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Abstract 

 

Fluorescent natural products are becoming of interest in the fields of medicine, biotechnology and 

environmental science. However, while nature is a source of a vast number of bioactive compounds 

very few fluorescent probes have been discovered from natural products. This research is addressing 

the discovery of new fluorescent pigments and to expand its application into new domain. A fungus, 

Epicoccum nigrum, was chosen for this project. E. nigrum is the sole member of the genus Epicoccum 

(Family Pleosporaceae) and gets its name from its dark colour. The colour is produced by red, blue 

and purple pigments, one of them (epicocconone) has been commercialised as a total protein stain for 

proteomics (Deep Purple; GE Healthcare), a fluorescent stain for live cell imaging (LavaCell; 

Fluorotechnics) and a protein quantification solution (Fluoroprofile; Sigma-Aldrich). This project 

aims to isolate new pigments from this fungus through the optimisation of growth conditions on agar 

plates and moving to medium scale fermentation, extraction, purification and structure elucidation of 

other pigments. 
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1 Introduction 

Natural products are a central theme of research at the interface between chemistry and biology. Since 

the discovery of penicillin, microbes have been a source of novel small molecules useful to mankind, 

primarily in the area of medicinal chemistry. A large number of natural compounds such as alkaloids, 

steroids, flavonoids, quinones, xanthones have been isolated from fungal natural products.1 Fungal 

endophytes have potential role to promote plant growth through different mechanisms. But, many of 

fungal endophytes still totally unexplored for biological and ecological sectors.2 Many of these are 

also bioactive compounds,3 such as antibiotics,4 antiviral,5 anticancer,6 immunosuppressive,7 

insecticidal,8 antidiabetic9 and also some antioxidants. For example, the flavanols kaempferol and 

quercetin exhibit significant potency in anticancer and anti-AIDS screens and have low toxicity.10   

In contrast, relatively few fluorescent natural products have been isolated, primarily because this 

physical characteristic has not been of high priority. However, fluorescence is becoming increasingly 

important in biotechnology, medicine and environmental sciences where sensing, detection and 

quantification of analytes in complex mixtures is required. Fluorescence has almost completely taken 

over assays previously accomplished with radioactivity and is now expanding its applications into 

new domains.  Take for example the 2014 Nobel Prize in Chemistry for super resolution microscopy. 

However, the vast majority of current fluorescent probes are based on just four classes of molecules; 

xanthenes, cyanines, BODIPY and coumarins, the later are based on natural products. To expand the 

chemical scaffolds available for fluorescent research, one strategy is to turn back to nature.  

The recent discovery of the natural product epicocconone from Epicoccum nigrum,11 the first 

reversible-covalent latent fluorophore, has found wide biotechnological applications in proteomic gel 

and blot staining, protein quantification, live-cell imaging and monitoring of enzymatic activity.12-15 

This discovery has highlighted the need for new fluorescent scaffolds with unique properties that can 

extend the use of fluorescence beyond its current boundaries. Epicoccum. nigrum has also been found 

to contain many other natural products including several carotenoids such as β-carotene, γ-carotene, 

rhodoxanthin, antibiotics such as flavipin, epicorazine, epirodins A and B (Fig. 1.4).16-17 E. nigrum is 

also characterized by the production of red, yellow or orange pigments of which very little is known. 

So, the aim of this research work is to isolate new fluorescent pigments from E. nigrum. 

1.1 Fluorescence: An Overview 

Fluorescence is one of the categories of luminescence in which the electronic excited states are 

divided into different singlet states. With the influence of external sources, the electrons get excited 

and lifted from ground energy state (S0) to higher energy states (S1, S2…). Electrons in the excited 

singlet orbital are paired with the electron in the ground state orbital. When the electron returns to the 
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ground state, rapid emission of a photon takes place. This is called fluorescence. Typically, the rate 

of emission of fluorescence is 10-7-10-9 s. Indicating a lifetime of about (10-9 s). This is a fundamental 

physical property of some molecules with rigid conjugated system that allow the re-emission of light 

at a longer wavelength. For phosphorescence, transition of electrons from ground state to excited state 

take place. Alongside the singlet state S1 some electrons transferred to another energetically 

favourable state called tripled state (T1) by intersystem crossing. After releasing energy slowly from 

this state, electrons returned to the ground state (S0). This is known as phosphorescence. The whole 

process is illustrated by Jablonski diagram (Fig. 1.1). But  Common fluorescent compounds absorbed 

ultraviolet light  (200-400 nm) and emitted light in the blue region (400-500 nm), which gives the 

fluorescent substance a distinct colour that can only be seen when exposed to UV light (Fig. 1.1).18 

Quinine was the first natural fluorescent compound discovered. In 1845 Sir John Fredrick William 

Herschel first observed fluorescence from quinine solution in sunlight.18 After this many fluorescent 

compounds have been found such as xanthene derivatives for example, fluorescein, rhodamine, 

cyanine derivatives such as cyanine, indocarbocyanine and coumarin derivatives. All of them provide 

scaffolds for applications in biochemistry and biomedical sciences.19 

  

Figure 1.1. Jablonski energy diagram.20 

The fluorescence process involves the emission of light from a higher energy state. According to the 

Boltzmann distribution equation (Eq. 1.1) most of the molecules occupy the zeroth vibrational state 

of the electronic ground state at room temperature.  

𝑛

𝑛0
= ⅇ−

𝛥𝐸

𝑘𝑇       1.1 
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The electronic state and the overall molecular geometry and the distribution of negative charge of a 

molecule expresses by its electronic states. Every molecule consists of several energy levels which 

are also subdivided in rotational and vibrational energy levels. The vibrational electronic excitation 

can access several vibrational levels of the excited electronic states (S1, S2, S3……Sn) leading to 

vibrational structure in the electronic absorption spectrum which mainly depend on the energy of total 

electrons and spinning states of electrons. 

The singlet state, which is considered as ground electronic state, most of the electrons of organic 

molecules are found to be spin-paired in this state. The lowest vibrational energy is occupied by 

electrons at room temperature but whenever they are excited, they shift to a higher energy state. This 

absorption or relaxation features depend upon the nature and the environment of fluorophores. 

Whenever the emission of energy take place, several incidents have a possibility to occur such as 

fluorescence, intersystem crossing, vibrational relaxations etc. (Fig. 1.1).  The ratio of photons 

emitted by a fluorophore is measured as the fluorescence quantum yield (Φf). The quantum yield 

provides the probability of deactivating the excited state either by fluorescence or by a non-radiative 

mechanism (Eq. 1.2).21 

 

𝛷𝑓 =  𝑁𝑜. 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠 ⅇ𝑚𝑖𝑡𝑡ⅇ𝑑 / 𝑁𝑜. 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠 𝑎𝑏𝑠𝑜𝑟𝑏ⅇ𝑑    1.2 

 

Having high extinction coefficient and high quantum yield22 allows fluorophores to be used for the 

biomolecular labelling with great sensitivity. 

 

  

Figure 1.2. Absorption and Emission Spectra of Quinine.23 
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Quinine sulfate in 0.1M H2SO4 is used as the standard for determining the efficiency of fluorescence 

(Φf = 0.54) by various comparative methods.24 The absorption and emission spectra of quinine is 

presented in Fig. 1.2. As mentioned previously quinine is naturally occurring fluorochrome and is 

used as an antimalarial agent. According to this Fig. 1.2,  it is observed that the mirror image rule for 

the emission is not followed by quinine at 460 nm, as is evident by inspecting the single peak in the 

emission spectrum24 but two peaks in the excitation spectrum, which exhibits S0-S1 and S0-S2 bands. 

An internal conversion from S2-S1 leads to this asymmetry. The energy of absorption (350 nm = 3.54 

eV) is higher than the energy associated with the fluorescence emission (450 nm = 2.76 eV). Thus, 

the energy spectrum is shifted towards the longer wave length as a result of internal conversion. This 

phenomenon was explained by Sir George Stokes and known as the Stokes shift. 

1.2 Application of Fluorescence 

Fluorescent compounds have many applications particularly in biological applications. Cellular 

functions, cellular components or detection of the whole cells can be carried out using fluorescence 

compounds. Applications include DNA sequencing, immunofluorescence, cell tracking, confocal 

microscopy, super resolution microscopy etc.25-26 Fluorescence in situ hybridisation, which is a 

method to determine the type of gene present in the genome of any organism is a process where 

fluorescent molecules are used as tags for genes. Moreover, fluorescent molecules have expanded 

into both in vivo and in vitro applications. For example, the green fluorescent protein (GFP) can be 

genetically encoded to label any protein providing versatility in spectroscopic measurements and 

biological applications.27 Fluorescent compounds are also used in chemosensing and consider as very 

important task in molecular biology and biochemistry.28-29 Chemosensing is a process of detecting 

the change of analytes through optical or electrochemical properties. Different chemosensors interact 

with specific analyte and produce a detectable change. In this process, fluorescent indicator and a 

receptor is bounded through noncovalent interactions and then indicator was displaced by the addition 

of analyte which make the solution fluorescent. Thus, the analyte signal was recognised by the sharp 

fluorescence.30 Similarly the application of fluorescence resonance energy transfer (FRET)31 is 

widely distributed in biological research and drug discovery. FRET is mainly based on the distance 

of the energy transfer between a donor and acceptor fluorophore, by a long-range dipole-dipole 

interaction in a non-radiative fashion.  This technique is used for not only for qualitative 

measurements but also quantitative measurements on the distance, sensitivity and increased spiral 

resolution between two macromolecules. Furthermore, the fluorescent properties of molecular 

beacons are used for the detection of the hybridized target probes in the presence of unhybridized 

probes.32 
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In the biomedical sector fluorescent biosensor technology is widely used for monitoring health and 

diseases, for observing the progression of diseases, diagnostic approaches and also for therapeutics 

responses.33 New fluorescent stains need to be developed for versatility and new detection capabilities 

in research areas from pharmacology and immunology to proteomics and genomics.34-35 For DNA 

and protein detection in electrophoretic separation fluorescence has taken out from chromogenic 

detection. Also, large number of molecular antigens and drug from low molecular weight to high 

molecular weight can be easily detected immunochemically by the fluorescence assays.  

1.3 Advantages over Radioactivity  

The growing demand for fluorophores is correlated with a diminishing usage of radioactivity because 

of the hazards associated with working with radioactivity; expensive instruments, limited shelf-life 

and disposal costs. On the other hand, fluorophores are easy to handle, have a long shelf life, and are 

easily disposed of.36-37 Because of the use of fluorescence in clinical and analytical chemistry, interest 

is growing in the fields of physics and chemistry in an attempt to keep up with demand. 

  

1.4 Development of New Fluorescent Molecule 

 

An ideal fluorescent stain should have a specific reactivity as well as exhibiting bright fluorescence 

against a low background, be cell permeable and sufficiently small to avoid perturbing the cells, free 

from cytotoxicity and suitable by common laser sources.  

Also some properties like, a large Stokes’ shift, high quantum yield and long emission wavelength 

(to be separable from autofluorescence and to minimize Rayleigh scattering)38 are considered 

advantages. But large Stokes’ shift dyes generally have large molecular weight or low quantum 

number yields (or both), which limit their application in many cases, cause large Stokes’ fluorescent 

dyes show relatively low brightness due to the product of the molar extinction coefficient and 

fluorescence quantum yield and poor photostability.39 A good fluorophore has high quantum yields 

and small molecule fluorophore are most suitable as ion indicator, macromolecule labels, cellular 

stain than heavy molecules.40 Few fluorescent compounds meet these criteria, so the discovery of new 

fluorescent scaffolds has the potential of broadening the range and utility of application of small 

molecules in biology.34 

 

1.5 Sources of Fluorescent Molecules  

Fluorophores can be classified as extrinsic and intrinsic fluorescent components. Protein tyrosine, 

tryptophan, other aromatic amino acids, porphyrins and naturally occurring fluorophores such as 

green fluorescent protein are mainly considered as intrinsic fluorescent molecules. On the other hand, 
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synthetic or modified pigments such as fluorescein, coumarins xanthones, pyrin, cyanines, attached 

dansyl etc. are known as extrinsic fluorescent components.18, 41-42 Fluorescent molecules are 

commonly used as reporters or tracers in biology and material sciences.43 

Fluorochromes can be classified both chemically or naturally and used widely in biological detection 

systems. The available biological sources of fluorescent pigments are plants, animals, microbial and 

marine organism. The choice of fluorophores is governed by the questions that are to be addressed. 

For example, to measure the rotational diffusion, the lifetime of the fluorophore depolarization should 

be associated exclusively with rotational motion, without interference from an excited state process. 

Fluorophores that can participate on protonation deprotonation equilibria, in the ground and/or 

excited states, are suitable for the measurement of pH. Only probes with long excitation and emission 

wave lengths can be used in tissues.44  

 

1.6 Synthetic Fluorescent Compounds 

To accelerate the discovery of new fluorescent pigments combinatorial chemistry has been applied to 

generate both receptor and reporter fluorescent molecules and applications have increased in the past 

few years.45  

1.6.1 Fluorescein 

The most widely used fluorochrome named and showed in Fig. 1.3. In 1800s, it was isolated from 

coal tar.46 Oregon Green, Texas Red and Rhodamine are the synthetic analogues of fluorescein (Fig. 

1.3). It is used to test for the cell viability.47 and its pH dependent nature increases its potential in the 

field of biotechnology.48 

1.6.2 Xanthene 

Xanthene is a yellow organic heterocyclic compound (Fig. 1.3).49 Because of the special 

spectroscopic features of the dye, it has attracted considerable interest as fluorescent pigment. It is 

used as a tracing agent, biological stain, chemical sensitizer and thermochromic and photochromic 

agents and has broad application as a laser dye.50  

1.6.3 Coumarin 

Coumarin is a natural compound available in some plant extracts and fungi 51 and belongs to the 

chemical class of benzopyrones. It is a crystalline colourless substance (Fig. 1.3). Cumarine as 

fluorescent substances are widely spread in living nature and can be found in different genera of 

plants and fungi.  Due to their intensive fluorescent property, they can be easily observed.  This gives 

the opportunity to make exceptions, with low costs, low complexity and without using toxic 

materials.52 
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1.6.4 BODIPY 

Dipyrrometheneboron difluoride, abbreviated as BODIPY (Fig. 1.3), is a class of synthetic 

fluorescent dyes which are used widely in biotechnology.53 They are highly notable for absorbing 

light over a narrow band and show highly intense fluorescence peaks. However, their small Stokes’ 

shifts and solidification in solution limit their use. Though modifications to the BODIPY framework 

will lead to use it more effectively for labelling reagents, fluorescent dyes also imaging in living cells 

and whole organisms.53 

 

1.7 Natural Fluorescent Compounds 

1.7.1  Green Fluorescent Protein 

Green Fluorescent Protein (GFP) which is the first genetically encoded dye54 has found applications 

in live cell imaging.55-57 GFP was first extracted from the jellyfish Aequorea victoria.58 As a 

companion protein to aequorin, which is a chemiluminescent protein that emits blue light (470 nm). 

This discovery was subjected to the Noble Prize in Chemistry in 2008, to Shimomura for both the 

discovery and development of GFP. He elucidated the structure of the chromophore p-

hydroxybenzylideneimidazolidinone (p-HBDI). To generate the chromophore Ser-Tyr-Gly sequence 

undergoes a cyclization and oxidation to form an imidazolone.59-60 The outstanding feature of GFP 

that is that fluorescence generated in vivo through gene expression, increase the possibility of 

conducting cell developmental studies on tagged proteins.61 

 

1.7.2 Modified Green Fluorescent Proteins 

GFP can be altered to produce different FPs such as yellow fluorescent proteins (YFP), red 

fluorescent proteins (RFP), cyan fluorescent proteins (CFP) etc. YFP’s are one of the variants of green 

fluorescent protein, showed red shifted emission spectra. The YFPs are acid sensitive and quenched 

by Cl- ion.62 They are liable to produce both fluorescent and non-fluorescent purple blue pigments.63 

This environmental sensitivity makes them useful for biological applications,64 mainly the 

physiological activities of the living cells65 or cell biology. 

 

1.7.3 Epicocconone 

Epicocconone (Fig. 1.4) is a natural product and is neutral, non-toxic and appears to diffuse readily 

into live or fixed cells without the need for permeabilization.34 It is considered an ideal small molecule 

fluorophore for biotechnology because of a long Stokes’ shift and showing minimal fluorescence in 

the native state.66 It was extracted from a fungus, Epicoccum nigrum and is the first reversible-

covalent latent fluorophore.11 Latent fluorophore display a unique selectivity and reduce interferences 

with probe concentration, sensitivity of emission and excitation. The irreversible fluorophores either 
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react with their target covalently or work by removing a protecting group or quenching group which 

make it incompatible in protiomics.66 Thus epicocconone found to have wide applications in 

proteomic gel staining,13 blot staining, protein quantification,12 live-cell imaging,67 cell tracking68 and 

monitoring of enzymatic activity.15 The fluorescent property of epicocconone are turned on by 

enamine formation with proteins specifically by reacting (reversibly) with lysine residue of proteins.69  

 

 

 

 

 

Figure 1.3. Structures of some fluorochrome. 

1.8 Selectivity of Epicoccum nigrum for Fluorescence  

The fungus Epicoccum nigrum is known to be a source of fluorescent compounds.35 Varieties of 

pigments found including several carotenoids (Fig. 1.4) such as β-carotene, γ-carotene, 

rhodoxanthin,70 antibiotics such as flavipin71 and epicorazine A72 and B73, epirodins A and B74 and 

phenylalanine derived dimers such as 3,6-dibenzyl-2,5-dioxopiperazine75 and the polyketide 
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orevactaene76-77 (Fig 1.4). E. nigrum also secretes unidentified siderophores, a class of high affinity, 

microbial ferric ion transfer molecules for the purpose of sequestering iron from environment.78 The 

isolation of epicocconone from E. nigrum made this fungus famous, because of the wide applications 

of epicocconone in biotechnological sector (sec. 1.7.3). As this fungus is already known to produce 

fluorescent pigments it is thus the most likely source of other fluorescent pigments. 

 

 

Figure 1.4. Natural products isolated from E. nigrum. 
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1.9 Fungus Culture Condition 

Secondary metabolites produced from different sources play a very important role in medical, 

pharmaceuticals and other biochemical sectors. Thus, the discovery of new drug scaffolds keep 

researchers looking for new microbial sources of bioactive natural products.79 Fungi are widely 

known to produce secondary metabolites, but there are some more factors that play an important role 

in the production of metabolites. Different types of media as potato dextrose media, yeast extract 

media, malt dextrose media etc. are used for the growing of metabolites from fungi. Due to the 

difference in composition of different media, the production rate of metabolites varies in different 

media.  To produce some targeted metabolites specific media must be used. For example, Czapek's 

agar media was chosen for the production of a blue fluorescent component from Aspergillus flavus.80 

Another fungus Lyophyllum shimeji cultured on rye extract media to produce more fruiting bodies.81 

 

1.10 Other Fluorophores from Fungi 

In 1925 two scientists Matsumoto and Tomoyasu isolated a deep red pigment Cercosporin from a 

fungus of Cercosporina species named Cercosporina Kikuchii Matsumoto et Tomoyasu. This 

pigment turned in to green on treatment with alkali and showed bright yellow on reduction with green 

fluorescence.82 In 1977, Wong and Bau reported pigment formation property in Monascus 

purpureus.83 Chinese people used this fungus in food and textiles for millennia. Later Wang and 

Philip detected monoascidin A, a yellow pigment,84 which showed antibiotic activity against Bacillus, 

Streptococcus, and Pseudomonas. Several fungi are known to produce fluorescent pigments such as 

Aspergillus flavus produces aflatoxin.80 Hetherington and Raistrick, isolated ciritinin from 

Penicillium citrinum in 1931 which  showed fluorescence properties.85,86 Recently several fungi such 

as Scytalidium cuboideum, Scytalidium ganodermophthorum, Chlorociboria aeruginosa, and 

Chlorociboria aeruginascens are using  as good source of pigment production and also for analysing 

art pieces.87 

Fluorescent stains have diverse application over traditional colour and radioactive labels. A variety 

of instrumentations are available for the detection and quantification of fluorescence such as 

fluorescence microscopes, fluorometers, fluorescent labelling, biological detector, indicator as 

intracellular pH, and flow cytometers. Despite the widespread use of fluorescence techniques, very 

limited number of fluorochrome probes are in use. So there is a need for new fluorophores that can 

be used to enhance the field of application in multiplex assays 35.  Fungi like Epicoccum nigrum is a 

mitosporic mould, its use is versatile in the production of secondary metabolites like epicoccins, 

difenylalazines or epicorazines, compounds contain (thio)diketopiperazine skeleton . Its availability 

and versatility in both phylogeny and physiology make it more suitable for analysis. Also E. nigrum 
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used as a source of novel fluorescent stain as Epicocconone. Also, the study only on E. nigrum is 

seems like accumulating knowledge over the whole Epicoccum species. 

And of course, searching of new compounds from unusual or unexplored place is an innovative way 

that leads the researchers to realize the actual meaning of research. And the nature contains infinite 

stuffs that need to be explored. Finally, it can be predicted that exploring natural products from 

microorganisms, such as fungi E. nigrum, can be consider as relatively less explored resource for the 

discovery of new fluorophores. 

 

1.11 Aims 

Fluorescent stains are much more sensitive than traditional colourimetric methods and safer than 

radioactive methods. A variety of instrumentations are available for the detection and quantification 

of fluorescence such as fluorescence microscopes, fluorometers and flow cytometers. Despite the 

widespread use of fluorescence techniques, very limited number of fluorochrome scaffolds are in use 

(Fig. 1.3). So there is a need for new fluorophores that can be used to enhance the field of application 

in multiplex assays.35  The aim of this 9-month project was to assess the pigment production of E. 

nigrum on a variety of solid media and to translate the best agar method to liquid culture. If time 

permits, new pigments will be isolated and their structure(s) determined by spectroscopic studies.  
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2 Experimental 

In this project optimization of culture condition will be performed using different solid microbial 

culture media and migrating these to liquid media. Different types of solid media like, Raw sugar 

Yeast extract Peptone Agar (RYPA), Czapek-Dox Agar (CzDA), Potato Dextrose Agar (PDA), 

Sabourad dextrose agar (SDA), Malt Dextrose Agar (MDA) media and Yeast Dextrose Agar (YDA) 

will be initially screened and used to analyse the production of pigments.88 

We will start with the RYPA media for pigment analysis as this is known to produce good quantities 

of epicocconone but will also repeat the work on the above-mentioned media. The general plan is to 

grow the vegetative form of the fungus on an agar plate for 2-4 days at 25 C or until the plate is 80% 

covered.  The plates will then be move to 4 C for 7 days and extracts (methanol) taken on a daily 

basis.  LC-MS will be used to separate and analyse the pigments.  UV spectra will be used to identify 

the pigments and MS the likely structure. 

2.1 General experimental procedure 

2.1.1 Chemicals/Materials  

Bacteriological agar; Czapek-Dox Agar (CzDA), Potato Dextrose Agar (PDA), Sabouraud dextrose 

agar (SDA), Malt Dextrose Agar (MDA) media and Yeast Extract Peptone Dextrose Agar (YPD) 

were provided by Oxoid chemicals. Raw sugar yeast extract peptone agar (RYPA) media was 

prepared by using raw caster sugar, Bacto yeast extract (BD chemicals) and Bacto peptone (Difco) 

and finally bacteriological agar (Difco). Methanol (MeOH) and acetonitrile were purchased from 

Sigma-Aldrich, ethanol (EtOH) and MiliQ water was used to make up all media. 

2.1.2 Instruments  

Liquid Chromatography Mass Spectra (LCMS) was performed on an Agilent 1260 system, equipped 

with a Phenomenex Gemini C18 column (150 × 2 mm, 3 μm) in combination with an Agilent 6130 

single quadrapole mass detector. A standard LCMS gradient (10-100% acetonitrile with an elution 

rate 0.5 mL/min over 25 mins) was applied for all LCMS work. 

High performance liquid chromatography was conducted on Agilent 1260 infinity quaternary HPLC 

system equipped with a G1311B quaternary pump and G4212B diode array detector. For analytical 

HPLC performance a Phenomenex Synergy Hydro-RP 80 Å (250 × 4.6 mm, 4 μm) column was used 

with a solvent system of 10-100% acetonitrile, 1 mL/min rate for 25 min and semi preparative analysis 

was conducted on the column Phenomenex Gemini C18, 110 Å (250 × 10 mm, 10 μm) column eluted 

at 4 mL/min under the same gradient (10-100% acetonitrile over 25 min). Preparative HPLC was 

conducted on a Gilson 215 Liquid Handler using a Phenomenex Synergy Hydro-RP (250 × 21.20 
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mm, 10 μm) isocratically with the solvent system of 5% acetonitrile (0.01% TFA) and 95% water 

(0.01% TFA), rate 4.0 mL/min for 35 min with UV detection (254 nm).  

Microscopic analysis (Sec. 6.2) was conducted on a Motic BA300 microscope with colour corrected 

infinity system. 

For the sterilization of media and glassware autoclaving (Getinge PACS 2000) was used at 121 °C 

for 20 min. 

1H-NMR and 13C-NMR were obtained by Bruker Avance AV III-500 MHz spectrometer at 25 °C. 

The spectra were recorded in 5 mm pyrex tubes (Shigemi, Japan) in DMSO-d6 and processed on 

Bruker Topspin 3.5 pl7 (Bruker, Germany).  

2.2 Fungal material collection 

The fungus Epicoccum. nigrum was originally isolated from wild by Jian and Bell and this fungus 

was revived form frozen stock. 

2.3 Growth and preservation of E. nigrum 

2.3.1 Growth on solid media 

Growth of E. nigrum on agar media took place mainly on petri dishes (9 cm diameter). Aseptically ½ 

cm2 block of mycelial cell was cut from the edge of an E. nigrum agar culture plate with the help of 

disposable sterile blade and placed with the fungus side down onto the middle of the new agar media 

plate, enclosed with parafilm and incubated for 4 day at 25 °C and stored at 4 °C.  

2.3.2 Preparation of glycerol stock of E. nigrum 

For preparing glycerol stock of E. nigrum, 250 mL of glycerol (Biotechnology Grade, Biochemicals) 

mixed with 250 mL MiliQ water to obtain 50% of glycerol solution and sterilised in an autoclave at 

121 °C for 20 mins and stored at room temperature. E. nigrum was inoculated from 5 × RYPA plate 

(4 days old) by cutting into small pieces with a scalpel and placed aseptically in 500 mL Pyrex baffled 

shaker Erlenmeyer flask containing 100 mL of sterilized RYPB broth (42.5 g/L raw sugar, 12.5 g/L 

yeast extract and 25 g/L peptone). The fungus was allowed to grow in incubator shaker at 25 °C, 130 

rpm for 2 days. This grown culture was sub-cultured by transferring 20 mL of the culturel solution 

into 2 × 500 mL baffled flask containing 190 mL of RYPB broth and incubated under the same 

condition for 2 days. After that 120 mL of fungal culture was aseptically mixed with 80 mL of 50% 

glycerol solution and mixed well. Aliquots of 1.5 mL of the glycerol stock was transferred to 80 × 2 

mL sterile cryogenic vials aseptically by using 1 mL Scilogex autoclavable single channel variable 

pipette and the stocks stored at -80 °C. 
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2.4 Optimization of pigment producing conditions 

The fungus E. nigrum from the glycerol stock was grown on six different agar media (Sec. 2.1.1) in 

an incubator at 25 °C for 4 days and then the plates (7 × 6) were shifted to 4 °C. One plate from each 

type of medium was removed from the cold temperature every day for seven days. Each removed 

plate was extracted (6 × 5 mL methanol) over 12 h.  Each extract was allowed to soak for 2 h and 

then combined extracts (30 mL) stored at -80 °C. 

The methanol extracts were filtered (0.22 mg) and analysed by LCMS (Sec. 2.1.2) to compare the 

pigment production over 7 day on 6 different media (Sec. 3.2). 

2.4.1 Cultivation and Extraction of E. nigrum in RYPA media 

RYPA broth (RYPB) was prepared according to the supplementary material (Sec. 6) and sterilized in 

autoclave at 121 °C for 20 mins. After that 100 mL of RYPB poured in 40 × 500 mL baffled flask in 

a safety cabinet and again sterilized in autoclave as before. The cultured RYPA plates of E. nigrum 

that had been growing for 4 days at 25 °C and an additional 5 days at 4 °C were used to inoculate the 

liquid cultures.  

The inoculation was created by mixing RYPB (3 mL) with the fungus scraped from each plate (total 

40 plates) in a biosafety cabinet. The mixture was Dounce blended and 40 × 500 mL baffled flasks 

inoculated with 120 mL of inoculum. Then the flasks were incubated on Thermoline orbital shaker 

(135 rpm) at 25 °C for 2 days, then at 4 °C for another 5 days (200 rpm). 

After seven days, the flasks were collected and filtered with Bucher funnel using Advantec 185 mm 

filter paper in a fume hood. The solid biomass was washed with water (3 × 60 mL) and frozen (-80 

°C) and lyophilized (Cheris, Alpha 1-4 LD Plus) 

The mass of the dry biomass was recorded and ground finely in a mortar and pestle (fume hood) and 

then packed into a glass chromatography column (15 × 40 cm). MeOH was percolated as a solvent 

slowly through the column for 2 days with the extract kept at -80 °C (acetone/dry ice) and under 

nitrogen. The combined extracts were partitioned against hexane, to remove any fatty materials and 

the methanol fraction reduced to dryness (rotary) and weighed.  

The waxy precipitate formed on concentration was separated with a C-18 Sep-Pak (Grace) with 50% 

methanol and eluted with 80% methanol.  

The residue was dissolved in MeOH (5 mL) and applied to a Sephadex LH-20 column (88 × 2 cm) 

and eluted with MeOH (14 hours) to yield 100 fractions. Each fraction was analysed by LCMS and 

similar fractions combined to yield three main fractions. Crude fractions were stored at -80 °C.  
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2.5 Isolation of metabolites 

In total 5 batches of extractions were conducted. Thus, the cultivation and extraction process 

(mentioned above) was done for 5 times. The first 3 batches and next 2 batches were mixed separately 

and run in the Sephadex column separately. The collected fractions were divided in 3 fractions, as 

red, purple, and light red and analysed their LCMS data. The red fractions were found to contain 

largest amount of material (Table 4). The red and purple fractions were sub-fractionated on a Gilson 

HPLC by semi-preparative column Gemini C18 (Sec. 2.1.2) and analysed by 1H and 13C NMR. 

2.6 Waste disposal 

All the waste media plates, biological pipette, cryogenic vials, filter paper and other biological wastes 

were collected in a bin and autoclaved at 121 °C for 20 min. After completing the autoclaving, the 

waste was collected and transferred in another autoclave bin for disposal. All the sharps (surgical 

blades, needles) were collected in a small yellow bin and transferred to medical waste disposal bin 

for disposal. 
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3 Results and Discussion 

Microorganisms can generate a large verities of secondary metabolites but the number and 

concentration of these metabolites depends on the growth conditions, including medium,89-90 

temperature,91 atmosphere,92 light93 and many other factors.94 Accordingly, the emphasis of this 

research work was to focus on the best medium for pigment production in the fungus Epicoccum 

nigrum.11 The effects of various media, temperature and time were assessed relative to the production 

of pigments with the aim of isolating new pigments from this fungus. 

3.1 Culture of E. nigrum on 6 different media 

Media in agar plates were prepared according to supplementary material (Sec. 6.1). Seven plates for 

each medium were prepared in a safety cabinet and then stored at 4 °C. The plates were inoculated 

with E. nigrum from glycerol stocks (−80 °C). After incubation at 25 °C for the 4 days the plates were 

moved to 4 °C and one plate was extracted with methanol each day for 7 days (Sec. 3.2). LCMS 

analysis showed the production of secondary metabolites during the 7-day incubation period (Sec. 

3.2).  

Analysis on the LCMS results indicated the presence of five major metabolites (A, B’, B, C and D; 

Sec. 3.2). 

3.2 Results for various media 

3.2.1 MDA media 

3.2.1.1 Culture in agar media 

E. nigrum cultured Malt Dextrose Agar (MDA) (pH 5.4 ± 0.2) medium was evaluated over 7 days 

(Fig. 3.1). The change in colour indicated the production of pigments after day 4.  

 

Figure 3.1. 7-day culture of E. nigrum in MDA after 4 days at 25 °C. 
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3.2.1.2 UV analysis of seven-day culture 

Plates were extracted with methanol (MeOH) at day 1-7 by adding 5 mL of solvent to the plate and 

incubating at room temperature for every 2 h. Total 30 mL solvent applied for incubating 12 h for 

each plate. Observing the MeOH extract under long wave (365 nm) ultraviolet light (Fig. 3.2) 

indicated the production of green fluorescent pigment on day 1 and an orange fluorescent pigment on 

day 7. 

 

Figure 3.2. Analysis of extractions under UV-light. 

 

3.2.1.3 LCMS analysis of seven-day culture 

By LCMS on extracts, on MDA medium. Epicoccum. nigrum produced 4 major compounds (Fig. 

3.3). Compound A was constant whereas B and D were produced on day 1 but decreased over time. 

B’ was only observed at low level from day 4 onwards.  Compound C was the most concentrated on 

the last day and production began only after day 3.  

 

 

Figure 3.3. LCMS (Phenomenex Gemini, 0.2 mL/min) of seven-day E. nigrum on MDA medium 

(λmax = 254 nm). 
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3.2.2 PDA media 

3.2.2.1 Culture in agar media 

Potato Dextrose Agar (PDA) media (pH 5.6 ± 0.2) of E. nigrum showed very bright and deep colour 

from the day 1. The change in intensity of colour during this period was easily visible from the agar 

plate (Fig. 3.4).  

 

Figure 3.4. 7-day culture of E. nigrum in PDA after 4 days at 25 °C. 

3.2.2.2 UV analysis of seven-day culture 

On the 1st day the colour was light orange and in the 2nd day was colourless but under UV there was 

no noticeable change (Fig. 3.5). On the 3rd day green fluorescence was obtained under UV light from 

a yellow coloured extract. Day 4, 5 and 6 showed greenish orange, orange, and bright pink fluorescent 

respectively.  

 

Figure 3.5. Analysis of extractions under UV-light. 

 

3.2.2.3 LCMS analysis of seven-day culture 

The LCMS results of E. nigrum in PDA media showed quite similar result to MDA media. The 

presence of 4 major compounds A, B, C, and D were obtained but their abundance varied from day 

to day (Fig. 3.6). A was constant from day 1 to 7 but B was observed from day 3 and gradually 
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decreased to day 7. Compound C was also constant but seemed to vary from day-to-day, whereas D 

was only noticeable on day 1 and 6.  

 

Figure 3.6. LCMS (Phenomenex Gemini, 0.2 mL/min) of seven-day E. nigrum on PDA medium 

(λmax = 254 nm). 

 

3.2.3 SDA media 

3.2.3.1 Culture in agar media 

Sabouraud Dextrose Agar (SDA) media (pH 5.6 ± 0.2) media showed the change of colour intensity 

from day 1 to day 7. It clearly indicated the production of pigment producing spores increased with 

time (Fig. 3.7).  

 

Figure 3.7. 7-day culture of E. nigrum in SDA after 4 days at 25 °C. 

 

3.2.3.2 UV analysis of seven-day culture: 

Analysis of the extraction from SDA showed the increasing intensity of pink/red colour. That was 

obtained in the UV-light also. Day 1, 2 and 3 showed almost colourless solution but in UV light day 



 

20 
 

2 and 3 were found to produce light green fluorescent. Day 4 and 5 showed very light orange and 

orange coloured solution but in UV, light orange and pink fluorescent was obtained respectively. Day 

6 displayed light red colour that was orange fluorescent in UV and Day 7 produced the deep pink/red 

fluorescent (Fig. 3.8). 

 

Figure 3.8. Analysis of extractions under UV-light. 

 

3.2.3.3 LCMS result of seven-day culture: 

LCMS results from SDA medium of E. nigrum produced A in each 7-day culture but with the slight 

decrease in abundance. The existence of B’ was noticeable from day 5 onwards. Compound C and D 

were produced in day 1 and 6 but C was observed in large extent on last 3 days (Fig. 3.9). 

 

Figure 3.9. LCMS (Gemini, 0.2 mL/min) of seven-day E. nigrum on SDA medium (λ=254 nm). 

 

3.2.4 YPD media 

3.2.4.1 Culture in agar media 

Yeast extract Peptone Dextrose (YPD) agar media (pH 6.5 ± 0.2) of E. nigrum showed intensive 

colour form the day 1(Fig. 3.10). The increased colour intensity was obtained in next 7 days.  
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Figure 3.10. 7-day culture of E. nigrum in YPD after 4 days at 25 °C. 

 

3.2.4.2 UV analysis of seven-day culture: 

The extraction from YPD media showed a beautiful trend of changeable coloured pigment from day 

1 to 7 (Fig. 3.11). Day 1 and 2 showed green fluorescent in UV, whereas light orange and intense 

orange solution of day 3 and showed yellowish green and orange fluorescent. The increasing intensity 

of red pigment production was obtained from day 5 to day 7 that produced red fluorescence with 

increasing intensity.  

 

Figure 3.11. Analysis of extractions under UV-light. 

 

3.2.4.3 LCMS result of seven-day culture 

LCMS result of E. nigrum in YPD media showed the constant existence of metabolites A and B 

constantly for 7 days (Fig. 3.12). Compound D was obtained in day 1 and 4 but B’ was found from 

day 5 to 7. Metabolite C showed very low intensity during these 7 days. 
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Figure 3.12. LCMS (Gemini, 0.2 ml/min) of seven-day E. nigrum on YPD medium (λ=254 nm). 

 

3.2.5 CzDA media 

3.2.5.1 Culture in agar media 

Epicoccum nigrum culture in Czpak Dextrose Agar (CzDA) media (pH 6.8 ± 0.2) showed to produce 

yellow colour from day 1 to day 3 (Fig. 3.13). Then From day 4 red pigment started producing and 

the growth increased till day 7.  

 

Figure 3.13. 7-day culture of E. nigrum in CzDA after 4 days at 25 °C. 

 

3.2.5.2 UV analysis of seven-day culture 

Extractions from CzDA media plate showed almost same colour (Fig. 3.14). From day 1 to day 4 the 

green colour intensity increased and reduced in day 5 and 6. But day 7 exhibited orangish green. 



 

23 
 

Under UV light, day 1 was almost colourless and the green fluorescent intensity increased to day 5. 

Day 4 to 7 showed almost similar type of fluorescent in UV.  

 

 

Figure 3.14. Analysis of extractions under UV-light 

 

3.2.5.3 LCMS result of seven-day culture 

CzDA media of E. nigrum showed very low existence of mentioned metabolites (Fig. 3.15). The 

presence of A and B was found to consistent from day 1 to 7 and metabolite D obtained with low 

intensity in day 1 and C was absent. 

 

Figure 3.15. LCMS (Gemini, 0.2 ml/min) of seven-day E. nigrum on CzDA medium (λ=254 nm). 

 

3.2.6 RYPA media 

3.2.6.1 Culture in agar media 

Raw sugar Yeast extract Peptone Agar (RYPA) media showed excellent pigment production from 

day 1 to day 7 (Fig. 3.16). The colour intensity found to increase untill day 5. 
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Figure 3.16. 7-day culture of E. nigrum in RYPA after 4 days at 25 °C. 

 

3.2.6.2 UV analysis of seven-day culture 

All 7-day RYPA media exhibited different types of pigment production (Fig. 3.17). From day 1 

extraction yellowish green colour fluorescent. Day 2, 6 and 7 showed very light pink colour solution 

and similar fluorescent in UV. The most noticeable red colour fluorescent was obtained from day 3 

to day 5 with the high intensity in day 5. 

 

Figure 3.17. Analysis of extractions under UV-light 

 

3.2.6.3 LCMS result of seven-day culture 

LCMS analysis of 7-days E. nigrum extraction in RYPA media showed the presence of A and B’ and 

C in all seven-day extraction (Fig. 3.18). Component D showed its existence only in Day 1. The 

intensity of C was observed higher than any other media.  
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Figure 3.18. LCMS (Gemini, 0.2 ml/min) of seven-day E. nigrum on RYPA medium (λ=254 nm). 

The most noticeable part is that different media showed the production of same types of metabolites 

with different intensities and different types of absorbance from day one to day seven. So, it reveals 

the effect of different type of media on the growth of E. nigrum.  

 

3.3 Measuring of solid content from each media 

Extraction of all media plates was continued for 12 h with 30 mL of methanol each day. So, depending 

on the pigment production ability, the extracted solid content of individual media plates varied from 

0.03 to 1.15 mg. The combined MeOH extracts were evaporated and weighed (Fig. 3.19). No specific 

trend was observed in the dried weight of extract. 

 

Figure 3.19. Solid content of each media. 
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3.4 UV-Vis spectra of the metabolites 

From LCMS data, the wave length (λmax) of metabolites A, B, B’, C and D were found to quite 

different, ranging from 240-440 nm with the molecular weights (m/z) of 124, 411, 558 and 248 amu 

respectively (Table 1). Among all the wave length only component B showing absorbance in the 

visible region and m/z value indicated the presence of epicocconone as component B.  

Table 1: Analysis of spectral behaviour of 4 major metabolites.  

Components λmax Predictable m/z  

A 255 124 

B 440 411 

B’ 440 520 

C 285 558 

D 240 248 
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Figure 3.20. UV spectra of metabolites A, B, B’, C and D. 
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3.5 Extraction from RYPA media  

RYPA media was selected for the liquid culture of E. nigrum because of the attractive red 

fluorescence and intensity of the compound C (Fig. 18). Also, an interesting peak obtained at λmax = 

530 nm. In day 3,4 very low intensity red fluorescence was obtained in UV but day 5 showed deep 

red fluorescence. So, from all the cultures, day 5 considered to be the optimal growth time on agar 

plates and LCMS was conducted at 400 nm for the purpose of finding the red fluorescent component. 

The plate conditions were transferred to liquid culture and 5 batches were grown and assessed for 

pigment production (Table 2). 

Table 2: Inoculation and Extraction details 

Batch 

No 

First 2 days Second 5 days Biomass 

(g) 

Extracted 

amount 

(g) 

Temperature 

(°C) 

RPM Temperature 

(°C) 

RPM Time 

(h) 

1 27 150 4 200 117 3.0 0.8 

2 25.5 130 4 200 119 5.0 3.51 

3 29 135 4 200 117.5 0.83 0.48 

4 23.5 135 4 190 122 6.2 1.67 

5 24 135 4 190 120.2 8.2 2.30 

 

According to table 1, the 2nd batch was found to produce the largest amount of extract. Batch 4 and 

5 also produced relatively good yields and batch 3 was particularly poor. This was due to poor 

temperature control on this occasion. These results suggest that initial growth temperature should be 

between 23-25 °C. Extracts were purified by size exclusion chromatography (Table 3) using 

Sephadex LH-20 with methanol.  The pigments eluted last (Fig. 3.22) as a dark purple band. 

Table 3: Solid content obtained from Sephadex fraction. 

Batch 

no 

Retention 

time per 

tube 

(mL/min) 

Red fraction Purple fraction  

 

Diluted red 

fraction 

Solid 

content 

(g) 

Tube 

no. 

Solid 

content 

(g) 

Tube 

no 

Solid 

content 

(g) 

Tube 

no. 

1+2+3 4 0.5184  25 0.0456 5 0.0296 3 

4+5 2 2.2433 46 0.1254 18 0.0135 12 

*Tube vol. 28 mL 



 

29 
 

 

3.6 LCMS analysis of each batch 

LCMS analysis of each batch showed the presence of epicocconone, B (Fig. 3.21) as a peak with m/z 

= 411. The intensity of epicocconone was the highest in batch 5. The reason could be, that, for batch 

5, a 21-day old E. nigrum agar plate was used to initiate growth on fresh agar plate rather than directly 

from glycerol stock. As conidiation of E. nigrum production improved at reduced water availability,95 

the old plates may have increased conidiation that was maintained in the liquid cultures.  

 

Figure 3.21.  LCMS analysis of all extractions showing new metabolites a’, a, b, c, and d. 

The LCMS result of these extractions showed some interesting features. The presence of A, B and C 

metabolites were found but the intensity was variable. Also, the presence of some more components 

were visible in here (Fig. 3.21). These components were indicated as a’, a, b, c, and d whereas ‘a’ 

obtained at λmax 350 nm but the rest showed highest absorption at 530 nm. In every extraction, some 

additional peaks were also obtained but their absorption range and mass intensity was very low. So 

those were not taken in account for analysing the existence of fluorescent metabolites.  

Additionally, metabolite A was present in batches 3 and 5 only. The highest peak was the peak of 

metabolite B, which showed λmax at 440 nm and m/z = 411 and considered to be epicocconone (Table 

4).  
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Table 4: Analysis the peaks with λmax from extractions: 

Components λmax (nm) Predicted MW from MS  

A 255 123 

B 440 410 

B’ 440 519 

C 285 557 

D 240 246 

a’ 350 465 

a 530 448 

b 530 294 

c 530 449 

d 440 329 

 

3.7 Separation of new component 

Initial separation was carried out with size-exclusion column chromatography (Sephadex LH-20) 

using MeOH as eluent. Concentrated crude extract was eluted with methanol. A slight red colour 

eluted first. Containing highly fluorescent but high molecular weight polymers. Next, red and purple 

fractions eluted, which contained low molecular weight compounds. LCMS of each fraction was 

conducted and mixed on the basis of profile similarity. All fractions were divided into three groups; 

red, purple and light red. Semi-prep HPLC was used for purification of extracts based on absorbance 

at 254 nm. 

 

Figure 3.22. Sephadex LH-20 column separation of E. nigrum extractions.  
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From HPLC, 13 fractions were collected with fraction 8 containing the most material (Table 5). This 

fraction was also lightly fluorescent (Fig. 3.24).  

 

Figure 3.23. HPLC of the red fraction. 

 

Table 5.  Amount of solid content in each fraction form HPLC of the red fractions. 

Fraction No. Solid Content (mg) 

4 1.3 

5 1.5 

6 1.5 

7 1.4 

8 7.8 

9 0.9 

10 0.2 

11 0.4 
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Figure 3.24. UV image of red fraction from Sephadex (left) and fraction 5 from HPLC (right). 

From LCMS analysis, fraction 8 indicating the presence of a metabolite with m/z 298, indicative of a 

new compound containing an odd number of nitrogens. NMR analysis of 1H and 13C were carried out 

on this fraction (Sec. 6.4), which unfortunately proved to be a mixture of two compounds (Fig. 3.25). 

According to Figure 3.25, the presence of two compounds were clearly obtained at λmax = 254 and 

400 nm at retention time (tR) 2.602 and 2.711 min.  

 

Figure 3.25. LCMS analysis of the compound (fraction 8) at 254 and 400 nm. 

 

Figure 3.26. UV and MS of the isolated compound (tR = 2.602 min). 
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3.8 Summary 

The target of this research was to develop the best medium for growing E. nigrum to produce new 

metabolites and also to try to isolate and analyse new fluorescent compounds. Growing fungal 

cultures is a generally time consuming task and maintenance of aseptic condition for 1-2 weeks is a 

requirement96. During extraction and separation temperature needs to be kept low and oxygen 

excluded. Our results show that a small change in cultivation temperature can cause large changes in 

metabolite yields. It took quite a while to perfect the aseptic techniques, without adding any 

antibacterial agents. The RYPA medium was selected because it had the best pigment production. It 

is noteworthy that in the view of producing the known compound, epicocconone, RYPA was also the 

best medium. 

Comparing the solid content of each batch, in the first three batches the agar plates were inoculated 

from the glycerol stock of E. nigrum whereas in the last two batches agar plates were inoculated from 

another agar plate that was 21 days old. This could have affected the production of metabolites. But 

all the growth conditions tested showed the presence of various pigments having λmax at 350 nm, 440 

nm and 530 nm which may extend the possibility of finding some of new pigments.  

One of the limitation of this research was the poor results due to instability of the fluorescent 

compounds. Consequently, analysing the compounds after storage led to decomposition (data not 

shown). The isolation of a new metabolite was achieved albeit with an impurity. This proved to be 

inseparable by the HPLC method used. Other solvents or a different column should be able to separate 

the two components but this was not possible in the short time available for this project. 

This project was mainly focusing on the searching of new fluorescent material and leading lots of 

scope for discovering a new way of extraction process. But it took a long time to understand and 

maintain the process on E. nigrum Its behaviour changes of fluorescent compounds depending on 

various factor as light, time and also in different medias was not also analysed properly because of 

short duration of time.  

But in future, if I get a chance to work in this project of PhD, I will be more aware about my 

experiments. As now I am quite used with the working process and handling process of fungus 

extraction and analysing methods, it would be more enthusiastic for me to look forward for 

discovering new fluorescent components. 
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4 Conclusion 

Natural products display the greatest diversity of structure and biological activity of any group of 

compounds and have deservedly attracted the attention of chemists and biologist. However, the 

discovery of fluorescence is usually associated with synthetic chemistry, not natural products, even 

though the first fluorescent compounds discovered (e.g. quinine) were natural products. The link 

between synthetic chemistry and fluorophores that was forged during the late 19th century through 

the German dye industry and propagated to the end of the 20th century through companies like 

Molecular Probes (Eugene, Or). However, synthetic fluorophores are based on a relatively small 

number of scaffolds (e.g. xanthene, BODIPY, coumarin) that are beginning to limit new applications 

of fluorescence. 

The recent discovery of epicocconone from the fungus Epicoccum nigrum and the development of 

11 commercial products from this structure, marketed by several companies (e.g. GE Healthcare, 

Sigma-Aldrich, SERVA, Acquistain and Fluorotechnics), highlighted natural products as a viable 

source on new fluorescent scaffolds with unique properties.  For example, epicocconone was the first 

reversible covalent, turn-on fluorophore discovered. To expand the palette of natural fluorophores we 

undertook a screen of culture conditions of E. nigrum in an attempt to produce other related structures 

that may also find utility in biotechnology. Thus, in this research, the optimisation of growth 

conditions and pigment production of E. nigrum and purification of new fluorescent pigments has 

proven to be a time consuming and laborious process that cannot be conducted in a short-time frame. 

In this work, we have determined the best conditions for pigment production and used LCMS to 

identify a range of new compounds, some with odd molecular weights, indicating alkaloids.  One 

such fluorescent alkaloid was isolated and studied by NMR spectroscopy but was shown to be a 

mixture. The NMR spectra revealed that the minor compound of the mixture was related to 

epicocconone. 
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6 Supplementary Materials 

6.1 Protocol for microbiological media 

Raw Sugar Yeast Extract Peptone Agar Media 

Ingredients Quantity 

Raw Sugar (CSR) 

Yeast extract  

Peptone 

Agar 

Mili Q water 

Autoclave  

Time 

42.5 g 

12.5 g 

25 g 

16 g 

1000 mL 

121 °C 

20 min 

 

Malt Dextrose Agar Media 

Ingredients Quantity 

Malt Dextrose Agar (Oxoid) 

Mili Q water 

Autoclave  

Time  

10 g 

200 mL 

121 °C 

20 min 
 

Sabouraud Dextrose Agar Media 

Ingredients Quantity 

Sabouraud Dextrose Agar (Oxoid) 

Mili Q water 

Autoclave  

Time  

13.2 g 

200 mL 

121 °C 

20 min 
 

Potato Dextrose Agar Media 

Ingredients Quantity 

Potato Dextrose Agar (Oxoid) 

Mili Q water 

Autoclave  

Time  

7.8 g 

200 mL 

121 °C 

20 min 
 

Yeast Extract Peptone Dextrose Agar Media 

Ingredients Quantity 

Yeast Extract Peptone Dextrose Agar 

(Oxoid) 

Mili Q water 

Autoclave  

Time  

13 g 

200 mL 

121 °C 

20 min 

 

Czapek Dox Agar Media 

Ingredients Quantity 
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Czapek Dox Agar (Oxoid) 

Mili Q water 

Autoclave  

Time  

9.1 g 

200 mL 

121 °C 

20 min 

 

6.2 Microbial image of E. nigrum 

 

Figure 6.1. E. nigrum of Day 4 at 25 °C (During incubation). 

 

 

Figure 6.2. E. nigrum of Day 5 at 4 °C. 
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6.3 UV-Vis data of metabolites a, a’, b, c and d 

 

 

 
 

Figure 6.3. UV of metabolite a. 
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Figure 6.4. UV of metabolite a’. 
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Figure 6.5. UV of metabolite b. 
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Figure 6.6. UV of metabolite c. 
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Figure 6.7. UV of metabolite d. 
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6.4 NMR spectra of fraction 8 

 

 

 

 

Figure 6.8. 1H NMR spectrum of fraction 8. 

 

 

 

Figure 6.9. 13C NMR spectrum of fraction 8. 
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Figure 6.10. COSY spectrum of fraction 8. 

 

 

Figure 6.11. HSQC (red and green) and HMBC (blue) overlayed spectra of fraction 8. Green 

contours indicate methylenes and red contours are methines or methyls. 



 

49 
 

Figure 6.12. HSQC (red and green) and HMBC (blue) overlayed spectra of fraction 8. Green 

contours indicate methylenes and red contours are methines or methyls.  Detail of the aliphatic 

region. 

 

Figure 6.13. HSQC (red and green) and HMBC (blue) overlayed spectra of fraction 8. Green 

contours indicate methylenes and red contours are methines or methyls.  Detail of the aromatic 

region. 



 

50 
 

 

Figure 6.14. ROESY spectrum of fraction 8. 
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