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Abstract

In this thesis we consider the problem of determining whether two or more independent time

series have been generated by the same underlying stochastic process, or by the same mech-

anism. There is an extensive literature on comparing time series from univariate stationary

processes on the basis of their second order properties, that is, their dependence structures

over time. These existing methods are nonparametric and are based on comparing peri-

odograms or sample autocovariances. They are generally limited by requiring equal sample

sizes and Gaussian assumptions. We introduce a parametric approach which involves fitting

parametric models to the time series and comparing model parameters. The parametric ap-

proach avoids the limitations of the nonparametric and simulations are used to show that

it results in a more powerful test. We also show how to extend the parametric approach to

compare time series from multivariate stationary processes.

A further extension is to compare time series which are from stochastic processes which

contain periodic components. Such time series are typically modelled using mixed models

which are made up of a deterministic periodic component and a stationary stochastic compo-

nent. We develop tests for whether two or more time series have been generated by processes

with periodicities at the same fixed frequencies and stationary components with the same

second order properties. In order to extend the procedures to the multivariate case we first

develop novel methods for frequency estimation in the multivariate mixed model.
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1
Introduction

This thesis is concerned with methods for comparing time series in order to determine if they

have been generated by the same source, or by the same underlying mechanism. The need

to compare, or in other words, to discriminate between, time series arises in a wide variety

of applications. For example, time series discrimination can be used for fault detection in a

mechanical system by comparing a vibration signal to a reference signal which is known to

be in working order (Bassily et al., 2009; Jin, 2011). Climate data from different locations

may be compared to determine if different regions display the same weather patterns (Lund

et al., 2009). Comparing the physical properties of wireless signals can be used to enhance

the security of wireless networks (Tugnait, 2013). In economics, it may be of interest to know

if asset prices behave differently in different time periods (Coates and Diggle, 1986) or across

different markets.

A time series is a single, partial, realisation of a stochastic process, or sequence of random

variables, observed over time. We wish to compare, therefore, the statistical properties of

the underlying stochastic processes of the time series being analysed. In many practical

applications, it is sufficient to compare stochastic processes on the basis of their second order

properties, that is, their dependence structure over time. This is commonly measured by
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the covariances between the random variables separated by fixed time lags, known as the

autocovariances. An alternative measure of the dependence structure is the discrete Fourier

transform of the autocovariances, known as the spectral density. We therefore require a test

which compares the autocovariances, or equivalently, the spectral densities, of the stochastic

processes generating the time series.

In practice, it will often be more relevant to test whether the stochastic processes have

the same autocorrelations rather than the same autocovariances. This would be the case

if, for example, a signal was recorded by two devices at different distances. The recordings

would differ in scale, but we would wish that our test did not discriminate between the two.

If two processes have the same autocorrelations, this is equivalent to the ratio of the spectral

densities being constant, and we would say that the processes have the same spectral shape.

The topic of this thesis was originally studied in my Master of Research (MRes) thesis.

The MRes thesis reviewed the existing literature on time series discrimination, which is mostly

focused on the comparison of two time series from univariate stationary processes. That is,

stochastic processes whose statistical properties remain the same over time. Almost all of the

existing methods are nonparametric in that they are not based on fitting models to the time

series. Instead, tests are based on either sample autocovariances or the periodogram, which

is proportional to the squared modulus of the discrete Fourier transform of a time series.

The original work on the topic was by Coates and Diggle (1986) who proposed tests for

comparing spectral densities based on computing the periodograms of the two time series

at the Fourier frequencies, which can be done efficiently using the fast Fourier transform

algorithm. To test for differences in spectral shape, they took the logarithm of the ratios

of these values and used their range as a test statistic. It was shown that the test based

on this range statistic has very low power. However, there has been a number of papers in

recent years which have developed further tests based on comparing the values obtained by

evaluating periodograms at the Fourier frequencies. A common approach, for example, is to

consider distance measures between these values from each time series. These new tests have

generally been shown to be improvements on those of Coates and Diggle (1986).

It is easy to see the appeal in using the periodogram as a basis for spectral discrimination,

since smoothing the periodogram leads to a consistent estimator of the spectral density.

Furthermore, the random variables obtained by computing the periodogram at a fixed set of

points are asymptotically independent and identically distributed as multiples of chi-squared

random variables. This property can be used to derive asymptotic theory of a periodogram

based test statistic. However, if the periodogram is computed at a set of frequencies that
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is not fixed as the sample size increases, such as the Fourier frequencies, these asymptotic

properties do not hold except in the case where the underlying processes are Gaussian and

white. The asymptotic theory for the periodogram based tests therefore requires these fairly

strong assumptions to be made. A further drawback to the nonparametric tests is that they

generally require the sample sizes of the time series to be equal, although some tests have

been adjusted to account for unequal sample sizes.

The MRes thesis examined a parametric approach which was proposed by Quinn (2006).

Under this approach, autoregressions are fitted to the two time series. If two autoregressive

processes have the same spectral shape then they have the same autoregressive parameters.

Therefore, the null hypothesis of interest is that the two time series are from autoregressions

with the same autogressive parameters. The alternative hypothesis is that the autoregressive

parameters are not all the same. A test statistic was derived using a likelihood ratio procedure

based on Gaussian likelihood functions. Since it is not assumed that the time series are from

processes which are Gaussian, it is in fact a pseudo-likelihood ratio procedure. In order to

compute the test statistic, autoregressive models must be fitted to two time series with the

same autoregressive parameters but potentially different residual variances and sample sizes.

The use of a parametric approach was motivated by the fact that parametric methods are

generally expected to be more powerful than nonparametric. It also allows for time series

with unequal sample sizes.

The MRes thesis presented algorithms for computing the pseudo-likelihood ratio test

statistic and examined its distribution using simulations. The simulations suggested that

when the time series are generated by autoregressions with known orders, the test statistic

follows a chi-squared distribution even when the processes are not Gaussian. When the time

series are generated by autoregressions of unknown orders, it was shown how to estimate the

orders using information criteria. Simulations suggested that in this case the test statistic

still follows a chi-squared distribution, which is expected since the orders are estimated using

consistent procedures. However, when the time series are not generated by autoregressions,

the test does not perform well in simulation studies. An important extension of the parametric

approach therefore is to generalise it to the case of more general processes, since we do not

wish to assume that the time series truly are autoregressive. A further extension is to the

comparison of multivariate time series, which has not been studied widely in the literature.

The conclusion to the MRes thesis also discussed an extension to the case of time series

which are generated by mixed models with both periodic and stationary components. These

models are used for phenomena with periodicities which commonly arise in, for example,
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signal processing and astronomy. The periodic signal is typically modelled as the sum of si-

nusoids and the stationary component may be modelled, for example, using an autoregression.

Of central importance in the analysis of these models is the estimation of the frequencies of

the periodic components. In the discrimination context, we may wish to determine whether

independent time series have periodic components at the same fixed frequencies. Depend-

ing on the application, we may also wish to incorporate the comparison of the stationary

components, or these may be considered to be entirely background noise.

In this thesis we focus on the parametric approach for time series discrimination, con-

centrating in particular on the aforementioned extensions. The outline of the thesis is as

follows.

In Chapter 2 we give background information relating to the models used throughout the

thesis. We also introduce some of the notation and statistical theory that is commonly used.

In Chapter 3 we consider methods for discriminating between time series from univariate

stationary processes. We begin with an overview of the existing nonparametric methods.

We describe the parametric approach based on fitting autoregressions, with orders estimated

using information criteria, and demonstrate the problems which arise when the time series

are not autoregressive, as identified in the MRes thesis. We then propose a modification to

the parametric test which fits autoregressions where the order is fixed at a function of the

sample sizes. It is shown that this fixed order autoregressive approach results in a test which

performs well even when the underlying processes are not autoregressive. We also establish

the asymptotic properties of the estimators of the model parameters and the asymptotic

distribution of the test statistic using weaker assumptions than Gaussianity. A simulation

study compares the parametric approach with nonparametric alternatives and demonstrates

that the parametric test is more powerful. Finally, we show how to extend the procedure for

comparing more than two time series.

In Chapter 4 we develop a parametric test based on the same pseudo-likelihood ratio

procedure as before but where we fit autoregressive-moving average models to the time se-

ries. This requires a procedure for fitting autoregressive-moving average models to two time

series with the same model parameters but with potentially different residual variances and

sample sizes. The procedure we develop is based on an extension of the Hannan–Rissanen

algorithm (Hannan and Rissanen, 1982; Hannan and Kavalieris, 1984a). It is shown using

simulations that this new test is more powerful than that which fits autoregressions if the true

autoregressive and moving average orders are known. However, when the orders need to be
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estimated, which will be the case in practice, the simulations suggest that there is no advan-

tage in fitting autoregressive-moving average models over fitting fixed order autoregressions

of sufficient length.

In Chapter 5 we consider the comparison of two or more multivariate stationary processes.

We develop tests using a similar pseudo-likelihood ratio procedure used in previous chapters

for three different null hypotheses. The first is that the time series have been generated

by vector autoregressions with the same autoregressive parameters. The second is that the

spectral densities of the underlying stochastic processes differ only by the multiplication of a

constant. The third, which is the most general, is that the corresponding components of each

of the vector processes have the same spectral shape. The tests are based on fitting vector

autoregressions to the time series. We establish asymptotic properties of the parameter

estimators under the null hypotheses and demonstrate the performance of the tests using

simulations.

In Chapter 6 we consider the estimation of frequency in time series with periodic compo-

nents. Although frequency estimation for univariate time series from periodic processes is a

widely studied problem, little attention has been given to the case where the time series are

multivariate. In the multivariate, or multichannel, model that we consider in this chapter, the

time series is generated by a vector process where each element of the periodic component has

the same fixed frequencies but potentially different amplitudes and phases. We develop novel

methods for the estimation of these fixed frequencies and establish the asymptotic properties

of the estimators. We also demonstrate the performance of the estimation techniques in a

simulation study.

In Chapter 7 we develop methods for discriminating between time series from processes

which contain periodic components, both in the univariate and multivariate cases. We con-

sider two different null hypotheses. The first is that the time series are from processes which

have periodic components at the same fixed frequencies and stationary noise with the same

spectral shape. The second is that the time series are from processes which have periodic

components at the same fixed frequencies and with possibly independent noise. We motivate

the techniques by considering the comparison of two univariate time series from processes

with periodic components. We then generalise the procedures for the case of more than two

time series and then for the case of multivariate time series.

We finish in Chapter 8 with a summary of the thesis and some discussion of areas for

future research.
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2
Background

In this chapter we give many of the definitions and notations that will be used throughout the

thesis. We introduce standard time series models and provide some statistical theory which is

useful in establishing asymptotic properties of estimators. Much of the background material

in this chapter, except where otherwise referenced, can be found in standard time series

textbooks, for example, Priestley (1981). Note that we mostly consider univariate random

variables in this chapter. The multivariate generalisations are often straightforward, and

where they are not they will be given in the thesis as needed. For detail on the multivariate

versions of the background material, see, for example, Reinsel (1993).

2.1 Stationary Stochastic Processes

A stochastic process is a sequence of random variables, {Xt}, where t is some directional

variable. Generally, t is considered to represent time, although in practice it can represent

something else, such as space. In this thesis, we will assume that {Xt} is a discrete time

stochastic process, that is, that t is an integer. We will also assume implicitly that the

process has second order moments. A time series is a single partial realisation of a stochastic

process, observed at t = 0, . . . , T − 1 where T is the sample size. We denote by {Xt} both a
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time series and its underlying stochastic process, and will rely on the context to differentiate

between the two.

Definition 2.1 A stochastic process is stationary if the joint distribution of X0, X1, . . . Xs

and Xt, Xt+1, . . . Xt+s is the same for all s and t.

Definition 2.2 A stochastic process is weakly stationary if, for some constant µ, E (Xt) = µ

for all t and cov (Xt, Xt+s) = cov (X0, Xs) for all s and t.

We always assume that a stationary process is also ergodic. Loosely speaking, ergodicity

ensures that the sample mean of any given realisation of a stochastic process will converge to

the true mean of the stochastic process as the size of the sample increases (see, for example,

Priestley, 1981, Section 5.3.6). In general, ergodicity is required in order to obtain estimators

with good properties in time series analysis. However, it cannot be verified in practice since

we only ever see a single realisation.

We are often particularly concerned with the second order properties of a weakly station-

ary stochastic process, that is, its dependence structure over time. This dependence structure

can be measured by the autocovariances or autocorrelations. An alternative measure of the

dependence structure is the spectral density.

Definition 2.3 The autocovariances of {Xt} are given by

γ (j) = γ (−j) = cov (Xt, Xt−j) .

Definition 2.4 The autocorrelations of {Xt} are given by

γ (j)

γ (0)
.

Definition 2.5 The spectral density of {Xt} is

f (ω) =
1

2π

∞∑
j=−∞

γ (j) e−ijω.

Because f (ω) is periodic with period 2π, and even, it need only be defined for values ω ∈ [0, π].

The spectral density is the discrete Fourier transform of the autocovariance sequence.

Given the spectral density, we can obtain the autocovariances by

γ (j) =

π∫
−π

eijωf (ω) dω.
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Definition 2.6 The stochastic process {εt} is white noise if E (εt) = 0 and

E (εsεt) =

 σ2, if s = t

0, otherwise
,

for all s and t.

That is, a white noise process is a sequence of uncorrelated random variables. The term

‘white’ comes from the fact that the spectral density of {εt} is constant for all ω. A stochastic

process which is not white is referred to as coloured.

Definition 2.7 The stochastic process {εt} is Gaussian if any subset of the {εt} is jointly

normally distributed.

If a white noise process is stationary and Gaussian, then the random variables are inde-

pendent and identically distributed (i.i.d.). If a weakly stationary process is i.i.d. then this

implies it is white noise. In time series analysis, we often require more structure than is given

by white noise. However, it may not be desirable to make the fairly strong assumptions of

independence and Gaussianity. The condition given in the following definition lies between

the two.

Definition 2.8 The stochastic process {εt} is a sequence of martingale differences if

E (εt | Ft−1) = 0 for all t, where Ft is the σ-field generated by εt, εt−1, . . ..

The assumption that {εt} is a sequence of martingale differences is often the weakest

assumption that can be made to get good properties of estimators of time series model pa-

rameters. The following theorems relating to martingale differences therefore will be useful

when establishing asymptotic properties of the estimators that we derive in this thesis. The

first is the central limit theorem for sequences of martingale differences and is due to Billings-

ley (1961). The second is the law of the iterated logarithm for martingale differences and is

due to Stout (1970).

Theorem 2.1 (Martingale central limit theorem) Let {εt} be a stationary sequence of

martingale differences such that E
(
ε2
t

)
is finite. Then the distribution of T−1/2

∑T−1
t=0 εt

converges to the normal distribution with mean zero and variance E
(
ε2
t

)
.

Theorem 2.2 (Law of the iterated logarithm for martingale differences) Let {εt}

be a stationary sequence of martingale differences with E
(
ε2
t

)
= 1. Then

lim sup
T→∞

(2T log log T )−1/2
T−1∑
t=0

εt = 1

almost surely.
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2.2 Autoregressive-Moving Average Models

According to the Wold decomposition theorem, any weakly stationary process, {Xt}, can be

represented by the sum of a purely deterministic and a purely non-deterministic component.

We assume that the deterministic component is constant at zero, that is, that {Xt} has zero

mean. We can therefore represent {Xt} by

Xt =
∞∑
j=0

ajεt−j , (2.1)

where

a0 = 1,
∞∑
j=0

a2
j <∞

and {εt} is white. Since (2.1) has an infinite number of parameters, it is difficult to work

with in practice. However, it can be shown that (2.1) can be approximated arbitrarily well

by a finite parameter process satisfying an equation of the form

Xt + β1Xt−1 + · · ·+ βpXt−p = εt + α1εt−1 + · · ·+ αqεt−q, (2.2)

subject to certain conditions on {βj} and {αj} which we discuss below. A process satisfying

an equation of this form is known as the autoregressive-moving average process of orders p

and q, denoted ARMA(p, q). When q = 0 the process is said to be an autoregression of order

p, denoted AR(p), and when p = 0 the process is said to be a moving average process of

order q, denoted MA(q). Thus, β1, . . . , βp are referred to as the autoregressive parameters,

and α1, . . . , αq are referred to as the moving average parameters. The class of ARMA(p, q)

processes therefore provides a way of modelling stationary processes using finite parameter

linear models.

It is often convenient to write (2.2) using backshift notation. Let z be the backshift

operator such that zjXt = Xt−j . We define the polynomials

bβ (z) = 1 +

p∑
j=1

βjz
j and aα (z) = 1 +

q∑
j=1

αjz
j .

Then (2.2) can be written as

bβ (z)Xt = aα (z) εt. (2.3)

In order for (2.2), or equivalently (2.3), to be a good approximation to (2.1), the following

conditions must be met.

Condition 2.1 bβ (z) and aα (z) have no common zeros.

Condition 2.2 The zeros of bβ (z) all lie outside the unit circle.
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Condition 2.3 The zeros of aα (z) all lie outside the unit circle.

If Condition 2.1 is not met then the common factors would cancel in (2.3). Conditions 2.2

and 2.3 ensure that the model has a stationary solution, and that it is causal and invertible.

It follows from Definitions 2.3 and 2.5 that the spectral density of a stationary process

that follows an ARMA(p, q) process is given by

f (ω) =
σ2

2π

∣∣aα (e−ijω)∣∣2
|bβ (e−ijω)|2

.

We can therefore estimate the spectral densities of stationary processes using ARMA(p, q)

model parameter estimators.

2.3 The Periodogram

A widely used function in time series analysis, particularly in spectral analysis, is the peri-

odogram. The periodogram is defined by

IT,X (ω) =
2

T

∣∣∣∣∣
T−1∑
t=0

Xte
−iωt

∣∣∣∣∣
2

.

It is easy to see the appeal in using the periodogram for spectral analysis, since the spectral

density is the discrete Fourier transform of the autocovariance sequence. However, the peri-

odogram is not a consistent estimator of the spectral density. It can be shown though that

by smoothing the periodogram, using for example, a mean or median smoother, a consistent

estimator of the spectral density can be obtained.

Another appeal of the periodogram is that it can be efficiently computed at the set of

frequencies

ωj =
2πj

T
, j = 1, . . . ,

⌊
T − 1

2

⌋
, (2.4)

where bkc is the largest integer smaller than or equal to k, using the fast Fourier transform

algorithm. The frequencies given by (2.4) are referred to as the Fourier frequencies.

For a given frequency λ, the random variable

IT,X (λ)

2πf (λ)

has asymptotically the chi-squared (χ2) distribution with two degrees of freedom. Further-

more, for any fixed set of frequencies λ1, . . . , λm, the random variables

IT,X (λj)

2πf (λj)
, j = 1, . . . ,m,
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are asymptotically independent and have the χ2 distribution with two degrees of freedom.

This follows from Theorem 2.6 below. Note that this is not true for the whole set of Fourier

frequencies, except for the case where {Xt} is Gaussian white noise.

Suppose that {Xt} is generated by (2.1) with {εt} a sequence of martingale differences

and E
(
ε2
t

)
= σ2. Let

CT (ω) =
T−1∑
t=0

εt cos (ωt) and ST (ω) =
T−1∑
t=0

εt sin (ωt) .

The following theorems are due to An et al. (1983).

Theorem 2.3

lim sup
T→∞

max
ω

IT,X (ω)

2πf (ω) log T
6 1

almost surely.

Theorem 2.4

lim sup
T→∞

max
ω

C2
T (ω)

σ2T log T
6 1 and lim sup

T→∞
max
ω

S2
T (ω)

σ2T log T
6 1

almost surely.

The periodogram is discussed in further detail in Chapter 6, where it is shown how it

arises in the estimation of fixed frequencies in periodic processes.

2.4 Theorems Used for Establishing Asymptotic Properties of

Estimators

In this section we provide two theorems that will be widely used throughout the thesis in

order to prove the strong consistency and central limit theorems of estimators. The first is

Lemma 1 of Wu (1981), who gave a sufficient condition for the strong consistency of non-

linear least squares estimators. The sufficient condition in fact applies to any estimator which

is the minimiser or maximiser of a function.

Let ST (θ) be a function of a parameter θ depending on sample size T , such that ST (θ)

diverges to ∞ at rate O (T ) for all θ. Denote the minimiser of ST (θ) with respect to θ by θ̂n

and the true value of θ by θ0.

Theorem 2.5 Suppose, for any δ > 0,

lim inf
T→∞

inf
|θ−θ0|>δ

{ST (θ)− ST (θ0)} > 0

almost surely. Then θ̂T → θ0 almost surely as T →∞.
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The next theorem is originally due to Hannan (1973a) and later generalised by Hannan

(1979). We give here a version of the theorem which is Theorem 4 of Quinn and Hannan

(2001). It relates to the asymptotic distribution of the real and imaginary parts of random

variables of the form

T−(2k+1)/2
T−1∑
t=0

tkεte
−itωj , ωj =

2πj

T
, (2.5)

where {εt} is stationary with mean zero and spectral density f (ω) which is continuous at

a fixed frequency ω0. Random variables of this form arise often in time series analysis. For

example, they have been seen in the previous section in the periodogram.

Theorem 2.6 Let k = 0, 1, . . . ,K − 1 and consider the 2Km quantities that are the real

and imaginary parts of (2.5), for m values of ωj nearest to ω0, 0 < ω0 < π. Then the

distribution of these 2Km random variables converges to the distribution of a vector of normal

random variables with zero means. For different values of j the limiting random variables

are independent and the imaginary terms are independent of the real. For fixed j, and for

each of the real and imaginary components, the K limiting random variables have covariance

matrix with (k, l)th entry πf (ω0) / (k + l + 1), k, l = 0, . . . ,K − 1.

2.5 The Kronecker Product and Vec Operator

When dealing with vectors and matrices we will often make use of the Kronecker product

and the vec operator. These are defined below, as well a theorem which connects the two.

The definitions and theorem can be found in, for example, Neudecker (1969).

Definition 2.9 Let A and B be m×n and p× q matrices, respectively. Then the Kronecker

product A⊗B is the mp×nq matrix with (i, j)th block aijB, where aij is the (i, j)th element

of A.

Note that, for matrices A, B, C and D of appropriate dimensions,

(A⊗B) (C ⊗D) = AC ⊗BD.

Definition 2.10 Let A be an m × n matrix. Then vecA is the mn-dimensional column

vector produced by stacking each column of A on top of each other, in order from left to right.

Theorem 2.7 Let A, B and C be matrices of appropriate dimensions. Then

vec (ABC) =
(
C ′ ⊗A

)
vecB.
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3
Autoregressive Spectral Discrimination

3.1 Introduction

The problem of determining whether two independent time series are realisations of the

same weakly stationary stochastic process was first considered by Coates and Diggle (1986),

who proposed nonparametric tests based on the periodogram to compare theoretical spectral

densities. Two null hypotheses were considered. The first was that the spectral densities of

the underlying processes are the same. The second was that the ratio of the spectral densities

is constant, that is, that the two processes have the same spectral shape.

Suppose we have two time series from the same source. If they were collected at different

distances from the source, they would have the same autocorrelation structure but would differ

in amplitude. Similarly, the spectral densities might not be exactly equal due to calibration

problems in the measuring devices. It is therefore of more interest to consider whether the

two samples come from underlying processes with the same spectral shape.

Consider two univariate, stationary stochastic processes, {Xt} and {Yt}, assumed to have

zero means. Their spectral densities are

fX (ω) =
1

2π

∞∑
j=−∞

γX (j) e−iωj and fY (ω) =
1

2π

∞∑
j=−∞

γY (j) e−iωj ,
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where γX (j) and γY (j) are the autocovariances of {Xt} and {Yt}, respectively. The null

hypothesis is that fX (ω) /fY (ω) is the same for all ω ∈ (0, π), and the alternative hypothesis

is its complement.

The tests of Coates and Diggle (1986) were based on the ratios of the periodogram ordi-

nates at the Fourier frequencies. To compare spectral shape they considered the range of the

logarithm of the periodogram ratios, with a large range indicating a departure from the null

hypothesis. The test requires Gaussian assumptions and was shown to have very low power.

Further work by Diggle and Fisher (1991) produced a test using the normalised cumulative

periodogram based on Bartlett’s test for white noise (Bartlett, 1954).

There has been considerable interest in the problem in recent years. Lund et al. (2009)

and Jin (2015) proposed testing for equality of autocovariances and autocorrelations up to

a chosen lag. The obvious drawback to this method is that an arbitrary, finite number of

autocovariances must be chosen to test. Jin and Wang (2016) derived a new test which

compares the first r autocorrelations for r = O (log T/ log log T ), where T is the sample size.

Dette et al. (2011) and Preuß and Hildebrandt (2013) considered measures of distance

between periodogram ordinates. Fokianos and Savvides (2008) and Jin (2011) proposed

semiparametric methods, which fit parametric models to log {fX (ω) /fY (ω)}. Other tests

based on the periodogram have been given by Tugnait (2013), Lu and Li (2013) and Decowski

and Li (2015). These nonparametric and semiparametric tests generally require Gaussian

assumptions and most require equal sample sizes.

A less obvious, but natural, approach to discriminating between spectral densities is

parametric, where the processes are modelled as, for example, long-order autoregressions.

There is a long history of fitting long-order autoregressions to stationary processes in the

hope of estimating spectral shape (see, for example, Durbin, 1959 and Durbin, 1960). Let

{Xt} and {Yt} satisfy

Xt + βX,1Xt−1 + · · ·+ βX,pXXt−pX = εt

and

Yt + βY,1Yt−1 + · · ·+ βY,pY Yt−pY = ut,

respectively, for some parameters βX,1, . . . , βX,pX and βY,1, . . . , βY,pY , and orders pX and pY .

It is assumed that the innovation processes, {εt} and {ut}, are independent sequences of

martingale differences with

E
(
ε2
t | Ft−1

)
= σ2

ε and E
(
u2
t | Gt−1

)
= σ2

u,
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where Ft and Gt are the σ-fields generated by {εt, εt−1, . . . } and {ut, ut−1, . . . }, respectively.

The spectral densities of {Xt} and {Yt} are

fX (ω) =
σ2
ε

2π
∣∣∣1 +

∑pX
j=1 βX,je

−ijω
∣∣∣2 and fY (ω) =

σ2
u

2π
∣∣∣1 +

∑pY
j=1 βY,je

−ijω
∣∣∣2 .

Thus, fX (ω) and fY (ω) will have the same shape if and only if the autoregressive parameters

are equal. The null and alternative hypotheses are then

H0 : βX,j = βY,j ∀j

HA : ∃ j such that βX,j 6= βY,j .

Quinn (2006) briefly outlined a likelihood ratio approach for testing this hypothesis, and

a similar hypothesis for mixed sinusoidal and autoregressive processes. Also proposed was

an iterative procedure for estimating parameters under H0, as well as an indication of how

to estimate the sinusoidal and autoregressive orders. Several simulations were carried out,

for the case of two sinusoids added to first order autoregressive noise. The results were

inconclusive, and few details were given, as the paper and content were geared towards an

Engineering audience. An alternative method for comparing autoregressive parameters has

been given by De Souza and Thomson (1982).

The parametric approach has a number of advantages over the nonparametric. It does

not require Gaussian assumptions and allows for unequal sample sizes. Also, since it is based

on the likelihood ratio principle, it is expected to be asymptotically more powerful than

the nonparametric tests, especially when the spectral densities are those of autoregressions.

So, for example, the test will be more powerful than any based on an increasing number of

autocovariances, such as that of Jin and Wang (2016), when the processes are autoregressive,

or near-autoregressive.

In this chapter we derive the likelihood ratio statistic and propose novel methods for its

computation. We prove the strong consistency and central limit theorem of the estimators,

and the asymptotic distribution of the test statistic, under H0. The properties of the test

statistic are then examined using simulations. It is shown that the test performs well when

the time series are from autoregressions, but not when the processes are not autoregressive.

A modification to the test is proposed which is shown to improve its performance when the

time series do not come from autoregressions. The modified test is then compared with

nonparametric alternatives using simulations and is shown to have higher power. Much of

the material in this chapter has been published in Grant and Quinn (2017).
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3.2 The Likelihood Ratio Test

The test statistic will be derived using the likelihood ratio principle. Denoting the maximised

log-likelihood functions under H0 and HA as l̂0 and l̂A, respectively, the test statistic is

Λ = 2
(
l̂A − l̂0

)
.

When the autoregressive orders are known, Λ will be shown to follow, asymptotically, a χ2 dis-

tribution with degrees of freedom the difference between the number of parameters estimated

under HA and under H0, even without Gaussian assumptions. The autoregressive orders are

not known, however, and must be estimated. The effect on the asymptotic distribution is

examined in Section 3.5.

Although no assumptions are made about the distributions of {εt} and {ut}, the likelihood

functions are derived as though these processes are Gaussian. Hence we are using a pseudo-

likelihood, or Gaussian likelihood, procedure. We avoid the preperiod value problem by

conditioning the joint distributions of {εt} and {ut} on the first pX and pY values, respectively,

remaining fixed at their observed values. The conditional Gaussian log-likelihood functions

are therefore

lX
(
βX , σ

2
ε

)
= −T1

2
log
(
2πσ2

ε

)
− 1

2σ2
ε

T1−1∑
t=pX

{bβX (z)Xt}2

and

lY
(
βY , σ

2
u

)
= −T2

2
log
(
2πσ2

u

)
− 1

2σ2
u

T2−1∑
t=pY

{bβY (z)Yt}2 ,

where T1 and T2 are the sample sizes of {Xt} and {Yt}, respectively.

3.3 Parameter Estimation

3.3.1 Parameter Estimation Under the Alternative Hypothesis

Under HA, {Xt} and {Yt} are independent autoregressions, and their parameters can be

estimated using the usual techniques to maximise the conditional Gaussian log-likelihoods.

Quite often the Levinson–Durbin approach (Levinson, 1947; Durbin, 1960) is used to estimate

model parameters rather than maximum likelihood. Asymptotically this will have no impact.

Summing the two individually maximised log-likelihoods, we have

l̂A = −T1 + T2

2
− T1

2
log
(
2πσ̂2

ε;A

)
− T2

2
log
(
2πσ̂2

u;A

)
,

where σ̂2
ε;A and σ̂2

u;A are whichever estimators are used of σ2
ε and σ2

u, respectively, under HA.
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3.3.2 Parameter Estimation Under the Null Hypothesis

Under H0, we have a particular case of two autoregressions with the same autoregressive

parameters but with potentially different innovation variances and sample sizes. We thus

have

Xt + β1Xt−1 + · · ·+ βpXt−p = εt

and

Yt + β1Yt−1 + · · ·+ βpYt−p = ut,

where β =
[
β1 · · · βp

]′
are the common parameters and p is the common order. The

conditional Gaussian log-likelihood is

l0
(
β, σ2

ε , σ
2
u

)
= −T1

2
log
(
2πσ2

ε

)
−T2

2
log
(
2πσ2

u

)
− 1

2σ2
ε

T1−1∑
t=p

{bβ (z)Xt}2−
1

2σ2
u

T2−1∑
t=p

{bβ (z)Yt}2 .

Instead of maximising this, we reparametrise and use a profile likelihood approach. Letting

σ2
ε = λσ2

u, we rewrite the conditional Gaussian log-likelihood as

l0
(
β, σ2

ε , λ
)

= −T1 + T2

2
log
(
2πσ2

ε

)
+
T2

2
log λ− 1

2σ2
ε

[
T1−1∑
t=p

{bβ (z)Xt}2 + λ

T2−1∑
t=p

{bβ (z)Yt}2
]
.

This is maximised with respect to β, for fixed λ, by

β̂λ =
[
β̂λ,1 · · · β̂λ,p

]′
= −C−1

λ cλ,

where Cλ is the p× p matrix with (i, j)th element

(T1 + T2)−1

(
T1−1∑
t=p

Xt−iXt−j + λ

T2−1∑
t=p

Yt−iYt−j

)

and cλ is the p× 1 vector with ith element

(T1 + T2)−1

(
T1−1∑
t=p

XtXt−i + λ

T2−1∑
t=p

YtYt−i

)
.

We then have l̃0
(
σ2
ε , λ
)

= l0

(
β̂λ, σ

2
ε , λ
)

, which is maximised with respect to σ2
ε , for fixed λ,

by

σ̃2
ε;λ = (T1 + T2)−1

[
T1−1∑
t=p

{
b
β̂λ

(z)Xt

}2
+ λ

T2−1∑
t=p

{
b
β̂λ

(z)Yt

}2
]
.

We thus obtain the profile log-likelihood

l̆0 (λ) = l̃0
(
σ̃2
ε;λ, λ

)
= −T1 + T2

2
− T1 + T2

2
log
(
2πσ̃2

ε;λ

)
+
T2

2
log λ.
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By maximising l̆0 (λ) with respect to λ, we may obtain estimators of all the parameters.

Denoting the maximiser by λ̂, the estimator of β is

β̂ = β̂
λ̂

=
[
β̂
λ̂,1

· · · β̂
λ̂,p

]′
= −C−1

λ̂
c
λ̂
. (3.1)

Then σ̂2
ε;0 = σ̃2

ε;λ̂
and σ̂2

u;0 = σ̂2
ε;0/λ̂, where σ̂2

ε;0 and σ̂2
u;0 are the estimators of σ2

ε and σ2
u,

respectively, under H0.

Any optimisation procedure can be used to find λ̂. One such iterative procedure is as

follows. Given a current estimate of λ, denoted by λ̃, β is estimated by β̂
λ̃
. Then λ is

re-estimated by
T2σ̃

2
ε;λ̃∑T2−1

t=p

{
b
β̂
λ̃

(z)Yt

}2

and the process repeats until convergence. An initial value of λ̃ can be obtained from the

estimates under the alternative hypothesis, that is, by letting λ̃ = σ̂2
ε;A/σ̂

2
u;A.

3.3.3 Asymptotic Properties of the Estimators

In this section we establish the strong consistency and central limit theorem of the estimators

under H0. Proofs of Theorems 3.1 and 3.2 as well as Lemma 3.1 are given in the Appendix.

Let CX and CY be the p× p matrices with (i, j)th elements

T−1
1

T1−1∑
t=p

Xt−iXt−j and T−1
2

T2−1∑
t=p

Yt−iYt−j ,

respectively. Letting ΓX and ΓY be the p × p matrices with (i, j)th elements given by

γX (|i− j|) and γY (|i− j|), respectively, note that

CX → ΓX = σ2
εΩ and CY → ΓY = σ2

uΩ

almost surely, where Ω depends only on β. Let θ =
[
β′ σ2

ε σ2
u

]′
, and let l0 (θ) be max-

imised at θ̂ =
[
β̂′ σ̂2

ε σ̂2
u

]′
. Denote the true parameter values by θ0 =

[
β′0 σ2

ε0 σ2
u0

]′
,

where β0 =
[
β0,1 · · · β0,p

]′
.

Theorem 3.1 θ̂ → θ0 almost surely as T1, T2 →∞.

Lemma 3.1 is required in the proof of Theorem 3.2. It is almost obvious, and straightfor-

ward to prove.

Lemma 3.1 Let {ξt} and {ζt} be independent sequences of random variables, each converging

in distribution to the standard normal. Let

ZT1,T2 =

√
T1

T1 + T2
ξT1 +

√
T2

T1 + T2
ζT2 .
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Then the distribution of ZT1,T2 converges to the standard normal as T1, T2 →∞.

Theorem 3.2 Assume that E
(
ε3
t | Ft−1

)
and E

(
u3
t | Gt−1

)
are constants, and that E

(
ε4
t

)
<

∞ and E
(
u4
t

)
<∞. Then, as T1, T2 →∞, the distribution of

(T1 + T2)1/2
(
β̂ − β0

)
T

1/2
1

(
σ̂2
ε − σ2

ε0

)
T

1/2
2

(
σ̂2
u − σ2

u0

)


converges to the normal distribution with mean zero and covariance matrix

Σ =


Ω−1 0 0

0
(
σ2
ε0

)4
υ 0

0 0
(
σ2
u0

)4
η

 ,
where υ and η are given by

υ =
1(
σ2
ε0

)4E (ε4
t

)
− 1(

σ2
ε0

)2 and η =
1(

σ2
u0

)4E (u4
t

)
− 1(

σ2
u0

)2 .
If {εt} and {ut} are Gaussian then

Σ =


Ω−1 0 0

0 2
(
σ2
ε0

)2
0

0 0 2
(
σ2
u0

)2
 .

3.3.4 Order Estimation

Although we have implicitly assumed above that the orders are known, this will, of course,

not be the case in general. We can estimate the orders using information criteria. In what

follows, we assume that the processes are autoregressions. Under HA, the estimated order of

{Xt}, p̂X , is the minimiser of

φ (k) = −2l̂
(k)
X + kg (T1)

= T1 log σ̂
2(k)
ε;A + kg (T1)

over k = 0, . . . ,K, where l̂
(k)
X is the maximised log-likelihood and σ̂

2(k)
ε;A is the estimator of σ2

ε

assuming the order is k, g (T ) is a chosen penalty function and K is assumed to be greater

than or equal to pX . This procedure is easily incorporated into the Levinson–Durbin algo-

rithm. The estimated order of {Yt}, p̂Y , is computed in the same way. Common choices

of information criterion are AIC where g (T ) = 2 (Akaike, 1969); BIC, where g (T ) = log T

(Akaike, 1978; Schwarz, 1978); and HQIC, where g (T ) = κ log log T for κ > 2 (Hannan and
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Quinn, 1979). It is known that AIC will not produce a consistent estimator and will over-

estimate the order with a probability of approximately 0.2883 (Shibata, 1976; Quinn, 1988).

Both BIC and HQIC provide consistent estimators, with HQIC tending to underestimate the

order less often than BIC.

Under H0, the information criterion we minimise is

φ (k) = −2l̂
(k)
0 + kg (T1, T2) ,

where k is the number of parameters being estimated, equal to the common order. The

estimated order, p̂, is thus the minimiser of

φ (k) = T1 log σ̂
2(k)
ε;0 + T2 log σ̂

2(k)
u;0 + kg (T1, T2)

over k = 0, . . . ,K, where K is assumed to be greater than or equal to p. AIC, BIC or HQIC

can then be applied. Here, we use g (T1, T2) = g (T1 + T2).

3.3.5 An Alternative Procedure Based on the Levinson–Durbin Algorithm

A more practically efficient approach to parameter estimation under H0 is to make use of the

properties of Toeplitz matrices, which allows us to use the Levinson–Durbin algorithm (see,

for example, Hannan and Rissanen, 1982 or Hannan and Kavalieris, 1984b). We shall replace

the computations in (3.1) with Toeplitz versions of the statistics in the following manner.

For i = 0, . . . , p, put

c̃ (i) = (T1 + T2)−1

(
T1−1∑
t=i

XtXt−i + λ

T2−1∑
t=i

YtYt−i

)
,

where λ = σ̂2
ε;0/σ̂

2
u;0 and σ̂2

ε;0 and σ̂2
u;0 are current estimates of σ2

ε and σ2
u, respectively. For a

given order p, consider the estimator of β

β̂p = −Γ̂−1
p γ̂p,

where γ̂p is the p× 1 vector with ith element given by c̃ (i), and Γ̂p is the p× p matrix with

(i, j)th element given by c̃ (|i− j|). We can then use the Levinson–Durbin algorithm, because

of the structures of Γ̂−1
p and γ̂p. The procedure needs to be iterated for fixed p, as σ̂2

ε;0 and

σ̂2
u;0 need to be updated.

At each step in the algorithm, we define the information criterion as

φ (p, λ) = (T1 + T2) log σ̂
2(p)
ε;0 − T2 log λ+ pg (T1 + T2) .

We put p̂λ equal to the minimiser over p = 0, . . . ,K and

ψ (λ) = φ (p̂λ, λ) .

We then define λ̂ to be the minimiser of ψ (λ) and p̂ to be equal to p̂
λ̂
.



3.4 The Test Statistic 23

3.4 The Test Statistic

The test statistic is

Λ = 2
(
l̂A − l̂0

)
= T1 log

(
σ̂2
ε;0

σ̂2
ε;A

)
+ T2 log

(
σ̂2
u;0

σ̂2
u;A

)
.

Theorem 3.3 gives the asymptotic distribution of Λ for a given p.

Theorem 3.3 Under H0 the distribution of Λ converges to the χ2 distribution with p degrees

of freedom as T1, T2 →∞.

If we compute the test statistic at the true orders, we reject H0 at significance level α

when Λ is greater than the 100 (1− α)th percentile of the χ2 distribution with p degrees of

freedom. If we instead estimate the orders, the degrees of freedom of the χ2 distribution need

to be estimated by p̂X + p̂Y − p̂. We use BIC or HQIC since they give consistent estimators.

In order for the likelihood ratio test to give realistic results, H0 must be a subspace of

HA. This will be the case when the order under H0 is less than or equal to the orders under

HA. That is, when p ≤ min (pX , pY ). In practice, if the algorithm incorrectly estimates the

orders, it is possible that this will not be true even when H0 is true. This could occur if

one or both of the orders under HA are underestimated, or if the common order under H0 is

overestimated. This will produce a test statistic that is too small and potentially negative.

The simplest way to get around this is to ensure that p̂ ≤ min (p̂X , p̂Y ).

3.5 Simulations

The first simulation study shown in this section examines the distribution of the test statistic

when the autoregressive orders are known. The test was applied to time series which were

simulated from either the AR(1) processes

Xt + 0.5Xt−1 = εt and Yt + 0.5Yt−1 = ut,

the AR(2) processes

Xt + 0.5Xt−1 + 0.5Xt−2 = εt and Yt + 0.5Yt−1 + 0.5Yt−2 = ut,

or the AR(3) processes

Xt + 0.5Xt−1 + 0.5Xt−2 + 0.5Xt−3 = εt and Yt + 0.5Yt−1 + 0.5Yt−2 + 0.5Yt−3 = ut.
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Table 3.1: Distributions of {εt} and {ut}, where N
(
0, σ2

)
denotes the normal distribution

with mean zero and variance σ2, Exp(µ) denotes the exponential distribution with mean µ

and t (v) denotes the t-distribution with degrees of freedom v.

Innovations i ii iii iv v vi

{εt} N (0, 1) Exp(1) t (4) N (0, 1) N (0, 1) Exp(1)

{ut} N (0, 4) Exp(2) t (4) Exp(2) t (4) t (4)

Table 3.2: Summary of test statistics from simulations when p is known for the different

distributions of the innovations (inn.) given by Table 3.1.

p = 1 p = 2 p = 3

Inn. Mean Var Type I Mean Var Type I Mean Var Type I

i 0.979 1.894 0.047 1.974 3.948 0.051 2.989 5.944 0.048

ii 1.009 2.010 0.050 2.002 4.100 0.051 2.962 5.904 0.049

iii 1.010 2.032 0.052 1.995 4.022 0.051 2.995 6.123 0.051

iv 1.031 2.095 0.054 2.006 3.878 0.048 3.012 5.899 0.050

v 1.003 1.981 0.050 1.983 3.960 0.050 3.000 6.005 0.050

vi 0.981 1.971 0.050 1.978 3.928 0.048 3.000 6.205 0.052

For each process, six sets of 10,000 pairs of time series were generated, where {εt} and {ut}

were simulated from the distributions given in Table 3.1. The sample sizes were T1 = 1, 000

and T2 = 2, 000. Table 3.2 gives the means and variances of the resulting test statistics. Also

shown are the Type I error rates at the 0.05 significance level, that is, the proportion of test

statistics which were greater than the 95th percentile of the χ2 distribution with p degrees

of freedom where p is the true order.

As shown in Table 3.2, in each set of simulations, the means and variances are consistent

with the test statistics following the χ2 distribution with p degrees of freedom. That is, the

means are close to p and the variances are close to 2p. The Type I error rates are close to

0.05 in each case. These results agree with the assertion that the test statistic will follow a χ2

distribution with p degrees of freedom when the time series have come from autoregressions

of order p. The results also suggest that the test is robust to non-Gaussianity and unequal

sample sizes.

The test was then run over simulations from the same autoregressive processes as before,

but this time p was unknown and was estimated using BIC with K = 8. Table 3.3 gives the
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Table 3.3: Summary of test statistics from simulations when p is unknown for the different

distributions of the innovations (inn.) given by Table 3.1.

p = 1 p = 2 p = 3

Inn. Mean Var Type I Mean Var Type I Mean Var Type I

i 1.111 3.375 0.061 2.152 5.530 0.061 3.140 7.260 0.063

ii 1.145 3.599 0.063 2.093 4.826 0.057 3.202 7.800 0.069

iii 1.144 3.889 0.062 2.125 5.514 0.061 3.085 7.481 0.057

iv 1.157 3.557 0.067 2.122 5.304 0.063 3.064 6.800 0.055

v 1.110 3.202 0.061 2.105 5.232 0.061 3.063 7.289 0.058

vi 1.169 3.935 0.064 2.127 5.341 0.060 3.113 7.383 0.062

means, variances and Type I error rates of the resulting test statistics.

As shown in Table 3.3, the means, variances and Type I error rates are higher than their

theoretical values. These were inflated due to a small number of incorrect order estimates.

In each case approximately 1.5% of simulations had at least one order estimated incorrectly.

The next simulation study examines the power of the test. It will be interesting at

this stage to consider a case where the processes are not autoregressions. Thus, along with

simulating from autoregressions of varying order, we also simulated from a moving average

process of order 1. We are not expecting the power in this case to be very high, since we are

not estimating the true order of an autoregression.

The test was applied to four sets of 10,000 pairs of time series. The first set of time series

were simulated from the AR(1) processes

Xt + 0.5Xt−1 = εt and Yt + βYt−1 = ut.

The second set of time series were simulated from the AR(2) processes

Xt + 0.5Xt−1 + 0.5Xt−2 = εt and Yt + 0.5Yt−1 + βYt−2 = ut.

The third set of time series were simulated from the AR(3) processes

Xt + 0.5Xt−1 + 0.5Xt−2 + 0.5Xt−3 = εt and Yt + 0.5Yt−1 + 0.5Yt−2 + βYt−3 = ut.

The fourth set of time series were simulated the MA(1) processes

Xt = εt + 0.5εt−1 and Yt = ut + βut−1.

The four null spectral densities are described in Figure 3.1. In each set, T1 = T2 = 1, 000 and

{εt} and {ut} were simulated from normal distributions with variances 1 and 4, respectively.
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Figure 3.1: Spectral densities for the four {Xt} processes described in Section 3.5.

The orders were estimated using BIC with K = 8. Figure 3.2 shows the empirical power,

that is the proportion of times the test rejected H0 at the 5% significance level, for β =

0.01, 0.02, . . . , 0.99.

The plots in Figure 3.2 show that the test performs well when the time series are generated

by autoregressions. The Type I error rates, that is when β = 0.5, are slightly above 0.05.

This is expected and is due to a small number of incorrect order estimates. When the time

series are generated by moving average processes, the Type I error rate is close to 0.6. There

is clearly a problem when the time series have not come from autoregressions. In the next

section we propose a modification to the test to correct this.

3.6 Fixed Order Autoregressive Approximation

Using long-order autoregressions to estimate the parameters in autoregressive-moving average

(ARMA) models has a long history (see, for example, Durbin, 1959, Durbin, 1960, and Han-

nan and Rissanen, 1982). However, it was shown in the previous section that the size of the

parametric test is incorrect, most likely because the autoregressive order is being estimated.

The proposed solution is to fix the autoregressive order, under both H0 and HA, at some

sufficiently large number n = nT1,T2 , where n is of lower order than min (T1, T2). The test

then rejects H0 at significance level α when the test statistic is greater than the 100 (1− α)th
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Figure 3.2: Empirical power of the likelihood ratio test when the orders were estimated using

BIC. The lowest horizontal line in each plot indicates the significance level of 0.05.

percentile of the χ2 distribution with n degrees of freedom. By fitting autoregressions of suffi-

ciently large order, the dependence structure of the underlying processes should be captured

regardless of their true nature. There will of course be a reduction in the power of the test

when the processes really are autoregressions.

An et al. (1982) discuss fitting autoregressions to approximate more general processes by

increasing the order of the autoregression with the sample size. Following their Theorem 6,

we set n = b(log Tmin)vc, where Tmin = min (T1, T2) and v > 1.

To examine the behaviour of the fixed order method for the ARMA case, the test was

applied to 10,000 pairs of time series which were simulated from the MA(1) processes

Xt = εt + βεt−1 and Yt = ut + βut−1,

as well as 10,000 pairs of time series which were simulated from the MA(2) processes

Xt = εt + 0.5εt−1 + βεt−2 and Yt = ut + 0.5ut−1 + βut−2

for different sample sizes and for β = 0.05, 0.10, . . . , 0.95. In each case, {εt} and {ut} were

simulated from normal distributions with variances 1 and 4, respectively, T1 = T2 = T and

v = 1.1. Figure 3.3 shows the Type I error rates for varying values of β and for different sample

sizes. For the MA(2) case, the Type I error rates are plotted only for β = −0.45, . . . , 0.95,

since this is the range in which the processes are invertible.
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Figure 3.3: Type I error rates using the fixed order method when the time series are from

MA(1) and MA(2) processes with sample size T = 125 (solid), T = 500 (dashes), T = 1, 000

(small dashes) and T = 2, 000 (dot-dash).

The Type I error rates are now close to 0.05, which is a significant improvement over

the results shown in Figure 3.2. At either end of the plots, where the roots of the auxiliary

equations are close to the unit circle, the Type I error rates spike up above the 0.05 line.

By increasing v we would reduce the Type I error rate in these cases, however this may also

reduce the power of the test. In the simulations which follow we set v = 1.1. As long as

the roots of the auxiliary equations are not too close to the unit circle, this should retain an

acceptable Type I error rate without a loss of power.

To compare the power of the fixed order method with the previous method which esti-

mated the orders using BIC, both tests were applied to 10,000 pairs of time series which were

simulated from the same four processes as in Section 3.5. Figure 3.4 shows a comparison of

the empirical powers for β = 0.01, 0.02, . . . , 0.99.

The fixed order method performs much better for the moving average case. For the

autoregression cases, the Type I error rates of the fixed order method are at or below 0.05.

There is some loss of power in the autoregression cases, as expected.

3.7 Comparison With Nonparametric Tests

In this section we show the results of another power study which compares the parametric

test using the fixed order method with the range test of Coates and Diggle (1986), the

normalised cumulative periodogram test of Diggle and Fisher (1991) and the test for equal

autocovariances of Lund et al. (2009). Since the nonparametric tests require equal sample

sizes, we suppose that T1 = T2 = T .

The range test has test statistic

RT = max
j=1,...,q

log

{
IT,X (ωj)

IT,Y (ωj)

}
− min
j=1,...,q

log

{
IT,X (ωj)

IT,Y (ωj)

}
,
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Figure 3.4: Empirical power of the likelihood ratio test when the orders were estimated using

BIC (solid) and when using the fixed order method (dashes). The lowest horizontal line in

each plot indicates the significance level of 0.05.

where IT,X (ωj) and IT,Y (ωj) are the periodograms of {Xt} and {Yt}, respectively, ωj =

2πj/T and q = b(T − 1) /2c. The null hypothesis is rejected when RT is large. Coates and

Diggle (1986) expressed the distribution of RT under H0 in terms of an infinite sum and

computed critical values for q up to 45. We can in fact compute an asymptotic distribution

under i.i.d. Gaussian assumptions. Let WT = RT − 2 log q. Then, under H0, it is shown in

the Appendix that the cumulative distribution function (cdf) of WT converges to

FW (w) = 2e−w/2K1

(
2e−w/2

)
,

as T → ∞, where K1 (x) is the modified Bessel function of the second kind of order one.

At the 0.05 significance level, the critical value for WT is 4.4644, in agreement with the

computations of Coates and Diggle (1986).

The normalised cumulative periodogram test has test statistic

DT = max
j=1,...,q

|FX (ωj)− FY (ωj)| ,

where

FX (ωj) =

j∑
k=1

IT,X (ωk) /

q∑
k=1

IT,X (ωk) , FY (ωj) =

j∑
k=1

IT,Y (ωk) /

q∑
k=1

IT,Y (ωk) ,

ωj = 2πj/T and q = b(T − 1) /2c. The null hypothesis is rejected when DT is large. However,

the distribution of DT is not known. For this power study, we define the critical value to be
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that which cuts off the largest 5% of simulated values of DT when H0 is true. That is, we

fix the significance level at 0.05 which allows us to compare the power properties with other

tests.

The test for equal autocovariances has null and alternative hypotheses

H0 : γX (i) = γY (i) , i = 0, . . . , L,

HA : ∃ i ∈ {0, . . . , L} such that γX (i) 6= γY (i)

where L is the number of autocovariances considered. The test is based on Bartlett’s formula

(Bartlett, 1946). Since we wish to test for differences in spectral shape, we begin by dividing

the time series by their sample standard deviations. The sample autocovariances are

γ̂X (i) = T−1
T−1∑
t=i

XtXt−i and γ̂Y (i) = T−1
T−1∑
t=i

YtYt−i.

Let γ̂ (i) = {γ̂X (i) + γ̂Y (i)} /2. Assuming that {εt} and {ut} are Gaussian, the test statistic

is

CT =
T

2
4 γ̂′Ŵ−1 4 γ̂,

where 4γ̂ is the (L+ 1)× 1 vector with elements given by γ̂X (i)− γ̂Y (i), i = 0, . . . , L, and

Ŵ is the (L+ 1)× (L+ 1) matrix with (i, j)th element

bT 1/3c∑
k=−bT 1/3c

{γ̂ (k) γ̂ (k − i+ j) + γ̂ (k + j) γ̂ (k − i)} .

The null hypothesis is rejected at significance level α when CT is greater than the

100 (1− α)th percentile of the χ2 distribution with L+ 1 degrees of freedom. We put L = 10

as suggested in Lund et al. (2009).

Each test was applied to four sets of 10,000 pairs of time series which were simulated from

the same processes as in Section 3.5 with sample sizes of T = 128 and T = 1, 024. Note that

the parametric test used orders of 5 and 8, respectively, for these sample sizes. Figure 3.5

and Figure 3.6 compare the empirical powers for β = 0.01, 0.02, . . . , 0.99.

As expected, the range test has very low empirical power in all cases. For the AR(1)

and AR(2) cases, the empirical powers of the parametric and other nonparametric tests are

very close. For the AR(3) case, the parametric test has higher empirical power than the

normalised cumulative periodogram test. The test for equal autocovariances has Type I error

rates of 0.17 and 0.11 for the AR(3) case. As expected, this test does not perform as well for

higher order processes, since only a finite number of autocovariances are considered. For the

MA(1) case, the parametric test has the highest empirical power.
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Figure 3.5: Comparison of empirical power of the parametric test (solid), range test (dashes),

normalised cumulative periodogram test (small dashes), and test for equal autocovariances

(dot-dash), for T = 128. The lowest horizontal line in each plot indicates the significance

level of 0.05.

Figure 3.6: Comparison of empirical power of the parametric test (solid), range test (dashes),

normalised cumulative periodogram test (small dashes) and test for equal autocovariances

(dot-dash), for T = 1, 024. The lowest horizontal line in each plot indicates the significance

level of 0.05.
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3.8 Comparing More Than Two Time Series

In this section we extend the parametric test using the fixed order method for comparing

more than two time series. Let {Xk,t}, k = 1, . . . , n, be independent, univariate, stationary

time series, assumed to have zero mean. We wish to test the hypothesis that the n spectral

densities have the same shape. That is, that the ratio of any two of the spectral densities is

constant.

We fit autoregressions of order p = b(log Tmin)vc, where Tk is the sample size of {Xk,t},

Tmin = min (T1, . . . , Tn) and v > 1. That is, for k = 1, . . . , n, we fit

Xk,t + βk,1Xk,t−1 + · · ·+ βk,pXk,t−p = εk,t

for some parameters βk =
[
βk,1 · · · βk,p

]′
. As before, it is assumed that the {εk,t} are

independent sequences of martingale differences with

E
(
ε2
k,t | Fk,t−1

)
= σ2

k,

where Fk,t is the σ-field generated by {εk,t, εk,t−1, . . .}.

The spectral density of {Xk,t}, k = 1, . . . , n, is

fXk (ω) =
σ2
k

2π
∣∣∣1 +

∑p
j=1 βk,je

−ijω
∣∣∣2 .

Thus, the spectral densities will have the same shape if and only if the autoregressive param-

eters are all equal for all k. The null hypothesis is then

H0 : β1 = · · · = βn

and the alternative hypothesis, HA, is its complement.

The conditional Gaussian log-likelihood for {Xk,t}, k = 1, . . . , n, is

lk
(
βk, σ

2
k

)
= −Tk

2
log
(
2πσ2

k

)
− 1

2σ2
k

Tk−1∑
t=p

{bβk (z)Xk,t}2 .

Under the alternative hypothesis, these can be maximised separately or, alternatively, the

Levinson–Durbin algorithm can be used to compute estimators of βk and σ2
k. The maximised

conditional Gaussian log-likelihood under HA is then

l̂A = −1

2
{1 + log (2π)}

n∑
j=1

Tj −
1

2

n∑
j=1

Tj log σ̂2
j;A,

where σ̂2
k;A is whichever estimator is used of σ2

k under HA, k = 1, . . . , n.
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Under H0 the conditional Gaussian log-likelihood is

l0
(
β, σ2

1, . . . , σ
2
k

)
= −1

2

n∑
j=1

[
Tj log

(
2πσ2

j

)
− 1

σ2
j

Tk−1∑
t=p

{bβ (z)Xj,t}2
]
,

where β =
[
β1 · · · βp

]′
is the common parameter vector. Let Cn be the p × p matrix

with (i, j)th element (
n∑

m=1

Tm

)−1 n∑
k=1

1

σ2
k

Tk−1∑
t=p

Xk,t−iXk,t−j

and let cn be the p× 1 vector with ith element n∑
j=1

Tj

−1
n∑
k=1

1

σ2
k

Tk−1∑
t=p

Xk,tXk,t−i.

Then l0
(
β, σ2

1, . . . , σ
2
k

)
is maximised with respect to β, for fixed σ2

1, . . . , σ
2
n, by

β̂σ2
1 ,...,σ

2
n

= −C−1
n cn,

and with respect to σ2
k, for fixed β,by

σ̃2
k;β = T−1

k

Tk−1∑
t=p

X2
k,t + 2c′nβ + β′Cnβ,

k = 1, . . . , n. The maximised conditional Gaussian log-likelihood under H0 is then

l̂0 = −1

2
{1 + log (2π)}

n∑
j=1

Tj −
1

2

n∑
j=1

Tj log σ̂2
j;0,

where σ̂2
k;0 is the estimator of σ2

k under H0, k = 1, . . . n. The parameters can therefore be

estimated iteratively as follows. Given estimates for σ2
k, k = 1, . . . , n, estimate β by

β̂ = β̂σ̂2
1;0,...,σ̂

2
n;0
.

Then update the estimates of σ2
k, k = 1, . . . , n, by

σ̂2
k;0 = σ̃2

k;β̂

and repeat until convergence. In practice, we use σ̂2
k;A as an initial estimate of σ̂2

k;0, k =

1, . . . , n.

The test statistic is

Λ = 2
(
l̂A − l̂0

)
=

n∑
j=1

Tj log

{
σ̂2
j;0

σ̂2
j;A

}

and H0 is rejected at significance level α when Λ is greater than the 100 (1− α)th percentile

of the χ2 distribution with p (n− 1) degrees of freedom.
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3.9 Appendix

In what follows, where convergence is indicated, it will mean convergence in the almost sure

sense, unless otherwise indicated.

3.9.1 Proof of Theorem 3.1

For a given β, the values of σ2
ε and σ2

u that maximise l0 (θ) are given by

σ̂2
ε (β) = T−1

1

T1−1∑
t=p

{bβ (z)Xt}2 and σ̂2
u (β) = T−1

2

T2−1∑
t=p

{bβ (z)Yt}2 ,

respectively. Let

S (β) = l0
{
β, σ̂2

ε (β) , σ̂2
u (β)

}
= −T1

2
log
{

2πσ̂2
ε (β)

}
− T2

2
log
{

2πσ̂2
u (β)

}
− 1

2σ̂2
ε (β)

T1−1∑
t=p

{bβ (z)Xt}2

− 1

2σ̂2
u (β)

T2−1∑
t=p

{bβ (z)Yt}2

= −T1

2
log
{

2πσ̂2
ε (β)

}
− T2

2
log
{

2πσ̂2
u (β)

}
− T1 + T2

2
.

Then

S (β)− S (β0) = −T1

2
log

{
σ̂2
ε (β)

σ̂2
ε (β0)

}
− T2

2
log

{
σ̂2
u (β)

σ̂2
u (β0)

}
.

But

bβ (z)Xt = Xt +

p∑
j=1

βjXt−j

= Xt +

p∑
j=1

β0,jXt−j +

p∑
j=1

(βj − β0,j)Xt−j

= εt +

p∑
j=1

(βj − β0,j)Xt−j .

Thus

{bβ (z)Xt}2 = ε2
t + 2εt

p∑
j=1

(βj − β0,j)Xt−j +


p∑
j=1

(βj − β0,j)Xt−j


2

and so

σ̂2
ε (β) = T−1

1

T1−1∑
t=p

ε2
t + 2T−1

1

T1−1∑
t=p

εt

p∑
j=1

(βj − β0,j)Xt−j + T−1
1

T1−1∑
t=p


p∑
j=1

(βj − β0,j)Xt−j


2

.
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Now,

σ̂2
ε (β)

σ̂2
ε (β0)

= 1 +
σ̂2
ε (β)− σ̂2

ε (β0)

σ̂2
ε (β0)

= 1 +
2T−1

1

∑T1−1
t=p εt

∑p
j=1 (βj − β0,j)Xt−j + T−1

1

∑T1−1
t=p

{∑p
j=1 (βj − β0,j)Xt−j

}2

σ̂2
ε (β0)

= 1 +
2T−1

1

∑p
j=1 (βj − β0,j)

∑T1−1
t=p εtXt−j + T−1

1

∑T1−1
t=p

{∑p
j=1 (βj − β0,j)Xt−j

}2

σ̂2
ε (β0)

.

However, as T1 →∞, by the strong law of large numbers,

σ̂2
ε (β0) = T−1

1

T1−1∑
t=p

ε2
t → σ2

ε0

and

T−1
1

T1−1∑
t=p

εtXt−j → E (εtXt−j) = 0, j = 1, . . . , p, (3.2)

since

E (εtXt−j) = E {E (εtXt−j | Ft−1)} = E {Xt−jE (εt | Ft−1)} = 0.

Also, as T1 →∞,

T−1
1

T1−1∑
t=p


p∑
j=1

(βj − β0,j)Xt−j


2

= (β − β0)′CX (β − β0)

→ (β − β0)′ ΓX (β − β0) .

Thus
σ̂2
ε (β)

σ̂2
ε (β0)

→ 1 + (β − β0)′Ω (β − β0) > 1 + |β − β0|2 ωmin,

where ωmin is the smallest eigenvalue of Ω. Let δ > 0. If |β − β0| > δ then

lim
σ̂2
ε (β)

σ̂2
ε (β0)

> 1 + δ2ωmin > 1.

Therefore

lim
T1→∞

−T1

2
log

{
σ̂2
ε (β)

σ̂2
ε (β0)

}
= −∞.

Similarly,

lim
T2→∞

−T2

2
log

{
σ̂2
u (β)

σ̂2
u (β0)

}
= −∞,

and so

lim
T1,T2→∞

S (β)− S (β0) = −∞.
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Consequently,

lim inf
T1,T2→∞

inf
|β−β0|>δ

{S (β0)− S (β)} > 0

and the sufficiency condition of Theorem 2.5 is met. Thus β̂ → β0.

Now,

σ̂2
ε

(
β̂
)
− σ2

ε0 =
{
σ̂2
ε

(
β̂
)
− σ̂2

ε (β0)
}

+
{
σ̂2
ε (β0)− σ2

ε0

}
.

Also,

σ̂2
ε

(
β̂
)
− σ̂2

ε (β0) = 2T−1
1

T1−1∑
t=p

εt

p∑
j=1

(
β̂j − β0,j

)
Xt−j + T−1

1

T1−1∑
t=p


p∑
j=1

(
β̂j − β0,j

)
Xt−j


2

= 2T−1
1

(
β̂ − β0

)′ T1−1∑
t=p

εt


Xt−1

...

Xt−p

+
(
β̂ − β0

)′
CX

(
β̂ − β0

)

→ 0,

from (3.2) and since

0 6
(
β̂ − β0

)′
CX

(
β̂ − β0

)
6
(
β̂ − β0

)′ (
β̂ − β0

)
Emax,

where Emax is the largest eigenvalue of CX which converges to the largest eigenvalue of

ΓX <∞. Hence

σ̂2
ε

(
β̂
)
− σ2

ε0 → 0.

Similarly,

σ̂2
u

(
β̂
)
− σ2

u0 → 0.

Therefore σ̂2
ε → σ2

ε0 and σ̂2
u → σ2

u0.
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3.9.2 Proof of Lemma 3.1

The characteristic function of ZT1,T2 is, letting φU denote the characteristic function of a

random variable U ,

φZT1,T2 (s) = E

[
exp

{
is

(√
T1

T1 + T2
ξT1 +

√
T2

T1 + T2
ζT2

)}]

= E

{
exp

(
is

√
T1

T1 + T2
ξT1

)}
E

{
exp

(
is

√
T2

T1 + T2
ζT2

)}

= φξT1

(
s

√
T1

T1 + T2

)
φζT2

(
s

√
T2

T1 + T2

)

=

{
φξT1

(
s

√
T1

T1 + T2

)
− exp

(
−1

2
s2 T1

T1 + T2

)
+ exp

(
−1

2
s2 T1

T1 + T2

)}

×

{
φζT2

(
s

√
T2

T1 + T2

)
− exp

(
−1

2
s2 T2

T1 + T2

)
+ exp

(
−1

2
s2 T2

T1 + T2

)}

=

{
φξT1

(
s

√
T1

T1 + T2

)
− exp

(
−1

2
s2 T1

T1 + T2

)}

×

{
φζT2

(
s

√
T2

T1 + T2

)
− exp

(
−1

2
s2 T2

T1 + T2

)}

+ exp

(
−1

2
s2 T1

T1 + T2

){
φζT2

(
s

√
T2

T1 + T2

)
− exp

(
−1

2
s2 T2

T1 + T2

)}

+ exp

(
−1

2
s2 T2

T1 + T2

){
φξT1

(
s

√
T1

T1 + T2

)
− exp

(
−1

2
s2 T1

T1 + T2

)}

+ exp

(
−1

2
s2

)
.

Now, ∣∣∣∣∣φξT1
(
s

√
T1

T1 + T2

)
− exp

(
−1

2
s2 T1

T1 + T2

)∣∣∣∣∣ 6 sup
|t|<|s|

∣∣∣∣φξT1 (t)− exp

(
−1

2
t2
)∣∣∣∣

→ 0,

as T1 →∞, as sequences of characteristic functions converge uniformly in any closed interval

(see, for example, Lukacs, 1970, Corollary 1 to Theorem 3.6.1). Similarly,∣∣∣∣∣φζT2
(
s

√
T2

T1 + T2

)
− exp

(
−1

2
s2 T2

T1 + T2

)∣∣∣∣∣→ 0

as T2 →∞. Hence

φZT1,T2 (s)→ exp

(
−1

2
s2

)
and so the distribution of ZT1,T2 converges to the standard normal.
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3.9.3 Proof of Theorem 3.2

From the mean value theorem, letting θj denote the jth component of θ, we have

0 =
∂l0

(
θ̂
)

∂θj
=
∂l0 (θ0)

∂θj
+
∂2l0

(
θ̃j

)
∂θj∂θ′

(
θ̂ − θ0

)
,

where θ̃j lies on the line segment between θ0 and θ̂. From Theorem 3.1, θ̃j → θ0 as T1, T2 →∞

for all j, and so θ̂ − θ0 has the same asymptotic distribution as

−
{
∂2l0 (θ0)

∂θ∂θ′

}−1{
∂l0 (θ0)

∂θ

}
. (3.3)

The first derivatives of l0 (θ) are

∂l0 (θ)

∂β
= − 1

σ2
ε

T1−1∑
t=p

bβ (z)Xt


Xt−1

...

Xt−p

− 1

σ2
u

T2−1∑
t=p

bβ (z)Yt


Yt−1

...

Yt−p

 ,
∂l0 (θ)

∂σ2
ε

= − T1

2σ2
ε

+
1

2 (σ2
ε)

2

T1−1∑
t=p

{bβ (z)Xt}2 ,

∂l0 (θ)

∂σ2
u

= − T2

2σ2
u

+
1

2 (σ2
u)2

T2−1∑
t=p

{bβ (z)Yt}2 .

The second derivatives of l0 (θ) are

∂2l0 (θ)

∂β∂β′
= −T1

σ2
ε

CX −
T2

σ2
u

CY ,

∂2l0 (θ)

(∂σ2
ε)

2 =
T1

2 (σ2
ε)

2 −
1

(σ2
ε)

3

T1−1∑
t=p

{bβ (z)Xt}2 ,

∂2l0 (θ)

(∂σ2
u)2 =

T2

2 (σ2
u)2 −

1

(σ2
u)3

T2−1∑
t=p

{bβ (z)Yt}2 ,

∂2l0 (θ)

∂β∂σ2
ε

=
1

(σ2
ε)

2

T1−1∑
t=p

bβ (z)Xt


Xt−1

...

Xt−p

 ,

∂2l0 (θ)

∂β∂σ2
u

=
1

(σ2
u)2

T2−1∑
t=p

bβ (z)Yt


Yt−1

...

Yt−p

 ,
∂2l0 (θ)

∂σ2
ε∂σ

2
u

= 0. (3.4)
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Consider

a′ (T1 + T2)−1/2 ∂l0 (θ0)

∂β
+ b1T

−1/2
1

∂l0 (θ0)

∂σ2
ε

+ b2T
−1/2
2

∂l0 (θ0)

∂σ2
u

=
T

1/2
1

(T1 + T2)1/2
a′Z1,T1 +

T
1/2
2

(T1 + T2)1/2
a′Z2,T2 + b1Z3,T1 + b2Z4,T2 ,

where a =
[
a1 · · · ap

]′
, b1 and b2 are constants, and

Z1,T1,j = −T−1/2
1

1

σ2
ε0

T1−1∑
t=p

εtXt−j , Z2,T2,j = −T−1/2
2

1

σ2
u0

T2−1∑
t=p

utYt−j ,

Z3,T1 = T
−1/2
1

1

2
(
σ2
ε0

)2 T1−1∑
t=p

(
ε2
t − σ2

ε0

)
Z4,T2 = T

−1/2
2

1

2 (σ2
u)2

T2−1∑
t=p

(
u2
t − σ2

u0

)
.

Let

Vt = − 1

σ2
ε0

εt

p∑
j=1

ajXt−j +
b1

2
(
σ2
ε0

)2 (ε2
t − σ2

ε0

)
.

Then

E (Vt | Ft−1) = − 1

σ2
ε0

E

 p∑
j=1

ajXt−j | Ft−1

E (εt | Ft−1) +
b1

2
(
σ2
ε0

)2 {E (ε2
t | Ft−1

)
− σ2

ε0

}
= 0

and

E
(
V 2
t

)
= E

{
E
(
V 2
t | Ft−1

)}
=

1(
σ2
ε0

)2E
 p∑

j=1

ajXt−j

2

E
(
ε2
t | Ft−1

)
− b1(

σ2
ε0

)3E


p∑
j=1

ajXt−jE
(
ε3
t | Ft−1

)
+

b21

4
(
σ2
ε0

)4E {E (ε4
t | Ft−1

)
− 2σ2

ε0E
(
ε2
t | Ft−1

)
+
(
σ2
ε0

)2}

=
1

σ2
ε0

E

 p∑
j=1

aj

p∑
k=1

akXt−jXt−k

+
b21

4
(
σ2
ε0

)4 {E (ε4
t

)
−
(
σ2
ε0

)2}
= a′Ωa+

b21
4
υ,

where

υ =
1(
σ2
ε0

)4E (ε4
t

)
− 1(

σ2
ε0

)2 .
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Thus, by the martingale central limit theorem, a′Z1,T1 + b1Z3,T1 = T
−1/2
1

∑T1−1
t=p Vt is asymp-

totically normal with variance a′Ωa + b21υ/4. Similarly, a′Z2,T2 + b2Z4,T2 is asymptotically

normal with variance a′Ωa+ b22η/4, where

η =
1(

σ2
u0

)4E (u4
t

)
− 1(

σ2
u0

)2 .

Note that if {εt} and {ut} are Gaussian, υ = 2
(
σ2
ε0

)−2
and η = 2

(
σ2
u0

)−2
. Since a′Z1,T1 +

b1Z3,T1 and a′Z2,T2 + b2Z4,T2 are independent, then Z1,T1 , Z2,T2 , Z3,T1 and Z4,T2 are jointly

asymptotically normal. Also, from Lemma 3.1,

T
1/2
1

(T1 + T2)1/2
a′Z1,T1 +

T
1/2
2

(T1 + T2)1/2
a′Z2,T2

is asymptotically normal with mean zero and variance a′Ωa as T1, T2 →∞. Thus

a′ (T1 + T2)−1/2 ∂l (θ0)

∂β
+ b1T

−1/2
1

∂l (θ0)

∂σ2
ε

+ b2T
−1/2
2

∂l (θ0)

∂σ2
u

is asymptotically normal with mean zero and variance

[
a′ b1 b2

]



a

b1

b2

 ,
where

 =


Ω 0 0

0 υ
4 0

0 0 η
4

 .
Hence 

(T1 + T2)−1/2 ∂l0(θ0)
∂β

T
−1/2
1

∂l0(θ0)
∂σ2
ε

T
−1/2
2

∂l0(θ0)
∂σ2
u


is asymptotically normal with mean zero and covariance matrix . Now, from (3.3) and (3.4),[ (

β̂ − β0

)′
σ̂2
ε − σ2

ε0 σ̂2
u − σ2

u0

]′
has the same asymptotic distribution as

−


∂2l0(θ0)
∂β∂β′

∂2l0(θ0)
∂β∂σ2

ε

∂2l0(θ0)
∂β∂σ2

u

∂2l0(θ0)
∂σ2
ε∂β
′

∂2l0(θ0)

(∂σ2
ε)2

0

∂2l0(θ0)
∂σ2
u∂β

′ 0 ∂2l0(θ0)

(∂σ2
u)2


−1 

∂l(θ0)
∂β

∂l(θ0)
∂σ2
ε

∂l(θ0)
∂σ2
ε

 .
Let

MT1,T2 =


(T1 + T2)−1/2 Ip 0 0

0 T
−1/2
1 0

0 0 T
−1/2
2

 .
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Then

M−1
T1,T2

=


(T1 + T2)1/2 Ip 0 0

0 T
1/2
1 0

0 0 T
1/2
2


and so

M−1
T1,T2

[ (
β̂ − β0

)′
σ̂2
ε − σ2

ε0 σ̂2
u − σ2

u0

]′
has the same asymptotic distribution as

−M−1
T1,T2


∂2l0(θ0)
∂β∂β′

∂2l0(θ0)
∂β∂σ2

ε

∂2l0(θ0)
∂β∂σ2

u

∂2l0(θ0)
∂σ2
ε∂β
′

∂2l0(θ0)

(∂σ2
ε)2

0

∂2l0(θ0)
∂σ2
u∂β

′ 0 ∂2l0(θ0)

(∂σ2
u)2


−1

M−1
T1,T2

MT1,T2


∂l0(θ0)
∂β

∂l0(θ0)
∂σ2
ε

∂l0(θ0)
∂σ2
ε



= −

MT1,T2


∂2l0(θ0)
∂β∂β′

∂2l0(θ0)
∂β∂σ2

ε

∂2l0(θ0)
∂β∂σ2

u

∂2l0(θ0)
∂σ2
ε∂β
′

∂2l0(θ0)

(∂σ2
ε)2

0

∂2l0(θ0)
∂σ2
u∂β

′ 0 ∂2l0(θ0)

(∂σ2
u)2

MT1,T2


−1

MT1,T2


∂l0(θ0)
∂β

∂l0(θ0)
∂σ2
ε

∂l0(θ0)
∂σ2
ε

 .
That is, 

(T1 + T2)1/2
(
β̂ − β0

)
T

1/2
1

(
σ̂2
ε − σ2

ε0

)
T

1/2
2

(
σ̂2
u − σ2

u0

)


has the same asymptotic distribution as

−


(T1 + T2)−1 ∂2l0(θ0)

∂β∂β′ T
−1/2
1 (T1 + T2)−1/2 ∂2l0(θ0)

∂β∂σ2
ε

T
−1/2
2 (T1 + T2)−1/2 ∂2l0(θ0)

∂β∂σ2
u

T
−1/2
1 (T1 + T2)−1/2 ∂2l0(θ0)

∂σ2
ε∂β
′ T−1

1
∂2l0(θ0)

(∂σ2
ε)2

0

T
−1/2
2 (T1 + T2)−1/2 ∂2l0(θ0)

∂σ2
u∂β

′ 0 T−1
2

∂2l0(θ0)

(∂σ2
u)2


−1

×


(T1 + T2)−1/2 ∂l(θ0)

∂β

T
−1/2
1

∂l(θ0)
∂σ2
ε

T
−1/2
2

∂l(θ0)
∂σ2
ε

 .
But

T−1
1

∂2l0 (θ0)

(∂σ2
ε)

2 → −
1

2 (σ2
ε)

2 and T−1
2

∂2l0 (θ0)

(∂σ2
u)2 → −

1

2 (σ2
u)2 .

Also,

(T1 + T2)−1 ∂
2l0 (θ0)

∂β∂β′
+ Ω = (T1 + T2)−1

{
− T1

σ2
ε0

(
CX − σ2

ε0Ω
)
− T2

σ2
u0

(
CY − σ2

u0Ω
)}

→ 0,

and so

(T1 + T2)−1 ∂
2l0 (θ0)

∂β∂β′
→ −Ω.
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In addition,

∂2l0 (θ0)

∂β∂σ2
ε

=
1(
σ2
ε0

)2 T1−1∑
t=p

εt


Xt−1

...

Xt−p


and, for all j = 1, . . . , p,

T
−1/2
1 (T1 + T2)−1/2

∣∣∣∣∂2l0 (θ0)

∂βj∂σ2
ε

∣∣∣∣ 6 T−1
1

∣∣∣∣∂2l0 (θ0)

∂βj∂σ2
ε

∣∣∣∣
=

1(
σ2
ε0

)2
∣∣∣∣∣T−1

1

T1−1∑
t=p

εtXt−j

∣∣∣∣∣
→ 0.

Similarly, for all j = 1, . . . , p,

T
−1/2
2 (T1 + T2)−1/2

∣∣∣∣∂2l0 (θ0)

∂βj∂σ2
u

∣∣∣∣→ 0.

That is

MT1,T2

∂l0 (θ0)

∂θ∂θ′
MT1,T2 → −J,

where

J =


Ω 0 0

0 1
2(σ2

ε)2
0

0 0 1
2(σ2

u)2

 .
Thus, 

(T1 + T2)1/2
(
β̂ − β0

)
T

1/2
1

(
σ̂2
ε − σ2

ε0

)
T

1/2
2

(
σ̂2
u − σ2

u0

)


is asymptotically normal with mean zero and covariance matrix Σ, where

Σ = J−1J−1 =


Ω−1 0 0

0
(
σ2
ε0

)4
υ 0

0 0
(
σ2
u0

)4
η

 .
If {εt} and {ut} are Gaussian, then

Σ =


Ω−1 0 0

0 2
(
σ2
ε0

)2
0

0 0 2
(
σ2
u0

)2
 .
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3.9.4 Proof of Theorem 3.3

Let θ =
[
θ′1 σ2

ε σ2
u θ′2

]′
, where θ1 = βX and θ2 = βY − βX . The hypothesis test is then

H0 : θ2 = 0

HA : θ2 6= 0.

The test statistic is

Λ = 2

{
sup
θ
l (θ)− sup

θ2=0
l (θ)

}
,

where

l (θ) = lX
(
βX , σ

2
ε

)
+ lY

(
βY , σ

2
u

)
.

Let θ∗ =
[
θ′1 σ2

ε σ2
u

]′
and denote the true value of θ under H0 by θ0 =

[
θ′∗0 0

]′
. The

estimators under H0 and HA, denoted θ̂0 and θ̂A, respectively, satisfy

0 =
∂l
(
θ̂A

)
∂θ

and 0 =
∂l
(
θ̂0

)
∂θ∗

,

where θ̂0 =
[
θ̂′∗0 0

]′
. From the mean value theorem, letting θj , θ∗j and θAj denote the jth

components of θ, θ∗ and θA, respectively,

0 =
∂l
(
θ̂A

)
∂θj

=
∂l (θ0)

∂θj
+
∂2l
(
θ̃Aj

)
∂θj∂θ′

(
θ̂A − θ0

)
(3.5)

and

0 =
∂l
(
θ̂0

)
∂θ∗j

=
∂l (θ0)

∂θ∗j
+
∂2l
(
θ̃0j

)
∂θ∗j∂θ′∗

(
θ̂∗0 − θ∗0

)
, (3.6)

where θ̃Aj is a point on the line segment between θ0 and θ̂A, and θ̃0j is a point on the line

segment between θ0 and θ̂0. Since βX = θ1 and βY = θ1 + θ2, the first derivatives of l (θ)

with respect to θ1 and θ2 at θ0 are

∂l (θ0)

∂θ1
=
∂l (θ0)

∂βX
+
∂l (θ0)

∂βY
= −T 1/2

1 z1 − T 1/2
2 z2

and
∂l (θ0)

∂θ2
=
∂l (θ0)

∂βY
= −T 1/2

2 z2,

where

z′1 =
T
−1/2
1

σ2
ε

T1−1∑
t=p

εt

[
Xt−1 · · · Xt−p

]
and z′2 =

T
−1/2
2

σ2
u

T2−1∑
t=p

ut

[
Yt−1 · · · Yt−p

]
.

Therefore
∂l (θ0)

∂θ
= −NT1,T2Z,
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where

NT1,T2 =


T

1/2
1 Ip 0 T

1/2
2 Ip

0 I2 0

0 0 T
1/2
2 Ip

 ,
Z =

[
z′1 a′ z′2

]′
and

a =
[

∂l(θ0)
∂σ2
ε

∂l(θ0)
∂σ2
u

]′
.

The second derivatives of l (θ) with respect to θ1 and θ2 at θ0 are

∂2l (θ0)

∂θ1∂θ′1
=

∂2l (θ0)

∂βX∂β′X
+

∂2l (θ0)

∂βX∂β′Y
+

∂2l (θ0)

∂βY ∂β′X
+

∂2l (θ0)

∂βY ∂β′Y
= −T1

σ2
ε

CX −
T2

σ2
u

CY ,

∂2l (θ0)

∂θ2∂θ′2
=

∂2l (θ0)

∂βY ∂β′Y
= −T2

σ2
u

CY ,

∂2l (θ0)

∂θ1∂θ′2
=

∂2l (θ0)

∂βX∂β′Y
+

∂2l (θ0)

∂βY ∂β′Y
= −T2

σ2
u

CY ,

∂2l (θ0)

∂θ2∂θ′1
=

∂2l (θ0)

∂βY ∂β′X
+

∂2l (θ0)

∂βY ∂β′Y
= −T2

σ2
u

CY .

Under H0, using a second order Taylor expansion of l
(
θ̂A

)
around θ0 and since θ̂A → θ0,

l
(
θ̂A

)
− l (θ0) has the same asymptotic properties as

∂l (θ0)

∂θ′

(
θ̂A − θ0

)
+

1

2

(
θ̂A − θ0

)′ ∂2l (θ0)

∂θ∂θ′

(
θ̂A − θ0

)
,

which, because of (3.5), is equal to

−1

2
Z ′N ′T1,T2

{
∂2l (θ0)

∂θ∂θ′

}−1

NT1,T2Z = −1

2
Z ′
{
N−1
T1,T2

∂2l (θ0)

∂θ∂θ′
(
N ′T1,T2

)−1
}−1

Z

=
1

2
Z ′


1
σ2
ε
CX 0 0

0 A 0

0 0 1
σ2
u
CY


−1

Z,

where

A =

 ∂2l(θ)

(∂σ2
ε)2

0

0 ∂2l(θ)

(∂σ2
u)2

 .
Similarly, from (3.6), l

(
θ̂0

)
− l (θ0) has the same asymptotic properties under H0 as

l (θ0) +
1

2
Z ′


1
σ2
ε
CX 0 0

0 A 0

0 0 0


−1

Z.
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Thus Λ has the same asymptotic distribution under H0 as

z′2

(
1

σ2
u

CY

)−1

z2.

But z2 is asymptotically normal with mean zero and covariance matrix Ω and

1

σ2
u

CY → Ω.

Thus, under H0, Λ asymptotically has the χ2 distribution with p degrees of freedom since

dim Ω = p.

3.9.5 The Asymptotic Distribution of the Range Statistic Under H0

Suppose that the Xt’s are i.i.d. and Gaussian, then the random variables IT,X (ωj) /σ
2
ε ,

j = 1, . . . , q = b(T − 1) /2c, are asymptotically independent and follow the χ2 distribution

with 2 degrees of freedom. Thus, letting c = σ2
ε/σ

2
u,

J (ωj) =
IT,X (ωj)

cIT,Y (ωj)
, j = 1, . . . , q,

asymptotically follow the F2,2 distribution. Let Zj = log J (ωj) and Z(k) be the kth smallest

of the Zj , j = 1, . . . , q. Then

P (Zj 6 z) = P (J (ωj) 6 ez)→ ez

1 + ez
=
(
1 + e−z

)−1

as T →∞. Let U = Z(1) + log q and V = Z(q) − log q. Then

P (V 6 v) = {P (Zj 6 log q + v)}q =
(
1 + q−1e−v

)−q → e−e
−v

as T →∞. It follows that, as T →∞,

P (U 6 u)→ 1− e−eu .

Since

P (U > u, V 6 v) = P (− log q + u 6 Zj 6 log q + v, 1 6 j 6 q)

= {P (Zj 6 log q + v)− P (Zj 6 − log q + u)}q

→ e−e
−v
e−e

u

as T →∞,

FU,V (u, v) = P (U 6 u, V 6 v)

= P (V 6 v)− P (U > u, V 6 v)

→ e−e
−v − e−e−ve−eu

= e−e
−v (

1− e−eu
)
,
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as T → ∞, which is the cdf of independent random variables U and V . Hence WT =

Z(q) − Z(1) − 2 log q has limiting cdf

FW (w) = P (V − U 6 w)

=

∫ ∞
−∞

P (V 6 u+ w) fU (u) du

=

∫ ∞
−∞

e−e
−we−ueue−e

u
du.

Let e−w = α2 and αs = eu. Then eudu = αds and

FW (w) = α

∫ ∞
0

e−α(s+s−1)ds.

Now put s = ez. Then ds = ezdz and we have

FW (ω) = α

∫ ∞
−∞

e−2α cosh zezdz

= 2α

∫ ∞
0

e−2α cosh z cosh zdz

= 2αK1 (2α) ,

from Abramowitz and Stegun (1965), Section 9.6.24. Thus

FW (w) = 2e−ω/2K1

(
2e−ω/2

)
.



4
ARMA Spectral Discrimination

4.1 Introduction

In Chapter 3 we developed a parametric test to discriminate between time series on the basis

of their spectral shape. The test was based on fitting fixed order autoregressions to the time

series and using a pseudo-likelihood ratio procedure. It was shown that fitting long-order au-

toregressions in this way produced a test which performed well when discriminating between

time series which have been generated by processes which are not purely autoregressive, for

example, which are from a moving average process. A natural extension is to develop a test

based on fitting autoregressive-moving average (ARMA) models. If the true orders of the un-

derlying processes are known, then a test based on fitting ARMA models would be expected

to have higher power than one based on fitting long-order autoregressions.

Let {Xt} and {Yt} be univariate, stationary stochastic processes, assumed to have zero

means. Given samples of sizes T1 and T2, respectively, we fit the ARMA models

Xt + βX,1Xt−1 + · · ·+ βX,pXXt−pX = εt + αX,1εt−1 + · · ·αX,qXεt−qX (4.1)

and

Yt + βY,1Yt−1 + · · ·+ βY,pY Yt−pX = ut + αY,1ut−1 + · · ·αY,qY ut−qY . (4.2)
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We assume that the innovation processes, {εt} and {ut}, have zero mean with E
(
ε2
t

)
= σ2

ε

and E
(
u2
t

)
= σ2

u.

The null hypothesis is that the spectral densities of the two processes have the same shape,

that is, that their ratio is constant. If {Xt} and {Yt} satisfy (4.1) and (4.2), respectively,

then their spectral densities are

fX (ω) =
σ2
ε

2π

∣∣1 +
∑qX

k=1 αX,ke
−ikω∣∣2∣∣∣1 +

∑pX
j=1 βX,je

−ijω
∣∣∣2 and fY (ω) =

σ2
u

2π

∣∣1 +
∑qY

k=0 αY,ke
−ikω∣∣2∣∣∣1 +

∑pY
j=0 βY,je

−ijω
∣∣∣2 .

Thus, fX (ω) and fY (ω) will have the same shape if and only if the autoregressive parameters

are equal and the moving average parameters are equal. The null hypothesis is then

H0 : βX,j = βY,j , ∀j, αX,k = αY,k, ∀k,

and the alternative hypothesis, HA, is its complement. In order to estimate the param-

eters under H0, we therefore require a procedure for fitting ARMA models with common

autoregressive and moving average parameters to two time series with potentially different

innovation variances and sample sizes.

Fitting ARMA models to two or more time series with common parameters has been

previously studied by Bowden and Clarke (2012), who proposed the interleaving method.

This method combines n time series of length T , denoted {Xk,t}, k = 1, . . . , n, to create a

single series given by

X1,0, . . . , Xm,0, X1,1, . . . , Xm,1, . . . , X1,T−1, . . . , Xm,T−1.

An ARMA model is then fitted to the new series using standard procedures, subject to the

constraint that the autoregressive and moving average parameters are only non-zero for lags

which are multiples of n. The technique was used to model maximum daily temperatures for

a given week in the year by considering measurements over a sixty six year period. Bowden

and Clarke (2017) extended the interleaving method to the multivariate case. The method

assumes that the innovation variances are the same and that the sample sizes are equal. If

the sample sizes are not equal, the shorter series’ are zero-padded to be the length of the

longest.

The procedure that we develop is motivated by the Hannan–Rissanen procedure for es-

timating ARMA parameters (Hannan and Rissanen, 1982; Hannan and Kavalieris, 1984a).

This procedure is based on minimising the least squares function and can incorporate order

estimation using an information criterion.

In this chapter we show how the pseudo-likelihood ratio procedure used in Chapter 3 can

be adapted to the case of fitting ARMA models. We detail the Hannan–Rissanen procedure
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which can be used to maximise the pseudo-likelihoods under HA. We then show how to

extend the procedure for fitting ARMA models with common parameters to two time series

in order to maximise the pseudo-likelihood under H0. The results of simulation studies are

presented that compare the new test to that based on fitting fixed order autoregressions. It is

shown that fitting ARMA models results in a more powerful test when the orders are known.

However, when the orders are not known and need to be estimated, which will be the case

in practice, the fixed order autoregressive test performs better than the one based on fitting

ARMA models.

4.2 The Likelihood Ratio Test

The conditional Gaussian log-likelihoods of {Xt} and {Yt} are

−T1

2
log
(
2πσ2

ε

)
− 1

2σ2
ε

 T1−1∑
t=max(pX ,qX)

{
bβX (z)

aαX (z)
Xt

}2


and

−T2

2
log
(
2πσ2

u

)
− 1

2σ2
u

 T2−1∑
t=max(pY ,qY )

{
bβY (z)

aαY (z)
Yt

}2
 ,

respectively. Under HA, these can be maximised independently using, for example, the

Hannan–Rissanen procedure. This procedure is described in Section 4.3. The maximised

conditional Gaussian log-likelihood under HA is the sum of the two maximised individual

ones, which is

l̂A = −T1 + T2

2
{1 + log (2π)} − T1

2
log σ̂2

ε;A −
T2

2
log σ̂2

u;A,

where σ̂2
ε;A and σ̂2

u;A are the estimators of σ2
ε and σ2

u, respectively.

Under H0, {Xt} and {Yt} have the same autoregressive and moving average parameters

and orders. Let β =
[
β1 · · · βp

]′
and α =

[
α1 · · · αq

]′
be the common model

parameters and let p and q be the common orders. The conditional Gaussian log-likelihood

is

l0
(
β, α, σ2

ε , σ
2
u

)
= −T1

2
log
(
2πσ2

ε

)
− T2

2
log
(
2πσ2

u

)
− 1

2σ2
ε

 T1−1∑
t=max(p,q)

{
bβ (z)

aα (z)
Xt

}2


− 1

2σ2
u

 T2−1∑
t=max(p,q)

{
bβ (z)

aα (z)
Yt

}2
 .

In Section 4.4 we show how to maximise this using an approach based on the Hannan–

Rissanen procedure.
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4.3 The Hannan–Rissanen Procedure

The Hannan–Rissanen procedure was first proposed by Hannan and Rissanen (1982) and

later modified by Hannan and Kavalieris (1984a) to estimate the parameters of the model

Xt + β1Xt−1 + · · ·+ βpXt−p = εt + α1εt−1 + · · ·+ αqεt−q,

which we can write as

bβ (z)Xt = aα (z) εt.

The method has three stages. In the first stage, the unobserved innovation process, {εt}, is

estimated by fitting an autoregression to {Xt} of order m, where m is chosen using AIC (see

Section 3.3.4). Denoting the estimators of the autoregressive parameters by β̃0,1, . . . , β̃0,m,

{εt} is estimated by

ε̃t = Xt +
m∑
j=1

β̃0,jXt−j ,

t = 0, . . . , T − 1, where T is the sample size and Xt = 0 for t < 0. In the second stage, initial

estimates of p autoregressive and q moving average parameters are obtained by regressing

−Xt on

Xt−1, . . . , Xt−p,−ε̃t−1, . . . ,−ε̃t−q,

t = 0, . . . , T − 1. These initial estimates are then used in the third stage to maximise the

conditional Gaussian log-likelihood, or equivalently, the least squares function. The method

of doing this proposed by Hannan and Rissanen (1982) comes from applying the Newton–

Raphson method to the least squares function as follows. Let

S =
T−1∑

t=max(p,q)

{
bβ (z)

aα (z)
Xt

}2

.

In what follows, a summation with a subscript t denotes summing from t = max (p, q) to the

maximum value indicated. Let

β =
[
β1 · · · βp

]′
, α =

[
α1 · · · αq

]′
and θ =

[
β′ α′

]′
.

Given a current estimate of θ, denoted θ̃, a new estimate is obtained by

θ̃ −
(
∂2S

∂θ̃∂θ̃′

)−1
∂S

∂θ̃
. (4.3)

Let

ηt =
1

aα (z)
Xt =

1

bβ (z)
εt
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and

ξt =
bβ (z)

a2
α (z)

Xt =
1

aα (z)
εt,

t = 0, . . . , T − 1, where Xt = 0 and εt = 0 for t < 0. The first and second derivatives of S

with respect to β and α are given by

∂S

∂βj
= 2

T−1∑
t

εtηt−j ,

∂S

∂αj
= −2

T−1∑
t

εtξt−j ,

∂2S

∂βj∂βk
= 2

T−1∑
t

ηt−kηt−j ,

and

∂2S

∂βj∂αk
= −2

T−1∑
t

ξt−kηt−j − 2
T−1∑
t

1

a2
α (z)

εtXt−j−k,

∂2S

∂αj∂αk
= 2

T−1∑
t

ξt−kξt−j + 4
T−1∑
t

bβ (z)

a3
α (z)

εtXt−j−k.

But, by the strong law of large numbers,

T−1
T−1∑
t

1

a2
α (z)

εtXt−j−k →
1

a2
α (z)

E (εtXt−j−k) = 0,

for all j, k = 1, . . . ,max (p, q). Note that convergence here means convergence in the almost

sure sense, and will do so in what follows. Similarly,

T−1
T−1∑
t

bβ (z)

a3
α (z)

εtXt−j−k → 0,

for all j, k = 1, . . . ,max (p, q). Thus

∂2S

∂βj∂αk
= −2

T−1∑
t

ξt−kηt−j + o (T )

and
∂2S

∂αj∂αk
= 2

T−1∑
t

ξt−kξt−j + o (T ) ,

where o (·) is in the almost sure sense. Let

Ht =
[
η̃t−1 · · · η̃t−p

]′
and Ξt =

[
ξ̃t−1 · · · ξ̃t−p

]′
,

where ˜ is used to indicate that the quantities have been computed using θ̃ in place of θ.

Then (4.3) is asymptotically equivalent to

θ̃ −

 ∑T−1
t HtH

′
t −

∑T−1
t HtΞ

′
t

−
∑T−1

t ΞtH
′
t

∑T−1
t ΞtΞ

′
t

−1  ∑T−1
t Htε̃t

−
∑T−1

t Ξtε̃t

 ,
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which is equal to ∑T−1
t HtH

′
t −

∑T−1
t HtΞ

′
t

−
∑T−1

t ΞtH
′
t

∑T−1
t ΞtΞ

′
t

−1  ∑T−1
t Ht

(
H ′tβ̃ − Ξ′tα̃− ε̃t

)
−
∑T−1

t Ξt

(
H ′tβ̃ − Ξ′tα̃− ε̃t

)
 . (4.4)

Now

H ′tβ̃ − Ξ′tα̃− ε̃t =

p∑
j=1

β̃j η̃t−j −
q∑
j=1

α̃jξt−j − ε̃t

= −η̃t + ξ̃t − ε̃t.

Computing (4.4) is therefore equivalent to regressing −η̃t + ξ̃t − ε̃t on
[
H ′t −Ξ′t

]
. This

regression gives the updated estimate of θ and the procedure repeats until convergence.

Denoting the autoregressive parameter estimators by β̂1, . . . , β̂p and the moving average

parameter estimators by α̂1, . . . , α̂q, the variance of εt is estimated by

σ̂2
p,q = T−1

T−1∑
t

{
b
β̂

(z)

aα̂ (z)
Xt

}2

.

The orders p and q may be estimated by running the procedure over all p = 0, . . . , P and

q = 0, . . . , Q, where P and Q are assumed to be greater than the true orders, then using an

information criterion, for example BIC. That is, the estimates of p and q are chosen as those

that minimise, for example,

T log σ̂2
p,q + (p+ q) log T.

4.4 Parameter Estimation Under the Null Hypothesis

As we did in Chapter 3, we reparametrise the conditional Gaussian log-likelihood and then

use a profile likelihood approach to maximise it. Let σ2
ε = λσ2

u. Then l0
(
β, α, σ2

ε , σ
2
u

)
can be

rewritten as

− T1 + T2

2
log
(
2πσ2

ε

)
+
T2

2
log λ− 1

2σ2
ε

[
T1−1∑
t

{
bβ (z)

aα (z)
Xt

}2

+ λ

T1−1∑
t

{
bβ (z)

aα (z)
Yt

}2
]
. (4.5)

In order to maximise this with respect to α and β, for fixed λ, we minimise

S =

T1−1∑
t

{
bβ (z)

aα (z)
Xt

}2

+ λ

T2−1∑
t

{
bβ (z)

aα (z)
Yt

}2

using the Newton–Raphson method. Let θ =
[
β′ α′

]′
. Given a current estimate of θ,

denoted θ̃, a new estimate is obtained by

θ̃ −
(
∂2S

∂θ̃∂θ̃′

)−1
∂S

∂θ̃
. (4.6)
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Let

ηX,t =
1

aα (z)
Xt =

1

bβ (z)
εt, and ηY,t =

1

aα (z)
Yt =

1

bβ (z)
ut,

t = 0, . . . , T1 − 1, and let

ξX,t =
bβ (z)

a2
α (z)

Xt =
1

aα (z)
εt, and ξY,t =

bβ (z)

a2
α (z)

Yt =
1

aα (z)
ut,

t = 0, . . . , T1 − 2. Also let

HX,t =


η̃X,t−1

...

η̃X,t−p

 , HY,t =


η̃Y,t−1

...

η̃Y,t−p

 , ΞX,t =


ξ̃X,t−1

...

ξ̃X,t−q

 and ΞY ;t =


ξ̃Y ;t−1

...

ξ̃Y ;t−q

 ,
where, again, ˜ is used to indicate that the quantities have been computed using θ̃ in place

of θ. Following the same calculations as in the previous section, (4.6) is asymptotically

equivalent to ∑T1−1
t HX,tH

′
X,t −

∑T1−1
t HX,tΞ

′
X,t

−
∑T1−1

t ΞX,tH
′
X,t

∑T1−1
t ΞX,tΞ

′
X,t

+ λ

 ∑T2−1
t HY,tH

′
Y,t −

∑T2−1
t HY,tΞ

′
Y,t

−
∑T2−1

t ΞY,tH
′
Y,t

∑T2−1
t ΞY,tΞ

′
Y,t

−1

×

 ∑T1−1
t HX,t

(
H ′X,tβ̃ − Ξ′X,tα̃− ε̃t

)
−
∑T1−1

t ΞX,t

(
H ′X,tβ̃ − Ξ′X,tα̃− ε̃t

)
+ λ

 ∑T2−1
t HY,t

(
H ′Y,tβ̃ − Ξ′Y,tα̃− ũt

)
−
∑T2−1

t ΞY,t

(
H ′Y,tβ̃ − Ξ′Y,tα̃− ũt

)
 .

(4.7)

Computing this gives the updated estimate of θ and the process repeats until convergence.

Of course, λ above needs to be updated. This will be discussed later.

In order to obtain an initial estimate of θ, we can follow a similar process to the first

two stages of the Hannan–Rissanen procedure, utilising the methods developed in Chapter

3 for fitting common autoregressive parameters to two time series. We begin by fitting

autoregressions of orderm to {Xt} and {Yt} with the same autoregressive parameters, denoted

by β̃0,1, . . . , β̃0,m, using AIC to estimate m (see Section 3.3). Put

ε̃t = Xt +

m∑
j=1

β̃0,jXt−j ,

t = 0, . . . , T1 − 1, letting Xt = 0 for t < 0, and

ũt = Yt +

m∑
j=1

β̃0,jYt−j ,

t = 0, . . . , T2 − 1, letting Yt = 0 for t < 0. We then obtain an initial estimate of θ from (4.7)

with HX,t, HY,t, ΞX,t and ΞY,t computed with

η̃X,t = Xt and ξ̃X,t = ε̃t,
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t = 0, . . . , T1 − 1, and

η̃Y,t = Yt and ξ̃Y,t = ũt,

t = 0, . . . , T2 − 1.

Denoting the common autoregressive parameter estimators by β̂1, . . . , β̂p and the common

moving average parameter estimators by α̂1, . . . , α̂q, (4.5) is maximised with respect to σ2
ε ,

for fixed λ, by

σ̃2
ε;p,q (λ) = (T1 + T2)−1

T1−1∑
t

{
b
β̂

(z)

aα̂ (z)
Xt

}2

+ λ

T2−1∑
t

{
b
β̂

(z)

aα̂ (z)
Yt

}2
 .

The maximised conditional Gaussian log-likelihood, for fixed λ, is therefore

l̃0 (λ) = −T1 + T2

2
{1 + log (2π)} − T1 + T2

2
log
{
σ̃2
ε;p,q (λ)

}
+
T2

2
log λ.

By maximising l̃0 (λ) with respect to λ, we obtain estimators of all the parameters. The

procedure above will therefore need to be iterated in order to update λ. One method for

updating λ is as follows. Given a current estimator of λ, denoted by λ̃, estimate the model

parameters as above and then re-estimate λ by

T2σ̃
2
ε;p,q

(
λ̃
)

∑T2−1
t

{
b
β̂

(z)

aα̂(z)Yt

}2 .

Use this new estimate of λ to re-estimate the model parameters and repeat the whole pro-

cedure until convergence. An initial estimate of λ can be obtained from the estimates under

HA, that is by letting λ̃ = σ̂2
ε;A/σ̂

2
u;A.

To estimate p and q we make use of an information criterion. Let λ̂p,q be the value of λ

which maximises l̃0 (λ) for a given p and q. Then let

φ (p, q) = (T1 + T2) log
{
σ̃2
ε;p,q

(
λ̂p,q

)}
− T2 log λ̂p,q + (p+ q) log (T1 + T2) .

The estimators of p and q, denoted p̂ and q̂, respectively, are the minimisers of φ (p, q) over

all p = 0, . . . , P and q = 0, . . . , Q, where P and Q are assumed to be greater than the true

orders. The estimators of σ2
ε and σ2

u under H0 are then

σ̂2
ε;0 = σ̃2

ε;p̂,q̂

(
λ̂p̂,q̂

)
and σ̂2

u;0 = σ̂2
ε;0/λ̂p̂,q̂,

respectively.
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4.5 The Test Statistic

The test statistic is

Λ = T1 log

(
σ̂2
ε;0

σ̂2
ε;A

)
+ T2 log

(
σ̂2
u;0

σ̂2
u;A

)
.

If p and q are known, H0 is rejected at significance level α when Λ is greater than the

100 (1− α)th percentile of the χ2 distribution with p + q degrees of freedom. If p and q

are unknown, H0 is rejected when Λ is greater than the 100 (1− α)th percentile of the χ2

distribution with p̂+ q̂ degrees of freedom.

4.6 Simulations

In this section we show the results of simulations which compare the test based on fitting

ARMA models developed in this chapter with the method based on fitting fixed order au-

toregressions which was developed in Chapter 3. Pairs of time series were simulated from the

AR(1) processes

Xt + 0.5Xt−1 = εt and Yt + βYt−1 = ut,

the MA(1) processes

Xt = εt + 0.5εt−1 and Yt = ut + βut−1,

the ARMA(1, 1) processes

Xt + 0.5Xt−1 = εt + αεt−1 and Yt + βYt−1 = ut + αut−1,

and the ARMA(2, 2) processes

Xt+0.5Xt−1+βXt−2 = εt+αεt−1+αεt−2 and Yt+0.5Yt−1+βYt−2 = ut+αut−1+αut−2.

The floating parameter β was varied from 0.01, 0.02, . . . , 0.99. For the ARMA processes, the

simulations were run with both α = 0.6 and α = 0.8. In each case, {εt} and {ut} were

simulated from normal distributions with mean zero and variances 1 and 4, respectively. The

AR(1) and MA(1) processes are the same as those used in the power simulations in Section

3.5 and the null spectral densities of {Xt} are described in Figure 3.1. The null spectral

densities of {Xt} for the ARMA processes are described in Figure 4.1.

For each of the six processes and for each level of β, three tests were applied with 10,000

replications with sample sizes T1 = 100 and T2 = 125, and 10,000 replications with sample

sizes T1 = 1, 000 and T2 = 1, 250. The first test applied was that developed in this chapter

based on fitting ARMA models where p and q were known. The second test applied also



56 ARMA Spectral Discrimination

Figure 4.1: Spectral densities of {Xt} for the ARMA(1,1) and ARMA(2,2) processes described

in Section 4.6.

fitted ARMA models but the orders were unknown and were estimated using the information

criterion given in Section 4.4. The maximum orders were set to one greater than the true

values. The third test applied was that developed in Chapter 3 based on fitting fixed order

autoregressions. The autoregressive orders were blog (1, 000)c1.1 = 5 for the short series and

blog (1, 000)c1.1 = 8 for the long series. The empirical powers are shown in Figures 4.2 and

4.3.

For the short series, the ARMA method with known orders and the fixed order autore-

gressive method performed well, with the former having higher power, as expected. When

the orders were estimated the ARMA method did not perform well, with Type I error rates

between 0.23 and 0.85.

For the long series, when the time series were from the AR(1) and MA(1) processes, the

ARMA method with estimated orders had almost identical power to the ARMA method

with known orders, although the Type I error rate was a little over 0.05 when the orders

were estimated. Both methods had higher power than the fixed order autoregressive method.

When the time series were simulated from the ARMA(1, 1) and ARMA(2, 2) processes with

α = 0.6, the ARMA method with estimated orders did not perform well, with Type I error

rates of 0.71 and 0.82. It performed better when α = 0.8, although the Type I error rates

were still higher than 0.05. The ARMA method with known orders and the fixed order

autoregressive method performed similarly well, with the former having slightly higher power.
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Figure 4.2: Empirical power of the likelihood ratio test using ARMA(p, q) models with the

orders known (solid), ARMA(p, q) models with the orders estimated (dashes) and the fixed

order autoregressive method (small dashes), for T1 = 100 and T2 = 125. The lowest horizontal

line in each plot indicates the significance level of 0.05.

4.7 Discussion

The simulations have shown that if ARMA models are fitted with the true orders, then the

pseudo-likelihood ratio procedure will result in a test which is more powerful than fitting fixed

order autoregressions. This is expected, since the methods will more closely approximate the

true spectral densities. In practice, however, the ARMA orders will not be known and will

need to be estimated. The simulations suggest that this method will not always perform well.

As in the previous chapter, simulations have demonstrated that the fixed order autoregressive

method will work well even when the time series are not from autoregressive processes.

In light of this, the fixed order autoregressive method is a better choice for time series

discrimination than the method which fits ARMA models in practice, since the true orders

will not be known. For this reason we will not pursue the ARMA methods any further in the
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Figure 4.3: Empirical power of the likelihood ratio test using ARMA(p, q) models with the

orders known (solid), ARMA(p, q) models with the orders estimated (dashes) and the fixed

order autoregressive method (small dashes), for T1 = 1, 000 and T2 = 1, 250. The lowest

horizontal line in each plot indicates the significance level of 0.05.

discrimination context when considering, for example, multivariate time series. However, the

technique that has been developed in this chapter for fitting common ARMA models to two

time series may have applications beyond the parametric test for time series discrimination.

For example, Bowden and Clarke (2012) have discussed the use of modelling measurements

of daily maximum temperatures in a given period over several years to forecast electricity

demand. An area for future research therefore will be to extend the procedure developed in

this chapter to, say, the case of more than two time series, and to study the properties of the

parameter estimators.



5
Comparing Multivariate Time Series

5.1 Introduction

While there is an extensive literature on comparing univariate time series from stationary

processes, there has been much less work for the multivariate case. Most of the existing

methods test the null hypothesis that the spectral densities of two independent stationary

processes are the same. For this null hypothesis, Bassily et al. (2009), Lund et al. (2009)

and Ravishanker et al. (2010) have developed nonparametric methods based on comparing

smoothed periodograms at the Fourier frequencies. Tugnait (2016) considered the complex

case using a similar approach. Lund et al. (2009) also proposed a test based on comparing

sample autocovariances. Kakizawa et al. (1998) compares several time series using disparity

measures between smoothed periodograms for the purposes of clustering and classification.

An alternative null hypothesis, suggested by Ravishanker et al. (2010), is that the spectral

densities differ in scale but still share the same second order dynamics. That is, that the

spectral densities of each of the corresponding components of the two processes have the same

shape. This is a multivariate generalisation of the null hypothesis considered in Chapters 3

and 4.

Another null hypothesis of interest is that two time series are from vector autoregressions
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with the same autoregressive parameters. A test of Maharaj (1999) fits vector autoregressions

to two time series using an information criterion to select the autoregressive orders, and

considers the differences between the independent parameter estimates for each process.

The above suggests a number of null hypotheses related to comparing multivariate time

series. We can develop tests for these by generalising the parametric approach of Chapter 3

to the multivariate case.

Let {Xt} and {Yt} be d-dimensional stationary stochastic processes, assumed to have zero

mean. We fit a d-dimensional vector autoregression of order pX to {Xt} and of order pY to

{Yt}. That is, we fit the models

Xt + βX,1Xt−1 + · · ·+ βX,pXXt−pX = εt (5.1)

and

Yt + βY,1Yt−1 + · · ·+ βY,pY Yt−pY = ut, (5.2)

where βX,j , j = 1, . . . , pX , and βY,j , j = 1, . . . , pY , are d×d and {εt} and {ut} are independent

d-dimensional innovation processes. We make the usual assumptions that {εt} and {ut} are

sequences of martingale differences, that is that

E (εt | Ft−1) = E (ut | Gt−1) = 0,

and also that

E
(
εtε
′
t | Ft−1

)
= Σε, E

(
utu
′
t | Gt−1

)
= Σu,

where Ft and Gt are the σ-fields generated by {εt, εt−1, . . .} and {ut, ut−1, . . .}, respectively.

The spectral densities of {Xt} and {Yt} are

fX (ω) =
1

2π

∞∑
j=−∞

ΓX (j) e−ijω and fY (ω) =
1

2π

∞∑
j=−∞

ΓY (j) e−ijω, (5.3)

respectively, where ΓX (j) = E
(
XtX

′
t+j

)
and ΓY (j) = E

(
YtY

′
t+j

)
. If {Xt} and {Yt} satisfy

(5.1) and (5.2), then their spectral densities are

fX (ω) =
1

2π

Id +

pX∑
j=1

βX,je
−iωj

−1

Σε


Id +

pX∑
j=1

βX,je
−iωj

−1
∗

and

fY (ω) =
1

2π

Id +

pY∑
j=1

βY,je
−iωj

−1

Σu


Id +

pY∑
j=1

βY,je
−iωj

−1
∗

,

respectively, where ∗ denotes the complex conjugate transpose (Reinsel, 1993, Section 2.3).
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We do not want to assume that {Xt} and {Yt} truly are autoregressive but instead use

long-order autoregressions to approximate more general processes. Following the approach

of Chapter 3, we let pX = pY = p and derive test statistics, parameter estimators and their

asymptotic properties for fixed p. When applying the test procedures in practice we then let

p = b(log Tmin)cc, where Tmin = min (T1, T2) and c > 1 (see Section 3.6).

The first null hypothesis we consider is that the autoregressive parameters of {Xt} and

{Yt} are equal, that is

H
(1)
0 : βX,j = βY,j ∀j.

Under H
(1)
0 , the innovation processes can have different covariance matrices, and so the

spectral densities of {Xt} and {Yt} are not necessarily the same.

The second null hypothesis we consider is that fX (ω) = λfY (ω) for some positive constant

λ. This is equivalent to

H
(2)
0 : βX,j = βY,j ∀j, Σε = λΣu.

Under H
(2)
0 , the spectral densities of each of the corresponding components of {Xt} and {Yt}

differ only by a common scale. A special case is when λ = 1, which is when the spectral

densities are equal.

The third null hypothesis we consider is that fX (ω) = ΛfY (ω) Λ, where Λ =

diag (λ1, . . . , λd) and λ1, . . . , λd are positive constants. This is the null hypothesis suggested

by Ravishanker et al. (2010). Its interpretation is that the spectral density of each component

of {Xt} has the same shape as the corresponding component of {Yt}. If this is the case then,

from (5.3),

ΓY (j) = E
(
YtY

′
t+j

)
= E

(
ΛXtX

′
t+jΛ

)
= ΛΓX (j) Λ,

and it follows that this null hypothesis is equivalent to

H
(3)
0 : βX,j = ΛβY,jΛ

−1 ∀j, Σε = ΛΣuΛ.

In each case, the alternative hypothesis, HA, is the complement of the null hypothesis.

We shall introduce three more null hypotheses when we extend the tests to compare more

than two time series.

In this chapter we show how to use the pseudo-likelihood ratio procedure for the multi-

variate case to derive tests for each of the hypotheses given above. We present methods for

estimating the parameters under each null hypothesis and establish asymptotic theory for

the estimators. We also show how to extend the tests to compare more than two time series.

The results of simulation studies are presented which demonstrate the behaviour of the test

statistics under the null hypotheses.
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5.2 The Likelihood Ratio Procedure

Let

X + βXZX = ε

and

Y + βY ZY = u,

where

X =
[
Xp · · · XT1−1

]
, Y =

[
Yp · · · YT1−1

]
,

ZX =
[
ZX,p · · · ZX,T1−1

]
, ZY =

[
ZY,p · · · ZY,T2−1

]
,

ZX,t =
[
X ′t−1 · · · X ′t−p

]′
, ZY,t =

[
Y ′t−1 · · · Y ′t−p

]′
,

ε =
[
εp · · · εT1−1

]
, u =

[
up · · · uT2−1

]
,

βX =
[
βX,1 · · · βX,p

]
, βY =

[
βY,1 · · · βY,p

]
.

The conditional Gaussian log-likelihoods for {Xt} and {Yt} are

lX (βX ,Σε) = −T1d

2
log (2π)− T1

2
log |Σε| −

T1

2
tr
{

Σ−1
ε sX,T1 (βX)

}
and

lY (βY ,Σu) = −T2d

2
log (2π)− T2

2
log |Σu| −

T2

2
tr
{

Σ−1
u sY,T2 (βY )

}
,

where

sX,T1 (β) = T−1
1 (X + βZX) (X + βZX)′ ,

sY,T2 (β) = T−1
2 (Y + βZY ) (Y + βZY )′

and |·| denotes the determinant. Under the alternative hypotheses {Xt} and {Yt} are inde-

pendent vector autoregressive processes of order p, denoted VAR(p), and their likelihoods can

be maximised separately. The maximum Gaussian likelihood, or least squares, estimators for

the parameters of VAR(p) processes, and their properties, are well known (see, for example,

Hannan, 1970). The estimators of βX and βY are

β̂X = −XZ ′X
(
ZXZ

′
X

)−1
and β̂Y = −Y Z ′Y

(
ZY Z

′
Y

)−1
,

respectively, and the estimators of Σε and Σu are

Σ̂ε;A = sX,T1

(
β̂X

)
and Σ̂u;A = sY,T2

(
β̂Y

)
,

respectively. Alternatively, the parameters can be estimated using the Whittle recursion

(Whittle, 1963), which, asymptotically, is equivalent to least squares estimation. The Whittle
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recursion makes use of the properties of block Toeplitz matrices, and is computationally fast

since it involves only one d × d matrix inversion at each step. The recursion is summarised

in the Appendix. The maximised conditional Gaussian log-likelihood under the alternative

hypotheses is the sum of the individual ones, which is

l̂A = −(T1 + T2) d

2
{1 + log (2π)} − T1

2
log
∣∣∣Σ̂ε;A

∣∣∣− T2

2
log
∣∣∣Σ̂u;A

∣∣∣ .
Under the null hypotheses, the maximised conditional Gaussian log-likelihood is again

the sum of the individual ones maximised over the relevant parameter subspace. That is,

letting l̂
(r)
0 be the maximised log-likelihood under H

(r)
0 , r = 1, 2, 3,

l̂
(r)
0 = max

H
(r)
0

{lX (βX ,Σε) + lY (βY ,Σu)} .

We show in the following section how to compute the parameter estimators which maximise

l̂
(r)
0 .

5.3 Parameter Estimation Under the Null Hypotheses

5.3.1 Parameter Estimation Under H
(1)
0

Under H
(1)
0 βX = βY . Letting β =

[
β1 · · · βp

]′
be the common autoregressive parame-

ters, the conditional Gaussian log-likelihood is

l
(1)
0 (β,Σε,Σu) = −(T1 + T2) d

2
log (2π)− T1

2
log |Σε| −

T2

2
log |Σu|

− T1

2
tr
{

Σ−1
ε sX,T1 (β)

}
− T2

2
tr
{

Σ−1
u sY,T2 (β)

}
.

This is maximised with respect to β when

Σ−1
ε βZXZ

′
X + Σ−1

u βZY Z
′
Y = −

(
Σ−1
ε XZ ′X + Σ−1

u Y Z ′Y
)
,

and maximised with respect to Σε and Σu when Σε = sX,T1 (β) and Σu = sY,T2 (β), re-

spectively. The estimates can therefore be computed iteratively as follows. Given current

estimates of Σu and Σu, denoted Σ̂ε;1 and Σ̂u;1, estimate β by β̂ where

vec
(
β̂
)

= −
{(
ZXZ

′
X ⊗ Σ̂−1

ε;1

)
+
(
ZY Z

′
Y ⊗ Σ̂−1

u;1

)}−1 {
vec
(

Σ̂−1
ε;1XZ

′
X

)
+ vec

(
Σ̂−1
u;1Y Z

′
Y

)}
.

Then re-estimate Σε and Σu by

Σ̂ε;1 = sX,T1

(
β̂
)

and Σ̂u;1 = sY,T2

(
β̂
)
,

respectively. Use these new estimates to update β̂ and repeat the process until convergence.

For initial estimates of Σu and Σu, we use Σ̂ε;A and Σ̂u;A, respectively.
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5.3.2 Parameter Estimation Under H
(2)
0

Let βX = βY = β as before. Since Σε = λΣu, where λ is some positive constant, the

conditional Gaussian log-likelihood is

l
(2)
0 (β,Σε, λ) = −(T1 + T2) d

2
log (2π)− T1 + T2

2
log |Σε|+

T2d

2
log λ

− T1

2
tr
{

Σ−1
ε sX,T1 (β)

}
− λT2

2
tr
{

Σ−1
ε sY,T2 (β)

}
.

We maximise this using a profile likelihood approach. For a given λ, l
(2)
0 (β,Σε, λ) is max-

imised with respect to β by

β̂λ = −
(
XZ ′X + λY Z ′Y

) (
ZXZ

′
X + λZY Z

′
Y

)−1
. (5.4)

Then l
(2)
0

(
β̂λ,Σε, λ

)
is maximised with respect to Σε by

Σ̃ε;λ = (T1 + T2)−1
{
T1sX,T1

(
β̂λ

)
+ λT2sY,T2

(
β̂λ

)}
, (5.5)

and we thus obtain the profile log-likelihood

l̃
(2)
0 (λ) = l

(2)
0

(
β̂λ, Σ̃ε;λ, λ

)
= −(T1 + T2) d

2
{1 + log (2π)} − T1 + T2

2
log
∣∣∣Σ̃ε;λ

∣∣∣+
T2d

2
log λ.

Let λ̂ be the maximiser of l̃
(2)
0 (λ). The parameter estimators of β, Σε and Σu are then

β̂ = β̂
λ̂
, Σ̂ε;2 = Σ̃

ε;λ̂
and Σ̂u;2 = Σ̂ε;2/λ̂,

respectively.

Any optimisation procedure can be used to maximise l̃
(2)
0 (λ). The derivative of

l
(2)
0 (β,Σε, λ) with respect to λ is

T2d

λ
− T2

2
tr
{

Σ−1
ε sY,T2 (β)

}
,

which equals zero when

λ = d/ tr
{

Σ−1
ε sY,T2 (β)

}
.

This suggests the following iterative procedure. Given a current estimate of λ, denoted by λ̃,

compute β̂
λ̃

and Σ̃
ε;λ̃

. Then re-estimate λ by

d/ tr
{

Σ̃−1

ε;λ̃
sY,T2

(
β̂
λ̃

)}
and repeat the process until convergence. For an initial estimate of λ, we use

d/ tr
(

Σ̂−1
ε;AΣ̂u;A

)
.

A special case of H
(2)
0 is when λ = 1. That is, the null hypothesis is that fX (ω) = fY (ω).

This simplifies the procedure since λ no longer needs to be estimated. Therefore β and Σε

can be estimated using (5.4) and (5.5) with λ = 1, and no iteration is required.
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5.3.3 Parameter Estimation Under H
(3)
0

Let βX = β, then βY = Λ−1β (Ip ⊗ Λ), where Λ = diag (λ1, . . . , λd) and λ1, . . . , λd are positive

constants. Since Σε = ΛΣuΛ, the conditional Gaussian log-likelihood is

l
(3)
0 (β,Σε,Λ) = −(T1 + T2) d

2
log (2π)− T1 + T2

2
log |Σε|+ T2 log Λ

− T1

2
tr
{

Σ−1
ε sX,T1 (β)

}
− T2

2
tr
[
Σ−1
ε ΛsY,T2

{
Λ−1β (Ip ⊗ Λ)

}
Λ
]
.

As before, we use a profile likelihood approach to maximise this. For a given Λ, l
(3)
0 (β,Σε,Λ)

is maximised with respect to β by

β̂Λ = −
{
XZ ′X + ΛY Z ′Y (Ip ⊗ Λ)

}{
ZXZ

′
X + (Ip ⊗ Λ)ZY Z

′
Y (Ip ⊗ Λ)

}−1
.

Then l
(3)
0

(
β̂Λ,Σε,Λ

)
is maximised with respect to Σε by

Σ̃ε;Λ = (T1 + T2)−1
[
T1sX,T1

(
β̂Λ

)
+ T2ΛsY,T2

{
Λ−1β̂Λ (Ip ⊗ Λ)

}
Λ
]

and the profile log-likelihood is

l̃
(3)
0 (Λ) = l

(3)
0

(
β̂Λ, Σ̃ε;Λ,Λ

)
= −(T1 + T2) d

2
{1 + log (2π)} − T1 + T2

2
log
∣∣∣Σ̃ε;Λ

∣∣∣+ T2 log |Λ| .

Let Λ̂ be the maximiser of l̃
(3)
0 (Λ). The parameter estimators of β, Σε and Σu are then

β̂ = β̂
Λ̂
, Σ̂ε;3 = Σ̃

ε;Λ̂
and Σ̂u;3 = Λ̂−1Σ̂ε;3Λ̂−1.

In practice, since we cannot obtain a closed form solution for Λ given β and Σε, we make

use of computer search algorithms to maximise l̃
(3)
0 (Λ). For an initial estimate of Λ we let

λ̂j =

√
σε;A (j, j)

σu;A (j, j)
, j = 1, . . . , d,

where σε;A (i, j) and σu;A (i, j) are the (i, j)th elements of Σ̂ε;A and Σ̂u;A, respectively.

5.3.4 Parameter Estimation Using the Whittle Recursion

Under H
(2)
0 and H

(3)
0 , the parameters can be estimated using the Whittle recursion by re-

placing the statistics XZ ′X , Y Z ′Y , ZXZ
′
X and ZY Z

′
Y with their block Toeplitz versions. Let

Γ̂X (j) = T−1
1

T1−1∑
t=j

Xt−jX
′
t and Γ̂Y (j) = T−1

2

T2−1∑
t=j

Yt−jY
′
t .

To estimate the parameters under H
(2)
0 , for a given λ, let

Γ̂λ (j) = (T1 + T2)−1
{
T1Γ̂X (j) + λT2Γ̂Y (j)

}
.



66 Comparing Multivariate Time Series

Then let Γ̂λ be the dp× dp block matrix with (i, j)th block Γ̂λ (i− j), i > j, and Γ̂′λ (j − i),

i < j. Also let γ̂λ be the d× dp block matrix with (1, j)th block Γ̂′λ (j). The estimators of β

and Σε are then

β̂λ = −γ̂λΓ̂−1
λ

and

Σ̃ε;λ = Γ̂λ (0)− γ̂λΓ̂−1
λ γ̂′λ,

which can be computed using the Whittle recursion.

To estimate the parameters under H
(3)
0 , for a given Λ, let

Γ̂Λ (j) = (T1 + T2)−1
{
T1Γ̂X (j) + T2ΛΓ̂Y (j) Λ

}
.

Then let Γ̂Λ be the dp× dp block matrix with (i, j)th block Γ̂Λ (i− j), i > j, and Γ̂′Λ (j − i),

i < j. Also let γ̂Λ be the d× dp block matrix with (1, j)th block Γ̂′Λ (j). The estimators of β

and Σε are then

β̂Λ = −γ̂ΛΓ̂−1
Λ

and

Σ̃ε;Λ = Γ̂Λ (0)− γ̂ΛΓ̂−1
Λ γ̂′Λ,

which can be computed using the Whittle recursion.

5.4 The Test Statistics

The maximised conditional Gaussian log-likelihood under H
(r)
0 , r = 1, 2, 3, is

l̂
(r)
0 = −(T1 + T2) d

2
{1 + log (2π)} − T1

2
log
∣∣∣Σ̂ε;r

∣∣∣− T2

2
log
∣∣∣Σ̂u;r

∣∣∣ .
Thus, the test statistic for H

(r)
0 is

θ(r) = 2
(
l̂A − l̂(r)0

)
= T1 log


∣∣∣Σ̂ε;r

∣∣∣∣∣∣Σ̂ε;A

∣∣∣
+ T2 log


∣∣∣Σ̂u;r

∣∣∣∣∣∣Σ̂u;A

∣∣∣
 .

The null hypothesis is rejected at significance level α when θ(r) is greater than the

100 (1− α)th percentile of the χ2 distribution with v(r) degrees of freedom, where

v(1) = d2p,

v(2) = d2p+ d (d+ 1) /2− 1,

v(3) = d2p+ d (d+ 1) /2− d.
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5.5 Asymptotic Properties of the Estimators Under the Null

Hypotheses

In this section we establish the strong consistency of the estimators under the null hypotheses,

and also establish the central limit theorem for the estimators of the autoregressive parame-

ters. In order to prove the central limit theorem under H
(1)
0 we need to make the assumption

that T2 = κT1 for some constant κ. That is, that the sample sizes increase at the same rate.

This assumption is not needed for the other theorems. The proofs of the theorems are in the

Appendix.

Let ΓX and ΓY be the dp × dp matrices with (i, j)th block given by ΓX (i− j) and

ΓY (i− j), respectively. Note that

T−1
1 ZXZ

′
X → ΓX and T−1

2 ZY Z
′
Y → ΓY

almost surely as T1 →∞ and T2 →∞, respectively. In the theorems below and their proofs,

a parameter written with a 0 in the subscript will denote the true value of that parameter.

Theorem 5.1 Under H
(1)
0 , β̂ → β0, Σ̂ε;1 → Σε0 and Σ̂u;1 → Σu0 almost surely as T1, T2 →

∞.

Theorem 5.2 Under H
(2)
0 , λ̂→ λ0, β̂

λ̂
→ β0 and Σ̃

ε;λ̂
→ Σε0 almost surely as T1, T2 →∞.

Theorem 5.3 Under H
(3)
0 , Λ̂→ Λ0, β̂

Λ̂
→ β0 and Σ̃

ε;Λ̂
→ Σε0 almost surely as T1, T2 →∞.

In order to prove the central limit theorems we will make use of the following lemma.

The proof of the lemma is in the Appendix.

Lemma 5.1 The distribution of T
−1/2
1 vec (εZ ′X) converges to the normal distribution with

mean zero and covariance matrix ΓX ⊗ Σε as T1 →∞. The distribution of T
−1/2
2 vec (uZ ′Y )

converges to the normal distribution with mean zero and covariance matrix ΓY ⊗Σu as T2 →

∞.

Theorem 5.4 Let T2 = κT1 for some constant κ. Then, under H
(1)
0 , the distribution of

T
1/2
1 vec

(
β̂ − β0

)
converges to the normal distribution with mean zero and covariance matrix

{(
ΓX ⊗ Σ−1

ε0

)
+ κ

(
ΓY ⊗ Σ−1

u0

)}−1
,

as T1 →∞.
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Theorem 5.5 Under H
(2)
0 , the distribution of (T1 + T2)1/2 vec

(
β̂ − β0

)
converges to the

normal distribution with mean zero and covariance matrix

Γ−1
X ⊗ Σε0 = Γ−1

Y ⊗ Σu0,

as T1, T2 →∞.

Theorem 5.6 Under H
(3)
0 , the distribution of (T1 + T2)1/2 vec

(
β̂ − β0

)
converges to the

normal distribution with mean zero and covariance matrix

Γ−1
X ⊗ Σε0 = Γ−1

Y ⊗ Σu0,

as T1, T2 →∞.

5.6 Comparing More Than Two Time Series

In this section we show how to extend the above procedures to the case of comparing more

than two time series. Let {Xk,t} be a d-dimensional stationary process. If we have n such

processes, we fit VAR(p) models to samples of size Tk from {Xk,t}, k = 1, . . . , n. That is, for

k = 1, . . . , n,

Xk,t + βk,1Xk,t−1 + · · ·+ βk,pXk,t−p = εk,t,

where βk,j , j = 1, . . . , p, k = 1, . . . , n, are d × d and {εk,t}, k = 1, . . . , n, are independent

d-dimensional innovation processes. We make the usual assumptions that the {εk,t} are

sequences of martingale differences and that

E
(
εk,tε

′
k,t | Fk,t−1

)
= Σk,

where Fk,t is the σ-field generated by {εk,t, εk,t−1, . . .}. We redefine the three null hypotheses

as follows.

H
(1)
0 : β1,j = · · · = βn,j ∀j,

H
(2)
0 : β1,j = · · · = βn,j ∀j, Σ1 = λ2Σ2 = · · · = λnΣn,

where λ2, . . . λn are positive constants, and

H
(3)
0 : β1,j = Λ2β2,jΛ

−1
2 = · · · = Λnβn,jΛ

−1
n ∀j, Σ1 = Λ2Σ2Λ2 = · · · = ΛnΣnΛn,

where Λk = diag (λk,1, . . . , λk,d) and λk,1, . . . , λk,d, k = 2, . . . n, are positive constants. In each

case, the alternative hypothesis is the complement of the null hypothesis. In what follows,

the test statistics will be derived for fixed p. In practice we let p = blog (Tmin)cc, where

Tmin = min (T1, . . . Tn) and c > 1.
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Let

Xk + βkZk = εk,

where

Xk =
[
Xk,p · · · Xk,Tk−1

]
,

Zk =
[
Zk,p · · · Zk,Tk−1

]
,

Zk,t =
[
X ′k,t−1 · · · X ′k,t−p

]′
,

εk =
[
εk,p · · · εk,T1−1

]
,

βk =
[
βk,1 · · · βk,p

]
.

Under the alternative hypotheses, the estimators of βk and Σk are

β̂k = −XkZ
′
k

(
ZkZ

′
k

)−1

and

Σ̂k;A = T−1
k (Xk + βZk) (Xk + βZk)

′ ,

k = 1, . . . , n, and the maximised conditional Gaussian log-likelihood is

l̂A = −d
2
{1 + log (2π)}

n∑
j=1

Tj −
n∑
j=1

Tj
2

log
∣∣∣Σ̂j;A

∣∣∣ .
In order to maximise the conditional Gaussian log-likelihood under H

(1)
0 , we extend the

procedure of Section 5.3.1 as follows. Given current estimates of Σk, denoted Σ̂k;1, k =

1, . . . , n, estimate β by β̂ where

vec
(
β̂
)

= −


n∑
j=1

(
ZjZ

′
j ⊗ Σ̂−1

j;1

)
−1

n∑
j=1

vec
(

Σ̂−1
j;1XjZ

′
j

) .

Then re-estimate Σk by

Σ̂k;1 = T−1
k

(
Xk + β̂Zk

)(
Xk + β̂Zk

)′
,

k = 1, . . . , n, and repeat the process until convergence.

Under H
(2)
0 , the profile log-likelihood is

l̃
(2)
0 (λ) = −d

2
{1 + log (2π)}

n∑
j=1

Tj −
1

2

 n∑
j=1

Tj

 log
∣∣∣Σ̃λ

∣∣∣+
d

2

n∑
j=2

Tj log λj ,

where

λ =
[
λ2 · · · λn

]′
,
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Σ̃λ =

 n∑
j=1

Tj

−1
n∑
j=1

λj

(
Xj + β̂λZj

)(
Xj + β̂λZj

)′ ,

β̂λ = −

 n∑
j=1

λjXjZ
′
j

 n∑
j=1

λjZjZ
′
j

−1

and λ1 = 1. Letting λ̂ =
[
λ̂2 · · · λ̂n

]
be the maximiser of l̃

(2)
0 (λ), the parameter

estimators of β and Σk, k = 1, . . . , n, are

β̂ = β̂
λ̂
, Σ̂1;2 = Σ̃

λ̂
and Σ̂k;2 = Σ̂1;2/λ̂k, k > 2.

We can use a similar iterative procedure to maximise l̃
(2)
0 (λ) as that given in Section 5.3.2.

Given a current estimate of λ, denoted by λ̃, compute β̂
λ̃

and Σ̃
λ̃
. Then re-estimate λk,

k = 2, . . . , n, by

λ̂k = d/ tr

[
Σ̃−1

λ̃

{
T−1
k

(
Xk + β̂

λ̃
Zk

)(
Xk + β̂

λ̃
Zk

)′}]
and repeat the process until convergence. Initial estimates of λk can be obtained from

d/ tr
(

Σ̂−1
1;AΣ̂k;A

)
,

k = 1, . . . , n.

Under H
(3)
0 , the profile log-likelihood is

l̃
(3)
0 (Λ) = −d

2
{1 + log (2π)}

n∑
j=1

Tj −
1

2

 n∑
j=1

Tj

 log
∣∣∣Σ̃Λ

∣∣∣+
n∑
j=2

Tj log |Λj | ,

where

Λ =
[

Λ2 · · · Λn

]
,

Σ̃Λ =

 n∑
j=1

Tj

−1  n∑
j=1

Λj

{
Xj + Λ−1

j β̂Λ (Ip ⊗ Λj)Zk

}{
Xj + Λ−1

j β̂Λ (Ip ⊗ Λj)Zk

}′
Λj

 ,
β̂Λ = −


n∑
j=1

ΛjXjZ
′
j (Ip ⊗ Λj)




n∑
j=1

(Ip ⊗ Λj)ZjZ
′
j (Ip ⊗ Λj)


−1

and Λ1 = Id. Letting Λ̂ =
[

Λ̂2 · · · Λ̂n

]
be the maximiser of l̃

(3)
0 (Λ), the parameter

estimators of β and Σk, k = 1, . . . , n, are

β̂ = β̂
Λ̂
, Σ̂1;3 = Σ̂

Λ̂
and Σ̂k;3 = Λ̂−1

k Σ̂1;3Λ̂−1
k , k > 2.

As before, we make use of computer search algorithms to maximise l̃0 (Λ) in practice, with

initial estimates of Λk, k = 2, . . . , n, given by

λ̂k,j =

√
σ1;A (j, j)

σk;A (j, j)
,
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j = 1, . . . , d, where σk;A (i, j) is the (i, j)th element of Σ̂k;A.

The test statistic under H
(r)
0 , r = 1, 2, 3, is

θ(r) =
n∑
j=1

Tj log


∣∣∣Σ̂j;r

∣∣∣∣∣∣Σ̂j;A

∣∣∣
 .

The null hypothesis is rejected at significance level α when θ(r) is greater than the

100 (1− α)th percentile of the χ2 distribution with v(r) degrees of freedom, where

v(1) = (n− 1) d2p,

v(2) = (n− 1) d2p+ (n− 1) d (d+ 1) /2− (n− 1) ,

v(3) = (n− 1) d2p+ (n− 1) d (d+ 1) /2− (n− 1) d.

5.7 Simulations

In order to examine the behaviour of the test statistics under the null hypotheses when

comparing two time series, that is when n = 2, the tests were applied to pairs of time series

which were simulated from either the VAR(1) processes

Xt + β1Xt−1 = εt and Yt + β∗1Yt−1 = ut,

the VAR(2) processes

Xt + β1Xt−1 + β2Xt−2 = εt and Yt + β∗1Yt−1 + β∗2Yt−2 = ut,

the VMA(1) processes

Xt = εt + α1εt−1 and Y = ut + α∗1ut−1,

the VMA(2) processes

Xt = εt + α1εt−1 + α2εt−2 and Y = ut + α∗1ut−1 + α∗2ut−1,

or the VARMA(1, 1) processes

Xt + β1Xt−1 = εt + α1εt−1 and Yt + β∗1Yt−1 = ut + α∗1ut−1.

Note that VMA(q) denotes a vector moving average process of order q and VARMA(p, q)

denotes a vector autoregressive-moving average process of orders p and q. Simulations were

run for d = 2 and d = 3. In all cases, {εt} was simulated from the normal distribution

with covariance matrix Σε = Id. In the simulations run under H
(1)
0 and H

(2)
0 , β∗1 = β1,
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β∗2 = β2, α∗1 = α1, α∗2 = α2 and {ut} was simulated from the normal distribution with mean

zero and covariance matrix Σu = 2Σε. For the simulations run under H
(3)
0 , β∗1 = Λ−1

2 β1Λ2,

β∗2 = Λ−1
2 β2Λ2, α∗1 = Λ−1

2 α1Λ2, α∗2 = Λ−1
2 α2Λ2 and {ut} was simulated from the normal

distribution with mean zero and covariance matrix Σu = Λ−1
2 ΣεΛ

−1
2 . The parameters when

d = 2 were

β1 =

 0.7 0.3

−0.3 0.7

 , β2 =

 0.3 0.1

−0.2 0.3

 ,
α1 =

 0.8 0.1

−0.1 0.8

 , α2 =

 0.2 0.2

−0.1 0.2

 and Λ2 =

 0.5 0

0 1.5

 .
The parameters when d = 3 were

β1 =


0.7 0.3 0.1

−0.3 0.7 0.2

0.1 0.05 0.7

 , β2 =


0.3 0.1 0.1

−0.2 0.3 0.05

0.1 0.05 0.5

 ,

α1 =


0.8 0.1 0.1

−0.1 0.8 0.05

0.1 0.05 0.4

 , α2 =


0.2 0.2 0.05

−0.2 0.2 0

0.05 0 0.2


and

Λ2 =


0.5 0 0

0 1.5 0

0 0 1

 .
Figure 5.1 shows the spectral densities for each component of the {Xt} processes for the d = 2

case. Also shown is their coherency, which is

|fX,12 (ω)|2

fX,11 (ω) fX,22 (ω)
,

where fX,ij (ω) is the (i, j)th element of fX (ω). Figure 5.2 shows the spectral densities for

each component of the {Xt} processes for the d = 3 case.

The simulations were run with sample sizes of T1 = 1, 000 and T2 = 1, 250, and also

T1 = 2, 000 and T2 = 2, 500. The tests were applied by fitting vector autoregressions of

order 7, which is the integer component of both log (1, 000)1.01 and log (2, 000)1.01. When

computing the test statistic under H
(3)
0 , the fminsearch function in MATLAB was used.

Tables 5.1–5.6 give the means and variances of the resulting test statistics as well as the

Type I error rates, that is, the proportion of times the null hypothesis was rejected at the

5% significance level. The means and variances are mostly close to the theoretical means

and variances of the χ2 distribution with the indicated degrees of freedom. For the smaller
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Figure 5.1: The spectral densities of each component, as well as their coherency, for each

2-dimensional {Xt} process described in Section 5.7.
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Figure 5.2: The spectral densities of each component for each 3-dimensional {Xt} process

described in Section 5.7.
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sample sizes, the Type I error rates are mostly close to 0.06. For the larger sample sizes the

Type I errors are mostly close to 0.05.

To examine the behaviour of the test statistics under the null hypotheses when comparing

more than two time series, a third time series, {Zt}, was simulated along with {Xt} and {Yt}

from either the VAR(1) process

Zt + β∗∗1 Zt−1 = wt,

the VAR(2) process

Zt + β∗∗1 Zt−1 + β∗∗2 Zt−2 = wt,

the VMA(1) process

Zt = wt + α∗∗1 wt−1,

the VMA(2) process

Zt = wt + α∗∗1 wt−1 + α∗∗2 wt−2,

or the VARMA(1, 1) process

Zt + β∗∗1 Zt−1 = wt + α∗∗1 wt−1.

For the simulations run under H
(1)
0 and H

(2)
0 , β∗∗1 = β∗1 = β1, β∗∗2 = β∗2 = β2, α∗∗1 = α∗1 = α1,

α∗∗2 = α∗2 = α2 and {wt} was simulated from the normal distribution with mean zero and

covariance matrix Σw = 0.5Σε. For the simulations run under H
(3)
0 , the autoregressive and

moving average parameters were given by β1 = Λ2β
∗
1Λ−1

2 = Λ3β
∗∗
1 Λ−1

3 , β2 = Λ2β
∗
2Λ−1

2 =

Λ3β
∗∗
2 Λ−1

3 , α1 = Λ2α
∗
1Λ−1

2 = Λ3α
∗∗
1 Λ−1

3 and α2 = Λ2α
∗
2Λ−1

2 = Λ3α
∗∗
2 Λ−1

3 , and {wt} was

simulated from the normal distribution with mean zero and covariance matrix given by Σε =

Λ2ΣuΛ2 = Λ3ΣwΛ3, where

Λ3 =

 0.75 0

0 1.25


when d = 2 and

Λ3 =


0.75 0 0

0 1.25 0

0 0 1


when d = 3.

Tables 5.7–5.12 give the means, variances and Type I error rates of the resulting test

statistics. The means and variances are mostly close to their theoretical values, although

they are a little higher for the d = 3 simulations, particularly for the shorter time series. For

the shorter time series, the Type I error rates are around 0.06 for the d = 2 cases and around

0.07 for the d = 3 cases. For the longer time series, the Type I error rates are closer to 0.05.
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Table 5.1: Summary of simulations under H
(1)
0 when n = 2 and d = 2.

T1 = 1, 000 T1 = 2, 000

df Mean Var Type I Mean Var Type I

VAR(1) 28 28.312 56.394 0.055 28.192 57.454 0.057

VAR(2) 28 28.226 54.386 0.051 28.189 57.770 0.054

VMA(1) 28 28.547 58.515 0.061 28.156 56.892 0.053

VMA(2) 28 28.542 58.478 0.056 28.326 57.302 0.056

VARMA(1, 1) 28 28.306 56.609 0.053 28.159 57.049 0.053

Table 5.2: Summary of simulations under H
(2)
0 when n = 2 and d = 2.

T1 = 1, 000 T1 = 2, 000

df Mean Var Type I Mean Var Type I

VAR(1) 30 30.437 61.471 0.056 30.281 61.465 0.056

VAR(2) 30 30.605 61.867 0.058 30.236 61.586 0.053

VMA(1) 30 30.459 62.303 0.060 30.289 62.788 0.057

VMA(2) 30 30.573 63.783 0.063 30.266 60.743 0.053

VARMA(1, 1) 30 30.217 63.549 0.055 30.130 59.270 0.051

Table 5.3: Summary of simulations under H
(3)
0 when n = 2 and d = 2.

T1 = 1, 000 T1 = 2, 000

df Mean Var Type I Mean Var Type I

VAR(1) 29 29.452 59.250 0.058 29.250 58.319 0.051

VAR(2) 29 29.475 60.035 0.057 29.184 57.873 0.052

VMA(1) 29 29.415 59.114 0.059 29.197 59.852 0.056

VMA(2) 29 29.594 59.548 0.059 29.200 56.510 0.051

VARMA(1, 1) 29 29.419 59.355 0.056 29.168 58.293 0.052
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Table 5.4: Summary of simulations under H
(1)
0 when n = 2 and d = 3.

T1 = 1, 000 T1 = 2, 000

df Mean Var Type I Mean Var Type I

VAR(1) 63 64.357 130.537 0.066 63.592 127.580 0.055

VAR(2) 63 64.091 132.386 0.065 63.694 126.771 0.055

VMA(1) 63 64.452 132.225 0.065 63.808 127.054 0.055

VMA(2) 63 64.482 131.225 0.063 63.637 126.864 0.055

VARMA(1, 1) 63 64.171 131.726 0.062 63.525 130.989 0.057

Table 5.5: Summary of simulations under H
(2)
0 when n = 2 and d = 3.

T1 = 1, 000 T1 = 2, 000

df Mean Var Type I Mean Var Type I

VAR(1) 68 69.285 138.706 0.063 68.762 139.288 0.056

VAR(2) 68 69.531 143.669 0.070 68.747 140.467 0.058

VMA(1) 68 69.595 143.638 0.070 68.569 142.632 0.056

VMA(2) 68 69.624 143.532 0.065 68.902 143.231 0.060

VARMA(1, 1) 68 69.445 146.348 0.073 68.771 141.682 0.060

Table 5.6: Summary of simulations under H
(3)
0 when n = 2 and d = 3.

T1 = 1, 000 T1 = 2, 000

df Mean Var Type I Mean Var Type I

VAR(1) 66 67.308 138.384 0.066 66.780 137.056 0.059

VAR(2) 66 67.382 138.232 0.068 66.614 132.128 0.056

VMA(1) 66 67.605 139.483 0.073 66.522 131.531 0.051

VMA(2) 66 67.550 136.227 0.068 66.778 136.942 0.060

VARMA(1, 1) 66 67.320 136.891 0.067 66.583 138.284 0.057
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Table 5.7: Summary of simulations under H
(1)
0 when n = 3 and d = 2.

T1 = 1, 000 T1 = 2, 000

df Mean Var Type I Mean Var Type I

VAR(1) 56 56.909 114.701 0.059 56.359 114.595 0.056

VAR(2) 56 56.683 112.586 0.056 56.475 113.747 0.054

VMA(1) 56 56.728 117.763 0.062 56.158 113.059 0.053

VMA(2) 56 57.116 117.236 0.064 56.569 110.778 0.056

VARMA(1, 1) 56 56.428 113.487 0.053 56.359 114.700 0.056

Table 5.8: Summary of simulations under H
(2)
0 when n = 3 and d = 2.

T1 = 1, 000 T1 = 2, 000

df Mean Var Type I Mean Var Type I

VAR(1) 60 60.918 123.845 0.060 60.252 120.459 0.052

VAR(2) 60 60.985 123.060 0.061 60.286 116.923 0.050

VMA(1) 60 60.707 123.230 0.058 60.237 124.625 0.057

VMA(2) 60 61.263 123.257 0.065 60.733 121.923 0.060

VARMA(1, 1) 60 60.692 123.090 0.057 60.154 119.101 0.051

Table 5.9: Summary of simulations under H
(3)
0 when n = 3 and d = 2.

T1 = 1, 000 T1 = 2, 000

df Mean Var Type I Mean Var Type I

VAR(1) 58 58.820 119.354 0.060 58.507 116.387 0.054

VAR(2) 58 58.662 117.137 0.057 58.608 115.720 0.056

VMA(1) 58 58.690 122.232 0.059 58.377 121.126 0.057

VMA(2) 58 59.065 124.436 0.068 58.535 121.191 0.058

VARMA(1, 1) 58 58.670 118.422 0.058 58.132 117.195 0.052
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Table 5.10: Summary of simulations under H
(1)
0 when n = 3 and d = 3.

T1 = 1, 000 T1 = 2, 000

df Mean Var Type I Mean Var Type I

VAR(1) 126 128.466 258.064 0.071 127.169 262.934 0.058

VAR(2) 126 128.484 260.588 0.067 127.304 254.056 0.058

VMA(1) 126 128.245 260.805 0.067 127.212 254.869 0.057

VMA(2) 126 128.479 267.426 0.072 127.253 254.975 0.056

VARMA(1, 1) 126 128.162 267.925 0.068 126.908 260.099 0.057

Table 5.11: Summary of simulations under H
(2)
0 when n = 3 and d = 3.

T1 = 1, 000 T1 = 2, 000

df Mean Var Type I Mean Var Type I

VAR(1) 136 138.673 278.539 0.071 137.303 277.509 0.058

VAR(2) 136 138.647 286.885 0.070 137.181 278.882 0.060

VMA(1) 136 138.763 284.278 0.071 137.316 279.728 0.057

VMA(2) 136 138.641 292.403 0.073 137.696 276.100 0.058

VARMA(1, 1) 136 138.256 285.143 0.069 136.855 282.930 0.060

Table 5.12: Summary of simulations under H
(3)
0 when n = 3 and d = 3.

T1 = 1, 000 T1 = 2, 000

df Mean Var Type I Mean Var Type I

VAR(1) 132 134.340 274.708 0.067 133.416 272.047 0.061

VAR(2) 132 134.495 269.531 0.068 133.451 257.342 0.055

VMA(1) 132 134.345 274.657 0.069 133.509 277.072 0.062

VMA(2) 132 134.589 278.575 0.071 133.381 268.399 0.059

VARMA(1, 1) 132 134.399 278.490 0.068 132.982 270.539 0.057
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5.A Appendix

In what follows, where convergence is indicated, it will mean convergence in the almost sure

sense, unless otherwise indicated. Where order notation is used, it will also mean orders in

the almost sure sense.

5.A.1 The Whittle Recursion

Consider the vector autoregression of order k,

Xt +
k∑
j=1

βp,jXt−j = εt,

where E (εtε
′
t) = Gk. The Whittle recursion, originally due to Whittle (1963), com-

putes βk,1, . . . , βk,k and Gk, for successive values of k, given the autocovariances

Γ (j) = E
(
XtX

′
t+j

)
. The version given below includes modifications from Quinn

(1980).

Let G0 = G0 = Γ (0). Then, for k = 0, . . .,

∆k+1 = Γ (−k − 1) +
k∑
j=1

βk,jΓ (j − k − 1)

∆k+1 = Γ (k + 1) +
k∑
j=1

βk,jΓ (k + 1− j)

βk+1,k+1 = −∆k+1G
−1
k

βk+1,k+1 = −∆k+1G
−1
k

βk+1,j = βk,j + βk+1,k+1βk,k+1−j , j = 1, . . . , k,

βk+1,j = βk,j + βk+1,k+1βk,k+1−j , j = 1, . . . , k,

Gk+1 =
(
Id − βk+1,k+1βk+1,k+1

)
Gk

Gk+1 =
(
Id − βk+1,k+1βk+1,k+1

)
Gk.

Parameter estimators are obtained by replacing the Γ (j) with the sample autocovariances,

Γ̂ (j), noting that Γ (−j) = Γ′ (j).
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5.A.2 Proof of Theorem 5.1

For a given β, l
(1)
0 (β,Σε,Σu) is maximised by Σ̂ε (β) = sX,T1 (β) and Σ̂u (β) = sY,T2 (β). Let

l̃
(1)
0 (β) = l

(2)
0

{
β, Σ̂ε (β) , Σ̂u (β)

}
= −T1 + T2

2
{1 + d log (2π)} − T1

2
log
∣∣∣Σ̂ε (β)

∣∣∣− T2

2
log
∣∣∣Σ̂u (β)

∣∣∣ .
Then

l̃
(1)
0 (β)− l̃(1)

0 (β0) = −T1

2
log


∣∣∣Σ̂ε (β)

∣∣∣∣∣∣Σ̂ε (β)0

∣∣∣
− T2

2
log


∣∣∣Σ̂u (β)

∣∣∣∣∣∣Σ̂u (β)0

∣∣∣
 .

Now,

X + βZX = X + β0ZX + (β − β0)ZX

= ε+ (β − β0)ZX ,

and so

Σ̂ε (β) = T−1
1

{
εε′ + εZ ′X (β − β0)′ + (β − β0)ZXε

′ + (β − β0)ZXZX (β − β0)′
}
.

But, as T1 →∞,

T−1
1 εε′ → E

(
εtε
′
t

)
= E

{
E
(
εtε
′
t | Ft−1

)}
= Σε0 (5.6)

and

T−1
1 ZXε

′ → 0, (5.7)

since

T−1
1

T1−1∑
t=p

Xt−jε
′
t → E

(
Xt−jε

′
t

)
= E

{
Xt−jE

(
ε′t | Ft−1

)}
= 0.

Thus, as T1 →∞,

Σ̂ε (β)→ Σε0 + (β − β0) ΓX (β − β0)′ , (5.8)

and so ∣∣∣Σ̂ε (β)
∣∣∣∣∣∣Σ̂ε (β)0

∣∣∣ →
∣∣∣Id + Σ

−1/2
ε0 (β − β0) ΓX (β − β0)′Σ

−1/2
ε0

∣∣∣ .
Similarly, ∣∣∣Σ̂u (β)

∣∣∣∣∣∣Σ̂u (β)0

∣∣∣ →
∣∣∣Id + Σ

−1/2
u0 (β − β0) ΓY (β − β0)′Σ

−1/2
u0

∣∣∣ .
Now, ∣∣∣Id + Σ

−1/2
ε0 (β − β0) ΓX (β − β0)′Σ

−1/2
ε0

∣∣∣ =
d∏
j=1

(1 + ej) ,
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where the ej are the eigenvalues of

Σ
−1/2
ε0 (β − β0) ΓX (β − β0)′Σ

−1/2
ε0 , (5.9)

which are non-negative since (5.9) is non-negative definite. However, the ej are all zero if

and only if (β − β0) = 0. The same holds for

∣∣∣Id + Σ
−1/2
u0 (β − β0) ΓY (β − β0)′Σ

−1/2
u0

∣∣∣
and so, for any δ > 0,

sup
β;‖β−β0‖>δ

{
l̃
(1)
0 (β)− l̃(1)

0 (β0)
}

diverges to −∞ as T1, T2 → ∞, where ‖·‖ is any norm. It follows from Theorem 2.5 that

β̂ → β0. It then follows from (5.8) that Σ̂ε;1 → Σε0 and, similarly, Σ̂u;1 → Σu0.

5.A.3 Proof of Theorem 5.2

Consider

l̃
(2)
0 (λ)− l̃(2)

0 (λ0) = −T1 + T2

2
log


∣∣∣Σ̃ε;λ

∣∣∣∣∣∣Σ̃ε;λ0

∣∣∣
− T2d

2
log

(
λ0

λ

)
,

where

Σ̃ε;λ = (T1 + T2)−1 {T1sX,T1 (β) + λT2sY,T2 (β)} .

Now,

T1sX,T1 (β) = (ε− β0ZX + βZX) (ε− β0ZX + βZX)′

= εε′ + εZ ′X (β − β0)′ + (β − β0)ZXε
′ + (β − β0)ZXZ

′
X (β − β0)′

and, similarly,

T2sY,T2 (β) = uu′ + uZ ′Y (β − β0)′ + (β − β0)ZY u
′ + (β − β0)ZY Z

′
Y (β − β0)′ .

Also,

β̂λ = −
{

(ε− β0ZX)Z ′X + λ (u− β0ZY )Z ′Y
} (
ZXZ

′
X + λZY Z

′
Y

)−1

= β0 −
(
εZ ′X + λuZ ′Y

) (
ZXZ

′
X + λZY Z

′
Y

)−1
, (5.10)

and so

(T1 + T2) Σ̃ε;λ = εε′ + uu′ −
(
εZ ′X + λuZ ′Y

) (
ZXZ

′
X + λZY Z

′
Y

)−1 (
ZXε

′ + λZY u
′) . (5.11)
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Therefore

l̃
(2)
0 (λ)− l̃(2)

0 (λ0)

= −T1 + T2

2
log


∣∣∣εε′ + uu′ − (εZ ′X + λuZ ′Y ) (ZXZ

′
X + λZY Z

′
Y )−1 (ZXε

′ + λZY u
′)
∣∣∣∣∣∣εε′ + uu′ −

(
εZ ′X + λ0uZ ′Y

) (
ZXZ ′X + λ0ZY Z ′Y

)−1
(ZXε′ + λ0ZY u′)

∣∣∣


− T2d

2
log

(
λ0

λ

)
.

From (5.6),

T−1
1 εε′ → Σε0 (5.12)

and, similarly,

T−1
2 uu′ → Σu0 =

1

λ0
Σε0. (5.13)

From (5.7),

T−1
1 εZ ′X → 0 (5.14)

and, similarly,

T−1
2 uZ ′Y → 0. (5.15)

Also,

T−1
1 ZXZ

′
X → ΓX and T−1

2 ZY Z
′
Y → ΓY =

1

λ0
ΓX . (5.16)

Thus ∣∣∣εε′ + uu′ − (εZ ′X + λuZ ′Y ) (ZXZ
′
X + λZY Z

′
Y )−1 (ZXε

′ + λZY u
′)
∣∣∣∣∣∣εε′ + uu′ −

(
εZ ′X + λ0uZ ′Y

) (
ZXZ ′X + λ0ZY Z ′Y

)−1
(ZXε′ + λ0ZY u′)

∣∣∣
=

∣∣∣T1Σε0 + λ
λ0
T2Σε0 + o (T1) + o (T2)

∣∣∣
|T1Σε0 + T2Σε0 + o (T1) + o (T2)|

=

∣∣∣(T1 + λ
λ0
T2

)
Id + o (T1) + o (T2)

∣∣∣
|(T1 + T2) Id + o (T1) + o (T2)|

=

(
T1 + λ

λ0
T2

T1 + T2

)d
{1 + o (1)} .

Hence

l̃
(2)
0 (λ)− l̃(2)

0 (λ0) = −(T1 + T2) d

2
log

(
T1 + λ

λ0
T2

T1 + T2

)
− T2d

2
log

(
λ0

λ

)
+ o (T1 + T2) .

Let

f (x) = − (T1 + T2) log

(
T1 + xT2

T1 + T2

)
+ T2 log x.
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Then

d

dx
f (x) = − (T1 + T2)

T2

T1 + xT2
+
T2

x

=
T1T2

x (T1 + xT2)
(1− x) ,

and so f (x) is evidently maximised when x = 1. Consequently,

lim
T1,T2→∞

sup
λ

{
l̃
(2)
0 (λ)− l̃(2)

0 (λ0)

T1 + T2

}
6 0

with equality if and only if λ = λ0 and so, for any δ > 0,

lim
T1,T2→∞

sup
λ;|λ−λ0|>δ

{
l̃
(2)
0 (λ)− l̃(2)

0 (λ0)

T1 + T2

}
< 0.

It follows from Theorem 2.5 that λ̂ → λ0. It also follows from (5.10), (5.12), (5.13), (5.14),

(5.15) and (5.16) that β̂
λ̂
→ β0 and, furthermore, from (5.11) that Σ̂

ε;λ̂
→ Σε0.

5.A.4 Proof of Theorem 5.3

Consider

l̃
(3)
0 (Λ)− l̃(3)

0 (Λ0) =
T1 + T2

2
log

∣∣∣Σ̃ε;Λ0

∣∣∣∣∣∣Σ̃ε;Λ

∣∣∣ − T2 log
|Λ0|
|Λ|

= −T1 + T2

2
log


∣∣∣Σ̃ε;Λ

∣∣∣∣∣∣Σ̃ε;Λ0

∣∣∣
+ T2 log |Ω| ,

where

Σ̃ε;Λ = (T1 + T2)−1
[
T1sX,T1

(
β̂Λ

)
+ T2ΛsY,T2

{
Λ−1β̂Λ (Ip ⊗ Λ)

}
Λ
]

and Ω = ΛΛ−1
0 . Now,

β̂ = −
{
εZ ′X − β0ZXZ

′
X + ΛuZ ′Y (Ip ⊗ Λ)− ΛΛ−1

0 β0 (I ⊗ Λ0)ZY Z
′
Y (Ip ⊗ Λ)

}
×
{
ZXZ

′
X + (Ip ⊗ Λ)ZY Z

′
Y (Ip ⊗ Λ)

}−1

= −
[
εZ ′X + ΛuZ ′Y (Ip ⊗ Λ)− β0

{
ZXZ

′
X − (Ip ⊗ Λ)ZY Z

′
Y (Ip ⊗ Λ)

}
+β0 (Ip ⊗ Λ)ZY Z

′
Y (Ip ⊗ Λ)− Ωβ0 (I ⊗ Λ0)ZY Z

′
Y (Ip ⊗ Λ)

]
×
{
ZXZ

′
X + (Ip ⊗ Λ)ZY Z

′
Y (Ip ⊗ Λ)

}−1

= β0 −
{
εZ ′X + ΛuZ ′Y (Ip ⊗ Λ)

}{
ZXZ

′
X + (Ip ⊗ Λ)ZY Z

′
Y (Ip ⊗ Λ)

}−1

−
[{
β0 (Ip ⊗ Λ)ZY Z

′
Y (Ip ⊗ Λ)

}
− Ωβ0 (I ⊗ Λ0)ZY Z

′
Y (Ip ⊗ Λ)

]
×
{
ZXZ

′
X + (Ip ⊗ Λ)ZY Z

′
Y (Ip ⊗ Λ)

}−1
. (5.17)
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Also,

T1sX,T1

(
β̂Λ

)
= {ε+ (β − β0)ZX} {ε+ (β − β0)ZX}′

= εε′ + εZ ′X (β − β0)′ + (β − β0)ZXε
′ + (β − β0)ZXZ

′
X (β − β0)′

= T1Σε0 + T1 (β − β0) ΓX (β − β0)′ + o (T1)

and, similarly,

T2ΛsY,T2
{

Λ−1β (Ip ⊗ Λ)
}

Λ = ΩT2Σu0Ω + (β − β0) (Ip ⊗ Ω)T2ΓX (Ip ⊗ Ω) (β − β0)′

+
{

Ωβ0 − (Ip ⊗ Ω)β′0
}
T2ΓX

{
Ωβ0 − (Ip ⊗ Ω)β′0

}′
+ (β − β0) (Ip ⊗ Ω)T2ΓX {β0 (Ip ⊗ Ω)− Ωβ0}′

+ {β0 (Ip ⊗ Ω)− Ωβ0}T2ΓX (Ip ⊗ Ω) (β − β0)′ + o (T2) ,

since, from (5.6) and (5.7),

T−1
1 εε′ → Σε0 and T−1

1 εZ ′X → 0 (5.18)

and, similarly,

T−1
2 uu′ → Σu0 = Λ−1

0 Σε0Λ−1
0 and T−1

2 uZ ′Y → 0, (5.19)

and, in addition,

T−1
1 ZXZ

′
X → ΓX and T−1

2 ZY Z
′
Y → ΓY =

(
Ip ⊗ Λ−1

0

)
ΓX
(
Ip ⊗ Λ−1

0

)
. (5.20)

Thus

(T1 + T2) Σ̃ε;Λ

= T1Σε0 + ΩT2Σu0Ω

+
(
β̂ − β0

)
T1ΓX

(
β̂ − β0

)′
+
(
β̂ − β0

)
(Ip ⊗ Ω)T2ΓX (Ip ⊗ Ω)

(
β̂ − β0

)′
+
{

Ωβ0 − (Ip ⊗ Ω)β′0
}
T2ΓX

{
Ωβ0 − (Ip ⊗ Ω)β′0

}
+
(
β̂ − β0

)
(Ip ⊗ Ω)T2ΓX {β0 (Ip ⊗ Ω)− Ωβ0}′

+ {β0 (Ip ⊗ Ω)− Ωβ0}T2ΓX (Ip ⊗ Ω)
(
β̂ − β0

)′
+ o (T1 + T2)

= T1Σε0 + ΩT2Σu0Ω + zT2ΓXz
′ − z (T2ΓX)1/2 Z

(
Idp + Z ′Z

)−1
Z ′ (T2ΓX)1/2 z′

+ o (T1 + T2) ,

where

z = β0 (Ip ⊗ Ω)− Ωβ0
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and

Z = (T2ΓX)1/2 (Ip ⊗ Ω) (T1ΓX)1/2 .

But

T2ΓX − (T2ΓX)1/2 Z
(
Idp + Z ′Z

)−1
Z ′ (T2ΓX)1/2

= T2ΓX + (T2ΓX)1/2 (Idp + ZZ ′
)−1

(T2ΓX)1/2 − T2ΓX

= (T2ΓX)1/2 (Idp + ZZ ′
)−1

(T2ΓX)1/2 ,

since

Z
(
Idp + Z ′Z

)−1
Z ′ = Idp −

(
Idp + ZZ ′

)−1
,

and so

(T1 + T2) Σ̃ε;Λ

= T1Σε0 + ΩT2Σu0Ω + z (T2ΓX)1/2 (Idp + ZZ ′
)−1

(T2ΓX)1/2 z′ + o (T1 + T2) . (5.21)

Therefore

∣∣∣Σ̃ε;Λ

∣∣∣ > ∣∣∣Σ̃∣∣∣+
∣∣∣z (T2ΓX)1/2 (Idp + ZZ ′

)−1
(T2ΓX)1/2 z′

∣∣∣+ o (1)

>
∣∣∣Σ̃∣∣∣ ,

where

Σ̃ =
T1Σε0 + ΩT2Σε0Ω

T1 + T2
,

since z (T2ΓX)1/2 (Idp + ZZ ′)−1 (T2ΓX)1/2 z′ is non-negative definite. Let

Σε0 = PAP ′

be the Jordan canonical form of Σε0. Then

∣∣∣Σ̃∣∣∣ =

∣∣∣∣T1A+ T2P
′ΩPAP ′ΩP

T1 + T2

∣∣∣∣
= |A|

∣∣∣∣∣T2Id + T2A
−1/2P ′ΩPAP ′ΩPA−1/2

T1 + T2

∣∣∣∣∣
= |A|

∣∣∣∣T1Id + T2QQ
′

T1 + T2

∣∣∣∣ ,
where

Q = A−1/2P ′ΩPA1/2.
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Note that |QQ′| = 2 |Ω| and so

(T1 + T2) log


∣∣∣Σ̃ε;Λ

∣∣∣∣∣∣Σ̃ε;Λ0

∣∣∣
− 2T2 log |Ω|

> (T1 + T2) log

∣∣∣∣T1Id + T2QQ
′

T1 + T2

∣∣∣∣− 2T2 log
∣∣QQ′∣∣+ o (T1 + T2)

=

d∑
j=1

{
(T1 + T2) log

(
T1 + T2µj
T1 + T2

)
− T2 logµj

}
+ o (T1 + T2) , (5.22)

where the µj are the eigenvalues of QQ′. But

∂

∂µj

{
(T1 + T2) log

(
T1 + T2µj
T1 + T2

)
− T2 logµj

}
= (T1 + T2)

T2

T1 + T2µj
− T2

µj

=
T2

µj (T1 + T2µj)
{(T1 + T2)µj − (T1 + T2µj)}

=
T1T2

µj (T1 + T2µj)
(µj − 1) . (5.23)

The derivatives of

(T1 + T2) log


∣∣∣Σ̃ε;Λ

∣∣∣∣∣∣Σ̃ε;Λ0

∣∣∣
− 2T2 log |Ω|

are thus all 0 if and only if all of the µj are 1, that is when QQ′ = Id. But then

P ′ΩPAP ′ΩP = A,

that is,

ΩΣε0Ω = Σε0,

which can only occur when Ω = Id which is when Λ = Λ0. However, from (5.23), there is

only one turning point, which is clearly a minimum since (5.23) is negative when µj < 1 and

positive when µj > 1. Moreover, (5.22) is 0 at this turning point. Thus for any δ > 0,

lim
T1,T2→∞

sup
maxj |λj−λ0j |>δ

{
l̃
(3)
0 (Λ)− l̃(3)

0 (Λ0)
}
< 0.

It follows from Theorem 2.5 that Λ̂→ Λ0 as T1, T2 →∞. It then follows from (5.17), (5.18),

(5.19) and (5.20) that β̂ → β0 and, furthermore, from (5.21) that Σ̃ε;Λ → Σε0 as T1, T2 →∞.

5.A.5 Proof of Lemma 5.1

Let

WT1 = a′ vec
(
εZ ′X

)
= a′

T1−1∑
t=p

Vt,

where a =
[
a1 · · · ad2p

]′
, a1, . . . , ad2p are constants and Vt = (ZX,t ⊗ εt). Now,

E (Vt | Ft−1) = ZX,t ⊗ E (εt | Ft−1) = 0
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and

E
(
VtV

′
t

)
= E

{
E
(
VtV

′
t | Ft−1

)}
= (ΓX ⊗ Σε0) .

Thus, by the martingale central limit theorem, T
−1/2
1 WT1 is asymptotically normal with mean

zero and covariance matrix a′ (ΓX ⊗ Σε0) a as T1 →∞. The distribution of T
−1/2
1 vec (εZ ′X)

therefore converges to the normal distribution with mean zero and covariance matrix ΓX ⊗

Σε0 as T1 → ∞. Similarly, the distribution of T
−1/2
2 vec (uZ ′Y ) converges to the normal

distribution with mean zero and covariance matrix ΓY ⊗ Σu0 as T2 →∞.

5.A.6 Proof of Theorem 5.4

Let B = vecβ, Aε = vec
(
Σ−1
ε

)
, Au = vec

(
Σ−1
u

)
and θ =

[
B′ A′ε A′u

]′
. From the mean

value theorem, and since θ̂ → θ0,
(
θ̂ − θ0

)
has the same asymptotic distribution as

−
{
∂2l0 (θ0)

∂θ∂θ′

}−1
∂l0 (θ0)

∂θ
.

Now, if C and D are n×m and n× n matrices, respectively, then

tr
(
C ′DC

)
= (vecC)′ (Im ⊗D) vecC.

Thus

T1 tr
{

Σ−1
ε sX,T1 (β)

}
= tr

{
(X + βZX)′Σ−1

ε (X + βZX)
}

= {vec (X + βZX)}′
(
IT1 ⊗ Σ−1

ε

)
vec (X + βZX)

= (vecX)′
(
IT1 ⊗ Σ−1

ε

)
vecX + 2B′

(
ZX ⊗ Σ−1

ε

)
vecX +B′

(
ZXZ

′
X ⊗ Σ−1

ε

)
B

and so
∂

∂B
T1 tr

{
Σ−1
ε sX,T1 (β)

}
= 2

(
ZX ⊗ Σ−1

ε

)
vecX + 2

(
ZXZ

′
X ⊗ Σ−1

ε

)
B.

Similarly,

∂

∂B
T2 tr

{
Σ−1
u sY,T2 (β)

}
= 2

(
ZY ⊗ Σ−1

u

)
vecY + 2

(
ZY Z

′
Y ⊗ Σ−1

u

)
B.

The first derivative of l0 (θ) with respect to B is therefore

∂l0 (θ)

∂B
= −

(
ZX ⊗ Σ−1

ε

)
vecX −

(
ZXZ

′
X ⊗ Σ−1

ε

)
B −

(
ZY ⊗ Σ−1

u

)
vecY −

(
ZY Z

′
Y ⊗ Σ−1

u

)
B

= −
{
ZX

(
X ′ + Z ′Xβ

′)⊗ Id}Aε − {ZY (Y ′ + Z ′Y β
′)⊗ Id}Au.

Thus
∂2l0 (θ)

∂B∂A′ε
= −

{
(X + βZX)Z ′X ⊗ Id

}
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and so

T−1
1

∂2l0 (θ0)

∂B∂A′ε
= −

(
T−1

1 εZ ′X ⊗ Id
)
→ 0

from (5.7). Similarly,

T−1
1

∂2l0 (θ0)

∂B∂A′u
= −

(
κT−1

2 uZ ′Y ⊗ Id
)
→ 0.

It follows that T
1/2
1

(
B̂ −B0

)
has the same asymptotic distribution as

−
{
T−1

1

∂2l0 (θ0)

∂B∂B′

}−1{
T
−1/2
1

∂l0 (θ0)

∂B

}
.

The second derivative of l0 (θ) with respect to B is

∂2l0 (θ)

∂B∂B′
= −

(
ZXZ

′
X ⊗ Σ−1

ε

)
−
(
ZY Z

′
Y ⊗ Σ−1

u

)
and so

−T−1
1

∂2l0 (θ0)

∂B∂B′
→
(
ΓX ⊗ Σ−1

ε0

)
+ κ

(
ΓY ⊗ Σ−1

u0

)
.

Also,

∂l0 (θ0)

∂B
= −

(
ZXε

′ ⊗ Id
)
Aε0 −

(
ZY u

′ ⊗ Id
)
Au0

= −
(
Idp ⊗ Σ−1

ε0

)
vec
(
εZ ′X

)
−
(
Idp ⊗ Σ−1

u0

)
vec
(
uZ ′Y

)
.

From Lemma 5.1, the distribution of

T
−1/2
1

(
Idp ⊗ Σ−1

ε0

)
vec
(
εZ ′X

)
converges to the normal distribution with mean zero and covariance matrix ΓX ⊗ Σ−1

ε0 as

T1 →∞. Similarly, the distribution of

T
−1/2
1

(
Idp ⊗ Σ−1

u0

)
vec
(
uZ ′Y

)
converges to the normal distribution with mean zero and covariance matrix κ

(
ΓY ⊗ Σ−1

u0

)
as

T1 → ∞. The distribution of vec
(
β̂ − β0

)
therefore converges to the normal distribution

with mean zero and covariance matrix

{(
ΓX ⊗ Σ−1

ε0

)
+ κ

(
ΓY ⊗ Σ−1

u0

)}−1

as T1 →∞.
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5.A.7 Proof of Theorem 5.5

Let B = vecβ, Aε = vec
(
Σ−1
ε

)
and θ =

[
B′ A′ε λ

]′
. From the mean value theorem, and

since θ̂ → θ0,
(
θ̂ − θ0

)
has the same asymptotic distribution as

−
{
∂2l0 (θ0)

∂θ∂θ′

}−1
∂l0 (θ0)

∂θ
.

The first derivative of l0 (θ) with respect to B is

∂l0 (θ)

∂B
= −

(
ZX ⊗ Σ−1

ε

)
vecX −

(
ZXZ

′
X ⊗ Σ−1

ε

)
B − λ

(
ZY ⊗ Σ−1

ε

)
vecY

− λ
(
ZY Z

′
Y ⊗ Σ−1

ε

)
B

= −
{
ZX

(
X ′ + Z ′Xβ

)
⊗ Id

}
Aε − λ

{
ZY
(
Y ′ + Z ′Y β

′)⊗ Id}Aε.
Thus

∂2l0 (θ)

∂B∂A′ε
= −

{
(X + βZX)Z ′X ⊗ Id

}
− λ

{
(Y + βZY )Z ′Y ⊗ Id

}
and

∂2l0 (θ)

∂B∂λ
= −

{
ZY
(
Y ′ + Z ′Y β

)
⊗ Id

}
Aε.

Therefore

− (T1 + T2)−1 ∂
2l0 (θ0)

∂B∂A′ε
= (T1 + T2)−1 {(εZ ′X ⊗ Id)+ λ

(
uZ ′Y ⊗ Id

)}
→ 0

and

−T−1
2

∂2l0 (θ0)

∂B∂λ
= T−1

2

(
ZY u

′ ⊗ Id
)
Aε0

= T−1
2

(
Idp ⊗ Σ−1

ε0

)
vec
(
uZ ′Y

)
→ 0.

It follows that (T1 + T2)1/2
(
B̂ −B0

)
has the same asymptotic distribution as

−
{

(T1 + T2)−1 ∂
2l0 (θ0)

∂B∂B′

}−1{
(T1 + T2)−1/2 ∂l0 (θ0)

∂B

}
.

The second derivative of l0 (θ) with respect to B is

∂2l0 (θ)

∂B∂B′
= −

(
ZXZ

′
X ⊗ Σ−1

ε

)
− λ

(
ZY Z

′
Y ⊗ Σ−1

ε

)
.

Now,

ΓX (0) = E
(
X0X

′
0

)
= E

{
(ε0 − β0ZX,0) (ε0 − β0ZX,0)′

}
= E

(
ε0ε
′
0 − ε0Z

′
X,0β

′
0 − β0ZX,0ε

′
0 + βZX,0Z

′
X,0β

′)
= Σε0 + β0ΓXβ

′
0
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and, similarly,

ΓY (0) = Σu0 + β0ΓY β
′
0.

Since Σε0 = λ0Σu0,

ΓX (0)− β0ΓXβ
′
0 = λ0ΓY (0)− λ0β0ΓY β

′
0.

Thus ΓX = λ0ΓY and so

− (T1 + T2)−1 ∂
2l0 (θ0)

∂B∂B′
→
(
ΓX ⊗ Σ−1

ε0

)
.

Also,

∂l0 (θ0)

∂B
= −

(
ZXε

′ ⊗ Id
)
Aε0 − λ0

(
ZY u

′ ⊗ Id
)
Aε0

= −
(
Idp ⊗ Σ−1

ε0

)
vec
(
εZ ′X

)
− λ0

(
Idp ⊗ Σ−1

ε0

)
vec
(
uZ ′Y

)
.

From Lemma 5.1, the distribution of

T
−1/2
1

(
Idp ⊗ Σ−1

ε0

)
vec
(
εZ ′X

)
converges to the normal distribution with mean zero and covariance matrix

(
ΓX ⊗ Σ−1

ε0

)
as

T1 →∞. Similarly, the distribution of

T
−1/2
2 λ0

(
Idp ⊗ Σ−1

ε0

)
vec
(
uZ ′Y

)
converges to the normal distribution with mean zero and covariance matrix

(
ΓX ⊗ Σ−1

ε0

)
as

T2 → ∞. Let a =
[
a1 · · · ad2p

]
for constants a1, . . . , ad2p. Then, from Lemma 3.1, the

distribution of

(T1 + T2)−1/2 a
[(
Idp ⊗ Σ−1

ε0

)
vec
(
εZ ′X

)
+ λ0

(
Idp ⊗ Σ−1

ε0

)
vec
(
uZ ′Y

)]
converges to the normal distribution with mean zero and variance a′

(
ΓX ⊗ Σ−1

ε0

)
a. The

distribution of (T1 + T2)1/2 vec
(
β̂ − β0

)
therefore converges to the normal distribution with

mean zero and covariance matrix Γ−1
X ⊗ Σε0 as T1, T2 →∞.

5.A.8 Proof of Theorem 5.6

Let B = vecβ, Aε = vec
(
Σ−1
ε

)
, L = vec Λ and θ =

[
B′ A′ε L

]′
. From the mean value

theorem, and since θ̂ → θ0,
(
θ̂ − θ0

)
has the same asymptotic distribution as

−
{
∂2l0 (θ0)

∂θ∂θ′

}−1
∂l0 (θ)

∂θ
.
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The first derivative of l0 (θ) with respect to B is

∂l0 (θ)

∂B
= −

(
ZX ⊗ Σ−1

ε

)
vecX −

(
ZXZ

′
X ⊗ Σ−1

ε

)
B −

{
(Ip ⊗ Λ)ZY ⊗ Σ−1

ε Λ
}

vecY

−
{

(Ip ⊗ Λ)ZY Z
′
Y (Ip ⊗ Λ)⊗ Σ−1

ε

}
B

= −
{
ZX

(
X ′ + Z ′Xβ

′)⊗ Id}Aε − [(Ip ⊗ Λ)ZY
{
Y ′Λ + Z ′Y (Ip ⊗ Λ)β′

}
⊗ Id

]
Aε.

As before,

− (T1 + T2)−1 ∂
2l0 (θ0)

∂B∂A′ε
→ 0.

It can also be shown that

− (T1 + T2)−1 ∂
2l0 (θ0)

∂B∂L′
→ 0.

It follows that (T1 + T2)1/2
(
B̂ −B0

)
has the same asymptotic distribution as

−
{

(T1 + T2)−1 ∂
2l0 (θ0)

∂B∂B′

}−1{
(T1 + T2)−1/2 ∂l0 (θ0)

∂B

}
.

The second derivative of l0 (θ) with respect to B is

∂2l0 (θ)

∂B∂B′
= −

(
ZXZ

′
X ⊗ Σ−1

ε

)
−
{

(Ip ⊗ Λ)ZY Z
′
Y (Ip ⊗ Λ)⊗ Σ−1

ε

}
.

Now,

ΓX (0) = Σε0 + βΓXβ
′

and

ΓY (0) = Σu + Λ−1
0 β0 (Ip ⊗ Λ0) ΓY (Ip ⊗ Λ0)β′0Λ−1

0 .

Since Σε0 = ΛΣu0Λ,

ΓX (0)− βΓXβ
′ = Λ0ΓY (0) Λ0 − β0 (Ip ⊗ Λ0) ΓY (Ip ⊗ Λ0)β′0.

Thus ΓX = (Ip ⊗ Λ0) ΓY (Ip ⊗ Λ0) and so

− (T1 + T2)−1 ∂
2l0 (θ0)

∂B∂B′
→
(
ΓX ⊗ Σ−1

ε0

)
.

Also,

∂l0 (θ0)

∂B
= −

(
ZXε

′ ⊗ Id
)
Aε0 −

{
(Ip ⊗ Λ0)ZY u

′Λ0 ⊗ Id
}
Aε0

= −
(
Idp ⊗ Σ−1

ε0

)
vec
(
εZ ′X

)
−
{

(Ip ⊗ Λ0)⊗ Σ−1
ε0 Λ0

}
vec
(
uZ ′Y

)
.

From Lemma 5.1, the distribution of

T
−1/2
1

(
Idp ⊗ Σ−1

ε0

)
vec
(
εZ ′X

)
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converges to the normal distribution with mean zero and covariance matrix ΓX ⊗ Σ−1
ε0 as

T1 →∞. Similarly, the distribution of

T
−1/2
2

{
(Ip ⊗ Λ0)⊗ Σ−1

ε0 Λ0

}
vec
(
uZ ′Y

)
converges to the normal distribution with mean zero and covariance matrix ΓX ⊗ Σ−1

ε0 as

T2 → ∞. Let a =
[
a1 · · · ad2p

]
for constants a1, . . . , ad2p. Then, from Lemma 3.1, the

distribution of

(T1 + T2)−1/2 [(Idp ⊗ Σ−1
ε0

)
vec
(
εZ ′X

)
+
{

(Ip ⊗ Λ0)⊗ Σ−1
ε0 Λ0

}
vec
(
uZ ′Y

)]
converges to the normal distribution with mean zero and covariance matrix a′

(
ΓX ⊗ Σ−1

ε0

)
a.

The distribution of (T1 + T2)1/2 vec
(
β̂ − β0

)
therefore converges to the normal distribution

with mean zero and covariance matrix Γ−1
X ⊗ Σε0 as T1, T2 →∞.
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6
The Estimation of Frequency in the Multichannel

Sinusoidal Model

6.1 Introduction

An important class of stationary processes, arising in many applications, consist of those

which contain periodic components. An example of a periodic process is the vibration through

the air produced by a musical note. The soundwave will oscillate at a fixed, regular, interval,

known as the period. The number of oscillations that occur for each unit of time is the

frequency. In practice, a recording of the note will not oscillate exactly at this fixed frequency

since the recording will be subject to, for example, background noise or variation in the

recording device. The time series can therefore be considered to be generated by a process

which consists of both a deterministic periodic component, which we refer to as the signal, and

a stationary stochastic component, which we refer to as the noise. The stationary component

also reflects the fact that some phenomena which we model in this way are only approximately

periodic. It is often of interest to estimate the fixed frequency, or frequencies, of the periodic

components given the noisy signal.

Typically, periodic processes are modelled as the sum of sinusoids and a stationary



96 The Estimation of Frequency in the Multichannel Sinusoidal Model

stochastic noise process, that is,

Xt = µ+

f∑
j=1

ρj cos (ωjt+ φj) + εt, (6.1)

where ρj is the amplitude and φj is the phase of the jth sinusoid, µ is a constant mean term

and ω ∈ (0, π). These are called mixed spectra models. The noise process, {εt}, is assumed

to be stationary with a smooth spectral density, and can be modelled as, for example, an

autoregression. It is often convenient to reparametrise (6.1) as

Xt = µ+

f∑
j=1

{αj cos (ωjt) + βj sin (ωjt)}+ εt, (6.2)

where αj = ρj cosφj and βj = −ρj sinφj .

There is an extensive literature on the estimation of the parameters in (6.1), or equiva-

lently in (6.2), when {Xt} is univariate (see, for example, Quinn and Hannan, 2001). There

has, however, been little work on the case where {Xt} is a vector process. In the multivariate

case, the model we consider is the same as (6.2), but where αj and βj , j = 1, . . . , f , are d× 1

and {εt} is d-dimensional. Its interpretation is that we have a periodic vector process where

each component of the deterministic part is made up of sinusoids with common frequencies

but with possibly different amplitudes and phases. It has been referred to as the multichannel

sinusoidal model (Sakai, 1993).

The estimation of frequency in the multichannel model was considered by Sakai (1993)

for the case where the true frequencies were Fourier frequencies. It was also assumed that

the noise was Gaussian and white. In practice, the true frequencies are unlikely to be exactly

Fourier frequencies and the noise may be non-Gaussian and/or coloured. In this chapter we

develop procedures for estimating the frequencies in this more general setting.

The chapter begins with a brief overview of univariate frequency estimation which will

motivate the methods used in the multivariate case. We then develop procedures for esti-

mating a single frequency in the multichannel model and establish the asymptotic properties

of the estimators. We also discuss how to use the procedures to estimate more than one

frequency. Results of simulation studies are presented which demonstrate the performance

of the estimation procedures in practice.
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6.2 Univariate Frequency Estimation

6.2.1 Estimating a Single Frequency

We begin by considering the case where there is a single frequency, that is where f = 1, and

{εt} is Gaussian and white. That is, we consider the model

Xt = µ+ α cos (ωt) + β sin (ωt) + εt, (6.3)

where εt is normal with mean zero and variance σ2, t = 0, . . . , T −1, and T is the sample size.

Gaussianity is assumed initially so that the maximum likelihood and least squares techniques

are the same. Later on, the assumption of Gaussianity will be dropped.

The log-likelihood is

− T

2
log
(
2πσ2

)
− 1

2σ2
{X −MT (ω) θ}′ {X −MT (ω) θ} , (6.4)

where

X =
[
X0 · · · XT−1

]′
,

θ =
[
µ α β

]′
and MT (ω) is the T × 3 matrix with (t+ 1)th row[

1 cos (ωt) sin (ωt)
]
,

t = 0, . . . , T − 1. For fixed ω, (6.4) is maximised with respect to θ by

{
M ′T (ω)MT (ω)

}−1 {
M ′T (ω)X

}
.

But

M ′T (ω)MT (ω) = T diag

(
1,

1

2
,
1

2

)
+O (1) (6.5)

since, for ω 6= 0, π,

T−1∑
t=0

cos2 (ωt) =
T

2
+O (1) ,

T−1∑
t=0

sin2 (ωt) =
T

2
+O (1) , (6.6)

and

T−1∑
t=0

cos (ωt) = O (1) ,

T−1∑
t=0

sin (ωt) = O (1) ,

T−1∑
t=0

cos (ωt) sin (ωt) = O (1) . (6.7)

Hence the maximum likelihood estimator of θ has the same asymptotic properties as

θ̂T (ω) =
[
X 2T−1

∑T−1
t=0 Xt cos (ωt) 2T−1

∑T−1
t=0 Xt sin (ωt)

]′
, (6.8)
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where X = T−1
∑T−1

t=0 Xt. Maximum likelihood estimation of ω therefore consists of min-

imising

X ′X − 2θ̂′T (ω)
{
M ′T (ω)X

}
+ θ̂′T (ω)

{
M ′T (ω)MT (ω)

}
θ̂T (ω) (6.9)

with respect to ω. From (6.5) and (6.8), (6.9) is equal to

T−1∑
t=0

(
Xt −X

)2 − 2T−1

{
T−1∑
t=0

Xt cos (ωt)

}2

− 2T−1

{
T−1∑
t=0

Xt sin (ωt)

}2

+ o (1) .

Thus, the maximum likelihood estimator of ω is asymptotically equivalent to the maximiser

of

IT,X (ω) = 2T−1

{
T−1∑
t=0

Xt cos (ωt)

}2

+ 2T−1

{
T−1∑
t=0

Xt sin (ωt)

}2

= 2T−1

∣∣∣∣∣
T−1∑
t=0

Xte
−iωt

∣∣∣∣∣
2

,

which is the periodogram.

Let ω̂ be the maximiser of IT,X (ω) and ω0 be the true frequency. Walker (1971) showed

that T (ω̂ − ω0) → 0 almost surely and that the distribution of T 3/2 (ω̂ − ω0) converges to

the normal distribution with mean zero and variance 24σ2/ρ2, where ρ2 = α2 + β2. Hannan

(1973b) showed that if {εt} is not white, but coloured, with spectral density fε (ω), and not

necessarily Gaussian, T (ω̂ − ω0) → 0 almost surely and the distribution of T 3/2 (ω̂ − ω0)

converges to the normal distribution with mean zero and variance 48πfε (ω0) /ρ2.

6.2.2 Estimating More Than One Frequency

We now consider the case where f > 1. If {εt} is Gaussian and white, the same calculations

as above show that maximum likelihood estimation of ω1, . . . , ωf is asymptotically equivalent

to minimising
T−1∑
t=0

(
Xt −X

)2 − f∑
j=1

IT,X (ωj) . (6.10)

This is the same as finding local maxima for IT,X (ω). This cannot be done in practice, as

associated with each local maximum are “sidelobes”, which give rise to other local maxima

close to these. Providing none of the frequencies are too close together, they can be estimated

one at a time, with the sinusoid corresponding to each estimated frequency removed from

the time series by regression before estimating the next. The procedure for estimating the f

frequencies is given in Algorithm 6.1 (see Quinn and Hannan, 2001).

Now suppose that {εt} is coloured with spectral density fε (ω) and let Γε be the T × T

matrix with (i, j)th element Γε (|i− j|), where

Γε (j) = E (εtεt+j) ,
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Algorithm 6.1 Estimating f frequencies in the univariate sinusoidal model

1. Let j = 1.

2. Maximise the periodogram of {Xt} in order to obtain ω̂j , where ω̂j is the estimator of

the frequency with the jth largest amplitude.

3. Estimate αj and βj by

α̂j = 2T−1
T−1∑
t=0

Xt cos (ω̂jt) and β̂j = 2T−1
T−1∑
t=0

Xt sin (ω̂jt) ,

respectively.

4. Put

Xt = Xt − α̂j cos (ω̂jt)− β̂j sin (ω̂jt) .

5. Let j = j + 1.

6. Repeat steps 2-5 until f frequencies have been estimated.

which is the jth autocovariance. The Gaussian log-likelihood is then

− T

2
log (2π)− 1

2
log |Γε| −

1

2
{X −MT,f (ω) θf}′ Γ−1

ε {X −MT,f (ω) θf} , (6.11)

where

θf =
[
µ α1 · · · αf β1 · · · βf

]′
and MT,f (ω) is the T × (2f + 1) matrix with (t+ 1)th row

[
1 cos (ω1t) · · · cos (ωf t) sin (ω1t) · · · sin (ωf t)

]
,

t = 0, . . . , T − 1. As shown in Quinn and Hannan (2001), the maximiser of (6.11) is asymp-

totically equivalent to the maximiser of

f∑
j=1

IT,X (ωj)

4πfε (ωj)
.

It follows that even if the spectral density is known, or unknown but estimated in some con-

sistent way, we do not get better estimates, asymptotically, than we do by simply minimising

(6.10). We can therefore use Algorithm 6.1 to estimate frequencies without assuming that

the noise is Gaussian and white. The exception to this is the case where the frequencies are

harmonics of a fundamental frequency, that is, when

Xt = µ+

f∑
j=1

{αj cos (jωt) + βj sin (jωt)}+ εt. (6.12)
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Quinn and Thomson (1991) showed that ω in (6.12) can be estimated by maximising

f∑
j=1

IT,X (jω)

f̂ε (jω)
,

where f̂ε (ω) is a consistent estimator of fε (ω). Such an estimator may be obtained, for

example, from a smoothed periodogram or by fitting a long-order autoregression.

We finally mention, for completeness, the case where two frequencies are close together.

The procedures described above may not work in this case, since they may not discriminate

between a local maximum of the periodogram due to one of the frequencies and a sidelobe

of the other. We will not consider this case here but refer the reader to Hannan and Quinn

(1989) for more details.

6.2.3 Maximising the Periodogram

In practice, the periodogram is very difficult to maximise. However, it can be easily evaluated

at the set of Fourier frequencies using the fast Fourier transform algorithm. The maximiser

of the periodogram over the Fourier frequencies will give an estimator for ω which is accurate

to O
(
T−1

)
which is less than the desired accuracy of O

(
T−3/2

)
. It is often used, however,

as an initial estimate in some other estimation technique. For example, it may be used to

initialise the Gauss–Newton algorithm to maximise the Gaussian white log-likelihood. Using

the Gauss–Newton algorithm in this way is not guaranteed to converge to the true frequency

(see, for example, Rice and Rosenblatt, 1988). However, Quinn et al. (2008) have shown that

it will converge if the initial estimate is computed using the periodogram of the time series

zero-padded to four times its length. An alternative approach to maximising the periodogram

is to use the Quinn–Fernandes technique (Quinn and Fernandes, 1991). This technique is

computationally fast and will result in an estimator which has the same central limit theorem

as the periodogram maximiser. Both approaches are detailed below.

Maximising the Gaussian White Log-Likelihood Using the Gauss–Newton Algo-

rithm

From the asymptotic results in Section 6.2.1, we can maximise the Gaussian white log-

likelihood by minimising

RT (ω) = E′T (ω)ET (ω) ,

where

ET (ω) = X −MT (ω) θ̂ (ω) .
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The derivative of RT (ω) is

2E′T (ω)
d

dω
ET (ω)

and so, given a current estimate of ω, denoted ω̃, the Gauss–Newton algorithm updates the

estimate by

ω̃ −
E′T (ω̃) d

dωET (ω̃)
d
dωE

′
T (ω̃) d

dωET (ω̃)
(6.13)

and repeats until convergence. The derivative of ET (ω) is

−
{
d

dω
MT (ω)

}
θ̂T (ω)

+MT (ω)
{
M ′T (ω)MT (ω)

} [{ d

dω
M ′T (ω)MT (ω)

}
θ̂T (ω)−

{
d

dω
M ′T (ω)

}
X

]
. (6.14)

Even using asymptotic results, this can be onerous to compute. However, the algorithm can

be computed efficiently, and the required quantities calculated exactly, by reparametrising

(6.3) as

Xt = µ∗ + α∗ [cos {ω (t− ν)} − c (ω)] + β∗ sin {ω (t− ν)}+ εt,

where ν = (T − 1) /2,

cT (ω) = T−1
T−1∑
t=0

cos {ω (t− ν)} and µ∗ = µ+ α∗cT (ω) .

Let

E∗T (ω) = X −M∗T (ω) θ̂∗T (ω) ,

where

θ̂∗T (ω) =
{
M∗′T (ω)M∗T (ω)

}−1 {
M∗′T (ω)X

}
and M∗T (ω) is the T × 3 matrix with (t+ 1)th row

[
1 cos {ω (t− ν)} − cT (ω) sin {ω (t− ν)}

]
, (6.15)

t = 0, . . . , T − 1. Under the reparametrisation, M∗′T (ω)M∗T (ω), its inverse and its derivative

can easily be computed exactly since

T−1∑
t=0

cos {2ω (t− ν)}

is the real part of

T−1∑
t=0

e2iω(t−ν) = e−2iων e
2iωT − 1

e2iω − 1
=
eiωT − e−iωT

eiω − e−iω
=

sin (ωT )

sin (ω)
.
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Letting sT (ω) = sin (ωT ) / sin (ω),

M∗′T (ω)M∗T (ω) =


T 0 0

0 DT1 (ω) 0

0 0 DT2 (ω)

 ,
where

DT1 (ω) =
T−1∑
t=0

[cos {ω (t− 1)} − c (ω)]2 =
T

2
+

1

2
sT (ω)− T−1s2

T (ω/2)

and

DT2 (ω) =

T−1∑
t=0

sin2 {ω (t− 1)} =
T

2
− 1

2
sT (ω) .

The derivatives of sT (ω) and s2
T (ω) are

d

dω
sT (ω) =

T cos (ωT )

sin (ω)
− cos (ω) sin (ωT )

sin2 (ω)

and
d

dω
s2
T (ω) = 2

{
d

dω
sT (ω)

}
sT (ω) .

Thus

d

dω

{
M∗′T (ω)M∗T (ω)

}
=


0 0 0

0 d
dωDT1 (ω) 0

0 0 d
dωDT2 (ω)

 ,
where

d

dω
DT1 (ω) =

1

2

d

dω
sT (ω)− T−1

{
d

dω
sT (ω/2)

}
sT (ω/2)

and
d

dω
DT2 (ω) = −1

2

d

dω
sT (ω) .

Finally, dMT (ω) /dω is the T × 3 matrix with (t+ 1)th row[
0 − (t− ν) sin {ω (t− ν)} − (2T )−1 d

dωsT (ω/2) (t− ν) cos {ω (t− ν)}
]
,

t = 0, . . . , T − 1. The algorithm can therefore be performed by replacing ET (ω) and

dET (ω) /dω in (6.13) by E∗T (ω) and dE∗T (ω) /dω, respectively, which are given by replacing

θ̂T (ω) and MT (ω) with θ̂∗T (ω) and M∗T (ω), respectively.

The Quinn–Fernandes Technique

The Quinn–Fernandes technique is motivated by the fact that, assuming µ = 0 and with {εt}

not necessarily white, (6.3) can be rewritten as

Xt − 2 cos (ω)Xt−1 +Xt−2 = εt − 2 cos (ω) εt−1 + εt−2,
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which is the ARMA(2, 2)-like model

Xt − bXt−1 +Xt−2 = εt − aεt−1 + εt−2, (6.16)

where a = b = 2 cosω. Letting {ξt} be the process given by

ξt = Xt + aξt−1 − ξt−2,

where ξ−1 = ξ−2 = 0, (6.16) becomes

ξt + ξt−2 = bξt−1 + εt.

Thus, given an estimate of a, b can be estimated by regressing ξt + ξt−2 on ξt−1. That is, by∑T1−1
t=0 (ξt + ξt−2) ξt−1∑T1−1

t=0 ξ2
t−1

= a+

∑T−1
t=0 Xtξt−1∑T−1
t=0 ξ2

t−1

. (6.17)

This estimate of b can be used to re-estimate a which can in turn be used to re-compute {ξt}.

An accelerated version of the algorithm multiplies the final term in (6.17) by two, increasing

the rate of convergence. The full procedure is given in Algorithm 6.2. Note that since we are

assuming that the process has zero mean, the data should be first mean corrected.

Algorithm 6.2 The Quinn–Fernandes Technique

1. Put â = 2 cos ω̂, where ω̂ is an initial estimate of ω.

2. For t = 0, . . . , T − 1, let

ξt = Xt + âξt−1 − ξt−2,

where ξ−1 = ξ−2 = 0.

3. Let b̂ = â+ ν, where

ν = 2

∑T−1
t=0 Xtξt−1∑T−1
t=0 ξ2

t−1

,

and put â = b̂.

4. Repeat steps 2 and 3 until |ν| converges to 0.

5. Put ω̂ = cos−1 (â/2).

Quinn and Fernandes (1991) showed that the estimator of ω obtained by Algorithm 6.2 is

strongly consistent and follows the same central limit theorem as the periodogram maximiser.

Furthermore, provided the initial estimator of ω is accurate to O
(
T−1/2

)
, steps 2 and 3 need

to be repeated only once in order for the algorithm to be accurate to O
(
T−3/2

)
. Such an

initial estimator will be obtained from the maximiser of the periodogram of {Xt} evaluated

at the Fourier frequencies.
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6.2.4 Estimating the Number of Frequencies

Until now we have assumed that the number of frequencies, f , is known. However, in practice

this will not be the case. Quinn (1989), Wang (1993) and Kavalieris and Hannan (1994) have

proposed information criteria to estimate the number of frequencies. The most general result

is that of Kavalieris and Hannan (1994) which uses the information criterion

φ (f, p) = T log
(
σ̂2
f,p

)
+ (p+ 5f) log T,

where σ̂2
f,p is the estimator of the residual variance obtained by fitting an autoregression of

order p to the time series given by removing f sinusoids from {Xt} by regression. The 5f term

reflects the fact that, for each additional frequency estimated, σ̂2
f,p involves the estimation of

an additional two parameters, αf and βf , which have asymptotic standard error of O
(
T−1/2

)
and of one additional parameter, ωf , which has asymptotic standard error of O

(
T−3/2

)
. For

each f = 0, . . . , F , where F is assumed to be greater than the true number of frequencies,

the autoregressive order is estimated by p̂, and then the number of frequencies is estimated

by the minimiser of φ (f, p̂).

6.3 Multichannel Frequency Estimation

6.3.1 Estimating a Single Frequency

As in the univariate case, we begin with the case where f = 1. That is, we consider the

model

Xt = µ+ α cos (ωt) + β sin (ωt) + εt, (6.18)

where µ, α, β, Xt and εt are d×1. We will motivate the estimation techniques by maximising

the log-likelihood as though εt is d-dimensional multivariate normal with mean zero and

covariance matrix Σ, t = 0, . . . , T − 1. The log-likelihood is then

− Td

2
log (2π)− T

2
log |Σ| − 1

2
tr
[{
X − θM ′T (ω)

}′
Σ−1

{
X − θM ′T (ω)

}]
, (6.19)

where

X =
[
X0 · · · XT−1

]
,

θ =
[
µ α β

]
and MT (ω) is defined in the same way as in the univariate case. Note that X is now a d×T

matrix whose columns are the different samples. For fixed ω, the maximiser of (6.19) with

respect to θ is

{XMT (ω)}
{
M ′T (ω)MT (ω)

}−1
,
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which, because of (6.6) and (6.7), has the same asymptotic properties as

θ̂T (ω) =
[
X 2T−1

∑T−1
t=0 cos (ωt)Xt 2T−1

∑T−1
t=0 sin (ωt)Xt

]
.

The maximiser of (6.19) with respect to Σ therefore has the same asymptotic properties as

Σ̂T (ω) = T−1


T−1∑
t=0

(
Xt −X

) (
Xt −X

)′ −

I11 (ω) · · · I1d (ω)

...
. . .

...

Id1 (ω) · · · Idd (ω)


 ,

where

Ijk (ω) = 2T−1

[{
T−1∑
t=0

cos (ωt)Xt,j

}{
T−1∑
t=0

cos (ωt)Xt,k

}

+

{
T−1∑
t=0

sin (ωt)Xt,j

}{
T−1∑
t=0

sin (ωt)Xt,k

}]

= 2T−1 Re

[{
T−1∑
t=0

e−iωtXt,j

}{
T−1∑
t=0

eiωtXt,k

}]

and Xt,j is the jth component of Xt. Substituting θ̂T (ω) and Σ̂T (ω) into (6.19), we have

−Td
2
{1 + log (2π)} − T

2
log
∣∣∣Σ̂T (ω)

∣∣∣ .
The maximum likelihood estimator of ω is thus found by minimising

∣∣∣Σ̂T (ω)
∣∣∣. In order to

minimise this, and to derive the asymptotic properties of the minimiser, the following lemma

will be useful. The proof of the lemma is in the Appendix.

Lemma 6.1 If A and B are d-dimensional vectors then

∣∣Id −AA′ −BB′∣∣ = 1−
(
A′A+B′B

)
+
(
A′A

) (
B′B

)
−
(
A′B

)2
and ∣∣Id +AA′ +BB′

∣∣ = 1 +
(
A′A+B′B

)
+
(
A′A

) (
B′B

)
−
(
A′B

)2
.

Now, letting

VT =

T−1∑
t=0

(
Xt −X

) (
Xt −X

)′
,

CT (ω) =
√

2T−1/2
T−1∑
t=0

cos (ωt)Xt

and

ST (ω) =
√

2T−1/2
T−1∑
t=0

sin (ωt)Xt,
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Σ̂T (ω) can be rewritten as

Σ̂T (ω) = T−1
{
VT − CT (ω)C ′T (ω)− ST (ω)S′T (ω)

}
.

The determinant of Σ̂T (ω) is therefore

T−d
∣∣VT − CT (ω)C ′T (ω)− ST (ω)S′T (ω)

∣∣
= T−d

∣∣∣V 1/2
T

∣∣∣ ∣∣∣Id − V −1/2
T CT (ω)C ′T (ω)V

−1/2
T − V −1/2

T ST (ω)S′T (ω)V
−1/2
T

∣∣∣ ∣∣∣V 1/2
T

∣∣∣ .
From Lemma 6.1, putting

A = V
−1/2
T CT (ω) and B = V

−1/2
T ST (ω) ,

we have∣∣∣Id − V −1/2
T CT (ω)C ′T (ω)V

−1/2
T − V −1/2

T ST (ω)S′T (ω)V
−1/2
T

∣∣∣
= 1− C ′T (ω)V −1

T CT (ω)− S′T (ω)V −1
T ST (ω) +

{
C ′T (ω)V −1

T CT (ω)
}{

S′T (ω)V −1
T ST (ω)

}
−
{
C ′T (ω)V −1

T ST (ω)
}2
.

In order to compute the maximum likelihood estimator of ω we must therefore maximise

JT (ω) = C ′T (ω)V −1
T CT (ω) + S′T (ω)V −1

T ST (ω)−
{
C ′T (ω)V −1

T CT (ω)
}{

S′T (ω)V −1
T ST (ω)

}
+
{
C ′T (ω)V −1

T ST (ω)
}2
.

Suppose now that {εt} is not white, but coloured, with spectral density fε (ω). Let

ω̂ = arg max
ω

JT (ω)

and denote by ω0, Σ0 and θ0 =
[
µ0 α0 β0

]
the true values of ω, Σ and θ, respectively.

Theorem 6.1 shows that T (ω̂ − ω0) converges almost surely to 0 and Theorem 6.2 establishes

the central limit theorem. The proofs of the theorems are in the Appendix.

Theorem 6.1 T (ω̂ − ω0)→ 0 almost surely as T →∞.

Theorem 6.2 The distribution of T 3/2 (ω̂ − ω0) converges to the normal distribution with

mean zero and variance

48π
α′0Σ−1

0 fε (ω0) Σ−1
0 α0 + β′0Σ−1

0 fε (ω0) Σ−1
0 β0(

α′0Σ−1
0 α0 + β′0Σ−1

0 β0

)2
as T →∞.
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The above suggests that rather than maximising JT (ω), we might maximise the simpler

function

J̃T,Ω (ω) = C ′T (ω) ΩCT (ω) + S′T (ω) ΩST (ω)

= F ∗T (ω) ΩFT (ω) ,

where

FT (ω) = CT (ω)− iST (ω)

=
√

2T−1/2
T−1∑
t=0

e−iωtXt

and Ω is a suitable positive definite symmetric matrix. Let

ω̃ = arg max
ω

J̃T,Ω (ω) .

Theorem 6.3 shows that T (ω̃ − ω0) converges almost surely to 0 and Theorem 6.4 establishes

the central limit theorem.

Theorem 6.3 T (ω̃ − ω0)→ 0 almost surely as T →∞.

Theorem 6.4 The distribution of T 3/2 (ω̃ − ω0) converges to the normal distribution with

mean zero and variance

48π
α′0Ωfε (ω0) Ωα0 + β′0Ωfε (ω0) Ωβ0

(α′0Ωα0 + β′0Ωβ0)2 (6.20)

as T →∞.

Letting η0 = α0 − iβ0, (6.20) can be rewritten as

48π
η∗0Ωfε (ω0) Ωη0

(η∗0Ωη0)2 .

An application of the Kantorovich matrix inequality (see Gentle, 2017, Section 8.4.3) shows

that
η∗0Ωfε (ω0) Ωη0

(η∗0Ωη0)2 >
1

η∗0f
−1
ε (ω0) η0

(6.21)

with equality if and only if Ω = cf−1
ε (ω0) for some constant c. To see this, consider the

Cauchy–Schwarz inequality, (
x′x
) (
y′y
)
>
(
x′y
)2

with equality if and only if x = cy, for vectors x and y and any constant c. Putting x = Q−1/2z

and y = Q1/2z, where Q is positive definite, we have

(
z′Q−1z

) (
z′Qz

)
>
(
z′z
)2
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with equality if and only if

Q−1/2z = cQ1/2z,

that is, if and only if Q = cId. Now, putting z = Ω1/2η0 and Q = Ω−1/2f−1
ε (ω0) Ω−1/2, we

obtain (6.21) and have equality if and only if

Ω−1/2f−1
ε (ω0) Ω−1/2 = cId,

that is, if and only if Ω = cf−1
ε (ω0), for some scalar constant c.

An efficient estimator of ω can therefore be obtained by maximising J̃T,Ω (ω) with Ω

equal to f−1
ε (ω0). In practice, fε (ω0) will not be known, and will need to be estimated. Note

that the multivariate case is thus very different from the univariate, where estimation of the

spectral density is not needed.

6.3.2 Autoregressive Approximation

Since {εt} is stationary, it can be modelled by a long-order autoregression. We thus fit

Xt = µ+ α cos (ωt) + β sin (ωt) + εt,

where
p∑
j=0

δjεt−j = ut,

δ0 = Id, δj , j = 1, . . . , p, are d × d and {ut} is d-dimensional. We assume that {ut} is a

sequence of martingale differences and that

E
(
utu
′
t | Ft−1

)
= G,

where Ft is the σ-field generated by {ut, ut−1, . . .}. Note that

fε (ω) =
1

2π

Id +

p∑
j=1

δje
−ijω

−1

G


Id +

p∑
j=1

δje
−ijω

∗
−1

.

The autoregressive order, p, will in general be unknown and may be estimated using an

information criterion (see Section 3.3.4). Alternatively, the order could be fixed at b(log T )cc,

c > 1 (see Section 3.6). In what follows, we will assume that p is known, and then introduce

its estimation into the resulting algorithms.

Let

D = vec δ = vec
[
δ1 · · · δp

]
and G̃ = vecG. The Gaussian log-likelihood is

l (Θ) = −Td
2

log (2π)− T

2
log |G| − 1

2

T−1∑
t=0

U ′tG
−1Ut,
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where

Θ =
[
µ′ D′ G̃′ α′ β′ ω

]′
,

Ut = dδ (z) {Xt − µ− α cos (ωt)− β sin (ωt)}

and dδ (z) = Id +
∑p

j=1 δjz
j . Let

ω̂ = arg max
ω

l (Θ)

and let ω0 be the true value of ω. Theorem 6.5 establishes the central limit theorem for ω̂.

The proof of the theorem is in the Appendix.

Theorem 6.5 The distribution of T 3/2 (ω̂ − ω0) converges to the normal distribution with

mean zero and variance
48π

η∗0f
−1
ε (ω0) η0

as T →∞.

In light of this, an efficient estimator of ω may be obtained by fitting a long-order autore-

gression to the noise process {εt} and using the inverse of the estimated spectral density in

place of Ω in maximising J̃T,Ω (ω).

6.3.3 A Procedure for Multichannel Frequency Estimation

As we have seen, an efficient estimator of ω in (6.18) is obtained by maximising J̃T,Ω (ω)

with Ω = f̂−1
ε (ω), where f̂ε (ω) is an estimator of fε (ω) which can be obtained by fitting

a long-order autoregression to {εt}. However, in order to estimate fε (ω) we first need an

estimate of ω. We can therefore estimate ω in two stages. We begin by maximising J̃T,Ω (ω)

with Ω equal to a suitable symmetric positive definite matrix, for example Id. Although the

resulting estimator will not be efficient, it is of the correct order of efficiency. The sinusoid

at the estimated frequency is then removed by regression and fε (ω) is estimated by fitting

a long-order autoregression to the residuals. The inverse of the estimated spectral density is

then used in place of Ω when maximising J̃T,Ω (ω) in the second stage. The full procedure is

given in Algorithm 6.3.

It remains to maximise J̃T,Ω (ω) for a given Ω. This can be done, for example, using

the Gauss–Newton algorithm. Given a current estimate of ω, denoted ω̃, the Gauss–Newton

algorithm updates the estimate by

ω̃ +
Re
{
F ∗T (ω̃) Ω ∂

∂ωFT (ω̃)
}

∂
∂ωF

∗
T (ω̃) Ω ∂

∂ωFT (ω̃)
,
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Algorithm 6.3 Estimating a single frequency in the multichannel sinusoidal model

1. Put Ω = Id and let

ω̃ = arg max
ω

J̃T,Ω (ω) .

2. Fit an autoregression of order p to

Xt −X − α̂ cos (ωt)− β̂ sin (ωt) ,

where

α̂ = 2T−1
T−1∑
t=0

cos (ω̃t)Xt, β̂ = 2T−1
T−1∑
t=0

sin (ω̃t)Xt

and p is either estimated using an information criterion or fixed at
⌊
(log T )1+c

⌋
, c > 0.

Denote the autoregressive parameter estimates by δ̂1, . . . , δ̂p and the residual covariance

matrix estimate by Ĝ.

3. Put

Ω = 2π

Id +

p∑
j=1

δ̂je
−ijω̃

∗ Ĝ−1

Id +

p∑
j=1

δ̂je
−ijω̃

 .

4. Let

ω̃ = arg max
ω

J̃T,Ω (ω) .

where

∂

∂ω
FT (ω) = −i

√
2T−1/2

T−1∑
t=0

te−iωtXt.

An alternative method for maximising J̃T,Ω (ω) is to use a multivariate version of the Quinn–

Fernandes technique which we introduce below.

As discussed in Section 6.2.3, the estimator obtained using the Gauss–Newton algorithm

will converge to the true value in the univariate case if the initial value is computed by

maximising the periodogram at the Fourier frequencies with the time series first zero-padded

to four times its length. Whether this result applies to the multivariate case remains an

open problem, however simulations suggest that a zero-padding factor of four is appropriate

here. For example, for the simulation study presented in Section 6.4, zero-padding the time

series to four times their length generally produced the same results as zero-padding them to

eight times their length. For now, therefore, we will compute initial values in practice using

a zero-padding factor of four. Confirming the appropriate zero-padding factor theoretically

will be left for future work.
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6.3.4 The Multivariate Quinn–Fernandes Technique

As in the univariate case, and assuming that µ = 0, we can rewrite (6.18) as

Xt − 2 cos (ω)Xt−1 +Xt−2 = εt − 2 cos (ω) εt−1 + εt−2.

We therefore fit the VARMA(p, q)-like model

Xt − bXt−1 +Xt−2 = εt − aεt−1 + εt−2

subject to the constraint that a = b. Let

ξt = Xt + aξt−1 − ξt−2,

where ξ−1 = ξ−2 = 0. We then wish to estimate b in

ξt + ξt−2 = bξt−1 + εt.

We can estimate b by, for example,∑T−1
t=0 ξ′t−1Ω (ξt + ξt−2)∑T−1

t=0 ξ′t−1Ωξt−1

= a+

∑T−1
t=0 ξ′t−1ΩXt∑T−1
t=0 ξ′t−1Ωξt−1

. (6.22)

Thus, given an estimate of a, b can be estimated using (6.22). This estimate of b can be used

to re-estimate a and the procedure can be repeated until convergence. As in the univariate

case, an accelerated version of the algorithm multiplies the second term in (6.22) by two,

which increases the rate of convergence. The full procedure is given in Algorithm 6.4.

Algorithm 6.4 The multivariate Quinn–Fernandes technique for a given Ω

1. Put â = 2 cos (ω̂), where ω̂ is an initial estimate of ω.

2. For t = 0, . . . , T − 1, let

ξt = Xt + âξt−1 − ξt−2,

where ξ−1 = ξ−2 = 0.

3. Replace â by â+ ν, where

ν = 2

∑T−1
t=0 ξ′t−1ΩXt∑T−1
t=0 ξ′t−1Ωξt−1

.

4. Repeat steps 2 and 3 until |ν| converges to 0.

5. Put ω̂ = cos−1 (â/2).

Let aj be the jth iterate of a and ωj = cos−1 (aj/2). Then

aj+1 − aj = 2 sinωjhT (ωj) ,
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where

hT (ω) =
sinω

∑T−1
t=0 ξ′t−1ΩXt

sin2 ω
∑T−1

t=0 ξ′t−1Ωξt−1

.

Now, aj = 2 cosωj and so

aj+1 − aj = 2 cosωj+1 − 2 cosωj

= −2 sinωj (ωj+1 − ωj) +O
{

(ωj+1 − ωj)2
}
.

Thus, provided the algorithm begins with an initial estimate which is o
(
T−1/2

)
, the (j + 1)th

iterate of ω is asymptotically equivalent to

ωj − hT (ωj) .

An alternative version of Algorithm 6.4 therefore replaces step 3 with updating ω̂ by

ω̂ −
∑T−1

t=0 ξ′t−1ΩXt∑T−1
t=0 ξ′t−1Ωξt−1

then letting â = 2 cos ω̂. Step 5 is then not required.

Theorem 6.6 shows that there is a unique point, ω̂T , such that T ν (ω̂T − ω0)→ 0 almost

surely for all ν < 3/2. Theorem 6.7 shows how many iterates of the algorithm are needed to

converge to the unique point and, in particular, that if the initial estimator is O
(
T−1

)
, only

two iterates are needed. Theorem 6.8 shows that the estimator has the same central limit

theorem as the maximiser of J̃T,Ω (ω). The proofs of the theorems are in the Appendix.

Theorem 6.6 Let AT (ν) = {ω; |ω − ω0| < cT−ν}, for fixed constants c > 0 and 1 < ν <

3/2. Then there exists a unique ω̂T ∈ AT (ν) such that hT (ω̂T ) = 0 almost surely as T →∞.

Thus there is a unique solution to hT (ω̂T ) = 0 for which T ν (ω̂T − ω0)→ 0 almost surely as

T →∞, for all ν < 3/2.

Theorem 6.7 Let ω1 ∈ AT (ν) and ωj+1 = ωj − hT (ωj). If 1 < ν < 3/2, then

ωj+1 − ω̂T = (ωj − ω̂T )O
{
T−1/2 (log T )1/2

}
,

while if 1/2 < ν 6 1,

ωj+1 − ω̂T = (ωj − ω̂T )O
{
T−1/2−ν (log T )1/2

}
+O

{
T−1/2−2ν (log T )1/2

}
.

Also,

ω̂T − ω0 = O
{
T−3/2 (log T )1/2

}
and

ωj − ω̂T = o
(
T−3/2

)
for

j > b3− log (2ν − 1) / log 2c .
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Theorem 6.8 The distribution of T 3/2 (ω̂T − ω0) converges to the normal distribution with

mean zero and variance

48π
α′0Ωfε (ω0) Ωα0 + β′0Ωfε (ω0) Ωβ0

(α′0Ωα0 + β′0Ωβ0)2

as T →∞.

We can therefore estimate ω in (6.18) by using the procedure described in Section 6.3.3

with Algorithm 6.4 replacing the maximisation of J̃T,Ω (ω). For an initial estimate, we can

use the maximiser of J̃T,Ω (ω) over the Fourier frequencies.

6.3.5 Estimating More Than One Frequency

When there is more than one frequency, that is, when f > 1, the Gaussian white log-likelihood

is

−Td
2

log (2π)− T

2
log |Σ| − 1

2
tr
[{
X − θfM ′T,f (ω)

}′
Σ−1

{
X − θfM ′T,f (ω)

}]
,

where

θ =
[
µ α1 · · · αf β1 · · · βf

]
.

This is maximised when∣∣∣∣∣∣VT −
f∑
j=1

{
CT (ωj)C

′
T (ωj) + ST (ωj)S

′
T (ωj)

}∣∣∣∣∣∣
is minimised. Thus, just as in the univariate case, the frequencies can be estimated one at a

time, providing none of them are too close together, using a procedure similar to that given

in Section 6.2.2. The estimation is performed in two stages. In the first, Ω is set to Id. In

the second, Ω is set to the inverse of the estimated spectral density of the residuals after

removing the f sinusoids. The full procedure is given in Algorithm 6.5.

To estimate the number of frequencies we can use an information criterion along the lines

of that proposed by Kavalieris and Hannan (1994) for the univariate case (see Section 6.2.4).

We estimate f using

φ (f, p) = T log
∣∣∣Ĝf,p∣∣∣+

{
dp2 + (2d+ 3) f

}
log T,

where Ĝf,p is the estimator of Σ assuming there are f frequencies and the autoregressive

order is p. For each f = 0, . . . , F , where F is assumed to be greater than the true number

of frequencies, the autoregressive order is estimated by p̂f and then the estimator of f is the

minimiser of φ (f, p̂f ).
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Algorithm 6.5 Estimating f frequencies in the multichannel sinusoidal model

1. Put Ωj = Id, j = 1, . . . , f .

2. Let j = 1.

3. Let

ω̃j = arg max
ω

J̃T,Ωj (ω)

and

Xt = Xt − ã cos (ω̃jt)− β̃ sin (ω̃jt) ,

where

ã = 2T−1
T−1∑
t=0

cos (ω̃jt)Xt and β̃j = 2T−1
T−1∑
t=0

sin (ω̃jt)Xt.

4. Let j = j + 1.

5. Repeat steps 2–4 until f frequencies have been estimated.

6. Fit an autoregression of order p to {Xt} where p is either estimated using an information

criterion or fixed at b(log T )cc, c > 1. Denote the autoregressive parameter estimates

by δ̂1, . . . , δ̂p̂ and the residual covariance matrix estimate by Ĝ.

7. For j = 1, . . . , f , put

Ωj = 2π

Id +

p∑
j=1

δ̂je
−ijω̃j

∗ Ĝ−1

Id +

p∑
j=1

δ̂je
−ijω̃j

 .

8. Repeat steps 2–5 once.

6.4 Simulations

The frequency estimation procedure described in Section 6.3.3 was applied to sets of time

series with 10, 000 replications simulated from the model

Xt = µ+ α cos (ωt) + β sin (ωt) + εt,

where

µ = 0, α =
[

1/
√

2 1/
√

2
]′

and β =
[
−1/
√

2 −1/
√

2
]′
.

Note that the amplitude of the sinusoid is 1. The sample sizes were T = 100, 250, 500

and 1, 000. The noise process was either generated from white noise, where εt = ut, the

autoregressive model

εt + δ1εt−1 = ut
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with

δ1 =

 0.7 0.3

−0.3 0.7

 ,
or the moving average model

εt = ut + δ2ut−1

with

δ2 =

 0.8 0.1

−0.1 0.8

 .
The residuals, {ut}, were simulated from the multivariate normal distribution with mean

zero and covariance matrix G, where G was equal to gI2, g = 0.1, 0.2, . . . 4. Both the Gauss–

Newton algorithm and Quinn–Fernandes technique were used to maximise J̃T,Ω (ω) with a

tolerance for convergence of 1.0−6. That is, the algorithms were stopped when successive

iterates were within 1.0−6 of each other. The autoregressive orders were estimated using

BIC.

The AR(1) and MA(1) parts of Figure 5.1 show the component spectral densities and

coherency for the two processes used here for the case where g = 1. The simulations were

run for both ω = π/5 + π/ (4T ) and ω = 4π/5 − π/ (4T ). When the true frequency is high,

the autoregressive noise causes a spike in J̃T,Ω (ω) close to the true frequency, making it more

difficult to estimate it particularly with a low signal to noise ratio. The same occurs when

the true frequency is low and the noise is from the moving average process. The addition or

subtraction of π/ (4T ) ensures the true frequency falls in the middle of two Fourier frequencies,

which is a worst case scenario.

Figures 6.1–6.10 show the resulting mean estimates of ω and the logarithm of their mean

squared errors (MSE). The plots show that the estimation procedure works well, with the

mean estimates of ω close to the true values and their MSEs close to the theoretical variances,

up to a point at which the signal-to-noise ratio becomes too small. That is, when g becomes

large. This is known as the threshold effect (Quinn and Kootsookos, 1994) and, when it

occurs, can be clearly seen in the log(MSE) plots. For example, when T = 100 and {εt}

is white noise, Figure 6.2 shows the threshold effect occurring around g = 1.8. It occurs

sooner in the AR(1) and MA(1) cases than for the white noise cases. After the threshold

effect occurs, the mean estimates of ω move toward the peak of the noise spectral density.

In all cases, there was no threshold effect when T = 1, 000 up to g = 4. Although the

two methods used produced very similar results, there appears to be a small bias when the

Quinn–Fernandes technique is used.
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Figure 6.1: Mean ω̃ when {εt} is white noise and ω0 = π
5 + π

4T , using the Gauss–Newton

(solid) and Quinn–Fernandes (dashes) methods. The true frequency is indicated by the grey

line.

Figure 6.2: log(MSE) for ω̃ when {εt} is white noise and ω0 = π
5 + π

4T , using the Gauss–

Newton (solid) and Quinn–Fernandes (dashes) methods. The theoretical variance is indicated

by the grey line.
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Figure 6.3: Mean ω̃ when {εt} is an AR(1) and ω0 = π
5 + π

4T , using the Gauss–Newton (solid)

and Quinn–Fernandes (dashes) methods. The true frequency is indicated by the grey line.

Figure 6.4: log(MSE) for ω̃ when {εt} is an AR(1) and ω0 = π
5 + π

4T , using the Gauss–Newton

(solid) and Quinn–Fernandes (dashes) methods. The theoretical variance is indicated by the

grey line.
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Figure 6.5: Mean ω̃ when {εt} is an AR(1) and ω0 = 4π
5 −

π
4T , using the Gauss–Newton

(solid) and Quinn–Fernandes (dashes) methods. The true frequency is indicated by the grey

line.

Figure 6.6: log(MSE) for ω̃ when {εt} is an AR(1) and ω0 = 4π
5 −

π
4T , using the Gauss–Newton

(solid) and Quinn–Fernandes (dashes) methods. The theoretical variance is indicated by the

grey line.
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Figure 6.7: Mean ω̃ when {εt} is an MA(1) and ω0 = π
5 + π

4T , using the Gauss–Newton (solid)

and Quinn–Fernandes (dashes) methods. The true frequency is indicated by the grey line.

Figure 6.8: log(MSE) for ω̃ when {εt} is an MA(1) and ω0 = π
5 + π

4T , using the Gauss–Newton

(solid) and Quinn–Fernandes (dashes) methods. The theoretical variance is indicated by the

grey line.



120 The Estimation of Frequency in the Multichannel Sinusoidal Model

Figure 6.9: Mean ω̃ when {εt} is an MA(1) and ω0 = 4π
5 −

π
4T , using the Gauss–Newton

(solid) and Quinn–Fernandes (dashes) methods. The true frequency is indicated by the grey

line.

Figure 6.10: log(MSE) for ω̃ when {εt} is an MA(1) and ω0 = 4π
5 −

π
4T , using the Gauss–

Newton (solid) and Quinn–Fernandes (dashes) methods. The theoretical variance is indicated

by the grey line.
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6.A Appendix

In what follows, where convergence is indicated, it will mean convergence in the almost sure

sense, unless otherwise stated. Where order notation is used, it will also mean orders in the

almost sure sense.

6.A.1 Proof of Lemma 6.1

Letting V =
[
A B

]
, ∣∣Id −AA′ −BB′∣∣ =

∣∣Id − V V ′∣∣ .
Now, for any matrices C, D, E and F of appropriate dimension,∣∣∣∣∣∣

 C D

E F

∣∣∣∣∣∣ = |F |
∣∣C −DF−1C

∣∣ = |C|
∣∣F − EC−1D

∣∣ .
Thus ∣∣∣∣∣∣

 Id V

V ′ I2

∣∣∣∣∣∣ =
∣∣Id − V V ′∣∣ =

∣∣I2 − V ′V
∣∣ .

But

∣∣I2 − V ′V
∣∣ =

∣∣∣∣∣∣
 1−A′A −A′B

−B′A 1−B′B

∣∣∣∣∣∣
= 1−

(
A′A+B′B

)
+
(
A′A

) (
B′B

)
−
(
A′B

)2
,

which is the first part of the lemma. Similarly,∣∣∣∣∣∣
 Id V

−V ′ I2

∣∣∣∣∣∣ =
∣∣Id + V V ′

∣∣ =
∣∣I2 + V ′V

∣∣
and the second part of the lemma follows.

6.A.2 Proof of Theorem 6.1

Consider

FT (ω) = CT (ω)− iST (ω)

=
√

2T−1/2
T−1∑
t=0

Xte
−iωt.
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Let WT (ω) =
√

2T−1/2
∑T−1

t=0 e−iωtεt, θ̃0 =
[
α0 β0

]
and mt (ω) =

[
cos (ωt) sin (ωt)

]′
.

Then

FT (ω) = WT (ω) +
√

2T−1/2µ0

T−1∑
t=0

e−iωt +
√

2T−1/2θ̃0

T−1∑
t=0

mt (ω0) e−iωt

= WT (ω) +
1√
2
T−1/2θ̃0

T−1∑
t=0

 eiω0t

1
i e
iω0t

 e−iωt +O (1)

= WT (ω) +
1√
2
T−1/2θ̃0

T−1∑
t=0

 e−i(ω−ω0)t

1
i e
−i(ω−ω0)t

+O (1)

= WT (ω) +
1√
2
T 1/2η0hT (ω − ω0) +O (1) ,

where η0 = α0 − iβ0 and

hT (x) = T−1
T−1∑
t=0

e−ixt

= T−1 e
−ixT − 1

e−ix − 1

= T−1e−ix(T−1)/2 sin (xT/2)

sin (x/2)
,

noting that hT (0) = 1. Consider the case where ω = ω0 + a/T for some a > 0. Then

T−1FT (ω0 + a/T )F ∗T (ω0 + a/T ) =
1

2
θ̃0θ̃
′
0 |hT (a/T )|2 +O

(
T−1 log T

)
,

since η0η
∗
0 = θ̃0θ̃

′
0 and WT (ω) = O

{
(log T )1/2

}
. Now,

|hT (a/T )|2 =

∣∣∣∣e−ix(T−1)/2 sin (a/2)

T sin (a/2T )

∣∣∣∣2
→ sin2 (a/2)

(a/2)2 ,

as T →∞, and so

T−1FT (ω0 + a/T )F ∗T (ω0 + a/T )→ 1

2
θ̃0θ̃
′
0

sin2 (a/2)

(a/2)2

as T →∞. Also,

X = µ0 + T−1θ̃0

T−1∑
t=0

mt (ω) + T−1
T−1∑
t=0

εt,

and so

Xt −X = θ̃0mt (ω) + εt +O
{
T−1 (log log T )1/2

}
since

T−1
T−1∑
t=0

εt = O
{
T−1 (log log T )1/2

}
,
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from Theorem 2.2. Thus

T−1VT = T−1
T−1∑
t=0

εtε
′
t + T−1θ̃0

{
T−1∑
t=0

mt (ω)m′t (ω)

}
θ̃′0 +O

{
T−1/2 (log log T )1/2

}
→ Σ0 +

1

2
θ̃0θ̃
′
0 (6.23)

as T →∞. Now,

JT (ω) = 1−
∣∣∣Id − V −1/2

T CT (ω)C ′T (ω)V
−1/2
T − V −1/2

T ST (ω)S′T (ω)V
−1/2
T

∣∣∣
= 1−

∣∣V −1
T

∣∣ |VT − F (ω)F ∗ (ω)| .

Therefore

JT (ω0 + a/T )→ 1−
∣∣∣∣Σ0 +

1

2
θ̃0θ̃
′
0

∣∣∣∣−1 ∣∣∣∣Σ0 +
1

2
θ̃0θ̃
′
0 −

1

2
θ̃0θ̃
′
0

sin2 (a/2)

(a/2)2

∣∣∣∣ .
Let [

A B
]

=
1√
2

Σ
−1/2
0 θ̃0,

then  A′

B′

[ A B
]

=
1

2
θ̃′0Σ−1

0 θ̃0,

and so

A′A+B′B =
1

2
tr
(
θ̃′0Σ−1

0 θ̃0

)
and (

A′A
) (
B′B

)
−
(
A′B

)2
=

1

4

∣∣∣θ̃′0Σ−1
0 θ̃0

∣∣∣ .
From Lemma 6.1, ∣∣∣∣Σ0 +

1

2
θ̃0θ̃
′
0

∣∣∣∣ = |Σ0|
∣∣∣∣Id +

1

2
Σ
−1/2
0 θ̃0θ̃

′
0Σ
−1/2
0

∣∣∣∣
= |Σ0|

{
1 + tr

(
θ̃′0Σ−1

0 θ̃0

)
+

1

4

∣∣∣θ̃′0Σ−1
0 θ̃0

∣∣∣}
and ∣∣∣∣Σ0 +

1

2
θ̃0θ̃
′
0 −

1

2
θ̃0θ̃
′
0

sin2 (a/2)

(a/2)2

∣∣∣∣ = |Σ0|
{

1 +
c

2
tr
(
θ̃′0Σ−1

0 θ̃0

)
+
c2

4

∣∣∣θ̃′0Σ−1
0 θ̃0

∣∣∣} ,
where

0 6 c = 1− sin2 (a/2)

(a/2)2 6 1.

Thus

JT (ω0 + a/T )→ 1−
1 + c

2 tr
(
θ̃′0Σ−1

0 θ̃0

)
+ c2

4

∣∣∣θ̃′0Σ−1
0 θ̃0

∣∣∣
1 + tr

(
θ̃′0Σ−1

0 θ̃0

)
+ 1

4

∣∣∣θ̃′0Σ−1
0 θ̃0

∣∣∣
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as T →∞, and so the almost sure limit of JT (ω0 + a/T ) is 1 if and only if a = 0. That is, if

κ > 0,

lim inf
T→∞

inf
|ω−ω0|>κ/T

{JT (ω0)− JT (ω)} > 0

and it follows from Theorem 2.5 that T (ω̂ − ω0)→ 0 as T →∞.

6.A.3 Proof of Theorem 6.2

Let

KT (ω) = log
∣∣∣Σ̂T (ω)

∣∣∣ .
From the mean value theorem,

0 =
d

dω
KT (ω̂) =

d

dω
KT (ω0) +

d2

dω2
KT (ω∗) (ω̂ − ω0) ,

where ω∗ is a point on the line segment between ω0 and ω̂. Since T (ω̂ − ω0) → 0, it follows

that T 3/2 (ω̂ − ω0) has the same asymptotic distribution as

−
T−1/2 d

dωKT (ω0)

T−2 d2

dω2KT (ω0)
.

The first and second derivatives of KT (ω) are

d

dω
KT (ω) = tr

{
Σ̂−1
T (ω)

d

dω
Σ̂T (ω)

}
and

d2

dω2
KT (ω) = tr

[
−Σ̂−1

T (ω)

{
d

dω
Σ̂T (ω)

}
Σ̂−1
T (ω)

{
d

dω
Σ̂T (ω)

}
+ Σ̂−1

T (ω)

{
d2

dω2
Σ̂T (ω)

}]
.

The first and second derivatives of Σ̂T (ω) are

d

dω
Σ̂T (ω) = −T−1

[
d
dωCT (ω) d

dωST (ω)
] C ′T (ω)

S′T (ω)


− T−1

[
CT (ω) ST (ω)

] d
dωC

′
T (ω)

d
dωS

′
T (ω)


and

d2

dω2
Σ̂T (ω) = −T−1

[
d2

dω2CT (ω) d2

dω2ST (ω)
] C ′T (ω)

S′T (ω)


− T−1

[
CT (ω) ST (ω)

] d2

dω2C
′
T (ω)

d2

dω2S
′
T (ω)


− 2T−1

[
d
dωCT (ω) d

dωST (ω)
] d

dωC
′
T (ω)

d
dωS

′
T (ω)

 ,
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where the first and second derivatives of CT (ω) are

d

dω
CT (ω) = −

√
2T−1/2

T−1∑
t=0

t sin (ωt)Xt and
d2

dω2
CT (ω) = −

√
2T−1/2

T−1∑
t=0

t2 cos (ωt)Xt,

and the first and second derivatives of ST (ω) are

d

dω
ST (ω) =

√
2T−1/2

T−1∑
t=0

t cos (ωt)Xt, and
d2

dω2
ST (ω) = −

√
2T−1/2

T−1∑
t=0

t2 sin (ωt)Xt.

Let

YT (ω) =
√

2T−1/2
T−1∑
t=0

cos (ωt) εt, ZT (ω) =
√

2T−1/2
T−1∑
t=0

sin (ωt) εt,

YT1 (ω) = −
√

2T−1/2
T−1∑
t=0

t sin (ωt) εt, ZT1 (ω) =
√

2T−1/2
T−1∑
t=0

t cos (ωt) εt,

YT2 (ω) =
√

2T−1/2
T−1∑
t=0

t2 cos (ωt) εt, ZT2 (ω) = −
√

2T−1/2
T−1∑
t=0

t2 sin (ωt) εt.

Then, evaluating CT (ω), ST (ω) and their derivatives at the true parameter values,

CT (ω0) =
√

2T−1/2θ0


∑T−1

t=0 cos (ω0t)∑T−1
t=0 cos2 (ω0t)∑T−1

t=0 cos (ω0t) sin (ω0t)

+ YT (ω0)

=
1√
2
T 1/2α0 + YT (ω0) +O

(
T−1/2

)
,

ST (ω0) =
√

2T−1/2θ0


∑T−1

t=0 sin (ω0t)∑T−1
t=0 cos (ω0t) sin (ω0t)∑T−1

t=0 sin2 (ω0t)

+ ZT (ω0)

=
1√
2
T 1/2β0 + ZT (ω0) +O

(
T−1/2

)
,

d

dω
CT (ω0) = −

√
2T−1/2θ0


∑T−1

t=0 t sin (ω0t)∑T−1
t=0 t sin (ω0t) cos (ω0t)∑T−1

t=0 t sin2 (ω0t)

+ YT1 (ω0)

= − 1

2
√

2
T 3/2β0 + YT1 (ω0) +O

(
T 1/2

)
,

d

dω
ST (ω0) =

√
2T−1/2θ0


∑T−1

t=0 t cos (ω0t)∑T−1
t=0 t cos2 (ω0t)∑T−1

t=0 t cos (ω0t) sin (ω0t)

+ ZT1 (ω0)

=
1

2
√

2
T 3/2α0 + ZT1 (ω0) +O

(
T 1/2

)
,
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d2

dω2
CT (ω0) = −

√
2T−1/2θ0


∑T−1

t=0 t2 cos (ω0t)∑T−1
t=0 t2 cos2 (ω0t)∑T−1

t=0 t2 cos (ω0t) sin (ω0t)

+ YT2 (ω0)

= − 1

3
√

2
T 5/2α0 + YT2 (ω0) +O

(
T 3/2

)
,

d2

dω2
ST (ω0) = −

√
2T−1/2θ0


∑T−1

t=0 t2 sin (ω0t)∑T−1
t=0 t2 sin (ω0t) cos (ω0t)∑T−1

t=0 t2 sin2 (ω0t)

+ ZT2 (ω0)

= − 1

3
√

2
T 5/2β0 + ZT2 (ω0) +O

(
T 3/2

)
.

Thus

Σ̂T (ω0) = Σ0 +O
{
T−1/2 (log log T )1/2

}
,

d

dω
Σ̂T (ω0) =

1

2
√

2
T 1/2β0Y

′
T (ω0)− 1√

2
T−1/2YT1 (ω0)α′0 −

1

2
√

2
T 1/2α0Z

′
T (ω0)

− 1√
2
T−1/2ZT1 (ω0)β′0 −

1√
2
T−1/2α0Y

′
T1 (ω0) +

1

2
√

2
T 1/2YT (ω0)β′0

− 1√
2
T−1/2β0Z

′
T1 (ω0)− 1

2
√

2
T 1/2ZT (ω0)α′0 +O (log log T )

= O
{
T 1/2 (log log T )1/2

}
,

d2

dω2
Σ̂T (ω0) =

(
1

3
− 1

4

)
T 2
(
α0α

′
0 + β0β

′
0

)
+O

{
T 3/2 (log log T )1/2

}
=

1

12
T 2
(
α0α

′
0 + β0β

′
0

)
+O

{
T 3/2 (log log T )1/2

}
,

from (6.23) and since

YT (ω0) = O
{

(log log T )1/2
}
, ZT (ω0) = O

{
(log log T )1/2

}
,

YT1 (ω0) = O
{
T (log log T )1/2

}
, ZT1 (ω0) = O

{
T (log log T )1/2

}
,

YT2 (ω0) = O
{
T 2 (log log T )1/2

}
, ZT2 (ω0) = O

{
T 2 (log log T )1/2

}
(Hannan and Mackisack, 1986). Therefore

T−2 d2

dω2
KT (ω0) =

1

12
tr

[{
Σ0 +O

(
T−1/2 (log log T )1/2

)}−1 (
α0α

′
0 + β0β

′
0

)]
+O

{
T−1/2 (log log T )1/2

}
→ 1

12

(
α′0Σ−1

0 α0 + β′0Σ−1
0 β0

)
.
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Also, T−1/2 d
dωKT (ω0) has the same asymptotic distribution as

1

2
√

2
β′0Σ−1

0 YT (ω0)− 1√
2
T−1α′0Σ−1

0 YT1 (ω0)− 1

2
√

2
α′0Σ−1

0 ZT (ω0)− 1√
2
T−1β′0Σ−1

0 ZT1 (ω0)

− 1√
2
T−1α′0Σ−1

0 YT1 (ω0) +
1

2
√

2
β′0Σ−1

0 YT (ω0)− 1√
2
T−1β′0Σ−1

0 ZT1 (ω0)− 1

2
√

2
α′0Σ−1

0 ZT (ω0)

= − 1√
2
α′0Σ−1

0

{
2T−1YT1 (ω0) + ZT (ω0)

}
− 1√

2
β′0Σ−1

0

{
2T−1ZT1 (ω0)− YT (ω0)

}
.

Now,

2T−1YT1 (ω0) + ZT (ω0) =
√

2T−1/2
T−1∑
t=0

(
1− 2t

T

)
sin (ω0t) εt, (6.24)

and

2T−1ZT1 (ω0)− YT (ω0) = −
√

2T−1/2
T−1∑
t=0

(
1− 2t

T

)
cos (ω0t) εt. (6.25)

These are both asymptotically normal with mean zero and covariance matrix 2πfε (ω0) /3.

To see this, let ζt = c′εt, where c is a d× 1 vector of constants, and consider

y = −T−1/2
T−1∑
t=0

eiω0tζt and z = −T−3/2
T−1∑
t=0

teiω0tζt.

From Theorem 2.6, both the real and imaginary components of
[
y z

]′
are asymptotically

normal with mean zero and covariance matrix

πfζ (ω0)

 1 1/2

1/2 1/3

 ,
where

fζ (ω) =
1

2π

∞∑
j=−∞

γζ (j) e−ijω

= c′

 1

2π

∞∑
j=−∞

γε (j) e−ijω

 c

= c′fε (ω) c

and γζ (j) and γε (j) are the autocovariance functions of {ζt} and {εt}, respectively. Thus

the real and imaginary components of −
√

2y + 2
√

2z are both asymptotically normal with

mean zero and variance

πfζ (ω0)
[
−
√

2 2
√

2
] 1 1/2

1/2 1/3

 −√2

2
√

2

 =
2π

3
fζ (ω0)

= c′
{

2π

3
fε (ω)

}
c.
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The asymptotic distributions of (6.24) and (6.25) follow by applying the Cramér-Wold device.

Therefore T−1/2 d
dωK (ω0) is asymptotically normal with mean zero and variance

1

2

2π

3
α′0Σ−1

0 fε (ω0) Σ−1α0 +
1

2

2π

3
β′0Σ−1

0 fε (ω0) Σ−1β0

=
π

3

(
α′0Σ−1

0 fε (ω0) Σ−1α0 + β′0Σ−1
0 fε (ω0) Σ−1

0 β0

)
.

It follows that T 3/2 (ω̂ − ω0) is asymptotically normal with mean zero and variance

π
3

(
α′0Σ−1

0 fε (ω0) Σ−1α0 + β′0Σ−1
0 fε (ω0) Σ−1

0 β0

){
1
12

(
α′0Σ−1

0 α0 + β′0Σ−1
0 β0

)}2

= 48π
α′0Σ−1

0 fε (ω0) Σ−1
0 α0 + β′0Σ−1

0 fε (ω0) Σ−1
0 β0(

α′0Σ−1
0 α0 + β′0Σ−1

0 β0

)2 .

6.A.4 Proof of Theorem 6.3

From the proof of Theorem 6.1,

T−1J̃T,Ω (ω0 + a/T ) = T−1F ∗ (ω0 + a/T ) ΩF (ω0 + a/T )

→ 1

2
θ̃′0Ωθ̃0

sin2 (a/2)

(a/2)2 , as T →∞

6
1

2
θ̃′0Ωθ̃0,

with equality if and only if a = 0. Thus

T−1
{
J̃T (ω0)− J̃T (ω0 + a/T )

}
→ 1

2
θ̃′0Ωθ̃0

{
1− sin2 (a/2)

(a/2)2

}
as T →∞ and, for κ > 0,

lim
T→∞

T−1
{
J̃T (ω0)− J̃T (ω0 + κ/T )

}
> 0.

It follows from Theorem 2.5 that T (ω̃ − ω0)→ 0 as T →∞.

6.A.5 Proof of Theorem 6.4

From the mean value theorem,

0 =
d

dω
J̃T,Ω (ω̃) =

d

dω
J̃T,Ω (ω0) +

d2

dω2
J̃T,Ω (ω∗) (ω̃ − ω0)

where ω∗ is a point on the line segment between ω0 and ω̃. Since T (ω̃ − ω0)→ 0, it follows

that T 3/2 (ω̃ − ω0) has the same asymptotic distribution as

−
T−3/2 d

dω J̃T,Ω (ω0)

T−3 d2

dω2 J̃T,Ω (ω0)
.
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The first and second derivatives of J̃T,Ω (ω) are

d

dω
J̃T,Ω (ω) = 2

[
d
dωC

′
T (ω) d

dωS
′
T (ω)

]
Ω

 CT (ω)

ST (ω)


and

d2

dω2
J̃T,Ω (ω) = 2

[
d2

dω2C
′
T (ω) d2

dω2S
′
T (ω)

]
Ω

 CT (ω)

ST (ω)


+ 2

[
d
dωC

′
T (ω) d

dωS
′
T (ω)

]
Ω

 d
dωCT (ω)

d
dωST (ω)

 .
Thus, using the results of the proof of Theorem 6.2,

d2

dω2
J̃T,Ω (ω0) = − 1

12
T 3
(
α′0Ωα0 + β′0Ωβ0

)
+O

{
T 5/2 (log log T )1/2

}
and so

−T−3 d2

dω2
J̃T,Ω (ω0)→ 1

12

(
α′0Ωα0 + β′0Ωβ0

)
as T →∞. Also

d

dω
J̃T,Ω (ω0) = − 1√

2
T 3/2β′0ΩYT (ω0) +

√
2T 1/2α′0ΩYT1 (ω0) +

1√
2
T 3/2α′0ΩZT (ω0)

+
√

2T 1/2β′0ΩZT1 (ω0) +O (T log log T )

and so T−3/2 d
dω J̃T (ω0) has the same asymptotic distribution as

1√
2
α′0Ω

{
2T−1YT1 (ω0) + ZT (ω0)

}
+

1√
2
β′0Ω

{
2T−1ZT1 (ω0)− YT (ω0)

}
,

which, as shown in the proof of Theorem 6.2, is asymptotically normal with mean zero and

variance

π

3

{
α′0Ωfε (ω0) Ωα0 + β′0Ωfε (ω0) Ωβ0

}
.

Therefore T 3/2 (ω̃ − ω0) is asymptotically normal with mean zero and variance

48π
α′0Ωfε (ω0) Ωα0 + β′0Ωfε (ω0) Ωβ0

(α′0Ωα0 + β′0Ωβ0)2 .

6.A.6 Proof of Theorem 6.5

Let Θ0 denote the true value of Θ and let

I = lim
T→∞

−N−1
T

∂2l (Θ0)

∂Θ0∂Θ′0
N−1
T ,
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where

NT =

 T 1/2I3d+(p+1)d2 0

0 T 3/2

 .
The first derivatives of l (Θ) with respect to Θ are

∂l (Θ)

∂µ
= −

T−1∑
t=0

∂Ut
∂µ

G−1Ut,

∂l (Θ)

∂D
= −

T−1∑
t=0

∂Ut
∂D′

G−1Ut,

∂l (Θ)

∂G̃
= −

(
G−1 ⊗G−1

)
vec

{
T−1∑
t=0

UtU
′
t

}
,

∂l (Θ)

∂α
= −

T−1∑
t=0

∂Ut
∂α′

G−1Ut,

∂l (Θ)

∂β
= −

T−1∑
t=0

∂Ut
∂β′

G−1Ut,

∂l (Θ)

∂ω
= −

T−1∑
t=0

∂U ′t
∂ω

G−1Ut.

Letting

Et = Xt − µ− α cos (ωt)− β sin (ωt)

and

Zt =
[
E′t−1 · · · E′t−p

]′
,

we have

Ut = Et + δZt = Et +
(
Z ′t ⊗ Id

)
D

and so the first derivatives of Ut are

∂Ut (Θ)

∂µ
= 1,

∂Ut (Θ)

∂D′
= Z ′t ⊗ Id,

∂Ut (Θ)

∂α′
= −

p∑
j=0

δj cos {ω (t− j)} ,

∂Ut (Θ)

∂β′
= −

p∑
j=0

δj sin {ω (t− j)} ,

∂Ut (Θ)

∂ω
=

p∑
j=0

δj [α (t− j) sin {ω (t− j)} − β (t− j) cos {ω (t− j)}] .
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The second derivatives of l (Θ) with respect to Θ are then

∂2l (Θ)

∂µ2
= −TG−1,

∂2l (Θ)

∂µ∂α
= −G−1

T−1∑
t=0

∂Ut
∂α

= G−1
T−1∑
t=0

p∑
j=0

δj cos {ω (t− j)} ,

∂2l (Θ)

∂µ∂β
= −G−1

T−1∑
t=0

∂Ut
∂β

= G−1
T−1∑
t=0

p∑
j=0

δj sin {ω (t− j)} ,

∂2l (Θ)

∂µ∂D′
= −G−1

T−1∑
t=0

∂Ut

∂δ̃′

= −G−1
T−1∑
t=0

(
Z ′t ⊗ Id

)
,

∂2l (Θ)

∂µ∂ω
= −G−1

T−1∑
t=0

∂Ut
∂ω

= −G−1
T−1∑
t=0

p∑
j=0

δj [α (t− j) sin {ω (t− j)} − β (t− j) cos {ω (t− j)}] ,

∂2l (Θ)

∂D∂D′
= −

T−1∑
t=0

∂2Ut

∂δ̃∂δ̃′
G−1Ut (Θ)−

T−1∑
t=0

∂Ut

∂δ̃
G−1∂Ut

∂δ̃′

∼ −
T−1∑
t=0

(Zt ⊗ Id)G−1
(
Z ′t ⊗ Id

)
,

∂2l (Θ)

∂Dδα′
= −

T−1∑
t=0

∂2Ut

∂δ̃∂α′
G−1Ut −

T−1∑
t=0

∂U ′t

∂δ̃
G−1∂Ut

∂α′

∼ −
T−1∑
t=0

(Zt ⊗ Id)G−1

−
p∑
j=0

δj cos {ω (t− j)}

 ,

∂2l (Θ)

∂D∂β′
= −

T−1∑
t=0

∂2Ut

∂δ̃∂β′
G−1Ut −

T−1∑
t=0

∂Ut

∂δ̃
G−1∂Ut

∂β′

∼ −
T−1∑
t=0

(Zt ⊗ Id)G−1

−
p∑
j=0

δj sin {ω (t− j)}

 ,



132 The Estimation of Frequency in the Multichannel Sinusoidal Model

∂2l (Θ)

∂D∂ω
= −

T−1∑
t=0

∂2Ut

∂δ̃∂ω
G−1Ut −

T−1∑
t=0

∂Ut

∂δ̃
G−1∂Ut

∂ω

∼
T−1∑
t=0

(Zt ⊗ Id)G−1
p∑
j=0

δj [α (t− j) sin {ω (t− j)} − β (t− j) cos {ω (t− j)}] ,

∂2l (Θ)

∂G̃∂µ
= −

(
G−1 ⊗G−1

)
vec

(
2

T−1∑
t=0

∂Ut
∂µ

U ′t

)

= −2
(
G−1 ⊗G−1

) T−1∑
t=0

Ut,

∂2l (Θ)

∂G̃∂D
= −

(
G−1 ⊗G−1

)
vec

(
2
T−1∑
t=0

∂Ut
∂D′

U ′t

)

= −
(
G−1 ⊗G−1

)
vec

{
2
T−1∑
t=0

(
Z ′t ⊗ Id

)
U ′t

}
,

∂2l (Θ)

∂G̃∂α′
= −

(
G−1 ⊗G−1

)
vec

(
2

T−1∑
t=0

∂Ut
∂α′

U ′t

)

=
(
G−1 ⊗G−1

)
vec

2
T−1∑
t=0

p∑
j=0

δj cos {ω (t− j)}U ′t

 ,

∂2l (Θ)

∂G̃∂β′
= −

(
G−1 ⊗G−1

)
vec

(
2
T−1∑
t=0

∂Ut
∂β′

U ′t

)

=
(
G−1 ⊗G−1

)
vec

2

T−1∑
t=0

p∑
j=0

δj sin {ω (t− j)}U ′t

 ,

∂2l (Θ)

∂G̃∂ω
= −

(
G−1 ⊗G−1

)
vec

(
2

T−1∑
t=0

∂Ut
∂ω

U ′t

)

= −
(
G−1 ⊗G−1

)
vec

2
T−1∑
t=0

p∑
j=0

δj [α (t− j) sin {ω (t− j)} − β (t− j) cos {ω (t− j)}]U ′t


∂2l (Θ)

∂α∂α′
= −

T−1∑
t=0

∂2Ut
∂α∂α′

G−1Ut −
T−1∑
t=0

∂Ut
∂α

G−1∂Ut
∂α′

∼ −
p∑

j,k=0

δ′jG
−1δk

T−1∑
t=0

cos {ω (t− j)} cos {ω (t− k)} ,

∂2l (Θ)

∂β∂β′
= −

T−1∑
t=0

∂2Ut
∂β∂β′

G−1Ut −
T−1∑
t=0

∂Ut
∂β

G−1∂Ut
∂β′

∼ −
p∑

j,k=0

δ′jG
−1δk

T−1∑
t=0

sin {ω (t− j)} sin {ω (t− k)} ,
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∂2l (Θ)

∂α∂β′
= −

T−1∑
t=0

∂2Ut
∂α∂β′

G−1Ut −
T−1∑
t=0

∂Ut
∂α

G−1∂Ut
∂β′

∼ −
p∑

j,k=0

δ′jG
−1δk

T−1∑
t=0

cos {ω (t− j)} sin {ω (t− k)} ,

∂2l (Θ)

∂α∂ω
= −

T−1∑
t=0

∂2Ut
∂α∂ω

G−1Ut −
T−1∑
t=0

∂Ut
∂α

G−1∂Ut
∂ω

= −
p∑
j=0

δ′jG
−1

T−1∑
t=0

(t− j) sin {ω (t− j)}Ut

+

p∑
j,k=0

δ′jG
−1δk

×
T−1∑
t=0

cos {ω (t− j)} [α (t− k) sin {ω (t− k)} − β (t− k) cos {ω (t− k)}] ,

∂2l (Θ)

∂β∂ω
= −

T−1∑
t=0

∂2Ut
∂β∂ω

G−1Ut −
T−1∑
t=0

∂Ut
∂β

G−1∂Ut
∂ω

=

p∑
j=0

δ′jG
−1

T−1∑
t=0

(t− j) cos {ω (t− j)}Ut

+

p∑
j,k=0

δ′jG
−1δk

×
T−1∑
t=0

sin {ω (t− j)} [α (t− k) sin {ω (t− k)} − β (t− k) cos {ω (t− k)}] ,

∂2l (Θ)

∂ω2
= −

T−1∑
t=0

∂2Ut
∂ω2

G−1Ut −
T−1∑
t=0

∂U ′t
∂ω

G−1∂Ut
∂ω

=
T−1∑
t=0

p∑
j=0

δ′j

[
α′ (t− j)2 cos {ω (t− j)}+ β′ (t− j)2 sin {ω (t− j)}

]
G−1Ut

−
T−1∑
t=0

p∑
j,k=0

[
α′ (t− j) sin {ω (t− j)} − β′ (t− j) cos {ω (t− j)}

]
× δ′jG−1δk [α (t− k) sin {ω (t− k)} − β (t− k) cos {ω (t− k)}] ,

where ˜ denotes the term of the highest order. Now, E {Ut (Θ0)} = E (ut) = 0, and it follows

that the α, β and ω components of I are given by

 =
1

2


∆1 ∆2

1
2 (−∆2α0 + ∆1β0)

−∆2 ∆1
1
2 (−∆2β0 −∆1α)

1
2 (α′0∆2 + β′0∆1) 1

2 (β′0∆2 − α′0∆1) 1
3 (α′0∆1α0 + β′0∆1β0 − β′0∆2α0 + α′0∆2β0)

 ,
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where

∆1 = δ′RG
−1
0 δR + δ′IG

−1
0 δI , ∆2 = −δ′IG−1

0 δR + δ′RG
−1
0 δI ,

δR = Re

Id +

p∑
j=1

δ0je
−ijω

 , δI = Im

Id +

p∑
j=1

δ0je
−ijω

 .

The non-diagonal blocks of the µ, D and G̃ components of I are zero. Let

τ =

 ∆1 ∆2

−∆2 ∆1

 and ϕ =

 β0

−α0

 .
Then, since τ is symmetric,

=
1

2

 τ 1
2τϕ

1
2ϕ
′τ 1

3ϕ
′τϕ


and so, from the matrix inversion lemma,

−1 = 2

 τ−1 + 1
4τ
−1 (τϕ)H (ϕ′τ) τ−1 −1

2τ
−1 (τϕ)H

−1
2H (ϕ′τ) τ−1 H

 ,
where

H−1 =

{
1

3
ϕ′τϕ− 1

4

(
ϕ′τ
)
τ−1 (τϕ)

}
=

1

12
ϕ′τϕ.

That is,

−1 =

 2τ−1 + 6
θ′τθϕϕ

′ − 12
ϕ′τϕϕ

− 12
ϕ′τϕϕ

′ 24
ϕ′τϕ

 .
The first derivatives of l (Θ) with respect to α, β and ω at Θ0 are

∂l (Θ0)

∂α
=

T−1∑
t=0

 p∑
j=0

δ0j cos {ω0 (t− j)}

G−1
0 ut,

∂l (Θ0)

∂β
=

T−1∑
t=0

 p∑
j=0

δ0j sin {ω0 (t− j)}

G−1
0 ut,

∂l (Θ0)

∂ω
= −

T−1∑
t=0

p∑
j=0

δ0j [α0 (t− j) sin {ω0 (t− j)} − β0 (t− j) cos {ω0 (t− j)}]G−1
0 ut.

Thus, since E (utu
′
t) = G0,

E

{
∂l (Θ0)

∂θ̃

∂l (Θ0)

∂θ̃′

}
= .

It follows from the martingale central limit theorem that T 3/2 (ω̂ − ω0) is asymptotically

normal with mean zero and variance 24/ϕ′τϕ. But

ϕ′τϕ = β′0∆1β0 + α′0∆2β0 − β′0∆2α0 + α′0∆1α0

=
1

2π
η∗0f

−1
ε (ω0) η0,
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since

fε (ω) =
1

2π

Id +

p∑
j=1

δje
−ijω

−1

G


Id +

p∑
j=1

δje
−ijω

∗
−1

.

6.A.7 Proof of Theorem 6.6

Dieudonné’s fixed point theorem (Dieudonné, 1960, Section 10.1) says that there exists a

unique point ω̂T ∈ AT (ν) such that h (ω̂T ) = 0 provided the following two conditions are met

as T →∞.

Condition 6.1 There exists k, 0 6 k < 1, such that if ω, ω′ ∈ AT (ν) then

∣∣ω − ω′ + hT (ω)− hT
(
ω′
)∣∣ < k

∣∣ω − ω′∣∣ .
Condition 6.2 |hT (ω0)| < (1− k)T−ν .

In order to show that these conditions hold, first note that

ξt =
1

sinω

t∑
j=0

sin {(j + 1)ω}Xt−j . (6.26)

Let

dT (ω) = sinω
T−1∑
t=0

ξ′t−1ΩXt

and

eT (ω) = sin2 ω
T−1∑
t=0

ξ′t−1Ωξt−1.

Then

hT (ω) = sinωdT (ω) e−1
T (ω) .

Following the approach of Theorem 16 of Quinn and Hannan (2001), which shows the above

conditions hold in the univariate case, we will analyse dT (ω) and eT (ω) separately using an
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expansion around ω0. We will make use of the fact that

t∑
j=0

sin (jω) cos {(t− j)ω0}

=
1

2

t∑
j=0

sin {j (ω − ω0) + tω0}+
1

2

t∑
j=0

sin {j (ω + ω0)− tω0}

=
1

2
cos (tω0)

t∑
j=0

sin {j (ω − ω0)}+
1

2
sin (tω0)

t∑
j=0

cos {j (ω − ω0)}+O (1)

=
1

2
cos (tω0)

∞∑
k=0

(−1)k
(ω − ω0)2k+1

(2k + 1)!

t∑
j=0

j2k+1

+
1

2
sin (tω0)

∞∑
k=0

(−1)k
(ω − ω0)2k

(2k)!

t∑
j=0

j2k +O (1)

=
1

2
cos (tω0)

∞∑
k=0

(−1)k
(ω − ω0)2k+1

(2k + 2)!

{
t2k+2 +O

(
t2k+1

)}
+

1

2
sin (tω0)

∞∑
k=0

(−1)k
(ω − ω0)2k

(2k + 1)!

{
t2k+1 +O

(
t2k
)}

+O (1)

and, similarly,

t∑
j=0

sin (jω) sin {(t− j)ω0}

=
1

2
sin (tω0)

∞∑
k=0

(−1)k
(ω − ω0)2k+1

(2k + 2)!

{
t2k+2 +O

(
t2k+1

)}
− 1

2
cos (tω0)

∞∑
k=0

(−1)k
(ω − ω0)2k

(2k + 1)!

{
t2k+1 +O

(
t2k
)}

+O (1) .

Also,

t∑
j=0

j cos (jω) cos {(t− j)ω0}

=
1

2
cos (tω0)

∞∑
k=0

(−1)k
(ω − ω0)2k

(2k + 2) (2k)!

{
t2k+2 +O

(
t2k+1

)}
− 1

2
sin (tω0)

∞∑
k=0

(−1)k
(ω − ω0)2k+1

(2k + 3) (2k + 1)!

{
t2k+3 +O

(
t2k+2

)}
+O (1)

and

t∑
j=0

j cos (jω) sin {(t− j)ω0}

=
1

2
cos (tω0)

∞∑
k=0

(−1)k
(ω − ω0)2k+1

(2k + 3) (2k + 1)!

{
t2k+3 +O

(
t2k+2

)}
+

1

2
sin (tω0)

∞∑
k=0

(−1)k
(ω − ω0)2k

(2k + 2) (2k)!

{
t2k+2 +O

(
t2k+1

)}
+O (1) .
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Furthermore,

T−1∑
t=0

tjeiωtεt = O
{
T j+1/2 (log T )1/2

}
, (6.27)

which follows from Theorem 2.4.

We begin with eT (ω) which, from (6.26), is equal to

T−1∑
t=0


t∑

j=0

sin (jω) ε′t−j

Ω

{
t∑

k=0

sin (kω) εt−k

}

+
T−1∑
t=0

α′0 t∑
j=0

sin (jω) cos {(t− j)ω0}+ β′0

t∑
j=0

sin (jω) sin {(t− j)ω0}

Ω

×

α0

t∑
j=0

sin (jω) cos {(t− j)ω0}+ β0

t∑
j=0

sin (jω) sin {(t− j)ω0}


+ 2

T−1∑
t=0

α′0 t∑
j=0

sin (jω) cos {(t− j)ω0}+ β′0

t∑
j=0

sin (jω) sin {(t− j)ω0}

Ω

×


t∑

j=0

sin (jω) εt−j

 . (6.28)

From the mean value theorem, the first term in (6.28) is

T−1∑
t=0


t∑

j=0

sin (jω0) ε′t−j

Ω

{
t∑

k=0

sin (kω0) εt−k

}

+ 2 (ω − ω0)
T−1∑
t=0


t∑

j=0

j cos (jω∗) ε′t−j

Ω

{
t∑

k=0

sin (kω∗) εt−k

}
,

where ω∗ is a point on the line segment between ω and ω0, which is

T−1∑
t=0


t∑

j=0

sin (jω0) ε′t−j

Ω

{
t∑

k=0

sin (kω0) εt−k

}
+ (ω − ω0)O

(
T 3 log T

)
= O

(
T 2 log T

)
.
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The third term in (6.28) is

2
T−1∑
t=0

α′0 t∑
j=0

sin (jω) cos {(t− j)ω0}+ β′0

t∑
j=0

sin (jω) sin {(t− j)ω0}

Ω

×


t∑

j=0

sin (jω0) εt−j


+ 2 (ω − ω0)

T−1∑
t=0

α′0 t∑
j=0

j cos (jω∗) cos {(t− j)ω0}+ β′0

t∑
j=0

j cos (jω∗) sin {(t− j)ω0}

Ω

×


t∑

j=0

sin {(t− j)ω∗} εj


+ 2 (ω − ω0)

T−1∑
t=0

α′0 t∑
j=0

sin (jω∗) cos {(t− j)ω0}+ β′0

t∑
j=0

sin (jω∗) sin {(t− j)ω0}

Ω

×


t∑

j=0

(t− j) cos {(t− j)ω∗} εj

 ,

which is

2
T−1∑
t=0

α′0 t∑
j=0

sin (jω0) cos {(t− j)ω0}+ β′0

t∑
j=0

sin (jω0) sin {(t− j)ω0}

Ω

×


t∑

j=0

sin (jω0) εt−j

+ (ω − ω0)O
{
T 7/2 (log T )1/2

}
= O

{
T 5/2 (log T )1/2

}
.

The second term in (6.28) is

T−1∑
t=0

α′0 t∑
j=0

sin (jω0) cos {(t− j)ω0}+ β′0

t∑
j=0

sin (jω0) sin {(t− j)ω0}

Ω

×

α0

t∑
j=0

sin (jω0) cos {(t− j)ω0}+ β0

t∑
j=0

sin (jω0) sin {(t− j)ω0}


+ 2 (ω − ω0)

T−1∑
t=0

α′0 t∑
j=0

j cos (jω∗) cos {(t− j)ω0}+ β′0

t∑
j=0

j cos (jω∗) sin {(t− j)ω0}

Ω

×

α0

t∑
j=0

sin (jω∗) cos {(t− j)ω0}+ β0

t∑
j=0

sin (jω∗) sin {(t− j)ω0}

 ,
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which is

T−1∑
t=0

α′0 t∑
j=0

sin (jω0) cos {(t− j)ω0}+ β′0

t∑
j=0

sin (jω0) sin {(t− j)ω0}

Ω

×

α0

t∑
j=0

sin (jω0) cos {(t− j)ω0}+ β0

t∑
j=0

sin (jω0) sin {(t− j)ω0}


+ (ω − ω0)O

(
T 3
)

=
α′0Ωα0 + β′0Ωβ0

24
T 3 +O

(
T 2
)
.

Thus

eT (ω) = eT (ω0) + (ω − ω0)O
{
T 7/2 (log T )1/2

}
(6.29)

and also

eT (ω) =
α′0Σα0 + β′0Ωβ0

24
T 3 +O

{
T 5/2 (log T )1/2

}
. (6.30)

Next we analyse dT (ω), which is

T−1∑
t=0

ε′tΩ

t∑
j=0

sin (jω) εt−j

+
T−1∑
t=0

{
α′0 cos (tω0) + β′0 sin (tω0)

}
Ω

t∑
j=0

sin (jω) εt−j

+

T−1∑
t=0

ε′tΩ
t∑

j=0

[α0 sin (jω) cos {(t− j)ω0}+ β0 sin (jω) sin {(t− j)ω0}]

+
T−1∑
t=0

{
α′0 cos (tω0) + β′0 sin (tω0)

}
Ω

×
t∑

j=0

[α0 sin (jω) cos {(t− j)ω0}+ β0 sin (jω) sin {(t− j)ω0}] . (6.31)

Again using the mean value theorem, the first term in (6.31) is

T−1∑
t=0

ε′tΩ

t∑
j=0

sin (jω0) εt−j + (ω − ω0)
T−1∑
t=0

ε′tΩ
t∑

j=0

j cos (jω∗) εt−j ,

where ω∗ is a point on the line segment between ω and ω0. By the Cauchy–Schwarz inequality,
T−1∑
t=0

ε′tΩ
t∑

j=0

j cos (jω∗) εt−j


2

6

{
T−1∑
t=0

ε′tΩεt

}
T−1∑
t=0


t∑

j=0

j cos (jω∗) ε′t−j

Ω


t∑

j=0

j cos (jω∗) εt−j


= O

(
T 5 log T

)
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and so the first term in (6.31) is

T−1∑
t=0

ε′tΩ
t∑

j=0

sin (jω0) εt−j + (ω − ω0)O
{
T 5/2 (log T )1/2

}
= O

{
T 3/2 (log T )1/2

}
.

The second term in (6.31) is

T−1∑
t=0

ε′tΩ
T−1∑
j=t

sin {(j − t)ω0} {α0 cos (jω0) + β0 sin (jω0)}

+ (ω − ω0)
T−1∑
t=0

ε′tΩ
T−1∑
j=t

(j − t) cos {(j − t)ω∗} {α0 cos (jω0) + β0 sin (jω0)}

=
T−1∑
t=0

ε′tΩ
T−1∑
j=t

sin {(j − t)ω0} {α0 cos (jω0) + β0 sin (jω0)}

+ (ω − ω0)

T−1∑
t=0

ε′tΩ

T−1−t∑
j=0

j cos (jω∗) [α0 cos {(t+ j)ω0}+ β0 sin {(t+ j)ω0}] ,

which is
T−1∑
t=0

ε′tΩ
T−1∑
j=t

sin {(j − t)ω0} {α0 cos (jω0) + β0 sin (jω0)}+ (ω − ω0)O
{
T 5/2 (log T )1/2

}
= O

{
T 3/2 (log T )1/2

}
,

since
T−1−t∑
j=0

j cos (jω) cos {(t+ j)ω0}

=
1

2
cos (tω0)

∞∑
k=0

(−1)k
(ω − ω0)2k

(2k + 2) (2k)!

[
(T − t)2k+2 +O

{
(T − t)2k+1

}]
+

1

2
sin (tω0)

∞∑
k=0

(−1)k
(ω − ω0)2k+1

(2k + 3) (2k + 1)!

[
(T − t)2k+3 +O

{
(T − t)2k+2

}]
+O (1)

and
T−1−t∑
j=0

j cos (jω) sin {(t+ j)ω0}

=
1

2
sin (tω0)

∞∑
k=0

(−1)k
(ω − ω0)2k

(2k + 2) (2k)!

[
(T − t)2k+2 +O

{
(T − t)2k+1

}]
− 1

2
cos (tω0)

∞∑
k=0

(−1)2k+1 (ω − ω0)2k+1

(2k + 3) (2k + 1)!

[
(T − t)2k+3 +O

{
(T − t)2k+2

}]
+O (1) .

Similarly, the third term in (6.31) is

T−1∑
t=0

ε′tΩ

t∑
j=0

[α0 sin (jω0) cos {(t− j)ω0}+ β0 sin (jω0) sin {(t− j)ω0}]

+ (ω − ω0)O
{
T 5/2 (log T )1/2

}
= O

{
T 3/2 (log T )1/2

}
.
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The fourth term in (6.31) is

T−1∑
t=0

{
α′0 cos (tω0) + β′0 sin (tω0)

}
Ω

×
t∑

j=0

[α0 sin (jω0) cos {(t− j)ω0}+ β0 sin (jω0) sin {(t− j)ω0}]

+ (ω − ω0)
T−1∑
t=0

{
α′0 cos (tω0) + β′0 sin (tω0)

}
Ω

×
t∑

j=0

[α0j cos (jω∗) cos {(t− j)ω0}+ β0j cos (jω∗) sin {(t− j)ω0}]

= O (T ) + (ω − ω0)

{
α′0Ωα0 + β′0Ωβ0

24
T 3 +O

(
T 2
)}

. (6.32)

Thus

dT (ω) = dT (ω0) + (ω − ω0)

[
α′0Ωα0 + β′0Ωβ0

24
T 3 +O

{
T 5/2 (log T )1/2

}]
. (6.33)

Now,

hT (ω)− hT
(
ω′
)

= dT (ω) e−1
T (ω)− dT

(
ω′
)
e−1
T

(
ω′
)
,

and so

eT (ω) eT
(
ω′
) {
hT (ω)− hT

(
ω′
)}

=
{
dT (ω)− dT

(
ω′
)}
eT (ω)−

{
eT (ω)− eT

(
ω′
)}
dT
(
ω′
)

which is, from (6.29), (6.30) and (6.33),

(
ω − ω′

) [α′0Ωα0 + β′0Ωβ0

24
T 3 +O

{
T 5/2 (log T )1/2

}]
×
[
α′0Σα0 + β′0Ωβ0

24
T 3 +O

{
T 5/2 (log T )1/2

}]
−
(
ω − ω′

)
O
{
T 7/2 (log T )1/2

}
O
{
T 3/2 (log T )1/2

}
=
(
ω − ω′

) [(α′0Ωα0 + β′0Ωβ0

24

)2

T 6 +O
{
T 11/2 (log T )1/2

}]
.

Thus

hT (ω)− hT
(
ω′
)

=
(
ω − ω′

)
[(

α′0Ωα0+β′0Ωβ0
24

)2
T 6 +O

{
T 11/2 (log T )1/2

}]
[
α′0Σα0+β′0Ωβ0

24 T 3 +O
{
T 5/2 (log T )1/2

}]2

=
(
ω − ω′

) [
1 +O

{
T−1/2 (log T )1/2

}]
(6.34)

and so

ω − ω′ − hT (ω) + hT
(
ω′
)

=
(
ω − ω′

)
O
{
T−1/2 (log T )1/2

}
.
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Furthermore,

hT (ω0) = dT (ω0) e−1
T (ω0)

=
O
{
T 3/2 (log T )1/2

}
α′0Σα0+β′0Ωβ0

24 T 3 +O
{
T 5/2 (log T )1/2

}
= O

{
T−3/2 (log T )1/2

}
. (6.35)

From (6.34) and (6.35), Conditions 6.1 and 6.2 hold for 1 < ν < 3/2. Since AT (ν) is

expanding as v decreases, it follows that there is a unique point ω̂T such that h (ω̂T ) = 0 for

which T−ν (ω̂T − ω0)→ 0 as T →∞ for any ν < 3/2.

6.A.8 Proof of Theorem 6.7

We first consider the case where 1 < ν < 3/2. From (6.34), letting ω′ = ω̂T ,

ω − ω̂T − hT (ω) + hT (ω̂T ) = (ω − ω̂T )O
{
T−1/2 (log T )1/2

}
. (6.36)

But hT (ω̂T ) = 0 and ωj − hT (ωj) = ωj+1 so

ωj+1 − ω̂T = (ωj − ω̂T )O
{
T−1/2 (log T )1/2

}
.

Putting ω = ω0 in (6.36),

ω0 − ω̂T = hT (ω0) + o
(
T−3/2

)
(6.37)

= O
{
T−3/2 (log T )1/2

}
.

We now analyse eT (ω) and dT (ω) when 1/2 < ν 6 1. We begin with eT (ω), which is

given by (6.28). The first term is O
(
T 2 log T

)
. The second term is

α′Σ−1α
T−1∑
t=0

 t∑
j=0

sin (jω) cos {(t− j)ω0}

2

+ β′Σ−1β
T−1∑
t=0

 t∑
j=0

sin (jω) sin {(t− j)ω0}

2

+ 2α′Σ−1β
T−1∑
t=0

 t∑
j=0

sin (jω) cos {(t− j)ω0}

 t∑
j=0

sin (jω) sin {(t− j)ω0}


=
α′Σ−1α

4

T−1∑
t=0

 t∑
j=0

sin {j (ω − ω0) + tω0}+O (1)

2

+
β′Σ−1β

4

T−1∑
t=0

 t∑
j=0

cos {j (ω − ω0) + tω0}+O (1)

2

+
α′Σ−1β

2

T−1∑
t=0

 t∑
j=0

sin {j (ω − ω0) + tω0}+O (1)

 t∑
j=0

cos {j (ω − ω0) + tω0}+O (1)

 .
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Letting λ = (ω − ω0) /2,

t∑
j=0

sin {j (ω − ω0) + tω0} = sin (tω0 + tλ)
sin {(t+ 1)λ}

sinλ
(6.38)

and, similarly,

t∑
j=0

cos {j (ω − ω0) + tω0} = cos (tω0 + tλ)
sin {(t+ 1)λ}

sinλ
. (6.39)

Thus

T−1∑
t=0

 t∑
j=0

sin {j (ω − ω0) + tω0}

2

=
T−1∑
t=0

sin2 (tω0 + tλ)
sin2 {(t+ 1)λ}

sin2 λ

=
1

4 sin2 λ

T−1∑
t=0

{1− cos (2tω0 + 2tλ)} [1− cos {2 (t+ 1)λ}]

=
1

4 sin2 λ

[
T − Re

(
T−1∑
t=0

e2i(t+1)λ

)
+O (1)

]

=
1

4 sin2 λ

[
T − cos {(T + 1)λ} sin (Tλ)

sinλ
+O (1)

]
=

1

4 sin2 λ

[
T +

1

2
− sin {(2T + 1)λ}

2 sinλ
+O (1)

]
=

1

8
g2T+1 (λ) +

1

sin2 λ
O (1) ,

where

gT (x) =
T

sin2 x

{
1− sin (Tx)

T sinx

}
.

Similarly,

T−1∑
t=0

 t∑
j=0

cos {j (ω − ω0) + tω0}

2

=
1

8
g2T+1 (λ) +

1

sin2 λ
O (1)

and

T−1∑
t=0

 t∑
j=0

sin {j (ω − ω0) + tω0}

 t∑
j=0

cos {j (ω − ω0) + tω0}

 =
1

sin2 λ
O (1) .

Now,

g2T+1 (λ) = O
(
T 1+2ν

)
and

1

sin2 λ
= O

(
T 2ν

)
.

Thus the second term of eT (ω) is

α′0Ωα0 + β′0Ωβ0

32
g2T+1 (λ) +O

(
T 2ν

)
.
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By the Cauchy–Schwarz inequality, the third term of eT (ω) is O
{
T 3/2+ν (log T )1/2

}
and so

eT (ω) =
α′0Ωα0 + β′0Ωβ0

32
g2T+1 (λ) +O

{
T 3/2+ν (log T )1/2

}
. (6.40)

We next analyse dT (ω), which is given by (6.31), for 1/2 < ν 6 1. Let

Cε (j) = T−1
T−1∑
t=j

εt−jε
′
t.

Then, for any ω,

T−1

∣∣∣∣∣∣
T−1∑
j=0

T−1∑
t=j

sin (jω) ε′tΩεt−j

∣∣∣∣∣∣ = T−1

∣∣∣∣∣∣
T−1∑
j=0

T−1∑
t=j

sin (jω) tr
(
Ωεt−jε

′
t

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
T−1∑
j=0

sin (jω) tr

ΩT−1
T−1∑
t=j

εt−jε
′
t

∣∣∣∣∣∣
=

∣∣∣∣∣∣
T−1∑
j=0

sin (jω) tr [Ω {Cε (j)− Γε (j)}] +
T−1∑
j=0

sin (jω) tr {ΩΓε (j)}

∣∣∣∣∣∣
6 sup

j=0,...,T−1
|Cε (j)− Γε (j)|+O (1)

= O (1) , (6.41)

from An et al. (1982). Thus the first term in (6.31) is O (T ). The third term in (6.31) is

T−1∑
t=0

ε′tΩα0

t∑
j=0

sin (jω) cos {(t− j)ω0}+
T−1∑
t=0

ε′tΩβ0

t∑
j=0

sin (jω) sin {(t− j)ω0}

which, from (6.38) and (6.39), is equal to

1

4 sinλ

T−1∑
t=0

ε′tΩα0 [cos (tω0 − λ)− cos {tω0 + (2t+ 1)λ}]

+
1

4 sinλ∗

T−1∑
t=0

ε′tΩα0 [cos (−tω0 − λ∗)− cos {−tω0 + (2t+ 1)λ∗}]

+
1

4 sinλ

T−1∑
t=0

ε′tΩβ0 [sin {tω0 + (2t+ 1)λ} − sin (tω0 − λ)]

+
1

4 sinλ∗

T−1∑
t=0

ε′tΩβ0 [sin {−tω0 + (2t+ 1)λ∗} − sin (−tω0 − λ∗)] , (6.42)

where λ∗ = (ω + ω0) /2. The second and fourth terms in (6.42) are O
{
T 1/2 (log T )1/2

}
, and

the first and third terms in (6.42) are 1
sinλO

{
T 1/2 (log T )1/2

}
. Thus the third term in (6.31) is

1
sinλO

{
T 1/2 (log T )1/2

}
. Similarly, the second term in (6.31) is also 1

sinλO
{
T 1/2 (log T )1/2

}
.
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The fourth term in (6.31) is

α′0Ωα0

T−1∑
t=0

cos (tω0)

t∑
j=0

sin (jω) cos {(t− j)ω0}

+ β′0Ωβ0

T−1∑
t=0

sin (tω0)
t∑

j=0

sin (jω) sin {(t− j)ω0}

+ α′0Ωβ0

T−1∑
t=0

cos (tω0)

t∑
j=0

sin (jω) sin {(t− j)ω0}

+ β′0Ωα0

T−1∑
t=0

sin (tω0)
t∑

j=0

sin (jω) cos {(t− j)ω0} . (6.43)

From (6.38) and (6.39),

T−1∑
t=0

cos (tω0)
t∑

j=0

sin (jω) cos {(t− j)ω0}

=
1

2

T−1∑
t=0

cos (tω0)

t∑
j=0

sin (2jλ+ tω0) +O (T )

=
1

2 sinλ

T−1∑
t=0

cos (tω0) sin (tω0 + λ) sin {(t+ 1)λ}+O (T )

=
1

4 sinλ

T−1∑
t=0

sin (2tω0 + tλ) sin {(t+ 1)λ}+
1

4 sinλ

T−1∑
t=0

sin (tλ) sin {(t+ 1)λ}+O (T ) .

(6.44)

The first term in (6.44) is O (T ). The second term in (6.44) is

1

4 sinλ

T−1∑
t=0

sin (tλ) sin {(t+ 1)λ} =
1

8 sinλ

[
T cosλ−

T−1∑
t=0

cos {(2t+ 1)λ}

]

=
1

8 sinλ

{
T cosλ− sin (2Tλ)

2 sinλ

}
=

T

8 sinλ

{
cosλ− 1 + 1− sin (2Tλ)

2T sinλ

}
= −T

8
tan (λ/2) +

sinλ

16
g2T (λ)

= O
(
T 1−ν)+

sinλ

16
g2T (λ) .

Treating the other terms in (6.43) in the same way, the fourth term in (6.31) is

α′0Ωα0 + β′0Ωβ0

16
sinλg2T (λ) +O

(
T 1−ν) .

Therefore

dT (ω) =
α′0Ωα0 + β′0Ωβ0

16
sinλg2T (λ) +

1

sinλ
O
{
T 1/2 (log T )1/2

}
. (6.45)
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It follows from (6.40) and (6.45) that

dT (ω)

eT (ω)
= (ω − ω0)

[
1 +O

{
T 1/2−ν (log T )1/2

}]
+O

{
T−1/2−ν (log T )1/2

}
.

Thus

hT (ω) + ω − ω̂T = (ω − ω̂T )O
{
T 1/2−ν (log T )1/2

}
+O

{
T 1/2−2ν (log T )1/2

}
and so

ωj+1 − ω̂T = (ωj − ω̂T )O
{
T−1/2−ν (log T )1/2

}
+O

{
T−1/2−2ν (log T )1/2

}
.

Also,

hT (ω0) + ω0 − ω̂T = O
{
T−1/2−2ν (log T )1/2

}
,

and so

ω0 − ω̂T = h (ω0) + o
(
T−3/2

)
= O

{
T−3/2 (log T )1/2

}
,

as before.

To prove the final part of the theorem, let ωj+1 − ω̂T = O
(
T−φj+1

)
and φ0 = ν. Then

φj+1 = 2φj −
1

2
+ κ,

where κ is arbitrarily small. Thus

φj = 2j−1

(
ν − 1

2

)
+

1

2
+ κ

and so φj > 1 when

2j−1 (2ν − 1) > 1,

that is when

j > b2− log (2ν − 1) / log (2)c .

One more iteration is then required for to be within o
(
T−3/2

)
of ω̂T .

6.A.9 Proof of Theorem 6.8

From (6.37),

ω̂T − ω0 = −dT (a0) e−1
T (a0) {1 + o (1)} .

From (6.30),

T−3eT (a)→ α′0Ωα0 + β′0Ωβ0

24
.
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It remains to find the asymptotic distribution of T−3/2dT (a), which, from (6.31), (6.32) and

(6.41), is

T−3/2
T−1∑
t=0

{
α′0 cos (tω0) + β′0 sin (tω0)

}
Ω

t∑
j=0

sin (jω0) εt−j

+ T−3/2
T−1∑
t=0

ε′tΩ
t∑

j=0

[α0 sin (jω) cos {(t− j)ω0}+ β0 sin (jω0) sin {(t− j)ω0}]

+O
(
T−1/2

)
. (6.46)

The first and second terms in (6.46) are

T−3/2
T−1∑
t=0

ε′tΩα0

 t∑
j=0

sin (jω0) cos {(t− j)ω0}+

T−1∑
j=t

cos (jω0) sin {(j − t)ω0}


+ T−3/2

T−1∑
t=0

ε′tΩβ0

 t∑
j=0

sin (jω0) sin {(t− j)ω0}+

T−1∑
j=t

sin (jω0) sin {(j − t)ω0}


which is equal to

1

2
T−3/2

T−1∑
t=0

ε′tΩα0 {(t+ 1) sin (tω0)− (T − t) sin (tω0) +O (1)}

+
1

2
T−3/2

T−1∑
t=0

ε′tΩβ0 {− (t+ 1) cos (tω0) + (T − t) cos (tω0) +O (1)}

=
1

2
T−3/2

T−1∑
t=0

ε′tΩα0 (2t− T ) sin (tω0) +
1

2
T−3/2

T−1∑
t=0

ε′tΩβ0 (2t− T ) cos (tω0) +O
(
T−1/2

)
= − 1

2
√

2

√
2α′0ΩT−1/2

T−1∑
t=0

εt
(
1− 2tT−1

)
sin (tω0)

− 1

2
√

2
β′0Ω
√

2T−1/2
T−1∑
t=0

εt
(
1− 2tT−1

)
cos (tω0) +O

(
T−1/2

)
.

It was shown in the proof of Theorem 6.1 that

√
2T−1/2

T−1∑
t=0

εt
(
1− 2tT−1

)
sin (tω0)

and
√

2T−1/2
T−1∑
t=0

εt
(
1− 2tT−1

)
cos (tω0)

are both asymptotically normal with mean zero and variance 2πfε (ω0) /3. Thus (6.46) is

asymptotically normal with mean zero and variance

2π

24

{
α′0Ωfε (ω0) Ωα0 + β′0Ωfε (ω0) Ωβ0

}
.

Hence T 3/2 (ω̂ − ω0) is asymptotically normal with mean zero and variance

48π
α′0Ωfε (ω0) Ωα0 + β′0Ωfε (ω0) Ωβ0

(α′0Ωα0 + β′0Ωβ0)2 .
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7
Discriminating Between Time Series With Periodic

Components

7.1 Introduction

In this chapter we consider the problem of discriminating between two or more time series

which are generated by stochastic processes which contain periodic components. As in Chap-

ter 6, we model such processes as the sum of sinusoids at fixed frequencies and stationary

noise. One null hypothesis of interest is that the fixed frequencies of each process are the

same and the noise processes have the same spectral shape. Another is that the fixed fre-

quencies of the processes are the same without any restriction on the spectral densities of the

noise processes. This second test would be relevant if the signal of interest was defined by

the periodic component, and the stationary part was considered to be produced entirely by

background noise. An application for these tests arises, for example, in underwater sonar,

where we may have two sonar recordings obtained in different areas and/or at different times

and we wish to determine if they have been produced by the same man-made object, for

example a submarine.

Both tests described above were considered by Quinn (2006) for the case of discriminating
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between two univariate time series. Algorithms were given for computing estimators of the

common frequencies under the null hypotheses and test statistics were derived using the

pseudo-likelihood ratio approach described in previous chapters of this thesis. The noise

processes were modelled as autoregressions and the autoregressive orders were estimated using

information criteria (see Section 3.3.4). In this chapter we propose modified algorithms which

incorporate the work of previous chapters, in particular around modelling the noise processes

using fixed order autoregressive approximation (see Section 3.6). We derive the asymptotic

properties of the estimators and extend the procedures for the case of discriminating between

more than two time series. We then propose extensions for the case where the time series

are multivariate, drawing on the work of Chapter 6. The results of simulation studies are

presented which demonstrate the behaviour of the test statistics under the null hypotheses

as well as the power of the tests in detecting differences in the fixed frequencies of two or

more time series.

7.2 Discriminating Between Two Time Series With Periodic

Components

Let {Xt} and {Yt} be univariate processes which are made up of a deterministic periodic

component and a stationary stochastic component. We model the periodic components as the

sum of fX and fY sinusoids, respectively and the stationary components as autoregressions

of order pX and pY , respectively. We therefore consider the models

Xt =

fX∑
j=1

{αX,j cos (ωX,jt) + βX,j sin (ωX,jt)}+ Et (7.1)

and

Yt =

fY∑
j=1

{αY,j cos (ωY,jt) + βY,j sin (ωY,jt)}+ Ut, (7.2)

where

Et +

pX∑
j=1

δX,jEt−1 = εt

and

Ut +

pY∑
j=1

δY,jUt−1 = ut.

Note that we are assuming that {Xt} and {Yt} have zero means and in practice we will mean

correct the data. We make the usual assumptions on {εt} and {ut}, that is, that they are

independent sequences of martingale differences and that

E
(
ε2
t | Ft−1

)
= σ2

ε and E
(
u2
t | Gt−1

)
= σ2

u,
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where Ft and Gt are the σ-fields generated by {εt, εt−1, . . .} and {ut, ut−1, . . .}, respectively.

The first null hypothesis we consider is that {Xt} and {Yt} have sinusoids at the same

frequencies and that {Et} and {Ut} have the same spectral shape. This is equivalent to

H
(1)
0 : ωX,j = ωY,j ∀j, δX,k = δY,k ∀k.

The second null hypothesis we consider is that {Xt} and {Yt} have sinusoids at the same

frequencies with no restriction on the spectral densities of {Et} and {Ut}. This is equivalent

to

H
(2)
0 : ωX,j = ωY,j ∀j.

In both cases, the alternative hypothesis, HA, is the complement of the null. Procedures

will first be developed in order to test H
(1)
0 and then these will be modified for testing H

(2)
0 ,

which is the simpler of the two. Therefore throughout the chapter, when we refer to the null

hypothesis, we will mean H
(1)
0 , unless otherwise specified.

The test statistics will be derived using the same pseudo-likelihood ratio procedure as in

previous chapters. As in Chapter 3, we let pX = pY = p and derive test statistics, parameter

estimators and their asymptotic properties for fixed p. In practice we let p = b(log Tmin)cc,

where Tmin = min (T1, T2) and c > 1. In this way, we do not need to assume that {Et} and

{Ut} truly are autoregressive and instead use long-order autoregressive approximation (see

Section 3.6).

Let dδ (z) = 1 +
∑p

j=1 δjz
j . Then Et = d−1

δX
(z) εt and

dδX (z)Xt =

fX∑
j=1

dδX (z) {αX,j cos (ωX,jt) + βX,j sin (ωX,jt)}+ εt.

Since

dδX (z) eiωjt = eiωjt +

p∑
j=1

δX,je
iωj(t−j)

= eiωjtdδX
(
e−iωj

)
,

(7.1) can be rewritten as

Xt +

p∑
j=1

δX,jXt−j =

fX∑
j=1

{
α̃X,j cos (ωX,jt) + β̃X,j sin (ωX,jt)

}
+ εt,

where α̃X,j and β̃X,j are related to αX,j and βX,j by the identity

α̃X,j + iβ̃X,j = dδX
(
eiω
)

(αX,j + iβX,j) ,
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j = 1, . . . , fX . Similarly, (7.2) can be rewritten as

Yt +

p∑
j=1

δY,jYt−j =

fY∑
j=1

{
α̃Y,j cos (ωY,jt) + β̃Y,j sin (ωY,jt)

}
+ ut,

where

α̃Y,j + iβ̃Y,j = dδY
(
eiω
)

(αY,j + iβY,j) ,

j = 1, . . . , fY . Let

X =
[
X0 · · · XT1−1

]
, Y =

[
Y0 · · · YT2−1

]
,

δX =
[
δX,1 · · · δX,p

]′
, δY =

[
δY,1 · · · δY,p

]′
,

ωX =
[
ωX,1 · · · ωX,fX

]′
, ωY =

[
ωY,1 · · · ωY,fY

]′
,

θX =
[
α̃X,1 · · · α̃X,fX β̃X,1 · · · β̃X,fX

]′
,

θY =
[
α̃Y,1 · · · α̃Y,fX β̃Y,1 · · · β̃Y,fY

]′
,

and MT,f (ω) be the (T − p)× 2f matrix with (t− p+ 1)th row

[
cos (ω1t) · · · cos (ωf t) sin (ω1t) · · · sin (ωf t)

]
,

t = p, . . . , T − 1. The Gaussian log-likelihoods are then

lX
(
ωX , θX , δX , σ

2
ε

)
= −T1

2
log
(
2πσ2

ε

)
− 1

2σ2
ε

sX (ωX , θX , δX , ) (7.3)

and

lY
(
ωY , θY , δY , σ

2
u

)
= −T1

2
log
(
2πσ2

u

)
− 1

2σ2
u

sY (ωY , θY , δY ) , (7.4)

where

sX (ωX , θX , δX) = {dδX (z)X −MT1,fX (ωX) θX}′ {dδX (z)X −MT1,fX (ωX) θX}

and

sY (ωY , θY , δY ) = {dδY (z)Y −MT2,fY (ωY ) θY }′ {dδY (z)Y −MT2,fY (ωY ) θY } .

Under HA, (7.3) and (7.4) can be maximised separately. The estimators of ωX and θX

which maximise (7.3) can be computed using the methods discussed in Section 6.2. The

estimated sinusoids can be removed from the time series by regression and then δX and

σ2
ε can be estimated by fitting autoregressions of order p to the residuals. The parameter
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estimators which maximise (7.4) can be computed in the same way. The maximised Gaussian

log-likelihood is the sum of the individual ones, which is

l̂A = −T1 + T2

2
{1 + log (2π)} − T1

2
log
(
σ̂2
ε;A

)
− T2

2
log
(
σ̂2
u;A

)
, (7.5)

where σ̂2
ε;A and σ̂2

u;A are the estimators of σ2
ε and σ2

u, respectively.

Under H
(1)
0 , the frequencies and autoregressive parameters of the two processes are the

same. Let f = fX = fY , ω = ωX = ωY and δ = δX = δY denote the common parameters.

The Gaussian log-likelihood is then

− T1

2
log
(
2πσ2

ε

)
− T2

2
log
(
2πσ2

u

)
− 1

2σ2
ε

sX (ω, θX , δ)−
1

2σ2
u

sY (ω, θY , δ) . (7.6)

Let ω̂, θ̂X , θ̂Y and δ̂ be the maximisers of (7.6) with respect to ω, θX , θY and δ, respectively.

The maximisers of (7.6) with respect to σ2
ε and σ2

u are then

σ̂2
ε;0 = T−1

1 sX

(
ω̂X , θ̂X , δ̂

)
and σ̂2

u,0 = T−1
2 sY

(
ω̂Y , θ̂Y , δ̂

)
,

respectively. Therefore the maximised Gaussian log-likelihood under the null hypothesis is

l̂0 = −T1 + T2

2
{1 + log (2π)} − T1

2
log
(
σ̂2
ε;0

)
− T2

2
log
(
σ̂2
u,0

)
. (7.7)

Methods for computing ω̂, θ̂X , θ̂Y and δ̂ are given in Section 7.3.

The test statistic is 2
(
l̂A − l̂0

)
which, from (7.5) and (7.7), is

Λf = T1 log

(
σ̂2
ε;0

σ̂2
ε;A

)
+ T2 log

(
σ̂2
u;0

σ̂2
u;A

)
.

It will be shown that the asymptotic distribution of Λf under H
(1)
0 is chi-squared with p+ f

degrees of freedom. Therefore H
(1)
0 is rejected at significance level α when Λ is greater than

the 100 (1− α)th percentile of the χ2 distribution with p+ f degrees of freedom.

7.3 Parameter Estimation Under the Null Hypothesis

7.3.1 Estimating a Single Common Frequency

We begin by considering the case where f = 1, that is where

Xt = αX cos (ωt) + βX sin (ωt) + Et (7.8)

and

Yt = αY cos (ωt) + βY sin (ωt) + Ut. (7.9)
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As in the case of a single time series, we will motivate the estimation techniques by first

considering the case where {Et} and {Ut} are Gaussian and white. Putting p = 0, the

conditional Gaussian log-likelihood is

− T1

2
log
(
2πσ2

ε

)
− T2

2
log
(
2πσ2

u

)
− 1

2σ2
ε

{X −MT1,1 (ω) θX}′ {X −MT1,1 (ω) θX}

− 1

2σ2
u

{Y −MT2,1 (ω) θY }′ {Y −MT2,1 (ω) θY } . (7.10)

For fixed ω, the maximisers of (7.10) with respect to θX and θY have the same asymptotic

properties as

θ̂X (ω) =

 2T−1
1

∑T1−1
t=0 Xt cos (ωt)

2T−1
1

∑T1−1
t=0 Xt sin (ωt)

 and θ̂Y (ω) =

 2T−1
2

∑T2−1
t=0 Yt cos (ωt)

2T−1
2

∑T2−1
t=0 Yt sin (ωt)

 ,
respectively, from (6.6) and (6.7). It follows that the maximisers of (7.10) with respect to σ2

ε

and σ2
u have the same asymptotic properties as

σ̂2
ε (ω) = T−1

1

{
T1−1∑
t=0

X2
t − IT1,X (ω)

}
and σ̂2

u (ω) = T−1
2

{
T2−1∑
t=0

Y 2
t − IT2,Y (ω)

}
,

respectively. Thus the maximiser of (7.10) with respect to ω has the same asymptotic prop-

erties as the maximiser of

l̃0 (ω) = −T1

2
log
{
σ̂2
ε (ω)

}
− T2

2
log
{
σ̂2
u (ω)

}
. (7.11)

The asymptotic theory below shows that the maximiser of l̃0 (ω) is a strongly consistent

estimator of the common frequency in (7.8) and (7.9). That is, we can maximise the likelihood

as though {Et} and {Ut} are Gaussian and white and the resulting estimator will be strongly

consistent even if that is not the case. We will also establish the central limit theorem for

the estimator. Note that for the central limit theorem, we need to make the assumption that

T2 = κT1 for some constant κ.

Let

ω̂ = arg max
ω

l̃0 (ω) .

Also let fE (ω) and fU (ω) be the spectral densities of {Et} and {Ut}, respectively, and

ρ2
X = α2

X + β2
X and ρ2

Y = α2
Y + β2

Y .

In the theorems below and their proofs, a parameter written with a 0 in the subscript will

denote the true value of that parameter. The proofs of the theorems are in the Appendix.

Theorem 7.1 Tmin (ω̂ − ω0)→ 0 almost surely as T1, T2 →∞.
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Theorem 7.2 Let κ = T2/T1. Then the distribution of T
3/2
1 (ω̂ − ω0) converges to the normal

distribution with mean zero and variance

48π

{
ρ2
X0

fE (ω0)
+

κ3ρ2
Y 0

fU (ω0)

}−1

as T1 →∞.

In practice, we can maximise l̃0 (ω) using the Gauss–Newton algorithm by modifying the

procedure given in Section 6.2.3. Alternatively, we can estimate ω using a generalisation of

the Quinn–Fernandes technique which was proposed by Quinn (2006). We describe these

two methods below and also show that the estimator from the Quinn–Fernandes technique

is strongly consistent and follows the same central limit theorem as ω̂. For both methods we

introduce the parameter λ = σ2
ε/σ

2
u and show how to maximise l̃0 (ω) for a given λ. In the

algorithms which follow we incorporate the estimation of λ.

Estimating the Common Frequency Using the Gauss–Newton Algorithm

Following the method of Section 6.2.3, we reparametrise (7.8) and (7.9) and let

X = M∗T1 (ω) θ∗X + ε

and

Y = M∗T2 (ω) θ∗Y + u,

where θ∗X =
[
α∗X β∗X

]′
, θ∗Y =

[
α∗Y β∗Y

]′
and M∗T (ω) is the T × 3 matrix with (t+ 1)th

row given by (6.15). Also let

eX (ω) = X −M∗T1 (ω) θ̂∗X (ω) and eY (ω) = Y −M∗T2 (ω) θ̂∗Y (ω) ,

where

θ̂∗X (ω) =
{
M∗′T1 (ω)M∗T1 (ω)

}−1 {
M∗′T1 (ω)X

}
and

θ̂∗Y (ω) =
{
M∗′T2 (ω)M∗T2 (ω)

}−1 {
M∗′T2 (ω)Y

}
.

The estimator of ω is the minimiser of

S (ω) = RX (ω) + λRY (ω) ,

where

RX (ω) = e′X (ω) eX (ω) and RY (ω) = e′Y (ω) eY (ω) .
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The derivative of S (ω) is

d

dω
S (ω) = 2e′X (ω)

d

dω
eX (ω) + 2λe′Y (ω)

d

dω
eY (ω) .

Thus, given λ and a current estimate of ω, denoted ω̃, the Gauss–Newton algorithm updates

the estimate by

ω̃ −
e′X (ω̃) d

dωeX (ω̃) + λe′Y (ω̃) d
dωeY (ω̃)

d
dωe
′
X (ω̃) d

dωeX (ω̃) + λ d
dωe
′
Y (ω̃) d

dωeY (ω̃)

and repeats until convergence. The functions eX (ω), eY (ω) and their derivatives can be

computed using the methods given in Section 6.2.3. For an initial estimate we use the

maximiser of

IT ∗,X (ω) + λIT ∗,Y (ω)

over the Fourier frequencies, where T ∗ = 4 max (T1, T2). That is, the periodograms are

computed by first zero-padding the time series to four times the length of the longest series.

Estimating the Common Frequency Using the Quinn–Fernandes Technique

Quinn (2006) proposed a generalisation to the Quinn–Fernandes technique to estimate the

common frequency from two time series with equal variances. Algorithm 7.1 presents a

modified version of this for the case where the variances of the time series are not necessarily

the same but where their ratio is known. That is, the algorithm estimates ω for a given λ.

For an initial estimate of ω, we use the maximiser of

IT,X (ω) + λIT,Y (ω)

over the Fourier frequencies.

The asymptotic theory below shows that the estimator produced by Algorithm 7.1 is

strongly consistent and follows the same central limit theorem as the maximiser of l̃0 (ω). The

procedure for establishing the asymptotic properties follows closely that of the corresponding

theorems in Quinn and Hannan (2001) for the case of a single time series. Note that we make

the assumption that T2 = κT1.

Let

hT1,T2 (a) =

∑T1−1
t=0 Xtξt−1 (a) + λ

∑T2−1
t=0 Ytηt−1 (a)∑T1−1

t=0 ξ2
t−1 (a) + λ

∑T2−1
t=0 η2

t−1 (a)
,

where

ξt (a) = aξt−1 (a)− ξt−2 (a) +Xt and ηt (a) = aηt−1 (a)− ηt−2 (a) + Yt.

Also let aj+1 = aj + 2hT1,T2 (aj), ωj = cos−1 (aj/2) and AT1 (ν) =
{
a : |a− a0| < cT−ν1

}
,

where a0 = 2 cos (ω0). Theorem 7.3 shows that the sequence {aj} converges to a unique
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Algorithm 7.1 Estimating a common frequency from two time series using the Quinn–

Fernandes technique for a given λ

1. Put â = 2 cos (ω̂), where ω̂ is an initial estimate of ω.

2. For t = 0, . . . , T1 − 1, put

ξt = âξt−1 − ξt−2 +Xt,

where ξ−1 = ξ−2 = 0, and for t = 0, . . . , T2 − 1, put

ηt = âηt−1 − ηt−2 + Yt,

where η−1 = η−2 = 0.

3. Replace â by â+ ν, where

ν = 2

∑T1−1
t=0 Xtξt−1 + λ

∑T2−1
t=0 Ytηt−1∑T1−1

t=0 ξ2
t−1 + λ

∑T2−1
t=0 η2

t−1

.

4. Repeat steps 2 and 3 until |ν| converges to 0.

5. Put ω̂ = cos−1 (â/2).

point âT1 ∈ AT1 (ν) which is such that hT1,T2 (âT1) = 0. It follows that there is a unique

point, ω̂T1 , such that T ν1 (ω̂T1 − ω0) → 0 almost surely for any ν < 3/2. Theorem 7.4 shows

how many iterates are needed to converge to the fixed point and that, provided the initial

estimator is within O
(
T−1

1

)
of ω0, only two iterates are needed. Theorem 7.5 establishes the

central limit theorem for the estimator. The proofs of the theorems are in the Appendix.

Theorem 7.3 Let κ = T2/T1 and let AT1 (ν) =
{
a : |a− a0| < cT−ν1

}
, for fixed constant c >

0. Then there exists a unique point âT1 ∈ AT1 (ν) such that hT1,T2 (âT1) = 0 for 1 < ν < 3/2.

Thus there is a unique solution to hT1 (a0) = 0 for which T ν1 (ω̂T1 − ω0)→ 0 almost surely as

T1 →∞ for all ν < 3/2, where ω̂T1 = cos−1 (âT1/2).

Theorem 7.4 Let a1 ∈ AT1 (ν). If 1 < ν < 3/2 then

aj+1 − âT1 = (aj − âT1)O
{
T
−1/2
1 (log T1)1/2

}
,

while if 1/2 < ν 6 1 then

aj+1 − âT1 = (aj − âT1)O
{
T

1/2−ν
1 (log T1)1/2

}
+O

{
T

1/2−2ν
1 (log T1)1/2

}
.

Also

âT1 − a0 = O
{
T
−3/2
1 (log T1)1/2

}
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and

ak − âT1 = o
(
T
−3/2
1

)
for

k > b3− log (2ν − 1) / log 2c .

Theorem 7.5 Let κ = T2/T1. Then the distribution of T
3/2
1 (ω̂T1 − ω0) converges to the

normal distribution with mean zero and variance

48π

{
ρ2
X0

fE (ω0)
+

κ3ρ2
Y 0

fU (ω0)

}−1

as T1 →∞.

7.3.2 Estimating More Than One Common Frequency

When f > 1 we have, under H
(1)
0 ,

Xt =

f∑
j=1

{αX,j cos (ωjt) + βX,j sin (ωjt)}+ Et

and

Yt =

f∑
j=1

{αY,j cos (ωjt) + βY,j sin (ωjt)}+ Ut.

Following the same calculations as above, the common frequencies, ω1, . . . , ωf , may be esti-

mated by the f greatest maximisers of l̃0 (ω), ignoring sidelobes, where now

σ̂2
ε (ω) = T−1

1


T1−1∑
t=0

X2
t −

f∑
j=1

IT1,X (ωj)


and

σ̂2
u (ω) = T−1

2


T2−1∑
t=0

Y 2
t −

f∑
j=1

IT2,Y (ωj)

 .

It follows that we can estimate the frequencies one at a time, just as in the case of a single

time series. That is, after each frequency is estimated, the sinusoid at that frequency is

removed from both time series by regression and the next frequency is estimated from the

residuals.

In order to estimate the number of frequencies, we can use an information criterion along

the lines of that given in Section 6.2.4. In this case, the estimation of f frequencies involves

estimators of 2f parameters, from θX , which have asymptotic standard error of O
(
T
−1/2
1

)
, 2f

parameters, from θY , which have asymptotic standard error of O
(
T
−1/2
2

)
, p parameters, from

δ, which have asymptotic standard error of O
{

(T1 + T2)−1/2
}

and f parameters, ω1, . . . , ωf ,
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which have asymptotic standard error ofO
{

(T1 + T2)−3/2
}

. We therefore use the information

criterion

φ0 (f) = T1 log
{
σ̂2
ε;0 (f)

}
+ T2 log

{
σ̂2
u;0 (f)

}
+ (p+ 7f) log (T1 + T2) ,

where σ̂2
ε;0 (f) and σ̂2

u;0 (f) are the estimators of σ2
ε and σ2

u, respectively, obtained by fitting

autoregressions with common autoregressive parameters to the time series after removing f

common sinusoids by regression. The estimated number of frequencies is then the minimiser

of φ0 (f) over f = 0, . . . , F , where F is assumed to be greater than the true number of

frequencies.

7.4 The Test Statistic

The asymptotic distribution of the test statistic under H
(1)
0 , for a given f , is given in Theorem

7.6. The proof of the theorem is in the Appendix.

Theorem 7.6 Under H
(1)
0 , the distribution of Λf converges to the χ2 distribution with p+f

degrees of freedom as T1, T2 →∞.

The full procedure for computing the parameter estimators under both HA and H
(1)
0

for a given f is given in Algorithm 7.2. Note that at each step in the algorithm where

frequencies are estimated, under both the null and alternative hypotheses, the sinusoids

at these frequencies are removed from the time series by regression, and an autoregression

of order p is fitted to the residuals. The frequencies are then re-estimated on the time

series filtered by the autoregressive parameter estimates. This strengthens the algorithm

particularly if a root of the auxiliary equation is close to the unit circle or if the sample

sizes are small. Note also that the frequencies can be estimated either by maximising the

Gaussian white log-likelihood using the Gauss–Newton algorithm or by using the Quinn–

Fernandes technique. As shown above, the estimators are asymptotically equivalent, and even

in small samples simulations suggest the results will only differ negligibly. It is important,

however, that the same method is chosen for estimating the parameters under both the null

and alternative hypotheses. In practice, the Quinn–Fernandes technique is computationally

faster and so is generally preferred.

The test statistic is computed by applying Algorithm 7.2 for each f = 0, . . . , F and

calculating

f̂0 = arg min
f
φ0 (f)
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Algorithm 7.2 Computing the parameter estimators under H
(1)
0 and HA for a given f

1. Use Algorithm 6.1 to fit f sinusoids to {Xt}. Remove the estimated sinusoids by

regression and fit an autoregression of order p to the residuals, denoting the parameter

estimates by δ̂X and σ̂2
ε;A (f). Repeat using

{
d
δ̂X

(z)Xt

}
in place of {Xt}.

2. Use Algorithm 6.1 to fit f sinusoids to {Yt}. Remove the estimated sinusoids by re-

gression and fit an autoregression of order p to the residuals, denoting the parameter

estimates by δ̂Y and σ̂2
u;A (f). Repeat using

{
d
δ̂Y

(z)Yt

}
in place of {Yt}.

3. Put λ̂ = σ̂2
ε;A (f) /σ̂2

u;A (f),
{
Êt

}
= {Xt} and

{
Ût

}
= {Yt}.

4. Estimate a common frequency using the methods of Section 7.3.1 to
{
Êt

}
and

{
Ût

}
with λ = λ̂. Remove the corresponding sinusoid from both time series using regression

and denote the residuals by
{
Êt

}
and

{
Ût

}
.

5. Repeat step 4 until f common frequencies have been estimated.

6. Use the methods of Chapter 3 to fit autoregressions of order p with the same autore-

gressive parameters to {Xt} and {Yt} with λ = λ̂, denoting the parameter estimates by

δ̂
λ̂

and σ̃2
ε;λ̂

. Let
{
Êt

}
=
{
d
δ̂
λ̂

(z)Xt

}
and

{
Ût

}
=
{
d
δ̂
λ̂

(z)Yt

}
.

7. Repeat steps 4–6 once.

8. Update λ̂ by
T2σ̃

2
ε;λ̂∑T2−1

t=p

{
d
δ̂
λ̂

(z)Yt

}2

and put
{
Êt

}
= {Xt} and

{
Ût

}
= {Yt}.

9. Repeat steps 4–8 until λ̂ converges.

10. Put σ̂2
ε;0 (f) = σ̃2

ε;λ̂
and σ̂2

u;0 (f) = σ̃2
ε;λ̂
/λ̂.

as well as

f̂X = arg min
f
φX (f) and f̂Y = arg min

f
φY (f) ,

where

φX (f) = T1 log
{
σ̂2
ε;A (f)

}
+ (p+ 5f) log T1

and

φY (f) = T2 log
{
σ̂2
u;A (f)

}
+ (p+ 5f) log T2.

The test statistic is then

Λ
f̂0,f̂X ,f̂Y

= T1 log

 σ̂2
ε;0

(
f̂0

)
σ̂2
ε;A

(
f̂X

)
+ T2 log

 σ̂2
u;0

(
f̂0

)
σ̂2
u;A

(
f̂Y

)

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and H
(1)
0 is rejected at significance level α when Λ

f̂0,f̂X ,f̂Y
is greater than the 100(1− α)th

percentile of the χ2 distribution with p+ f̂0 degrees of freedom.

7.5 Discriminating Between the Fixed Frequencies Only

Under H
(2)
0 , the autoregressive orders of {Et} and {Ut} are not necessarily the same. Further-

more, the estimators of σ2
ε and σ2

u are calculated by fitting independent autoregressions to

the residuals obtained by removing f common frequencies from {Xt} and {Yt}, respectively.

That is, δX and δY are not necessarily the same. The procedure for computing the parameter

estimators under both HA and H
(2)
0 for a given f is given in Algorithm 7.3. The algorithm

assumes that the autoregressive orders of {Xt} and {Yt} are fixed at pX and pY , respectively.

In practice we let pX = b(log T1)c1c and pY = b(log T2)c2c where c1, c2 > 1.

Algorithm 7.3 Computing the parameter estimators under H
(2)
0 and HA for a given f

1. Use Algorithm 6.1 to fit f sinusoids to {Xt}. Remove the estimated sinusoids by

regression and fit an autoregression of order pX to the residuals, denoting the parameter

estimates by δ̂X and σ̂2
ε;A (f). Repeat using

{
d
δ̂X

(z)Xt

}
in place of {Xt}.

2. Use Algorithm 6.1 to fit f sinusoids to {Yt}. Remove the estimated sinusoids by re-

gression and fit an autoregression of order pY to the residuals, denoting the parameter

estimates by δ̂Y and σ̂2
u;A (f). Repeat using

{
d
δ̂Y

(z)Yt

}
in place of {Yt}.

3. Put λ̂ = σ̂2
ε;A (f) /σ̂2

u;A (f),
{
Êt

}
= {Xt} and

{
Ût

}
= {Yt}.

4. Estimate a common frequency by applying the methods of Section 7.3.1 to
{
Êt

}
and{

Ût

}
with λ = λ̂. Remove the corresponding sinusoid from both time series using

regression and denote the residuals by
{
Êt

}
and

{
Ût

}
.

5. Repeat step 4 until f common frequencies have been estimated.

6. Fit an autoregression of order pX to
{
Êt

}
, denoting the parameter estimates by δ̂X

and σ̂2
ε;0 (f), and fit an autoregression of order pY to

{
Ût

}
, denoting the parameter

estimates by δ̂Y and σ̂2
u;0 (f). Let

{
Êt

}
=
{
d
δ̂X

(z)Xt

}
and

{
Ût

}
=
{
d
δ̂Y

(z)Yt

}
.

7. Repeat steps 4–6 once.

8. Update λ̂ by σ̂2
ε;0 (f) /σ̂2

u;0 (f) and put
{
Êt

}
= {Xt} and

{
Ût

}
= {Yt}.

9. Repeat steps 4–8 until σ̂2
ε;0 (f) and σ̂2

u;0 (f) converge.

The test statistic is computed by applying Algorithm 7.3 for each f = 0, . . . , F and

calculating

f̂0 = arg min
f
φ

(2)
0 (f)



162 Discriminating Between Time Series With Periodic Components

as well as

f̂X = arg min
f
φX (f) and f̂Y = arg min

f
φY (f) ,

where

φ
(2)
0 (f) = T1 log

{
σ̂2
ε;A (f)

}
+ T2 log

{
σ̂2
u;A (f)

}
+ pX log T1 + pY log T2 + 7f log (T1 + T2) .

The test statistic is then

Λ
f̂0,f̂X ,f̂Y

= T1 log

 σ̂2
ε;0

(
f̂0

)
σ̂2
ε;A

(
f̂X

)
+ T2 log

 σ̂2
u;0

(
f̂0

)
σ̂2
u;A

(
f̂Y

)


and H
(2)
0 is rejected at significance level α when Λ

f̂0,f̂X ,f̂Y
is greater than the 100(1− α)th

percentile of the χ2 distribution with f̂0 degrees of freedom.

7.6 Comparing More Than Two Time Series

The methods above are easily extended to the case where we wish to compare more than

two time series with periodic components. Suppose we have samples of size Tk from {Xk,t},

k = 1, . . . , n. We fit the models

Xk,t =

fk∑
j=1

{αk,j cos (ωk,jt) + βk,j sin (ωk,jt)}+ Ek,t,

where

Ek,t +

pk∑
j=1

δk,jEk,t−1 = εk,t.

We make the usual assumptions on the noise processes, that is that they are independent

sequences of martingale differences and that

E
(
ε2
k,t | Fk,t−1

)
= σ2

k,

k = 1, . . . , n, where Fk,t is the σ-field generated by {εk,t, εk,t−1, . . .}. The first null hypothesis

of interest is that the processes have sinusoids at the same frequencies and that the noise

processes have the same spectral shape. This is equivalent to

H
(1)
0 : ω1,j = · · · = ωn,j , ∀j, δ1,k = · · · = δn,k, ∀k.

The second null hypothesis of interest is that the processes have sinusoids at the same fre-

quencies with no restriction on the spectral densities of the noise processes. This is equivalent

to

H
(2)
0 : ω1,j = · · · = ωn,j , ∀j.
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In each case the alternative hypothesis, HA, is the complement of the null hypothesis.

Under both HA, the n time series are independent and their parameters can be estimated

separately using the methods discussed in Section 6.2.

Under H
(1)
0 , we derive the test procedure letting p1 = · · · = pn = p, where p is fixed.

In practice we let p = blog (Tmin)cc, where Tmin = min (T1, . . . , Tn) and c > 1. We need to

estimate common frequencies from n time series. Suppose f = 1 and denote the common

frequency by ω. The Gaussian log-likelihood is

−
n∑
j=1

[
Tj
2

log
(
2πσ2

j

)
+

1

2σ2
j

{
Xj −MTj ,1 (ω) θj

}′ {
Xj −MTj ,1 (ω) θj

}]
, (7.12)

where

Xk =
[
Xk,0 · · · Xk,Tk−1

]
,

θk =
[
α̃k β̃k

]′
and

α̃k + iβ̃k = dδk
(
eiω
)

(αk + iβk) ,

k = 1, . . . , n. Letting λ1 = 1 and λk = σ̂2
1/σ̂

2
k, k = 2, . . . , n, we can rewrite (7.12) as

−
n∑
j=1

[
Tj
2

log
(
2πλjσ

2
1

)
+

1

2λjσ2
1

{
Xj −MTj ,1 (ω) θj

}′ {
Xj −MTj ,1 (ω) θj

}]
.

This can be maximised with respect to ω, for given λ1, . . . , λn, using the Gauss–Newton

algorithm as follows. Let

ek (ω) = Xk −M∗Tk (ω) θ̂∗k (ω) ,

where

θ̂∗k (ω) =
{
M∗′Tk (ω)M∗Tk (ω)

}−1 {
M∗′Tk (ω)Xk

}
.

Given a current estimate of ω, denoted ω̃, the Gauss–Newton method updates the estimate

by

ω̃ −
∑n

j=1 λje
′
j (ω̃) d

dωe
′
j (ω̃)∑n

j=1 λj
d
dωe
′
j (ω̃) d

dωej (ω̃)
,

where ek (ω̃), k = 1, . . . , n, and their derivatives can be computed using the methods given

in Section 7.3.1. An initial estimate can be obtained by maximising

n∑
j=1

λjIT ∗,Xj (ω)

over the Fourier frequencies, where T ∗ = 4 max (T1, . . . , Tn).
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An alternative method for estimating ω is to use an extension of the Quinn–Fernandes

technique given in Section 7.3.1. Algorithm 7.4 estimates ω for given λ1, . . . , λn. The algo-

rithm can be initialised by maximising
n∑
j=1

λjIT,Xj (ω)

over the Fourier frequencies.

Algorithm 7.4 Estimating a common frequency from more than two time series for given

λ1, . . . , λn using the Quinn–Fernandes technique

1. Put â = 2 cos (ω̂), where ω̂ is an initial estimate of ω.

2. For k = 1, . . . , n, t = 0, . . . , Tk − 1, put

ξk,t = âξk,t−1 − ξk,t−2 +Xk,t,

where ξk,−1 = ξk,−2 = 0.

3. Replace â by â+ ν, where

ν = 2

∑n
j=1 λj

∑Tj−1
t=0 Xj,tξt−1∑n

k=1 λk
∑Tk−1

t=0 ξ2
t−1

.

4. Repeat steps 2 and 3 until |ν| converges to 0.

5. Put ω̂ = cos−1 (â/2).

If f > 1, the common frequencies can be estimated one at a time using the methods given

above. After each frequency is estimated, the corresponding sinusoid is removed from each

time series using regression and the next frequency is estimated from the residuals. Once

all the common frequencies have been removed, autoregressions with common autoregressive

parameters can be fitted to the residuals using the methods of Section 3.8. As before, the

frequencies can be re-estimated using the time series filtered by the autoregressive parame-

ters. The full procedure for computing the parameter estimates for a given f under both HA

and H
(1)
0 is given in Algorithm 7.5. Note that the algorithm uses the Quinn–Fernandes tech-

nique to estimate frequencies. This is asymptotically equivalent to maximising the Gaussian

likelihood and is computationally faster (see the discussion in Section 7.4).

The test statistic is computed by applying Algorithm 7.5 for each f = 0, . . . , F and

calculating

f̂0 = arg min
f
φ0 (f)

as well as

f̂k = arg min
f
φk (f) ,



7.6 Comparing More Than Two Time Series 165

Algorithm 7.5 Computing the parameter estimators under H
(1)
0 and HA with more than

two time series for a given f

1. For k = 1, . . . , n, use Algorithm 6.1 to fit f sinusoids to {Xk,t}. Remove the estimated

sinusoids by regression and fit an autoregression of order p to the residuals, denoting

the parameter estimates by δ̂k and σ̂2
k;A (f). Repeat using

{
d
δ̂k

(z)Xk,t

}
in place of

{Xk,t}.

2. For k = 1, . . . , n, put λ̂k = σ̂2
1;A (f) /σ̂2

k;A (f) and
{
Êk,t

}
= {Xk,t}.

3. Estimate a common frequency by applying Algorithm 7.4 to
{
Ê1,t

}
, . . . ,

{
Ên,t

}
with

λk = λ̂k, k = 1, . . . , n. Remove the corresponding sinusoid from each time series using

regression and denote the residuals by
{
Ê1,t

}
, . . . ,

{
Ên,t

}
.

4. Repeat step 3 until f frequencies have been estimated.

5. Use the methods of Chapter 3 to fit autoregressions of order p with the same autore-

gressive parameters to
{
Ê1,t

}
, . . . ,

{
Ên,t

}
with λk = λ̂k, k = 1, . . . , n, denoting the

parameter estimates by δ̂
λ̂

and σ̃2
ε;λ̂

. Let
{
Êk,t

}
=
{
d
δ̂
λ̂

(z)Xk,t

}
, k = 1, . . . , n.

6. Repeat steps 3–5 once.

7. For k = 2, . . . , n, update λ̂k by

Tkσ̃
2
ε;λ̂∑Tk−1

t=p

{
d
δ̂
λ̂

(z)Xk,t

}2

and put
{
Êk,t

}
= {Xk,t}, k = 1, . . . , n.

8. Repeat steps 3–7 until λ̂k, k = 1, . . . , n, converge.

9. Put σ̂2
1;0 (f) = σ̃2

ε;λ̂
and σ̂2

k;0 (f) = σ̃2
ε;λ̂
/λ̂k, k = 2, . . . , n.

k = 1, . . . , n, where

φ0 (f) =

n∑
j=1

Tj log
{
σ̂2
j;0 (f)

}
+ {p+ (2n+ 3) f} log

 n∑
j=1

Tj


and

φk (f) = Tk log
{
σ̂2
k;A (f)

}
+ (p+ 5f) log Tk.

The test statistic is then

Λ
f̂0,f̂1,...,f̂n

=
n∑
j=1

log

 σ̂2
j;0

(
f̂0

)
σ̂2
j;A

(
f̂j

)


and H
(1)
0 is rejected at significance level α when Λ

f̂ ,f̂1,...,f̂n
is greater than the 100(1− α)th

percentile of the χ2 distribution with (n− 1)
(
p+ f̂0

)
degrees of freedom.
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In order to test H
(2)
0 , the procedure is almost the same except that autoregressions of

different orders, denoted by pk, are fitted independently to {εk,t}, k = 1, . . . , n, under both the

null and alternative hypotheses. The full procedure for computing the parameter estimates

for a given f under both HA and H
(2)
0 is given in Algorithm 7.6. The algorithm assumes that

p1, . . . , pn are fixed. In practice we let pk = b(log Tk)
ckc, where ck > 1, k = 1, . . . , n.

Algorithm 7.6 Computing the parameter estimators under H
(2)
0 and HA with more than

two time series for a given f

1. For k = 1, . . . , n, use Algorithm 6.1 to fit f sinusoids to {Xk,t}. Remove the estimated

sinusoids by regression and fit an autoregression of order pk to the residuals, denoting

the parameter estimates by δ̂k and σ̂2
k;A (f). Repeat using

{
d
δ̂k

(z)Xk,t

}
in place of

{Xk,t}.

2. For k = 1, . . . , n, put λ̂k = σ̂2
1;A (f) /σ̂2

k;A (f) and
{
Êk,t

}
=
{
X̂k,t

}
.

3. Estimate a common frequency by applying Algorithm 7.4 to
{
Ê1,t

}
, . . . ,

{
Ên,t

}
with

λk = λ̂k, k = 1, . . . , n. Remove the corresponding sinusoid from each time series using

regression and denote the residuals by
{
Ê1,t

}
, . . . ,

{
Ên,t

}
.

4. Repeat step 3 until f frequencies have been estimated.

5. For k = 1, . . . , n, fit an autoregression of order pk to
{
Êk,t

}
, denoting the parameter

estimates by δ̂k and σ̂2
k;0 (f). Let

{
Êk,t

}
=
{
d
δ̂k

(z)Xk,t

}
.

6. Repeat steps 3–5 once.

7. For k = 1, . . . , n, update λ̂k by σ̂2
1;0 (f) /σ̂2

k;0 (f) and put
{
Êk,t

}
= {Xk,t}.

8. Repeat steps 3–7 until σ̂2
k;0 (f), k = 1, . . . , n, converge.

The test statistic is computed by applying Algorithm 7.6 for each f = 0, . . . , F and

calculating

f̂0 = arg min
f
φ

(2)
0 (f) ,

where

φ
(2)
0 (f) =

n∑
j=1

Tj log
{
σ̂2
j;0 (f)

}
+

n∑
j=1

pj log Tj + (2n+ 3) f log

 n∑
j=1

Tj

 ,

as well as

f̂k = arg min
f
φk (f) ,

k = 1, . . . , n. The test statistic is then

Λ
f̂0,f̂1,...,f̂n

=

n∑
j=1

log

 σ̂2
j;0

(
f̂0

)
σ̂2
j;A

(
f̂j

)

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and the null hypothesis is rejected at significance level α when Λ
f̂0,f̂1,...,f̂n

is greater than the

100(1− α)th percentile of the χ2 distribution with (n− 1) f̂0 degrees of freedom.

7.7 Comparing Multivariate Time Series With Periodic Com-

ponents

Using the results of Chapter 6 we can extend the procedures given in this chapter to the case

where {Xk,t}, k = 1, . . . , n, are vector processes with periodic components. We model {Xk,t}

using the multichannel sinusoidal model. That is, for k = 1, . . . , n,

Xk,t =

fk∑
j=1

{αk,j cos (ωk,jt) + βk,j sin (ωk,jt)}+ Ek,t,

where

Ek,t =

pk∑
j=1

δk,jEk,t−1 = εk,t,

αk,j , βk,j , j = 1, . . . , f , are d× 1 and {Xk,t}, {Ek,t} and {εk,t} are d-dimensional. We make

the usual assumptions on the noise processes, that is that they are independent sequences of

martingale differences and that

E
(
εk,tε

′
k,t | Fk,t−1

)
= Σk,

k = 1, . . . , n, where Fk,t is the σ-field generated by {εk,t, εk,t−1, . . .}.

The first null hypothesis that we consider is that the processes have sinusoids at the same

frequencies and the spectral densities of the noise processes differ only by a common scale.

This is equivalent to

H
(1)
0 : ω1,j = · · · = ωn,j , ∀j, δ1,k = · · · = δn,k, ∀k, Σ1 = λ2Σ2 = · · · = λnΣn,

for positive constants λ2, . . . , λn. The condition placed on the noise spectral densities is

the same as that for the second null hypothesis considered in Chapter 5. The second null

hypothesis that we consider is that the processes have sinusoids at the same frequencies with

no restrictions on the spectral densities of the noise processes. This is equivalent to

H
(2)
0 : ω1,j = · · · = ωn,j , ∀j.

In each case the alternative hypothesis, HA, is the complement of the null hypothesis.

Under both HA, the parameters can be estimated separately for each {Xk,t}, k = 1, . . . , n,

using Algorithm 6.3.
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Under H
(1)
0 , we derive the test statistic letting p1 = · · · = pn = p, where p is fixed. In

practice we let p = blog (Tmin)cc, where Tmin = min (T1, . . . , Tn) and c > 1. A common

frequency can be estimated by maximising

n∑
j=1

J̃Tj ,Ωj (ω) , (7.13)

where

J̃Tk,Ωk (ω) = F ∗Tk (ω) ΩkFTk (ω) ,

FTk (ω) =
√

2T
−1/2
k

Tk−1∑
t=0

e−iωtXk,t

and Ω1, . . . ,Ωn are suitable positive definite symmetric matrices. For given λ1, . . . , λn, the

estimation is performed in two stages. In the first stage, Ωk is set to λkId, k = 1, . . . , n, and

the f common frequencies are estimated one at a time. For each estimated frequency, the

corresponding sinusoid is removed from each time series by regression and the next frequency

is estimated from the residuals. Once f sinusoids have been removed, vector autoregressions

with common autoregressive parameters and common order p are fitted to the residuals using

the methods of Section 5.6. In the second stage, Ωk is set to λk multiplied by the inverse of the

estimated spectral density, k = 1, . . . , n and the f common frequencies are then re-estimated

with the updated Ω1, . . . ,Ωn.

In order to maximise (7.13), a modified version of the multivariate Quinn–Fernandes

technique can be used. Algorithm 7.7 computes the maximiser of (7.13) using the Quinn–

Fernandes technique for given Ω1, . . . ,Ωn. The algorithm can be initialised by maximising

(7.13) over the Fourier frequencies. The full procedure for computing the parameter estimates

for a given f under both HA and H
(1)
0 is given in Algorithm 7.8.

The test statistic is computed by applying Algorithm 7.8 for each f = 0, . . . , F and

calculating

f̂0 = arg min
f
φ0 (f)

as well as

f̂k = arg min
f
φk (f) ,

k = 1, . . . , n, where

φ0 (f) =

n∑
j=1

Tj log
∣∣∣Σ̂j;0 (f)

∣∣∣+
{
d2p+ (2nd+ 3) f

}
log

 n∑
j=1

Tj


and

φk (f) = Tk log
∣∣∣Σ̂k;A (f)

∣∣∣+
{
d2p+ (2d+ 3) f

}
log Tk.



7.7 Comparing Multivariate Time Series With Periodic Components 169

Algorithm 7.7 Estimating a common frequency from n time series for given Ω1, . . . ,Ωn

using the Quinn–Fernandes technique

1. Put â = 2 cos (ω̂), where ω̂ is an initial estimate of ω.

2. For k = 1, . . . , n, t = 0, . . . , Tk − 1, put

ξk,t = âξk,t−1 − ξk,t−2 +Xk,t,

where ξk,−1 = ξk,−2 = 0.

3. Replace â by â+ ν, where

ν = 2

∑n
j=1

∑Tj−1
t=0 ξ′j,t−1ΩjXj,t∑n

k=1

∑Tk−1
t=0 ξ′k,t−1Ωjξk,t−1

.

4. Repeats steps 2 and 3 until |ν| converges to 0.

5. Put ω̂ = cos−1 (â/2).

Test statistic is then

Λ
f̂0,f̂1,...,f̂n

=

n∑
j=1

Tj log


∣∣∣Σ̂j;0

(
f̂0

)∣∣∣∣∣∣Σ̂j;A

(
f̂j

)∣∣∣


and H
(1)
0 is rejected when Λ

f̂0,f̂1,...,f̂n
is greater than the 100(1− α)th percentile of the χ2

distribution with

(n− 1)
{
d2p+ f̂0 + d (d+ 1) /2− 1

}
degrees of freedom.

Under H
(2)
0 , a common frequency can be estimated by maximising (7.13) in two stages. In

the first stage, Ωk is set to Id for k = 1, . . . , n, and f common frequencies are estimated one

at a time. As usual, the sinusoid corresponding to each estimated frequency is removed from

each time series by regression before estimating the next. Independent vector autoregressions

of order pk are then fitted to the residuals, and Ωk is set to the inverse of the estimated spectral

density of the kth autoregression. In the second stage, the f common frequencies are then re-

estimated with the updated Ωk. The full procedure for computing the parameter estimators

under both HA and H
(2)
0 for a given f is given in Algorithm 7.9. The algorithm assumes that

p1, . . . , pn are fixed and in practice we let pk = b(log Tk)
ckc, where ck > 1, k = 1, . . . , n.

The test statistic is computed by applying Algorithm 7.9 for each f = 0, . . . , F and

calculating

f̂0 = arg min
f
φ

(2)
0 (f) ,
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Algorithm 7.8 Computing the estimators under both H
(1)
0 and HA with n multivariate time

series for a given f

1. For k = 1, . . . , n, use Algorithm 6.3 to fit f sinusoids to {Xk,t}, fitting vector autore-

gressions of order p. Denote the estimate of the residual covariance matrix by Σ̂k;A (f).

2. For k = 1, . . . , n, put Ωk = λ̂kId, where

λ̂k = d/ tr
{

Σ̂1;A (f) Σ̂−1
k;A (f)

}
,

and put
{
Êk,t

}
= {Xk,t}.

3. Estimate a common frequency by applying Algorithm 7.7 to
{
Ê1,t

}
, . . . ,

{
Ên,t

}
. Re-

move the corresponding sinusoid from each time series using regression and denote the

residuals by
{
Ê1,t

}
, . . . ,

{
Ên,t

}
.

4. Repeat step 3 until f frequencies have been estimated.

5. Use the methods of Section 5.6 to fit vector autoregressions of order p with the same

autoregressive parameters to
{
Ê1,t

}
, . . . ,

{
Ên,t

}
subject to Σ1 = λ̂kΣk, k = 2, . . . , n.

Denote the parameter estimates by δ̂
λ̂

and Σ̃
λ̂
.

6. For k = 1, . . . , n, let

Ωk = 2πλ̂k

Id +

p∑
j=1

δ̂
λ̂,j
e−ijω̃

∗ Σ̃−1

λ̂

Id +

p∑
j=1

δ̂
λ̂,j
e−ijω̃

 ,

where

δ̂
λ̂

=
[
δ̂
λ̂,1

· · · δ̂
λ̂,p

]
.

7. Repeat steps 3-5 once.

8. For k = 2, . . . , n, update λ̂k by

λ̂k =
dTk

tr

[
Σ̃−1

λ̂

∑Tk−1
t=p

{(
Xk,t +

∑p
j=1 δ̂λ̂,jXk,t−j

)(
Xk,t +

∑p
j=1 δ̂λ̂,jXk,t−j

)′}]
and put

{
Êk,t

}
= {Xk,t}, k = 1, . . . , n.

9. Repeat steps 3-8 until λ̂k, k = 1, . . . , n, converge.

10. Put Σ̂1;0 (f) = Σ̃
λ̂

and Σ̂k;0 (f) = Σ̃
λ̂
/λ̂k, k = 2, . . . , n.
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Algorithm 7.9 Computing the estimators under both H
(2)
0 and HA with n multivariate time

series for a given f

1. For k = 1, . . . , n, use Algorithm 6.3 to fit f sinusoids to {Xk,t}, fitting autoregressions

of order pk. Denote the estimate of the residual covariance matrix by Σ̂k;A (f).

2. For k = 1, . . . , n, put Ωk = Id and
{
Êk,t

}
= {Xk,t}.

3. Estimate a common frequency by applying Algorithm 7.7 to
{
Ê1,t

}
, . . . ,

{
Ên,t

}
. Re-

move the corresponding sinusoid from each time series using regression and denote the

residuals by
{
Ê1,t

}
, . . . ,

{
Ên,t

}
.

4. Repeat step 3 until f frequencies have been estimated.

5. For k = 1, . . . , n, fit a vector autoregression of order pk to
{
Êk,t

}
, denoting the param-

eter estimates by δ̂k and Σ̂k;0 (f).

6. For k = 1, . . . , n let

Ωk = 2π

Id +

pk∑
j=1

δ̂k,je
−ijω̃

∗ Σ̂−1
k;0 (f)

Id +

pk∑
j=1

δ̂k,je
−ijω̃

 ,

where

δ̂k =
[
δ̂k,1 · · · δ̂k,pk

]
.

7. Repeat steps 3-5 once.

where

φ
(2)
0 (f) =

n∑
j=1

Tj log
∣∣∣Σ̂j;0 (f)

∣∣∣+ d2
n∑
j=1

pj log (Tj) + (2nd+ 3) f log

 n∑
j=1

Tj

 ,

as well as

f̂k = arg min
f
φk (f) ,

k = 1, . . . , n. Test statistic is then

Λ
f̂0,f̂1,...,f̂n

=
n∑
j=1

Tj log


∣∣∣Σ̂j;0

(
f̂0

)∣∣∣∣∣∣Σ̂j;A

(
f̂j

)∣∣∣


and H
(2)
0 is rejected when Λ

f̂0,f̂1,...,f̂n
is greater than the 100(1− α)th percentile of the χ2

distribution with (n− 1) f̂0 degrees of freedom.

7.8 Simulations

The first simulation study presented in this section examines the behaviour of the test statistic

under the null hypotheses. The number of time series compared, n, was 2 or 3, the dimension,
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d, was 1 or 2 and the true number of frequencies, f , was 1 or 2. When n = 2 time series were

simulated from the models

Xt = α1 cos (ω1t) + β1 sin (ω1t) + α2 cos (ω2t) + β2 sin (ω2t) + Et,

and

Yt = α1 cos (ω1t) + β1 sin (ω1t) + α2 cos (ω2t) + β2 sin (ω2t) + Ut,

with sample sizes 1, 000 and 1, 250, respectively. When n = 3 a third time series was simulated

from the model

Zt = α1 cos (ω1t) + β1 sin (ω1t) + α2 cos (ω1t) + β2 sin (ω1t) +Wt,

with sample size 1, 500. The noise processes were either generated from white noise (WN),

that is,

Et = εt, Ut = ut and Wt = wt,

the autoregressive models

Et + δ1Et−1 = εt, Ut + δ1Ut−1 = ut and Wt + δ1Wt−1 = wt,

or the moving average models

Et = εt + δ2εt−1, Ut = ut + δ2ut−1 and Wt = wt + δ2wt−1.

The frequencies were ω1 = π/3 and ω2 = 0 or 2π/3. For the d = 1 case the parameter values

were

δ1 = 0.7, δ2 = 0.8, α1 = α2 =
1√
2
, β1 = − 1√

2
and β2 = 0,

and {εt}, {ut} and {wt} were simulated from the normal distribution with means zero and

variances 1, 1
2 and 3

4 , respectively. For the d = 2 case the parameter values were

δ1 =

 0.7 0.1

−0.1 0.7

 , δ2 =

 0.8 0.1

−0.1 0.8

 ,

α1 = α2 =

 1√
2

1√
2

 , β1 = −

 1√
2

1√
2

 and β2 =

 0

0

 ,
and {εt}, {ut} and {wt} were simulated from the multivariate normal distribution with means

zero and covariance matrices I2, 1
2I2 and 3

4I2, respectively. Figure 7.1 shows the component

spectral densities, and their coherency, of {Et} for the autoregressive case when d = 2. The
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Figure 7.1: The spectral densities of each component, as well as their coherency, of {Et},
when {Et} is autoregressive and d = 2.

MA(1) parts of Figure 5.1 show the component spectral densities, and their coherency, for

the moving average case when d = 2.

The tests for both H
(1)
0 and H

(2)
0 were applied to 10,000 replications of these simulations.

The maximum number of frequencies was set to one more than the true value. The simulations

were also repeated with all sample sizes doubled. Tables 7.1–7.8 summarise the means,

variances and Type I error rates of the resulting test statistics.

For the univariate cases, when testing H
(1)
0 , the means and variances were very close to

their theoretical values and the Type I error rates were all close to 0.05. When testing H
(2)
0 ,

the means were very close to their theoretical values but the variances were a little higher,

and some of the Type I error rates were closer to 0.06 for the smaller sample sizes. When the

sample sizes were doubled, the variances generally closer to their theoretical values and the

Type I error rates were closer to 0.05 (see table 7.4).

For the multivariate cases, when testing both H
(1)
0 and H

(2)
0 , the means were very close

to their theoretical values but the variances and Type I error rates were a little higher for

the smaller sample sizes. When the sample sizes were doubled, the variances were closer to

their theoretical values and the Type I error rates were closer to 0.05.

Note that when testing H
(2)
0 , some of the test statistics were negative, but only slightly.

This could only occur if the likelihood maximised under the null is more than that under the

alternative. This may be due to numerical problems of convergence under the alternative or

underestimation of order estimates using BIC. Further simulations, not reported here, show

that the number of negative values is reduced as the sample sizes increase, and eventually

goes to zero.
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Table 7.1: Summary of simulations under H
(1)
0 when d = 1.

f = 1 f = 2

df mean var Type I df mean var Type I

n = 2 WN 8 8.045 16.707 0.052 9 9.010 17.927 0.048

AR(1) 8 8.007 16.177 0.048 9 8.962 18.450 0.053

MA(1) 8 8.024 16.900 0.053 9 9.074 19.670 0.052

n = 3 WN 16 15.965 32.397 0.050 18 18.151 36.766 0.055

AR(1) 16 16.072 33.238 0.053 18 18.034 36.523 0.048

MA(1) 16 15.968 33.761 0.053 18 17.973 37.566 0.049

Table 7.2: Summary of simulations under H
(2)
0 when d = 1.

f = 1 f = 2

df mean var Type I df mean var Type I

n = 2 WN 1 1.014 2.366 0.054 2 2.029 4.214 0.050

AR(1) 1 1.033 2.259 0.053 2 2.025 4.518 0.054

MA(1) 1 1.108 2.973 0.064 2 2.087 5.064 0.060

n = 3 WN 2 2.037 4.377 0.054 4 4.107 8.442 0.054

AR(1) 2 2.032 4.083 0.050 4 4.118 8.658 0.058

MA(1) 2 2.240 5.653 0.068 4 4.222 9.841 0.064

Table 7.3: Summary of simulations under H
(1)
0 when d = 1 and the sample sizes were doubled.

f = 1 f = 2

df mean var Type I df mean var Type I

n = 2 WN 8 7.988 16.057 0.050 9 9.034 18.257 0.052

AR(1) 8 7.986 15.984 0.051 9 9.012 18.235 0.050

MA(1) 8 7.910 15.821 0.046 9 9.048 19.261 0.055

n = 3 WN 16 16.011 31.881 0.049 18 18.129 36.406 0.050

AR(1) 16 16.077 32.157 0.051 18 18.026 36.303 0.050

MA(1) 16 16.037 33.149 0.049 18 18.002 37.719 0.050
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Table 7.4: Summary of simulations under H
(2)
0 when d = 1 and the sample sizes were doubled.

f = 1 f = 2

df mean var Type I df mean var Type I

n = 2 WN 1 1.015 2.230 0.052 2 2.065 4.428 0.054

AR(1) 1 1.005 2.044 0.052 2 2.018 4.215 0.051

MA(1) 1 1.074 2.466 0.060 2 2.051 4.275 0.054

n = 3 WN 2 2.012 3.965 0.049 4 4.134 8.937 0.055

AR(1) 2 2.031 4.123 0.053 4 4.065 8.344 0.052

MA(1) 2 2.081 4.918 0.059 4 4.111 9.092 0.058

Table 7.5: Summary of simulations under H
(1)
0 when d = 2.

f = 1 f = 2

df mean var Type I df mean var Type I

n = 2 WN 31 31.503 65.042 0.060 32 32.490 65.590 0.057

AR(1) 31 31.531 64.708 0.060 32 32.551 67.182 0.057

MA(1) 31 31.636 65.188 0.059 32 32.590 67.032 0.058

n = 3 WN 62 62.567 126.923 0.054 64 64.632 128.962 0.055

AR(1) 62 62.312 124.759 0.051 64 64.684 134.290 0.061

MA(1) 62 62.756 128.658 0.059 64 64.737 132.614 0.061

Table 7.6: Summary of simulations under H
(2)
0 when d = 2.

f = 1 f = 2

df mean var Type I df mean var Type I

n = 2 WN 1 1.010 2.187 0.054 2 2.058 4.398 0.056

AR(1) 1 1.003 2.130 0.053 2 1.941 4.694 0.056

MA(1) 1 1.035 2.479 0.061 2 1.978 4.570 0.057

n = 3 WN 2 1.998 4.240 0.056 4 4.102 8.719 0.055

AR(1) 2 2.016 4.379 0.055 4 3.800 8.612 0.052

MA(1) 2 2.123 5.488 0.067 4 4.007 8.847 0.056
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Table 7.7: Summary of simulations under H
(1)
0 when d = 2 and the sample sizes were doubled.

f = 1 f = 2

df mean var Type I df mean var Type I

n = 2 WN 31 31.267 63.135 0.054 32 32.385 65.639 0.055

AR(1) 31 31.163 63.732 0.054 32 32.136 64.099 0.051

MA(1) 31 31.267 62.760 0.052 32 32.131 65.266 0.051

n = 3 WN 62 62.161 121.031 0.049 64 63.953 129.494 0.052

AR(1) 62 62.011 123.721 0.050 64 64.044 130.945 0.052

MA(1) 62 61.992 126.453 0.050 64 64.172 131.361 0.052

Table 7.8: Summary of simulations under H
(2)
0 when d = 2 and the sample sizes were doubled.

f = 1 f = 2

df mean var Type I df mean var Type I

n = 2 WN 1 1.032 2.195 0.052 2 1.995 4.068 0.052

AR(1) 1 0.989 2.203 0.053 2 1.936 4.258 0.052

MA(1) 1 1.021 2.236 0.054 2 2.037 4.448 0.056

n = 3 WN 2 2.016 4.079 0.052 4 4.057 8.458 0.056

AR(1) 2 2.024 4.342 0.054 4 3.859 8.434 0.050

MA(1) 2 2.071 4.586 0.058 4 4.043 8.477 0.055
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The second simulation study in this section demonstrates the power of the test in detecting

differences in a fixed frequency in two time series. Time series of equal length were simulated

from the models

Xt = α1 cos (ωXt) + β1 sin (ωXt) + Et

and

Yt = α1 cos (ωY t) + β1 sin (ωY t) + Ut,

where

α1 =
1√
2
, β1 = − 1√

2

and {Et} and {Ut} were generated by the same white noise, autoregressive and moving

average processes as above. The case where d = 2 and {Et} and {Ut} were autoregressive

was also considered. In this case

α1 =

 1√
2

1√
2

 and β1 = −

 1√
2

1√
2

 .

The frequency ωX was fixed at π/3 and the frequency ωY varied from

π

3
+
π

T
(−1,−0.98, . . . , 1) ,

where T is the common sample size. The test for H
(1)
0 was applied to 10,000 replications of

these simulations. Figure 7.2 plots the empirical powers when the sample sizes were 250 and

Figure 7.3 plots the empirical powers when the sample sizes were 500.

For the smaller sample size, the test performed well when the noise processes were from

white noise and autoregressions, although the Type I error rates for the autoregressive cases

were over 0.05 (0.106 and 0.076 for the d = 1 and d = 2 cases, respectively). The test did

not perform well when the noise processes were from moving average processes, with a Type

I error rate of 0.339. When the sample sizes were increased to 500, the test performed much

better for the moving average case with a Type I error rate of 0.057. The Type I error rates

were also closer to 0.05 for the autoregressive cases.
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Figure 7.2: Empirical powers when the sample sizes were 250. The lowest horizontal line in

each plot indicates the significance level of 0.05.

Figure 7.3: Empirical powers when the sample sizes were 500. The lowest horizontal line in

each plot indicates the significance level of 0.05.
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7.A Appendix

In what follows, where convergence is indicated, it will mean convergence in the almost sure

sense, unless otherwise stated. Where order notation is used, it will also mean orders in the

almost sure sense.

7.A.1 Proof of Theorem 7.1

From (7.11)

l̃0 (ω0)− l̃0 (ω) =
T1

2
log

{
SX − IT1,X (ω)

SX − IT1,X (ω0)

}
+
T2

2
log

{
SY − IT1,Y (ω)

SY − IT1,Y (ω0)

}
=
T1

2
log

{
1 +

IT1,X (ω0)− IT1,X (ω)

SX − IT1,X (ω0)

}
+
T2

2
log

{
1 +

IT2,Y (ω0)− IT2,Y (ω)

SY − IT2,Y (ω0)

}
,

where

SX =

T1−1∑
t=0

X2
t and SY =

T2−1∑
t=0

Y 2
t .

Now,

T1−1∑
t=0

Xte
−iωt =

T1−1∑
t=0

Ete
−iωt + αX0

T1−1∑
t=0

cos (ω0t) e
−iωt + βX0

T1−1∑
t=0

sin (ω0t) e
−iωt

=

T1−1∑
t=0

Ete
−iωt +

αX0

2

T1−1∑
t=0

(
eiω0t + e−iω0t

)
e−iωt +

βX0

2i

T1−1∑
t=0

(
eiω0t − e−iω0t

)
e−iωt

= UT1 (ω) +

(
αX0

2
+
βX0

2i

)
ei(ω0−ω)T1 − 1

ei(ω0−ω) − 1
+O (1) ,

where

UT1 (ω) =

T1−1∑
t=0

Ete
−iωt.

Thus

T−1
1 IT1,X (ω) = 2T−2

1

∣∣∣∣∣UT1 (ω) +

(
αX0

2
+
βX0

2i

)
ei(ω0−ω)T1 − 1

ei(ω0−ω) − 1
+O (1)

∣∣∣∣∣
2

. (7.14)

But, from Theorem 2.3,

sup
ω
|UT1 (ω)|2 = O (T1 log T1) (7.15)

and, also,

T−2
1

∣∣∣∣∣ei(ω0−ω)T1 − 1

ei(ω0−ω) − 1

∣∣∣∣∣
2

=
sin2 {T1 (ω0 − ω) /2}
T 2

1 sin2 {(ω0 − ω) /2}
.

Therefore, from (7.14) and (7.15),

T−1
1 IT1,X (ω) =

ρ2
X0

2

sin2 {T1 (ω0 − ω) /2}
T 2

1 sin2 {(ω0 − ω) /2}
+ o (1) .
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Also,
T1−1∑
t=0

Xte
−iω0t = UT1 (ω0) +

(
αX0

2
+
βX0

2i

)
T +O (1)

and so

T−1
1 IT1,X (ω0) =

ρ2
X0

2
+ o (1) .

Therefore

T−1
1 {IT1,X (ω0)− IT1,X (ω)} =

ρ2
X0

2

[
1− sin2 {T1 (ω0 − ω) /2}

T 2
1 sin2 {(ω0 − ω) /2}

]
+ o (1) .

Furthermore,

T−1
1 SX = T−1

1

T1−1∑
t=0

{αX0 cos (ω0t) + βX0 sin (ω0t) + Et}2

= γE (0) +
ρ2
X0

2
+ o (1) ,

where γE (0) = E
(
E2
t

)
, and so

T−1
1 {SX − IT1,X (ω0)} = γE (0) + o (1) . (7.16)

Let ω = ω0 + κ/T1 for some κ > 0. Then

T−1
1 {IT1,X (ω0)− IT1,X (ω0 + κ/T1)} =

ρ2
X0

2

[
1− sin2 (κ/2)

T 2
1 sin2 {κ/ (2T1)}

]
+ o (1) .

Consider the function

fT (x) =
sin2 x

T 2 sin2 (x/T )
.

For any x 6= 0,

fT (x)→ sin2 x

x2
< 1

as T →∞. Therefore

lim
T1→∞

IT1,X (ω0)− IT1,X (ω0 + κ/T1)

SX − IT1,X (ω0)
>

ρ2
X0

2γE (0)

> 0.

Similarly,

T−1
2 {SY − IT2,Y (ω0)} = γU (0) + o (1) (7.17)

and

lim
T2→∞

IT2,Y (ω0)− IT2,Y (ω0 + κ/T2)

SY − IT2,Y (ω0)
>

ρ2
Y 0

2γU (0)

> 0,

where γU (0) = E
(
U2
t

)
. Thus

lim inf
T1,T2→∞

inf
|ω−ω0|>κ/Tmin

{
l̃0 (ω0)− l̃0 (ω)

}
> 0

and it follows from Theorem 2.5 that Tmin (ω̂ − ω0)→ 0 as T1, T2 →∞.
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7.A.2 Proof of Theorem 7.2

From the mean value theorem,

0 =
dl̃0 (ω)

dω
=
dl̃0 (ω0)

dω
+
d2 l̃0 (ω̃)

dω2
(ω̂ − ω0) ,

where ω̃ is a point on the line segment between ω0 and ω̂. Since Tmin (ω̂ − ω0) → 0 as

T1, T2 →∞, ω̂ − ω0 has the same asymptotic distribution as

−

{
d2 l̃0 (ω0)

dω2

}−1
dl̃0 (ω0)

dω
.

The first and second derivatives of l̃0 (ω) are

dl̃0 (ω)

dω
= −T1

2

d
dω IT1,X (ω)

SX − IT1,X (ω)
− T2

2

d
dω IT2,Y (ω)

SY − IT2,Y (ω)

and

d2 l̃0 (ω)

dω2
=
T1

2

 d2

dω2 IT1,X (ω)

SX − IT1,X (ω)
+

{
d
dω IT1,X (ω)

SX − IT1,X (ω)

}2


+
T2

2

 d2

dω2 IT2,Y (ω)

SY − IT2,Y (ω)
+

{
d
dω IT2,Y (ω)

SY − IT2,Y (ω)

}2
 .

From Hannan (1973b), T
−3/2
1 dIT1,X (ω0) /dω is asymptotically normal with mean zero and

variance
2πfE (ω0) ρ2

X0

6

and also T−3
1 d2IT1,X (ω) /dω2 → −ρ2

X0/12. Similarly, T
−3/2
2 dIT2,Y (ω0) /dω is asymptotically

normal with mean zero and variance

2πfU (ω0) ρ2
Y 0

6

and also T−3
2 d2IT2,Y (ω) /dω2 → −ρ2

Y 0/12. Thus, from (7.16) and (7.17), T
−3/2
1 dl̃0 (ω0) /dω

is asymptotically normal with mean zero and variance

2πfE (ω0) ρ2
X0

24γ2
E (0)

+
2πfU (ω0)κ3ρ2

Y 0

24γ2
U (0)

.

Also,

T−3
1

d2 l̃0 (ω0)

dω2
→ −

ρ2
X0

24γE (0)
−

κ3ρ2
Y 0

24γU (0)

since {
d
dω IT1,X (ω0)

SX − IT1,X (ω0)

}2

= O (T1) and

{
d
dω IT2,Y (ω0)

SY − IT2,Y (ω0)

}2

= O (T2) .
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Thus T
3/2
1 (ω̂ − ω0) is asymptotically normal with mean zero and variance

48π

{
fE (ω0) ρ2

X0

γ2
E (0)

+
fU (ω0)κ3ρ2

Y 0

γ2
U (0)

}{
ρ2
X0

γE (0)
+
κ3ρ2

Y 0

γU (0)

}−2

= 48π

{
ρ2
X0

fE (0)
+
κ3ρ2

Y 0

fU (0)

}−1

since, under H
(1)
0 ,

fE (ω0)

γE (0)
=
fU (ω0)

γU (0)
.

7.A.3 Proof of Theorem 7.3

Following the proof of Theorem 16 of Quinn and Hannan (2001) we use Dieudonné’s fixed

point theorem (Dieudonné, 1960, Section 10.1). We must show that the following two condi-

tions are met as T1 →∞.

Condition 7.1 There exists k, 0 6 k < 1, such that if a, a′ ∈ AT1 (ν) then

∣∣a− a′ + 2hT1 (a)− 2hT1
(
ω′
)∣∣ < k

∣∣a− a′∣∣ .
Condition 7.2 |2hT (a0)| < (1− k)T−ν .

Let

dT1,X (a) = sinω

T1−1∑
t=0

Xtξt−1 (a) , dT2,Y (a) = sinω

T2−1∑
t=0

Ytηt−1 (a) ,

eT1,X (a) = sin2 (ω)

T1−1∑
t=0

ξ2
t−1 (a) , eT2,Y (a) = sin2 (ω)

T2−1∑
t=0

η2
t−1 (a) .

Then

hT1,T2 (a) = sinω {dT1,X (a) + λdT2,Y (a)} {eT1,X (a) + λeT2,Y (a)}−1 .

From the proof of Theorem 16 of Quinn and Hannan (2001),

eT1,X (a) =
ρ2
X

24
T 3

1 +O
{
T

5/2
1 (log T1)1/2

}
, (7.18)

eT2,Y (a) =
ρ2
Y

24
T 3

2 +O
{
T

5/2
2 (log T2)1/2

}
, (7.19)

and

eT1,X (a) = eT1,X (a0) + (ω − ω0)O
{
T

7/2
1 (log T1)1/2

}
,

eT2,Y (a) = eT2,Y (a0) + (ω − ω0)O
{
T

7/2
2 (log T2)1/2

}
.

Also

dT1,X (a) = dT1,X (a0) + (ω − ω0)

{
ρ2
X

24γε (0)
T 3

1 +O
(
T 2

1

)}
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and

dT2,Y (a) = dT2,Y (a0) + (ω − ω0)

{
ρ2
Y

24γu (0)
T 3

2 +O
(
T 2

2

)}
,

which are both O
{
T

3/2
1 (log T1)1/2

}
. Let a = 2 cosω and a′ = 2 cosω′. Then hT1,T2 (a) −

hT1,T2 (a′) is equal to

sinω {dT1,X (a) + λdT2,Y (a)} {eT1,X (a) + λeT2,Y (a)}−1

− sinω′
{
dT1,X

(
a′
)

+ λdT2,Y
(
a′
)} {

eT1,X
(
a′
)

+ λeT2,Y
(
a′
)}−1

.

Thus

{eT1,X (a) + λeT2,Y (a)}
{
eT1,X

(
a′
)

+ λeT2,Y
(
a′
)} {

hT1,T2 (a)− hT1,T2
(
a′
)}

=
(
sinω − sinω′

)
{dT1,X (a) + λdT2,Y (a)}

{
eT1,X

(
a′
)

+ λeT2,Y
(
a′
)}

+ sinω′
{
dT1,X (a) + λdT2,Y (a)− dT1,X

(
a′
)
− λdT2,Y

(
a′
)}
{eT1,X (a) + λeT2,Y (a)}

− sinω′ {dT1,X (a) + λdT2,Y (a)}
{
eT1,X (a) + λeT2,Y (a)− eT1,X

(
a′
)
− λeT2,Y

(
a′
)}

which is equal to(
ω − ω′

)
O
{
T

9/2
1 (log T1)1/2

}
+
(
ω − ω′

)
O
(
T 5

1 log T1

)
+ sinω′

(
ω − ω′

)(ρ2
X + λκ3ρ2

Y

24

)2

T 6
1

[
1 +O

{
T
−1/2
1 (log T1)1/2

}]
.

Thus

{eT1,X (a) + λeT2,Y (a)}
{
eT1,X

(
a′
)

+ λeT2,Y
(
a′
)} {

hT1,T2 (a)− hT1,T2
(
a′
)}

= sinω′
(
ω − ω′

)(ρ2
X + λκ3ρ2

Y

24

)2

T 6
1

[
1 +O

{
T
−1/2
1 (log T1)1/2

}]
,

and so

hT1,T2 (a)− hT1,T2
(
a′
)

= sinω′
(
ω − ω′

) [
1 +O

{
T
−1/2
1 (log T1)1/2

}]
.

Now,

a− a′ = 2 cos (ω)− 2 cos
(
ω′
)

= −2 sin
(
ω′
) (
ω − ω′

)
+ o

(
T−2

1

)
,

and so

a− a′ + 2hT1,T2 (a)− 2hT1,T2
(
a′
)

=
(
a− a′

)
O
{
T
−1/2
1 (log T1)1/2

}
(7.20)

Also,

2hT1,T2 (a0) = 2 sinω0O
{
T

3/2
1 (log T1)1/2

}[(ρ2
X + λκ3ρ2

Y

24

)2

T 3
1 +O

{
T

5/2
1 (log T1)1/2

}]−1

= 2 sinω0O
{
T
−3/2
1 (log T1)1/2

}
. (7.21)

From (7.20) and (7.21), Conditions 7.1 and 7.2 are met and therefore the first part of the

theorem is proved. It follows that T ν1 (âT1 − a0) → 0 for all ν < 3/2, and that, since âT1 =

2 cos ω̂T1 , T ν1 (ω̂ − ω0)→ 0.
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7.A.4 Proof of Theorem 7.4

Denote the kth iterate of the algorithm by ak. That is, ak+1 = ak + 2hT1,T2 (ν). Let a1 ∈

AT1 (ν) where ν > 1. From (7.20), putting a′ = âT1 ,

hT1,T2 (a) = −1

2
(a− âT1) +

1

2
(a− âT1)O

{
T
−1/2
1 (log T1)1/2

}
= −1

2
(a− âT1)

[
1 +O

{
T
−1/2
1 (log T1)1/2

}]
. (7.22)

Thus

2hT1,T2 (a) + a− âT1 = (a− âT1)O
{
T
−1/2
1 (log T1)1/2

}
= O

{
T
−1/2−ν
1 (log T1)1/2

}
.

But 2hT1,T2 (aj) + aj = aj+1 and so

aj+1 − âT1 = (aj − âT1)O
{
T
−1/2
1 (log T1)1/2

}
.

Thus the theorem is true for ν > 1 since

b3− log (2ν − 1) / log 2c = 2.

If 1/2 < ν 6 1 then, from the proof of Theorem 17 of Quinn and Hannan (2001),

eT1,X (a) =
ρ2
XT1

4 (ω − ω0)2

[
1− sin {T1 (ω − ω0)}

T1 (ω − ω0)

] [
1 +O

{
T

1/2−ν
1 (log T1)1/2

}]
,

eT2,Y (a) =
ρ2
XκT1

4 (ω − ω0)2

[
1− sin {(ω − ω0)T1}

2 (ω − ω0)T1

] [
1 +O

{
T

1/2−ν
1 (log T1)1/2

}]
,

and

dT1,X (a) =
ρ2
XT1

4 (ω − ω0)

[
1− sin {T1 (ω − ω0)}

T1 (ω − ω0)

]{
1 +O

(
T−ν1

)}
+O

{
T

3/2
1 (log T1)1/2

}
,

dT2,Y (a) =
ρ2
Y κT1

4 (ω − ω0)

[
1− sin {T1 (ω − ω0)}

T1 (ω − ω0)

]{
1 +O

(
T−ν1

)}
+O

{
T

3/2
1 (log T1)1/2

}
.

Thus

eT1,X (a) + λeT2,Y (a)

=
T1

4 (ω − ω0)2

(
ρ2
X + λκρ2

Y

) [
1− sin {T1 (ω − ω0)}

T1 (ω − ω0)

] [
1 +O

{
T

1/2−ν
1 (log T1)1/2

}]
and

dT1,X (a) + λdT2,Y (a)

=
T1

4 (ω − ω0)

(
ρ2
X + λκρ2

Y

) [
1− sin {T1 (ω − ω0)}

T1 (ω − ω0)

] [
1 +O

{
T

1/2−ν
1 (log T1)1/2

}]
.
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Also,
{
e−1
T1,X

(a) + λ−1e−1
T2,Y

(a)
}−1

is O
(
T−1−2ν

1

)
and it follows that

hT1,T2 (a) = −1

2
(a− âT1)

[
1 +O

{
T

1/2−ν
1 (log T1)1/2

}]
+O

{
T

1/2−2ν
1 (log T1)1/2

}
.

Thus

2hT1,T2 (a) + a− âT1 = (a− âT1)O
{
T

1/2−ν
1 (log T1)1/2

}
+O

{
T

1/2−2ν
1 (log T1)1/2

}
and so

aj+1 − âT1 = (aj − âT1)O
{
T

1/2−ν
1 (log T1)1/2

}
+O

{
T

1/2−2ν
1 (log T1)1/2

}
.

Let n = ν, then nj+1 = 2nj − 1/2 + δ, where δ is arbitrarily small. Then

nk = 2k−1

(
ν − 1

2

)
+

1

2
+ δ

and nk > 1 when

k > 1− log (2ν − 1)

log 2
.

The next iterate is then o
(
T
−3/2
1

)
. If ν = 1, then a3 − âT1 = o

(
T
−3/2
1

)
.

7.A.5 Proof of Theorem 7.5

From (7.22),

hT1,T2 (a0) =
1

2
(âT1 − a0)

[
1 +O

{
T
−1/2
1 (log T1)1/2

}]
and so

âT1 − a0 = 2hT1 (a0) + o
(
T−3/2

)
.

Since

âT1 − a0 = 2 cos ω̂ − 2 cosω0 = −2 sinω0 (ω̂ − ω0) + o
(
T−2

1

)
,

it follows that ω̂ − ω0 has the same asymptotic distribution as

−
dT1,X (a0) + λdT2,Y (a0)

eT1,X (a0) + λeT2,Y (a0)
.

Now, from (7.18) and (7.19),

T−3
1 {eT1,X (a0) + eT2,Y (a0)} →

ρ2
X + λκ3ρ2

Y

24
.

Also,

T
−3/2
1 {dT1,X (a0) + λdT2,Y (a0)}
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has the same asymptotic distribution as

T
−3/2
1

αX0

2

T1−1∑
t=0

(2t− T ) sin (tω0)Et − T−3/2
1

βX0

2

T1−1∑
t=0

(2t− T ) cos (tω0)E

+ T
−3/2
1

λκ3/2αY 0

2

T1−1∑
t=0

(2t− T ) sin (tω0)Ut − T−3/2
1

λκ3/2βY 0

2

T1−1∑
t=0

(2t− T ) cos (tω0)Et.

Using Theorem 2.6 and the same argument as in the proof of Theorem 6.2, this is asymptot-

ically normal with mean zero and covariance matrix

2πρ2
Xfε (ω0)

24
+

2πλ2κ3ρ2
Y fu (ω0)

24
.

Thus T
3/2
1 (ω̂ − ω0) converges to the normal distribution with mean zero and covariance

matrix

48π

{
ρ2
X

fE (ω0)
+

κ3ρ2
Y

fU (ω0)

}−1

as T1 →∞ since, under H
(1)
0 ,

λ =
fE (ω0)

fU (ω0)
.

7.A.6 Proof of Theorem 7.6

Let

θ =
[
θ′1 θ′2 σ2

ε σ2
u θ′3 θ′4

]
,

where θ1 = δX , θ2 = ωX , θ3 = δY − δX and θ4 = ωY − ωX . The hypothesis test is then

H0 :
[
θ′3 θ′4

]′
= 0

HA :
[
θ′3 θ′4

]′
6= 0.

The test statistic is

Λf = 2

{
sup
θ
l (θ)− sup

θ3=θ4=0
l (θ)

}
,

where

l (θ) = lX
(
ωX , θX , δX , σ

2
ε

)
+ lY

(
ωY , θY , δY , σ

2
u

)
,

which is given by (7.3) and (7.4). Let θ∗ =
[
θ′1 θ′2 σ2

ε σ2
u

]
and denote the true value

of θ under H0 by θ0 =
[
θ′∗0 0

]′
. The estimators under H0 and HA, denoted θ̂0 and θ̂A,

respectively, satisfy

0 =
∂l
(
θ̂A

)
∂θ

and 0 =
∂l
(
θ̂0

)
∂θ

,
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where θ̂0 =
[
θ̂′∗0 0

]′
. From the mean value theorem, letting θj , θ∗j and θAj denote the jth

components of θ, θ∗ and θA, respectively,

0 =
∂l
(
θ̂A

)
∂θj

=
∂l (θ0)

∂θj
+
∂2l
(
θ̃Aj

)
∂θj∂θ′

(
θ̂A − θ0

)
(7.23)

and

0 =
∂l
(
θ̂0

)
∂θ∗j

=
∂l (θ0)

∂θ∗j
+
∂2l
(
θ̃0j

)
∂θ∗j∂θ′∗

(
θ̂∗0 − θ∗0

)
, (7.24)

where the θ̃Aj are points on the line segment between θ0 and θ̂A and the θ̃0j are points on

the line segment between θ0 and θ̂0. Now, δX = θ1, δY = θ1 + θ3, ωX = θ2 and ωY = θ2 + θ4.

Thus the first derivatives of l (θ) with respect to θ1, . . . , θ4 at θ0 are

∂l (θ0)

∂θ1
=
∂l (θ0)

∂δX
+
∂l (θ0)

∂δY
= −T 1/2

1 z1 − T 1/2
2 z2,

∂l (θ0)

∂θ2
=
∂l (θ0)

∂ωX
+
∂l (θ0)

∂ωY
= −T 3/2

1 w1 − T 3/2
2 w2,

∂l (θ0)

∂θ3
=
∂l (θ0)

∂δY
= −T 1/2

2 z2,

∂l (θ0)

∂θ4
=
∂l (θ0)

∂ωY
= −T 3/2

2 w2,

where

z′1 =
T
−1/2
1

σ2
ε

T1−1∑
t=0

εt


Xt−1

...

Xt−p

 , z′2 =
T
−1/2
2

σ2
u

T2−1∑
t=0

ut


Yt−1

...

Yt−p

 ,
and w1 and w2 are the f × 1 vectors with jth element

−T
−3/2
1

σ2
ε

T1−1∑
t=0

εt {αX,jt sin (ωX0,jt)− βX,jt cos (ωX0,jt)}

and

−T
−3/2
2

σ2
u

T2−1∑
t=0

ut {αY,jt sin (ωY 0,jt)− βY,jt cos (ωY 0,jt)} ,

respectively. That is,
∂l (θ0)

∂θ
= −NT1,T2Z,

where

NT1,T2 =



T
1/2
1 Ip 0 0 T

1/2
2 Ip 0

0 T
3/2
1 If 0 0 T

3/2
2 If

0 0 I2 0 0

0 0 0 T
1/2
2 Ip 0

0 0 0 0 T
3/2
2 If


,
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Z =
[
z′1 w′1 a′ z′2 w′2

]′
and

a =
[

∂l(θ0)
∂σ2
ε

∂l(θ0)
∂σ2
u

]′
.

Now, ∂2l (θ0) /∂ωX,j∂ωX,k is equal to

− 1

σ2
ε

T1−1∑
t=0

{αX,jt sin (ωX0,jt)− βX,jt cos (ωX0,jt)} {αX,kt sin (ωX0,kt)− βX,kt cos (ωX0,kt)}

= O
(
T 2
)
,

if j 6= k, and equal to

− 1

σ2
ε

T1−1∑
t=0

{αX,jt sin (ωX0,jt)− βX,jt cos (ωX0,jt)}2

− 1

σ2
ε

T1−1∑
t=0

εt
{
αX,jt

2 cos (ωX0,jt) + βX,jt
2 sin (ωX0,jt)

}
,

if j = k. Let dX and dY be the f × f matrices with jth diagonal elements

T−3
1

T1−1∑
t=0

[
{αX,jt sin (ωX0,jt)− βX,jt cos (ωX0,jt)}2

+εt
{
αX,jt

2 cos (ωX0,jt) + βX,jt
2 sin (ωX0,jt)

}]
and

T−3
2

T2−1∑
t=0

[
{αY,jt sin (ωY 0,jt)− βY,jt cos (ωY 0,jt)}2

+ut
{
αY,jt

2 cos (ωY 0,jt) + βY,jt
2 sin (ωY 0,jt)

}]
,

respectively, and all other elements equal to o (1). Let CX and CY be the p×p matrices with

(i, j)th elements

T−1
1

T1−1∑
t=p

Xt−iXt−j and T−1
2

T2−1∑
t=p

Yt−iYt−j ,

respectively. The second derivatives of l (θ) with respect to θ1, . . . , θ4 at θ0 are therefore

∂2l (θ0)

∂θ1∂θ′1
=

∂2l (θ0)

∂δX∂δ′X
+
∂2l (θ0)

∂δY ∂δ′Y
= −T1

σ2
ε

CX −
T2

σ2
u

CY ,

∂2l (θ0)

∂θ2∂θ′2
=

∂2l (θ0)

∂ωX∂ω′X
+

∂2l (θ0)

∂ωY ∂ω′Y
= −T

3
1

σ2
ε

dX −
T 3

2

σ2
u

dY ,

∂2l (θ0)

∂θ3∂θ′3
=
∂2l (θ0)

∂θ1∂θ′3
=
∂2l (θ0)

∂θ3∂θ′1
= −T2

σ2
u

CY ,
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∂2l (θ0)

∂θ4∂θ′4
=
∂2l (θ0)

∂θ2∂θ′4
=
∂2l (θ0)

∂θ4∂θ′2
= −T

3
2

σ2
u

dX ,

with all other second derivatives equal to zero. Using a second order Taylor expansion of

l
(
θ̂A

)
around θ0, and since θ̂A → θ0, l

(
θ̂A

)
− l (θ0) has the same asymptotic properties as

∂l (θ0)

∂θ′

(
θ̂A − θ0

)
+

1

2

(
θ̂A − θ0

)′ ∂2l (θ0)

∂θ∂θ′

(
θ̂A − θ0

)
,

which, because of (7.23), is asymptotically equivalent to

− 1

2

∂l (θ0)

∂θ′

{
∂2l (θ0)

∂θ∂θ′

}−1
∂l (θ0)

∂θ

= −1

2
Z ′
{
N−1
T1,T2

∂2l (θ0)

∂θ∂θ′

(
N−1
T1,T2

)′}−1

Z

=
1

2
Z ′



1
σ2
ε
CX 0 0 0 0

0 1
σ2
ε
dX 0 0 0

0 0 A 0 0

0 0 0 1
σ2
u
CY 0

0 0 0 0 1
σ2
u
dY



−1

Z,

where

A =

 ∂2l(θ0)

∂(σ2
ε)2

0

0 ∂2l(θ0)

∂(σ2
u)2

 .
Similarly, from (7.24), l

(
θ̂0

)
− l (θ0) has the same asymptotic properties as

1

2
Z ′



1
σ2
ε
CX 0 0 0 0

0 1
σ2
ε
dX 0 0 0

0 0 A 0 0

0 0 0 0 0

0 0 0 0 0


Z.

Thus Λf has the same asymptotic distribution as

[
z′2 w′2

] ( 1
σ2
u
CY

)−1
0

0
(

1
σ2
u
dY

)−1

 z2

w2

 .
But z2 is asymptotically normal with mean zero and covariance matrix Ω and

1

σ2
u

CY → Ω,

where Ω is the p × p matrix with (i, j)th element γY (|i− j|) /σ2
u. Also, from Theorem 2.6,

w2 is asymptotically normal with mean zero and covariance matrix V , where V is the f × f
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diagonal matrix with jth diagonal element

α2
Y,j + β2

Y,j

6σ2
u

.

Now, from (6.27),
T1−1∑
t=0

t2ute
iωY 0,jt = O

{
T

5/2
2 (log T2)1/2

}
and so the jth diagonal element of dY is equal to

T−3
2

T2−1∑
t=0

{αY,jt sin (ωY 0,jt)− βY,jt cos (ωY 0,jt)}2 + o (1)

=
1

6

(
α2
Y,j + β2

Y,j

)
+ o (1) .

Thus
1

σ2
u

dY → V,

and Λf has asymptotically the χ2 distribution with p+f degrees of freedom, since dim Ω = p

and dimV = f .



8
Conclusion

In this thesis we have developed new methods for discriminating between time series on

the basis of the spectral densities of their underlying processes. The general approach we

have taken is to fit parametric models to the time series and then derive test statistics

using a pseudo-likelihood ratio procedure. The approach differs from existing methods which

are nonparametric. We first considered the case of discriminating between time series from

univariate stationary processes, which is the case considered in most of the existing literature.

We then showed how the approach can be extended to discriminating between time series

from a wider range of processes.

In Chapter 3 we developed a test for discriminating between univariate stationary pro-

cesses based on fitting autoregressions to the time series and comparing model parameters.

Parameters were estimated by maximising Gaussian log-likelihood functions, and it was shown

that the resulting estimators are strongly consistent and follow a central limit theorem even

when the processes are not Gaussian. Since we do not wish to assume that the processes

truly are autoregressive, we proposed fitting fixed order autoregressions to the time series

where the autoregressive orders are a function of the sample sizes. It was shown that this

fixed order autoregressive approximation is effective even when the time series are not from
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autoregressions. In a simulation study, the parametric test had higher empirical power than

nonparametric methods.

In Chapter 4 we extended the pseudo-likelihood ratio test of Chapter 3 to fitting

autoregressive-moving average (ARMA) models. It was shown using simulations that if the

autoregressive and moving average orders are known, then fitting ARMA models improves

the power of the test. However, if the orders are not known and are estimated, the test

that fits fixed order autoregressions performs better. A new procedure was developed which

fits ARMA models to two time series with the same model parameters, which was based

on an extension of the Hannan–Rissanen procedure. This procedure may have applications

in, for example, fitting ARMA models to repeatedly observed time series. A topic of future

research therefore will be to generalise this procedure for the case of more than two time

series and to study its asymptotic properties.

In Chapter 5 we considered methods for comparing two or more time series from multi-

variate stationary processes. Three null hypotheses were considered. The first was that the

time series are from vector autoregressions with the same autoregressive parameters. Unlike

the univariate case, this does not necessarily mean that the processes have the same spectral

shape. The second was that the time series are from stationary vector processes with spectral

densities which differ only in scale. The third was that the time series are from stationary

vector processes where each of the corresponding vector components has the same spectral

shape. Techniques were given for estimating the parameters under each of the null hypothe-

ses which were based on maximising Gaussian likelihood functions. It was shown that the

estimators are strongly consistent even when the processes are not Gaussian. The tests per-

formed well in simulations, although in some cases fairly large sample sizes were required for

the Type I error rate to be at the significance level. This was especially the case when the

time series were of high dimension.

In Chapter 6 we considered the estimation of frequency in time series from processes which

contain periodic components. In particular, we developed new procedures for estimating

frequency in the multichannel sinusoidal model. The estimation procedures we developed were

motivated by maximising log-likelihood functions assuming that the stationary components

are Gaussian and white. We then showed that the resulting estimators are strongly consistent

and follow central limit theorems even when the stationary components are not Gaussian,

and coloured. We presented a multivariate version of the Quinn–Fernandes technique, which

can be incorporated into the frequency estimation procedures and is computationally faster

than, for example, maximising the Gaussian white log-likelihood using the Gauss–Newton
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algorithm. The estimator produced by the Quinn–Fernandes technique was shown to be

strongly consistent and follow the same central limit theorem as the maximiser of the Gaussian

white log-likelihood. The estimation procedures performed well in simulations, particularly

with relatively large samples and high signal-to-noise ratios. The simulations demonstrated

where the threshold effect occurs as the signal-to-noise ratio decreases, for different sample

sizes and different noise processes.

The procedures developed in Chapter 6 are for estimating a number of independent fre-

quencies in the multichannel sinusoidal model. The procedures may not work if two frequen-

cies are close together. New estimation techniques will be required for this case, along the

lines of Hannan and Quinn (1989). Also not considered here is where the frequencies are all

harmonics of a fundamental frequency, which was considered by Quinn and Thomson (1991)

for the univariate case. These will be topics for future research.

In Chapter 7 we developed procedures for discriminating between two or more time series

from processes which contain periodic components. Both the univariate and multivariate

cases were considered, and the procedures incorporated the work of each of the previous

chapters. The tests that were produced were generally shown to have good power properties

for detecting differences in the fixed frequencies of two time series with periodic components

in the presence of noise. Some strengthening of the algorithms may be possible, since a small

number of negative test statistics were produced.

The thesis has established a general framework for a parametric approach to time series

discrimination. Future research could look at applying this framework to further classes of

models. For example, ARMA models with exogenous variables or linear regression models

with ARMA errors. Other cases which could be of practical importance are where the time

series are sampled at different time intervals or where the time series have missing values.
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