layer analysis

and adaptive link layer strategy design. Furthermore, a generic energy effi-

43
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ciency model is proposed incorporating separate energy consumption costs

for uplink and downlink channels, as well as for reception and transmission.

The chapter is organized as follows. We first describe the system model,

followed by the calculation of packet success probabilities. Then we formu-

late and solve the optimization problem to maximize the energy efficiency

in both UWB PHY modes of the standard. At the end of this chapter we

propose adaptive frame length optimization schemes applicable to narrow-

band and UWB WBANs. The proposed adaptive scheme is verified using

narrowband channel measurements at 2.4 GHz.

Notation: We use a superscript letter to denote the PHY mode, i.e.,

“d” for the default mode, “q” for high QoS mode, and “m” for mode in

general, and use double parenthesis to prevent confusion with power.

3.2 System Model

We assume a set of wireless sensor nodes that communicate with a master

hub node. The hub-to-sensor and sensor-to-hub links are referred to as the

downlink and uplink, respectively.

It is well known that rake receivers can capture a significant amount

of the transmitted energy by resolving multipath fading. However, due

to a demand for low complexity, suboptimal non-coherent receivers are of

more interest. Such receivers are based on either energy detection (ED) or

autocorrelation (AC) [68], which are assumed in this section.

As illustrated in Fig. 2.5, the physical layer protocol data unit (PPDU)

is composed of three parts: a synchronization header (SHR), a physical layer

header (PHR), and the corresponding PHY service data unit (PSDU). The

SHR is used for packet detection and synchronization and is composed of

a preamble and a start of frame delimiter (SFD). The preamble provides

four logical channels by using a pool of four Kasami sequences (symbols)

of length 63. For coexisting WBANs, it is assumed that the logical chan-

nel with minimum received energy is assigned by the hub. The preamble

is constructed by four repetitions of the Kasami symbol. At the receiver

side, each packet is successfully detected if the cross-correlation of the ex-
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pected synchronization sequence with the received sequence is higher than

an implementation-dependent sensitivity margin, or their hamming distance

is less than a specific threshold ρ (we assume ρ = 6 in the simulations).

Therefore, the probability of successful packet detection can be given by

P
(m)
SHR = PSFD[1− (1− P (m)

syn )4], (3.1)

where m is the mode index, Psyn and PSFD are the probabilities of successful

detection of the corresponding Kasami sequence and the SFD respectively.

Here PSFD = Psyn, since the SFD is constructed by inverting the selected

synchronization symbol. Psyn can be expressed as

P (m)
syn =

ρ∑
i=0

(
63

i

)
[P

(m)
b ]i[1− P (m)

b ]63−i, (3.2)

where P
(m)
b is the bit error probability of PHY mode m.

The PHR which contains the PHY settings is composed of 24 bits of

PHY header, 4 bits of check sequence from CRC-4 ITU error detection code,

plus 12 and 63 parity bits from a shortened BCH(40, 28) and BCH(91, 28)

code for default mode and high QoS mode, respectively. The probability of

successful reception of the PHR is

P
(m)
PHR =

t(m)∑
i=0

(
N

(m)
PHR

i

)
[P

(m)
b ]i[1− P (m)

b ]N
(m)
PHR−i, (3.3)

where t(d) = 2 and t(q) = 10 are the correction capabilities of the BCH

codes, and N
(d)
PHR = 40 and N

(q)
PHR = 91 are the lengths of coded data for

the two modes respectively.

The MAC PDU consists of a header and a frame checksum of fixed

lengths of 7 and 2 octets respectively, plus a MAC frame body of a variable

length L
(m)
FB . It is mapped in blocks of length k(m) to N

(m)
CW codewords of

length n(m) (n(d) = 63, k(d) = 51, n(q) = 126, k(q) = 63, considering different

BCH encoders), to form a PHY frame. If mod(72 + L
(m)
FB , k

(m)) 6= 0, then

NBS = k(m)N
(m)
CW − (72 + L

(m)
FB ) bits are appended to the last codeword so

that

N
(m)
CW =

⌈
72 + L

(m)
FB

k(m)

⌉
, (3.4)
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where d.e denotes the ceiling operator. Data bits are interleaved prior to

modulation to remove the effect of burst errors, and pad bits are added for

symbol boundary alignment, if necessary1. The probability of successful

reception of PSDU can be expressed as

P
(m)
PSDU = [P

(m)
CW ]

N
(m)
CW
. (3.5)

Note that P
(m)
PSDU is a function of the frame length presented by the number

of codewords N
(m)
CW . Here P

(m)
CW is the probability of successful reception of

a codeword, and can be given by

P
(m)
CW =

t(m)∑
i=0

(
n(m)

i

)
(P

(m)
b )i(1− P (m)

b )n
(m)−i. (3.6)

Based on the derived success probabilities for the packet headers and the

synchronization bits, the packets are successfully delivered in the default

mode with the probability

P
(d)
PPDU = P

(d)
SHRP

(d)
PHRP

(d)
PSDU . (3.7)

The high QoS mode benefits from the H-ARQ mechanism combining FEC

with ARQ. This scheme will require both the transmitter and receiver to

store data packets. At first, a preliminary BCH(126, 63) encoding is per-

formed on the systematic bits D (D = MAC header + MAC frame body) to

generate the parity bits P of the same length. Then D is encoded with the

CRC-16-CCITT code and transmitted along with the corresponding frame

check sequence (FCS). At the receiver, the content of D is not discarded in

case of errors detected by the FCS. Instead, it is stored and error correction

will be carried out based on the existing erroneous packet and the following

retransmissions. On the next trial, P is encoded with the CRC-16-CCITT

code and is transmitted along with the corresponding FCS. The systematic

bits are recovered by inverting P bits, if they are error free. Otherwise, if

the receiver could not recover the errors based on the received P and the

stored D, D is discarded and the parity bits are stored. This process will

1No pad bits are required at the mandatory data rates.
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take place for a maximum of Rmax = 4 times. After reaching the maximum

number of retransmissions, the receiver resets its data storage and H-ARQ

begins at the initial stage.

If the MAC checksum verifies the integrity of the first packet, the data/parity

fragments are received successfully with probability δ = P
(q)
SHRP

(q)
PHR(1 −

P
(q)
b )N

(q)
CWn(q)/2. In case of an error, retransmission is required, and the

probability of successful reception after each retransmission, under the as-

sumption that the error occurrence process is stationary during alternating

retransmissions and is independent of data/parity fragments, can be given

by

Px = δ + (1− δ)[P (q)
SHRP

(q)
PHR]

2
P

(q)
PSDU . (3.8)

The rationale is that either P or D is received correctly with probability

δ, or D is recovered by the FEC. Both packets should be decodable by the

physical layer in the latter case. So we can summarize the probability of

successful reception of the data fragment D after the r’th retransmission as

PD(r) = Px(1− Px)r−1, r ∈ [1, Rmax]. (3.9)

The H-ARQ mechanism is able to deliver the packets with probability

P
(q)
PPDU = δ + (1− δ)

Rmax∑
r=1

PD(r). (3.10)

3.3 Optimal Frame Length

Substituting (3.4) to (3.7) into (A.9) and dropping the mode index for

simplicity, the energy efficiency of the default mode is

η =
ε1LFB

ε1LFB + c0

PSHRPPHR[PCW ]
LFB+72

63 , (3.11)

where c0 = ε1(
∑

i τi(Rb/Rτi)) + ε2 + E0 and PCW is given in (3.6). The

optimal frame body length L∗FB is obtained by setting dη
dLFB

= 0 in (3.11)
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Figure 3.1: Comparison of the theoretical model with the simulation results for the
default (top), and high QoS (Bottom) PHY.

and is expressed as2

L∗FB =

[√
(
c0

2ε1

)
2

− 63c0

ε1 ln(PCW )
− c0

2ε1

]
. (3.12)

It can be observed that when PCW is low (which represents a high proba-

bility of packet errors), the second term under the square root tends to a

smaller positive number and hence a smaller frame length is optimal. For

the high QoS mode, there is no explicit form. However, (A.9) can be directly

calculated and numerically maximized for a given bit error probability using

conventional convex optimization techniques.

2It can be shown that η has a maximum when LFB > 0. The negative solution is
not feasible and is discarded. We round-off the answer to the nearest integer which is
denoted by the [·] operator.
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Table 3.1: Optimal Frame Lengths (octets)

Bit Error Probability (Pb) L∗FB

Default
5.2× 10−3 300
8.8× 10−3 134
1.2× 10−2 76

High QoS
4.7× 10−2 335
5.4× 10−2 190
6.2× 10−2 108

3.4 Numerical Analysis

To verify the statistical model presented in Section 3.2, we have simulated

the mandatory data rates of the IEEE 802.15.6 physical layer. The same

packet reception procedures described in Section 3.2 are simulated in the

Additive White Gaussian Noise (AWGN) channel which is also used for

simulations within the standard. We first compare the output of the the-

oretical model with the simulation results. Fig. 3.1 shows that the experi-

mental success probabilities of PPDU, SHR, and PHR, averaged over 1000

realizations, are accurately followed by their theoretical counterparts. The

minimum required SNR for 99% packet success probability (PPPDU) is 15.5

dB for ED with on-off signaling (default mode), and 9.8 dB for AC with

differential signaling (high QoS mode). In Fig. 3.2, the energy efficiency is

plotted using (A.9) for different frame lengths and bit error probabilities

for the two modes. It is assumed that ctu = crd = 0.9, cru = ctd = 0.1,

Eenc = 4 pJ, Edec = 2 nJ, τ̄ (d) = 427, and τ̄ (q) = 487. The optimal length

values are given in Table 3.1. Note that the optimal length grows quickly

as the bit error probability decreases. For extremely low bit error proba-

bilities, the corresponding optimal length is unfeasibly large. Indeed, the

realistic frame length values are upper-bounded by other factors such as

the maximum allowable delay, the buffer size, and the coherence time of

the channel.
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Figure 3.2: Energy efficiency vs frame length, with different bit error probabilities
for the default (top), and high QoS (Bottom) PHY. The optimal frame lengths based
on the derived closed form in (3.12) are shown for the default mode (top).

3.5 Channel Adaptive Frame Length

The nature of a wireless channel in a wireless body area network is highly

dynamic, and hence any static design is trivially sub-optimal. In this sec-
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tion we propose a cross-layer channel-adaptive framework to adjust the

MAC frame body length of the data packets. We propose two different

approaches to incorporate the impact of the time-varying channel gain in

the transmission policy aiming to improve the overall energy efficiency of

the system. The first approach is based on autoregressive channel predic-

tion and the second scheme is a novel procedure inspired by the well-known

slow-start mechanism. Explicitly, in our first scheme the channel gain is

predicted and the optimal frame length is selected. In the second method,

the MAC frame length is sequentially increased after receiving the acknowl-

edgment message or decreased if no acknowledgment is received. Our sim-

ulation results show that the proposed schemes can significantly improve

energy efficiency in comparison with the case with a fixed frame length.

3.5.1 Advantage of Adaptive Schemes

Adaptive schemes have brought enormous attention in the design of wireless

body area networks (WBANs) [73, 74, 75, 39]. This is due to the strict de-

sign constraints on one hand and the unique channel conditions in WBANs

on the other hand. Low complexity is the main design constraint and is

driven by several factors. The extremely small form factor of the motes, a

reasonably long expected lifetime though powered by very limited battery

resources, and the need for low-power operation to prevent tissue heating

problems, together impose an upper feasibility bound on the maximum

possible complexity of the motes.

There is however, an implicit lower bound for the complexity of the

motes that is governed by a crucial need for optimality and efficiency in

WBANs. It is now evident that the link quality in WBANs can dramatically

change based on different factors such as body movements and occasional

signal blockages [3], body shape and gender [76, 4], posture [5, 8], clothing

and ornaments [6], existence of in-body medical implants with unknown

reflective and dispersive properties [7], transmitter-receiver orientation [77,

8], and finally different propagation characteristics of tissue among different

individuals and different body parts [78, 79, 9]. Indeed, due to the dynamic
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conditions of the wireless channel in typical WBANs a static design fails

to satisfy all design requirements since it is inherently sub-optimal and

inefficient. Therefore, the minimum imaginable level of complexity for these

systems to be efficient is identified by their adaptive capabilities.

Power control (PC) and link adaptation (LA) are two major adaptive

schemes that can greatly increase the efficiency of the system. It is shown

in [40] that LA can save up to 85% on energy by imposing a compromise of

less than 1% on the error probability. Similarly, it can be shown that PC can

save nearly 35% on energy without degrading reliability [73]. Nevertheless,

cross-layer optimization of the system can still improve the overall efficiency,

and since radio is the most energy-consuming part of the motes [40] it can

lead to a significant improvement.

It is shown in [80] that the performance of MAC protocols that ig-

nore channel temporal variations in WBANs is dramatically degraded. The

length of the medium access control (MAC) frame is one of the parameters

that can influence the energy efficiency, and has been addressed in different

applications [20]. We propose two different channel-adaptive approaches

to dynamically adjust the length of the MAC frame body of the packets

in different channel conditions, aiming to improve the energy efficiency.

The first scheme exploits autoregressive prediction of the channel based on

previous samples. The predicted value is used to estimate the expected

packet error probability and then the MAC frame length is optimized to

maximize the energy efficiency for the given packet error probability. The

optimized packet lengths can be calculated off-line for different channel

gains and stored in a lookup table for fast on-line recovery, at the expense

of a small amount of memory. Our second scheme is analogous to the slow-

start procedure which is a transport-layer strategy for congestion control.

It is desirable for situations where channel prediction is not feasible and

the transmitter can only adapt to the channel based on the outcome of the

communication of the previous packets. Explicitly, we propose an algorithm

that increases/decreases the frame length by a predefined value after every

successful/failed packet, indicated by the acknowledgment message. There

are different parameters that should be considered in the second scheme,
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Table 3.2: P̂b Fitting Parameters

w γ0 ν σ
π/2-DBPSK 0.5300 0.0003 0.9779 0.9586
π/4-DQPSK 1.5199 -0.0086 0.7996 1.5322

including the initial and the maximum frame length and the step size, that

are discussed in the sequel. Note that although the WBAN channel is highly

dynamic, the speed of variations is not high since the motion is usually not

very fast [80, 74].

3.5.2 Formulation

We have simulated the π/2-DBPSK, and π/4-DQPSK modulation schemes

recommended in the narrow-band physical layer of the IEEE 802.15.6 stan-

dard [10] in an additive white Gaussian (AWGN) channel to derive a unified

exponential fit for Pb versus different SNR values. The four-parameter fit-

ting model is expressed as

Pb(γ) ≈ P̂b = w exp

(
−(γ − γ0)ν

σ

)
, (3.13)

where γ is the received signal-to-noise ratio (SNR). The empirical bit error

rate (BER) and their corresponding exponential fits are illustrated in Fig.

3.3 and the fiting parameters are given in Table 3.2. Note that the fitting

model is based on the SNR in natural unit (not dB).

For simplicity and without loss of generality, we assume that the total

number of bits in each frame is NCWk. Since there is a direct relationship

between the number of transmitted bits and the consumed energy per bit, to

measure the energy efficiency of the system we use the effective throughput

which is the ratio of the number of successful data bits to the total number

of transmitted bits. The effective throughput of the system is expressed as

T (NCW , γ) =
(NCWk)

(NCWn) + τ
PSR(γ) =

(NCWk)

(NCWn) + τ
Pτ (PCW (γ))NCW .

(3.14)
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Figure 3.3: The empirical BER of π/2-DBPSK and π/4-DQPSK and the corre-
sponding exponential fit.

3.5.3 Channel Prediction

Our first scheme is based on a dynamic prediction of channel gain that takes

place ahead of the actual packet transmission time. The prediction task is

based on the existing samples of the channel and can be performed both at

the hub or motes due to the reciprocity of the channel. The specific temporal

distribution of the samples defines the prediction period. A prediction time

of up to two seconds has been previously reported for dynamic power control

in WBANs [74]. The prediction procedure is completely separate from the

adaptation phase and can be implemented according to the specific design

requirements, e.g. timing, prediction accuracy, and complexity. We use

autoregressive (AR) prediction which is also known as linear prediction

(LP) and has already been extensively studied. LP is a simple and accurate

method with a performance superior to even more complex methods. In

this scheme, the future samples of the channel are modeled by a linear

combination of its past p samples expressed as [81]

ĉ(m) =

p∑
j=1

dj(m)cm−j, (3.15)
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Figure 3.4: Autoregressive prediction of the Tx-Rx channel gain at 820 MHz.

where m is the sample index and p is referred to as the AR model order.

The coefficients {dj} are calculated according to the minimum mean square

error (MMSE) criterion and the celebrated Yule-Walker equations [70]. The

predictor can be implemented in the form of a simple pth order finite impulse

response (FIR) filter, which is ideal for WBAN applications with complexity

constraints.

An example of the LP algorithm is presented in Fig. 3.4, where the

Tx/Rx channel gain in the 820 MHz frequency band are predicted based

on the samples taken at 30 ms intervals of the NICTA channel model [61]

and with p = 7.

For each predicted channel gain ĉ the instantaneous SNR is given by

γ =
ĉPt
N0B

, (3.16)

where Pt is the transmit power, N0 is the noise power spectral density and

B is the bandwidth. We can calculate and adjust the optimal frame length.

In fact, the optimal length can be calculated off-line and be stored in a look-

up table for different SNR values for fast and efficient on-line adaptation.

3.5.4 Modified Slow-Start Algorithm

The slow-start algorithm was proposed by Jacobson for congestion control

[82] and is implemented in the transport layer. Congestion is one of the
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factors causing packet drops in the network and happens when the link is

overloaded, with too much traffic. Slow-start facilitates reliable communi-

cation of data packets by controlling the load of packets that each transmit-

ting node offers to the network. This algorithm works in a window-based

approach and has been modified over time. It is mainly composed of two

different phases known as additive-increase/multiplicative-decrease (AIMD)

which is also adopted in this section.

Let L(m) be the length of the MAC frame at the time index m and

assume that its initial value is Lmin. During the exponential growth phase,

which is at the initial stage, the value of L(m) will increase by a constant

a > 0 after each successful packet indicated by an acknowledgment message

from the receiving node. This procedure continues until either no acknowl-

edgment is received, or the size of the MAC frame reaches a predefined

threshold ρL. This threshold is influenced by several factors e.g. buffer

size, maximum permissible delay, etc. (we used ρL=500 in the simula-

tions). In the case of a packet drop, the algorithm enters the multiplicative

decrease phase, in which the frame length is reduced by a multiplicative

factor 0 < b < 1. Alternatively, if the threshold length is reached, the lin-

ear growth phase begins, in which the frame length is increased by v after

each successful packet (v is usually one unit). The operation of this scheme

is illustrated in the sequential diagram in Fig. 3.5. The [·] operator that is

used in the multiplicative reduction phase is to make sure that the frame

length is an integer.

3.5.5 Simulation Results and Discussion

Consistent with the narrow-band physical layer of the IEEE 802.15.6 stan-

dard, we use the BCH(63, 51) channel code with correction capability t = 2.

The physical-layer protocol data unit (PPDU) is constructed by a pream-

ble of length 90 bits and a header of length 31 bits, and the data payload.

The MAC header and check sequence also increase 72 bits due to the total

physical layer convergence protocol (PLCP) overhead bits.

Fig. 3.6 shows the optimal number of codewords in the PLCP for π/2-
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Figure 3.5: Modified slow-start algorithm.
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Table 3.3: Energy efficiency of the system in different scenarios

Static Scheme 1 Scheme 2

Link 1
π/2-DBPSK 58% 97% 96%
π/4-DQPSK 46% 96% 95%

Link 2
π/2-DBPSK 83% 99% 97%
π/4-DQPSK 66% 98% 96%

DBPSK and π/4-DBPSK modulation schemes. We can observe the corre-

sponding threshold SNRs γ
π/2-DBPSK
th ≈ 8 dB and γ

π/4-DQPSK
th ≈ 13 dB for

the two schemes, where the optimal packet length grows exponentially. This

observation supports the efficiency of burst transmission, e.g., transmitting

with maximum frame length (and maximum rate) when channel conditions

are suitable and not transmitting otherwise.

To simulate the dynamic behavior of the WBAN channel, we use the

NICTA’s database which includes channel measurements at 2.4 GHz per-

formed at 200 Hz sampling for up to 12 hours in a typical WBAN [83, 84].

The transmitter is attached on the subject’s right hip and two receivers are

located at the right wrist (link 1) and right ankle (link 2). The transmit

power is 0 dBm and the test scenario consists of different postures and activ-

ities, e.g. office work, walking, running, and sleeping. Among all available

samples, we use samples with 100 ms time separation.

The energy efficiency of the system for different scenarios (the static

scenarios with fixed frame length and our two adaptive schemes) is com-

pared in Table 3.33. It can be seen that the proposed schemes can sig-

nificantly improve the performance in comparison with the static system.

Not surprisingly, the channel prediction scheme outperforms the modified

slow-start scheme since it can always select the optimal frame length.

3The overall energy efficiency is calculated based on the ratio of the number of
successful codewords to the total number of transmitted codewords. Scheme 1 is the
prediction-based approach and Scheme 2 is the modified slow-start algorithm.
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3.6 Conclusion

The packet success rates in the default and high QoS modes of IR-UWB

PHY in the IEEE 802.15.6 standard have been derived and verified by

simulations. While these performance measures play a significant role in

cross-layer study of the system, we use them to formulate and solve an

optimization problem: to maximize the energy efficiency by selecting the

optimal length for the MAC frame body. A closed form expression has been

derived for the default mode, and the impact of frame length on energy

efficiency has been studied. We also propose two channel-adaptive frame

optimization schemes that, according to simulations on real WBAN channel

measurements, can significantly improve the energy efficiency at the sensor

nodes with application in both UWB and narrowband WBANs.





Chapter 4

Energy-Delay Tradeoffs in

IR-UWB Systems

4.1 Introduction

For delay-sensitive traffic in WBAN applications, the transmission protocol

should take into account the data queuing delay to meet quality of ser-

vice (QoS) requirements. We consider IR-UWB networks with noncoherent

receivers based on energy detection (ED) and autocorrelation (AC), since

this setup is an ideal combination of the PHY technologies that can pro-

vide unique capabilities such as low complexity and precision localization

together with low implementation cost. We assume that the transmission

rate (e.g. the transmission PHY mode) can be adapted by an adaptive

modulation and coding scheme that controls the number of pulses per sym-

bol. Our study closely follows the theoretical framework in [25]-[85]. Based

on the observed instantaneous channel state information (CSI) and queue

length information (QLI), the rate scheduling policy is able to select a PHY

mode with minimum transmission energy for each sensor node while main-

taining the network stability.

The contribution of this chapter is to extend the existing theoreti-

cal frameworks in the study of delay-sensitive data transmission to IR-

UWB WBANs with noncoherent receivers. We formulate the problem us-

61



62 Energy-Delay Tradeoffs in IR-UWB Systems

ing our PHY model and apply the results to IEEE 802.15.6 based IR-UWB

WBANs. We first calculate the minimum energy function, i.e., the mini-

mum energy that is required to achieve network stability for a given traffic

rate and provide a mathematical representation for the stability constraint.

Then we identify the optimal energy-delay tradeoff in the system, which is

fundamental in the design of the scheduling algorithm and expresses the

minimum energy required to achieve a specific average delay. Therefore,

we pursue a cross-layer approach to integrate the PHY models of the IR-

UWB WBANs with the existing higher layer scheduling policies proposed in

[25] and [26] to come up with an explicit design model for these networks.

Furthermore, we include the total consumed energy required for sensing,

processing and communication in the optimization problem for a more com-

prehensive evaluation, unlike [25]-[85] that only consider the transmission

energy in their scheduling algorithm.

4.2 System Model

4.2.1 Physical Layer Characteristics

We assume a WBAN of Ns wireless sensor nodes (motes) and a master hub

node that communicate using noncoherent IR-UWB transceivers. To enable

various data rates, every node can transmit with a specific modulation

and coding scheme which we refer to as a physical layer mode. This can

normally be achieved by changing the number of pulses per symbol in IR-

UWB systems. Explicitly, considering there are Nm PHY modes and a given

physical layer mode m ∈ [1, Nm], each sensor node uses N
(m)
p ∈ Z+ pulses

of the form p(t) with duration Tp and energy Ep to transmit a symbol. The

transmitted waveform is represented as

x
(m)
k (t) =

∑
i

w(m)(t− ciT (m)
w − iT (m)

s ), (4.1)
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where k ∈ [1, ..., Ns] and

w(m)(t) =

N
(m)
p −1∑
j=0

p(t− jTp), (4.2)

is a waveform of duration T
(m)
w = N

(m)
p Tp, and ci is the time hopping co-

efficient selected from the range [0, Nw − 1]. Nw indicates the number of

possible waveform positions within a symbol time. The symbol time

T (m)
s = NwT

(m)
w , (4.3)

changes over different PHY modes and hence the amount of transmitted

data within a time unit varies depending on the PHY mode. We denote

the total energy consumption corresponding to PHY mode m by

E
(m)
T = N (m)

p ETPP , (4.4)

where ETPP , αtEt+αrEr is the total weighted energy per pulse consisting

of the transmission and reception energies Et and Er respectively. αt and

αr are the energy weights at the transmitter and the receiver, Et is sum of

the pulse energy Ep and the total sensing and processing energies at the

transmitter averaged per pulse. Generally, the UWB impulses are subject

to regulatory spectral masks and therefore the transmitted pulse energy Ep

is usually selected such that Ep ≤ Emax, where Emax is the maximum pulse

energy permissible by the regulatory. Therefore, to increase the probability

of pulse detection, it is useful to assume a fixed Ep = Emax. The received

signal at the hub is given by

y
(m)
k (t) =

∑
i

x(m)(t) ∗ hk(t) + n(t), (4.5)

where ∗ denotes linear convolution, n(t) is a zero-mean additive white Gaus-

sian noise process with two-sided power spectral density N0/2, and hk(t) is

the normalized multipath channel for the kth sensor with Nmp,k resolvable

multipath components given by

hk(t) =

Nmp,k−1∑
l=0

ak,lδ(t− τk,l), (4.6)
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in which {ak,l} and {τk,l} represent the sets of corresponding resolvable

multipath coefficients and delays, respectively.

We define the average transmission rate corresponding to PHY mode m

as

r(m) =
1

N
(m)
p

, m ∈ [1, .., Nm], (4.7)

which is the fractional bits per pulse assuming one bit per symbol. Obvi-

ously, the maximum possible rate is achieved by using one pulse per symbol.

We define r(0) = N
(0)
p = 0, which represents the idle mode where the trans-

mission rate and energy are zero. Without loss of generality we assume

0 < r(1) < r(2) < · · · < r(Nm). We define the instantaneously received SNR

as γk = µkEp/N0. Hence, the average received SNR can be expressed by

γ̄k = µ̄kEp/N0, (4.8)

In the sequel, we pursue a cross-layer approach to design a rate scheduling

policy that is influenced by the physical layer success probabilities.

4.2.2 Network Model

The medium access of each sensor node is controlled by the hub with full

knowledge of the received SNR from all the sensor nodes. Each sensor has

a buffer that stores the arrived data from the application layer in a service

queue. The network operates in slotted time t with time slot duration

∆t. In each beacon period the hub uses management/control packets to

inform the sensors about their scheduled physical layer parameters, i.e. the

corresponding sensor node and the PHY mode to transmit. For a given

time slot t, we denote the scheduled sensor by K(t) and the allocated mode

by Mk(t) respectively.

We assume that the channel state remains constant during the trans-

mission of one data packet.
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4.3 Minimum Energy with Stability Constraint

and CSI

Let Ak(t) represent an i.i.d. ergodic bit-arrival process over time slots corre-

sponding to the kth sensor node with arrival rate E[Ak(t)] = λk bits per time

slot. We assume that the arrival process is independent of the queue back-

log and is bounded, i.e. there exists Amax such that Ak(t) ≤ Amax, ∀t, k.

For each sensor node sk we denote the state of the queue backlog by Qk(t)

over time. The queue dynamics can be modeled by

Qk(t+ 1) = max{Qk(t)− Fk(t), 0}+ Ak(t), (4.9)

where Fk(t) is the finished work at time t, i.e. the transmitted data from

the sensor. We also assume λk ∈ Λ,∀k ∈ [1, Ns], where Λ is the set of all

arrival rates for which there exists a randomized scheduling policy that can

achieve a finite average delay (Similarly, we denote the complement region

of Λ by Λ̄). Such a policy is defined for any time slot t by the conditional

probability distribution

PK,M |Γ = P [K = k,M = m|Γ = γ] , (4.10)

where K and M are random variables over {1, ..., Ns} and {1, ..., Nm} indi-

cating the sensor index and the scheduled PHY mode, and Γ is a random

vector over the channel state vector γ = (γ1(t), ..., γNs(t))
T.

The probability distribution in (4.10) can be written in matrix form

W(γ) of size Ns × (Nm + 1) with elements wk,m(γ) ∈ [0, 1] such that

wk,m(γ) = P[K = k,M = m|Γ = γ]. (4.11)

To define the stability of the queue Qk(t), we define qk(U) as the largest

limiting fraction of time the queue backlog is above U [26], i.e.

qk(U) = lim sup
t→∞

1

t

t∑
t′=0

P{Qk(t
′) > U}, (4.12)

then the queue is stable if

lim
U→∞

qk(U) = 0, (4.13)
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where lim sup denotes the limit superior. It follows that the necessary and

sufficient condition for the stability of the queue for each sensor k is [26]

E[Fk(t)] ≥ λk, (4.14)

which necessitate that the average transmission rate for each sensor should

be at least equal to the arrival rate1. The optimal rate scheduling policy is

the solution of the following optimization problem

Minimize: E

[∑
k

∑
m

wk,m(γ)E
(m)
T

]
(4.15)

s.t. E

[∑
m

wk,m(γ)r̂(m)PSR
(m)
k

]
≥ λk, ∀k ∈ [1, Ns]

1TW(γ)1 = 1, ∀γ ∈ RNs

wk,m(γ) ≥ 0, ∀γ ∈ RNs , k ∈ [1, Ns],m ∈ [0, Nm]

where PSR(m) is the packet success rate of the PHY mode m and r̂(m) is the

average transmission rate of PHY mode m normalized over a time slot, i.e.

bits per time slot, and is given by

r̂(m) = r(m) ∆t

Tp
. (4.16)

Substituting (4.4), (4.7), and (4.16) it can be written as

Minimize: E

[∑
k

∑
m

wk,m(γ)N (m)
p ETPP

]
(4.17)

s.t. E

[∑
m

wk,m(γ)
PSR

(m)
k

N
(m)
p

∆t

Tp

]
≥ λk, ∀k ∈ [1, Ns]

1TW(γ)1 = 1, ∀γ ∈ RNs

wk,m(γ) ≥ 0, ∀γ ∈ RNs , k ∈ [1, Ns],m ∈ [0, Nm]

We denote the term PSR
(m)
k /N

(m)
p by χ

(m)
k which is referred to as the “ef-

fective rate” of PHY mode m and is a function of the channel state γk. Let

1E[Fk(t)] > λk is referred to as strict stability.
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n = (0, N
(1)
p , ..., N

(Nm)
p )T, λ = (λ1, ..., λNs)

T, χk = (0, χ
(1)
k , ..., χ

(Nm)
k )T, and

ZT(γ) = (χ1, ...,χNs
). The stability policy is the solution of the following

problem

Minimize: E
[
1TW(γ)n

]
(4.18)

s.t. E [W(γ) ◦Z(γ)1] ≥ Tp
∆t
λ

1TW(γ)1 = 1, ∀γ ∈ RNs

wk,m(γ) ≥ 0, ∀γ ∈ RNs , k ∈ [1, Ns],m ∈ [0, Nm]

where ◦ denotes the Hadamard (element by element) product and the total

energy is normalized. To solve this problem, the channel state space should

be properly discretized to a sufficiently large number of states. In this case,

the scheduling policy maps the SNR partitions into a set of PHY mode

probabilities for each sensor node. Nevertheless, it follows that the number

of optimization variables grows exponentially with the network size. An

alternative approach that can simplify the problem would be the case when

the stability constraint is satisfied for each channel realization (and hence for

each time slot). In this case, the scheduling policy selects with probability

one the minimum-energy PHY mode with an instantaneous effective rate

greater than or equal to the expected arrival rate of the sensor. Explicitly,

∀k ∈ [1, Ns],∀m ∈ [1, Nm] we have

wk,m(γ) =

{
1, ifχ

(m)
k ≥ Tp

∆t
λk andN

(m)
p ≤ N

(j)
p , ∀j ∈ [1, Nm]

0, otherwise.
(4.19)

The minimum energy function, which is defined as the minimum average

energy per symbol to stabilize the system with a given arrival rate vector

λ and SNR γ can be expressed as

Φ(λ,γ) = E
[
1TWλ(γ)n

]
, (4.20)

where Wλ(γ) is the scheduling policy corresponding to the given arrival

rate vector λ and channel state vector γ. Since χ
(m)
k ∈ [0, 1] ∀k,m, we limit

the maximum possible arrival rate so that λk ≤ λk,max = ∆t
Tp
, ∀k and discard

the other scenarios. Clearly, for all k if λk > λk,max, then we have λk ∈ Λ̄.
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4.4 Minimum Energy Subject to Stability with

QLI

The scheduling policy presented in the previous section is based on the av-

erage received SNR from the sensors as well as their average arrival rates.

Due to the inherent difficulties in solving (4.18) and its need for the knowl-

edge of average arrival rates, it is useful to pursue approaches based on the

QLI of the sensors, instead. Indeed, it is known that scheduling policies

that are only based on the channel state and ignore the queue backlog are

sub-optimal [25]. The theory of Lyapunov drift seeks scheduling policies

based on the queue and channel state information to stabilize the queuing

systems. By incorporating a resource optimization part to this theory, it

extends to Lyapunov optimization theory, which is extensively studied in

the literature [25, 26, 86].

We apply the dynamic scheduling algorithm proposed in [25] and [85] to

our IR-UWB network. The main idea is to exploit a specific function, i.e. a

Lyapunov function that provides a numerical measure for the current sta-

bility level of the system based on its current state. Typically, the function

is defined to grow large when the queue backlog of at least one sensor is

approaching large values. We refer to the change in the Lyapunov function

from one slot to another by the Lyapunov drift. It follows that the schedul-

ing policy can stabilize the queuing system by taking control actions (i.e.

allocating the PHY modes to the sensors) that make the Lyapunov drift in

the negative direction towards zero. In general, the scheduling policy tries

to minimize a drift-plus-penalty function which is a sum of the Lyapunov

drift and a weighted version of the required spectrum or energy resources

that leads to minimum resource utilization while stabilizing the system. We

are particularly minimizing the total required energy. Hence, the penalty

weight can help the scheduling policy in order to put the system close to

any desired point on the optimal energy-delay tradeoff curve.

Given the positive control parameter V , the scheduling policy is based
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on the QLI and CSI of all sensor nodes and the following parameters:

ε =
1√
(V )

, (4.21)

ω =
ε

δ2
max

e−ε/δmax , (4.22)

Qth =
6

ω
ln(

1

ε
), (4.23)

where δmax = max{Amax, max
(m=0,...,Nm)

{r(m)}} is the maximum variation of the

queue length, ε is the backlog drift, Qth is the buffer partitioning threshold

[25], and ln(·) denotes natural logarithm. At each time slot t, the hub

schedules the sensor K(t) to transmit using the PHY mode Mk(t) by solving

the following optimization problem

(Mk(t), K(t)) = arg min
k∈[0,Ns],m∈[0,Nm]

{V N (m)
p − W̃k(t)χ

(m)
k }, (4.24)

where W̃k(t) = max{Wk(t), 0} and

Wk(t) =I(Qk(t) ≥ Qth)ωe
ω(Qk(t)−Qth)

− I(Qk(t) < Qth)ωe
−ω(Qk(t)−Qth) + 2Xk(t). (4.25)

The hub then updates the auxiliary queue Xk(t) such that

Xk(t+ 1) = max{Xk(t)− χ(Mk(t))
k I(K(t) = k)− εI(Qk(t) < Qth), 0}

+ Ak(t) + εI(Qk(t) ≥ Qth), (4.26)

where Xk(0) = 0 and I(·) is the indicator function defined as

I(condition) =

{
1, if condition is true
0, otherwise.

(4.27)

The average delay of the system is 1
Ns

∑Ns

k=1 Q̄k, where

Q̄k = lim
t→∞

1

t

t−1∑
τ=0

E{Qk(τ)} (4.28)

is the average delay corresponding to the kth sensor node by Little’s theo-

rem [87].
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Table 4.1: IEEE 802.15.6 PHY modes

m Symbol time T
(m)
s (ns) N

(m)
P Bit rate (Mbps)

1 2051.300 32 0.487
2 1025.600 16 0.975
3 512.820 8 1.950
4 256.410 4 3.900
5 128.210 2 7.800
6 64.103 1 15.600

4.5 Case Study: IEEE 802.15.6

As an example, we apply our theoretical framework to the IR-UWB physi-

cal layer of the IEEE.802.15.6 standard [10]. The mandatory PHY in this

standard permits six different data rates in Table 4.1. The success proba-

bilities corresponding to the SHR, PHR, and PSDU packets are derived in

the Appendix A and can be calculated based on the bit error probability of

the channel.

We use the channel model in [61] (which is explained in section 2.2.1)

to simulate the multipath and exploit average channel statistics to quantify

the channel quality. The mean µ value for this channel averaged over 1000

realizations is µ̄t = 0.6181. The sensor subscript k is removed for simplicity.

This also applies to λ in the rest of the section. Fig. 4.1 demonstrates

Φ(λ, γ̄) in (4.20) for a single node, assuming different values of the arrival

rate λ and average SNR γ̄ along with the corresponding optimal PHY mode

given by (4.19). The infeasible region is labeled by Λ̄ in which no stability

policy can be found. It can be observed that Φ(λ, γ̄) is a decreasing function

of γ̄ for a fixed λ, since the high-SNR regime can achieve improved effective

rates with a lower number of pulses per symbol.

In the sequel we describe the simulations of an IEEE 802.15.6 IR-UWB

WBAN consisting of two nodes and a hub with rate scheduling based on CSI

and QLI at the hub. To assess the scheduling policy we consider different

traffic scenarios and different PHY parameters. The CSI and QLI of all

nodes are assumed to be known at the hub. The QLI of a sensor node is

informed to the hub in each beacon interval and the CSIs can be blindly

estimated by the hub. The scheduling algorithm selects a sensor node and
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Figure 4.1: Minimum energy function Φ(λ, γ̄) corresponding to the default IR-UWB
PHY option of the IEEE 802.15.6 standard with ∆t = Tp. The required energy and
the PHY mode to stabilize a queuing system with arrival rate λ for a single node are
given in the figure. The infeasible region is labeled by Λ̄.

the corresponding optimal PHY mode every beacon period and informs it

to the sensors on the downlink channels.

The instantaneous channel at each time slot is simulated based on the

model given in [61] and the corresponding multipath factor µ is calculated

by integrating the square of the instantaneous channel’s impulse response.

We assumeB = 1 GHz, ∆t/Tp = 500, and data arrival is Poisson distributed

which means the number of arrived data bits for sensor k the time slot t

can be given by

P[Ak(t) = a] =
λa

a!
e−λ. (4.29)

Each sensor node can either transmit using the PHY modes listed in Ta-

ble 4.1 or wait in the idle mode which is indicated by m = 0. The initial
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Figure 4.2: The energy-delay tradeoff of the system considering different traffic
scenarios.

queue length is assumed zero for all sensors. We are firstly interested in

the optimal energy-delay tradeoff in the system which can be achieved by

varying the value of V in (4.24). The simulations are performed for three

different traffic scenarios and the resulting energy-delay tradeoff curves are

depicted in Fig. 4.2. These tradeoffs are of significance importance in the de-

sign of the scheduling algorithm since they provide the explicit relationship

between the average delay incurred by the queuing system at the sensors

and the minimum amount of required energy to achieve it. We assume

two scenarios with homogeneous arrivals λ1 = λ2 = 1 bit/time slot and

λ1 = λ2 = 5 bits/time slot and a heterogeneous traffic scenario with λ1 = 1

and λ2 = 10. The average incurred delay for each node is calculated ac-

cording to (4.28).

The steady state behavior of the sensor queues is depicted in Fig. 4.3

for various arrival rates. As a rule of thumb, the scheduling algorithm

allocates the time slots more often to the sensors with higher arrival rates

as long as they are in good channel conditions and the allocated PHY
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Figure 4.3: Buffer evolution for different traffic arrival rates (equal average delay is
assumed for the two scenarios).

mode is more governed by the state of the channel. This idea is validated

when we consider the state of the channel and observe the queue length

together with the scheduled PHY mode which is illustrated in Fig. 4.4. In

these figures we consider two sensors and different arrival rates λ1 = 5 and

λ2 = 1. The value of Ep/N0 is equal to zero at the first time slot and is

increased by 0.015 dB so that we could study its impact on the selected

PHY mode and the steady state conditions of the buffers. The state of

channel can be assessed by observing the instantaneous value of µEp/N0

at each time slot. It can be seen that when the channel is not in a good

condition (low µEp/N0) none of the sensors are selected by the scheduling

algorithm and both queue lengths increase linearly (constant arrival and

zero service rate). By increasing µEp/N0, the queue backlogs are stabilized

after it reaches a specific point and tend to zero as it increases further. It

can also be observed that the higher PHY modes are allocated in better

channel conditions which is expected a priori. The scheduling algorithm

can be tuned by changing the V parameter to approach any desired point

in the optimal energy-delay tradeoff curve.
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Figure 4.4: Buffer evolution and rate scheduling with respect to the instantaneous
channel state µEp/N0 (linear scale).
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4.6 Conclusion

We studied the energy-delay tradeoffs in IR-UWB WBANs with noncoher-

ent receivers and applied this framework to the IEEE 802.15.6 networks.

The stability scheduling policies based on CSI and QLI were addressed

and simulated using the standard PDP model of the IEEE 802.15.6 chan-

nel model. We also analyzed the dynamic behavior of the rate scheduling

policy in different traffic and channel conditions and showed that our rate

scheduling policy can respond to these variations in order to preserve the

stability with an energy arbitrary close to the minimum possible energy.





Chapter 5

Generalized Nonuniform

Sampling of Band-Limited

Signals

5.1 Introduction

Optimal design of communication systems has been regarded as a major

challenge for many years. This issue still calls for new endeavors with the

advent of emerging technologies and applications such as wireless body area

networks (WBANs) or, more generally, wireless sensor networks (WSNs).

A crucial challenge in the design of these systems is that multiple counter-

active constraints are imposed simultaneously. For instance, the sensors in

an implant WBANs should have adequately small size and complexity and

work with ultra low power to prevent overheating of the proximate tissues,

but the channel quality is adverse due to body movements and propaga-

tion inconsistencies, and the transmit power should be extremely small to

maintain the battery power for a reasonable time. Indeed, a new level of

optimal design is necessary in order to meet the constraints. Compres-

sion techniques can reduce the total number of bits that the sensor should

transmit and save some transmit power as a result. However, a lot of sensor

resources due to sampling, quantizing, and processing of the measurements

77
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are actually thrown away in this approach. With the advent of novel tech-

niques such as compressive sensing, one can realize that the current trend

in data-gathering applications such as sensor networks is to produce fewer

data bits in the first place instead of sampling a big volume of data and

then applying data compression which consumes a considerable amount of

energy and circuitry [88, 52].

The Sampling theory can provide the analytical means for the equally-

spaced discrete-time representation of continuous-time band-limited signals

such that the optimal fidelity is achieved after reconstruction. To express

such signals in the digital domain, a further level of processing is required

that is addressed by the theory of quantization. These two steps are nor-

mally dealt with independently, while the same objective is usually sought,

i.e. minimizing the reconstruction error. Hence, a theoretical gap can be

observed by looking at these two steps together. More explicitly, in today’s

analog-to-digital-converters (ADCs) the quantization is usually performed

when the samples of the continuous-time signal are already taken. The

aim and novelty of this work is to seek for more gains in terms of the

communications resources by merging these two concepts and introducing

more degrees of freedom in the sampling and quantization of the signal.

Due to its direct impact on energy and bandwidth utilization, we consider

and try to minimize the bit budget, which is the total number of bits re-

quired to reconstruct a signal within a given time frame. In the sequel,

we explain this generalized nonuniform sampling (GNS) framework. The

term “generalized” is used since we assume both the sampling-time and

resolutions are nonuniform. This is unlike traditional nonuniform sampling

methods that only address the sampling times. We apply the previous uni-

form and nonuniform sampling times techniques to a test signal for com-

parison and demonstrate the capabilities of GNS. The proposed sampling

architecture reduces the total bit budget of the previous nonuniform sam-

pling time schemes. These schemes can be seen as special cases in the

proposed framework where either sampling time or bit depth is fixed and

uniform. We propose different schemes under this framework with nonuni-

form sampling time and bit depth that require a smaller bit budget for
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Figure 5.1: Generalized nonuniform sampling architecture. Only B[n] bits are
used/generated at the output (depending on the quantizer type).

signal reconstruction. Although our theoretical results apply to arbitrary

compressible1 signals, we restrict the evaluation part to ECG signals and

leave the other signal models for future studies.

5.2 GNS Framework

In this section we introduce our GNS architecture in which both the sam-

pling times and the bit depths of the sample values are nonuniform. More

specifically, just like the conventional nonuniform sampling schemes, we

adopt variable sampling times that are controlled by a sampling function

fT . In addition, the number of bits that can represent each sample value

(i.e. bit depth) is variable and can be adjusted for each sample accord-

ing to a function fB. Consider the analog band-limited signal x(t) having

bandwidth W . By definition, the discrete-time samples of this signal are

1A compressible signal is one with a form of sparse representation in a particular
domain. Arbitrary band-limited signals such as band-limited white noise are not consid-
ered. This is motivated by the fact that almost all forms of natural signals of interest in
practice belong to this class.
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represented by x[n] where the samples are taken at the time stamps T [n].

Assume that at time t = ti, the signal’s sample is x[i] = x(ti). Also assume

that the number of bits per sample (BPS) for sample x[i+ 1] is represented

by B[i+ 1] which is given by a function

B[i+ 1] =fB(t[i−N + 1], ..., t[i],

B[i−N + 1], ..., B[i], x[i−N + 1], ..., x[i]) (5.1)

Generally speaking, the next sample (i.e. x[i + 1]) should be taken at

ti+1 = ti + T [i], where

T [i] =fT (t[i−N + 1], ..., t[i],

B[i−N + 1], ..., B[i], x[i−N + 1], ..., x[i]) (5.2)

is chosen based on a function fT of the last N sampling times and the

corresponding bit depths and sample values as well as the bit depth of the

next sample. If evaluated sequentially (rather than jointly), depending on

the order, either fT or fB can be a function of the other. The sampling

functions fT and fB will be discussed in more detail in the succeeding

sections. We refer to
∑

iB[i] as the required bit budget to reconstruct

the signal x(t). Our key objective is to optimize the sampling time and

the bit depth of each sample such that the total number of required bits

is minimized. We introduce a general sampling architecture illustrated in

Fig. 5.1 where a switch is controlled by predictive control logic to sample

the signal x(t) at the desired times to produce discrete-time samples x[n].

These values should normally be quantized before further processing. In

this framework, however, we quantize the difference of the signal and a

prediction of the signal that is given by the predictive control logic. The

prediction signal is represented by x̂[n] which is fed to a digital-to-analog

converter to generate x̂A[n]. The difference signal

d[n] = x[n]− x̂A[n], (5.3)

is then quantized and the output signal dQ[n] is transmitted or stored.

Throughout this section, we assume that uniform quantization with a fixed
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step size ∆ is performed wherever data is quantized. For the sake of simplic-

ity, we first proceed with some special cases of our proposed system. Our

main concern here is how to design the block marked “predict and control”

where the sampling times T [n] as well as the estimate of the next sample

are generated. A tradeoff between the number of samples and the number

of bits per sample can be established by adopting different algorithms. By

intuition, we expect that a longer time between two consecutive samples

makes the expected number of required bits for the next sample larger.

5.2.1 DPCM system

It can be seen that a special case of this framework is when the samples are

taken uniformly and a fixed number of bits per sample are allocated, i.e.

T [n] = Ts =
1

2W
, ∀n (5.4)

B[n] = B, ∀n (5.5)

where W is the signal’s bandwidth, Ts is the sampling time period, and B is

the bit depth of each sample, is chosen based on the signal’s dynamic range.

This case corresponds to the well known differential pulse code modulation

(DPCM) which is prevalent in voice encoding. The gain in DPCM systems is

achieved by reducing the variance and dynamic range of the signal since the

difference of the prediction is usually small. Generally, a linear prediction is

used in different applications to represent an estimate for the next sample.

More specifically,

x̂D[i] =
m∑
j=1

wjx[i− j] (5.6)

where m is the prediction order and {wj}, j ∈ [1,m] are the prediction

weights. The optimal weights for stationary signals are given by solving

the Yule-Walker equations. A simple case is when m = w1 = 1 which is

called first-order prediction or delta modulation. In Fig. 5.2, the probability

mass function (PMF) of the sample values of an ECG signal2 and its first-
2We use 10 seconds of lead-I ECG of record 3 from T-Wave Alternans Challenge

Database which includes 12-lead ECG records sampled at 500 Hz with 16-bit resolution
over a ±32 mV range [89]. The signal amplitude is normalized to one.
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Figure 5.2: The probability mass function (PMF) of the sample values of an ECG
signal and its first order prediction (first-difference). Note that the dynamic range
and variance of the first difference are much less than the signal itself. The variance
of an ECG signal and its first difference are 3.2× 10−2 and 8.2× 10−4 respectively.

order prediction are compared. The variance and dynamic range of the first

difference are much smaller than the original ECG signal and therefore it

can be represented with fewer bits.

The total required number of bits may be reduced further using adaptive

schemes. In adaptive differential pulse code modulation (ADPCM), for

instance, the quantization step is adaptively adjusted for each sample. For

instance, in [90] the step size is multiplied by a time-invariant function of

the magnitude of the codeword corresponding to the previous sample.

5.2.2 DPCM with Adaptive Sampling Time

Consider the DPCM system with variable sampling times. A simple case

is when the last sample is used to produce an estimate for the next sam-

ple. This approach is illustrated in Fig. 5.3. In this figure, the delay

element D reproduces x̂D[n] = xD[n − 1] as the estimated value for the

next sample. There are several approaches to control the sampling times.
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Figure 5.3: Variable sampling time with first-order prediction, also known as delta
modulation.

A straightforward method is to observe one of the derivatives of the signal

(e.g. an approximate of the first derivative such as ω[n] = dQ[n]/T [n− 1])

and update the sampling times adaptively [53]. More explicitly, we can set

T [i] = T [i− 1]− εΨ(ω1,ω2)(ω[i]), (5.7)

B[n] = B, ∀n (5.8)

where ε is a constant time and

Ψ(ω1,ω2)(ω) =

+1 ω > ω2

−1, ω < ω1

0, otherwise
(5.9)

is defined for the given thresholds ω1 and ω2. The sampling time T [i] is

also hard-limited to maintain the result in the interval [Tmin, Tmax]. The

advantage is that the time stamps T [n] can be recovered locally at the
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Figure 5.4: First difference of an ECG signal. Both the variance and mean are small,
but more significant peaks appear occasionally.

decoder from the sample value, hence they should not be transmitted or

preserved. In the sequel we keep using this nonuniform sampling time

approach but suggest different schemes to extend the nonuniformity to the

bit depth of the samples.

5.2.3 In-Message Signaling of the Bit Depths

Assume that the set of differential symbols dQ[n] are represented (for stor-

age or communication) in the form of a bit stream. Obviously, if the symbol

lengths are nonuniform, then some form of punctuation is required to sepa-

rate two different symbols. In this regard, one solution is to stuff the length

of each symbol before the actual symbol in form of a fixed-size header seg-

ment. In this way, every symbol is decoded by first looking at the length

segment, and then the required number of bits are accumulated. The actual

required number of bits per symbol is given by

b[n] =

⌈
log2

(⌊ |dQ[n]|
∆

⌋
+ 1

)⌉
+ 1, (5.10)

where d.e and b.c are ceiling and floor operators. One bit is allocated to

represent the sign and the rest is for the amplitude. Fig. 5.5 illustrates this
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dQ[i]b[i] b[i+1] b[i+2]dQ[i+1] dQ[i+2]

b[i] b[i+1] b[i+2]

Figure 5.5: In-message signaling of variable bit depths

approach.

5.2.4 GNS for Band-limited Signals

A key point about band-limited signals is that the maximum variation of

such signals at each time is upper bounded. This can help to allocate in

advance the required number of bits for quantization of the next sample.

A band-limited signal can either be of finite power, which refers to a

form of periodic function, or finite energy, that belongs to transient signals.

These bounds are investigated in [91] and [92] and are reiterated here for

clarity. Assume a periodic band-limited signal with period T0 whose power

spectral density is zero for |f | > W = L/T0. It can be represented by a

Fourier series as

x(t) =
L∑

k=−L
cke

j2πkt/T0 , (5.11)

where {ck}, k ∈ [−L,L] are the Fourier coefficients. Using the Cauchy-

Schwarz inequality and Parseval’s Theorem the bound on x(t) and its first

derivative x′(t) are given by

lCl|x(t)| ≤
√
P (2L+ 1), (5.12)

|x′(t)| ≤ 2π

T0

√
PL(L+ 1)(2L+ 1)

3
, (5.13)

where P =
∑L

k=−L |ck|
2 is the signal’s average power. We can also calculate

the signal’s variation within a given time horizon τ using the signal’s Fourier

series and the shift property as follows

g(τ) = x(t+ τ)− x(t) =
L∑

k=−L
ck(e

j2kπτ/T0 − 1)ej2kπt/T0 . (5.14)
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Applying the Cauchy-Schwarz inequality and Parseval’s theorem yields

|g(τ)|2 ≤
L∑

k=−L
|ck|2 · 4

L∑
k=−L

sin2(
kπτ

T0

), (5.15)

and noting the fact that sin2(φ) ≤ φ2 we conclude that

|g(τ)| ≤ 2πτ

T0

√
PL(L+ 1)(2L+ 1)

3
= G(τ), (5.16)

where G(τ) is the peak absolute variation of the signal in time τ . Alter-

natively, for a band-limited signal with finite energy E =
∫ +∞
−∞ |x(t)|2dt,

we can establish the following bounds for the signal, its derivative, and the

peak variation for a given time horizon τ [91]

|x(t)| ≤
√

2EW, (5.17)

|x′(t)| ≤ 2πW

√
2EW

3
, (5.18)

|g(τ)| ≤
√
E

(
4W − 2

πτ
sin(2πWτ)

)
= G(τ). (5.19)

Assume that the next sampling time T [i] is chosen, for example by (5.7).

The range of the next sample can therefore be fixed at twice the above

bounds to account for both negative and positive variations around the

current sample value. After sampling, the difference is divided by a fix

quantization step size ∆ in order to produce the corresponding codeword.

We can fix the bit depth of the next sample by

B[i+ 1] = fB(T [i]) =

⌈
log2

(⌊
G(T [i])

∆

⌋
+ 1

)⌉
+ 1. (5.20)

In this expression, one bit is reserved for the sign of the difference and

another bit inside the log2 function is to take into account zero value. Un-

fortunately, discussion on whether these bounds are tight enough to work

effectively is signal-dependent. Indeed, the spectral properties of the signal

and how its energy is distributed throughout the spectrum are the influen-

tial factor.
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In order to benefit from the above bounds, some form of prior knowl-

edge of the signal such as the period, average power, or energy is necessary

depending on the signal’s type. For instance, the ECG signal can be ap-

proximated by a periodic signal. However, the sampling process might be

initiated when no prior information is available. In this case, one can ini-

tialize the bit depth from a fixed value large enough to cover the dynamic

range of the signal. The required statistics can be collected dynamically.

For example, the QRS part of a typical ECG signal that corresponds to a

significant peak can be detected by level-crossing detection with appropriate

thresholding. The time durations between the peaks can then approximate

the signal’s period. After that, one can approximate and update the re-

quired bit depth of the succeeding samples more accurately by using the

statistics harvested from the signal.

Another approach is to bound the signal’s sample at a time in the future

only by its current first few derivatives. Consider the Taylor series expansion

of x(t+ τ) around t

x(t+ τ) = x(t) +
x′(t)

1!
τ + ...+

x(k)(t)

k!
τ k + ..., (5.21)

where x(k)(t) is the kth derivative of x(t). If we use the first k terms for

approximation, then the truncation error Rk(t+ τ) is bounded by

Rk(t+ τ) ≤ Mk+1

(k + 1)!
τ k+1, (5.22)

where

Mk+1 = max
ζ∈[t,t+τ ]

x(k+1)(ζ), (5.23)

is the peak value of the (k+1)th derivative in the assumed interval. There-

fore, new bounds on maximum variation of the signal can be established by

truncating the series up to any term. For instance, the following bound is

given when the first two terms are used:

|x(t+ τ)− x(t)| ≤ |x′(t)τ +
M2τ

2

2
| = G(τ). (5.24)

The peak value of the derivatives can either be approximated locally simi-

larly to (5.13) and (5.18) for finite power and energy signals respectively, or
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Table 5.1: Comparison of the simulation results

Sampling time bit depth Samples BPS Total bits Reconstruction MSE

PCM Uniform Uniform 5000 12 60000 3.1886× 10−7

Down-sampled PCM Uniform Uniform 1000 12 12000 3.0336× 10−4

First-order DPCM Uniform Uniform 5000 10 50000 4.4984× 10−7

Adaptive Sampling Time PCM [53] Nonuniform Uniform 966 12 11592 2.1409× 10−3

Adaptive Sampling Time

First-order DPCM
Nonuniform Uniform 965 11 10615 4.7972× 10−3

In-Message Signaling Nonuniform Nonuniform 965 9.10 8784 4.7972× 10−3

Generalized Nonuniform Sampling

(Band-limited)
Nonuniform Nonuniform 965 8.89 8576 4.7972× 10−3

Generalized Nonuniform Sampling

(VLC)
Nonuniform Nonuniform 965 7.51 7243 4.7972× 10−3

assumed known a priori when dealing with signals such as an ECG. In the

latter case, global maximum values can be set based on available datasets

of realistic signals. Based on the sampling time and using (5.20), the ap-

propriate number of bits can be allocated for the next sample. A heuristic

approach that has been applied and will be discussed in our simulations is

to choose the value of M2 such that the minimum total number of bits is

achieved.

5.2.5 GNS with Variable Length Coding

One solution to reduce the total number of bits is to allocate shorter code-

words to more probable symbols and longer codewords to rare symbols.

When differential encoding is used, the mean and variance of the differen-

tial signal is usually small and varies depending on the performance of the

prediction. For example, as illustrated in Fig. 5.4, the first difference of an

ECG signal contains occasional peaks that increase the required dynamic

range of the quantizer significantly. Since the peaks are less likely, a vari-

able length coding (VLC) scheme such as Huffman coding can reduce the

average number of bits per symbol and hence the total required number of

bits. In this case, the sampling times are selected, for example similarly to

(5.7) but, instead of using a fixed length, a dictionary is agreed between the

encoder and decoder that has symbols with variable lengths. More specif-

ically, the function B[n] = fB(x[n]) has a distinct value for each sample
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Figure 5.6: The actual and the reconstructed waveforms corresponding to the down-
sampled (by a factor of 5) signal (top). The peaks in the reconstructed signal are
shrunk as a consequence of aliasing. The Fourier transform indicates that the signal
bandwidth is approximately 50 Hz (bottom).

which is equal to the length of the corresponding codeword in a predefined

dictionary. This also resolves the punctuation problem when dealing with

nonuniform bit depths since the prefix codes are inherently separable.

5.3 Simulation Results and Discussion

In this section we evaluate the performance of the presented schemes using

a test ECG signal, originally sampled uniformly at a sampling frequency of
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500 Hz with a resolution of 16 bits-per-sample, and compare the results. To

reduce the number of samples, the first and most naive approach is down-

sampling. Based on the spectrum of the signal presented in Fig. 5.6, the

signal is band-limited with W = 50 Hz. Therefore, we down-sample the

signal by a factor of 5 and reduce the sampling frequency to 100 Hz. As

illustrated in the figure, the peaks in the reconstructed signal are shrunk as

a consequence of aliasing effects caused by minor frequencies above 50 Hz.

In Table 5.1 the outcome of different simulations on the test signal are

presented, where a PCM signal (with uniform sampling time and bit depth)

is compared with the signal reconstructed using other approaches. The first

column identifies the specific sampling schemes that have been applied. The

last four rows, which are distinguished using boldface letters, are the present

work’s contributions. Assume that the total number of samples is J and

the reconstructed signal is xR. The reconstruction distortion in terms of

mean square error (MSE) is

MSE =
1

J

J∑
j=1

(x[j]− xR[j])2 (5.25)

which is given for each scheme. The first row corresponds to a conventional

PCM system with uniform sampling time equal to the Nyquist rate and a

uniform bit depth proportional to the signal’s dynamic range. Note that the

reconstruction MSE is due to quantization error in this case. The second

row represents the same signal but down-sampled by a factor of 5. While

a reasonable MSE is achieved and the total number of bits is reduced by

up to 80%, as we saw earlier aliasing effects appear and the peaks shrink

significantly. When DPCM is used, the required bit depth is reduced from

12 to 10 due to a reduction in the signal’s dynamic range which saves 17%

of the total number of bits. Using an adaptive sampling time with uniform

bit depth an 81% reduction in the total required number of bits is achieved

compared to the PCM system. In order to calculate the MSE for the signal

with nonuniform sampling time, a re-sampled version uniformly sampled

at 1/Ts is generated in which the sequential samples are connected via a

line. Explicitly, when T [i] > Ts a linear regression is applied in order to



5.3 Simulation Results and Discussion 91

approximate the sample values between x[i] and x[i + 1]. This technique

had also been applied to reconstruct from the down-sampled signal. The

simulation parameters are Tmin = 2Ts, Tmax = 6Ts and ε = 2Ts, with

Ts = 1/500.

With a nonuniform sampling time and DPCM encoding, the total bit

reduction approaches 82%. However, we can observe that the two schemes

based on VLC and band-limited prediction can offer an 88% and 84% re-

duction respectively, compared to the conventional PCM system. While

the reconstruction distortion is still negligible, this reduction is equal to

38% and 17%, compared to the case where only the sampling times are

nonuniform, which is a significant improvement. A difference in the MSE

of the nonuniform sampling time scheme with uniform and nonuniform bit

depths can be observed in the table. This is because the quantized version

of the symbols is directly used for decoding in the uniform approach. On

the other hand, the nonuniform approaches use quantized versions of the

differences. Hence, the amount of quantization error is twice on average.

Also note that, for a nonuniform bit depth, all MSE values are equal since

all use the same quantized values, except the symbols are represented with

a different number of bits. Since b[n] ≤ B[n], ∀n, no distortion caused by

nonuniformity of the bit depths is introduced regardless of the bit allocation

scheme.

To predict the maximum absolute variations for a given time horizon,

we exploited the two inequalities (5.16) and (5.24). However, (5.16) is not a

tight bound for the ECG signal and the total number of bits was not small

enough. Conversely, using (5.24) and approximating the first derivative of

the signal as

x′[n] ≈ ω[n] = dQ[n]/T [n− 1], (5.26)

the overall reduction in the number of bits per sample is overwhelming.

The bit depth of the first sample should be fixed and known at both sides

to initiate the algorithm. The main concern in the band-limited prediction-

based approach is that the actual number of required bits represented by

b[n] should never exceed the allocated bit depths, B[n]. In case of such

event, not only is the symbol at which this occurs decoded in error, but
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Figure 5.7: The reconstructed signal with nonuniform sampling time and bit depth
on top. Variations of bit depth and sampling times are depicted in the middle and
bottom figures.
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also the rest of the symbols are corrupted consequently, since the wrong

bits will be selected from the bit-stream. Assume that a fixed value is

selected for M2. To prevent length overflow, this parameter should be large

enough. This however, ends up with all symbols becoming significantly

longer, which is not desirable. To solve this problem, we allocate one more

bit to all symbols, that maintains the state of each symbol in terms of the

length-overflow event. At the encoder side, if a length-overflow occurs at a

symbol, the bit depth corresponding to that symbol is overwritten with a

fixed value equal to the maximum possible bit depth. At the same time,

the length overflow indicator bit is set in order to let the decoder know to

correctly overwrite the corresponding bit depth to its maximum. Selecting

an appropriate value for M2 can lead to the minimum total number of bits

since very small M2 values increase the total number of bits just like very

large values. A too small M2 will cause a lot of length overflow events, and

for each event the allocated bit depth is overwritten by the maximum bit

depth.

A snapshot of the test ECG signal along with the reconstructed signal

xR, the variations of bit depth and the sampling-time functions, B[n] =

fB and T [n] = fT , respectively, are pictured in Fig. 5.7. Note that the

sampling times and bit depths are first reconstructed locally at the decoder

and then the estimated sample is interpolated. The smaller bit depths are

associated with smaller changes between the two given sequential samples

which can be represented with fewer bits. It can be verified from Fig. 5.3

that B[n] ≥ b[n], ∀n, so no loss of information can occur due to an overflow.

5.4 Conclusion

With the objective of reducing the total number of bits to reconstruct

a continuous band-limited signal, we investigated and simulated different

schemes. Proposing a new sampling architecture, we showed that it can

represent a conventional DPCM system when both sampling times and bit

depths are fixed and uniform, and the total number of bits per sample is re-

duced due to a decrease in the signal’s dynamic range. In the next steps, we
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used nonuniform sampling times with uniform and nonuniform bit depths

to further reduce the number of samples, and bits per sample respectively.

Only 12% of the total raw bits in a normal PCM system are required in the

generalized non-uniform scheme, according to the simulations. Only add

and multiply operations, linear with the order of prediction, are required

for both sampling and reconstruction. This is much lower than the compu-

tational complexity of the existing techniques used in compressive sensing,

that rely on solving an optimization problem, or many other known com-

pression schemes.



Chapter 6

Partial Packet Recovery for

Efficient Transmission

6.1 Introduction

Packet errors degrade the performance of wireless communication systems

in terms of energy efficiency and throughput. In a wireless packet-based sys-

tem a packet is lost or erased due to errors, when the packet checksums are

not consistent with the payload. When this happens, normally, the receiver

requests a re-transmission by signaling a negative acknowledgment message

to the transmitting node. An extra amount of energy and bandwidth is

required for re-transmissions. Nonetheless, they are also often corrupted by

errors. Therefore, error correction that leverages an additional protective

or reconstructive procedure per packet is used.

Obviously, the overall efficiency of the transmission protocol is governed

by how and to what extent random errors can be corrected. Traditionally,

this issue is addressed either proactively, i.e. by forward error correction

(FEC) or reactively by automatic repeat request (ARQ). Besides their ad-

vantages, there are some limitations associated with each of these strate-

gies. For example, FEC introduces a constant overhead and has a limited

correction capability that results in the threshold effect [93]. Also, ARQ

performs poorly in severe channel conditions and cannot achieve high relia-

95
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bility. Hence, FEC and ARQ have been combined to produce more flexible

methods such as hybrid ARQ and rateless coding. Another viable technique

that has been developed to improve resource utilization in wireless networks

is random linear coding (RLC) [94, 95], which is the baseline technique in

this chapter. When RLC is performed across packets, blocks of message

packets are combined randomly to construct new coded packets to repre-

sent a rateless code. A receiver requires enough error-free coded packets to

reconstruct the original packets. However, there are usually several packets

that are partially corrupted by channel errors and are discarded. This can

constitute typically up to 20% of total packets depending on the deployment

[75]. Normally, all of the packets are encoded by an error detection code

such as the cyclic redundancy check (CRC). In this way, upon reception of a

packet at the receiver, the integrity of the packet can be verified by looking

at the check sequence. Packets with inconsistent checksums contain bit er-

rors and are referred to as partial packets, so the receiver can collect all the

packets and classify them as either partial or valid. Certainly, discarding

partial packets is sub-optimum since some of their segments might actually

be error-free. It is pointed out in [96] that up to 95% of the segments in a

partially corrupted packet can be correct.

In this chapter we address partial packet recovery (PPR) in random lin-

ear coded systems. In contrast to hybrid-ARQ approaches, PPR schemes

attempt to repair partial packets based on the existing knowledge at the re-

ceiver instead of requesting more redundancy from the transmitter (though

there is a form of feedback in acknowledgment messages). This can alleviate

computational complexity and offer better throughput and energy efficiency

at the transmitter nodes by reducing the total number of transmitted pack-

ets per message unit. It is shown [97] that, with one or more sources, linear

coding is enough to achieve the upper performance bound in multicast net-

works. However, linear codes are not sufficient for arbitrary networks [98].

From this point of view, PPR can be interpreted as a nonlinear scheme that

complements RLC.

Although RLC is a hybrid coding/ARQ technique it has architectural

and functional differences with H-ARQ. As is pointed out in [95], H-ARQ
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utilizes the soft information combined in previous transmissions of a packet

through different puncturing of a channel code applied to the same packet.

Hence, it would face the same challenges of ARQ in broadcast settings.

Most notably, retransmission of a packet only benefits the receivers missing

that packet [95]. However, RLC exploits coding across multiple packets so

a larger number of receivers can benefit by transmission of a RLC packet.

It also benefits from the acknowledgment messages more efficiently by in-

cluding the number of missing/collected packets rather than simply stating

successful reception of a packet. The performance of RLC is compared with

chase-combining H-ARQ in [99]. In [100], raptor codes are compared with

RLC for multimedia broadcast/multicast service. An obvious advantage of

RLC over raptor codes is re-coding and the subsequent performance gains.

It is shown that RLC offers up to 5.9 times the gain in throughput and

5.5 times the reduction in the overall delay compared to the state-of-the-

art H-ARQ mechanism used in WiMAX. A similar comparison is made

in [101], assuming single and multihop transmissions, that advocates the

advantage of RLC over H-ARQ. We will discuss in the next sections ap-

plications where such properties are of interest. Our key assumption for

designing this scheme is that channel errors constitute a sparse process, i.e,

we assume that the number of channel errors is much less than the total

size of the packet and the number of partial packets is relatively smaller

than the number of correct ones. This also involves burst errors as long as

the number of correct packets is higher than the number of partial packets.

Using algebraic properties of the coding matrix, the receiver forms a special

sensing matrix that can cancel out the message data and provide compres-

sive sensing (CS) of the errors. We use concepts from the Coding theory,

Markov chain theory, compressive sensing and optimization to model the

system. Since packet elements are selected from a finite field, a special

case of a compressive sensing problem is formulated that can be solved

by algebraic coding theory with less complexity. Explicitly, as opposed

to the normal methodology in the CS frameworks, we show theoretically

and by simulation that the complexity of solving the original l0 optimiza-

tion problem is less than that of the convex relaxed version. The problem
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of compressive sensing over a finite alphabet is addressed in [102]. Using

an algebraic framework, it is shown that the complexity of finite-field CS

is reduced such that the original l0 minimization can be solved in polyno-

mial time and with less resources than with the convex relaxation approach.

Explicitly, while the compressive sensing of a real-valued m-sparse signal re-

quires O(m log(n/m)) measurements, the counterpart finite alphabet prob-

lem with alphabet size q requires Θ(mdlogq ne) measurements, where n is

the length of the original vector. Consequently, one can solve the exact

l0 minimization problem in polynomial time instead of performing convex

relaxation and solving the l1 minimization. Also, unlike in conventional

CS problems where the measurements are in form of a vector, in our PPR

problem they are in matrix form. We provide an efficient solution that

handles this property in a tractable manner and demonstrate its perfor-

mance by simulation. We propose to exploit partial packets by solving a

set of standard sparse recovery (SR) problems. An error correction scheme

is proposed in [103] which is based on sparse recovery of errors by solving

a linear program at the receiver. We apply this idea to an RLC framework

to recover partial packets and boost the performance of RLC with much

fewer transmitted packets. Using concepts from coding theory, we establish

a relationship between the RLC encoding matrix and the sensing matrix

at the receiver. It is shown that the performance of RLC can be remark-

ably improved, which can significantly reduce the average required number

of encoded packets. Therefore, it can improve energy and bandwidth effi-

ciency at the transmit node. The PPR-enabled receiver is modeled by an

absorbing Markov chain and the expected number of packets for successful

decoding is analytically derived. Markov chain models are the main tools

to model and analyze these systems and have been used in CDMA systems

with ARQ [104] and delay [105, 106, 107, 108] and throughput [95, 108]

analysis in RLC systems. The advantages of our proposed scheme can be

enumerated as follows:

• No cross-layer information or bit-level soft information (i.e. the corre-

sponding reliability measure of the decoded symbols) is required. In
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the traditional layered approach exchange of cross-layer information is

prohibited. Hence, our scheme can be implemented in systems based

on layered design while operating completely transparently from other

layers1.

• No form of checksum, preamble, or postamble is required for PPR.

The algorithm is completely implemented at the receiver side, relies on

data processing techniques, and performs transparently to the trans-

mitter. Therefore, no loss of bandwidth or extra energy consumption

at the transmitter node is imposed. This can be of major interest in

several applications as will be covered in this chapter.

• Nevertheless, any desired tradeoff between the computational com-

plexity at the receiver and the energy and bandwidth efficiency at the

transmitter can be achieved. This can be done simply by changing a

few design parameters such as the FEC coding rate at the transmitter

and the worst-case channel error probability under which reliability

should be achieved.

The proposed scheme enables point-to-point gain in terms of transmission

efficiency in RLC systems, significantly improves the transmission efficiency

in multicast, and is implemented at the receiver side only (no change at the

transmitter).

6.1.1 Organization and Notations

This chapter is organized as follows. First a preliminary introduction to

RLC, CS and SR is presented in Section 6.2 along with the system model.

In Section 6.3 we explain our proposed scheme and discuss its performance.

The characteristics of the PPR problem and the corresponding error recov-

ery algorithms are considered and elaborated in Section 6.4. The system is

modeled by a Markov chain and the number of packets required for decod-

ing of RLC and solving the PPR problem are also discussed. Section 6.5

1RLC is traditionally performed at the network layer (so is the proposed PPR
scheme).
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presents simulation results where the performance of the proposed scheme is

compared with conventional RLC and the accuracy of the derived Markov

chain model is verified. Finally, concluding remarks are given in Section

6.6.

We use boldface capital letters for matrices and boldface lower case

letters for vectors and distinguish column vectors from row vectors by using

a prime (′) sign.

6.2 Preliminaries and System Model

In this section we present the system model and briefly explain the concept

of RLC and the terminology that is used in the CS literature. We assume

a packet-based wireless system where the transmit and receive nodes can

communicate packets of length L. This framework applies to both point-to-

point and multicast channels. We will quantify our scheme in both point-

to-point and multicast channels in the simulations. Packet elements are

referred to as symbols and are drawn from a Galois Field of order q denoted

by GF (q). Hence, each symbol can be represented by log2 q bits and all

operations are performed in GF (q).

In typical wireless systems, FEC is performed at the physical layer,

where the packet is divided into several segments and each segment is en-

coded separately by the channel code. In a partial packet, there may exist

several correct segments that can actually be used to recover the whole

packet. Note that our scheme is performed independently above the physi-

cal layer (FEC) and exploits all packets (valid or partially corrupted) and

all packet segments for recovery.

6.2.1 Random Linear Coding

We first consider a point-to-point system and describe the procedures at

both the transmitter and receiver as depicted in Fig. 6.1. Then we assume

a multicast system where a transmitter sends coded packets to more than

one receiver. In both cases we assume that two-way communications take
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Figure 6.1: Block diagram of the RLC system with PPR.

place based on time division duplexing. Feedback channels are necessary

for acknowledgment messages where the receiver(s) can signal the number

of coded packets they have collected. The transmitter node is composed of

an RLC encoder and a wireless transmitter that caries out FEC encoding,

modulation, and other PHY tasks. The receiver node is equipped with a

wireless receiver and a conventional RLC decoder plus a PPR block that

recovers the partially corrupted RLC packets. The transmitter can perform

RLC on the groups of G packets which is commonly referred to as the

generation size of the rateless code. At each time instance t = i of this

procedure, G packets of length L are combined using a random coding

vector ci containing G random elements (ci,1, ..., ci,G) to form a new packet

of the same length, where ci,j ∈ GF (q),∀i, j. Denoting the coded packet

by yi, the encoding can be represented by

yi(1×L) = ci(1×G)U(G×L), (6.1)

where the vector and matrix sizes are given in the parenthesis and the

message block is denoted by

U =


u1

u2
...

uG

 , (6.2)

in which ui ∀i ∈ [1, G] is the row-vector representation of the ith message

packet. For convenience, we can denote the process to generate T encoded
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packets in the matrix form:

Y(T×L) = C(T×G)U(G×L). (6.3)

where

Y =


y1

y2
...

yT

 , C =


c1

c2
...

cT

 . (6.4)

For simplicity, we assume GF (2) throughout this chapter, i.e., q = 2 and

all coding vectors and operations are in the binary field. Ideally, the el-

ements ci,j ∈ [0, 1] are uniformly independent and identically distributed

(iid). They can however be generated by a pseudo random generator us-

ing a specific seed value that can be conveyed to the receiver side in the

packet headers for local recovery and synchronization [99]. Therefore, we

assume that both the transmitter and receiver have perfect knowledge of

the encoding vectors {ci}. The encoded packets are then transmitted on

a wireless channel. Depending on the channel quality, some parts of the

received packets are corrupted by channel errors. This can be represented

by

R = Y + E (6.5)

where R is the matrix form of the received packets with rows ri = (ri,1, ..., ri,L)

and E is the error matrix in which the rows ei = (ei,1, ..., ei,L) represent the

bit errors within each packet. Specifically, we have

ei,j =

{
1, if the jth bit of the ith packet is flipped
0, otherwise.

(6.6)

The receiver can recover the message block U only when it receives

sufficient error-free packets. The decoding problem is a system of linear

equations and can be solved only when the equations are linearly indepen-

dent. Hence, at least G linearly independent and error-free packets are

required to recover U. Typically, when the coding vectors are generated

randomly as mentioned earlier, it suffices to receive slightly more than G

correct packets to make sure with high probability that G linearly inde-

pendent packets can be found among all the correct packets. When the
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number of linearly independent and correct packets is greater than or equal

to the generation size, then the receiver selects G packets among them ran-

domly and performs RLC decoding to obtain the original message block U

as follows:

Û = C−1
c Rc, (6.7)

where Cc and Rc are the submatrices of C and R that are constructed by

removing the rows corresponding to the partial packets. A packet that is

linearly independent of the previous packets is called an innovative packet.

An acknowledgment message is sent from the receiver at the end of each

generation indicating the number of collected innovative packets. The re-

ceiver can calculate this number, for instant, by checking the rank of the

coding matrix C. Then the required number of coded packets is sent from

the transmitter, and this process continues until the generation block is

delivered to the receiver. Similarly, this algorithm can be deployed in a

multicast setup where one transmitter communicates with M receivers, ex-

cept that the transmitter should wait for all acknowledgment messages after

sending each generation and then send a number of coded packets equal to

the maximum number of required packets missing at different receivers. We

refer to this model as the baseline system in the sequel, and design a PPR

scheme to improve its performance. For the sake of simplicity we omit er-

rors in the acknowledgment messages and neglect packet erasures due to

misdetection and channel errors on the packet header. Nonetheless, it is a

straightforward task to extend the results to cover the above situations.

6.2.2 Compressive Sensing and Sparse Recovery

In many practical situations, it is required to infer the actual values of

some quantities by observing a set of measurements that are in a reduced

subspace. This means that the dimensionality of the measurements is less

than that of the original signal. In a linear setting, such cases can be mod-

eled by a set of under-determined equations where the number of variables

is higher than the number of equations. Explicitly, given x′ the column

vector representation of the original signal and A the sensing matrix, the
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measurements y′ can be obtained from

y′ = Ax′ (6.8)

where the number of rows of A is less than the number of columns. Con-

sequently, the size of y′ is less than that of x′. The inverse problem, i.e.

restoring the original signal x′ from y′, can generally have an infinite num-

ber of solutions. However, when the original signal x′ is sparse, there are

efficient algorithms that can reliably recover the signal provided that the

number of measurements is enough2 considering the sparsity of the signal

and the dimensionality of the measurements. This is a standard SR problem

that typically appears in CS [88].

6.3 The Proposed Scheme

In this section we present our scheme that takes advantage of compres-

sive sensing to recover partial packets. We design a systematic RLC which

means that the first G packets are identical to the original packets. There

are some advantages in using systematic RLC that can facilitate the pro-

cedure as well. For instance, using a systematic code, when the channel

quality is desirable the packets can be correctly received with high prob-

ability. Hence, the receiver does not need to wait to receive enough inde-

pendent packets. In addition, PPR can improve performance of the system

in two ways. If all of the systematic packets are among the recovered par-

tial packets, then the generation block is successfully received. Otherwise,

if less than G linearly independent packets were originally received, the

PPR procedure can add new innovative packets to eliminate the need for

transmission of new packets.

Assuming that T > G packets are sent, the coding matrix corresponding

to systematic RLC is in the form

C(T×G) =

[
I(G×G)

P((T−G)×G)

]
, (6.9)

2The required number of measurements depends on the sensing matrix. It is known
for matrices possessing the restricted isometry property or the minimum coherence con-
dition [109].
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where the horizontal dashed line represents matrix concatenation along the

columns, I is the identity matrix, submatrix P is in the form

P =


p1

p2

pT−G

 , (6.10)

and pi = (pi,1, ..., pi,G), ∀i ∈ [1, (T −G)] is a random binary row vector that

constitutes the ith row of P. The corresponding coded packets are therefore

given by

yi =

{
ui, ∀i ∈ [1, G]

pi−GU ∀i ∈ [G+ 1, T ]
(6.11)

Suppose that T packets are CRC coded and transmitted on a noisy

wireless channel. Upon reception, first the packets are categorized based on

their check sequences as correct or partial. After each round of transmis-

sion, an acknowledgment message is sent to the transmitter containing the

number of collected innovative packets. If G packets are already collected,

then no more coded packets are sent. Otherwise, the required number of

coded packets missing from G are transmitted until successful reception of

the generation block. The transmitter can then proceed to the next mes-

sage block. Assume that for a given generation Tc ≤ T packets are received

correctly. Then there are two possible situations:

1. Tc < G or Tc ≥ G, but less than G packets are linearly independent.

RLC decoding is not performed but error recovery can be applied.

PPR can recover some of the partial packets and increase the proba-

bility of the receiver collecting G independent packets.

2. Tc ≥ G and at least G packets are linearly independent.

G correct packets are randomly selected and then the generation block

U is obtained by the RLC decoding procedure in (6.7).

It can be seen that, while the RLC approach can only reconstruct the

message when Tc ≥ G (case 2), the receiver can try error recovery in the first

two situations and decode the generation block. Note that, as we mentioned

earlier, PPR can either directly lead to the recovery of the original message
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or it can facilitate the operation of the RLC decoding by increasing the

total number of available valid packets.

Since this procedure is usually performed after FEC, we assume that

the partial packets are mostly correct with a few symbols in error. In other

words, the errors are sparsely distributed in random positions in the packets.

If we assume that the channel is time invariant and errors are identically

distributed within the packets, then we can also conclude that the errors can

be assumed sparse in a fixed location across different packets (i.e. sparsity

in the matrix implies sparsity across the columns too). We therefore assume

that the columns of E denoted by e′1, ..., e′L are also sparse.

Here we design matrix A such that

AC = 0, (6.12)

where 0 is an all-zero matrix. This means that C is a basis for the null

space of A. From the algebraic coding theory, one solution is3

A((T−G)×T ) =

[
−P I((T−G)×(T−G))

]
, (6.13)

where the vertical dashed line represents matrix concatenation alongside

the rows. Note that matrix A is perfectly known at the receiver from the

knowledge of C. Defining

S = AR, (6.14)

it follows from (6.3) and (6.12) that

S = A(CU + E) = AE. (6.15)

In other words, the product AE and the known matrix A are given and

the unknown matrix E is to be determined. The above equation and the

procedure to solve it (i.e. error recovery) constitute the core of our PPR

scheme. Therefore, we elaborate more on this issue in the sequel to provide

a better insight. First, about the unknown matrix E we notice that

• Its elements are nonnegative integer values.

3Note that −P = P in GF (2)
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• The matrix is sparse.

The former observation implies that the problem at hand is naturally an

integer program whose complexity is non-polynomial. Such problems are

more difficult than the equivalent real-valued linear programs. The conven-

tional approach to solve an integer linear program is to relax the integer

constraint and solve it assuming real variables. To transform the results

back to a feasible set, they are rounded-off to the nearest integer. However,

we may facilitate the error recovery by taking into the account our latter

observation which is based on the fact that channel errors do not occur very

often and the number of channel errors is normally much smaller than the

packet length. Therefore, we can model the problem as a CS of the sparse

matrix E using the sensing matrix A. In contrast to most SR problems

tackled in the CS community where a sparse vector is recovered, here we

deal with a two-dimensional sparse signal and the variables are in the form

of matrices. It can however be seen as a set of L independent standard SR

problems to recover different columns of E. Hence, it can be formulated as

follows:

ê′i = arg min ‖x′‖0 (6.16)

subject to Ax′ = s′i, i = 1, . . . , L.

where s′i is the ith column of S and ê′i is the ith recovered error column.

Since the l0 norm in (6.16) is not convex, the problem is NP-hard in general.

Nevertheless, from the CS literature we know that minimization can be

performed over the l1 norm which is a convex function. This approach will

be covered in more detail in the next section.

In the rest of this section we focus on the l0 minimization problem in

(6.16), applying concepts from algebraic coding theory. This is due to the

close relationship between the sparse recovery of signals in finite fields and

the problem of decoding of noisy linear codewords known as syndrome de-

coding. Explicitly, (6.16) can be solved using syndrome decoding in which

A is the parity check matrix and each column of S is an independent syn-

drome.
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Assume that the column vectors {e′i} are m-sparse. Since there are Tc

error-free packets, the corresponding rows of all column vectors {e′i} are

equal to zero. The total number of m-sparse candidate solutions for each

column which is equivalent to the size of the syndrome decoding table is

given by
m∑
k=1

(
T − Tc
k

)
.

We denote the recovered error matrix by Ê which is the corresponding

set of coset leaders4 required for recovery of the partial packets. After the

reconstruction of Ê, the denoised packets can be estimated by performing

the modulo-two operation of adding the error matrix to the received packet

Matrix R

Ŷ = R + Ê. (6.17)

At this stage, the receiver checks again if the packets are decodable. Ex-

plicitly, it first looks at the first G packets. If their errors are resolved,

regardless of the status of the other packets it will send an acknowledgment

message to the transmitter. Otherwise, it counts the number of correct

packets again and compares it with G. If it is larger than G, the receiver

looks for independent packets by randomly building the submatrix Cc which

is the corresponding coding matrix of the correct packets and checks if it is

invertible. This process can be repeated if the number of correct packets is

large enough. The message block U is recovered if an independent set can

be found by solving (6.7). Otherwise the receiver waits for more packets

from the transmitter. This process is repeated for the succeeding packets

as well, until the successful decoding of the message block.

6.4 Error Recovery

We elaborate more on different error recovery algorithms based on the ex-

act l0 minimization problem (i.e. the integer program) and the equivalent

convex optimization approaches.

4In syndrome decoding, a coset is defined as the set of all error patterns that share
a common syndrome. A coset leader is a word of minimum Hamming weight among all
elements of a coset.
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
0 · · · 0 0 0 0 · · · 0
0 0 1 · · · 1 0 · · · 0
0 · · · 0 0 0 0 · · · 0
0 · · · 0 1 · · · 1 0 0
0 · · · 0 0 0 0 · · · 0




1 0 · · · 0 1 0 · · · 0
0 · · · 0 0 0 0 · · · 0
0 · · · 0 1 0 · · · 0 1
0 1 0 · · · 0 · · · 0 1
0 · · · 0 1 1 0 · · · 0


Figure 6.2: Error matrix corresponding to bursty (left) and homogeneous (right)
error distributions. Partial packets are distinguished by a light gray shade and bit
errors with a dark shade.

6.4.1 Sparse Solutions of the Integer Program and Opti-

mization of the Recovery Algorithm

The row elements of the error matrix E correspond to channel errors within

a packet and tend to be sparse too. The task of PPR is to locate the errors

in a partial packet (i.e. a given row), that can be seen as a set of hypothesis

test problems. Assume that the problems are dealt with sequentially, be-

ginning from the leftmost element of each row. Initially, all partial packets

can equally share an error. However, the test statistics for each position

in different rows depend on the decision for the previous positions. Chan-

nel errors usually depend on factors such as noise, fading, interference and

collisions. Hence, they can be distributed within the partial packets homo-

geneously or in the form of bursts. More clearly, a fixed number of errors

can either be homogeneously distributed among several partial packets, or

can collect in a few of them.

These two cases are illustrated in Fig. 6.2. When the columns of the

error matrix are processed separately, the order in which different rows are

processed is important. For instance, assume a homogeneous distribution

of errors (e.g. when the errors are due to AWGN only). Assume that

there are two partial packets and a fixed processing order is used (e.g. the

first partial packet is processed first). Without re-ordering, the following

candidate solution may appear in the search:
1 1 1 · · · 1 0 0 0
0 0 0 · · · 0 0 0 0
0 0 0 · · · 0 1 0 0
0 0 0 · · · 0 0 1 0
0 0 0 · · · 0 0 0 1

 .
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1

e′1 e′2 e′3 e′4 e′5 · · · e′L

e1 0 0 0 0 0 · · · 0

e2 - - - - - · · · -
e3 0 0 0 0 0 · · · 0

e4 0 0 0 0 0 · · · 0

e5 - - - - - · · · -
e6 - - - - - · · · -
e7 0 0 0 0 0 · · · 0

e8 - - - - - · · · -
e9 - - - - - · · · -
e10 0 0 0 0 0 · · · 0

e11 - - - - - · · · -
(a) D1 = {2, 5, 6, 8, 9, 11}.

e′1 e′2 e′3 · · · e′L

0 0 0 · · · 0

0 - - · · · -

0 0 0 · · · 0

0 0 0 · · · 0

0 - - · · · -

0 - - · · · -

0 0 0 · · · 0

1 - - · · · -

0 - - · · · -

0 0 0 · · · 0

1 - - · · · -
(b) D2 = {2, 5, 6, 9, 8, 11}

e′1 e′2 e′3 e′4 · · · e′L

0 0 0 0 · · · 0

0 1 - - · · · -

0 0 0 0 · · · 0

0 0 0 0 · · · 0

0 0 - - · · · -

0 0 - - · · · -

0 0 0 0 · · · 0

1 1 - - · · · -

0 1 - - · · · -

0 0 0 0 · · · 0

1 1 - - · · · -
(c) D3 = {5, 6, 2, 9, 8, 11}

Fig. 1. The error values corresponding to the partial (shaded) and correct (unshaded) packets. Only the error values of the correct packets are known and are
set to zero. The search space shrinks to partial packets only in this way. The search algorithm initiates at the first column of E, i.e. e′1 in (a) and proceeds
to the next columns sequentially.

Figure 6.3: The error values corresponding to the partial (shaded) and correct
(white) packets. Only the error values of the correct packets are known and are set
to zero. The search space shrinks to partial packets only in this way. The search
algorithm starts at the first column of E, i.e. e′1 in (a) and proceeds to the next
columns sequentially.

This is because the sparse solutions of the previous columns are not con-

sidered when a new column is processed. In such cases, all columns are

legitimate sparse solutions of the corresponding SR problem. However,

when the columns are merged and an error matrix is formed, the candidate

solution is less likely or even infeasible (e.g. some partial packets have no

errors). Although such candidate solutions are discarded after CRC check

and the correct solution is eventually found, this approach is inefficient.

Appropriate re-ordering can result in a more efficient search.

We explain this re-ordering method through an example for simplicity.

Fig. 6.3 represents the recovery procedure of the error matrix where T = 11

packets are transmitted and Tc = 5 packets are received correctly. The

corresponding rows in the error-free packets are substituted with zeros.

However, for the partial packets identified by the index set {2, 5, 6, 8, 9, 11}
and gray shading, the algorithm should recover the error values, i.e. decide

whether they are 0 or 1. Assume that the search domain at the ith step

(corresponding to the ith column of the error matrix) is denoted by the
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ordered set Dk = {d1, d2, ..., dTp} in which Tp = T − Tc = 6 is the number

of partial packets and the ordering of the elements is such that

P{e′d1,k = 1} > P{e′d2,k = 1} > ... > P{e′dTp ,k = 1}, (6.18)

where P represents probability. Due to the sparsity of the errors across the

rows we use the following ordering rule for k > 1:

Dk = {d1, d2, ..., dTp :
k−1∑
l=1

ed1,l <
k−1∑
l=1

ed2,l < ... <
k−1∑
l=1

edTp ,l}. (6.19)

At the beginning, since there is no prior knowledge we can use a random

or equivalently a fixed order such as D1 = {2, 5, 6, 8, 9, 11}. Assume that the

recovered error column corresponding to e′1 is ê′1 = {0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1}.
Then since there are two error elements equal to 1, corresponding to the

packet indices 8 and 11, the new ordered domain set isD2 = {2, 5, 6, 9, 8, 11}.
Consequently, after recovering the error column e′2, D3 = {5, 6, 2, 9, 8, 11}
and the process continues until all of the L columns are recovered.

Note that the re-ordering is only to improve the search efficiency for

sparse recovery. PHY-related settings do not change the nature of this pro-

cedure. Operations such as FEC or modulation can only change the proba-

bility of errors. If interleaving is performed at PHY, it can only change the

locations of the errors and the cardinality of the support set is unchanged.

6.4.2 Convex Relaxation of the l0 Minimization Problem

The normal procedure to solve the l0 minimization problem in CS is a con-

vex relaxation. That is, the equivalent l1 norm, which is a convex function,

is minimized using linear programming [88]. As long as the sensing matrix

satisfies the incoherence property, close to perfect reconstruction is guaran-

teed using O(m log(T/m)) measurements. Explicitly, we can solve

ê′i = arg min ‖x′‖1 (6.20)

subject to Ax′ = s′i, i = 1, . . . , L.

The recovered values should be rounded off to the closest feasible values

(e.g. 0 and 1 in GF (2)). We refer to this approach as per-column CS
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since a single CS problem is solved for every column. Alternatively, the

error matrix can be converted to a long vector. To solve (6.16) using this

approach, one can re-arrange all the columns of S in a new vector and solve

the vectorized problem. In this technique, known as Kronecker-CS, only

one SR problem needs to be solved, which is in the form

Ê = reshape(arg min ‖x′‖1 , T, L) (6.21)

subject to Āx′ = reshape(S, L(T −G), 1)

where the function “reshape” is used to convert between matrix and vector

representations by concatenating or splitting different columns in which the

appropriate dimensions of the output are given as the last two arguments,

and

Ā(L(T−G)×LT ) =


A 0 . . . 0
0 A . . . 0
...

...
. . .

...
0 0 . . . A

 , (6.22)

in which matrix A is repeated L times across the diagonal. The joint

measurement matrix Ā can also be expressed as Ā = IL ⊗ A where IL

is the identity matrix of size L and ⊗ represents the Kronecker product

[110]. The optimization problem can then be solved by conventional CS

techniques such as basic pursuit [88].

6.4.3 The Minimum Number of Packets Required for De-

coding

The minimum number of packets that the transmitter should send for suc-

cessful decoding at the receiver(s) depends on the approach selected for error

recovery. We discuss this issue and derive the corresponding expressions.

Assume that the columns of the error matrix E are m-sparse, i.e., there

is a maximum of m nonzero elements in each of its columns. In the stan-

dard sparse recovery problem (6.16), the measurement matrix A transforms

a set of column vectors of length T to vectors of length T −G. Hence, we

have T −G measurements to recover the error vectors of size T . For a mea-

surement matrix A with near-minimal coherence of the order c/
√
T −G,
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m-sparse recovery is achievable and the number of measurements scales

quadratically in the sparsity order [111]. Conversely, with A possessing the

restricted isometry property, only a linear number of measurements with

a small logarithmic factor of the data size is required. Hence, using l1

minimization we have

T l1min(m) ≈ αm+G, (6.23)

where T l1min is the minimum number of coded packets that should be sent for

successful recovery with the l1 approach, α is a scalar, typically taking values

between two and five and independent of m. Equivalently, the maximum

number of errors that can be recovered after receiving T packets is (T −
G)/α.

The probability of occurrence of at most m bits of error in all the

columns given T packets can easily be given by

P (m,T ) =
[ m∑
z=0

(
T
z

)
εz(1− ε)(T−z)

]L
. (6.24)

So we can calculate the maximum possible sparsity order for a given T . As

an example, the maximum sparsity order with 99% confidence versus the

number of transmitted packets is depicted in Fig. 6.4 for three different bit

error probabilities5.

If the original l0 minimization is used, then we can establish a new

bound on the number of packets required for successful error recovery. The

minimum number of measurements required to solve the exact l0 minimiza-

tion is addressed in [112, Lemma 3.1]. To be able to uniquely recover each

error column of size T the kernel of the measurement matrix A should not

contain any 2m-sparse vectors other than the zero vector. Equivalently, any

set of 2m columns of A should be linearly independent. Since the rank of

A is at most T −G, it follows that

T l0min(m) = 2m+G, (6.25)

which is the optimal bound for the l1 minimization problem.

5The selected bit error probabilities are pessimistic and account for the worst case
scenario. Such conditions can occur frequently in wireless sensor networks.
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Figure 6.4: Maximum possible sparsity order with 99% confidence versus the number
of transmitted packets.

Regardless of how we solve the error recovery problem, the RLC decod-

ing algorithm requires at least G linearly independent packets, which puts

a separate constraint on the required number of packets. The procedure

is straightforward and is given in [113]. More clearly, the problem can be

formulated in the form of an absorbing Markov chain with G+ 1 states (0

to G) as depicted in Fig. 6.5. Each state represents the number of collected

innovative packets. The probability of transition from state i ≥ 0 to state

j ≥ 0 is as follows

pij =


ζi, i = j,∀i ∈ {0, 1, ..., G}
1− ζi, j = i+ 1,∀i ∈ {1, ..., G}
0, otherwise.

(6.26)

where ζi = q−(G−i) is the probability of staying at the ith state after re-

ceiving a new packet (i.e. the probability that the received packet is not

innovative). We refer to this system as ”baseline” and denote the corre-

sponding transition matrix by HBL = {pij}. The expected number of steps

to complete the process at state G beginning from state 0 can be calculated
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by adding up the expected number of transitions from state i ∈ {0, ..., G−1}
to j ∈ {1, ..., G}. Using the linearity property of the expectation and assum-

ing Eij = E{the number of packets required to change state from i to j},
and the fact that a new packet is required only if a transition does not

change the state we have6

Eij = pii(Eij + 1) + pij, (6.27)

that yields Eij = 1
pij

. In practice, packets with a failed checksum (i.e.

packet erasures) should also be taken into account. Hence, the transition

matrix HER corresponding to the Markov chain model of the RLC system

with packet erasures can be expressed by ζ ′ such that

ζ ′i = ζi + Γ(1− ζi), ∀i ∈ {0, ..., G− 1}, (6.28)

where

Γ = 1− (1− ε)L (6.29)

represents the packet erasure rate and ε denotes the channel’s bit error

probability. It follows that the average number of packets that should be

sent for successful decoding of a generation block of size G (i.e. the expected

number of steps required for absorption) is

T̄RLC
min =

G−1∑
i=0

1

(1− Γ)(1− ζi)
=

G−1∑
i=0

1

(1− Γ)(1− q−(G−i))
(6.30)

Since we use a systematic code, the expected number of required packets

is slightly less than T̄RLC
min . Hence it can be treated as an upper bound. This is

because with a systematic code the first G packets are enough for decoding

if they are received correctly. In addition, since during the systematic phase

all the transmitted packets are inherently innovative, the total number of

collected innovative packets at the end of the transmission of the first G

packets is higher, than for a non-systematic code. The exact modeling of

systematic RLC with PPR complicates the analysis but does not add much

6With probability pij the state is changed using one innovative packet, and no more
packets are required. With probability pii one new packet is required.
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0 1 ... G

p00

1− p00

p11

1− p11

1

Figure 6.5: The Markov chain of RLC decoding (baseline system). The states
represent the number of collected innovative packets for successful decoding. A
generation of size G can be decoded at the state G.

practical insight. Hence, we use the general model for non-systematic RLC

and treat the result as a plausible approximation. As shown in [114], this

approximation improves by increasing the field size.

When partial packet recovery is applied, the Markov chain in Fig. 6.5

should be modified accordingly. Since the chance of the recovery algorithm

succeeding depends on the number of collected packets as well as the spar-

sity of the partial packets, we have a time-varying Markov chain. Hence, we

need to assume a fixed T and calculate the probabilities conditioned on T .

We recall the three decoding situations presented in Section 6.3 and notice

that RLC can only be decoded when Tc ≥ G and at least G packets are

linearly independent. However, using PPR the first two situations can also

lead to successful decoding.

Assume that after the transmission of T packets the receiver can recover

the partial packets with probability Λ(T ). Without loss of generality, we

assume that l0 minimization is used for PPR. We can then generalize the

results for the l1 minimization approach. For simplicity we assume that

Λ(T ) =

1, T ≥ Tmin(m)

0, otherwise
(6.31)

where Tmin(m) is substituted from (6.23) or (6.25) depending on the re-

covery scheme. The exact calculation of Λ(T ) is complicated as it requires

averaging over all possible combinations of the error distribution in the

partial packets. Since we look at the columns of the error matrix, the com-

binations of the column errors in different rows should also be considered.
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The relationship between the sparsity order, m, and the number of partial

packets Tp is not definitive. The best situation is when all the partial pack-

ets share no more than one bit error in each column, which corresponds to

m = 1. On the other hand, in the worst case all Tp packets are corrupted

in at least one column, that leads to m = Tp. When PPR is enabled, any k

partial packets that are successfully recovered can contribute to complete

the Markov chain and reach to at most k higher states. The PPR algorithm

can recover the packets only when k > 0 partial packets are available and

enough packets are collected (i.e. Λ(T ) = 1). Hence, we can derive the

transition matrix HPPR = {pPPRij } for the Markov chain model of the PPR

system as follows:

HPPR(T ) =


(
PK(0)HER +

∑T
k=1 PK(k)

[
HBL

]k)
, Λ(T ) = 1

HER, otherwise,
(6.32)

where PK is the probability that k out of T packets are in error, which

is given by

PK(k) =

(
T
k

)
Γk(1− Γ)(T−k). (6.33)

One can show that all the above transition matrices are in the form

H =

[
Q B
0 1

]
, (6.34)

since they represent an absorbing Markov chain. In addition any power λ

of such matrices can be written in the form

Hλ =

[
Qλ ∗
0 1

]
. (6.35)

If we denote the expected number of transitions required for absorption (i.e.

successful completion of the Markov chain at the final state) initiating from

state i by ni, then it can be shown that

n′ = (I(G−1)×(G−1) −Q)−11(G−1)×1 (6.36)

is a vector whose elements are ni, ∀i ∈ [0, G − 1]. We can consider the

transition matrix given in (6.32) in two different cases. First assume that
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Λ(T ) = 0, and the initial distribution of the states in the Markov chain is

µ(0) = (1, 0, ..., 0); this corresponds to beginning from state 0 with proba-

bility one. The probability distribution of the states after T l0min transmissions

becomes

µ(T l0min) = µ(0)
[
HER

]T l0
min . (6.37)

When Λ changes value from zero to one at T = T l0min, the transition matrix

is updated and will then change with T . However, the average number

of packets for successful delivery of each generation block using the PPR

approach can be approximated by

T̄ PPR
min ≈

µ̃(T l0min)ñ
′ + T l0min, if T l0min > T̄RLC

min

T̄RLC
min , otherwise

(6.38)

where µ̃(T l0min) is the state distribution vector after T l0min transitions corre-

sponding to the G − 1 states (excluding the final state), and ñ′ should be

calculated using (6.36) for the transition matrix HPPR(T l0min) identified in

(6.32).

6.4.4 Application in Wireless Body Area Networks

In some applications such as wireless body area networks (WBANs), opti-

mal energy efficiency is a feasibility constraint. WBANs are wireless net-

works consisting of tiny implantable or wearable sensor nodes that operate

inside or around the human body and communicate body-related data, typ-

ically to a hub node. In a WBAN where sensors are implanted in the body,

sensor nodes should transmit their data with minimum energy consumption

since they only rely on battery power that is unreachable for re-charging.

The hub node is less constrained in terms of energy consumption and com-

putational complexity since the re-charging can conveniently be performed

often and the device can be much larger than the sensor nodes. For these

reasons, an asymmetric design of the communication protocol is needed that

imposes minimum computational complexity and energy consumption on

the sensor nodes and compensates for this by more sophisticated procedures

at the hub. In this way, the computational complexity that is outsourced
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to the hub node is leveraged to improve the transmission efficiency at the

sensor nodes. By exploiting PPR, the performance of RLC can offer a

considerable gain in point-to-point transmissions (sensor to hub), where it

usually does not have the advantage.

6.4.5 Discussion on the Generation Size and the Packet

Length

Normally, in RLC, a higher generation size leads to a better throughput,

but an increase in latency. A small generation size cannot offer much coding

gain. Using PPR, however, the gain with a generation size of G = 4 can

be considerable. The generation size does not significantly influence the

complexity of the PPR problem and the required solution time (more details

are presented in the simulation results). However, since a larger generation

requires more packets, it can consequently increase the sparsity order of

the problem. Note that the channel’s bit error probability, ε also affects

the sparsity order and should be taken into the consideration. Recall that

(6.24) implies that, for a channel with a higher bit error probability, a

smaller generation size should be selected to decrease the sparsity order.

The impact of the packet length, L, on the complexity of PPR depends

on how the problem is solved. Except for the Kronecker CS, the complexity

is linearly increased, namely, L problems should be solved sequentially.

For large and even moderate L values, Kronecker CS, which is a parallel

approach, is infeasible due to the need for a significant amount of memory.

6.5 Simulation Results

In this section, the performance of the proposed system is evaluated by sim-

ulation and is compared with that of the conventional RLC and uncoded

transmission. We perform three sets of simulations, for uncoded, RLC, and

RLC with PPR, with the same parameters assuming point-to-point and

multicast channels. In the PPR scheme we compare SR solutions based

on l0 minimization (syndrome decoding) as well as the two l1 minimiza-
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tion solutions (Kronecker CS and per-column CS) discussed earlier. 1000

generations are transmitted in each simulation and the number of required

packets that should be transmitted for successful recovery of the message

block are plotted. In Fig. 6.6, given ε = 0.004, L = 256, and G = 8

the empirical cumulative distribution (CDF) of the number of transmitted

packets is demonstrated for point-to-point and multicast channels with 5

receivers7. As expected, RLC does not make much difference in the point-

to-point case in comparison with the uncoded transmission. Nevertheless,

combined RLC and sparse error recovery can considerably reduce the re-

quired number of transmit packets. For instance, while the uncoded trans-

mission requires 35 packets to achieve a probability of successful decoding

of 95%, the combined RLC and SR method requires 15 packets to guar-

antee the same success probability, which saves about 57% of the transmit

packets. It can also be observed that RLC can reduce the total required

number of packets in the multicast scenario. In the given case study, 58,

41, and 19 packets are required to attain a success probability of 95% in the

uncoded, RLC, and combined RLC and PPR schemes, respectively. The

performance of syndrome decoding is determined by the parameter m. A

higher m value leads to a smaller number of transmit packets (because the

PPR can recover columns with more errors) but will increase the size of the

decoding table and the computational complexity. We have set m = 5 in

this figure.

In the next simulation we repeat this process for a range of different

channel bit error probabilities. Explicitly, ε is varied between 0.001 and

0.007, which corresponds to a signal-to-noise ratio from 6.8 dB to 4.8 dB8

assuming antipodal signaling in an additive white Gaussian Noise (AWGN)

channel 9. The average number of transmit packets along with the corre-

sponding standard deviations are illustrated in Fig. 6.7. The analytical

average number of required packets is also calculated using the Markov

7Throughout this chapter the packet length L is in bit units.
8These values are rather pessimistic for a typical WBAN. However, they can occur

in fading conditions [115].
9If we assume FEC at the physical layer, depending on the correction capability of

the channel code these values can change. Here, no FEC is assumed.
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Figure 6.6: The empirical CDF of the number of transmitted packets per generation
corresponding to RLC alone and RLC with PPR with L = 256, ε = 0.004, G = 8 for
point-to-point (top) and multicast channel with 5 receivers (bottom).
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Figure 6.7: The number of transmitted packets per generation as a function of
bit error probability. The average values (based on simulation and Markov chain
modeling) are illustrated along with the standard deviations, assuming L = 256 and
G = 8. Syndrome decoding is used for PPR.

models presented in the previous section. As mentioned before, for the sake

of simplicity we approximated the mean value using the Markov model of a

general non-systematic RLC and selected a large field size to approximate

the systematic code [114].

The impact of the generation size on the achievable transmission effi-

ciency is also studied. Assuming the same multicast setting with 5 receivers

and ε = 1 × 10−3, the simulation is performed for different G and L val-

ues and the transmission efficiency obtained by uncoded transmission, RLC

alone, and combined RLC and PPR is reported in Table 6.1. We compare

the transmission efficiency η defined as

η =
G

E{T}(1 + τ/L)
, (6.39)

where L is the length of the payload in each packet and τ is the total number

of overhead bits such as headers and checksums10. η is indeed the ratio of
10In the simulations we use τ = 128 bits.
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Table 6.1: Transmission Efficiency in a Multicast Channel with 5 Receivers.

G = 4 G = 8 G = 16

RLC and PPR

L = 2048 0.39 0.41 0.49
L = 1024 0.40 0.49 0.52
L = 512 0.45 0.52 0.56
L = 256 0.44 0.49 0.53

RLC

L = 2048 0.08 0.08 0.09
L = 1024 0.21 0.24 0.26
L = 512 0.33 0.37 0.40
L = 256 0.39 0.43 0.45

Uncoded

L = 2048 0.06 0.05 0.06
L = 1024 0.16 0.16 0.16
L = 512 0.27 0.27 0.27
L = 256 0.32 0.31 0.32

the useful transmitted information to the total transmitted bits including

overhead and preamble data. A similar measure has been widely used, for

instance in [116] and the references therein, to quantify the energy efficiency

of the system. Since the transmission energy is directly proportional to

the number of transmitted bits, this definition of transmission efficiency

is particularly appropriate to measure energy efficiency too. As can be

observed from Table 6.1, increasing the generation size can lead to a better

result. However, a larger generation size results in more computational

complexity at both the transmitter and receiver, which should be taken into

consideration for a fair complexity-performance tradeoff. In addition, there

is an optimal packet length to achieve maximum efficiency that depends on

the generation size, the number of overhead bits and the bit error probability

[116]. For example, when PPR is used the maximum transmission efficiency

is achieved for L = 512, while the optimal packet length without PPR is at

L = 256. Generally speaking, PPR can improve transmission efficiency for

all L and G values. This improvement is more significant for longer packet

lengths. This is particularly due to an increase in the packet error rate for

longer packets. However, since the performance of the PPR is only affected

by the bit error probability, it can overcome the destructive impact of long

packets. It should be noted that, although the transmission efficiency is

improved, the number of SR problems (as well as the complexity of the

PPR) increases linearly with the packet length.
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Table 6.2: Transmission Efficiency in a Multicast Channel with 5 Receivers (L =
1024).

PER 87% 64% 56% 40% 19% < 1%

RLC and PPR
G = 16 0.44 0.52 0.54 0.62 0.72 0.86
G = 8 0.38 0.49 0.51 0.58 0.65 0.87
G = 4 0.37 0.40 0.43 0.48 0.59 0.86

RLC
G = 16 0.08 0.26 0.32 0.44 0.64 0.87
G = 8 0.08 0.24 0.29 0.42 0.61 0.86
G = 4 0.07 0.21 0.27 0.38 0.57 0.87

Uncoded
G = 16 0.05 0.16 0.20 0.29 0.48 0.87
G = 8 0.05 0.16 0.20 0.28 0.48 0.87
G = 4 0.05 0.16 0.20 0.29 0.48 0.87

In order to quantify the impact of packet quality on the PPR and RLC,

the transmission efficiency is presented in Table 6.2 for different generation

sizes and packet error rates (PER), i.e. the ratio of partial packets to the

total received packets. For a very small PER11, RLC alone or RLC with

PPR cannot offer any gain. Since the packets are successfully delivered with

high probability, E{T} ≈ G, hence η ≈ L/(L+τ). However, with increasing

PER, the advantage of RLC over the uncoded scenario as well as the gain

from PPR over RLC alone becomes more visible. This trend applies to all

PER values, while the gap between RLC alone and RLC with PPR increases

with increasing PER. Nonetheless, the transmission efficiency degrades even

with PPR. The reason is that a fixed sparsity order, m = 5, is used that

limits the maximum number of errors in each error column to 5 bits.

6.5.1 Processing Time

The complexity of RLC compared to the uncoded system has been ad-

dressed in [117, 118, 94] and the references therein. In Fig. 6.8, we have

compared the complexity of different SR solutions in the PPR approach.

The CDF of the total elapsed time corresponding to syndrome decoding,

Kronecker CS, and per-columns CS are shown12. To solve the l1 minimiza-

11PER is lower for a smaller packet length L, or a lower bit error probability ε. We
fix L to 1024 bits in the simulation.

12It should be noted that we use a non-optimized Matlab software which is much
slower than the practical implementations of the network coding tools. Hence, the cor-
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Figure 6.8: A comparison of the total elapsed time for solving the SR problem using
different schemes. The absolute increased time (independent of RLC) required by
PPR is reported. The SR based on l0 minimization (syndrome decoding) performs
faster than the other two schemes based on l1 minimization (Kronecker CS and
per-column CS).

tion we have used the SparseLab software package and the basic pursuit

algorithm [119]. In each figure, two different bit error probabilities are con-

sidered (ε = 1 × 10−3 and ε = 4 × 10−3). As can be observed, syndrome

decoding is much faster than both the CS approaches based on l1 mini-

mization in all the scenarios except when a long packet and generation size

is used in a severe channel (Fig. 6.8(d)). As a rule of thumb, the aver-

responding values of the total processing time are large. Notwithstanding, the relative
values are important and we compare the values with each other.
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age processing time corresponding to syndrome decoding and Kronecker

CS increases with the bit error probability of the channel. Therefore, the

processing time reduces when the channel quality improves. This is in con-

trast with per-column CS since it is independent of the number of errors

and is only based on the sparsity order across each error column. Fixing G

and comparing the results reveals that increasing the packet length, L, will

increase the computational complexity in all the scenarios, which is a natu-

ral consequence due to the increased size of the search. The amount of the

increase across different approaches is however different. For per-column

CS, a linear increase can be observed. More explicitly, the processing time

is increased by a factor of four, which is proportional to the increase of the

packet length from L = 256 to L = 1024. However, for Kronecker CS and

Syndrome decoding, the increase rate is more than linear. Next we fix L

and compare the results to quantify the impact of the generation size on

the processing time. Note that the processing time for per-column CS is

almost unchanged while it is significantly affected in Kronecker CS and is

moderately changed in syndrome decoding. Again, the amount of the in-

crease in the processing time is more than linear in both cases. In summary,

for moderate and desirable channel conditions, the syndrome decoding ap-

proach outperforms the other two schemes, independent of the generation

size and the packet length. Otherwise, per-column CS is the best approach

since it is not sensitive to the generation size and the channel error rate.

The required computational complexity for the proposed PPR to achieve

a high gain can be considerable. Indeed, computational complexity is our

only means to make the gains achievable in the highly constrained setup

we consider. The complexity is asymmetric (mostly at the receiver side).

For applications such as WBAN where transmit node complexity (size) and

energy are very limited and a large number of packets are partially cor-

rupted, it is very promising. Note that the computational complexity can

be adjusted with respect to the available resources through the assumed

sparsity order.
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6.6 Conclusions

A novel scheme based on compressive sensing and sparse recovery has been

developed to tackle the partial packet recovery problem in a random linear

coding setup. This scheme does not require any cross-layer information,

works transparently to the other layers, does not require extra overhead

and generally does not impose any new constraint on the transmitter node.

The receiver first decouples the message from the errors by multiplying the

received packet by a matrix and then tries to recover the partial packets

using integer programming and sparse recovery techniques. The probabili-

ties of successful recovery have been presented and the performance gains

in comparison with the conventional approach have been illustrated by sim-

ulation. Based on the simulation results, the average required number of

transmit packets for successful reception of the message blocks can be sub-

stantially reduced by using this approach, which can yield a significant

saving in energy and throughput at the transmitter node.





Chapter 7

Coding Techniques based on

Polar Codes

7.1 Introduction

Due to the limited resources in the Internet of things (IoT) devices or nodes

in a WBAN, the coding schemes should impose low complexity and have

high reliability and high efficiency. Polar codes [120] can provably achieve

the capacity of the binary symmetric channel with complexity O(n log n).

These features cannot be found in other codes at the same time. For exam-

ple, LDPC codes can only approach the channel capacity with polynomial

complexity. Hence there is a high motivation to deploy polar codes in IoT

applications where low complexity and high transmission efficiency are of

utmost importance.

A binary polar code is identified by the two-tuple (I,uF), and the en-

coding

x = uG, (7.1)

where u and x are the message and code vectors, G is the encoding matrix

of size N ×N , and G = ΠF⊗n, in which F ,

[
1 1
1 0

]
, n = log2(N), F⊗n is

the nth Kronecker power of F [120], and Π is the bit-reversal permutation

129
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mapping matrix possessing the commutative property, i.e. G = F⊗nΠ1.

Only K elements in u can be substituted with the message bits whose

indices are identified in the information set I, where 1 ≤ K < N (i.e.

|I| = K). The remaining indices in u are denoted by uF and have fixed or

frozen bit values (0 or 1), known by both encoder and decoder, where F
denotes the complementary set of I, known as the frozen set.

7.2 Joint Source and Channel Coding for Smooth

Distortion

The classical approach in the design of communication systems addresses

the source and channel coding problems independently. In this way, the

codes are constructed very simpler and can be optimized separately. In

addition, exclusive codes that match well with different source and channel

models can be used together without interfering with each other.

In this approach, normally, source-encoded message blocks at the trans-

mitter side are first encoded by an error detection code such as a cyclic

redundancy check (CRC) at higher layers and then are equally protected

against channel errors using a forward error correction (FEC) code in the

physical layer. At the receiver side, the message blocks are first recovered by

the FEC decoder and then the integrity of the received frame is verified us-

ing the error detection checksums. If the check sequence verifies the frame,

it is error free and can be forwarded to continue the process to the appli-

cation layer. Otherwise, the frame is either discarded or is recovered using

further redundancy from the transmitter in the succeeding transmissions.

In this way, however, the system tends to break down completely when

the channel quality falls below a certain threshold, since the channel code

can only resolve a limited number of errors, known as correction capability.

This property which is called the “threshold effect” [93] is detrimental in

real-time applications, e.g. communication of voice and video, where re-

1Another representation of polar encoding has also been adopted that does not in-
clude the bit reversal permutation matrix. For simplicity, we will use the former repre-
sentation when dealing with non-systematic codes and the latter with systematic codes.
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transmission of the corrupted data is practically ineffective, or when the

channel is highly dynamic and volatile over time. Two common examples

of the latter are the channels in mobile networks or in wireless body area

networks (WBANs).

In several applications it is desirable to reliably convey even a slightly

distorted version of the signal that can represent the essential character-

istics of the original signal, rather than an “all-or-nothing” situation. For

instance, consider a wireless sensor node that is attached to body for move-

ment detection in a gaming application, or even a monitoring system that

collects sensor measurements for anomaly (spike) detection. Indeed, the

general pattern of the signal along with a good approximation of the orig-

inal signal is adequate here. This acceptable level of distortion is usually

influenced by how the message is being interpreted at the endpoint (e.g.

when the existence of distortion is not perceptible by the human visual or

hearing system).

For this class of applications, usually, energy and bandwidth efficiency

are of crucial importance as well. For stationary sources, entropy coding can

achieve optimal compression rates, which can eventually reduce the total

required transmission energy when the channel quality is good. However,

in the presence of unresolved channel errors any loss of the entropy-coded

data propagates the error into bursts of the original data. The amount of

consumed energy in the transmit node is directly proportional to the num-

ber of transmitted bits, and in fact packet loss can be interpreted as loss

of energy. Therefore, energy efficiency is only achievable when the channel

quality is desirable. However, it is not often the case in such applications

due to factors such as low transmit power, interference, and signal propaga-

tion inconsistencies related to body randomness. In addition, a significant

performance degradation can occur for sources with non-stationary and

non-ergodic traits. To prevent these ”catastrophic” effects, it is proposed

to remove the entropy coding in such scenarios [121].

Although numerous studies have been performed separately in both di-

rections of wavelet transforms for source coding and error correcting codes,

only a few contributions can be found on the connections of these two
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tracks of research. The authors in [18] reveal the necessary and sufficient

conditions of the basis functions over a finite field in order to construct an

orthogonal wavelet transform that can be deployed by an error correcting

code. Later in [19] they proposed a code construction algorithm based on

the finite field wavelets for arbitrary rate maximum separable block codes

using spectral constraints. In the sequel, we combine finite field wavelets in

a Galois field of order 2 denoted by GF (2) with polar codes to generate a

new class of lossy/lossless joint source-channel codes. This approach can be

used to construct joint source-channel codes of rate 1 (i.e. the code length

is equal to the message length) that can provide an approximation of the

message at low SNRs.

7.2.1 Binary Field Transform

When data is in the binary format, for several reasons (such as reducing

computational complexities and avoiding an extension in the range of the

variables), it is more convenient to apply transforms in the binary domain

using binary field (modular) arithmetic. This issue has been addressed

in the study of finite field Fourier transforms in [122]. There are a few

limitations that introduce difficulties in dealing with finite field transforms,

specially in GF (2) [123]. For instance, an element of order N is necessary

for the existence of discrete Fourier transform (DFT) of a length N signal

[124]. Since GF (2) has only one element of order 1, DFT is only defined

for a length 1 sequence in GF (2). Indeed, a DFT of even length does not

exist over GF (2m) for any m. These difficulties hold also for other Fourier-

related transforms such as the discrete cosine transform (DCT), discrete

Hartley transform (DHT), etc.

For these reasons, non-Fourier based transforms have been considered

in the design of binary field transforms [125], [126]. Specifically, a lin-

ear binary field transform (BFT) based on two-band perfect reconstruc-

tion filter banks in GF (2) is proposed in [127] that is analogous to the

Walsh-Hadamard transform (WHT) for real-value signals. Similarly to the

Fourier-based transforms that decompose the spectral characteristics of the
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input signal to different “frequencies”, the BFT can obtain the “sequency”

information of the input waveform. For length N signals, the basis vectors

of this transformation constitute the columns of the transform matrix BN ,

which are rectangular waveforms taking binary values {0,1} with varying

sequencies. Note that, since the determinant of a WHT matrix is even, a

naive replacement of −1’s by 0 in the transform matrix of WHT leads to

a singular matrix in GF (2) and a non-invertible transform. Instead, the

N ×N matrix BN is defined recursively as follows:

B2 ,

[
1 1
1 0

]
, (7.2)

B4 ,


1 1 1 1
1 1 0 0
1 0 1 1
1 0 1 0

 . (7.3)

For N ≥ 6 and even, the construction is based on four submatrices

BN =

[
Bul
N Bur

N

Bll
N Blr

N

]
, (7.4)

where Bul
N is the upper-left submatrix of size (N − 2)× (N − 2) defined as

Bul
N =

[
12×2 12×(N−4)

1(N−4)×2 B(N−4)

]
, (7.5)

in which the subscripts are the size of the matrices, 1 denotes a matrix

with all elements equal to one, and B(N−4) represents the complementary

matrix with all elements of B(N−4) logically flipped. The lower-left and the

upper-right submatrices of sizes 2× (N − 2) and (N − 2)× 2 are defined as

Bll
N =

[
1 0 · · · 0
1 0 · · · 0

]
, (7.6)

and Bur
N = Bll

N
T

, respectively. Finally, the lower right submatrix Blr
N = B2

is of fixed size 2× 2. It can be shown that BN is invertible over GF (2) and

its inverse can be found recursively [127].
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7.2.2 Binary Field Filtering

Binary field filtering is performed using circular convolutions. A simple

representational way for this approach is to use circulant matrices. By

definition, a one-circulant matrix X1 = 1-circ(x) is a square matrix such

that its first row is equal to x and the next rows are created by a right

circular shift of the previous row. This way, the circular convolution of two

vectors can be rewritten as the multiplication of a vector and a circulant

matrix. Similarly, a 2-circulant matrix for a vector x of even length N

is a matrix X2 = 2-circ(x) of size N/2 × N , where each row is a two

circular shifted version of the previous row. The 2-circulant form is a simple

representation for a combined filtering and down sampling operation in a

filter bank.

Generally, to apply a specific filter h (high-pass or low-pass) of length

N , one needs to first evaluate a circular convolution of the filter on all basis

vectors of a BFT. This is denoted by

H̃ = HBN , (7.7)

where H = 1-circ(h). A filter of higher length can be constructed by zero-

padding of h.

7.2.3 Encoding Scheme

The binary wavelet transform represented by the perfect reconstruction

low-pass and high-pass filters l and h can be given by

x̂ = Tx, (7.8)

in which

T =

[
L̃2

H̃2

]
, (7.9)

and

L̃2 = L2BN , (7.10)

H̃2 = H2BN , (7.11)

are the BFTs of the analysis filters.
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7.2.4 Codes of Length 8

We present the proposed scheme through an intuitive example for length

N = 8 and then present the general case. Assume an input binary vector

x = [x1, · · · , x8]T and the BFT matrix

B8 =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 0
1 1 0 0 0 0 1 1
1 1 0 0 1 1 0 0
1 1 0 1 0 0 1 1
1 1 0 1 0 1 0 0
1 0 1 0 1 0 1 1
1 0 1 0 1 0 1 0


. (7.12)

The columns of this matrix are the basis vectors and each column represents

a component referred to as ’sequency’ which is analogous to ’frequency’ in

Fourier-related transforms. For instance, the first column can be treated

as zero or DC-sequency. The filters l and h can be designed according to

three constraints: bandwidth, vanishing moment, and perfect reconstruc-

tion. Let’s select l = [1 1 1 0 1 0 1 0] and h = [1 1 1 1 1 1 0 0] [127]. The

transform matrix for this choice of filters is

T =



1 0 1 1 1 0 0 0
1 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0
1 1 1 0 1 1 1 0
0 0 0 0 1 0 1 1
0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 1
0 0 0 0 1 1 0 1


, (7.13)

and the inverse transform matrix is T−1. More details about the calculation

of the inverse transform will be presented in the next section.

The bit distribution in the transform domain is a function of the se-

quency distribution of the input waveform, as well as the specific filter bank

that has been applied. Nevertheless, due to the compactness property, the

number of non-zero bits is usually less than the number of zeros. In Fig.

7.1, the bit distribution of 8-bit transform domain strings x̂ = [x̂1, · · · , x̂8]T
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Figure 7.1: Probability distribution of the transformed domain sequences. The bars
represent the distribution of bit values (0 and 1) of the transformed symbols. Uneven
distribution of x̂2 and x̂4 bits is suitable for lossy compression.

corresponding to a test signal is illustrated. It can be seen that the signal

contains minimum spectral strength in terms of the sequencies [1 1 1 1 1 1 0 0]

and [1 1 0 0 1 1 0 0] (i.e. the second and fourth columns of B8) which leads

to a very low probability of 1’s for x̂2 and x̂4. Therefore, they can be ap-

proximated by zero. We denote the set of transform-domain bits for which

this property holds by Kc and the set of remaining bits by K. Particularly,

in this case Kc = {x̂2, x̂4}, K = {x̂1, x̂3, x̂5, x̂6, x̂7, x̂8}, and the transform-

domain representation of the vector x can be approximated by

x̂q = Qx̂ =



x1 + x3 + x4 + x5

0
x1 + x4

0
x5 + x7 + x8

x5 + x8

x6 + x8

x5 + x6 + x8


. (7.14)



7.2 Joint Source and Channel Coding for Smooth Distortion 137

where Q(8×8) = {qi,j} is the quantization and mapping matrix. So when

no quantization is performed (i.e. lossless compression is performed), this

matrix is only required for index mapping. Note that in this example the

input bit x2 is automatically discarded in the approximated transform. Our

further analysis reveals that this input bit is highly correlated with x6. We

denote |K| by K, which is the number of elements in K.

Assuming an (N,K,F) polar code, the joint source-channel code is con-

structed according to the following set assignments:

F = Kc, (7.15)

I = K. (7.16)

This can be done by using a function that maps indices in I and Kc to

indices in K and Kc. There are K! combinations (feasible answers for Q)

such that I = K. One simple approach to find Q can be

qi,j =

0, if ui ∈ F , ∀i, j
1, else if x̂i has an xj factor, ∀i, j
0, otherwise

(7.17)

In summary, the joint source-channel code is a polar code with

u = x̂q. (7.18)

Therefore, we can calculate the unified joint source-channel code using

(7.42), (7.8), (7.14) and (7.18) in the matrix form as follows:

c = GN x̂q

= GNQx̂

= GNQT︸ ︷︷ ︸
Wjsc

N

x, (7.19)

in which Wjsc
N is the joint source-channel coding matrix for a signal of length

N . The factor graph representation of this transform corresponding to our

8-bit code is depicted in Fig. 7.2.
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Figure 7.2: The factor graph representation of the joint source-channel code.

7.2.5 Length-N Codes

We mainly use the same theoretical results in [127] to formulate and solve

the problem. As was mentioned earlier, l and h filters of higher lengths can

be designed by padding zeros to the filters of lower lengths. This approach

can significantly reduce the search space. However, when the base filter is

too short in comparison with N , the filters designed by this approach might

not necessarily perform well in terms of the ability to generate an uneven

distribution in the transform domain. Therefore, it is necessary to first

select a suitable length for the base filters. Nevertheless, derivation of the

inverse transform is not straightforward and we present a more practical

alternative here. The design procedure is based on a set of constraints

on the bandwidth and the vanishing moments of the filters as well as the

determinant of the binary transform matrix T (perfect recovery). Generally,

the filter h of length N can have either one or N/2 vanishing moments. By
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setting the vanishing moments of h to a maximum, the filter can suppress

more low sequency components and hence better high-pass characteristics

can be achieved. This means that the binary field transform of h, decimated

by two (due to down-sampling) should produce zero strength at the first

N/2 sequencies. Therefore, the firstN/2 columns of the matrix H̃2 = H2BN

are set to zero. Identically, it suffices that [128]

h2j = h2j−1, ∀j ∈ [1, ..., N/2− 1]. (7.20)

The inverse operation can be initiated after polar decoding of c. Assuming

that the output of the decoder is represented by the vector r, then the

estimate of the original message denoted by x′ can be recovered by

x′ = T−1r. (7.21)

The synthesis filters l∗ and h∗ can be directly found based on the following

duality:

l∗ = h− (7.22)

h∗ = l−, (7.23)

where v− represents reverse ordering of the elements of vector v = [v1, · · · , vN ],

such that v− = [vN , · · · , v1]. This approach can significantly simplify the

search algorithm even in comparison with [128]. The output of the synthe-

sis filters are up-sampled and summed to recover the message. Assuming

L∗2 = [2-circ(l∗)]T and H∗2 = [2-circ(h∗)]T , it follows that the inverse trans-

form T∗ can be given by

T−1 = [Ľ∗2 Ȟ∗2] (7.24)

in which

Ľ∗2 = B−1
N L∗2 (7.25)

Ȟ∗2 = B−1
N H∗2. (7.26)
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By TT−1 = IN×N , where I is the identity matrix, we have

L2H
∗
2 = 0N/2×N/2 (7.27)

L2L
∗
2 = IN/2×N/2 (7.28)

H2L
∗
2 = 0N/2×N/2 (7.29)

H2H
∗
2 = IN/2×N/2, (7.30)

where 0 is an all-zero matrix. Equations (7.27) and (7.30) hold given (7.22)

and (7.23). To satisfy (7.28) and (7.30), it suffices that

l(h−)T = h(l−)T = 1 (7.31)

l[cs(h−, j)]T = h[cs(l−, j)]T = 0,∀j ∈ [2, ..., N − 2] (7.32)

where cs(h, j) is the j-bit circular shifted vector of h. In addition, the

following constraints should be satisfied [127]:

N∑
i=2,even

li = 1,
N−1∑

i=1,odd

li = 0

N−1∑
i=1,odd

hi = 1,
N∑

i=2,even

hi = 1.

(7.33)

Since more than one filter bank can be designed according to the above

constraints, one can also incorporate new application-specific constraints.

More specifically, some designs might require less computational complexity

[128].

7.2.6 Codes with Adjustable Frozen Bits

For the polar code, the actual value of the frozen bits does not make any

difference, and one can set them equal to either zero or one. However, the

receiver should know these values to use them in the decoding algorithm.

In some cases, the uneven distribution of the transformed data shows more

dominance in favor of ones rather than zeros. In other words, the signal has

almost full spectral strength with respect to some sequencies. In such cases,

it is suitable to quantize the corresponding component to one, rather than
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zero. Consistently, the frozen bits of the concatenated polar code should

be selected equal to one. The benefit of this approach is that a better

compression ratio as well as a stronger polar code (with a lower rate) can

be used, given a maximum acceptable level of distortion.

Therefore, we should split the set F into two subsets, F0 and F1, that

represent the set of frozen bits equal to zero and one, respectively. We can

then modify (7.17) as follows:

qi,j =


0, if ui ∈ F0, ∀i, j
1, else if ui ∈ F1, ∀i, j
1, else if x̂i hasxj factor, ∀i, j
0, otherwise.

(7.34)

Let’s denote the subset of the transform domain components with zero

spectral strength with Kc,0 and the components with full spectral strength

with Kc,1. Therefore we can set F0 = Kc,0, and F1 = Kc,1.

7.2.7 Discussion and Simulation Results

In this section we discuss the performance of the proposed scheme in a

realistic application. Assume that

D , E{(x− x′)2}, (7.35)

where E{.} is expectation and D is the total message distortion at the

output of the receiver, which is jointly caused by the quantization of the

BFT domain signal and the channel. Note that the equivalent decimal

values of the samples are required here, not their binary form. In the

classic design, there are always two possible outcomes. Either x = x′ or

equivalently D = 0, or x′ is not available (which corresponds to when the

errors are more than the correction capability of the code) and D cannot be

calculated. For ease of notation and illustration we assume that distortion

is infinite in this case. Note that we use this notation only to illustrate the

threshold effect, and any non-zero value we assume here does not make any

difference in the analysis. First, we consider the source transform (BFT)

alone. Due to the energy compactness property, as the length of the BFT
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Figure 7.3: The comparison of block error probabilities for block length N = 8.

increases, several sequency components appear with zero (or full) spectral

strength. In other words, some specific components are always equal to zero

(or one) in the transform domain. This is the ideal outcome since it can

eliminate the need for quantization, and the signal can be reconstructed

perfectly. Here we assume that no quantization is performed (i.e. the

compression is lossless). We first simulate the error performance of the

system in an additive white Gaussian noise (AWGN) channel for a successive

cancellation (SC) decoder. Although the performance of the SC decoder is

suboptimal, we can still compare the error probabilities with and without

BFT. Indeed, one can exploit more powerful decoders such as maximum

likelihood (ML) or successive cancellation list (SCL) decoding [129], since

the decoding of the polar code is performed independently. In the proposed

scheme, we use a rate-1 code which means that the code length is equal to

the message length. Assuming N = 8, we have simulated the block error

probability of four different codes, namely a rate-1 polar code with no BFT

and three JSC codes of rate 1 with K equal to 5, 6, and 7. The results are
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Figure 7.4: Comparison of distortion with and without JSC coding for N = 16.
Although the actual values of distortion are signal-dependent, here we illustrate the
gradual change in distortion in contrast to the idealized situation in the classic system.

illustrated in Fig. 7.3 for comparison. It can be observed that maintaining

the same throughput, the performance gain of the proposed JSC code is

about 2 dB at a low signal-to-noise ratio (SNR) and 1 dB at higher SNRs,

for each of the N −K bits. Note that the performance of the BFT depends

on the statistical characteristics of the original message signal, and finding

an optimal filter is an independent application-specific problem.

In the next simulation we compare the proposed scheme with the classic

design in terms of the overall message distortion. As we mentioned ear-

lier, the classic system experiences a break down at low SNRs due to the

threshold effect.

The amount of distortion can be given by (7.35). However, it is difficult

to represent a unified tool for comparing these two systems, and to illus-

trate the threshold effect we require a stochastic model. For convenience,

assuming an (N,K, t) channel code in which N is the code length, K is the

message length, and t is the correction capability of the code, we adopt an

outage model for the distortion. More specifically, for the classic system
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the threshold SNR is set at the SNR at which the distortion is equal to zero

with 99% confidence (or equivalently, the SNR at which in less than 1% of

the outcomes the FEC code cannot correct the errors). The JSC code is of

rate 1, corresponding to K = N . But since there is no channel code of this

rate, we use the closest feasible code for comparison here. For a code with a

minimum distance d, the Singleton bound can give the maximum message

length

K ≤ N − d+ 1, (7.36)

in which t =
⌊
d−1

2

⌋
. For N = 15, the maximum message length is K = 13,

corresponding to the Reed-Solomon (RS) code (15,13). Also, the BCH

(15,11) code has the same correction capability but with a lower rate. These

codes are extensively used in classic systems. For instance, the FEC scheme

in the recent IEEE 802.15.6 standard for wireless body-area networks [10]

is based on the BCH codes of lengths 63 and 127. Nevertheless, we actu-

ally compare the JSC code of rate 1 with two block codes of lower rates.

Hence, the JSC code already outperforms the two block codes in terms of

bandwidth. The following filters of length 16 have been used in the BFT

part of the simulation:

l = ( 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0 )T

h = ( 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0 )T

The BFT of the message signal has 4 zero components, i.e. |Kc,0| = 4. The

end-to-end distortion (normalized to the signal energy) corresponding to the

two systems is plotted versus different SNRs in Fig. 7.4. In the JSC code,

the amount of distortion grows at low SNR values due to the unresolvable

channel errors. Nevertheless, it is still possible to acquire an approximation

of the original message. On the other hand, when the number of channel

errors is more than t with high probability, the classic system is in the

break down region where the decoder fails to correctly decode most of the

received codewords. The threshold SNR values are 7.5 dB and 9 dB for the

BCH(15,11) and RS(15,13) codes.
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7.3 Simple Hybrid ARQ Schemes based on Po-

lar Codes

Contrary to forward error correction (FEC) schemes, H-ARQ techniques

can adapt the rate of transmission to the channel quality and achieve a

higher efficiency. With an H-ARQ scheme based on systematic codes, an

even higher level of energy efficiency can be achieved, especially at high

signal-to-noise ratio (SNR), since FEC encoding and decoding is only per-

formed when the initial systematic transmission fails. However, for system-

atic polar codes it is not known how to incrementally correct the errors

in H-ARQ deployments. This arises from the special soft-decoding of the

polar codes known as successive cancellation (SC) which is performed on

a decoding graph. In this chapter, we show how a systematic polar code

can be used in a type II incremental redundancy (IR) H-ARQ such that

the receiver can improve the frame error rate (FER). Note that since typ-

ical sensor-based IoT devices usually demand low to medium data rates

and have complexity constraints, short code lengths are considered in this

chapter.

There are different Hybrid ARQ mechanisms, mostly based on non-

systematic rate-compatible and punctured polar codes, that have been pro-

posed recently. Quasi-uniform puncturing combined with repetition of in-

formation bits for H-ARQ was proposed in [130]. The performance of H-

ARQ schemes based on puncturing significantly depends on the puncturing

pattern. Finding optimal patterns can also impose high complexity, since

they mostly rely on exhaustive search. A different strategy based on sys-

tematic codes is pursued in this chapter in which no puncturing is required.

The transmitter first sends the systematic bits and then the parity segments

of a polar codeword sequentially until the message is correctly decoded.

We propose and develop the theoretical framework for type-II H-ARQ

based on systematic polar codes. Our first H-ARQ scheme is based on half-

rate polar codes and code inversion. We also present a more general H-ARQ

scheme assuming an arbitrary code rate in conjunction with calculations of
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the frame error rate in polar codes with incomplete codewords.

7.3.1 Error Performance of Polar Codes with an Incom-

plete Codeword

Assume that an all-zero codeword is sent using antipodal signaling with

unit energy per bit over a discrete memoryless zero-mean additive white

Gaussian noise (AWGN) channel with variance σ2, and that the received

vector is y = (y1, ..., yN). The channel log-likelihood ratio (LLR) corre-

sponding to a code bit yi is 2
σ2yi. To model decoding with an incomplete

codeword, we assume that the set of code bits available at the receiver after

a transmission t (denoted by Tt) are transmitted through a channel with

noise variance σ2, and the rest (denoted by T ct ) is sent over a channel with

infinite noise. In the latter case, the channel LLR values are equal to zero.

This is equivalent to a likelihood ratio of one, or a bit error probability of

1/2. Therefore, choosing E[t] = {E[t]
i,j} as the average LLR matrix corre-

sponding to the decoding graph, the mean LLR values at the first (channel)

level are

E
[t]
i,1 =

 2
σ2yi ∀i ∈ Tt
0, ∀i ∈ T ct

(7.37)

Note that Tt = {1, .., N} when the codeword is fully available for decoding.

Since the FERs of systematic and non-systematic polar codes are equal

[131], we assume non-systematic codes for FER analysis. Accurate calcu-

lation of FER requires assuming the initial probability density function of

each received bit and evolving the densities in the succeeding levels of the

decoding graph considering the variable and check nodes. This approach

may not be tractable for arbitrary densities. However, it is straightforward

for Gaussian random variables since their sum also follows a Gaussian dis-

tribution. Another useful observation here is that the channel LLR can also

be approximated by a Gaussian random variable whose mean value is half

of its variance. Hence, it can be recognized only with one parameter (i.e.

its mean value)[132]. Different nodes on the decoding graph are divided

into check nodes and variable nodes and can be distinguished tusing the
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following rule

node type =

check, if Bi,j−1 = 1

variable, if Bi,j−1 = 0,
(7.38)

where B = {Bi,j} is the right-MSB binary representation of the vector

(0, ..., N − 1)ᵀ, ∀i ∈ [1, N ], j ∈ [2, n + 1]. It can be shown that the mean

LLR values at each level using the Gaussian approximation are given by

E
[t]
i,j =

a+ b check

φ−1(1− (1− φ(a))(1− φ(b))) variable,
(7.39)

where a = E
[t]
i,j−1, b = E

[t]

i+2j−2,j−1
, and φ(x) can be modeled by the expo-

nential fit [132]

φ(x) =

exp (0.4527x0.86 + 0.0218) , if 0 < x ≤ 10
√
π

2
exp

(
−x

4

) (
1− 10

7x

)
, if x > 10.

(7.40)

On the assumption that the previous bits are correctly decoded, the ap-

proximated error probability of the ith bit is given by

ε
[t]
i = Q(

√
0.5ẽ

[t]
i ), (7.41)

where ẽ[t] = (ẽ
[t]
1 , ..., ẽ

[t]
N )ᵀ = π(E

[t]
:,n+1) is the mapped version of the (n+1)th

column of E[t] under bit-reversal permutation mapping π, and Q is the tail

probability of the standard Gaussian density. The FER can be given by

FER[t] = 1−
∏
∀i∈I

(1− ε[t]
i ). (7.42)

Similarly to [131], it would be useful to split the message vector u = (uI ,uF)

to consider separately the information and the frozen bits. Note that the

frozen bits are not necessarily in a separate part of the message vector and

can be distributed among different indices. The polar encoding procedure

(7.1) can be written as

x = uIGI + uFGF , (7.43)
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in which GI and GF are submatrices of G, with rows specified by uI and

uF . Similarly, assuming that the systematic and parity bits of the codeword

x belong to the sets S and P respectively, we can split the codeword x into

systematic and parity bits xS and xP , and rewrite (7.43) as follows [131]:

xS = uIGIS + uFGFS , (7.44)

xP = uIGIP + uFGFP , (7.45)

where GIS is a sub-matrix of G with rows and columns specified by I and

S, respectively, and the other three sub-matrices of G are defined similarly.

According to [131], the necessary and sufficient conditions for the existence

of a systematic encoder is a one-to-one correspondence between the values

of uI and xS , which is achieved if and only if the two sets I and S have the

same number of elements and GIS is invertible. A straightforward choice

that satisfies the above condition and is assumed in the rest of this chapter

is to select

S = µI , (7.46)

where µ = (1, 2, ..., N)Π is a vector of the image of the input indices under

the mapping Π.

The conventional encoding (7.1) leads to non-systematic codewords, in

the sense that the message bits do not necessarily appear in the polar code-

word. Hence, a reverse approach is used to construct systematic codewords

in which the beginning point is the codeword x, or more precisely, the sys-

tematic bits xS . For a given message, xS would be considered known and

the vector uI calculated using (7.44) as

uI = (xS − uFGFS) (GIS)−1, (7.47)

and the parity bits calculated by substituting uI in (7.45).

7.3.2 Simple H-ARQ Schemes Based on Polar Codes

The inversion process in an FEC code refers to the recovery of message

bits from redundant bits only [133]. For polar codes, it can be performed
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similarly to what presented in Section 7.3.1 for constructing systematic

polar codes, however, for a very different purpose and in a different place.

Contrary to a systematic encoder in which equations (7.44) and (7.45) are

used at the transmitter, we use these equations at the receiver side. The

other slight difference is that, instead of beginning with (7.44), here we first

use (7.45) to calculate

uI = (xP − uFGFP) (GIP)−1, (7.48)

and then substitute the result in (7.44) to acquire the systematic bits.

H-ARQ with Half-rate Invertible Polar Codes

We propose a half-rate (N,N/2) systematic polar code as our base FEC

scheme. This choice leads to an equal length for the message and the

redundancy bits. Using an error detection code C0 such as a cyclic redun-

dancy check (CRC) C parity bits are appended to the codeword to verify

the integrity of each of the received words.

Let xS be a message of size N/2 − C. At the initial stage, the trans-

mitter temporarily saves the data bits, encodes them using C0 and sends

the codeword of size N/2 through the channel. At the receiver side and by

decoding C0, an acknowledgment (Ack) message is sent from the receiver if

no error is detected. No further encoding is performed at the transmitter

and ithe message proceeds to the next data block. If there was any error,

the receiver temporarily stores the received vector and sends a negative

Ack message. The transmitter encodes the data bits using an (N,N/2)

systematic polar code and then sends the redundant bits only. This time,

the receiver finds the decoded message by inversion. If no error is detected

after looking at the checksum, then the receiver accepts it. Otherwise, the

receiver applies SC decoding using the stored received vector of the sys-

tematic bits and the available received vector of the redundant bits. If the

decoding is unsuccessful again, the previously stored vector of the received

systematic bits is erased and the received vector of the redundant bits is

stored, so that the next potential transmission of the systematic bits could
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Figure 7.5: Block diagram of the proposed incremental redundancy H-ARQ.

be combined with the redundant bits for SC decoding. This procedure can

continue for a pre-defined number of retransmissions which we denote by ρ.

Incremental Redundancy H-ARQ with Polar Codes

The H-ARQ scheme presented in the previous section is simple. However,

it cannot use arbitrary-rate codes. In addition, the redundant bits should

always be sent at once. An alternative approach is to deploy a systematic

polar code of arbitrary rate R = K/N (which is selected for the lowest SNR

at which reliability should be guaranteed), divide the redundant bits to a

number of disjoint sets, and transmit the systematic bits and then redun-

dant segments, sequentially, until the message is successfully delivered. Our

second proposed scheme starts with a message of length K − C which is

encoded by the error detection code C0. The output of length K denoted

by xS is sent over the channel. The transmission of the systematic bits is

denoted by the set T1. If the receiver detects the message in error, then the

transmitter encodes xS by the systematic polar code C1 of rate R and sends

a subset P1 of the redundant (parity) bits, where r1 = |P1| is the total num-

ber of bits in P1. We then decode the polar code using the incomplete set

of LLRs which includes all systematic bits plus P1 such that T2 = T1 + P1.

In case of decoding failure identified by C0, the transmitter sends another
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disjoint subset of size r2 of the redundant bits denoted by P2. This proce-

dure ends when the C0 checksum is consistent, but it potentially continues

until all redundant bits are sent in the final transmission m. Hence,

r1 + r2 + · · ·+ rm = N −K. (7.49)

7.3.3 Performance Evaluation

Denote the number of successfully delivered bits in the tth transmission by

dt and the number of sent bits by st. The throughput efficiency is defined

as η ,
∑T

t dt∑T
t st

, for a large number T . dt is a random variable taking two

values K − C or 0, and st ∈ {K,K + r1, K + r1 + r2, ..., N}. For theretical

derivation of the throughput efficiency one needs to calculate

η =
E{d}
E{s} . (7.50)

However, the exact calculation requires the conditional frame probabilities,

given failure of the previous transmissions, and is not tractable. Hence, we

approximate the conditional frame probabilities similarly to the approach

pursued in [130]. Assume that At represents the event of failed reception

in the tth transmission where t ∈ [1,m + 1] and t = 1 corresponds to the

initial (systematic) transmission. Let Pr(At) and At be the probability and

the complementary event of At, respectively. Considering [130]

Pr(At ∩ At−1 ∩ · · · ∩ A0) ≈ Pr(At−1)− Pr(At), (7.51)

Pr(At ∩ At−1 ∩ · · · ∩ A0) ≈ Pr(At), (7.52)

the expected numbers of received and sent bits are as follows:

E{d} = (K − C)(1− Pr(Am+1 ∩ Am ∩ · · · ∩ A0))

≈ (K − C)(1− Pr(Am+1)), (7.53)

E{s} =
m+1∑
t=1

(K +
t−1∑
j=0

rj) Pr(At ∩ At−1 ∩ · · · ∩ A0)

+N Pr(Am+1 ∩ Am ∩ · · · ∩ A0)

≈
m+1∑
t=1

(K +
t−1∑
j=0

rj) [Pr(At−1)− Pr(At)] +N Pr(Am+1), (7.54)
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where r0 , 0, Pr(A0) , 1, Pr(A1) = 1 − (1 − Q(1/σ))K , and Pr(At) =

FER[t] is calculated using (7.42) for t ∈ [2,m + 1]. It should be noted

that depending on the rate of the base polar code and the channel SNR,

the first transmission of redundant bits does not necessarily reduce the

FER for arbitrary r1. To prevent this, r1 should be selected such that

Pr(A2) < Pr(A1). Note that for the remaining transmissions, Pr(At+1) <

Pr(At), ∀t ∈ [2,m+ 1] due to the polarization effect.

Fig. 7.6 illustrates a comparison between the Monte Carlo FER of

two different polar codes of rate 1/2 and their corresponding analytical

approximation assuming three different SNRs. The analytical FER matches

well with the simulation. A difference can be observed at low SNR due to the

inaccuracy of Gaussian approximation for LLR density at this SNR range

[132]. The non-smooth appearance of the curves is due to the different

levels of polarization for various bit channels.

Fig. 7.7 compares the throughput efficiency of the proposed H-ARQ

schemes with that of the H-ARQ scheme in the high-quality-of-service mode

of the IEEE 802.15.6-2012 standard for wireless body area networks [10],

which is based on the invertible shortened BCH (126,63) code. The CRC-

16-CCITT error detection code is assumed for C0 which is also used in [10]

and appends 16 parity bits to each codeword. This will result in a proba-

bility equal to 2−16 for erroneous detection of errors. Note that although

traditionally adopted in previous work, we do not neglect the rate loss cor-

responding to C0 (hence, the maximum achievable throughput is less than

1). The bumpy curves are typical in many H-ARQ schemes and are mainly

due to different delivery mechanisms in the H-ARQ scheme, each being

dominant in a particular SNR interval. A code of length 128 is assumed for

a fair comparison in terms of computational complexity. The advantage of

the H-ARQ scheme based on an invertible polar code at low SNR is roughly

4 dB compared to [10]. However, at high SNR it achieves a similar per-

formance. The IR H-ARQ scheme can also achieve the 4-dB advantage at

low SNR while it can outperform [10] at higher SNR range. Note that the

maximum achievable throughput is lower than [10] since no error detection

is performed by the polar code, hence, the H-ARQ always relies on C0 for
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polar codes of rate 1/2 versus incremental transmission of the redundant bits.

this task. This can be improved by increasing the code length. Fig. 7.7

can also verify our analytical approximation for η. The capacity bound for

a binary AWGN channel (BAWGNC) is also depicted for comparison.

To understand the effectiveness of inversion in polar codes, a separate

simulation is performed assuming a Rayleigh fading channel, and the result

is presented in Fig. 7.8. Based on this result, the throughput efficiency

can be considerably improved in fading conditions when code inversion is

enabled.

7.3.4 Conclusions

We proposed a novel joint source and channel coding scheme that combines

BFT and polar coding. The BFT, which is a source transform, can reduce

the rate of the message in order to compensate for the redundancy imposed

by the polar channel code. The theoretical background regarding both BFT

and polar codes is presented and then the proposed JSC framework is for-

mulated for length-N codes. Using simulations for the AWGN channel, we

show that a noticeable performance gain is achieved considering each single
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bit compensated by the BFT. We also compare the proposed JSC coding

scheme with the classic Reed-Solomon and BCH block codes of a similar rate

in terms of the end-to-end distortion and showed that the JSC coding ap-

proach can provide an approximation of the original signal, while the block

code is in the break down region. Other performance gains of this scheme

include a higher throughput as well as a significant complexity reduction.

Furthermore, this we introduced type II-IR-H-ARQ schemes for system-

atic polar codes. The first scheme deploys alternative message/redundancy

packets combined with code inversion, which is effective at fading condi-

tions. The second scheme can use arbitrary-rate systematic polar codes.

Frame error probabilities with incomplete channel codewords are calculated

and the results are verified by simulation.





Chapter 8

Conclusion and Future Work

This thesis addressed the problem of reliable communications in wireless

body area networks. Since the available resources in typically tiny low-

power low-complexity sensor nodes are extremely scarce, it was proposed

to improve the transmission efficiency at the sensor nodes which can ulti-

mately improve the reliability directly (by increasing the amount of success-

fully delivered data) or indirectly (through allocation of more node resources

for error control schemes). In addition, due to the usually more computa-

tionally and energy capable hardware at the hub nodes, it was proposed

to leverage this feature to achieve a higher efficiency at the sensor nodes.

Several methods based on the theory of statistical signal processing were

proposed to improve transmission efficiency.

At the sensor level as well as the physical layer of the protocol stack,

non-uniform sampling and joint source-channel coding schemes were pro-

posed. It was shown that the proposed joint source-channel code can achieve

smooth distortion to improve robustness against the threshold effect in dig-

ital systems and the results were compared with the state-of-the-art codes

in IEEE 802.15.6 standard. While the classic approach based on FEC codes

breaks down below the threshold SNR, the proposed joint source-channel

code can enable decoding and represent a distorted version of the original

signal, where the level of distortion increases ans the SNR is reduced. Fur-

thermore, non-uniform sampling was proposed to represent a given chunk
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of band-limited signal with fewer number of bits. It was confirmed by simu-

lations that the proposed scheme can reduce the total number of bits down

to 88% compared to the conventional uniform sampling, without using any

compression schemes and with almost imperceptible visual effects on the

ECG test signal.

At the MAC/link layer, optimization schemes were deployed for link

adaptation as well as frame optimization. It was shown that link adaptation

can improve the transmission efficiency even close to twice the efficiency

of the static UWB transmission in the IEEE 802.15.6 standard, both in

the default and high QoS modes. Novel estimators that are deployed at

the receiver side and don’t require channel feedback from the transmitter

are proposed for SNR estimation which is require for link adaptation. A

closed form expression was derived for the optimal frame length to achieve

optimal energy efficiency in the default mode of the IEEE 802.15.6 and

and the optimal length for the high QoS mode was derived using numerical

optimization. Additionally, the optimal energy-delay tradeoffs for queue

stability as well as the minimum energy function under UWB physical layer

of this standard were derived. The scheduling policy that achieves minimum

energy bound for noncoherent UWB communication was also derived.

At the network/data-link layer, novel error control coding schemes were

proposed that rely on low complexity at the sensor nodes. More specifically,

a partial packet recovery technique was proposed that benefits from the

sparsity of errors in partially corrupted packets and can correct residual

packet errors by exploiting random linear network coding combined with

compressive sensing. Based on the simulation results, it was concluded that

the proposed scheme not only improves the transmission efficiency in the

multicast scenario (up to 50% in a typical setting), but is can also improve

the performance of random linear coding in point-to-point settings where

it doesn’t have any advantage alone.

Motivated by the capacity-achieving and low-complexity features of the

recently discovered polar codes, their application for low-complexity IoT

and WBAN devices was considered and novel coding techniques were pro-

posed. In this regard, simple hybrid ARQ schemes based on systematic
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polar codes were proposed that can achieve significantly higher efficiencies

compared to the state-of-the-art technique in the high QoS transmission

mode of the IEEE 802.15.6 standard at low SNR. Simulations confirmed

that a gain of up to 4 dB in the SNR can be achieved. Additionally, it was

shown that by introducing code inversion the proposed hybrid ARQ scheme

is effective against random fading conditions.

In addition to the novel techniques, this thesis presents new topics for

future research. There are many aspects in each of the proposed methods

that can be investigated and improved further. For nonuniform sampling,

the suggested works for future include more advanced nonuniform sampling

techniques that can consider the statistical feature of the signal. More

clearly, an interesting problem is context modeling as well as optimal bit

depth and sampling time allocation based on the specific context. More

complex prediction functions may lead to even more reduces set of bits to

represent a segment of band-limited signal. There is also room for more

investigation for more computationally effective error control schemes that

can consider more side information for packet recovery. Indeed, combining

the existing knowledge at the receiver side can be leveraged to pinpoint the

residual errors. Furthermore, based on the promising results gained in this

thesis, advanced coding schemes based on polar codes for IoT applications

that consider short code lengths have a high potential to be considered

for the next generation of IoT devices. Hence, cross-layer optimization

techniques based on these codes remain an open research topic.





Appendix A

Calculation of Energy Efficiency

In this appendix we extend the energy efficiency model proposed in [20] to

the cases with different energy costs for the receiver and the transmitter.

In fact, the energy resources of the sensors are extremely limited, and they

are required to operate for a long time. On the other hand, battery re-

charging is a convenient task for a hub. Therefore, the hub and sensors

have different energy consumption costs. Clearly, the energy consumption

cost of transmission on the uplink (sensor→ hub) is higher, so is the energy

consumption cost of reception on the downlink.

Suppose that l encoded bits are transmitted from a sensor to the hub

within a data packet with τ̄ =
∑

i τi overhead bits, where τi is the length

of overhead data of rate Rτi . This model accounts for different types of

overhead data including synchronization bits, header data, or even MAC

layer headers and check sequences. The energy required to communicate

one bit of information is given by

Eb = ctu(βEtb + Eenc/l) + cru(Erb + Edec/l)

+ctdEt−ack/l + crdEr−ack/l, (A.1)

in which Eenc and Edec are the required energies for data encoding/decoding,

and Et−ack, and Er−ack are the energies required for the acknowledgment

packets. The constants ctu, cru, ctd, and crd are energy consumption costs

for transmission and reception on the uplink and downlink respectively. β
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depends on the type of modulation and is 1/2 for on-off signaling and 1

otherwise. Etb and Erb are the energy consumption for transmission and

reception of a bit of data, and can be written as

Etb =
1

l
(Npεtp

l

Rb

+Npεtp
∑
i

τi
Rτi

+ Est), (A.2)

Erb =
1

l
(Npεrp

l

Rb

+Npεrp
∑
i

τi
Rτi

+ Esr), (A.3)

where Np is the number of pulses per symbol, εtp is the total energy spent

on transmission of one pulse, consisting of radiation energy and the process-

ing energy of the electronic circuit, εrp is the processing energy per pulse

consumed by the electronic circuits of the receiver, and Rb is the coding

rate of the data payload.

Typical values for these parameters can be found in [134]-[135]. We use

εtp = 20 pJ and εrp = 2.5 nJ. The required startup energies for transmitter

and receiver, Est and Esr, can be approximated using the fact that k ≥ 1

empty packets (e.g., overheard bits only) are required for synchronization.

This will also give an estimate for the startup energies as

Est = εtpNp × kτ̄ , (A.4)

Esr = εrpNp × kτ̄ . (A.5)

Equation (A.1) can be re-written in terms of parameters

ε1 = (ctuβεtp + cruεrp)Np/Rb, (A.6)

ε2 = ctuβEst + cruEsr = Npkτ̄(ctuβεtp + cruεrp), (A.7)

and E0 = ctuEenc + cruEdec + ctdEt−ack + crdEr−ack as

Eb = ε1 + ε1
Rb

l

∑
i

τi
Rτi

+
ε2 + E0

l
, (A.8)

where ε1 represents the useful energy for transmission of one bit, and ε2 is

the startup energy consumption for the uplink. From (A.8), energy con-

sumption is proportional to the inverse of packet length l. So it can be

reduced by choosing a longer frame length. On the other hand, channel
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errors and packet losses are more likely when the frames are longer. There-

fore, there is an optimal frame length for a given error probability that can

minimize loss of energy. Energy efficiency is defined as the ratio of useful

energy for successful communication of l bits to the total consumed energy

and is expressed as

η =
ε1l

ε1(l +
∑

i τi(Rb/Rτi)) + ε2 + E0

P
(m)
PPDU , (A.9)

where P
(m)
PPDU is the packet success rate given by (3.7) and (3.10).
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