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Abstract

Massive multiple-input multiple-output (Massive MIMO) is a key feature of proposed

5G cellular systems, offering potentially many benefits. However, all benefits rest on the

ability to obtain channel state information (CSI) at the base station (BS) during uplink

transmission. The BS can in principle measure CSI from known user-transmitted pilot

sequences, but in a multiple cell system, the use of non-orthogonal pilot sequences in

different cells leads to a problem of pilot contamination.

In this thesis, we mainly focus on recently proposed covariance-aided channel esti-

mation for time division duplex (TDD) Massive MIMO cellular systems suffering pilot

contamination. The recent work assumes that the covariance matrices of users are

known and do not change with time. In this thesis, we address two new scenarios:

1) the covariance matrix in one cell changes due to a new user arriving in that cell;

2) the covariance matrices of all users change due to mobility of the users. In these

scenarios, we develop novel algorithms that estimate the new covariance matrices and

then use these estimated covariance matrices to obtain high quality channel estimates.

The proposed algorithms are compared with other estimation methods mentioned in

this thesis to show the benefits of the proposed algorithms.
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Chapter 1

Introduction

This chapter comprises four sections. Section 1.1 presents the background on massive

multiple-input multiple-output (Massive MIMO). Section 1.2 then provides motivation

of this thesis. The objectives of this thesis are summarized in Section 1.3. Finally, in

Section 1.4 the organization of this thesis is described.

1.1 Background

Massive MIMO system is a significant breakthrough, going beyond the conventional

MIMO system. It was first proposed by Thomas L. Marzetta in 2007 [1] and was

presented in more detail in 2010 [2, 3]. In current wireless systems, Massive MIMO is

also known as large-scale antenna system, very large MIMO, hyper MIMO and full-

dimension MIMO [2]. The most notable characteristic for this new technique is that

the number of the antennas deployed at each base station (BS) in every cell is usually

several tens or even more, and simultaneously serving tens of users. Moreover, for the

same cell, the number of antennas at each BS greatly exceeds the number of active

users in the same time-frequency resource [4].

The large number of antennas at each BS brings many advantages to Massive MIMO

systems [5]. Compared with conventional MIMO systems, Massive MIMO systems have

the ability to get much more system capacity and energy efficiency [2]. Furthermore,

Massive MIMO systems offer robustness to interference such as intentional jamming

and unintended man-made interference. Therefore, Massive MIMO systems become a
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significant part of future 5G wireless communication systems [6]. More details about

benefits of Massive MIMO systems will be provided in Section 2.1.2. However, as a

developing technique, Massive MIMO potentially suffers from some problems, including

pilot contamination and architectural challenges ( further information will be described

in Section 2.1.3). The most serious problem is pilot contamination which will be

discussed in Section 2.1.4. This challenge has the potential to reduce the performance

of Massive MIMO dramatically, and is an urgent problem that must be addressed in

research on Massive MIMO.

1.2 Motivation

As discussed in the previous section, the challenge of pilot contamination needs to be

overcome if we want to achieve the potentially benefits of Massive MIMO systems.

Pilot contamination is caused by the reuse of the same or at least non orthogonal

pilot sequences among different cells [7]. During uplink training period, users in each

cell transmit known pilot sequences to the BS in their own cells and the BS estimates

uplink channel state information (CSI) by these pilot information. For the time division

duplex (TDD) Massive MIMO systems, the estimated CSI from uplink training can be

used as downlink CSI due to the channel reciprocity that holds in TDD systems [3]. If

pilot sequences in all cells are orthogonal with each other, then the BS is able to obtain

good estimates of the desired CSI. However, the number of orthogonal pilot sequences

is limited. Therefore, the same pilot sequences (or non orthogonal pilot sequences)

are reused among different cells (the pilot sequences in the same cell are assumed

orthogonal with each other) [8]. The re-use of pilot sequences leads to interference

between different cells during uplink training, which is called pilot contamination. The

focus of this thesis is on the issue of pilot contamination in Massive MIMO systems.

Among current methods proposed to deal with pilot contamination, channel esti-

mation methods are more and more popular, especially the covariance-aided channel

estimation methods [9]. These covariance-aided channel estimation methods make full

use of assumed known channel statistics (channel covariance matrices). Good chan-

nel estimates can be obtained by these covariance-aided estimate methods under some
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conditions [10]. However, these covariance-aided channel estimation methods require

knowledge of each cell’s channel covariance matrix, which is difficult to obtain due to

the very same limitation of pilot contamination that occurs during uplink training.

The covariance matrix of each channel is usually assumed known[11]. However, in

this thesis we consider some new scenarios in which at least some covariance matrices

are unknown. In one scenario, a new user comes into a cell with an unknown covariance

matrix. In another scenario, all the users’ covariance matrices change due to the mo-

bility of users. Under these scenarios, however, the method of estimating covariance

matrices just mentioned may no longer be suitable (the reason will be discussed in

Section 4.1). When channel covariance matrices are not available, some other channel

estimation methods have been proposed [12]. For example, the authors in [13] pro-

posed a blind channel estimation approach which estimates channel state information

by decomposing the singular vectors of received signal’s matrices. This blind method

obtains good channel estimates, but the complexity is high due to the need for a singular

value decomposition of received signal’s matrices. A similar subspace based semi-blind

channel estimation method is presented in [14]. This method exploits eigenvalue de-

composition on the received signal’s matrices to estimate the channel information. The

estimated performance of this method is relatively good, but computational complexity

is also high. Therefore, in this thesis we will estimate new covariance matrices under

new scenarios and then use them in covariance-aided channel estimation methods to

estimate CSI.

1.3 Research Objectives

The objectives of this thesis are to research covariance aided channel estimation meth-

ods under pilot contamination in Massive MIMO systems. In previous research on

pilot contamination in Massive MIMO systems, estimation methods using covariance

matrices have been shown to provide good estimation results under some conditions

[15]. However, those methods are all based on the assumption that the covariance

matrices can be estimated correctly and separately. But these methods will not be

sufficient when covariance matrices change due to mobility of users or arrivals of new
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users, which are the scenarios investigated in this thesis. More detailed aims are the

following.

1) A clear background about the area of Massive MIMO is firstly presented, such as

the development, the benefits, and the challenges of Massive MIMO. We focus on

the particular problem of pilot contamination and discuss some measures which can

tackle this problem;

2) Before researching new scenarios, this thesis studies channel estimation methods

under situations in which the channel covariance matrices keep constant. Under

this situation, this thesis analyzes the effect of pilot contamination on system per-

formance and discusses several existing channel estimation methods: Least Squares

(LS), Minimum Mean Square Error (MMSE) and Maximum A Posteriori (MAP) es-

timation methods. The conclusion from comparing these channel estimation meth-

ods is that covariance-aided channel estimation methods are much superior to con-

ventional methods without covariance matrices.

3) Then this thesis concentrates on channel estimation methods under new scenarios in

which covariance matrices are not directly available due to the mobility of users or

arrivals of new users. For these two cases we propose corresponding novel algorithms

to obtain the estimate of new covariance matrices and estimate the CSI based on

estimated covariance matrices. We provide both analytical work and numerical

experiments to test the performance of our proposed algorithms.

1.4 Organization of the Thesis

The rest of this thesis is organized as follows.

Chapter 2 provides a review on Massive MIMO systems. In Section 2.1, the historic

development of Massive MIMO systems is presented, then the benefits and challenges

of Massive MIMO systems are shown. Some existing methods for dealing with the

problem of pilot contamination are described in Section 2.2, which includes three main

aspects: the precoding process, pilot operations and channel estimation methods.
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Chapter 3 analyzes the problem of pilot contamination in Massive MIMO systems

and some existing channel estimation methods. Section 3.1 discuss the system model

used in Chapter 3. Based on the system model, Section 3.2 introduces some exist-

ing channel estimation methods, and gives the advantages and disadvantages of each

method. Section 3.3 analyze the problem of pilot contamination in Massive MIMO

systems.

Chapter 4 studies channel estimation methods in new scenarios. Section 4.2 pro-

vides the system model for the new scenarios. Two new scenarios are described in

Section 4.3 and corresponding novel estimation methods for these cases are proposed:

Section 4.3.1 studies the situation that new covariance matrices are not directly avail-

able due to arrivals of new users; Section 4.3.2 studies the situation in where all covari-

ance matrices change due to mobility of users. The performance of proposed methods

is presented in Section 4.4.

Finally, Chapter 5 is the conclusion and future work. Section 5.1 summarizes the

research of this thesis and Section 5.2 recommends related future work.
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Chapter 2

Literature Review

Since the focus of this thesis is the problem of pilot contamination in Massive MIMO

systems, in this chapter, we will give an introduction to Massive MIMO systems in

Section 2.1, then pilot decontamination methods are reviewed in Section 2.2.

2.1 Overview of Massive MIMO

Massive MIMO is a key component of proposed 5G cellular systems, which has the po-

tential to provide capacity to meet ever-growing data requirements of wireless devices.

However, as an emerging technology, Massive MIMO also suffers some challenges. The

most serious is pilot contamination, which can greatly reduce the prospective gains of

Massive MIMO.

In this section, the historic development of Massive MIMO is presented in Section

2.1.1. The benefits and challenges of Massive MIMO are discussed in Section 2.1.2

and Section 2.1.3, respectively. The problem of pilot contamination is given in Section

2.1.4.

2.1.1 The Historic Development of Massive MIMO

The unceasing requirements for high data rates and high service quality is a challenge

for current wireless communication industry. One way to overcome this challenge is to

increase capacity of system several times[16].
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It has been well known since 1995 that under complex Gaussian fading model with

independent and identically distributed (i.i.d.) channels between each transmitter and

receiver pair, the capacity of point-to-point multiple-input multiple-output (point-to-

point MIMO) system increases linearly with the minimum number of transmit antennas

and receive antennas [17, 18]. Researchers later understood that similar results would

hold even if each receiver had only one antenna, provided that the number of users

were large. This gave rise to the area of Multiple-user MIMO in which each BS serves

several users [19].

Multi-user MIMO can provide a large number of advantages compared with point

to point MIMO. Since every user (active terminal) can utilizes all the time-frequency

bins, the resource allocation can be simplified. It also does not need the assumption of

rich scattering environment. Moreover, if the BS knows the CSI, it is possible to get

arbitrarily high capacity (sum-rate) in a single cell, even with only single antenna users,

provided that each BS has sufficiently large antenna array. This is true even with simple

linear beamforming techniques such as Zero Forcing beamforming (ZF beamforming).

If ZF beamforming is used: the sum-rate of system from ZF beamforming increases

linearly with the number of antennas at the BS, provided that the number of users also

scales up with the number of antennas at the BS (in constant ratio, and the ratio is

less than unity so that Zero Forcing is possible). In this case, the data rate each user

gets does not grow large, but the sum-rate grows large because of the large number of

users [19]. Fig. 2.1 describes the idea of multi-user MIMO systems. In this figure the

BS serves a lot of users using the same time and frequency resources. The BS has a

antenna array which displays with several antennas, and each user has one antenna.

Recent work has extended these results to multiple cell setting, including multi-cell

MIMO cooperation [20, 21]. It can be seen from [20] that if the number of users is held

fixed, the sum-rate of the system increases with the increase of the number of antennas

at the BS, provided that the users themselves have antenna arrays which grow large

and the number of data stream per user then needs to grow large (the per-user data

rate grows large in this case). In addition, a lot of work was done on multi-user MIMO

in the early 2000s, and good summaries can be found in [22, 23]. [23] showed that
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                    Base Station

User

Base Station

Figure 2.1: A multi-user MIMO system.

Base Station

User

Figure 2.2: A multi-cell multi-user MIMO system.

at high signal to noise ratio (SNR) and if the CSI is known perfectly at the BS, then

it is optimal to do linear Zero Forcing beamforming to carefully selected users who’s

channels are then approximately orthogonal. Fig. 2.2 illustrates the operation of a

multi-cell multi-user MIMO system. There are many cells in the system. In each

cell, the BS serves many single-antenna users simultaneously (using the same time and

frequency resources), the BS has a array with several antennas. Each BS can receive

signal from all users in all cells.

MIMO systems equipped with multiple antennas at both BSs and users have much

higher sum-rate than corresponding single-antenna systems. Generally speaking, the

sum-rate of MIMO systems increases linearly with the minimum number of antennas
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                    Base Station

User

Antenna array with 

Massive numbers of 
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Massive numbers of 

antennas

Figure 2.3: A single-cell Massive MIMO system.

both at each BS and users, as long as the channel knowledge can be available for

both communication sides [24, 25]. However, for conventional MIMO systems, the

number of antennas is limited. For example, according to the Long Term Evolution

(LTE) standard, the data rates during uplink communication is 75 Mbps using 20

MHz of spectrum with 4 × 4 antennas [26]. Unfortunately, this spectral efficiency is

far from enough to meet the requirement of future 5G wireless communication system.

Therefore, it is time that a new technique be developed which is able to supply much

higher data rate than a traditional MIMO system. The Massive MIMO system, which

has much stronger ability to increase the data rate of system, becomes an excellent

candidate.

One of the most remarkable features of Massive MIMO systems is that the antenna

array at each BS consists of hundreds antennas instead of several antennas at each

BS in conventional MIMO systems [27]. Figure 2.3 shows a single-cell Massive MIMO

system, where the antenna array consists of a massive number of antennas.

There are two typical Massive MIMO system models: the frequency division duplex

(FDD) Massive MIMO system and the time division duplex (TDD) Massive MIMO

system [28]. For FDD Massive MIMO systems, the uplink and downlink transmission

are in different frequency bands. Moreover, if terminals (users) support full-duplex,

both uplink and downlink transmission can happen simultaneously. For TDD Massive

MIMO systems, uplink and downlink transmission share the same frequency band but
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occur at different times.

For FDD Massive MIMO systems, obtaining the CSI for a downlink channel requires

a two-stage procedure. More precisely, the BS transmits pilot sequences to all users in

the cell, and then all users need to feedback the downlink estimated CSI to that BS.

The time for transmitting pilot sequences in FDD systems increases with the number

of antennas at the BS. Since the quantity of antennas at each BS is extremely large in

Massive MIMO systems, the time for channel estimation is corresponding long. There-

fore, it is practically impossible to obtain global real-time CSI in any reasonable delay,

because the channel will change before the adequate CSI is estimated and signaling

latency is also un-avoidable over the downlink transmission [28]. Moreover, for FDD

systems, the quantity of independent pilot sequences, which are needed for estimating

CSI, are ever-growing with the number of antennas at each BS [29]. Since each BS

has a large number of antennas, the required number of independent pilot sequences is

correspondingly very large [30, 31].

In contrast, TDD systems can exploit channel reciprocity: the CSI on the downlink

is the same as the uplink, so the CSI on the downlink can be measured at the BS

using uplink pilot sequences sent by users [32]. Therefore, the BS can estimate the

uplink CSI from the uplink transmissions, and this estimated CSI from the uplink

is also an estimate of the downlink CSI which can be used by the linear pre-coders

during the downlink transmissions. Moreover, for TDD systems, the required number

of pilot sequences increases linearly with the number of users in every cell instead of

antennas at each BS. Therefore, when the quantity of users in each cell is not so large,

the required number of pilot sequences is also quite limited. Therefore, TDD Massive

MIMO systems can improve system performance by increasing the number of antennas

at the BS with limited overheads [29].

2.1.2 The Benefits of Massive MIMO

Thanks to the large number of antennas at each BS, Massive MIMO systems have more

features compared with traditional MIMO systems, which are listed as following.

1) It is possible for Massive MIMO systems to increase the capacity of system for 10
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times or more compared with traditional MIMO systems[3];

2) Massive MIMO systems are able to robust to multi-user interference, channel fading

and hardware imperfection [2];

3) Massive MIMO systems have a large number of antennas at the BS, which enable

to reduce or even average out the effect of channel fading [33];

4) The channels between different users become approximately orthogonal thanks to

enormous numbers of antennas at the BS [3];

5) Massive MIMO systems can achieve good system performance just based on simple

linear precoders (downlink)[3];

6) A large number of antennas at the BS provides robustness against individual an-

tenna failure;

7) Massive numbers of antennas at each BS provide a large surplus of degrees of free-

dom, which is helpful to system hardware-friendly signal shaping [2];

8) Massive MIMO systems can be built with cheap and low-power elements instead

of expensive and high-power items (such as high-power amplifiers and large coaxial

cables) in traditional MIMO systems [2];

9) Massive MIMO systems can simplify the multiple access layer[2];

10) Massive MIMO systems are able to raise energy efficiency for several times [2].This

benefit results from the large number of antennas at the BS, because these antennas

can focus energy on small space area if coherently combined (uplink) or precoded

(downlink) using beamforming techniques. The more antennas installed at each BS,

the less transmitted power is needed per user, as long as CSI can be estimated rea-

sonably well. According to [34], each BS is equipped with M antennas (M increases

without limit), the transmitted power of per user can be reduced proportionally to

1/
√
M with estimated CSI using MMSE estimation method;
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2.1.3 Challenges of Massive MIMO

Although Massive MIMO can offer many benefits, as a new technique, it also suffers

some challenges [2].

In Massive MIMO systems, each BS has an antenna array equipped with perhaps

hundreds of antennas. These numerous antennas can bring great deal of benefits to

wireless communication system. However, it is very difficult to install a large number

of antennas due to the quite limited available space at the antenna array. If the number

of antennas is not large enough, we can not assume orthogonality of channels between

different users, and it is then impossible to obtain good system performance based on

simple transmitters or receivers[29, 35]. The authors of [36] showed that if each BS has

a large number of antennas, the performance of the low-complexity matched filter (MF)

is close to the high-complexity minimum mean-square error (MMSE) filter. However,

if the number of the antennas at the BS is not large enough, then the performance of

the MF is dramatically worse than the MMSE filter.

Besides, there are so many radio frequency (RF) elements such as mixers and am-

plifiers in each antenna array. These elements add to the energy consumption in total,

and can even negate the theoretical benefits of power saving from having a massive

number of antennas [34].

Almost all benefits of Massive MIMO systems discussed in section 2.1.2 are based

on the basic assumption that the BS can obtain good estimates of the CSI from uplink

training by sending known pilot sequences from users. To obtain good estimates of

CSI, pilot sequences of different users are required to be orthogonal with each other.

However, it is difficult to meet this requirement for multi-cell multi-user Massive MIMO

systems, which will be discussed in section 2.1.4. Therefore, the same pilot sequences

are likely reused in different cells, or the pilot sequences between different cells are par-

tially correlated. Unfortunately, this then reduces the accuracy of channel estimation,

which in turn decreases system performance such as capacity and energy efficiency.

The effect of non-orthogonal pilot sequences used in different cells is termed pilot con-

tamination (more details will be discussed in Section 2.1.4).

Besides architectural challenges and pilot contamination, Massive MIMO systems
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also suffer some other challenges, such as hardware impairments, cost of reciprocity

calibration and power consumption [37]. These challenges depend on the hardware

implementation, so they are not really fundamental issues. Among these challenges,

pilot contamination is the most serious, therefore, this thesis concentrates on the issue

of pilot contamination in Massive MIMO systems.

2.1.4 Pilot Contamination

In wireless communication systems, the BS needs to estimate the CSI of each user

using pilot sequences, and then use the estimated CSI to detect uplink data and to

make precoders for downlink transmissions. To get good estimates of CSI, the number

of orthogonal pilot sequences should equal to the number of users. In other words, the

number of orthogonal pilot sequences in the system should ideally be U × L, where U

is the number of users in each cell, L is the number of cells in the system. In order to

maintain orthogonality of each pilot sequence, the length of the sequence must increase,

and the time for transmitting the pilot sequence also increases. However, in a practical

wireless system, the coherence interval (the CSI keeps the same in the coherence in-

terval) is limited, and only a fraction of this interval can be devoted to pilot symbols,

the rest being reserved for data. So the length of pilot sequence can not be too long,

which implies that the maximum number of orthogonal pilot sequences is limited [4].

However, for multi-cell multi-user Massive MIMO systems, since the number of users

in the system is very large (all users send pilot sequences to BSs simultaneously), the

required number of orthogonal pilot sequences are also large. Therefore, the practical

number of available orthogonal pilot sequences are much less than the requirement.

Moreover, we want to obtain the maximum sum data-rate of the cell , so we assign

orthogonal pilot sequences to users in the same cell. Therefore, the same or partially

correlated pilot sequences are reused in different cells.

Since the pilot sequences are transmitted at the same time and frequency, the

BS receives the linear combination of all pilot sequences. If these pilot sequences

are orthogonal with each other, then the BS can obtain good estimates of the CSI

based on these unique pilot sequences. However, if two or several cells share the same



2.2 Methods of Pilot Decontamination 15

pilot sequence or different cells use non-orthogonal pilot sequences, then the BS can

not distinguish the pilot sequence of the desired cell. Therefore, the estimate of the

desired CSI at the BS will be contaminated by these same or non-orthogonal pilot

sequences from adjacent cells. These incorrect estimates of CSI will then have negative

effect on downlink beamforming and overall system performance, which termed as

pilot contamination [7]. What is worse, this interference caused by pilot contamination

will not diminish even when the number of antennas at the BS increases [2]. It has

been proven that in Massive MIMO systems, with the help of numerous antennas, other

detrimental factors such as noise and fading can be mitigated by increasing the number

of antennas at the BS [2]. Thus the main factor which limits Massive MIMO system

performance is the pilot contamination. Fig. 2.4 describes the pilot contamination in

Massive MIMO systems. In Fig.2.4 every BS can receive the combination of all pilot

sequences. Take the 1st BS as an example, it receives the combination of all pilot

sequences from all users. If there is one user sends P1 pilot sequence in each cell, then

the 1st BS can received the combination of P1 pilot sequence. The channel estimate of

user A at the 1st BS is contaminated by those users sharing the same pilot sequence

located in adjacent cells.

Pilot contamination can negate the theoretical benefits of increased system capacity,

improved energy efficiency and other benefits from having a large number of antennas at

the BS. In summary, pilot contamination seriously affects the performance of Massive

MIMO systems [38]. Therefore, the problem of pilot contamination must be dealt with.

2.2 Methods of Pilot Decontamination

Recently, pilot contamination has attracted substantial attention and different meth-

ods of pilot decontamination have been proposed. Among various existing methods

of handling pilot contamination, pilot assignment, channel estimation methods and

precoding process are three key aspects. In this section, we introduce the pilot assign-

ment in section 2.2.1, followed by channel estimation methods in section 2.2.2, and the

precoding process is discussed in section 2.2.3.
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Figure 2.4: Pilot contamination in Massive MIMO systems.

2.2.1 Pilot Assignment

The pilot assignment is an effective mechanism to reduce the negative effect of pilot

contamination in Massive MIMO systems [39]. The idea of this method is to co-ordinate

the allocation of pilot sequences across all cells to reduce the correlation between the

pilots as observed at each BS. A coordinated approach of pilot assignment was proposed

in [11]. The pilot assignment methods in this paper made use of the mean square error

of channel estimate which related to channel covariance matrices. This pilot assignment

method can offer a powerful way to reduce the negative influence of pilot contamination

on Massive MIMO systems. However, this pilot assignment method in [11] was effective

only when there is no overlap of angle of arrival (AOA) between different multipaths

and the good estimates of covariance matrices can be obtained ( more detail will be

given in Section 3.2.3).

The authors in [40] proposed a pilot reuse scheme which used the relationship

between channel spectrum correlations and channel power angle spectrum. This pilot

reuse scheme can reduce pilot contamination. But this method requires that the AOA
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of different paths from different users do not overlap. The authors in [41] proposed a

scheme in which antennas selection and user scheduling are done jointly. This scheme

had the ability to obtain a good system performance, but the computation complexity

was very high which was a serious issue for this approach.

2.2.2 The Channel Estimation Methods

Drawing support from channel estimation methods to reduce the negative effect of pilot

contamination on the system performance has become more and more popular. In this

section, we introduce some estimation approaches which try to tackle the problem of

pilot contamination.

When pilot sequences are not orthogonal, some methods have been proposed to es-

timate CSI. The research reported in [13] and [42] studied blind pilot decontamination

methods, which estimate CSI using receive signal covariance matrices. These methods

were based on random matrix theory to predict eigenvalue spectra of receive signal co-

variance matrices. They can obtain better estimation results than conventional channel

estimation methods (such as LS methods), but the computational complexity of these

methods are very high.

The covariance-aided channel estimation methods have got more and more atten-

tion. In [11] and [43], estimation approaches were studied exploiting channel covariance

matrices. The authors of [14] also made full use of covariance matrices of channels to

mitigate the negative influence of pilot contamination on system performance. The

authors indicated that, with the help of covariance matrices, the system can obtain

good estimates of CSI and get much better system performance than those methods

which estimate CSI just based on the pilot sequences (such as LS estimation methods).

Although these covariance-aided estimation methods can obtain good estimates

of CSI, they are difficult to obtain the channel covariance matrices. For current

covariance-aided channel estimation approaches, the usual focus is on the scenario

that covariance matrices of channels remain the same. For this situation, the methods

of estimating covariance matrices have been studied in [11]. However, for the other im-

portant scenarios: covariance matrices change due the mobility of users or arrivals of
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new users, the method of tracking changing covariance matrices needs to be researched

further.

2.2.3 The Precoding Process

Reducing the negative influence of pilot contamination on system performance by some

suitable precoding methods has received more and more attention [44]. A precoding

method of multi-cell TDD system was discussed in [45]. The authors proposed a

multi-cell minimum mean-squared error based (MMSE-based) precoding method. The

authors accounted for the inter-cell interference (pilot contamination) and pilot alloca-

tion when designing the MMSE-based precoder, so that this method can obtain better

performance than conventional zero-forcing (ZF) precoding method under pilot con-

tamination. But the complexity of this MMSE-based precoding method is very high.

The authors in [28] considered FDD multi-cell Massive MIMO system and proposed

a two-tier precoding strategy to deal with the inter-cell interference (pilot contamina-

tion) and the intra-cell interference. However, the precoding method in [28] needs a

huge number of independent pilot sequences to get estimates of real-time global CSI at

the BS to mitigate the pilot contamination. This requirement is practically infeasible

for Massive MIMO systems due to the limited channel coherence time. A two-stage

subspace constrained precoding method was proposed in [46]. The author made clear

that the precoding method in [46] was able to obtain good performance. However,

the optimization of subspace dimension partitioning was much complicated and was a

serious challenge for this method.

2.3 Conclusion

In this chapter, basic background of Massive MIMO was firstly presented. Then we

described a serious problem: pilot contamination. After that we discussed pilot decon-

tamination methods. We can conclude that if covariance matrices of channels are fixed,

then covariance-aided channel methods can obtain good channel estimates. However,

for new scenarios: covariance matrices change due to the mobility of users or new ar-

rivals of users, covariance-aided channel estimation methods need to be studied further.



Chapter 3

Channel Estimation Methods in

Massive MIMO

As described in chapter 2, a Massive MIMO system is developed based on a con-

ventional MIMO system but where the BS is equipped with a very large number of

antennas [47, 48]. Massive numbers of antennas at each BS provide Massive MIMO

with several advantages. It should be noted that these benefits rely on the BS obtain-

ing good estimates of the CSI of each user. However, for Massive MIMO systems it is

very difficult to accurately estimate CSI due to pilot contamination. In this chapter

we review techniques for estimating CSI under pilot contamination.

In Section 3.1, we introduce system model of Massive MIMO that we will use in

this thesis. Some channel estimation methods are described in Section 3.2. Section 3.3

presents the reason and effect of pilot contamination.

3.1 System Model of Massive MIMO

In this section, a TDD Massive MIMO system which consists of L time-synchronized

cells is considered. The synchronization between uplink pilots provides a worst case

scenario from a pilot contamination point of view, since any lack of synchronization

will tend to statistically de-correlate the pilots. The channel in this chapter is block-

fading and we focus on channel estimation in one block in this chapter [49]. Therefore,

the statistics of channels (covariance matrices of channels) are assumed fixed in this
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Base Station

User

Figure 3.1: The system model of Massive MIMO.

chapter. There is one BS in each cell serving U single-antenna users. Each BS is

equipped with M -element uniform linear array (ULA) of antennas. All users in all cells

share the same time-frequency resource. Furthermore, in this chapter, pilot sequences

used in the same cell are mutually orthogonal and the length for each pilot sequence is

τ . However, pilot sequences used in different cells are not orthogonal. In other words,

the intra-cell interference is negligible but the inter-cell interference can not be ignored

during the channel estimation phase.

During uplink transmission (including uplink training and uplink data transmis-

sion), every single-antenna user transmits a pilot sequence or data signal to the BS in

its own cell and every BS can receive pilot sequences from all users in all cells. The

BS can estimate downlink CSI by uplink training thanks to the great feature of TDD

system: channel reciprocity. The system model is shown in Figure 3.1.

During uplink training phase, each BS receives all pilot sequences from all users.

Each pilot sequence lasts for τ samples. Let the τ samples received at the mth antenna

of the jth BS be represented by the 1× τ row vector yjm. Then

yjm =
L∑
l=1

U∑
u=1

hjlumsTlu + njm, (3.1)

where hjlum is the channel complex value between the mth antenna of the jth cell BS

and the uth user in the lth cell. njm denotes the noise at the mth antenna of the jth



3.1 System Model of Massive MIMO 21

cell BS, which is the vector of independent and identically distribution (i.i.d.) zero-

mean, circularly-symmetric complex Gaussian random variables. The noise is a 1× τ

vector and unknown for both BS and users. slu is a τ × 1 real-valued column vector

of pilot symbols which is transmitted from the uth user in the lth cell. Here, we stress

that the length of slu is τ , and the energy of slu is

|slu1|2 + |slu2|2 + . . .+ |sluτ |2 = τ. (3.2)

The equation (3.1) can be denoted as

yj =
L∑
l=1

hjls
T
l + nj, (3.3)

where yj = [yTj1 yTj2 . . .y
T
jM ]T is the M × τ matrix, nj = [nTj1 nTj2 . . .n

T
jM ]T is also

a M × τ matrix. The pilot sequences sl = [sl1 sl2 . . . slU ] (τ × U matrix ), hjl is the

M ×N matrix given by

hjl =


hjl11 . . . hjl1U

...
. . .

...

hjlM1 . . . hjlMU

 . (3.4)

Let hjlu denote the uth column of hjl, then hjlu can be written as

hjlu =
√
βjlu ∗ϕjlu, (3.5)

where the ϕjlu, u = 1, 2 . . . U are i.i.d. complex random variable distributed as CN (0, 1)

with zero mean and unit variance. The βjlu is the large-scale attenuation (geometric

attenuation and shadowing) which can be presented as

βjlu =
α

dγjlu
, (3.6)

where the γ is gain factor exponent. The α is a constant that determined by the cell-

edge signal to noise ratio (SNR). The djlu is distance between the user in the lth cell

to the jth BS. For the same BS, the values of the large-scale attenuation are the same

from different antennas. This assumption makes sense because the size of the antenna

array is very insignificant when compared with distance between the BS and users.
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3.2 Channel Estimation Methods

The hjl (j = 1, 2, ..L, l = 1, 2, ..L) is the CSI between the BS in the jth cell and users

in the lth cell. In this section, we will introduce some existing channel estimation

methods that can be used to estimate the CSI: the Least Square (LS) estimation

method, Minimum Mean Square Error (MMSE) estimation method and Maximum A

Posteriori (MAP) estimation method. In the same cell pilot sequences are mutually

orthogonal, but in other cells the same pilot sequences are reused. We focus on the

performance of users that share the same pilot sequence, as they are not affected by

other users. Therefore, in this section, there is one user (U = 1) in every cell(refer to

equation 3.12). For this reason, the hjl in equation (3.4) is M × 1 column vector.

3.2.1 Least Square Estimation Method

Least Squares (LS) estimation method does not use any prior knowledge about the

channel, basing the estimates entirely on the received matrices yj. This makes this

method robust to lack of knowledge about the CSI. We now describe the LS estimation

of the CSI.

According to equation (3.3), the received signal at the BS is the combination of all

users’ pilot sequences. Therefore, equation (3.3) can be written in another way:

yj = hjjs
T
j +

L∑
f=1
f 6=j

hjfs
T
f + nj (3.7)

where j = 1, 2, ..L, f = 1, 2, ..L, the first term in equation (3.7) corresponds to the

channels from the jth BS and users in the jth cell. The second term is from interfering

users in the fth cell to the jth BS (f 6= j), and the third term is white, Gaussian

receiver noise at the jth BS.

The conventional LS methods estimate hjl by minimizing a LS error criterion which

is the squared difference between received signal yj and assumed signal hjls
T
l . The error

criterion of LS methods is

J(hjl) = (yj − hjls
T
l )(yj − hjls

T
l )H . (3.8)
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The gradient of J(hjl) is

∂J(hjl)

∂hHjl
= −yjsl + hjls

T
l (sHl )T . (3.9)

Setting the gradient equal to zero yields the LS estimate

ĥLSjl = yjsl((s
H
l sl)

T )−1. (3.10)

The sl in this thesis are Walsh codes, and they are real-valued column vectors, so

sHl sl = τ . Therefore, equation (3.10) can be written

ĥLSjl =
1

τ
yjsl. (3.11)

We assume all users in the system use the same pilot sequence, which can be shown

as

s1 = s2 . . . = sL = s. (3.12)

Under this situation, the LS estimate of hjl is

ĥLSjl = hjl +
L∑
f 6=l

hjf + njs/τ. (3.13)

It can be seen from equation (3.13) that, the channel estimate of desired channel hjl

is directly influenced by
∑L

f 6=l hjf from interfering cells, which is called pilot contami-

nation. Besides, the more serious the pilot contamination is (the more non-orthogonal

pilot sequences used in the estimation process), the worse LS estimate gets. In sum-

mary, under the pilot contamination, the LS estimation method can not obtain good

estimates of desired channels.

3.2.2 Minimum Mean Square Error Estimation Method

The minimum mean square error estimation (MMSE estimation) method takes the

statistics of channels into consideration when estimating the CSI. The estimation pro-

cess of MMSE is described as follows.

The MMSE estimate of desired channel is

ĥMMSE
jl = yjΩ̂jl. (3.14)
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The Ω̂jl is the MMSE filter, which is a τ × 1 vector of complex-valued coefficients.

The principle of MMSE estimation is to get the minimum mean square error between

the estimated value and the true value, which can be written as

Ω̂jl = arg min
Ω̂

E‖ hjl − ĥMMSE
jl ‖2

F
, (3.15)

where the ‖ · ‖F denotes the Frobenius norm.The mean square error (MSE) of the

estimate is given by

MMMSE
jl = E{‖ hjl − ĥjl ‖

2

F}

= E

{
tr

{(
hjl −

(
(hjl +

L∑
f 6=l

hjf )s
H
l + nj

)
Ω̂jl

)

×

(
hHjl − Ω̂H

jl

(
sl(h

H
jl +

L∑
f 6=l

hHjf ) + nHj

))}}
. (3.16)

Based on equation(3.16), taking partial derivative of MMMSE
jl with respect to the

conjugate transpose of Ω

∂MMMSE
jl

∂ΩH
jl

= slE{hHjlhjl} −
( L∑
l=1

slE{hHjlhjl}sHl +Mω2I
)
Ω̂jl. (3.17)

Since hjl is a M × 1 vector, E{hHjlhjl} is a scalar which is denoted below by Ejl.

Let
∂MMMSE

jl

∂ΩH
jl

= 0 and get result, which is

Ω̂MMSE
jl = (

L∑
l=1

slEjls
H
l +Mω2I)−1slEjl

= (slEjls
H
l +

L∑
f 6=l

sfEjfs
H
f +Mω2I)−1slEjl. (3.18)

Therefore, according to equation (3.14) and equation (3.18), the MMSE estimator

is

ĥMMSE
jl = yj(slEjls

H
l +

L∑
f 6=l

sfEjfs
H
f +Mω2I)−1slEjl. (3.19)

3.2.3 Maximum A Posteriori Estimation Method

The focus of this section is Maximum A Posteriori (MAP) estimation method which

is popular in many applications [50]. The estimation process of MAP estimation is

explained in the following context of channel estimation.
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The pilot matrix in equation (3.3) can be written as

S ,
[
s1 ⊗ IM · · · sL ⊗ IM

]
, (3.20)

where ⊗ is Kronecker product, and IM is the M ×M identity matrix. Thus

S =


s11IM s21IM . . . sL1IM

s12IM s22IM . . . sL2IM

...
...

. . .
...

s1τIM s2τIM . . . sLτIM

 , (3.21)

where S is a τM × LM matrix.

Then the received signal in equation (3.3) can be written as

Yj = SHj + Nj, (3.22)

where Hj = vec(hj) is a LM × 1 vector by stacking all L channels into a vector,

and hj = [hj1 hj2 . . .hjL] is a M × L matrix. Yj = vec(yj) is a τM × 1 vector.

Nj = vec(nj) is also a vector with the same size as Yj.

The principal rule of MAP estimation is to obtain the estimation value by maxi-

mizing the posteriori probability, which is

Ĥj = arg max
Ĥj

p
(
Hj|Yj

)

= arg max
Ĥj

p
(
Hj

)
p
(
Yj|Hj

)
p
(
Yj

) , (3.23)

where Hj = [hTj1h
T
j2 · · ·hTjL]T . The hjl are multivariate complex Gaussian vectors with

zero-mean and covariance matrix Rjl = E[hjlh
H
jl ]. Therefore, the probability density

function (PDF) of hjl is

p
(
hjl

)
=

exp
(
− hHjlR

−1
jl hjl

)
πMdetRjl

. (3.24)



26 Channel Estimation Methods in Massive MIMO

Moreover, the hjl vector are independent, so Hj is itself multivariate complex Gaus-

sian vector. Therefore, the joint PDF of Hj is given as follows

p
(
Hj

)
=

exp
(
−

L∑
l=1

hHjlR
−1
jl hjl

)
πLM

(
detRj1 · · · detRjL

)

=
exp
(
hHj R−1

j hj

)
πLM

(
detRjl · · · detRjL

) , (3.25)

where Rj is given by

Rj , diag
(
R1, · · · ,RL

)

=


Rj1 0 . . . 0

0 Rj2 . . . 0

0 0
. . . 0

0 0 . . . RjL

 , (3.26)

in which Rjl = E[hjlh
H
jl ] is the covariance matrix of hjl.

Combine equation (3.26) with equation (3.22), then p(Yj|Hj) in equation (3.23) is

written as

p
(
Yj|Hj

)
=

exp
(
−
(
Yj − SHj

)H(
Yj − SHj

)/
ω2
)

(πω2)τM
, (3.27)

where the ω is the variance of noise.

Since p(Yj) is a constant, it does not affect the argmax in equation (3.23). There-

fore, equation (3.23) can written in another way, which is based on equation (3.25)

and equation (3.27), and for the reason of simplicity, we present the denominator in a

simplified expression

p
(
Hj|Yj

)
=

exp
(
hHj R−1

j hj

)
exp
(
−
(
Yj − SHj

)H(
Yj − SHj

)/
ω2
)

πLM(πω2)τM
(
detRjl · · · detRjL

)
=

exp
(
hHj R−1

j hj

)
exp
(
−
(
Yj − SHj

)H(
Yj − SHj

)/
ω2
)

Ψ

=
exp
(
hHj R−1

j hj −
(
Yj − SHj

)H(
Yj − SHj

)/
ω2
)

Ψ

=
Υ(H)

Ψ
, (3.28)
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Υ(H) = exp
(
hHj R−1

j hj −
(
Yj − SHj

)H(
Yj − SHj

)/
ω2
)
, (3.29)

Ψ = πLM(πω2)τM
(
detRjl · · · detRjL

)
. (3.30)

From equation (3.28), the MAP estimator of Hj is obtained by setting the partial

derivative of the numerator

∂Υ(H)

∂HH
j

=

∂

(
exp
(
hHj R−1

j hj −
(
Yj − SHj

)H(
Yj − SHj

)/
ω2
))

∂HH
j

= R−1
j Hj −

SHYj + SHSHj

ω2
, (3.31)

to zero:

R−1
j Hj −

SHYj + SHSHj

ω2
= 0. (3.32)

Then it is very easy to verify that

HMAP
j =

(
RjS

HS + ω2ILM

)−1

RjS
HYj. (3.33)

It should be noted that, the MMSE estimate can also be expressed in this way,

which is

HMMSE
j = RjS

H

(
SRjS

H + ω2IτM

)−1

Yj. (3.34)

Since Hj is jointly Gaussian distributed, the MAP estimation method is equal

to the MMSE estimation method. Moreover, due to the matrix inversion identity

F(I + PF)−1 = (FP + I)−1F (the Woodbury Identity), equation (3.33) is same as

equation (3.34).

For a multipath system model, the channel hjl be given by

hjl =
1

P

P∑
p=1

ζjlpa(ϕjlp), (3.35)

where P is the number of i.i.d paths. The ζjlp ∼ CN (0, σ2
jlp) is the complex gain factor

related to distance and SNR between users to the jth BS. a(ϕjlp) is the M×1 signature
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vector of ULA based on ϕjlp which is the angle of arrival (AOA) [51]. The covariance

matrix is

Rjl = E[hjlh
H
jl ]

=
σ2
jlp

P

P∑
p=1

E[a(ϕjlp)a(ϕjlp)
H ], (3.36)

where Rjl in the MAP estimation method is a function of AOAs of different users (one

user in each cell).

Channel covariance matrices include substantial information such as the AOA of

channels. It has been proven that if there is no overlap between AOAs for desired

and interference channels, then the covariance matrices differ significantly across users.

Therefore, the MAP estimation method can obtain good estimates of the CSI based

on the unique information in covariance matrices under pilot contamination [11]. It

can be seen from Fig.3.2 that there is no overlap between user A and users B, then

the BS can separate the signals of two users based on the different information lying in

their covariance matrices. However, for user A and user C, their AOAs have overlap,

so the information lying in their covariance matrices are very similar. The BS receives

the combination of these two users’ signals but can not separate them due to the very

similar information lying in their covariance matrices. This observation is the basis for

the pilot assignment technique proposed in [11].

MAP estimation methods also require the high quality estimated covariance matrix

of each channel to estimate the CSI in the jth cell. In many papers that use the MAP

estimation method, the covariance matrices are assumed a priori knowledge at the BSs.

In Chapter 4 of this thesis we remove this assumption.

3.3 The Effect of Pilot Contamination

In this section, we discuss the effect of pilot contamination on the capacity of uplink

data transmission. We note that it will also affect downlink precoding as well, but in

this thesis we focus on uplink data transmission.

For uplink data transmission of Massive MIMO systems, the number of users in
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Figure 3.2: The AOA distribution of users in Massive MIMO system.

each cell is also assumed to be 1, which is the same with uplink training. Users in the

fth cell send uplink data signals to the BS in their own cells, which can can be denoted

as qf . qf is a scalar and E[qfq
H
f ] = δ2

q . Therefore, the BS in jth cell receives M × 1

data vector

xj =
L∑
f=1

hjfq
T
f + wj

= hjjq
T
j +

L∑
f 6=j

hjfq
T
f + wj, (3.37)

where the wj is noise, which is a M×1 vector of i.i.d. zero-mean, circularly-symmetric

complex Gaussian random variables. The BS processes this received signal by multi-

plying the conjugate transpose of channel estimate. The process is

Υj = ĥHjjxj

= ĥHjj(hjjq
T
j +

L∑
f 6=j

hjfq
T
f + wj), (3.38)

where ĥHjj is the conjugate transpose of ĥjj, and ĥjj can be obtained from equation

(3.13). For the sake of simplicity, we choose LS estimation method, and similar con-

clusion can be obtained using the MMSE or MAP method. This is called conjugate
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beamforming in [3]. Thus equation (3.38) can be written as

Υj =
(
hjj +

L∑
f 6=j

hjf + njs/τs
)H(

hjjq
T
j +

L∑
f 6=j

hjfq
T
f + wj

)
. (3.39)

From equation (3.39), the power of desired signal is

Psig
j = ‖(hjj +

L∑
f 6=j

hjf + njs/τs)
H(hjjq

T
j )‖2

F , (3.40)

where the ‖ · ‖F denotes the Frobenius norm. The next step following equation (3.40)

is

Psig
j = E

{hHjjhjjqj +
L∑
f 6=j

hHjfhjjqj + (τs)
−1sTnHj hjjqj

2
}

= E

{Ejfqj +
L∑
f 6=j

hHjfhjjqj + (τs)
−1sTnHj hjjqj

2
}
, (3.41)

where Ejj = E[hHjjhjj]. Since the number of antennas at each user is just one, the Ejf

is a scalar. According to equation (3.5), Ejj is written as

Ejj = E[hHjjhjj]

= Mβjj. (3.42)

Following the similar way, the second part in equation (3.41) is calculated as

E

{ L∑
f 6=j

hHjfhjjqj
2
}

= Mβjjβjf . (3.43)

The last part in equation (3.41) is

E

{ (τ)−1sTnHj hjjqj
2
}

= E

{
(τ)−1δ2

qs
TnHj Rjjnj

}
=

δ2
nδ

2
q

τ
Mβjj, (3.44)

where Rjj in equation (3.44) is the channel covariance matrix. δ2
q is the power of

uplink data signal, δ2
n is noise power. According to equation (3.42), equation (3.43)
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and equation (3.44), the power of desired user is

Psig
j = E

{Ejfqj
2
}

+ E

{ L∑
f 6=j

hHjfhjjqju
2
}

+ E

{(τ)−1sTl nHj hjjqj
2
}

= M2β2
jjδ

2
q +Mδ2

qβjj

L∑
f 6=j

βjf +
δ2
nδ

2
q

τ
Mβjj. (3.45)

Since the βjf is geometric attenuation and shadowing of interference cells, it is much

smaller than βjj. Besides, the number of antennas at each BS in Massive MIMO systems

is large, thus M2 �M . Follow this way, desired signal power can be approximated by

Psig
j ≈M2β2

jjδ
2
q . (3.46)

The power of interference signals and noise can be obtained by following the familiar

way, respectively. The power of interference is given by

Pinter
j = E

{www(hjj +
L∑
f 6=j

hjf + njs/τs
)H( L∑

f 6=j

hjfqf
)www2

F

}

≈ M2δ2
q

L∑
f 6=j

β2
jf . (3.47)

The noise power is

Pn
j = E

{www(hjj +
L∑
f 6=j

hjf + njs/τs
)H

nj

www2

F

}

= δ2
nE

{(
hjj +

L∑
f 6=j

hjf + njs/τs
)H(

hjj +
L∑
f 6=j

hjf + njs/τs
)}

= δ2
n

(
Mβjj +M

L∑
f 6=j

βjf + δ2
n

)
. (3.48)

Therefore, the signal to interference plus noise ratio(SINR) at the jth BS is able to

achieved based on equation (3.46), equation (3.47) and equation (3.48)

SINRj ≈
M2β2

jjδ
2
q

M2δ2
q

L∑
f 6=j

β2
jf + δ2

n

(
Mβjj +M

L∑
f 6=j

βjf + δ2
n

) . (3.49)

If there is no pilot contamination in the system, then equation (3.49) can be written

as

SINRj ≈
M2β2

jjδ
2
q

δ2
n

(
Mβjj +M

L∑
f 6=j

βjf + δ2
n

) . (3.50)
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When M goes to infinity, the ratio in equation (3.50) is also tends to infinity.

Therefore, the SINRj goes to infinity with the increase of M .

When pilot contamination exists, if the number of antennas at BS goes to infinity,

then the effect of noise can be ignored. Under this situation, the SINR in equation

(3.49) reaches a limit

lim
M→∞

SINRj =
β2
jj

L∑
f 6=j

β2
jf

. (3.51)

The denominator in equation (3.51) is the interference from adjacent cells which is

caused by pilot contamination.

It can be seen that this interference due to pilot contamination will not decrease,

even though the number of antennas at each BS increases without bound. In other

words, the SINR is bounded due to pilot contamination. Moreover, the capacity of

uplink system which denoted as C is the function of SINR, which is given as

lim
M→∞

Cj = log2

(
1 + SINRj

)

= log2

(
1 +

β2
jj

L∑
f 6=j

β2
jf

)
. (3.52)

Based on equation (3.51) and equation (3.52), we can get the conclusion that pilot

contamination is the main restriction on the increase of SINR and achievable capacity

of a Massive MIMO system. Therefore, pilot contamination is a serious challenge for

Massive MIMO systems.

3.4 Simulation Results

In this section, we mainly discuss the performance of three estimation methods men-

tioned in this chapter. Since Hj is joint Gaussian distribution, the MMSE estimation

method is equal to MAP method. Thus MAP estimation method and LS estimation

method are considered in this section. The model of the system includes hexagonally

shaped cells, and all users are distributed at the circle with 600 meters to their own

BSs. In this section, we assume each cell there is a user. Each BS has a linear array
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Table 3.1: Basic Simulation Parameters of Chaper 3

Number of paths (P ) 60

Number of cells (L) 2

Carrier frequency 2GHz

Gain factor exponent (γ) 2.8

Pilot length (τ) 16

Antenna space (D) µ/2

with 60 antennas. The cell radius is 800 meters and the signal-to-noise ratio (SNR)

at the user is 18 dB. Moreover, there is no overlap between AOAs for interfering and

desired channels. Other basic parameters are shown in table 3.1.

The normalized mean square error (NMSE) of CSI and capacity per cell are consid-

ered as standards to test the performance of channel estimation methods. The capacity

is given by

C ,

log2

(
1 +

L∑
j=1

SINRj

)
L

. (3.53)

The NMSE is calculated as follows

errh , 10log10

[ L∑
j=1

∥∥ĥjj − hjj
∥∥2

F

L∑
j=1

∥∥hjj∥∥2

F

]
, (3.54)

The desired cell in Fig. 3.3 is j = 1. It can be seen that, under pilot contamination,

MAP method can get lower NMSE than LS method. Moreover, with increase of the

number of antennas at the BS, the NMSE of MAP method becomes lower and lower,

but there is no decrease for NMSE of LS method. Therefore, MAP estimation method

enables to obtain much better estimate than LS method suffering pilot contamination.

Fig.3.4 describes the capacity per cell. The parameters in this figure are the same

as Fig.3.3. The capacity of MAP method grows much more quickly than the capacity

of LS method as the number of antennas increases. Therefore MAP estimation method

can obtain much more capacity than LS method under pilot contamination.
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Figure 3.3: The NMSE of the CSI, 2-cell network.
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Figure 3.4: The capacity of per cell, 2-cell network.

3.5 Conclusion

In this chapter, the system model of Massive MIMO is firstly introduced, then several

channel estimation methods, such as LS mehod, MMSE method and MAP estimation

method are discussed. The MMSE estimation method and MAP estimation method

are examples of covariance-added estimation methods, which are able to achieve much

better estimation results than the LS estimation method. However, these covariance-

added estimation methods need to estimate every channel covariance matrix separately,

which is a difficult and complex work in Massive MIMO due to pilot contamination.



Chapter 4

Novel Estimation Methods for New

Scenarios

4.1 Introduction

Based on Chapter 3 we can draw a conclusion that, under pilot contamination, covariance-

aided estimation methods ( such as the MMSE estimation method) is able to achieve

much better estimation results than the LS estimation method. However, the MMSE

estimation method requires the estimate of the covariance matrix for each channel.

Current research which uses the covariance matrix to estimate CSI assumes that the

covariance matrices can be estimated accurately prior to being used in channel estima-

tion.

Some papers assume that covariance matrix of each cell can be estimated by getting

the users in different cells to transmit pilot sequences one at a time [11]. The pilot

sequences in the same cell are mutually orthogonal. In this way, every time only users

in one cell transmit pilot sequences, so that there is no pilot contamination and covari-

ance matrices of each cell can be estimated separately. After estimating all covariance

matrices, then all users in the system begin to transmit signals simultaneously. How-

ever, estimating covariance matrices in this way has some limitations. For example,

this estimation method can only fit the situation in which no new users come into cell

and locations of users are fixed. If a new user enters the cell with unknown covariance
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matrix or covariance matrices are initially known but change over time due to mobility

of users, then the method which makes cells switch on and off separately to estimate

the new covariance matrices is no longer desirable, because it requires too much time.

During this estimation period, each time only users in one cell are transmitting pi-

lots, which increase the overhead and reduces the performance of system. It would be

better if all users can continue to transmit pilots and data whilst the BS tracks the

changing covariance matrices. This chapter investigates how the tracking process may

be implemented and performance results are obtained.

4.2 System Model for New Scenarios

As mentioned in Section 3.1, the system model in this chapter is also a network of L

time-synchronized cells, and the channel is block-fading. Each block consists of uplink

transmissions (including uplink training and uplink data transmission) and downlink

transmission. We focus on uplink transmission in this chapter. Moreover, the covari-

ance matrices of channels in this chapter are constant until the arrival of the new user

or the mobility of users. In this chapter, in the same cell pilot sequences are mutually

orthogonal, but in different cells they are the same group. Since we will be focusing on

the performance of users that share the same pilot sequence, the number of users per

cell in this chapter is U = 1. The number of cells in this chapter is L = 4 or L = 7.

The other parameters are the same as Section 3.1. The system model of this chapter

(4 cells) is shown in Fig. 4.1. From this figure, we can see that in each cell there is one

user with single antenna, and each BS have a antenna array with M antennas. The

user in the cell can move, or a new user comes into one cell (no user in the cell moves).

The BS in the jth cell receives signals from all users

yj(n) =
L∑
l=1

hjl(n)sTl (n) + nj(n), (4.1)

where n = 1, 2, · · · , N is the number of blocks. The hjl(n) is a M × 1 vector which

is a constant in the nth block but changes during different blocks (the so called block

fading model [49]). yj(n) and nj(n) areM × τ matrices. yj(n) and nj(n) are variables
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Base Station

User

Figure 4.1: The system model for new scenarios.

in the nth block. The s(n) denotes the pilot sequences in the nth block, since in every

block the pilot sequences are the same, we describe the pilot sequences in the nth block

as s instead of s(n). We choose a multipath model, the channel be written as

hjl(n) =
1

P

P∑
p=1

ζjlp(n)a(ϕjlp(n)), (4.2)

where P is the number of i.i.d paths. The ζ(n)jlp is the complex gain factor in the

nth block, which is related to distance and SNR between the user and the jth BS.

a(ϕjlp(n)) is the signature vector of ULA based on ϕjlp(n) which is the angle of arrival

(AOA) of pth path of the channel between the lth user and the jth BS [51]. The

a(ϕjlp(n)) is

a(ϕjlp(n)) ,


1

e−i2π
D
µ
cos(ϕjlp(n))

...

e−i2π
(M−1)D

µ
cos(ϕjlp(n))

 , (4.3)

in which D is the antenna space and µ is the wavelength of the signal. In this

chapter, we consider D = µ/2. Moreover, ϕjlp(n) is the random AOA, such that

ϕjlp(n) ∈ [−π, π], Since ϕjlp(n) ∈ [−π, 0] and ϕjlp(n) ∈ [0, π] can get the same result

for cos(ϕjlp(n)), we just consider the case that the ϕjlp(n) is between 0 and π.

Moreover, ζjlp(n) in equation (4.2) is modeled by

ζjlp(n) =
√
βjl(n)eiφjlp , (4.4)

where the φjlp is the i.i.d. random phase, and it is independent across different j, l

and p. The
√
βjl is large-scale signal attenuation due to distance and shadowing and

we denote βjl = α/dγjl as in Chapter 3.
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4.3 Novel Estimation Methods for New Scenarios

In this section, we will firstly research a situation in which there is a new user who

comes into a cell with unknown covariance matrix, and we then study another scenario:

all covariance matrices change due to mobility of users. Covariance matrices in every

block keep the same until users change their locations or a new user comes into the

cell.

4.3.1 Novel Estimation Method for the First Scenario

We now describe the first scenario: a new user enters one cell has a fixed but unknown

covariance matrix. Moreover, in this scenario, the scheduled number of served users

for each BS at the same time is fixed. Therefore, the initial user in that cell drops out

its service when the new user is scheduled. We suppose the new entrant uses the same

pilot sequence as the initial one, but its location in the cell is dramatically different

from the initial one. Besides, after the new user comes into the cell, its covariance

matrix will keep the same over time. The users in other cells also have fixed covariance

matrices and we assume that they are known from initial training [11]. Therefore, we

only need to estimate the new covariance matrix related to the channels of the new

user.

The key idea that we explain is that the sum of all the covariance matrices for cell

j can be estimated using the received signal yj directly.

The covariance matrices of received signal is shown as

Ry
j = E

[
yj(n)yHj (n)

]
= E

[( L∑
l=1

hjl(n)sTl + nj(n)
)( L∑

l=1

hjl(n)sTl + nj(n)
)H]

= E

[ L∑
l=1

hjl(n)sTl slhjl
H(n) +

L∑
l=1

hjl(n)sTl nHj (n)

+
L∑
l=1

L∑
b 6=l

hjl(n)sTl sbhjb
H(n) + nj(n)nHj (n)

]
. (4.5)
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The first part and the last part in equation (4.5) are

E

[ L∑
l=1

hjl(n)sTl slhjl
H(n)

]
= τE

[ L∑
l=1

hjl(n)hjl
H(n)

]

= τ
L∑
l=1

Rjl, (4.6)

E

[
nj(n)nHj (n)

]
=

L∑
l=1

Rnoise
jl , (4.7)

where Rjl and Rnoise
jl are the channel covariance matrix and the noise covariance matrix,

respectively.

The hjl(n) and nj(n) are independent and nj(n) is zero-mean random vector, so

the second part in equation (4.5) is equal to zero. Following a similar methodology, the

third part in equation (4.5) is also zero. Thus, the final expression of equation (4.5) is

Ry
j = τ

L∑
l=1

Rjl + Rnoise
j , (4.8)

in which the
∑L

l=1 Rjl is a sum of channel covariance matrices. The covariance

matrix of the noise Rnoise
j is ω2IM . Therefore, we can obtain the desired channel

covariance matrix (assume the new entrant comes into vth cell) by equation (4.8),

which is

Rjv =
1

τ

[
Ry
j −Rnoise

j

]
−

L∑
l 6=v

Rjl

=
1

τ

[
Ry
j − ω2IM

]
−

L∑
l 6=v

Rjl. (4.9)

The Rjl in equation (4.9) are assumed to be estimated correctly before the new

user’s entry. Based on the discussion above, only Rjv changes and
∑L

l 6=v Rjl remains

the same. The only unknown part of equation (4.9) is Ry
j which can be estimated

directly from the received signal by:

R̂y
j (n) =

1

n

[ n∑
b=1

yj(b)yj(b)
H
]
. (4.10)

Therefore, the estimation of Rjv can be written as

R̂jv(n) =
1

τ

[
R̂y
j (n)− ω2IM

]
−

L∑
l 6=v

Rjl. (4.11)
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The MAP estimation equation based on estimated covariance matrices is (refer to

3.33)

ĥjv(n) = R̂jv(n)

[ L∑
l=1

R̂jl(n) + ω2IM

]−1

S̃HYj(n). (4.12)

Our assumption in this section is that the covariance matrix of the new user does

not change over time. It is feasible to estimate the new covariance matrix by taking n

in equation (4.10) large enough.

The details of the proposed algorithm are summarized as follows:

Step 1) Before new entrant comes into the vth cell, the jth BS achieves the correct

estimation value of original ĥjl and R̂jl through training;

Step 2) The new user enters the vth cell, then the jth BS collects yj(n) and calculates

R̂y
j (n) based on the equation (4.10);

Step 3) Compute the nth block estimated R̂jv(n) based on the equation (4.11);

Step 4) Estimate the hjl(n) by equation (4.12) based on R̂j(n) in Step 3).

4.3.2 Novel Estimation Method for the Second Scenario

In this section, we study a second new scenario: all users in the system move slowly

so that their covariance matrices change slowly with time. Even though covariance

matrices under this condition change a little each time, if we do not update them,

the new covariance matrices will be considerably different from the original ones after

several periods of time. At that time, new covariance matrices need to be estimated

separately again. Instead, we try to track the estimated covariance matrices as they

change over time.

We briefly analyze a special case: one user in one cell moves slowly, so the channel

covariance matrix of that cell changes (assume the user in the jth cell moves). Users

in other cells have fixed covariance matrices. The unknown covariance matrix Rjj

in this case can also be estimated by equation (4.11). But it is better to track the

changing covariance matrix Rjj using the exponential moving average with forgetting



4.3 Novel Estimation Methods for New Scenarios 41

factor λj ∈ [0, 1]

R̂jj(n+ 1) = λj∆R̂jj(n) +
(
1− λj

)
R̂jj(n), (4.13)

where

∆R̂jj(n) =

{
1

τ

[
R̂y
j (n)− ω2IM

]
−

L∑
l 6=j

R̂jl(n)

}
, (4.14)

and

R̂y
j (n) = (1− λyj )R̂

y
j (n− 1) + λyjy(b)y(b)H . (4.15)

Note that we are also tracking the covariance matrix of yj, which is also changing

due to the mobility of the user in jth cell. Therefore, we use a different forgetting

factor λyj ∈ [0, 1] in equation (4.15). The R̂jj(n) is the estimated value of Rjj(n) from

previous block n and the ∆R̂jj(n) is the updated part which is described in equation

(4.14). Because only covariance matrix of jth cell changes, and
∑L

l 6=v R̂jl(n) remain the

same as n increases. Therefore, we can get an estimate of Rjj(n) by equation (4.13).

Now we consider the general situation of second scenario: covariance matrices of all

channels are changing due to all users moving slowly. Under this condition, the esti-

mation equation is the same as equation (4.13), but
∑L

l 6=j R̂jl(n) also must be tracked.

It appears that there are too many unknowns to track all the changing covariance ma-

trices. However, we exploit the fact that the distance between each interfering user to

the jth BS is typically much larger than the distance between user in the jth cell to

the jth BS. If all users in the system move with the same speed, Rjl(n) changes more

slowly than Rjj(n) changes. The further the distance between the interfering user and

the jth BS is, the more slowly change in Rjl(n) compared with Rjj(n). If interfering

users are originally distributed at the cell edges which are not very close to the jth BS,

we can concentrate on estimating Rjj(n) and suppose interfering covariance matrices

change much more slowly compare with the covariance matrices of the jth cell with

movements of all users. Under this situation, the estimation equations are described

as

R̂jl(n+ 1) = λl∆R̂jl(n) +
(
1− λl

)
R̂jl(n), (4.16)
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where

∆R̂jj(n) =

{
1

τ

[
R̂y
j (n)− ω2IM

]
−

L∑
l 6=j

R̂jl(n)

}
, (4.17)

and

∆R̂jl(n) =


1
n

n∑
b=1

ĥjl(b)ĥjl(b)
H , if n ≤ W

1
W

n∑
b=n−W+1

ĥjl(b)ĥjl(b)
H , if n > W,

(4.18)

in which l 6= j in equations (4.16-4.18). The W is the length of window. Here we

assume that R̂jl(n) can be updated in a decision-directed manner, in which channel

estimates ĥjl(b) are assumed reliable enough to estimate the covariance matrices. We

tried to estimate the covariance matrix of the desired user (with l = j) by equation

(4.18) but it did not work: the estimates of hjj(n) were apparently unreliable very

quickly. When n > W , the value of ∆R̂jl(n) in equation (4.18) is the sample average

which just depends on the recent W blocks. Therefore, equation (4.18) tracks the new

covariance matrices of received signal when users change their locations. The R̂y
j (n)

in equation (4.17) can be achieved by equation (4.15). Therefore, we can estimate the

channel covariance matrices by equation (4.16-4.18).

The proposed algorithm for the case which all users move is summarized below

Step 1) Before users moving, the jth BS achieves the original estimate value of ĥj and

R̂jl through training;

Step 2) All users in system move slowly. The jth BS collects yj(n) and calculates

R̂y
j (n) based on equation (4.15) ;

Step 3) The jth BS achieves the value of R̂jl(n) based on equations (4.16-4.18);

Step 4) Estimate the hjl(n) by the equation (4.12) based on R̂jl(n) in Step 3).

4.4 Simulation Results

In this section, we use hexagonally shaped cells in which all users are originally dis-

tributed at the circle with 800 meters to their own BSs. The cell radius is 1000 meters
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Table 4.1: Basic Simulation Parameters of Chapter 4

Number of paths (P ) 40

Number of cells (L) 4, 7

Carrier frequency 2GHz

Gain factor exponent (γ) 3

Pilot length (τ) 8

Antenna space (D) µ/2

and the cell-edge signal-to-noise ratio (SNR) of jth cell is 20 dB. Moreover, we assume

that there is no overlap between AOAs for interfering and desired channels all the time.

Other basic parameters are shown in table 4.1. We choose the bit error rate (BER) of

16-level quadrature amplitude modulation (16-QAM) for uplink data transmission and

the normalized mean square error (NMSE) of CSI as metrics to test the performance

of the proposed algorithms. The NMSE of CSI is denoted as

errh , 10log10

[ L∑
j=1

∥∥ĥjj(n)− hjj(n)
∥∥2

F

L∑
j=1

∥∥hjj(n)
∥∥2

F

]
. (4.19)

Fig. 4.2 depicts the NMSEs of CSI when a new entrant comes into jth cell with

otherwise fixed covariance matrices. The initial user in the jth cell drops out its service

and interfering users in system have fixed covariance matrices. We suppose j = 1 in this

figure. The distance between user and 1st BS is d1l, such as d11 = 800m, d12 = 2532m,

d13 = 2241m, d14 = 2501m, M = 50. After the user enters the 1st cell, the distance

between the new user and its BS is d11 = 750 meters. We assume the new user comes

into the cell at the first block. After the new users comes into the cell, all covariance

matrices are fixed. It can be seen that the performance of our proposed algorithm is

not very good when n is small. But with the increase of n, its performance becomes

much better than that obtained by the LS estimation method or the MAP estimation

method with un-updated (incorrect) covariance matrices which is shown in Fig. 4.2.

That is because, the sample covariance matrices R̂y(n) are very different from true

values of the Ry when n is small. But the difference quickly decreases as n increases.
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Figure 4.2: The NMSE of CSI for the case: new user enters a cell, M = 50, 4-cell

network.

Therefore, the performance of our algorithm improves as n grows large.

We then study the second scenario: all users move slowly. In this situation, M = 40,

λ = 0.01, λy = 0.05 and W = 400 (we did multiple experiments to tune these value).

The details of the mobility of users are as follows: every user move slowly towards to

their own BSs, we sample every 10 meters as a interval which is called one movement

of users. Each movement lasts for 10 seconds. In summary, the user’s movement is

continuous but sampled. The channel covariance matrices are fixed during the same

users’ movements but change in different users’ movements. In each movement of

users, there are 62500 blocks transmitted (including training and data blocks) and 700

blocks are training blocks and used to track the new covariance matrices. Each training

time, we use 700 blocks to track the changing covariance matrices, and then use these

matrices to estimate CSI. These covariance matrices are averaged by 1000 drops of

users.

Fig.4.3 depicts the NMSEs of h11. In this figure, the blocks refer to the training

only. Users continue move slowly and we train 8 times. The distance between users

and 1st BS is d1l, such as d11 = 800m, d12 = 2532m, d13 = 2457m, d14 = 2501m. It can

been seen from Fig.4.3 that when users change their locations, the NMSEs of proposed

algorithm and MAP estimation with un-updated covariance matrices all rise. But the

NMSEs of our proposed algorithm will come down quickly during the period in which
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Figure 4.3: The NMSE of channel covariance matrix for the case: all users move slowly,

d11 = 800m, d12 = 2532m, d13 = 2457m, d14 = 2501m, M = 40, 4-cell network,W=400.

there is no change, and then they keep relatively stable until the next movements of

users. However, the NMSEs of MAP estimation with un-updated (incorrect) covariance

matrices do not come down and continue rising with the movements of users. After

users move 8 times, the NMSEs of proposed algorithm are clearly lower than those

obtained by the LS method or the MAP method with un-updated (incorrect) covariance

matrices.

Although the proposed method improves on the methods that do not attempt to

track the changing covariance matrices, it is not clear if it tracks the changes sufficiently

well to provide reliable communication. We examine this issue next.

Fig.4.4 describes the BER performance of 16-QAM. Parameters of this figure are

the same as Fig. 4.3. There are two curves in this figure: BER performance with

NMSE of h equal to −38 dB (when covariance matrices are estimated correctly); BER

performance with NMSE of h equal to −30 dB. We argue that a BER of less than

10−6 is acceptable for data communication [52]. It can be seen that the curve which

the NMSE of h equal to −30 dB is lower than 10−6 at SNR= 9 dB, which is an

acceptable value in a practical digital system. According to Fig.4.4, for our proposed

method, the NMSE= −30 dB after users move 7 times; however for the MAP estimation

method with un-updated R, the NMSE= −30 dB when users only move 3 times.
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Figure 4.4: The BER performance of 16 QAM for the case: all users move slowly.

Therefore, it is reasonable to assume that before the covariance matrices would need

to be re-estimated, the proposed method in the scenario illustrated in Fig. 4.3 provides

satisfactory performance for about 437500 blocks (including training and data blocks),

however, the MAP method with un-updated covariance matrices can provide good

performance for only about 187500 blocks. After that the system has to estimate new

covariance matrices separately again by the method in [11].

Fig. 4.5 shows performance of three estimation methods in a 7-cell network. In

this figure, d11 = 800m, d12 = 2532m, d13 = 2457m, d14 = 2457m, d15 = 2532m,

d16 = 2241m, d17 = 2501m. Other parameters are same as Fig. 4.3. From Fig. 4.5

we can see that, the NMSE of the proposed method is higher than that in Fig. 4.3.

The reason is that the number of interfering cells in Fig. 4.5 is bigger than Fig. 4.3,

which can reduce estimation accuracy of covariance matrices (refer equation (4.16-

4.18)). Even though the NMSE of proposed method in 4.5 is higher than 4.3, it is still

much better than the LS method and the MAP method with un-updated (incorrect)

covariance matrices.

The Fig.4.6 shows the relationship between forgetting factor λyj and the performance

of proposed method. The forgetting factor of received signal λyj in this figure is 0.05 or

0.01. Other parameters are the same as Fig.4.3. From Fig.4.6 we can get that the value

of forgetting factor λyj is able to affect the performance of our proposed method. The
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Figure 4.5: The NMSE of channel covariance matrix for the case: all users move slowly,

4 or 7-cell network W=400.
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Figure 4.6: The NMSE of channel covariance matrix for the case: all users move slowly,

4-cell network, W=400, λyj=0.05 or 0.01.

MSE of channel estimate with λyj = 0.05 is lower than that with λyj = 0.01. The reason

is that, the forgetting factor balances between the updated part and the previous part.

If λyj is too small, it will not track the new covariance matrices very well during each

user’s movement and will increase the NMSE of channel estimate. Therefore, if users

change quickly during every movement, λyj should be relatively large to obtain new

covariance matrices estimate.
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Figure 4.7: The NMSE of channel covariance matrix for the case: all users move

slowly, d11 = 800m, d12 = 1066m, d13 = 2241m, d14 = 1275m, M = 40, 4-cell network,

W=400.

In Fig.4.7, we want to test the influence of distances between interfering users and

the jth BS on proposed method performance. In this figure, two interfering users’

locations are close to the jth BS, such as d11 = 800m, d12 = 1066m, d13 = 2241m,

d14 = 1275m, and other parameters are same as Fig.4.3. The NMSE in Fig.4.7 is

bigger than that in Fig. 4.3. This is because the interfering users in Fig.4.7 are closer

to jth BS compared with Fig.4.3, so the effect of interfering users’ mobility on R1l(n) is

correspondingly more serious. Therefore, we can draw the conclusion that the further

the interfering users are from the jth BS, the better the performance of the proposed

algorithm.

4.5 Conclusion

This chapter studies covariance-aided estimation methods in new scenarios in which

covariance matrices change due to the arrival of the new user or mobility of users. We

analyze two different situations and propose algorithms to estimate the new covariance

matrices and then obtain channel estimation results based on these estimated covari-

ance matrices. Simulation results show that when the new covariance matrices are not

directly available, our proposed algorithms can provide satisfactory performance than
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those two algorithms (the LS method and MAP estimation method with un-updated

(incorrect) covariance matrices) before the system re-estimates the new covariance ma-

trices using the method in [11]. In other words, our proposed method reduces the

frequency of pausing the system transmission to train the system one cell at a time.



50 Novel Estimation Methods for New Scenarios



Chapter 5

Conclusion and Future Work

5.1 Conclusion

Pilot contamination has become the bottleneck for the performance of Massive MIMO

systems. Covariance-aided channel estimation methods have been considered as a

promising candidate to deal with this problem. Therefore, in this thesis, we focus

on covariance-aided channel estimation methods under pilot contamination in Massive

MIMO systems. Moreover, different from most covariance-aided methods which usu-

ally assume covariance matrices are fixed and known, we study new scenarios in which

all or some of channel covariance matrices are not directly available. We focus on two

specific scenarios: 1) a new user arrives in the cell with unknown covariance matrix; 2)

covariance matrices are initially known but change over time due to mobility of users.

For these cases, we develop novel algorithms to estimate new covariance matrices and

use these estimated covariance matrices to obtain high quality channel estimates. Sim-

ulation results we obtain show that under pilot contamination, our proposed algorithms

are superior to the Least Squares estimation method and the MAP estimation method

with un-updated covariance matrices.
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5.2 Future work

Although our proposed methods have the ability to obtain much better performance

than Least Squares estimation and MAP estimation method with un-updated (incor-

rect) covariance matrices, it still can be improved. For example, the scenario which all

users move regularly and slowly, when the interfering users are distributed at the edges

close to the jth BS, there is a little benefit from our proposed algorithms. Therefore,

some additional (or alternative) measures are needed to improve the performance for

the situation which interfering users are distributed close to the jth BS, which is an

interesting future topic for research.
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