Low-cost SiGe Circuits for Frequency Synthesis in Millimeter-wave Devices

by

Adam Lauterbach

B.E. (Electrical & Electronic, First Class Honours) The University of Adelaide, Australia, 2000

Thesis submitted for the degree of

Honours Degree of Master of Science

Faculty of Science Department of Physics and Engineering Macquarie University

2009

© 2009 Adam Lauterbach All Rights Reserved

Contents

Conter	nts		iii	
List of	.ist of Figures vii			
List of	Tables		xi	
List of	Abbrev	iations	xiii	
Abstra	ct		xvii	
Staten	nent of	Candidate	xix	
Acknow	wledgm	ents	xxi	
Chapte	er 1. In	troduction	1	
1.1	Backg	round	1	
1.2	Motiv	ation	2	
	1.2.1	15GHz Injection-Lockable VCO	2	
	1.2.2	24GHz Circuits for Short Range Automotive Radar	3	
1.3	Thesis	Overview and Contributions	5	
Chapte	er 2. D	esign Theory and Process Technology	9	
2.1	PLL I	Frequency Synthesis	9	
2.2	Oscill	ator Analysis	10	
	2.2.1	Linear Feedback Analysis	10	
	2.2.2	Negative Resistance $(-g_m)$ Oscillators $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	11	
	2.2.3	Microwave Oscillator Designs	14	
2.3	Phase	Noise	15	
	2.3.1	System Level View	15	
	2.3.2	Phase Noise Mechanisms	17	
2.4	Frequ	ency Dividers	21	

	2.4.1	Static Divider	21
	2.4.2	Dynamic Divider	22
	2.4.3	Higher Order Division	22
2.5	SiGe F	Process Technology	24
	2.5.1	IBM BiCMOS7WL	25
Chapter	r 3. 15	GHz Oscillator Implementations	29
3.1	Single-	Ended VCO Topologies	29
	3.1.1	Emitter-Tuned VCO Topology	30
	3.1.2	Base-Tuned VCO Topology	32
3.2	Biasing	g and Device Selection	33
	3.2.1	C_{var} and L_r Characterisation	35
3.3	Circuit	t Layout	38
	3.3.1	Layout Parasitic Extraction	41
3.4	Simula	tion Results	41
	3.4.1	VCO Output and Phase Noise	42
	3.4.2	VCO Tuning Characteristics	45
	3.4.3	Summary	46
Chapter	r 4. 24	GHz Oscillator Implementation	49
4.1	Differe	ntial VCO Topology	49
	4.1.1	Biasing and Device Selection	52
4.2	Circuit	t Lavout	56
	4.2.1	Lavout Parasitic Extraction	57
4.3	Simula	tion Results	58
	4.3.1	VCO Output and Phase Noise	58
	4.3.2	VCO Tuning Characteristics	60
	4.3.3	Monte Carlo Analysis	61
Chanton	6 Ew	anuanay Proceeder Implementation	65
5 1	1/6 C	nehronous Static Frequency Proceeder	65
0.1	1/0 SY	FCL D latch Construction	60
	0.1.1 E 1 0	Master Slave Data Eliz Elez	Uð 70
	0.1.2	Master-Slave Data Flip-Flop	(2

Contents

	5.1.3	Divider Core Output Buffer	73	
	5.1.4	Prescaler Biasing	74	
5.2	Circui	t Layout	75	
	5.2.1	Layout Parasitic Extraction	76	
5.3	Simula	ation Results	77	
	5.3.1	Prescaler Output	77	
	5.3.2	Input Sensitivity	79	
	5.3.3	Monte Carlo Analysis	80	
5.4	Comb	ined 24GHz VCO and Prescaler Simulation	81	
Chapte	r6. M	MIC Fabrication and Measurement	83	
6.1	Fabric	ation	83	
6.2	On-W	afer Measurement	84	
	6.2.1	Soft-start Power Application	86	
	6.2.2	De-imbedding Measurement Equipment	87	
	6.2.3	Phase Noise Measurement	90	
6.3	15GHz	z Single-ended VCO [ET15G] Measurement	91	
6.4	15GHz	z Single-ended VCO [ET15G_V2] Measurement	95	
6.5	24GH	z Differential VCO [XC24G] Measurement	99	
6.6	1/6 Frequency Prescaler [SDIV6] Measurement			
Chapte	r 7. Co	onclusion	115	
7.1	Thesis	Conclusions	115	
7.2	Future	e Directions	117	
Appendix A. Schematics 119			119	
Append	lix B. S	SDIV6 Layout Cell Views	143	
Append	lix C. I	Measurement Data	149	
Append	Appendix D. MMIC Die Photos 15			
Bibliog	Bibliography 16			

List of Figures

1.1	Antenna beam-forming network	3
1.2	Automotive radar	4
1.3	24GHz PLL for SRR	5
2.1	Integer-N PLL block diagram	10
2.2	Oscillator linear feedback model	11
2.3	Two-port transistor oscillator	12
2.4	Cross-coupled differential oscillator	13
2.5	Microwave oscillator implementations	14
2.6	Reception of undesired signals due to LO phase noise	16
2.7	Effect of phase noise on Doppler frequency detection	16
2.8	Frequency spectrum of ideal and practical oscillators	18
2.9	Oscillator noise model	19
2.10	Leeson's oscillator phase noise power spectral density	20
2.11	Static divider element	21
2.12	Regenerative divider mechanism	22
2.13	Synchronous and asynchronous dividers	23
2.14	SiGe HBT cross-section	24
2.15	SiGe HBT energy band diagram	24
2.16	High- f_t SiGe NPN f_t characteristic	26
2.17	C-B varactor capacitance characteristic	27
3.1	30GHz phase shifter block diagram	29
3.2	Emitter-tuned single-ended Colpitts based VCO topology $\ . \ . \ . \ . \ .$	30
3.3	Base-tuned single-ended Colpitts based VCO topology $\ldots \ldots \ldots \ldots \ldots$	32
3.4	C_{var} and L_r characterisation schematics $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	35
3.5	15GHz VCO C_{var} characterisation plots $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	36
3.6	15GHz VCO L_r characterisation plots $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	37
3.7	ET15G layout	39

List of Figures

3.8	$ET15G_V2$ layout	39
3.9	$ET15G_V3$ layout	40
3.10	BT15G layout	40
3.11	Simulated 15GHz VCO output signals	43
3.12	Simulated 15GHz VCO phase noise	44
3.13	Simulated 15GHz VCO frequency tuning characteristics	46
3.14	Simulated 15GHz VCO power characteristics	47
4.1	24GHz VCO in SRR PLL	49
4.2	24GHz cross-coupled VCO schematic	50
4.3	24GHz VCO C_{var} characterisation plots $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	54
4.4	24GHz VCO L_r characterisation plots $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	55
4.5	XC24G layout	57
4.6	Simulated XC24G output characteristics	59
4.7	Simulated XC24G tuning characteristics	60
4.8	XC24G Monte Carlo simulation	62
5.1	Frequency prescaler in SRR PLL	65
5.1 5.2	Frequency prescaler in SRR PLL	65 67
5.1 5.2 5.3	Frequency prescaler in SRR PLL	65 67 68
5.1 5.2 5.3 5.4	Frequency prescaler in SRR PLL	65 67 68 71
 5.1 5.2 5.3 5.4 5.5 	Frequency prescaler in SRR PLL	 65 67 68 71 73
 5.1 5.2 5.3 5.4 5.5 5.6 	Frequency prescaler in SRR PLL	 65 67 68 71 73 74
 5.1 5.2 5.3 5.4 5.5 5.6 5.7 	Frequency prescaler in SRR PLL	 65 67 68 71 73 74 75
 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 	Frequency prescaler in SRR PLL	 65 67 68 71 73 74 75 76
 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 	Frequency prescaler in SRR PLL	 65 67 68 71 73 74 75 76 78
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	Frequency prescaler in SRR PLL	 65 67 68 71 73 74 75 76 78 79
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	Frequency prescaler in SRR PLL	 65 67 68 71 73 74 75 76 78 79 80
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12	Frequency prescaler in SRR PLL	 65 67 68 71 73 74 75 76 78 79 80 82
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 6.1	Frequency prescaler in SRR PLL	 65 67 68 71 73 74 75 76 78 79 80 82 84
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 6.1 6.2	Frequency prescaler in SRR PLL	 65 67 68 71 73 74 75 76 78 79 80 82 84 85

6.4	Direct phase noise measurement technique	90
6.5	15GHz single-ended VCO test apparatus	91
6.6	ET15G measured output characteristics	92
6.7	ET15G measured frequency spectrum	94
6.8	ET15G frequency spectrum under modified bias conditions $\ldots \ldots \ldots$	95
6.9	$ET15G_V2$ measured output characteristics $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	96
6.10	$ET15G_V2$ measured frequency spectrum $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	97
6.11	ET15G_V2 frequency spectrum under modified bias conditions $\ldots \ldots \ldots$	98
6.12	24GHz differential VCO test apparatus	00
6.13	XC24G measured output characteristics	01
6.14	XC24G measured frequency spectrum	03
6.15	XC24G frequency spectrum under modified bias conditions	04
6.16	SDIV6 single-ended test apparatus	06
6.17	SDIV6 differential test apparatus	07
6.18	SDIV6 measured self-oscillation frequency spectrum	08
6.19	SDIV6 measured output spectrum 1	09
6.20	SDIV6 measured input sensitivity	10
6.21	SDIV6 measured output power and voltage 1	12
6.22	SDIV6 measured current and power consumption	12
A.1	ET15G top level schematic	20
A.2	ET15G core schematic	21
A.3	ET15G test bench schematic	22
A.4	$ET15G_V2$ top level schematic $\ldots \ldots 1$	23
A.5	$ET15G_V2$ core schematic	24
A.6	$ET15G_V2$ test bench schematic $\ldots \ldots 1$	25
A.7	$ET15G_V3$ top level schematic $\ldots \ldots 1$	26
A.8	$ET15G_V3$ core schematic	27
A.9	$ET15G_V3$ test bench schematic $\ldots \ldots 1$	28
A.10	BT15G top level schematic 1	29
A.11	BT15G core schematic	30
A.12	BT15G test bench schematic	31

List of Figures

XC24G top level schematic	132
XC24G core schematic	133
XC24G output buffer schematic	134
XC24G test bench schematic	135
SDIV6 top level schematic	136
SDIV6 DFF schematic	137
SDIV6 D-latch schematic	138
SDIV6 output buffer schematic	139
SDIV6 test bench schematic	140
XC24G and SDIV6 test bench schematic	141
CDIVC D lately largest	1 / /
SDIV6 D-latch layout	144
SDIV6 DFF layout	145
SDIV6 EF output buffer layout	146
SDIV6 core layout	147
	1.00
ET15G die photo	160
$ET15G_V2$ die photo	160
XC24G die photo	161
SDIV6 die photo	161
	XC24G top level schematicXC24G core schematicXC24G output buffer schematicXC24G test bench schematicSDIV6 top level schematicSDIV6 DFF schematicSDIV6 DFF schematicSDIV6 output buffer schematicSDIV6 output buffer schematicSDIV6 output buffer schematicSDIV6 test bench schematicSDIV6 test bench schematicSDIV6 test bench schematicSDIV6 D-latch layoutSDIV6 D-latch layoutSDIV6 D-latch layoutSDIV6 D-latch layoutSDIV6 Der layoutSDIV6 Der layoutSDIV6 Der layoutSDIV6 DFF layoutSDIV6 die photoSDIV6 die photoXC24G die photoSDIV6 die photo

List of Tables

2.1	Nominal high- f_t NPN electrical parameters $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	25
3.1	15GHz VCO schematic parameters	34
3.2	Post-layout 15GHz VCO schematic modifications	41
3.3	Simulated 15GHz VCO output performance metrics	45
3.4	Simulated 15GHz VCO tuning performance metrics	47
4.1	24GHz VCO schematic parameters	53
4.2	Post-layout 24GHz VCO schematic modifications	58
4.3	Simulated XC24G output performance metrics	59
4.4	Simulated XC24G tuning performance metrics	61
4.5	XC24G Monte Carlo statistics	63
5.1	Prescaler schematic parameters	70
5.2	Simulated SDIV6 RF output power	77
5.3	Simulated SDIV6 DC current and power consumption metrics	78
5.4	SDIV6 Monte Carlo statistics	81
5.5	Simulated XC24G and SDIV6 output performance metrics	81
6.1	ET15G phase noise measurements	94
6.2	$ET15G_V2$ phase noise measurements $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	98
6.3	ET15G and ET15G_V2 measured performance summary	99
6.4	XC24G phase noise measurements	103
6.5	XC24G measured performance summary	105
6.6	SDIV6 maximum input sensitivity	111
6.7	SDIV6 mean DC current and power consumption	113
6.8	SDIV6 measured performance summary	114
7.1	SiGe mm-wave VCO performance summary	115
7.2	SiGe mm-wave prescaler performance summary	116

List of Tables

C.1	ET15G chip 1 tuning data	49
C.2	ET15G chip 2 tuning data	50
C.3	ET15G chip 3 tuning data	50
C.4	ET15G phase noise data 1	51
C.5	$ET15G_V2$ chip 1 tuning data	51
C.6	$ET15G_V2$ chip 2 tuning data	52
C.7	ET15G_V2 chip 3 tuning data	52
C.8	$ET15G_V2$ phase noise data	53
C.9	XC24G chip 1 tuning data	53
C.10	XC24G chip 2 tuning data	54
C.11	XC24G chip 3 tuning data	54
C.12	XC24G phase noise data	55
C.13	SDIV6 chip 1 input sensitivity data	55
C.14	SDIV6 chip 2 input sensitivity data	56
C.15	SDIV6 chip 3 input sensitivity data	57
C.16	SDIV6 chip 1 differential input sensitivity data 1	58

List of Abbreviations

List of the acronyms and abbreviations used in this thesis.

AC	Alternating Current
ACC	Autonomous Cruise Control
amp	Amplitude
BER	Bit Error Rate
BiCMOS	Bipolar Complementary Metal Oxide Semiconductor
BiCMOS6HP	IBM 0.25 μm SiGe BiCMOS technology (6 metal, $f_t = 47$ GHz)
BiCMOS7WL	IBM 0.18 μm SiGe BiCMOS technology (7 metal, $f_t = 60$ GHz)
BiCMOS7HP	IBM 0.18 μm SiGe BiCMOS technology (7 metal, $f_t = 120$ GHz)
BiCMOS8HP	IBM 0.13 μm SiGe BiCMOS technology (8 metal, $f_t = 200$ GHz)
BJT	Bipolar Junction Transistor
BOM	Bill Of Materials
BT15G	Base-tuned 15GHz single-ended VCO
B-tuned	Base-tuned
BW	Bandwidth
CAD	Computer Aided Design
C-B	Collector-Base
CML	Current Mode Logic
CMOS	Complementary Metal Oxide Semiconductor
CP	Charge Pump
DC	Direct Current
DFF	Data Flip-Flop
DHBT	Double HBT
Diff	Differential
D-latch	Data-Latch
ECC	European Communications Committee
ECL	Emitter Coupled Logic
$\rm E^2 CL$	Double ECL
EF	Emitter-Follower
EM	Electromagnetic
ET15G	Emitter-tuned 15GHz single-ended VCO version 1
$ET15G_V2$	Emitter-tuned 15 GHz single-ended VCO version 2

List of Abbreviations

$ET15G_V3$	Emitter-tuned 15GHz single-ended VCO version 3
ETH/Z	Swiss Federal Institute of Technology / Zürich
E-tuned	Emitter-tuned
FCC	Federal Communications Commission
\mathbf{FFT}	Fast Fourier Transform
FMCW	Frequency Modulated Continuous Wave
FOM	Figure Of Merit
f_t	Transition Frequency
GaAs	Gallium Arsenide
Ge	Germanium
GHz	Gigahertz
GND	Ground
HBT	Heterojunction Bipolar Transistor
HP	Hewlett-Packard
IF	Intermediate Frequency
IfE	Institute for Electronics
IMPATT	IMPact ionisation Avalanche Transit-Time
InP	Indium Phosphide
ISM	Industrial Scientific and Medical
LC	Inductor Capacitor
LNA	Low Noise Amplifier
LO	Local Oscillator
LPF	Low Pass Filter
LRR	Long Range Radar
LTI	Linear Time Invariant
MHz	Megahertz
MIM	Metal Insulator Metal
MMIC	Monolithic Microwave Integrated Circuit
mm-wave	Millimeter-wave
MOSFET	Metal Oxide Semiconductor Field Effect Transistor
MPW	Multi Project Wafer
NPN	n-type p-type n-type semiconductors
PCB	Printed Circuit Board
PFD	Phase Frequency Detector
PHEMT	Pseudomorphic High Electron Mobility Transistor
PLL	Phase Locked Loop

PSD	Power Spectral Density
PSK	Phase Shift Keying
PSS	Periodic Steady State
Q	Quality Factor
QAM	Quadrature Amplitude Modulation
RBW	Resolution Bandwidth
RF	Radio Frequency
RLC	Resistor Inductor Capacitor
RMS	Root Mean Square
Rx	Poly-Si
SARA	Strategic Automotive Radar frequency Allocation
SCV	Sub-Clutter Visibility
SDIV6	1/6 Synchronous Static Frequency Prescaler
S-End	Single-Ended
Si	Silicon
SiGe	Silicon Germanium
SMA	Sub-Miniature version A
SoC	System-on-Chip
S-parameters	Scattering Parameters
SRR	Short Range Radar
Ti	Deep Trench Isolation
TUD	Technical University of Dresden
UWB	Ultra Wideband
VBW	Video Bandwidth
VCO	Voltage Controlled Oscillator
VLSI	Very Large Scale Integration
WLAN	Wireless Local Area Network
XC24G	24GHz cross-coupled differential VCO

Abstract

Advances in Silicon Germanium (SiGe) Bipolar Complementary Metal Oxide Semiconductor (BiCMOS) technology has caused a recent revolution in low-cost Monolithic Microwave Integrated Circuit (MMIC) design.

This thesis presents the design, fabrication and measurement of four MMICs for frequency synthesis, manufactured in a commercially available IBM 0.18μ m SiGe BiCMOS technology with $f_t = 60$ GHz. The high speed and low-cost features of SiGe Heterojunction Bipolar Transistors (HBTs) were exploited to successfully develop two single-ended injection-lockable 15GHz Voltage Controlled Oscillators (VCOs) for application in an active Ka-Band antenna beam-forming network, and a 24GHz differential cross-coupled VCO and 1/6 synchronous static frequency prescaler for emerging Ultra Wideband (UWB) automotive Short Range Radar (SRR) applications.

On-wafer measurement techniques were used to precisely characterise the performance of each circuit and compare against expected simulation results and state-of-the-art performance reported in the literature.

The original contributions of this thesis include the application of negative resistance theory to single-ended and differential SiGe VCO design at 15–24GHz, consideration of manufacturing process variation on 24GHz VCO and prescaler performance, implementation of a fully static multi-stage synchronous divider topology at 24GHz and the use of differential on-wafer measurement techniques.

Finally, this thesis has illustrated the excellent practicability of SiGe BiCMOS technology in the engineering of high performance, low-cost MMICs for frequency synthesis in millimeterwave (mm-wave) devices.

Statement of Candidate

I certify that the work in this thesis entitled "Low-cost SiGe Circuits for Frequency Synthesis in Millimeter-wave Devices" has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree to any other university or institution other than Macquarie University.

I also certify that the thesis is an original piece of research and it has been written by me. Any help and assistance that I have received in my research work and the preparation of this thesis itself have been appropriately acknowledged.

In addition, I certify that all information sources and literature used are indicated in this thesis.

The research presented in this thesis has not required the approval of Macquarie University Ethics Review Committee.

Mauterbach

Signed

Adam Lauterbach (40595447)

Name

30 June 2009

Date

Acknowledgments

Firstly I would like to thank Dr Neil Weste for encouraging me to undertake the original research task at Macquarie University and my acting supervisor Prof Karu Esselle who has overseen this thesis to completion. Special thanks to Dr Jeffrey Harrison for graciously advising on and reviewing the technical content. I acknowledge the efforts of the Higher Degree Research staff, in particular Agnieszka Baginska and the opportunities provided by Macquarie University through various funding grants. Thanks also to my fellow researchers James Howarth and Michael Boers for their friendship and support during my time at Macquarie.

A debt of gratitude is owed to my supervisors Dr Frank Ellinger and Prof Heinz Jačkel and colleagues David Barras, Silvan Wehrli, George von Büren, Lucio Rodoni, Hannes Grubinger and Jörg Carls of the Institute for Electronics at the Swiss Federal Instituted of Technology Zürich. Without their generosity, knowledge and assistance the design and fabrication of the presented integrated circuits would not have been possible.

I thank the Swiss Federal Commission for Scholarships for Foreign Students for the opportunity of a lifetime. The academic and cultural experiences and international friendships gained during my time in Switzerland have been instrumental in my success through the challenges and remain invaluable memories and contacts. In particular I thank Elisabeth Schniderlin for her organisation and kind consideration making the logistics of living in Switzerland as a foreign student less of a burden.

Many thanks to family and friends who have given me the encouragement and strength needed throughout. To my Alexandra, every moment with you has been a true blessing. You have sacrificed as much as I for this thesis - thank you for your patience, love and understanding. The prospects of our future together have been my inspiration.

Finally, I thank the Lord for giving me the determination to persist through my own doubts. He has opened my eyes to the depth of the support and generosity offered by those around me and I pray for the opportunity to do the same in return.