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Abstract 

 

This dissertation investigated the clinical feasibility of two physiological measures of 

listening effort; changes in pupil dilation and changes in alpha power (a cortical oscillation 

between 8-12 Hz). It was motivated by two factors: (1) sustained listening effort can lead to 

adverse health consequences or could adversely affect healthy behaviours (such as 

withdrawing socially) yet it is not clinically assessed; and (2) listening effort is a multi-

faceted construct, and it remains unknown whether current physiological measures claimed to 

assess listening effort evaluate the same processes. We conducted laboratory studies on 

young adults with normal hearing and cognition to better understand how manipulating task 

difficulty can lead to changes in subjective and physiological measures of listening effort. 

Specifically, listener-internal factors were investigated by evaluating how working memory 

capacity, measured with a reading span task, interacted with subjective and physiological 

measures of listening effort. Listener-external factors were evaluated by examining the 

effects of channel-vocoding and performance parameters on subjective and physiological 

measures of listening effort. We also assessed how different data processing strategies and 

statistical approaches used across studies affect the results and interpretation of physiological 

outcome measures. The results of these studies indicated that while working memory 

capacity predicted perceived listening effort ratings, this was not the case for the two 

physiological measures. Perceived listening effort ratings appeared to be driven by estimated 

performance, and not the effort required to perform a speech recognition task. On the other 

hand, the physiological measures were both sensitive to changes in channel-vocoding, and the 

pupil response was further sensitive to performance levels and task accuracy. The 

physiological measures were not correlated with each other, suggesting each may be 

assessing a different aspect of listening effort. Finally, differences in data processing and 

statistical approach greatly altered the results and subsequent interpretation of the findings. 
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This dissertation provides an opportunity to advance the understanding of listening effort in 

an experimental setting, and was conducted within the overarching context of exploring the 

viability of a physiological tool to assess listening effort in a clinical environment. 
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Chapter 1 Introduction 

 

1.1 Preamble 

“It’s not the deafness that’s the problem, it’s the effort required to get anything from the hearing.  

It’s all effort”1 

Communication is central to the social world in which we live, and is critical along the life-

course from infancy through to old age. Hearing impairment and poor acoustic environments 

can disrupt fluid communication by impeding our ability to hear and comprehend speech, 

ultimately affecting education, wealth development, independence, and social connectedness. 

While considerable progress has been made in managing hearing loss, many challenges 

remain. For example, individuals can differ in their ability to perceive and understand speech, 

even when they present with a similar degree and type of hearing loss and are fitted with a 

similar type of hearing device and prescription. The reasons for this are varied, and indeed 

complex, but may relate to the pathophysiology of the hearing loss itself (Edwards, 2007), the 

individual’s cognitive function (Lunner, Rudner, & Rönnberg, 2009), or the interaction 

between hearing loss and cognitive ability (Stenfelt & Rönnberg, 2009), particularly in older 

populations where each is more prevalent (Uhlmann, Larson, Rees, Koepsell & Duckert, 

1989; Pichora-Fuller, 2003).  

While hearing sensitivity is quantifiable, the standard audiological test battery (typically 

encompassing pure tone air and bone conduction thresholds, immittance and monosyllabic 

words or short sentences in quiet or in noise) falls short in assessing the full effects of hearing 

loss on the individual and their communicative capacity. That is, current assessments do not: 

(1) provide comprehensive information about hearing ability (e.g., recent evidence in mice 

                                                           
1 Patient quote from a focus group discussing perceived listening effort. 

Hughes, S., Hutchings, H., & Rapport, F. (2016). Seeking connectedness: A constructivist Grounded Theory of perceived listening effort in 

cochlear implantation. Poster session presented at the British Society of Audiology Conference, Coventry, United Kingdom. 
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suggests that ageing causes a reduction in synaptic density which may reduce the dynamic 

range, potentially affecting one’s ability to understand speech in a noisy environment, rather 

than affecting hearing thresholds (Sergeyenko, Lall, Liberman, & Kujawa, 2013)); (2) 

incorporate meaningful information about how cognition can influence speech perception, 

particularly in noise (e.g., using contextual cues to ‘fill in the gaps’); nor (3) provide 

information about the daily experience of the individual, and how personal and 

environmental factors may influence communication (aligned with the World Health 

Organisation’s International Classification of Functioning; (WHO, 2001)). While self-

reported hearing handicap measures exist (e.g., Hearing Handicap Inventory for the Elderly; 

Ventry & Weinstein, 1982), these are based on retrospective recall of events and experiences, 

do not capture the daily variation of hearing ability/ handicap that occurs, and can be 

inaccurate particularly in older populations who tend to under-report the extent of their 

impairment (Uchida, Nakashima, Ando, Niino, & Shimokata, 2003). 

The conceptualisation of listening effort as a key construct within the field of audiology has 

rapidly emerged to address some of the limitations of the standard audiological test battery, 

and facilitate personalisation of hearing devices and care for people with hearing loss 

(Danermark et al., 2010). Assessing listening effort in the clinic may verify a person’s ease of 

listening during speech perception tasks, allowing both the clinician and individual to make 

better and more informed decisions regarding device selection and optimal device settings. 

Given the primary complaint of people with hearing impairment is listening to speech in 

noise (Dawes et al., 2014), and the adverse health effects of sustained effort including stress 

(Hua et al., 2014), cardiovascular strain (Peters et al., 1998), and fatigue (Hua, Anderzén-

Carlsson, Widén, Möller, & Lyxell, 2015; Kramer, Kapteyn, & Houtgast, 2006; Pichora-

Fuller, 2003), then increasing the sensitivity of current assessment measures may enhance 

conversational capacity and social engagement, leading to improved psychosocial and 
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physical outcomes. Given the rapid developments in this field over the time course of this 

thesis, a definition (McGarrigle et al., 2014) and a framework developed through expert 

consensus (Pichora-Fuller et al., 2016) for understanding/conceptualising listening effort 

have been proposed. At the current time, studies are being conducted to explore the 

robustness of the definitions, and certainly some debate has already arisen (see Rönnberg et 

al., in McGarrigle et al., 2014). Nonetheless, there is consensus that listening effort embodies 

a multitude of processes which are encompassed by auditory (bottom-up) and cognitive (top-

down) mechanisms.  

However, our understanding of what listening effort is, and therefore which measures can be 

used to evaluate it, are lacking. While several tools which have claimed to measure listening 

effort exist, the multifaceted nature of listening effort makes it particularly challenging to 

determine what each tool is specifically measuring. In addition, levels of arousal, motivation, 

and how and what cognitive and linguistic processes are employed to perform a demanding 

listening task may vary between individuals (Pichora-Fuller et al., 2016). Variability in 

outcome measures may therefore reflect different (or overlapping) cognitive processing 

strategies, variations in cognitive capacity, interactions with motivation and fatigue, and/or 

the insensitivity of the instrument itself. Further to this, the way in which outcome measures 

are processed and analysed also vary between studies and may contribute to disagreement 

regarding which cognitive processes each measure is assessing, and which variables modulate 

effortful listening (e.g., signal-to-noise ratio (SNR), spectral resolution, task performance). 

While previous research has provided broad insight into some of the more robust mechanisms 

that may underpin listening effort, it is limited in its clinical application. Therefore, the aim of 

this thesis is to explore how pupil dilation and changes in cortical oscillations in the alpha 

band are influenced by working memory capacity and task difficulty (by modulating both 

signal-to-noise levels and spectral resolution), whether they demonstrate similar behaviours 
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(suggesting that they may be markers of the same construct), and how different 

methodological aspects of data processing and statistical analysis might influence the 

outcomes and interpretation of a single dataset.  

1.2 Background 

Over the past few decades, listening effort has been conceptualised in multiple ways. Hicks 

and Tharpe (2002) defined listening effort as the attentional allocation required for speech 

understanding. This was largely based on early work by Downs (1982), which focused on 

hearing aid use and listening effort assessed using reaction times, and Feuerstein (1992), who 

examined how monaural and binaural hearing influenced perceived listening effort (assessed 

using a rating scale) and attentional effort (assessed using a dual-task paradigm).  McGarrigle 

and colleagues (2014) proposed a dictionary-based definition: “the mental exertion required 

to attend to, and understand, an auditory message”, and following expert consensus, the 

definition was further refined as: “mental effort as the deliberate allocation of mental 

resources to overcome obstacles in goal pursuit when carrying out a task that involves 

listening” which additionally captures how goal oriented behaviour may interact with effort 

allocation (Pichora-Fuller et al., 2016).2  

Certainly, consensus suggests that listening to and recognising speech involves more than just 

hearing a sequence of sounds; it requires intent to extract meaning (Kiessling et al., 2003) and 

top-down processing needed when the auditory signal is not clear (Arlinger, Lunner, Lyxell, 

& Pichora‐Fuller, 2009; Pichora‐Fuller, Schneider, & Daneman, 1995). Successful speech 

recognition requires overlapping and interacting processes along the auditory pathway, 

including auditory processing and cognitive operations (Wingfield, Tun, & McCoy, 2005). In 

                                                           
2 Based on the knowledge available at the time the experimental component of this thesis was developed (i.e., 

McGarrigle et al, (2014)) the stimuli and experiments were designed without factoring in how motivation can 

modulate listening effort. 
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addition, external factors may also influence listening effort. Examples of specific factors 

which could modulate listening effort include listener-internal and listener-external factors 

(from Lemke & Besser, 2016). Listener-internal factors encompass both auditory and 

cognitive processing, where auditory processing relates to individual ability (e.g., audiometric 

thresholds, spectral and temporal detection, and cognitive processing involving both 

linguistic ability and general cognitive mechanisms), whereas listener-external factors are the 

physical features that comprise a listening situation (e.g., reverberation, SNR, accented 

speech). Recently, a vectorized framework establishing how both listener-external and 

listener-internal factors influence listening effort in a resource limited system has been 

proposed (Strauss & Francis, 2017) which also encapsulates motivational factors discussed in 

Pichora-Fuller et al. 2016 (see forthcoming discussion in 1.3.2).   

1.2.1 Listener-external factors 

Across the majority of studies, listening effort is typically manipulated by varying the task 

demands related to listener-external factors, through speech reception thresholds (SRTs), 

SNRs, spectral or temporal degradation, different types of noise maskers, and linguistic 

complexity. By increasing task demands, it is assumed that the load on cognitive processes is 

increased, which may in turn modulate listening effort.  

1.2.2 Listener-internal factors  

When measuring listening effort, we are measuring how an individuals’ hearing, cognitive 

and linguistic processes interact and respond to the demands of an auditory task. For speech 

recognition to be successful, three distinct, yet overlapping and interacting processes are 

required: 1) good peripheral hearing acuity; 2) intact central auditory processing; and 3) 

normal cognitive operations (Wingfield et al., 2005). Hearing impairment negatively affects 

speech audibility and the ability to discriminate between speech segments. Hearing devices, 

while effective at amplifying sound, often fall short of restoring the full spectral and temporal 
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properties of a speech signal required for successful speech discrimination/ recognition. 

While cognitive operations may compensate for peripheral and central auditory processing 

deficits (Wingfield et al., 2005), this process consumes cognitive capacity, limiting the 

availability of cognitive resources required for successful sentence processing (Lunner, 

Rudner, & Rönnberg, 2009; Mishra, 2014). Listening with a hearing impairment and/or in 

adverse conditions taxes cognitive resources, which modulates the amount of effort required 

to understand speech in difficult listening environments (Rabbitt, 1991; Pichora-Fuller, 

Schneider, & Daneman, 1995; Wingfield, Tun & McCoy, 2005; Rudner, Lunner, Behrens, 

Thorén, & Rönnberg, 2012). 

Additionally, we are measuring an individual’s motivation towards performing the task or 

achieving a specific outcome, presumably resulting in a non-linear relationshop between task 

demands and effort. The Framework for Understanding Effortful Listening (FUEL), 

discussed in detail in section 1.3.2, illustrates this three-way relationship (Figure 1; Pichora-

Fuller et al., 2016). 
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Figure 1. The 3-D representation of the FUEL illustrating the three-way relationship between 

listening effort, motivation and task demands from Pichora-Fuller et al. (2016). t0-t4 refer to 

time, discussed in more detail in Pichora-Fuller et al. (2016). 

A 2007 review by Humes indicated that for hearing-impaired listeners, age and cognitive 

factors were the best determinants of speech recognition performance after controlling for 

audibility. Multiple cognitive operations have been implicated in speech understanding, 

including working memory capacity (Akeroyd, 2008), attention (Koelewijn, Shinn-

Cunningham, Zekveld, & Kramer, 2014), and speed of processing (Schneider, Pichora-Fuller, 

& Daneman, 2010). Recently, Pichora-Fuller and colleagues (2016) suggested that evaluating 

these cognitive processes could potentially be used as indicators of listening effort.   

1.3 Frameworks and models 

Multiple frameworks and models exist to describe how auditory, cognitive and motivational 

factors might influence speech understanding and therefore, the magnitude of listening effort 

needed or invested during a task. The following provides a brief review of the main 

frameworks and models that will be discussed throughout the thesis. Note that while every 

effort is made to link the frameworks and models to the findings in this thesis, the Framework 

for Understanding Effortful Listening (FUEL) was put forward after the experiments of the 

current thesis were completed. As detailed below (section 1.3.2), a motivational component 

of listening effort is introduced in the FUEL. As such, this component was not manipulated in 

the experiments that form this thesis, and this limitation is discussion in Chapter 7.  

1.3.1 The Ease of Language Understanding 

The Ease of Language Understanding (ELU) model illustrates the function of working 

memory capacity in speech understanding in quiet and adverse conditions. Working memory 

may serve to support the integration of a received speech signal with both phonological and 
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semantic information stored in long term memory (Baddeley, 2003). Within the ELU 

framework, the process of integration occurs in a buffer called Rapid, Automatic, Multimodal 

Binding of PHOnology (RAMBPHO). If a mismatch occurs between a speech signal and a 

lexical representation in semantic long-term memory, explicit working memory processes are 

recruited to mediate the mismatch, and the process is delayed. Mismatches also result in 

increased working memory load as the item is kept longer in working memory whilst 

attempted mapping to lexical representations continues (Rudner, 2016). The extent to which 

working memory processes are involved in understanding speech is assumed to reflect the 

ease of listening (e.g., low working memory involvement when speech is highly intelligible) 

and listening effort (e.g., high working memory engagement when speech is highly 

unintelligible).  

1.3.2 Framework for Understanding Effortful Listening (FUEL) 

The FUEL modifies Kahneman’s capacity model of attention as a framework to understand 

listening effort. Kahneman’s original model (1973) describes attention as a limited capacity 

resource. The allocation of one’s attention (such as attending to speech in multi-talker babble) 

is determined by various factors such as salience, compliance with task instructions, and 

willingness to complete a task, with arousal levels modulated by task and preparatory 

demands and “miscellaneous determinants” which include intensity of stimulation, drug 

interactions, and drive states (Kahneman, 1973). The two outputs in the model include 

“responses” and “miscellaneous manifestations of arousal” which include autonomic 

functions such as increased heart rate and pupil dilation.  

The FUEL modifies and elaborates on Kahneman’s model to make it more relevant to 

listening effort. Major changes include how (dis)pleasure may modulate motivation and 

performance, the renaming of the modules, and aligning examples with factors related to 

effortful listening such as spectral resolution and cognitive ability. The FUEL considers 
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motivation to be an important factor of listening effort. For instance, as task demands near 

impossible, an individual may not be motivated to perform given the effort-reward 

imbalance. On the one hand, some individuals may be highly motivated to perform well when 

task demands are high, and effort is mobilised to perform the task. The FUEL therefore 

considers how an interaction may exist between motivation and task demands and how this 

dynamic may modulate listening effort.  

1.4 Methods used to assess listening effort 

Listening effort has been assessed using a wide range of methods which fall into three broad 

categories: subjective, behavioural and physiological measures (Rudner et al., 2012). 

Subjective measures include anecdotal reports, questionnaires such as the Speech, Spatial and 

Qualities of Hearing Scale (Gatehouse & Noble, 2004), and rating scales such as visual 

analogue rating scales, the Borg Scale of Perceived Exertion (Borg, 1982), and the NASA-

Task Load Index (Hart & Staveland, 1988). Behavioural measures consist of performance 

and/or response times during single or dual-task paradigms. The majority of physiological 

studies have focused on pupil dilation and neural oscillations, although various other 

measures including skin conductance, heart rate (measured as beats per minute and variability 

in rate), event related potentials (ERPs) and functional magnetic resonance imaging (fMRI) 

have been evaluated as potential tools to assess listening effort. While each of these measures 

have advantages and disadvantages which warrant consideration in developing a clinically 

viable tool to assess listening effort, this thesis limits its review to pupillometry and neural 

oscillations due to the breadth of research in these areas, and their clinical potential in regards 

to accessibility and affordability.   

1.4.1 Subjective measures 

Many studies have used self-report scales as a measure of perceived listening effort, however 

these are most often used to complement a corresponding objective measure of effort, such as 
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pupillometry or dual-task paradigms, rather than used as an independent measure. As there is 

no standardised or validated self-report scale of listening effort used across studies, there is 

limited ability to evaluate its clinical applicability (see Ohlenforst et al., 2017). For example, 

listening effort scales have disparate rating systems (Desjardins & Doherty, 2013; Hällgren, 

Larsby, Lyxell, & Arlinger, 2005; Hicks & Tharpe, 2002) and differ in their application, for 

example listening effort in some studies is rated after a single sentence but in others it is rated 

after a block of sentences. Despite this variability, as task difficulty increases (with changes 

in SNR, background maskers and/ or linguistic manipulations), ratings of effort increase, 

reflecting a commensurate change in perceived listening effort. Further, hearing-impaired 

listeners typically rate listening effort higher than those with normal hearing (Hua, Karlsson, 

Widén, Möller, & Lyxell, 2013; Luts et al., 2010), consistent with the change observed with 

other measures of listening effort (McCoy et al., 2005). See Klink, Schulte, and Meis (2012) 

for an in-depth review of subjective listening effort ratings. 

Self-reported listening effort measures are generally easy to administer, cost effective, and do 

not require specialised equipment. However, their clinical applicability across the lifespan is 

limited. For example, young children may not understand what listening effort is and may not 

be able to effectively report it, older adults tend to under-report the extent of an impairment 

and over-report the extent of their ability (Uchida et al., 2003), whereas younger adults tend 

to over-report the extent of their difficulties (Seeman & Sims, 2015). Moreover, listening 

effort scales may not capture the right metric; some individuals may be inclined to rate their 

estimated performance on a task compared with the effort that was invested to perform the 

task (McGarrigle et al., 2014).  

As well as self-report scales, questionnaires have been used to assess perceived listening 

effort. The Speech, Spatial and Qualities of Hearing Scale (SSQ; Gatehouse & Noble, 2004) 

comprises a sub-set of three questions pertaining to listening effort, with some studies 
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adapting the questions for experimental studies (Hornsby, 2013; Picou & Ricketts, 2014). 

Recently, Alhanbali, Dawes, Lloyd, and Munro (2017) developed the Effort Assessment 

Scale (EAS) which comprises 6 questions to assess perceived listening effort in everyday life 

(i.e., not during an experimental study). Questions range from “Do you have to put in a lot of 

effort to hear what is being said in conversation with others?” and “How easily can you 

ignore other sounds when trying to listen to something?”.  In validating the assessment, four 

groups of individuals aged between 55-80 years participated in the study which comprised 

hearing-aid users, cochlear implant users, those with single-sided deafness, and a normal 

hearing control group. Overall, the results showed that those groups with hearing impairment 

demonstrated significantly higher listening effort compared to the normal hearing control 

group. While such measures may have future relevance in the management of individuals 

with hearing loss, they are limited (like all retrospective questionnaires) to memory recall and 

to the relevance of questions asked, but are unlikely to be sensitive to evaluating the efficacy 

of different hearing devices, digital processing strategies, or therapies. 

1.4.2 Behavioural measures 

Behavioural measures of listening effort are typically evaluated using single / dual-task 

paradigms, with performance differences and / or reaction times as the outcome measure. 

Studies have typically found that when primary task difficulty is modulated through SNR 

adjustment, poorer SNRs lead to increased listening effort as indicated by performance 

decrements on the secondary task (Fraser, Gagné, Alepins, & Dubois, 2010; Gosselin & 

Gagné, 2011). There is a growing body of work investigating behavioural measures of 

listening effort, especially dual-task paradigms (see Gagné, Besser, & Lemke, 2017, for a 

comprehensive review of the field). Akin to self-reported measures, behavioural measures are 

cost-effective and do not require specialised equipment. They can, however, be challenging 

to administer and the complex task instructions may not be suitable for all age groups. 
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Individuals are also required to perform at their full potential throughout the duration of the 

task which can be difficult to monitor.  

1.4.3 Physiological measures 

Physiological measures of listening effort are direct measures of an individual’s physical 

response to stimuli. These responses can be divided into central nervous system (CNS) and 

autonomic nervous system (ANS) activity (part of the peripheral nervous system). CNS 

activity has typically been assessed using non-invasive techniques such as encephalography 

(EEG), which detects voltage fluctuations from neural firing in the cortex, 

magnetoencephalography (MEG) which records the magnetic fields generated from neuronal 

firing, and fMRI which measures blood flow associated with neural activity. In the listening 

effort literature, M/EEG have been used to measure ERPs and changes in neural oscillations.  

Neural oscillations arise from large groups of cortical neurons firing synchronously and can 

be classified in different frequency bands which have been shown to be modulated by a 

variety of cognitive processes (Başar, Başar-Eroglu, Karakaş, & Schürmann, 2001; 

Herrmann, Fründ, & Lenz, 2010; Klimesch, 1996, 2012; Klimesch et al., 1999; Ward, 2003). 

In comparison to other frequency bands, alpha waves (oscillations between 8 and 12 Hz; 

Klimesch, Doppelmayr, Pachinger, & Ripper, 1997) have received considerable attention in 

the listening effort literature. The origin of alpha oscillations remains relatively unclear, with 

early proposals theorising that the thalamus generated cortical oscillations by means of 

thalamo-cortical projections (Andersen, Andersson, & Lomo, 1968) leading to the view that 

the cortical oscillations were modulated by a ‘pacemaker’ (see Başar et al., 1997, for review). 

Subsequent evidence from alpha oscillatory studies demonstrated that this view may be too 

simplistic, as recordings at different cortical regions show marginally different central alpha 

frequencies (Lopes da Silva, van Lierop, Schrijer, & Storm van Leeuwen, 1973). Recently, it 
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has been suggested there are likely to be multiple autonomous alpha generators supporting 

disparate functional roles (Cohen, 2017). 

There is evidence to suggest that changes in the alpha frequency band can be modulated by 

working memory load, and may reflect a functional inhibitory process (Jensen & Mazaheri, 

2010; Klimesch, 2012). For example, in adapted auditory versions of the Sternberg paradigm, 

which requires participants to remember between two and six items and make a judgement 

after being prompted whether an item was presented in the list, alpha enhancement has been 

observed using syllables (Leiberg, Lutzenberger, & Kaiser, 2006), and single words 

(Karrasch, Laine, Rapinoja, & Krause, 2004; Pesonen, Björnberg, Hämäläinen, & Krause, 

2006). Alpha power changes in an auditory spatial working memory task (Kaiser, Heidegger, 

Wibral, Altmann, & Lutzenberger, 2007), and in response to varying levels of acoustic 

degradation (Petersen, Wöstmann, Obleser, Stenfelt, & Lunner, 2015; Strauß, Wöstmann, & 

Obleser, 2014; Wöstmann, Herrmann, Wilsch, & Obleser, 2015) have also been 

demonstrated. Obleser, Wöstmann, Hellbernd, Wilsch, and Maess (2012) proposed that an 

acoustically degraded signal would exploit the same alpha oscillatory network as working 

memory load due to the greater allocation of working memory resources required to 

comprehend an acoustically degraded signal (Piquado, Isaacowitz, & Wingfield, 2010; 

Rabbitt, 1968; Wingfield et al., 2005). Using an auditory Sternberg paradigm, Obleser and 

colleagues (2012) parametrically varied working memory load (2, 4 and 6 to-be-remembered 

digits) and acoustic degradation (4, 8, and 16-channel vocoding) and showed a memory load 

and acoustic degradation-dependent alpha power enhancement over the central-parietal 

regions in both the encoding (stimulus presentation) and the delay (stimulus-free) periods. 

Interestingly, when both memory load and acoustic degradation were most challenging, alpha 

enhancement was super-additive, suggesting that acoustic degradation may draw on the same 

alpha network as working memory load. Similar findings have been replicated using different 



14 
 

sources of acoustic degradation during various comprehension tasks (Petersen et al., 2015; 

Wöstmann et al., 2015; see Strauß et al., 2014, for review).  

Petersen et al. (2015) sought to investigate the effects of working memory load and acoustic 

degradation on the alpha oscillatory network when the auditory system was compromised by 

hearing impairment. Participant groups comprised older adults with normal hearing, mild 

hearing loss or moderate hearings loss. Controlling for audibility (using a fixed performance 

of 80% SRT) and age, clear spoken digits were embedded in speech-shaped background 

noise to vary acoustic degradation, and participants performed an auditory Sternberg task. 

Results showed that while participants with moderate hearing loss showed increased alpha 

power in comparison to those with lesser degrees of hearing loss in most conditions, under 

the highest working memory load combined with the greatest acoustic degradation, they 

displayed a decrease in alpha power. This was interpreted as reflecting neural break-down as 

a consequence of having to engage more working memory resources than their normal-

hearing counterparts. 

Much of the previous research on how acoustic degradation modulates alpha power has been 

conducted using closed-set digit stimuli, syllables, and words. Within the few studies 

examining sentence stimuli, changes in alpha power during a speech recognition task using 

channel-vocoded sentences (16- and 6-channel vocoding) and a vocoded 4-talker babble-

noise varying from -7 dB to +7 dB SNR, McMahon et al. (2016) demonstrated that alpha 

power significantly declined with increasing SNRs only for the moderately easy 16-channel 

vocoded sentences. Conversely, the different SNR levels across the performance intensity 

function had relatively little impact on alpha power for 6-channel vocoded sentences. 

The growing body of work on alpha power and listening effort lends initial support to its 

potential to be administered in a clinical environment, although much work is needed to 
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determine how different types of stimuli in clinical assessments may modulate alpha power. 

Importantly, it is also unknown how changes in alpha activity can provide information about 

the magnitude of listening effort invested by a single individual, as the published literature 

has focused on group-level analyses. Equipment such as the HEARLab® which is currently 

used to monitor the auditory brain response (ABR) and EEG in specialised audiology clinics, 

demonstrates that the measure has the potential to be easily integrated in a clinical 

environment, however MEG is relatively inaccessible due to it being highly specialised and 

expensive. M/EEG are also susceptible to an individual’s movement, which could pose 

particular challenges for the young. Another potential challenge is that a large number of 

trials may need to be captured in order to separate the signal from the noise.  

Compared with CNS assessments, the ANS is mostly unconsciously controlled and is 

responsible for regulating internal organ function such as blood pressure, heart and breathing 

rates, the production of bodily fluids (e.g., sweat), and digestion. In the listening effort 

literature, ANS activity has focused on skin conductance, heart rate measures, and 

pupillometry, which is a focus of this thesis. 

Pupillometry is used to measure the diameter of the pupil. Stimulus-evoked pupil dilation is 

modulated by the release of norepinephrine (NE) from the locus coeruleus (LC; Wilhelm, 

Wilhelm, & Lüdtke, 1999) and has been implicated in prefrontal cortex activity (Laeng, 

Sirois, & Gredebäck, 2012). This LC-NE system has been hypothesised to mediate the entire 

attentional system (Corbetta, Patel, & Shulman, 2008) which has predominantly been 

assessed in visual-spatial based experiments using research methods from imaging and 

pharmacology in human subjects, and cellular recordings during animal experimentation.  

Within the LC, cells show tonic or phasic modes of activity. Tonic activity slowly adapts to a 

stimulus-event, whereas phasic activity quickly adapts to a stimulus-event. In an unaroused 
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condition, tonic neuron firing is low which enables task and/or environmental disengagement 

(Aston-Jones & Bloom, 1981). Moderate activity is present during task focussed behaviour 

where reward is high (Usher, Cohen, Servan-Schreiber, Rajkowski, & Aston-Jones, 1999). 

When engaged in an environment where there is doubt regarding an appropriate relationship 

between a stimulus-event and a response, tonic activity is high (Aston-Jones, Rajkowski, & 

Kubiak, 1997). The transition between tonic states is facilitated through dense cortical 

projections from the prefrontal cortex to the LC, sensitive to both task environment and 

reward (see Corbetta & Shulman, 2002, for review). During moderate tonic activity, phasic 

activity is at its highest, rapidly responding to a stimulus-event. This phasic response 

accelerates behavioural responses by boosting neural gain (Aston-Jones & Cohen, 2005), is 

associated with elevated task performance (Aston-Jones, Rajkowski, Kubiak, & Alexinsky, 

1994; Bouret, Duvel, Onat, & Sara, 2003), supports selective attention (Aston-Jones, 

Rajkowski, & Cohen, 1999) and exhibits a reduction in baseline LC firing (conversely, tonic 

mode displays increased neuronal activity in the baseline region; Aston-Jones et al., 1994). 

Due to the pupil and LC-NE correlation, the pupil response can be exploited to uncover LC-

NE activity (Koss, 1986) which may allow monitoring of attentional states (Laeng et al., 

2012). 

The pupil response has been used across multiple disciplines as a measure of exerted effort, 

and has been widely adopted to measure listening-related effort with currently upwards of 25 

published studies. Typically, as task difficulty increases, the pupil diameter increases 

reflecting the increase of cognitive load. This metric has been suggested to index listening 

effort (Zekveld, Kramer, & Festen, 2011).  

Pupil dilation and listening effort studies have mostly focussed on young normal hearing 

adults, with task difficulty modulated through SRT/ SNR adjustment and a further 

manipulation such as spatial differences (Koelewijn, de Kluiver, Shinn-Cunningham, 



17 
 

Zekveld, & Kramer, 2015; Koelewijn, Shinn-Cunningham, Zekveld, & Kramer, 2014; 

Zekveld, Rudner, Kramer, Lyzenga, & Rönnberg, 2014), different types of background 

maskers (Zekveld, Heslenfeld, Johnsrude, Versfeld, & Kramer, 2014; Zekveld & Kramer, 

2014), channel-vocoding (McMahon et al., 2016; Zekveld, et al., 2014) and/or linguistic 

manipulations (Wendt, Dau, & Hjortkjær, 2016). The effect of hearing impairment on 

listening effort, measured through pupil dilation, has mostly been examined in older 

populations, again with SRT/ SNR modulation and a secondary adjustment such as the 

influence of different types of background noise (Koelewijn, Zekveld, Festen, & Kramer, 

2014; Kuchinsky et al., 2014; Zekveld et al., 2011), and/ or linguistic manipulations 

(Kuchinsky et al., 2013; Kuchinsky et al., 2016), with few studies examining young children 

with hearing impairment, although see Steel, Papsin, and Gordon (2015). 

Pupil dilation has been shown to increase with increasing task demands, even when 

performance accuracy is at, or near, 100% (Winn, Edwards, & Litovsky, 2015). Further to 

this, the pupil has been shown to dilate to a greater extent across different listening conditions 

when performance is comparable between the two (Koelewijn, Zekveld, Festen, & Kramer, 

2012). Together, these results indicate that pupillometry has the potential to greatly increase 

the sensitivity of current clinical assessments, providing further insight into the listening 

challenges individuals face when performance accuracy is at ceiling, or comparable, across 

different listening conditions. This may greatly assist with intervention strategies, including 

device selection that provides optimal speech perception and ease of listening.  

Pupillometric equipment is becoming more portable, user-friendly, and inexpensive, making 

it highly accessible for wide-clinical use. The large body of research into the pupil response 

to listening challenges is also encouraging for its potential as a clinical tool. Yet despite its 

research success, a practical clinical tool needs to be sensitive, and respond reliably, at the 

individual level. Further discussion regarding this is provided below.  
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1.4.4 Summary of measures 

There are many advantages and disadvantages to applying a subjective, behavioural or 

physiological measure of listening effort in a clinical setting. Broadly speaking, subjective 

measures pose particular challenges in their clinical application due to participant biases and 

suitability across the lifespan. Similarly, task instructions on behavioural measures such as 

the dual-task paradigm may be too complex for some populations. However, both subjective 

and behavioural measures do not require specialised equipment and can be relatively easy to 

implement in the clinic. Conversely, physiological measures require specialised equipment, 

are not generally considered as part of routine audiological practice, set up can be time 

consuming, and the cost/ benefit may be discouraging. Advantages of physiological measures 

include their independence from rater biases, they do not rely on perceived invested effort 

which can be a difficult concept to understand, and are particularly beneficial for populations 

when behavioural responses are negligible or even non-existent (Wisniewski et al., 2015). 

Physiological measures of listening effort also provide a quantifiable metric which is largely 

used to determine candidacy for specialised intervention and insurance schemes (Dorman et 

al., 2012). Furthermore, with the right tool, it may be possible to combine a listening effort 

assessment into a pre-existing clinical assessment. For example, a physiological measure may 

be able to be assessed during a speech perception test which is already routinely conducted as 

part of a gold-standard assessment, therefore not requiring an additional assessment in an 

already time restricted schedule. There should, of course, also be minimal setup of the 

physiological tool in order to not interfere with time restrictions.   

Even if a tool is suitable for the clinical environment, much work is needed to understand 

how different task parameters influence an individual’s listening effort, how the measures 

behave across the lifespan, and their interactions with comorbidities. Further to this, different 

research groups vary in their data analysis and statistical modelling techniques making it 
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challenging to draw conclusions across the different studies. At present, best practices are 

lacking in this domain. Finally, there has been little to no discussion in the literature relating 

to intra- and inter-individual variability in relation to physiological measures. If a tool to 

assess listening effort is to be clinically implemented, understanding how the measures 

behave at the individual level is critically important.   

1.5 Rationale for the thesis 

The primary complaint of people with hearing impairment is that it is difficult to listen in 

noise. The increased effort required to comprehend speech in noise can lead to adverse health 

and psycho-social consequences such as stress and fatigue, and ultimately to maladaptive 

behaviours such as social withdrawal. Developing a clinical tool to assess listening effort may 

increase the sensitivity of current clinical assessments, permitting the client and clinician to 

make better informed decisions about device settings, device selection, and intervention/ 

rehabilitation strategies to ease listening in everyday life. 

1.6 Research questions and justifications  

In the current thesis, we explore some of the listener-internal and listener-external factors 

which modulate listening effort. The overarching aim of this thesis is to examine whether 

current measures identified as indexing listening effort are clinically viable.  

The specific aims of this thesis were to:  

1) Examine whether working memory capacity interacts with subjective (Chapter 3) and 

physiological measures (Chapter 5) of listening effort, 

2) Investigate how subjective (Chapter 3) and physiological measures (Chapter 4) of listening 

effort are modulated by spectral resolution (channel-vocoding) and background noise, 

3) Determine whether pupil dilation and alpha oscillations - two physiological measures 

claimed to index listening effort - are correlated (Chapter 4), and  
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4) Investigate how differences in data processing and statistical approach can affect the 

results and interpretation of results in a single dataset (Chapter 6). 
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Chapter 2 General methodology 

 

2.1 Participants  

Participants were recruited through Macquarie University and were selected based upon the 

following criteria: aged between 18-35-years-old, monolingual English speaking, normal 

hearing, right handed, and no known neurological disorders. Normal hearing was determined 

by presence of distortion-product otoacoustic emissions between 1 – 4 kHz. Handedness was 

assessed by The Assessment and Analysis of Handedness: the Edinburgh Inventory (Oldfield, 

1971). The Macquarie University Human Research Committee approved the studies.  

All participants recruited for Chapter 3 Study (a) were asked to participate in a follow-up 

study (Chapter 4). The data collected from both Chapter 3 and Chapter 4 were used for 

subsequent analyses in Chapter 5 and 6. Table 1 shows the mean and SD of the participant’s 

ages. The varying sample sizes across studies reflect the data available depending on the 

measures being analysed. The participants recruited for Chapter 3 Study (b) were not 

included in any further chapters/ analyses.  

Table 1. Number and age of participants included in the final analyses of each chapter.  

 

2.2 Study design  

All papers used the same stimulus materials, and background noise.  

Chapter number n Age (mean) Age (SD)

3 Study (a) 24 (13F) 27.3 4.5

3 Study (b) 20 (13F) 22.7 2.8

4 19 (12F) 27.0 4.3

5 19 (12F) 27.0 4.3

6 23 (13F) 27.5 4.0
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To investigate changes in perceived and physiological measures of listening effort, spectral 

resolution and background noise were parametrically varied. Spectral resolution was 

manipulated through channel-vocoding and comprised two conditions: moderately 

challenging (6-channel vocoding), and less challenging (16-channel vocoding). Channel 

vocoding sentences provides, in a controlled manner, a method to reduce the spectral 

resolution of the signal whilst maintaining temporal information. In doing so, speech 

becomes more challenging to understand with decreasing channels (Friesen, Shannon, 

Baskent, & Wang, 2001). We therefore anticipate the amount of listening effort required to 

comprehend a sentence in the 6-channel condition will be greater than in the 16-channel 

condition.  

In order to maintain performance levels across participants, background noise across all 

studies was adjusted for each participant to obtain 50% (moderately challenging) and 80% 

speech reception thresholds (SRTs; less challenging). Note for Chapter 3, Study (b), a fixed 

50% SRT was first determined, and +/-3 dB was added to each participants’ 50% SRT. Fixed 

performance levels using SRTs were chosen instead of fixed signal-to-noise ratios (SNRs) as 

cognitive factors may modulate performance when using fixed SNRs (Souza & Arehart, 

2015). Moreover, we speculated that results from our previous study using fixed SNRs 

(McMahon et al., 2016) may have been due to differences in performance, and therefore 

wanted to investigate whether controlling performance results in the same outcome. We 

anticipated that listening to a sentence at a 50% SRT will be more effortful than listening to 

sentences when performance is higher (e.g., 80% SRT, and the +3 dB condition in Chapter 3, 

Study (b).          
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2.3 Stimulus materials  

2.3.1 Sentences 

BKB sentences adapted for Australian-English (Bench & Doyle, 1979) were recorded by a 

native Australian-English female speaker. The sentences were vocoded using custom 

MATLAB scripts. The frequency range was set to 50-6000 Hz and divided into either 6 or 16 

logarithmically-spaced channels. The amplitude envelope was then extracted from each 

channel by full-wave rectifying the signal and applying a low pass filter with a 32 Hz cut-off 

frequency. The extracted envelope was used to modulate the noise with the same frequency 

band. Each band of noise was then recombined to produce the channel-vocoded sentences. 

The root mean square (RMS) levels of the sentences were equalised in MATLAB after 

vocoding. 

2.3.2 Background noise 

The background noise was 4-talker babble, which is the speech-noise used within an 

Australian clinical context. The same channel-vocoding and RMS adjustment used for the 

sentence materials was applied to the background noise.   

2.4 Cognitive measures 

Working memory capacity 

Participants were presented with consecutive lists of 3, 4 and 5 sentences, respectively. Each 

sentence comprised 3-5 words and were either normal sentences (e.g., The girl hugged the 

father), or absurd (e.g., The bear wrote poetry) and were grammatical or agrammatic. 

Sentences appeared on the laptop monitor one word at a time and when the sentence was 

completed, there was a short pause where the participant was required to answer whether the 

sentence made sense or not by pressing the Y or N key. After a block of sentences were 

presented (e.g., 1 x 3 sentences), the participants were asked to repeat aloud either the first 

words (using the examples above, the correct answers would be ‘The girl’ and ‘The bear’, or 
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the final words ‘the father’ and ‘poetry’). These answers were then recorded by the examiner. 

The aggregate score of the entire task was then used to calculate the percentage out of 24.   
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3.1 Abstract 

This research aims to investigate whether working memory capacity influences perceived 

listening effort ratings. Across two studies, 43 normal-hearing adults (18-35 years) 

participated in a speech recognition task, in which speech stimuli were degraded by 

manipulating both the signal-to-noise ratio and the level of channel-vocoding. Performance 

on the task was measured and using a modified Borg scale, participants were asked to rate 

how effortful they found the task in each condition. A reading span task was used as a 

measure of working memory capacity and participants were stratified into a high or low 

working memory capacity group using a median split across the group.  Data from both 

studies showed that working memory capacity influences perceived listening effort ratings. 

Specifically, in contrast to the group with higher working memory capacity, those with lower 

working memory capacity did not differentiate perceived effort ratings across speech 

reception thresholds when spectral resolution was greatest. These results suggest that working 

memory capacity influences perceived listening effort ratings. The disparity in perceived 

listening effort ratings for the different working memory capacity groups may be related to 

differences in signal adaptation, and/ or inhibitory factors. Clinical applicability and 

suggestions for future research to better understand these factors are proposed.  
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3.2 Introduction 

Listening in sub-optimal conditions, with multiple talkers or in reverberant environments, can 

be demanding for young adults with normal hearing. For people with hearing loss however, 

listening in adverse conditions is particularly challenging and is a commonly reported 

complaint (Arlinger, Lunner, Lyxell, & Pichora‐Fuller, 2009; Hawkins & Yacullo, 1984; 

Wouters & Berghe, 2001). Cognitive resources, such as working memory, may be taxed 

when listening to degraded speech, and this may increase the amount of effort required to 

understand speech in difficult listening environments (Rabbitt, 1991; Wingfield, Tun & 

McCoy, 2005). Older adults with hearing loss may be further disadvantaged in understanding 

speech in noisy environments by the combined effects of sensory and cognitive declines (see 

Pichora-Fuller & Singh, 2006 and Wayne & Johnsrude, 2015). However, as some cognitive 

abilities such as vocabulary improve with increasing age (Park & Reuter-Lorenz, 2009), there 

may exist a performance trade-off between factors such as slowed cognitive processing speed 

and increased vocabulary and general knowledge that comes with aging. Individuals do 

however vary in their cognitive capacity and in their social and physical environments. While 

hearing loss itself may contribute to increased listening effort required to understand speech 

in adverse environments, it is important to understand the effects that listening effort has on 

the individual, and their ability to communicate and fully participate in society.  

The World Health Organisation’s (WHO) International Classification of Functioning, 

Disability and Health (ICF) provides a framework to address the bio-psychosocial factors that 

contribute to disability, including the interaction of health conditions (in this case hearing 

loss) with personal and environmental factors that may influence participation (World Health 

Organization, 2001). Sustained effort could lead to multiple negative health consequences, 

including increased stress (Hua et al., 2014), cardiovascular strain (Peters et al., 1998) or 

fatigue (Mehta & Agnew, 2012). For people with hearing loss, anecdotal (Kramer, Kapteyn, 
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& Houtgast, 2006; Pichora-Fuller, 2003) and interview reports (Hua, Anderzén-Carlsson, 

Widén, Möller, & Lyxell, 2015) indicate that fatigue may be linked to listening in noisy 

environments, potentially due to the effort expended when listening with compromised 

audition (Edwards, 2007). This may, at least in part, account for people with hearing loss 

taking more sick-leave (Kramer et al., 2006) and requiring a longer time for recovery after 

work (Nachtegaal et al., 2009). Further, increased effort during listening could reduce a 

person’s ability to engage in cognitive dual-tasks which might lead to adverse events, such as 

increased risk of falling (Lin & Ferrucci, 2012) or work-related accidents (Picard et al., 

2008). 

When the auditory input that reaches the brain is compromised by degradation of the acoustic 

signal or a hearing impairment, the role of cognitive processes in understanding speech 

becomes increasingly important (Arlinger et al., 2009). In a review of 20 studies examining 

the relationship between speech recognition in noise and various measures of cognition, 

Akeroyd (2008) identified that working memory capacity measured using a visual reading 

span paradigm was the best predictor of speech recognition performance. For example, 

Lunner (2003) showed a strong significant correlation between a similar reading span task 

and speech reception thresholds (SRTs) where individuals with higher working memory had 

better performance outcomes – a finding which has since been replicated (Foo, Rudner, 

Rönnberg, & Lunner, 2007). As a decrease in cognitive resources may contribute to an 

increase in the amount of listening effort required to comprehend an incoming speech signal 

(Pichora‐Fuller, Schneider, & Daneman, 1995; Rudner et al., 2011), the interplay between 

listening effort, working memory capacity and speech performance requires further 

investigation.  

Working memory involves both the simultaneous storage and processing of relevant 

information over a short period of time (Baddeley, 2012; Daneman & Carpenter, 1980). This 
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ability is necessary for carrying out everyday tasks, and is limited in both time and capacity 

(Baddeley, 2012). Working memory capacity is a cognitive component essential in most 

communicative tasks (Lyxell et al., 2008) and may be taxed by background noise, even when 

the noise is not attended to (Gisselgård, Petersson, & Ingvar, 2004; Miles, Jones, & Madden, 

1991; Salamé & Baddeley, 1989). Working memory processes may be engaged to distinguish 

meaningful speech material from task-irrelevant background noise (Bregman, 1994), and by 

top-down processing used to facilitate verbal inferences when segments of a message are lost 

or ambiguous due to signal degradation (i.e., ‘filling in the gaps’; Boothroyd & Nittrouer, 

1988; Flynn & Dowell, 1999; Grant & Seitz, 2000; Pichora-fuller, 2006; Wingfield, 1996). It 

is likely that increased effort associated with listening in noise is in part attributable to these 

types of cognitive processes. 

The concept that listening effort ratings may be derived from the relationship between 

cognitive processes and speech recognition performance was proposed by Rudner et al. 

(2011) and Rönnberg et al. (2013). The Ease of Language Understanding (ELU) model 

provides a framework for understanding how challenging listening situations can give rise to 

effortful listening (discussed in detail in 1.3.1). In brief, working memory capacity may 

support signal processing, with mismatches of phonological and semantic mappings drawing 

on explicit working memory processes to temporarily store items until successful mapping 

occurs. In demonstrating this, Rudner and colleagues (2012) controlled for working memory 

capacity’s influence on listening effort ratings by using it as a covariate in an analysis of 

variance to examine this relationship. The results showed that listening effort was rated 

higher in the more challenging SNRs, however controlling for working memory (measured 

using a letter monitoring or reading span task) did not explain the variance in listening effort 

ratings. On the other hand, working memory did influence listening effort ratings in the 

different noise types where modulated noise was rated more effortful than steady-state noise. 
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The parameter estimates showed that individuals with higher working memory rated listening 

effort lower than those with lower working memory. Therefore, it is possible that individuals 

with higher working memory capacity may benefit from more efficient processing (Rudner et 

al., 2012).  

Despite improved understanding of the link between cognition and speech understanding, 

audiological assessments used to evaluate speech recognition do not typically consider the 

role of cognitive processes in the management of hearing loss, nor its contribution to inter-

individual differences in speech perception. As cognitive processes may contribute to 

individual performance and assist in explaining differences in perceived listening effort, it is 

important to quantify its role during speech recognition. This paper evaluates the influence of 

working memory capacity on listening effort ratings in varying levels of noise and spectral 

resolution, in normal-hearing young adults. Two studies were conducted in parallel (different 

participants in each study) to determine how changes in perceived listening effort were 

influenced by fixed performance (Study a: 50, 80% SRT), and relative performance (Study b: 

50% SRT +/-3 dB). To investigate changes in perceived listening effort, spectral resolution 

and background noise were parametrically varied. Spectral resolution was manipulated 

through channel-vocoding and comprised two conditions: moderately challenging (6-channel 

vocoding), and less challenging (16-channel vocoding). Channel vocoding sentences 

provides, in a controlled manner, a method to reduce the spectral resolution of the signal 

whilst maintaining temporal information. In doing so, speech becomes more challenging to 

understand with decreasing channels (Friesen, Shannon, Baskent, & Wang, 2001). We 

therefore anticipate the amount of listening effort required to comprehend a sentence in the 6-

channel condition will be greater than in the 16-channel condition.  

In order to maintain performance levels across participants, background noise in Study (a) 

was adjusted for each participant to obtain 50% (moderately challenging) and 80% speech 
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reception thresholds (SRTs; less challenging). In Study (b), a fixed 50% SRT was first 

determined, and +/-3 dB was added to each participants’ 50% SRT. Fixed performance levels 

using SRTs were chosen instead of fixed signal-to-noise ratios (SNRs) as cognitive factors 

may modulate performance when using fixed SNRs (Souza & Arehart, 2015). We anticipate 

that listening to a sentence at a 50% SRT will be more effortful than listening to sentences 

when performance is higher (e.g., 80% SRT, and the +3 dB condition in Study (b)).          

Modulating both SRT and channel-vocoding permits comparison of how the two 

manipulations influence listening effort. SRT allows comparison of how performance relates 

to listening effort, and channel-vocoding further allows comparison of how signal resolution 

influences listening effort. Manipulating both factors is important in understanding the 

multidimensionality that comprises listening effort.  

The motivation for conducting the parallel studies was to compare similarities and differences 

between fixed performance listening effort ratings (time consuming to clinically administer) 

and relative performance listening effort ratings (quicker to clinically administer). If the 

results are similar, this would suggest that the quicker and simpler relative performance 

procedure may be a better clinical assessment tool than the more time consuming fixed 

performance procedure. Gaining a better understanding of the interplay between listening 

effort, speech recognition, and cognitive processes may have implications for people with 

hearing impairment, such as device selection, setting selection, choice of cognitive 

intervention and rehabilitation strategies. 

3.3 Method (Study a) 

Participants 

Twenty-four monolingual Australian-English speakers (13 women, 11 men) with a mean age 

of 27.3 years (SD = 4.5) participated in the study. All had distortion-product otoacoustic 
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emissions within normal limits between 1 – 4 kHz, consistent with typical hearing or a mild 

sensorineural loss only. 

Speech materials and masker  

BKB sentences adapted for Australian-English (Bench & Doyle, 1979) were recorded by a 

native Australian-English female speaker. The sentences and background noise (4-talker 

babble) were vocoded using custom MATLAB scripts where the frequency range 50-6000 Hz 

was divided into 6 or 16 logarithmically spaced channels. The amplitude envelope was then 

extracted from each channel by full-wave rectifying the signal and applying a low pass filter 

with a 32 Hz cut-off frequency. The extracted envelope was used to modulate the noise 

within the same frequency band. Each band of noise was then recombined to produce the 

channel-vocoded sentences and background noise. Channel-vocoding the background noise 

to match the speech signal was necessary in order to match the acoustic features of the signal 

to the background noise to minimise any cues provided by greater or lesser contrasting 

differences between them.  The root mean square (RMS) levels of the sentences and 

background noise were equalised in MATLAB after vocoding.  

An automated adaptive speech-in-noise software developed by the National Acoustic 

Laboratories was used to obtain SRTs (see Keidser, Dillon, Mejia & Nguyen, 2013, for a 

comprehensive review of the algorithm). The BKB-A sentences were presented at 65 dB 

SPL, and the background noise was adaptively adjusted to obtain each of the SRTs. The 

adaptive procedure consisted of three phases. Phase 1: 5 dB steps until 4 sentences were 

completed, including one reversal, Phase 2: 2 dB steps until a minimum of 4 sentences were 

completed, and the phase’s standard error (SE) was 1 dB or below, and Phase 3: 1 dB steps 

until 16 sentences (from the end of phase 2) were completed, with a SE of 0.80 or below, or 

the maximum number of 32 sentences was reached (note that the minimum was 16 
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sentences). When the SE reached 0.80 or below, the test terminated and recorded the SNR. 

This procedure was conducted across both 50% and 80% SRTs. 

Speech reception thresholds 

A sound-attenuated room was used during the testing sessions, and the equipment was 

calibrated prior to each participant’s arrival. The speaker was positioned at one meter 

distance and zero degrees azimuth from the participant at ear level. Two SRTs (50%, 80%) 

for two vocoding conditions (16-channel, 6-channel) were collected, resulting in four 

conditions. Table 1 shows the mean and standard deviations of the signal-to-noise ratios for 

each SRT. 

Table 1. Mean signal-to-noise ratios and standard deviations for speech reception thresholds 

(SRTs: 50, 80%) and channel-vocoding (16, 6-channel). 

 

Perceived effort ratings 

Perceived effort ratings were obtained for all conditions. At the individual’s SRT, one list of 

16 sentences was presented to obtain perceived listening effort ratings using the Borg Scale 

of Perceived Exertion (Borg, 1982). The scale is ranked one to ten, with corresponding 

written labels (for example, ‘1’ corresponded with the label ‘Nothing at all’, and ‘10’ 

corresponded with the label ‘Very very hard’). This scale differs from visual analogue scales 

due to the inclusion of written labels. The order in which the conditions were presented was 

randomised across participants.  

Working memory capacity 

               

SRT %  

Vocoding 6   16   6   16

Mean (dB) 1.0   -1.8   4.0   0.5

SD (dB) 1.9   1.5   2.1   1.6

               

50 80
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The reading span test was used as a measure of working memory capacity (Daneman & 

Carpenter, 1980). Short sentences were presented visually on a computer screen, in three 

meaningful segments, each separated by a 50 ms gap (e.g., “the dad”, “hugged”, “the 

daughter”), in blocks of three, four, and five sentences. Each segment appeared for 800 ms. 

After each sentence, the participant had 1.75 seconds to determine whether the sentence made 

sense or not by pressing ‘Y’ or ‘N’ on a keyboard. After each block of sentences, participants 

were asked to repeat either the first or the last words of each sentence. The order of 

presentation was randomised. Scoring was based on the total number of words correctly 

recalled (Rönnberg, Arlinger, Lyxell, & Kinnefors, 1989).  

3.4 Results (Study a) 

A median split was performed on the basis of working memory capacity (visual reading span 

score) performance. The median was 67%, the mean of the lower and higher scores were 

58% and 76%, respectively. Lower/ higher working memory capacity was entered into a 

repeated measures ANOVA as a between-subjects factor to determine how working memory 

capacity influenced the model. There was a significant main effect of SRT on effort ratings, 

F(1,22) = 27.171, p < 0.001, ƞp
2 = 0.553, no main effect of vocoding, F(1,22) = 0.004, p = 

0.947, ƞp
2 <0.001, or SRT x vocoding, F(1,22) = 4.206, p = 0.052, ƞp

2 = 0.161, although this 

was trending towards significance (Figure 1). For low/ high working memory capacity, there 

was no interaction with SRT, F(1,22) = 0.006, p = 0.938, ƞp
2 <0.001, or vocoding F(1,22) = 

0.279, p = 0.602, ƞp
2 = 0.013. There was a significant interaction between SRT, vocoding and 

working memory capacity, F(1,22) = 4.748, p = 0.040, ƞp
2 = 0.178 (Figure 2). Bonferroni 

corrected post-hoc analyses showed that on average, participants with higher working 

memory capacity rated effort higher in the 50% SRT condition compared to the 80% SRT 

condition, for both vocoding conditions. On average, participants with lower working 

memory capacity rated effort higher in the 50% SRT condition compared to the 80% SRT 
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condition for 16-channel vocoding only. Perceived effort was rated the same level in the most 

challenging vocoding condition (6-channel). 

 

Figure 1. Interaction between perceived listening effort ratings, speech reception thresholds. 

(SRTs: 50%, 80%) and channel-vocoding (16, 6-channel). Error bars represent ±1SD. 

 

Figure 2. Interaction between perceived listening effort ratings, speech reception thresholds 

(SRTs: 50%, 80%) and channel-vocoding (16, 6-channel), by working memory capacity 
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(WMC: low, high). Error bars represent ±1SD. 

Simple linear regression was calculated to predict perceived listening effort based on SNR, 

across all conditions. There were no significant results, suggesting that on average 

participants’ perceived effort ratings were not correlated with SNRs (Table 2). 

Table 2. P-values of simple linear regression where signal-to-noise ratios were used to predict 

perceived listening effort. 

 

3.5 Method (Study b) 

Participants 

Twenty monolingual Australian-English speakers (13 women, 7 men) with a mean age of 

22.7 years (SD = 2.8) participated in the study. All had distortion-product otoacoustic 

emissions within normal limits between 1 – 4 kHz, consistent with typical hearing or a mild 

sensorineural loss only. 

Speech materials and noise  

The same speech and noise materials were used as Study (a). 

Speech reception thresholds 

SRTs were collected using the same adaptive method as Study (a). A 50% SRT was first 

obtained for 16-channel and 6-channel vocoding conditions, then -3 dB and +3 dB was added 

to each participants’ 50% SRT resulting in 6 conditions. Table 3 shows the mean and 

standard deviations of the SNRs for Study (b).  

               

SRT %  

Vocoding 6   16   6   16

P-value 0.5   0.8   0.4   0.6

50 80
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Table 3. Mean signal-to-noise ratios and standard deviations for speech reception thresholds 

(SRTs: +/- 3 dB from the participants’ individually adapted 50% SRT) and channel-vocoding 

(16, 6-channel). 

 

Perceived effort ratings 

Perceived effort ratings were obtained for all conditions, as in Study (a). At the individual’s 

SRT, one list of 16 sentences was presented to obtain the effort ratings for the 50% SRT 

condition, and 32 sentences were presented in the 50% SRT -3 dB and +3 dB condition. The 

order in which the conditions were presented was randomised across participants.  

Working memory capacity 

The same working memory task was used as Study (a). 

3.6 Results (Study b) 

A median split was performed on the basis of working memory capacity (reading span score). 

The median was 71%, the mean of the lower and higher scores were 60% and 71%, 

respectively. Lower/ higher working memory capacity was entered into a repeated measures 

ANOVA as a between-subjects factor. There was a significant main effect of SRT on effort 

ratings, F(2,36) = 26.890, p < 0.001, ƞp
2 = 0.599, no main effect of vocoding, F(2,36) = 

0.020, p = 0.887, ƞp
2 = 0.001, or SRT x vocoding, F(2,36) = 2.763, p = 0.076, ƞp

2 = 0.133, 

although this was approaching significance (Figure 3). For low/ high working memory 

capacity, there was no interaction with SRT, F(2,36) = 0.393, p = 0.677, ƞp
2 = 0.021, or 

                       

SRT %    

Vocoding 6   16   6   16   6   16

Mean (dB) 0.1   -4.0   3.1   -1.0   6.1   2.0

SD (dB) 2.4   1.7   2.4   1.7   2.4   1.7

                       

+3dB-3dB 50
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vocoding F(2,36) = 1.014, p = 0.327, ƞp
2 = 0.053 and no significant interaction between SRT, 

vocoding and working memory capacity, F(2,36) = 1.928, p = 0.160, ƞp
2 =0.096.  

 

Figure 3. Interaction between perceived listening effort ratings, speech reception thresholds 

(SRTs: +/- 3 dB from the participants’ individually adapted 50% SRT) and channel-vocoding 

(16, 6-channel). Error bars represent ±1SD. 

 

Figure 4. Interaction between perceived listening effort ratings, speech reception thresholds 

(SRTs: +/- 3 dB from the participants’ individually adapted 50% SRT) and spectral resolution 

(vocoding: 16, 6-channel), by working memory capacity (WMC: low, high). Error bars 

represent ±1SD. 



39 
 

Two additional conditions (+/- 3 dB) for 16- and 6-channel vocoding conditions were 

calculated from the adaptively obtained 50% SRT condition. The actual performance levels 

attained (average percentage correct) are shown in Table 4. Descriptive statistics show that 

the difference between the fixed 50% SRT condition and the relative +3 dB conditions (for 

both vocoding conditions) had notable performance increases. Conversely, performance 

appears to be comparable between the -3 dB condition and the fixed 50% SRT condition.  

Table 4. Mean and standard deviations for the actual performance levels obtained during the 

speech recognition task in Study (b), at each speech reception threshold (SRTs: +/- 3 dB from 

the participants’ individually adapted 50% SRT) and channel-vocoding level (16, 6-channel), 

by working memory capacity (WMC: low, high). 

 

Simple linear regression was calculated to predict perceived listening effort based on SNR, 

across all conditions. No results were significant except for the 50% SRT 16-channel 

vocoding condition, suggesting that overall participants’ perceived effort ratings were not 

correlated with SNRs (Table 5). 

Table 5. P-values of simple linear regression where signal-to-noise ratios were used to predict 

perceived listening effort. 

 

                                               

WMC  

SRT %          

Vocoding 6   16   6   16   6   16   6   16   6   16   6   16

Mean (%) 49   46   49   53   78   85   44   40   45   52   74   79

SD (%) 17   17   13   17   9   13   15   21   13   18   13   7

                                               

Low High

-3dB 50 +3dB -3dB 50 +3dB

                       

SRT %    

Vocoding 6   16   6   16   6   16

P-value 0.2   0.1   0.1   0   1   0.2

                       

-3dB 50 +3dB
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3.7 Discussion 

Across two studies, a sentence recognition task which manipulated SNRs and channel-

vocoding was conducted to examine how working memory capacity influences self-reported 

listening effort ratings in young, normal-hearing adults. The main finding was that on 

average, participants with lower working memory capacity rated perceived effort differently 

to the group with higher working memory capacity (Study a). This difference appeared to be 

driven by the interaction between SRTs and spectral resolution (channel-vocoding), and was 

only apparent in the more challenging vocoded condition (6-channel). That is, the lower 

working memory capacity group, on average, did not rate effort differently across the easier 

and harder SRTs when the vocoded signal was more challenging. In contrast, the higher 

working memory capacity group, on average, systematically rated effort higher in the more 

challenging SRT for both vocoding conditions, in line with pupillometry studies showing that 

on average, participants with greater working memory capacity exert greater effort than those 

with lower working memory capacity (Zekveld, Kramer & Festen, 2011). Although not 

significant, a similar trend was found in Study (b) (Figure 4).  

One explanation is that the higher working memory capacity group were less distracted by 

the background noise than the lower working memory capacity group. Conway et al. (2001) 

reports that individuals with higher working memory capacity may have a greater ability to 

supress interference than their lower working memory capacity counterparts. Studies by 

Rosen and Engle (1998) and Conway and Engle (1994) found that participants with a higher 

working memory capacity were superior at suppressing interfering materials than those 

individuals with lower working memory capacity. In particular, in a study investigating the 

cocktail party effect, Conway, Cowan, and Bunting (2001) demonstrated that individuals with 

low working memory capacity were more distracted by hearing their own name presented 
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within cocktail party noise than those with higher working memory capacity. If this was the 

case in the current study, it may be that the group with higher working memory capacity were 

less distracted by the background noise as they had more resources (or ‘cognitive spare 

capacity’; see Rudner et al., 2011) to suppress the distracting information. This may have the 

added benefit of allowing the participants to rate the effort associated with listening to the 

signal (sentence material), as opposed to rating the distracting background noise (or the 

combination of the two). 

An alternate explanation is that differences exist in the ability of those with higher and lower 

working memory capacity to adapt to a degraded signal. Evidence that individuals with 

higher working memory capacity are better able to adapt to different signal processing 

algorithms than those with lower working memory capacity has been shown previously 

(Lunner, 2003; Lunner, Rudner, & Rönnberg, 2009; Rudner, Foo, Rönnberg, & Lunner, 

2009). Lunner et al. (2009) showed that adults with hearing loss who have higher working 

memory capacity are better able to use faster signal processing algorithms in hearing aids 

than those with lower working memory capacity. Within the current study, young adults 

needed to correctly repeat blocks of vocoded sentences that were increased in difficulty either 

with increased 4-talker babble noise or a reduction in spectral content. Adaptation to a 

degraded signal over repeated trials has been shown by Davis and colleagues (2005), 

however it is noted that they did not include a measure of working memory capacity in their 

study. They found that young adults increased the proportion of correctly repeated key words 

in a sentence from less than 10% to approximately 50% from the first sentence in a block of 

30 vocoded sentences to between 20-30 sentence presentations. As feedback was not 

provided to the participants, it is assumed that the increase in correctly reported words over 

the number of sentence presentations suggests that participants were able to adapt to the 

vocoded signal (or learnt to ‘decode’ the signal). To extend this, it is certainly possible that 
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differences could exist for adults with higher working memory, where they are able to learn 

or decode degraded sentences more rapidly, although this hypothesis has not yet been tested. 

Despite the fact that perceived effort ratings were comparable across Study (a) and (b), 

variability in the actual performance levels obtained in Study (b) existed (Table 4).  It would 

be expected that there would be greater variability in performance in the -3 dB and +3 dB 

conditions as the SNR was not adapted to reach an SRT (i.e., -3 dB and +3 dB were simply 

added to each individuals’ 50% SRT). However, the results showed that considerable 

variability was present across all conditions, for both the lower and higher working memory 

capacity groups. Keidser and colleagues (2013) tested the speech-in-noise algorithm in a free-

field (the current study also used the same software in a free-field), observing that variability 

across studies may arise due to free-field presentation where an individual’s head movement 

may result in shadowing effects. Moreover, Dillon (1982) outlined that the variability often 

found in inter- and intra-individual results of speech discrimination tasks may arise from 

multiple variables such as list differences, statistical fluctuations and subject differences. In 

particular, time of day has been shown to affect performance and effort ratings in young 

adults. Recent work by Veneman and colleagues (2013) showed young individuals performed 

significantly better when they were tested at their ‘peak-time’ (evening) compared to in the 

morning, and their ratings of mental effort (captured using the NASA-TLX) were 

significantly higher when they were assessed during their off-peak time (morning). It is 

plausible that if all testing sessions were conducted during the participants’ peak-time, 

performance variability would be reduced.   

It was also expected that the lower working memory capacity group would rate effort higher 

than the higher working memory capacity group, however the results of the current study do 

not support this. Rudner et al. (2012) demonstrated across two studies that older individuals 

(M = 63.5; 70 years) with hearing-impairment and lower working memory capacity rated 
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effort higher than those with higher working memory capacity. One possible explanation for 

the inconsistency between effort ratings in Rudner and colleagues’ study and the current 

study is likely due to the notable differences in age and hearing status of the participants 

(Wayne & Johnsrude, 2015). It is conceivable that in a young, normal-hearing population, 

effort ratings during a speech recognition task, and working memory capacity, would be more 

homogenous than in an elderly population where hearing-impairment and cognitive decline 

co-occur (Grady, 2012; Salthouse, 2004). It is also likely that the differences result from the 

sentence recognition task materials themselves. Studies have shown that elderly participants 

benefit more from context than their younger counterparts (Pichora‐Fuller et al., 1995) and 

the study by Rudner and colleagues used low redundancy sentence stimuli. These materials 

essentially impede the ability of the participants to use contextual inference, whereas the 

current study used predictable sentences, allowing the participants to use context to ‘fill in the 

gaps’. This may also explain why the older participants in Rudner et al.’s study rated 

perceived effort higher (1.46 times higher for the comparable 50% SRT conditions) than the 

younger participants in the current study.  

Despite past research into listening effort, many challenges remain for a behavioural measure 

of listening effort to be implemented in a clinical setting. For example, further investigation is 

needed to understand the effect of personality or internal factors such as motivation on self-

reported listening effort (Picou & Ricketts, 2014), and performance outcomes (Humphreys & 

Revelle, 1984). And while subjective effort ratings may in part reflect an individual’s 

perception of listening effort, it may also be related to the actual or perceived performance 

level (Feuerstein, 1992). For example, recalling a sentence embedded in noise may require 

effort, but if the individual believes they have recalled the sentence successfully they may 

rate perceived effort lower, compared to a less effortful sentence (i.e., due to a favourable 

SNR) that they were either unable to recall in whole or in part, or unsure of having heard the 
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sentence correctly. Studies examining listening effort during a dual-task paradigm have 

shown that the subjective and objective measures of listening effort often diverge (Anderson 

Gosselin & Gagné, 2011; Feuerstein, 1992), even though subjective ratings of effort correlate 

with performance. The lack of correlation between subjective and objective measures in these 

studies may be in part due to the two tasks using different mechanisms (Feuerstein, 1992) 

and/or individuals being unable to perceive increases in effort when task difficulty is 

increased (Anderson Gosselin & Gagné, 2011; Feuerstein, 1992).  If the latter, then a robust 

objective or physiological measure of listening effort warrants development to remove 

subjectivity from the testing procedure to make it a clinically viable tool.  

Understanding speech in adverse listening conditions is challenging, even for young adults 

with uncompromised hearing. Comprehending an incoming speech signal requires integrating 

phonemes, syllables, words and sentences in order to succeed in correctly identifying the 

intended message. Cognitive processes such as working memory may be recruited when 

listening to speech in noise in order to make verbal inferences, to segregate the speech signal 

from background noise, and to suppress distracting information. The current finding that 

individuals with lower working memory capacity do not differentiate effort ratings when 

spectral resolution is at its most challenging may have significant clinical implications, 

especially in older populations where hearing-impairment is commonplace and cognitive 

decline is known to co-occur. Future studies investigating the connection between listening 

effort, speech performance outcomes and working memory capacity will not only provide 

direction for increasing sensitivity of clinical assessments, but will also assist to refine 

models of cognitive hearing such as the Ease of Language Understanding model (Rönnberg, 

2003; Rönnberg et al., 2013). 
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4.1 Abstract 

Listening to speech in noise is effortful, particularly for people with hearing impairment. 

While it is known that effort is related to a complex interplay between bottom-up and top-

down processes, the cognitive and neurophysiological mechanisms contributing to effortful 

listening remain unknown. Therefore a reliable physiological measure to assess effort 

remains elusive. This study aimed to determine whether pupil dilation and alpha power 

change, two physiological measures suggested to index listening effort, assess similar 

processes. Listening effort was manipulated by parametrically varying spectral resolution 

(16- and 6-channel vocoding) and speech reception thresholds (SRT; 50% and 80%) while 19 

young, normal-hearing adults performed a speech recognition task in noise. Results of offline 

sentence scoring showed discrepancies between the target SRTs and the true performance 

obtained during the speech recognition task. For example, in the SRT80% condition, 

participants scored an average of 64.7%. Participants’ true performance levels were therefore 

used for subsequent statistical modelling. Results showed that both measures appeared to be 

sensitive to changes in spectral resolution (channel-vocoding), while pupil dilation only was 

also significantly related to their true performance levels (%) and task accuracy (i.e., whether 

the response was correctly or partially recalled). The two measures were not correlated, 

suggesting they each may reflect different cognitive processes involved in listening effort. 

This combination of findings contributes to a growing body of research aiming to develop a 

physiological measure of listening effort. 
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4.2 Introduction 

Listening to speech in noise is a complex and effortful task, requiring a dynamic interplay 

between bottom-up and top-down processing (Arlinger, Lunner, Lyxell, & Pichora‐Fuller, 

2009; Rönnberg, Rudner, Foo, & Lunner, 2008; Zekveld, Heslenfeld, Festen, & 

Schoonhoven, 2006). Importantly, the effort required to listen to speech in noise is a 

commonly reported complaint in people with hearing impairment (Arlinger et al., 2009; 

Hawkins & Yacullo, 1984; Wouters & Berghe, 2001) that is not currently captured in 

standard clinical speech tests. Many factors may contribute to increased effort associated with 

listening to speech in noise, including age (Gosselin & Gagné, 2011; Larsby, Hällgren, 

Lyxell, & Arlinger, 2005; Tun, McCoy, & Wingfield, 2009) and cognitive influences such as 

working memory capacity and attention (Arlinger et al., 2009; Pichora-Fuller, 2006; Rudner, 

Lunner, Behrens, Thorén, & Rönnberg, 2012).  

The term “listening effort” has been defined as “the mental exertion required to attend to, and 

understand, an auditory message” and has been studied from multiple perspectives (see 

McGarrigle et al. 2014, for a review). Adverse health effects of prolonged mental effort, 

particularly with an effort-reward imbalance (Kuper, Singh-Manoux, Siegrist, & Marmot, 

2002; Siegrist, 1996), have been linked to fatigue (Mehta & Agnew, 2012), cardiovascular 

strain (Peters et al., 1998) and stress (Hua et al., 2014). For listening-related effort in 

particular, adults with hearing loss report increased incidence of fatigue (Hua, Anderzén-

Carlsson, Widén, Möller, & Lyxell, 2015; Kramer, Kapteyn, & Houtgast, 2006; Pichora-

Fuller, 2003), are absent from work more frequently (Kramer et al., 2006), take longer to 

recover after work (Nachtegaal et al., 2009), and may withdraw from society (Weinstein & 

Ventry, 1982). There is also evidence that children with hearing loss experience greater 

fatigue than their normal-hearing peers, in part due to the effort required to listen to their 
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teacher and interact with classmates, typically in acoustically poor classroom environments 

(Hornsby, Werfel, Camarata, & Bess, 2014).  

Yet despite these negative health and social consequences of effortful listening, a reliable 

physiological measurement of listening effort remains elusive (Bernarding, Strauss, 

Hannemann, Seidler, & Corona-Strauss, 2013). Current speech perception assessments only 

provide a crude estimation of the limitations of hearing impairment, and do not typically 

consider the cognitive influences related to effort (Schneider, Pichora-Fuller, & Daneman, 

2010; Wingfield, Tun, & McCoy, 2005) and the combination of, or interactions between, age 

and cognitive factors (Pichora-Fuller & Singh, 2006). Simultaneous evaluation of listening 

effort during speech recognition in noise could increase sensitivity of these assessments and 

guide device selection and settings as well as rehabilitation strategies. 

A wide range of methods and tools have been used to explore listening effort that may better 

reflect the cognitive challenges which individuals with hearing loss face in real-world 

environments. Such measures have included subjective ratings (scales and questionnaires), 

dual tasks (performance measures on one task while the difficulty of a concurrent task varies) 

and physiological measures such as changes in brain oscillations, pupillometry, skin 

conductance and cortisol levels (see McGarrigle et al., 2014 for a comprehensive review). At 

present, pupil dilation and EEG are the most-cited physiological measures that have the 

clinical potential to assess listening effort due to their non-invasiveness, increasing portability 

and user-friendliness (Badcock et al., 2013; Mele & Federici, 2012), and ability to be used 

during standard clinical speech perception assessments.  

Changes in the pupillary response, which is under the physiological control of the locus 

coeruleus-norepinepherine (LC-NE) system (Gilzenrat, Nieuwenhuis, Jepma, & Cohen, 

2010) has been argued to reflect increased processing load (Beatty & Wagoner, 1977; 
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Granholm, Asarnow, Sarkin, & Dykes, 1996). Pupil size has been shown to be larger during 

sentence encoding when performance levels are low (e.g., 50% Speech Reception Threshold 

(SRT)) in comparison to higher performance levels (e.g., 84% SRT; Koelewijn, Zekveld, 

Festen, Rönnberg, & Kramer, 2012; Kramer, Kapteyn, Festen, & Kuik, 1997; Zekveld, 

Kramer, & Festen, 2010; Zekveld, Festen, & Kramer, 2014; Zekveld, Heslenfeld, Johnsrude, 

Versfeld, & Kramer, 2014; Zekveld & Kramer, 2014). In addition to varying signal-to-noise 

ratios (SNRs) and SRTs, other speech stimuli manipulations have been shown to affect pupil 

dilation. For example, pupil size is larger when listening to speech in single-talker maskers 

than in fluctuating noise (Koelewijn et al., 2014; Koelewijn, Zekveld, Festen, Rönnberg, et 

al., 2012) or stationary noise (Koelewijn, Zekveld, Festen, & Kramer, 2012), or when the 

masking speech is the same gender as the speech signal (Zekveld, Rudner, Kramer, Lyzenga, 

& Rönnberg, 2014). Changing the complexity of the task through linguistic manipulation 

such as lexical competition (Kuchinsky et al., 2013) and sentence difficulty also increases the 

pupil size in the more linguistically challenging conditions (Piquado, Isaacowitz, & 

Wingfield, 2010; Wendt, Dau, & Hjortkjær, 2016). Degrading the spectral resolution of a 

speech stimulus through channel-vocoding also increases pupil size (Winn, Edwards, & 

Litovsky, 2015). Collectively, these studies suggest that the pupillary response changes with 

task difficulty, which may reflect the increased effort associated with more challenging tasks. 

Changes in brain oscillations is another physiological measure that has shown systematic 

changes associated with a wide variety of cognitive processes (Başar, Başar-Eroglu, Karakaş, 

& Schürmann, 2001; Herrmann, Fründ, & Lenz, 2010; Klimesch, 1996, 1999, 2012; Ward, 

2003). For example, enhancement in the alpha frequency band (8-12 Hz) has been observed 

using working memory tasks with various types of stimuli, including syllables (Leiberg, 

Lutzenberger, & Kaiser, 2006) and single words (Karrasch, Laine, Rapinoja, & Krause, 2004; 

Pesonen, Björnberg, Hämäläinen, & Krause, 2006). Obleser and colleagues (2012) proposed 
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that acoustic degradation and working memory load may similarly affect alpha oscillations 

due to the greater allocation of working memory resources required to comprehend an 

acoustically degraded signal (Piquado et al., 2010; Rabbitt, 1968; Wingfield et al., 2005). 

When memory load and spectral resolution were most challenging, they demonstrated that 

alpha enhancement was superadditive, suggesting that the same alpha network might index 

both. Similar findings have been replicated using different sources of acoustic degradation 

during a digit or word comprehension task (Petersen, Wöstmann, Obleser, Stenfelt, & 

Lunner, 2015; Wöstmann, Herrmann, Wilsch, & Obleser, 2015; see Strauß, Wöstmann, & 

Obleser, 2014, for review).  

In our previous study (McMahon et al., 2016), we examined the changes in alpha power and 

pupil dilation during a speech recognition in noise task using channel-vocoded sentences (16- 

and 6-channel) and a 4-talker babble-noise varying from -7 dB to +7 dB SNR. This 

demonstrated that the change in alpha power significantly declined with increasing SNRs for 

16-channel vocoded sentences, but remained relatively unchanged for 6-channel sentences. 

Pupil dilation showed a similar negative linear correlation for 16-channel vocoded sentences, 

which also was not observed for 6-channel vocoded sentences (instead showing a strong 

cubic relationship with SNR). Finally, changes in pupil dilation and alpha power were not 

correlated. However, differences in performance may explain the lack of correlation, as fixed 

SNRs were used across all participants. As such, for the present study, performance levels 

were fixed using individually obtained 50 and 80% SRTs for both 16-channel and 6-channel 

vocoded sentences. The signal-to-noise ratio was modulated to achieve these performance 

levels (and were therefore different across the participants). Manipulating two types of 

acoustic degradation approximately simulates listening in noise with a cochlear implant 

(Friesen, Shannon, Baskent & Wing, 2001) and is relevant if physiological measures of 

listening effort are to be applied in a clinical setting.   
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Alpha power and pupil dilation have both been proposed to be physiological measures of 

listening effort with the possibility of implementation into clinical practice. Gaining a better 

understanding of how these physiological measures respond to changes in task difficulty 

within a population with normal hearing and cognition is important in order to interpret its 

behaviour within an older population with hearing loss. The current study aimed to determine 

how pupil dilation and alpha oscillations change when parametrically varying both spectral 

resolution (using 16-channel and 6-channel vocoding) and speech recognition performance. 

Simultaneous recordings of pupil dilation and alpha oscillations will determine whether the 

measures are associated and might enable insight into whether they index the same aspect of 

listening effort. 

4.3 Materials and methods 

Participants 

Twenty-seven normal-hearing monolingual English-speaking participants were recruited for 

the study. Two participants did not attend all testing sessions and were therefore excluded. As 

one of the main aims of this study was to assess whether EEG and pupil dilation correlated 

with each other, only participants who had 65% accepted trials in both measures were 

included (n=19). Participants (12 women, 7 men) had a mean age of 27 years (SD = 4.28, 

range = 22-34 years). All had distortion-product otoacoustic emissions between 1 – 4 kHz, 

consistent with typical hearing or a mild sensorineural loss only and were right-handed as 

assessed by The Assessment and Analysis of Handedness: the Edinburgh Inventory (Oldfield, 

1971). 

Speech materials and background noise  

Bamford-Kowal-Bench sentences adapted for Australian-English (Bench & Doyle, 1979) 

were recorded by a native Australian-English female speaker. The sentences and background 

noise (4-talker babble) were vocoded using custom MATLAB scripts where the frequency 
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range 50-6000 Hz was divided into 6 or 16 logarithmically spaced channels. The amplitude 

envelope was then extracted by taking the absolute value from the Hilbert transform from 

each channel. The extracted envelope was used to modulate noise with the same frequency 

band. Each band of noise was then recombined to produce the channel-vocoded sentences 

and background noise. The root mean square (RMS) levels of the sentences and background 

noise were equalized in MATLAB after vocoding.  

Speech reception thresholds 

Automated adaptive speech-in-noise software developed by the National Acoustic 

Laboratories was used to obtain SRTs (see Keidser, Dillon, Mejia & Nguyen, 2013, for a 

comprehensive review of the algorithm). The adaptive test has been validated with similar 

speech materials to the current study, with participants with normal hearing (n=12) and 

hearing loss (n=63), showing a standard deviation of 1.27 dB and 1.24 dB, respectively 

(Keidser et al., 2013). This suggests that the test results are reliable. The BKB-A sentences 

were presented at 65 dB SPL, and the background noise was adaptively adjusted to obtain 

each of the SRTs. The adaptive procedure consisted of three phases. Phase 1: 5 dB steps until 

4 sentences were completed, including one reversal, Phase 2: 2 dB steps until a minimum of 

4 sentences were completed, and the phase’s standard error (SE) was 1 dB or below, and 

Phase 3: 1 dB steps until 16 sentences (from the end of phase 2) were completed, with a SE 

of 0.80 or below, or the maximum number of 32 sentences was reached (note that the 

minimum was 16 sentences). When the SE reached 0.80 or below, the test terminated and 

recorded the SNR. This procedure was conducted across both 50% and 80% SRTs. 

A sound-attenuated room was used during the testing sessions, and the equipment was 

calibrated prior to each participant’s arrival. The speaker was positioned at one meter and 

zero degrees azimuth from the participant. Participants were informed they would hear 

sentences in noise and were instructed to repeat back all of the words of the sentence they 
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heard. Two SRTs (50%, 80%) for two vocoding conditions (16-channel, 6-channel) were 

collected, resulting in four conditions. Table 1 shows the mean and standard deviations of the 

SNRs for each SRT.  

Table 1. Means and standard deviations of SNR (dB), true performance obtained during the 

physiological testing session (%), and pearson’s r correlation coefficients of pupil dilation 

and alpha power, presented by SRT and channel-vocoding (first-two columns), and channel-

vocoding (collapsed across SRT) and SRT (collapsed across channel-vocoding) in the last 

two columns. SNR = signal-to-noise ratios; SRT = speech reception thresholds. 

Physiological measures 

The pupil and EEG recordings were measured simultaneously during the speech recognition 

task in a sound-attenuated and magnetically shielded room. Each participant was assigned 

randomly to Block A or Block B. Each block contained 220 sentences divided into the 4 

conditions (6ch50%SRT, 6ch80%SRT, 16ch50%SRT, and 16ch80%SRT) in which the 

sentences were swapped in each block. For example, in Block A, a sentence presented in the 

6ch50%SRT condition was presented in the 16ch80%SRT condition in Block B. Sentences 

were randomized during presentation. Each participant’s SNR obtained during the behavioral 

session was used to present the sentences in each of the conditions. The top panel of Figure 1 

shows the presentation protocol. Participants were instructed to repeat the sentence at the 

offset of the noise. Responses were recorded using a voice recorder and video-camera set up 

directly in front of them to capture their face during recording allowing more accurate scoring 

of their responses at a later time. The sentences were scored at the word level (using the 

SRT % - - 50 80

Channel vocoding 6 16 6 16 6 16 - -

SNR dB 0.4 (1.7) -1.7 (1.4) 3.7 (1.9) 0.7 (1.7) 2.1 (2.4) -0.7 (1.9) -0.6 (2.0) 2.0 (2.4)

Performance % 39.2 (16.5) 53.0 (15.8) 60.6 (15.0) 68.8 (13.5) 49.9 (19.0) 60.9 (16.6) 46.1 (17.4) 64.7 (14.7)

Pearson’s r 0.02 (0.14) 0.08 (0.20) -0.04 (0.15) -0.01 (0.17) -0.01 (0.09) 0.03 (0.11) 0.06 (0.13) -0.04 (0.08)

50 80
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standard BKB/A scoring criteria) by a native Australian-English speaker and the percentage 

correct was averaged for each condition. 

 

Figure 1. Average pupil size over time for all trials and participants, for 16- and 6-channel 

vocoding. The 0 s time-point refers to the beginning of noise. All sentences finished at the 3.5 

s time-point. Shading represents ±1SE of the mean. The top panel represents the presentation 

protocol. 

Pupil recording 

The right pupil was recorded using an SR Research Eyelink 1000 tower mount system at a 

1000 Hz sampling rate. Stimuli were presented through Experiment Builder software 

v1.10.1241. Prior to the task, the equipment was calibrated using a 9-point calibration grid on 

the screen. Pupil activity was recorded continuously until the experiment terminated. Offline, 

single-trials were processed with Dataviewer software (version 1.11.1), and compiled into 

single-trial pupil-diameter waveforms (-1 s to 5 s) for further processing and analyses using 

customized MATLAB scripts. Blink identification was determined on a trial-by-trial basis as 

pupil sample sizes smaller than three standard deviations below the mean pupil diameter. 
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Trials containing more than 15% of the trial samples detected in blink were rejected. In the 

remaining accepted trials, linear interpolation was used to reduce lost samples and artefacts 

from blinks (Siegle, Ichikawa, & Steinhauer, 2008; Zekveld, et al., 2010). Samples affected 

by blinks were interpolated from 66 ms preceding the onset of a blink to 132 ms following 

the offset of a blink. Data were smoothed using a 5-point moving average. Trials were then 

averaged across conditions for each participant. Regions of interest included baseline in noise 

(0-1 s) and the encoding period (2-6 s). 

For each trial, relative percent change was calculated as maximum pupil size during encoding 

minus mean pupil size during baseline in noise, divided by the mean baseline in noise. This 

was then multiplied by 100 in order to report percent change from baseline. See Figure 1 for 

an example of the pupil response (shown in millimeters, not percent change), during the 

experiment.  

EEG recording 

The continuous EEG was recorded with a 32-channel SynampsII Neuroscan amplifier. Thirty 

electrodes were positioned on the scalp in a standard 10-20 configuration (FP1 and FP2 were 

disabled as the participants rested their foreheads on the eyetracker support). The ground 

electrode was located between Fz and FPz electrodes. Electrical activity was recorded from 

both mastoids, with M1 set as the online reference. Ocular movement was recorded with 

bipolar electrodes placed at the outer canthi, and above and below the left eye. Electrode 

impedances were kept below 5 kΩ. The signal from the scalp electrodes was sampled at 1000 

Hz, band-pass filtered between .01 and 100 Hz, and notch filtered online at 50 Hz.  

Ocular artefact rejection was performed using Neuroscan software using a standard ocular 

reduction algorithm. Post-processing was conducted in Fieldtrip-MATLAB (Oostenveld et 

al., 2011). The EEG data were epoched from -1 second to 5 seconds avoiding stimulus 

boundary artefacts caused by the filtering process. A two-pass reversal Butterworth filter with 
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cut-off frequencies of 0.5 Hz- 45 Hz was applied to remove any drifts and high frequency 

noise that might occur. Band-pass filtering was used instead of high-pass filtering as in 

Obleser et al., (2012). Trials containing a variance exceeding 300 µV2 were removed from 

further analyses. Trials were then two-pass band-pass filtered between 8-12 Hz to extract the 

alpha oscillation (the mean absolute value of the filtered time series). The absolute value of 

the alpha band was extracted from the parietal electrodes (P3, P4, and Pz) during the 

encoding period (one second duration finishing 200 ms before the end of the sentence) and 

baseline in noise (300 ms-800 ms after the noise onset) on a trial by trial basis. See Figure 2 

for a time-frequency representation of the EEG activity. 

For each trial, relative percent change was calculated as mean alpha power during encoding 

minus mean alpha power during baseline, divided by mean alpha power during baseline. This 

was then multiplied by 100 in order to report percent change from baseline.  

 

Figure 2. Time-frequency representation of the EEG activity averaged across all participants, 

in the parietal region, for 16- and 6-channel vocoding. The time-frequency representations are 

relative to the activity occurring during the 1 s of noise beginning at the 0 s time-point 
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(baseline). All sentences finished at the 3.5 s time-point. The colors represent frequency 

power levels.  

4.4 Statistical methods 

As the range of absolute values was considerably different between pupil dilation and alpha 

power change, relative percent change from baseline was used for all statistical analyses in 

order to facilitate comparisons between the two measures. 

All analyses were performed in R version 3.2.1 using the nlme package (Pinheiro, Bates, 

DebRoy, & Sarkar, 2014). Linear mixed-effects (LME) models with a random intercept for 

individual were used for all analyses to control for repeated measures over different levels of 

the factors on individuals. Models for pupil size and alpha power were first assessed by 

including interactions. If there was no significant interaction, the main effects model was 

presented. P-values less than 0.05 were considered significant for all analyses.  

Four LME regression models were developed to determine the effects of the task parameters 

on pupil dilation and alpha power (see Table 2). The first model assessed the effect of SRT 

(50% and 80%) and vocoding (16-channel and 6-channel) on these measures. Variability in 

performance for the targeted SRTs existed within the physiological experiment, despite using 

a validated adaptive method in the behavioral session to obtain these SRTs. This was 

particularly evident for the 80% SRT, where participants’ true performance on the sentence 

recall task ranged from an average of 36% to 93% (see Table 4 True performance % for 

mean performance obtained for all conditions). To account for this variability, a second LME 

regression model was introduced, with true performance levels (i.e., individual speech 

recognition scores) and vocoding as predictor variables. A third LME model was developed 

to assess whether task accuracy influenced the measures. This was done because the reason 

for an incorrect or not recalled response is variable and generally unknown. For example, if a 
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participant is inattentive during a trial and does not recall a sentence, the physiological 

response may be different compared to if the participant invested effort to hear a sentence 

that was too challenging to perceive. Removing incorrect or not recalled sentences may 

reduce variability in the measures. Therefore, only correct or partially recalled sentences were 

analyzed in the third model. Finally, a fourth model was constructed to assess whether 

changes in pupil size and alpha power were not merely due to changes in SNR (i.e., varying 

loudness across the conditions). Individual SNRs for each participant and condition were 

used in the model.   

To account for repeated measures on individuals, correlations presented in the results section 

are the average of the correlation coefficients calculated for each participant (average of the 

19 coefficients for each of the 8 conditions). As there were unequal trials across the pupil and 

alpha measures, only those trials that were accepted in both measures were used in the 

correlation analyses (n = 3019).  

4.5 Results  

SRT and vocoding 

To determine the effect of SRT and vocoding on changes in pupil dilation or alpha power, 

LME regression models with SRT and vocoding as predictor variables were developed. For 

pupil dilation, there was no significant interaction term (p = 0.12). A main effects model 

indicated no effect of SRT (p = 0.91), and a significant effect of vocoding (p <0.01) on pupil 

size, which was 1.49% larger in the 6-channel condition compared to the 16-channel 

condition. For alpha power, there was no significant interaction term (p = 0.62). A main 

effects model indicated no effect of SRT (p = 0.29), and a significant effect of vocoding (p = 

0.03). Alpha power change was -30.0% lower in the 6-channel condition compared to the 16-
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channel condition. Figure 3 shows the mean of maximum pupil size and alpha power change 

relative to baseline.  

Table 2. Results for the Linear Mixed-Effects Models. Reference levels: 50% SRT, 16-

channel vocoding, correct recall (task accuracy). True performance (i.e., the actual percentage 

of speech recognized during the physiological testing session) was modelled in addition to 

SRT, as off-line sentence scoring was shown to deviate from target SRTs. SRT = speech 

reception thresholds; CI = confidence interval; SNR = signal-to-noise ratios. 

 

Model  

  Estimate 95% CI p value   Estimate 95% CI p value

Relative change in pupil/alpha              

    Intercept 12.156 [9.145, 15.077] <0.001   150.727 [84.345, 187.475] <0.001

    SRT 0.045 [-0.773, 0.863] 0.915   -14.818 [-12.472, 42.108] 0.287

    Vocoding 1.491 [0.673, 2.308] <0.001   -29.991 [-57.285, -2.696] 0.031

Relative change in pupil/alpha            

    Intercept 14.908 [11.544, 18.271] <0.001   134.693 [62.225, 207.160] 0.003

    Performance level -0.046 [-0.072, -0.019] <0.001   0.14 [-0.722, 1.001] 0.751

    Vocoding 0.986 [0.119, 1.852] 0.026   -28.261 [-57.310, 0.788] 0.057

Relative change in pupil/alpha            

    Intercept 11.191 [8.242, 14.138] <0.001   133.096 [81.166, 185.026] <0.001

    Task accuracy 1.612 [0.676, 2.549] <0.001   7.661 [-23.206, 38.528] 0.626

    Vocoding 1.571 [0.644, 2.499] <0.001   -17.833 [-48.336, 12.670] 0.252

Relative change in pupil/alpha            

    Intercept 12.864 [9.956, 15.774] <0.001   130.475 [82.717, 178.233] <0.001

    SNR 0.018 [-0.153, 0.189] 0.836   -3.46 [-9.112, 2.191] 0.23

Pupil size Alpha power
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Figure 3. Mean ±1SE of maximum pupil size and alpha power change relative to baseline, by 

SRT and channel-vocoding. 

True performance and vocoding 

As previously discussed, the true performance obtained on the speech recognition task during 

the physiological testing session greatly differed from the targeted 50% and 80% SRTs (see 

Table 4). To determine whether this had any bearing on the physiological measures, LME 

regressions models with true performance (%) and vocoding as predictor variables were 

developed.    

For pupil dilation, there was no significant interaction term (p = 0.88). A main effects model 

indicated a significant effect of performance level (p < 0.01), and vocoding (p = 0.03). As 

performance levels increased (towards 100%), the pupil size decreased by -0.05%. For alpha 

power, a LME regression model with performance level and vocoding as predictor variables 

indicated there was no significant interaction term (p = 0.88). A main effects model indicated 

no effect of performance level (p = 0.75). The inclusion of the participants’ true performance 

level caused a loss of significance of channel-vocoding (p = 0.06) in alpha power compared 

to the SRT and vocoding model. A likelihood ratio test suggested no benefit of including 
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performance levels in the model (performance level and vocoding: log likelihood -24869.65 

versus vocoding alone: log likelihood -24869.79). Removing performance level indicated 

that vocoding was significant (p = 0.03). Alpha power was 29.9% greater in the 16-channel 

condition compared to 6-channel. 

Task accuracy and vocoding 

A LME model including task accuracy (partially correct versus correct sentence recall) and 

channel-vocoding was developed. For pupil dilation, there was no significant interaction term 

(p = 0.38). A main effects model showed a significant effect of task accuracy (p<0.01) and a 

significant effect of vocoding (p<0.01). Pupil size for partially correct sentence recall was 

1.61% larger than correctly recalled sentences and 1.57% larger for 6-channel vocoded 

sentences compared to 16-channel. For alpha power, there was no significant interaction term 

(p = 0.17). A main effects model showed no effect of task accuracy (p = 0.63) and no effect 

of vocoding (p = 0.25).  

SNR 

Finally, to determine whether SNR was influencing pupil size or alpha power, SNR was 

entered into an LME as a predictor variable, however this showed no significant effect on 

pupil size (p = 0.84) or alpha power (p = 0.23). 

Correlation between pupil size and alpha power change 

At the individual level, pupil size was not significantly correlated with alpha power change 

for any of the correlations, (n = 19, p>0.05 for all correlations; see table 1 for means and 

SDs), including collapsing across all conditions (n = 19, mean r = 0.01 SD = 0.08, p>0.05). 

Figure 4 shows individual Pearson’s r coefficients for participants, by vocoding.  
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To assess whether the lack of correlation between the measures may be due to intra-

individual variability, intra-class correlations (ICC) were conducted. ICC estimates and their 

95% confidence intervals were calculated using the ICC package in R (Wolak, Fairbairn & 

Paulsen, 2012). In order to balance the dataset for ICC, the minimum number of trials 

available per subject, per condition, was first determined (n = 19). The results of the ICC 

analysis shows a weak-to-strong degree of reliability for the alpha measurements (Table 2), 

and a very high degree of intra-individual reliability for the pupil measurements (Table 3). 

Alpha power was more variable than the pupil dilation measure, however, even in the 

conditions where there was strong reliability across both measures (e.g., 16-channel) the two 

measures were not correlated (Table 1).  

 

Figure 4. Pearson’s r correlation coefficients of pupil dilation and alpha power by participant 

and channel-vocoding.  

Table 3. Intraclass Correlation Coefficients (ICC) assessing intraindividual reliability for 

alpha power. SRT = speech reception thresholds; CI = confidence intervals.  

 

SRT % - - 50 80

Channel vocoding 6 16 6 16 6 16 - -

ICC 0.38 0.63 0.22 0.49 0.5 0.76 0.73 0.63

p value 0.055 <0.001 0.198 0.012 0.008 <0.001 <0.001 <0.001

95% CI -0.11, 0.72 0.34, 0.83 -0.40, 0.65 0.08, 0.77 0.12, 0.77 0.58, 0.89 0.53, 0.88 0.35, 0.83

50 80
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Table 4. Intraclass Correlation Coefficients (ICC) assessing intraindividual reliability for 

pupil dilation. SRT = speech reception thresholds; CI = confidence intervals.  

 

4.6 Discussion  

The aim of this study was to examine the effects of increasing listening effort during a 

sentence recognition-in-noise task on pupil dilation and alpha power change. The second aim 

was to determine whether these physiological measures that were recorded simultaneously, 

were correlated. This would suggest that each respond to the same aspect of listening effort 

which may, itself, comprise multiple components (see Pichora-Fuller et al., 2016 for review). 

Listening effort was manipulated by parametrically varying the spectral content of the signal 

using channel-vocoding (16- and 6-channels) and performance (50% and 80% SRT). 

Specified SRTs were chosen rather than a fixed SNR to account for cognitive differences 

within the participant population (Souza & Arehart, 2015) and to investigate whether the 

large variability in alpha power change and pupil dilation change across the participants as 

reported by McMahon et al. (2016) was due to the influence of performance. 

In the SRT and vocoding model, the more spectrally degraded 6-channel vocoded sentences 

elicited greater pupil dilation, on average, compared to the 16-channel sentences. This finding 

is consistent with previous studies where decreasing the spectral resolution of the signal (i.e., 

decreasing the number of channels in vocoded speech) systematically increases pupil 

diameter (Winn et al., 2015) suggesting listening was more effortful.  

SRT % - - 50 80

Channel vocoding 6 16 6 16 6 16 - -

ICC 0.82 0.84 0.85 0.85 0.91 0.92 0.9 0.92

p value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

95% CI 0.68, 0.92 0.71, 0.93 0.73, 0.93 0.73, 0.93 0.85, 0.96 0.86, 0.96 0.82, 0.95 0.85, 0.96

50 80
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On average, alpha power was greater in the less spectrally degraded 16-channel condition, 

consistent with McMahon et al. (2016) which used the same channel-vocoded sentences and 

4-talker babble background noise. This finding diverges from studies using less complex 

linguistic stimuli which have shown that decreased acoustic quality enhances alpha power 

(digit task: Obleser et al., 2012, Wöstmann et al., 2015; word comprehension: Becker, 

Pefkou, Michel, & Hervais-Adelman, 2013; Obleser & Weisz, 2012). This could suggest that 

spectrally degraded sentences influence the alpha network differently due to the increased 

linguistic complexity. In the easier 16-channel condition, because of the better spectral 

resolution, there may be less dependency on the semantic context to recognize a sentence, 

whereas in the more spectrally degraded 6-channel condition, there is a greater need to rely 

on semantic context to fill in the gaps. However, before semantic processing is engaged, at 

least some phonemes must be recognized in the incoming speech signal. This lower level 

acoustic/phonemic processing may be more demanding in the 6-channel condition, perhaps 

decreasing the possibility for more automated semantic recognition. Greater alpha power in 

the 16-channel condition may therefore reflect task-irrelevant inhibition due to the 

automaticity of sentence processing when the signal was clearer, while reduced alpha power 

in the 6-channel condition may reflect ongoing active processing (Klimesch, 2012; Weisz, 

Hartmann, Müller, & Obleser, 2011) due to the poorer spectral resolution.  

It was anticipated that the pupil would be sensitive to changes in SRT, with greater increases 

in pupil size expected in the more cognitively demanding 50% SRT compared to 80% SRT 

condition. Contrary to expectations, however, this was not the case. During the physiological 

session, the true performance levels obtained for each SRT varied substantially from the 

target SRTs of 50% and 80%. On average, the true performance difference was only 18.6% 

between conditions, compared to the target SRTs which differed by 30% (i.e., the 

performance difference between 50% and 80% SRT). It is therefore possible that the 
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narrower range of the true performance contributed to the non-significant change in pupil 

dilation when modelling SRT.    

Using SRTs is common practice to assess speech recognition in noise both clinically, and for 

research purposes (Best, Keidser, Buchholz, & Freeston, 2015; Lunner, 2003; Smits & 

Festen, 2013). Numerous pupillometry studies have varied task difficulty by using an 

adaptive method to reach a desired SRT while recoding the pupil response. In the current 

study, each individual’s SNR was fixed during the physiological session in order to 

randomize stimuli presentation, as per Zekveld, Heslenfeld, Johnsrude, Versfeld, and Kramer 

(2014). To do this, participants’ SNRs for 50% and 80% SRT were obtained in a prior 

behavioral session (see methods section). The adaptive test has been validated with similar 

speech materials for participants with normal hearing and hearing loss and showed less 

variability than the current study (Keidser et al., 2013). The higher variability in the current 

study may have resulted from acoustically degrading the sentence materials (i.e., channel-

vocoding), or the different application of the SRTs across test sessions. Further, given that the 

behavioral session was considerably shorter in duration than the physiological session, the 

discrepancy between true performance and the target SRTs across the two sessions may be 

influenced by the participants’ varying levels of motivation and fatigue between sessions. 

Irrespective of the cause of the variability, true performance levels were used in an alternative 

LME regression model, instead of the 50% and 80% SRTs.  

True performance levels had no effect on alpha power, further suggesting that potential 

between-subjects variability in performance when sentences are presented in fixed SNRs 

(McMahon et al., 2016) is not likely to be influencing the change in alpha power. In line with 

previous studies (Kramer et al., 1997; Zekveld et al., 2010), increasing performance 

significantly decreased pupil size. Moreover, consistent with Winn et al. (2015), decreasing 

the spectral quality of the signal elicited greater pupil dilation, on average, even when 
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accounting for individuals’ true performance, demonstrating that performance alone does not 

fully capture the effort required to process a spectrally degraded signal. This is particularly 

evident in studies showing that even when task accuracy is high (~100%), continuing to 

degrade the spectral resolution of the signal increases effort, as reflected in greater pupil size 

(Winn et al., 2015). 

To further assess the relationship between the two physiological measures and task accuracy, 

only partially and correctly recalled sentences were examined. As incorrect sentence recall 

(or an absent response) could be due to many factors, including attention and/ or 

misperception (Kuchinsky et al., 2013) they were excluded from the analysis. Pupil size was 

significantly larger in the 6-channel condition, and also for partially recalled sentences, 

however there was no significant interaction between the two effects. Therefore, while 

decreased spectral resolution and partially recalled sentences appear to increase listening 

effort, when sentences are accurately recalled (correct response), there is no difference in 

listening effort between vocoding conditions, as indexed by pupil size. Unlike the pupil 

response, there was no difference in alpha power across the levels of task accuracy. This is in 

line with Obleser and colleagues (2012) who found task accuracy and alpha power were not 

correlated, although task accuracy was relatively high in their study (91-100%) and responses 

were either correct or incorrect. Removing the incorrect responses in the current study (n = 

888), revealed that channel-vocoding no longer appeared to influence alpha power. However, 

this is possibly due to the decreased statistical power when removing incorrectly recalled 

sentences. 

Consistent with previous studies examining speech recognition in noise, pupil size and alpha 

power were not significantly correlated within individuals (McMahon et al., 2016). This lack 

of correlation has been similarly reported in the reading domain (Scharinger, Kammerer, & 

Gerjets, 2015). As speculated by McMahon et al. (2016) this may be due to attention 
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mechanisms, such as individuals using different encoding and modifying strategies (c.f., 

Power and Petersen, 2013), the measures themselves being under the control of different 

attentional networks (c.f. Corbetta, Patel, & Shulman, 2008, for review of the different 

attention networks), or that each are encoding different aspects of listening effort.  

Population parameters such as age, hearing, and cognitive ability, may interact with the pupil 

and alpha response, which may explain some of the variability which exists in the current 

literature. For example, Petersen et al. (2015) found that alpha power breaks down in 

participants with moderate hearing loss when spectral resolution and working memory 

capacity is at its most challenging level. Zekveld et al., (2011) have also demonstrated that 

the relationship between a smaller pupil response (which would reflect a decreased cognitive 

load) and increasing speech intelligibility was indeed weaker in people with hearing 

impairment. The pupil and alpha response when hearing is impeded either by internal 

acoustic degradation (such as a hearing loss) versus external acoustic degradation (such as 

presenting a degraded signal to individuals with/ without hearing impairment) may therefore 

not be entirely comparable.   

Limitations of the current study include confining the analyses of alpha power change to the 

parietal area. While majority of the studies outlined in this paper found enhanced alpha 

activity in this location, it may be too restrictive given the added complexity of processing 

spectrally degraded sentences in noise. Furthermore, alpha band (8-12 Hz) may be too coarse, 

averaging two (or more) parallel processes. For example, 8-10 Hz is suggested to relate to 

attentional processes while 10-12 Hz may be related to linguistic-type activity such as 

semantic processing (cf. Klimesch, 1999, 2012, for review), where each selectively 

synchronize or desynchronize based on the stimulus. Future studies may wish to consider 

whole-head analysis and narrow-band frequencies which may provide further insight into 

different aspects of listening effort.   
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4.7 Conclusion 

Both changes in pupil dilation and alpha power have been suggested to index listening effort. 

Understanding how these measures behave, and interact, during simultaneous measurement 

provides insight into what aspects of listening effort they may each be encoding. This will go 

a long way towards disentangling the multifaceted nature of listening effort, and will improve 

the prospect of using them to complement standard hearing assessments. Here, we began to 

address these issues in a young, normal-hearing population to better understand how they 

operate when sensory input is not compromised by hearing impairment, and cognition is 

robust. Both measures appeared to be sensitive to changes in spectral resolution (channel-

vocoding), while pupil dilation provided further information about performance levels and 

task accuracy. Further, the measures were not correlated, suggesting they may be sensitive, or 

respond differently to, the different aspects of ‘mental exertion’ that comprise listening 

effort.  
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5.1 Introduction 

This short communication investigated under which conditions working memory capacity 

(reading span task) interacted with the physiological measures of listening effort. The terms 

‘offline’ and ‘online’ measures of working memory capacity are often used in the literature to 

reference when a measure of working memory capacity was assessed. An offline measure of 

working memory capacity refers to an assessment of working memory capacity that was 

performed independently (time separated) of physiological testing. The working memory 

capacity result is subsequently used as a variable to assess its impact on physiological data. 

On the other hand, an online measure of working memory capacity indicates that the 

assessment was concurrently measured (e.g., EEG synchronisation during a working memory 

task; Stam, van Walsum & Micheloyannis, 2002). While this short communication does not 

advocate for one method over the other, it is necessary to make this distinction in order to 

interpret the varying results in the literature.  

In the pupillometry literature, varying results regarding interactions with working memory 

capacity have been reported. For example, Koelewijn, Zekveld, Festen, Rönnberg, and 

Kramer (2012) found that greater working memory capacity measured in an offline task was 

associated with increased pupil size. In a similar paradigm, Zekveld and Kramer (2014) 

found no correlation between working memory capacity and pupil size. Measuring pupil size 

online during a working memory task also shows disparate findings. Heitz and colleagues 

(2008) demonstrated that greater working memory capacity resulted in smaller pupil 

diameters, whereas Wendt et al. (2016) found that a working memory task was positively 

correlated with pupil size during a sentence recognition task (i.e., greater working memory 

capacity was associated with larger pupil diameters).  

Alpha oscillations and working memory capacity have generally been examined during 

online working memory tasks in the visual domain. For example, studies have shown that 
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alpha power increases with increased working memory load during a Sternberg paradigm 

(Jensen, Gelfand, Kounios, & Lisman, 2002; Tuladhar et al., 2007). Adapting the Sternberg 

task for the auditory domain, Obleser et al. (2012) demonstrated that both spectral resolution 

and increased working memory load resulted in additive alpha power. That is, when spectral 

resolution and working memory load was greatest, alpha power change was also greatest.  

Chapter 3 in the current thesis found that on average, individuals with higher working 

memory capacity rated listening to 6-channel vocoded sentences as more effortful compared 

to 16-channel vocoded sentences. This was not the case for individuals with lower working 

memory capacity. As the same participants in Chapter 3 also participated in a physiological 

testing session to assess pupil dilation and alpha power change (Chapter 4), we aim to assess 

whether an offline measure of working memory capacity predicted pupil size and alpha 

power change during the sentence recognition task. 

Based on the previous literature, we hypothesise that greater working memory capacity will 

be associated with greater alpha power, however as various studies have found disparate 

results relating to working memory capacity and pupil size, whether a relationship will exist 

is an open question. 

5.2 Methods 

Comprehensive details of the Methods used can be found in Miles et al. (2017), Chapter 4 in 

the current thesis. 

Participants 

Participants (12 women, 7 men) had a mean age of 27 years (SD = 4.28, range = 22-34 years) 

and normal hearing.  

Speech materials and background noise 
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Bamford-Kowal-Bench sentences adapted for Australian-English (Bench & Doyle, 1979) 

were recorded by a female speaker. The sentences and background noise (4-talker babble) 

were vocoded using custom MATLAB scripts. 

Physiological measures 

The pupil and EEG recordings were simultaneously recorded at 1000 Hz.  

Working memory capacity 

The reading span test was used as a measure of working memory capacity (Daneman & 

Carpenter, 1980). Short sentences were presented visually on a computer screen, in three 

meaningful segments separated by 50 ms (e.g., “the dad”, “hugged”, “the daughter”), in 

blocks of three, four, and five sentences. Each segment appeared for 800 ms. After each 

sentence, the participant had 1.75 seconds to determine whether the sentence made sense or 

not by pressing ‘Y’ or ‘N’ on a keyboard. After each block of sentences, participants were 

asked to repeat either the first or the last words of each sentence. The order of presentation 

was randomised. Scoring was based on the total number of words correctly recalled 

(Rönnberg, Arlinger, Lyxell, & Kinnefors, 1989). For further analysis, a median split (67%) 

was also conducted on the data to form two groups consisting of individuals with higher 

working memory capacity and lower working memory capacity, per the analysis conducted in 

Chapter 3.  

5.3 Statistical analyses 

All analyses were performed in R version 3.2.1 using the nlme package (Pinheiro, Bates, 

DebRoy, & Sarkar, 2014). Linear mixed-effects (LME) models with a random intercept for 

individual were used for all analyses to control for repeated measures over different levels of 

the factors on individuals. Only interaction terms were assessed. A P value <0.05 was 

considered significant. Independent variables were actual performance and channel-vocoding, 

and the dependent variables were pupil dilation and alpha power. Two models were built for 
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each measure, one with working memory capacity as a continuous predictor variable, and the 

other with a high/low working memory capacity as a dichotomous covariate. Only sentences 

that were partially or correctly answered were included in the analysis, as this ensured 

participants were on task.  

5.4 Results 

The summary results can be found in Table 1. The results revealed no significant main effects 

or interactions for any predictor variables across models, as shown in Table 2. Although not 

statistically significant, the performance x high/low working memory interaction showed on 

average, participants in the lower working memory capacity group had larger pupil diameters 

than the higher working memory capacity group, but smaller pupil diameters for channel-

vocoding. Conversely, alpha power was lower in the performance x high/low working 

memory interaction for the lower working memory capacity group, and higher for channel-

vocoding, compared to the higher working memory capacity group.  

Table 1. Summary statistics of the measures. 

 

Table 2. Results for the Linear Mixed-Effects Models. 

 

Measure Mean SD Mean SD

Actual performance 60.37 17.9 57.76 17.54

Working memory capacity 73.79 5.31 54.03 9.78

Maximum pupil size 14.31 15.4 10.85 11.58

Mean alpha power 133.84 408.61 127.15 378.11

High working memory capacity Low working memory capacity

Model Estimate 95% CI p  value Estimate 95% CI p  value

Actual performance x WMC -0.001 [-0.005, 0.003] 0.127 0.080 [-0.126, 2.862] 0.690

Vocoding x WMC 0.072 [-0.289, 0.434] 0.228 0.508 [-0.687, 1.702] 0.553

Actual performance x Vocoding x WMC -0.002 [-0.007, 0.004] 0.509 -0.009 [-0.027, 8.963] 0.323

Actual performance x HLWMC -0.014 [-0.17, 0.142] 0.321 -0.068 [-5.093, 4.958] 0.192

Vocoding x HLWMC -0.015 [-0.838, 0.807] 0.142 0.670 [-25.86, 27.199] 0.115

Actual performance x Vocoding x HLWMC 0.003 [-0.011, 0.017] 0.689 0.079 [-0.364, 0.522] 0.727

Pupil size Alpha power
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5.5 Discussion 

This short communication aimed to assess whether working memory capacity, as a 

continuous or dichotomous covariate variable, predicted pupil dilation or alpha power 

changes across levels of vocoding and performance. The results indicated that neither 

working memory capacity variable interacted with the physiological measures.  

The pupillometric findings are in agreement with Zekveld and Kramer (2014) who found no 

association between working memory capacity and pupil size change during a sentence 

recognition task. However this outcome is contrary to Koelewijn, Zekveld, Festen, Rönnberg, 

et al. (2012) who reported a significant association between an offline measure of working 

memory capacity and pupil size change during a speech recognition task. This observed 

difference may however be attributed to the different baseline corrections applied to the data, 

whereby their study used absolute change from baseline whereas the current study used 

relative percent change from baseline. As demonstrated in Chapter 6, type of baseline 

correction can significantly alter the results of the same pupillometric dataset.   

While many studies have shown that online measures of working memory capacity modulate 

alpha power, this was not the case for the offline measure of working memory capacity used 

in the current study. It is possible that this may be due to the different working memory 

assessments used between the studies, as a Sternberg paradigm (most frequently used in 

online working memory tasks) is a relatively simple test compared to a reading span task. 

That is, recalling whether a probe digit was in the preceding 2-6 digits is different from 

recalling a semantically correct or incorrect sentence and remembering the first or final nouns 

(as was the case in the reading span used in the current study). It may also be that offline 

measures of working memory capacity are not predictive of alpha power change during a 

sentence recognition task. While pupillometric studies have demonstrated associations with 

online reading/ listening span tasks (Heitz et al., 2008; Wendt et al., 2016), to the authors’ 
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knowledge, alpha power change has not been examined during an online reading/ listening 

span assessment in different types of background noise. This is an important area of future 

research. 
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6.1 Introduction 

Since the early work of Hess and Polt (1964), pupillometric measures have been used across 

multiple disciplines as a measure of exerted effort. In hearing research, pupillometry is now 

one of the most common tools to assess the amount of effort exerted when listening with a 

hearing impairment and/ or in adverse environments. In a seminal study based largely on 

early literature exploring pupil dilation in response to mental activity such as arithmetic and 

memory processes, Kramer and colleagues (1997) investigated whether pupil dilation in 

response to changes in listening difficulty varied as a function of hearing loss. Following this, 

over 25 studies have examined how different variables such as age, hearing loss, background 

noise, performance levels, spectral quality, spatial cues and/ or linguistic manipulations affect 

the pupil response. In general, it has typically been found that as listening demands become 

more challenging, the pupil diameter increases. This has been interpreted as reflecting 

increased listening effort. 

Past studies examining the pupil response to listening challenges have informed the field, but 

there is currently a lack of guidance regarding best practice for data analysis and statistical 

modelling. Multiple methods have been used across studies to scale and baseline-correct data, 

along with disparate statistical approaches, making it challenging to compare results between 

studies. Importantly, different processing and statistical approaches may yield different 

results within the same dataset, thus affecting our understanding of how different variables, 

such as population demographics and task manipulations, may affect listening effort.     

Varying data scaling options 

Scaling data is used to control for differences in pupil diameter across individuals, or to 

remove systematic within-trial variation. Traditionally, and most frequently in the 

pupillometry/ listening effort (P-LE) literature, data entered into a statistical model is not 
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scaled. Those studies that have scaled data generally used dispersion as the scaling factor 

(e.g., range scaling which is also known as feature scaling; Wendt, Dau, & Hjortkjær, 2016) 

or an average value (e.g., within-trial mean scaling; Kuchinsky et al., 2013).  A 

comprehensive review and evaluation of centering, scaling and transforming data can be 

found in van den Berg, Hoefsloot, Westerhuis, Smilde, and van der Werf (2006). However, 

for the purposes of this paper, a brief overview of the scaling options commonly applied in 

the P-LE literature is provided here.  

Range scaling [(xi – min)/ max - min] uses the range within a trial as the scaling factor to 

control for differences in pupil diameter across individuals and trials. As range scaling results 

in a value between 0 and 1, it is particularly useful for multivariate analysis comparing 

measures with different units. It is, however, sensitive to inflation errors and outliers as the 

range is calculated from two data points (the maximum and minimum value) within a trial - 

which may themselves be outliers (van den Berg et al., 2006).  

Mean scaling [xi / x̄] differs from range scaling as it uses an average value as the scaling 

factor instead of a measure of dispersion reflecting relative change. This method has been 

used by Kuchinsky et al. (2014; 2013) to control for significant correlations between trial 

averages and standard deviations.   

Varying baseline correction options 

Baseline correction is carried out to improve signal margin. Best practice includes a baseline 

period that is minimally contaminated by preparatory responses and/or the preceding trial 

(Luck, 2014). Across studies, baseline periods may differ in time and stimulus (e.g., a 500 ms 

baseline in noise versus a 1000 ms baseline in quiet) and the type of baseline correction. 

The vast majority of studies use an absolute change from baseline correction [x-BL] where 

change is identified in terms of subtracting the baseline value from a region of interest. Only 
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few studies have used relative percent change from baseline [(x-BL)/BL*100] in the P-LE 

literature (Miles et al., 2017; Wagner, Pals, de Blecourt, Sarampalis, & Başkent, 2016; 

Wagner, Toffanin, & Başkent, 2016) although its use has been recommended for statistical 

analyses of pupillometric data as it removes additional inter-individual variability (Lemercier 

et al., 2014). It is however noted that large data points can skew distributions when using a 

relative percent change, which may result in lower statistical power (Vickers, 2001). 

Varying statistical modelling options 

The range of statistical models and software packages used to analyse physiological data has 

rapidly evolved over the years leading to a variety of statistical options when analysing data.  

Repeated-measures ANOVA model (rmANOVA) - One of the most common statistical 

approaches in the P-LE literature is the rmANOVA which tests for differences in mean scores 

and distributions across factors. Majority of P-LE studies have employed a within-subjects 

design where each participant is exposed to all experimental conditions. Including a repeated 

measure controls for differences between participants and factors which reduces model 

variance. The rmANOVA partitions the variance allowing for correlation within subjects and 

then performs the analysis using ANOVA.  

Linear mixed-effects model (LME) - LMEs are an extension of linear regression where both 

fixed and random effects are modelled in a single equation. Fixed effects are considered to be 

the same for all subjects, as in linear regression, whereas random effects vary across subjects, 

usually assumed to have a normal distribution. Consequently, they allow for the lack of 

independence between observations within a subject and allow more complex data than the 

rmANOVA. 

Bayesian model - In recent years, Bayesian statistical modelling has become increasingly 

popular in many fields, including in the analysis of pupillometric data (Allen et al., 2014; 
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Cavanagh, Wiecki, Kochar, & Frank, 2014). In the past, the programming skill and 

computational expense required to implement Bayesian models made its application largely 

prohibitive. However, the introduction of modern techniques including (i) Markov chain 

Monte Carlo (MCMC) algorithms, particularly implementations of Gibbs sampling 

(Plummer, 2003) and Hamiltonian Monte Carlo (Carpenter et al., 2016); and (ii) fast 

Bayesian approximation algorithms (Rue et al., 2014) have greatly simplified Bayesian 

analyses making it accessible to the wider-research community.   

The previously discussed statistical models use point estimates and confidence intervals to 

draw inferences. Bayesian analysis diverges from these models in that it uses conditional 

probability to obtain probability distributions for model parameters. Because Bayesian 

methods treat model parameters (e.g., slopes and intercepts) as random variables (in contrast 

to frequentist methods which instead treat data as a random variable), all model parameters 

and estimates based on parameters (e.g., mean estimates) have full posterior distributions 

rather than single point estimates. In this way Bayesian models can more explicitly 

communicate the uncertainty inherent in estimation and prediction. Bayesian methods are 

also particularly suitable for small sample sizes and non-normally distributed data because 

inference is not based upon a sampling distribution which is assumed to be asymptotically 

accurate only with very large sample sizes. 

6.2 Aim 

To understand how these varying data processing and statistical approaches can influence the 

interpretation of results, this study compares the effect of using different data scaling 

methods, baseline correction options, and statistical models in a single pupillometric dataset 

(from Miles et al., 2017, Chapter 4). These comparisons aim to provide empirical evidence 

regarding the replicability and reliability of published studies, and the potential limitations of 

comparing across published datasets. There is an urgent need to address these factors if 
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pupillometry is to be considered a viable research tool to assess listening effort, and 

importantly, how these issues influence the candidacy of pupillometry as a clinical tool. 

6.3 Materials and methods 

Participants 

Data from 23 participants recruited as part of a larger study (Miles et al., 2017; Chapter 4) are 

included in the current analysis. Chapter 4 only included participants who had greater than 

65% of trials accepted for both pupil dilation and EEG measures. The current study is only 

concerned with pupil dilation, and therefore more participants had greater than 65% of 

accepted trials for the pupil dilation measure. Participants (13 female, 10 men) had a mean 

age of 27.47 years (SD = 4.01, range = 20-34 years). Participants had present distortion-

product otoacoustic emissions between 1-4 kHz. The Macquarie University Human Research 

Ethics Committee approved the study.  

Study design and protocol 

The study design and data used in this paper are comprehensively described in Miles et al. 

(2017). In brief, pupil size was measured during a sentence recognition task, where listening 

difficulty was manipulated by parametrically varying spectral resolution (16- and 6-channel 

channel-vocoding) and signal-to-noise ratios (SNRs; individually-measured speech reception 

thresholds (SRT) for 50% and 80% performance accuracy). The four conditions each 

contained 55 sentences and were randomly presented. Table 1 shows the mean and standard 

deviations of the SNRs for each condition. Results from Miles et al., (2017) demonstrated 

that there were inconsistencies between the target SRTs (obtained in a prior session) and the 

true performance obtained during the pupil recording session. For example, where the target 

SRT was 80% performance accuracy, participants scored an average of 64.7% (36 – 93%). 

As such, two models were developed to assess the predictor variables: 1) channel-vocoding 

and target SRT, and 2) channel-vocoding and true performance. The pupil response was 
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sensitive to changes in channel-vocoding (pupil diameter was larger for the 6-channel 

condition) and true performance (pupil diameter was smaller as performance approached 

100%), but not to the target SRT. For an in-depth discussion of model parameters, see Miles 

et al. (2017). The models in the current paper are for illustrative purposes, and therefore, to 

simplify model terms, only channel-vocoding and SRT are used as factors. Similarly, while 

different studies have used different pupil parameters such as mean or maximum size, and 

latency to maximum size, the current paper will only include mean pupil size. The analyses 

are therefore different to those included in Chapter 4 which used maximum pupil size to 

further demonstrate the analysis types across different pupillometry metrics. Note that all 

data, including mean, maximum and latency to maximum pupil size is available in the 

repository.  

Table 1. Means and standard deviations of SNRs obtained during the speech recognition task.  

 

Data preparation 

Offline, single-trials were processed with Dataviewer software (version 1.11.1), and compiled 

into single-trial pupil-diameter waveforms (-1 s to 5 s). Custom MATLAB scripts were 

developed for blink identification, interpolation, and data smoothing. This code has been 

made available on a public repository (https://www.github.com/mileskm/analyses). Blinks 

were identified as pupil sample sizes smaller than three standard deviations below the mean 

pupil diameter, on a trial-by-trial basis. Trials with more than 15% of the samples detected in 

blink were rejected. Linear interpolation was used to reduce lost samples and artefacts from 

               

SRT %  

Vocoding 6   16   6   16

Mean (dB) 0.9   -1.8   4.0   0.5

SD (dB) 1.7 1.5   1.9   1.6

               

50 80
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blinks for the remaining accepted trials (Siegle, Ichikawa, & Steinhauer, 2008; Zekveld, 

Kramer, & Festen, 2010). Samples detected in blink were interpolated from 66 samples 

preceding the onset to 132 samples following the offset of a blink. Note that this interpolation 

covers a much larger range of samples due to the higher sampling rate of the EyeLink 

eyetracker used in this study (1000 Hz) compared to many studies that use a 60 Hz sampling 

frequency (e.g., Kuchinsky et al., 2013; Zekveld, Heslenfeld, Johnsrude, Versfeld, & Kramer, 

2014). After interpolation, data were smoothed using a 5-points moving average. Means were 

calculated over the regions of interest including the baseline in noise (0-1 s) and the encoding 

period (2-6 s). 

The naming conventions of the pupil measures available in the repository are outlined in 

Table 2. In addition to the pupil data, basic demographics and behavioural test results have 

also been made available. Datawrangling was performed using the R-tidyverse package 

(Wickham, 2017). In the repository, a different file is used for each statistical model due to 

the necessary differences in data aggregation (Table 3). Each file contains the participant 

identifier (SubjID), SRT (50 or 80%), and channel-vocoding (16- and 6-channel), along with 

the pupil measurements.  

Table 2. Data processing naming codes. Note that while ‘raw data’ has been used here, the 

data has been pre-processed (see Data Preparation section, above). Raw here refers to the data 

not having undergone scaling. 

Naming code Processing steps 

raw_abs - Data has not undergone any transformation 

- Baseline corrected using absolute change from baseline [x-BL] 

rangeScale_abs - Data has undergone range scaling [(x – min)/ max - min] 

- Baseline corrected using absolute change from baseline [x-BL] 

meanScale_abs - Data has undergone mean scaling [xi / x̄] 

- Baseline corrected using absolute change from baseline [x-BL] 

raw_perc - Data has not undergone any transformation 
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- Baseline corrected using relative percent change from baseline [(x-

BL)/BL*100] 

 

Table 3. Aggregated model naming codes 

Model Aggregation 

rmANOVA Averaged over participant and the factors SRT and Vocoding  

LME & Bayes Averaged over participant, trial, and the factors SRT and Vocoding  

 

 

6.4 Statistical methods 

All analyses were performed in R version 3.3.3 (R Core Team, 2008). Only main effects 

models were developed. rmANOVA models were analysed using the R-afex package 

(Singmann, Bolker, & Westfall, 2015) and R-lsmeans package (Lenth & Hervé, 2013). The 

error term was set as subject error by the within subject error (SRT and Vocoding). LME 

models were analysed using the R-nlme package (Pinheiro, Bates, DebRoy, & Sarkar, 2014). 

Random intercepts for individuals were used to control for repeated measures over different 

levels of the factors on individuals. Bayes models were analysed using the R-INLA package 

(Martins, Simpson, Lindgren, & Rue, 2013; Rue et al., 2014). Bayes models were set to use a 

gaussian distribution and default regularising priors.  

Confidence intervals (CIs) are reported instead of p-values for the rmANOVA and LME 

model output. For the Bayesian models, credible intervals are reported. Reporting CIs 

facilitates comparison between statistical models (p-values are not typically calculated for 

Bayesian statistics), and additionally provide information about the direction and strength of 

the effect (Shakespeare, Gebski, Veness, & Simes, 2001). To aid interpretability, statistically 

significant results have been asterisked in the summary table. Effect sizes were calculated 

using Hedges' g.  
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6.5 Results  

The different data processing methods considerably affected the input data for statistical 

analysis, as shown in Figure 1 (rmANOVA data) and Figure 2 (LME/ Bayes data). Summary 

descriptive statistics are presented in Table 4, grouped by statistical model and data 

processing approach. Note that aggregating data for the different statistical models results in a 

different number of data points between rmANOVA (23 participants x 4 conditions = 92) and 

the LME/ Bayes models (23 participants x 4 conditions x +/-55 sentences = 4578). As 

illustrated in Figure 3, there was a large amount of inter-individual variability.  
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Figure 1. Histograms (binwidth .2) and boxplots of a single pupil size dataset aggregated for 

rmANOVA and processed as follows: a) non-scaled and absolute baseline correction, b) 

range-scaled and absolute baseline correction, c) mean-scaled and absolute baseline 

correction, and d) non-scaled and relative baseline correction. Z-scores are used to facilitate 

comparison on a common scale.  
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Figure 2. Histograms (binwidth .2) and boxplots a single pupil size dataset aggregated for 

LME/ Bayes analyses and processed as follows: a) non-scaled and absolute baseline 

correction, b) range-scaled and absolute baseline correction, c) mean-scaled and absolute 

baseline correction, and d) non-scaled and relative baseline correction. Z-scores are used to 

facilitate comparison on a common scale.  

 

Data scaling 
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As expected, the most notable difference between the raw and scaled data was the shape of 

the distributions (compare Figure 2(a) and Figure 2(b) as an example). Data aggregation for 

rmANOVA compared to LME/ Bayes models also affected the distributions (compare Figure 

1 with Figure 2). Range scaled data appeared relatively robust to data aggregation, although 

both distributions are moderately negatively skewed (Table 4; Skew). As illustrated by the 

box-plots in Figure 2, the LME data aggregation across data scaling methods (aside from 

range-scaled data) show a considerable number of outliers in the distribution tails. The raw 

and scaled data show relatively comparable means across the aggregated data while the 

measures of dispersion and range show large differences.  

Baseline correction 

The different baseline corrections were compared (absolute change and percent change) on 

the raw data only (raw_abs and raw_perc). In the rmANOVA aggregation, the distributions 

were comparable, with a moderate positive skew. Absolute baseline correction led to a more 

platykurtic distribution than percent change (see Figure 1(a) and Figure 2(d)). The absolute 

change from baseline correction had almost perfect symmetry with the LME/ Bayes 

aggregation, although the distribution was more platykurtic compared to the rmANOVA 

aggregation (Figure 1(a) and Figure 2(a)). Percent baseline correction substantially 

transformed the shape of the distribution between data aggregations, resulting in both a 

highly skewed and platykurtic distribution for the LME/ Bayes aggregation (Figure 2(d)). 

Extreme data points were emphasised in the LME/ Bayes aggregation for percent change 

from baseline correction, resulting in two data points greater than 200%.  
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Table 4. Summary statistics of the different statistical models, scaling methods, and baseline 

corrections collapsed across channel-vocoding and SRT, applied to a single pupillometric 

dataset.  

 

 

Figure 3. Individuals’ mean pupil size values by vocoding condition for the LME/ Bayes data 

aggregation. All values z-scored to facilitate comparison on a common scale. 

Compared approach n Mean SD Median SE Min Max Range Skew Kurtosis

raw_abs 92 109.67 93.12 111.65 9.71 -114.50 431.40 545.90 0.41 0.70

rangeScale_abs 92 0.14 0.09 0.15 0.01 -0.13 0.35 0.48 -0.40 -0.37

meanScale_abs 92 0.05 0.04 0.04 0.00 -0.04 0.15 0.19 0.06 -0.32

raw_perc 92 5.73 3.95 5.18 0.41 -3.12 18.15 21.26 0.30 -0.18

raw_abs 4578 107.17 252.71 96.20 3.73 -1764.62 1754.68 3519.30 -0.01 4.33

rangeScale_abs 4578 0.14 0.28 0.19 0.00 -0.73 0.73 1.46 -0.50 -0.47

meanScale_abs 4578 0.05 0.11 0.05 0.00 -0.79 0.94 1.73 -0.48 7.14

raw_perc 4578 5.65 12.21 4.81 0.18 -53.04 232.99 286.03 2.97 48.73
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Statistical model 

Across all statistical models, group data showed pupil size was larger for 6-channel compared 

to 16-channel vocoded conditions, and to a lesser extent, pupil size was larger for 50% SRT 

compared to 80% SRT conditions. Model summary statistics, including effect sizes are 

reported in Table 5. Note the higher standard error for the rmANOVA models, and resulting 

wider confidence intervals. This is a consequence of aggregating the trials, which increases 

the apparent variability.  

Raw data and absolute change from baseline 

Channel-vocoding revealed significant differences between 6 and 16 channel-vocoded 

sentences, as indicated by 95% CIs that do not exclude zero, for both the LME 95% CI [4.46, 

32.19], and Bayes model, 95% CI [3.863, 31.032]. Pupil size was 18.325 and 17.454 units 

higher in the 6-channel vocoded condition for LME and Bayes models, respectively. The 

rmANOVA model did not detect a significant difference between the vocoding conditions, 

although the direction showed the pupil diameter was larger in the 6-channel condition. There 

were non-significant differences between the SRT conditions across all statistical models. 

Range scaled data and absolute change from baseline 

Similar to the raw data with absolute baseline correction, channel-vocoding revealed 

significant differences between 6 and 16 channel-vocoded sentences, as indicated by 95% CIs 

that do not exclude zero, for both the LME 95% CI [0.001, 0.032], and Bayes model, 95% CI 

[0.001, 0.032]. Pupil size was 0.017 units higher in the 6-channel vocoded condition for both 

LME and Bayes models. The rmANOVA model did not detect a significant difference 

between the vocoding conditions, although the direction of change was as expected. There 

were non-significant differences between the SRT conditions across all statistical models. 
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Mean scaled data and absolute change from baseline 

Mean-scaled data with absolute baseline correction showed non-significant differences for 

both vocoding and SRT conditions across all statistical models.   

Raw data and percent change from baseline 

Raw data with relative percent change from baseline showed non-significant differences for 

both vocoding and SRT conditions across all statistical models.   

Table 5. rmANOVA, LME and Bayes statistical model output for a single pupil size dataset, 

grouped by data processing method and factors. 

 

Data processing Factor Model Estimate 95% CI Hedges g

1. Raw and absolute Channel-vocoding rmANOVA 16.776 [-8.398, 41.95] 0.179

LME 18.325 [4.46, 32.19*] 0.073

Bayes 17.454 [3.863, 31.032*] 0.068

SRT rmANOVA 1.18 [-18.936, 16.576] 0.012

LME 0.957 [-12.911, 14.826] 0.004

Bayes 0.91 [-12.682, 14.491] 0.004

2. Range scaled and absolute Channel-vocoding rmANOVA 0.016 [-0.043, 0.011] 0.17

LME 0.017 [0.001, 0.032*] 0.06

Bayes 0.017 [0.001, 0.032*] 0.059

SRT rmANOVA 0.007 [-0.025, 0.011] 0.072

LME 0.007 [-0.009, 0.023] 0.025

Bayes 0.007 [-0.009, 0.023] 0.025

3. Mean scaled and absolute Channel-vocoding rmANOVA 0.004 [-0.014, 0.006] 0.108

LME 0.005 [-0.001, 0.011] 0.047

Bayes 0.005 [-0.001, 0.011] 0.046

SRT rmANOVA 0.002 [-0.01, 0.006] 0.053

LME 0.002 [-0.004, 0.008] 0.019

Bayes 0.002 [-0.004, 0.008] 0.017

4. Raw and percent Channel-vocoding rmANOVA 0.399 [-1.361, 0.563] 0.1

LME 0.489 [-0.191, 1.168] 0.04

Bayes 0.489 [-0.191, 1.168] 0.039

SRT rmANOVA 0.323 [-1.109, 0.463] 0.078

LME 0.281 [-0.398, 0.96] 0.023

Bayes 0.352 [-0.188, 0.89] 0.029
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6.6 Discussion 

The aim of this study was to examine the effect of different scaling methods, baseline 

corrections, and statistical approaches, on the results and interpretation of the same 

pupillometric dataset in order to enhance replicability and reliability of published studies in 

the P-LE literature. This study demonstrated that data processing methods such as scaling, 

baseline correction, and data aggregation for input to statistical models greatly affects the 

outcome, as does choice of statistical approach. 

The raw and scaled data produced vastly different distributions, as did the type of baseline 

correction when comparing the raw data. Additionally, aggregating the data for the different 

statistical models also greatly altered the distributions between the datasets, with the 

exception of range scaling which appeared relatively robust against aggregation likely due to 

this method limiting outliers compared to other models. Type of scaling method and baseline 

correction led to different statistical results and subsequent interpretations of the outcome.  

Although, on average, pupil size was larger in 6-channel vocoding and 50% SRT conditions 

(the expected direction) in the rmANOVA models across data processing types, there were no 

statistically significant differences between the conditions leading to the interpretation that 

changes in spectral resolution (channel-vocoding) and SRT did not significantly impact pupil 

size/ listening effort. The output of the LME and Bayes models demonstrated that pupil size 

was significantly larger in the 6-channel compared to 16-channel vocoding condition for both 

the raw and range scaled absolute change from baseline data, suggesting that spectral 

resolution, in this dataset, influences pupil size/ the amount of effort required to listen to a 

degraded signal. The pupil response was not significantly affected by changes in SRT across 

any data processing method or statistical model. 
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While the raw and range scaled absolute change from baseline showed that channel-vocoding 

significantly influenced pupil diameter, mean-scaled data with absolute change from baseline 

and raw data with percent change from baseline did not produce statistically significant 

results in any statistical model (although the direction of change was as expected). This 

would lead to the statistical conclusion that neither channel-vocoding nor SRT impact pupil 

diameter, and therefore listening effort was comparable across conditions. In regards to the 

mean-scaled data, this is not entirely surprising as Kuchinsky and colleagues (2013) 

compared model outputs from a rmANOVA and Growth Curve Analysis (GCA) model 

(discussion forthcoming) demonstrating that the rmANOVA model was insensitive to 

changes in task parameters on pupil diameter whilst statistically significant differences were 

observed in the GCA model. A direct comparison is however not possible with the current 

dataset because Kuchinsky and colleagues used maximum pupil diameter, while the current 

dataset used mean pupil diameter.  

As evidenced from the descriptive statistics (Table 4) and Figures 1 and 2, each processing or 

aggregation method applied to the dataset led to a non-normal distribution. Further to this, 

testing for normality of the residuals was not conducted in this study, nor was testing any 

statistical assumptions. It is commonplace in the P-LE literature to not disclose whether 

statistical assumptions were met and discussion concerning outliers is sparse. This is also 

common across disciplines, with empirical research showing that less than 8.5% of the 

included psychology papers in their study reported testing statistical assumptions and 

examining outliers (Osborne, Christianson, & Gunter, 2001). The impact of outliers on 

statistical tests can be detrimental because they can increase the error variance (Osborne & 

Overbay, 2004), where outlying points will have an excessive effect on the estimates. This is 

evident in the current dataset when comparing the raw absolute change and percent change 

from baseline processing method. The ratio of the standard error to the estimate in the raw 
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absolute change was 0.385 compared to the relative percent change being 0.707 for channel-

vocoding/ LME. It was also previously introduced that percent change from baseline 

calculations can skew distributions and decrease statistical power (Vickers, 2001) which was 

confirmed in the current set of results. That is, outliers can degrade statistical power (Osborne 

& Overbay, 2004).  

Working with percent change from baseline proves useful when examining which 

observations may not be legitimate as the values are more easily interpretable than when the 

data has been scaled. This is because scaling data renders it unitless, which makes it difficult 

to estimate probable size changes. In comparison, percent changes from baseline makes it 

easier to identify plausible outliers, for example, a 200% change from baseline appears 

improbable when the average pupil size is 4.5 mm. Transforming the data to fit a normal 

distribution is a common procedure for managing outliers (e.g., square root or log-

transformations), yet require non-negative data which is widespread in pupillometric datasets. 

Interpreting results of transformed data also becomes difficult, especially when already-

scaled data undergo subsequent transformation.  

Removing legitimate outliers can result in unbalanced datasets which is particularly 

problematic for traditional rmANOVA data structures. These types of data structures are 

prone to list-wise deletion when observations are missing which can result in sample bias and 

unequal variance (Abdi, 2010). Conversely, data entered into a LME model retains trial-by-

trial observations resulting in long-format data aggregation and does not result in list-wise 

deletion in the event of missing observations. Assuming the missing observations are random, 

a LME model is capable of filling in the missing data provided that it can be predicted from 

the available data. For a comparison of a rmANOVA and LME model using incomplete 

datasets, see Krueger and Tian (2004). 
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LME and Bayes models are also reasonably robust to violations of assumptions that typically 

affect rmANOVAs (Woltman, Feldstain, MacKay, & Rocchi, 2012). A Bayesian approach 

can also incorporate prior knowledge (‘priors’) about a distribution into a model which can 

reduce variance and produce better estimates. Non-Bayesian models on the other hand 

implicitly use a flat (uniform) fixed prior. The output of a Bayesian model, ‘posterior 

probability’, is calculated using both the input data and priors. Priors can be both informative 

(e.g., sourced from published studies) and uninformative (e.g., vague knowledge). In the 

analyses presented here, the posterior distribution was largely determined by the data as 

informative priors were not included in the model. As such, the results closely mimic those of 

the LME model output (although slightly different due to the way likelihood functions are 

calculated). Incorporating informative priors leads to the posterior distribution being a 

combination of prior probability and the data, with highly informative priors decreasing 

variance of the posterior distribution. Setting informative priors is particularly relevant when 

sample sizes are small which may prove useful when recruiting highly specialised 

populations. Since the P-LE research area is rich in prior information, it is possible to use this 

information in future analyses and meta-analyses.  

Recently, some research groups have begun to use GCA to examine the time-course and 

curve morphology of the pupil in response to varying levels of listening difficulty (Kuchinsky 

et al., 2016; Kuchinsky et al., 2014; Kuchinsky et al., 2013; Wagner et al., 2016; Wagner et 

al., 2016; Winn, Edwards, & Litovsky, 2015). GCA, as applied to pupil data, uses mixed-

model regression fitting orthogonal polynomials to model the shape of the pupil response 

over time (see Mirman, 2016, for a comprehensive review). The current study analysed the 

mean pupil dilation averaged in time-windows over the levels of participant and factors or 

trials, disregarding the changes in pupil dilation over the time-course of trials. It is possible 
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that retaining timing information may result in a more sensitive measure of listening effort, or 

perhaps, a reduction in variability (see below).  

There has also been a recent shift in the statistical literature in relation to modelling random 

effects structures (for alternate discussions see Barr, Levy, Scheepers, & Tily, 2013; Bates, 

Kliegl, Vasishth, & Baayen, 2015). For example, the LME analyses in this chapter used a 

random intercept model, however an alternative analysis using both random intercepts and 

random slopes could have also been applied. This type of analysis would permit the 

independent variables (SRT and channel-vocoding) to vary for each participant (instead of at 

group level) which may result in a better model fit, and additionally, explain some of the 

variability as discussed below (likewise, this type of model structure can be applied to a 

Bayesian analysis (Sorensen & Vasishth, 2015)). Although this type of analysis has not been 

applied in the P-LE literature, it is important that future studies consider how various random 

effects structures influence the results and subsequent interpretations of the results.    

Further to this, examining the additional peak-picked parameters such as maximum pupil size 

and latency to maximum pupil size (as opposed to the mean pupil size used in all analyses 

here) may provide additional information and prove to be a more sensitive measure of 

listening effort. At the very least, these metrics should be explored to verify whether they are 

more robust to individual variability. Extending the comparisons presented in this paper to 

include GCA and random slopes models and the analysis of maximum and latency to 

maximum pupil size would have brought additional variability to the interpretation of the 

results. To contain the paper and avoid redundancy, the authors chose to limit the processing 

and analyses to the most commonly reported methods, as a demonstration of how different 

methods apply to a single dataset affect results. The full dataset, however, can be found on 

the repository for further analysis.  
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The main comparisons presented in this paper related to group results and showed similar 

trends despite different results. An additional consideration that appears overlooked in the 

literature relates to individual variability, as highlighted in Figure 3 across vocoding 

conditions. For some individuals, the pupil diameter was larger in the 6-channel condition 

compared to the 16-channel condition, whilst for others, pupil diameter was comparable 

between conditions, or larger in the 16-channel condition. Whilst error terms or random 

intercepts were included in all statistical models, the conducting and reporting of group level 

analyses limits discussion of the pupil’s behaviour at the individual level. Whereas this may 

not be problematic for using pupillometry as a research tool to assess group trends, it brings 

to light one of the many challenges of using pupillometry as a clinical tool to assess listening 

effort. That is, if pupillometry is to be considered a tool to assess listening effort in a clinical 

setting, for example when comparing different programs in hearing aids, the pupil must 

predictably respond to changes in task difficulty at the level of the individual. Whether the 

source of interindividual variability stems from the design of the current study, the extent to 

which an individual’s cognitive ability and motivational levels modulated listening effort, 

that variability in pupil dilation is a general phenomenon, or a combination of these, is 

unknown. Moving forward, it will be important to consider the extent to which these factors 

may influence listening effort, and design more robust studies to identify and limit individual 

variability.      

6.7 Conclusion 

Further work is required to establish the viability of pupillometric measures to index listening 

effort in both research and clinical settings. This paper began to address some of the potential 

issues of reliability and replicability in the research domain, notably, through examining how 

disparate scaling and baseline corrected data entered into different statistical models can 

considerably influence the results and discussion of a study’s outcome. At the very least, 
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research output would be strengthened by: 1) standardising data processing and analyses 

approaches across publications, 2) disclosing test assumptions/ outliers and including 

histograms, 3) reporting effect sizes/ confidence intervals to facilitate comparisons between 

studies and aid in future meta-analyses, and 4) making data publicly available to facilitate 

direct comparisons within- and between studies. Assessing whether pupillometry is a viable 

clinical tool to evaluate listening effort would be strengthened through: a) disclosing 

individual variability, b) examining a range of covariates such as cognitive and motivational 

factors and designing studies to exploit these parameters to determine if they result in 

decreased variability, and c) detecting and limiting measurement error through more stringent 

pre-processing methods. Despite its exploratory nature, this study offers insight into some of 

the methodological issues that warrant consideration when analysing pupillometric datasets. 
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Chapter 7 General discussion 

 

Listening effort is a multifaceted construct, and recent research is only now shedding light on 

its complexities. This thesis explored some of the listener-internal and external factors which 

modulate listening effort. Specifically, listener-internal factors were investigated by 

evaluating how working memory capacity interacts with subjective and physiological 

measures of listening effort, whereas listener-external factors were evaluated by examining 

the impact of spectral resolution (channel-vocoding) and performance parameters on 

subjective and physiological measures of listening effort. We also assessed how data 

processing strategies and statistical approaches can affect the interpretation of physiological 

measures. These studies were conducted within the overarching context of exploring the 

potential for a physiological measure of listening effort to be useful in a clinical environment. 

We conducted a study to address four research questions, each investigating different aspects 

relevant to listening effort measures, with the same sample of young adults with normal 

hearing. 

Together, the results presented in this thesis will inform current international research in the 

development of clinically viable measures of listening effort, where promising group trends 

are accumulating. This is particularly true for important research questions related to 

physiological measures of listening effort, such as:  

- Does working memory capacity and different types of spectral resolution (channel-

vocoding), similar to the signal provided by a cochlear implant, affect responses 

measured during effortful listening?  

- How do the different physiological measures respond when modulating spectral 

resolution and background noise, and do they index the same construct?  

- Are current published results which are related to physiological measures of listening 

effort sufficiently consistent and interpretable to be used clinically?  
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1) The contribution of working memory on measures of effortful listening 

Our findings indicated that there was a complex interaction between working memory 

capacity and self-rated perceptions of listening effort on SRT and channel-vocoding (Chapter 

3), but not with the physiological responses measured in Chapter 5. 

Chapter 3 investigated whether working memory capacity influenced perceived effort ratings 

and included two parts. The main result of Study (a) demonstrated that those individuals with 

higher working memory capacity, on average, rated listening effort differently across the 

levels of speech reception thresholds and spectral resolution (16- and 6-channel vocoded 

sentences). In contrast, individuals with lower working memory capacity, on average, did not 

rate listening effort differently when spectral resolution was greatest. There are two potential 

explanations for this. First, individuals with higher working memory may be better able to 

maintain their attention on a task (or be less distracted by noise) than those who score lower 

on the test. That is, working memory capacity may be related to greater suppression of 

background noise interference enabling individuals to make a perceived effort judgement on 

the quality of the signal rather than the level of background noise. Second, individuals with 

higher working memory capacity might be better equipped to more rapidly adapt to acoustic 

degradation, and therefore quickly learn the acoustic patterns in each condition permitting 

them to be able to invest more effort during the more difficult task conditions. While this 

hypothesis was not directly tested in the current thesis, it is in line with studies demonstrating 

that when hearing is impaired, individuals with higher working memory capacity more 

quickly adapt to new hearing aid signal-processing algorithms (Lunner, 2003; Ng, Rudner, 

Lunner, Pedersen, & Rönnberg, 2013; Rudner, Foo, Rönnberg, & Lunner, 2009). While this 

same finding was not statistically significant in Study (b) (Chapter 3) where a similar trend 

between participants with high and low working memory capacity was found, performance 

appeared to influence ratings particularly for those with lower working memory capacity.  
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We further assessed whether measures of working memory capacity interacted with the 

physiological measures of listening effort (Chapter 5). The same measure of working 

memory capacity used in Chapter 3 was used to model the interaction in this study using the 

participants and the physiological data presented in Chapter 4. The results indicated that there 

were no significant interactions between working memory capacity, performance levels, and/ 

or spectral resolution, for either the pupil dilation or alpha power change. While this 

observation may indicate that working memory capacity does not play a role in the pupil or 

alpha responses to spectral resolution and performance levels, this finding should be 

interpreted with caution; working memory capacity was assessed during a separate testing 

session to the physiological testing session and was assessed offline.   

Pichora-Fuller and colleagues (2016) suggested that cognitive assessments, such as a measure 

of working memory capacity, may be useful to index listening effort. While the current 

results suggest that differences in working memory capacity do interact with perceived 

listening effort, consistent with the results from Rudner et al. (2012) obtained in older 

hearing-impaired individuals, this was not the case for the physiological measures. On the 

other hand, Wendt et al. (2016) found a positive correlation between pupil size during an 

online measure of working memory capacity and a sentence-in-noise task. Therefore, it 

would be of interest to explore whether an interaction does exist between an online measure 

of working memory and pupil dilation and alpha power with the current study protocol. This 

is important for future research into the clinical applicability of physiological measures of 

listening effort. That is, the more robust a measure is to listener-internal differences, such as 

individual differences in the allocation of cognitive resources, the more predictive power it 

will have as a clinical assessment.  

While working memory capacity has been a focus of this thesis, both attention and speed of 

phonological processing have also been suggested as potentially indexing listening effort 



117 
 

(Pichora-Fuller et al., 2016). Like working memory, attention is also limited in capacity 

(Raymond, Shapiro, & Arnell, 1992). Allocation of attentional resources is critical for 

listening to speech in noise and was described by Cherry (1953) as the ability to focus 

attention on a speech signal in complex listening environments (i.e., ‘the cocktail party 

effect’). Processing an incoming auditory signal such as conversational speech also requires 

the rapid integration/matching of acoustic cues to phonological and semantic representations 

stored in memory. Processing speed may therefore constrain other cognitive operations. For 

example, when it becomes slowed, the ability to focus attention or update items in working 

memory becomes challenged (discussed in greater detail in (3) below). More research is 

needed to better understand how these cognitive operations interact with physiological 

measures of listening effort. 

2) Effects of spectral resolution and background noise on measures of listening effort 

This thesis also investigated how spectral resolution and performance levels influence 

subjective (Chapter 3) and physiological (Chapter 4) measures of listening effort.  

The results of Chapter 3 demonstrated that on average, individuals rated perceived listening 

effort higher in the more challenging condition (e.g., 50% SRT compared with 80% SRT). 

The results demonstrated that on average, individuals rated perceived listening effort higher 

in the more challenging condition, but the ratings were not influenced by spectral resolution. 

That is, perceived listening effort ratings appear to be sensitive to performance levels, with 

individuals likely rating effort higher in the 50% SRT condition due to greater task difficulty 

and recognised inferior performance compared to the 80% SRT condition. This finding 

supports the notion that individuals may be inclined to rate their estimated performance on a 

task as opposed to rating the effort that was invested in performing the task (McGarrigle et 

al., 2014).  
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In contrast to this, our results indicated that the physiological measures - pupil dilation and 

alpha power change - were sensitive to changes in spectral resolution (Chapter 4). On 

average, pupil dilation was larger when spectral resolution was lowest (6-channel vocoding), 

while alpha power change was greatest with higher spectral resolution (16-channel vocoded 

sentences). The pupil size change, but not alpha power change, was additionally sensitive to 

changes in performance levels, significantly decreasing in diameter as performance levels 

increased towards ceiling. Further, the pupil response was sensitive to changes in task 

accuracy; when sentences were only partially recalled, the pupil diameter was greater 

compared to when sentences were correctly recalled.  

The present results are significant in at least two major respects. Firstly, the findings suggest 

that individuals are inclined to rate their estimated performance, or success with doing the 

task, not the perceived effort that was invested to perform the task. The only metric which is 

commonly used with standard clinical speech recognition tests is an individual’s performance 

level. As such, an assessment of perceived listening effort ratings during a task is not likely to 

increase the sensitivity, or complement, current clinical assessments. The second major 

finding is that pupil dilation appears to be a more sensitive measure of listening effort than 

alpha power change. The pupil response was responsive to a variety of factors that contribute 

to effortful listening, including performance and task accuracy, whereas alpha power change 

only significantly responded to changes in spectral resolution. In terms of clinical viability, 

the pupil response may therefore be a more sensitive measure of listening effort. However, it 

could alternately be argued that the pupil’s responsiveness to a variety of factors is, in fact, a 

limitation of its clinical viability as its sensitivity is too broad. Alpha power change was only 

associated with changes in spectral resolution and was robust against performance differences 

and task accuracy. If changes in spectral resolution predictably equate to both increased and 

decreased listening effort across a more challenging and less challenging listening task, 
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respectively, then its insensitivity to other parameters may be a strength when considering its 

clinical application.  

3) Comparing pupil dilation and alpha oscillations within the construct of listening effort 

Our results indicated that during an effortful listening task, the changes measured in pupil 

diameter and alpha oscillations are not correlated (Chapter 5). The rationale for this study 

was that if each measure, as claimed, indexes listening effort, and that listening effort is a 

single construct, then factor manipulations should have led to similar responses in both 

measures. After accounting for unequal trials across the measures (e.g., where one pupil trial 

may have been rejected due to blink contamination, the corresponding alpha trial was also 

removed from the analysis), the results showed that the two measures were not correlated, a 

finding that has been previously demonstrated during both a listening task (McMahon et al., 

2016) and in the reading domain (Scharinger, Kammerer, & Gerjets, 2015).  A possible 

explanation for this might be that each measure is assessing a different aspect of listening 

effort, which is inherently multifaceted rather than a single dimensional construct. Another 

explanation for this is that the measures may reflect differences in the types of strategies 

applied by each individual. For example, it is unclear how differences in motivational 

strategies between individuals influence measures of listening effort. Some individuals may 

be highly motivated to maintain their performance across the testing session, whereas others 

may be less inclined. Changes in the pupil response have indeed been associated with 

motivation, as manipulated through performance-based monetary reward (Heitz et al., 2008) 

and goal-orientation (Gilzenrat, Cohen, Rajkowski, & Aston-Jones, 2003; see Aston-Jones & 

Cohen, 2005, for review). Gilzenrat et al. (2010) also showed that a larger pupil size in the 

baseline region was related to slower reaction times (i.e., speed of processing), increased 

variability, decreased performance accuracy, and task disengagement. As such, the 

responsiveness of the pupil appears to be modulated by both bottom-up sensory information 
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(e.g., acoustic degradation), and top-down information (e.g., motivation), through cortical 

locus coeruleus feedback loops (Aston-Jones & Cohen, 2005; Sarter, Gehring, & Kozak, 

2006). While changes in alpha power, particularly in the parietal region, have been implicated 

in attentional processes (Benedek, Schickel, Jauk, Fink, & Neubauer, 2014), the 

neurophysiological mechanisms underlying alpha oscillations are not well understood. It is 

possible that the responses are partly interrelated but activated differently depending on both 

levels of arousal and task difficulty. Further research is needed to better understand how 

different factors of attention, arousal and motivation might influence the different 

physiological measures.  

There are a range of differing EEG and pupillometry metrics that may be used to assess 

listening effort and it is possible that more parallel measures may explain the lack of 

correlation in this chapter. For example, the analysis in Chapter 4 was conducted using mean 

power in the oscillatory band, and maximum pupil size. It could be argued that a measure of 

maximum alpha power may provide a more parallel process when compared to maximum 

pupil size (or mean alpha power compared to mean pupil size), and this presents a limitation 

in the current thesis.  

In regards to EEG, previous research (notably Obleser et al., 2012, on which most of this 

thesis’ foundation has been based) used mean alpha power as a measure of listening effort. 

Obleser and colleagues have consistently found that mean alpha power and working memory 

capacity are additive, suggesting that they may have a common oscillatory network. As such, 

mean alpha power was the metric selected for analysis within this thesis. Despite this, 

maximum alpha power could also be an interesting parameter to explore, yet what a 

‘maximum oscillation’ reflects requires further debate, and also discussion is warranted 

regarding baseline correcting maximum oscillatory power. For example, if percent baseline 
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correction is applied to maximum alpha power, the data will likely be highly skewed and may 

require transformation (see discussion in Chapter 6).  

On the other hand, a range of pupil metrics have been explored, ranging from mean and 

maximum pupil dilation, through to latency to maximum pupil size, blink latency, and 

saccades.  In this thesis, one of the main questions of Chapter 5 was whether maximum pupil 

size was related to working memory capacity and this line of questioning had only been 

investigated using maximum pupil size at the time this experiment was conceived (Koelwijn, 

2012; Zekveld & Kramer, 2014). We therefore chose to explore whether a relationship 

existed between mean alpha power and maximum pupil dilation based on the previous 

literature, however further exploration across all EEG and pupillometry metrics is warranted. 

4) Methodological considerations when interpreting physiological measures of listening 

effort 

This thesis also examined how different data processing and statistical analyses used in the 

literature related to physiological measures of listening effort influence the results and 

interpretation of a single dataset (Chapter 6). Using our pupillometric data as an illustration, 

the results demonstrated that the varying processing and analyses methods do, in fact, greatly 

alter the results and their interpretation. This has consequences for understanding how 

different factors and population demographics interact with the pupil response across studies, 

leading to disparate conclusions regarding what parameters influence listening effort. This 

has further implications for the design of future studies. 

Perhaps most importantly, this study highlighted the large amount of individual variability in 

the data. The breakdown of individual results across vocoding conditions demonstrated that 

the pupil response greatly differs between individuals. Some participants had much larger 

pupil diameters in the 6-channel condition compared to 16-channel sentences (the expected 
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direction), yet others differed little between conditions, and some individuals showed the 

opposite pattern. That is, inter-individual pupil diameters across factors are highly variable. 

Intraclass correlation coefficients were conducted to assess intraindividual reliability in the 

pupil data (Chapter 4), and the results of the analysis determined that there was a very high 

degree of intraindividual reliability (i.e., across factors, individuals’ pupil changes respond 

highly consistently). However, if pupillometry is to be considered a viable tool to assess 

listening effort in a clinical setting, it must respond predictably and reliably at the individual 

level across factor manipulations. While results indicate that the pupil does reliably respond 

at the group level, further analyses revealed it does not predictably respond to the 

manipulation of factors at the individual level.  

Chapter 6 discussed how some statistical models may be more sensitive to detecting changes 

in listening effort and may also lead to a reduction in individual variability. For example, 

various random effects structures were introduced, however these analyses were outside of 

the scope of the chapter as it was focussed on comparing what models have already been 

applied in the literature. However, as described above, it is important that future studies 

examine how the different random effects structures influence the datasets, as this may result 

in better fitting models, and also account for some of the individual variability evident when 

using traditional repeated measures ANOVAs and random intercept models.   

  

  

  



123 
 

Chapter 8 Implications for future studies 

 

More research is needed to understand the mechanisms underpinning listening effort and how 

they contribute to individual variability if a clinical tool is to be developed and implemented. 

A greater focus on experimental design may produce findings that account for the large 

amount of individual variability in the present thesis. This may include more closely 

examining the mechanisms that comprise listening effort, such as motivation, and/ or 

experimental design more generally.  

The recently published Framework for Understanding Effortful Listening (Pichora-Fuller et 

al., 2016; Figure 1), along with the Strauss & Francis’ (2017) model of attention and effortful 

listening both highlight the importance of motivation in understanding listening effort, with 

recent studies elucidating the relative importance of motivation during listening tasks. For 

example, Richter (2016) showed that when listening in more challenging conditions, 

cardiovascular reactivity is higher when monetary compensation for successful performance 

is greatest, and low when there is no monetary compensation. This suggests that task 

demands alone cannot account for changes in listening effort. A similar effort-reward trade-

off has been demonstrated in pupillometry studies resulting in an inverted u-shaped pattern 

capturing the multidimensionality of listening effort (Gilzenrat et al., 2010). In our series of 

studies, the motivational dimension of listening effort was not manipulated and participants 

were therefore free to mobilise motivation without constraint. For example, when task 

difficulty was high, only a proportion of participants may have been motivated to correctly 

recall the sentences. Some participants, on the other hand, may have disengaged in the task, 

resulting in low motivational input. Not controlling the motivational dimension of listening 

effort may therefore explain some of the variability found in the current thesis.  
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Figure 1. The 3-D representation of the FUEL illustrating the three-way relationship between 

listening effort, motivation and task demands from Pichora-Fuller et al. (2016). t0-t4 refer to 

time, discussed in more detail in Pichora-Fuller et al. (2016). 

A greater focus on experimental design may also produce findings which minimise individual 

variability. This may comprise disentangling the cognitive and physiological mechanisms 

involved in listening effort such as motivation (as above) or exploring how different random 

effects structures in statistical design influence datasets and the resultant interpretations, and 

examine whether this reduces variability. Future studies may also want to consider how 

stimuli may affect studies of listening effort and individual variability. For example, using 

predictable sentences (such as in this thesis), permitted individuals to use sentential context to 

fill in the gaps when some words were masked by noise. Variability may therefore arise due 

to individuals diverging in their crystallised knowledge (e.g., verbal ability). Using stimuli 

such as CNC wordlists may partly inhibit these processes and result in reduced variability 

between individuals. Yet developing experimental studies to reduce individual variability 

may result in scenarios far removed from what is encountered by individuals in the real-
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world, and therefore what may be clinically relevant. It is infrequent that engaging in 

conversation in the real-world requires listening to serially listed CNC words in fluctuating 

SNRs. As such, there must exist a trade-off between what constitutes robust experimental 

design, and the generalisability of results to the real-world. Whilst a Patient-Reported 

Outcome Measure (PROM) of perceived listening effort is in development (Hughes, Rapport, 

Boisvert, McMahon, & Hutchings, 2017), at present, work is needed to establish the link 

between the listening effort exerted in experimental studies (that may be clinically relevant), 

to that of the real-world.  

It is also important that future research consider alternate physiological tools for assessment. 

This thesis explored pupil dilation and alpha power change as potential clinical tools due to 

breadth of literature, and clinical relevancy such as their non-invasiveness, portability, and 

user-friendliness. However other tools such as cardiovascular measures or skin conductance 

may show reduced variability and prove to be a more robust measure of listening effort for a 

clinical setting. Future studies examining alternate measures should therefore consider 

disclosing variation in participant responses to establish insight into this matter.  

Further, this thesis used mean and maximum pupil size and mean alpha power change as 

potential indicators of listening effort. However there are multiple parameters in both 

pupillometry and the EEG that warrant further investigation. For example, latency to 

maximum pupil size, blink latency and saccades may prove more reliable than the mean and 

maximum pupil changes reported here. There are also multiple dimensions in the EEG (both 

oscillatory and event-related potentials) that could be exploited to further assess listening 

effort. For example, one study has shown that power change in the theta oscillatory band is 

linked to changes in listening effort (Wisniewski et al., 2015). Similarly, a relationship 

between listening effort and both the P300 and late positive potential (LPP) have recently 

been demonstrated (Bertoli & Bodmer, 2014). More research is required to investigate 
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whether these parameters respond more predictably and reliably both within and between 

individuals than those reported in this thesis.  

8.1 Conclusion 

This thesis builds on the remarkable progress the field has made in moving towards a 

physiological measure of listening effort. Examining both subjective and physiological 

measures of listening effort highlighted key differences between how each respond to 

changes in task difficulty. Importantly, subjective ratings of listening effort were associated 

with performance levels and not changes in spectral resolution; only when working memory 

capacity is taken into account, do differences in perceived effort ratings emerge. That 

individuals rate performance levels suggests that a measure of perceived listening effort 

would not enhance current clinical assessments, and that a physiological measure may be 

more suited to increasing assessment sensitivity. While both physiological measures assessed 

in this thesis appeared to be sensitive to the manipulations of task factors (e.g., pupil dilation: 

performance levels, spectral resolution, and task accuracy; alpha power: spectral resolution), 

the measures were not correlated suggesting each may be indexing a different aspect of 

listening effort. However, precisely which aspect of listening effort that is best assessed to 

predict specific-task performance or real-world difficulties remains an open question. What 

emerges from this thesis is that moving towards a physiological measure of listening effort 

for clinical implementation requires careful methodological consideration in the design and 

analysis of studies with a focus on limiting individual variability. Continued research into the 

mechanisms underpinning listening effort, and their physiological correlates, will greatly 

contribute towards increasing the sensitivity of standard audiological assessments.  
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