OXIDATION OF ASCORBATE BY PROTEIN RADICALS IN SIMPLE SYSTEMS AND IN CELLS

Chia-chi Liu MSc (Biotechnology) UNSW, Australia

Department of Chemistry and Biomolecular Sciences Macquarie University Sydney, NSW 2109

Submitted in fulfillment of the requirements for the Degree of Doctor of Philosophy August 2007

TABLE OF CONTENTS

Page

Table of contents	i
Summary	xii
Declaration	
List of Figures	XV
List of Tables	
Abbreviations	
Conferences & publications	
Acknowledgements	
-	

CHAPTER 1: Introduction	1
1.1 Reactive oxygen species (ROS)	2
1.1.1 What are ROS?	2
1.1.2 The major reactive oxygen species	4
Superoxide anion radicals $(O_2^{\bullet^-})$	4
Hydrogen peroxide (H ₂ O ₂)	5
Hydroxyl radicals (HO•)	6
1.2 The generation of reactive oxygen species in vivo	7
1.2.1 Endogenous sources	9
1.2.1.1 Mitochondrial electron transport system	9
Complex I as a source of superoxide	9
Complex III as a source of superoxide	12
Other possible mitochondrial ROS sources	12
1.2.1.2 Endogenous autooxidation compounds	13
Small cytoplasmic molecules	13
Cytoplasmic Proteins	14

1.2.1.3 Membrane enzymes	14
Respiratory burst	14
Microsomal electron transport systems-cytochrome P-450 enzymes	15
Lipoxygenase and cyclooxygenase	16
1.2.1.4 Peroxisomes	16
1.2.2 Exogenous sources	16
1.2.2.1 Radiation	17
Formation of radicals by ionizing radiation	17
Reaction of hydroxyl radicals	18
1.2.2.2 Other exogenous sources	20
1. 3 Antioxidant defense systems	21
1.3.1 Enzymatic defense systems	21
1.3.1.1 Superoxide dismutase (SOD)	21
1.3.1.2 Catalase	23
1.3.1.3 Glutathione peroxidase	24
1.3.3.4 Glutathione reductase	25
1.3.2 Non-enzymatic defense systems	25
1.3.2.1 Ascorbic acid –Vitamin C	26
1.3.2.2 Glutathione	32
1.3.2.3 Flavonoids	36
1.3.2.4 Nitroxides	37
1.3.2.5 Nitrones	39
1. 4 Reactive oxygen species and human diseases	40
1.4.1 Aging	41
1.4.2 Inflammation/ infection	42
1.4.3 Ischaemia-reperfusion	43
1.4.4 Atherosclerosis	44
1.5.5 Neurogenerative diseases	45
1.5 Mechanism of oxidative damage to molecular targets in cells	48
1.5.1 Oxidative damage to DNA	48
DNA as a target in vivo	51

1.5.2 Oxidative damage to lipids		52
Lipids as target in vivo		55
1.5.3 Oxidative damage to proteins		57
1.5.3.1 ROS induced damage on proteins-Peptide bond cleavage		58
1.5.3.2 Oxidation of amino acid residues in proteins		59
Aliphatic amino acid oxidation		59
Cysteine and methionine oxidation		59
Aromatic amino acid oxidation		60
1.5.3.3 ROS induced damage on proteins-protein cross linkage		62
1.5.3.4 Site-specific metal-catalyzed oxidation		62
1.5.3.5 Cellular metabolism of oxidized proteins-enzymic removal		64
1.5.3.6 The biological damage by oxidized proteins		66
1.6 Proteins are the primary target of ROS damage		67
1.6.1 Stepwise development of ROS-induced biological damage		67
1.6.2 Proteins as primary target		69
1.7 Protein hydroperoxides		72
1.7.1 The history of amino acid and protein hydroperoxides studies		73
1.7.2 Formation and properties of protein hydroperoxides		75
1.7.3 Biological significance of protein hydroperoxides		76
1.8 Amino acid, peptide and protein radicals		81
Formation and reactions of amino acid, peptide and protein radicals		81
1.9 Aims of this study		84
I. In vitro studies	84	
II. In cell culture studies		85

CHAPTER 2: Materials & standard methods	
2.1 Materials	86
2.1.1 Reagents	86
2.1.2 Media	90

2.1.3 Culture vessels, serological pipettes and centrifuge tubes	90
2.1.4 Preparation of glassware and plasticware	90
2.1.5 Solutions and Buffers and Media preparation	91
(I) In Vitro studies	91
(A) Fricke dosimeter stock solution	91
(B) Ascorbic acid stock solution	91
(C) Catalase solution	91
(D) 0.2 M pH 7.0 Sodium phosphate buffer	91
(E) Sodium formate stock solution	92
(F) Sodium azide stock solution	92
(G) FOX assay solutions	92
(H) Ferrozine assay solutions	92
(II) Cell culture studies	93
(A) HL-60 cell experimental solutions	93
(B) Ascorbic acid uptake solutions	94
(C) MTT assay solutions	94
(D) HPLC assay solutions	94
(E) Bradford assay solutions	95
(F) Ellman's assay solution	95

2.2 Methods	96
2.2.1 Determination of dose rate of the cobalt-60 gamma radiation source	96
(I) In Vitro studies	96
2.2.2 Ascorbic acid measurement	96
2.2.2.1 Ultraviolet spectrophotometry	97
2.2.7.2 Ferrozine assay	97
2.2.3 Irradiation of ascorbic acid, protein and amino acid solutions	97
2.2.4 Superoxide dismutase treatment	98
2.2.5 Sodium formate treatment	98
2.2.6 Azide treatment	98
2.2.7 FOX assay of protein hydroperoxides	99

2.2.8 Antioxidants	99
(II) Cell culture studies	100
2.2.9 HL-60 cell culture	100
2.2.10 Cell number counting	100
Trypan blue exclusion assay	100
2.2.11 Cell viability assay	100
MTT assay	100
2.2.12 Irradiation of cells	101
2.2.13 Hydroperoxide assays	101
G-PCA-FOX assay	101
2.2.14 Measurement of intracellular ascorbic acid	102
2.2.14.1 Sample preparation	102
2.2.14.2 High performance liquid chromatography (HPLC)	102
Apparatus	102
HPLC conditions	102
2.2.15 Protein estimate in HL-60 cells	103
Bradford methods	103
2.2.16 Measurement of intracellular glutathione	104
Ellman's assay	104
GSH standard curve	104
2.2.17 Statistical analysis	104

CHAPTER 3: Results	105
3.1 Radiation dose and radical yield determination	105
3.1.1 Gamma irradiation dose rate measurement	105
3.1.2 The amounts of radicals generated by gamma irradiation in different cont	ainers
	109
SECTION (I) IN VITRO STUDIES	112
3.2 Effect of γ -irradiation generated free radicals in ascorbic acid oxidation	112

3.2.1 Ascorbic acid standard curve by ultraviolet spectrophotometer	112
3.2.2 The effect of gamma irradiation on different concentrations of ascorbic acid	1
under air	115
3.2.3 The effect of gamma irradiation of ascorbic acid oxidation under different g	ases
	117
3.3 The oxidation of ascorbic acid by protein radicals	120
3.3.1 The effect gamma irradiation under different gases	120
3.3.2 The effect of BSA radicals in ascorbic acid oxidation under different gases	121
3.3.2.1 Oxidation under air	121
3.3.2.2 Oxidation under N ₂ O and argon	123
3.3.2.3 Comparison of the effects of BSA radicals in ascorbic acid oxidation	L
under different gases	125
3.3.3 The effect of lysozyme radicals on ascorbic acid oxidation under different	
gases	127
3.3.3.1 Oxidation under air	127
3.3.3.2 The effect of lysozyme radicals on ascorbic acid oxidation under	
N ₂ O and argon	129
3.3.3.3 Comparison of the effects of LZ radicals on ascorbic acid oxidatio	n
under different gases	131
3.3.4 The effect of superoxide dismutase on radical-induced ascorbic acid oxida	tion
	133
3.3.5 The effect of different protein radicals on ascorbic acid oxidation	136
3.4 The effect of hydroxyl and superoxide anion radicals on amino acid radicals-indu	iced
ascorbic acid oxidation	139
3.4.1 Determination of amino acid concentration used in experiments	139
3.4.2 The effect of different amino acid radicals on ascorbic acid oxidation	140
3.5 Effect of protein on the oxidation of ascorbic acid by superoxide radicals	144
3.5.1 Superoxide anion radical generation	144
3.5.2 The effect of carbon dioxide radicals on ascorbic acid oxidation	145
3.5.3 Effect of BSA on superoxide radical induced ascorbic acid oxidation	147
3.6 Comparison of the actions of different radicals on ascorbic acid	149

3.6.1 Different radical generation	149
3.6.2 Ascorbic acid measurement by the ferrozine assay	152
3.6.2.1 The background of Ferrozine assay	152
3.6.2.2 Method of Ferrozine assay	152
3.6.2.3 Ascorbic acid standard curve by ferrozine assay	152
3.6.2.4 Ascorbic acid standard curve in 0.1M azide solution by ferrozine as	say
	153
3.6.3 Oxidation of ascorbic acid by different radicals	156
3.6.3.1 The effect of azide radicals on ascorbic acid oxidation	156
3.6.3.2 Oxidation of ascorbic acid by azide and hydroxyl radicals	158
3.6.3.3 Oxidation of ascorbic acid by lysozyme radicals	158
3.6.3.4 Comparison of different radicals as oxidants of ascorbic acid	161
3.6.3.5 Comparison the effect of different radicals in ascorbic acid oxidation	n
	163
3.6.4 The effect of chymotrypsin protein radicals on ascorbic acid	166
3.7 The effect of antioxidants on BSA radical-induced ascorbic acid oxidation and B	SA
peroxide formation	168
3.7.1 The effect of antioxidants on BSA radical-induced ascorbic acid oxidation	168
3.7.2 The effect of antioxidants on BSA protein peroxide formation	169
3.7.2.1 The formation of BSA hydroperoxides by gamma irradiation	169
3.7.2.2 The effect of antioxidants on BSA hydroperoxide formation	173
SECTION (II) CELL CULTURE STUDIES	175

3.8 Effect of gamma irradiation-induced oxidative damage to HL-60 myeloid leukemia	
cells 1	175
3.8.1 The growth pattern of HL-60 cells1	175
3.8.2 Effect of medium on γ -irradiation induced oxidative damage to HL-60 cells 1	.78
3.8.2.1 Cell viability during irradiation in HEPES buffer and in RPMI-1640 17	78
3.8.2.2 Protein peroxide formation in HL-60 cells irradiated in different media	
1	82

3.8.2.2.1 The G-PCA-FOX assay	182
3.8.2.2.2 G-PCA-FOX assay of intracellular hydroperoxides	182
3.8.2.3 Effect of different irradiation times in HEPES buffer and in RPMI-16	40
on the formation of protein hydroperoxides	185
3.9 Effect of GSH depletion and repletion on protein peroxide formation in HL-60 ce	lls
	187
3.9.1 The study of intracellular GSH in HL-60 cells	188
3.9.1.1 Ellman's assay	188
3.9.1.2 GSH standard curve in Ellman's assay	189
3.9.1.3 GSH concentration in different cell numbers	189
3.9.2 Protein estimate in HL-60 cells	192
3.9.2.1 The standard curve for reaction between BSA and Bradford reagent	192
3.9.2.2 Total protein concentration in different cell numbers	192
3.9.3 Effect of γ irradiation on intracellular GSH levels	195
3.9.4 Effect of BSO on HL-60 cells	197
3.9.4.1 The effect of BSO on intracellular GSH levels	197
3.9.4.2 Effect of BSO on cell viability	199
3.9.4.3 Effect of BSO on intracellular GSH levels in γ irradiated cells	199
3.9.4.4 Effect of GSH depletion on protein hydroperoxide formation in γ	
irradiated cells	202
3.9.5 Effect of NAC on HL-60 cells	205
3.9.5.1 The effect of NAC on intracellular GSH levels	205
3.9.5.2 Effect of NAC on cell viability	207
3.9.5.3 Effect of NAC on intracellular GSH levels in γ irradiated cells	207
3.9.5.4 Effect of GSH enhancement on protein hydroperoxide formation in	
γ-irradiated cells	210
3.9.6 Effect of 20 min irradiation on GSH levels after NAC and BSO treatment	213
3.9.6.1 Comparison of GSH depletion and repletion on intracellular GSH lev	vels
in γ -irradiated cells	213
3.9.6.2 Effect of GSH depletion and repletion on protein peroxide format	tion
in HL-60 cells irradiated for 20 min	215

3.10 The role of ascorbate on protein hydroperoxide formation induced by gamma	
irradiation in HL-60 cells	217
3.10.1 Effect of ascorbate on cell viability during irradiation	217
3.10.2 Analysis of intracellular ascorbate in HL-60 cells	220
3.10.2.1 Ascorbic acid chromatography and standard curve	220
3.10.2.2 Intracellular accumulation of ascorbate in HL-60 cells	223
3.10.3 The effect of ascorbate on protein hydroperoxide formation	227

CHAPTER 4: Discussion	230
SECTION (I) IN VITRO STUDIES	230
4.1 Different ROS produced under different gases	230
4.2 Ascorbate oxidation by γ -irradiation generated free radicals	231
4.2.1 Ascorbic acid free radicals	231
4.2.2 Quantitation of ascorbic acid/ascorbate	234
4.2.3 Gamma irradiation-induced oxidation of ascorbate	235
4.2.4 Gamma irradiation-induced oxidation of ascorbate under different	
gases	237
4.3 Ascorbate oxidation by protein radicals	238
4.3.1 Effect of different gases	240
4.3.1.1 BSA-derived protein radicals	240
4.3.1.2 LZ-derived protein radicals	243
4.3.2 Superoxide dismutase treatment	245
4.3.3 Effect of superoxide radicals on ascorbate oxidation	246
4.3.3.1 Superoxide radicals and carbon dioxide radical anion	246
4.3.3.2 Superoxide radicals in ascorbate oxidation	246
4.3.4 Comparison of ascorbate oxidation by protein radicals under different	
conditions	248
4.4 Ascorbate oxidation by different protein radicals	249
4.5 Ascorbate oxidation by amino acid radicals	250
4.5.1 Amino acid concentration determination	250

4.5.2 Amino acid radicals	251
4.6 Ascorbate oxidation by selected radicals	255
4.6.1 Ferrozine assay- ascorbate measurement	255
4.6.2 Radicals	255
4.6.2.1 Azide radicals	255
4.6.2.2 LZTrp•/ LZTyrO• radicals	256
4.6.3 The effect of lysozyme-induced radicals on ascorbate oxidation	257
4.6.3.1 In the absence of dioxygen	259
4.6.3.2 In the presence of dioxygen	261
4.6.4 The effect of chymotrypsin radicals on ascorbate oxidation	262
4.6.5 Summary	263
4.7 Inhibition of BSA-radical-induced ascorbate oxidation and BSA peroxide formati	on
	263
4.7.1 Antioxidants on BSA radical-induced ascorbate oxidation	263
4.7.2 Effect of antioxidants on BSA peroxide formation	266
4.7.2.1 BSA hydroperoxide formation	266
4.7.2.2 Antioxidants	268
SECTION (II) CELL CULTURE STUDIES	270
4.8 Effect of gamma irradiation-induced oxidative damage to HL-60 cells	270
4.8.1 Effect of irradiation on cell viability in different media	272
4.8.2 Formation of protein peroxides	274
4.8.3 Effect of irradiation dose on the formation of protein peroxides	277
4.9 Effect GSH depletion and repletion on protein peroxide formation in HL-60 cells	278
4.9.1 Effect of gamma irradiation on intracellular GSH levels in HL-60 cells	281
4.9.2 Effect of GSH depletion in HL-60 cells	284
4.9.2.1 Effect of BSO on intracellular GSH level and cell viability in	
HL-60 cells	284
4.9.2.2 Effect of BSO on protein peroxide formation in γ -irradiated cells	284
4.9.3 Effect of GSH repletion in HL-60 cells	286

4.9.3.1 Effect of NAC on intracellular GSH level and cell viability in	
HL-60 cells	286
4.9.3.2 Effect of NAC on protein peroxide formation in γ -irradiated cells	287
4.9.4 Comparison of the effect of GSH depletion and repletion in γ -irradiated	
HL-60 cells	288
4.10 Inhibition of protein peroxidation by ascorbate in gamma-irradiated HL-60 cells	
	289
4.10.1 The effect of ascorbate on cell viability	289
4.10.2 Intracellular accumulation of ascorbate in HL-60 cells	290
4.10.3 The effect of ascorbate in protein peroxide formation	292
4.11 General conclusion and further work	

REFERENCES)5
------------	----

SUMMARY

Generation of peroxide groups in proteins exposed to a wide variety of reactive oxygen species (ROS) requires an initial formation of protein carbon-centred or peroxyl free radicals, which can be reduced to hydroperoxides. Both protein radicals and protein hydroperoxides are capable of oxidizing important biomolecules and thus initiate biological damage. In this study, we investigated the inhibition of protein hydroperoxide formation by ascorbate and GSH in gamma-irradiated HL-60 cells.

We used HL-60 cells as a model for general protection of living organisms by ascorbate (Asc) and glutathione (GSH) from the deleterious effects of protein hydroperoxides generated by radicals produced by gamma radiation. Measurement by HPLC indicated that incubation of HL-60 cells with Asc in the presence of ascorbate oxidase resulted in the accumulation of intracellular Asc. The intracellular Asc levels were lowered by irradiation, demonstrating intracellular consumption of Asc by the radiation-generated radicals. Exposure of HL-60 cells to increasing gamma irradiation doses resulted in increasing accumulation of protein peroxides in the cells. This was measured by the FOX assay. A significant decrease in intracellular protein hydroperoxides was noted when the cells were treated with ascorbic acid before irradiation. A dose-dependent protective effect of Asc was observed. Asc loading also provided strong protection from radiation-generated protein hydroperoxides independently of the composition of the external medium, showing that only the radicals formed within the cells were effective in oxidizing the cell proteins. Similarly, protein peroxidation was inhibited in cells with

enhanced levels of GSH and increased when the intracellular GSH concentration was reduced. These findings indicate that ascorbate and GSH are important antioxidants in protecting cells from oxidative stress associated with the generation of protein hydroperoxide.

DECLARTION

This thesis contains no material which has been presented or accepted for the award of any degree or diploma in any other university or institution.

.....

Chia-chi Liu

LIST OF FIGURES

CHAPTER 1

Figure	Title	Page
1.1	Production and degradation of oxygen free radicals	8
1.2	A Schematic Model of ROS Generation in the Mitochondria	11
1.3	Redox metabolism of ascorbic acid	29
1.4	A model of dehydroascorbic acid and ascorbate transport and recycling in human neutrophils	31
1.5	Structures of reduced (GSH) and oxidized (GSSG) glutathione	32
1.6	Structures of nitroxide compounds	38
1.7	Spin trapping reaction of nitrones	49
1.8	Reaction of guanine with hydroxyl radical	50
1.9	The reactive oxygen species-mediated pathological process	67
1.10	Relative amounts of protein, DNA and lipid in typical eukaryotic cells	71
1.11	Proposed roles of proteins in the transmission of biological damage initiated by reactive oxygen species	78

CHAPTER 3

Figure	Title	Page
3.1	Standard curve of radiation dose rate in eppendorf tubes in a plastic beaker by Fricke dosimeter assay	107
3.2	Standard curve of radiation dose rate in oxford pipettor by Fricke dosimeter assay	108

(I) In Vitro studies

× /		
3.3	The amounts of hydroxyl and superoxide radicals generated by gamma irradiation in eppendorf tubes	110
3.4	The amounts of hydroxyl and superoxide radicals generated by gamma irradiation in the oxford pipettor	111
3.5	Standard curve of ascorbate in phosphate buffer	113
3.6	Standard curve of ascorbic acid in 2M PCA	114
3.7	The effect of gamma irradiation in different concentration of ascorbic acid	116
3.8	Effect of Co^{60} γ -irradiation in ascorbic acid oxidation in different gases	118
3.9	Effect of BSA radicals in ascorbic acid oxidation under air	122
3.10	Effect of BSA in ascorbic acid oxidation under N_2O and Argon	124
3.11	Effect of LZ radicals in ascorbic acid oxidation under air	128
3.12	Effect of LZ in ascorbic acid oxidation under N_2O and Argon	130
3.13	Effect of superoxide dismutase on irradiated ascorbic acid and BSA under air	135
3.14	The effect of different protein radicals in ascorbic acid oxidation	138
3.15	Effect of amino acid radicals in ascorbic acid oxidation	142
3.16	The effect of CO_2^{\bullet} radicals on ascorbic acid in the presence of argon	146
3.17	Effect of BSA in superoxide radical-induced ascorbic acid oxidation	148
3.18	Standard curve of ascorbic acid in ferrozine assay	154
3.19	Standard curve of ascorbic acid with 100 mM azide in ferrozine assay	155
3.20	The effect of azide radicals in ascorbic acid oxidation	157

3.21	The amount of ascorbic acid oxidized by hydroxyl and azide radicals	159
3.22	The effect of lysozyme in ascorbic acid oxidation	160
3.23	The effect of different radicals in ascorbic acid oxidation	162
3.24	Comparison of different radicals in ascorbic acid oxidation by radiation dose of 52 Gy	165
3.25	The comparison of hydroxyl, azide and chymotrypsin radicals in ascorbic acid oxidation	167
3.26	The effect of different antioxidants in BSA radical-induced ascorbic acid oxidation (59.6 Gy)	171
3.27	The formation of BSA hydroperoxides at different radiation time	172
3.28	The effect of different antioxidants in BSA peroxide formation	174
(II) Cell c	ulture studies	
3.29	The growth curve of HL-60 cells in RPMI-1640 medium	177
3.30	Effect of irradiation in HEPES buffer and in RPMI-1640 on cell viability using Trypan Blue Exclusion assay	180
3.31	Effect of irradiation in HEPES buffer and in RPMI-1640 on cell viability using MTT assay	181
3.32	Effect of irradiation in different medium systems on the formation of protein hydroperoxides	184
3.33	Effect of different irradiation times in HEPES buffer and in RPMI- 1640 on the formation of protein hydroperoxides	186
3.34	The standard curve for reaction between GSH and DTNB (Ellman's reagent)	190
3.35	The intracellular GSH concentration in different cell numbers of HL-60 cells	191
3.36	The standard curve of BSA in Bradford assay	193
3.37	The total intracellular protein concentration of HL-60 cells in different cell numbers	194

3.38	Effect of irradiation on intracellular GSH levels	196
3.39	Effect of BSO on GSH levels of HL-60 cells	198
3.40	Effect of BSO on cell viability	200
3.41	Effect of BSO on intracellular GSH levels in irradiated cells	201
3.42	Effect of GSH depletion in protein hydroperoxides formation in irradiated cells	204
3.43	Effect of NAC on GSH levels of HL-60 cells	206
3.44	Effect of NAC on cell viability	208
3.45	Effect of NAC on intracellular GSH levels in irradiated cells	209
3.46	Effect of GSH enhancement in protein hydroperoxides formation in irradiated cells	212
3.47	Comparison of GSH depletion and repletion on intracellular GSH levels in γ -irradiated cells	214
3.48	Effect of GSH depletion and repletion in protein peroxide formation in HL-60 cells	216
3.49	Effect of extracellular ascorbate on cells in RPMI-1640 using Trypan Blue Exclusion assay	218
3.50	Effect of extracellular ascorbate on cells in RPMI-1640 using MTT assay	219
3.51	The standard curve of ascorbate in HPLC	221
3.52	HPLC elution profiles of ascorbate	222
3.53	Intracellular accumulation of ascorbate in RPMI-1640 medium	225
3.54	HPLC elution profile of ascorbic acid in HL-60 cells incubated with RPMI-1640 medium	226
3.55	Effect of ascorbic acid on the formation of protein hydroperoxides in RPMI-1640 medium	228
3.56	The cellular protein peroxide formation in RPMI-1640 medium	229

CHAPTER 4

Figure	Title	Page
4.1	Ascorbic Acid Structure (AscH ₂)	231
4.2	Ascorbate is a donor antioxidant (where R [•] is any of these oxidizing free radicals)	232
4.3	The effectiveness of AA [•] and AAOO [•] radicals in ascorbate oxidation	254
4.4	Scheme showing the scavenging of alkyl (\mathbb{R}^{\bullet}) and peroxyl radicals (\mathbb{ROO}^{\bullet}) by aliphatic and aromatic nitroxide radicals	265
4.5	Chemical structure of gallic acid	269
4.6	Comparison of intracellular GSH levels and protein peroxide formation in HL-60 cells after gamma irradiation in RPMI-1640 medium	283

LIST OF TABLES

CHAPTER 1

Table	Title	Page
1.1	Reactive oxygen species	3
1.2	The major ROS molecules and their metabolism	5
1.3	⁶⁰ Co γ-irradiation <i>G</i> values of water radicals, ions and molecular products in deoxygenated and oxygenated solutions	18
1.4	Initiation and propagation of reactive oxygen metabolites	41
1.5	Rate constant for reaction of HO^{\bullet} with macromolecules at pH 7.0	69
1.6	Selected reactions of amino acid, peptide and protein radicals	81

CHAPTER 3

Table	Title	Page
3.1	The yield of radicals in water after gamma irradiation in different containers	109
(I) In Vitro	o studies	
3.2	Comparison of the level of ascorbic acid oxidation after irradiation under air, argon and N_2O after 60-second irradiation	119
3.3	The percentage of oxidized ascorbic acid after irradiation in the presence of BSA under air (39.7 Gy/min)	121
3.4	The percentage of oxidized ascorbic acid after irradiation in the presence of BSA under N_2O and Argon (52.1 Gy/min)	123
3.5	The amount of ascorbic acid oxidized by different radicals under air, argon and N_2O after 120 second irradiation (BSA)	126
3.6	The percentage of oxidized ascorbic acid after irradiation in the presence of LZ under air (37.9 Gy/min)	127
3.7	The percentage of oxidized ascorbic acid after irradiation in the presence of LZ under N_2O and Argon (52.1 Gy/min)	129

3.8	The amount of ascorbic acid oxidized by different radicals under air, argon and N_2O after 120 second irradiation (LZ)	132
3.9	The level of ascorbic acid oxidation by various free radicals and the effect of superoxide dismutase	134
3.10	Reaction rate ratio of hydroxyl radicals with ascorbic acid and different proteins and the related radicals	137
3.11	Reaction rate ratio of hydroxyl radicals with ascorbic acid and different amino acids and the related radicals	139
3.12	The percentage of ascorbate oxidized by different amino acid radicals under air	141
3.13	Effect of BSA on superoxide radical induced ascorbic acid oxidation after 120 second irradiation (39.7 Gy/min)	147
3.14	Rate constants of reactions of selected radicals with ascorbic acid and lysozyme	151
3.15	Reaction rate ratio for reaction of selected radicals with ascorbic acid, azide and lysozyme	151
3.16	Oxidation of ascorbic acid by radiation-generated protein radicals	164
3.17	The level of ascorbic acid oxidation in various sample solution after radiation in ferrozine assay	166
3.18	The formation of BSA hydroperoxides under air	170
(II) Cell o	culture studies	
3.19	Comparison of cell viability in different medium under different conditions	179
3.20	Effect of irradiation medium in protein peroxide formation	183
3.21	Hydroperoxide yields in 20 min irradiated cells in the presence or absence of BSO	203
3.22	Hydroperoxide yields in 20 min-irradiated cells in the presence or absence of NAC	211
3.23	Intracellular ascorbic acid in HL-60 cells analyzed by HPLC analysis	224

3.24 Hydroperoxide yields in 20 min-irradiated cells in the presence or 227 absence of ascorbate

CHAPTER 4

Page Table Title 4.1 Some rate constants of ascorbate reaction with different oxygen 233 radicals Ascorbate oxidation induced by superoxide anion under different 4.2 248 conditions (39.7Gy/min) The effective radicals involved in ascorbate oxidation under 4.3 249 different irradiation conditions Rate constants of reactions of amino acid and protein radicals with 4.4 259 selected compounds

ABBREVIATIONS

ААРН	2, 2'-azobis-(2-amidinopropane) dihydrochloride
ABTS	2,2'-azino-di-[3-ethylbenzthiazoline sulphonate]
AD	Alzheimer's disease
ALS	amyotrophic lateral sclerosis
AP-1	activator protein-1
Asc	ascorbate
BSA	bovine serum albumin
BSO	L-buthionine sulfoximine
Cg	cytosine glycol
CuZnSOD	copper/zinc superoxide dismutase
CYPs	cytochrome P-450 enzyme
DHA	dehydroascorbic acid
DMPO	5, 5-dimethyl-1-pyroline-1-oxide
DMSO	dimethylsulfoxide
DTNB	5-5'-dithiobis-(2-nitrobenzoic acid)
DTT	dithiothreitol
EC-SOD	extracellular superoxide dismutase
EDTA	ethylenediaminetetracetic acid
EPR	electron paramagnetic resonance spectroscopy
ESR	electron spin resonance
FCS	fetal calf serum

FMN	flavin mononucleotide	
5-FoUra	5-formyluracil	
GCS	γ-glutamylcysteine synthetase	
GLUT	glucose transporters	
GPx	glutathione peroxidases	
GRD	glutathione reductase	
GSH	reduced glutathione	
GSSG	oxidized glutathione	
GSTs	glutathione S-transferases	
HNE	4-hydroxy-2-nonenal	
5-HO-Cyt	5-hydroycytosine	
8-HO-dG	8-hydroxy-2'-deoxyguanosine	
5-HOMeUra	5-hydroxylmetyluracil	
5-HO-Ura	5-hydroyuracil	
HPLC	high performance liquid chromatography	
HSA	human serum albumin	
JUK	c-Jun N-terminal kinase	
LDL	low-denisty lipoprotein	
Lyz, LZ	lysozyme	
Mb	myoglobin	
МСО	metal-catalyzed oxidation	
MDA	malondialdehyde	
Mn-SOD	manganese superoxide dismutase	

MPO	myeloperoxidase
MTT	3-(4,5)-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide
NAC	N-acetylcysteine
NADPH	nicotinamide-adenine dinucleotide phosphate
NF-κB	nuclear factor B
8-oxo-dG	8-oxo-2'-deoguanosine
PBN	α-phenyl-N-tert-butyl nitrone
PCA	Perchloric acid
PD	Parkinson disease
PDH	pyruvate dehydrogenase kinase
6-PGD	6-phosphogluconate dehydrogenase
РКА	protein kinase A
PUFA	polyunsaturated fatty acid
Ptx	pentoxifylline
RA	rheumatoid arthritis
ROS	reactive oxygen species
SCEs	sister chromatid exchanges
SLE	systemic lupus erythematosis
SOD	superoxide dismutase
TBA	thiobarbituric acid
TCA	trichloroacetic acid
TEMPO	2,2,6,6-tetramethylpiperidine-1-oxy
TEMPOL	4-hydroxy-2 2,6,6-tetramethylpiperidine-1-oxy

Tg	thyroglobulin
UQ●	ubisemiquinone anion radical
UV	ultraviolet
XO	xylenol orange

CONFERENCES & PUBLICTAIONS

The following contains a list of abstracts from scientific meetings and the publication from this study.

Conferences

Gebicki, J. M., Domazou, A., Nauser, T., Tweeddale, H, Liu, C. C., and Koppenol, W. H. Interaction of protein radicals with GSH and ascorbate in vitro and in cells. The 15th Annual Conference of the Society for Free Radical Research (Australasia), Perth, Australia, Dec 2006.

Gebicki, J. M., Domazou, A., Nauser, T., Tweeddale, H, Liu, C. C., and Koppenol, W. H. Oxidation of glutathione and ascorbate by protein radicals. 41st meeting of the Polish Biochemical Society, Bialystok, Poland, Sep 2006.

Liu, C. C. and Gebicki, J. M. Inhibition of protein peroxidation by ascorbate in gammairradiated HL-60 cells. The 13th Biennial Congress: International Society for Free Radical Research, Davos, Switzerland, Aug 2006.

Liu, C. C. and Gebicki, J. M. Oxidation of ascorbate by protein radicals. The 13th Annual Conference of the Society for Free Radical Research (Australasia), Christchurch, New Zealand, Dec 2005.

Publications

Gebicki, J. M., Domazou, A., Nauser, T., Tweeddale, H, Liu, C. C., and Koppenol, W. H. Oxidation of glutathione and ascorbate by protein radicals. Manuscript in preparation.

Liu, C. C. and Gebicki, J. M. The role of ascorbate and glutathione in protein peroxide formation in HL-60 cells. Manuscript in preparation.

ACKNOWLEDGEMENTS

During my Ph.D. candidature, I had the good fortune to benefit from the knowledge and experience of my supervisor, Associate professor Janusz Gebicki, from the field of free radical research. He provided research facilities, guided the overall direction of the work, and was available for day-to-day advice as required. He allowed me to pursue my own interest and gave me many supports in English writing and speaking. He listened to my reports with focussed attention and asked searching questions which gave me the opportunity to find my own approaches or solutions to research problems. I am grateful to him for his encouragement of my scientific development. Besides research field, Jan is also a part of my family in Australia, taught me philosophy of life.

I would like to thank Dr. Helen Tweeddale and Dr. Silvia Gebicki, both friends and colleagues from the laboratory for their advice and encouragement.

I would like to thank my family for supporting me pursue my Ph.D. study in Australia, for thousands of phone calls and loads of money which help me through the most extraordinary years in my life.

My deepest thank to my partner, Adam Lindsay, for his greatest love and support.