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ABSTRACT

The human brain uses a complex network of billions of neurons func-

tioning together. Through learning and experience, the human brain estab-

lishes millions of connections between neurons. Although the individual

functions of neurons are known, how these neurons work in a network to

perform cognitive processes still requires research and investigation. Every

human being has their own learning rate to understand things and develop a

skill-set. There is a need for adaptive systems to change the pace of learning

according to the user’s competency level to have an impact on performance.

This thesis explores the application of EEG signals to estimate the cognitive

activity of competent and novice users in a design task. The main goal of this

thesis is to identify the user’s competency using cognitive activities acquired

through EEG signals in an MMIS. We developed a multimodal interface

system (MMIS) (xDe-SIGN v2) that allows the users to model a 3D object

using speech and gesture modalities. We used Microsoft speech recognition

API to detect and decode speech input and a Leap Motion sensor and API

for gesture recognition.

Research questions are classified into 6 groups: input modality, psycho-

physiological analysis, cognitive activity, information processing, and compe-

tency classification. The research questions are investigated in four major

parts: a) the design and development of an MMIS (Chapter 4) b) qualitative

evaluation of MMIS using speech and gestures for 3D modelling (Chapter

4) c) quantitative evaluation of MMIS using EEG signals (Chapter 6-9) d)

classification of user’s competency level for adaptive systems design (Chapter

10). We tested the usability of the system in 2 sets of experiments with 12

participants. We used EEG signals to record users’ mental states and cogni-

tive activity. First, we analyzed users’ cognitive activity in a unimodal system

(using keyboard and mouse inputs), and then, in a multimodal system (using
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speech and gesture inputs). We used a combination of qualitative methods

such as questionnaires and quantitative methods such as EEG bands, Power

Spectral Density (PSD) and Functional Brain Networks (FBN) to investigate

the cognitive activity of novice and competent users.

Our qualitative evaluation results supported by questionnaires indicate

that speech and gestures were well-coordinated in human to human commu-

nication but not in human-computer interaction (HCI). However, speech and

gestures could be used in HCI with proper pre-processing and optimization

techniques, as 90% of the participants completed the given task with reason-

able precision in xDe-SIGN v2. Our quantitative evaluation results supported

by EEG power analysis showed that there are significant differences in the

alpha, beta, and theta band activity of novice and competent users. The

results also suggest that physical actions such as drawing, manipulation and

moving 3D models have a direct impact on users’ performance defined by

task completion time, as competent users performed 1.5 times more physical

actions than novices who had twice as many conceptual actions as competent

users. These findings suggest that the structure of cognitive actions is the

key to high performance.

Directional FBN analysis also indicates significant differences in cog-

nitive activity in both novice and competent users in various states. The

cognitive activity is more intense while the participants use speech and ges-

tures for 3D modelling. The frontal region of the brain is mostly active, which

indicates the use of short-term memory. The thesis provides experimental

evidence that EEG based measures can be used as a quantitative metric to

analyze cognitive activity in HCI. Finally, we have proposed a method to

classify user’s competency levels using convolutional neural networks and

EEG signals. We obtained a classification accuracy of more than 88%, which

shows the effectiveness of the proposed method. Thus, we conclude that

the proposed method has a clear potential for developing state-of-the-art

adaptive systems that can adapt to users’ competency levels.
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Chapter 1

Introduction

"Teaching is the only major occupation of man for which we have not yet developed tools

that make an average person capable of competence and performance."

-Peter Drucker-

The founder of modern management

1.1 Background

1.1.1 Competence

The emergence of the information society with its necessity for lifelong learning

has brought the concept of "knowledge worker’s productivity" to the frontier of

management, which was coined by Drucker in 1959 [18]. Drucker’s core concept,

"management of objectives," has never been proven to work effectively. There is a fine

balance between overemphasizing control and fostering creativity to meet the goals.

Iazzolino and Laise [19] proposed a deep theoretical analysis based on Pulic’s theory

of human capital efficiency, which may primarily be used in measuring corporate

performance.

How can we measure knowledge worker’s productivity and competency?
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Chapter 1. Introduction

Competence is the set of demonstrable characteristics and skills that enable, and

improve the efficiency or performance of a task [20,21]. Competence can be seen

as a combination of practical and theoretical knowledge, cognitive skills, behavior

and values used to improve performance. Competency is measurable and able to be

broken into smaller criteria. It could be developed through training. Competency

models are widely used in business for assessing competencies within the organization

for performance management. Regardless of training, competency grows through

experience and the extent of an individual’s capacity to learn and adapt. In this thesis,

our goal is to shed light into the relationship between competency and individual

characteristics of knowledge workers.

Competencies are the skills that a novice user attains by going through various

phases such as education, training, and experience. The difference between com-

petent and novice users is the way of representing and processing knowledge. The

training and learning time varies from person to person, but some human-dependant

factors can reduce the training time and increase the learning rate of the user. Var-

ious researchers suggest that use of human-like ways for interaction can improve

user learning rate [3]. Many efforts have been made to bring this hypothesis to

life. However, the systems are still immature due to technological and psychological

limitations. Investigating the user-dependent factors to overcome the technological

and psychological barriers could make the system robust, flexible, and efficient. De-

velopment of adaptive systems is another solution to increase the learning rate of

the user by changing the system according to the mental state of the user, but the

parameters on which the system will adapt are still unknown.

Researchers have suggested that the multimodal interaction systems can pro-

vide a high degree of freedom and reduce the mental effort of the user [1], but

research is quite limited to back this argument. There are two possible ways to

validate the argument. First, we can evaluate the system using qualitative methods
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such as questionnaires and interview, but the results could be biased. Second, we can

use quantitative methods to evaluate the interaction, such as to measure cognitive

load, emotional response, and brain activity.

1.1.2 Expertise

An expert is a person with extensive knowledge or ability based on their research,

experience, or occupation in a particular area of study. A novice who undergoes

extensive training and research becomes an expert, and many studies focus on

understanding expertise in a specific field such as sports or music [22]. There is a

general understanding that expertise develops over time when a person experiences

and learns things, but after achieving the peak performance, an inevitable decline

period begins. The peak performance age varies from person to person or profession

to profession. For example, in science, the peak performance age may be in the

thirties, while it may be in the forties in art [23], but one thing that is clear in

studies of expertise is that it requires a minimum period of practice and continuous

involvement before getting to the peak performance stage.

Expertise development usually has various phases. At the start, a novice must train

and educate himself in a chosen field and later on becomes an expert by accumulating

experience. Experts and novices have different ways to represent knowledge (extent,

organization, abstraction, and consolidation) which determine how they retrieve

information [24] and solve problems [25]. To some extent, novices utilize a depth-

first search approach to solve a problem, whereas an expert predominantly uses

breadth-first or top-down strategies. Most of the literature is filled with the study

of game-playing environments or problem-solving to analyze differences between

novices and experts. A problem-solving study between novices and experts [26]

suggests that experts use explicit problem-decomposing schemes and sometimes

apply a bottom-up approach to solve the problem, different from novices. Some
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examples such as creative writing and programming also show contradictions from

the standard results of expertise, e.g., an expert will generally solve an ill-defined

problem in the easiest possible way or with ease compared to a novice [22]. Protocol

analysis of junior and senior industrial design students show that some students get

stuck on information gathering [27]. They have found that junior students do not

gather necessary information, and tend to solve the problem, totally unaware of the

criteria and difficulties.

1.1.3 Research Problem

One of the major problems in Multimodal Interface System (MMIS) and adaptive

system development is the detection of levels of proficiency. In this thesis, we study

the differences in information processing between novices and competent users using

a Multimodal Interface System (MMIS) for a 3D object modeling task. There are some

questions that needs answering such as what are the differences between novices

and competent or expert users’ cognitive activities? Can certain methods make the

transition from novice to expert more effective or efficient [28]? These questions

motivates us to conduct this PhD project. There are 5 levels of proficiency:

1 Novice

2 Advanced beginners

3 Competent

4 Proficient

5 Expert

There is a fine line between expertise and competence. In our terminology, what a

person knows refers to expertise and what a person does refers to competence. A novice

has no experience in the situation in which they are expected to perform. It is a
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well-established fact that training contributes to the progression of a novice to an

expert.

Expertise is developed by someone who has gone through intense and prolonged

learning and practice in a specific field. To become an expert, a novice user has

to get through a long period of learning and training to become an expert. The

learning and training time might be different for different users and depends upon

several factors [28]. These factors define how long a user takes to become an

expert. Researchers have suggested that using a human-like way of interaction

with the computers can decrease the training time and increase the learning rate of

novice users [29]. Various efforts have been made to use human-like inputs such as

speech, touch, and gesture to control a digital environment, but due to technological

limitations, these systems have not come up to expectations.

In the case of conceptual design, such as modeling a 3D object, speech and gesture

inputs can provide a more humane way of communicating with the computers but

to develop such a system, we have to understand the human dependent factors that

affect the performance of a user. These factors can be psychological or technological.

Some systems use speech and gesture recognition techniques to draw naturally in a

3D environment, but due to technological limitations, these systems are not up to

expectations when it comes to conceptual design.

In the existing systems, differences in information processing can be observed

between males and females, novices and experts and left-handed and right-handed

people while describing a simple 3D object using speech and gestures [30]. The

study of these user-dependent factors makes the interaction robust in a multi-modal

interaction system and enhances system flexibility, efficiency, naturalness. It also

provides the user with a high degree of freedom to choose modality based on situation,

task, context, and comfort. Multi-modal interaction systems are expected to reduce

the overall cognitive load of the user compared to unimodal systems.
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1.1.4 Multimodal Interface Systems

The goal of an MMIS is to narrow the gap between Human-Computer Interaction

(HCI) and Human-Human Communication (HHC). A Multi-Modal Interface System

(MMIS) provides input flexibility, adaptability, and accessibility to a wider range of

users than unimodal interfaces [30]. The first MMIS dates back to Bolt’s "Put That

There" experiment in 1980, which uses simple speech and hand-pointing commands

as input [5]. With advancements in technologies, the focus has shifted towards

speech and hand-gesture based MMIS. Over the past decades, many researchers have

worked on improving the recognition rate of speech and gestures. For example, a

detection rate of 95% has been achieved for small vocabularies [31], a recognition

rate of 90% for discrete hand gestures [32] and 95% for vision-based hand gesture-

recognition [33]. However, for designing an efficient MMIS, each level of modality

should be investigated and combined properly with other modalities to achieve a

better experience. Figure 1.1 shows a typical structure of an MMIS. The first part

of MMIS architecture is to recognize the various user’s modalities, such as speech,

gesture, and facial expressions. The second task is to integrate and interpret the

recognition information. The last part is to generate MMIS output based on the

interpretation of the input.

Figure 1.1: Multi-modal Input System structure

Each phase of the MMIS structure affects performance. The user’s gender, cul-
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ture, experience, and age may influence the interaction with an MMIS. Currently,

researchers design MMISs for a range of applications, devising ways to minimize the

user-dependent variables and develop an efficient MMIS system.

1.1.5 User-dependent Factors

How user-related factors affect the design of an MMIS requires investigation. There

is a need to understand the reasons behind these user-dependent factors to address

them in an MMIS. The most common way to study the user-dependent factors is to

use survey, questionnaires, and interviews and get user feedback. These qualitative

evaluation methods have many drawbacks, such as biases based on gender, compe-

tency, and culture [34]. A quantitative evaluation metric is needed to analyze user

activity during an interaction. One possible solution is to use brain signals such as

Electroencephalography (EEG) to analyze the user’s cognitive activity during the

interaction. In this thesis, we compare variations in user’ cognitive activities while

using unimodal and multimodal systems using EEG signals.

1.1.6 Methodologies

Although various functions of the brain have been explored in detail in the literature,

the underlying neural processes that contribute towards human cognition still need

investigation [35]. Generally, cognition is a combination of various low and high-

level cognitive processes; the phenomena itself involves highly complex networking

of billions of neurons making the whole process quite complicated [36]. Despite

all these complexities, there are many non-invasive technologies available that can

record human brain activity in terms of electrical signals such as electroencephalogra-

phy (EEG), magnetoencephalography (MEG), magnetic resonance imagining (MRI)

and functional magnetic resonance imaging (fMRI) [36]. Choosing the technique

for recording brain activity is governed by the type of analysis. MRI/fMRI offers
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high resolution and very considerable at-source localization, but faster changes in

cognition activity take some time to appear in fMRI/MRI but can be observed in EEG

easily because of its high temporal resolution. EEG is more affordable than other

technologies and is therefore considered the most suitable choice for contemporary

research [37].

From the past decade, neuroscientists have shifted the research focus from the

conventional ways of analyzing EEG signals, such as power analysis of various EEG

bands, to connectivity analysis [38]. Functional connectivity gives a much better

understanding of ’when and how’ of the cognitive activity. Graph theory is commonly

used to study these functional connectivities to find factors such as strength and flow

of information [39]. To compute the connectivity, statistical information measures

are commonly used, such as Pearson’s correlation coefficient, coherence, Granger

Causality, partial directed coherence, mutual information, and transfer entropy [40].

Although these measures have been used extensively to analyze complex networks

such as social networks and the World Wide Web, they did not incorporate the

direction of data flow but recently the directional network analysis has gained interest

because it captures some subtleties and essential information about the network [41].

1.2 Motivation

This research is a union of neuroscience, information science, and computing to study

the user behavior in multimodal HCI system. This trans-disciplinary research reveals

some intriguing insights and subtleties that were not observed in the literature. It

has direct implications in the field of education and games and indirect implications

in psychology, and behavioral studies.

Many attempts have been made to use speech and gestures in designing multi-

modal interfaces (MMIS). We [42,43] have developed a 3D object modeling system

(xDe-SIGN), but many limitations degrade the performance of this MMIS. The main
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reason is the complexity of vocabulary used to draw a 3D object. As stated in [42],

to create a simple 3D object is difficult for even a competent user (e.g.a CAD expert)

using speech and gesture modes of input. The system must be able to accommodate

the communication mode desired by the user and adapt to the user.

The available metrics to evaluate the interactions are qualitative such as question-

naires and interviews [34]. Most of the times these qualitative measures are biased

and to improve the system evaluation metrics and decrease the user’s bias, there is

an urgent need to develop a quantitative measure that can remove the user-related

effects. If a validated evaluation metric could be developed that uses the measures to

estimate the user’s mental effort through cognitive activities, it will lay the basis for

the development of adaptive intelligent systems.

Every human being is different in their ways of communication. Diversity plays a

different role in a complex system, where it merely produces variation around the

mean for performance measures. Through learning and experience, the human brain

establishes millions of connections between neurons. Every human being has their

own learning rate to understand things and develop a skill-set. There is a need for

adaptive systems to change the pace of learning according to the user’s competency

level to have an impact on performance. Cognitive activities could be exploited to

develop adaptive learning systems.

1.3 Significance

According to a report published in 2012 by the Australian Bureau of Statistics, the

design and manufacturing industry is worth $100 billion with a continuous growth

[44]. Professional designers and architects are hired to construct prototypes by using

a 3D modeling software. If the end user wants to change some aspects of the design,

this comes at an extra cost. Researchers try to find novel ways to design 3D models,

either by using virtual reality (VR) tools, or using multimodal interface systems.
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There are computer graphics software products that allow non-experienced users

to create and manipulate 3D objects without any help or prior knowledge of the

software but these systems are not up to the mark. To develop an ideal system, the

system should have the ability to obtain information from the humans effectively, but

there are technological, physiological, and psychological limitations to overcome [3].

Humans utilize all available modalities to convey information, such as speech, gestures

and facial expressions. The human brain’s perceptual and cognitive functions are

synced to accommodate human-human interaction; this is not the case in human-

computer interaction (HCI).

The research aims to investigate the cognitive activities of various user in a 3D

modeling task. The better understanding of underlying cognitive activities can help us

understand the mental load of a user and to develop an adaptive 3D modeling system

that can adapt to the variations in the user cognitive activities. The information

about mental load and cognitive activities can be used to help 2-4% of the people

with learning disabilities or difficulties by developing adaptive learning systems [45].

In addition, EEG signals can be used to develop the adaptive games in which the

difficulty level can be changed based on the user mental state.

1.4 Goals and Research Questions

The main goal of this thesis is to identify the user’s competency using cognitive

activities acquired through EEG signals in an MMIS. The goal is achieved by exper-

imenting with various participants while they are performing a 3D modeling task.

Both qualitative and quantitative (EEG) data were recorded for analysis. The research

questions can be classified in 6 groups as follows:

RQ 1. Input Modalities:

RQ 1.1 What modalities are suited the most to the development of an MMIS for
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3D modeling?

RQ 1.2 What kind of integration techniques should be used to fuse the multimodal

inputs?

RQ 1.3 Is it possible to develop a multi-modal 3D object manipulation system

xDe-SIGN v2 using speech and gestures?

RQ 1.4 What are the limitations of using speech and gestures in MMIS?

RQ 2. Psycho-physiological Analysis:

RQ 2.1 Can we use psycho-physiological analysis in an HCI system?

RQ 2.2 Which EEG parameters can be used for evaluating the cognitive activity?

RQ 3. Cognitive Activity:

RQ 3.1 Why do some novice users perform better than others?

RQ 3.2 What are the factors that affect novice users’ performance?

RQ 4. Information Processing:

RQ 4.1 Are there any differences in information processing and cognitive activity

between novice and competent users?

RQ 4.2 Can Functional Brain Networks (FBNs) be used to identify the information

flow patterns?

RQ 5. Modality Comparison:

RQ 5.1 What are the differences in cognitive activity between multimodal and

unimodal systems?

RQ 5.2 Does competency play a role when a new set of inputs are used for a

predefined task?

RQ 6. Competency Classification:

11
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RQ 6.1 Can EEG signals be used in classifying a user’s competency level?

RQ 6.2 Which features contribute the most towards the classification of compe-

tence?

To address the research questions mentioned above, the main tasks are listed as

follows:

Task. 1: Investigate the usability of speech and gesture modalities in a 3D multimodal

interface system.

Task. 2: Identify the differences in cognitive activities among novice and competent

users.

Task. 3: Explore the use of EEG signals in developing a cognitive measure for perfor-

mance evaluation.

Task. 4: Quantify the changes in binary and weighted FBNs of various users.

Task. 5: Estimate the information flow patterns in various modeling stages.

Task. 6: Build a model for the classification of user’s competency levels using EEG

signals.

1.5 Major Contributions

The thesis makes three major contribution in the domain of MMIS. These three

domains are multimodal systems, analysis of cognitive activity and classification of

competency.

• MMIS development: A multimodal interface system is developed and evalu-

ated to investigate the usability of speech and gesture in a 3D modeling task.

We evaluated the system through questionnaires and video log and found that
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using a multimodal system is exhausting compared to a traditional unimodal

system. Our evaluation results supported by questionnaires showed that speech

and gestures are not coordinated effectively in human-computer interaction

(HCI). However, using proper processing and optimization techniques, speech

and gestures may be successfully used in an MMIS.

• Analysis of cognitive activities: The thesis has explored the use of EEG signals

for the development of a cognitive measure for performance evaluation in HCI.

Various techniques have been used in the thesis to study the cognitive activities

of novice and competent users. The applicability of techniques such as power

analysis and functional brain networks (FBNs) was evaluated to quantify the

variation in user’s cognitive activities when performing a modeling task. The

findings demonstrate that competent users perform better because they are

engaged in physical (drawing) actions more than conceptual actions. We have

found significant differences between novice and competent users cognitive

activities. The power analysis show that competent users in a 3D modeling

software (AutoCAD) were experiencing difficulties in using a multimodal system

compared to novices. The results show that EEG power analysis and FBNs may

be used as a cognitive measure for user-based HCI evaluation.

• Classification of competency: The thesis has also proposed a classification

method for developing adaptive systems by incorporating an EEG-based mea-

sure of competency as a parameter for adaptation. The study uses different

features and a convolutional neural network to validate the method. Classifica-

tion accuracy of above 80% has been achieved using the raw EEG signals in a

reasonable time period, which showed the significance of the proposed method.

The proposed method may be used to develop adaptive learning systems for

people with learning disabilities and difficulties. The other major application

could be EEG-based adaptive games.
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1.6 Thesis Organization

The remainder of this thesis is organized as follows:

Chapter 2 (Multimodal Interface Systems) describes multimodal interface sys-

tems and modality in detail. It provides a brief overview and history of multimodal

systems and discusses the advantages of multimodal systems over unimodal systems.

Chapter 2 further explains various modalities, input modes, and information fusion

techniques, user modeling, data collection, testing, and evaluation of multimodal

systems. Finally, recent applications and challenges are provided at the end. The

literature review answers the research questions RQ 1.1 and 1.2. The review is

submitted to ACM Computing Surveys as a tutorial paper.

Chapter 3 (Human Cognition, Psycho-physiological Analysis & Functional

Brain Networks) starts by explaining cognition, including processing, memory, atten-

tion, and decision making. The chapter reviews the literature related to psychophysio-

logical analysis, including emotional states and cognitive analysis. The advantages of

EEG over other neuroimaging tools are discussed as well as statistical measures used

to analyze the connectivity in Functional Brain Networks. Finally, the application

of graph theory in studying complex FBNs is provided. The chapter attempts to

answer RQ 2.1 and 2.2 from the literature and the review has been published as a

paper, titled as "A Survey on Psycho-Physiological Analysis & Measurement Methods in

Multimodal Systems" in Multimodal Technologies and Interaction Journal [11].

Chapter 4 (A Multi-Modal Interface System Design (MMIS), Development &

Evaluation) explains the development of a multi-modal interface system (xDe-SIGN)

that allows the user to design 3D objects in AutoCAD using speech and gesture inputs.

The chapter describes the system design methodology and iterative development

with implementation details. The chapter lists the improvements in version 2 of

xDe-SIGN. Finally, a qualitative evaluation of the system is discussed. In the chapter,

we find the answers to research questions RQ 1.3 and 1.4. The initial evaluation
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results have been published in the 9th ACM International Conference on Computer

and Automation Engineering (ICCAE 2017) held in Sydney, Australia, in a paper

titled " The Usability of Speech and/or Gestures in Multi-Modal Interface Systems" [42].

The updated version of the MMIS is published in the proceeding of 2018 13th IEEE

Conference on Industrial Electronics and Applications (ICIEA), in a paper titled

"Qualitative analysis of a multimodal interface system using speech/gesture" [43].

Chapter 5 (Experimentation and Instrumentation) explains various aspects of

experimental design, the EEG signal acquisition procedure, artifact removal, and EEG

pre-processing techniques. The chapter introduces the equipment used in the thesis

to record the EEG signals and the software used for pre-processing and analysis.

Chapter 6 (Analysis of Cognitive Activities in a Uni-modal System: using

Design Coding Technique) presents the experimental findings of using design tech-

niques to estimate the cognitive activity of a user in a 3D modeling task. A new

method for EEG signal segmentation based on design coding technique is presented.

The chapter focus is on answering research questions RQ 3.1 and 3.2. The findings

have been published at the 25th International Conference on Neural Information

Processing (ICONIP 2018) held in Siem Reap, Cambodia, in a paper titled "EEG Signal

Analysis in 3D Modelling to Identify Correlations Between Task Completion in Design

User’s Cognitive Activities" [46].

Chapter 7 (Analysis of Cognitive Activities in a Uni-modal System: using

Transfer Entropy and Functional Brain Networks) explores the use of normalized

transfer entropy (NTE) from EEG signals to construct directed FBNs. The aim is to

detect and identify patterns of information flow in a cognitive activity (a 3D modeling

task). The chapter explains the use of graph-theory to analyze the FBNs and further

identifies the changes in connectivity patterns. In the chapter, research questions

RQ 4.1 and 4.2 were investigated. The analysis results have been published in the

Brain Sciences Journal titled "Connectivity Analysis Using Functional Brain Networks
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to Evaluate Cognitive Activity during 3D Modeling" [47].

Chapter 8 (Comparative Analysis of Cognitive Activity: using Power Spectral

Density) contains a comparative analysis of a unimodal and a multimodal system in

a design application. The chapter uses the Power Spectral Density (PSD) of various

EEG bands for analysis and compares the activity of novice and competent user in

using an MMIS. In the chapter, we used PSD analysis to answer research questions RQ

5.1 and 5.2. The results have been presented at the 26th International Conference

on Systems Engineering (ICSEng) 2018 held in Sydney, Australia, with a paper titled

"Analyzing Novice and Expert User’s Cognitive Load in using a Multi-Modal Interface

System" [48].

Chapter 9 (Connectivity Analysis: using Transfer Entropy and Functional

Brain Networks) provides a comparative analysis of unimodal and multimodal

systems using FBNs. Graph theory measures are used to analyze the network, Data

mining algorithms are used to find the regions with intense activity. The chapter

uses a different approach (FBN analysis) to answer the research RQ 5.1 and 5.2.

The results of the study have been accepted for publication at the 28th International

Conference on Information Systems Development (ISD2019) to be held in Toulon,

France.

Chapter 10 (Classification of User’s Competency using Convolutional Neural

Networks) describes the proposed framework for the classification of user’s compe-

tency levels using a convolutional neural network (CNN). The aim of this chapter is

to design a method that can help researchers to develop adaptive systems that use

EEG activity for adaptation. The research questions RQ 6.1 and 6.2 were explored in

the chapter. The results of this study have been under review in the Expert Systems

with Applications Journal.

Chapter 11 (Conclusion and Future Work) provides a summary of the thesis

and the significant findings. The chapter explains the implications of the findings
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and limitations of the thesis, along with recommendations for future research.
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Chapter 2

Multi-Modal Interface Systems

This chapter starts with an introduction to the Multimodal interface systems (MMIS)

with a brief overview and history. It then compares multimodal systems with unimodal

systems and presents a detailed description of various modalities, input modes and

information fusion techniques, user modeling, data collection, testing, and evaluation

of MMIS. The chapter concludes with recent applications of MMIS outlining current

challenges in Human-computer interaction (HCI) domain.

2.1 Introduction

The interaction between humans and the world is inherently multi-modal [49].

Humans utilize multiple senses to get an understanding of the environment. All the

available senses are employed, both in series and in parallel, to continuously explore

the environment and to perceive new information about the environment. The senses

used in exploring the outside world can be sight, touch, hear, taste, and smell. These

senses when used in a collaborative manner give the humans some useful insights

about the surrounding - for example, sight is used to see an object, touch to identify

the material, hearing to identify the source of the sound and estimate the location.

Multiple modalities support humans to interact with the world and other human
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beings effectively.

In contrast to human sensing techniques to interact which are inherently multi-

modal, the human-computer interaction (HCI) techniques are primarily uni-modal

- e.g., writing text using a keyboard. The goal of multimodal interaction research

is to design and develop interfaces, technologies, and interaction methods that

eliminate the limitations of HCI and unlock its full potential. The introduction of

new and sophisticated recognition algorithms enables the use of speech, gesture,

facial expression, and other modalities in the development of multi-modal interaction

systems [50]. While the chances are highly unlikely that a multimodal interface

completely replaces the traditional desktop or Graphical User Interface (GUI), the

importance of MMIS is growing with the technological advancements.

An MMIS provides a direct interface for HCI between man and machine. Multi-

modal interaction is achieved by combining the contribution of several research areas

including signal and image processing, computer vision, artificial intelligence, and

many others. The overreaching goal of developing MMIS is to make computing

technology more usable by people. To improve the usability of an interface, three

things need to be studied: the user, the system and the interaction. We have reviewed

the literature to find answers to the following research questions:

RQ 1.1 What modalities are suited the most to the development of an MMIS for 3D

modeling?

RQ 1.2 What kind of integration techniques should be used to fuse the multimodal

inputs?

2.2 Overview of Multimodal Interaction

A multimodal system aggregates two or more user input modes in an interconnected

fashion with the multimedia output. The user input can be speech, pen, touch,
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manual gestures, gaze, head and body movements [51]. Several research studies

have been conducted in the field of multimodal interaction to develop systems that

utilize human behavior and a common language to interact [52]. These systems

use a recognition algorithm to identify the behavior and language. According to

Oviatt [51], " Multimodal interfaces process two or more combined user input modes

(such as speech, pen, touch, manual gesture, gaze, and head and body movements) in a

coordinated manner with multimedia system output. They are a new class of interfaces

that aim to recognize naturally occurring forms of human language and behavior, which

incorporate one or more recognition-based technologies (e.g., speech, pen, vision)".

The term "multimodal" can be used in many contexts, but in HCI, we use a more

human-centered approach to define multimodal interaction. Modality is the mode of

communication used as input to activate the computer, and it is a measure of human

senses and actions. The input modalities correspond to the human senses are cameras

(sight), microphones (hearing), haptic (touching) [53], olfactory (smell) [54] and

electronic tongue (taste) [55]. The biofeedback input devices such as galvanic skin

response (GSR), Electrocardiogram (ECG), Electroencephalogram (EEG) and many

other, used to measure the internal activity of humans, are also considered as input

modalities [3].

In HCI, the most common interfaces are perceptual, attentive, and enactive

interfaces.

• Perceptual interfaces provide natural, rich, and efficient interaction with the

computer using multimodal inputs, and it is highly interactive [56].

• Attentive user interfaces are the ones that rely on a person’s attention and

use the information gathered from the modalities to estimate the best time

for communicating with the user [57]. Many applications of attentive user

interfaces involve computer vision as the main component to perform a number

of functions such as eye tracking, facial emotion, and gestures [58].
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• Enactive interfaces are those interfaces that allow the expression and commu-

nication of enactive knowledge to actively utilize the use of hands and body

for understanding a task [59].

Speech input has been extensively used in developing commercial products such

as the speech-controlled environments as seen in smartphones. Gestures also inspire

many researchers to develop systems based on gesture recognition for interaction

in several practical applications [60]. However, using multi-modal interfaces rather

than a single-user input has been preferred by people for interaction. Multi-modal

input improves the handling and reliability of the system. Various studies suggest that

it also improves task-completion rate compared to uni-modal systems [61]. Table 2.1

defines some common features to differentiate between a traditional interface and

an MMIS [1].

Table 2.1: Differences between traditional systems and MMIS [1]

Traditional Systems Multimodal Interface System

single input mode multi input modes

atomistic, deterministic continuous, probabilistic

sequential processing parallel processing

centralized architectures distributed and time-sensitive ar-
chitectures

2.3 History of Multimodal Interface System

A typical MMIS contains a recognition system that translates human tasks into rec-

ognizable computer signals. Once the human input is identified, the next step is

to interpret the input and aggregate it to achieve the desired output. There are

many examples in the literature using speech and pen input in MMIS [62]. An early

example was from Bolt’s "Put That There" multi-modal system that combined speech

and pointing gestures to move an object [5]. Fig. 2.1 shows an interface of the "Put
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That There" experiment. This experiment is considered a groundbreaking demonstra-

tion of multimodal interfaces. After "Put That There" experiment, the multimodal

Figure 2.1: Bolt’s "Put that there" system [5]

inputs, especially speech and gesture, are used in a range of applications. The early

multimodal system was mainly used to perform the spatial task in a map-based

environment. Neal et al. developed a multimodal system CUBRICON for tactical

mission planning that uses speech, typed text, and gesture as input and displayed the

output using a combination of language, maps, and graphics [63]. Koons et al. also

developed a multimodal system for a map-based application that uses speech and

gesture for interaction [64]. In 1997, Cohen et al. developed Quickset, a multimodal

system that uses pen/voice, as a training simulator for US Marine Corps [65]. Some

recent applications have also utilized gesture input and combined it with speech to

draw sketches [66]. Most of these systems have used Kinect and Leap motion devices

to recognize gesture inputs. Speech provides extra assistance to the user in cases

such as texture mapping or rotating the object [67].

The multimodal interaction is considered as the expansion of traditional desktop

experience, but a considerable amount of research also focused on alternative or

"post-WIMP" computing environment which brings new modalities such as haptics

and touch interfaces [3]. Post WIMP interfaces are those interfaces that are far away
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from traditional graphical user interfaces and rely on speech and gesture [68]. These

Post WIMP interfaces include a more robust "butler-like" interface that gives life to a

new generation of perceptual interfaces [56]. These perceptual user interfaces use a

more natural way to interact with the computer by incorporating the natural human

capabilities such as communication, cognition, motor skills, and perception into the

system.

2.4 Differences Between Unimodal and Multimodal Sys-

tems

Usually, MMIS intend to deliver a natural and efficient interaction between a human

and computer, as there are some advantages of using a multimodal system over a

unimodal system. The literature on the assessment of MMIS state that users prefer

multimodal systems over unimodal systems [69]. Multimodal systems also provide

flexibility and reliability [70–72] and increase task efficiency. Information processing

is better when it is presented in multiple modalities [1,73]. Other possible advantages

of multimodal interaction systems explained by [29] include:

• MMIS allow flexible use of input modes, including sequential and parallel use.

• MMIS improve system efficiency, provide greater precision of spatial informa-

tion, and bring robustness to the interface.

• MMIS give user alternatives in interaction, enhance the error avoidance and

correction mechanism.

• MMIS can be made adaptable for a continuously changing environment and

accommodate individual differences.

Multimodal interfaces were considered more efficient than unimodal interfaces,

but evaluations show that multimodal interfaces improve the task completion rate by

24



2.5 Modality

only 10% [1]. On the other hand, in the case of error handling and reliability, multi-

modal interfaces reduce errors by 36% compared to unimodal interfaces. Despite so

many advantages, it is difficult to generalize the conclusions as for every combination

of task, user, and environment; the required interface is different. Sometimes the use

of multiple modalities may be ineffective or disadvantageous [74].

2.5 Modality

In different fields, the terms relevant to multimodal interaction such as modality,

devices, multimedia, and multimodal have significantly different meanings [3]. In

HCI terms, Modality is the form in which information is displayed or transferred,

such as speech, text, visual, and gestures. Each input is transferred to a computer by

a specific medium. For example, the text is entered through a keyboard and visual

information through a camera. Different modalities have different definitions based

on their properties and representation. Modalities are also information-dependent,

which means that some type of modalities can be suitable for one type of information

but not for other types [75].

2.5.1 Input and Output Modalities

An MMIS can respond to multiple input modes such as speech, gesture, and gaze.

in a coordinated way to achieve a particular output. MMIS become a new focus of

interest for the future computing generation since they have shifted the paradigm

away from the standard keyboard mouse input. The earliest examples of MMIS were

probably the ones that were least different from traditional Graphical User Interface

(GUI) systems as they only reduced the use of keyboard and mouse as input modes.

Since speech and gesture recognition technology has very much matured, the typical

GUI systems utilize speech and gesture inputs along with standard keyboard and
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Modality Example

Visual Face location
Gaze
Facial expression
Lipreading
Face-based identity
Gesture (head/face, hands, body)
Sign language

Auditory Speech input
Non-speech audio

Touch Pressure
Location and selection
Gesture

Bio-sensors Brain-computer interfaces
Emotion recognition
Cognitive load estimation

Other sensors Sensor-based motion capture

Table 2.2: Sensor modalities in Multimodal interaction systems [2,3].

mouse interfaces to address user intention [30].

Blattner and Glintert [2] listed some input and output modalities and examples.

The list was further updated by Turk et al. [3] given in Table 2.2. We have included

some bio-sensor modalities to the list as well because these modalities will be an

integral part of future multimodal systems.

A human perceives the world through their five major senses of smell, sight, touch,

taste, and hearing. The pathway through which the information from the senses

is transmitted or received is called a communication channel [76]. In multimodal

interaction, a channel is an interaction technique through which humans transmit or

receive information based on user ability and device capability [77]. For example, a

keyboard is for text input, mouse for pointing or selecting input and a camera for

visual input.

There are several key factors and characteristics that constitute multimodal system

architecture and development. These dimensions or characteristics are [51]:

• Input modalities (size and type)
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• Communication channel (devices and size)

• Processing modes (series or parallel or both)

• Vocabulary (size and type)

• Sensors and channel fusion

• Application

In a multimodal interaction system, figuring out the correct characteristics for the

MMIS architecture is not simple; the designer needs to take the decisions based on

intuition or by testing but to find out the best multimodal input for an interface is still

an open research question [78]. Most of the work in multimodal interaction is focused

on input recognition technologies such as gesture, speech, and facial expression

recognition. A few studies focus on the output modality (a channel of sensory output

between a human and a computer) which is also a key element of human-computer

interaction [79]. The availability of powerful mobile devices (smartphones) and

embedded sensors such as the microphone and 3D vision sensor (Kinect, leap-motion,

3D scanners and printers) has opened a plethora of opportunities for multimodal

interaction and the HCI world.

2.5.2 Common Multimodal Inputs

With the advances in software and hardware technologies, the multi-modal interface

design has emerged as a strong field of research in the last decades. People are more

motivated to use natural and human-like ways to interact with computers. It also

enables the researchers to integrate inputs in series or in parallel to create new sets

of modalities such as speech and pen input [80–82], speech and gestures [83,84],

and speech and lip movement [85,86]. Nowadays, speech and gestures are the most

commonly used modalities in multimodal interaction.
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Speech

Speech is one of the most popular inputs for an MMIS. Speech is a tool for communi-

cation, comprised of vocabularies. Speech is normally divided into grammar, syntax,

semantics, discourse, pragmatics, and prosody. These parts help us understand the

language.

• Grammar is used to make rules and laws, and the right methods to apply these

for speaking and writing.

• Syntax links names and actions together in a defined order.

• Semantics involves the study of the meanings of individual words and syntactic

contexts.

• discourse is written and spoken communication that constitutes a sequence of

relations to the subject, object and announcements.

• Pragmatics is defined as how language is used and investigates the semantic

and syntactic uses of language.

• prosody is the emotion state-of-utterance [87].

Speech Recognition The process of converting speech into text is known as speech

recognition. There are three main types of speech recognition algorithms present in

the literature: Hidden Markov models (HMM) [88], Dynamic time warping (DTW)

[89], and Neural Networks [90]. In 1994, Microsoft (MS) developed an API for speech

recognition and synthesis. The function of this API is to convert speech into text and

text into speech in real time. This speech recognition system is available in many

languages such as English, French, Spanish, German, Japanese, and Chinese. [91].

The Microsoft Speech API has an approximate recognition rate of 75% [92]. There are

some other speech recognition systems available such as Carnegie Mellon University
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Application

Speech Platform API

Recognition Engine TTS Engine

Recognition Runtime 
Languages

TTS Runtime 
Languages

Figure 2.2: Microsoft Speech Recognition Platform

(CMU) Sphinx-4 based on HMM, and Google API based on deep neural networks

which are the possible alternatives to MS speech recognition API [93]. In this thesis,

we have used MS speech recognition API because it is easy to use and required

a minimum training time. Fig. 2.2 shows different modules of Microsoft speech

recognition API. The Recognition engine contains the algorithm for recognizing

speech to convert into text and the TTS (Text to Speech) Engine converts text input

into speech.

Gesture

A gesture is the movement of a body part to express an idea or meaning to someone.

Usually, hand and head movements are considered as gestures. There are many

gesture-controlled user interfaces available in the literature [94]. The term gesture

first appeared in 1979 in a book named "GESTURES, their Origins and Distribution"

by Morris et al. [95]. In this book, an analysis of emblem gestures, the action that

replaces speech, was given. Rime and Schiaratura explained a gesture taxonomy for
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(a) Symbolic gesture "OK" (b) Deictic gesture "Pointing"

(c) Iconic gesture "Book" (d) Pantomimic gesture "opening a jar"

Figure 2.3: Commonly used gesture examples

communication with a computer [96]. These gestures are symbolic, deictic, iconic

and pantomimic gestures.

• Symbolic gestures are those gestures that have a single meaning. Fig. 2.3a

shows the symbolic gesture of "OK".

• Deictic gestures are the pointing gestures as shown in Fig. 2.3b. These

gestures are used to tell the other person about a specific object or event in the

surrounding environment.

• Iconic gestures are used to give information about size, shape, or orientation

of an object. For example, a person doing gesture to describe a rectangular

object is shown in Fig. 2.3c.

• Pantomimic gestures are used to show the movement of some invisible tool

or object. For example, turn a knob as shown in Fig. 2.3d.

McNeill in 1992 added two more gestures to these taxonomies that relate to the

process of communication [97]. These gestures are beat and cohesive gestures:
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• Beat gestures are used to indicate a pace, represent the up and down movement

with the rhythm of speech.

• Cohesive gestures are used to combine temporally separated but thematically

related portions of discourse and these are the variation of iconic, pantomimic

or deictic gestures.

Cadoz in 1994 associated three types of functions to the group of gestures; semiotic

gestures, ergotic gestures, and epistemic gestures [97].

• Semiotic gestures "are used to communicate meaningful information."

• Ergotic gestures "are used to manipulate the physical world and create arte-

facts."

• Epistemic gestures "are used to learn the environment through exploration."

Later on in 2005, Karam et al. [98] provide a comprehensive taxonomy of gestures in

HCI. They categorizes the gestures in deictic, semaphores, gesticulation, manipulation

and sign language gestures. In 2009, Wobbrock et al. presented a taxonomy for

surface gestures based on the evaluation of how many users performed a particular

gesture for a given task [99]. Ruiz et al. in 2011 proposed a taxonomy for 3D motion

gesture and applied it on smartphones [100]. They used the physical characteristic

such as kinematic impulse, dimensionality and complexity to create a user-defined

gesture set.

Gesture recognition Through the years, gesture recognition has been through

very rapid advancement. Gesture-Recognition technology can be divided into three

categories. The first category is glove-based, which is further divided into active and

passive data gloves. In active data gloves, sensors are embedded on the gloves to

measure joint flexing and acceleration. On the other hand, passive gloves use an
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external device, such as a camera, to define the position and orientation of the hand

using some markers and colors for finger detection [101].

The second category is known as haptics. This technology utilizes a tactile

experience in the air using haptic technology. The user is not required to wear any

device or system. For example, AIREAL extracts tactile sensations in the air and

relies on air vortex generation directed by an actuated flexible nozzle to provide

effective tactile feedback with a 75-degree field of view, and an 8.5 cm resolution at

1 meter [102].

The third category and most commonly used technology for detecting gestures

is sensor-based motion capture. This method utilizes raw data from a sensor and

manipulates the data to generate position and gesture types. The most popular

sensors for this purpose are Microsoft Kinect and Leap motion [103]. In this research,

we have used a Leap Motion sensor for gesture recognition.

The Leap motion controller is a tiny hardware device that detects hands and

fingers. The controller uses two monochromatic IR cameras (IR emitters are inside

the device). Leap motion offers a close range. It can detect the fingers even when

they are 5 cm away. The advantage of Leap motion is its high-level API. It is very

easy to get the position or velocity of the hand, the fingers, and some already defined

gestures, such as swipe, circle, point or type. Leap motion offers more facilities for

drawing and interaction than Kinect [104]. Fig. 2.4 shows a Leap sensor with its

coordinate system.

Figure 2.4: Leap motion sensor (http://developer.leapmotion.com/)
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2.6 Multimodal Interface System Development

Development of the multimodal system is challenging because standard computing

environments usually do not translate into a multimodal environment effectively [3].

In addition to that, each factor or characteristic of the multimodal system may result

in different design strategies. Oviatt in 1999 [74] proposed a set of myths about the

multimodal systems; "Ten Myths of Multimodal Interaction" have proven to be useful

in the MMIS field. These ten myths, as mentioned in [74], are given below:

Myth 1: "If you build a multimodal system, users will interact multimodally."

Myth 2: "Speech and pointing is the dominant multimodal integration pattern."

Myth 3: "Multimodal input involves simultaneous signals."

Myth 4: "Speech is the primary input mode in any multimodal system that includes

it."

Myth 5: "Multimodal language does not differ linguistically from a unimodal lan-

guage."

Myth 6: "Multimodal integration involves redundancy of content between modes."

Myth 7: "Individual error-prone recognition technologies combine multimodally to

produce even greater unreliability."

Myth 8: "All users’ multimodal commands are integrated in a uniform way."

Myth 9: "Different input modes can transmit comparable content."

Myth 10: "Enhanced efficiency is the main advantage of multimodal systems."

In 2004, Reeves et al. [105] gave some guidelines for multimodal interface design:

• User Specifications: The MMIS should be designed for the broadest range of

users and contexts of use. They should also address privacy and security issues.
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• Input and Output Specifications: The design should maximize the human

cognitive and physical abilities by considering the information processing abil-

ities and limitations. The system modalities should be harmonious with the

user preference, context, and system functionality.

• Adaptivity: The multimodal system should adapt to the needs and abilities of

users.

• Consistency: The system should be consistent in presentation and prompt.

• Feedback: The users should be aware of their current connectivity and available

modalities.

• Error Prevention/Handling: The system should provide error detection, pre-

vention, and handling functionalities.

2.7 Modelling, Fusion, and Data Collection

The principles and techniques used to develop a GUI-based interaction could not be

used in MMIS development. This makes the multimodal interface design special [105].

As mentioned in the previous section, special attention should be given to input and

output modalities, adaptability, consistency, and error handling issues. The human-

related factors such as personality, background, current emotional state need to be

considered when designing a multimodal interface [106, 107]. These issues and

design decisions further dictate the underlying algorithms and techniques used in

interface development.

2.7.1 System Integration Architectures

In the multimodal community, the multi-agent architectures such as Open Agent

Architecture [108] and Adaptive Agent Architecture [109] are commonly used. Multi-
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agent architectures use a distributed approach to implement the complex modules of

multimodal processing. The modules and components in a multi-agent architecture

can be developed in various programming languages, machines, and operating sys-

tems. Inputs in a multi-agent architecture can be in parallel or asynchronous and

then be passed to the recognition system. The results from the recognition modules

are interpreted and delivered to the user through multimedia feedback [110].

Open Agent Architecture (OAA)

OAA is a multi-agent system architecture that combines the functionalities of those

agents that were not designed to work together, thereby facilitating the wider reuse

of the expertise embodied by an agent [108]. The key attributes of this architecture

are:

• Open: The OAA supports agents written in multiple languages and on multiple

platforms.

• Extensible: Agents can be added to or removed from the system at run-time.

• Mobile: OAA-based applications can run from a low-end portable computer.

• Collaborative: The user appears to be just another agent to the automated

agents. This simplifies creating systems where multiple users and agents col-

laborate.

• Multiple Modalities: The user interface supports multiple modalities in addi-

tion to the traditional GUI.

• Multimodal Interaction: Users can interact with the system using multiple

modalities.
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Adaptive Agent Architecture (AAA)

AAA is a robust brokered (or middle agents) architecture that "uses teamwork to

recover a multi-agent system broker failure and to maintain a specified minimum

number of functional brokers in the system even when some of the brokers become

inaccessible [111]." To achieve the functionality, AAA has two mission statements:

• Mission Statement 1: "Whenever an agent registers with the broker team,

the brokers have a team intention of connecting with that agent, if it ever

disconnects, as long as it remains registered with the team."

• Mission Statement 2: "The AAA broker team has a team maintenance goal of

having at least N brokers in the team at all times where N is specified during

the team formation."

In the thesis, we have implemented OAA-based MMIS.

2.7.2 User Modelling and Human Information Processing

Modeling human information processing in HCI and related fields is a challenging

job, and there are several studies focusing on this which have received significant

attention [107, 112, 113]. In this section, we have mentioned some commonly

used models. The most famous model in the HCI literature is the Model Human

Processor [114]. It has three parts: the perceptual system, the cognitive system, and

the motor system. The perceptual system is responsible for handling the sensory

information from the outside world, i.e., the input-output components. The motor

system controls all the actions, also known as a processing component. The cognitive

system, on the other hand, provides the functionality to connect the other two

systems [10]. According to the model human processor, the input-output channels

(movement, hearing, vision), memory (both long and short term) and the processing

(problem-solving, reasoning) need to be considered when designing an MMIS [115].
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GOMS (Goals, Operators, Methods, and Selection rules) is another famous model

proposed by Card et al. [114]. There is now a family of many variations of GOMS.

The model is suitable for modeling the optimal behavior of the users. Despite so

many variations of GOMS, the fundamental concept is the same. Goals are the result

that a user wants to achieve. An operator is an action performed in the service of

a goal. A method is a sequence of operators to achieve a goal and if more than

one method, then a selection rule will be used to shortlist one method [116]. All

GOMS variations provide useful information, but they also have some drawbacks. For

example, these techniques do not incorporate the user fatigue into the model, and

the user performance degrades over time because the user performs the same task

repetitively. GOMS techniques are less rigid to necessary cognitive actions and most of

the time applicable to expert users. There are some other models as well that includes

the cognitive architecture models [117] (ACT-R/PM [118], LICAI/CoLiDeS [119]),

the psychological models such as human action cycle [120, 121], grammar-based

models [122] and application specific models [123].

• Cognitive Architecture Model is a theoretical entity based on human cognition

using a wide selection of experimental data [117].

• Psychological Model uses human psychology to describe different steps to

interact with the computer [121].

2.7.3 Adaptability

Adaptability is a vital part of the current and future HCI systems because of the large,

diverse types of users. The HCI system should accommodate for the difference in

expertise, culture, language, and goals by introducing adaptive and customizable

interfaces. The system needs to learn through user behavior and knowledge to predict

the user’s future behavior and response [124]. With the inclusion of adaptiveness in

37



Chapter 2. Multi-Modal Interface Systems

the system, it will improve the overall user performance and make the interaction

exciting [125].

The feedback element in adaptive HCI promises to increase the user ability to

handle complex tasks more quickly with greater accuracy and allows the user to

learn new techniques quickly. The adaptive HCI interfaces provide an interactive

knowledge or agent-based dialog to handle errors, interruptions, understand the

current context and situation [126]. The long-term aim of intelligent user interaction

is to increase the effectiveness, naturalness, and productivity [127]. The challenging

part in developing an adaptive user interface is to find the variables on which the

system will adapt. The system needs to analyze input, user behavior, and actions and

find those variables that maximize the efficiency, effectiveness of the interface [128].

Adaptive systems need continuous feedback from the user to learn, and for that

reason, these systems are also called learning systems. As these systems involve a

continues learning cycle, the developer should not consider the adaptive systems a

solution for all the problems and should focus on whether the user needs an adaptive

system. Some researchers state that adaptive interfaces violate the standard usability

principle, but sometimes a static user interface, that does not depend on user state,

shows superior performance over an adaptive interface [129, 130]. Despite these

studies, adaptive systems can bring undeniable benefits to the interaction system.

Nowadays, many researchers work on developing intelligent systems from many

different applications including learning and tutoring systems [131–133], medical

applications [134], smartphones [135–137] and arts [138].

Although there are many advances in the adaptive interface systems, still there

are various research problems that need answering such as usability of input modes,

finding variables to adapt, and estimating user behavior. In this thesis, we have aimed

at defining ways to create adaptive systems that can adapt to the user’s cognitive

activity and update the system’s response accordingly.
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2.7.4 Multimodal Integration

In daily communication, all our input modes are coordinated perfectly, e.g., speech, lip

movement, hand gesture, and facial expressions. This is not the case with computers;

the inputs in MMIS are not designed to coordinate at all with each other. Unlike

humans, computers with an MMIS produce a challenge for integrating complementary

modalities to generate a highly cooperative combination. Many fusion techniques and

architectures were developed to integrate multi-modal inputs for joint processing [4].

In older multimodal systems, the data collected through various modalities are

processed separately and fuse in the end. Modalities with different characteristics

such as speech and gesture cannot be connected straight away. Therefore, to integrate

inputs with different characteristics, three different levels of integration, also known

as fusion levels, are proposed. These levels are signal level, features level, and

semantic level [139,140]. Table 2.3 summarizes these three fusion levels.

Table 2.3: Summary of three fusion levels [4]

Fusion level Signal-level
fusion

Feature-level
fusion

Semantic-level
fusion

Input type Raw signal of
same type

Closely synchro-
nized

Loosely coupled

Level of infor-
mation

Highest level
of information
detail

Moderate level of
information detail

Mutual disambigua-
tion by combining
data from modes

Noise/failure
sensitivity

Highly suscepti-
ble to noise or
failures

Less sensitive to
noise or failures

Highly resistant to
noise or failures

Usage Rarely used for
combining multi-
modalities

Used for fusion of
particular modes

Most widely used
type of fusion
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Signal level fusion

In signal level data fusion, the raw data from different modalities are combined. This

level of fusion is more appropriate for highly synchronized input modalities, such as

speech and lip movements, otherwise the performance of the system is affected. The

signals are combined in a vector form at a very early stage. The dimensions of the

vector are reduced by applying dimensionality reduction techniques (e.g. LDA, PCA)

and then the vector is forwarded to the recognition engine for the classification [4].

Feature level fusion

The problem with the signal level fusion is that it fails to model the fluctuations

and the asynchrony between the input modalities. One way to solve this issue is to

extract features from the signals and use the feature to combine the modalities. Fea-

tures based on, for example, transformations, probabilistic models, and information

measures can be used for fusion in this level [107].

Semantic fusion level

The semantic level fusion of input modalities uses common meaning representation

extracted from different modalities into a combined interpretation. Instead of working

on raw signals or features, the semantic fusion works on semantic information

extracted from individual modalities and combines the interpretation from each

mode. This fusion level has the capability to control loosely-coupled input modalities

such as speech and gestures [30]. Semantic level fusion has advantages over other

fusion techniques such as the multiple inputs do not have to coincide because each

modality can be recognized independently [3].

Independent classifiers have been used in semantic fusion level, and the final

decision is made by combining the partial outputs of unimodal classifiers. The

semantic level fusion provides the advantage of reducing computational complexity
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by training classifiers separately (O(2N)) instead of combined training (O(N2))

which decreases the computational complexity [141]. The semantic fusion approach

has been widely used for the coupling asynchronous input modes such as speech

and pen input or speech and gestures. It is easy to scale up the input modes and

vocabulary size in semantic level fusion because of the late integration of speech and

gesture modalities. In this thesis, we have used late integration of modalities for the

development of MMIS.

2.7.5 Frameworks for Input Information Fusion

To fuse the multimodal inputs, a framework is needed, and it is the most important

requirement in designing a multimodal system. The framework requires a time

stamp of individual inputs. In the case of speech and gesture inputs, these can

be used in a series or in parallel. A timestamp is an important flag to check the

starting and ending of a multimodal input [29]. Fig. 2.5 shows a typical framework

Gesture 

Recognition

Speech 

Recognition

Gesture 

Interpreting

Language 

Processing

Speech-

Gesture 

Integration

Application 

Environment

Input Analyzer

Output Designer
Application Information Database

Multimodal 

Manager

Figure 2.5: Framework for semantic level speech and gestures integration

for speech and hand gesture input at the semantic level. The framework has four

main parts: Input Analyzer, Multimodal Manager, Output Designer, and Application

Information Database [142]. The input analyzer processes speech and gesture in

parallel, and the results are represented in semantics that is given to the output
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designer block. The task of the multimodal manager is to exchange information

between the output designer and application information database for real-time

control. The problem with these kinds of architecture is the use of a homogeneous

programming language which can be difficult to use in some cases. To overcome this

problem, a multi-agent architecture is proposed [4] which uses multiple agents for

pooling the pre-semantic information from different sensors and integrates them into

a multimodal data structure.

2.7.6 Data Collection and Testing

In an MMIS, one of the most challenging tasks is to obtain the ground truth by

collecting and labeling data as these are error-prone and take a lot of effort and

time. Usually, in HCI, we rely on self-reported data from the user. For example,

in an emotion recognition application, the data used is mostly based on simulated

data by actors. Actors imitate certain emotions or perform conversations to generate

emotional reactions [143]. Asking someone to generate emotions while watching or

listening to something does not create the same authentic feeling. Real emotions, on

the other hand, are hard to control and record in a laboratory setting.

Collecting data is a challenging task because of the wide variability of possible

inputs. Usually, the researcher uses a small set of data that is available for training and

adds unlabeled data into it to make the classifier more robust. Adding of unlabeled

data for training needs a lot more care. Probabilistic models are used to deal with

this scenario [144]. Recently, deep learning algorithms have been widely used for

multimodal input classification [145,146].

2.7.7 Evaluation Measures

The main issue in multimodal interface design research is the evaluation. Various

measures such as efficiency, quality, user satisfaction, and accuracy are available in
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the literature to evaluate an interface. Usually, computational measures, such as

efficiency, are used because the interface will improve the interaction, task completion,

and decrease the complexity of the system. Task completion rate with respect to time

is one way to measure efficiency. Another measure is the number of actions the user

has performed to decide or solve a problem [34].

Another way to measure the effectiveness of an interface is to ask the subjective

opinion of the user through questionnaires. The questionnaires can ask the user about

user satisfaction, fatigue level, system compatibility, and easiness to use the system

[34]. The biofeedback signals such as EEG and ECG can also be used to determine

the system effectiveness by measuring the user’s emotional level or cognitive state. In

this research, we have presented a method to analyze the interface using EEG signals

by measuring the cognitive load and activity of the user.

2.8 Current Applications of MMIS

In the previous sections, we have discussed various types of modalities, fusion models,

data collection for training and testing, and evaluation of the interface. This section

will discuss some of the recent applications of HCI in a wide variety of scenarios,

including ambient spaces, mobile and wearable technology, virtual environments,

and arts.

Multimodal systems have been used in video indexing for detecting human be-

havior and expressions [147,148]. Virtual meeting rooms utilize multimodal systems

to record and model user behavior in real-time [149]. Behavioral analysis from

multimodal input is utilized in surveillance and intelligence applications [150,151].

Bradbury et al. [152] proposed an attentive kitchen concept named eyeCOOK, which

combines eye-gaze and speech commands to help non-expert users cook a meal. Mul-

timodal systems have been applied to various healthcare applications. Gestonurse is

a multimodal robotic scrub nurse that assist the chief surgeon by passing surgical
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equipment using speech and gesture modalities [6]. Fig. 2.6 shows the gastonurse

in a real environment. Nie et al. [153] present a health prediction system based

Figure 2.6: A prototype of the interface tested at an OR olong with FANUC LR Mate
200iC and Mayo standing with instruments [6]

on multimodal observation. Smart home concepts also utilize multimodal inputs to

record various activities of the user [154,155].

Lv et al. [156] developed an MMIS that utilizes the hand and foot input for

interaction with handheld devices. Input modalities are hand and foot, which are

processed to generate a coordinated output. Another team of researchers at the

University of Michigan developed an MMIS for image editing known as PixelTone

[7]. PixelTone uses speech and direct manipulation to edit images, utilizes natural

language to express desired changes and sketches for region identification for the

corresponding changes. Fig. 2.7 shows a three step procedure to change the color of a

shirt in PixelTone. Cohen et al. [144] designed an MMIS titled Sketch-Thru-Plan (STP),

Figure 2.7: Changing the color of a shirt with PixelTone a) select the person’s shirt
and say "This is a shirt." b) Tell to "Change the color of the shirt," and c) PixelTone
offers a slider to change the colors [7]
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which is a multimodal interface for command and control. The system recognizes

military jargon. The users of STP can give labels, reposition them, and draw symbols

on a digital map. Nam and his team [157] developed a human-machine interface

for controlling a humanoid robot called GOM-Face. The inputs to the interface are

three electric potentials recorded from face: glossokinetic potential (GKP) which

is electric potential responses generated by tongue movement, electrooculogram

(EOG) which is the potential between the front and the back of the human eye, and

electromyogram which is electrical activity of muscles, to help persons with limb

motor disabilities.

Smartphones are the most prominent example of multimodal interface systems.

Today’s smartphones have the capability to interact with speech, touch, gesture, gaze,

and facial inputs [158]. Virtual and augmented reality apps open the ways to unlim-

ited possibilities of applications, and with the multimodal inputs, these applications

provide a very natural feeling of interaction [159,160]. A real-time strategy game in

which the agents can be instructed with speech and gesture commands is described

in [161]. In another application, an augmented reality dialog interface has been

present that enables the user to control a robot’s verbal and non-verbal behavior

accurately [162]. A method of designing an intelligent interface for people with

functional disabilities has been presented, which can combine visual, sound, and

tactile multimodal inputs in a brain-computer interface to provide highly adaptable

and personal services [163].

With the advancement in multimodal interaction and visual technology, the arts

industry has produced some of the most exciting applications. Multimodal systems

to play music [164–166], generate avatars [167, 168], interacting with objects in

museums [169, 170] are some of the applications in the art industry. MMIS has

been used to improve the lifestyle of people with disabilities. Speech-activated smart

wheelchairs [171,172], brain-computer interfaces [173,174] and interfaces that use
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eye blinks or eyebrow movements [175] are some examples that provide accessibility

to disabled people.

MMISs are used in every aspect of computing that involves interaction with hu-

mans, objects, and the environment. Although MMISs may not totally replace the

traditional interaction systems, they have promising applications that can revolution-

ize the entertainment, games, art, and health-care industries. In this thesis, we have

presented an MMIS for industrial product design that has the capability to model 3D

objects using speech and gesture inputs.

2.9 Challenges in Multimodal HCI

Computing field has seen some significant developments in the area of Human-

computer interaction in recent decades. The touch-based interfaces have become a

vital part in smartphones these days, and with multiple visual sensors on the device,

researchers are continuously looking for new ways to interact with the device. Despite

the advancements in technology, there are challenges and research problems that

need addressing. Each modality itself is an active field of research such as gesture

recognition, speech recognition, natural language understanding, activity recognition,

haptics, user modeling, and context understanding. Deep learning algorithms have

provided substantial support to the recognition algorithms, but much more research

is needed in improving performance, personalization, integration, and adaptability.

In addition to the challenges mentioned above, we need to understand the user-

dependent issues that affect the performance of the multimodal interfaces. The study

of the cognitive load of the user when interacting with a multimodal system and the

relationship of cognitive load with multiple modalities need further investigation

[176]. In this thesis, we evaluate the MMIS using the traditional questionnaire-based

analysis and present a new method to estimate the user’s cognitive load and activity

using EEG signals.
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2.10 Conclusion

In this chapter, the research literature related to the multimodal interface systems

has been presented. We presented an overview of multimodal interaction and the

history of some of the earliest MMIS. The MMIS provide the advantages of robustness,

adaptability, improvement in task completion rate over a unimodal system. The

evaluations show that multimodal interfaces improve the task completion rate by

only 10% [1], but in the case of error handling and reliability, multimodal interfaces

reduce errors by 36% compared to unimodal interfaces.

Speech and gestures are the most widely used input modalities, along with touch

and pen-based inputs. Most of the work in multimodal interaction is focused on input

recognition technologies such as gesture, speech, and facial expression recognition. A

few studies focus on the output modality, channel of sensory output between a human

and a computer, which is also a key element of human-computer interaction [79]. The

most popular sensors for gesture recognition purpose are Microsoft Kinect and Leap

motion [103]. Biofeedback devices are catching the researcher’s interest because

these devices provide an indirect representation of the user’s emotional and cognitive

state. The signals such as EEG and ECG can determine the system effectiveness by

measuring the user emotional level or cognitive state.

Multimodal inputs are integrated at the signal, feature, and semantic levels. The

recent applications have used semantic level integration because it is a late integration

process which gives the advantage to update the modalities and vocabulary quickly.

Data collection and testing are one of the essential parts, and they require more

attention because most of the time, data is collected in a controlled environment.

The next important part is the evaluation of the interface, which can be qualitative

and quantitative. In the qualitative evaluation, questionnaires are widely used. For

quantitative analysis, the measures such as task completion rate, the average time

taken to complete a task are used.
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To our best knowledge, the literature on quantitative evaluation of an MMIS is

limited, especially in 3D modeling applications. We have presented an MMIS for the

industrial product design that has the capability to model 3D objects using speech

and gesture inputs. The effects of using speech and gesture in modeling a 3D object

are the focus of this thesis. In this research, we have used a Leap Motion sensor for

gesture recognition. We have presented a method to analyze the interface using EEG

signals by measuring the cognitive load and activity of the user. We evaluate the

MMIS using the traditional questionnaire-based analysis and present a new method

to estimate user cognitive load and activity of the user using EEG signals.
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Chapter 3

Human Cognition,

Psycho-physiological Analysis &

Functional Brain Networks

This chapter discusses human cognition along with a detailed description of pro-

cessing, memory, attention, and decision making. It further explains the models of

cognitive processing and measures used in cognitive processing. In the last section of

this chapter, design expertise and novice/ expert differences are discussed. In this

chapter, we also review psycho-physiological signal analysis, including a detailed

description of emotional and cognitive activities. The chapter introduces measure-

ment methods such as ECG, EEG, and GSR and the advantages of EEG over other

neuroimaging tools for cognition research. It further reviews the relevant statistical

measures to calculate connectivity between psycho-physiological signals and brain

regions and provides a detailed description of the application of graph theory and

complex network metrics for the analysis of FBNs. The focus of this review chapter is

to find the answers to the following research questions:

RQ 2.1 Can we use psycho-physiological analysis in an HCI system?
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RQ 2.2 Which EEG parameters can be used for evaluating the cognitive activity?

The review has been published as a paper, titled as "A Survey on Psycho-Physiological

Analysis & Measurement Methods in Multimodal Systems" in Multimodal Technologies

and Interaction Journal [11].

• Baig, Muhammad Zeeshan, and Manolya Kavakli. "A Survey on Psycho-Physiological

Analysis & Measurement Methods in Multimodal Systems." Multimodal Technolo-

gies and Interaction 3.2 (2019): 37.

3.1 Cognition

Cognition is a combination of many complex processes which help a human in

acquiring knowledge and understanding [36]. Every cognition process contains

different levels which can be conscious or non-conscious. For example, in reading,

the visual perception comes into action which follows a bottom-up approach at a

non-conscious level such as orientation from the vertical alignment of each of the

letter parts, followed by pattern matching to make words from letters and then to

make sentences. On a higher level of non-conscious processing, these letter shapes

are matched with the sound of the speech along with other linguistic processes that

run in parallel with memory processes such as syntax and semantics. After all these

processes, the meaning is assigned and becomes available to consciousness and

further manipulation [177].

In cognition, the processes can be divided into conscious and non-conscious level

processes. The conscious processes are those on which humans have a certain degree

of freedom or control. The processes that occur naturally and automatically are

called non-conscious processes [36]. Some processes are purely non-conscious such

as sound perception because it is impossible not to hear the surrounding sound.

Actions such as decision making are found to be purely conscious actions with some
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exceptions [178]. A general understanding is that the non-conscious actions that are

performed by humans most of the time can be examined through animal models [179].

On the other hand, the conscious actions are hard to examine because these involve

higher-order human cognition and direct experimentation of the human brain, which

is prohibited due to ethical considerations. Thus, other non-invasive methods are

used to study the basic cognitive processes.

3.1.1 Memory

Memory, in its literal term, means the capacity to retain and retrieve information

about the past. Memory is formally defined by Reber [180] as "the mental function

of retaining information about stimuli, events, images, ideas, etc. after the original

stimuli are no longer present...the hypothesized ’storage system’ in the mind/brain

that holds this information...the information so retained". There is a general under-

standing that memory is a combination of functional units or independent sub-types.

Some of the sub-types are described below:

Short-term memory (STM)

Short-term memory (STM) stores the recent events. For example, in a stimulus

remembering experiment where participants must see and memorize a series of

stimuli (digits, pictures, letters, etc.) and after a short amount of time, they need

to recall as many stimuli as they can [181], the memory that is in use is STM. The

average capacity of STM is seven stimuli, and a normal human can remember 5 to 7

stimuli [182]. The STM could hold information for up to 5 seconds unless rehearsed.

It completely degrades in 20 seconds [183].
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Figure 3.1: The Working Memory Model Components [8]

Working memory (WM)

Working memory (WM) is a temporary storage area, just like STM, which act as

a holding station for further processing, and the information may or may not be

transferred to long term memory. A model related to working memory was proposed

by Baddeley and Hitch [8] that divide the working memory into three sub-components,

also known as the tripartite working memory model:

1 the visuospatial sketchpad (VSS) for storing temporary visual information

2 the phonological loop (PL) for the temporary storage of auditory information

3 the central executive (CE) to direct attention towards the information that will

be processed further by working memory.

Fig. 3.1 shows the working model presented by Baddeley and Hitch in 1974 [8].

There has been several modifications and refining of working memory models that

help to understand the cognitive phenomena better [184].
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Long term memory (LTM)

When you recall an event from the past, you are using long-term memory (LTM).

Although LTM ties together with STM and WM processes, it is considered as a

separate process involving different brain areas and cellular processes [185]. LTM

is constructed through the process of long-term potentiation. In the process of

potentiation, a small neurons network encodes a memory event. The connection

between neurons become increasingly stronger through the unconscious process of

consolidation, which means more neurons firing together.

There are some other subcomponents of memory defined in the literature. One

of these components is episodic memory, which is the memory of a specific event

or episode. For example, if a person has attended a party and some unusual event

happened at that party, that unusual event is an example of episodic memory. Ac-

cording to researchers, the episodic memory is not encoded in totality, it is tagged

with a salient signpost and reconstructed on the run with these signposts [181].

The problem with this memory is that it has a deconstructive/re-creative nature

and is susceptible to both failure and external modulation of thought suggestions.

Another component of memory is procedural/ motor memory, which is for motor or

procedural actions such as driving a car and riding a bike. These actions are hard to

master at first but eventually become over-learned skills, which then can be entirely

at non-conscious level [186].

3.1.2 Attention and Decision Making

Attention typically means the focus of neural resources to a specific feature in a scene

that becomes the center of cognitive processing. In contrast, distraction occurs when

attention loses focus due to internal forces (such as fatigue or boredom) or due to

non-task relevant information. Attention is considered a higher order cognitive action

but most of the time it is affected by low order processes. Decision making is also a
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higher order cognitive action that requires both memory and attention for successfully

making a choice, forming a conclusion, or reaching a conclusion. Executive processes

integrate and organize all low-stream information into a cohesive mental model

capable of conscious manipulation [36]. These processes are not purely conscious

processes and often operate at an unconscious level with functional manifestations

[181]. These processes can influence judgment and decision making [187].

3.1.3 Theories of Human Cognition

All modalities such as speech, gesture, and facial expressions are sources of acquiring

and producing information for humans. The human brain has the capability to process

sensory data in parallel that comes from the central nervous system, other parts of

the brain, muscles, and glands. The brain has a highly dedicated interconnected

structure for integration and diffusion of multi-modal sensory data. The argument

to support this statement is that the neural processing in language comprehension

does not come from verbal semantics only, but also from a more general domain

of cognitive processes. The same integration results have appeared for speech and

gesture interconnection [188].

Dick et al. [189] studied the influence of gesture activity on semantic information

processing by examining functional Magnetic Resonance Imaging (fMRI) of associ-

ated brain regions. They found a distributed pattern of neural activity in discourse

comprehension as well as in motor perception. These distributed patterns are gener-

ated when a user perceives hand movements while someone is speaking. This result

confirms that the multi-modal perception and cognitive structure in the brain can

process multi-modal information collaboratively.
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Figure 3.2: The 4-D multiple resource model [9]

Tripartite Working Memory Model

A Tripartite working memory model for MMIS has been proposed by Baddeley et

al. [190]. The model has an independent processor called the central executive

which works together with three other slave systems (the phonological loop, the

visual/spatial sketchpad, and the episodic buffer) in a coordinated and synchronous

manner. Baddeley’s working memory model gives a general understanding of how

multi-modal information is processed in human cognition. It also suggests that

multiple resources can be used for one production. For example, gesture input is

produced by visual/spatial components, whereas speech is generated by phonological-

loop components. The drawback of Baddeley’s model is that, for integrated cognition

processes, it is hard to explain, as both visual/spatial and auditory verbal processes

are involved in a multi-modal production, such as speech and gesture, to explain an

object.

55



Chapter 3. Human Cognition, Psycho-physiological Analysis & FBNs

Multiple Resource Theory

It is comparatively easy to explain multi-modal tasks with Multiple Resource Theory

(MRT) [9]. The MRT works on the principle that there are multiple limited resources

available for real-time information processing. In MRT, when a task described by

modally-organized central finishes, then the system is taxed. The central resources

can be utilized by multiple tasks at the same moment, but they have a limited

capacity, and tasks can interfere with each other when using the same resources. To

overcome performance degradation when multiple tasks used the same resources, a

four-dimensional MRT model has been presented by Wickens and is shown in Fig.

3.2. This model analyzes the resources necessary for completing multiple tasks. If

a cognitive process with multiple tasks requires the same the resource usage, then

the interference is predicted in advance and there is no interference in a single task

because of the sequential processing within a single task [9]. Although MRT provides

a useful insight into interference prediction, there is less information regarding the

shared resources.

Human Process Model

Another model that has been built upon the Wicken’s model is known as the human

processor model (shown in Fig. 3.3) and incorporates cognitive, perceptual, and

motor processors along with other processors [10]. It basically divides the information

processing into three subsystems (cognitive, perceptual, and motor processors) and

each subsystem has its own functionality. The main reason for using the human-

processor model is that it can calculate the cycle and decay time for each sub-processor.

This estimated value allows the designer to estimate a performance with respect to

the time taken by a user in performing a task.
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Figure 3.3: Model of the Human Processor [10]

Cognitive Load Theory

Another well-known theory that has been used in the literature to explain multi-modal

processing for task performance improvement is cognitive load theory, which tries to

decode the mental effort along with the assumption that the brain’s working memory

has a limited capacity [191]. Multiple modalities not only provide performance

superiority to users compared to a single modality, but users also prefer to use multiple

modalities, if present. Cognitive load theory interprets multi-modal processing to a

set of modality-specific working memory resources. It has also been seen that the user

adjusts modalities in a complicated task. For example, the user prefers to interact in

multiple modalities when a difficult task is presented, and it has been observed that
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this change of modality allows the users to handle their cognitive load [192].

A study by Oviatt et al. [69] suggests that an MMIS design that minimizes the

cognitive load can free mental resources and improve student performance in ed-

ucational applications. Morsella and Krauss [193] performed a study in which a

user must describe a previously seen object from memory. The analysis shows that

the subjects use gestures more than verbal communication in describing the object.

When the object is difficult to describe, and gestures are limited, then users describe

the object using a non-fluent speech. This suggests that gesturing, while speaking can

reduce the cognitive load of the speaker in various practical scenarios [194]. Cook

et al. [195] found that gesturing is quite common when speaking even for a fluent

speaker. Their analysis suggests that gesturing in meaningful ways can reduce the

working memory load, but not if the gestures are in rhythmic synchrony with speech

(like beat gestures).

The human brain accepts inputs through multiple modalities and processes the

information in parallel and in a coordinated manner. The same kind of architecture

can be applied to design a multi-modal interface system that allows the users to use

various modalities (speech, gesture, facial expressions, and gaze) in a natural and

efficient way for communicating with the machine. However, there are individual

differences in cognitive processing. Some studies state gender differences in verbal,

quantitative, and visual cognitive activity [196]. For example, women are better in

the verbal fluency test, whereas men are good at visual/spatial ability tasks. Males

are also proven to be better in arithmetical computations, reasoning, and spatial

cognition tasks [196]. Same is the case with handedness and expertise.

3.1.4 Models of Cognitive Processing

Functions of the human brain based on localization were proposed in the late 1700s,

but the relationship between human activity and the neurons was established after
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the development of neural activity measuring techniques, such as EEG [36] which

was developed in 1924. With the EEG, an association between activity and specific

brain regions became possible, and a variety of theories of cognitive processing were

proposed. Some of these theories are explained in the following subsections:

Modularity Theory (MT)

The modularity concept was explained by Chomsky who stated that the only way to

acquire language was having infants born with a language acquisition device, such as

an innate genetically determined module with a function of learning to speak [177].

The best explanation of the theory of modularity was given by Fodor [197] who

stated that the cognitive processes such as perception and language are the result of

functions of specific brain modules independent of the global central executive. The

central executive organizes the interactions of each module through a mathematical

approach governed by syntax.

However, these theories lack empirical support, since none of them has associated

a specific brain structure with a specific module [36,198].

Information Theory (IT)

After Fodor’s theory [197] the information theory [181] (IT), was proposed. IT

is a way of critical thinking and reasoning processes in the brain that involve in-

put, computation, and output. The IT models in contemporary cognition research

are considered oversimplified and do not account for individual differences [199].

Despite their simplicity, a number of models have been proposed accounting for

human abilities such as Executive Process-Interactive Control [200], ACT-R [118],

and PRODIGY [201].
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Network Theory (NT)

Network Theories, also known as the Connectionist theories, are a more recent set

of theories compared to Modularity Theory (MT) and Information Theory (IT). The

MT lacks ecological validity, whilst IT is an oversimplified approach. Generally, the

network theories propose a new function for cognition. The new function is the

result of the connection made by individual neurons to form small assemblies which

then interact with other neuronal assemblies [202]. The network theory presents

a mathematically complex system in terms of graphs and networks that consist of

vertices and edges. The edges show the connection between the vertices. The graphs

or networks are generated using connectivity/ synchronization measures such as

correlation, coherence, mutual information, and Granger causality/prediction [41].

The researchers usually utilize EEG or fMRI to construct the connectivity matrix for

showing the relationships between the brain regions [203]. In NT, individual neurons

do not need to be function specific as modular theories rely on. Instead, neurons can

perform a general function such as depth perception or sound localization. Individual

neurons could contribute to as many functional networks as it has connections to other

neurons. In the action of neurotransmitters, individual neurons could be contributing

to as many as 100 different networks [204], which can increase to thousands when

dendrites and spines play an active role [205].

Among NT, Small world network theory (SWNT) is quite popular in describing

the human brain function. In ’Small-world’ networks, every network contains many

short paths through which every vertex can be reached from every other vertex, as

can be seen in many real-world networks [41, 206]. The matrices obtained from

neuroanatomical databases show that the functional brain networks in humans

exhibit large clustering coefficients and short path lengths like small-world net-

works [207]. In another factorial study using fMRI, 90 functional brain networks

were constructed in cortical and sub-cortical regions, which showed that these net-
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works were small-world and economically efficient in providing information about

human information processing [206].

Measures of Cognitive Processing/Function

Measuring cognitive processing or behavioral outcome from a neural activity is not

a straight forward task. The neuroimaging techniques such as EEG and fMRI can

provide an objective measure of neural activity. There are several tasks that can be

used in experimental settings which have a vast literature to support their reliability

and validity. The most common tasks are Stroop task [208], memory task [209],

N-back task [210], distractor task [211], and Go/No go task [212].

In Stroop task, participants are shown a series of word stimuli; each word is a

color name with some words displayed in the same ink as the color name, and some

are not. The participants can be asked about color meaning irrespective of color ink

or color ink irrespective of color meaning [208].

In memory tasks, participants are required to remember something about the

presented stimuli. This may be instructions before the task commencement [209]. For

example, in a driving simulator, a participant can be presented with complex auditory

stimuli, and the participants are asked to identify whether the audio instruction is

true or false. The task can be made more difficult by introducing other parameters to

force the participant to use their memory.

The N-back task is a specific type of retrospective memory task in which partici-

pants are required to hold a specific type of stimulus in the working memory until a

response is required after the presentation of "N" other stimuli [210]. For example,

a participant is asked to respond only once in a one-back task wherein 5-back task;

participants are required to give the response on the basis of the stimulus presented

before five stimuli.

Distractor tasks are used in addition to some other tasks to make it more challeng-
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ing using distraction [211]. The Go/No go tasks are about reaction time, in which

participants need to press buttons when a target stimulus is presented and ignore all

other distractor stimuli [212].

3.2 Psycho-physiological Analysis

Psycho-physiology is a branch of physiology that deals with the relationship between

psychological and physical phenomenon. For psycho-physiological signals recording,

three kinds of measure; reports, reading, and behavior are used. The reports evaluate

participants introspection and self-rating about the psychological and physiological

states [35]. Questionnaires are most commonly used to record the self-rating. The

merits of the report are that it is a representation of user’s subjective experience;

however, the demerits include human errors such as bias response, misunderstanding

of question or scale. [213]

Reading corresponds to the physiological responses that are measured via an

instrument to read bodily events such as heart rate, body temperature, muscle tension,

brain signals, and skin conductance [35]. The benefit of using these measures is that

they provide an accurate and subject independent response; however, they are very

prone to physical activity and situation [214]. The behavior measure involves the

recording of observations and actions such as facial expressions and eye movements

[35]. These responses are easy to measure and are mostly used in attention and

emotions related experiments [215,216].

In psychophysiology, a complex and interactive analysis of bio-signals is usually

required. The application of psycho-physiological analysis ranges from stress to

lie detection. Often, researchers use it to monitor the effect of an experiment on

the user by measuring the short-term affective responses (e.g., feeling, mood, and

disposition) [217]. Affective responses are considered as an instinctive state of mind

based on circumstances and mood. These responses are spontaneous and last for a
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few minutes, which makes them hard to recognize. The classical affective states used

in the psycho-physiological analysis are anger, contempt, disgust, fear, happiness,

neutral, sadness, and surprise.

The researchers have used the psycho-physiological signals to estimate the cogni-

tive state of the participants. These signals have been used to analyze low order (e.g.,

simple visual inspection) and high order cognitive processes (e.g., attention, memory,

language, problem-solving) [218]. Different signal sources are used in the literature

for psycho-physiological analysis such as Electrocardiogram (ECG), Skin conductance

(GSR), Electroencephalography (EEG), Electromyography (EMG), respiration rate

(RR), Electrooculogram (EOG), Skin temperature (ST), and facial expression. Some

of these measures are mentioned in the next section.

Table 3.1: Commercially available psycho-physiological signal measuring devices

Biofeedback signals Commercially available devices
ECG Alivecor System [219], Biopac [220], EPI

mini [221], Omron ECG [222], Ambulatory
ECG [223], Quasar sensors [224]

EEG Mindwave headset [225], Flex sensor [226],
Emotiv Headset [227], Neurosky Headset
[228], Muse headband [229]

EMG Neuronode [230], Sx230 [231], Trigno mini
sensor [232]

EOG Google glass [233], SMI eye tracking
glassess [234], ASL eye tracking glasses
[216]

GSR Empatica [235], Shimmer 3 [236], Grove-
GSR [237]

ST YSI 400 series temperature probe [238],
TIDA-00824 by Texas Instrument

RR SA9311M [239], TMSI respiration sensor
[240]

Various novel technologies have been used in the past to design electrodes for

recording the above-mentioned psycho-physiological signals. These technologies

have been upgraded from wet to dry electrodes with silver/silver chloride as the

most commonly used plating material for these biofeedback sensors. Apart from

63



Chapter 3. Human Cognition, Psycho-physiological Analysis & FBNs

silver/silver chloride, gold, aluminum, stainless steel, a mixture of some other metals

such as nickel and titanium are also utilized [241] in sensors. The wet electrodes

require an electrolytic gel to increase the conduction but cause discomfort to the

participants. Thus, for applications that involve real-time recording preference was

given to the dry electrodes [242]. A list of some commercially available measurement

devices for recording biofeedback signals has been given in Table 3.1.

3.3 Measurement Methods

3.3.1 Electrocardiogram

The electrocardiogram (ECG) signal is a measure of electric potential recorded from

the skin. The rise and fall of the signal identify different polarization levels of the

heart over each heartbeat. The heart rate is measured by calculating the distance

from R to R point (peak to peak), as shown in Fig. 3.4. The distance increases with

a decrease in heart rate. One drawback of using ECG to find a heart rate is that

sometimes it becomes uncomfortable because electrodes are in direct contact with

the skin [243].

Figure 3.4: An R-R interval time series example [11]

3.3.2 Photoplethysmography

Photoplethysmography (PPG) is a low-cost optical device used to detect changes in

blood volume in the microvascular bed of tissue. It is a non-invasive way of measuring
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blood volume changes. The PPG signal is comprised of two parts; pulsating (AC)

signal that measures the changes in blood volume and it is synchronous with cardiac

activity, and a slowly varying (DC) signal which contains various low frequencies

used to measure the respiration and thermoregulation. These days, it is the most

common way of measuring heart-rate, oxygen saturation, and blood pressure [244].

PPG has been used in HCI and Human-robot interaction (HRI) for measuring user

experience in terms of emotion and stress [245].

3.3.3 Heart Rate Variability

Heart rate and Heart Rate Variability (HRV) are among the widely used features in

detecting emotion states [246]. Autonomic Nervous System (ANS) activity can be

effectively derived from the heart rate because the sympathetic and parasympathetic

nervous systems govern ANS activity. Stress or activation can be related to ANS

because, in a state of stress, the Sympathetic Nervous System (SNS) accelerates the

heart rate. In the case of relaxation or rest, the heart rate returns to normal because

of the Parasympathetic Nervous System (PNS) [246]. Heart rate is the number of

heartbeats per min (bpm). On the other hand, HRV is the sequence of time intervals

between heartbeats.

SNS activity is directly related to heart rate; an increase in heart rate is due to

an increase in SNS activity. The opposite is the case with PNS; a decrease in heart

rate triggers PNS activity which corresponds to the rest or relaxation states. There

are some other features that can be derived from the acceleration and deceleration

periods including the magnitude and slope of that period, the amount of time taken

by these periods, and the mean difference over the baseline [246].

On the other hand, HRV is also sometimes useful in calculating the emotional

state. HRV can be used to explain both time- and frequency-domain metrics. This

metric can be simple, such as the standard deviation of successive heartbeats, to
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some relatively complicated metric, such as short-term power spectral density [247].

A simple, robust metric such as standard deviation is sometimes preferred with a

short time window because of the limited information [248]. Other metrics can be

the maximum and minimum difference between regular R-R wave time interval in

a defined window, the successive normal R-R interval difference percentage that is

greater than 50 msec (pNN50) and root mean square difference between consecutive

R-R interval [249].

With the advancement in signal recording and processing algorithms, complex

features such as short-time Fourier Transform (FT) or Power Spectral Density (PSD)

of heart rate are becoming the more useful tools for analyzing HRV. The PNS activity

can modulate the HRV in frequencies of 0.04 to 0.5 Hz. On the other hand, the

SNS activity has functional gain below 0.1 Hz [247,250]. The spectral domain can

function as best in discriminating the SNS and PNS activity influence on HRV, and

this is often known as sympathovagal balance.

One easy step to calculate the sympathovagal ratio of all heart rate activity is to

measure the ratio of the energy of the lower frequency range (0.04- 0.1Hz) with

the total energy in the band (0.04-0.5Hz). Some research suggests that it can also

be measured by comparing the energy of the low-frequency band with a variety of

combinations of low, medium, and high-frequency bands energy. [249].

Every HRV dependent measure is robust to artifacts such as noise, outliers and

abnormal beats and difference in SNS vs. PNS activity. In accession to selecting a

suitable metric, scientists and researchers ought to also select the acceptable time

frame for heart rate series over which the metric needs to be calculated. The quality

of heart rate series and the variable of interest will define the selection of a suitable

metric from the cardiac signal. Generally, 5 minutes time window is recommended

for an average heart rate of 60 bpm (beats per minutes) [251].
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3.3.4 Skin Conductance

Skin conductance is the measure of a person’s sweat level in glands. Normally, the

skin is an insulator but its conductance changes when there is sweat in the sweat

glands. Skin conductance is sometimes referred to as Galvanic Skin Response (GSR).

Skin conductivity is a non-invasive method to detect sympathetic activation, which is

sweat-gland activity [252]. Karl Jung used GSR for the first time to measure "negative

complexes" in a word-connection experiment [253] which was further used as a key

component in "lie detector" tests [254]. Skin conductance has been found to have

a linearly varying property with respect to emotional arousal. It has been used to

classify different states, such as anger and fear. It is also utilized in detecting stress

level in experiments that are performed on anticipatory anxiety, and stress, while

performing a task [255].

Skin conductance or galvanic skin response can be measured at any place on the

skin. However, the highly active sweat glands for emotions are available on the hand’s

palm and the foot’s sole [255]. In experimental studies, the middle and index finger’s

lower portion is the typical placement for skin conductance electrodes. Usually, a

conductive gel is placed on the skin to ensure good conductivity of electrical signals.

For measuring skin conductance, the voltage change is measured, while injecting a

small amount of current into the skin [256]. By continually monitoring the change

in potential difference across the electrodes, the skin conductance can be measured

continuously.

For studies that involve movements, alternate electrodes locations are used be-

cause hand placement is sometimes found to be inconvenient, and the placement

also distorts the signal when a person is moving. Some researchers have measured

conductivity even through clothes and jewelry [257,258].
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Figure 3.5: Electroencephalography (EEG) [12]

3.3.5 Electroencephalography

An electroencephalogram (EEG) corresponds to the electrical activity of the brain

and is observed by measuring the electrical voltage generated by neurons (in µV).

Electrodes are placed on the surface of the skull to record an EEG signal. The activity

is either transmitted through a wired medium or wirelessly to a computer where

it can be seen in the form of graphs for further analysis, as shown in Fig. 3.5.

Analysis of EEG signals is a vast field with extensive research going on in the fields of

neuroscience and psychology. The first EEG signal was recorded in 1924, almost 100

years ago, by Hans Berger [259] and now it is one of the important diagnostic tool

for confirming epilepsy [260], distinguishing between coma and brain death [261],

analyzing sleep patterns/ disorders [262], and identifying other brain diseases such

as Alzheimer [263] and Brain hemorrhage [264].

Despite the recent advancement in the field of brain imaging such as fMRI, EEG is

still an important tool in investigating brain functions and disorder. EEG is preferred

over fMRI when the temporal resolution is in the order of seconds [36]. The other

reasons for the popularity of EEG are the portability, effective artifacts removal

techniques, no noise, no invasive radioactive tracers, non-invasive portable electrodes
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and cost (just few hundred dollars for modern systems) [36]. A full EEG headset

comprises more than 128 channels/electrodes; however, some experiments use fewer

electrodes in neurofeedback practice. Experimental studies have shown that the EEG

has the potential to differentiate positive emotional valence from negative emotional

valence, measure cognitive activity, and identify motor imagery movements.

The EEG signals can also identify different arousal levels. During an experiment

that involved walking, the EEG can be considered as only a raw estimate of arousal

level, but new advancements have the ability to change this concept [37]. The

pre-frontal cortex (PFC) region of the brain seems to represent emotions such as

anger [265]. James and Cannon [265] gave a model of the combined working of the

mind and body in processing emotion for the first time.

EEG Frequency Bands

Most of the time, it is hard to identify abnormal activity by simply looking into the

EEG signals. The raw EEG signal is decomposed into various components based on

frequency bands to get a deeper understanding of the underlying activity. These

frequency bands are delta, theta, alpha, beta, and gamma frequency bands [266].

Delta band: Delta band is a low-frequency band which ranges from 0.1 - 4 Hz

and displays the maximum amplitude among the five bands. Delta band is normally

associated with sleep activity, i.e., different stages of sleep [267]. In the literature,

delta band activity has been used to distinguish between coma and brain death [268]

and anesthesia depth [269].

Theta band: Theta band ranges from 3.5 - 8 Hz and normally relates to drowsiness

(sleep or focus state) in adults [270]. The other cognitive functions that are also

associated with theta-band are response inhibition [271], memory performance [270],

attention deficit hyperactivity disorder (ADHD) [272], and forms of schizophrenia
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[273].

Alpha band: The frequency range of 7.5 - 13 Hz lies under alpha band waves.

The alpha band activity is seen in the occipital lobe in resting state with eyes closed,

attenuated when eyes open [274]. There are many cognitive functions associated with

the alpha band activity such as language comprehension [275], error processing [276],

motor cognition and interaction [277], working and long-term memory [278], and

task performance [279].

Beta band: Beta band activity is a low amplitude and normally lies between 13

- 30 Hz. Beta band activity usually relates to alertness or thinking state [270].

It is commonly used in many emotional processing algorithms [280] as well as

sensorimotor movements [281]. Other associations of beta band includes Dementia

and Parkinson’s diseases [282], drug use/abuse [283], obsessive-compulsive disorder

[284] and ADHD [272].

Gamma band: All frequencies above 30 Hz are considered in the gamma band.

Gamma band activity is mostly observed in full consciousness and dream phase

sleep [285]. Gamma band activity is thought to represent the coordination of various

sub-order cognitive functions. Language processing, visual perception, and atten-

tion, short-term memory processing, multimodal processing are the basic cognitive

processes where gamma band activity can be observed [286].

3.3.6 Facial Input

Some researchers have worked on recognizing emotions by considering facial features.

One of the most widely used device for this purpose is MS Kinect. Kinect lets us

track facial emotions by taking advantage of Kinect SDK API. Indeed, Kinect can

detect and track the face orientation and position; it also detects eyebrow positions
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and mouth shape in real-time. The Face Tracking SDK can be used to identify facial

expressions [287].

3.4 Latest Research in Psycho-physiological Analysis

Psycho-physiological signal analysis has shown promising techniques for measuring

valence and arousal level for capturing the emotional and mental state. Self-reported

data interrupt the flow of interaction and does not necessarily show the actual state

of the user. The psycho-physiological measures help uncover the ground truth. The

main problems with the psychological measures are complex equipment setting,

signal analysis, and controlled environment which restrict the participant’s experi-

ence of the interaction in many ways. Nevertheless, the advantages are far more

than the disadvantages of psycho-physiological analysis [288]. Psycho-physiological

analysis has been used in the literature to recognize emotions or affective states as

well as cognitive activity, but most of the research is focused on affect recognition.

In the remaining section, we will give an overview of recent trends in the use of

psychophysiology in HCI.

3.4.1 Emotion/ Affect Recognition in HCI

The research in affective phenomena focuses on detecting emotions, feelings, mood,

attitude, and temperament. A range of algorithms and techniques are available in

the literature to detect emotions using different modalities. The first stage in these

techniques is to generate the affective signals. This can be done in several ways,

such as by watching videos, looking at images, listening to songs, and performing a

number of tasks.

Our thoughts, feelings, and behavior are linked with emotions and therefore have

a direct effect on decision making and thinking [289]. There are many definitions
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to describe primary and secondary affective states, but there is no uniform set. Six

basic emotions used by many researchers are anger, joy, sadness, disgust, fear, and

surprise, as recommended by Ekman [215]. Another model that has been used widely

to define emotions is the wheel of emotion proposed by Plutchik [290]. In the wheel

of emotion, there are eight emotions. Six of those emotions are the same as defined

in [215]. The other two emotions are anticipation and acceptance.
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Figure 3.6: Arousal-Valence Space as described by Russel et al. [13]

Arousal and valence dimensions have been used by psychological researchers

to model emotions in 2D, as shown in Fig 3.6. In an arousal-valance model, the

arousal can be "active", or "passive" and valance can be "positive" or "negative" [13].

Lang [291] labels individual pictures based on an arousal valence space which is

further converted into a non-verbal picture assessment called Manikin SAM [213].

Their self-assessment is used widely by advertising agencies and product designers
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to record affective experiences. The 2D arousal-valance model to define emotion is

undoubtedly the most common model. A database named the International Affective

Picture System (IAPS) is formed based on this model [292].

Emotion/affect recognition is a fundamental tool for the evaluation of HCIs,

and the research is mainly focused on recognizing, interpreting, processing, and

simulating human behavior and feelings [293]. Different research studies show that a

variation in physiology is highly correlated with a variation in emotions [294]. Table

3.2 shows a comparison of some emotion recognition techniques along with stimulus

and evaluation methods. For instance, a person’s smile is mapped in positive valence;

on the other side, displeasure relates to the negative valence.

Scheirer et al. [295] recognize frustration by classifying galvanic skin response

and blood pressure. Klein et al. [296] also experiment with frustration by forcefully

frustrating the subject using a game that involves text-based assistance for the user.

The results of this experiment show that the interaction time increases signifi-

cantly when textual assistance is provided, in contrast to when no assistance

is given. Research studies also support the hypothesis that different stimuli can be

used to generate different emotions [297], but these emotions are evoked by seeing

a picture/video or listening to audio stimulus and this makes it hard to apply these

procedures in real-world applications.

Extensive research has been done in recognizing emotions from face and voice

with very high accuracy in cases where the experimental environment is controlled.

The accuracy will be lower if the experiment is conducted in normal circumstances.

Some researchers believe that emotions are generated due to physiological arousal,

while others consider it to be a part of the emotional process [298]. In gaming

research, a fuzzy approach has been used by Mandryk et al. [299] to recognize

emotions using facial expressions and skin conductance, while playing NHL2003 on a

Sony PS2. To record facial expressions, four electrodes have been used. Smiling and
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frowning are the two emotions that are recognized. The assumption is that smiling

is related to positive valence and frowning is related to negative valence, but these

assumptions are not enough for strong claims as it does not map the emotions to the

valence scale effectively [215].

In experiments on a first-person shooter game, Juma [300] worked on secondary

emotions by developing a game in which the primary emotion is combined with

a secondary emotion to generate an affective component. The key finding of this

experiment is that secondary emotion can be of vital importance in selecting an

action in an HCI environment. Emotional films have been used by Costa et al. [301]

to evoke five primary emotions of participants. To estimate the valence value of

emotions, a synchronization index has been calculated. Li et al. [302] used pictures

to generate happiness and sadness in a subject and record 90% classification accuracy.

However, Horlings et al. [289] commented that the recognition rate would be low

if the arousal and valence values are not extreme. A user-independent emotion-

recognition system has been developed by Nie et al. [303]. The emotions in their

experiment are generated by movies, and all four emotions are extreme emotions.

Frequency-domain features of EEG signals have been extracted, and classification

has been performed using a support vector machine (SVM).

Emotion recognition through EEG signals in brain-computer interfaces (BCI) and

neuroimaging are usually carried out in a constrained environment. A small tolerance

range is allowed for motor movement, which is vital in object manipulation activity.

Nowadays, many researchers work on using the psycho-physiological signal analysis

in real-life situations such as evaluating the performance of sportsmen and game

environments. A review of current research in evaluating the peak performance of

sportsmen has been done by Thompson et al. [304]. The study records the finding

that the EEG signals are disturbed by motor movement, and it also discusses the

techniques that can be used to generate reliable EEG recordings when the subjects

74



3.4 Latest Research in Psycho-physiological Analysis

are moving.

Nakasone and his team in 2005, presented a model to detect emotions in real time,

using EMG and GSR [305] in a gaming scenario between the user and a 3D humanoid

agent. Khair et al. published a review paper on human emotions in 2012 [306] in

which protocols to generate and analyze human emotions, and an optimal induction

method, have been proposed. According to Khair et al., music is considered to be the

most popular way of inducing emotions.

The physiological responses to various emotional states are shown in Table 3.2.

In another study, they found that different genders relate to different expressions

of emotions [307]. Boys induce happiness and anger with faster music and upward

movements, unlike girls. A combination of two approaches can be very useful in

generating strong emotions such as combining music with a video or a game with

strong emotional music.

Table 3.2: Relation of emotions to physiological responses

Emotion Physiological Response
Pleasure and Sadness low skin conductance and

EMG, high heart rate
Anger high skin conductance and

EMG, flat and fast breathing
Joy high skin conductance, EMG

and heart rate, deep and slow
breathing

Zhou et al. present a comprehensive study comparing visual and auditory stimuli

to affect generation [308]. The study aims to answer the question: Can auditory

stimuli be used effectively to elicit emotions instead of visual stimuli? They found

that both stimuli were equally effective in inducing emotions. They also conducted

a culture-specific analysis between India and China, but the accuracy was more

or less the same. The reason for this may be the strictly controlled experimental

environment. Based on their results, we think that visual stimuli strongly backed

and synced with auditory data will be much more effective as emotional elicitors in
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practical HCI applications.

The psycho-physiological data must be sufficient to provide enough evidence in

support of recognizing various factors affecting performance and to thoroughly test

the developed techniques. Table 3.3 shows the summary of the available datasets for

psycho-physiological analysis accessible publicly. A substantial amount of research

has been carried out in recognizing emotion from facial input. An excellent review

paper on facial emotion recognition on real-world user experience and mixed reality

has been written by Mehta et al. [309]. Classification accuracy of almost 90% was

seen in the literature using facial input, which indicates that there is still room for

improvement.

Table 3.3: Summary of Publicly available datasets for emotion recognition (EDA:
Electrodermal activity, GT: Gaze tracking, MEG: Magnetoencephalogram, EOG: Elec-
trooculogram, EMG: Electromyography, RM: Respiration measurement, FT: Facial
Tracking, ST: Skin temperature)

Database Year No. of
Sub-
jects

Psycho-Physiological
Signal

Task/Experiment

MAHNOB
[310]

2012 27 EEG, ECG, EDA, GT,
RM, FT, ST

1st session: Emotional Videos, 2nd
Session: Short Videos and Images

DECAF [311] 2015 30 EEG, ECG, MEG, EOG,
EMG, FT

Affective Multimedia content
(Movies and Music)

DEAP [312] 2012 32 EEG, FT Watching Video

SEED [313] 2015 15 EEG, FT Watching Video

Multi-modal
Dataset [314]

2015 20 EEG, ECG, RM Immersive Multimedia

AV communi-
cation [315]

2016 20 EEG, ECG, RM Audiovisual Stimuli

3.4.2 Cognitive State Assessment in HCI

Another major research area in the psycho-physiological analysis is cognitive as-

sessment. The literature is quite limited to cognitive assessment for multi-modal

human-computer interface systems. Most of the literature is focused on the as-

sessment of user cognition in games experience. The assessment of human-robot
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interaction is also popular among many researchers as well as some other HCI’s

evaluation through psycho-physiological signals.

Gaming Systems

The video gaming industry is one of the biggest industries in World [316]. Still,

the assessment of user-game interaction and experience is primarily done by self-

reported techniques [317]. With the development in measurement techniques and

methods for psycho-physiological system, more and more research has been carried

out in measuring user experience using psycho-physiological signals. A game user

experience focused survey book written by Bernhaupt defines various user experience

and evaluation methods [318]. In a review paper, the use of the psycho-physiological

measure in video-games was investigated and listed the pros and cons of using psycho-

physiological techniques [319]. They highlighted that the field lacks useful and widely

accepted game-specific theory background, research and integrated knowledge.

Drachen et al. presented a study to find a correlation between self-reported data

(In-Game Experience Questionnaire (iGEQ)) and psycho-physiological measures and

found a direct correlation of iGEQ with heart rate [320]. Some researcher studied

the correlation of psycho-physiological measure and violent games and found

an increase in cardiovascular activity when compared to non-violent games

[321, 322]. The researchers reported that the psycho-physiological measures,

especially heart rate, showed a strong correlation with self-reported data in

both positive and negative experiences [321,323,324].

The relationship between level design parameters, user experience, and player

characteristics was explored by Pedersen et al., and found a correlation between

gameplay features and three emotions: Fun, challenge and frustration with

an average performance of above 70% [325]. In a study [326], McMahan et al.

assessed various stimulus modalities and gaming events using an Emotive EEG device.
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They found a significant difference between various stimulus modalities that have

increasingly difficult cognitive demands. The power of the β and γ bands of EEG

signals was increased during high-intensity events. They also suggest that an

Emotiv EEG headset can be used to differentiate between various cognitive processes.

Nacke et al. [327] studied the user experience in a fast-paced first-person shooter

game with and without sound effects. EDA and facial EMG were recorded in addi-

tion to the questionnaire to evaluate the game experience. A significant effect of

sound was observed in questionnaire results related to tension and flow, and these

results correlate with EMG/EDA activity. The EDA, EMG, and ECG data were used

to classify two different gaming event with 80% accuracy which showed that the

psycho-physiological signal has the capability to differentiate between different user

experience [328].

Stein at al. presented a method to adjust the game difficulty using EEG sig-

nals [329]. They estimated the long-term excitement of the participant to trigger the

dynamic difficulty adjustment and found a correlation between excitement patterns

and game events. In the literature, machine learning and evolutionary algorithms

are used for clustering various gaming events [330], design new levels [331], diffi-

culty adjustment [329,332], modeling user experience [325,333], and feedback to

personalized game elements [334]. Despite these advancements, the investigation in

modeling and estimating user experience for the improvement of the HCI system is

still in its preliminary stages.

Human Robot Interaction (HRI) studies

Psycho-physiological analysis has been applied in HRI studies that involve interacting

with actual robots to evaluate the user experience [335]. The main problem with

the psycho-physiological analysis is to verify the accuracy and significance of the

results. A research conducted by Itoh et al. used ECG, skin response, EDA, blood
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pressure and upper body movement to estimate the participant stress level and based

on the stress level, modify robot action [336]. They found that the user stress

level decreased when the robot shook their hand. Other researchers have found

the same observation when modifying the robot’s behaviors based on participants

psycho-physiological state [337, 338]. Kulic and Croft evaluated the feasibility of

psycho-physiological measures for user experience evaluation [339]. Results showed

a relationship between anxiety, calmness, and the speed of the robotic arm. A stronger

response was seen in EDA, EMG, and ECG signals. Dehais et al. study showed the

same result when they evaluated the human response to different types of robot

motion [340].

Researchers have used human gaze analysis to measure situation awareness

in real-time in HRI [341]. The model was able to predict a standard measure of

situation awareness. Podevijn et al. [342] study the psycho-physiological state of the

participants when they interact with a swarm of robots. A direct relationship was

found between user state and number of robots which the user is exposed to, and an

increase in arousal value was observed when the user was exposed to 24 robots. The

visual features of a robot such as an appearance and vocal properties had an affect

on the cognitive state of the patient who is receiving some treatment [343].

In a study conducted to record the response of elderly people suffering from

mild cognitive impairment interacting with a telepresence robot showed no adverse

effect in cardiovascular activity [344]. Psycho-physiological measures have been used

in evaluating haptic robot interaction for stroke patients in a multi-modal virtual

environment [345] and a weak psycho-physiological response compared to healthy

patients was observed. Ting et al. [346] proposed a framework of an adaptive

automation system based on the operator’s mental state calculated through heart-rate

variability and task load index. Munih and Mihelj presented a very interesting article

that summarizes the psycho-physiological response in robot-assisted rehabilitation
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including multi-modal challenges and physical activity [347].

Other HCI systems

Psycho-physiological measures are used as a tool to objectively investigate user

experience in many other systems. Zhang et al. [348] studied the cognitive load

measurement of a virtual reality driving system with multi-modal information fusion

techniques. They found that a hybrid fusion of modalities is best suited for these

kinds of challenging tasks, probably because of Dual Coding Theory. Yao et al. [349]

uses psycho-physiological signals to evaluate the user experience of mobile applica-

tions. Participant’s physiological responses, task performance, and self-reported data

were collected, and they found a correlation between self-reported data and skin

response, an increase in skin response in failed tasks compared to successful

tasks.

Various frequency bands of EEG signal have been used to study the cognitive

load of the user. Kumar and Kumar used EEG to measure cognitive load in an HCI

environment and found a significant difference in spectral power between low level

and high-level cognitive tasks [350]. Puma et al. used theta and alpha band power

of EEG to estimate the cognitive workload in a multitasking environment [351].

The results showed an increase in alpha and theta band powers when there was an

increase in the involvement of cognitive resources for completing the sub-tasks.

Significant differences were found in skin response, HR and blood volume pulse

(BVP) in response to a video conferencing tool [352]. An increase in GSR, HR, and

decrease in BVP was observed for videos at 5 frames per second compared to

25 frames per second. Most of the subjects didn’t notice the difference in video

quality, which indicates that psycho-physiological measure has the capability to mine

the underlying fact that cannot be found using traditional methods of measuring user

experience [349]. In a comparison study between well- and ill-designed web pages,
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Ward et al. [353] found a decrease in GSR and HR in well-designed web pages

compared to ill-designed web pages which result in an increase of stress level.

Anders Bruun presents a study where non-specialists analyze GSR data to detect

user experience related events and found an accuracy of 60-80% [354]. Lin et

al. present an investigation study to find the relationship between physiological

measure and traditional usability index and found evidence that physiological data

correlates with task performance and subjective reports assessing stress levels [355].

To study the experience in virtual reality, Meehan et al. conducted a study where they

compared the participant’s physiological response to a non-threatening virtual

height simulation and found a change in heart rate and skin conductance [356].

The human brain responds differently to text and multimedia stimuli; to inves-

tigate this statement, Gere et al. [357] present a study in which they investigate

cognitive processes that take place in learning information presented in a visual or

text format. They use EEG signals to measure cognitive activity and found higher

α-band power, corresponding to less mental activity in the brain, for text presentation.

They also concluded that video and picture input gives a spark to visualization strate-

gies, whereas text-induced activity is related to verbal processing. No gender-related

differences were observed during this experiment. The same kind of work has been

done by Madi and Khan [358]; they focused on analyzing cognitive activity and

learning performance in text and multimedia comprehension. Cognitive load and

emotions were monitored during the study. They found differences in α-and β -band

power. Their study revealed that multimedia presentation, such as video and

image, elicit positive emotions more than a text presentation, which induces a

higher cognitive load.

To study the differences between single-task and dual-task multi-modal human-

computer interaction, Novak et al. found significant changes from baseline to single

and dual-task in psycho-physiological signals, but no differences were found between
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single and dual mental arithmetic task [359]. Their results suggested that different

task results show different response in the psycho-physiological measure, and it is

not compulsory that the response correlates with the participant’s subjective feel-

ings. Researchers had found significant differences in respiratory response when the

participants were given a high-level cognitive task. Grassmann et al. presented a

systematic review of respiratory changes with respect to cognitive load [360].

Psycho-physiological analysis has also been used in the study of cognitive skills

and information processing in programmers. Lee et al. [361] present a study in

which they examine the differences between novices and experts in programming

comprehension. They used EEG to record the neural activity and found apparent

differences between novices and experts. The results showed that experts have

superior programming comprehension abilities and excel at digit encoding, solving

simple programs in a short time, and the ability to recall program functions after an

extended period of time compared to a novice. Psycho-physiological analysis has

been used for assessing real-time cognitive load for younger and older adults in the

situation of divided attention and task interruption with an average cognitive load

assessment of 73% for younger and 70% for older adults [362].

Liu et al. [363] analyzed the psycho-physiological signals to detect affective states

of engineers in CAD activities and found that the EEG results correlate with the

emotions described by the engineers during that activity. In another paper, Nguyen

and Zeng used heart rate and EEG signals to find the relationship between the

designer’s mental efforts and stress levels [364]. They found that mental effort was

the lowest at high-stress levels, and no variations in the mental effort were seen

in medium and low-stress level tasks. In another research work, Nguyen and Zeng

found a strong association between self-rated effort and beta band power. They

demonstrated that self-rating itself contributes towards mental activity [365].

Based on the literature review, we found that GSR/EDA is best suited to record
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arousal and mental efforts, HR is equipped to measure the arousal in emotion,

likeability, and attention. HRV, EMG, and respiration are mostly used for emotional

state estimation. BVP is used for evaluating relaxation, and facial input is applied

to recognize emotions from facial expression. EEG signal is widely used to detect

emotions, frustration, and mental effort. In this research, we will be analyzing

the cognitive activity of the participants through EEG signals while using a multi-

modal interface system. Since the literature focusing on 3D object manipulation is

inadequate, this study will serve as a starting point in this research direction.

3.5 Functional Brain Networks

The human brain is a complex network of millions of neurons and the links between

these neurons. Therefore, complex network theory can open a whole new portal

towards understanding human cognition [38]. However, understanding how infor-

mation is processed in the brain and how decisions are made can affect the results.

Nodes play an important role in the functional brain network (FBN), and there is

no clear consensus among neuroscientist on the definition of a node. Despite the

considerable differences, the literature is encouraging about the studies of functional

brain networks. The commonly used input to generate the functional brain networks

are functional magnetic resonance imaging (fMRI), EEG, magnetoencephalography

(MEG) and multielectrode array (MEA) [38]. In this research, we have used EEG

signals for FBN analysis.

3.5.1 Connectivity Measures

An integrated structure of neurons generating a neural activity from different sources

are recorded by the EEG signal, and to analyze the dynamics of this kind of system

we need a multivariate analysis. There are many linear and non-linear connectivity
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measures that have been used in the literature to construct the FBN such as mutual

information, Entropy, correlations, and Granger causality [39]. Linear connectivity

measures usually fail to identify the non-linear behavior of the brain. Therefore,

to analyze a highly non-linear EEG signal, non-linear measures are adopted by the

researchers for the construction of FBNs [40]. In this section, we will discuss some of

the commonly used linear and non-linear measures to establish connectivity between

the nodes of a network.

Pearson’s Correlation Coefficient

The basic function to define a linear correlation between two variables is cross-

correlation and can be calculated between two signals x(t) and y(t) by the following

formula:

Cx y =
1

N −τ

N−τ
∑

k=1

x(k+τ)y(k) Eq(3.1)

where τ is the time lag between two signals and N is the total number of samples

in the signal. Pearson’s correlation coefficient is calculated at zero lag between two

time signals. For a signal with zero mean and unit variance, Pearson’s correlation

coefficient is calculated by putting τ= 0 as:

Cx y =
1
N

N
∑

k=1

x(k)y(k) Eq(3.2)

Cx y is in the range of −1≤ Px y ≥ 1:

• 1 : complete direct correlation between x(t) and y(t)

• 0 : no linear interdependence between x(t) and y(t)

• -1 : complete inverse correlation between x(t) and y(t)

The main advantage of using Pearson’s coefficient is that it is well-known and fast to

compute but only detects linear dependencies [366].
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Magnitude squared coherence

The magnitude squared coherence is used to measure the linear correlation between

two signals as a function of frequency. The coherence function is calculated as:

Kx y( f ) =
Sx y( f )

q

Sx x( f )Sy y( f )
Eq(3.3)

where Sx y( f ) is the power spectral density between x(t) and y(t). Sx x( f ) and

Sy y( f ) are the individual power spectral densities. Thus, the magnitude squared

coherence is given by:

Cohx y( f ) = |Kx y( f )|2=
|Sx y( f )|2

Sx x( f )Sy y( f )
Eq(3.4)

The value of Cohx y( f ) ranges between 0 and 1, where 0 means no dependency and

1 means maximum correlation for the corresponding frequency. The coherence is

a well-known connectivity measure like correlation coefficient and is employed in

many cognitive and clinical EEG applications [367]. The problem with coherence is,

like Pearson’s correlation coefficient, that it is unable to detect non-linear or causal

relationships between signals.

Mutual Information (MI)

Mutual information is a measure to find the dependency between two variables [368].

It quantifies the amount of information obtained by one random variable by observing

another [367]. The Mutual Information is calculated as:

I(X ,Y ) =H(Y )−H(Y |X ) Eq(3.5)

where I is the mutual information, H(Y ) is the entropy of Y and H(Y |X ) is the entropy

of variable Y observing a variable X . By substituting the expression of entropy in eq.
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3.5:

I(X ,Y ) =
∑

yεY

∑

xεX

p(x , y)log
p(x , y)

p(x)p(y)
Eq(3.6)

where p(x , y) is the joint probability distribution function (PDF) of X and Y . p(x)

and p(y) are the marginal PDFs of X and Y respectively. Mutual information will be

zero if X and Y are independent and greater than zero if they are dependent. Some

researchers also use Kullback-Leibler divergence [369] formula to measure mutual

information between two densities. After measuring the mutual information, the next

step is to rank the features through a threshold. The problem with mutual information

is that it ignores the inter-feature mutual information. Another common variation of

mutual information used in the literature is conditional mutual information [370].

MI detects high order correlation and it can detect non-linear dependencies because it

uses probability distribution [371]. However, MI cannot detect causal relationships as

it doesn’t have the directional information [372]. MI has been used in the literature

to construct non-directional FBNs from EEG data during resting and cognitive load

states [373].

Granger Causality (GC)

Granger Causality (GC), also known as Granger Prediction, is the prediction of the

first signal by considering the past information from the second signal instead of only

using the information from the first signal, then the second signal can be called causal

to the first signal [374]. This concept was originated from econometrics. Granger

proposed the mathematical formulation that when x is determining y , then by adding

past values of x to the regression of y will provide an improved prediction [374].

Thus, the uni-variate auto-regressive model for x and y can be given as:

x(t) =
P
∑

k=1

axk x(t− k)+ux(t) Eq(3.7)
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y(t) =
P
∑

k=1

ayk y(t− k)+uy(t) Eq(3.8)

where axk and ayk are the model parameters, P is the model order, ux and uy are

the uncertainties associated with the model. In the above-mentioned equation, the

prediction is estimated by its own past components. The variance of the residual or

uncertainties are denoted by:

Vx | x̄ = var(ux) Eq(3.9)

Vy| ȳ = var(uy) Eq(3.10)

For bi-variate auto-regressive model:

x(t) =
P
∑

k=1

ax yk x(t− k)+
P
∑

k=1

bx yk y(t− k)+ux y(t) Eq(3.11)

y(t) =
P
∑

k=1

ay xk y(t− k)+
P
∑

k=1

by xk y(t− k)+uy x(t) Eq(3.12)

Now, the uncertainties or residuals u depend on the past values of both signals and

their variance can be calculated as:

Vx | x̄ , ȳ = var(ux y) Eq(3.13)

Vy| x̄ , ȳ = var(uy x) Eq(3.14)
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where x | x̄ , ȳ is the prediction of x by the past values of x and y . Therefore, GC from

y to x is:

GCy→x = ln(
Vx | x̄

Vx | x̄ , ȳ
) Eq(3.15)

GCy→x is evaluated between 0 and ∞, where 0 means the past y(t) does not

improve the prediction of x(t) : Vx | x̄ ≈ Vx | x̄ , ȳ . If the value is greater than zero then

y(t) improves the prediction of x(t) : Vx | x̄ >> Vx | x̄ , ȳ .

Granger causality has been used in the field of neuroscience for the past 15 years

because of its capability to detect causal relationships along with the direction of

information flow. GC has been used to analyze brain dynamics during foot movements

using EEG signals [375], to find directed interaction from parietal to the frontal lobe

in a Stroop task [376]. As most of the interaction is non-linear in nature, the linear

GC cannot be applied to measure the causality; instead a non-linear extension of GC

is used such as kernel-based methods [377], non-parametric [378] and parametric

methods [379].

Partial Directed Coherence (PDC)

Partial directed coherence (PDC) is another popular frequency domain connectivity

measure based on GC [380]. The PDC model is based on time series by multivariate

auto-regressive (MAR) processes. Consider the following MAR processes of order p

with M dimensions:
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





Eq(3.16)
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where A1,A2 . . .Ap are M×M coefficient matrices, and εi(k) are independent Gaussian

white noise with co-variance matrix
∑

. To calculate the frequency version, we can

compute the power spectral density matrix of the above equation:

S( f ) =H( f )
∑

HH( f ) Eq(3.17)

where (.)H is the Hermitian transpose of the transfer function H: H( f ) = A−1( f ) = [I−

A( f )]−1, A( f ) is the Fourier transform of the coefficient and A( f ) = [a1( f )a2( f ) . . .aM ( f )],

with ai j( f ) are the i, jth elements of A( f ). Then, the PDC from signal j to i is given

by:

PDC( f ) =πi j( f ) =
ai j( f )

È

aH
i j( f )a j( f )

Eq(3.18)

The above-mentioned expression evaluates between 0 and 1: 0 means no coupling, 1

means complete coupling.

Some researchers prefer PDC over GC because it doesn’t involve matrix inversion

which makes PDC computationally efficient [381]. PDC has been used to analyse

EEG and fMRI data for estimating directed information flow [382,383]. Non-linear

PDC measure has been proposed along with its application on EEG data [381].

Transfer Entropy (TE)

The concept of entropy was introduced by Shannon in Information Theory [384] to

quantify the information in a variable in number of bits required to optimally encode

discrete variable X based on probability distribution p(x). The Entropy or Shannon

Entropy can be calculated using the following equation:

H(X ) =−
∑

x
p(x)log2p(x) Eq(3.19)
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For two variables, the Entropy can be calculated as:

H(X ,Y ) =−
∑

x ,y
p(x , y)log2p(x , y) Eq(3.20)

where the sum is for all the possible states of x and y. For two time series X = x t

and Y = yt , Schreiber [40] proposed the concept called Transfer Entropy (TE) to

compute the deviation from the Markov condition as:

p(yt+1|yn
t , xm

t ) = p(yt+1|yn
t ) Eq(3.21)

where xm
t = (x t , ..., x t−m+1) and ym

t = (yt , ..., yt−n+1), t denotes the time step, m and

n are the order of Markov Processes X and Y respectively. TE is an information

measure to determine quantity and direction of information transfer between two

processes [40]. To describe the TE from Y to X , Schreiber proposed the following

equation:

T Ey→x =
∑

xn+1,xn,yn

p(xn+1, xn, yn)log





p(xn+1, xn, yn).p(xn)
p(xn, yn).p(xn+1, xn)



 Eq(3.22)

where xn is the value of signal x at time n, yn is the value of signal y at time n, and

p(.) is the probability distribution. TE is inherently asymmetric and ranges from 0

to∞. To improve the calculation accuracy, two more steps are mentioned in the

literature [385]. EEG is highly non-stationary data of finite length which can induce

a large amount of noise, average shuffle TE from Y to X has been subtracted from

the estimated TE. Then, normalized TE is calculated from Y to X with respect to total

information in sequence X to represent a relative amount of information transfer.

The equation for calculating NTE from a vector Y → X is given in Equation 3.23

as [386]:

N T Ey→x =
T Ey→x−< T Eyshu f f le→x >

H(xn+1|xn)
Eq(3.23)
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where T Ey→x is the transfer entropy from Y to X and can be calculated using Equation

3.22, < T Eyshu f f le→x > is shuffled TE from Y to X using shuffled version of Y and

H(xn+1|xn) is the conditional entropy of X at time n+1 given its value at time n and

calculated as given in Equation 3.24. In equation 3.23, yshu f f le contains the symbols

that are rearranged and shuffled in random order.

H(xn+1|xn) =−
∑

xn+1,xn

p(xn+1, xn)log

 

p(xn+1, xn)
p(xn)

!

Eq(3.24)

The NTE from y→ x is not equal to NTE from x→ y and NTE is in the range of 0

and 1. If the value of NTE is 0 that means no transfer of information and if the value

is 1 than the information transfer is maximum [387]. Functional Brain Networks

(FBNs) can be constructed by computing the NTE from EEG signals.

TE is preferred over GC because GC fails to identify the interaction between highly

non-linear processes such as the human brain and TE doesn’t require a model of

the interaction [388]. TE is a popular measure to quantify information between

two non-linear processes. It can also determine the direction of information transfer

between two processes [389] and therefore, is ideal for investigating information

flow. TE uses the past activity of both variables to estimate the amount of activity

of a system irrespective of the interaction model. This property of TE allows the

researchers to apply it to various applications such as identifying information transfer

between auditory cortical data [390], localization of epileptic patients focus [391],

the effect of heart rate on breath rate [392], and information flow patterns in various

driving states [387].

3.5.2 Summary of Functional Brain Connectivity Measures

In the literature, both linear and non-linear connectivity measures have been used

to study the FBNs. The linear measure such as Pearson’s correlation coefficient and
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Coherence provide a degree of correlation between signals (or pair of electrodes) and

only produce linear brain connectivity, although the analysis of any FBN is restricted

by the linearity of the measure. The non-linear connectivity measure provides a much

more realistic analysis. Almost all non-linear measure such as GC, MI, and TE can

be used to construct FBNs, but only GC and TE can provide directional information.

Directionality is essential information that can help to understand how one brain

region influences another. Thus, the directionality limits the applicability of MI

along with other non-linear measures such as generalized, likelihood, and phase

synchronization [367]. GC and TE are very popular in establishing connectivity

between electrodes from EEG and MEG signals; thus in this thesis, TE has been used

to construct the FBNs because it does not require the interaction model.

3.5.3 Graph Theory and Complex Brain Networks

A graph is a mathematical model that consists of nodes and edges. Nodes are the

vertices and edges are the links between each pair of nodes. So, a graph G= (V, E)

contains two sets, vertices V and links E, such that V =φ [393]. An e in set E is

identified by the unique pair of nodes [u, v] in V , denoted by e= [u, v]. In the context

of brain networks, a graph can be considered as a non-linear model of neural activity

where each node corresponds to a brain region and the connections between the

regions are represented as links [41].

Types of Graphs

The edge or link between graphs nodes constitutes towards different types of graphs

such as directed, undirected, and weighted graphs. A brief explanation about these

types is given below:
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Figure 3.7: Example of (a) undirected (b) directed and (c) weighed directed graphs

Undirected graph: A graph where edges have no direction or orientation is known

as an undirected graph. Undirected graphs are created with a straight line between

the vertices, as shown in Fig. 3.7.

Directed graph: In a directed graph, the edges are assigned a direction. The

direction is shown by adding an arrow to the edges, as shown in Fig. 3.7. The

directed graphs have both an in-degree and out-degree by counting the number of

edges coming in and going out of a node [41].

Weighted graph: In a weighted graph, each edge is assigned a weight such as a

cost, capacity, or length of the edge. A weighted graph can be directed or undirected.

A directed weighted graph has been shown in Fig. 3.7.

Representation of Graph

The common ways of representing a graph are the adjacency matrix and the adjacency

list.

Adjacency list: In an adjacency list, a linked list representation is used to represent

a graph. In the adjacency list, the space needed depends on the number of elements

in the graph.
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Adjacency Matrix: The adjacency matrix is a 2D array of size n×n, where n is the

total number of vertices/nodes in the graph. The adjacency matrix A= (ai j) of a

graph can be defined as:

ai, j =











1 if vi and v j are adjacent,

0 otherwise.

The adjacency matrix of a weighted graph can be defined as:

ai, j =











1 if vi and v j are adjacent with weight w,

0 otherwise.

The adjacency matrix of an undirected graph is symmetrical, whereas the adjacency

matrix of a directed graph is generally asymmetrical.

Types of Connectivity of Complex Brain Network

The connectivity of neuronal networks can be categorized into three types: anatomi-

cal/structural, functional, and effective connectivity.

Anatomical connectivity: Anatomical connectivity is a combination of physical

or structural connection between the neuronal elements by the synapses or axonal

projections at a given time. The connectivity data can range over multiple spatial

scales. The patterns are relatively static at short time scales, but can be dynamic for

long time scales [394]. The anatomical connectivity can give insight into the neural

activity in the spatial domain but cannot reveal when in real time.

Functional connectivity: Functional connectivity is the most popular type of con-

nectivity that helps to capture the patterns of the symmetrical statistical association

between neuronal elements. Functional connectivity is time-dependent and modal
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free and can provide information on both where and when a neural activity oc-

curs [394].

Effective connectivity: The effective connectivity describes the causal effects of

one neural system over another. Unlike functional connectivity, it is not model-free

and can be inferred through perturbations or observation of temporal ordering of

neural events [394]. Fig. 3.8 shows a work-flow to construct the brain network [14].

Figure 3.8: Structural and Functional network construction from various types of
data [14]

The structural connectivity of the brain is usually measured using Structural Magnetic

Resonance Imaging (sMRI) or Diffusion Tensor Imaging (DTI) techniques. The

functional connectivity of the brain is measured from fMRI, EEG, or MEG techniques,

and can be used to construct functional brain networks. The association between

different regions can be estimated through statistical measures.
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3.5.4 EEG Based Functional Brain Networks

EEG data can be used to construct functional brain networks (FBNs). Each electrode

of the EEG becomes a node, and the connections between the electrodes becomes

edges [38]. EEG signals can be recorded from various electrodes positions on the scalp

during various states, including resting and cognitive load states. In the literature,

FBN is constructed using a short period of EEG data such as 2 or 5 seconds [395].

Both linear and non-linear information measures could be used to construct the

connectivity matrices for FBNs. In this thesis, we have used Normalized Transfer

Entropy (NTE) to construct the FBNs.

Complex Network Metrics

To analyze complex FBNs, both local or global connectivity measure can be used

[396]. In local graph-based connectivity measures, each node or link measures

the connectivity profiles associated with them. In global connectivity measure, the

global description of the networks is provided and is measured with the help of

all elements [41]. The most commonly used metrics for measuring connectivity in

the FBNs are motif count, connectivity density, characteristic path length, clustering

coefficient, degree centrality.

Connectivity Density: Connectivity density (CD) is the ratio of the actual number

of edges to the total number of possible edges [397]. The value of the CD is in the

range of 0 and 1. If a graph has complete connectivity, then it has a CD of 1. The

connectivity density of a directed network is given in Equation 3.25,

C D=
t

N(N −1)
Eq(3.25)

where t is the number of edges in the network, and N is the number of nodes.
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Motif: The motif is used to describe the local structure of a graph. It is the patterns of

interconnections that can occur in a complex network [398]. It is further characterized

by the number of times a subgraph appears in a complex network [399]. In the case

of 3 nodes, a total of 13 classes of a subgraph can be generated, with each class of

motif referred to by motif id.

Modularity: There can be several smaller sub-modules in a complex network which

can be identified because of the dense interconnection between nodes of the sub-

modules, but few connections with other modules [38]. One way of finding the

sub-modules in a directed network is given in Equation 3.26 as:

Q(p) =
1
m

∑

i j



ai j −
kout

i kin
j

m



δci,c j Eq(3.26)

where Q(p) is the modularity of a given participation p, ai j is an element of the

adjacency matrix, kout
i and kin

j are the out- and in-degrees of the vertices, m is the

total number of edges, δ is the Kronecker delta symbol and ci is the label of the

module to which each vertex is assigned [400]. The modularity algorithm divides

the complex network into sub-modules in a way that the modules gives maximum Q

over a possible division that is considered as the best estimate.

Degree centrality and degree distribution: The degree of a node is defined by

the number of connections the node has, and it shows the importance of a node in a

network. The degree of a node i is:

ki =
∑

jεN

ai j Eq(3.27)

The degree distribution depends on the degree of all the nodes in a network. In a

directed graph, the total degree is the sum of in- and out-degrees of a node. There are
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three possible degree distributions P(k) that can be used to fit the in- and out-degree

distribution in a directed FBN:

P(k)≈



























k−α a power law

e−αk an exponential

kα−1e−k/kc an exponentially truncated power law

where k is the in- or out-degree, α is the estimated exponent, and kc is the cut-off

degree. Previous studies in the literature on resting state fMRI data showed that

the exponentially truncated power law is the best fitting model for directed and

undirected FBNs [401].

Node Strength: Node strength is used to measure the centrality of weighted di-

rected networks. It represents the sum of all incoming and outgoing edge weights [41].

Node strength helps to find the involvement of a particular region in an FBN.

Small-worldness: The small-world network exists in-between regular lattice and

completely random network and shows the properties of high clustering and short

path length, which means that information traverses mostly between nodes with

a small number of edges not between neighbours [402]. It is also considered as a

network with both high local and global efficiency [403] which is a representation of

effective information propagation over a network.

Clustering Coefficient: The clustering coefficient is the ratio between all the

directed triangles formed by node i and the number of all possible edges a node

i can form, so the clustering coefficient measures how well the cluster of nodes

are communicating and a high value of clustering coefficient relates to the high

local efficiency of information transfer [38]. The directed clustering coefficient of a

network is calculated using equation 3.28,

Cd =
1
N

N
∑

i=1

=
1
N

N
∑

i=1

1
2

∑N
j=1

∑N
h=1(ai j + a ji)(aih+ ahi)(a jh+ ah j)

(kout
i + kin

i )(k
out
i + kin

i −1)−2
∑N

j=1 ai ja ji

Eq(3.28)
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where Ci is the clustering coefficient of node i, N is the number of nodes, and ai j is

the directed connection from node i to node j,

Characteristic Path Length: The characteristic path length is the average shortest

path length between all pairs of nodes. It indicates the high global efficiency of

information transfer. The shortest path between node i and j is the minimum number

of nodes to traverse from node i to reach to node j [38] and is given by:

di j =
∑

ai jεgi→ j

ai j Eq(3.29)

where gi→ j is the directed shortest path from node i to node j. So the characteristic

path length of an FBN can be calculated as:

Ld =
1
N

∑

iεN

Li =
1
N

∑

iεN

∑

jεN j 6=1 di j

N −1
Eq(3.30)

where Li is the average distance between node i and all the other nodes, and N is

the number of nodes.

Small-world Index: The small-world index gives us the comparison of a complex

network to a random network. A random network has a low clustering coefficient and

typically a short path length compared to a complex network [404]. The small-world

networks have high global and local efficiency and are categorized as those networks

whose small-world index σ> 1 [405]. Small-world index can be measured with the

following equation:

σ=
Cd

Crand

Ld
Lrand

Eq(3.31)

where Crand and Lrand are the mean directed clustering coefficient and characteristic

path length of a 100 matched random complex network.

Local Information (LI) Measure: The LI measures the amount of information

passing through each node in a weighted directed FBN. LI is the difference between
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outgoing and incoming information of a particular node [406]. Information coming

into a node i can be calculated as:

kin
i =

∑

jεV

wi j Eq(3.32)

The outgoing information is represented as:

kout
i =

∑

jεV

w ji Eq(3.33)

where wi j is the weight of the edge from node i to node j. Now, the LI of node i can

be calculated as:

LI[i] = kout
i − kin

i =
∑

jεV

w ji −
∑

jεV

wi j Eq(3.34)

The value of LI ranges from −∞ to∞ and can be used to identify the source and sink

node in a directed network. A node with positive LI value emits more information

than it receives and vice versa. The emitter node is called the source node, and

the receiver node is called the sink node. Thus, LI value can help find the total

information flow along with its direction.

3.5.5 Analysis of FBNs by Complex Network Metrics

The use of small-world properties of complex network metrics to understand brain

networks has rapidly gained interest. The small-world properties have been found

in games, control systems, and neural networks. The results from various studies

reviewed in this chapter indicate that the FBNs constructed from neuroimaging

data such as EEG, MEG, and fMRI have demonstrated small-world properties

[407,408]. A detailed analysis of the use of graph theory to understand cognitive

activities was done by Bullmore and Sporns [38] and they proposed a systematical

method to construct FBN from raw EEG data. In another review by Rubinov and
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Sporns, applications of complex network measures were reviewed along with the

comparison of structural and functional brain networks. They also provide an open-

access toolbox for MATLAB to calculate the complex network measures.

Langer et al. [409] investigated the relationship between the intelligence and

functional brain networks constructed from the EEG data and found a strong correla-

tion between intelligence, clustering coefficient, and characteristic path length. The

results suggested that distortion in such behavior may be relevant to the diagnosis

of psychological disorders such as schizophrenia, Alzheimer’s disease, and ADHD.

Rubinov et al. [410] used weighted FBNs constructed from EEG data to see the

differences in clinical and healthy samples during resting state and found significant

differences in clustering coefficient, characteristic path length, and degree centrality.

The same kind of significant differences was found by Jalili and Knyazeva [411]. In

another study to examine the Alzheimer’s Disease and other dementia from EEG data

found a significant loss of small-world network properties in alpha, beta, and gamma

bands [412]. ADHD and depression analysis also showed significant variations in

small-world properties when compared to healthy persons [413,414].

In another application to study music perception, Fallani et al. [375] found

that simple foot movement can alter connectivity patterns dramatically. By us-

ing graph theoretical measure, Wu et al. [415] showed that during music perception,

the clustering coefficient increased, and the characteristic path length decreased.

They further demonstrated that the small-world network properties related to the

music perception were not sound. Transfer entropy was used to construct FBNs from

EEG data [395]. Three different states were evaluated: resting, driving, and driving

with audio distraction. The results showed significant differences in connectiv-

ity density, motif, clustering coefficient and degree distribution across all three

states. In a web search-based task analysis through FBN, maximum connectivity was

observed in query formulation task [406].
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3.6 Conclusion

The chapter has started with the concept of cognition and discussed the conscious

and non-conscious processes. The concept of memory has been defined, and a brief

introduction of different types of memory has been presented. The task at hand

defines which type of memory a subject chooses to use. The main part of cognition

such as attention, decision making, and problem-solving have been presented briefly.

The pros and cons of various theories of human cognition have been discussed, and a

number of models of cognitive processing have been analyzed, such as the human

processing model, multiple resource theory and cognitive load theory.

In this chapter, we also discussed the literature related to psycho-physiological

analysis and functional brain networks. Concept of psycho-physiology, the methods

used in the literature to record psycho-physiological behavior, and the analysis have

been presented. The relationships of psycho-physiological signals such as EEG, GSR,

and ECG. with the human’s emotional and cognitive states have been reviewed

in detail. In the later sections, the concept of functional brain network has been

introduced and the linear and non-linear connectivity measures used to construct

FBNs have been presented.The importance of graph theory-based measure used in the

literature to understand the brain dynamics and cognitive activity has been discussed.

The key findings from the literature review are mentioned below:

• The interaction time increases significantly when textual assistance is provided,

in contrast to no assistance.

• Auditory and visual stimuli are the best ways to elicit emotions in a controlled

experimental setting.

• Violent games increase cardiovascular activity compared to non-violent games.

• Psycho-physiological measures show a strong correlation with the self-reported

data.
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• An increase in β and γ-bands of EEG signals were observed during high-intensity

events.

• A decrease in stress level was found while interacting with a social robot.

• In a mobile application evaluation task, an increase in skin response was

observed when the user failed the task.

• Psycho-physiological measure has the capability to mine the underlying fact

that cannot be found using traditional methods.

• Ill-designed web pages increase the stress level of the user.

• Virtual reality simulations can be used to study brain responses and stress levels.

• Multimedia presentations such as video and image elicit positive emotions more

than text presentation, which induces a higher cognitive load.

• Various studies showed that FBNs constructed from neuroimaging data demon-

strated small world properties.

• In music perception, drastic change in FBN connectivity patterns was observed

with simple foot movement.

• Significant differences were seen in the graph theory-based measures such as

connectivity density, motif count, clustering coefficient in tasks with different

levels of cognition.

• Non-linear classifier such as Granger causality and transfer entropy showed

best results in FBN analysis.

From the analysis, we concluded that the non-linear connectivity measures such

as TE and GC, are better equipped to record the causal behavior of highly non-linear

EEG signals.
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Chapter 4

A Multi-Modal Interface System

Design (MMIS), Development &

Evaluation

This chapter explains the development of a multi-modal interface system that allows

the user to design 3D objects in AutoCAD using speech and gesture inputs. The

initial development and evaluation have been published in 9th ACM International

Conference on Computer and Automation Engineering (ICCAE 2017) held in Sydney,

Australia, in a paper titled " The Usability of Speech and/or Gestures in Multi-Modal

Interface Systems" [42]. The updated version of the MMIS published in the proceed-

ing of the 2018 13th IEEE Conference on Industrial Electronics and Applications

(ICIEA), in a paper titled "Qualitative analysis of a multimodal interface system using

speech/gesture" [43].

• Alibay, Farzana, Manolya Kavakli, Jean-Rémy Chardonnet, and Muhammad

Zeeshan Baig. "The usability of speech and/or gestures in multi-modal interface

systems." In Proceedings of the 9th International Conference on Computer and

Automation Engineering, pp. 73-77. ACM, 2017.
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• Baig, Muhammad Zeeshan, and Manolya Kavakli. "Qualitative analysis of a

multimodal interface system using speech/gesture." In 2018 13th IEEE Confer-

ence on Industrial Electronics and Applications (ICIEA), pp. 2811-2816. IEEE,

2018.

4.1 Introduction

In the last decades, many efforts have been made to improve the performance of

uni-modal and multi-modal interpreters. One of the main problems in the field of

MMIS is to develop systems that utilize human behavior and language to interact

with computers. Speech input has been extensively used in smartphones, especially

for developing commercial products. Another popular input mode is gestures, in-

spiring many researchers to develop gesture recognition systems and algorithms for

human-computer interaction with practical applications [60]. There is some evidence

suggesting that an MMIS not only improves handling and reliability of the system

but also task completion rates compared to uni-modal systems [61]. However, the

need for a multi-modal interface instead of a single input interface is relatively less

explored. In this chapter, we describe the development of an MMIS.

A typical MMIS design consists of a recognition system that translates human tasks

into recognizable computer signals. Once the human input has been identified, the

next step is to interpret the inputs and aggregate them to achieve the desired output.

Most examples in the literature use speech and pen input in MMIS design [142].

Some recent applications have also utilized gesture input combining it with speech

to draw and compare digital sketches to hand-drawn sketches [62]. Most of these

systems have used Kinect and Leap motion to recognize gesture input. In these

examples, speech provided an extra dimension for information required to interact

with the computer in cases such as coloring or rotating the object [67].

While combining two input sets is beneficial for some applications, it may not
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be so beneficial or preferable in some others. For example, in modeling software,

many complex words are used to draw a 3D object. The users must be familiar with

the vocabulary and have to learn how to navigate in the 3D space. This research

investigates the effectiveness of using simple words and gestures to design and

navigate in the 3D space by combining speech and gesture inputs to perform design

tasks and to facilitate the design process. We focus on how easy it is to use speech

and gesture recognition systems instead of a keyboard and mouse, and what the ideal

type of communication channel is for designer-computer interaction.

The goal of this chapter is to develop an MMIS which uses speech and gesture

inputs to model objects in 3D. The research questions targeted in this chapter are as

follows:

RQ 1.3 Is it possible to develop a multi-modal 3D object manipulation system xDe-SIGN

v2 using speech and gestures?

RQ 1.4 What are the limitations of using speech and gestures in MMIS?

To answer the above-mentioned research questions, we investigate the following

research problems:

1 The effectiveness of using simple words and gestures to design or navigate in

the 3D space.

2 The combination of speech and gesture inputs to perform design tasks and

facilitate the design process.

3 The easiness for a user to use speech and gesture recognition systems instead

of a keyboard and mouse.

4 The ideal type of communication channel for designer-computer interaction.

However, there are a lot of limitations that degrade the performance of the system.

The main reason for this is the complexity of the vocabulary used to draw a 3D object.
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To create a simple 3D object is difficult for even a skillful user (e.g. a competent

user of CAD) using speech and gesture modes of input. The system must be able to

accommodate the communication mode desired by the user and adapt to the user.

The research aims to analyze users 3D modeling experience, with a multi-modal

interface to create a 3D object. The system also incorporates help throughout the

drawing process and identifies simple words and gestures to accomplish a range of

(simple to complex) modeling tasks.

4.2 Research Methodology

In this section, we will describe the system design and architecture. As a design

concept, we developed a model to convert speech and gesture actions into commands

given in AutoCAD.

4.2.1 System Specifications

We have used an Intel Core i7 desktop PC, with a Microsoft Windows 10 operating

system. For gesture recognition, we have used a Leap Motion sensor, instead of Kinect,

since our pilot experiments showed that Kinect 1.0 doesn’t allow recognition of users’

fingers [416]. Therefore, Leap Motion and its API have been chosen for gesture

input, since Leap Motion offers facilities for finger recognition [417]. For speech

recognition and synthesis, we have used a typical microphone and the Microsoft

Speech Recognition API. We have chosen to use the 3D modeling software, AutoCAD

2017 for the users to design an object. To create an AutoCAD plugin, ObjectARX

2017 SDK was installed [418]. For the implementation of the system, we used C#

with the Microsoft Visual Studio 2015 Environment.
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Leap motion controller

The Leap Motion controller is a device that translates hand movements/gestures into

computer commands. The device tracks gesture and position with high accuracy

(usually sub-millimeter). The device uses realistic 3D infrared sensors for capturing

the image and detecting hand and fingers in the image [416]. The Leap Motion

controller API (Application Programmer Interface) gives the positions in Cartesian

space of finger, hands, etc., which are relative to leap motion center point, as shown

in Fig. 4.1. The device consists of three Infrared (IR) light emitters and two IR

cameras making it a stereo vision based optical tracking system.

Figure 4.1: A leap motion controller (a) Real view of leap motion sensors (b)
Semantic view of leap motion sensors

Microsoft Speech Recognition API

Microsoft has developed the Speech API (SAPI) since 1993 and has continued to

develop the powerful speech API. Microsoft has used context dependent deep neural

network hidden Markov model (CD-DNN-HMM) to improve the speech recognition

engine [93]. Recently Microsoft announced that they had reached human parity in

conversational speech recognition and called it an "Historic Achievement" [93]. In

this thesis, we have used C# .net framework for speech recognition module. To use

the speech recognition API, we just need a microphone and perform the following

steps to set up the speech recognition engine:
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• Initialize the speech recognizer

• Set the input for speech recognition

• Create a grammar for speech recognition

• Load the grammar into the speech recognizer

• Register for speech recognition event notification

• Create speech recognition event handler

• Start the recognition process

The essential part is to define the grammar for speech recognition. There are two

common ways to build grammar. First, to use the Speech Recognition Grammar

Specification (SRGS) defined EXtensible Markup Language (XML) format. The second

is to use Microsoft.Speech.Recognition.SrgsGrammar directly to generate grammar.

The structure to define grammar is as follows:

• Define the vocabulary to recognize sentence

• Build the grammar structure

– In vocabulary building, we define all the scenarios of a sentence we want

to recognize. It could be done in one or multiple grammar builders.

– We need to define the structure of the sentence. For example, if we want

to recognize the sentence "The square is blue" and the color could be

different then we need to define a variable to store all the colors we want

to recognize and define the sentence structure as: The sentence starts

with "The square" followed by verb "is" and then the variable that contains

the colors.

• The API will recognize and convert it into text based on the defined rules.
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Figure 4.2: AutoCAD 2017 interface

AutoCAD

AutoCAD is a Computer-aided Design (CAD) tool developed by Autodesk. AutoCAD

is used by many professionals, including architects, project managers, construction

professionals, and engineers. AutoCAD is mostly used to create, draft and edit 2D

geometries and 3D models with solids, surfaces and mesh objects [418]. Fig. 4.2

shows a snapshot of the AutoCAD interface. In this thesis, we have used AutoCAD

for a 3D modeling task, and ObjectARX 2017 SDK was used to load our program into

AutoCAD to draw using speech and gestures.

ObjecARX:

ObjectARX is an API for using run-time extensions in AutoCAD. It consists of C++

headers and libraries that are used to build the Dynamic Link Library (dll) files that

can be loaded into AutoCAD. ObjectARX API allows us to use all the functionalities of

AutoCAD to use in a customized program. In this thesis, we used ObjectARX 2017 to

write the AutoCAD command module that uses speech and gesture decoded output

and executes the corresponding AutoCAD command.
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4.2.2 Design Concept

For experimental purposes, we have identified a classic chair example to draw and

manipulate using multi-modal input. We have analyzed the necessary processes for

this design concept. Fig. 4.3 shows an example of a 3D chair.

Figure 4.3: A sample 3D chair design

Manipulation and Object Identification

The classical manipulation processes to draw an object involve functions such as

select, move, rotate, delete, copy, and scale. We have defined possible actions using

speech and gesture inputs to apply the above-mentioned manipulation functions. For

example, to rotate an object, the user has to select it first. The object can be selected

using speech or gesture. To select an object using gestures, the user needs to navigate

the cursor to it and perform a clicking gesture. To perform the same actions using

speech and gestures, first, the user needs to navigate the cursor to the object and then

articulate the keyword "select" to select the object. Once the object is selected, to

rotate the object with a gesture, the user needs to hang on to the clicking gesture and

rotate it with the hand position. If the user wants to perform rotation with speech,

the keyword "rotate to" followed by the direction of rotation, which should be 90,

45 or 180 degrees, is used. The same set of AutoCAD commands have been used

for all other manipulation actions: first, select the object and then use keywords to

112



4.2 Research Methodology

manipulate it. In summary, to perform a task using both gestures and speech, the

process is much more complicated.

3D modeling process and object manipulation

There are two approaches to 3D modeling using either speech or gesture. Using

xDe-SIGN, it is possible to mix the order of these two processes in a multimodal 3D

modeling task. To draw a chair,

1 We need to draw shapes in AutoCAD such as rectangle, cylinder, and arc.

2 We need to have the ability to manipulate and edit the objects, for example,

round the shapes and give some height and thickness to a surface.

3 Finally, we also incorporate the functionality of applying texture, material, and

color.

Case 1: Speech For example, if we need to draw a box or cylinder using speech.

1 First we need to say, "I want to draw a box"; the system will look for the word

"Draw" in the speech and find the shape, which in this case is a box.

2 After the object has been selected, the next step is to specify the position,

which can be defined using the command "the position is x, y, z", where x, y,

z are coordinates in 3D.

3 The third step is to give the object size or dimensions; to achieve this task the

user needs to say "the size is x, y", where x and y are the lengths and the width.

We also have to mention the height of the object by saying "the height is z",

where z is the height of the specified object. For a circular object, the user

needs to mention the radius instead of the size.
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Figure 4.4: The orbit in AutoCAD environment

4 To assign a color or material to the object, after selecting the object, a speech

command "the material or color is" can be used. In this project, only wooden

material and grey color can be assigned to an object.

Case 2: Gesture If the user wants to perform the same tasks using gestures, all

they need to do is:

1 Use the hands to locate position.

2 Click on the specific icon to draw a shape, using the clicking gesture.

3 With the help of click and hold function, the size and height of the object

should be adjusted.

4 The material and color of the object can be assigned by using the hand to locate

the menu options and perform the clicking gesture to open the menu dialog

box.

Camera Manipulation Usually, in the modeling software, there are two possible

ways to manipulate the camera view:

1 Using a mouse

2 Using the orbit

The orbit is the easiest way to move the camera by clicking directly on the cube (top,

right, left, back, down, front or the corner right/back or right/front), as shown in

Fig. 4.4.

Case 1: With Speech
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1 We can move the camera using classical directions combined with speech

commands such as ’move the camera vertically and horizontally’ and ’zoom

in and out’.

2 We also orientate the camera by specifying the number of degrees and the

direction, stating that ’orientate the camera to 45 degrees on the right’.

Using speech, if no number is specified with direction, then the default value is

applied (1 degree, or 1 cm).

Case 2: Using Gestures

1 First, the camera manipulation option needs to be activated using a closed

left hand followed by an open left hand.

2 The right hand can be use to move the camera horizontally and vertically.

3 To rotate the camera angle, the user needs to rotate the right hand in the

corresponding direction.

4 To deactivate the camera navigation option, a closed hand followed by an

open hand gesture should be performed.

Table 4.1 shows a detailed description of words used in xDe-SIGN speech vocabulary

and corresponding AutoCAD commands. For gestures, the user needs to utilize the

clicking gesture on the icon or a tool to enable that command.

User support: During the experiment, we have implemented a user-assistance

system. The system also aids while performing an action. To enable help, the

following steps need to be performed:

1 User enables the assistance by saying, "Help me, please".

2 This instantiates the help sequence.
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Table 4.1: Speech vocabulary and corresponding AutoCAD commands in xDe-SIGN

Speech AutoCAD commands

Box, rectangle, square, bars, layer BOX
Cylinder, tube CYLINDER
Cone CONE
Wedge WEDGE
Sphere SPHERE
Torus, donut TORUS
Arc ARC 3 points
Extrude EXTRUDE
Fillet, FilletEdge, round FILLETEDGE
Thicken THICKEN
Move, Displacement MOVE
Copy, duplicate, clone COPY
Remove, Delete DELETE
Scale SCALE
Rotation, rotate ROTATE
Undo UNDO
Finish ENTER (to finish an ac-

tion)
Select all SELECTALL
Select last SELECTLAST

3 Offers a way to perform an action.

For example, if the user chooses to draw a box, the system will ask them to choose

the position. Once the user chooses the position either by speech or gesture, the

system asks them to choose the size and height. The system anticipates the next

step for the current action and guides the user to perform it. The implementation

of these concepts will be discussed in the next section.

4.3 Implementation of MMIS (xDe-SIGN v1)

To implement the design concept, we have created a dll plugin for AutoCAD containing

4 main classes: MySpeech, LeapListener, MyMain, and MyDrawAutocad. The MySpeech

class starts the speech recognition function and sends an event when a speech is

116



4.3 Implementation of MMIS (xDe-SIGN v1)

recognized. LeapListener first initializes the gesture recognizer and defines all the

gestures to be recognized and sends an event when a gesture is recognized. MyMain

receives the speech and gesture events, interprets them and sends the right command

to AutoCAD. MyDrawAutoCad contains all the functions to draw or to manipulate the

object or the camera. Fig. 4.5 shows the C# implemented MMIS structure.

Figure 4.5: Structure of implemented MMIS

4.3.1 Speech Recognition Module (MySpeech class)

The speech recognition block starts with the initialization of the Microsoft speech

recognition and synthesizer API. Once the initialization is done, the next step is

to generate grammar for the speech recognition engine. For grammar building,

almost all the main functionalities of AutoCAD mentioned in Table 4.1 have been

incorporated in the grammar along with a simple sentence structure. After the

successful initialization of the speech recognition API and the detection of the audio

input device, the speech recognition process starts. When a speech is detected

with a reasonable confidence level, the event is sent to the main block for further

interpretation. To utilize the above-mentioned functionalities, the following dll need

to be included in the program.
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• using System.Speech.Synthesis: to activate speechSynthesizer that gives infor-

mation to the user by speech. A method speak(MySpeak) has been created for

this purpose.

• using System.Globalization: to define language of recognition such as US English

(CultureInfo ci = new CultureInfo("en-us");

• using System.Speech.Recognition: to use SpeechRecognitionEngine Class for

accessing and managing speech recognition engine.

Figure 4.6: Speech recognition module block diagram

Fig. 4.6 shows a block structure of the speech recognition process with corresponding

events. The speech recognition module has some limitations that must be considered

to effectively translate speech into text, such as noise, syllable lengths, and clarity of

speech by the user.

4.3.2 Gesture recognition module (MyLeapGesture and LeapLis-

tener classes)

In this project, the right hand has been used to control the mouse cursor. In

xDe-SIGN v1 [42], we used the fist gesture; when the right hand is closed and then

opened, to simulate the click of the left mouse button. Later, we replaced the fist
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gesture with the pointing gesture in xDe-SIGN v2 [43]. The left hand has been

used to manage the camera view.

An event will be sent when the system recognizes:

• Horizontal or vertical hand movement

• Rotation of the hand

• Open or close hand

The opening and closing of the left hand have been used to activate or deactivate

the movement of the camera view in AutoCAD. The leap motion sensor and its SDK

have been used to recognize gestures. The leap motion sensor can recognize gestures,

identify hand, number of fingers, grasping strength, velocity, and direction of move-

ment along with yaw, roll, and pitch. The velocity and movement are manipulated to

control the cursor in the X and Y directions. The Main block receives the speech and

gesture events and interprets them to apply correct AutoCAD commands.

Two classes (MyLeapGesture and LeapListener) have been created to acheive the

above-mentioned functionalities. MyLeapGesture class sent an event to the main class

and have all the data required for gesture recognition such as:

• Action : for gesture recognition

• Hand: to identify which hand is detected

• NBfingers: the number of fingers detected

• Strength: the grasping strength

• Directions: define the direction (Left, Right, Up, Down, etc.)

• Position: give hand’s current position

• Velocity: give hand’s velocity
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• Pitch: give the angle of the orientation

• Appx: give the X position of the screen.

• AppY: give the Y position of the screen.

The LeapListener is used to access frames by creating an instance of the controller

class. These frames are used to generate tracking data and configuration information.

The controller class is the main interface to the Leap Motion Controller.

4.3.3 AutoCAD Commands Module (MyDrawAutocad class)

In AutoCAD, a user can use speech and gesture inputs to execute a command. For

speech, the user needs to speak the desired command, such as "I want to draw a box".

With gestures, the user is required to navigate the cursor towards the desired icon

and make the clicking gesture. To load the plugin in AutoCAD, "netload" functionality

of AutoCAD has been utilized which allow the loading of the ".dll" file generated by

the C# program. Almost all the main functions of AutoCAD have been used such as

shapes, color, material, copy, rotate, delete and camera manipulation.

The AutoCAD application arranges the objects in a hierarchical structure, and

AutoCAD .net API allow us to access these object and its properties directly. We can

create new objects, select a previously created object, and change the properties

of the object such as position, size, and orientation. The following dll needs to be

included in the project to use the functionalities mentioned above.

• using Autodesk.AutoCAD.ApplicationServices : to control application window

and create applications.

• using Autodesk.AutoCAD.DatabaseServices: to read or write an object in the

database
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• using Autodesk.AutoCAD.EditorInput: to access current editor for performing

the AutoCAD commands.

• using Autodesk.AutoCAD.Geometry: to apply geometry designs using, for exam-

ple, the displacement and rotation.

In this class, we have defined the function SendCommand(MyCommand) to send

the command to AutoCAD to draw or manipulate the object. All important drawing

and manipulating functions have been included in this file:

• Drawing: box, cylinder, cone, etc.

• Object manipulation: sclae, rotate, move, delete, etc.

• Camera manipulation: direction, zoom, orientation, etc.

• Object properties: change color, material, shadow mode etc.

The MyMain class receives the speech and gesture events and decodes them into

corresponding AutoCAD commands. Netload loads the dll file generated by the C#

code and launch() function in AutoCAD command line starts the speech and gesture

recognition modules.

4.4 Qualitative Evaluation of MMIS (xDe-SIGN v1)

We evaluated the usability of the system, using both quantitative and qualitative

assessments. Every user performed two experiments, first using the keyboard and

mouse input, and second using speech and gesture inputs. After the experiment,

the user feedback was collected through a questionnaire. This questionnaire in-

cludes questions to measure perceived user performance, fatigue, and cognitive load.

The time required for completing the whole experiment is 60-90 minutes per user,

depending on how familiar the user is with AutoCAD.
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4.4.1 Description of Experimentation

The first experiment is to draw a chair using the keyboard and mouse in AutoCAD.

For those participants who are not competent user of AutoCAD, a step-by-step guide

was provided to draw the chair. Normally, they have to manipulate a camera view to

be able to draw the chair correctly. For the second experiment, the participants were

asked to familiarize themselves with how to manage both hands: the right hand to

simulate the mouse and the left one to control the camera view. Then, they could

start to draw the chair. For this experiment, written speech or gesture instructions

are also provided.

4.4.2 Testing the Application

To evaluate the system performance and find out if it is easier to draw a chair using

speech and gestures than using a keyboard and mouse, a log has been created to

store the experimental data, which contains the history of commands. Thus, we can

extract the following information:

• Number of speech commands detected

• Number of speech commands recognized

• Number of low-confidence speech commands recognized

• Number of speech commands hypothesized

• Number of speech commands rejected

• Number of audio signal issues

Eight individuals (6 men and 2 women) were selected to evaluate the xDe-SIGN

v1 system, and none were competent users of AutoCAD. All the participants are

computer science students and academics between the ages of 20 and 50. All are
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not native English speakers but speak English fluently. At the end of the experiment,

the participants were expected to fill in a questionnaire for assessing the qualitative

performance of the system. In the questionnaire, each question is asked twice, to

compare their status when performing the task with keyboard and mouse and with

gesture and speech. In the questionnaire, there are several questions related to the

performance of the commands, user’s fatigue, and the user perception of interaction.

4.4.3 Log File Evaluation of xDe-SIGN v1

The quantitative analysis has been performed using the data recorded in the log file

of each set. Half of the users completed the task in 30 minutes and the other half

took 45 minutes. No users finished drawing the chair by using gesture and speech

because they gave up. Those who completed in 45 minutes drew with high precision,

and the other group drew the chair without obeying the guidelines.

With the log file, we were able to extract information about speech recognition.

Fig. 4.7 illustrates different audio signal issues identified during the experiment. The

x-axis represents the issues with signal and the y-axis represents the total number of

issues detected. 88% of the audio signal issues originated from the signal being too

soft - that means that a soft voice is caused by too much attenuation on the signal.

9% of the audio signal issues originated from the signal being too noisy. The rest of

the audio signal issues originated from being either too loud, too slow or too fast.

Fig. 4.8 shows the comparison between recognized, rejected, and hypothesized

words. Almost 77% of words were hypothesized (detected with low certainty), 14%

were rejected, and only 7% of words were accepted. The main problem in speech

recognition was the hesitation in participants’ voice while speaking. The system

expected a complete sentence, but the participant expressed only a portion of the

sentence, such as a number to define the size. Therefore, the system misunderstood

the words and even recognized the word "zoom", when the user didn’t say anything.
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Figure 4.7: Audio signal issues during speech recognition in xDe-SIGN v1

Fig. 4.9 and Fig. 4.10 show the percentage of sentences recognized and rejected for

Figure 4.8: Percentage of hypothesized, rejected, and recognized words

drawing or manipulation of the object. In general, the speech signals were highly

hypothesized.

It has been noticed that users found it hard to use speech recognition. The system

recognized the words "Draw" (27%), "Copy" (33%) and "Material"(29%) rather well,

but "Size", "Height", "Depth", "Scale", "Color", "Radius" have less than 10% recognition

rate, as shown in Fig. 4.9, 4.10. It was not possible to exploit the data collected in the

log file for gesture recognition. However, we analyzed the video records to identify

how comfortable the users were through observation. We found that almost no one

was comfortable with camera manipulation; sometimes, the system recognized the
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Figure 4.9: Drawing words detected in xDe-SIGN v1

Figure 4.10: Manipulation words detected in xDe-SIGN v1

hand closed as hand open, even if the hand was partially closed. On the contrary, the

system did not recognize the hand closed for the clicking gesture. It was difficult for

the user to specify the size by using gestures, and for the user who is left-handed, it

was challenging to control the mouse.

The questionnaires’ results have been shown in 4.11. The x-axis represents various

aspects of the system and the y-axis represents the average response of the user given

on a scale of 1 (highly disagreed) to 7 (highly agreed). Through the questionnaires

results, shown in Fig. 4.11, we concluded that, in general, it was not easy to draw

the chair and manipulate the camera in AutoCAD, but it was easier to perform these

actions using keyboard and mouse rather than gesture and speech. The users felt
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Figure 4.11: Questionnaires Results xDe-SIGN v1

more exhausted while using gesture and speech than using a keyboard and mouse.

For the users, it was more natural to use the keyboard and mouse than speech and

gesture. They were more satisfied with the response of the computer and more

engaged. They felt more frustrated by gesture and speech input but appreciated the

help and assistance during the drawing sessions. The user felt frustrated when the

system did not respond when they wanted to give a specific position or size.

4.5 Improvements in the xDe-SIGN v1 (xDe-SIGN v2)

We analyzed the experimental data of xDe-SIGN v1 MMIS to define the requirements

for the next iteration of system development. Based on the evaluation of MMIS xDe-

SIGN v1 [42], we updated the system and performed the following improvements in

MMIS xDe-SIGN v2 [43]:

4.5.1 Modification of Clicking Gestures

The gesture used for clicking has been changed from fist/grasp to index-pointing

gesture. The reason for this modification is the recognition rate for grasping gestures

being low compared to pointing gestures which have a recognition rate of above

90%. We implemented five different gestures for clicking and selected the gesture
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for clicking with the maximum recognition rate as listed in Table 4.2. Figure 4.13a

shows the pointing gesture used for the left-clicking functionality of the mouse.

Table 4.2: Recognition rate of five implemented gestures

Gestures Recognition
rate

Grasp 80%
Pointing 93%
Pinch 70%
Key tap 40%
Screen tap 45%

The gesture recognition algorithm has been implemented in C# using the Leap

Motion SDK. The Leap Motion SDK has four pre-defined gestures: circle, swipe, key

tap and screen tap, as shown in Fig. 4.12. Two gestures from leap motion SDK were

(a) A circle gesture with index finger

(b) A swipe gesture with index finger

(c) A key tap gesture with index finger (d) A screen tap gesture with index finger

Figure 4.12: The pre-defined gestures in leap motion SDK [15]

selected as they are most related to the task. The gestures were key and screen tap.

For other gestures, we have used fuzzy inference algorithm based on the position of

fingers to recognize the gesture. The fuzzy inference based algorithm for gesture

recognition is given below:
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Initialization;
while Right-Hand do

if Index finger is straight & others are not then
Pointing Gesture;

else
if All fingers are bend & in a circle of 7cm radius then

Grasp Gesture;
else

if Thumb and Index finger tip position in a circle of 2cm radius then
Pinch Gesture;

else
No Gesture;

end
end

end
end

Algorithm 1: Fuzzy inference algorithm to detect gestures

4.5.2 Addition of a Filter for Smoothing the Transition

It is challenging to hold the hand still in free space; any unintentional movement

changes the hand position and results in changing the cursor position. To make

the movement of the cursor smoother and more realistic, a moving average filter

has been implemented. The filter generated a stable palm position and made the

overall interaction as effective as mouse interaction by taking an average of 15

palm position samples using the equation:

Y(t) = (1/15)
15
∑

n=1

X(t+n) Eq(4.1)

where X(t) is a vector that consists of palm position in x,y,z, Y(t) is the output of

moving average filter.

4.5.3 Addition of Right-Click Functionality

The right click functionality of mouse to explore the options related to an object

has been implemented in xDe-SIGN v2, which was missing in the previous version
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(a) Index-pointing gesture

(b) Thumb-pointing gesture

Figure 4.13: Pointing gestures for left and right click mouse functionality

(xDe-SIGN v1). When a user uses thumb-pointing gesture, the right-click mouse

function will be executed. Figure 4.13b shows the gesture used for right-clicking

mouse functionality.

4.5.4 Improvement in Camera Manipulation

In the previous version (xDe-SIGN v1), we identified that the users were facing

difficulty in-camera manipulation. In this iteration (xDe-SIGN v2), the difficulty

level in camera manipulation has been reduced significantly by incorporating simple

gestures and moving average filter. The user now manipulates the camera horizontally

and vertically. For zoom, pinch gesture of left hand has been used. Pinch gesture

with an index finger will zoom in and pinch gesture with a middle finger will zoom

out of the current drawing view.

4.5.5 Optimization of Words to use in Speech Recognition

To improve speech recognition, the vocabulary of the system has been optimized

by discarding the words that have similar pronunciation such as the word "the" and

"draw". The words are found by analyzing the transcript log file generated by the

speech recognition module.
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4.6 Qualitative Evaluation of MMIS (xDeSIGN v2)

For evaluation, we have used the same questionnaires used in the previous section,

along with video recordings and log files. The user had to perform two sets of

experiments, one with a keyboard and mouse, and one with speech and gesture. The

questionnaires are filled by the user at the end of each experiment. The responses are

in Likert scale from 1 to 7, 1 as bad or strong disagreement to 7 as excellent or strong

agreement. The experiment lasts for approximately an hour. In both experiments,

the user must draw a simple 3D table using keyboard/mouse and speech/gestures

input, as shown in Fig 4.14.

Figure 4.14: A 3D table drawn by a participant

A 15 minute tutorial was given to the participant to introduce them to the options

of AutoCAD and speech/gestures input. The participants also had a document of

written instructions for both sets of experiments (see appendix D). A total of 12

participants were selected for the experiment. All of them had a scientific background

and spoke English fluently. Four out of 12 participants had used AutoCAD previously.

We also recorded a log file based on speech and gesture input to test the system.

All the participants were able to draw the table with high precision using the keyboard

and mouse. With gesture and speech, the completion rate was above 90% with only

one participant who couldn’t complete the drawing. The speech recognition rate also

increased after simplifying the vocabulary.

Based on the evaluation results, the system has improved a lot from its previ-

ous version [42]. The task completion rate has increased to 90% as well as the
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responsiveness of the system. From the questionnaires, we evaluated the command

performance, fatigue level, and user perception in interacting with the computer. We

have divided the response into seven stages, with 1 being the lowest or very bad

to 7 with the most positive and very good. We have found improvements in almost

all parts of the system. It was still difficult for the user to draw in AutoCAD with

speech and gestures. The user also faced some difficulties in manipulating the camera

and viewing objects from different perspectives. The users did not feel any delay in

system response. Questionnaires were used to record the response and to evaluate

the performance of the commands. Fig. 4.15 shows the response averaged across all

users.

Figure 4.15: Command performance for both keyboard/mouse and speech/gesture
with xDeSIGN v2

The results also show that using gestures demands more effort compared to

keyboard and mouse while drawing, and fatigue level also increase in the case using

gestures. The user feels rather relaxed with the addition of speech for 3D drawing.

Figure 4.16 shows the results from questionnaires for the assessment of fatigue. The
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response is the average of all the user’s questionnaire responses.

Figure 4.16: Average fatigue response for keyboard/mouse vs speech/gesture

In the case of user perception in interaction, users are more in control of the

system compared to the previous version [42] but compared to keyboard/mouse

input the control is still lagging and there is a lack of stability and support. The

interaction with the objects has also been improved, and it is perceived as more

natural compared to the previous version of the system, but there is still room for

improvement. Figure 4.17 shows the results of user perception in interacting with

the 3D modeling system. The user involvement and frustration levels are the same

for both input modalities. Figure 4.17 shows the average response of all users.

For gestures, the main problem is that gesture recognition requires the user’s hand

in the air, and after some time, it becomes challenging to work with gestures without

supporting the arm. Another problem is that some users find it hard to make pointing

gestures continuously and when the hand is in space, the position of the hand is not

stable which also changes the position of the cursor. For speech, the user finds it easy

to work with speech, but the number recognition for coordinates and dimensions of

the objects were difficult. The recognition rate for keywords such as drawing shapes
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Figure 4.17: Evaluation of user perception in interacting with the multimodal inter-
face system

and actions was around 95%, but for numerical digits, it was approximately 75%.

4.7 Conclusion

In this chapter, a multi-modal system has been presented that utilizes speech and

gesture inputs to draw a 3D object in AutoCAD, using Leap motion and a microphone.

In section 4.5, an iteration of the multi-modal interface system (xDe-SIGN v2) has

been presented. The system is an updated version of the previous system developed

by Alibay et al. (xDe-SIGN v1) [42]. With this updated version, a large ratio of

participants, more than 90%, were able to carry out the tasks with appropriate

precision.

After experimentation and evaluation of the xDe-SIGN v1 MMIS, we found that

speech and gestures are well-coordinated in human to human communication. Our

results indicate that performing a task using speech is perceived exhausting when

there is no shared vocabulary between man and machine, and the usability of tradi-

tional input devices supersedes the usability of speech and gestures. Only a small
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ratio of participants, less than 7% in our experiments, were able to carry out the tasks

with appropriate precision using xDe-SIGN v1.

Drawing with precision in 3D modeling software is more complicated than ex-

pected. The speech recognition process is exhausting when the system works slowly

and does not respond appropriately. Speech recognition requires simple grammar

and a quiet environment to reduce noise. Gestures seem to be more natural and less

tiring to use in human-computer communication, if the users can use both hands,

instead of one hand only. The system has to offer several gestures for the same

action to satisfy most users. Even though the system was functional, we still noticed

that it losses track of gestures from time to time. People would prefer more natural

interaction such as gesture and speech if the performance of the equipment for the

interaction could satisfy a standard level of operation in a reasonable amount of time

and effort.
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Chapter 5

Methodology: Experimentation and

Instrumentation

This chapter explains different aspects of experimental design, the EEG signal acqui-

sition procedure, and EEG pre-processing techniques. The chapter introduces the

equipment used in this thesis to record the EEG signals and the software used for

pre-processing and analysis.

5.1 Experimental Setup

Designing the experiment to stimulate cognitive activity is a complicated process.

Real-world tasks are complex and involve many underlying cognitive processes. In

the contemporary research literature, it is possible to see examples of sophisticated

means to simulate and stimulate cognitive activities in flight simulators [419], driving

simulators [420], game-play environments [318], and design simulators [365]. The

main aim of the thesis is to study the cognitive activity of both novice and competent

users in 3D modeling. To study the behavior of novice and competent users, we have

designed a simple experiment so that a novice can also complete the experiment

without a high level of difficulty.
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The experiment was to design a 3D table with three parts: a base, a pillar, and a

top in AutoCAD with two different sets of inputs, i.e. keyboard, mouse and speech

and gesture using the MMIS developed in Chapter 4. A total of twelve participants

volunteered for the experiment. In most EEG studies, the number of participants

varies from 5-20 [365, 395]. In this study, we used 12 participants. All of them

were computer-science students at Macquarie University. The ages of the participants

range from 21 to 30 years. Four of the participants were competent users of AutoCAD,

and 8 were novices. The reason for using mixed competency is to see if there

are any differences in novice and competent user’s cognitive activity when they

are given a totally new set of modalities to draw 3D objects. The experiment was

approved (Approval no. 5201700784) by the Faculty of Science and Engineering

Human Research Ethics Sub-Committee, Macquarie University. Only right-handed

participants were selected as the left-handed participants were likely to have slightly

different brain wiring [421]. All participants reported normal hearing and normal

or corrected-to-normal vision; no participant reported any history of psychological,

neurological, or psychiatric disorders. Each subject was given a tutorial of 10 minutes

before the experiment. A video log was maintained for each subject, and EEG signals

were also recorded.

Experimental Apparatus:

For the acquisition of EEG signals, we used an off-the-shelf research edition of

the Emotiv EEG headset, which has 14 channels: frontal and front-central: AF3, AF4,

F3, F4, F7, F8, FC5, FC6; temporal: T7, T8; and the occipital and occipital-parietal:

O1, O2, P7, P8. The device has an internal sampling rate of 2048 Hz, which is

down-sampled to 128 Hz after the cleaning of artifacts. The electrode placement is

based on the international 10-20 system. The Emotiv Headset has a limited number

of electrodes. There are no electrodes in the central lobe (Pz, Cz, Fz), and therefore,

it is thought that the system has limited applicability in research. The manufacturer
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states that the signals from the neighboring electrodes are good enough to perform

experiments, and researchers have proved the capability of the headset in many

applications [422]. The subjects were given an open-ended task to depict the real-

world setting, which results in complex cognitive processing and analysis strategies.

A picture of the experimental setup is shown in Fig. 5.1. The process can be divided

(a) User using keyboard/mouse to draw
3D object

(b) User using speech/gesture to draw 3D
object

Figure 5.1: Participants using AutoCAD and wearing EEG headset in real experimen-
tal setting

into four experimental procedures:

1 Information about the experiment was given to each subject along with the

consent form. After reading and signing the consent form, the experimenter

gives a walk-through of the experiment and some instructions to minimize the

body and head movements.

2 The EEG headset was placed on the head of the subject, and the experimenter

made sure that all electrodes were in good contact with the scalp. The subjects

were asked to rest for two minutes with their eyes open, with hands on their

laps, and after that, the subjects were asked to start drawing using keyboard

and mouse.

3 After the completion of the modeling task with keyboard and mouse, the

participants were given instruction about the multi-modal interaction system.

4 After completing the task with speech and gesture inputs, subjects were asked

to fill in a questionnaire about the experiment and the MMIS.
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Figure 5.2: Emotiv EPOC headset [16]

5.2 EEG Data Collection

EEG data collection is an important task and needs a careful preparation of both

the participants and equipment. There are various types of equipment available in

the market that can be used to record EEG signals. The differences between the

equipment is mostly in the number of channels/electrodes, amplifier, electrodes

material, and portability. The hardware and software used in this thesis for EEG data

preparation and processing are discussed in the following subsections.

5.2.1 Hardware and Software Tools

Emotiv EEG Headset

Electrodes/channels are small metallic discs that are placed on the scalp for EEG

data collection. The placement of the electrodes is based on the international 10/20

system [423]. In this thesis, we have used Emotiv EPOC headset [227]. Emotiv EPOC

is a multi-channel EEG system developed by Emotiv Inc. to record the EEG signals

from the scalp, as shown in Fig. 5.2. The main benefit of Emotiv EPOC headset

is that it is a wireless portable EEG device which allows the user certain level of

flexibility in performing an experiment. The EPOC headset has 14 channels belonging

to various brain regions: frontal and front-central: AF3, AF4, F3, F4, F7, F8, FC5,

FC6; temporal: T7, T8; and the occipital and occipital-parietal: O1, O2, P7, P8. The

electrode placement is shown in Fig. 5.3.
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Figure 5.3: Electrode placement of Emotiv Epoch Headset

The Emotiv EPOC provides whole brain sensing with wireless connectivity through

Bluetooth. The setup time for the headset is less than 5 minutes, and it has a battery

life of up to 12 hours [227]. It has saline-based wet electrode sensors. The internal

sampling rate of the headset is 2048 Hz, which is down-sampled to 128 Hz. The

resolution is 14-bits with a step size of 0.51µV .

Emotiv TestBench

Emotiv TestBench is the software (Fig. 5.4) used to record EEG signals from the EPOC

headset. It allows you to see the raw data acquired from the 14 electrodes in real-time.

The user can change the channel spacing and min/max amplitude. It also shows the

connectivity of electrodes to the scalp. The software has the option of showing the

Fast Fourier Transform (FFT) response with filtering options. The user can send an

automatic marker from the serial port or send the markers manually [424]. In this

thesis, Emotiv TestBench is used for data acquisition. The other required processing

can be conducted in MATLAB and EEGLAB.

MATLAB

MATLAB stands for matrix laboratory; it is a multi-paradigm interactive numerical

computing language developed by MathWorks used in a variety of disciplines and

fields including signal and image processing, machine learning, communications, and
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Figure 5.4: Emotiv TestBench Software

control systems. [425]. MATLAB is a matrix-based tool that allows matrix manipula-

tions, plotting of functions and data, implementation of algorithms, creation of user

interfaces, and interfacing with programs written in other languages including C,

C++, C#, Java, FORTRAN, and Python. In addition to numerical computing, it also

supports symbolic computing and Simulink; a graphical user interface (GUI) for multi-

domain simulation and model-based design for dynamic and embedded systems. In

this thesis, MATLAB has been used for EEG signal analysis such as filtering, transfor-

mation, connectivity matrix generation and plotting of results. EEGLAB (description

given below) toolbox has been added to MATLAB to extend the functionality.

EEGLAB

EEGLAB is an open source MATLAB toolbox for processing data from EEG, MEG,

and other electrophysiological signals. In addition to all the basic data processing

options, EEGLAB implements independent component analysis (ICA), time/frequency
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analysis, artifact rejection, and several modes of data visualization [426]. It allows

importing data from various formats and devices. EEGLAB also provides a graphical

user interface (GUI), allowing users to process EEG data and visualize the results

interactively. For scripting users, EEGLAB offers a structured programming environ-

ment for storing, accessing, measuring, manipulating, and visualizing EEG data. For

creative research programs and methods developers, EEGLAB offers an extensible

open-source platform through which new methods can be shared with other users.

Topoplot and Headplot are the two strong visualization function that plot the activity

on a topographic map (looking down at the top of the head) and a semi-realistic

head map respectively. In topoplot, the plots are made in 2-D circular view using

interpolation on a Cartesian grid [427].

5.2.2 EEG Data Acquisition

EEG is a powerful non-invasive tool for recording the electrical activity of the brain.

The portable EEG devices such as Emotiv EPOC allow participants to perform a task

in a more natural and relaxed manner compared to other neuroimaging techniques

such as fMRI. In this thesis, EEG data is collected from different brain regions for

various states, including resting state with eyes open, other cognitive states such as

3D object modeling with keyboard and mouse and speech and gesture. EEG data

were acquired at a sampling rate of 128 Hz through 14 channels (layout shown in

Fig. 5.3) of Emotiv EPOC. All tasks were recorded using a camera for all participants

to record the modeling actions of the participants.

5.3 EEG Signal Pre-processing

EEG signals are very prone to noise. Any signal that is not generated by the brain

and present in the EEG data is called noise or artifact. These artifacts can be eye
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blinks, participants speaking, muscle movements, and jaw clenching. In addition to

these artifacts, other external sources of noise such as electrical line interference also

contaminate EEG data. Thus, the major component of EEG signal pre-processing is

based on artifacts and noise removal or reduction. In artifact removal, the section

contaminated data can be removed from further analysis. On the other hand, artifact

reduction is a process of keeping the section of the data and reducing the artifacts.

5.3.1 Eye Blink Artifact

The most common EEG artifact is the eye blink artifact. The blinking artifact is largely

observed at frontal sites, and the amplitude decreases as it moves towards posterior

electrodes. The electrode FP1 and FP2 are seen to be most sensitive to eye blink

artifacts due to their location immediately above the eye. An eye blink artifact lasts

from 200-400 ms and occurs several times a minute. The amplitude of eye blink

artifact is 10 times more than the surrounding brain activity. Fig. 5.5 shows a typical

eye blink artifact.

Figure 5.5: Eye blink artifact shown in red circle [17]

Removing eye blinking artifact is relatively easy for those participants who blink

the eye only a few times during the experiment, the section containing the artifact can
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be removed with the minimal loss of data. The feasibility of this approach came into

question when there are many eye blinks. In this case, the artifacts can be reduced

to minimize the influence on the data. There are many algorithms to reduce the

eye blink artifact such as template matching [428], principal component analysis

(PCA) [429], and Independent Component Analysis (ICA) [428]. These methods can

be implemented using EEGLAB, especially ICA in which multi-channel EEG data is

decomposed into independent components, and eye blink component is identified. A

minimum of 5-8 channels is required to perform ICA [430].

Figure 5.6: Cardiac artifact indicated by the red box [17]

5.3.2 Cardiac Artifact

Cardiac or ECG artifacts are generated with the subtle movement of head and body

associated with cardiac contractions. In contrast to eye blink artifacts, cardiac artifacts

relate to the field of the heart potential over the scalp. Cardiac artifacts are easily

recognized by their periodic nature and coincide with ECG trace as shown in Fig. 5.6.

The ECG artifacts can be reduced by adaptive filtering and Independent Component

Analysis.

143



Chapter 5. Methodology: Experimentation and Instrumentation

Figure 5.7: EEG signals with muscle artifact [17]

5.3.3 Muscle Artifact

Muscle artifacts are the electric field generated by muscle and through a movement

effect on the electrode contacts. They are characterized by surges in high-frequency

activity and are readily identified by their outlying high values relative to the local

background activity. Muscle activity artifacts are particularly obvious in the gamma

range > 20 Hz and cause very short potentials, as shown in Fig. 5.7. Such artifacts

are common at electrode sites F3, F4, T3, T4, P3, P4 due to their location near

the masseter and temporalis muscles, although the effects can be minimized by

properly positioning the participant’s head. Any noise related to muscle artifacts can

be removed using ICA.

5.3.4 Electrical Interference

Power lines and electric equipment also cause an artifact in the EEG data. These

artifacts have a distinct frequency i.e. 50 Hz (Australia) or 60 Hz (North America).

Electrical interference artifacts are particularly damaging to EEG data as they over-
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Figure 5.8: EEG signals with electrical interference [17]

whelm the underlying neural activity of interest; the typical value for true EEG ranges

from 10 to 100 µV, whereas external electrical interference can range from 10 mV to

1 V (see Fig. 5.8). Such noise contamination can be avoided with properly grounded

electrical equipment and 50 or 60Hz notch filter.

5.3.5 Pre-processing and Artifact Reduction in this Study

We have used MATLAB 2017b and EEGLAB to pre-process the EEG data. The baseline

was removed from the EEG signal, and low-pass filtering at a cut-off frequency of 45

Hz was performed using a linear-phase FIR filter. EEG signals were then high-pass

filtered at a cut-off frequency of 0.16 Hz and notch filtered at 50 and 60 Hz using a

linear phase FIR filter. The order of the filter in all cases was 300.

To detect eye blinks, we calculated the ICA without the EoG electrodes. ICA

decomposes EEG signals into independent components such that each component can

be plotted and then identified through visual inspection. The component can then be

removed to produce artifact-free EEG data. The component with the eye blink artifact

is identified visually and removed manually. Other bad blocks that contain noise and
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corrupt data are also removed from the EEG signal. Cardiac and muscle artifacts are

also removed using the ICA in EEGLAB. To further minimize the noise component

and amplify the EEG activity related to the task, we performed back-to-back epoching

which are averaged into one single epoch. In back-to-back epoching, the continuous

EEG data is cut into the consecutive epoch of specified duration typically one or two

seconds.

5.4 Conclusion

In this chapter, a description of the experimental setup was given that is used in

this thesis. The EEG data collection technique has been explained along with the

hardware and software used. The Emotiv EPOC headset was used to record the

EEG signals. The EEG signal pre-processing was performed in MATLAB and EEGLAB.

Eyeblink and muscle artifacts were removed using ICA in EEG. The electrical noise

was removed with the help of a notch filter at 50 and 60 Hz. More details related to

cognitive activity, pre-processing and post-processing analysis will be discussed in

the following chapters.
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Chapter 6

Analysis of Cognitive Activities in a

Uni-modal System: using Design

Coding Technique

This chapter presents the experimental findings of using design coding techniques to

estimate the cognitive activity of the user in a 3D modeling application. A new method

to segment EEG signals based on design coding technique is presented. The results

have been published at the 25th International Conference on Neural Information

Processing (ICONIP 2018) held in Siem Reap, Cambodia, in a paper titled "EEG Signal

Analysis in 3D Modelling to Identify Correlations Between Task Completion in Design

User’s Cognitive Activities" [46].

• Baig, Muhammad Zeeshan, and Manolya Kavakli. "EEG Signal Analysis in

3D Modelling to Identify Correlations Between Task Completion in Design

User’s Cognitive Activities." In International Conference on Neural Information

Processing, pp. 340-352. Springer, Cham, 2018.
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6.1 Introduction

Skills and competencies are developed after learning basic techniques and practicing

those techniques over time, but to define how competency is obtained through

practice in a design task is quite difficult. Even expert users cannot articulate what

kind of techniques are involved in performing a certain task and how they are using

these techniques. Our aim is to understand the behavior of a competent designer

and to use this understanding to develop the next-generation design and modeling

systems to guide a novice. The current study contributes to this understanding by

investigating the designer’s cognitive activity through EEG signals.

3D modeling or CAD/CAM tools have a great impact on design efficiency [431],

but they require a specific set of skills, training, and experience to master these tools.

Competent users can capitalize on their design skills at the early stages compared

to novice users, but little research has been done on analyzing the stages in the

conceptual design process. One way to address this problem is to study the cognitive

activities behind the designer’s actions. Protocol analysis is a well known method to

examine the cognitive activity of a designer, but it mainly focuses on the designer’s

actions and does not incorporate the mental or emotional state of the designer.

In the last few years, psycho-physiological methods have been used to analyze

and understand the science behind a designer’s actions. This increase in psychophys-

iological research is due to the widespread use of non-invasive, inexpensive and

easy to use psychophysiological equipment. Researchers have used electrocardio-

grams (ECG) [432], galvanic skin response (GSR) [365], eye-tracking [433], gesture

analysis [434], and electroencephalography (EEG) [364] to study the behavior of

design protocols and processes. The most popular technique reported in the lit-

erature to analyze the design process is verbal protocol analysis, but it has some

limitations [435]. These limitations are apparent when analyzing non-reportable

processes such as creativity, judgment or task insights [436], so other techniques for
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analyzing a designer’s actions must be investigated.

Due to the limitations of verbal protocol analysis, alternative techniques to study

a designer’s actions have been introduced including sketching [437], gesture analysis

[438] and eye-tracking [433]. Some researchers use modeling tools and techniques

by analyzing the activity through psycho-physiological signals [363]. In this chapter,

we present a new approach to use EEG signals segmentation in the analysis of the

designer’s cognitive activity. The aim of this chapter is to investigate whether the

content-oriented approach for analyzing a designer’s activities can benefit from

overlying EEG signals to understand the cognitive behavior of the designer. The

research questions addressed in this chapter are:

RQ 3.1 Why do some novice users perform better than others?

RQ 3.1.1 What is the relationship between task completion and mental effort?

RQ 3.1.2 What are the factors affecting the task completion of a designer in 3D

modeling?

RQ 3.2 What are the factors that affect novice users performance?

RQ 3.2.1 What are the relationships between alpha, beta, theta, and gamma bands

activities and task completion?

These questions are addressed by the following research tasks:

1 To monitor the cognitive states of designers as they perform a certain 3D

modeling task.

2 To investigate the individual modeling behavior involved in 3D object modeling

and develop a methodology to understand the behavior.

3 To validate the modeling behavior through EEG signal analysis.

4 To determine if there is a correlation between the designer’s performance and

psychological signals.
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6.2 Designers Cognitive States and Cognitive Analysis

A common empirical method used to estimate the designer’s behavior is protocol

analysis. Basically, it decodes the actions of the designer to uncover their thought

processes. It has been used to study the designer’s techniques to solve a problem by

using direct-video or audio-recording through observations. The recordings are tran-

scribed, segmented and coded to generate and validate a hypothesis and investigate

certain phenomena.

Ullman et al. [439] applied protocol analysis to the mechanical design process

and defined a task-episode-accumulation model based on the results of protocol

analysis. In another study related to the mechanical design process, Waldron and

Waldron [440] observed that experts use an opportunistic approach to quickly identify

and focus on the important parts of a design. Many protocol analysis studies also

use analysis of sketches to study the underlying cognitive actions. Suwa et al. [441]

found that sketches illuminate ideas in the early-stage of design and support the

designers marshal their thoughts in creative processes.

Protocol analysis has also been used in the literature to study novice-expert

differences. Kavakli and Gero [442] found cognitive differences between novices and

experts in the architectural design process. Kavakli et al. [443] also found that the

cognitive actions of experts were well organized compared to those of novices, whose

actions were highly concurrent. Ho [26] found that novices ignore the problem that

they failed to handle, whereas experts directly approach to a goal and then work

backward. Some studies also reported that experts’ solutions were of high quality;

they spent more time in the problem-solving phase and looked for more alternative

solutions than novices [444].

Identifying cognitive states of a user is a very complex assignment and has been

studied extensively in the field of psychology and cognitive science. With the ad-

vancement in the field of clinical psychology, devices such as an EEG headset, ECG
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and GSR have become more accessible and easier to use. With these devices, we

can analyze user behavior using quantitative techniques. In this chapter, we use a

coding scheme to segment the designer actions and use EEG analysis to study the

user’s mental states.

6.3 Methodology

6.3.1 Experimental Setup

The experimental task is to design a 3D table with three parts: a base, a pillar,

and a top. The data of eight participants was selected for this experiment. All

the participants selected were novices, and we used task completion time to divide

the participants. The participants who completed the task quickly were called low

completion time(low-CT) participants, and took a long time to finish the task were

called high completion time (high-CT) participants. After cleaning the EEG signal

from noise and artifacts, the mean power for the different EEG bands was calculated

using Welch power spectral density. The details of the experiment are given in Chapter

5.

6.3.2 Coding Scheme

To examine the differences between the subjects’s mental states and their task com-

pletion time (CT), we used a coding scheme that allows us to assign codes to the

cognitive actions of the designers using the video recordings. This coding scheme is

an extension of the coding scheme used by Kavakli et al. [437].
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6.3.3 Codes for Modeling Actions

To analyze a certain set of cognitive actions, there are two approaches: the process-

oriented approach and the content-oriented approach. We have used the retrospective

protocol analysis method that lies under the content-oriented approach, like the one

used by Suwa and Tversky [445]. We have categorized the actions of the subjects

into three groups: Physical, Perceptual and Conceptual. There is also a functional

category, but for this experiment, the subjects were already given a function (i.e.

"Table") therefore, this category was not used in the analysis. The perceptual and

physical actions present the visual information and the conceptual and functional

actions present the non-visual information. The modeling actions of each participant

were coded for each cognitive segment.

Physical Actions

Physical actions are all the actions involved in drawing new objects, tracing over

the sheet and copying previously drawn elements, and paying attention to previ-

ously drawn elements. We have defined three groups of physical actions: D-actions

(Drawing, coping), L-actions (paying attention to previous design) and M-actions

(movements on design depictions). The details of the Physical actions are given in

Table 6.1.

Table 6.1: Sub-codes for D-actions, L-actions and M-actions

D-Actions L-actions M-Actions

Pd: Drawing de-
pictions

Pl: Viewing
(Camera Manipu-
lation)

Pm: Moving over
depictions

Pl: Manipulating
depictions
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Perceptual Actions

The actions that are related to the visual features of the objects and spatial relations

among them are known as perceptual actions (P-Actions). Perceptual actions have a

further eight categories, but in this research, we have defined only three perceptual

actions as shown in Table 6.2.

Table 6.2: Sub-codes for Perceptual actions (P-actions)

P-Actions related to
implicit space

P-actions related to
features

Ps: Selecting depic-
tions

Pc: Colouring depic-
tions

Psd: Deleting depic-
tions

Conceptual actions

Conceptual actions are those actions that are used to retrieve knowledge, previous

similar cases or set up goals. In this research, we have only examined the retrieval of

knowledge and represent these as C-actions. We defined three conceptual actions as

shown in Table 6.3.

Table 6.3: Sub-codes for Conceptual C-actions

C-Actions

Ct: Thinking

Cr: Reading

Ci: Idle state
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Table 6.4: Design actions with time stamp and codes for user C and E

User C User E
Time Action Code Time Action Code

. . . . . .

. . . . . .

. . . . . .
0:56 Change pillar color Pc 0:41 Drawing Top Pd
1:00 Thinking Ct 0:46 Thinking Ct
1:08 Moving Pm 0:50 Reading Cr
1:11 Close color option Ps 0:55 Reading Cr
1:15 Moving Pm 0:59 Open color options Pc
1:18 Open material change option Ps 1:05 Reading Cr
1:20 Change top Pc 1:13 Move Pm

. . . . . .

. . . . . .

. . . . . .

6.4 Performance Analysis using Coding of 3D Model-

ing Actions

We examined the actions of the participants who completed the task in different time

windows.

Finding 1: We found that the participants with a low task completion time

(low-CT) (Users A, B, C) have an average action rate of 20 action/minute, which

is 30% higher than for high completion time (high-CT) participants (Users D,

E, F). High-CT subjects have an average action rate of 14 actions/minute.

We analyzed the video records and assigned codes to each action performed

by participants. The tasks were grouped together to find the ratios between CT

levels and cognitive actions. An example of design activity segmentation and codes

definition has been shown in Table 6.4. Table 6.5 shows a summary of the modeling

actions performed based on task completion time. The major difference is observed in

physical and conceptual actions. The high-CT users performed double the conceptual

actions compared to low-CT users and 1.5 times more physical actions. Table 6.6
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Table 6.5: Summarized action performance comparison based on task completion
time

Perceptual Low-CT High CT
Ps 22% 17%
Pc 9% 9%
Psd 0% 1%
Total 31% 27%
Physical
Pd 18% 13%
Pm 22% 15%
Pl 10% 7%
Total 51% 34%
Conceptual
Ct 14% 18%
Ci 2% 2%
Cr 3% 19%
Total 19% 39%

shows detailed information about the average time spent by the user at every design

stage.

Finding 2: The users with Low-CT have spent less time performing all the

three actions. High-CT users have consumed the highest time in performing

conceptual actions i.e. 2.2 times more time than low-CT users.

The time spent in performing a corresponding design action has also affected the

task completion.

Finding 3: The high-CT users have spent most of the time in doing the con-

ceptual tasks either related to reading the handouts or thinking how to perform

the action. On the other hand, low-CT users spent maximum time in performing

physical actions which help them in completing the task early.

The statistical results (chi-squared test, (X 2)< c, p< 0.05) show that there are

significant differences in the modeling actions of low-CT and high-CT users. The

maximum difference is observed in conceptual tasks. Low-CT users performed 1.5

times as many physical actions as high-CT users. High-CT users spend a large

amount of time on conceptual actions. They were relying more on the experimental
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Figure 6.1: EEG Data Processing steps

instructions rather than their short-term memory. The rate of conceptual actions

for high-CT users was twice as high as for low-CT users. The biggest difference

was in reading the experiment instructions from the handouts.

Table 6.6: Average time taken in seconds in performing various design actions

Actions Perceptual Physical Conceptual

User A 5.2 9.9 3.7
User B 6.0 7.8 7.0
User C 5.2 9.9 7.2

Low CT 5.5 9.2 6.0

User D 8.6 16.9 9.7
User E 8.4 7.7 14.7
User F 9.4 11.3 14.4

High CT 8.8 12.0 12.9

Ratio 1.6 1.3 2.2

6.5 EEG Data Analysis

The EEG data of six participants were used for EEG analysis, the data of two partici-

pants were rejected because the data was corrupted with noise. The preprocessing

was done in MATLAB 2017 using the EEGLAB toolbox [426] as mentioned in Chapter

5. Once the data was clean enough, we calculated the Welch power spectral density
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(PSD) (see Section 8.2.1) with a window size of 128 samples without overlapping.

The EEG segmentation has been carried out using the proposed coding scheme and

the stored video log. Codes were assigned to each action performed by the user and

EEG signals were segmented using these codes manually. Data from all electrodes

were incorporated into the analysis. A block diagram of all the EEG data processing

steps is shown in Fig. 6.1. After calculating the PSD, the mean power for each band

has been extracted as shown in Figures 6.2-6.5. The scale in the topoplots shows the

average PSD, normalized between minimum and maximum value of each user for

comparison.

6.5.1 Alpha Band Activity

We have divided the dataset based on the completion time (CT) of the users for

comparison. The threshold was set at 190 seconds by calculating the mean and

standard deviation of the completion time. Fig. 6.2 shows the alpha-band energy

in perceptual, physical and conceptual actions. The subjects on the left side of the

figure have a low task CT, whereas the subjects on the right side of the figure have a

high task CT. As alpha-band activity is associated with cognitive functions such as

task performance preparation [279], language comprehension, and memory [270],

so a change in alpha activity indicates a change in the cognitive activity. In the

literature, researchers have established that task complexity is inversely related to

alpha-band activity [446].

In Fig. 6.2, the alpha-band activity in the conceptual actions is higher than

in the physical actions for low-CT subjects, which means that the subjects are

more relaxed in performing the conceptual tasks or they have spent less time

in conceptual tasks than in other segments. Subjects A and B have performed

more physical tasks and the corresponding alpha-band activity is less in that segment,

meaning that their attention highly focuses on physical actions. For the users with
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(a) User A (low-CT) (b) User D (high-CT)

(c) User B (low-CT) (d) User E (high-CT)

(e) User C (low-CT) (f) User F (high-CT)

Figure 6.2: Mean alpha-band activity at different segments

a high-CT, the alpha activity is less in the conceptual actions (excluding User D)

which is a sign that they were more relaxed or comfortable when they were thinking

or reading handouts compared to others while performing modeling actions. The

variation in alpha activity is higher in the frontal cortex than in other regions

for low-CT users. The frontal cortex of the brain is responsible for higher mental

functions such as concentration, planning, and problem-solving [447], so it is also

an indication that low-CT users were performing more cognitive activity than

high-CT users.

For subjects with high-CT, alpha activity variations were more in the motor,

temporal and parietal cortex (electrodes T7, FC6, and P4) than in the frontal

cortex. These locations are more associated with voluntary motor functions [447].

The continuous activation on the left frontal cortex (electrodes FC5 and F3) in

the perceptual segment of high-CT subjects is possibly due to the continuous eye

movements because of the nature of the experiment. We have also observed that the

change in alpha-band activity for users with low-CT is more than for subjects

with high-CT. The reason behind this response may be that the low-CT subjects
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(a) User A (low-CT) (b) User D (high-CT)

(c) User B (low-CT) (d) User E (high-CT)

(e) User C (low-CT) (f) User F (high-CT)

Figure 6.3: Mean beta-band activity at different segments

change the design stages very rapidly compared to the other subjects.

Coding Design actions and using these for EEG analysis are also very beneficial

in providing further insight into which sub action caught the attention of the user.

For example, in Fig 6.4, the alpha activity of user F has been shown. We can observe

that the activity is more in segments drawing depiction (Pd), coloring depiction (Pc),

deleting depiction (Psd), idle state (Ci) compared to other segments.

6.5.2 Beta Band Activity

Fig. 6.3 shows the beta activity of the three segments. The beta band usually relates

to alertness and has a very low amplitude [280]. By looking at the beta activity

response in Fig. 6.3, we can say that on average the beta band activity is high

in physical segments for low-CT users and high in the perceptual segments in

high-CT users.

Finding 4: As we mentioned before, the beta activity directly relates to con-

centration, the high beta activity is an indication that the concentration is high
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Figure 6.4: Sub design action alpha-band activity of User F

in the physical segments compared to the perceptual and conceptual segments

of low-CT users. The higher concentration can be due to the higher number of

physical actions performed by low-CT users as seen in Table 6.5.

For high-CT users, on average, the beta activity is lower in physical segments

than in other segments, and this finding can also relate to the fact that fewer actions

are performed in physical sections. Users with low-CT are more attentive in physical

segments whereas users with high-CT concentrate more on perceptual and conceptual

activities.

6.5.3 Theta Band Activity

The theta-band response is observed in adult individuals who are in a state of focus

and is also associated with memory performance and functional processes [270].

Finding 5: We observe that the theta-band activity varies in each segment for

low-CT users, especially for users A and B, whereas for other users the relative

change is very small as shown in Fig. 6.5.

This is also an indication that the focus or attention level of users with low-CT
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(a) User A (low-CT) (b) User D (high-CT)

(c) User B (low-CT) (d) User E (high-CT)

(e) User C (low-CT) (f) User F (high-CT)

Figure 6.5: Mean theta activity at different segments

varied based on what actions they were performing.

6.5.4 Gamma Band Activity

We have also observed that, by looking at the gamma-band activity (Fig. 6.6) and

comparing it with the actions performed in each segment, the average gamma-band

activity is low in segments where there are more actions and high in segments

with fewer actions.

6.6 Conclusion

In this chapter, we have presented a new method to segment EEG signals for under-

standing cognitive actions and their relation to brain activities. For this purpose, we

have conducted an experiment in which each user had to draw a 3D table and we

have used video recording and EEG signals to analyze the user’s cognitive activities.

Participants had no prior experience of designing 3D objects in AutoCAD, so we have

used task completion time as a measure to differentiate between designers. We have
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(a) User A (low-CT) (b) User D (high-CT)

(c) User B (low-CT) (d) User E (high-CT)

(e) User C (low-CT) (f) User F (high-CT)

Figure 6.6: Mean gamma activity at different segments

analyzed the reasons for why some users completed the task earlier than the other

users.

We have used a coding scheme designed by Suwa et al. [441] to analyze the

quantified designer’s actions. The coding analysis for EEG segmentation provides two

advantages: the first is that we can see the EEG power variation in different segments,

and the second is that we can use the results of coding analysis and compare with

EEG power to easily track the cause of particular behavior. From video recording, all

the actions were decoded and divided into three segments: Perceptional, Physical

and Conceptual actions. These segments were used to segment out the EEG data. We

have analyzed the alpha, beta, theta and gamma activity of the users. We categorized

users in 2 groups: Low-CT and High-CT users. The findings from our data analysis

are listed below:

1 Low-CT users performed 1.5 times more physical actions, which gave them the

advantage of drawing quickly.

2 The rate of conceptual actions for high-CT users was twice as high as for low-CT
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users. This slows the overall design process.

3 The action rate per minute for low-CT users is 30% higher than for high-CT

users. This is an indication that they are utilizing their short-term memory

more efficiently. This result is aligned with previous findings of Kavakli and

Gero [442].

4 The alpha band shows that low-CT users were comfortable in performing

physical tasks whereas high-CT users were not relaxed in physical segments as

their mean alpha-band power was high.

5 High-CT users spent maximum time in performing conceptual tasks compared

to low-CT users, who spent most of the time in focusing on physical design

actions.

6 The maximum variation in the frontal cortex was found in low-CT users, which

indicates that they were using their short-term memory more.

7 From the beta activity, we have found that low-CT users were more attentive

to physical segments, whereas the attention of high-CT users was focused on

perceptual and conceptual actions.

8 We have found more variation in theta-band activity for low-CT users than for

high-CT users, which indicates that the focus of cognitive activity of low-CT

users was changing in relation to the action performed.

As low-CT users were performing the task more easily and efficiently compared to

high-CT users, so we can deduce the following hypothesis for competency:

• Conceptual C-actions are the key to the performance. One would expect to see

a low number of C-actions in competent (low-CT) users.
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• Competent (low-CT) users use their short term memory more efficiently and

more frequently.

• Competent (low-CT) users utilize more motor processes (physical actions)

compared to novices that focus more on perceptual and conceptual actions as

evidenced by beta-band activity.

• Variations (changes) in cognitive processing are higher in competent (low-CT)

users as stated by theta band activity.

From the above analysis, we have concluded that if a user would utilize short-term

memory more, reducing their attention to the conceptual actions and performing

more physical actions instead, then their performance would improve.
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Chapter 7

Analysis of Cognitive Activities in a

Uni-modal System: using Transfer

Entropy and Functional Brain

Networks

This chapter explains the use of transfer entropy (TE) to measure connectivity between

EEG signals during cognitive activity. The matrix generated from transfer entropy

is used to construct functional brain networks (FBN). The analysis results have

been published in the Brain Sciences Journal titled as "Connectivity Analysis Using

Functional Brain Networks to Evaluate Cognitive Activity during 3D Modeling" [47].

Both the weighted and binary FBN analysis have been presented in the chapter, along

with the information transfer between left/right hemisphere and lobes of the brain.

The classification of novice and competent users from transfer entropy of EEG signal

has been published at the 2019 11th International Conference on Computer and

Automation Engineering (ICCAE 2019) held in Brisbane, Australia, in a paper titled

"Expertise Classification using Functional Brain Networks and Normalized Transfer

Entropy of EEG in Design Applications" [448].
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• Baig, Muhammad Zeeshan, and Manolya Kavakli. "Connectivity analysis using

functional brain networks to evaluate cognitive activity during 3d modelling."

Brain sciences 9, no. 2 (2019): 24.

• Baig, Muhammad Zeeshan, and Manolya Kavakli. "Expertise Classification

using Functional Brain Networks and Normalized Transfer Entropy of EEG in

Design Applications." In Proceedings of the 2019 11th International Conference

on Computer and Automation Engineering, pp. 41-46. ACM, 2019.

7.1 Introduction

Differences in information processing have been observed between males and females,

novices and competent and left-handed and right-handed people while describing a

simple 3D object [30]. The study of these user-dependent factors makes the interac-

tion robust and enhances system flexibility, efficiency, naturalness. In this chapter, we

investigate the differences in information flow patterns by analyzing the electroen-

cephalogram (EEG) signals of various participants to find the relationships between

cognitive strategies in information processing and competencies while performing a

set of experiments.

In the research literature, TE has not been used to study user dependent differ-

ences. In the present work, we apply TE to the analysis of information flow patterns

between novice and competent users during a 3D modeling task with keyboard and

mouse. We have used normalized TE values to construct both binary and weighted

directional FBNs. After constructing an FBN, we have applied graph theory measures

and statistical analysis to quantify the information flow patterns. The main objective

of this analysis is to identify the topological differences between novice and com-

petent user’s FBNs in different design activities. The second objective is to identify

the information flow patterns in the design actions of a user. The following research
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Figure 7.1: Normalized Transfer Entropy Framework (a) EEG data acquisition and
pre-processing, (b) Transfer Entropy calculation and graph database construction,
and (c) Result and analysis of binary and weighted FBNs

questions are addressed in this chapter:

RQ 4.1 Are there any differences in information processing and cognitive activity

between novice and competent users?

RQ 4.2 Can Functional Brain Networks (FBNs) be used to identify the information flow

patterns?

7.2 EEG Data Analysis Methodology

Data of eight participants were used for the experiment. The experiment is the same

as the one described in Chapter 6. Three of them were competent users and five
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novice users. EEG data were filtered (described in Chapter 5) and segmented into two

segments. The first segment was the one where the participants were drawing the

table. In the second segment, the participants were asked to change the appearance

of the table, such as materials, etc. using AutoCAD options. For convenience, we

named the first segment, "Drawing" and the second segment, "Manipulation".

The preprocessing was done in MATLAB 2017b using the EEGLAB toolbox [426]

as described in Chapter 5.

Once the data was clean enough, we extracted two-second epoch averaged data

from resting, drawing, and manipulation tasks by performing back-to-back epoching

with a 0.5-sec difference between epochs. The response time for a modeling action

varies from 0.5 to 4 seconds, and we made sure that a minimum of one modeling

action must be performed in an epoch. Table 7.1 shows the time taken by each user

in seconds in drawing and manipulation states. Novice-User 2 and Competent-User 2

both deleted some objects when drawing, and these phases were also considered in

this experiment. There was no correlation found between competency level and task

completion time.

Table 7.1: Time taken by each participant to complete the task

Competency Drawing (sec) Manipulation (sec)

Competent-User 1 38 72
Competent-User 2 120 101
Competent-User 3 58 113
Novice-User 1 81 125
Novice-User 2 137 93
Novice-User 3 54 72
Novice-User 4 43 118
Novice-User 5 61 98

7.2.1 Functional Brain Network

The pre-processed EEG signals were used in the construction of NTE connectivity

matrices, where each cell denotes the NTE value from one electrode to another. The
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normalization was done by subtracting a noise matrix (averaged shuffled TE matrix)

from the Transfer Entropy (TE) matrix. The NTE matrices were used to create both

binary and weighted directed FBN. To analyze the results, we had used the graph

analysis measure such as the Connectivity density, clustering coefficient, characteristic

path length, motif count, node strength, and small-worldness. Fig. 7.1 illustrates

EEG analysis using normalized transfer entropy.

7.2.2 Binary Directed Functional Brain Network

A threshold was applied on NTE matrix to convert them into binary directed func-

tional brain networks (FBN) for calculating complex network parameters. For this

experiment, the threshold was set to 0.001, which is an arbitrary value to remove

the very insignificant connections.

7.2.3 Weighted Directed Functional Brain Network

The NTE matrices, without applying any threshold (shown in Fig 7.2 and 7.3) were

also used to design weighted directed functional brain networks (WDFBN). The

NTE matrices show that the transfer entropy has a larger variance in competent users

compared to novice users. The information transfer measured using NTE is different

for almost every electrode in competent user. Fig 7.12 gives the node strength values

of novice and competent users during various cognitive states. WDFBN was used to

calculate the node strength using equation 7.1.

St reng thi =
∑

jεV

wi j +
∑

JεV

w ji Eq(7.1)

where wi j is an element weight of NTE matrix.

Hemisphere-wise information flow

The hemisphere analysis has been performed to identify the information flow pat-

terns within and between the left and right hemispheres. For this analysis, we have
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Figure 7.2: Normalized transfer entropy matrix during rest, drawing and manipula-
tion states of novice user

Figure 7.3: Normalized transfer entropy matrix during rest, drawing and manipula-
tion states of competent user

divided 14 EEG electrodes into two sets of 7 electrodes that correspond to each

hemisphere. The electrodes which belong to the left hemisphere (LH), and right

hemisphere (RH) are shown in Fig. 7.4. A total of four sub-NTE matrices were gener-

ated to represent the information flow between electrodes in LH to LH, LH to RH, RH

to RH and RH to LH. The size of sub-NTE matrices was 7x7, and the total information

flow from one electrode to all other electrodes was calculated by row-wise summation

of each sub-NTE matrices. To analyze these sub-NTE matrices, one-way ANOVA was

applied, and the results of 2 typical novice and 2 typical competent users have been

shown in Fig. 7.15.
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Figure 7.4: Electrodes layout of LH and RH

Figure 7.5: Electrodes layout of F, C and P nodes

Region-based information flow

Region-based information flow has been studied and documented by other researchers

[387,406]. To study the information flow (IF) in different regions of the brain, we

also performed the region-wise analysis. We divided the brain into three regions

and called them nodes. Each of the three nodes had four electrodes. From the NTE

matrix, three sub-matrices were constructed, and information flow from and to the

node was calculated. The nodes are F, C, and P. The node F contains electrodes F7,

F3, F4, and F8 and represent the frontal cortex of the brain. The node C contains

electrodes FC5, T7, T8, and FC6 and represent the central and temporal cortex. The

node P contains electrodes P7, O1, O2, and P8 and gives the information of parietal

and occipital lobes. The information flow from one region to another region was

calculated by the summation of information flow from the electrodes of one region to
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another. For example, the IF from F to C was calculated by summation of all IF from

F7, F3, F4, F8 to FC5, T7, T8, FC6. The results of region-wise IF are shown in Table

7.5 for 2 competent users (Competent-User 2 and 3) and 2 novice users (Novice-User

2 and 5) for all three states.

7.2.4 Classification of Novice/Competent

We have used measures such as connectivity density and clustering coefficient men-

tioned in Section 3.5.3 as features for the classification of novice and competent users.

To depict real-time situations and generate a reasonable number of trials, a 20-second

window of EEG signal from every second onward was used and considered as one

trial. By this method, we extracted a total of 470 trial in which 285 trials correspond

to novice users, and 185 trials belong to competent users. The connectivity density,

motif count, clustering coefficient, and mean information flow are used as a feature

for classification. The complete feature set is the combination of all the measures

mentioned above. The actual feature set is given in Fig. 7.6.

Feature selection algorithm was applied to extract the best features for classifi-

cation. We have used a sequential forward search (SFS) for searching for the best

feature. The technique used for feature selection is wrapper technique. In the wrap-

per technique, the classification algorithm is a part of the feature selection process.

In this chapter, classification accuracy has been used as the optimization criteria for

feature selection.

Various classification algorithms are used to classify features into different classes.

These classification algorithms are categorized into supervised and unsupervised

techniques. Support Vector Machines (SVM) [449], K-nearest neighbors (k-NN) [450],

Bayesian classifier [451] are some of the most commonly used classifiers for EEG

applications. In this Chapter, we have used five different classifiers to classify the

feature set. The classifiers used in this chapter are SVM, k-NN, Linear Discriminant
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Analysis [452], Naive Bayes [451] , and decision trees [453]. For evaluation we have

used classification accuracy, sensitivity, specificity, precision, F-measure and mean

squared error.

Figure 7.6: The complete feature set

7.3 Results and Discussion

The NTE matrices of size 14x14 were calculated, as shown in Fig. 7.2, 7.3. Fig. 7.2

shows the NTE matrix of a novice user with three different design states and Fig. 7.3

shows the NTE matrix of a competent user. The cluttered and brighter pixel shows

the increase in information flow. From the NTE matrices, it can be inferred that the

information flow pattern of the user changed and increased from the baseline rest

condition. To maintain the readability of the chapter, the results of two novice and

two competent users have been shown in this chapter instead of the entire cohort.

Most of the figures and tables in this section show the results of the same participants.

In addition, the average results for novice and competent users have been shown to

show the efficacy of the technique.

7.3.1 Binary Directed FBN Analysis

The results of binary directed FBNs are shown in Fig. 7.7 for a novice user and Fig.

7.8 for a competent user. For the novice, the connections between electrodes increase

when participants move from rest to drawing and from drawing to manipulation. In
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Figure 7.7: Binary directed functional brain network during rest, drawing and
manipulation states of novice user

Figure 7.8: Binary directed functional brain network during rest, drawing and
manipulation states of competent user

contrast, connections increase from rest to drawing and no significant change has

been observed from drawing to manipulation for competent users.

The density of network increased from the baseline for both novice and competent

users, but the change in density for the novice user is more, compared to a competent

user in drawing and manipulations states. Most of the activity was focused on the

frontal cortex, which also indicates the use of short-term memory [454].

The connectivity density for all the user is shown in Fig. 7.9. To compare the

connectivity density across all users in different states, we normalized the value by

dividing the actual connectivity value in one state by the sum of connectivity in all

states. As indicated in Fig. 7.9, the connectivity density is higher for all the users

in drawing and manipulation state than in the rest condition, which is a control

condition. From this figure, we can deduce that the information flow increases in

the drawing and manipulation states compared to a rest state by establishing more

connections. The main difference between novice and competent users has been
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Figure 7.9: Comparison of connectivity density of all users brain activity during rest,
drawing and manipulation states

observed in drawing and manipulation states and the connectivity density relatively

increased in manipulation states from drawing states for novice users. The competent

user’s connectivity density difference was much less compared to novices, and a slight

decrease in density was seen for competent users, which means that the information

flow was more or less the same in drawing and manipulation states. The increase in

connectivity for novice users also indicated that the electrodes were trying to establish

a mutual connection to facilitate effective information transfer within the FBN as

novice users are using the drawing and manipulation functions for the first time.

Fig. 7.10 shows the average number of motifs for three nodes during rest, drawing

and manipulation state for novice and competent user. The motif count is higher in

drawing and manipulation states compared to the rest state. Novice users have an

increase in the number of motifs in manipulation states from drawing state, and this

pattern exists for almost all the novice users except for Novice-User 3, in which the

motif count difference is not significant. Like connectivity density, the motif count

for competent users decreases in manipulation state compared to the drawing state.

175



Chapter 7. Unimodal System Analysis: using NTE and FBN

(a) Average motif count for novice users

(b) Average motif count for competent users

Figure 7.10: Comparison of average number of the motif with three nodes during
rest, drawing and manipulation states

As the number of motifs is used to describe the local features of the network, the

increase in motifs is related to a substantial increase in information exchange among

the neighboring nodes of directed FBN. The information transfer between neighbor

electrodes was more for novice users compared to competent users, which means that

novice user’s information flow pattern changes more rapidly compared to competent

users.

Average clustering coefficient of novice and competent users has been shown

in Fig. 7.11 during rest, drawing and manipulation states. The value increases for

almost all the electrodes in drawing and manipulation states compared to baseline
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(a) Average clustering coefficient for novice users

(b) Average clustering coefficient for competent users

Figure 7.11: Average clustering coefficient of all electrodes for novice and competent
users during rest, drawing and manipulation states

rest state. This is a clear indication that each electrode was communicating directly

with its neighboring electrodes and formed clusters. For novice users, the clustering

coefficient value in manipulation state is slightly higher than drawing state except

for T8 and FC6 electrodes. The trend is opposite for competent users, the value in

drawing state is higher than manipulation state except for electrodes O1, O2, P3.

These regions belonged to the occipital and parietal cortex and from the literature,

we found that these regions were associated with sensations from muscles, visual

perception and recognition [455].

The statistical significance of the clustering coefficient across all 14 electrodes has

been calculated using a 2-sample t-test with unequal variance at α= 0.05 for novice

and competent users. The results are shown in Table 7.2 for 2 typical users. The
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Table 7.2: Statistical validation of clustering coefficients for typical novice and
competent users (D:Drawing, R:Rest, M:Manipulation, MD:Mean Difference)

Users States MD 95% CI DF t P

Novice-User 2
D R 0.156 ( 0.0763 , 0.2357 ) 20 4.0838 0.0006
M D 0.031 ( -0.0169 , 0.0789 ) 24 1.3362 0.097
M R 0.187 ( 0.1102 , 0.2638 ) 17 5.1374 0.00001

Competent-User 3
D R 0.273 ( 0.2148 , 0.3312 ) 15 10 0.00001
M D -0.015 ( -0.0988 , 0.0688 ) 17 -0.7895 0.3551
M R 0.258 ( 0.1935 , 0.3225 ) 22 8.2958 0.00001

results suggested that mean difference is significant (p< 0.05) across rest/drawing

and rest/manipulation states for both users and the same trend has been observed

for all other users. The difference is not significant across manipulation/drawing

state but if we compare the values for novice and competent users the difference

across manipulation/drawing state is more for novice users than competent users

with a negative mean difference for Competent-User 2 and 3.

The small-world properties of directed FBN during rest, drawing and manipu-

lation states for novice and competent users are shown in Table 7.3. In Table 7.3,

Table 7.3: Small-worldness of binary directed FBNs during rest, drawing and manip-
ulation states for 2 typical users

Users Cognitive State Cd Crand Ld Lrand σ= Cd
Crand

/
Ld

Lrand

Novice-User 2
Rest 0.9119 0.8676 1.1939 1.1934 1.0506
Drawing 0.6675 0.5358 1.5255 1.5043 1.2286
Manipulation 0.7714 0.6582 1.3878 1.3879 1.0809

Competent-User 3
Rest 0.8214 0.6998 1.3469 1.3470 1.1739
Drawing 0.4777 0.4126 1.7092 1.6537 1.1202
Manipulation 0.6607 0.5267 1.5408 1.5256 1.2420

Cd and Crand are the clustering coefficient of an actual and random network respec-

tively; Ld and Lrand are the characteristic path lengths of actual network and random

network respectively. If the value of σ> 1 for an FBN, then the network shows the

small-world properties, which means that the FBN has both high local and global

efficiency. For novice users, the difference between σ in rest, drawing and manipula-
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tion states are more than for the competent user, which means that competent users

have relatively high global and local efficiency of information transfer than novice

users. To calculate the random values for the clustering coefficient and characteristic

path length, 100 matched random networks have been generated with 14 nodes.

The small-world values are computed with the transitive clustering coefficient and

Monte-Carlo realizations [405].

7.3.2 Weighted FBN Analysis

From Fig. 7.12, we can observe that both novice and competent users have more node

strength in drawing and manipulation states than in the rest state, which indicates

that each node or electrode sends and receives more information during drawing and

manipulation states. The competent user’s node strength is approximately the same

in drawing and manipulation states, which means that their brain is more sending

and receiving the same amount of information, and information flow is the same in

both states, whereas, for novice users, the node strength increases in manipulation

state, which indicates more information transfer in manipulation state than any other

state. All novice users showed the same trend of node strength.

Statistical Analysis

To show the significance of information flow during the three states, we have applied

the one-way analysis of variance (ANOVA) test. The mean information flow of

each state, which is calculated by row-wise summation of each NTE matrix, was

used in ANOVA and the multi-comparison procedure was applied, and results are

shown in Fig. 7.13. The ANOVA results show that there are significant differences

in the mean information flow between rest and drawing/ manipulation states. For

novice users, the mean information flow difference is also significant in drawing and

manipulation states, but this is not the case with competent users because of the
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(a) Node strength averaged across all novice users

(b) Node strength averaged across all competent users

Figure 7.12: Comparison of node strength across electrodes during rest, drawing
and manipulation states

overlap seen in drawing and manipulation states mean information flow. This is a

clear indication that the information flow was increased in novice users when they

started manipulating the object, whereas competent users were comfortable with

both drawing and manipulation. Fig. 7.14 showed a multi-comparison of ANOVA on

mean information flow of each electrode to all other electrode averaged across all

the novice and competent users during rest, drawing and manipulation states.

Hemisphere-wise Analysis

Fig. 7.15a-7.15d shows the ANOVA test results for hemisphere-wise analysis. The

results show that the information transfer from LH to LH is greater than the infor-

mation transfer in other hemispheres for Competent-Users 2 and 3 in drawing state.

In manipulation state, the t-test results showed that there are no significant differ-
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(a) Novice-User 2 (b) Novice-User 5

(c) Competent User 2 (d) Competent-User 3

Figure 7.13: Multi-comparison of ANOVA on mean information flow of each electrode
to all other electrodes during rest, drawing and manipulation states

ences in mean information transfer value for RH to RH and RH to LH transfer. For

Competent-User 2, the values of RH to LH and RH to RH increased in manipulation

state compared to drawing state. Competent-User 3 shows the opposite behavior; the

mean information flow value from RH to LH and LH to LH decreases in manipulation

state, and other information transfer values do not change much. In the case of the

novice users, an increase in information flow in all the electrodes has been observed

from rest to drawing to the manipulation state. The flow of information is more

towards the left hemisphere from the right and left hemisphere electrodes. Thus, it

can be said that, in manipulation state, the left region of the brain has received more

information from its own electrodes then the right-side electrodes.

The statistical significance of the difference in information transfer between

different states has been given in Table 7.4. These results were calculated by applying

the two-sample t-test with α= 0.05 (two-tailed). The results show that in most of
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(a) Multi-comparison of ANOVA averaged across all Novice User

(b) Multi-comparison of ANOVA averaged across all Competent User

Figure 7.14: Multi-comparison of ANOVA on mean information flow during rest,
drawing and manipulation states
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(a) Competent-User 2

(b) Competent-User 3

(c) Novice-User 2

(d) Novice-User 5

Figure 7.15: One-way ANOVA of Hemisphere-wise mean information flow during
rest, drawing and manipulation states
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Table 7.4: Result of pairwise mean difference using the t-test for hemispheres infor-
mation flow during rest, drawing and manipulation states(MD:Mean Difference

States Novice-User 2 Novice-User 5
Drawing Rest MD CI MD CI
LH-RH LH-RH 0.017* 0.005 0.029 0.016 -0.003 0.034
RH-LH RH-LH 0.017* 0.006 0.028 0.005 -0.004 0.019
LH-LH LH-LH 0.027* 0.011 0.043 0.012* 0.001 0.022
RH-RH RH-RH 0.012* 0.005 0.018 0.030* 0.007 0.052
Manipulation Drawing
LH-RH LH-RH 0.022 -0.004 0.048 0.008 -0.014 0.029
RH-LH RH-LH 0.020* 0.008 0.032 0.031* 0.001 0.052
LH-LH LH-LH 0.010 -0.007 0.028 0.029* 0.006 0.052
RH-RH RH-RH 0.031* 0.018 0.044 -0.016 -0.042 0.009
Manipulation Rest
LH-RH LH-RH 0.039* 0.014 0.064 0.024* 0.002 0.041
RH-LH RH-LH 0.037* 0.01 0.043 0.038 0.017 0.059
LH-LH LH-LH 0.037* 0.026 0.048 0.041* 0.018 0.064
RH-RH RH-RH 0.043* 0.030 0.055 0.014 -0.004 0.032

Competent-User 2 Competent-User 3
Drawing Rest MD CI MD CI
LH-RH LH-RH 0.008 -0.008 0.024 0.020* 0.009 0.030
RH-LH RH-LH 0.080 -0.017 0.177 0.034* 0.008 0.060
LH-LH LH-LH 0.088* 0.046 0.130 0.035* 0.018 0.052
RH-RH RH-RH 0.020* 0.008 0.031 0.013 -0.005 0.031
Manipulation Drawing
LH-RH LH-RH 0.005 -0.010 0.019 0.006 -0.016 0.028
RH-LH RH-LH -0.042 -0.141 0.057 -0.003 -0.035 0.028
LH-LH LH-LH -0.025 -0.108 0.057 -0.007 -0.027 0.013
RH-RH RH-RH 0.009 -0.005 0.023 0.029 -0.005 0.063
Manipulation Rest
LH-RH LH-RH 0.013 -0.002 0.027 0.026* 0.004 0.047
RH-LH RH-LH 0.038 -0.000 0.076 0.031* 0.008 0.054
LH-LH LH-LH 0.063 -0.017 0.142 0.028* 0.013 0.043
RH-RH RH-RH 0.029* 0.016 0.041 0.042* 0.009 0.075

*Mean difference is significant at p< 0.05 level.
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the cases, the difference in mean information flow is significant, especially for novice

users. The mean difference is more for novice users when comparing manipulation

and drawing states. For competent users, a small decrease in information flow has

been observed, when comparing the RH-LH and LH-LH regions in manipulation

and drawing states. This is an indication that the flow of information decreases for

competent users in the left hemisphere from the left and right hemisphere electrodes.

Overall, Novice users show significant mean differences in all three states compared

to competent users. With competent users, the difference is not significant in all cases

which indicates that the competent user’s brain is trained in a way that it allows

certain regions to be more active than others with respect to tasks.

Region-based Analysis

The region-based analysis in Table 7.5 shows that the information flow from F-C

is high in competent users compare to novice users, and the IF from F-C is more

than IF from C-F. The IF from F-C increased in the manipulation state compared

to other states for every user, which indicates that more information is transferred

from the frontal region. The IF from P-C is more for novice users compared to

competent users. The IF from F-P increases from rest to manipulation state for novice

users but decreases for competent users. From the analysis in manipulation state,

maximum information was transferred through frontal electrodes. The reason

for the maximum activation of the frontal scalp regions can be because this

region is associated with reasoning, planning, and problem-solving [456].

In Table 7.5, the highlighted blue color shows an increase in information flow from

drawing state, and red color shows a decrease in IF. The analysis clearly shows that

competent users’ IF increased in some region and decreased in others whereas, for

novice users, the information flow has increased in manipulation state from drawing

state with some exception (Novice-User 5). It is also an indication that competent
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Table 7.5: Information flow among F, C and P nodes during rest, drawing and
manipulation states (NU: Novice-User, CU: Competent-User, D:Drawing, R:Rest,
M:Manipulation)

Users States F-C C-F F-P P-F P-C C-P Max Min

NU 2
R 0.0061 0.0121 0.0111 0.0037 0.0048 0.0058 C-F P-F
D 0.0611 0.0502 0.0709 0.0224 0.0330 0.0637 F-P P-F
M 0.1097 0.0919 0.1350 0.1091 0.0987 0.1139 F-P C-F

NU 5
R 0.0212 0.0162 0.0135 0.0313 0.0372 0.0242 P-C F-P
D 0.0741 0.0555 0.0434 0.0386 0.0964 0.0730 P-C P-F
M 0.1080 0.0797 0.0557 0.0579 0.0431 0.0636 F-C P-C

CU 2
R 0.0242 0.0134 0.0356 0.0406 0.0606 0.0689 C-P C-F
D 0.2260 0.0752 0.1570 0.0739 0.0735 0.1027 F-C P-C
M 0.1631 0.0577 0.0952 0.0642 0.0782 0.0590 F-C C-F

CU 3
R 0.0465 0.0325 0.0175 0.0254 0.0359 0.0446 F-C F-P
D 0.0736 0.0702 0.1154 0.1516 0.0622 0.0606 P-F C-P
M 0.1792 0.1215 0.1027 0.1478 0.0526 0.1020 F-C P-C

users have developed the capability to control the performance of a specific brain

region to perform a particular task effectively.

In the rest state most of the IF is through the central region and the least informa-

tion transfer was in between frontal and parietal lobes for all users. All users show

maximum information transfer from the frontal cortex in manipulation state and

minimum IF has been seen in the central cortex in manipulation state. In drawing

state maximum IF has been seen through the frontal to the central cortex. The

parietal and occipital lobes have shown minimum activation in sending information

except for Competent-User 3.

Table 7.6 shows the comparison of mean information flow between F, C and P

nodes in various states averaged across all the novice and competent users. The

results clearly shows the difference between novice and competent user information

flow between different brain regions.

186



7.3 Results and Discussion

Table 7.6: Information flow among F, C and P nodes during rest, drawing and
manipulation states averaged across all users

User States F-C C-F F-P P-F P-C C-P

Novice

Rest 0.0136 0.0141 0.0123 0.0175 0.0210 0.0150

Drawing 0.0676 0.0528 0.0571 0.0305 0.0647 0.0684

Manipulation 0.1088 0.0858 0.0954 0.0835 0.0709 0.0888

Competent

Rest 0.0353 0.0229 0.0266 0.0330 0.0482 0.0568

Drawing 0.1498 0.0727 0.1362 0.1127 0.0679 0.0816

Manipulation 0.1712 0.0896 0.0990 0.1060 0.0654 0.0805

Table 7.7: Classification results using all features

Classifiers Accuracy Sensitivity Specificity F-measure
LDA 88% 0.94 0.80 0.91
KNN 71% 0.75 0.65 0.76
NB 69% 0.80 0.53 0.76
SVM 82% 0.87 0.74 0.85
Tree 83% 0.88 0.75 0.86

7.3.3 Classification Results

The classification results are shown in Table 7.7 - 7.9. The data from all eight

subjects were used in this experiment. The data-set was divided into training and

testing data-sets and the results are evaluated with 5-fold cross-validation. Table 7.7

shows the classification results of different classifiers with all features as input. The

LDA classifier shows maximum classification accuracy of 88% with an F-measure of

0.91. The NB classifier shows the least classification accuracy. Sequential forward

search has been used to select the best features and the results are shown in Table

7.8. The k-NN (k=3) shows the best classification accuracy of 95% with just 11

features. The classification accuracy for all classifiers increased after applying SFS

for feature selection except for LDA. NB classifier accuracy also increased from 69%

to 78% by selecting only 4 features. Table 7.9 shows the timing analysis to select

five features using SFS. The SVM classifier takes the maximum time (818.47 sec)
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Table 7.8: Classification results after feature selection by SFS

Classifiers Accuracy Sensitivity Specificity F-measure Features
LDA 88% 0.95 0.76 0.90 40.00
KNN 95% 0.96 0.92 0.96 11.00
NB 78% 0.93 0.56 0.84 4.00
SVM 88% 0.95 0.76 0.90 20.00
Tree 89% 0.90 0.88 0.91 16.00

Table 7.9: Time taken by the algorithm to select features using various classifiers

Classifiers Accuracy Feature number Time in sec
LDA 80% 12 32 35 37 41 7.96
KNN 92% 23 29 32 35 41 7.30
NB 78% 29 30 32 35 41 7.52
SVM 81% 19 20 29 32 38 818.47
Tree 86% 9 17 22 29 35 7.71

and k-NN takes the least time (7.30 sec) to select five features. k-NN also gives the

maximum classification accuracy among all other algorithms. The results also show

some common features selected by different classification algorithms The feature

number 29, 32, 35 and 41 selected by k-NN also appears in the features selected by

other algorithms. The feature 29 is the characteristic path length and 32, 35, and 41

belong to the mean information flow. The feature 32, 35, and 41 correspond to the

mean information flow of electrodes F3, T7 and F8 respectively. It shows that the

channel that contributes to maximum variance between novice and competent users

are F3, and F4 from frontal lobe and T8 from temporal lobe of the brain. Fig. 7.16

shows the mean square error (MSE) of various classification algorithms with respect

to the features selected. The graph shows that the error decreased when the number

of features increased. After selecting a certain number of features, the change in MSE

was not significant. The least MSE of 8% was observed with k-NN classifier and NB

shows the maximum MSE compared to other classifiers.
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Figure 7.16: Mean square error with respect to features selected

7.4 Conclusion

In this chapter, a novice/competent user study has been presented that uses NTE

to construct FBN and estimate the information flow patterns. Both binary and

weighted directed FBNs were used for the analysis. Using the techniques of signal and

information processing to construct FBNs and applying graph theory and statistical

analysis, we have estimated the cognitive activity and information flow pattern

for novice and competent users by measuring the Connectivity density, clustering

coefficient, characteristic path length, motif count, node strength and small-worldness.

The results showed a significant difference in information processing between novice

and competent users. The findings from the analysis are listed below:

1 The main difference was observed in the manipulation state, novice users in-

formation flow patterns changed in manipulation state compared to competent

users. The connectivity density, motif count, clustering coefficient all showed

the same trend.

2 The network density increased from the baseline for both novice and competent

users, but the change is more for novice users compared to competent users in

drawing and manipulation states.
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3 Most of the activity was focused in the frontal region, which indicates the use

of short-term memory.

4 The small-worldness shows that competent users have relatively high global

and local efficiency of information transfer than novices.

5 The hemisphere analysis shows that the information flow has increased in both

hemispheres for novice users, but competent users managed to control the

information flow according to the task.

6 In the lobe-wise analysis, the frontal lobe was most active in sending and

receiving information in drawing and manipulation states for all users.

Competent users have developed the capability which gives them control of different

brain regions for the different tasks, unlike novice users where almost all regions

became active. The results indicate that competent users were more relaxed in

both drawing and manipulation states, whereas novice users put more effort into

manipulation state than drawing state. The feature selection algorithm also helps us

to find the features that maximize the novice competent difference. These features

belong to the frontal and temporal lobes of the brain. The results are aligned with

the earlier findings of Kavalki & Gero [443] regarding differences between novice

and competent users concurrent cognitive processing.
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Chapter 8

Comparative Analysis of Cognitive

Activity: using Power Spectral

Density

This chapter presents the analysis of power spectral density in estimating cognitive

activity of novice and competent users in using a traditional unimodal input system

and MMIS. The theta and alpha bands of EEG signals have been used to measure

the cognitive activity of the user. The results have been presented at the 26th

International Conference on Systems Engineering (ICSEng) 2018 held in Sydney,

Australia, with a paper titled "Analyzing Novice and Expert User’s Cognitive Load in

using a Multi-Modal Interface System" [48].

• Baig, Muhammad Zeeshan, and Manolya Kavakli. "Analyzing Novice and Expert

User’s Cognitive Load in using a Multi-Modal Interface System." In 2018 26th

International Conference on Systems Engineering (ICSEng), pp. 1-7. IEEE, 2018.
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8.1 Introduction

Effects of human-factors on Human-Computer Interactions (HCI) has been studied

for a while and the centre of interest was the performance-based measures, such

as task completion timings and accuracies, to draw the conclusions. These types of

performance measures can give us a global understanding but they failed to shed

light on the individual variations amongst participants [457].

The individual differences were recorded with the measures of human expertise

and experimental task analysis which are subjective and rely heavily on self-reported

data and are biased based on culture, age, personal behaviour, and overestimation.

In this chapter, we have used a multi-modal interface system for 3D modelling (xDe-

SIGN) [43] and EEG to replace the traditional self-reported data. We have compared

the traditional unimodal input (Keyboard and mouse) and multi-modal input (Speech

and gesture). We have also used the qualitative self-reported data along with the

quantitative data provided by the EEG analysis.

In the literature, most of the research work is focused on analyzing games and

programming expertise [361,422]. We have used the EEG signals to analyze the rela-

tionship between human cognition and CAD competency when the user is designing a

3D object using both unimodal and multimodal inputs. To the best of our knowledge,

this is the first study that explores the use of EEG to estimate the cognitive activity

associated with CAD competency and the design tasks in multi-modal interaction.

An EEG signal can be divided into different bands based on frequency ranges and

each band has its own characteristics as shown in Table 8.1. In this chapter, we have

used the EEG Power Spectral Density (PSD) to investigate the user’s cognitive activity

while the user performs a 3D object modelling task. In the literature, it is stated that

the θ band over the parietal lobe is better associated with low-and high-cognitive

load tasks compared to β and α bands [462]. A high β-band activity over occipital

lobe has been associated with the high-visual-attention tasks [460]. We construct the

192



8.2 Methodology

EEG Band Frequency Range Characteristic
Theta (θ) 4-8 Hz Emotional Information [458]
Alpha (α) 8-13 Hz Cognitive Processing [459]
Beta (β) 13-30 Hz Logical Thinking, Conscious

Thought, Stimulating effect
[460]

Gamma (γ) 30-50 Hz Memory, Linguistic Pro-
cessing, Cognition, Atten-
tion [461]

Table 8.1: EEG bands and corresponding characteristics

following hypothesis based on the literature review:

Hypothesis 1: After reviewing the literature, we identified a hypothesis that

α-band activity is inversely, and θ - and β-band activity are directly correlated with

mental effort.

Hypothesis 2: We hypothesized that the keyboard state activity levels would be

lower compared to gesture state cognitive activity levels.

Hypothesis 3: The competent users face difficulty in adjusting to new input

modes compared to novice users.

In this chapter, we find the answers to the following research problems:

RQ 5.1 What are the differences in cognitive activity between multimodal and unimodal

systems?

RQ 5.2 Does competency play a role when a new set of inputs were used for a predefined

task?

8.2 Methodology

In this chapter, we have used a multimodal interface system (MMIS) xDe-SIGN

v2 [42, 43] to draw and manipulate 3D objects and to draw comparison with the

traditional use of a unimodal AutoCAD system. The MMIS allows the users to design

objects in 3D, using AutoCAD commands as well as speech and gesture.
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We analyzed the cognitive activity of the participants through EEG signals in an

MMIS. Since the literature focusing on 3D object manipulation is (very) limited, more

detailed investigation is needed to study the cognitive states of novices and competent

users in a 3D-modelling environment. The experimental details and EEG signal pre-

processing steps are provided in Chapter 5. The EEG data from 11 participants (3

Competent and 8 Novice) have been used for this study. For convenience, we named

the first task that used traditional (mouse and keyboard) input was named "Keyboard"

and the second task that used multimodal (speech and gesture) input was named

"Gesture" based drawing state.

We extracted 50 epochs from data in the keyboard, and gesture state tasks by

performing back-to-back epoching with a 0.5-sec difference between epochs. The

response time for a modelling action varies from 0.5 to 4 seconds and we made sure

that a minimum of one modelling action must be performed in an epoch through the

video log. An epoch size of 4 sec has been selected in this study. 25% of the users

were competent users of AutoCAD with over 2 years of experience in 3D modelling.

Two users deleted the objects when drawing and these actions were also considered

among design actions in this experiment. According to our findings, there was no

significant correlation found between competency level and task completion time.

8.2.1 Power Spectral Density

After the pre-processing stage, Power Spectral Density (PSD) estimate was calculated

for each epoch of 4-seconds using Welch’s method. The Welch’s method is prefered

over other methods for PSD because Welch’s method reduces noise in the estimated

PSD in exchange for reducing the frequency resolution. A hamming window of

size 64 samples was used without overlapping. The method can be divided into 4

steps [463]:

1 Partition the data into K segments:
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Segment 1:x(0), x(1), ..., x(M −1)

Segment 2:x(S), x(S+1), ..., x(S+M −1)

.

.

.

Segment 1:x(N −M), x(N −M +1), ..., x(N −1)

where M is the number of points in each segment, S is the shift or gap between

segments and K is the total number of segments.

2 For each segment (k= 1 to K), compute a windowed Discrete Fourier Transform

(DFT) at some frequency f = i/M with −(M/2−1)≤ i≤M/2:

Xk(v) =
∑

m
x(m)w(m)ex p(− j2πvm) Eq(8.1)

where, m = (k− 1)S, ..., M + (k− 1)S − 1 and w(m) is the window function,

which is hamming window in this case.

3 For each segment (k = 1 to K, from the modified periodogram value, Pk( f ),

from the DFT:

Pk(v) =
1
W
|Xk(v)|2 Eq(8.2)

where W is:

W =
M
∑

m=0

w2(m) Eq(8.3)

4 Average the periodogram values to obtain Welch’s estimate of PSD:

Sx(v) =
1
K

K
∑

k=1

Pk(v) Eq(8.4)

To compare the data of all users, we calculated the relative PSD by dividing the PSD

of each band with the sum of PSD of all frequencies.
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8.3 Results and Discussion

We performed the analysis on all the 50 epochs extracted from the EEG signals of all

participants. The PSD estimate averaged over all 50 trials for 6 users (> 50%) have

been shown in Fig. 8.1 - 8.2. Three users were competent and all other users were

novice users of 3D modelling software (See appendix E.1 for the results of all the

users).

(a) Competent-User 1 (b) Novice-User 1

(c) Competent-User 2 (d) Novice-User 2

(e) Competent-User 3 (f) Novice-User 3

Figure 8.1: Averaged theta activity at rest, keyboard and gesture states for three
competent and three novice users

Result 1: The average theta band activity for 3 competent and 3 novice users, as

shown in Fig. 8.1, demonstrates that the θ -band activity was more intense in the

keyboard state compared to gesture state for competent users. However, for novice

users, the θ -band activity increased in gesture state rather than keyboard state.

The theta band activity corresponds to the emotional information processing which

means that novice users were processing relatively more emotional information and

were possibly more stressed in the gesture state compared to competent users. The

θ -band activity was mainly observed on the frontal and occipital lobes for most of

the users which can be interpreted as the users were using their short term memory
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more with the motor tasks.

Result 2: The α-band activity of the users is shown in Fig. 8.2. It can be seen

from the figure that the α-band activity decreased for almost all the users in the

keyboard state compared to the rest state which shows the increase in mental effort

in keyboard state from rest state. In gesture state, we observed a very unexpected

pattern. On average, the α-band activity of novice users increased more in gesture

state compared to keyboard state when compared with competent users. If we apply

(a) Competent-User 1 (b) Novice-User 1

(c) Competent-User 2 (d) Novice-User 2

(e) Competent-User 3 (f) Novice-User 3

Figure 8.2: Averaged alpha activity at rest, keyboard and gesture states for three
competent and three novice users

the hypothesis that α-band activity is inversely related to mental effort then the

results can be interpreted as the mental effort of competent users increased when

they were using gesture and speech to draw the 3D objects unlike novice users.

Result 3: As all of the users were using the xDE-SIGN (multi-modal interface

system) for the first time so they are all considered to be novice users of xDE-SIGN,

but the competent users of AutoCAD were finding it hard to use the multi-modal

input compared to the novice users. Based on the α-band activity, we can say that

it was relatively easy for the novice users to use the new set of inputs compared to

competent users.
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Table 8.2: Statistical validation of alpha band PSD of keyboard and gesture states

Users Mean CI P

Competent-User 1 -0.04771 -0.0574 -0.03802 2.85E-13

Competent-User 2 0.006986 0.001907 0.012066 0.008025

Competent-User 3 -0.02094 -0.03402 -0.00785 0.002312

Novice-User 1 0.026834 0.011602 0.042067 0.000888

Novice-User 2 -0.00733 -0.01164 -0.00302 0.001273

Novice-User 3 -0.04591 -0.05621 -0.0356 7.02E-12

Novice-User 4 -0.02645 -0.03396 -0.01895 4.97E-09

Novice-User 5 -0.02223 -0.03268 -0.01178 8.8E-05

Novice-User 6 -0.0189 -0.02777 -0.01003 8.62E-05

Novice-User 7 0.013459 0.004327 0.022592 0.004708

Novice-User 8 0.01033 0.001146 0.019514 0.028273

Result 4: Table 8.2 shows the results of 2-sample t-test with unequal variance at

α= 0.05. The t-test was applied on alpha band PSD values of keyboard and gesture

state averaged across the 14 electrodes. The results showed that for 11 users the

change between alpha activity in keyboard state and gesture state was significant i.e.

p< 0.05.

For evaluation of the system, we also collected data from questionnaires. The

questionnaires were completed by all 11 users at the end. The recorded response

varies from 1 to 7 with 1 being bad or strong disagreement and 7 being excellent

or strong agreement. From the answers to questionnaires, we investigated the

performance of the system, fatigue level of the user and perception in HCI using

unimodal (keyboard/mouse) and multimodal (speech/gesture).

Result 5: The questionnaire results showed that it was difficult for all the users to

draw using multimodal (speech/gesture) compared to unimodal (keyboard/mouse).

This is due to the fact that they were using an MMIS for the first time and mouse

and keyboard inputs were used by the users traditionally all the time. The responses

of the users that correspond to performance evaluation are shown in Fig 8.3.
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Figure 8.3: Command Performance Evaluation

Result 6: Competent users were more comfortable in using AutoCAD with tradi-

tional inputs compared to novice users.

The one exception can be seen in the case of delay in action, where novice users

find the system acceptable but competent users were feeling some kind of delay in

action. In the case of speech and gesture input, both the novices and competent

users find it hard to use compared to keyboard and mouse inputs as shown in the

questionnaire responses recorded in Fig. 8.3b. A difference of opinion was observed

when we compared the novices and competent users responses about the performance
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(b) Speech and gesture

Figure 8.4: User perception in interacting

of MMIS.

Result 7: Novice users find it relatively easier to use the MMIS compared to

competent users.

The same trend between novices and competent users has been observed when

asked about user perception in interacting with the system as shown in Fig. 8.4. The

competent users were more comfortable than the novice users in interacting with

the system with unimodal (keyboard and mouse) input. However, in multimodal

(gesture and speech) inputs, the novice users were more relaxed and comfortable
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compared to competent users.

Result 8: A similar correlation between multi-modal input was seen in the α-band

activity response which highlights the finding that a novice user has a good chance to

learn and use a new set of inputs in a lesser amount of time compared to competent

users.

8.4 Conclusion

In this chapter, we have presented a comparative analysis of novice and competent

users in using a multi-modal interface system that uses speech and gesture inputs to

draw 3D objects. We have recorded EEG signals to see the cognitive activity in the

brain. The participants were asked to draw a simple 3D table using keyboard/mouse

and speech/gesture. The results showed that using speech and gesture for drawing

and manipulating 3D objects is more difficult compared to using keyboard and mouse.

We found that it was more difficult for competent users to use a new set of inputs to

draw 3D objects than novice users. When comparing the results with a competent

user for using multi-modal inputs, we observed that novice users’ alpha band activity

increased. This means that their mental effort decreased. The same kind of trend was

seen in the questionnaire responses. The novice user finds the speech and gesture

input more usable than competent users which is an indication of that it is easier for

a novice to use a new set of inputs i.e. speech and gesture for a particular application

compared to a competent user. This is an important finding regarding competency and

an extensive investigation for underlying reasons is needed to validate our hypothesis

that novice users could adapt to new input modes more easily than competent users.
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Chapter 9

Connectivity Analysis: using Transfer

Entropy and Functional Brain

Networks

In this chapter, a comparative analysis of the cognitive activity in using both unimodal

and multimodal interface systems is presented. The aim is to find the relationships

between a 3D modeling task and the user’s cognitive activity. We have performed

the connectivity analysis of Functional Brain Networks (FBNs) constructed from

transfer entropy. The results of the study are accepted for publication at the 28th

International Conference on Information Systems Development (ISD2019) to be held in

Toulon, France.

9.1 Introduction

The advancements in virtual and augmented reality have presented the users the

opportunity to use the multi-modal input rather than the traditional mouse and

keyboard input. The multi-modal input is a vital part of smartphones, VR headsets,

and game boxes. The applications of multi-modal input are also used in the 3D
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modeling and Computer-aided design (CAD), Computer-aided manufacturing (CAM)

and Computer Aided Engineering (CAE) industries as well.

Modeling systems with multiple inputs are preferred by the users to design a

3D object. These inputs can be speech, touch, facial expressions, gestures, and

handwriting [464]. The availability of multiple inputs improves the usability of

Human-Computer Interaction (HCI) systems. To develop such systems, the system

requires the obtaining of human information effectively. To achieve this, we need

to overcome technological, physiological, and psychological barriers. In the case

of humans, we utilize all available modalities in which our brain’s cognitive and

perceptual functions are perfectly synchronized.

In this chapter, we shed light on the user-dependent factors affecting MMIS. We

analyzed the cognitive activity and information flow patterns when a user is using

the traditional multi-modal input to draw 3D objects. We have used transfer entropy

(TE) of the EEG signals to analyze the connectivity between electrodes and then

used the TE matrix to generate both binary and weighted functional brain networks

(FBNs). We have used the graph theory methods to study characteristics the FBNs.

The study tries to find the human dependent factors that affect the performance

of a user in a multimodal interaction. We investigate individual differences in infor-

mation processing when the user is using traditional unimodal and multimodal input

systems. This study aims at finding the differences between competent users and

novices cognitive activities in interface modalities as well as proposing quantitative

measures to evaluate HCI systems. Other researchers generally provided qualitative

evidence on self-reported data, whereas we have provided quantitative evidence in

this chapter which is aligned with the previous work.

Our primary goal is to study the fundamental structure of the brain and its response

to the user interaction task and input modality and to discover the differences in

information flow patterns between various users in using speech and gestures for
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design and manipulation of an object in 3D space. The secondary goal is to investigate

how we can use these information processing differences to improve the overall

system performance in Human-Computer Interaction (HCI). In this chapter, we have

answered the following research questions. In this chapter, we find the answers to

the following research problems:

RQ 5.1 What are the differences in cognitive activity between multimodal and unimodal

systems?

RQ 5.1.1 Are there any differences in information flow patterns and cognitive activ-

ity in HCI using speech and gestures, based on the user’s competency in

using a CAD system?

RQ 5.1.2 Do novices and competent users employ different cognitive processing

models in 3D object manipulation?

RQ 5.2 Does competency play a role when a new set of inputs were used for a predefined

task?

RQ 5.2.1 Do the differences in information flow patterns give any advantage in

performance to the user in certain tasks?

9.2 Methodology

In this chapter, we analyze the cognitive activity of the participants through EEG

signals while using a multi-modal interface system (xDeSIGN v2) [42,43]. We have

used a connectivity measure to estimate the information flow between electrodes and

then used FBNs and graph theory methods to study the behavior. We apply TE to the

analysis of information flow patterns between novice and competent users. We have

used normalized TE values to construct both binary and weighted directional FBNs.
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Figure 9.1: Normalized Transfer Entropy Framework

After constructing an FBN, we have applied graph theory measures and statistical

analysis to quantify the information flow patterns.

The experimental details, EEG data collection, and preprocessing steps are de-

scribed in Chapter 5. For convenience, we named the first task (drawing with

keyboard and mouse), "Keyboard" and the second task (drawing with speech and

gestures) "Gesture" drawing state. To analyze FBNs, we have used graph analysis

measures, such as the Connectivity density, clustering coefficient, and node strength.

Fig. 9.1 shows is an analysis framework to compute FBN metrics. Data from 12

participants (4 Competent and 8 Novice) were used in this experiment. The data

for 8 of the participants is the same as used in previous chapters and 4 additional

participant data has been collected for this analysis.
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(a) Averaged across all novice users

(b) Averaged across all competent users

Figure 9.2: NTE connectivity matrices during rest, keyboard and gesture drawing
states

9.3 Results and Discussion

9.3.1 Analysis of Directed Binary FBNs

This section shows the results of the analysis performed on binary directed FBNs

constructed using the connectivity matrix calculated by NTE. The Fig 9.2 shows

the NTE connectivity matrices during various states averaged across novice and

competent users.

Fig. 9.2 shows that the brain connectivity increased progressively as the cognitive

activity increased from rest state to keyboard and gesture drawing states. Fig. 9.3

shows the connectivity density for all 12 users. It shows that the connectivity den-

sity is higher in keyboard and gesture drawing states compared to the baseline

resting state, inferring more connections between electrodes to accommodate more
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Figure 9.3: Comparison of connected density for all users during rest, keyboard and
gesture drawing states

active information flow which means that the brain recruits a higher number of neu-

rons to facilitate high cognitive activity processes in keyboard and gesture drawing

states.

If we compare the keyboard and gesture connectivity density, an increase in

connectivity density is seen except for Competent-User 4 and Novice-User 8.

The increase in connectivity density in gesture drawing state from the keyboard

drawing state is due to the execution of a number of simultaneous processes (motor

cognition, visual processing, designing). Fig. 9.4 shows the statistical significance of

the connectivity density of all the users during the three states. The lines extended

out from the mean show the confidence intervals, which means that the group means

are significantly different because there is no overlap.

The clustering coefficient was calculated from the binary directed FBNs across the

electrodes for all participants, and the results of two participants (Novice-User 3 and

8) have been shown in Fig. 9.5. It can be seen that the clustering coefficient value

increases for almost all the electrodes during the cognitive activity compared
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Figure 9.4: Multiple comparison test of connectivity density group mean for 12 users
during rest, keyboard and gesture drawing states

to the rest state. This shows that each electrode is communicating effectively with its

neighboring electrodes to form clusters which represent an increase in local efficiency

of the information transfer between electrodes. The clustering coefficient values

also show that the electrodes from right side frontal lobe and left side occipital and

parietal lobes are communicating more with the nearest neighbors.

Table 9.1 shows the statistical significance of the difference between means of

clustering coefficient across electrodes during keyboard and gesture drawing states for

all participants computed using a two-tailed t-test at α= 0.05. The results show that

the mean difference is significantly different in keyboard and gesture drawing

states for almost all the users except for Competent-User 1, 2, and 3. The mean

difference is significant for all the users in rest and keyboard and rest and gesture

drawing states.

We have also calculated the degree centrality for all participants from the NTE

matrix. Degree centrality shows the importance of a node in the network. Fig. 9.6

shows the topographic map of degree centrality data of a novice and a competent user
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Figure 9.5: Clustering coefficient across electrodes for during rest, keyboard and
gesture drawing states

Table 9.1: Statistical validation of clustering coefficient values for all user during
keyboard and gesture drawing states

Users Mean Diff. 95% CI P

Competent-User 1 0.0744 -0.0110 0.1597 0.0824
Competent-User 2 -0.0180 -0.0609 0.0250 0.3828
Competent-User 3 0.0173 -0.0425 0.0771 0.5421
Competent-User 4 0.1395 0.1036 0.1753 0.0000
Novice-User 1 0.0655 0.0396 0.0913 0.0001
Novice-User 2 0.1728 0.0575 0.2881 0.0065
Novice-User 3 0.0189 -0.0364 0.0741 0.0474
Novice-User 4 0.1855 0.1280 0.2431 0.0000
Novice-User 5 0.1403 0.0591 0.2214 0.0025
Novice-User 6 0.3033 0.2722 0.3344 0.0000
Novice-User 7 0.2020 0.1652 0.2388 0.0000
Novice-User 8 -0.0512 -0.1061 0.0037 0.050
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(a) Novice-User 6

(b) Competent-User 4

Figure 9.6: Degree centrality topographical plot of two users during rest, keyboard
and gesture drawing states

in a 2D circular view of all states. The topographical map was customized such that the

color map scales from minimum degree centrality value to maximum degree centrality

value to visualize subtle changes. The blue color represents the minimum value, and

the red represents the maximum value of degree centrality. The user in the drawing

state shows greater engagement than in the resting state. The major focus is seen in

the frontal area of the brain. Both drawing with keyboard/mouse and speech/gesture

requires intense visual attention, which shows elicited central and frontal areas in

the brain. Some competent users of AutoCAD show a small variation in degree

centrality across electrodes in keyboard and gesture drawing state compared

to other users. (Degree centrality of all the users is given in Appendix E.2 Fig. E.3.)

Table 9.2 shows the results of t-test at α = 0.05 (two-tailed) between means

of average degree centrality across electrodes in all three states for all the user

and the results show that the mean difference is significantly different across
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Table 9.2: Statistical validation of mean degree centrality across electrodes for all
participants during rest, keyboard, and gesture drawing states

States Mean Diff. 95% CI P
Keyboard Rest 1.5000 0.4778 2.5222 0.0080
Gesture Rest 2.9762 1.9589 3.9935 0.0000
Gesture Keyboard 1.4762 0.5625 2.3899 0.0045

all cognitive states. The maximum mean difference was observed in gesture

drawing and rest states.

Table 9.3: Electrodes with maximum variance in keyboard and gesture drawing
states using LDA

Graph Measure Electrodes

Clustering coefficient AF4 O2 P8 T8 FC6
Degree Centrality F7 FC5 T7 O2 P8

Linear Discriminant Analysis (LDA) was used to find the electrodes that showed

the maximum variance between keyboard and gesture drawing task. The results

are shown in Table 9.3. The results showed that for the clustering coefficient,

the maximum variation is seen in the electrodes that are on the right side of

the hemisphere compared to the left hemisphere electrodes. It can also be in-

terpreted as the electrodes on the right-hemisphere form clusters more often than

the left hemisphere electrodes. In the case of degree centrality, the maximum

difference is seen in the left frontal hemisphere (F7, FC5, T7) and back right

hemisphere (O2, P8). This finding indicates that the receiving and transmitting

of information are from these electrodes more than the other electrodes.

9.3.2 Analysis of Directed Weighted FBNs

We have used the weighted FBNs to find the mean information flow and node strength

for all the users. Fig. 9.7 shows the multiple comparison test of the average node

strength of all the users across all electrodes in the three states. The results clearly
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Figure 9.7: Multiple comparison test of node strength group mean for 12 users
during rest, keyboard and gesture drawing states

show that the node strength in gesture drawing state is more than the keyboard

drawing and rest state, and the results are statistically significant as seen in Fig.

9.7. The electrodes in the frontal lobes send and receive more information while

drawing with gestures compared to the keyboard state. The total information flow

from each electrode to all the other electrodes has been calculated by the row-wise

summation of the NTE connectivity matrix.

Fig. 9.8 shows one-way analysis of variance (ANOVA) results on the mean in-

formation flow across electrodes for all participants. The mean information flow

increased from approximately 0.005 to 0.02 when the user was using multi-

modal inputs instead of keyboard and mouse for drawing. Table 9.4 shows the

statistical significance of the difference in means of total information flow for all

users using t-test with α= 0.05 (two-tailed). The bold values of mean difference

showed that the difference was not statistically significant i.e. p> 0.05. In the case of

gesture and keyboard drawing analysis, the Competent-User 2, 3, 4 and Novice-User

2’s mean information flow difference was not significant. The possible reason can be
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Figure 9.8: Multiple comparison test of node strength group mean for 12 users
during rest, keyboard and gesture drawing states

that the Competent-User 2, 3, 4 have some previous knowledge of AutoCAD but this

can’t be generalized as other users did not show the same trend.

We also applied LDA to information flow and node strength values to find out the

electrodes that provide maximum variance during keyboard and gesture drawing

states, and the results are shown in Table 9.5. In the case of node strength, the

electrodes in the frontal lobes are sending and receiving more information than

other electrodes. The electrodes in the frontal right hemisphere of the brains

(F4, F8, AF4) have shown more variation in node strength compared to other

electrodes. The frontal and parietal lobes electrodes mean information flow varia-

tions are more than the other regions when using gesture drawing states. We have

also tried to find the correlations between the participants experiment completion

time and mean information flow patterns using LDA and found that the information

flow from right hemisphere was more compared to left-hemisphere specifically

in the frontal and central cortex for participants who completed the experiment

within 3 minutes.

The results show that the cognitive activity of the users increased in the ges-
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Table 9.4: Statistical validation of total information flow for all users during rest,
keyboard, and gesture drawing states. (MD: Mean difference, CI: Confidence interval,
CU: Competent-User, NU: Novice-User)

Users
Keyboard-Rest Gesture-Rest Gesture-Keyboard

MD 95% CI MD 95% CI MD 95% CI

CU 1 0.0217 0.0092 0.0341 0.0674 0.0471 0.0877 0.0457 0.0174 0.0740
CU 2 0.0076 -0.0019 0.0170 0.0149 0.0017 0.0281 0.0073 -0.0060 0.0206
CU 3 0.0402 0.0328 0.0476 0.0369 0.0279 0.0459 -0.0033 -0.0118 0.0053
CU 4 0.0385 0.0195 0.0575 0.0632 0.0345 0.0920 0.0248 -0.0118 0.0613
NU 1 0.0059 -0.0015 0.0133 0.0255 0.0154 0.0356 0.0196 0.0065 0.0327
NU 2 0.0379 0.0143 0.0615 0.0387 0.0157 0.0618 0.0009 -0.0276 0.0293
NU 3 0.0153 0.0012 0.0294 0.0570 0.0374 0.0767 0.0417 0.0259 0.0576
NU 4 0.0130 0.0025 0.0235 0.1064 0.0738 0.1389 0.0933 0.0618 0.1249
NU 5 0.0139 -0.0019 0.0297 0.0370 0.0170 0.0571 0.0231 -0.0015 0.0477
NU 6 -0.0005 -0.0148 0.0139 0.0397 0.0245 0.0549 0.0402 0.0207 0.0596
NU 7 0.0447 0.0360 0.0534 0.0738 0.0555 0.0920 0.0291 0.0089 0.0492
NU 8 0.0693 0.0527 0.0860 0.1425 0.1170 0.1680 0.0731 0.0474 0.0989

Table 9.5: Node strength and mean information flow electrodes with maximum
variance in keyboard and gesture drawing states

Graph Measure Electrodes

Node strength FC5 T7 F4 F8 AF4
Mean Information Flow FC5 P7 P8 FC6 F8

ture drawing state, but the increase was less for some Competent-Users (2, 3,

4) and Novice-User (user 2). It is an indication that with a little training, the users

will be able to demonstrate the same cognitive level as they show in keyboard drawing

state. The novice’s efficiency can be increased if we can stimulate frontal and central

lobes of the brain more often than the other lobes. One way to achieve this is to ask

the users to use their short-term memory by displaying some hints or other related

information for the experiment.

9.4 Conclusion

In this chapter, NTE has been applied to construct functional brain networks from EEG

signals to study the user’s cognitive activity in rest, traditional input (keyboard and
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mouse) and multi-modal input (Speech and gesture). After pre-processing of the EEG

signal, we have extracted 2 seconds epochs to construct the connectivity matrix using

normalized transfer entropy. The averaging of epochs was done to remove the noise

from the signals and to extract more global properties of the drawing phenomena.

Functional brain networks were constructed using the NTE matrix. Graph theory-

based measures were used to analyze the FBNs. Both binary and weighted FBNs

were used to study different cognitive states. The list below shows the major findings

of this chapter:

1 The results show that the cognitive activity of the user increased when they

were using multi-modal input for drawing 3D objects in AutoCAD.

2 The connectivity density, clustering coefficient, and degree centrality results

demonstrate that the information transfer between electrodes increases in

gesture drawing state from keyboard drawing state.

3 The mean information flow and node strength show that the maximum variation

in sending and receiving information is seen in frontal and central lobes because

drawing with multi-modal input requires intense attention and motor cognition.

4 Some competent users of AutoCAD show a small variation in degree centrality

across electrodes in keyboard and gesture drawing state compared to other

users. The maximum difference is seen in the left frontal hemisphere (F7, FC5,

T7) and back right hemisphere (O2, P8).

5 The electrodes in the frontal right hemisphere of the brains (F4, F8, AF4) show

more variation in node strength compared to other electrodes.

6 The mean information flow from right hemisphere is more compared to left-

hemisphere specifically in the frontal and central cortex for participants who

completed the experiment within 3 minutes.
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Although 3 out of 4 competent users showed that the variation in cognitive activity

was less when they moved from keyboard to gesture drawing state, due to very few

competent participants, we cannot generalize this hypothesis. The results could be

used as a real-time metric for cognitive activity measure. Usability designers can

benefit from the insights into the mental processing using the presented method for

newly designed systems and classification of cognitive activity.
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Chapter 10

Classification of User’s Competency

using Convolutional Neural Networks

In this chapter, we have proposed a method to classify the user’s competency level

using convolutional neural networks. To develop a system that can accommodate the

lack of competency, it needs to adapt to the competency level of the user. To solve this

problem, we have presented a deep convolutional neural network (CNN) model that

uses the Electroencephalography (EEG) of the user to classify the level of competency

in a 3D modeling task. The five competency levels were defined based on the task

completion time, final 3D model rating, and previous modeling competency. The

results are compared with other commonly used feature set results. To the best of

our knowledge, this is the first study to classify competency levels in HCI. The results

of this study have been under review in Expert Systems with Applications Journal.

10.1 Introduction

The 3D graphics industry is one of the biggest industries that incorporates many

sub-disciplines, including graphics in games, special effects in movies, and creativity

in visual arts. The target audience of the 3D modeling industry has grown from a
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narrow customer base to a more broader audience in recent years. Modeling in a

3D designing tool is a challenging job and require a unique skill set. In order to

achieve a particular competency level, a novice user undergoes rigorous training

to become an expert [465]. The system needs to be flexible and adaptable to the

user’s skill-set to attract more customers. The user-dependent factor must be studied

to make the 3D modeling tool adaptive [43]. The purpose of this research is to

classify the competency of the user into five levels using Electroencephalography

(EEG) signals.

To develop the state of the art tools for any application, the system needs to

be adaptive to accommodate both novice and competent users, but to define the

criteria on which the system will adapt itself is difficult. One way is to use the user

competency level and skills on which the system adapts. The problem is that it is hard

to predict the competency of a user in real-time. If a robust technique is developed

that can classify the user into various skill levels, then it will be easier to make

the system adaptive and accessible by both novice and competent users. By doing

that we can reduce the training time of the user. This application can be used in

the gaming industry to develop adaptive games in which difficulty level can be

changed based on the user’s mental states and cognitive loads. The development

in the Virtual and Augmented Reality (VR/AR) industry and the availability of the

VR headset such as looxidlabs VR device that has a built-in EEG sensor [466] can be

the gateway to next-generation games, systems, and visual arts.

For the classification of user competency level, we have to analyze the user

behavior and actions. A little research has been carried out in analyzing and classifying

novice and competent users behavior and the majority of the literature is focused

on analyzing the behavior in video games. Researchers proposed various methods

to estimate the cognitive response of the users in video games [467, 468]. In the

field of 3D modeling, researchers analyze the stress level and cognitive load of the
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user [365,469] but there is no research currently focusing on predicting the user skill

and competency level with EEG signals. With this research, we want to explore the

answers to the following research questions:

RQ 6.1 Can we effectively classify a user’s competency into different levels with the

EEG signals?

RQ 6.2 Which features contribute the most in the classification of the user’ competency?

In this chapter, we have presented a pilot study for the classification of the user’s

competency level. We have defined five different skill levels of users in a 3D object

design and manipulation task. We have recorded the EEG signals of the users with a

portable EEG headset (Emotiv EEG headset) while they were drawing a 3D object

in AutoCAD. After noise reduction and artifacts removal, features were extracted,

including power spectral density, normalized transfer entropy (NTE), common spatial

patterns (CSP). A deep CNN model was used to classify the features in five skill levels.

We have implemented a CNN model of 14 layers and validate the results with 5-fold

cross-validation.

10.2 Review of Related Methods

CNNs have been used in classifying driver’s cognitive activity with >70% accuracy

using EEG signals [470]. EEG decoding and visualization algorithms also use CNNs

[471]. Most of the studies that utilize CNNs for EEG classification focus on healthcare

applications. Only a few studies used CNN and EEG signals to detect fatigue and

cognitive activity [472,473]. In this chapter, we have proposed a method to quantify

the user skill level into five stages using the deep convolutional neural network. This

study will be the first one for the classification of user competency into different

levels according to the best knowledge of the authors.
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In the literature, deep neural networks have been used to classify EEG signals

in several applications. Lawhern et al. presented EEGNet: a compact convolutional

neural network for EEG-based brain-computer interfaces (BCI) [474]. CNN has been

used in biometrics for the identification of individuals using resting state EEG signals

with an identification rate of 88% [475]. Researchers have used CNNs to perform

feature extraction and classification of motor imagery EEG signals and achieved a

classification rate of above 85% [476]. Acharya et al. used CNN for the detection

and diagnosis of seizure using EEG signals [477]. In their study, a 13 layer deep

neural network has been used to classify normal, preictal, and seizure EEG signals

and obtained a classification accuracy of >88%.

CNN is a type of deep neural network that has been used in many applications

related to image recognition. In recent years, CNN has been successfully used in

various fields including biomedical image processing [478–480], object recognition

[481], face detection [482], and sentence modelling [483], but a small amount of

research has been carried out in studying psychophysiological signals. For psycho-

physiological signals, a CNN was used to segment the intervals of tachycardia ECG

with an accuracy of > 90% [484]; it was used for automated diagnosis of myocardial

infarction [485] and seizure [477].

10.3 Methodology

In this chapter, we have used EEG signals to classify competency levels. We have

extracted various features from the EEG signal for classification purposes such as

Power Spectral Density (PSD), Normalized Transfer Entropy (NTE), and Common

Spatial Patterns. We have used the original trials extracted from raw EEG data for

training and classification. A deep Convolutional Neural Network (CNN) is used for

training and classification of the features. The experimental details on collecting and

processing EEG signals are presented in Chapter 5. In this experiment, to prove the
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(a) The experimental set-
ting

(b) Novice drawing (c) Competent drawing

Figure 10.1: Experimental setup with novice and competent users drawing results

concept, we only consider the data of the experiment in which the user draws the 3D

model using the keyboard and mouse. Later, we will evaluate the same task using

gestures and speech. A picture of the experimental setup along with sample drawings

of novice and competent users are shown in Fig. 10.1.

Once the EEG data was clean enough, we split the EEG data of a user into trials

of four-second trials. The four-second intervals were selected using the video log

data of the users. The four-second interval is the average period in which a user

had performed at least one design action such as selecting a shape, changing the

dimension, or manipulating the object. By splitting the EEG data into 4-second trials,

we extracted a total of 586 trials from 12 users. The overall framework has been

given in Fig. 10.2.

10.3.1 Level of Competency

As the users have different skill levels, so a criterion needs to be defined to identify

the level of competency. To define a measure for competency level, we have taken

into account three different modeling characteristics, i.e., previous knowledge of 3D

modeling, task completion time, and rating of the final design by a competent user.

We have used these three factors to define five levels of competency. If the users have

previous knowledge of 3D modeling, then the users were given five points and for no

experience, one point. The task completion time was mapped linearly to a scale of 1
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Figure 10.2: Experimental Framework

to 5. A competent user of 3D modeling gave the ratings to the user’s final designs

on a scale of 1 (bad) to 5 (good). The competency measures of users, along with

the number of trials extracted from the EEG signals and final designs of the users,

have been given in Table 10.1. Once the user has been awarded points on previous

knowledge, completion time, and drawing rating, the total score was calculated by

linearly mapping the sum of the three measure on a scale of 1 to 5 with the following

competency attribute:

1 Fundamental

2 Novice
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Table 10.1: Competency level of all 12 users along with task completion time, number
of trials and final drawings

Users Novice/
Com-
petent

Completion
time (s)

Weight Rating Sum Competency
level

No. of
trials

Final
Drawings

User 1 5 58.5 5.00 3.5 13.5 4.0 14

User 2 1 68.0 4.90 2.0 7.9 2.0 17

User 3 1 93.1 4.63 3.0 8.6 3.0 23

User 4 5 110.0 4.45 5.0 14.4 5.0 27

User 5 1 136.3 4.17 5.0 10.2 4.0 34

User 6 1 157.8 3.94 1.0 5.9 1.0 39

User 7 1 164.4 3.87 2.0 6.9 2.0 41

User 8 5 173.3 3.77 5.0 13.8 5.0 43

User 9 1 205.1 3.43 2.0 6.4 2.0 51

User 10 1 213.2 3.34 3.5 7.8 2.0 53

User 11 1 263.3 2.81 5.0 8.8 3.0 65

User 12 5 290.1 2.52 5.0 12.5 4.0 72

3 Intermediate

4 Advanced

5 Competent

10.3.2 Feature Extraction

To classify the EEG signals, we have used the trial data extracted from EEG signals

without any feature extraction as well as the extracted features from the trial data.

We extracted some widely used EEG features for comparison. We have used Power

Spectral Density (PSD), Normalized Transfer Entropy (NTE), and Common Spatial

Patterns (CSP) filters. The reason for selecting these three features is that PSD

provides the frequency information of the EEG signals, and there is an inverse

relationship between mental activity and alpha frequency band of EEG signal. NTE

provides directional information patterns between various brain regions. CSP is the
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most common feature extraction technique used in motor imagery-based BCIs.

Power Spectral Density

Power Spectral density (PSD) is used to extract frequency vs. power spreading

information. PSD is the auto-correlation of Fourier transform (FT) which is considered

stationary in a wide range [486]. The Welch PSD estimate is used, and all frequency

bands (δ,α,β ,γ, and θ) of EEG signals are used in this experiment.

Normalized Transfer Entropy

Normalized transfer entropy (NTE) is used to estimate the information transfer

between two variable (see section 3.5.1). The NTE from y → x is not equal to

NTE from x → y and NTE is in the range of 0 and 1. If the value of NTE is 0,

that means no transfer of information and if the value is one then the information

transfer is a maximum. NTE is used to study the cognitive load of the user in different

applications [387]. In design application, novice and competent users should have

different cognitive activity; for this reason, NTE is selected as a feature.

Common Spatial Pattern

Common Spatial Pattern (CSP) has been widely used because it can maximize the

difference in variance between the two classes [487]. It has been used in many EEG

applications and is probably the first choice of feature extraction when designing a

Brain Computer Interface (BCI) [488].

10.4 Classification

After trials and features extraction, the next step was to classify the features. In this

chapter, we have used deep Convolutional Neural Networks (CNNs). Deep CNNs are
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a very loose simulation of neurons in the brain. The method uses several levels and

layers of data to learn automatically by using a deep structure of neural networks

made of many hidden layers of neurons. The advantage of using a CNN is that it

automatically mines features that contribute more towards classification [489].

10.4.1 Convolutional Neural Network Architecture

The CNN architecture consists of a convolutional layer, pooling layer, and fully

connected layer [490]. The convolutional layer consists of filters (also known as

kernels), which is a matrix that convolves with the input signal (EEG Signal). The

output of this layer is also called a feature map. The following equation performs the

convolutional operation:

yk =
N−1
∑

n=0

xnhk−n Eq(10.1)

where x is the signal, h is the filter coefficient, N is the number of elements in x , and

y is the output of convolution.

The pooling layer (down-sampling layer) reduces the dimension of output neurons

from the convolutional layer. The reason is to reduce the computational intensity

and avoid overfitting. In this chapter, max pooling operation is used as it selects only

the maximum value in each feature map to reduce the number of output neurons.

The fully connected layer has all the connection to the activation in the previous

layer. Softmax activation function has been used after the fully connected layer in

this work. The softmax function computes the probability distribution of the k output

classes to predict the actual class corresponds to the EEG signal. The probability is

calculated using the following equation:

p j =
expx j

∑k
1 expxk

f or j= 1,...k Eq(10.2)

where p is the output value between 0 and 1, x is the net input and k is the output
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classes.

After every convolutional layer, batch normalization layer has been used to nor-

malize the activation of each feature map by subtracting the means and dividing by

the standard deviation of mini-batch. After normalization, the layer shifts the input

by a learnable offset β and scales it by a factor γ. It is a common practice to use

batch normalization layer between the convolutional and nonlinear layers such as

Rectified Linear Unit (ReLU) layer. The purpose is to speed up the training of the

CNN. The Rectified Linear Unit (ReLU) layer used as an activation function performs

a threshold operation to the input element, where any negative value is set to zero.

The output of a CNN model is based on weights and biases of the previous layers,

and the weights and biases of each layer are updated with Equation 10.3 and Equation

10.4 respectively.

∆Wl(t+1) =−
xλ
r

Wl −
x
n
δC
δWl

+m∆Wl(t) Eq(10.3)

∆Bl(t+1) =−
x
n
δC
δBl
+m∆Bl(t) Eq(10.4)

where W is the weight, B is bias, l is layer number, λ is regularization parameter,

x learning rate, n is total number of samples, m is momentum, t is updating step,

and C cost function. The parameters that are used to train CNN are regularization

parameter, learning rate, and momentum. These parameters are tuned according

to application and data-set to achieve maximum performance. The regularization

parameter is used to avoid overfitting, learning rate to control the pace of learning

during training, and momentum is used for convergence of the data. In this work, the

regularization parameter λ is set to 1∗10−3, the learning rate is 0.01, and momentum

is set to 0.9. These parameter values are obtained by trial and error method. Table

10.2 shows the details of the CNN model used in this work.
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Table 10.2: A 14-layers CNN structure.

Layer Type Options
0 Input zerocenter normaliza-

tion
1 Convolution 8 kernels, 3x3 convo-

lutions with 2 stride
2 Batch Normalization Batch normalization

with ε= 10−5

3 ReLU -
4 Max Pooling pool size 2 with 2

stride
5 Convolution 16 kernels, 3x3 convo-

lutions with 2 stride
6 Batch Normalization Batch normalization

with ε= 10−5

7 ReLU -
8 Max Pooling pool size 2 with 2

stride
9 Convolution 32 kernels, 3x3 convo-

lutions with 2 stride
10 Batch Normalization Batch normalization

with ε= 10−5

11 ReLU -
12 Fully Connected Output size 5
13 Softmax -
14 Classification Output cross entropy loss er-

ror function

The CNN structure contains three convolutional, 2 max-pooling, and one fully

connected layers. The stride is set at 2 for convolution and max-pooling operations.

10.4.2 Training of CNN

We have used stochastic gradient descent with momentum (SGDM) algorithm to

train the CNN network. A mini-batch size of 128 is selected in this work to train CNN.

SGDM is a method that updates the weights and biases to minimize the loss function

by taking small steps in the direction of the negative gradient of the loss. A total of

150 epochs were used to train the CNN model in this work. The number of trials
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required to train CNN for a small number of class labels is not necessarily large. In

most of the cases, approximately 60 trials per class are considered enough to train a

CNN for a 5 class problem.

10.4.3 Testing of CNN model

We divided the data into three sets, training (65%), validation (25%), and testing

(10%). The CNN model used training data (65%) for training, and 25% data is used

for validation of the CNN model. The 10% testing data was used to test the CNN

model and validate the classification accuracy. A total of 150 epochs (iteration of one

training set) were used to train the CNN. After each iteration, the method validates

the CNN model by using 25% of the validation dataset. The reason for using this

structure is to avoid overfitting of the CNN model.

A 5-fold cross-validation approach was used to test the CNN model. EEG data

(90%) is divided into five random portions. Four portions are used for training

the CNN, and the remaining one is used to validate the CNN model in each epoch.

One-tenth of the EEG data (testing dataset) is used to test the performance of the

model. This mechanism was repeated five times by shifting the training and testing

datasets. The average values of this shifted evaluation have been used to report

accuracy, sensitivity, specificity, and F-measure.

10.5 Results and Discussion

The experiment was performed on an Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz

(8 CPUs), with 16GB RAM. The programming environment was MATLAB, and all

simulations run on a single CPU. MATLAB was used for the pre-processing of EEG

signals and implementation of CNN (training and testing). Table 10.3 shows the

classification accuracy of the baseline performance, i.e., the resting state. The label
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class used for the classification of the resting-state dataset is the same described in

Table 10.1 under the heading competency level. The results showed that the CNN

model is perfectly equipped to classify EEG signals of various competency level when

they are not performing any design task. Classification accuracy of greater than 80%

was achieved with the CNN model for baseline dataset.

Table 10.3: Validation accuracy of baseline dataset (Resting state)

Epochs
Validation Accuracy (%)

Trial Size (Electrodes x No. of samples)

14 x 320 14 x 256 14 x 192 14 x 128 14 x 64

1 25.00% 15.19% 39.64% 34.68% 35.64%
10 51.67% 53.16% 49.55% 50.87% 50.83%
20 63.33% 58.23% 51.35% 57.80% 52.21%
30 65.00% 63.29% 57.66% 65.90% 53.59%
40 66.67% 62.03% 59.46% 65.90% 61.33%
50 66.67% 59.49% 65.77% 67.63% 66.85%
60 71.67% 59.49% 70.27% 71.10% 70.44%
70 73.33% 63.29% 72.07% 69.94% 71.55%
80 73.33% 67.09% 77.48% 73.99% 75.14%
90 76.67% 68.35% 80.18% 76.88% 76.24%

100 78.33% 68.35% 82.88% 78.61% 78.18%
110 80.00% 68.35% 84.68% 82.66% 82.04%
120 80.00% 70.89% 84.68% 83.82% 83.15%
130 80.00% 72.15% 84.68% 85.55% 85.91%
140 80.00% 72.15% 84.91% 86.01% 86.15%
150 80.00% 70.89% 84.91% 86.01% 86.33%

We have used three features sets along with the original trial data. Table 10.4

shows the details about the datasets used in this experiment. The time taken in

Table 10.4: Features with size and computational time to extract all features

Features Size Time (s) Total time(s)

Original data trials 14x512 - -

PSD of all bands 14x257 0.2537 148.6682

Normalized TE 14x14 4.6529 2726.599

CSP 14x73 0.0468 27.4248

extracting a single CSP feature was 0.04 sec which is minimum among all three
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features extracted from the original data. The confusion matrix and accuracy is

presented in Table 10.5. It is observed that EEG signals without any feature extraction

process show an accuracy of >80%. The reason is that the CNN model mines the

data to select the optimal elements for classification, so in most cases, a deep neural

network does not need any features. The original trial set achieved more than 80%

Table 10.5: The confusion matrix averaged across five iteration of five-fold cross
validation

Feature Classes
Predicted

Accuracy
1 2 3 4 5 (%)

Original

1 10.0 0.5 0.0 1.5 0.5 80.00
2 0.5 15.0 0.8 3.5 2.0 68.97
3 0.0 2.8 11.3 2.0 1.8 63.38
4 0.8 2.8 1.0 32.5 2.3 82.80
5 0.8 1.0 0.5 0.8 35.8 92.26

PSD

1 8.6 1.8 0.8 0 1 70.49
2 0 21.8 0.2 0 1.8 91.60
3 0 1 15.8 0 1.4 86.81
4 0 7.2 3.2 23.2 4.4 61.05
5 0 2.6 0 0 35.2 93.12

NTE

1 0.75 2.25 2.5 5.5 2.25 5.66
2 1 5.25 2.25 9 4.5 23.86
3 0.75 4.25 3.25 4.75 4.75 18.31
4 2.75 7 4.25 21 5 52.50
5 0.75 9.25 2.5 6.5 18 48.65

CSP

1 11.75 1 0 0.25 0.5 87.04
2 0.25 15.3 1 6.25 0 67.03
3 0 0.75 12.25 2 2.25 71.01
4 0 4.5 0.25 34.3 0 87.82
5 1.25 0 1.75 0 34.5 92.00

accuracy in classifying class 1, 4. The best classification accuracy is shown by the

CSP features. The worst performance is shown by NTE features. Table 10.6 shows

the average classification results of all feature sets across all five-folds. The results

showed that CSP feature classify >80% of the trials correctly. Both the original and

PSD features correctly classify the EEG trials 8 out of 10 times. The maximum training

time is taken by the original trial set because of the trial size of 14 x 512 samples. The
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Figure 10.3: CNN training process for original trial set

least training time is for the NTE features because they only have 14 x 14 elements

in one trial.

Table 10.6: The overall classification result of all feature sets averaged across all
five-folds.

Features Validation
accu-
racy%

Testing
accuracy
%

Senstivity Specificity F-
measure

Train
time (s)

Original 80.38 78.79 0.80 0.80 0.44 182.61
PSD 80.46 77.27 0.70 0.82 0.40 96.67
NTE 39.23 37.88 0.06 0.41 - 8.16
CSP 83.65 86.36 0.87 0.83 0.53 31.09

If we consider training time and classification accuracy as factors to choose the

best feature, then the CSP features surpass the performance of other features. Fig

10.3 shows the training process of the CNN model along with all 150 epochs on

original trial data. It can be seen clearly that the CNN model achieved a validation

accuracy of almost 80%. Fig. 10.4 shows the training process for CSP features along

with validation. The original trial size was 14 x 512 samples (i.e., four-second sample)

which was taking approximately 180 sec for CNN to train. To reduce the training

time, we shortened the trial size of original data by half a second repeatedly and

then trained and tested the CNN model on these shortened datasets. The trial size

was reduced by extracting a sub-trial from the original trial. The number of trials
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Figure 10.4: CNN training process for CSP feature set.

remains the same. The results are listed in Table 10.7. It is shown in Table 10.7 that

reducing the original trial size increased the classification accuracy of the model and

training time is also reduced. The best validation, and testing accuracy of 88.27%

and 90.91% respectively was achieved by a trial size of 14 x 64 samples.

Table 10.7: The classification results with different trial size of original signal aver-
aged across all five-folds.

Feature
size

Validation
accu-
racy%

Testing
accuracy
%

Senstivity Specificity F-
measure

Train
time (s)

14 x 512 80.38 78.79 0.80 0.80 0.44 182.61
14 x 448 80.79 79.58 0.70 0.81 0.42 174.86
14 x 384 84.81 80.30 0.81 0.85 0.51 155.87
14 x 320 85.58 80.30 0.87 0.85 0.55 115.00
14 x 256 84.62 80.30 0.83 0.85 0.52 94.13
14 x 192 86.92 90.91 0.84 0.87 0.56 71.67
14 x 128 86.54 83.33 0.83 0.87 0.54 50.93
14 x 64 88.27 90.91 0.74 0.90 0.56 17.86

We also tested the extracted features from the reduced trial data but the classi-

fication results became worse. To test whether the results of the reduced trial set

was reliable, we divided the trials into intervals of 64 samples from the four seconds

interval and applied the CNN model. The classification results were consistent. The

14 layer CNN model is selected using trial and error. We have tried different layers of

CNN and selected 14 layer CNN because of it produces the efficient results. We have
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applied the traditional classification algorithms, including SVM, LDA, QDA, kNN, and

regression trees, but no one has achieved a classification accuracy of more than 50%.

The only classifier with a classification accuracy of 58.4% was kNN with 10 neighbors

using cosine distance and PCA components (95% variance).

10.6 Conclusion

In this work, the major contribution is the classification of user competency levels

using a deep CNN model. A 14-layer CNN is proposed for the prediction of user skill

levels in a design application. This is the first attempt to classify the user’s competency

into five different levels for design application. The results shown in Table 10.7 are

quite promising. To the best of our knowledge, this work is the first work in the field

of competency classification using EEG for any application.

A novel method for classifying user’s competency into five different levels has

been presented in this chapter. A deep CNN model is used for classification. The

EEG signal data of every user is divided into trial samples of four seconds and the

trials data, as well as the features extracted from the data, were used for training and

testing of the CNN model. The features extracted were PSD, NTE, and CSP; these are

some of the most commonly used features for EEG applications. The results showed

the effectiveness of the proposed method. Maximum classification accuracy of >88%,

a specificity of >90% and sensitivity of >70% are recorded by the original reduced

trial data of dimension 14 x 64. CSP features performed far better than the other

two features sets, i.e., NTE and PSD. The results showed that the method could be

used to design a real-time futuristic system that can adapt its functionality according

to user skill level. This study is the first study in the field of competency classification

using EEG signals.

The significance of the study is that it can be used in conjunction with the new

Virtual reality (VR) devices (such as looxidlab VR headset [466]) that have EEG
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electrodes embedded in the headset. It can allow developers or programmer to

develop software, games, and even visual arts that can adapt themselves based on

user skill level, behavior, or emotional level.

236



Chapter 11

Conclusion and Future Work

The primary objective of this thesis is to identify the user’s competency by analyzing

their cognitive activities using EEG signals in a design task. We tested the usability

of the multimodal system in 2 sets of experiments with 12 participants. We used

EEG signals to record users’ mental states and estimate their cognitive activity. First,

we analyzed users’ cognitive activity in a unimodal system (keyboard and mouse

inputs), and second, in a multimodal system (speech and gesture inputs). The thesis

is divided into four major parts: a) the design, development of an MMIS (Chapter

4) b) qualitative evaluation of a multimodal interface system that uses speech and

gestures for 3D modeling (Chapter 4) c) quantitative evaluation of the interface using

EEG signals (Chapter 6-9) d) classification of user’s competency level for adaptive

systems design (Chapter 10). The key findings of the thesis are given below:

11.1 Key Findings

The thesis began with an extensive literature review on MMIS, cognition, psychophys-

iological signals analysis, and FBNs. Chapter 2 discusses the MMIS in detail, along

with the differences between unimodal and multimodal systems, various modalities,

system integration architectures, fusion techniques, data collection, and evaluation
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measures. This chapter attempts to answer the following research questions:

11.1.1 Input Modalities

RQ 1.1: What modalities are suited the most to the development of an MMIS

for 3D modeling?

Finding 1.1: Based on the literature review presented in Chapter 2, we deduced

that speech and gestures are the most widely used input modalities along with the

pen and touch-based inputs. Most of the studies in the literature focus on input

recognition methods and very few studies focus on output modalities. The MMIS

xDe-SIGN uses speech and gestures for 3D modeling, and the system evaluation

showed that performing tasks using speech and gesture were perceived as exhausting,

but with proper preprocessing techniques and optimization, speech and gesture can

become well-coordinated multimodal inputs in an HCI system. In addition to speech,

gestures, and pen inputs, biofeedback devices were used in the literature to estimate

the emotional and cognitive state of the participant in an MMIS, but the applications

were quite limited.

RQ 1.2: What kind of integration techniques should be used to fuse the

multimodal inputs?

An MMIS is more robust, adaptable, and provides better results in task comple-

tion rate compared to a unimodal system. The literature showed that multimodal

interfaces improve the task completion rate by only 10%, but in the case of error

handling and reliability, multimodal interfaces reduce errors by 36% compared to

unimodal interfaces.

Finding 1.2: The late integration (semantic level) in multimodal input systems

was preferred over other integration techniques because late integration (semantic

level) gives the advantage to update the modalities and vocabulary quickly.

The literature justifies the use of an MMIS over a unimodal system when speech
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and gestures are used as the input modalities. The MMIS development and evaluation

using qualitative methods have been presented in Chapter 4. The results showed that

the speech and gestures were well-coordinated in human to human communication

but not in human-computer interaction (HCI). The findings of Chapter 4 gave the

answer to the following research questions:

RQ 1.3: Is it possible to develop a multi-modal 3D object manipulation sys-

tem xDe-SIGN using speech and gestures?

Finding 1.3.1: The results of xDe-SIGN v2 evaluation indicate that performing

a task using speech and gestures is exhausting when there is no shared vocabulary

between human and machine, and the usability of traditional input devices exceeds

the usability of speech and gestures.

The gap between traditional and multimodal input systems will be minimized with

the advancements in technology in the near future.

Finding 1.3.2: With the updated xDe-SIGN v2, a large ratio of participants, more

than 90%, were able to carry out the tasks with appropriate precision.

RQ 1.4: What are the limitations of using speech and gestures in MMIS?

Finding 1.4.1: The speech recognition systems do not work well and respond

appropriately as they require a simple grammar and a quiet environment to reduce

noise. On the other hand, gestures seem to be more natural and cognitively less

tiring to use in human-computer communication compared to the speech recognition

systems. However, gesture recognition systems have to offer several gestures for the

same action to address user preferences, as mentioned by Jahani and Kavakli [491].

Even though the xDe-SIGN v2 system was functional, we still noticed that it had lost

track of gestures from time to time. People would prefer more natural interaction

such as gesture and speech if the performance of the HCI system could satisfy a

standard level of operation.

Finding 1.4.2: With proper preprocessing techniques and optimization, speech
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and gestures can become well-coordinated inputs in HCI.

11.1.2 Psycho-physiological Analysis

In Chapter 3, literature review relevant to cognition, psychophysiological signal anal-

ysis, and FBNs is presented. The methods and measurement techniques that utilize

psychophysiological analysis and FBNs in analyzing user’s cognitive and affective

states are discussed. This review helps us find some of the answers to the following

research questions:

RQ 2.1: Can we use psycho-physiological analysis to evaluate the HCI?

There are various studies in the literature that use psycho-physiological anal-

ysis to evaluate the user’s emotional and cognitive responses. In games, violent

games increased cardiovascular activity compared to non-violent games, and psycho-

physiological measures show a strong correlation with the self-reported data. When

interacting with a social robot, an increase in β and γ-bands of EEG signals were

observed during high-intensity events, and a decrease in stress level was found. Re-

searchers observed an increase in stress level when the user interacts with ill-designed

web pages.

Finding 2.1: These studies in the literature showed that the psycho-physiological

analysis such as power analysis of EEG-bands could be used to evaluate the HCI

systems.

RQ 2.2: Which EEG parameters can be used for evaluating the cognitive

activity?

We concluded from the literature that the EEG power bands can be used to

evaluate the cognitive activity of the user. The power analysis of EEG signals showed

a correlation with task complexities.

Finding 2.2.1: In the literature, researchers have established that the task com-

plexity is inversely related to α-band and directly related to β and θ -band activity.
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The other technique to evaluate cognitive activity is to analyse Functional Brain

Networks (FBNs). Researchers have observed significant differences in the graph

theory-based measures such as connectivity density, motif count, and clustering

coefficient in FBNs related to various tasks with different levels of cognition. Non-

linear classifier such as Granger causality and transfer entropy showed the best results

in FBN analysis.

The literature review showed the applicability of EEG analysis to study user’s

behavior and cognitive activities.

Finding 2.2.2: The EEG power band and connectivity analyses are the most

common techniques used in the literature to study cognitive activities and informa-

tion processing. The analysis also justified the superiority of nonlinear information

measure transfer entropy for the construction of FBNs.

11.1.3 Cognitive Activity

In Chapter 6, we have presented a new empirical method to segment the EEG signals.

The aim is to understand cognitive actions and their relation to brain activities in a

design application. The participants were divided into two groups: low completion

time (low-CT) and high completion time (high-CT) participants. Low-CT users are

those who completed the task in a short amount of time and high-CT users completed

the task in a long time period. This helped us to answer the following research

questions:

RQ 3.1: Why do some novice users perform better than others?

We used a coding scheme to analyze the designer’s actions. All actions were

divided into three categories: Perceptual, Physical, and Conceptual actions. For

analysis of the EEG signals, we used average power of alpha, beta, theta, and gamma

bands.

Finding 3.1: The overall results demonstrated that low-CT users performed 1.5
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times more physical actions, which gave them the advantage of drawing quickly. The

rate of conceptual actions in high-CT users was twice as high as in low-CT users,

which slows down the performance of these users in the overall design process.

The action rate per minute for low-CT users is 30% higher than for high-CT

users. This is an indication that low-CT users utilize their short-term memory more

efficiently.

RQ 3.2: What are the factors that affect novice users performance?

The alpha band shows that low-CT users were comfortable in performing physical

actions, whereas high-CT users were not. High-CT users’ mean alpha-band power was

high. High-CT users spent maximum time in performing conceptual tasks compared

to low-CT users, who spent most of the time in focusing on physical design actions.

Finding 3.2.1: The maximum variation in the frontal cortex was found in low-CT

users, which indicates that they were using their short-term memory more. From the

beta activity, we have found that low-CT users were more attentive to physical actions,

whereas the attention of high-CT users was focused on perceptual and conceptual

actions. We have found significant variation in theta-band activity for low-CT users

than for high-CT users, which indicates that the focus of low-CT users was changing

in relation to the actions performed.

Finding 3.2.2: The results clearly showed that performing physical actions with

focused attention can decrease task completion time significantly.

These findings suggest that if the interface is designed in a manner that it allows the

user to perform more physical actions than conceptual actions, the user performance,

and learning rate may improve.

11.1.4 Information Processing

Chapter 7 showed the results of FBNs constructed using NTE and estimated the

information flow between various brain regions. Both binary and weighted directed
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FBNs were used for the analysis. The research goal in this chapter was to estimate

the cognitive activity and information flow patterns for novice and competent users

using graph theory. In this chapter, the 3D modeling was performed using unimodal

input. The results showed a significant difference between novice and competent

user’s FBNs. This answers the research questions RQ 4.1 and RQ 4.2.

RQ 4.1: Are there any differences in information processing and cognitive

activity between novice and competent users?

The main difference was observed in the object manipulation state. Novice

users information flow patterns changed more significantly in the manipulation state

compared to competent users. The connectivity density, motif count, clustering

coefficient all showed the same trend. The network density increased from the

baseline for both novice and competent users, but the change was more significant

for novice users compared to competent users in drawing and manipulation states.

Finding 4.1: Most of the activity was focused on the frontal region, which

indicates the use of short-term memory. The small-worldness (analysis of clustering

coefficient and characteristic path length) shows that competent users have relatively

high global and local efficiency of information transfer than novices which means

efficient information propagation over the FBN.

RQ 4.2: Can Functional Brain Networks (FBNs) be used to identify the infor-

mation flow patterns?

The hemisphere analysis shows that the information flow has increased in both

hemispheres for novice users, but competent users managed to control the information

flow according to the task.

Finding 4.2.1: In the lobe-wise analysis, the frontal lobe was most active in

sending and receiving information in drawing and manipulation states for all users.

Classification accuracy of more than 90% was achieved with the proposed technique

using a simple k-NN classifier in classifying novice and competent users.
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The feature selection algorithm showed that features which belong to the frontal

and temporal lobes of the brain contribute the most towards competency classification.

Finding 4.2.2: The findings clearly showed that competent users have developed

the capability which enables information processing in different brain regions for

the different tasks, unlike novice users where almost all regions became active. The

main activity was observed in frontal and temporal lobes, which directly relate to the

motor, problem-solving, memory, and language functions.

Chapter 7 demonstrates the application of transfer entropy in estimating the

cognitive activity and information flow in an open-ended task.

11.1.5 Modality Comparisons

In chapter 8 and 10, we have presented a comparative analysis of unimodal and

multimodal interface systems. We have used both the average power spectral density

and FBN analysis to compare the unimodal and multimodal systems. The goal was

to see whether there are any differences in the cognitive activity of different users

with various competencies.

RQ 5.1: What are the differences in cognitive activity between multimodal

and unimodal systems?

Finding 5.1.1: For competent users, the average theta band activity demonstrates

that the θ -band activity was more intense when the users were using keyboard and

mouse for 3D modeling, but for novice users, the θ -band activity increased in gesture

state rather than keyboard state.

Finding 5.1.2: The α-band activity decreased for almost all the users in keyboard

state compared to the rest state, which shows the increase in mental effort in keyboard

state from the rest state.

A very unexpected trend was observed in the gesture state.

Finding 5.1.3: On average, the α-band activity of novice users increased more
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in gesture state compared to keyboard state when compared with competent users.

The mean information flow and node strength showed that the maximum variation

in sending and receiving information was seen in frontal and central lobes because

drawing with multi-modal input requires intense attention and motor cognition.

RQ 5.2: Does competency play a role when a new set of inputs are used for

a predefined task?

As all of the users were using the xDe-SIGN v2 (multi-modal interface system)

for the first time, so they were all considered to be novice users of xDe-SIGN v2, but

the competent users of AutoCAD were finding it hard to use the multi-modal input

compared to the novice users.

Finding 5.2.1: The FBN connectivity analysis showed that the cognitive activity

of the users increased when they were using multimodal input for drawing 3D objects

in AutoCAD. The connectivity density, clustering coefficient, and degree centrality

results demonstrate that the information transfer between electrodes increased in

gesture drawing state from keyboard drawing state.

The results demonstrated the usability of speech and gesture in MMIS. The evalu-

ation of MMIS showed that the system could be used for a 3D modeling application,

but there are factors that affect the performance. It is evident that EEG analysis and

FBNs have the potential to identify the neural activity related to cognition.

Finding 5.2.2: The power spectral density and connectivity analysis showed that

they are sensitive to the cognitive activity of the user and changes in this analysis

directly related to changes in cognitive activity. The approach mentioned in this

thesis can be used in the development of quantitative metrics to measure cognitive

activity in an HCI system.

In chapter 10, a novel method for classifying user’s competency level has been

presented. The method used a deep CNN model for the classification of competency

levels using EEG signals.

245



Chapter 11. Conclusion and Future Work

RQ 6.1: Can EEG signals be used in classifying user’s competency level?

Finding 6.1: The users were divided into five levels of competencies, and a

convolutional neural network (CNN) was used to classify the users into various

competency levels. The results showed a maximum classification accuracy of above

88%. The method can be used to classify a user’s competency using EEG signals and

to develop competency-based adaptive systems.

RQ 6.2: Which features contribute the most toward classification accuracy?

Finding 6.2: The features extracted were Power Spectral Density, Normalized

Transfer Entropy, and Common Spatial Patterns. Maximum classification accuracy

of more than 88% was recorded by original reduced data of dimension 16 x 64. In

terms of extracted features, CSP features performed far better than the other two

feature sets, i.e. NTE and PSD. The results showed that the competency levels can be

used as an adaptive parameter to design a real-time futuristic system that can adapt

its functionality according to user skill level.

11.2 Evaluation of Results

To the best of our knowledge, this thesis is the first study in the field of competency

classification using EEG signals. This thesis has outlined 22 major findings in total

including 6 in the area of input modalities, 3 in the area of psycho-physiological

analysis, 3 in cognitive activities, 3 in information processing, 5 in modality com-

parison and 2 in the area of competency classification. This section sheds light on

implications and limitations of results along with future recommendation.

11.2.1 Implications of Results

The reported results have significance in many real-world applications as they demon-

strate the potential of EEG signal analysis in measuring cognitive activity in HCI.
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The results also showed the application of NTE based FBNs to detect the unusual

variations in neural activity. The thesis provides experimental evidence that EEG

based measures can be used as a quantitative metric to analyze cognitive activity in

HCI. These EEG based cognitive metrics may be used in monitoring and diagnosing

cognitive impairments/disorders. For example, an EEG-based portable device can

be beneficial for people who are in remote areas, working under severe conditions

and/or with a high cognitive load.

In the computing domain, the results could be used to develop adaptive learning

systems, where the pace of learning could be changed based on the user’s mental

effort and cognitive load. Adaptive games could be another example in which the

game complexity level could be adapted based on the user’s competency levels. With

the advancements in portable headset devices that embed EEG electrodes such as

Looxidlab VR headsets [466], adaptive system applications will soon become a reality.

11.2.2 Limitations of Results and Future Recommendations

Every research work contains limitations irrespective of the discipline of study, and so

it is in this thesis. The most obvious limitation is the sample size of the participants.

The sample size was less than 20 in most of the experiments which may affect the

results reported in this research. This sample size is common in the EEG literature, but

a higher number of participants would be much more desirable [365,387]. Despite

the fact that EEG is relatively cheaper than other neuroimaging techniques such as

fMRI, it is still expensive compared to traditional surveys and other testing techniques

from both the time and financial perspective.

Most of the EEG related research is conducted in a controlled psychology/medical

environment and uses the psychology/medical students for sample population [492].

In these scenarios, a credit point is awarded as an incentive to participants, which

in return increase the sample size significantly although sometimes these studies
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receive criticism for not targeting a more general community [493]. In this thesis,

the participants are computer science students, and no incentive was given for

participation. As the limited sample size shows, this voluntary participation didn’t

yield a large number of participants. Because of the small sample size, the results in

this thesis lack statistical power, but this does not mean that the results are not valid

or reliable. In future research, other ways should be explored to attract the wider

community to increase the sample sizes.

Another limitation is the statistical tests used in the thesis to show the significance

of results: One-way ANOVA and t-test. Although many researchers proved the

robustness of these tests [494,495], it is arguable that the sample size reported in

this thesis makes the testing somewhat problematic. Future research should focus on

increasing the sample size to obtain statistical power.

In addition to the limitation mentioned above, another limitation is the averaging

of EEG signal, which has both pros and cons. The averaging increases the original

signal component and decreases the noise component but at the cost of some degra-

dation in the neural signal. The reason for this is that complex neural activities are

not synchronized perfectly and averaging can eliminate the neural activities that have

different phase delays.

Another limitation is the potential inference of actual brain functions from the

estimated neural activity from EEG signals. Implanting electrodes into the healthy

brain for recording the neural activity is prohibited due to ethical reasons. The

electrical potential recorded over the brain (such as EEG) could be a combination of

more than one brain function. However, the reported results presented in this thesis

have been described relative to the available literature. Future research could explore

new ethical ways to extract the brain activity to observe the functional changes and

impairment directly related to the measured activity for a cause/effect conclusion.

Finally, the last limitation could be related to the adaptive systems that use the
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EEG signals for adaptability. In this thesis, we presented a possible solution for

the development of adaptive learning and gaming systems that uses EEG signals

measured as the variable for adaptation. Although the results showed a classification

accuracy of greater than 80%, the sample size used is small. The future research

could increase the sample size and use a VR headset that has embedded EEG sensors

such as the looxidlab VR headset [466] to test the system or use sensors which are

more reliable and sensitive than the Emotive headset.

In summary, our findings reported in this thesis are in line with the existing

literature. Various techniques related to computational neuroscience, psychology,

and graph theory have been explored in this thesis to achieve the objectives. The

findings related to cognitive activity and competency classification could have a

significant impact on future MMIS designs. These findings are directly applicable to

the development of adaptive systems.
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Appendix A

Ethics Approval

The result of Ethics approval application is attached in this section. The approval

was received before starting the experiments. The information about the project,

including the aims of the project, the research plan, and the methods were given

to the Macquarie University Ethics Committee for approval. We also included a

description of the projected number, sex, and age range of participants and provided

a detailed description of what will be required of participants. All the experiments

were conducted in accordance with the accepted ethical principles governing research

involving humans at the VR Lab, Simulation Hub at Macquarie University.
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Cheers,
Manolya

Associate Professor Manolya Kavakli

Director of Postgraduate Coursework Program, E6A 372,
Department of Computing, Faculty of Science & Engineering,
Director of Virtual Reality Lab at theSimulation Hub, Y3A,
Macquarie University, Sydney NSW 2109, Australia
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EMAIL TO SUBMIT WITH YOUR THESIS.

Please note the following standard requirements of approval:

1. The approval of this project is conditional upon your continuing
compliance with the National Statement on Ethical Conduct in Human Research



7/19/2019 Gmail - Fwd: Ethics application 5201700784 Final Approval

https://mail.google.com/mail/u/0?ik=f4ef802713&view=pt&search=all&permthid=thread-f%3A1576573334611319870%7Cmsg-f%3A157657333461131… 2/3

(2007).

2. Approval will be for a period of five (5) years subject to the provision
of annual reports. 

Progress Report 1 Due: 24/08/2018
Progress Report 2 Due: 24/08/2019
Progress Report 3 Due: 24/08/2020
Progress Report 4 Due: 24/08/2021
Final Report Due: 24/08/2022

NB. If you complete the work earlier than you had planned you must submit
a Final Report as soon as the work is completed. If the project has been
discontinued or not commenced for any reason, you are also required to
submit a Final Report for the project.

Progress reports and Final Reports are available at the following website:

http://www.research.mq.edu.au/for/researchers/how_to_obtain_ethics_approval/
human_research_ethics/forms

3. If the project has run for more than five (5) years you cannot renew
approval for the project. You will need to complete and submit a Final
Report and submit a new application for the project. (The five year limit
on renewal of approvals allows the Committee to fully re-review research in
an environment where legislation, guidelines and requirements are
continually changing, for example, new child protection and privacy laws).

4. All amendments to the project must be reviewed and approved by the
Committee before implementation. Please complete and submit a Request for
Amendment Form available at the following website:

http://www.research.mq.edu.au/for/researchers/how_to_obtain_ethics_approval/
human_research_ethics/forms

5. Please notify the Committee immediately in the event of any adverse
effects on participants or of any unforeseen events that affect the
continued ethical acceptability of the project.

6. At all times you are responsible for the ethical conduct of your
research in accordance with the guidelines established by the University.
This information is available at the following websites:
http://www.mq.edu.au/policy/

http://www.research.mq.edu.au/for/researchers/how_to_obtain_ethics_approval/
human_research_ethics/policy

If you will be applying for or have applied for internal or external
funding for the above project it is your responsibility to provide the
Macquarie University's Research Grants Management Assistant with a copy of
this email as soon as possible. Internal and External funding agencies will
not be informed that you have final approval for your project and funds
will not be released until the Research Grants Management Assistant has
received a copy of this email.

If you need to provide a hard copy letter of Final Approval to an external
organisation as evidence that you have Final Approval, please do not
hesitate to contact the Ethics Secretariat at the address below.

Please retain a copy of this email as this is your official notification of
final ethics approval.

Yours sincerely,
Human Research Ethics Sub-Committee 
Faculty of Science and Engineering 



7/19/2019 Gmail - Fwd: Ethics application 5201700784 Final Approval

https://mail.google.com/mail/u/0?ik=f4ef802713&view=pt&search=all&permthid=thread-f%3A1576573334611319870%7Cmsg-f%3A157657333461131… 3/3

Macquarie University
NSW 2109



Appendix B

Information Consent Form

The information consent form that was used for recruiting the participants was given

in this appendix. Participants were provided with the information sheet in the VR

lab that contained the information about the experiment. If they were interested,

then we asked them to sign the consent form. The considerate language was used,

and there was no attempt to convince individuals to participate if they indicate an

unwillingness to participate. The participants received no financial or other benefits

as a result of participation.
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Department of Computing 
Faculty of Science and Engineering 
MACQUARIE UNIVERSITY   NSW   2109 
Phone: +61 (0)2 9850-9105 
Fax:  +61 (0)2 9850 9551  
 
 
 
Chief Investigator’s / Supervisor’s Name & Title: A/Prof Dr. Manolya Kavakli 
 
 
 

 
Participant Information and Consent Form 

 
Name of Project: Analysis of EEG signals and Cognitive activity in 3D modeling for 
a Multimodal interaction system 

 

This research project will study gender differences in 

• speech and hand gestures,  

• cognitive processing, and 

• brain activities.    

This experiment will be recorded, either by a digital camera and/or by a 
microphone embedded in the camera.  

The tools that are going to be used for this experiment are a digital camera, 
microphone, computer, Emotiv EEG Headset, Empatica wrist band; head 
mounted displays (HMDs) and semi-immersive cylindrical projection system.  

These tools are safe and publicly available. The non-standard saline solution 
may cause allergy to sensitive skin. The likelihood is minimal in this study. 
However, you CANNOT participate if you are sensitive to the saline. A verbal 
warning will be given prior to commencing the study. The HMDs and VR 
screen may cause simulator sickness. 

Please read the following points carefully: 

• Should you decide to participate, you may quit anytime during the study 
but please remain in the VR lab and wait until the researcher has 
removed the Emotiv EEG Headset and Empatica wristband. 

• Whenever you feel uncomfortable during the experiment, please 
immediately let the conductor know. Conductor will be in the VR lab 
during the entire session. 

• Should you decide to stay during the study and experience severe 
discomfort, we will refer you to on-campus medical service. 

The location of on-campus medical service is included in this information 
statement and consent form. 

At the beginning of the experiment, you will be given a fifteen-minute tutorial 
on the purpose of the experiment and how to use the necessary applications, 
during which time you will be introduced to the system. Feel free to ask any 
questions you may have about the experiment or about the system. The total 
time commitment involved is estimated to be 30 minutes.  

All material, including video recordings, will be kept strictly confidential and 
will not be made available to any persons outside this project. The researchers 



 

 

 
 

 
 

have no material interest in the outcome of this experiment. The results will be 
presented at departmental research seminars, peer-reviewed Australian and 
International conferences, and via peer-reviewed journal articles. We will only 
use the images and speech in the video clips after the participants’ identity is 
obscured in presentations and publications. The de-identified data would be 
retained for inclusion in related research by the investigators in the future 

Participation in this study is entirely voluntary. You are under no obligation to 
participate and may withdraw your consent to participate at any time without 
consequence to you. If you are interested in this study, A/Prof. Manolya 
Kavakli and Muhammad Zeeshan Baig will be happy to discuss it further with 
you and answer any queries you may have. Please feel free to contact on (02) 
98509572.  

Participants can obtain feedback regarding the results of the project from the 
Interactive Systems and Virtual Reality Research Group website located at 
http://web.science.mq.edu.au/groups/visor/ 

Thank You. 

www.research.mq.edu.au/researchers/ethics/human_ethics/forms/ 

Medical Service on campus:  

Suite 305, Level 3 

Macquarie University Clinic Building (F10A) 

2 Technology Place 

Macquarie University NSW 2109 Tel: (02) 9812 3944 or (02) 9812 3096 

For further queries about this study, please contact: 

Dr. Manolya Kavakli (Chief Inv.) 02 9850 
9572 

manolya.kavakli@mq.edu.au 

Muhammad Zeeshan Baig (PhD 
student) 

02 9850 
9530 

muhammad.baig@students.mq.
edu.au 



 

 

 
 

 
 

 

I, ___________________________ have read (or, where appropriate, 
have had read to me) and understood the information given and any questions 
I have asked, have been answered to my satisfaction. I agree to participate in 
this research study, entitled Biofeedback in Design Expertise and Adaptive 
Multi-Modal System Design using EEG Signal Analysis and Motor 

Cognition, which is conducted by 

Dr. Manolya Kavakli (A/Prof., Dept. of Computing, Macquarie University), 

Muhammad Zeeshan Baig (Ph.D. student, Dept. of Computing, Macquarie 
University),  

knowing that participation is entirely voluntary and I can withdraw from 
further participation in the research at any time without consequence.  

I allow  / do not allow  the de-identified data to be retained for 
inclusion in related research by the investigators in the future.  

I have been given a copy of this signed form to keep. 

Participant’s Name: _________________________ (block letters) 

Participant’s Signature: ______________________ Date: __________ 

Investigator’s Name:_____________________ (block letters) 

Investigator’s Signature: ______________________ Date: __________ 

 

The ethical aspects of this study have been approved by the Macquarie University Human Research Ethics 
Committee.  If you have any complaints or reservations about any ethical aspect of your participation in this 
research, you may contact the Committee through the Director, Research Ethics (telephone (02) 9850 7854; email 
ethics@mq.edu.au).  Any complaint you make will be treated in confidence and investigated, and you will be 
informed of the outcome. 

 

INVESTIGATOR’S COPY 



 

 

 
 

 
 

I, __________________________ have read (or, where appropriate, have 
had read to me) and understood the information given and any questions I 
have asked, have been answered to my satisfaction. I agree to participate in this 
research study, entitled Biofeedback in Design Expertise and Adaptive 
Multi-Modal System Design using EEG Signal Analysis and Motor 

Cognition, which is conducted by 

Dr. Manolya Kavakli (A/Pro., Dept. of Computing, Macquarie University), 

Muhammad Zeeshan Baig (Ph.D. student, Dept. of Computing, Macquarie 
University),  

knowing that participation is entirely voluntary and I can withdraw from 
further participation in the research at any time without consequence.  

I allow  / do not allow  the de-identified data to be retained for 
inclusion in related research by the investigators in the future.  

I have been given a copy of this signed form to keep. 

Participant’s Name:_________________________ (block letters) 

Participant’s Signature: ______________________ Date:__________ 

Investigator’s Name:_________________________ (block letters) 

Investigator’s Signature: ______________________ Date: __________ 

 

The ethical aspects of this study have been approved by the Macquarie University Human Research Ethics 
Committee.  If you have any complaints or reservations about any ethical aspect of your participation in this 
research, you may contact the Committee through the Director, Research Ethics (telephone (02) 9850 7854; email 
ethics@mq.edu.au).  Any complaint you make will be treated in confidence and investigated, and you will be 
informed of the outcome. 

 

PARTICIPANT’S COPY 
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Appendix C

Questionnaire

Name:

Age:

Gender:

Handedness:

Previous experience with AutoCAD:

The scale for score ranges from 1 (Very bad) to 7 (Excellent)

Question Keyboard and

Mouse

Gesture and

Speech

Performance of the commands

How easy was it to draw in AutoCAD?

How well could you examine objects from multiple viewpoints?

How well could you move or manipulate objects in the virtual

environment?

How much are you satisfied with the visual aspects of the object?

How much delay did you experience between your instructions and

expected outcomes?

How responsive was the computer to the actions you initiated?

Fatigue felt

Effort: How hard was it to accomplish your level of performance?

Did you feel any fatigue while drawing?
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User perception in interaction with computer

How much did you feel in control when you were instructing the

computer?

How natural was the interaction with the computer?

How natural was the interaction with the designed object?

How aware were you of your display and control devices?

How involved were you in the production of the 3D model?

How distracting was your interaction with the computer?

How proficient in interacting with the computer did you feel at the

end of the experience?

How well could you concentrate on the assigned tasks or required

activities rather than on the mechanisms used to perform the de-

sign?

Were you involved in the experimental task to the extent that you

lost track of time?

Frustration: How insecure, discouraged, irritated, stressed, and

annoyed were you?
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Appendix D

Instruction for Drawing in AutoCAD

Drawing in AutoCAD

A- First experimentation: draw with keyboard and mouse

Global information

To move the camera:

• Wheel Click to pan the camera

• Maj + wheel click to move the camera

• Or choose the view with the orbit

Type undo or control Z to undo the last action.

With mouse and keyboard

1- The base:

The Rectangular Base:

a. Choose 3DTool, click on box
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b. Click for the first position

c. Click for the size (width and length and height) or you can type the number

separated by ’,’ ex: type 3,3,42

2- The Pillar:

The vertical cylinder:

a. Choose the cylinder option from the box dropdown menu.

b. Click for the first position (middle of the base)

c. Click for the radius (approximately 1 inch) or enter it by keyboard

d. Click for the height (approximately 7 inch) or enter it by keyboard

3- The top:

a. Choose 3DTool, click on Cylinder

b. Click for the first position (middle of the pillar)

c. Click for the radius (approximately 6 inch) or enter it by keyboard

d. Click for the height (approximately 1 inch) or enter it by keyboard
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4- Change the colour:

a. Type properties

b. Select the object

c. On the colour; you can change the colour

5- Change the materials:

a. Change the mode view: left click on Conceptual, then choose realistic

b. Type: Materials

c. Select the object

d. Click the material to apply

Task to perform:

Draw the 3D shape

Camera Manipulation
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B- Second experiment: drawing with gesture and speech

You should use the same scenario used with mouse and keyboard. To use the ges-

ture and speech, please read the following instruction.

For Gestures:

1- Left hand: manage the camera view

a. To activate the movement, close the hand and open it

b. To move you hand to control the camera

c. To rotate the camera, don’t move your hand, just turn your wrist

d. To zoom in, perform a pinching gesture. For zoom out, perform pinch gesture

with middle finger

2- Right hand: Control the cursor (mouse)

To left click: pointing gesture with index finger.

To right click: pointing gesture with thumb.

For Speech:

A. To choose the shape:

Say: draw a box or the shape is cylinder:

- For a cylinder: CIRCLE, CYLINDER, ROUND, TUBE

- For a Box: BOX, SQUARE, BARS, BAR, LAYER, RECTANGLE

- For a sphere: SPHERE

- For a cone: CONE

- For a wedge: WEDGE

- For a torus: TORUS, DONUTS,

- For a free design: POLYSOLID, FREE

B. To specify the position, say:

- The position is number, number, number

C. To specify the size (width and length), say:

- The size is number to number
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- Number could be the 0 to 20, 39, 42

D. To specify the height, say:

- The height is number

E. To specify the radius, say:

- The radius is number

F. To specify the tube radius, say:

- The tube radius is number

G. To manage the camera, say:

- Camera

- Then choose between the following words the action:

- Move, displacement, orientation or if you want to change the orbit, ’Home’

- Then choose the direction between the follow words

- UP, DOWN, LEFT, RIGHT, FORWARD, BACK, BOTTOM, TOP, FRONT, SOUTH

EAST, SOUTH WEST, NORTH EAST, NORTH WEST.

Script for speech :

1. Draw a box

a. The position is 0,0,0

b. The size is 6 by 6

c. The height is 1

2. Draw a cylinder

a. The position is 3,3,1

b. The radius is 1

c. The height is 5

3. Draw a cylinder

a. The position is 3,3,6

b. The radius is 6

c. The height is 1
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Task to perform:

Draw the 3D shape using speech and gestures

Camera Manipulation
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Appendix E

Additional Information

E.1 Chapter 8: Comparative Analysis of Cognitive

Activity: using Power Spectral Density
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(a) Competent-User 1 (b) Novice-User 1

(c) Competent-User 2 (d) Novice-User 2

(e) Competent-User 3 (f) Novice-User 3

(g) Novice-User 4 (h) Novice-User 5

(i) Novice-User 6 (j) Novice-User 7

(k) Novice-User 8

Figure E.1: Averaged theta activity at rest, keyboard and gesture states for three
competent and three novice users
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E.1 Chapter 8: Comparative Analysis of Cognitive Activity: using Power Spectral
Density

(a) Competent-User 1 (b) Novice-User 1

(c) Competent-User 2 (d) Novice-User 2

(e) Competent-User 3 (f) Novice-User 3

(g) Novice-User 4 (h) Novice-User 5

(i) Novice-User 6 (j) Novice-User 7

(k) Novice-User 8

Figure E.2: Averaged alpha activity at rest, keyboard and gesture states for three
competent and three novice users
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E.2 Chapter 9: Connectivity Analysis: using Transfer

Entropy and Functional Brain Networks

(a) Competent-User 1 (b) Competent-User 2

(c) Novice-User 1 (d) Competent-User 3

(e) Novice-User 2 (f) Novice-User 3

(g) Novice-User 4 (h) Novice-User 5

(i) Novice-User 6 (j) Competent-User 4

(k) Novice-User 7 (l) Novice-User 8

Figure E.3: Degree centrality topographical plot of all users during rest, keyboard
and gesture drawing states
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