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ABSTRACT

Massive MIMO is an exciting new technology which is revolutionizing the wire-

less community. Massive MIMO serves multiple users with increased data rates

using a massively large number of antenna elements at the base station using

simple beamforming techniques. In digital beamforming, each antenna element

is connected to a dedicated radio-frequency (RF) chain. With so many antenna

elements, it is not practical to have a dedicated RF chain for each antenna element

due to high fabrication cost and power consumption.

We start by considering the pilot contamination problem in which inter-cell

interference occurs because the channel estimate of a user sending a particular

training sequence in one cell is corrupted by the transmissions of the users using

the same training sequence in other cells. To mitigate pilot contamination, we

consider an adaptive least-squares algorithm in massive MIMO which employs

bi-directional training to optimize precoders and receive filters without doing

channel estimation. We characterize the impact of using different types of train-

ing sequences on sum-rate performance of a multi-cell system. We demonstrate

analytically that usage of random training sequences across cells, offers better

performance than usage of identical training sequences for a fixed number of in-

terferers which is critical because it avoids having to synchronize the users across

cells.

The thesis next considers the challenges arising from the the limited number

of RF chains. There are a variety of approaches to tackle the problem of RF





chains constraint. The first approach is to study generalized spatial modulation

(GSM) in which RF chains are connected to a subset of antennas. We propose

novel compressive sensing (CS) aided detection algorithm which offers superior

performance to existing algorithms. For imperfect channel state information, we

use CS in conjunction with total least-squares to mitigate the effect of contam-

inated channel estimates. Our CS framework is premised on the assumption of

frequency-selective fading for GSM to account for high data-rate applications.

We derive the achievable rates for GSM and provide closed-form expressions for

upper and lower bounds of the achievable rates to investigate the capacity gains

offered by GSM under finite alphabet constraint. The second approach we take

is to investigate the antenna selection for massive MIMO whereby the limited

number of RF chains are connected to the best subset of antennas. We derive

a theorem which provides a concise formula for the limiting normalized channel

power gain in the large system dimensions.

Finally, the application of massive MIMO in millimeter-wave (mmWave) band

under RF chains constraint is analysed. The performance bottleneck in mmWave

massive MIMO is beam-alignment due to narrow beams. We propose beam-

alignment algorithms under RF chains constraint to improve upon existing schemes.

We derive theorems which provide closed-form expressions for probability of

beam-misalignment of energy and Bayesian detectors for analogue beam-steering.

Moreover, we perform asymptotic analysis for Bayesian detector and demonstrate

that probability of beam misalignment tends to zero in the limit of infinite num-

ber of BTS antennas under RF chains constraint. The results demonstrate that

Bayesian detection offers superior performance over energy detection in terms of

mmWave beam-alignment which is imperative because it minimizes beam point-

ing losses.
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Chapter 1

Introduction

1.1 Background

Over the past few years with the advent of smart phones and tablets, we have observed a

phenomenal growth in the number of wireless devices connected across the globe. Owing

to bandwidth-hungry real-time videos, online gaming, high-definition movies and other

multi-media applications, each wireless user demands more bits-per-second of data at the

same time. This data deluge seems to be never ending and it is expected that the growth of

mobile data traffic will be approximately ten-fold globally between 2016 and 2019, reaching

24.3 exabytes per month worldwide in 2019 [1]. Consequently, next generation wireless

system designers have to satisfy three requirements: i) delivering massive throughputs to a

multitude of users simultaneously, ii) ensuring reliable transmission of data, iii) designing

cost-effective devices within the budget of a customer.

Multiple-input multiple-output (MIMO) technology has been thoroughly investigated

over the last two decades and adopted by many wireless standard bodies as it can sig-

nificantly enhance the capacity and reliability of a wireless link. The initial research on

MIMO systems concentrated on point-to-point MIMO systems, where two devices trans-

1



2 Chapter 1. Introduction

mit and receive data to each other via multiple antennas at both sides. An excellent

overview of information theoretic results for single-user MIMO is given in [2]. It is well

known that for a point-to-point link with NT transmit antennas and NR receive antennas,

capacity increases linearly with min{NT , NR} [3]. However, in the recent past, researchers

have focused on point-to-multipoint MIMO or multi-user MIMO (MU-MIMO) systems

when in [4], it was demonstrated analytically that similar capacity scaling is applicable

when a base-transceiver station (BTS) equipped with NT antenna elements exchanges

data with NR single-antenna user terminals.

In MU-MIMO, a single BTS communicates with single-antenna terminals at the same

time while not requiring rich scattering environment due to multi-user diversity. It carries

many advantages over point-to-point links. For instance, the costly equipment is required

at the BTS only and single antennas can be used at user terminals. Moreover, resource

allocation is simplified : every active user shares all the time-frequency slots because

the users can be separated using different spatial signatures. Therefore, MU-MIMO is

also called space-division multiple access (SDMA) at times. To reap these benefits of

MU-MIMO, it has been applied in wireless standards including 802.11 (WiFi), 802.l6

(WiMAX), and long-term evolution (LTE) [5].

The information theoretic achievable throughput and the capacity region of vector

Gaussian broadcast channel, which represents MU-MIMO downlink scenario, have been

investigated in [6,7]. Moreover, a lot of effort has been devoted towards the performance

evaluation of MU-MIMO under practical constraints such as imperfect channel state in-

formation at the transmitter (CSIT) [8], the overhead occuring due to downlink channel

estimation and CSIT feedback [9] and the extension to joint precoding over clusters of

multiple BTSs [10–12]. Theoretical results on scaling of sum capacity of cellular net-

works with MIMO links have been reported in [13]. However in practice, MU-MIMO

with frequency-divison duplex (FDD) mode and roughly equal number of BTS terminals
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and user terminals is not a scalable technology. For example, the LTE standard can

accommodate only up to eight antenna elements at the BTS.

Massive MIMO (a.k.a. large MIMO, full dimensional MIMO, hyper MIMO) technol-

ogy is an upcoming paradigm that offers capacity scaling by possibly orders of magnitude

in comparison to existing technologies [14]. In massive MIMO, a massive array of antenna

elements is mounted on a BTS. A BTS antenna array equipped with potentially hundreds

of elements can serve tens of users in the same time-frequency resource with simple signal

processing techniques. Asymptotic random matrix theory results kick in to prove that

in massive MIMO the propagation channel vectors become pairwise asymptotically or-

thogonal which in turn shows that the effect of uncorrelated noise are negligible and the

required transmitted energy per bit approaches zero in the limit of infinite number of BTS

antenna elements [15]. Additionally, linear signal processing schemes such as matched-

filtering detection and precoding become near-optimal thereby reducing the complexity

and energy consumption of signal processing.

In massive MIMO, time-division duplexing (TDD) mode is adopted which relies on

reciprocity between forward and reverse links and uplink training is performed, although

FDD mode may be feasible in some cases [16]. Massive MIMO relies on the channel-state

information (CSI) on both the reverse and forward links in order to do matched filter-

ing/combining at the BTS. In reverse link, it is straightforward to obtain the channel

estimates by sending training sequences from all the user terminals and performing chan-

nel estimation at the BTS. The number of time-frequency resources required to do this

estimation is proportional to number of user terminals, thus, number of user terminals

is limited by the coherence interval. However, in the forward link it is quite difficult to

do channel estimation as the number of time-frequency resources required scales with the

number of BTS antenna elements which grows without bound in massive MIMO.

In addition to massive MIMO systems operating at microwave frequencies, millimeter-
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wave (mmWave) communication system has been envisaged as a key component of next-

generation wireless networks. Owing to the scarcity of spectrum in microwave bands,

researchers aim at exploring the previously untapped higher frequency bands in 30 to

300 GHz range which is termed mmWave band because the operating wavelength in the

mmWave realm is on the order of millimeters. The mmWave communications and mas-

sive MIMO systems need not have to be two competing wireless communication systems.

Interestingly, both of them can be used in tandem to get the best of both worlds. For

instance, in the mmWave realm, high path loss occurs due to energy absorption from the

surrounding medium. It has been shown in [14] that massive MIMO can achieve high

signal-to-interference-plus-noise ratio (SINR) by concentrating the signal energy into nar-

row areas, therefore, mmWave massive MIMO systems can compensate for high path

loss via focusing energy into ever-smaller regions of space to bring tremendous improve-

ments in throughput and radiated energy efficiency. Thus, massive MIMO is favourable

for centimetre-wave frequencies but is essential for mmWave frequencies. On the other

hand, large physical aperture due to huge array of antennas is an issue for massive MIMO

systems operating at microwave frequencies because inter-element spacing should be no

less than half the wavelength to circumvent spatial correlation. Due to wavelengths in

millimeter-wave range in mmWave regime, a large number of antenna elements can be

packed in small phsyical aperture thereby achieving huge array gains in limited physical

space. Thus, both the wireless communication technologies complement each other and

can improve each other’s limitations.

1.2 Key Challenges

In this section, we highlight the challenges encountered in massive MIMO systems oper-

ating in TDD mode under the constraint of limited radio-frequency (RF) chains. Fur-
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thermore, we illustrate the challenge of performing beam alignment in mmWave massive

MIMO systems. In subsection 1.2.1, we explain the pilot contamination problem which

occurs due to reuse of pilots across cells in massive MIMO systems. In subsection 1.2.2,

we illustrate the issue of limited number of RF chains because massive MIMO is premised

on the assumption that each antenna element is connected to a dedicated RF chain. In

subsection 1.2.3, we highlight the problem of doing beam alignment which is necessary to

establish link in mmWave massive MIMO system.

1.2.1 Pilot Contamination

The pilot contamination problem arises when the BTS adopts TDD mode which does not

vanish as the number of antenna elements at the BTS is increased. The user terminals

transmit pairwise orthogonal training sequences in reverse link in order to acquire perfect

CSI at BTS under TDD mode. The maximum number of orthogonal sequences in reverse

link is limited by coherence interval which is the product of coherence time and coherence

bandwidth. Ideally, the training sequences of users within one cell should not only be

pairwise orthogonal but also be pairwise orthogonal with the training sequences of other

cells. However, given a finite amount of coherence time and bandwidth, the number of

orthogonal sequences is limited which in turn sets a limit on the number of user terminals

served by the whole system. In an attempt to accommodate more users, the training

sequences in one cell are chosen to be orthogonal and the same set of training sequences

are reused in the neighbouring cells. This ‘pilot reuse’ scheme enables a maximum number

of terminals in each cell. Now, identical training sequences assigned to user terminals in

neighbouring cells will interfere with each other during the estimation phase which is

termed “pilot contamination”.

Simply put, when the BTS correlates the received signal in training phase with the

training sequence associated with a particular user, its channel estimate is corrupted
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by all the channels associated with users in neighbouring cells having sent the same

training sequence. During the course of downlink data transmission, the BTS beamforms

signals not only towards its own users but also towards users in other cells which is

termed ‘directed interference’. The directed interference continues to exist in uplink data

transmission [17]. The directed interference and the desired signal increase with the

number of antenna elements at the BTS at the same rate. Thus, pilot contamination

leads to reduction in data rates despite the large number of antenna elements yielding

huge array gains in massive MIMO systems.

1.2.2 RF Chains Constraint

A key challenge in massive MIMO is to harness the large spatial degrees-of-freedom (DOF)

under the constraint of limited RF chains. The DOF is defined as the rank of the MIMO

channel matrix in the angular domain [18]. The huge DOF can be exploited to signif-

icantly enhance the spatial multiplexing/beamforming gain leveraging digital precoding

after acquiring the CSI at BTS. However, in digital precoding/combining the amplitudes

and phases of complex modulation symbols are modified at the baseband and then up-

converted to operating frequency after processing through digital-to-analogue converters

(DACs)/analogue-to-digital converters (ADCs), mixers, and power amplifiers (PAs)/low-

noise amplifiers (LNAs). The assembly of DAC/ADC, mixer, and the PA/LNA is termed

the ‘RF chain’ [19,20]. At the BTS, each antenna element is fed with the output port of

a dedicated RF chain. RF chain is the most expensive component due to high fabrica-

tion cost and power consumption of mixed signal components like high-resolution ADCs

and DACs. The cost of RF chains is an economic problem as one RF chain per antenna

element is employed in massive MIMO due to baseband processing. Additionally, it is an

overhead to physically install extra RF chains in existing LTE system to upgrade them to

massive MIMO. Thus, it is challenging to maintain high data rates and low probability
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of error in massive MIMO system under the constraint of limited RF chains.

1.2.3 Beam Alignment

MmWave massive MIMO systems require a huge array of antennas to provide large array

gain in order to overcome tiny antenna apertures. However, due to practical limitations

on cost, complexity and power consumption, it impossible in practice to use a dedicated

RF chain for each antenna in mmWave realm. Thus, the constraint of limited RF chains

becomes more significant in mmWave massive MIMO systems due to requirement of

hundreds of antenna elements. Due to the same reason, systems like IEEE 802.11ad

support single-stream transmission only and employ analogue beamforming which requires

only one RF chain. Moreover, entrywise channel estimation in mmWave massive MIMO

systems is cumbersome due to a large number of antenna elements and low signal-to-

noise ratio (SNR) before beamforming. In order to achieve huge beamforming gain, the

beam sent by the BTS must be steered and aligned. Under the constraint of limited

RF chains, recent works on hybrid analogue and digital precoding have been overviewed

in [21]. Another viable approach for beam alignment is beam training which has been

developed in [22,23]. In this approach, instead of performing explicit channel estimation,

the direction in which beam has to be transmitted, is estimated via sending training

signals. Thus, the channel vector is characterized by a single parameter which is direction-

of-arrival. As the beams are narrow due to huge array of antennas, so if the beam points

in undesired direction, it leads to huge loss in data rates. Thus, the beam alignment is

an issue of paramount importance in mmWave massive MIMO systems.
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1.3 Contributions

This thesis addresses the challenges associated with massive MIMO which is anticipated

to be an integral part of fifth generation (5G) wireless systems because massive MIMO

arguably will be ultimate embodiment of MIMO technology. In this thesis, we assume

perfect synchrnonization between transmitter and receiver(s). Furthermore, we assume

that the channel linking the transmitter and receiver suffers from small-scale Rayeligh

fading (complex-Gaussian distributed channel). The large-scale fading which includes

path-loss and shadowing are not assumed in the channel model in this thesis. The large-

scale fading is generally used to estimate the coverage area and outage [24] which are

not the main challenges addressed in this thesis. Large-scale fading is generally mitigated

using macroscopic diversity whereby a mobile station can substantially improve the SNR

on the forward link by selecting a base station which is not shadowed when others are [24,

p. 381].

1.3.1 Mitigation of Pilot Contamination

Pilot contamination is considered to be performance bottleneck in TDD massive MIMO

systems. The earlier solution to pilot contamination in [25] is premised on the exchange

of second-order statistics among interfering base stations which necessitates the backhaul

links among base stations across all cells. Our main contribution concerning pilot con-

tamination is the use of random training sequences across different cells in an adaptive

beamforming framework which do not estimate the channels explicitly. Our proposed

random training sequences do not need any exchange of statistical channel knowledge

across cells thereby eliminating the need of backhaul during the estimation phase. The

proposed training sequences offer better data rates than the training sequences employed

in massive MIMO wherein same set of pairwise orthogonal sequences are reused in all cells.
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Furthermore, we analysed the impact of structure of training sequences on the design of

base stations’ beamformers using random matrix theoretic results.

1.3.2 Solutions for Limited RF chains

The key challenge in massive MIMO systems is to maintain system’s performance under

the constraint of limited RF chains. Generalized spatial modulation (GSM) can be used

in conjuction with massive MIMO systems under an RF chains’ constraint to improve the

spectral efficiency. For GSM massive MIMO system, we propose a novel compressive sens-

ing aided detection algorithm for frequency-selective channel to cope with the increased

data rate requirements in 5G systems. Our proposed algrithm outperforms the existing

compressive sensing based detection techniques in terms of mean-square error and prob-

ability of error. Our proposed algorithm takes into account the noisy channel estimates

occuring due to pilot contamination which has not been considered in literature to the

best of our knowledge. Additionally, we proposed a compressive sensing (CS) recovery

scheme for a precoded multi-user GSM massive MIMO system.

Antenna selection is capable of harnessing the spatial degrees of freedom offered by

the large number of antennas in massive MIMO under RF chains’ constraint. Our key

contribution is large system analysis of massive MIMO under RF chains’ constraint using

antenna selection technique. Our proposed capacity scaling law provides insights into

the system’s behavior. The required number of RF chains to achieve a target capacity

for a given number of transmit antennas can be calculated using our proposed capacity

deterministic equivalent. Moreover, extensive Monte Carlo simulations are not required

to simulate the system’s behavior while using our large system analysis. For fixed number

of RF chains, the antenna selection provides more capacity gain in comparison to GSM

system, however, this comes at the cost of having CSI at transmitter in antenna selection

which is not required in GSM systems.
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1.3.3 Novel Beam Alignment Schemes

In mmWave massive MIMO systems, beam alignment needs to be performed prior to

data transmission to avoid beam-mismatch losses. Under single-path channel in mmWave

realm, we provide two algorithms for beam alignment. Our proposed algorithms offer su-

perior performance than the optimal exhaustive search in terms of mean-square error

(MSE) and probability of beam misalignment. In contrast to conventional energy de-

tection, we proposed Bayesian approach for beam detection which beats the peformance

of energy detection in terms of beam-misalignment probability. Analytical expression

for probability of beam misalignment for exhaustive search and Bayesian detection are

derived. Mathematical expressions are verified via extensive numerical simulations and

numerical results verify the accuracy of mathematical results.

1.3.4 Contributions Outline

• In Chapter 3, we quantify the impact of pilot contamination under adaptive beam-

forming using different structures of training sequences.

• In Chapter 3, Fig. 3.3 shows that for 30 antennas at BTS and SNR of 30 dB, random

training sequences across cells offer 4.62 % improvement over identical training

sequences across cells in terms of network capacity of a multi-cell system under

pilot contamination problem.

• In Chapter 4, Algorithm 1 is a novel CS aided detection algorithm which offers 14

dB performance improvement over conventional CS algorithm as shown in Fig. 4.1.

• The algorithm 1 in Chapter 4 offers an error rate of 4×10−3 which is less than error

rate of 2× 10−2 offered by conventional CS algorithm as shown in Fig. 4.2.
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• In Section 4.3 of Chapter 4, we offer a novel recovery scheme for precoded multi-user

GSM system based on precoding and compressive sensing which offers comparable

performance to interference-free single-user GSM system.

• Figure 4.5 shows that for NT = 20, Nc = 2, single-user GSM system offers a BER

of 9 × 10−4 whereas multi-user GSM using proposed CS recovery offers BER of

0.5 × 10−3. For NT = 40, Nc = 2, single-user GSM offers 3 × 10−3 whereas multi-

user GSM using proposed CS recovery offers very close BER of 4× 10−3.

• In Chapter 5, we derive the achievable information rate of the GSM system under

finite alphabet constraint which is given in Eq. (5.27).

• In Chapter 5, we derive Proposition 1 which provides the closed-form expression for a

lower bound on the achievable rate of GSM system under finite alphabet constraint.

• In Chapter 5, we derive Proposition 2 which provides the closed-form expression

for an upper bound on the achievable rate of GSM system under finite alphabet

constraint.

• Fig. 5.1 reveals that the GSM system can offer the same achievable rate as the

SM system but using less transmit antennas and with a lower channel estimation

burden.

• Fig. 5.2 demonstrates that the Monte Carlo average of the derived achievable rate

in Eq. (5.27) is approximated reasonably tightly in low and high SNR regimes.

• Fig. 5.4 shows that GSM system with the proposed precoding scheme offers better

performance than the un-precoded GSM system in the medium SNR regime (0-15

dB).



12 Chapter 1. Introduction

• In Chapter 6, we derive Theorem 3 which provides a scaling capacity law using a

law of large numbers for single-user massive multiple-input single-output (MISO)

systems under RF chains constraint when antenna selection is employed.

• In Chapter 6, the upper and lower bounds of the deterministic equivalent of the

capacity of the massive MISO systems under RF chains constraint are derived and

the result is given in Eq. (6.41).

• In Chapter 6, Figs. 6.2 and 6.3 show that random capacity realizations fluctuate

around the derived capacity approximation and fluctuations become less when we

increase the transmit antennas from NT = 50 to NT = 500 for fixed β = 1
5
.

• In Chapter 7, the novel Algorithms 2 and 3 are proposed which outperform the

existing hierarchical search and exhaustive search techniques for mmWave beam-

alignment.

• In Chapter 7, we derive Theorem 4 which provides the probability of beam-misalignment

under energy detection criterion in a mmWave system.

• In Chapter 7, we derive Theorem 5 which provides the probability of beam-misalignment

under a Bayesian detection criterion in a mmWave system.

• Fig. 7.11 in Chapter 7 shows that our proposed Algorithm 3, which is premised on

a refined hierarchical search, offers 10 dB less mean-square error than exhaustive

search at SNR of 0 dB.

• Fig. 7.12 in Chapter 7 demonstrates that our proposed Algorithm 3 offers an error-

rate of 4 × 10−3 whereas exhaustive search offers an error rate of 2 × 10−3 at SNR

of 0 dB.
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• Fig. 7.13 reveals that simulation results verify the Theorems 4 and 5 which provide

the probability of beam-misalignment under energy and Bayesian detection.

1.4 Thesis Organization

In Chapter 3, we consider an adaptive beamforming scheme for multi-cell massive MIMO

in order to mitigate the “pilot contamination” problem. The considered scheme has been

previously applied in [26, 27] for MIMO interference networks. Specifically, we focus on

studying the impact of different types of training sequences on “pilot contamination”

in multi-cell massive MIMO. The considered scheme uses bi-directional training in which

training sequences are transmitted in forward link from beamformers at BTS to adapt the

user terminals’ receive filters and then the training sequences using terminals’ filters acting

as beamformers, are transmitted in reverse link to adapt the beamformers at the BTSs’

side. The adaptation of both the transmitters and receivers sides is performed using the

least-squares objective function. The adaptive beamforming scheme shows improvement

in terms of average sum rate if the random training sequences are transmitted from users

in different cells. We corroborate our mathematical analysis via numerical results which

demonstrate the superiority of using random training sequences over identical training

sequences across different cells.

In Chapter 4, GSM is studied in order to investigate massive MIMO under limited

RF chains without sacrificing spectral efficiency. In GSM, a subset of antennas is chosen

at every signalling instant based on incoming data and coupled with output ports of

limited RF chains [28]. The choice of subset of antennas is governed by the incoming

data pattern. At the receiver, by decoding the choice of subset of antennas, the encoded

information is decoded which will be large for massive MIMO system. To account for high

data-rate applications, we adopted MIMO inter-symbol interference (ISI) channel which
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leads to a block Toeplitz channel matrix. Specifically, we use CS for detecting the indices

of activated antennas and subsequently we employ linear zero-forcing (ZF) receiver for

demodulation. To account for imperfect CSI at receiver due to “pilot contamination”,

we propose to attempt total-least squares (TLS) for demodulation. Under perfect and

imperfect CSI, our proposed algorithm offers better performance than existing CS based

detection schemes for GSM. Further, we propose a CS recovery scheme for a precoded

multi-user GSM system. The ZF based precoding scheme decouples the multi-user wireless

channel into several single-user systems by leveraging the CSIT. Numerical results are

shown to verify the mathematical analysis.

In Chapter 5, we provide an information theoretic treatment of a GSM based MIMO

system in order to evaluate the achievable information rates of GSM under finite alphabet

constraint (QPSK,QAM etc). First, we develop an analytical framework in which the

input-output relationship of a GSM system has been cast in terms of binary-input single-

output random variables. Under the developed framework, we investigate the achievable

information rates for GSM as a function of SNR. Additionally, we derive the closed-form

expressions for lower and upper bounds of achievable rate. Furthermore, we provide

achievable information rate for a precoded GSM based on CSIT. It is observed that by

leveraging the sparse information encoding in GSM, high achievable rates are possible for

large MIMO under limited number of RF chains.

In Chapter 6, we focus on further application of antenna selection techniques to massive

MIMO system under RF chains constraints. Antenna Selection is a promising signal

processing technique which reduces the number of required RF chains while keeping the

system’s performance at a certain minimum level. We provide a large systems analysis

of antenna selection aided downlink beamforming in massive multiple-input single-output

(MISO) under RF chains constraint using the strong law of large numbers. Specifically,

we investigate the capacity performance of an antenna selection scheme employed in a
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massive MISO system in large system dimensions. Numerical experiments corroborate

that the proposed deterministic equivalents are accurate even for relatively small Nc, NT

where Nc is the number of RF chains.

In Chapter 7, we focus on beam-alignment schemes for mmWave massive MIMO tech-

niques under the constraint of RF chains limitation. Owing to scarcity of bandwidth at

microwave frequencies, there has been a flurry of recent interest in the wireless research

community in the area of mmWave frequencies. A mmWave massive MIMO system is

a strong candidate for delivering gigabit-per-second throughputs due to abundant unli-

censed spectrum in mmWave bands. mmWave massive MIMO systems will deploy high-

gain electronically steerable directional antennas to cope with the incurred path loss at

mmWave frequencies. The beam alignment problem becomes much more crucial due to

pencil-sharp narrow beams produced by high-gain antennas. Moreover, the issue of RF

chains constraint becomes crucial at mmWave frequencies due to the huge cost of high

speed ADCs and DACs as the bandwidth of the signal to be processed is very high. We

investigate the case of analogue beamforming for one user which uses only one RF chain

and propose algorithms to improve upon existing schemes for beam-alignment.
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Chapter 2

Mathematical Tools and

Preliminaries

Some of the mathematical tools and preliminaries which will be used in rest of thesis are

described here for interested reader.

2.1 Random Matrix Theory

Here we provide a useful lemma about long random vectors [29] which will be used in

Chapter 3.

Lemma 1. Let x = [x1 · · ·xn]T and y = [y1 · · · yn]T be N × 1 vectors whose elements

are independent-and-identically distributed (i.i.d.) random variables (RVs) with E[xi] =

E[yi] = 0, E[|xi|2] = σ2
x, and E[|yi|2] = σ2

y , i = 1, 2, ..., n. Assume that x and y are

independent. Applying the law of large numbers, we obtain

1

n
xHx

a.s.−→ σ2
x as n ↑ ∞ (2.1)

1

n
xHy

a.s.−→ 0 as n ↑ ∞ (2.2)

where
a.s.−→ denotes almost sure convergence.

17
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2.2 Information Theory

In order to obtain a tool for performance evaluation of digital communication systems,

the term information must be mathematically defined. The concept of information is too

wide to be summarized completely by one definition. However, for a given probability

distribution a quantity entropy is defined in literature which has several properties con-

forming with the intuitive notion of measure of amount of information. This concept

is complemented with the notion of mutual information which quantifies the amount of

information which one random variable contains about a correlated random variable. In

fact, mutual information is a special case of a more general quantity called relative en-

tropy. Relative entropy is a measure of the distance between two probability distributions.

All these measures share a range of properties and are interrelated. After defining entropy

and mutual information, we present the relation between these measures and some of their

properties without proofs which are necessary for the derivations in the subsequent sec-

tions. For proofs, the interested reader is referred to [30]. The definitions, properties and

relationships presented in next section will be used in Chapter 5 for calculations involving

entropies and mutual informations.

2.2.1 Measures of Quantifying information

Entropy and Mutual Information

Let X be a discrete random variable which can take on values from a finite alphabet X =

{x1, · · ·, xM} and the associated probability mass function be pX(x) = Pr {X = x} , x ∈

X ,i.e., X ∼ pX(x). One particular example of this discrete random variable is a digital

memoryless source which emits symbols x1, · · ·, xM with probabilities Pr {X = x1} , · ·

·, P r {X = xM} respectively. Memoryless property simply means that the current symbol

emitted is independent of the previous symbol. Thus all the symbols are statistically
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independent. Here, we introduce notion of entropy which is a measure of uncertainty of

a random variable.

Entropy

The entropy H(X) of a discrete random variable X is defined by

H(X) := −
∑
x∈X

pX(x) log pX(x) (2.3)

The logarithm is to the base two and the units of entropy are bits unless stated otherwise.

For instance, the entropy of a fair coin is 1 bit. In calculations of above expression, we

will use the convention 0 log 0 which may be easily justified by continuity as x log x → 0

as x→ 0. Recall that the expected value of a function g(X) of a random variable X can

be expressed as

EX [g(X)] =
∑
x∈X

g(x)pX(x) (2.4)

Thus entropy may be compactly expressed in terms of statistical expectation operator,

H(X) := EX
[
log

1

pX(X)

]
(2.5)

In the example of discrete memoryless source, the entropy of the source is a function

of symbol probabilities instead of their values because entropy quantifies the amount of

uncertainty on the average. It is interesting here to indicate the probability distribution

for symbols that yield maximum entropy. Entropy being a measure of uncertainty will

be maximized if symbols’ probability distribution generates maximum uncertainty. On

qualitative grounds, the entropy will be maximum for discrete uniform distribution, i.e.,

when the source emits all the symbols with equal probabilities.
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Joint Entropy and Conditional Entropy

Since the scope of transmission is communication between two or more subscribers, at least

two information sources X and Y communicating symbols x ∈ X and y ∈ Y respectively

need to be considered so that we can quantify the amount of information communicated

by two sources jointly on the average. Thus (X, Y ) may be considered to be a single

vector-valued information source characterized by a random vector and its associated

joint probability distribution (X, Y ) ∼ pX,Y (X, Y ). The joint entropy H (X, Y ) of a pair

of discrete random variables (X, Y ) with a joint distribution pX,Y (X, Y ) may be defined

as

H(X, Y ) := −
∑
x∈X

∑
y∈Y

pX,Y (x, y) log pX,Y (x, y) (2.6)

Like entropy, joint entropy can be expressed in terms of statistical expectation operator,

H(X, Y ) := EX,Y
[
log

1

pX,Y (X, Y )

]
(2.7)

In digital communication systems, yµ is known at the receiver where µ is an index into

the alphabet of channel outputs. If the channel is noiseless, then the knowledge of yµ

completely determines the transmitted symbol under the assumption of additive-white-

Gaussian noise (AWGN) channel. Owing to noise disturbances, there is certain degree

of uncertainty concerning the transmitted symbol upon reception of yµ. If Pr(xν |yµ)

characterizes the conditional probability that xν would have been transmitted when yµ is

received, then log [1/Pr(xν |yµ)] is the uncertainty about xν when yµ is received. If this

uncertainty is averaged out over all xν and yµ, then we obtain H (X|Y ), which is the

average uncertainty about the transmitted symbol x when a symbol y is received. Thus,
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the conditional entropy of X given the Y may be defined as

H(X|Y ) := −EX,Y
[
log pY |X(Y |X)

]
(2.8)

= −
∑
x∈X

∑
y∈Y

pX,Y (x, y) log pX|Y (x|y) (2.9)

= −
∑
y∈Y

pY (y)
∑
x∈X

pX|Y (x|y) log pX|Y (x|y) (2.10)

= −
∑
y∈Y

pY (y)H(X|Y = y) (2.11)

Thus, the conditional entropy of a random variable given another is the expected value

of the entropies of the conditional distributions, averaged over the conditioning random

variable. The units of conditional entropy is bits per symbol. Specifically, H(X|Y ) is

the average loss of information about a transmitted symbol when a symbol is received.

Naturally, the average information of a random variable X is decreased by the knowledge

of correlated random variable Y so that

H(X|Y ) ≤ H(X) (2.12)

holds. The equality holds only for the case when X and Y are independent random

variables.

Mutual information

The most important measure of information is mutual information which describes the

average amount of information common to both random variables. Specifically, it mea-

sures how much knowledge of one random variable reduces uncertainty about the other.

For instance, if two random variables X and Y are independent, then knowledge of X

does not yield any information about Y and the other way around. Thus, mutual infor-

mation in this case is zero. On the other hand, if X is a deterministic function of Y , then

the knowledge of X determines the value of Y and vice versa because all the informa-

tion contained in X is shared with Y . Consequently, in this case mutual information is
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equal to entropy of Y (or X). For a noiseless channel, the average amount of information

received would be H (X) bits per received symbol which is nothing but the entropy of

the source. However, for noisy channels, there will be loss of information H(X|Y ) about

the transmitted symbol per received symbol. As a result, the amount of information the

receiver receives on the average, I(X;Y ) bits per received symbol would be

I(X;Y ) := H(X)−H(X|Y ) bits per symbol (2.13)

Simply put, mutual information is a measure of amount of information that one random

variable contains about the another correlated random variable. Effectively, it is the

reduction in uncertainty of one random variable due to knowledge of the correlated random

variable. In terms of probability distributions, Eq. (2.13) may be expressed as follows

I(X;Y ) = EX,Y log
pX,Y (x, y)

pX(X)pY (Y )
(2.14)

=
∑
x∈X

∑
y∈Y

log
pX,Y (x, y)

pX(x)pY (y)
(2.15)

Thus, mutual information may also be interpreted as the relative entropy or Kullback

Leibler distance between the joint distribution and the product of marginal distributions.

It may also also be interpreted as the expected value of the log-likelihood ratio of joint

and product of marginal distributions. Relative entropy is well known to be a measure

of distance between two probability distributions. For definition of relative entropy or

Kullback Leibler distance, the interested reader is referred to [30].
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Chain Rules for Entropy and Mutual information

It is straightforward to prove that the entropy of a collection of random variables is the

sum of collection of the conditional entropies.

H(X1, X2, · · ·, XM) =
M∑
ν=1

H(Xν |X1, · · ·, Xν−1) (2.16)

≤
M∑
ν=1

H(Xν) (2.17)

where the equality holds only for the case when the random variables are statistically

independent. Since mutual information is a difference of entropy and conditional entropy

and both of them satisfy chain rule, therefore, mutual information also satisfies chain rule.

I(X1, X2, · · ·, XM ;Y ) =
M∑
ν=1

I(Xν ;Y |X1, · · ·, Xν−1) (2.18)

≤
M∑
ν=1

I(Xν ;Y ) (2.19)

where the equality holds only for the case when the random variables are statistically inde-

pendent. It is instructive here to define the conditional mutual information for derivations

in the upcoming sections.

Definition

The conditional mutual information of random variables X and Y given Z can be defined

as the expected value of the mutual information of X and Y given the value of Z. In

terms of entropies, it can be expressed as follows.

I(X;Y |Z) := H(X|Z)−H(X|Y, Z) (2.20)

= EX,Y,Z
[
log

pX,Y |Z(X, Y |Z)

pX|Z(X|Z)pY |Z(Y |Z)

]
(2.21)
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Jensen’s Inequality

If f is a convex function and X is a random variable, then Jensen’s inequality reads

E[f(X)] ≥ f(E[X]) (2.22)

Moreover, if f is strictly convex, then the equality in (2.22) implies that X = E[X] with

probability one (i.e., X is a constant).

Shannon (Ergodic) Capacity

When CSIT is not available, then data is transmitted at fixed rate from the source. Since

data transmission is performed during all fading states, the effective capacity is reduced

due to presence of deep fades. Shannon (Ergodic) capacity of a wireless fading channel

with receiver CSI and an average power constraint can be defined as follows [31].

C =

∫ ∞
0

log2(1 + γ)pΓ(γ)dγ (2.23)

It is noteworthy that Shannon capacity is a statistical average. In other words, it is equal

to channel capacity of an AWGN channel with SNR γ, given by B log2(1 + γ), averaged

over the distribution of γ.

2.3 Compressive Sensing

Computers have become omnipresent in our daily life in offices, industries and homes for

personal use. They operate on bits of zeros and ones rendering digital operations neces-

sary. Moreover, majority of electronic devices used now a days for important purposes

such as telecommunication, surveillance, and remote sensing etc execute digital opera-

tions. Owing to invention of ADC, digital devices have become part and parcel of the

so-called digital age.
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Most of the naturally occuring signals are analogue in nature. Analogue signals are

sampled and quantized by ADCs to generate digital signals. Nyquist sampling theorem

has been accepted worldwide as doctrine of discrete-time signal processing and signal

acquisition. This celebrated theorem was implied by the work of Nyquist in 1928 [32] and

later proved by Shannon in 1949 [33]. The theorem states that in order to reconstruct

an arbitrary bandlimited signal perfectly from its samples, it is essential that sampling

rate should be greater than twice the highest frequency present in the signal (the Nyquist

rate).

The resultant samples generated by sampling process are given as input to sophisti-

cated signal processing algorithms to produce desirable outputs. The sampling circuits in

ADCs sample the incoming analogue signal at proportionately higher rates as the band-

width of incoming signal increases. Consequently, high speed ADCs are required which

are expensive. Moreover, the computational complexity increases which in turn burdens

the battery and data storage requirements. For applications requiring extremely high

resolution, this process can be prohibitively complex rendering it infeasible.

The data storage requirement can be alleviated by incorporating advanced compression

algorithms in ADCs. The compression algorithms minimize the storage issue by trans-

forming the huge amount of data into relatively smaller set of samples. In applications

such as digital images and video cameras, the Nyquist rate is so high that compression

becomes necessary due to large number of samples prior to storage or transmission. How-

ever, this solution is not viable for applications that need higher sampling rates because

the samples must be stored before performing compression. Additionally, the process of

compression discards most of the information content obtained after sampling. Thus,

enhancing the sampling rate is not a feasible solution for applications requiring high res-

olution because in compression, most of the information content is discarded. In some

applications including medical scanners and radars, either the sensor is expensive or the
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measurement process is costly. In such cases, we are not able to collect sufficient mea-

surements to satisfy the Nyquist rate.

2.3.1 Compressive Sensing Framework

The compressive sensing is a paradigm shift in statistical signal processing. It is a rela-

tively new technology which lies in the overlapping area of statistics, optimization, and

signal processing. This technique enables us to reduce the sampling rate to cope with

the demands of sophisticated digital signal processing algorithms. Intuitively, this scheme

aims at doing sampling in a smart fashion such that information content of the siganl

remains unaltered. This aim is achieved by performing the sampling based on the actual

information content and the structure of the signals and not the maximum frequency

content.

Interestingly, most signals we are dealing with, are highly compressible because they

can be represented by a set of sparse or nearly sparse coefficients. CS is capable of

acquiring a signal from a small set of incoherent measurements with a sampling rate which

is less than Nyquist rate provided the signal is sparse or compressible in some transform

domain. In essence, sampling is performed in such a way that results in compressed data.

Many signals encountered in wireless communications are sparse which makes the CS an

integral part of the design and analysis of 5G wireless communication systems.

In the next subsections, we discuss the important conditions to be satisfied by CS

in order to recover the sparse signal from measurements which are far fewer than the

Nyquist rate. Furthermore, we discuss the measurement process and the reconstruction

algorithms to recover the sparse signal from measurements.
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Sparsity

Compressive sesning (a.k.a. compressed sampling) was coined by Donoho [34] and Candes

et al [35]. This is based on the principle that the sparsity of the signal can be exploited to

recover it from small set of its linear measurements. A sparse signal is defined as the signal

which contains very few significant components and the rest of the components are zero.

It is interesting to mention here that a compressible signal has a small number of active

components but the rest of enrties are not necessarily zero. It has been shown in [34, 35]

that a signal which is not compressible/sparse in its original domain can also recovered

from a small set of incoherent measurements provided it has a sparse representation in

some underlying domain.

Sparsity is exhibited by both man-made and naturally occuring signals. Examples of

sparse signals include video/image signals, speech signals, siganls obtained from biometric

algorithms and signals sensed from galaxies etc. Such abundant existence of sparse signals

render the CS an attractive scheme to devise simple and low-complexity signal processing

algorithms for the purpose of reconstruction. Some examples in which a priori knowledge

of sparsity is exploited include but are not limited to magnetic resonance imaging (MRI),

network tomography and magnetoencephalography (MEG) etc.

Measurement Process

In CS, the sparse signal is not sampled in conventional manner. Instead, the measurements

of sparse signal are acquired as linear combinations of its components. Let x ∈ RN be the

K-sparse signal where K is sparsity and let y ∈ RM represent the acquired measurement

vector with M < N . Now, the measurement process reads

y = Ψx+ n (2.24)
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where n ∼ N (0, σ2
wI) is the white Gaussian noise and Ψ is the M × N sensing matrix

generating the desired linear combinations of components of x. The sensing matrix should

be designed in such a manner so as to retain the information content present in the signal.

A matrix having this desired property can be designed with high probability if its elements

are chosen to be independent and identically distributed random variables characterized

by zero-mean Gaussian distribution [34,35].

It has been demonstrated in [34,35] that for the aforementioned setup, a sparse signal

x having K << N non-zero components can be reconstructed from just M ≥ cK log(N
K

)

measurements with c a small constant. To date, several algorithms have been proposed

for CS recovering using very few measurements. Here, we will discuss most important CS

reconstruction algorithms.

Reconstruction Algorithms

Since the nullspace of Ψ is non-empty for underdetermined setup, so Eq. (2.24) has

infinite many solutions. However, if the desired signal x is known to be sparse, then the

most straightforward solution will be minimization of l0 norm. The l0 norm minimization

solution can be setup as follows.

x̂ = arg min ‖x‖0 s.t. ‖y −Ψx‖2 ≤ ε (2.25)

This solution in fact determines the sparsity level of the x. Simply put, it counts the

non-zero entries of x. In essence, this optimization program attempts to minimize the

total number of active components in x and consequently, it achieves the sparset solution.

In practice, this solution amounts to searching over all the support sets via an exhautive

search which becomes prohibitively complex for signals of large dimensions and therefore,

it is an NP-hard problem.
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Convex Relaxation

It has been demonstrated in [34, 35] that the program in (2.25) can be solved via convex

relaxation and x would be recovered with high probability by solving the following l1

optimization problem,

x̂ = arg min ‖x‖1 s.t. ‖y −Ψx‖2 ≤ ε (2.26)

The above setup is a convex optimization problem that easily boils down to a linear

program known as basis-pursuit denoising (BPDN) [36] which can be solved via interior-

point methods. These methods possess polynomial complexity, i.e. O(N3). More efficient

greedy pursuit algorithms have been proposed which are faster but they offer less accurate

solutions than convex relaxation.

Restricted Isometry Property

In CS, the signal x could be recovered from knowledge of y if Ψ had full column rank.

In this case, x would be the unique solution of

min ‖y −Ψx‖2
2 (2.27)

or x̂ = (ΨTΨ)−1ΨTy. However, CS employs underdetermined system, i.e., Ψ has fewer

rows than columns because the information signal is downsampled. It is well-known that

such a matrix cannot have full column rank and consequently, underdetermined systems

have multiple solutions. Recall that x is sparse or nearly sparse and prior to CS recovery,

the support of active components is not known. Thus, given merely that x is sparse, CS

recovery depends solely on type of matrix Ψ.

The restricted isometry property (RIP) proposed by Candes and Tao [37] is a funda-

mental condition for CS recovery of sparse signals. If a matrix Ψ satisfies RIP, then it is

guaranteed that solution to l1-minimization problem becomes equivalent to the solution

of l0-minimization problem. Here we provide a useful definition of RIP.
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Definition

The matrix Psi ∈ RM×N has the RIP of order K if ∃ a constant εK ∈ (0, 1) 3

(1− εK) ≤ ‖Ψx‖
2
2

‖x‖2
2

≤ (1 + εK) (2.28)

holds ∀ K− sparse signals x ∈ RN (∀x with ‖x‖0 ≤ K). The RIP condition can be

interpreted in terms of singular values. If all the eigenvalues of all the submatrices ΨT
SΨS

are restricted to the interval (1− εK , 1 + εK), then it is equivalent to the statement that

the matrix Ψ satisfies RIP of order K with isometry constant εK . Here ΨS is an M ×K

submatrix of Ψ indexed by the set S with cardinality |S| ≤ K. It should be noticed that by

definition of RIP, the matrix Ψ needs to satisfy this condition for all the
(
N
K

)
submatrices

ΨT
SΨS [38]. Given a matrix Ψ, the task of establishing the RIP is a combinatorial problem

which becomes prohibitively complex for large N . Fortunately, it has been found out that

matrix ensembles satisfy the RIP. For instance, Baraniuk et al. [38] demonstrated that a

random M ×N matrix with i.i.d. Gaussian entries distributed according to N (0, 1
M

) will

satisfy RIP of order K with high probability if M = O(K log(N
K

)). For the l1-minimization

problem (2.26), establishing the RIP of order 2K with constant ε2K < 0.4652 for a given

Ψ guarantees exact recovery of any K−sparse signal x ∈ RN [39].

2.4 Total-Least-Squares Estimation

Most of the linear problems in communications, control and signal processing can be

modelled via following matrix-vector relationship,

y = Ψx+ n. (2.29)

Here y is received/measurement signal, x is the signal of interest to be estimated and Ψ

is the measurement/sensing matrix. In most of applications, it is reasonable to assume
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that noise is AWGN, i.e., the power spectral density of noise is flat and its probability

distribution is Gaussian (n ∼ N (0, σ2
nI)).

For the linear data model in Eq. (2.4), the ordinary least-squares (OLS) attempts to

minimize the error in the measurement process which amounts to minimizing the following

objective function :

min ‖y − y′‖2 s.t. y
′ ∈ C(Ψ) (2.30)

or min ‖y −Ψx‖2 (2.31)

Once a minimzer y
′

is calculated, then any x satisfying y
′
= Ψx is termed OLS solution

and 4y′ = y − y′ the corresponding OLS correction. One such OLS solution is shown

here [40],

xols = (ΨTΨ)−1ΨTy. (2.32)

For AWGN channel model, Eq. (2.32) is also termed the best-linear-unbiased estimator

(BLUE) [40]. The OLS estimation is premised on the underlying assumption that the

measurement matrix is known perfectly and errors are present only in y. This is not

a realistic assumption because the measurement matrix is not known perfectly due to

sampling or modeling errors in Ψ. For instance, in wireless channel the estimated channel

matrix contains estimation noise. So, the more appropriate data model is as follows.

y = (Ψ + Ψe)x+ n. (2.33)

where Ψe is the noise in Ψ. Golub proposed to use TLS estimation in [41] which takes

into account the noise in the measurement matrix. In order to accout for errors in the

measurement matrix, TLS attempts to minimize not only the noise in received vector but

also in the measurement matrix. Let Ψ̂ls = Ψ + Ψe, then the TLS objective function can

be expressed as follows.

min
Ψ̂tls,ŷ∈C(Ψ̂tls)

‖ vec[Ψ̂ls y]− vec[Ψ̂tls ŷ] ‖2 (2.34)
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The following theorem is derived in [41,42] and is presented here for illustrative purposes.

Theorem 1. Let UΣ́V T be the Singular-Value Decomposition (SVD) of Ψ̂tls and UΣV T

be the SVD of
[
Ψ̂ls | y

]
.If σ̂n ≥ σn+1 then the signal estimate for total-least-squares

estimation exists and is unique and it can be expressed as follows.

x̂tls =
(
〈Ψ̂ls, Ψ̂ls〉 − σ2

N+1IN+1

)−1

〈Ψ̂ls,y〉 (2.35)

Proof.

SVD can be used to find a closed-form expression for TLS solution. It is constructive here

to write y ≈ Ψ̂lsx in the following form

[
Ψ̂ls | y

] [
xT | −1

]T ≈ 0 (2.36)

Let the SVD of
[
Ψ̂ls | y

]
be UΣV T . Here U and V represents the left and right singular

matrices respectively. Singular Values are contained in Σ = diag[σ1, ·· ·, σn+1]. If σn+1 6= 0

then the rank of
[
Ψ̂ls | y

]
is n+ 1 and the corresponding row space R

[
Ψ̂ls | y

]
∈ Rn+1.

Consequently the null space, which is orthogonal complement of row space, will be empty

and Eq. (2.36) will be inconsistent. In order to make it consistent, the rank of
[
Ψ̂ls | y

]
should be reduced to n. Here we invoke Eckart-Young-Mirsky (EVM) theorem which

provides us with best rank n TLS approximation
[
Ψ̂tls | ŷ

]
of
[
Ψ̂ls | y

]
. Thus TLS

approximation may be expressed as

[
Ψ̂tls | ŷ

]
= UΣ̂V T with Σ̂ = diag[σ1, · · ·, σn+1, 0].

The above approximation is best in the sense that it minimized the deviations in variance.

The minimal TLS correction from EVM theorem can be expressed as

σn+1 = min
rank([Ψ̂ls|y])=n

‖ vec[Ψ̂ls | y]− vec[Ψ̂tls | ŷ] ‖2 . (2.37)
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and this TLS correction matrix can be attained for

[
Ψ̂ls | y

]
−
[
Ψ̂tls | ŷ

]
=
[
4Ψ̂tls | 4ŷ

]
= σn+1un+1v

T
n+1

Now this correction matrix has rank one and following set of equations is consistent.

[
Ψ̂tls | ŷ

] [
xT | −1

]T
= 0 (2.38)

The solution set of this system of equations comprises of one vector only vn+1 which is

the last column of V . This right-most singular vector belongs to null-space, i.e., vn+1 ∈

ℵ(
[
Ψ̂tls | ŷ

]
). We can normalize vn+1 by its last component vn+1(n + 1) to obtain the

following TLS solution.  x̂tls
−1

 =
−1

vn+1(n+ 1)
vn+1 (2.39)

If vn+1(n+ 1) 6= 0, then

ŷ = Ψ̂tlsx̂tls (2.40)

=
−1

vn+1(n+ 1)
[vn+1(1), · · ·,vn+1(n)]T ∈ C(Ψ̂tls),

i.e., ŷ ∈ C(Ψ̂tls) is satisfied and consequently TLS problem is solved for the considered

assumptions. The interlacing theorem for singular values leads to following chain of

inequalities,

σ1 ≥ σ́1 ≥ · · · ≥ σn ≥ σ́n ≥ σn+1 (2.41)

If we assume σ̂n ≥ σn+1 then it prevents σn+1 from becoming repeated singular value of[
Ψ̂ls | y

]
. If

[
Ψ̂ls | y

]T [
Ψ̂ls | y

] z
0

 = σ2
n+1

 z
0

 , (2.42)
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and 0 6= z ∈ Rn then this implies Ψ̂
T

lsΨ̂lsz = σ2
n+1z which is a contradiction because σ̂2

is smallest eigenvalue of Ψ̂
T

lsΨ̂ls. Consequently, there must be a vector in ℵ(
[
Ψ̂tls | ŷ

]
)

whose last component is non-zero. This implies that there exists a solution for TLS

problem. Since the nullity of
[
Ψ̂tls | ŷ

]
is unity so the TLS solution must be unique. The

condition that σ̂n ≥ σn+1 ensures that x̂tls exists and is unique. As vi are right singular

vectors so they are eigenvectors of
[
Ψ̂ls | y

]T [
Ψ̂ls | y

]
therefore they satisfy the following

eigenvector equations:

[
Ψ̂ls | y

]T [
Ψ̂ls | y

] x̂tls
−1

 = σ2
n+1

 x̂tls
−1


 〈Ψ̂ls, Ψ̂ls〉 〈Ψ̂ls,y〉

〈y, Ψ̂ls〉 ‖y‖2


 x̂tls
−1

 = σ2
n+1

 x̂tls
−1


If we simplify the top block of the above matrix-vector relation, then we will end up with

following TLS solution.

x̂tls =
(
〈Ψ̂ls, Ψ̂ls〉 − σ2

N+1IN+1

)−1

〈Ψ̂ls,y〉 (2.43)

where σN+1 is the smallest singular value of the augmented matrix
[
Ψ̂ls|y

]
.



Chapter 3

Analysis of Adaptive Least Squares

Filtering in Massive MIMO

In this chapter, we analyse the adaptive least-squares filtering in massive MIMO in order

to study the effect of pilot contamination in adaptive beamforming scenario where instead

of performing channel estimation, training sequences are used to train the precoders and

decoders. Section 3.1 provides the motivation and related work of adaptive beamforming

in massive MIMO. Section 3.2 gives the system model of a multi-cell scenario for pilot

and data transmission. In Section 3.3, we perform the pilot contamination analysis in

which orthogonal, identical and random pilots are treated separately. In Section 3.4, we

provide simulation results to verify the mathematical analysis. Section 3.5 concludes the

chapter 3.

3.1 Motivation and Related Work

In traditional cellular systems, frequency reuse was employed to enhance the system ca-

pacity. The universal frequency reuse among neighbouring cells leads to severe inter-cell

interference which causes degradation of SINR especially for cell edge users. Several al-

35
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gorithms were designed to mitigate this SINR deterioration by exploiting the additional

degrees of freedom offered by the use of antenna arrays at BTS. In coordinated beam-

forming, all the BTSs share their CSI and beamforming vectors are designed jointly [43].

The authors in [43] reveal ways to design a downlink beamformer in a truly distributed

manner. In their approach, they do not assume any central processing unit. Instead

they use message passing between neighbouring BTSs for downlink beamforming to ac-

complish macrodiversity. Specifically, the global beamforming computation is distributed

among BTSs and only local communication is established between adjacent BTSs. In

network MIMO, BTSs share the message data over the backhaul link in addition to CSI

exchange [13]. In Network MIMO (a.k.a. multicell MIMO), multicell processing is im-

plemented in the form of joint precoding. However, complete data sharing incurs high

capacity backhaul links which are not feasible in certain applications.

Though coordinated beamforming does not entail exchange of user data, the exchange

of CSI across the BTSs on a fast time scale and low latency basis is challenging when it

comes to implementation. A noncooperative scheme termed as “Massive MIMO” is intro-

duced in [15] which relaxes the requirement of CSI exchange. This scheme suggests that

as we increase the number of antenna elements NT at base station, the channel from BTS

to desired user will become orthogonal to that of interfering users. Thus low-complexity

signal processing scheme maximum-ratio combining or spatial matched filtering is possi-

ble at the BTS side by simply aligning the beamforming vector with the desired channel.

The capacity performance of this scheme is plagued by “pilot contamination” effect which

is in fact inter-cell interference.

In pilot contamination, the channel estimate of desired user in its own cell is contam-

inated by the channels of users in other cells which are using same pilot sequence as that

of desired user. The pilot contamination problem is shown in the Fig. 3.1 for illustrative

purposes. The authors in [25] suggest that if the users are scheduled in terms of pilot
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Figure 3.1: Pilot Contamination in Massive MIMO [44]

sequence allocation intelligently then this effect can be minimized. This idea is based

on the premise that all the pilot sequences in one cell are mutually orthogonal however

the other cells are also using the same set of pilot sequences due to limited coherence

time. The authors demonstrate that as the number of base station antennas increases,

the pilot contamination effect vanishes under certain conditions on subspaces of channel

covariance matrices of desired and interfering users. The suggested scheme exploits the

dormant side-information lying in second-order statistics of desired and interfering users’

channels. The minimum-mean-square error (MMSE) estimator of the desired channel

depends upon the covariance matrices of the interfering users’ channels owing to pilot

contamination. In [25], a coordination algorithm for pilot sequences assignment to users

in the L cells was proposed. This algorithm assigns a given training sequence to a user in

one cell whose spatial characteristics are maximally different from those of interfering users

having assigned identical pilot sequences in other cells. Consequently, the MMSE estima-

tor of desired user’s channel has no more residuals of contaminating channel covariance

matrices of interfering users. This algorithm requires coordination among neighbouring
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base stations for scheduling of training sequences across cells.

The use of a large number of antennas at BTS enables us to achieve higher spectral

efficiencies owing to beamforming/array gains. In coordinated beamforming, all the BTSs

must have CSI of channels between neighbouring BTSs and their users. In [26], the

overhead for having CSI at transmitters or receivers has been alleviated. An adaptive

distributed algorithm is designed for updating the precoders and receiver filters iteratively

to optimize the sum rate. The proposed algorithm is a variant of max-SINR algorithm and

was analyzed under MIMO interference network assumption. The max-SINR algorithm

also iterates back and forth between transmitter and receiver assuming perfect CSI [45].

Max-SINR is a celebrated algorithm which attempts to maximize the SINR on a stream-

by-stream basis instead of explicitly minimizing the leaked interference. It has been

established that max-SINR is optimal within the family of linear beamformers at high

SNRs. It has also been shown that it achieves better throughput than sum-rate gradient

algorithms in the medium SNR regime.

With perfect CSI, similar iterative algorithms are proposed in [46]. The authors in [46]

adopted a joint MMSE design approach that jointly optimizes the transmit precoders and

receive spatial filters. Moreover, their proposed SINR algorithm is proven to converge

in contrast to previous max-SINR algorithms. Similarly, bidirectional training schemes

are used to do channel estimation in [47]. Particularly, they focus on the optimal power

allocation between reverse training, forward training and data transmission. They pro-

vide closed-form solutions for power allocation using high SNR approximations. Under

proposed power allocation scheme, they achieve near-optimal performance in terms of

symbol-error rate (SER) for different modulation schemes over a wide range of SNRs.

Bidirectional training without channel estimation has been employed for adaptive beam-

forming in [26] but that paper does not consider the impact of “pilot contamination” and

is restricted to single cell MIMO interference network and i.i.d. training sequences.
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In this chapter, we consider a multi-cell setting in which each cell has one BTS and one

user or mobile station (MS). We have chosen one MS in each cell for adaptive beamforming

as the same approach of having one user in each cell for a multi-cell system has been

adopted in [25]. The authors in [25] have adopted one user per cell because in massive

MIMO, the channel of a desired user in one cell is contaminated by only one user per

neighbouring cell. In this chapter, we assume that the users are using random sequences

which are random across cells but are orthogonal within the same cell, so it is reasonable

to assume one user per cell since the amount of collective interference from a set of random

training sequences will be less than the interference of an identical training sequence due

to tiny side lobes. The authors in [25] are analysing pilot contamination during channel

estimation and we focus on training precoders and decoders directly without doing channel

estimation.

In this chapter, the BTS is equipped with an array of NT antenna elements and MS

is equipped with single antenna. Initially, all the BTSs transmit their training sequences

to the MSs synchronously and MSs update their receive filters. In the next phase, all the

users transmit their training sequences synchronously to the BTSs which update their

beamforming filters. After the filters are optimized, data is transmitted. The receive

filters are assumed to be linear with intereference considered as noise. Consequently,

the information rate is determined by the received SINR. Our objective is to analyse

the impact of “pilot contamination” in adaptive beamforming scheme under different

structures of training sequences. Specifically, we employ orthogonal, identical and random

pilot sequences in both directions and study their effect on the average sum rate where

sum rate is the sum of information rates of MSs in different cells.

Our approach is based on multi-cell TDD systems and we analyse that as the number

of BTS antenna elements increases, the sum rates achieved by the adaptive least-squares

based filtering under random training sequences is higher than that achieved under iden-
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tical training sequences. The approach in [25] is premised on coordination across cells

to schedule training sequences in intelligent way so that interfering users across cells do

not interfere but this comes at the cost of coordination across cells for training sequence

scheduling which on a fast time scale and low latency basis is challenging when it comes

to implementation. We propose random training sequence so that overhead introduced

by control channel or backhaul is eliminated.

3.2 System Model

Consider a cellular network with L time-synchronised cells. Each cell has one BTS which

is equipped with NT antenna elements. The mobile station (MS) has one antenna. The

channel between j-th BTS and k-th MS is denoted by a complex vector hkj ∼ CN (0,R),

where R is the NT × NT covariance matrix of the channel gains. It is assumed that

transmitters and receivers have no explicit knowledge of the CSI. All the transmissions

are assumed to be synchronous and channel is assumed to be TDD to exploit channel

reciprocity. In downlink, the k-th BTS beamforms the transmitted symbol with a rank

one precoding matrix vk ∈ CNT and MS processes the received signal with a receive

filter gk ∈ C. The received signal at k-th MS contains inter-cell interference owing to

synchronous transmissions from all BTSs. For instance, the k-th MS receives the following

signal at i-th time instant.

zk(i) = 〈hkk,vk〉xk(i) +
∑
j 6=k

〈hkj,vj〉xj(i)︸ ︷︷ ︸
ISI

+nk(i)

where nk(i) is zero mean complex Gaussian noise with variance σ2
o . Let xk = [xk(1) · · ·

xk(τ)] be a 1 × NT sequence of symbols transmitted over the channel then the received
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sequence of symbols at k-th MS can be expressed as

zk =
L∑
j=1

〈hkj,vj〉xj + nk (3.1)

= [〈hk1,v1〉 · · · 〈hkL,vL〉]



x1

·

·

·

xL


︸ ︷︷ ︸

=X

+nk

=
[
h̃k1 · · · h̃kL

]
X + nk (3.2)

zk = h̃TkX + nk (3.3)

where zk = [zk(1) · · ·zk(τ)] is the 1× τ received sequence at the MS and the measurement

noise is a 1×τ sequence of independent Gaussian random variables nk = [nk(1) · · ·nk(τ)].

Here h̃k =
[
h̃k1 · · · h̃kL

]T
= [〈hk1,v1〉 · · · 〈hkL,vL〉]T is the beamforming gain vector for

k-th user from different BTSs. X is the data matrix whose rows represent the data

sequences of different transmitters. During the training phase, the rows of X are training

sequences, and τ is the length of the training sequence (see below).

This compact system model facilitates analysis in the upcoming section. It is assumed

that CSI is not known at BTSs or MSs. The adaptive least squares filtering scheme

described here is inspired by the adaptive beamforming scheme presented in [26]. In this

scheme, beams and receive filters are jointly optimized iteratively. This scheme comprises

of iterating a forward optimization in which MSs’ receive filters are optimized with fixed

beams, with a backward optimization in which beams are optimized via transmission of

data in uplink. In backward direction, receive filters are fixed and act as beamformers.

Initially, a pilot sequence xk = bk is transmitted by the k-th BTS in forward direction
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and receive filter at k-th MS is optimized as follows:

ĝk = arg min
gk
‖bk − g∗kzk‖2 (3.4)

= (zkz
H
k )−1zkb

H
k (3.5)

This is referred to as forward training. All the BTSs transmit pilot sequences syn-

chronously and MSs update their receive filters. In the training phase, X = B is the

pilot matrix whose rows contain the pilot sequences of L BTSs. Once the receive filters

at MSs have been optimized, we fix them and transmit the training sequences {si}Li=1 in

the reverse direction from MSs to BTSs. The sequence of receive signals at k-th BTS can

be expressed as

Yk =
L∑
j=1

hjkg
∗
jsj + Nk (3.6)

Here Yk = [yk(1) · · · yk(τ)] is received signal matrix which contains a sequence of τ

independent receive signals at the k-th BTS and yk(i) ∈ CNT and Nk = [nk(1) · · · nk(τ)]

is the NT × τ uplink noise matrix at k-th BTS. sj is the 1× τ uplink training sequence.

In matrix form, the above equation can be expressed as follows:

Yk = HkDg∗S + Nk (3.7)

where S is a pilot matrix whose rows contain pilot sequences sent by MSs of different

cells. Dg∗ = diag[g∗i ]i=1···L and Hk = [h1k · · · hLk] is a matrix whose columns represent

the channels between MSs of different cells and k-th BTS. The k-th BTS updates its

beamformer according to following least-squares cost function:

v̂k = arg min
vk
‖sk − vHk Yk‖2

= (YkY
H
k )†Yks

H
k

(3.8)

These iterations are performed back and forth once. Once the filters are optimized, data is

sent in forward direction. For a given set of optimized beamformers {gk}Lk=1 and {vk}Lk=1,
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the SINR at the k-th MS can be expressed as

γk =
|g∗k〈hkk,vk〉|2∑

j 6=k |g∗k〈hkj,vj〉|2 + σ2
o |gk|2

(3.9)

Consequently, the sum rate
∑K

k=1 log(1 + γk) is calculated. We attempt to choose the

optimal precoders and receive filters in such a way so as to maximize the average sum rate.

It is well known that MMSE estimator maximizes the SINR but it needs perfect CSI. We

rely on adaptive least squares filtering which does not need CSI. However, its performance

approaches that of MMSE estimator as the length of training sequence increases.

3.3 Pilot Contamination Analysis

In Eq. (3.8), the BTS precoder filter comprises of two terms. One is sample covariance

matrix of the received sequence at BTS and the second term is the cross-correlation

between received sequence and the transmitted training sequence. The second term is

acting as a steering vector [48]. This steering vector steers the beam of antenna array at

BTS depending upon the structure of transmitted training sequences from MSs in L cells.

We analyse the impact of structure of training sequences on the steering vector and the

resulting “pilot contamination” in the following subsections. As our aim is to analyse the

effect of “pilot contamination”, we assume that there is no uncorrelated Gaussian noise

in the precoder estimate.

3.3.1 Orthogonal Pilots

If pilots are orthogonal in time domain, then SSH = τI where sks
H
k = τ is pilot sequence

power, and I is the L×L identity matrix. Here all the pilot sequences are equal in power

but mutually orthogonal. Assuming the noise to be negligible for analysis, we analyse the
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pilot contamination in k-th precoding filter as follows:

YkY
H
k = (HkDg∗S)(HkDg∗S)H (3.10)

= HkDg∗SS
HDH

g∗H
H
k (3.11)

= τHkDg∗D
H
g∗H

H
k (3.12)

= τ
L∑
i=1

|gi|2hikhHik (3.13)

The above term is a normalization factor. But the crucial role is played by the projection

of received sequence onto the transmitted pilot sequence in the BTS precoder estimator.

Yks
H
k = HkDg∗Ss

H
k (3.14)

=

 g∗1h1k · · · g∗LhLk





s1

·

·

·

sL


sHk

= τg∗khkk (3.15)

The above projection is free of pilot contamination, due to the orthogonality of the training

sequence. The BTS precoding filter in terms of channel vectors and MSs’s filters can be

expressed as:

v̂k =

(
τ

L∑
i=1

|gi|2hikhHik

)†
(τg∗khkk) (3.16)

=

(
L∑
i=1

|gi|2hikhHik

)†
(g∗khkk) (3.17)

Thus, the precoder filter estimation is independent of pilot sequence power in the afore-

mentioned scenario and zero noise conditions.
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3.3.2 Identical Pilots

If all the MSs are transmitting same training sequences, then SSH = τJL where JL is an

L× L matrix of all ones. Now the normalization term can be simplified as follows:

YkY
H
k = (HkDg∗S) (HkDg∗S)H (3.18)

= τHkDg∗JLD
H
g∗H

H
k (3.19)

= τ
L∑
i=1

L∑
j=1

g∗i gjhikh
H
jk (3.20)

Similarly, the projection of received sequence onto pilot sequence can be expressed as

follows:

Yks
H = HkDg∗Ss

H (3.21)

= τHkDg∗ [1 · · · 1]T (3.22)

= τ
L∑
l=1

g∗l hlk (3.23)

This projection contains all the interfering channels and is highly contaminated. This

implies that the usage of identical pilots in different cells leads to pilot contamination.

Regardless of the fact that we are not estimating channels, pilot contamination is occuring

in BTS’s precoding filter’s estimate. In nutshell, the BTS’s precoding filter’s estimate can

be expressed as

v̂k =

(
τ

L∑
i=1

L∑
j=1

g∗i gjhikh
H
jk

)†(
τ

L∑
l=1

g∗l hlk

)
(3.24)

=

(
L∑
i=1

L∑
j=1

g∗i gjhikh
H
jk

)†( L∑
l=1

g∗l hlk

)
(3.25)

The above expression holds as the effect of noise is dominated by the beamforming gains.
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3.3.3 Random Pilots

We want to quantify the impact of random pilot sequences on our adaptive beamformer

at BTS. Specifically, we choose random training sequences of zero mean and variance c

for the performance evaluation in terms of average sum rate. We use the Lemma 1 from

Chapter 2 for analysis of asymptotic behaviour of different random pilots.

The application of Lemma 1 implies that with random pilot sequences, always of

energy c, then as τ tends to infinity, we have SSH tending to cI, where I is the L × L

identity matrix. Now the normalization term can be expressed as follows:

lim
τ→∞

YkY
H
k = (HkDg∗S)(HkDg∗S)H (3.26)

= HkDg∗SS
HDH

g∗H
H
k (3.27)

a.s.→ cHkDg∗D
H
g∗H

H
k (3.28)

= c
L∑
l=1

|gl|2hlkhHlk (3.29)

where c is the energy of the random training sequence. On the other hand, the steering

vector can be expressed as follows:

lim
τ→∞

Yks
H
k = HkDg∗Ss

H
k (3.30)

=

 g∗1h1k · · · g∗LhLk





s1

·

·

·

sL


sHk (3.31)

lim
τ→∞

Yks
H
k

a.s.→ cg∗khkk (3.32)
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The k-th BTS filter in terms of channel vectors and MSs’s filters can be expressed as:

lim
τ→∞

v̂k
a.s.→

(
c

L∑
i=1

|gi|2hikhHik

)†
(cg∗khkk) (3.33)

=

(
L∑
i=1

|gi|2hikhHik

)†
(g∗khkk) (3.34)

Remark. Thus, as the length of random training sequence is increased, the performance

of adaptive least squares filtering using random training sequences approaches the perfor-

mance of adaptive least squares using orthogonal training sequences asymptotically with

the number of interferers remaining fixed. However, in practice the training sequence

length is finite and limited by coherence time of the channel.

3.4 Simulation

In this section, numerical results are presented to corroborate the mathematical analysis in

the previous section. All the measurement noises are assumed to be AWGN with variance

σ2
o . The data symbols are assumed to be unit variance and SNR is taken to be equal to

1
σ2
o
. The channel vector covariance matrix is assumed to be equal to identity matrix, i.e.,

R = I. All the results are averaged over 1000 Monte Carlo runs. Here we consider three

cells each having one MS and one BTS with an antenna array of NT antenna elements.

Fig. 3.2 shows the average sum rate of this cellular network versus training sequence

length. It is evident from the graph that as the training sequence length increases, the

average sum rate increases for all the structures of training sequences. However, the

performance of adaptive least-squares filtering at BTS with random training sequences is

better than the performance of the same filtering scheme with identical training sequences

as long as the number of interferers is fixed. This is because the cross-correlation term

in the filter at BTS is acting as beamformer and it steers the beam of antenna array in

the direction of the intended training sequence. For orthogonal training sequences, it is
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Figure 3.2: Average Sum Rate versus Training Sequence Length, SNR = 30 dB
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Figure 3.4: Average Sum Rate versus Number of Antennas NT

steering a null towards orthogonal sequences and in case of identical pilot sequences it

is steering the sidelobes towards users which are in other cells. It is apparent that the

sidelobes towards other users have low energy in case of random training sequences and

hence “pilot contamination” effect is considerably less than in the case in which identical

training sequences are transmitted by users in different cells. In Fig. 3.2, the SNR is fixed

at 30 dB. This value of high SNR is chosen to satisfy the requirements of low bit error

rate (BER) for applications requiring high reliability.

Now, we fix the training sequence length and see the variations in average sum rate

with respect to changes in SNR under different training sequence structures. Fig. 3.3

shows the plot of average sum rate versus SNR. SNR is varied from 0 to 50 dB and

training sequence length is kept at 90. The gap between the sum rate of random training

sequences and that of identical training sequences is 1 bits/channel use at 50 dB. Thus,

the random training sequences are offering better performance than identical training
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sequences in terms of average sum rate as in this case, the steering vector in the BTS

precoding filter has reasonably less contamination.

Now, we fix the SNR at 30 dB and vary the number of antenna elements at the BTS.

In Fig. 3.4, the average sum rate is plotted versus number of antenna elements NT .

It is obvious from the figure that as we increase the number of antennas, the average

sum rate increases. This is due to additional spatial links created by the use of more

antenna elements at the BTS array. Here again the performance of random training

sequences is in between identical training sequences and orthogonal training sequences.

The random training sequences offer atleast 1 bits/channel use better performance than

identical training sequences when the number of antennas at base station is greater than

ten.

3.5 Conclusion

We have considered an adaptive least squares filtering in large scale antenna systems

under bidirectional training scheme which operates without the knowledge of CSI. The

presented algorithm jointly optimized the transmit precoders and receive filters without

any coordination among base stations. The impact of properties of training sequences

on sum rate performance of cellular system has been quantified. It has been shown

through mathematical analysis and numerical results that the random training sequences

offer better performance than identical training sequences in terms of sum rate when the

number of interferers is fixed. Moreover, it has been quantified that random training

sequences start becoming orthogonal as the length of training sequences grow which is

approachable in low mobility scenarios.

In case of multiple users per cell, random training sequences will interfere with each

other for short coherence intervals. However, if we reuse the same set of orthogonal train-
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ing sequences across cells, the amount of correlation with an identical training sequence

will be higher than the sum of individual tiny correlations of a set of random training

sequences from an adjacent cell due to tiny sidelobes. This chapter offers a preliminary

work on pilot contamination analysis under adaptive beamforming in massive MIMO. The

future work is directed towards quantifying the impact of multiple users using random

training sequences across different cells for pilot contamination analysis.
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Chapter 4

Compressive-Sensing-Aided

Detection for

Generalized-Spatial-Modulation

Massive-MIMO Systems

Spatial Modulation (SM), a novel modulation format, has the potential to relax the

constraint of one RF chain per antenna element at the BTS in massive MIMO without

compromising on spectral efficiency. GSM is an extension of SM which uses more than

one but less than NT RF chains and provides higher spectral efficiency. In this chapter,

we focus on receiver design for data detection in massive MIMO exploiting the sparse

structure of the transmit vector of the GSM systems.

This chapter is organized as follows. Section 4.1 highlights the motivation and related

work. Section 4.2 provides CS aided data detection for GSM systems in MIMO ISI

wireless channels in which we provide the system modeling and problem formulation, CS

framework, and an algorithm to perform CS aided sparse data detection under perfect and

53
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imperfect CSI. Section 4.3 discusses sparse recovery for Multi-user GSM system in which

we start with multi-user GSM modeling, then after discussing the precoding scheme, we

provide a CS framework for multi-user GSM data detection.

4.1 Motivation and Related Work

SM is a modulation technique which only uses one RF chain for all the antenna elements,

thereby entirely avoiding inter-channel interference (ICI) and requiring no synchronization

between the transmitting antennas while maintaining high spectral efficiency [49]. The

principle of spatial modulation is quite simple: a block of information bits is mapped

onto a constellation point in the signal and spatial domain which includes the selection

of a particular antenna. Thus, part of the information is encoded into the selection of the

transmit antenna. The receiver estimates the transmitted signal and the transmit antenna

number and uses both of these to decode the block of information bits. This detection is

achieved via iterative maximum-ratio combining (i-MRC). Spatial modulation is currently

attracting attention due to its reduced receiver complexity as compared to conventional

MIMO . Additionally, its BER and achieved spectral efficiency are comparable to V-

BLAST but using less complexity.

GSM is an extension of SM in which the same symbol is transmitted from more than

one transmit antennas [28]. In GSM, information is conveyed through the selection of

multiple antennas unlike SM, where one antenna is activated. Nevertheless, the number

of activated antennas, which is equal to the number of available RF chains, is much less

than the total number of antenna elements. This scheme not only avoids ICI but also

takes advantage of transmit diversity gains. As the number of combinations of transmit

antennas is much higher than the actual number of transmit antennas, GSM systems have

higher spectral efficiency in comparison to SM systems.
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In massive MIMO, the BTS possesses a large number of antenna elements and limited

RF chains which make the GSM an attractive modulation format to tackle the problem

of limited RF chains. In GSM, the receiver has to detect not only the information symbol

transmitted but also the specific subset of antennas. The maximum-likelihood (ML)

detector has been investigated for GSM [50]. CS techniques which exploit the sparse

structure of transmit data for GSM has been proposed in [51].

CS has been studied extensively in statistical signal processing, optimization and

statistics [52]. CS extracts a signal, which is sparse in some underlying basis, from a

small set of measurements with a sampling rate much lower than the Nyquist rate. If the

measurement/sensing matrix satisfies the RIP, then the sparse support of such signals

can be estimated [37]. Owing to the fact that most naturally occurring signals can be

approximated to be sparse in some basis, CS can be employed for their reconstruction

with high probability given sufficient measurements of the signal [53]. The applications

of CS recovery can be found in the one-pixel camera, channel estimation in MIMO broad-

cast channel [54], multi-antenna downlink broadcasting [55], cellular downlink resource

sharing [56], and mmWave systems etc.

This design criterion of having fewer RF chains than antenna elements induces a high

degree of sparsity in the transmit symbol vector. The authors in [57] exploited this fact

and presented a normalized CS based detection algorithm for space-shift keying (SSK)

systems whose performance is comparable to maximum-likelihood (ML) algorithms. Par-

ticularly, their proposed detector is premised on formulating the SSK-type detection cri-

terion as a convex optimization program. This approach provides significant speedup

by leveraging the intrinsic sparsity of SSK-type schemes which is beneficial to cope with

prohibitively high detection overhead in a massive MIMO system. However, as in SSK

systems, incoming bits only modulate the antenna indices, so their proposed solution is

limited to antenna index detection only. Recently a CS algorithm basis-pursuit denoising
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(BPDN) has been applied by [51] to perform joint detection of indices of activated RF

chains and data symbols emitted over the transmission channel in GSM systems. They

show via numerical results that their proposed algorithm can not only demonstrate bet-

ter performance than those of ZF and MMSE detectors but can also work well in the

underdetermined systems. However, the authors use a simplified frequency-flat channel

model which does not suffice for high data rate applications. Moreover, their proposed

algorithm is limited to the scenario in which receiver has perfect knowledge of CSI which

is not a realistic constraint particularly in the context of massive MIMO systems.

The performance of SM in the context of a multi-user scenario has been studied re-

cently in [58]. In [58], a precoding scheme for downlink multi-user SM system is put

forward which reduces the inter-user interference. The authors demonstrate via numeri-

cal results that their proposed scheme offers reduced BER in comparison to conventional

ZF precoding. For fixed NT and single-antenna MSs, the proposed technique achieves

higher sum rate than ZF precoding. Since the precoder matrix is a function of channel

indices, therefore, in each signalling interval, the precoder matrix is calculated online and

consequently the computational complexity is high. In [59], a precoding scheme for down-

link multi-user SM is proposed which minimizes the multi-user interference. Specifically,

their proposed precoding scheme allows the users to use a single-user ML detector whose

computational complexity grows exponentially with the increase of number of transmit

antennas and modulation order. Since, the precoder matrix is a function of the data

symbols so in each signalling interval new precoder matrix has to be calculated which is

computationally expensive.

Our contributions are threefold. Our proposed algorithm is applicable even in the

case of channel estimation errors and demonstrates very good detection accuracy under

imperfect channel knowledge in contrast to the prior applications of CS algorithms to

sparse-modulation systems. To the best of our knowledge, this is the first time that CS
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techniques have been applied in conjunction with a TLS filtering approach to handle

imperfect CSI. Further, it is the first extension of GSM to frequency-selective channels.

Finally, we propose a novel sparse recovery scheme for multi-user precoded GSM system.

4.2 Compressive Sensing aided Data Detection for

GSM Systems in MIMO ISI Wireless Channels

4.2.1 System Modeling and Problem Formulation

Suppose we have a point-to-point MIMO inter-symbol interference (ISI) channel with

multiple antennas at transmitter and receiver in a GSM system. Here BTS is operating

as transmitter and MS is operating as receiver due to downlink mode. If we stack all the

signals received at NR receive antennas in the form z[n] = [z1[n] z2[n] · · · zNR [n]]T , then

receive symbol vector at time index n may be expressed as follows

z[n] =
L−1∑
k=0

H [k]Pu[n− k] + n[n] (4.1)

or z[n] = H [n] ∗ Pu[n] = H [n] ∗ x[n] + n[n] (4.2)

where H [k] = {hij[k]}j=1···NT
i=1···NR is the NR ×NT time-invariant MIMO channel matrix con-

taining all the NRNT links’ channel impulse response (CIR) coefficients at delay index

k. Here H [k] =
[
hT1 [k] hT2 [k] · · · hTNR [k]

]T
, hi[k] = [hi1[k] hi2[k] · · · hiNT [k]] is the CIR

vector containing all the links between the ith receive antennas and NT transmit antennas

at delay index k, L is the number of multipath components and furthermore, we assume

the ij-th link is Rayleigh fading, i.e., hij ∼ CN (0, σ2
h).

The matrix P is an NT × Na antenna activation pattern matrix. Each column of

this matrix is an antenna activation pattern which activates the antennas that are being

selected by the incoming bit sequence. Na is the number of possible activation patterns.
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We assume that there are Nc RF chains, and each column of P is a vector of 0s and 1s,

with the 1s indicating the antenna elements selected. There are a maximum of
(
NT
Nc

)
such

vectors. We will choose Na = 2blog2 (NTNc )c so that a sequence of p = log2Na bits will select

the corresponding activation pattern.

The vector u[n − k] is an antenna activation vector of dimension Na with only one

non-zero component. The component that is non-zero is given a complex number from

the S-QAM constellation. Each use of the channel, p = log2Na bits selects the non-zero

component index, and q = log2 S bits selects the data symbol in the S-QAM constellation.

The receiver must estimate both the position (activation pattern) and the data symbol

itself.

If we transmit N information/pilot symbols over an L-tap ISI channel, then we receive

N+L−1 symbols. On stacking the transmit symbols over a block of N transmit symbols,

we get the following matrix-vector relation.



z[0]

z[1]

...

z[L− 1]

...

z[No]


=



H [0] ONR×NT · · · ONR×NT

H [1] H [0] · · · ONR×NT
...

...
...

H [L− 1] H [L− 2] · · · ONR×NT

ONR×NT H [L− 1] · · · ONR×NT
...

...
...

ONR×NT ONR×NT · · · H [0]

...
...

...

ONR×NT ONR×NT · · · H [L− 1]



× (IN ⊗ P )



u[0]

u[1]

...

u[N − 1]


+



n[0]

n[1]

...

n[No]


(4.3)
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where No = N + L− 2, assuming a zero-padding between blocks of N symbols, to avoid

inter-block-interference (IBI), much as a cyclic prefix is used in OFDM. The IBI is the

residual interference created due to the memory in the channel. The above equation can

be written in symbolic form as follows:

z = HPu+ n (4.4)

Here H is the MIMO ISI channel convolution matrix in Eq. (4.3) and P = (IN ⊗ P ) is a

block diagonal matrix with diagonal entries equal to P , and

Ψ =



H [0]P ONR×Na · · · ONR×Na

H [1]P H [0]P · · · ONR×Na
...

...
...

H [L− 1]P H [L− 2]P · · · ONR×Na

ONR×Na H [L− 1]P · · · ONR×Na
...

...
...

ONR×Na ONR×Na · · · H [0]P

...
...

...

ONR×Na ONR×Na · · · H [L− 1]P



(4.5)

Here Ψ = HP is the block Toeplitz matrix containing L weighted multipath component

matrix taps on its diagonals. The dimensions of the effective channel matrix, received

signal sequence, and transmitted sequence play a pivotal rule in the pursuit of CS-aided

data detection and are listed in the table below.

Matrix Name Size

z Received Sequence NR(N + L− 1)× 1

Ψ Effective Channel Matrix NR(N + L− 1)×NNa

u Antenna Activation Sequence NNa × 1

n Noise Sequence NR(N + L− 1)× 1
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4.2.2 Compressive Sensing Framework

In compact form, the Eq. (4.4) can be expressed as

z = Ψu+ n (4.6)

Here z =
(
z[0]T · · · z[L− 1]T · · · z[N + L− 2]T

)T
represents the stacked mea-

surement vector and u =
(
u[0]Tu[1]T · · · u[NNa − 1]T

)T
. For notational conve-

nience, we define m = NR(N + L − 1) and n = NNa. As Na is quite large for tens

of antennas say for NT = 30, 50, the u vector is sparse: its sparsity is N because in each

u[n], only one element is non-zero, so u is N -sparse. Here n is a complex additive white

Gaussian noise (AWGN), CN (0, σ2
nIm) . As m� n, this is an ill-posed problem as there

will be infinite number of solutions satisfying (4.6) (ignoring the noise, n).

The receiver has prior knowledge of sparsity of u, which can be used in estimation

at the receiver. If there were no noise in the system, the signal recovery problem would

be to reconstruct the signal using l0-norm minimization. This requires exhaustive search,

which is intractable when the dimension of the signal to be estimated is large, as it is here.

It has been established in [35] that for random matrices whose entries are independent

and identically distributed (i.i.d.) Gaussian, the RIP is satisfied with high probability

when m > N log(n/N), and this implies that one can replace l0 -norm minimization

with l1-norm minimization, and obtain the same solution. This is the approach of Com-

pressed/Compressive Sensing . We will assume that the RIP holds for our block Toeplitz

matrix Ψ. Since most of the CS algorithms are designed to solve real-valued convex mini-

mization programs, therefore, we cast our input-output model in Eq. (4.6) into real-valued
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input-output system as follows.<{z}
={z}

 =

<{Ψ} −={Ψ}
={Ψ} <{Ψ}


<{u}
={u}

+

<{n}
={n}

 (4.7)

or z̃ = Ψ̃ũ+ ñ (4.8)

where <{·}, ={·}, and {̃·} denote the real part, imaginary part, and the real-valued

equivalent of a complex field respectively. The standard CS approach when there is noise

is to solve constrained problem as follows:

̂̃u = arg min
ũ
‖ũ‖l1 subject to ‖z̃ − Ψ̃ũ‖l2 ≤ ε (4.9)

where ε =
√
σ2

n(m+
√

2m).

4.2.3 Perfect Channel Knowledge

When we have perfect channel knowledge at receiver, the most widely deployed receivers

are ZF and MMSE receivers. These linear receivers work much better when the sys-

tem is overdetermined, i.e., the number of measurements is greater than the size of the

data vector (and this is a required condition for zero-forcing). However, in our proposed

system, the number of measurements NR(N + L − 1) is much less than the number of

unknowns, regardless of the number of antennas. This observation motivates us to use

CS techniques initially to estimate the support of the data vector using (4.9) and reduce

the dimensionality of the data vector to generate a vector ûŜ . Now the size of data vector

which is based on estimated support will only be N. If the support set S of u is known,

(4.6) can be equivalently written as

z = ΨSuS + n (4.10)

This system is now overdetermined, since ΨS is of size NR(N + L − 1) × NNa, so the

aforementioned linear receivers can now be applied.
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4.2.4 Imperfect Channel Knowledge

In practice, the channel measurements at the receiver are subject to channel and mea-

surement noises. Additionally, if there is some sort of feedback, then the feedback links

are subject to quantization noise. In general, channel estimates are modelled as having

an additional estimation noise term.

Ψ̂ = Ψ + Ψe (4.11)

where Ψe ∼ CN (0, σ2
eI) is Gaussian estimation noise.
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Algorithm 1 Compressive Sensing aided Sparse-Data Detection

1: Input:
{
z, Ψ̂, NT , Nc, ε

}
2: Output:

{
Ŝ, û, ûtls, ûzf

}
3: Obtain crude estimate of transmit sequence û by running the Basis Pursuit Denoising,

as in Eq. (4.9).

4: Initialize empty set : Ŝ = ∅.

5: Compute:
{
Ŝ, ûcs

}
6: for i = 1→ N do

7: j ← arg max
j

{∣∣û(j)
∣∣ : (i− 1)Na + 1 ≤ j ≤ iNa

}
8: Ŝ ← Ŝ ∪ {j + (i− 1)Na}

9: end for

10: ûcs is the estimated signal from Eq. (4.9), all of whose elements are zero except on

the estimated support Ŝ

11: Compute shrunk sensing matrix: Ψ̂Ŝ

12: EŜ ← {δj : j ∈ Ŝ}

13: Ψ̂Ŝ ← Ψ̂EŜ

14: Compute: {ûzf , ûtls}

15: ûzf
Ŝ
← 〈Ψ̂Ŝ , Ψ̂Ŝ〉−1〈Ψ̂Ŝ , z〉

16: ûtlsŜ ← (〈Ψ̂Ŝ , Ψ̂Ŝ〉 − σ2
n+1I)〈Ψ̂Ŝ , z〉

17: ûzf ← EŜû
zf

Ŝ

18: ûtls ← EŜû
tls
Ŝ

The authors in [41] propose to use TLS filtering which takes into account the noise

in the channel matrix. This TLS receiver is essentially a regularized ZF receiver where

the regularization takes into account the noise in the channel estimate and the received

signal. Thus, its performance is better than the ZF receiver which is oblivious to the
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noise in the channel estimates. In fact, the objective function of TLS attempts to correct

the perturbations not only in the received signal but also in the noisy estimate of the

channel matrix. The optimization problem in TLS approach attempts to minimize the

perturbations of both the received signal and the estimated channel matrix. In traditional

ZF approach, only the received signal is assumed to be noisy however, the channel matrix

may be noisy due to modeling errors etc. The utls can be defined as follows.

{ûtls, Ψ̂tls, ẑtls} := arg min
{utls,Ψ̂tls,ẑ}

∥∥∥∥ [Ψ̂∣∣∣∣z]− [Ψ̂tls

∣∣∣∣ẑtls] ∥∥∥∥2

F

subject to ẑtls ∈ C(Ψ̂tls)

where C(Ψ̂tls) is the column space of Ψ̂tls. Once the minimizing

[
Ψ̂tls

∣∣∣∣ẑtls] are found,

then any ûtls satisfying ẑtls = Ψ̂tlsûtls is called a TLS solution. The solution to this

optimization problem is given in the following theorem.

Theorem 2. Let UΣ́V be the SVD of Ψ̂tls and UΣV H be the SVD of

[
Ψ̂

∣∣∣∣z]. If

σ̂n ≥ σn+1 then the signal estimate for total-least-squares filtering exists and is unique

and it can be expressed as follows.

ûtls =
(
〈Ψ̂, Ψ̂〉 − σ2

n+1In+1

)−1

〈Ψ̂, z〉 (4.12)

where σn+1 and σ̂n are the smallest singular values of the augmented matrix [Ψ̂|z] and Ψ̂

respectively.

Proof:

The interested reader is referred to the proof presented in chapter 2 which is given in [41,

Theorem 4.1], [42, Theorem 2.6]. Algorithm 1 is outlined above for the proposed CS aided

ZF and TLS receivers.

Owing to the fact that TLS receiver’s optimization problem is based on 2-norm, it is

not a good choice for directly estimating the sparse signals. In practice, it performs much
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better for the overdetermined case. So we will use Eq. (4.9) in first stage to estimate the

support Ŝ with imperfect channel knowledge in Eq. (4.11). As we know the sparsity N ,

so we will cast an underdetermined system of equations as in Eq. (4.10). In a second

stage, we will apply the TLS receiver to the underdetermined system and this combined

approach is referred to as CS-TLS. This combined approach is also adopted for a ZF

receiver for the sake of comparison and is referred to as CS-ZF receiver.

4.3 Sparse Recovery for Downlink Multi-user Pre-

coded Generalized Spatial Modulation System

Having provided the CS-aided data detection scheme, it is in order to investigate the

receiver design using CS for a multi-user precoded GSM system. In the following subsec-

tions, we give the details of a novel application of CS to a multi-user GSM system.

4.3.1 Multi-user GSM System Modeling

In order to investigate GSM in multi-user MIMO systems, the idea of GSM is applied to

different antenna groups of the same BTS separately. At each antenna group, the GSM

mapped data is pre-processed by employing an appropriate precoder in order to mitigate

the multi-user interference.

A single-cell downlink system comprising of a base station with NT antennas and

K users is considered in which data is sent from the base station to the users on the

same time-frequency slot. Each user is assumed to have NR antennas. In contrast to the

traditional multi-user MIMO system in which all the NT antennas are used simultaneously

to send data from the base station to the users, the NT transmit antennas are split up

into K groups of antennas. The group 1 sends data to the user 1, group 2 sends data

to user 2, and the K-th group sends data to user K. Without loss of generality, we
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assume that each group of transmit antennas uses the same S-ary modulation scheme.

However, the precoding scheme is applicable to the case where each group sends data on

constellations of different sizes. The partitioning of base station antennas into multiple

groups serves two purposes. 1) Owing to the precoding at the transmitter side, each user

is decoupled from the interference signals of the users transmitted by the other groups. 2)

The decoding complexity of the resultant system is reduced because due to partitioning,

the multi-user system is converted into parallel single-user point-to-point systems with

only NT/K transmit antennas per user.

BTS

(GSM Mapper,

Precoder)

H
(1)
1

User 1

User 2

H
(2)
1

H
(1)
2

H
(2)
2

u
(1)
i

u
(2)
i

User 1 data

User 2 data

Figure 4.1: System Model of MU-GSM for NT = 4, K = 2 users and NR = 2

In order to investigate GSM systems in multi-user regime, we apply the GSM concept

to each antenna group as follows. The transmit signal x(k) from the k-th antenna group

sent to the k-th user during each slot will be product of an antenna activation pattern

matrix P ∈ {0, 1}
NT
K
×Na and the selection vector u(k) ∈ CNa .

x(k) = Pu(k) (4.13)

=

 p1 · · · pNa





0

...

u
(k)
i

...

0


(4.14)

where u
(k)
i ∈ S-QAM is the complex constellation signal point emitted from the ith ∈
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{1, ..., Na} antenna pair of the k-th group. The index of the signal u
(k)
i is chosen by the p

bits and the constellation point is chosen from the S-QAM depending upon the particular

pattern of the q bits. Here pi ∈ CNT and is an Nc-sparse vector. Each column vector

ensures which particular set of antennas are activated due to selection of the i-th column

vector. In turn, this particular column vector is being selected by the index of the signal

u
(k)
i . The column vector may be expressed as linear combination of some of the unit

vectors of the NT -dimensional space, i.e.,

pi =
∑
j∈Zi

δj i = 1, · · ·, Na (4.15)

where δj is the j-th unit vector of NT -dimensional space and the set Zi is the set of

antenna indices being activated due to selection of pi. Zi is the ordered strict subset of

A, the set comprising of all the antenna indices.

Zi :( A = {1, 2, · · ·, NT} (4.16)

The signal transmitted from the k-th antenna group propagates through the wireless

fading channel and can be expressed as follows

z(k) =

√
Ps
Nc

H
(k)
k x

(k) +
K∑
j=1

j 6=k

√
Ps
Nc

H
(j)
k x

(j) + n(k) (4.17)

=

√
Ps
Nc

H
(k)
k Pu

(k) +
K∑
j=1

j 6=k

√
Ps
Nc

H
(j)
k Pu

(j) + n(k)

where the first term
√

Ps
Nc
H

(k)
k x

(k) is the desired signal component and the second term∑K
j=1j 6=k

√
Ps
Nc
H

(j)
k x

(j) is the multi-user co-channel interference. The channel between each

transmit and receive antenna in each group is assumed to be frequency-flat independent

Rayleigh fading channel. Additionally, the link channel gain is assumed to be circularly

symmetric complex Gaussian random variable with zero mean and variance σ2
h/2 per

dimension. H
(i)
j is used to denote the channel gain matrix between the group i and the
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target user j. Thus, for k-th user, the direct channel gain matrix is H
(k)
k and {H(j)

k :

j 6= k} are considered to be interference channels. The measurement noise at each user

is assumed to be AWGN process having noise variance equal to N0 per dimension. Ps is

the average total power which is divided among the active antennas of each group. In

each group, as only Nc antennas are activated at one time instant so according to the

principle of the GSM the power per transmit antenna in each group is Ps/Nc. As the

base station has K groups of antennas serving so the total number of active antennas at

the base station is KNc. If we stack the received signals of all the K users, we will have

following compact input-output relation.
z(1)

...

z(K)

 =

√
Ps
Nc


H

(1)
1 · · · H

(K)
1

... · · · ...

H
(1)
K · · · H

(K)
K

 (4.18)

×


P

. . .

P



u(1)

...

u(K)

+


n(1)

...

n(K)


where n(k) ∼ CN (0, NoI) is the AWGN. The above equation can be written more com-

pactly as follows.

z =

√
Ps
Nc

H (IK ⊗ P )u+ n (4.19)

where (IK ⊗ P ) is the NT ×KNa block diagonal matrix containing P on its diagonal en-

tries, H is the augmented channel matrix containing the channel gains of all the users and

interference channel gains, u =
[
u(1)T · · ·u(K)T

]T ∈ CKNa and z =
[
z(1)T · · · z(K)T

]T ∈
CKNR are the transmitted and the received combined signal vectors respectively. The

multi-user interference is created by the propagation of multi-stream signals, one from

each group of antennas. This results in severe performance deterioration which can be

mitigated by employing a suitable precoding scheme. The precoding scheme discussed in
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the following subsection not only cancels the multi-user interference but also preserves the

information encoded in the indices of the active antenna pair and the modulation symbol.

4.3.2 Precoding Scheme

Since the antenna indices contain information so the conventional ZF or MMSE are not

applicable directly which cancels the channel by precoding the data with a precoder

which is in general a pseudo-inverse or regularized pseudo-inverse of the channel matrix.

However, we can do precoding in GSM systems by predistorting the selection vector

with a precoder matrix. The resultant signal requires power normalization to satisfy

the transmit power budget requirements. Let W = [W1| · · · |WK ] ∈ CKNa×KNa be the

combined precoding matrix of all the K users then the precoded selection vector of all

the users may be expressed as follows.

w =
K∑
i=1

αiWiu
(i) (4.20)

where Wi ∈ CKNa×Na and αi is a power normalization constant used to normalize the

transmit power of each group’s transmit power.

αi =
1√

〈Wi,Wi〉
(4.21)

where 〈Wi,Wi〉 = tr(WH
i Wi) is the inner product of the augment matrices. Let Σ =

diag[αi]
K
i=1 ⊗ INa , then the received signal of K users after propagation and precoding

through the wireless fading channel may be expressed as follows.

z =

√
Ps
Nc

H (IK ⊗ P )WΣu+ n (4.22)
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Let W = (H (IK ⊗ P ))† diag
(
H

(i)
i P

)K
i=1

, then the received signal at all the K users may

be expressed as follows.
z(1)

...

z(K)

 =

√
Ps
Nc


α1H

(1)
1

. . .

αKH
(K)
K

 (4.23)

×


P

. . .

P



u(1)

...

u(K)

+


n(1)

...

n(K)


The precoding cancels the interferences among different group of antennas at the transmit-

ter exploiting the knowledge of antenna activation pattern matrix and CSIT. As a result

of precoding, the received signal at each user is free of interference of all the other users

and single-user GSM data detection can be employed. The above system of equations can

be written more compactly as follows

z =

√
Ps
Nc

diag
(
αiH

(i)
i

)K
i=1

(IK ⊗ P )u+ n (4.24)

The base station is assumed to have perfect CSI of all the links from the base station to

the users. However, due to interference cancellation, the k-th user needs to know the CSI

of the links between its NR antennas and the the NT/K antennas of the k-th group. The

k-th user’s received signal can be expressed as follows.

z(k) =

√
Ps
Nc

αkH
(k)
k Pu

(k) + n(k) (4.25)

Due to decomposition of multi-user GSM system into parallel single-user SM systems,

multi-user GSM systems offer not only high multiplexing gains but multi-user gains are

also attainable. For instance, with NT = 60 BTS antennas, Nc = 2 RF chains and BPSK

modulation, single-user GSM system can only offer
⌊
log2

(
60
2

)⌋
+ 1 = 11 bits per channel

use (bpcu). However, if we divide the BTS antennas into four groups of 15 antennas for 4
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users, then the spectral efficiency is 4
(⌊

log2

(
15
2

)⌋
+ 1
)

= 28 bpcu. Thus, using the same

number of BTS antennas, we can serve multiple users with significantly higher spectral

efficiency at the expense of Nc = 4 RF chains.

Complexity Discussion

The computational complexity can be calculated using the floating-point operations [60].

For instance, given N × 1 vectors x and y, M × N matrix X, and N × O matrix Y ,

the inner product xHy requires 6Nmultiplications and 2(N − 1) additions whereas the

matrix multiplication XY requires 6MNO multiplications and 2MO(N − 1) additions.

It can be easily shown that the computational complexity associated with calculating the

pseudo-inverse in W ,CW , can be expressed as follows [61],

CW = KNR

[
24(KNR − 1)(KNa)

2 + 48(KNR − 1)2KNa + 54(KNR − 1)3 + 6KNa

]
which turns out to be polynomial in number of users, number of antenna combinations,

and number of receive antennas.

4.3.3 Compressive Sensing Framework

In compact form, the Eq. (4.25) can be expressed as

z(k) = Ψu(k) + n(k) (4.26)

where Ψ =
√

Ps
Nc
αkH

(k)
k P is the composite channel matrix between the NR antennas of

the k-th user and the NT/K antennas of the k-th group at BTS. Here z(k) ∈ CNR is the

received signal at the k-th user and u(k) is the selection vector used at the k-th group of

antennas. For notational convenience, we define m = NR and n = Na. As Na is quite

large for tens of antennas say for NT = 20, Nc = 2,Na = 128 the u(k) vector is sparse as it

has only one non-zero element. In each u(k), only one element is active so u(k) is 1-sparse.
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Here n(k) is a complex AWGN, CN (0, σ2
nIm) . As m � n, this is an ill-posed problem

as there will be infinite number of solutions satisfying (4.26) (ignoring the noise, n(k)).

However, if we have prior knowledge of sparsity of u(k), then we can use the standard

CS-method to reconstruct the signal which is l0-norm minimization when the signal and

measurements are free of noise. Now, it is quite straightforward to formulate an l0-norm

minimization which is expressed as follows.

û(k) = arg min
u(k)
‖u(k)‖l0 subject to z(k) = Ψu(k) (4.27)

The above solution requires exhaustive search which is intractable when the dimension

of the signal to be estimated is large, as it is here. The tractable way of reconstructing a

sparse signal is l1-norm minimization as in the following optimization problem :

û(k) = arg min
u(k)
‖u(k)‖l1 subject to ‖z(k) −Ψu(k)‖l2 ≤ ε (4.28)

where ε =
√
σ2
n(m+

√
2m). It has been established in [35] that for random matrices

whose entries are independent and identically distributed (i.i.d.) Gaussian, the RIP is

satisfied with high probability when m > S log(n/S) where S is the sparsity of the vector

of size n. The compression ratio can be defined as m/n where m is the number of

measurements and n is the size of the vector to be estimated. In general, for fixed n, as

m increases, the estimation performance of any CS technique improves.

4.4 Numerical Experiments

This section is devoted to numerical experiments conducted for performance evaluation

of CS based detection of single and multi-user GSM systems. All the simulations are

performed on the discrete event, i.e., symbol by symbol basis. For performance evaluation,

we use two performance metrics : (1) Normalized mean-square error (NMSE) between
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the actual and the estimated data vectors.

NMSE = 10 log10

(
1

J

J∑
j=1

‖x̂j − xj‖2

‖xj‖2

)
(4.29)

where J is the number of Monte Carlo runs. x̂j and xj are the estimated and the

original data vectors respectively at the j-th iteration respectively.(2) Bit-error rate (BER)

between the transmitted data and the recovered data at receiver using the estimated data

vectors. BER curves are plotted versus 1/σ2
n as the SNR: 1/σ2

n functions as the SNR per

receive antenna. Each value of BER is obtained by doing Monte Carlo simulation over

10, 000 independent channel realizations.

For single-user GSM system, CS alone and CS-aided data detection algorithms for

GSM systems are compared with each other. The transmit constellation is assumed to

16-QAM, S = 16. All the channels are assumed to be unit variance, σ2
h = 1. In all

simulations, we assumed N = 5, L = 5, NR = 3, Nc = 2, NT = 8, σ2
e = 0.5. The noise

variance per receive antenna is assumed to be the same for all observations, σ2
1 = · · · =

σ2
m = σ2

n.

Fig. 4.2 demonstrates the MSE performance evaluation in which NMSE (in dB) is

plotted on y-axis and SNR (in dB) is plotted on x-axis. For perfect CSI, CS-ZF receiver

offers 8 dB better performance than CS alone at the SNR of −10 dB. For imperfect CSI,

CS-ZF offers 10 dB better performance than CS alone when the SNR is greater than

−5 dB. However for imperfect CSI, CS-TLS offers 2 dB better performance than CS-ZF

receiver even at low SNR. In Fig. 4.3, average uncoded BER is plotted versus SNR (in

dB) per receive antenna. CS-ZF receiver with perfect CSI offers the best performance in

terms of error rate. At SNR of 20 dB, it offers error rates as low as 4 × 10−3. However,

its performance deteriorates in the presence of imperfect channel knowledge. At SNR of

20 dB, CS-TLS also achieves error rates as low as 4× 10−3. CS-TLS receiver offers better

performance than CS-ZF with imperfect channel knowledge but its performance is slightly
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Figure 4.2: Mean Square Error Performance Evaluation in MIMO ISI channel
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inferior to CS-ZF with perfect channel knowledge. Moreover, CS alone only achieve error

rates of 2× 10−2 even at high SNR of 20 dB.

For multi-user GSM systems, binary phase-shift keying (BPSK) is adopted for modu-

lation format due to simplicity and the number of RF chains is assumed to be two, i.e.,

Nc = 2. SNR is defined to be Ps/No and channel variance is taken to be σ2
h = 1. Each

value of BER is obtained by doing Monte Carlo simulation over multiple independent

channel realizations.

In Fig. 4.4, the average BER for user 1 is plotted versus SNR (in dB) for different

values of transmit antennas. The number of users is assumed to be four, i.e., K = 4 and

the number of receive antennas per user is assumed to be five, i.e., NR = 5. As the number

of transmit antennas increases, the size of the transmitted data vector increases but as

the number of measurements are fixed, the sparsity increases for fixed measurements’

length. It can be observed that the performance of CS degrades as the sparsity increases

for fixed number of measurements. Thus for higher number of transmit antennas, the

BER is high due to limited number of measurements. For instance, at SNR of 25 dB, CS

recovery offers BER as low as 1× 10−4 for NT = 20, however, as we increase the number

of transmit antennas to 40, BER increases by one order of magnitude to 1× 10−3.

In Fig. 4.5, the average BER is plotted versus number of receive antennas for fixed

value of SNR. The SNR is fixed at 20 dB and the number of users is assumed to be 4.

As the number of receive antennas increases, the BER decreases in all the curves. For

instance, for NT = 20 antennas, the BER for user 1 is 10−2 at NR = 3 and as the number

of receive antennas are doubled, i.e., NR = 6, the BER falls off to 3 × 10−4. For fixed

value of NR, as NT increases, the BER also increases. For example, for NR = 6, the

BER is 3× 10−4 at NT = 20 and the BER increases to 10−3 for NT = 40. However, this

deterioration in BER can be ameliorated by increasing the number of receive antennas as

the number of transmit antennas increases. For example, at NT = 20 and NR = 3, BER
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is 10−2 and same error rate can be attained at NT = 40 and NR = 4. Thus, by adding

one extra receive antenna , i.e., NR = 4, higher spectral efficiency of 24 is achieved at

NT = 40 in comparison to the spectral efficiency of 20 at NT = 20 and NR = 3 for the

same error rate of 10−2.

In Fig. 4.6, the average BER for interference-free single-user GSM system is compared

with the average BER of the user 1 in the multi-user GSM system. For NT = 20 and

NT = 40, the BER curves of both the schemes lie on top of each other. This validates the

CS-based recovery of the the precoded system. Moreover, it shows that the interference-

limited multi-user systems can approach the performance of single user systems in terms

of error-rates using precoding and CS-based recovery.
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Figure 4.4: Communication Efficiency Plane for K = 4 users and NR = 5
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Figure 4.5: Average BER versus number of receive antennas for K = 4 users and

SNR = 20 dB

4.5 Conclusion

In this chapter, we examined the CS-aided linear detection schemes for sparse reconstruc-

tion of data under MIMO ISI GSM systems. Specifically, we used CS only for support

estimation of sparse-data in GSM systems. Moreover, our proposed algorithm offers

reasonable accuracy under imperfect channel knowledge. CS-aided linear receivers ac-

complish better performance than CS-alone receivers from perspective of both the perfor-

mance metrics. In practical applications requiring better quality of service, our proposed

schemes can be employed despite the fact that complexity of CS-aided linear receiver is

relatively higher than that of CS-alone receiver. Additionally, by exploiting the structure

in the sensing matrix, computationally complexity can be reduced further. In a nutshell,

CS-based data recovery can be ameliorated by subsequent application of linear receivers

to combat fading. The second part of the chapter offered sparse recovery scheme for

the multi-user precoded single-cell system using GSM which achieved the performance of
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interference-free point-to-point systems in terms of BER.



Chapter 5

Achievable Rates for Generalized

Spatial Modulation Massive MIMO

Systems

The previous chapter was about data detection in GSM system and it was shown that

GSM systems can offer reliability in terms of providing low BER. It is intriguing to

investigate the achievable rates of GSM system for practical finite alphabet constraints

such as QPSK, QAM etc.

This chapter is organized as follows. Section 5.1 highlights the motivation and related

work. Section 5.2 illustrates the mutual information for GSM systems in which system

modeling, analytical framework, calculations of entropies and mutual information are

given. Section 5.3 provides the lower and upper bounds on achievable rate. Section

5.4 presents the mutual information for precoded GSM. Section 5.5 provides numerical

experiments and section 5.6 concludes the chapter.

79
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5.1 Motivation and Related Work

At the receiver, the signal detection for GSM is computationally expensive in comparison

to SM systems because the activation of multiple RF chains introduces serious ICI. Until

recently, most of the prior work is based on reducing the complexity of detection in

GSM systems [62–64]. In [62], a new technique is devised for the construction of the

multiple-antenna SM codebook using an arbitrary number of transmit antennas. The

proposed technique was optimized by the maximization of the inter-symbol distance.

They give a design principle for codebook construction that by carefully designing over

the antenna sets and by applying the rotation angle to symbols, more diversity gains

are possible. Furthermore, they propose a low-complexity detection scheme based on

the signal vector space. Numerical results are used to show that the proposed scheme

outperforms SM with an acceptable linear decoding complexity. In [63], an ordered block

minimum mean-square error (OB-MMSE) detector for GSM was proposed in which first an

ordering algorithm is used to sort the possible transmit antenna combinations. Secondly,

the possible signal vector for each ordered transmit antenna combination is detected by

block MMSE equalization. Afterwards, the outputs of OB-MMSE detector are compared

with a preset threshold sequentially in order to judge their reliability. As a result of

thresholding, if one vector is found out to be reliable, the detection process is terminated.

Otherwise, the ML criterion is is used to select the best candidate. In [64], the inherent

sparsity of the spatial modulation signal was exploited to present a low complexity sparse

reconstruction algorithm. Particularly, they used a CS denoising scheme to counter the

effect of background noise. They demonstrate better performance than ZF and MMSE

receivers at lower complexity via numerical results.

An early result which quantifies the impact of finite input alphabets on the mutual

information of SM has been reported in [65]. They offer a closed-form formula for mutual

information and analysis of the formula results into development of a precoding scheme
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to improve performance of SM. Furthermore, using the traditional constellation design,

a precoding coefficient is obtained via maximization of minimum Euclidean distance.

However, their analysis is limited to MISO channels, i.e., when the receiver has only

one antenna. In [66], it has been proposed to combine Block Markov Superposition

Transmission (BMST) with SM. The authors presented a sliding-window decoder which

is executed iteratively between BMST decoder and soft-input soft-output SM demapper.

Futhermore, they use Monte Carlo runs to derive the mutual information for BSMT-SM

scheme under uniformly distributed input.

In [50], the capacity of GSM for Gaussian inputs has been calculated using law of

large numbers. In this work, the authors conjectured the capacity of GSM using law

of large numbers and classical information theory. They modelled the channel as two

source multiplicative multiple access channel (MAC) in which one source is the channel

and the other source is input symbol. Although, they assumed the channel’s alphabet to

be discrete but they assumed the data symbol to be continuous Gaussian. As a result,

the results of classical capacity analysis are straightforwardly applicable. Since this result

is obtained for Gaussian input symbols, so this capacity serves as an upper bound for

the case of finite alphabet GSM systems. An independent work has been reported in [67]

which offers capacity analysis. Their analysis covers most forms of SM such as GSM, SSK,

conventional SM etc using Gaussian mixture to accurately model the spatially modulated

signal using a precoding framework. However, they do not take into account the finite

alphabet constraints such as QPSK, QAM etc. Since Gaussian inputs for data symbols is

not a realistic assumption, so we are motivated to calculate the achievable rates for GSM

systems under finite input alphabets.

In this chapter, the achievable information rate of a GSM system using a finite alphabet

constraint is derived in an information theoretic framework. The impact of the finite

alphabet constraint on the achievable rate of GSM has been quantified in terms of a loss
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term. Additionally, we calculate the lower and upper bounds on the achievable information

rate for GSM systems. Furthermore, we derive the achievable rate for a precoded GSM

system. Moreover, the achievable information rates of GSM are benchmarked against

the capacity expression of [50] to facilitate comparison. Additionally, we compare the

performance of GSM systems with MIMO antenna selection systems [68] which has the

knowledge of best channel at the transmitter.

5.2 Mutual Information for Generalized Spatial Mod-

ulation Systems

In this section, we calculate the mutual information of a GSM system in which more than

one antenna is active at one time instant. One of the information symbols out of the S

constellation points is transmitted from these activated antennas which are connected to

information source via Nc RF chains.

5.2.1 System Modeling

In this subsection, we explain the input-output relationship of a GSM system which has

been briefly discussed in previous chapter. We aim at finding out a binary-input, single-

output model in order to facilitate information theoretic calculations. The input-output

relation of a GSM system can be expressed as follows

z = HPu+ n (5.1)

Here z ∈ CNR is the received signal, H ∈ CNR×NT is the MIMO channel matrix, P ∈

CNT×Na is antenna activation pattern matrix, u ∈ CNa is the antenna activation vector,

and n ∈ CNR represents the noise vector. In these dimensions, Na should be ideally

equal to
(
NT
Nc

)
where Nc is equal to the number of RF chains which is equal to number of
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antennas activated.
(
NT
Nc

)
represents that transmitter chooses to perform data transmission

over one of the NT choose Nc combinations of antenna groups. But as the information

is being encoded in the selection of a possible combination of antennas so the number of

antenna combinations selected for the transmission must be a power of two. As a result,

p =
⌊
log2

(
NT
Nc

)⌋
bits are used to select one out of Na = 2p composite channels.

5.2.2 Analytical Framework

The antenna activation pattern matrix P may be considered as a juxtaposition of the

antenna activation pattern vectors as follows:

P =

 p1 · · · pNa

 (5.2)

Here pm ∈ CNT and is a Nc-sparse vector. Each antenna activation pattern vector ensures

which particular set of antennas are activated due to selection of it. In turn, this particular

antenna activation pattern vector is being selected by the incoming bit sequence. The

antenna activation pattern vector may be expressed as linear combination of some of the

unit vectors of the NT -dimensional space, i.e.,

pm =
∑
j∈Zm

ej m = 1, · · ·, Na (5.3)

where ej is the j-th unit vector of NT -dimensional space and the set Zm is the set of

antenna indices being activated due to selection of pm. Zm is the subset of A, the set

comprising of all the antenna indices.

Zm ⊆ A = {1, 2, · · ·, NT} (5.4)

It is observed that the cardinality of Zm is Nc, i.e.,
∣∣Zm∣∣ = Nc. For instance, if we have

NT = 8 and we can activate two antennas only, i.e., Nc = 2, then the bits used to select
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pm will be p =
⌊
log2

(
8
2

)⌋
= 4 and consequently the the total number of antenna activation

pattern vectors will be 16. The antenna indices sets for these antenna activation pattern

vectors are listed below for this example.

Z1 = {1, 2} , Z2 = {1, 3} , Z3 = {1, 4} , (5.5)

Z4 = {1, 5} , Z5 = {1, 6} , Z6 = {1, 7} , (5.6)

Z7 = {1, 8} , Z8 = {2, 3} , Z9 = {2, 4} , (5.7)

Z10 = {2, 5} , Z11 = {2, 6} , Z12 = {2, 7} , (5.8)

Z13 = {2, 8} , Z14 = {3, 4} , Z15 = {3, 5} , (5.9)

Z16 = {3, 6} (5.10)

Now, it is in order to shed some light on the nature of the composite channels being

selected by the incoming bit sequences.

HP =

 Hp1 · · · HpNa

 (5.11)

=

 h[1] · · · h[Na]

 (5.12)

Here h[γ] ∈ CNR is the γ-th composite channel which is the sum of the transmit channel

vectors whose indices are being selected by the incoming bit sequence. Additionally,

HP ∈ CNR×Na can be recognized as effective channel matrix whose columns are effective

channel vectors one of which is chosen in each transmission depending upon incoming bit

sequence. So, it can be easily expressed that

h[γ] =
∑
m∈Zγ

hm γ = 1, · · ·, Na (5.13)
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where hm is the transmission channel vector between the m-th transmit antenna and the

NR receive antennas. Having made this background for composite channel vectors, it is

convenient to express the received signal in the following form

z =

 h[1] · · · h[Na]

u+ n (5.14)

z = h[γ]uν + n γ = 1, · · ·, Na ν = 1, ..., S

In the last equation, we have exploited the fact that the sparsity of u is unity, however, the

position of the non-zero element in the vector u is varying. In terms of random variables,

the input-output behavioural relation of GSM may be expressed as follows

z = HU + N (5.15)

Here one information source is random variable U whose one particular realization u ∈

U = {u1, · · ·, uS} is emitted by the random information source. The composite channel

vector over which this symbol is transmitted, is governed by the incoming bit sequences.

Thus, composite channel is another random variable H whose one particular realization

h ∈H = {h[1], · · ·,h[Na]} is used for signalling.

Thus, our received signal is also one particular realization of of a random variable Z.

The proposed analytical framework results in an input-output relation for GSM systems

for an information theoretic treatment. One may notice that the h[γ] is not a transmit

channel vector rather it is a sum of multiple transmit channel vectors whose choice changes

in each signalling interval and is governed by incoming bit sequence. Nevertheless, the

mutual information can be computed straightforwardly due to proposed analytical frame-

work.

In GSM systems, we aim at finding the mutual information between pair of random

variables (H, U) and the received measurements Z, i.e., I ((H , U);Z). In order to calcu-
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late I ((H , U);Z), we invoke the definition of mutual information from Eq. (2.13).

I ((H , U);Z) := H ((H, U))−H
(
(H, U)

∣∣Z) (5.16)

In order to calculate I ((H , U);Z), we first require computations of joint and conditional

entropies H ((H, U)) and H
(
(H, U)

∣∣Z) which are presented in subsequent sections.

5.2.3 Calculation of H ((H, U))

The joint entropy of the composite channel vector and the information source can be

calculated by the application of the chain rule for entropies (see Eq. (2.16)), so we may

break up the joint entropy into a sum of entropy of composite channel vector and the

entropy of the random source given the composite channel vector.

H (H, U) = H (H) +H
(
U
∣∣H) (5.17)

= log2 (Na) + log2(S) (5.18)

where Eq. (5.18) follows from the fact that the composite channel and information sym-

bols are selected by separate chunks of information bits, as a result they are statistically

independent. Thus, joint entropy of the composite channel vector and the information

source for GSM systems is simply the sum of the marginal entropies of information source

and the composite channel vectors.

5.2.4 Calculation of H
(
(U,H)

∣∣Z)
The calculation of H

(
U,H

∣∣Z) follows from the application of chain rule for entropies.

H
(
H, U

∣∣Z) = H
(
U
∣∣Z)+H

(
H
∣∣U,Z) (5.19)

First we calculate an expression for the conditional entropy of U given Z = z and then

average it over the support of Z. The above calculation requires the following conditional
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distributions which can be obtained by using Bayes’ Theorem.

pU |Z(uν
∣∣z) =

Na∑
γ=1

e−β‖z−h[γ]uν‖2

Na∑
α=1

S∑
µ=1

e−β‖z−h[α]uµ‖2
(5.20)

pH|Z,U(hγ
∣∣z, uν) =

e−β‖z−h[γ]uν‖2

Na∑
α=1

e−β‖z−h[α]uν‖2
(5.21)

where β = 1
No

represents the SNR. So using the above expression for posterior pdf,

the conditional entropy for Z = z can be calculated as follows.

H(U |Z = z) =

S∑
ν=1

Na∑
γ=1

e−β‖z−h[γ]uν‖2 log2

[∑S
µ=1

∑Na
α=1 e

−β‖z−h[α]uµ‖2∑Na
γ=1 e

−β‖z−h[γ]uν‖2

]
Na∑
α=1

S∑
µ=1

e−β‖z−h[α]uµ‖2
(5.22)

We average the above expression with respect to the channel output z to obtain the

conditional entropy H(U
∣∣Z). For interested reader, the derivation has been provided in

Appendix D.

H(U |Z) =
1

NaM

S∑
ν=1

Na∑
γ=1

EN log2


S∑
µ=1

Na∑
α=1

e−β‖uνh[γ]−uµh[α]+N‖2

Na∑
γ=1

e−β‖uµ(h[γ]−h[α])+N‖2

 (5.23)

Details about these calculations are omitted for the sake of brevity. In the same vein,

we seek the conditional entropy for given values of Z = z and U = uν .

H(H
∣∣U = uν ,Z = z) =

Na∑
γ=1

e−β‖z−h[γ]uν‖2 log2

[∑Na
α=1 e

−β‖z−h[α]uν‖2

e−β‖z−h[γ]uν‖2

]
Na∑
α=1

e−β‖z−h[α]uν‖2
(5.24)
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Now to obtain the conditional entropy H(H
∣∣Z, U), we average over the conditioning

random variables to obtain,

H(H
∣∣U,Z) =

1

NaS

S∑
ν=1

Na∑
γ=1

EN log2

[
Na∑
α=1

e−(β‖uν(h[γ]−h[α])+N‖2−β‖N‖2)

]
(5.25)

If we add the calculated conditional entropies and subtract them from the joint en-

tropy of two independent sources of information, we end up with the following concrete

expression.

I (H, U ;Z) =

⌊
log2

(
NT

Nc

)⌋
+ log2(S)

− 1

NaS

S∑
ν=1

Na∑
γ=1

EN log2

[
1+

S∑
µ=1

Na∑
α=1

(µ,α)6=(ν,γ)

e−β(‖uνh[γ]−uµh[α]+N‖2)

e−β‖N‖2

]
(5.26)

where β = 1
No

. In Eq. (5.26), the third term is a loss term. The main reason for

loss term is the finite alphabets of modulation symbols and transmit channel vectors.

However, it is a decreasing function of the SNR.

Remark. As the SNR β tends to infinity, the loss term vanishes and we are left with

the maximum achievable information rate for GSM, i.e. blog2

(
NT
Nc

)
c+ log2(S). For large

MIMO systems, log2

(
NT
Nc

)
≈ log2

(NT )Nc

Nc!
= Nc log2(NT ) − log2(Nc!). If we double the

number of transmit antennas for the same number of RF chains, then log2

(
2NT
Nc

)
≈ Nc +

Nc log2(NT )−log2(Nc!). Thus as the number of transmit antennas are doubled, the number

of bits per channel use is increased by Nc.

Substituting Eq. (5.13) into Eq. (5.26), we get Eq. (5.27).

I (U,H;Z) =

⌊
log2

(
NT
Nc

)⌋
+ log2(S)

− 1
NaS

S∑
ν=1

Na∑
γ=1

EN log2

[
1 +

S∑
µ=1

Na∑
α=1

(µ,α)6=(ν,γ)

e−β(‖uν
∑
m∈Zγ hm−uµ

∑
m∈Zα hm+N‖2−‖N‖2)

]
(5.27)
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In general, the expectation in Eq. (5.27) is difficult to calculate and cannot be simpli-

fied further. The expression in Eq. (5.27) is a function of noise and channel realizations.

Having knowledge of the CSI at receiver, we still need Monte Carlo simulation to average

out the noise. Therefore, we aim at deriving upper and lower bounds which do not contain

any noise terms. Furthermore, we assume perfect synchornization between transmitter

and receiver. We seek to obtain a closed-form expressions for lower and upper bounds of

the mutual information for finite alphabet GSM systems by harnessing the structure of

the I (H, U ;Z). The derived lower bound may subsequently be used for the maximization

of the mutual information.

5.3 Lower and Upper Bounds on Achievable Rate

In this subsection, we provide lower and upper bounds on the achievable rates in the

Proposition 1 and 2 respectively.

Proposition 1. For finite alphabets, achievable rates for GSM can be lower bounded as

follows

I (H, U ;Z) >

⌊
log2

(
NT

Nc

)⌋
+ log2(S)−NR log2(e)

+NR −
1

NaS

S∑
ν=1

Na∑
γ=1

log2

[ S∑
µ=1

Na∑
α=1

e−
1

2No
(‖uνh[γ]−uµh[α]‖2)

]
(5.28)

Proof. It follows from Eq. (5.27) that

I (H, U ;Z) =

⌊
log2

(
NT

Nc

)⌋
+ log2(S)−NR log2(e)

− 1

NaS

S∑
ν=1

Na∑
γ=1

EN log2

[ S∑
µ=1

Na∑
α=1

e−
1
No

(‖uνh[γ]−uµh[α]+N‖2)
]

(5.29)

Here NR log2(e) term arises from applying the expectation operator on the squared norm

of noise only term in Eq. (5.27). Using Jensen’s inequality and the concavity of the log(x)
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function, we can upper bound the expectation by swapping the expectation and logarithm

operation.

EN log2

[
S∑
µ=1

Na∑
α=1

e−
1
No

(‖uνh[γ]−uµh[α]+N‖2)

]

≤ log2

[
S∑
µ=1

Na∑
α=1

ENe
− 1
No

(‖uνh[γ]−uµh[α]+N‖2)

]
(5.30)

The norm square in the exponent is a non-central chi-square random variable χ2
2NR

(s2)

with degrees of freedom equal to 2NR and non-centrality parameter equal to s2 =
∥∥uνh[γ]−

uµh[α]

∥∥2
. Let Q = ‖N + uνh[γ] − uµh[α]‖2, then its moment generating function (MGF)

is given as

MQ (t) =
1

(1− tNo)NR
exp

(
t
∥∥uνh[γ] − uµh[α]

∥∥2

1− tNo

)
(5.31)

where MQ (t) = E
[
etQ
]
. Calculating the above MGF at t = − 1

No
yields the following

expression.

EQ
[
e−

1
No

(‖uνh[γ]−uµh[α]+N‖2)
]

= EQ

[
e−

Q
No

]
= log2

[
S∑
µ=1

Na∑
α=1

(
1

2

)NR
e−
‖uνh[γ]−uµh[α]‖

2

2No

]
(5.32)

On re-arrangement of the terms, we obtain Eq. (5.28).

It can be observed clearly from Eq. (5.28) and Eq. (5.27) that at high SNR, the

exponential terms die down. Thus, at high SNR, the gap between the achievable rate and

the lower bound is NR(log2(e)− 1) which is independent of the channel realization, data

symbol, modulation order and the number of transmit antennas.

Proposition 2. For finite alphabets, achievable rates for GSM can be upper bounded as

follows

IU =

⌊
log2

(
NT

Nc

)⌋
+ log2(S) (5.33)

− 1

NaS

S∑
ν=1

Na∑
γ=1

log2

S∑
µ=1

Na∑
α=1

exp
(
−β
(
‖uνh[γ] − uµh[α]‖2

))
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Proof. As log
∑

k exp(xk) is a convex function, Jensen’s inequality can be applied to the

expression of average mutual information to derive an upper bound. We know for convex

function ϕ(x), Jensen’s inequality reads,

ϕ(E [x]) ≤ E [ϕ(x)] (5.34)

Thus, the expectation term with respect to noise can be lower bounded as follows.

EN log2

[
S∑
µ=1

Na∑
α=1

exp
(
−β
(
‖uνh[γ] − uµh[α] + N‖2 − ‖N‖2

))]
(5.35)

≥ log2

S∑
µ=1

Na∑
α=1

exp
(
−βEN

(
‖uνh[γ] − uµh[α] + N‖2 − ‖N‖2

))
(5.36)

The expectation with respect to noise is calculated initially,

EN

(
‖uνh[γ] − uµh[α] + N‖2 − ‖N‖2

)
(5.37)

= EN

[
‖uνh[γ] − uµh[α]‖2 + 2<{NH

(
uνh[γ] − uµh[α]

)
}
]

(5.38)

= ‖uνh[γ] − uµh[α]‖2 (5.39)

Now, the inequality in Eq. (5.36) can be simplified as follows.

EN log2

[
S∑
µ=1

Na∑
α=1

exp
(
−β
(
‖uνh[γ] − uµh[α] + n‖2 − ‖N‖2

))]

≥ log2

S∑
µ=1

Na∑
α=1

exp
(
−β
(
‖uνh[γ] − uµh[α]‖2 − ‖N‖2

))
(5.40)

Using the inequality in Eq. (5.40), the upper bound of mutual information can be calcu-

lated as follows.

IU =

⌊
log2

(
NT

Nc

)⌋
+ log2(S) (5.41)

− 1

NaS

S∑
ν=1

Na∑
γ=1

log2

S∑
µ=1

Na∑
α=1

exp
(
−β
(
‖uνh[γ] − uµh[α]‖2

))
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The gap between the lower and the upper bounds can be calculated as follows,

IU − IL = NR log2(e)−NR (5.42)

+
1

NaS

S∑
ν=1

Na∑
γ=1

log2

S∑
µ=1

Na∑
α=1

exp

(
−β

2

(
‖uνh[γ] − uµh[α]‖2

))

− 1

NaS

S∑
ν=1

Na∑
γ=1

log2

S∑
µ=1

Na∑
α=1

exp
(
−β
(
‖uνh[γ] − uµh[α]‖2

))
(5.43)

= NR log2(e)−NR (5.44)

+
1

NaS

S∑
ν=1

Na∑
γ=1

log2

∑
µ

∑
α

exp

(
−β

2

(
‖uνh[γ] − uµh[α]‖2

))
S∑
µ=1

Na∑
α=1

exp
(
−β
(
‖uνh[γ] − uµh[α]‖2

))


In high SNR regime, the gap between the lower and the upper bounds of mutual infor-

mation can be expressed as follows.

lim
β→∞

(IU − IL) = NR(log2(e)− 1) (5.45)

Similarly, in the low SNR regime the gap between the lower and the upper bounds of

mutual information can be expressed as follows.

lim
β→0

(IU − IL) = NR(log2(e)− 1) (5.46)

Remark. For a given number of receive anetnnas, the gap between lower and upper bounds

in the regimes of low and high SNRs, is fixed and is independent of the channel realization,

data symbol, modulation order and the number of transmit antennas.

5.4 Mutual Information for Precoded Generalized Spa-

tial Modulation Systems

The conventional spatial and GSM systems require CSI only at receiver to either per-

form maximal-ratio combining (MRC) technique for detection of antenna index or using



5.4 Mutual Information for Precoded Generalized Spatial Modulation Systems 93

maximum-likelihood (ML) rule for joint detection of antenna indices and I-Q modulation

symbols. The symbol error performance of these receivers becomes better as the SNR

increases. In order to further boost the receiver SNR, we use maximum-ratio transmis-

sion (MRT), which requires the CSIT. As we are assuming downlink transmissions here

and CSIT is available at BTS due to Massive MIMO regime, so we attempt to use MRT

in which information symbol is transmitted along the most dominant eigen-mode of the

transmission channel. As a result, SNR is boosted which ultimately improves the BER

performance.

5.4.1 System Modeling

In precoded GSM system, first a subset of antennas is selected based on incoming bit pat-

tern. Then a corresponding smaller-scale MIMO system is considered corresponding to

those selected antennas. Afterwards, conventional eigen-beamforming vectors are calcu-

lated for smaller-scale MIMO system which are sparse if we take into account the anetnna

domain of the actual large-scale MIMO systems where many antennas are deactivated.

This process is illustrated with help of Fig. (5.1) where the activated antennas are shaded

and the deactivated antennas are unshaded. In precoded GSM systems, the matrix-vector

relation between the multi-antenna transmitter and the multi-antenna receiver may be

expressed as follows.

z = HWu+ n (5.47)

The dimensions of quantities in above relation follows z ∈ CNR , H ∈ CNR×NT , W ∈

CNT×Na , u ∈ CNa , and n ∈ CNR . In this setting, Na like GSM systems, is equal to

2blog2 (NTNc )c where Nc is equal to the number of RF chains. The only difference from the

modeling of the GSM systems is the presence of a precoding matrix W instead of an

antenna activation matrix P .
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5.4.2 Analytical Framework

Let matrix W be a juxtaposition of eigenbeamforming vectors instead of antenna activa-

tion pattern vectors, then it can be mathematically expressed as follows.

W =

 w1 · · · wNa

 (5.48)

The product of the transmission channel and the precoding matrix is an NR×Na matrix

Φ whose columns are precoded channel vectors onto one of them the symbol transmission

is performed.

Φ = HW =

 h1 · · · hNT


 w1 · · · wNa

 (5.49)

=

 Hw1 · · · HwNa

 (5.50)

Φ =

 φ1 · · · φNa

 ∈ CNR×Na (5.51)

The precoded channel vector φm = Hwm ∈ CNR and is an Nc-sparse vector. Each

precoding vector wm ensures which particular set of antennas are activated due to the

selection of them-th precoding vector and consequently which particular transmission sub-

channel is precoded. Moreover, the m-th particular precoding vector is itself being selected

by the incoming bit sequence. The non-zero or active components of the precoding vector

are taken from the right singular vector corresponding to the most dominant eigen-mode

of the sub-channel matrix HEm which is the sub-matrix of the transmission channel H .
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HereEm itself is a sub-matrix of identity matrix of order NT whose columns are essentially

unit vectors of NT -dimensional space. The partial identity matrix Em is a collection of

unit vectors {ek}k∈Zm whose indices are being chosen from the underlying index set Zm

whose cardinality is Nc. Like GSM system, the index set is an ordered subset of the

universal set of antennas’ indices A, i.e., Zm :( A = {1, 2, · · ·, NT}. Thus, succinctly the

precoding vector wm and the partial identity matrix Em may be expressed as

wm = Emv1 (HEm) (5.52)

Em = (ek)k∈Zm ∈ {0, 1}
NT×|Zm| (5.53)

where v1 (·) is the first column vector of the right singular matrix V in the singular value

decomposition (SVD) of the the sub-channel matrix ψm = HEm where SVD of ψm may

be expressed as

ψm = UΣV† ∈ CNR×Nc (5.54)

Here V = [v1, · · · ,vNc ] ∈ CNc×Nc is the right singular matrix of sub-channel matrix ψm,

Σ = diag [σ1, · · · , σr, 0, · · · , 0] ∈ CNR×Nc is the diagonal matrix containing the singular

values of ψm and U = [u1, · · · ,uNc ] ∈ CNR×NR is the left singular matrix of ψm. Here

r 6 min{NR, Nc} is the rank of ψm. Thus, the precoded channel matrix Φ can be

expressed as follows

Φ =


∑
i∈Z1

w1(i)hi · · ·
∑
i∈ZNa

wNa(i)hNa

 (5.55)

Here Φ ∈ CNR×Na is the precoded channel matrix whose columns are beamformed com-

posite channel vectors. Each of these columns is a weighted sum of different combination

of transmit channel vectors of the physical transmission channel matrix where the weights
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are complex scalars {wk(i)}i∈Zk . In each signalling interval, one of these beamformed com-

posite channel vectors is modulated depending upon the incoming bit sequence. Under

this analytical framework of signalling, it is convenient to express the received signal in

the following form.

z =

 φ1 · · · φNa

u+ n (5.56)

z = φγuν + n γ = 1, · · · , Na ν = 1, · · · , S (5.57)

Eqs. (5.56) and (5.57) are compatible owing to the fact that the sparsity of u is unity

and the value of that active element is equal to uν . In terms of random variables, the

input-output relation of the precoded GSM may be expressed as follows.

Z = ΦU + N (5.58)

Here one information source is a random variable U whose one particular realization

u ∈ U = {u1, u2, · · · , uS} is emitted by the random information source. The precoded

sub-channel φγ onto which a particular realization of u, i.e. , uγ is sent is also selected

by the incoming bits. Thus, precoded sub-channel is another random variable Φ whose

one particular realization φ ∈ Ψ = {φ1, · · · ,φNa} is used for signalling.

In precoded GSM systems, the information symbols and the precoded sub-channels

are jointly mapped from the block of bits p + q taken from the incoming datastreams.

p bits are encoded to select a particular beamformed composite channel vector φγ onto

which a complex symbol is sent. q bits are encoded to select one out of S = 2q symbols,

i.e., uν which is then transmitted over the γ-th precoded composite channel. As a result,

the received signal is also one particular realization of a random variable Z. The proposed

analytical framework results in an input-output relation for precoded GSM system which

is useful for information theoretic treatment. It can be noticed easily that the precoded
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Figure 5.1: System model of single-user GSM precoder

sub-channel φγ is not a linear combination of some transmit channel vectors instead it

is a weighted sum of some transmit channel vectors where the complex weights perform

precoding/beamforming. Nonetheless it is now straightforward to calculate mutual in-

formation owing to affine relationship between random variables U and Z. The mutual

information between the pair of random variables (Φ, u) and the random variable Z,

IPGSM , can be defined as follows.

IPGSM((Φ, U) ;Z) := H((Φ, u))−H((Φ, u)
∣∣Z) (5.59)

Thus, the calculation of IPGSM((Φ, U) ;Z) necessitates the computations of the joint and

conditional entropies H((Φ, U)) and H((Φ, U)
∣∣Z) which are performed in the upcoming

sections.

5.4.3 Calculation of H((Φ, U))

The joint entropy of the precoded sub-channel and the information source can be simplified

by the application of chain rule for entropies. Thus, the joint entropy is the sum of the

entropy of the random information source and the conditional entropy of the precoded
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sub-channel given the random information source.

H((Φ, U)) = H(U) +H(Φ
∣∣U) (5.60)

Since the random information source and the precoded sub-channel are statistically inde-

pendent, so the conditional entropy is equal to the unconditional entropy.

H((Φ, U)) = H(U) +H(Φ) (5.61)

= log2(S) + log2

⌊(
NT

Nc

)⌋
(5.62)

5.4.4 Calculation of H((Φ, U)
∣∣Z)

The application of the chain rule of entropies results in the following breakdown.

H((Φ, U)
∣∣Z) = H(U

∣∣Z) +H(Φ
∣∣U,Z) (5.63)

The calculation of H(U
∣∣Z) follows from taking the joint expectation of the function

log2 pU |Z(u
∣∣Z) with respect to underlying random variables U and Z.

H(U
∣∣Z) = −EU,Z

[
log2 pU |Z(U

∣∣Z)
]

(5.64)

= −
∑
φ∈Ψ

EU,Z|Φ
[
log2 pU |Z(U

∣∣Z)
]
pΦ(φ) (5.65)

= −EΦEU,Z|Φ
[
log2 pU |Z(U

∣∣Z)
]

(5.66)

= −EU,Z,Φ
[
log2 pU |Z(U

∣∣Z)
]

(5.67)

= −E(U,Φ)EZ|(U,Φ)

[
log2 pU |Z(U

∣∣Z)
]

(5.68)

= − 1

NaS

S∑
ν=1

Na∑
γ=1

EZ|(U,Φ)

[
log2 pU |Z(U

∣∣Z)
]

(5.69)

Here the second equation follows from averaging out the underlying randomness of Φ.

The averaging is performed by summing the products of expectation conditioned on a

given realization of Φ and probability of corresponding realization for all the realizations.
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Now, we focus on the inner expectation in the last equation and compute it via insertion

of log-likelihood function.

H(U
∣∣Z) = − 1

NaS

S∑
ν=1

Na∑
γ=1

EZ|(U,Φ) log2


Na∑
α=1

exp

(
−β
∥∥∥∥z − φαuν∥∥∥∥2

)
Na∑
α=1

S∑
µ=1

exp

(
−β
∥∥∥∥z − φαuµ∥∥∥∥2

)


where β = 1
No

. Since the random variable Z is conditional on U and Φ in the above

expectation, so the main randomness in Z owes to the underlying noise random variable

N. As a result, we deem it feasible to make the substitution z = φγuν + n to have the

following simplification.

H(U |Z) =
1

NaS

S∑
ν=1

Na∑
γ=1

EN log2


S∑
µ=1

Na∑
α=1

exp

(
−β
∥∥∥∥uνφγ − uµφα + N

∥∥∥∥2
)

Na∑
γ=1

exp

(
−β
∥∥∥∥uµ (φγ − φα) + N

∥∥∥∥2
)


The evaluation of H(Φ

∣∣U,Z) is quite involved and it needs application of chain rule of

entropies and the law of iterated expectations. The conditional entropy may be calcu-

lated by taking the negative expectation of log2 pΦ|U,Z(φ|u, z) with respect to underlying

random variables U,Z,Φ.

H(Φ
∣∣U,Z) = −EZ,Φ,U

[
log2 pΦ|(u,z)(φ|u, z)

]
(5.70)

Now it is quite straightforward to apply law of iterated expectations to have the following

conditional and marginal expectations.

H(Φ
∣∣U,Z) = −E(U,Φ)EZ|(U,Φ)

[
log2 pΦ|(U,Z)(φ|u, z)

]
(5.71)

= − 1

NaS

S∑
ν=1

Na∑
γ=1

EZ|(U,Φ)

[
log2 pΦ|(U,Z)(φ|u, z)

]
(5.72)
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Using Bayes’ rule, the posterior pdf pΦ|(U,Z)(φ|u, z) may be expressed as follows.

pΦ|(U,Z)(φ|u, z) =

exp

(
−β
∥∥∥∥z − φγuν∥∥∥∥2

)
Na∑
α=1

exp

(
−
∥∥∥∥z − φαuν∥∥∥∥2

) (5.73)

Substituting the above posterior pdf into Eq. (5.72) yields,

H(Φ
∣∣U = u,Z) =

1

NaS

S∑
ν=1

Na∑
γ=1

EZ|(U,Φ) log2

[
Na∑
α=1

exp

(
β

∥∥∥∥z − φγuν∥∥∥∥2

− β
∥∥∥∥z − φαuν∥∥∥∥2

)]

where in above substitution, we have absorbed the minus sign into the argument of the

logarithm. Since Z is conditional on Φ and U , therefore, it is convenient to do the

substitution z = φγuν + n in order to make the following changes.

H(Φ
∣∣U,Z) =

1

NaS

S∑
ν=1

Na∑
γ=1

EN

[
log2

(
Na∑
α=1

exp

{
β‖N‖2 − β

∥∥∥∥uνφγ − φα + N

∥∥∥∥2
})]

Now to obtain the conditional entropy H((Φ, U)
∣∣Z), we add the H(U

∣∣Z) and H(Φ
∣∣U,Z)

to have the following expression.

H((Φ, U)
∣∣Z) =

1

NaS

S∑
ν=1

Na∑
γ=1

EN

[
S∑
µ=1

Na∑
α=1

exp

{
β

(
‖N‖2 −

∥∥∥∥uνφγ − uµφα + N

∥∥∥∥2
)}]

Substituting values in Eq. (5.59) yields the following result.

IPGSM ((Φ, U);Z) =

⌊
log2

(
NT
Nc

)⌋
+ log2(S) (5.74)

− 1
NaS

S∑
ν=1

Na∑
γ=1

EN log2

1 +
M∑
µ=1

Na∑
α=1

(µ,α)6=(ν,γ)

exp

{
1

No

(
‖N‖2 −

∥∥∥∥uνφγ − uµφα + N

∥∥∥∥2
)}

(5.75)

Using Eq. (5.4.2) into above equation, we obtain

IPGSM ((Φ, u); z) =

⌊
log2

(
NT

Nc

)⌋
+ log2(S)− 1

NaS

S∑
ν=1

Na∑
γ=1

EN



5.5 Numerical Experiments 101

log2

1 +
S∑
µ=1

Na∑
α=1

(µ,α)6=(ν,γ)

exp

β
‖N‖2 −

∥∥∥∥uν ∑
m∈Zγ

wγ(m)hm − uµ
∑
m∈Zα

wα(m)hm + N

∥∥∥∥2



where β = 1

No
represents the channel SNR.

5.5 Numerical Experiments

−20 −10 0 10 20 30 40
0

1

2

3

4

5

6

7

8

9

10

SNR (dB)

E
rg

od
ic

 A
ch

ie
ve

d 
R

at
e 

(b
ps

/H
z)

 

 

GSM, N
T

 = 32, N
c
 = 2

GSM, N
T

 = 16, N
c
 = 2

GSM , N
T

 = 8, N
c
 = 2

SM, N
T

 = 32, N
c
 = 1

SM, N
T

 = 16, N
c
 = 1

SM, N
T

 = 8, N
c
 = 1

Figure 5.2: Achievable Rates verus SNR for SM and GSM

All the discussion so far is for a fixed NR × NT matrix H . However, the ergodic

achievable rate when H is random and known at the receiver is easily shown to be

the expectation of the mutual information calculated in Eq. (5.27), averaged over H .

The numerical results below are for the i.i.d. Rayleigh model with independent channel

coefficients, NR = 3 and NT is varied. Without loss of generality, the modulation scheme

is assumed to be QPSK, i.e., S = 4. Due to high numerical complexity incurred due to

huge number of antenna combinations, the number of Monte Carlo runs is set to be equal

to ten for GSM simulations.

In Fig. 5.2, the achieved mutual information (in bps/Hz) is plotted versus SNR (in

dB) for GSM and SM to facilitate comparison. It is evident from the figure that GSM
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Figure 5.3: Achieved Rates comparison of GSM with 3× 3 MIMO

beats SM in terms of achievable rates for the same numbers of transmit and receive

antennas. For instance for NT = 8, GSM spectral efficiency is 6 bps/Hz and SM spectral

efficiency is 5 bps/Hz. Moreover in SM, if we double the number of transmit antennas, the

improvement in spectral efficiency is only 1 bps/Hz, however, in GSM, the improvement

is Nc bps/Hz. For NT = 16, the GSM spectral efficiency is 8 bps/Hz and for NT = 32, the

GSM spectral efficiency is 10 bps/Hz and the increase in spectral efficiency is 2 bps/Hz

which is the number of activated RF chains. For NT = 16, SM offers spectral efficiency

of 6 bps/Hz and for NT = 8, GSM offers the same spectral efficiency. Thus the size of

channel matrix is halved for same spectral efficiency which leads to decrease in cost of

channel measurements.

In Fig. 5.3, the ergodic achievable rates, which are the Monte-Carlo average of Eq.

(5.27) with respect to channel realizations, of a GSM system with NT = 16, Nc = 2

is simulated. The expressions of the lower and upper bounds for same parameters are

plotted. The upper bound coincides with the simulated achievable rate in low and high

SNR regimes. The gap between upper and lower bounds in the low and high SNR regimes
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is fixed. In low and high SNR regimes, upper bound coincides with simulated rate and

in medium SNR regime lower bound is more close to the simulated rate in terms of rate

gap.

In Fig. 5.4, the capacity of a GSM system is compared with the capacity results of

some previous schemes. The antenna selection capacity and MIMO capacity curves are

averaged over 10, 000 channel realizations. The antenna selection capacity curve is when

the transmitter knows the channel matrix and can select the best 3 antennas [68]. The

GSM capacity curve is the capacity with 8 transmit antennas, 3 RF chains and 3 receive

antennas with no constraint on the input alphabet, as calculated in [50]. The 3×3 MIMO

capacity curve is the capacity of traditional MIMO with 3 transmit antennas and 3 receive

antennas. 3 × 3 MIMO is used as a baseline because we are evaluating the performance

of GSM using only 3 RF chains at transmitter and receiver and 3 × 3 MIMO also uses

the same amount of RF chains on both sides. The GSM capacity beats the 3× 3 MIMO

capacity because of the extra information stored in the antenna indices. Moreover, it

performs nearly as well as antenna selection without the need for channel knowledge at the

transmitter. The GSM scheme does not need any CSIT whereas antenna selection requires
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Figure 5.5: Achievable Rates verus SNR for Precoded GSM

CSIT in order to select the best antennas. Thus, antenna selection MIMO achieves better

performance than GSM MIMO at the expense of CSIT.

In Fig. 5.5, the ergodic achievable rates for precoded GSM and GSM are compared for

NT = 8, 16, Nc = 2. In low and high SNR regimes, the rate performance of precoded GSM

and that of GSM is same. However, in the medium SNR regime, i.e., 0− 10 dB, precoded

GSM outperforms the GSM and for higher number of transmit antennas for fixed number

of RF chains, the rate improvement increases. This rate improvement comes from extra

degrees of freedom arising from more antennas although the activated antennas are same

in both cases.

5.6 Conclusion

This chapter provided a closed-form expression for the achievable information rate of

GSM systems using finite input alphabets. Reasonably tight upper and lower bounds
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were calculated in an information-theoretic framework. We showed that a GSM system

can offer same information rate as the SM system but using less transmit antennas and

with a lower channel estimation burden. Additionally, the achievable rate for a precoded

GSM system is derived whose performance is shown to be superior to GSM system via

numerical results. As the capacity of antenna selection is more than that of GSM system

for fixed parameters, we focus on antenna selection aided beamforming for massive MIMO

in next chapter.
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Chapter 6

Large System Analysis of Antenna

Selection aided Downlink

Beamforming in Massive MISO

under RF Chains Constraint

The previous chapter was about GSM in which a group of antennas is selected based on

incoming data. We have shown through numerical results in last chapter that capacity of

antenna selection is better than that of GSM for same number of transmit antennas and

RF chains. Thus, antenna selection is a promising solution to deal with limited number of

RF chains in massive MIMO. Antenna selection can exploit the massive spatial degrees of

freedom offered by huge number of antenna elements under RF chains constraint. In this

chapter, we focus on performing a large system analysis of antenna selection aided single-

user massive MISO setup with a huge array of transmit antennas sending data to a single

user. This analysis enables us to investigate how the capacity scales asymptotically with

the number of transmit antennas without conducting extensive Monte Carlo simulations.

107



108
Chapter 6. Large System Analysis of Antenna Selection aided Downlink Beamforming

in Massive MISO under RF Chains Constraint

This chapter is organized as follows. Section 6.1 highlights the motivation and the

related work. Section 6.2 presents the system modelling and the problem statement for

the considered system. Section 6.3 illustrates the large system analysis and Section 6.4

provides the associated lower and upper bounds on the capacity of the antenna selection

aided beamforming system. Section 6.5 provides numerical experiments and Section 6.6

concludes the chapter.

6.1 Motivation and Related Work

Antenna Selection is a well-studied technique for traditional MIMO systems. In antenna

selection, a subset of transmit antennas is chosen at every signaling instant and RF chains

are connected to those chosen transmit antennas only. The chosen transmit antennas are

the ones which have best channel conditions. The selection criterion can be maximization

of channel capacity, SNR at the receiver, or the maximization of minimum eigenvalue of

the channel [68]. The reduction of active transmit antennas leads to reduction of required

RF chains which results in significant savings while preserving the advantages of full

MIMO system. When the number of antennas at the BTS is large, there are multiple

links between the transmit antennas at the BTS and the antennas at the user thereby

creating much more spatial selectivity from which the system performance can be greatly

enhanced. When the number of antennas is large, the antenna selection scheme will have a

large number of subsets of transmit antennas from which BTS selects the subset with the

best channel conditions and then the RF chains will be connected to the chosen transmit

antennas.

Antenna Selection has been studied recently for massive MIMO. It has been consid-

ered feasible for massive MIMO by the experimental results, because only a subset of the

antennas actually contributes to the achieved sum rate in many scenarios [69]. In [70],
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transmit antenna selection is studied using channels taken from practical measurement

campaigns. The authors used convex optimization to select the best antenna subset which

maximizes the dirty-paper coding (DPC) capacity. Thus, they used the knowledge of mea-

sured channels to find the subset of antennas which maximize the DPC capacity for a

given number of antennas to be selected for transmission. Their results show that in the

regime of more transmit antennas than the RF chains, the antenna selection can greatly

enhance the system performance. In [71], a robust constant-envelope (CE) precoding with

antenna-subset selection in a large scale MIMO system is studied under the assumption

that only imperfect channel knowledge is available at the transmitter. CE precoding

enables the use of cheap but highly power-efficient amplifiers and antenna selection is

known for reducing the number of RF chains. The combination of antenna selection with

CE precoding, leads to cost cutting in hardware implementation. Particularly, the au-

thors formulate a power minimisation problem for antenna selection CE precoding where

symbol-error rate (SER) is less than a preset threshold. Further, they propose an ap-

proximation for NP-hard optimisation problem based on greedy knapsack approximation.

In [72], the authors propose an algorithm for downlink massive MIMO systems under the

constraint of a finite number of RF chains. The proposed algorithm enables joint antenna

selection and user scheduling to take advantage of spatial selectivity and multi-user di-

versity gains offered by antenna selection and user scheduling respectively. Specifically,

the proposed algorithm successively eliminates both undesired users and BTS antennas

which yield minor contribution to system’s performance. Numerical results show that

the joint optimization strategy performs close to optimal exhaustive search. In [73], an

antenna selection algorithm for massive MIMO uplink is proposed under the assumption

of imperfect CSI and correlated channels. In their work, they exploited the sparsity of

channel gain vectors at the BTS end. Particularly, they use a compressive sensing al-

gorithm namely orthogonal-matching pursuit (OMP) to estimate the sparse structure of
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beamformer. Simulation results indicate that the proposed scheme can offer comparable

performance to MRC notwithstanding imperfect CSI and spatial correlation among BTS

antennas.

GSM system can offer enhanced spectral efficiency in massive MIMO under limited RF

chains. However, this comes at the cost of increase in receiver complexity. Moreover, MS

must need to know the CSI in order to do data detection. In massive MIMO operating

in TDD mode, as CSI is measured at BTS so it is an overhead to send the channel

information of all the links to the MS via feedback link. In antenna selection, the MS do

not need to know the individual link gains. It just needs the knowledge of sum power

gain of the channel which being a scalar can be reported to MS via feedback link with

less overhead. Thus, we focus on antenna selection capacity analysis in this chapter in

the large system dimensions.

In this chapter, we provide the deterministic equivalent of the capacity of antenna

selection based beamforming in massive MISO systems. We use the fact that once we know

the best transmit antennas and their corresponding channel gains, conjugate beamforming

at the transmitter side is optimal [74]. The capacity of the considered system is a random

variable and changes as the channel realization changes, but in our scaling regime the

fluctuations become small as the number of antennas grows large, in a law of large numbers

(see Theorem 3). It provides a capacity scaling law using a law of large numbers for

single-user massive MISO systems under RF chains constraint when antenna selection

is employed. Deterministic upper and lower bounds on the capacity are derived. The

derived capacity deterministic equivalent can be used for calculating the required number

of RF chains for a given capacity and fixed number of transmit antennas in the large

system dimensions.
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6.2 System modeling and Problem Statement
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Figure 6.1: Schematic of Antenna Selection based Beamforming in Massive MIMO

A point-to-point massive MIMO system is considered in which a BTS has NT transmit

antennas and it sends data to a single-antenna MS in the downlink mode. The trans-

mission channel between any of the NT transmit antennas and the MS is assumed to be

frequency-flat Rayleigh fading channel. The 1×NT complex equivalent baseband channel

can be expressed as follows.

h = [h1 · · ·hNT ] (6.1)

where hi ∼ CN (0, σ2
h) is the complex channel gain of the link between the i-th transmit

antenna of the BTS and the MS. Let Nc be the number of RF chains.

The transmitter is assumed to have perfect knowledge of all the channel gains {hi}NTi=1.

The channel estimation is performed by first sending pilot symbols from the MS to the

BTS in the uplink mode thanks to the TDD mode assumption in massive MIMO systems.

More specifically, we connect theNc RF chains toNc different antennas out ofNT antennas

in each training slot. Thus, in NT/Nc training slots, we can sound all the link gains. As

we know the training symbol at the BTS, employing the least square channel estimation
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amounts to dividing the received signal vector by the training symbol at the BTS. For

instance, for 100 antennas at BTS with 10 RF chains, we need 10 training slots to estimate

all the 100 link gains. Owing to limited number of RF chains, we need proportionately

higher number of training slots to estimate all the channel gains.

In order to boost the receiver SNR, beamforming is performed. Owing to the fact that

we have limited number of RF chains, the Nc best transmit antennas are first selected and

then the RF chains are connected to selected Nc transmit antennas. After choosing the

best Nc transmit antennas, a beamforming vector is chosen which maximizes the received

SNR. The schematic of antenna selection based beamforming in Massive MIMO is shown

in Fig. 6.1. The beamforming vector is constructed using the CSI. Now, the received

signal at the MS can be expressed as follows.

z = hwx+ n (6.2)

Here z ∈ C is the received signal at the MS, w is an NT ×1 beamforming vector, x ∈ C is

the transmitted symbol from the BTS and n ∼ CN (0, σ2
n) is circularly-symmetric complex

AWGN. The signal power is assumed to be P , i.e., E [|x|2] = P . Let I(NT ) be the subset

of {1, 2, · · ·NT} which consists of the indices of the Nc antennas which corresponds to the

best channel gains. Thus, we may express I(NT ) as follows,

I(NT ) = {n1, n2, · · · , nNc} (6.3)

where n1, n2, · · · , nNc are the antennas’ indices whose channel gains would be ordered as

follows,

|hn1|2 ≥ |hn2 |2 ≥ · · · ≥ |hnNc |
2 (6.4)

where n1 = arg maxi |hi|2, and |hnNc |
2 is smaller than all the link gains. Thus, I(NT )

consists of the indices of the Nc largest components of {|h1|, |h2|, · · · , |hNT |}.
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Let h̃ represent the subset of channel gains which are used for data transmission. The

components of h̃, i.e., h̃n’s will be zero when n is not an element of I(NT ) and h̃n will be

equal to hn when n is an element of I(NT ).

h̃n =

 0 : n /∈ I(NT )

hn : n ∈ I(NT )

The precoding vector has the same sparsity pattern as h̃. However, its active com-

ponents are normalized so that the maximum sum power radiated by the Nc transmit

antennas during one symbol duration is P regardless of the number of RF chains used.

Thus,

wn =


0 : n /∈ I(NT )

h̃∗n√∑
n∈I(NT ) |hn|2

: n ∈ I(NT )

The product of the actual channel vector and the precoding vector can be simplified

as follows.

hw =

∑
n∈I(NT ) |hn|2√∑
n∈I(NT ) |hn|2

(6.5)

=

√ ∑
n∈I(NT )

|hn|2 (6.6)

= ‖h̃‖ (6.7)

Thus, our system is equivalent to a SISO system with channel gain equal to ‖h̃‖ where

‖h̃‖2 is the power of the vector which represents the subset of antennas with Nc largest
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channel gains. Now, the received SNR can be expressed as follows.

SNR =
P‖h̃‖2

σ2
n

(6.8)

=
P

σ2
n

∑
n∈I(NT )

|hn|2 (6.9)

=
P

σ2
n

Nc∑
i=1

|hni |2 (6.10)

=
PNT

σ2
n

1

NT

Nc∑
i=1

|hni |2 (6.11)

Thus, the channel capacity of the RF-chains constrained beamforming system can be

expressed as follows.

C=log2

(
1 +

PNT

σ2
n

1

NT

Nc∑
i=1

|hni |2
)

(6.12)

=log2 (γNT )+ log2

(
1

NT

Nc∑
i=1

|hni |2
)

+O
(

1

NT

)
(6.13)

where γ = P
σ2
n

is the transmit SNR.

For large system dimensions, it is numerically expensive task to find the statistical av-

erage of above expression which motivates us to do large system’s analysis in the following

section.

6.3 Large System’s Analysis

We proceed to the large system’s analysis of the capacity in Eq. (6.13) in the limit

as Nc, NT grow large while keeping the ratio of the number of RF chains to the total

number of transmit antennas β = Nc
NT

fixed. The basic idea is to apply the strong law

of large numbers to the term 1
NT

∑
n∈I(NT ) |hn|2. Using strong law of large numbers, we

obtain an deterministic equivalent of 1
NT

∑
n∈I(NT ) |hn|2 which will be used to calculate the

deterministic equivalent of the channel capacity of the considered system. Furthermore,

we calculate the lower and upper bounds on the asymptotic capacity C∗.
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Theorem 3. Let 1
NT

∑
i∈I(NT ) |hi|2 be the normalized channel power gain of an antenna

selection based MISO beamforming system with NT transmit antennas and bounded link

gains (E(|h|2) <∞), then 1
NT

∑
i∈I(NT ) |hi|2 as NT ↑ ∞ with β held fixed, converges almost

surely as follows

1

NT

∑
i∈I(NT )

|hi|2
a.s.−→

NT ↑∞

∫ ∞
ζ(β)

ζdF|h|2(ζ) (6.14)

where β is the ratio of the activated RF chains to the total number of transmit antennas

and P (|h|2 ≥ ζ(β)) = β. Consequently,

C − log2 (γNT )
a.s.−→

NT ↑∞
log2

(∫ ∞
ζ(β)

ζdF|h|2(ζ)

)
(6.15)

where γ = P
σ2
n

is the transmit SNR.

Proof. Define the function β(ζ) := P (|h|2 ≥ ζ) which is a non-increasing left-continuous,

right-limits function with β(0) = 1 and β(∞) = 0. Then there is a unique non-increasing

right-continuous, left-limits inverse function ζ(β) such that P (|h|2 ≥ ζ(β)) = β. For any

β′ ∈ (0, 1), define

I(NT )
β′ := {i : |hi|2 ≥ ζ(β′)} (6.16)

and

B
(NT )
β′ :=

|I(NT )
β′ |
NT

(6.17)

For any β′ ∈ (0, 1) the following inequalities hold: (i) if B
(NT )
β′ ≤ β then I(NT )

β′ ⊆ I(NT )

and (ii) if B
(NT )
β′ ≥ β then I(NT ) ⊆ I(NT )

β′ . But by the strong law of large numbers,

B
(NT )
β′ =

1

NT

NT∑
i=1

I
[
|hi|2 ≥ ζ(β′)

] a.s.−→
NT ↑∞

P(|h|2 ≥ ζ(β′)) = β′. (6.18)

Thus, for any ε > 0, B
(NT )
β−ε

a.s.−→
NT ↑∞

β − ε and B
(NT )
β+ε

a.s.−→
NT ↑∞

β + ε. Thus, for any ε > 0 and for

NT large enough,

I(NT )
β−ε ⊆ I

(NT ) ⊆ I(NT )
β+ε . (6.19)
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By definition,

1

NT

∑
i∈I(NT )

β′

|hi|2 =
1

NT

NT∑
i=1

|hi|2I
[
|hi|2 ≥ ζ(β′)

]
. (6.20)

Applying the strong law of large numbers to the right-hand side of (6.20) we get

1

NT

∑
i∈I(NT )

β′

|hi|2
a.s.−→

NT ↑∞

∫ ∞
ζ(β′)

ζdF|h|2(ζ). (6.21)

Thus,

1

NT

∑
i∈I(NT )

β−ε

|hi|2
a.s.−→

NT ↑∞

∫ ∞
ζ(β−ε)

ζdF|h|2(ζ), (6.22)

and

1

NT

∑
i∈I(NT )

β+ε

|hi|2
a.s.−→

NT ↑∞

∫ ∞
ζ(β+ε)

ζdF|h|2(ζ). (6.23)

Applying the set inequalities in (6.19), we obtain that

lim sup
NT ↑∞

1

NT

∑
i∈I(NT )

|hi|2 ≤ lim
ε↓0

∫ ∞
ζ(β+ε)

ζdF|h|2(ζ)

=

∫ ∞
ζ(β)

ζdF|h|2(ζ) (6.24)

and

lim inf
NT ↑∞

1

NT

∑
i∈I(NT )

|hi|2 ≥ lim
ε↓0

∫ ∞
ζ(β−ε)

ζdF|h|2(ζ)

=

∫ ∞
ζ(β)

ζdF|h|2(ζ) (6.25)

Using the fact that for convergent sequence, lim sup = lim inf = lim and Eqs. (6.24) and

(6.25), we obtain

lim
NT ↑∞

∑
i∈I(NT )

|hi|2 =

∫ ∞
ζ(β)

ζdF|h|2(ζ) (6.26)

In order to have finite
∫∞
ζ(β)

ζdF|h|2(ζ), the condition E(|h|2) <∞ is sufficient because∫∞
ζ(β)

ζdF|h|2(ζ) ≤
∫∞

0
ζdF|h|2(ζ) = E(|h|2). 1

1In practice, real-world channels have bounded link power gains.
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Now we calculate the asymptotic limit for the particular case of Rayleigh fading. The

magnitude square of the random channel vector whose probability distribution is complex

Gaussian, will be distributed according to an exponential distribution. We assume that

the channel power is unity because the variance of real and imaginary parts of the complex

Gaussian is assumed to be half, i.e., σ2
h = 1. Thus, the distribution function of the channel

power gain |h|2 denoted by F|h|2(ζ) in our case may be expressed as follows

F|h|2(ζ) = 1− e−ζ ζ > 0 (6.27)

Substituting the distribution in Eq. (6.27) into Eq. (6.14), we obtain the following limit:

1

NT

∑
n∈I(NT )

|hi|2
a.s.−→

NT ↑∞

Nc

NT

[
1− ln

Nc

NT

]
(6.28)

Thus, the asymptotic channel capacity may be expressed as follows:

C − log2(γNT )
a.s.−→

NT ↑∞
log2 (β(1− ln(β))) , (6.29)

where γ = P
σ2
n
.

The above limit is significant because it enables us to estimate the capacity of a system

which uses the best channel gains to do beamforming under finite RF chains constraint.

This capacity limit is independent of the channel gains which enables us to predict the

capacity of such a system without the knowledge of best channel gains using Eq. (6.29).

Remark. For a target capacity and fixed number of transmit antennas, our proposed

capacity deterministic equivalent enables us to calculate the required number of RF chains

to achieve the target capacity asymptotically.
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6.4 Lower and Upper Bounds on Asymptotic Limit

The asymptotic limit in Eq. (6.14) can be lower and upper bounded for Rayleigh fading

as follows, ∫ ∞
ζ(β)

ζdF|h|2(ζ) =

∫ ∞
ζ(β)

ζf|h|2(ζ)dζ (6.30)

≥ ζ(β)

∫ ∞
ζ(β)

f|h|2(ζ)dζ (6.31)

= ln
1

β

∫ ∞
ln 1
β

e−ζdζ (6.32)

= β ln
1

β
(6.33)

Thus, a lower bound can be calculated as follows,

β ln
1

β
≤ 1

NT

∑
i∈I(NT )

|hi|2 as NT ↑ ∞ (6.34)

In order to calculate an upper bound of the asymptotic limit, it can be observed that the

asymptotic limit is in fact the partial mean of a positive random variable which may be

upper bounded by the statistical mean of the underlying random variable.∫ ∞
ζ(β)

ζdF|h|2(ζ) =

∫ ∞
ζ(β)

ζf|h|2(ζ)dζ (6.35)

≤
∫ ∞

0

ζf|h|2(ζ)dζ (6.36)

= 1 (6.37)

Thus, the upper bound can be calculated as follows.

1

NT

∑
i∈I(NT )

|hi|2 ≤ 1 (6.38)

From Eq. (6.34) and Eq. (6.38), we obtain the following

β ln

(
1

β

)
≤ 1

NT

∑
i∈I(NT )

|hi|2 ≤ 1 (6.39)
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The above equation can be expressed in terms of system parameters as follows.

Nc ln

(
NT

Nc

)
≤

∑
i∈I(NT )

|hi|2 ≤ NT (6.40)

Substituting Eq. (6.40) into Eq. (6.12), we get the following capacity bounds,

log2

(
1 + γNc ln

(
NT

Nc

))
≤NT C∗ ≤NT log2 (1 + γNT ) (6.41)

where C∗ is the asymptotic deterministic value of capacity of the considered system.

6.5 Numerical Results

In this section, numerical experiments are conducted to verify the large system analysis

and associated bounds in the previous sections. In all the results, link and noise power

are assumed to be unity, i.e., σ2
h = σ2

n = 1 and SNR is the transmit SNR.

Fig. 6.2 demonstrates how the channel capacity in Eq. (6.12) randomly varies around

the asymptotic mean value of channel capacity in Eq. (6.29) as Nc, NT grow large while

maintaining fixed ratio β = Nc
NT

. In this figure, we use one hundred realizations of the

channel vector h for a particular value of SNR. It can be observed from the figure that the

deviations of the random capacity values are centered on the asymptotic value. In Fig.

6.3, the randomly generated capacity values are compared with the asymptotic value for

NT = 500 while maintaining fixed ratio of β = 1
5
. It can be noticed easily from the figures

that the spread of the random capacity values around the asymptotic value for finite Nc

and NT start decreasing as NT increases while β is held fixed. Specifically, for NT = 500

and β = 1
5
, the randomly generated values are very close to the asymptotic value. Thus,

law of large number’s analysis enables us to estimate the channel capacity and provides

us insights into key system parameters.

In Fig. 6.4, the upper and lower bounds on the asymptotic limit are plotted for

NT = 500 and β = 1
5
. All the randomly generated capacities lie in the gap between lower
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Figure 6.2: Comparison of randomly generated Capacity and Asymptotic Capacity

for β = 1
5 and NT = 50

and upper bounds.

6.6 Conclusion

In this chapter, we have provided an asymptotic limit of the normalized channel power

gain of the antenna selection based beamforming in massive MISO using the strong law

of large numbers. It is shown that the deterministic equivalent specifically in case of

Rayleigh fading channel only depends on the ratio of the total number of RF chains to

the total number of transmit antennas. Our proposed deterministic equivalent leads to

important insights into the system’s behaviour. The proposed expression is independent
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Figure 6.3: Comparison of randomly generated Capacity and Asymptotic Capacity

for β = 1
5 and NT = 500

of the channel realizations and can be used to simulate the considered system’s behaviour

without carrying out the extensive Monte Carlo simulations. More importantly, the pro-

posed capacity deterministic equivalent enables us to compute the required number of

RF chains for a given number of transmit antennas and target capacity asymptotically.

The capacity performance of the antenna selection is difficult to study for finite dimen-

sions but becomes feasible by investigating our proposed capacity approximation in the

regime of large system dimensions. Numerical results have validated the accuracy of our

proposed limit for relatively small Nc, NT as well. We would like to emphasize that our

proposed upper bound holds for arbitrary fading channels as well under the condition of

finite power channel gains.
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Chapter 7

Beam Alignment Schemes for

Millimeter-Wave Massive MIMO

systems under RF Chains Constraint

A mmWave massive MIMO system is a strong candidate for delivering gigabits-per-second

throughputs due to abundant unlicensed spectrum in the mmWave band. Owing to enor-

mous vacant bandwidth, mmWave massive MIMO has potential to deliver huge through-

puts under the constraint of RF chains. To cope with the incurred path loss at mmWave

frequencies, mmWave massive MIMO systems will deploy high-gain electronically steer-

able directional antennas. Due to pencil-sharp narrow beams produced by high-gain

antennas, beam alignment problem becomes much more crucial. In this chapter, we focus

on investigating beam-alignment problem in mmWave massive MIMO systems under RF

chains constraint.

This chapter is organized as follows. Section 7.1 provides motivation and the related

work. Section 7.2 presents the system modeling of the continuous-time mmWave link.

Section 7.3 illustrates the problem statement of the mmWave Beam Alignment problem.

123
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Section 7.4 provides algorithms for threshold based hierarchical search. Section 7.5 en-

lightens the statistical analysis of beam misalignment. Section 7.6 presents the numerical

experiments and simulation results and section 7.7 concludes the chapter.

7.1 Motivation and Related Work

Owing to the spectrum scarcity in the lower-frequency bands, it is recently envisaged to

use the huge bandwidths offered by the mmWave spectrum for future cellular systems and

wireless local area networks [75]. Most past research was aimed at enhancing link spec-

tral efficiency by employing orthogonal frequency-division multiplexing (OFDM), MIMO,

efficient channel coding and interference management because limited spectrum had been

licensed for commercial cellular bands. To improve the area spectral efficiency, network

densification has also been an active area of research which encompasses the deployment

of heterogeneous infrastructure (picocells, femtocells, relays, distributed antennas). How-

ever, increased area spectral efficiency does not suffice to meet the high per-user data rate

requirement. As there is little scope for further improvement at the physical layer and the

widespread deployment of massive MIMO and heterogeneous networks is a daunting chal-

lenge due to many practical problems, these proposals on their own may not be sufficient

to satisfy the huge traffic demands induced by the bandwidth-hungry web applications of

smart phones and tablets. A mmWave cellular system, which operates in the 10-300 GHz

band, is a desirable candidate for fifth-generation cellular systems because it has enormous

vacant spectrum bands capable to support multiple gigabit-per-second data rates.

The mmWave band has been successfully employed to offer gigabits-per-second data

rates in fixed outdoor wireless systems [76] and indoor wireless systems [77, 78]. The

recent improvements in mmWave hardware and the less-congested spectrum in mmWave

bands have ignited the interest of wireless industry to explore the mmWave band for
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outdoor cellular systems [79, 80]. In order to realize mmWave systems in practice, the

propagation characteristics and channel impairments of mmWave band must be dealt with

properly. The bottleneck in mmWave propagation is an orders-of-magnitude increased

path loss which is caused by the ten-folds increase in carrier frequency compared to legacy

microWave cellular systems which can be mitigated by keeping the antenna aperture fixed

at both transmit and receive sides. Additionally in mmWave bands, scattering is limited

which reduces the available diversity and non-line-of-sight (NLOS) paths are weaker which

leads to blockage and consequently, coverage holes become much more pronounced [81].

Another considerable impairment in mmWave bands is high noise power which stems

from the large width of spectrum bands. As a result, mmWave systems are noise-limited

in constrast to legacy cellular systems which are interference-limited. To overcome this

problem, high SNR at the receiver can only be achieved by deploying high-gain electron-

ically steerable directional antennas.

High-gain antennas can be realized by packing an orders-of-magnitude more antenna

elements than current cellular arrays in arrays of practical dimensions, thanks to the

small wavelengths associated with the mmWave band. Large arrays not only provide

the huge beamforming gain to cope with the huge path loss but also support multiple

data streams (or multiple single-antenna users) by deploying multiple RF chains which

would potentially improve spectral efficiency and enable mmWave systems to approach

the network capacity. However, owing to the high power consumption of mixed signal

components and costly RF chains, digital baseband beamforming is difficult for practical

realization. For single stream transmission, analog beamsteering is a practical choice

whereby all the antennas are connected to a single RF chain via a network of low-cost RF

phase shifters [82–85].

In order to reap the benefits of digital beamforming and analog beamsteering simulta-

neously, a hybrid precoding was proposed which facilitates multi-user/multi-stream trans-
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Figure 7.1: Analogue versus Digital versus Hybrid Architectures [86]

mission where a few RF chains are tied to huge array of antennas via a network of cheap

phase shifters [87, 88]. It has been developed primarily to support spatial multiplexing

while taking into account the RF chains’ limitation in mmWave massive MIMO realm.

The term precoding implies the use of multiple beamforming vectors, one for each spatial

direction. In hybrid precoding, most of precoding is performed in RF analogue domain

while some precoding is performed in baseband digital domain. Let W be precoding

matrix then it can be decomposed as W = WrfWbb where Wrf is an NT × Nc matrix

corresponding to analogue beamforming coefficients andWbb is anNc×Ns matrix of digital

precoding coefficients. The parameter Nc specifies the number of RF chains and the num-

ber of spatial streams to be multiplexed, Ns, must satisfy the constraint Ns ≤ Nc. Thus,

Nc is the so-called DOF for the spatial streams. The design of precoding matrices under

the constraint of constant envelope phase shifters is an interesting problem. However, if

designed properly results in comparable performance to unconstrained digital precoding.
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Some design approaches aim at exploiting the sparsity in mmWave channel due to few

multipath components (MPCs). Fig. 7.1 illustrates the architectures of analogue, digital

and hybrid beamforming schemes. Regardless of hybrid precoding, entry-wise channel

estimation of mmWave channel matrix is time consuming due to massive antenna array

and there is a significant room for devising new time-efficient beam alignment algorithms

which align the beam of the BTS to the angular-direction from which user’s signal is

arriving.

Exploiting the fact that mmWave channel is sparse in the angular domain owing to

limited scattering in this band, compressive sensing tools have been leveraged to estimate

the steering angles of different MPCs [87,89–92]. In [90], the authors propose a new adap-

tive compressive sensing (ACS) algorithm to estimate the mmWave channel parameters

with low training overhead considering single-user multi-stream transmission. A hier-

archical codebook is designed to construct training beamforming vectors with different

beamwidths for hybrid precoding. Simulation results are used to show that the proposed

algorithm achieves precoding gains comparable to exhaustive training algorithms. In [91],

multi-user downlink transmission in mmWave realm is proposed and evaluated. The pro-

posed scheme is based on CS channel estimation and conjugate analogue beamforming.

Specifically, they show that the number of measurements need to be optimized in order to

account for tradeoff between channel estimation accuracy and the training overhead. The

approach in [92] is to append virtual antenna elements into physical antenna array which

improves upon estimation accuracy of the ACS algorithm of [90]. The authors propose

a compressive angle estimation method with less training overhead and delay than the

ACS algorithm. Particularly, the proposed algorithm eliminates the constraint on resolu-

tion posed by the number of antenna elements in physical array thereby achieving better

resolution without any physical change in size of array.

For the analog beamsteering architecture, two types of methods are adopted. In
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[82, 83, 93, 94], an iterative beam training method is applied whereby the beamsteering

vector on one end (BTS or MS) is alternately optimized by fixing the beamsteering vector

on the other end, and this approach is repeated iteratively to enhance the beamforming

gain over prior iterations. However, in [84, 85, 95] a beamforming codebook approach

is followed where the angular search space is partitioned into multiple bins and each

bin corresponds to a codeword in the beamforming codebook. The best transmit/receive

beam is found by traversing through the beamforming codebook. Both the methodologies

are applicable in different scenarios with their own advantages.

In this chapter, we focus on single-stream beamforming which has been shown to be

capacity achieving in the very low SNR case [18]. Furthermore, single-stream beamform-

ing can be modified to the more practical hybrid precoding case [90]. For the beamforming

codebook approach, an exhaustive search might be applied whereby all the beam direc-

tions are searched sequentially in the angular domain and the best pair of transmit/receive

beamforming codewords are determined. This sequential approach gives very high res-

olution at the cost of prohibitive time complexity as the number of beam directions is

typically high due to required high resolution in mmWave band. In order to minimize the

time complexity, a hierarchical codebook approach had been adopted in [22,84,85,96,97].

In hierarchical codebook approach, search process is executed in multiple stages. Ini-

tial stages have few beamforming vectors corresponding to low resolution beams and as

the stage number increases, the number of beamforming vectors increases to take into

account higher resolution beams. In each stage, the best beam direction is chosen and

based on that chosen beam, the corresponding angular region is further partitioned into

high resolution beams and beam search process is continued.

The performance evaluation of the hierarchical codebook is impacted by the radiation

pattern of codebook beamforming vectors. The probability of beam misalignment and the

search time can be minimized by effective design of the hierarchical codebook. In [84,85],
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it is proposed to choose wider beams to minimize the search time, however, the design

methodologies for codebook are not investigated. In [96], the wider beams are designed

by the superposition of two narrower beams but the resultant beamforming vectors do

not admit constant envelope constraint. In [22], a sub-array approach is followed which

broadens the beamwidth by pointing the beams of subarray in slightly-gapped directions

but a complete hierarchical codebook is not explicitly designed, and this approach might

not be able to design very wide beams in initial low resolution stages. In [90], hybrid

precoding was employed to construct negligible side-lobe beams by exploiting ZF struc-

ture but deep sinks appear in the beam zone if the number of RF chains are not large

enough. In [97], a binary search tree is employed for hierarchical codebook search and

wider beams are generated by deactivation (or turning off of) antennas, however, they

do not offer beam misalignment analysis. In [23], the authors state two basic criteria for

arbitrary hierarchical codebook designs, and proposed an efficient hierarchical codebook

by exploiting sub-array and antenna deactivation simultaneously. They do not outline

complete algorithms to perform beam search and they do not offer beam misalignment

analysis.

In this chapter, we propose two novel algorithms namely iterative-thresholding hier-

archical search (ITHS) and refined-hierarchical search (RHS) in which all the antennas

are activated in all training slots to reap the benefits of huge beamforming gain equally

in all stages. Furthermore, we do complete analysis of beam misalignment exploiting

the orthogonality among the columns of beamforming codebook. We propose a Bayesian

approach which offers better performance in terms of beam-alignment over traditional

beamforming energy based methods. Analytical expression for probability of beam mis-

alignment for conventional exhaustive search estimator and for a newly proposed Bayesian

estimator are derived and compared with simulation error-rates and are found to be rea-

sonably accurate. Numerical experiments and simulations are conducted to corroborate
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the superiority of proposed algorithms over existing hierarchical and exhaustive search.

It is pertinent to mention here that the scattering properties of the uplink and downlink

modes are quite different. In urban environments, the scattering environment of the

mobile station is typically rich. This is due to the abundance of objects surrounding

the mobile station in urban settings. On the contrary, the scattering environment of the

base station is assumed to be limited scattering. This assumption stems from the fact

that the base stations are typically mounted quite high. Consequently, direction-of-arrival

estimation is practically done at the base station to exploit the sparse structure offered

by the line-of-sight model of the uplink mode. Fig. 7.2 shows a multi-user setup in which

a BTS electronically aligns the beams towards multiple users using an antenna array

at the BTS. In the next section, we focus on the system modeling of continuous-time

point-to-point mmWave link.

7.2 System Modeling of continuous-time mmWave

Link

We consider a single cell single-input multiple-output (SIMO) wireless system operating

in the mmWave band. The MS is assumed to have one omni-directional antenna and the

BTS is equipped with NT antenna elements uniform-linear array (ULA) and is receiving

the signal transmitted by MS. Consider a continuous-time baseband uplink signalling

transmission in which MS is transmitting N pilot symbols in a fixed amount of time T

to the BTS. Let y(t) ∈ CNT represent the signal received by the BTS which has passed

through the wireless channel h(φ) ∈ CNT then the signal received at the BTS may be

expressed as follows.

y(t) =
√
ρ
N−1∑
k=0

h(φ)s

(
t− k T

N

)
+ n(t) 0 < t < T (7.1)
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Figure 7.2: A multi-user mmWave setup in which a BTS electronically aligns the

pencil beams towards multiple users using an antenna array during beam-alignment

where n(t) ∈ CNT is the circularly-symmetric complex AWGN, n ∼ CN (0, I), s(t) is

the baseband transmitted pilot waveform of unit amplitude and time support of width

T
N

where T is the total transmission time allocated for beam alignment phase. Here

h(φ) represents the directional transmission channel vector which is characterized by

the physical direction-of-arrival (DOA) φ of the signal coming from the MS. ρ models

the transmit SNR minus the path-loss and other attenuation factors like rainfall and

penetration losses. In this work, with slight abuse of terminology we will refer to the

parameter ρ as received SNR and will assume that it takes on values less than unity for

high path-loss and other attenuation factors.

In a typical mmWave link, the highly directional and quasi-optical nature of electro-

magnetic wave propagation leads to few multi-path components in the mmWave band.

A mmWave channel comprises a line-of-sight (LOS) propagation component and a set of

few single bounce non-line-of-sight (NLOS) propagation paths. Consequently, the wire-

less channel in mmWave band is considered to have limited scattering hence it is modeled
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as a sparse channel in terms of multi-path components. The well-known sparse channel

model in terms of BTS steering vectors (a.k.a. array response vectors) for ULAs can be

expressed as follows.

h(φ) =
√
NTρa(φlos) +

√
NT

L∑
j=1

√
ρja(φ

(j)
nlos) (7.2)

where

a(φ) =
1√
NT

[
1 ej2πδ cos(φ) · · · ej2π(NT−1)δ cos(φ)

]T
(7.3)

Here φlos represents the DOA of the LOS path, φ
(j)
nlos represents the physical direction-

of-arrival of j-th NLOS path and δ = d
λ

denotes the inter-antenna element spacing d

normalized by the wavelength. In this work, we assume super-critical spacing, i.e., δ = 1
2

[18]. It is noteworthy that the array steering vector in Eq. (7.3) has its power normalized

to unity and hence the normalization constant
√
NT is incorporated in Eq. (7.2). In

general, the DOA of LOS or NLOS path takes on value in the angular range (φlow, φhigh).

LetANT denote the set of all the steering vectors in the physical angular range (φlow, φhigh),

then

ANT =
{
a(φ) ∈ CNT : φlow < φ < φhigh

}
(7.4)

If a mmWave channel has LOS link, then the NLOS paths have marginal effect on the

received signal. This owes to the fact that the path loss of the NLOS propagation paths is

much higher in comparison to that of LOS propagation paths ; the link power associated

with the NLOS paths is typically 20 dB weaker than that of LOS path [98]. When there is

no LOS path due to severe blockage, it is argued that the mmWave communication may

take place through a NLOS path with highly directional beamsteering [98]. In both cases,

very few propagation paths exist and as a result, in many research works for mmWave

communication [99–106], single-path channel model has been adopted by assuming one

path which may be dominant LOS path if it exists or a dominant NLOS path if a LOS
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path does not exist due to severe blockage. In order to render the problem tractable and

gain insights into beam alignment in highly-directional mmWave MIMO, we adopt the

single-path channel model considering the dominant LOS path. In contrast to existing

literature, we do not assume that the dominant path gain is Gaussian. By taking into

account all the stated assumptions, the mmWave channel model can be expressed as

follows.

h =
√
NTρa(φlos) (7.5)

Similar single-path channel model has been adopted previously in [99,100] and was termed

as uniform-random single-path (UR-SP) channel model. It can be noticed that the power

of the UR-SP channel model can be obtained from E [‖h‖2] = NT . Hence the channel

power gain (or the array gain) increases linearly with NT . The same linear increase in

channel power gain is typically observed in the rich scattering Rayleigh fading channel

model where h ∼ CN (0, I). Therefore, the power radiated by the MS in the space is

concentrated by the ULA mounted on the BTS. In the light of these assumptions, we can

model our input-output relationship as follows.

y(t) =
√
NTρ

N−1∑
k=0

a(φ)s

(
t− k T

N

)
+ n(t) (7.6)

The bandwidth of the baseband pulse is proportional to N
T

which can be transmitted

easily thanks to the huge bandwidths offered by mmWave systems.
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7.3 Problem Statement of the mmWave Beam Align-

ment

7.3.1 Analogue Beam Steering

In single-stream transmission, the BTS employs an antenna array to receive one data

stream. An analogue beamforming vector is one where all its weights couple one RF

chain with all antennas and all the weights have constant-amplitude constraint. Let wrf

denote the analogue beamforming vector, then the SNR at the output of beamformer can

be expressed as follows.

SNR(φ) = ρ|w†rfh(φ)|2 (7.7)

The primary aim of analogue beamforming is to maximize the SNR at the output of

beamformer. When the channel is a dominant LOS channel as discussed earlier or when

the number of scatterers is small, it is reasonable to construct the beamforming vectors

in order to enhance the beamforming gain in a particular direction φ. This process is

termed as “beamsteering” in the literature. The fundamental approach of performing

beamsteering is to adjust the beamforming vector phase (φk) to match the array response

vector of the channel vector in Eq. (7.5). This is achieved by setting wrf = a(φk) and by

varying φk, we choose the φk which is close to the actual DOA φ. This process generates

a radiation pattern with main lobe pointing in the actual DOA.

Other codebook designs that trade main lobe directivity with side-lobe level are only

possible when we have variable-gain amplifiers but this requires a separate RF chain for

each antenna to simultaneously adjust the amplitudes of complex weights of beamform-

ing vector from the baseband. Another approach to shape the beam-pattern is hybrid

beamforming in which multiple RF chains and additional processing layer at baseband is

required. In this approach, the number of RF chains is less than the number of transmit
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antennas and are higher than the number of users in the system. In hybrid beamforming,

all the beamforming is split up into analogue and digital beamforming where analogue

beamforming is done at RF level and digital beamforming is done in the baseband. Hy-

brid beamforming offers performance very close to digital beamforming, however, for

single user analogue beamforming performance suffices so henceforth in this chapter, we

focus on beam-alignment algorithmic design under analogue beamforming.

In order to design cost-effective single-user systems, we restrict ourselves to constant-

envelope low-cost RF phase shifters and design analog beamsteering algorithms under

this constraint without additional RF chains and baseband digital beamforming as one

RF chain is required for one user in the single user setting.

The processed signal rk(t) at the output of analogue beamformer may be expressed as

rk(t) = a(φk)
†y(t) k = 0, · · · , N − 1

kT

N
< t < (k + 1)

T

N
(7.8)

It is well known that matched-filter or correlator maximizes the SNR so we use a base-

band matched-filter which is used to collect the energy in the pilot waveform. The pilot

waveform is assumed to be known at the BTS. Let qk denote the output of baseband

matched-filter, then the output of baseband matched-filter can be expressed as follows.

qk =

∫ (k+1) T
N

k T
N

rk(t)s

(
t− k T

N

)
dt (7.9)

Let qk = mk + nk where mk represents the signal part and nk represents the noise part,

then

mk =
√
ρNTa

†(φk)a(φ)

∫ (k+1) T
N

k T
N

s2

(
t− kT

N

)
dt (7.10)

=
√
ρNT

T

N
a†(φk)a(φ) (7.11)

nk = a†(φk)

∫ (k+1) T
N

k T
N

n(t)s

(
t− kT

N

)
dt (7.12)

In general, the number of transmissions can be arbitrarily large. However, in case of

mutually orthogonal beamforming vectors, the maximum value of N is equal to number
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of antennas NT . Henceforth, in this work we assume N = NT in order to ensure mutual

orthogonality of beamforming vectors unless stated otherwise. In this case, it is evident

that as the pilot transmission time is fixed, increasing the number of beamforming vectors

results in a reduction of signal part’s energy which offsets the beamforming gain. It is

noteworthy that the beamforming gain due to increased N is cancelled by the power loss

from shorter pulse-width. Thus, as we go to higher resolutions, the energy collected per

beam reduces due to shorter time support of pilot waveform. However, as the noise power

is also reduced due to shorter observation window, the overall SNR after beamforming

stays constant for a given pilot transmission time.

Since n(t) is a linear functional of Gaussian process and a(φj) has complex exponential

entries due to channel’s Vandermonde structure, it follows that n′js admit white Gaussian

distribution. The statistical mean of the processed noise can be expressed as follows.

E [nk] = a†(φk)

∫ (k+1) T
N

k T
N

E [n(t)] s

(
t− kT

N

)
dt = 0 (7.13)

where the last equality follows from the assumption that n(t) is zero-mean Gaussian

process. It is in order to compute the covariance of the noise samples ni, nj on two

different time epochs.

Cov(ni, nj) = E
[
nin

†
j

]
(7.14)

= E

[
a†(φi)

∫ (i+1) T
N

i T
N

n(t)s

(
t− i T

N

)
dt

∫ (j+1) T
N

j T
N

n†(τ)s

(
τ − j T

N

)
dτa(φj)

]

= a†(φi)a(φj)

∫ (i+1) T
N

i T
N

∫ (j+1) T
N

j T
N

δ(t− τ)s

(
t− i T

N

)
s

(
τ − j T

N

)
dtdτ (7.15)

=
T

N
δij (7.16)

Thus, the noise samples {ni}N−1
i=0 at the output of baseband matched-filter are temporally

uncorrelated and zero-mean. As a result, the noise is temporally white with variance T
N

per sample. Thus, the noise sample’s energy also reduces as we increase the number of
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beamforming vectors. Consequently, the energy-to-noise ratio at the output of baseband

matched filter can be increased by either increasing the pilot transmission time or by

increasing the transmit energy for the case of mutually orthogonal beamforming vectors

at the BTS.

7.3.2 Review of Code-Book Design for Hierarchical Search

Most of the earlier work on beam alignment is directed towards multi-resolution hierarchi-

cal schemes [90,97,107] where in each stage of hierarchical framework, the resolution im-

proves upon that of the preceding stage. Let θ = cos(φ) denote the spatial frequency(aka

directional cosine) corresponding to DOA φ [108] where φ ∈ (0, π) covers the physical

angular range and correspondingly θ ∈ (−1, 1) covers the one-sided spatial horizon as the

mapping between the physical angle and spatial frequency is one-to-one. For 1 ≤ s ≤ S,

the s-th stage codebook W(s) =
{
w

(s)
1 , · · · ,w(s)

|W(s)|

}
is constructed in such a way so as to

cover the spatial horizon (−1, 1) where |W(s)| denotes the cardinality of s-th stage code-

book which is the total number of beamforming vectors in s-th stage. As the resolution

of s-th stage’s beamforming vector is higher than that of (s− 1)-th stage’s beamforming

vector so the cardinality of successive stage is greater than that of preceding stage, i.e.,

|W(1)| < · · · < |W(S)|. As the spatial frequency range of the s-th stage codebook is parti-

tioned into |W(s)| spatial intervals where each beamforming vector w
(s)
i covers a specific

spatial interval AoA
(s)
i ⊂ (−1, 1) and the union of all such intervals span the entire search

space, i.e.,

|W(s)|⋃
i=1

AoA
(s)
i = (−1, 1). Let AoA

(s)
i denote the spatial region covered by the

i-th beamforming vector of s-th stage and AoA(s) denote the total spatial zone searched

in the s-th stage, then

AoA
(s)
i =

{
θ : θ ⊂ (−1, 1),

K⋃
i=1

AoA
(s)
i = AoA(s)

}
(7.17)
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where K is the number of beamforming vectors sounded in each stage. The length of the

spatial interval AoA
(s)
i covered by any beamforming vector in s-th stage or the beamwidth

of the radiation pattern generated by the i-th beamforming vector in the s-th stage can

be approximated as follows.

π(AoA
(s)
i ) =

∫
Dθ

I(θ ∈ AoA(s)
i )dθ =

2

2s
(7.18)

where Dθ = {θ : −1 ≤ θ ≤ 1} is the total support in the spatial domain and I(·)

denotes the indicator function and π(·) denotes the Lebesgue measure. In the S-th stage,

when 2S = N , the beamwidth of each codeword becomes 2
N

which is the beamwidth of

orthogonal beamforming vectors. Thus, as the stage of beamforming vector increases, the

angular region covered by it decreases so it is termed as multi-resolution beamforming [90].

An example of radiation patterns in different stages of multi-resolution beamforming

is given in Figs. 7.3-7.8 for K = 2 and N = 8. It is clear that the side-lobe levels are high

in radiation patterns corresponding to physical angle and those corresponding to spatial

frequency are low. The fundamental problem with hierarchical search is that in presence

of noise, side-lobes enhance the noise and once we make decision in favour of a side-lobe,

then due to error-propagation effect, we make wrong decisions in subsequent stages as the

decision metric in all the existing hierarchical schemes is power. In each stage, we select

the beamforming vector whose output power is higher than its competitors. Up till now,

all the research is focused on the design of radiation patterns to minimize the side-lobe

levels.

The problem in mmWave beam alignment is the error propagation effect which arises

when low resolution wide beams are used in initial stages of hierarchical search. Fur-

thermore, as less time is spent in initial stages, the probability of beam misalignment

enhances in initial stages. In the next section, we propose two hierarchical schemes in

which we use fixed resolution beams in all the stages of hierarchical search instead of us-

ing the multi-resolution approach where initial stages use low-resolution wide beams and
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the final stage uses high-resolution narrow beams. Moreover, we allocate more training

time in the initial stages in order to find the correct region in which MS lies with more

reliability.
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7.4 Algorithms for Threshold based Hierarchical Search

In order to cope with the problem of enhanced sidelobe levels, we propose two novel

hierarchical search schemes in which all the antennas are activated in all stages. We call

Algorithm 1 an “iterative-thresholding hierarchical search” scheme in which the threshold

is modified in each stage of hierarchical search. In particular, the BTS spends one half of

pilot transmission time on testing the N
2

beam directions in (−1, 0) so as to get the reliable

estimate of MS’s DOA in initial stages. The average energy corresponding to all the test

directions is compared with a threshold which is calculated from received SNR, number

of directions tested and the total number of antennas. If the average energy in first stage

is above the threshold, then first half of (−1, 0) is searched again via N
4

beam directions

otherwise the first half of (0, 1) is searched via N
4

beam directions. In each stage, the

number of directions tested is halved until we end up with only one test beam which is

chosen if it contains energy above the threshold otherwise its competitor is chosen.
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Algorithm 2 is based on the refinement of searched beam directions via an additional

search round cycle. Particularly, two cycles of half a second duration are employed to

obtain a refined estimate of the MS’s DOA. In first round cycle, all the beams are tested
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at the BTS, however, only a subset of test directions which contain energy above a pre-

set threshold are chosen for next cycle. In the next cycle, the remaining second half is

consumed for testing the chosen search directions in the previous round and the one with

the highest energy is selected. In the worst case, when all the beams in first round cycle

are below the threshold, the maximum of all the beams is selected.
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Algorithm 2 Iterative-Thresholding Hierarchical Search for LOS mmWave Channel

1: Input: {NT , N,y(t)}

2: Output: φ̂

3: Initialize the extreme indices of beamforming vectors, :

4: Start← 0, End← N
2

5: Initialize loop controlling parameters : P← NT , kp ← 2.

6: while P > 1 do

7: ∆← End− Start + 1

8: for i = Start→ End do

9: Record energy outputs of baseband matched-filter

10: ui ← |w†iy(t)|2 1
kp∆

11: end for

12: Average← 1
∆

End∑
i=Start

ui

13: η ← ρNT
2kp∆2

14: if Average > η then

15: if Start = End then

16: Result← Start

17: else

18: End← End− P
4

19: end if

20: else if Start = End then

21: Result← End + 1

22: else

23: End← End + P
4

24: Start← Start + P
2

25: end if

26: P← P
2
, kp ← 2× kp

27: end while

28: φ̂← φbs(result)
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Algorithm 3 Refined-Hierarchical Search for LOS mmWave Channel

1: Input: {ρ,N,y(t)}

2: Output: φ̂

3: Initialize the pulse width of s(t) to be 1
2N

.

4: Initialize the threshold for Refinement : η ← ρ
10

.

5: for i = 1→ N do

6: Record energy outputs of baseband matched-filter.

7: ui ← |w†iy(t)|2 1
2N

8: end for

9: Find indices of energy entries greater than threshold.

10: indices← find(ui > η).

11: Calculate the length of indices vector.

12: L← length(indices)

13: if L > 0 then

14: for j = 1→ L do

15: tj ← |w†indices(j)y(t)|2 1
2L

16: end for

17: l← arg max
j

tj

18: index← indices(l)

19: else

20: t← u

21: index← arg max
j

tj

22: end if

23: φ̂← φbs(index)
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7.5 Statistical Analysis of Beam Misalignment

In order to do statistical analysis, it is assumed that DOAs can only take values on a

grid of N points uniformly sampled from (−1, 1), i.e., θ ∈ {−1 + 2k−1
N
}, k = 1, 2, · · · , N .

In practice, the DOAs are continuous-valued, so off-grid schemes like sparse regularized

total-least squares filtering or continuous-basis pursuit can be invoked to mitigate the grid

quantization errors arising due to off-grid DOAs [109,110]. The following lemma illustrates

that the beamforming vectors are mutually orthogonal if their spatial frequencies are

outcomes of uniform sampling of the underlying search space. Similar result exists in [18]

but are presented here for illustrative purposes.

Lemma 2. If the spatial frequencies of beamforming steering vectors are chosen by uni-

formly sampling the search space in spatial frequency domain (−1, 1) with spatial resolu-

tion proportional to integral multiple of 2
N

, then all the beamforming steering vectors are

mutually orthogonal.

Proof

Let a(φ1) and a(φ2) be the beamforming steering vectors corresponding to physical

angles φ1 and φ2 then

a†(φ1)a(φ2) =
1

N

N−1∑
m=0

exp(jmπ(cos(φ1)− cos(φ2))) (7.19)

=
1

N

1− exp(−jπNT (cos(φ2)− cos(φ1)))

1− exp(−jπ(cos(φ2)− cos(φ1)))
(7.20)

⇒ |a†(φ1)a(φ2)| = 1

N

∣∣∣∣sin(πN
2

(cos(φ2)− cos(φ1)))

sin(π
2
(cos(φ2)− cos(φ1)))

∣∣∣∣ (7.21)

The absolute value of the cross-correlation will be zero when

πN

2
(cos(φ1)− cos(φ2)) = lπ l ∈ Z (7.22)

⇒ cos(φ2)− cos(φ1) =
2l

N
l ∈ Z (7.23)



146
Chapter 7. Beam Alignment Schemes for Millimeter-Wave Massive MIMO systems

under RF Chains Constraint

Our chosen beamforming directinal cosines have structure

cos(φ2) = −1 +
2k − 1

N
k ∈ Z+ (7.24)

cos(φ1) = −1 +
2m− 1

N
m ∈ Z+ (7.25)

The difference between two directional cosines can be manipulated as follows

cos(φ2)− cos(φ1) =
2(k −m)

N
(k,m) ∈ (Z+,Z+) (7.26)

cos(φ2)− cos(φ1) =
2l

N
l ∈ Z (7.27)

For N = 16, the cross-correlation of the beamforming vectors is plotted versus the dif-

ference of directional cosines. It is clear from the figure that for cos(φ2) − cos(φ1) ={
1
8
, 1

4
, 3

8
, · · · , 1

}
, the beamforming steering vectors are orthogonal. We choose the spacing

between two steering angles to be 1
8

which is minimum to obtain maximum number of

beamforming vectors (N = 16) in the search space (−1, 1) of width 2.

7.5.1 Statistical Analysis for Exhaustive Search

For exhaustive search over all the possible beam alignments, it is assumed that DOAs take

on discrete values as explained in previous subsection and all the possible beam directions

are equiprobable. Moreover, under the assumption of discrete-valued DOAs, we can

exhaustively search in finite number of time slots because the true DOA will align with

only one beamforming vector at the BTS and its cross-correlation with other beamforming

vectors will be very low due to presence of noise despite orthogonality of beamforming

vectors. Furthermore, it is assumed that the signal and noise are statistically uncorrelated

so the process of baseband matched filtering amounts to measuring the energy by taking

the product of instantaneous power with 1
N

when total pilot transmission time is assumed

to be one. Now, the received signal when the transmitted signal’s DOA is taking value
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Figure 7.9: Absolute Cross-Correlation of beamforming vectors plotted verus differ-

ence of spatial frequencies for N = 16

on the i-th point on the grid, can be expressed as follows.

y =
√
ρNa(φi)s+ n (7.28)

At BTS, the received signal is processed through a beamformer and energy is measured

via a baseband matched-filter. After N measurements, the energy outputs
|w†iy|

2

N
are

compared with each other. The energy outputs can be expressed as follows.

|w†iy|2

N
=
|
√
ρNs+w†in|2

N
(7.29)

|w†jy|2

N
=
|w†jn|2

N
∀j 6= i (7.30)

where we have dropped the time dependence with slight abuse of notation. For 1 ≤

j ≤ N , w†jn is complex AWGN with variance 1 (1
2

per real and imaginary dimension).

Let ri = w†iy and rj = w†jy ∀j 6= i, then the envelope of i-th beamformer output

admits Rician distribution and and that of other beamformer outputs {rj}∀j 6=i admit
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Rayleigh distribution. It is well known that the square of Rician distribution follows non-

central chi square distribution with degrees of freedom equal to two and the square of

Rayleigh distribution admits exponential distribution. The PDFs of energies of i-th and

j-th matched filters can be expressed as follows.

fEi(w)=
1

2σ2
exp

(
−Nw + ν2

2σ2

)
I0

(√
Nw

σ2
ν

)
u(w) (7.31)

fEj(z)=
1

2σ2
exp

(
−Nz

2σ2

)
u(z) ∀j 6= i (7.32)

where ν =
√
ρN is non-centrality parameter and σ2 = 1

2
is noise power per dimension at

the output of the matched filter, I0(·) is modified Bessel function of first kind and zero

order and u(·) is Heaviside unit step function. The BTS will make an error in beam

alignment if the energy of the beamformed signal corresponding to the correct direction

becomes less than that of beamformed signals corresponding to other directions. Without

loss of generality, it is assumed that the transmitted signal a(φi)s lies in the 1st bin

of the search space, then the BTS makes a correct decision if {Ej < E1}∀j 6=i. Thus, the

probability of correct decision can be expressed as follows.

Pc = Prob {E2 < E1, · · · , EN < E1} (7.33)

=

∫ ∞
0

Prob
{
E2 < w, · · · , EN < w

∣∣E1 = w
}
fE1(w)dw (7.34)

=

∫ ∞
0

[Prob {E2 < w}]N−1 fE1(w)dw (7.35)

Now, using the CDF of the exponential distribution, we get

Prob {E2 < w} = (1− exp (−Nw))u(w) (7.36)

The application of the Binomial expansion yields,

[Prob {E2 < w}]N−1 =
N−1∑
n=0

(
N − 1

n

)
(−1)n exp (−Nwn) (7.37)
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The probability of the correct decision can be expressed as follows.

Pc =
N−1∑
n=0

(
N − 1

n

)
(−1)n

∫ ∞
0

exp
(
−Nw(n+ 1) + ν2

)
× I0

(
2
√
Nwν

)
dw (7.38)

Substituting Nw(n+ 1) = u and doing some manipulations, we obtain

Pc=
N−1∑
n=0

(
N − 1

n

)
(−1)n

n+ 1
exp

(
−ν2

(
n

n+ 1

))
×
∫ ∞

0

exp

(
−u+

ν2

n+ 1

)
I0

(
2
√
u

ν√
n+ 1

)
du (7.39)

The integrand is the PDF of non-central chi-square with non-centrality parameter ν2

n+1
so

it integrates to unity. Substituting ν2 = ρN , we obtain

Pc =
N−1∑
n=0

(
N − 1

n

)
(−1)n

n+ 1
exp

(
−ρ nN

n+ 1

)
(7.40)

Using Pe = 1− Pc, Eq. (7.41) follows.

Theorem 4. For a spatial frequency resolution of 2
N

, the BTS succeeds in estimating the

beam direction under energy detection criterion with probability of error Pe where,

Pe =
N−1∑
n=1

(
N − 1

n

)
(−1)n+1

n+ 1
exp

(
−ρ nN

n+ 1

)
(7.41)

where ρ is the received SNR.

7.5.2 Bayesian Approach for Beam Alignment

During the beam alignment phase, estimating the direction in which BTS ‘listens’ to

the signal can be performed by designing a N-ary hypothesis testing problem. In prior

literature [90], the beam which has highest power among a set of beams is selected so the

criterion for selection of a beam is signal power at output of beamformer. However, due

to presence of noise in signal, the received power contains noise power which perturbs
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the beams at the output of beamformer in erroneous directions. As a result if a wrong

direction is selected due to noise perturbation, the hierarchical search typically fails due

to error-propagation.

In this section, we propose a Bayesian approach which aims at minimizing the probabil-

ity of estimation error. The Maximum-a-Posteriori (MAP) detector, which is a Bayesian

risk minimizer, boils down to ML detector under the assumption that signal can take on

any direction with equal probability. We begin by formulating the N hypotheses that the

signal can take on any of N directions.

H1 : y =
√
ρNa(φ1) + n (7.42)

... (7.43)

HN : y =
√
ρNa(φN) + n (7.44)

where n ∼ CN (0, I) is the complex AWGN with noise covariance matrix I. Without loss of

generality, we have assumed the pilot symbol to be one. Let all the φi’s be equiprobable,

then the Bayesian detector selects the hypothesis Hi which maximizes the conditional

likelihood function.

Hi = arg max
Hl

fn(y|Hl) (7.45)

= arg max
l

1

det(πI)
exp

(
−
∥∥y −√ρNa(φl)

∥∥2

2

)
(7.46)

Maximizing the log-likelihood function and doing some manipulations lead to following

detector.

Hi = arg max
l
<
(
y†a(φl)s

)
−
√
ρN

2

∥∥a(φl)
∥∥2

2
(7.47)

It can be readily observed from the estimation rule in Eq. (7.47) that the BTS must

measure the received SNR in order to align the beam towards the user. However, due to

the Vandermonde structure of ULA steering vectors, all steering vectors have equal energy,
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thus rendering the second term constant. Consequently, we can simplify the estimation

criterion as follows.

Hi = arg max
l

<
(
y†a(φl)

)
(7.48)

Here we have omitted the pilot waveform as after baseband matched-filtering, all the hy-

potheses acquire same amount of energy inversely proportional to N . Thus, the optimum

detector cross-correlates the received signal with all the candidate beamforming vectors

at the BTS and chooses the one which maximizes the output of cross-correlators. Hence,

the above detector can be interpreted as “beam-correlator” or “beam matched filter” be-

cause it matches the received signal with different potential beamforming vectors. Let

T(y) = R
(
y†a(φl)

)
represent the test statistic under an arbitrary hypothesis then the

conditional test statistic under true hypothesis Hi and the conditional test statistic under

rest of hypotheses can be defined as follows.

Ti(y) := T(y
∣∣Hi) (7.49)

Tj(y) := T(y
∣∣Hj) ∀j 6= i (7.50)

The probability distribution of the conditional test statistic under the true and the rest

of the hypotheses are characterized in the following lemma.

Lemma 3. Under Bayeisan estimation approach, the test statistics of true and false

hypotheses T(y|Hi) and T(y|Hj) ∀j 6= i admit Gaussian distributions which can be

expressed as follows.

Ti(y) ∼ N
(
y;
√
ρN,

1

2

)
(7.51)

Tj(y) ∼ N
(
r; 0,

1

2

)
(7.52)

Proof Under Hi, the cross-correlation between the received signal and transmitted
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signal can be expressed as follows.

y†a(φi) = (
√
ρNa(φi) + n)†a(φi) (7.53)

=
√
ρN + n†a(φi) (7.54)

⇒ E
[
y†a(φi)|Hi

]
=

√
ρN (7.55)

Var[y†a(φi)|Hi] = Var[n†a(φi)] (7.56)

= E[a†(φi)nn
†a(φi)] (7.57)

= 1 (7.58)

⇒ T(y|Hi) ∼ N
(
y;
√
ρN,

1

2

)
(7.59)

Under Hj, the cross-correlation between the received signal and transmitted signal can

be expressed as follows.

⇒ y†a(φi) = (
√
ρNa(φj) + n)†a(φi) (7.60)

= n†a(φi) (7.61)

provided a†(φj)a(φi) = 0 ∀j 6= i (7.62)

⇒ E
[
y†a(φi)

∣∣Hj

]
= 0 (7.63)

Var
[
y†a(φi)

∣∣Hi

]
= Var[n†a(φi)] (7.64)

= 1 (7.65)

⇒ T(y|Hj) ∼ N
(
y; 0,

1

2

)
(7.66)

Theorem 5. For a spatial frequency resolution of 2
N

, the BTS succeeds in detecting the

beam direction under Bayesian detection criterion with the probability of error Pe where,

Pe = 1− ΦN−1
(√

ρN
)

(7.67)

where Φ(·) is the CDF of unit normal random variable and ρ is the received SNR.
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Proof An error occurs when any of the N − 1 test statistics becomes greater than

the test statistics associated with the true hypothesis. Now the probability of error can

be expressed as follows.

Pe=
N−1∑
i=0

Prob
{
Ti < max(T1, · · · ,Ti−1,Ti+1, · · · ,TN)

∣∣Hi

}
Prob {Hi} (7.68)

Owing to symmetry, all of the conditional error probabilities in the above sum are equal

due to underlying orthogonal structure of transmit signals and therefore following simpli-

fication can be made.

Pe = Prob
{
Ti < max(T1,T2, · · · ,Ti−1,Ti+1, · · · ,TN)

∣∣Hi

}
(7.69)

= 1− Prob
{
Ti > max(T1,T2, · · · ,Ti−1,Ti+1, · · · ,TN)

∣∣Hi

}
(7.70)

= 1− Prob {T1 < Ti, · · · ,Ti−1 < Ti,Ti+1 < Ti, · · · ,TN < Ti} (7.71)

= 1−
∫ +∞

−∞
Prob {T1 < t, · · · ,Ti−1 < t,Ti+1 < t, · · ·TN < t} fTi(t)dt (7.72)

The covariance of any two test statistics can be calculated as follows.

Cov(Ti,Tj) = E[T†iTj]− E†[Ti]E[Tj] (7.73)

= E
[(
n†a(φi)

)† (
n†a(φj)

)]
(7.74)

= a(φi)
†a(φj) (7.75)

= 0 ∀j 6= i (7.76)

Since {Tj}Nj=1 are jointly Gaussian and uncorrelated random variables, so they are

independent random variables. Therefore, the events {Tj < t}∀j 6=i will become statistically

independent. It, therefore, follows from Eq. (7.72) that

Pe = 1−
∫ +∞

−∞
ΦN−1

(
t
√

2
)
N
(
t;
√
ρN,

1

2

)
dt (7.77)

Let Y ∼ N (t; 0, 1) be a standard normal random variable, then Eq. (7.77) can be simpli-
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fied as follows.

Pe = 1−
[
Prob

{
Y < Ti

√
2
}]N−1

(7.78)

= 1−
[
Prob

{
Y√

2
− Ti < 0

}]N−1

(7.79)

Let Z = Y√
2
−Ti, then using the property that the difference of two Gaussian-distributed

random variables exhibits a Gaussian distribution we end up with a random variable

having probability distribution Z ∼ N (z;−
√
ρN, 1). It follows that

Pe = 1− ΦN−1
(√

ρN
)

(7.80)

where Φ(·) is the CDF of unit normal random variable which completes the proof.

7.5.3 Asymptotic Analysis for Bayesian detector

Let T(N)
i denote the test statistic under true hypothesis Hi with number of directions

tested equal to N and let M(N) = max
(
T(N)

1 ,T(N)
2 , · · · ,T(N)

i−1,T
(N)
i+1, · · · ,T

(N)
N

)
denote

the maximum of a sample whose components are test statistics under false hypotheses

{Hj}j 6=i. The maximum of i.i.d. zero mean Gaussian random variables is O(logN) and

G :=
(
M(N) − bN

)
/aN admits Gumbel distribution with location paramter bN =

√
2 logN

and scaling parameter to be roughly aN = b−1
N [111]. Since T(N)

i is O(
√
N) so it follows

that

[
T(N)
i > M (N)

]
⊇
[
T(N)
i >

√
ρN

2
∩M (N) <

√
ρN

2

]
(7.81)

Since T(N)
i and N

(N)
T are statistically independent so the probability of the subset event

can be expressed as follows.

Prob
[
T(N)
i >

√
ρN
2
∩M (N) <

√
ρN
2

]
= Prob

[
T(N)
i >

√
ρN
2

]
Prob

[
M (N) <

√
ρN
2

]
(7.82)
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Clearly, since T(N)
i admits Gaussian distribution with mean

√
ρN and variance 1

2
,

Prob

[
T(N)
i >

√
ρN

2

]
↑ 1 as N ↑ ∞ (7.83)

On the other hand,

lim inf
N↑∞

Prob

[
M (N) <

√
ρN

2

]
= lim inf

n↑∞
Prob

[
M (N) − bN

aN
<

√
ρN
2
− bN
aN

]
(7.84)

≥ lim
n↑∞

Prob

(
M (N) − bN

aN
< k

)
(7.85)

d⇒ Prob(G < k) ∀k (7.86)

where Eq. (7.86) follows from

Prob

(
M (N) − bN

aN
< k

)
d⇒ Prob (G < k) (7.87)

Choosing k to be large enough Prob (G < k) goes to 1 and to satisfy the lower bound in

Eq. (7.85), we get

lim
N↑∞

Prob

(
M (N) <

√
ρN

2

)
= 1 (7.88)

Combining Eq. (7.5.3) with Eq. (7.5.3), we obtain

Prob
(
T(N)
i > M (N)

)
→ 1 as N ↑ ∞ (7.89)

Since Pe = 1− Prob
(
T(N)
i > M (N)

)
so as N ↑ ∞, P(N)

e → 0.

7.6 Numerical Experiments and Simulation

This section is devoted towards numerical experiments to verify the performance of pro-

posed algorithms in terms of probability of beam misalignment and mean-square error.

Moreover, the analytical expressions for probability of beam misalignment under various

estimators are verified via simulation results. All the simulation results are averaged over
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Figure 7.10: Beamforming Gain Comparison of Hierarchical Search and Exhaustive

Search at N = 64
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Figure 7.11: Mean-Square Error Comparisons of Proposed Algorithms with Existing

Schemes for N = 16

10, 000 Monte Carlo runs. In all the experiments, the numbers of antennas is assumed to

be equal to number of directions tested, i.e., NT = N . In order to do fair comparison, the

energy budget is assumed to be same for all the algorithms in one figure. We take SNR

in dB to be in negative range as mmWave systems are noise-limited in general. Suppose

our mmWave system is operating at 73 GHz with a coherence bandwidth of 100 MHz.

Consider a high-mobility user moving at the high speed of 4m/s, then the coherence

time is equal to 1ms which is very small. Now, if we have 100 pilot symbols which will

span 1µs, then approximately 10% of our resources will be wasted into beam-training

phase thereby resulting in throughput loss. As a result, we do performance evaluation

of our algorithms with existing schemes at number of training symbols equal to 16, 32.

Furthermore, consider that the MS transmits at peak power of 20 dBm [112,113] and BTS
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Figure 7.12: Beam Misalignment Probability Comparisons of Proposed Algorithms

with Existing Schemes for N = 16

noise figure is 5 dB, then following the path-loss parameters (α = 69.8, β = 2) of [81],

we achieve a receive SNR before beamforming of −16.8 dB and −20.3 dB at distance of

20 metres and 30 metres from the BTS respectively. Thus, it is imperative to align the

beams at the BTS for such high-speed users with poor SNR in few training slots in order

to conserve energy resources while maintaining reasonable throughput.

Fig. 7.10 demonstrates the beamforming gain achieved by the hierarchical search in

different stages and is compared with the beamforming gain of exhaustive search which

is flat because it keeps all the antennas activated whereas the antenna deactivation ap-

proach sequentially attains higher beamforming gains in later stages due to more antennas

activated in higher stages. For N = 64, exhaustive search achieves a beamforming gain

of 18 dB which antenna deactivation approach achieves in 6-th iteration.
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Fig. 7.11 graphs the MSE (in dBs) versus receive SNR per antenna in dBs for iterative-

thresholding-hierarchical search (ITHS), antenna-deactivation-hierarchical search (ADHS),

exhaustive search (ES), and refined-hierarchical search (RHS) for N = 16. Fig. reveals

that ITHS beats the performance of ADHS after −12 dB and ES outperforms the ADHS

after −13 dB. Additionally, RHS offers superior performance in comparison to ES beyond

−6 dB. At SNR of 0 dB, ITHS offers an MSE of −13 dB which is 10 dB less than that

offered by ADHS. Similarly, RHS offers 11 dB improvement over ES. Thus, in general,

ITHS outperforms ADHS and RHS offers superior performance over ES. This is happen-

ing because in ADHS, initial stages use wide beams which have low beamforming gain but

ITHS uses narrow beams in initial stages as well. Hence, ITHS becomes able to track the

user in true region in initial stages due to usage of narrow beams in all steps of hierarchical

search. On the other hand, RHS spends one half of training time in searching a user and

then based on a threshold it refines its search via selecting the one with highest gain in

the second stage. In contrast, conventional ES uses full training time for searching the

best direction and due to lack of threshold selects the beam direction with the maximum

gain.

Fig. 7.12 plots the probability of beam misalignment versus receive SNR per antenna

in dBs for ITHS, ADHS, ES and RHS for N = 16. At 0 dB, ITHS beats the performance

of ADHS by offering an error rate of 2 × 10−2. However, ES offers error rates as low

as 2 × 10−3 at 0 dB whereas RHS offers error rate of 4 × 10−4 at receive SNR of 0 dB.

Beyond −10 dB, RHS offers better performance than ES and ITHS outperforms ADHS.

After −10 dB, RHS outperforms ES and ITHS outperforms ADHS. Thus, in terms of both

performance metrics, MSE and Error Rate, RHS outperforms all the competing schemes

with same amount of training and energy resources.

Fig. 7.13 delineates the beam misalignment probability versus receive SNR in dBs

for energy and bayesian estimators for N = 16,32. The plot of analytical probability
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Figure 7.13: Beam Misalignment Probability Comparisons of Exhaustive Search under

Energy and Bayesian Estimators for N = 16,32
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expressions are compared with experimentals results from Monte Carlo simulations and

derived results fit in well with simulated outcomes. Additionally, for both N = 16,32 the

Bayesian estimator offers better performance than energy estimator beyond −12 dB. In

particular at 0 dB the Bayesian estimator offers error rate of 3 × 10−4 whereas energy

estimator shows error probability of 2×10−3 for N = 16. For N = 32, bayesian estimator

offers error rates as low as 10−7 whereas energy estimator gives error rate of 2×10−6. Thus,

bayesian estimator is a viable design choice instead of conventional energy estimators.

7.7 Conclusion

In this chapter, we dealt with the issue of beam alignment which arises in mmWave massive

MIMO systems under an RF chains constraint. We proposed two novel hierarchical search

algorithms for beam alignment which offer superior performance to existing hierarchical

search based beam alignment. Furthermore, we proposed a Bayesian approach of detecting

a beam instead of using energy based detection. We derived closed-form expressions for

probability of beam-misalignment under exhaustive search for Bayesian and energy based

detections. Numerical results corroborate the validity of our derived results.
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Chapter 8

Conclusions

This thesis addresses the challenge of limited RF chains in massive MIMO operating in

TDD mode.

We began the thesis in Chapter 3 with the pilot contamination problem which had

been addressed earlier by [25] by using coordination among BTSs for scheduling of training

sequences. We proposed a non-coordinated approach in which random training sequences

are employed across cells which are orthogonal within a cell. The proposed random

training sequences become orthogonal with out-of-cell sequences asymptotically as their

length increases. The random training sequences offer superior performance in terms of

network capacity in comparison to reuse of same set of training sequences across different

cells.

Spatial modulation format can be used to tackle the problem of limited RF chains in

massive MIMO. In Chapter 4, we proposed a novel CS aided linear detection algorithm

exploiting the sparse structure of transmit data in GSM for the MIMO ISI channel.

Our proposed algorithm offers superior performance in comparison to existing CS based

techniques in terms of MSE and BER. We extended single-user GSM system to multi-user

GSM system and investigated the sparse recovery of transmit data which achieved the

163
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performance of interference free point-to-point systems.

In Chapter 5, we showed using achievable rates that a GSM system can offer same

achievable rate as a SM system but using less transmit antennas and with a lower channel

estimation burden. In GSM system, CSI is required at MS to do data detection which can

be sent from BTS through a feedback link. This causes a huge overhead because all the

channel link gains need to be sent to MS through backhaul or control channel as channel

estimation is done at BTS in massive MIMO operating in TDD mode.

Another solution to mitigate the spectral efficiency loss occurring due to limited RF

chains is antenna selection. In antenna selection, the MS just needs to know the chan-

nel power gain which being a scalar can be reported to MS from BTS through feedback

link with low overhead. In Chapter 6, we provided a large system analysis of antenna

selection massive MIMO. The deterministic equivalent of capacity is shown to be a de-

terministic function of number of RF chains and transmit antenna elements in Rayleigh

fading environment. Our proposed expression can be used to design and optimize a sys-

tem without the requirement of extensive Monte Carlo runs. A design insight from large

system analysis is that we can calculate the required number of RF chains to achieve the

target capacity for a given number of transmit antenna elements using our asymptotic

limit.

MmWave massive MIMO systems offer huge bandwidths but the RF chains constraint

becomes significant at mmWave frequencies. A key problem in mmWave massive MIMO

is beam alignment which arises due to narrow beams of high-gain antennas at mm-Wave

frequencies. In Chapter 7, our key contributions are two novel algorithms for beam

alignment in mmWave massive MIMO operating in uplink. The proposed algorithms are

premised on iterative thresholding hierarchical search and refined hierarchical search in

which all the antenna elements are activated in all the training slots to reap the benefits of

huge beamforming gain. Our proposed refined hierarchical search outperforms the optimal
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exhaustive search in terms of MSE and probability of beam misalignment. Furthermore,

we proposed Bayesian approach for beam detection which offers superior performance in

comparison to conventional energy based detection.
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Appendix A

List of Acronyms

ADC Analogue to Digital Converter

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BPSK Binary Phase Shift Keying

CDF Cumulative Distribution Function

CWGN Complex White Gaussian Noise

CS Compressive Sensing

DAC Digital to Analogue Converter

ES Exhaustive Search

GSM Generalized Spatial Modulation

IBI Inter-Block Interference

ISI Inter-Symbol Interference

ITHS Iterative thresholding hierarchical search

LNA Low Noise Amplifier

MAP Maximum-A-Posteriori

MGF Moment Generating Function
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MIMO Multiple-Input Multiple-Output

MISO Multiple-Input Single-Output

ML Maximum Likelihood

mmWave Millimetre Wave

MSE Mean Square Error

NMSE Normalized Mean Square Error

OFDM Orthogonal Frequency Division Multiplexing

PDF Probability Density Function

QAM Quadrature Amplitude Modulation

RHS Refined Hierarchical Search

SIMO Single-Input Multiple-Output

SISO Single-Output Single-Output

SM Spatial Modulaion

SNR Signal-to-Noise Ratio

TLS Total Least Squares



Appendix B

List of Notations

A Set of antenna indices

| · | Absolute Value

‖ · ‖2 L2 or Eucledian Norm

C Set of complex numbers

CN Set of N × 1 complex vectors

CN×N Set of N ×N complex matrices

C(A) Column space of matrix A

Cov(X, Y ) Covariance of random variables X and Y

CN (0,R) Complex Gaussian with mean 0 and Covariance R

diag[ai]i=1···N Diagonal matrix with diagonal entries a1, · · · , aN

bc Floor function

()H Complex Conjugate Transpose

〈X,Y 〉 Inner product Trace(XHY )

〈x,y〉 Inner product xHy

()† Pseudo-Inverse of Matrix

∈ Is an element of
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∪ Union

∩ Intersection

⊆ is subset of

⊇ is superset of

E [·] Statistical Expectation Operator

fX(x) Probability density function of random variable X

FX(x) Cumulative distribution function of random variable X

ℵ(A) Null space of matrix A

pX(x) Probability mass function

Pe Probability of error

I Identity matrix

= Imaginary part of complex number

lim supn xn limit superior of (xn)n≥1, i.e., for every ε > 0,

there exists n0(ε), such that xn ≤ lim supn xn + ε∀n > n0(ε)

lim infn xn limit inferior, i.e., lim infn xn = lim supn xn

1 Vector of ones

P Antenna activation pattern matrix

Pe Probability of error

R Set of real numbers

RN Set of N × 1 real-valued vectors

R(A) Row space of matrix A

< Real part of complex number

var Variance of random variable

W Precoding Matrix

x Scalar x

x Vector x
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X Matrix X

x(i) i-th component of vector x

Z Set of integers

Z+ Set of positive integers

0 Vector of zeros

d⇒ Converges in distribution to
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Appendix C

List of Publications

The following conference papers related to this thesis were published during the course of

this PhD.

1. Z. A. Shaikh, S. V. Hanly, and I. B. Collings, “Analysis of adaptive least squares

filtering in massive MIMO”, in Proc. AusCTW, 2014, Sydney, Australia.

2. Z. A. Shaikh, I. B. Collings, S. V. Hanly, and P. Whiting, “Compressive Sensing

Aided Data Detection for GSM Systems in MIMO ISI wireless channels,” in Proc. IEEE

ICC, 2015, London, UK.

3. S. V. Hanly, I. B. Collings, Z. A. Shaikh and P. Whiting, “Law of large numbers

analysis of antenna selection aided downlink beamforming in massive MISO under RF

chains constraint”, in Proc. AusCTW, 2016, Melbourne, Australia.

The following conference paper not related to this thesis was published during the

course of this PhD.

1. Z. Azmat and H. D. Tuan, “Power allocation for Gaussian Mixture model prior

knowledge in wirless sensor networks”, in Proc. IEEE ICASSP, 2013, Vancouver, Canada.
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Appendix D

Derivation of Conditional Entropy

To obtain Eq. (5.23) from Eq. (5.22), it is required to average the above expression

with respect to marginal pdf of output ,i.e., pZ(z) to calculate the conditional entropy

H(U |Z).

H(U |Z) =

∫
Dz

fZ(z)H(U |Z = z)dz

=

∫
Dz

1

NaS

Na∑
γ=1

S∑
ν=1

1

det (πNoI)
exp

(
−β‖z − h[γ]uν‖2

)

×

S∑
ν=1

Na∑
γ=1

exp
(
−β‖z − h[γ]uν‖2

)
log2


S∑
µ=1

Na∑
α=1

exp
(
−β‖z − h[α]uµ‖2

)
Na∑
γ=1

exp
(
−β‖z − h[γ]uν‖2

)


Na∑
α=1

S∑
µ=1

exp
(
−β‖z − h[α]uµ‖2

) dz
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= 1
NaS

S∑
ν=1

Na∑
γ=1

∫
Dz

dz

det (πNoI)
exp

(
−β‖z − h[γ]uν‖2

)
log2


S∑
µ=1

Na∑
α=1

exp
(
−β‖z − h[α]uµ‖2

)
Na∑
γ=1

exp
(
−β‖z − h[γ]uν‖2

)


= 1
NaS

S∑
ν=1

Na∑
γ=1

∫
Dn

exp (−β‖n‖2)

det (πNoI)
log2


S∑
µ=1

Na∑
α=1

exp
(
−β‖uνh[γ] − uµh[α] + N‖2

)
Na∑
γ=1

exp
(
−β‖uµ

(
h[γ] − h[α]

)
+ N‖2

)
 dn (D.1)

where the last equality follows from the substitution z = h[γ]uν +n. It is well-known that

the expected value of a function of random variable can be expressed as follows

E [g(X)] =

∫
Dx

g(x)fX(x)dx (D.2)

In light of above expression, Eq. (D.1) can be modified to get compact expression for

conditional entropy as follows

H(U |Z) =
1

NaS

S∑
ν=1

Na∑
γ=1

EN log2


S∑
µ=1

Na∑
α=1

exp
(
−β‖uνh[γ] − uµh[α] + N‖2

)
Na∑
γ=1

exp

(
−β‖uµ

(
h[γ] − h[α]

)
+ N

∥∥∥∥2
)
 (D.3)
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