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Summary 

 
This thesis is a theoretical inquiry into the construct of pattern across fields of knowledge to 

highlight elements of patterning that are intrinsically similar. In the first stage of this inquiry, a 

comparison of pattern recognition, a neuropsychological construct based on the work of 

Goldberg (2005), and pattern as defined in the field of mathematics education, generated a 

tentative generalised model of patterning (McCluskey, Mitchelmore, & Mulligan, 2013). This 

model was proposed to describe the nature of patterning across both domains of knowledge. A 

subsequent analysis of patterning across broader fields of cognitive neuroscience and the 

psychology of mathematics education supported a more generalised view of patterning within 

and beyond mathematical thinking.  

 
In mathematics education, generalisations about concepts are formed through identification of 

patterns and relationships and the capacity to reason. Therefore in the next stage of this research 

I undertook a content analysis of key terms to highlight the incidence of the proficiency - 

reasoning developed throughout the Australian Curriculum: Mathematics. 

 

A dynamic view of the role of reasoning within the proficiencies, connected with the authors’ 

initial generalised model of patterning (McCluskey, Mitchelmore, & Mulligan, 2013) is 

therefore proposed to support the further development of generalised understandings in 

mathematics education.  
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Researcher Background 

 
As an educator I have greatly valued opportunities to reflect upon my practice and 

deepen my understanding of the learning process. I have completed postgraduate 

qualifications inquiring into the nature of learning. These include a Graduate Certificate 

in Neuroscience to understand the neurobiological basis for learning, memory 

formation, and visualisation, and a Master in Education (Gifted Ed.) to continue to 

explore the breadth and depth of learning, intelligence, and creativity. A description of 

previous unpublished papers I wrote through my previous postgraduate studies is 

included in Appendix A.  

 

Before commencing my current master’s research I had contributed to education for 

25 years, primarily teaching children in the early years of school. My preferred 

pedagogy was as a “teacher researcher”. I had engaged in professional learning, 

exploring action research, in the fields of both literacy and numeracy. There were 

elements of my classroom practice that I would systematically inquire into by 

observing, documenting, and reflecting upon children’s learning in action. I analysed 

the data that I collected to inform future learning opportunities that I would design for 

the children. This ongoing collection of data provided a means of measuring growth in 

mathematical understandings over time. 

 

As a practitioner, I began to notice that when children made connections with the 

“pattern” of their learning, their understandings deepened. The patterns of thinking I 

noticed children naturally engage with were “this is what I know about … it is similar to 

… when I do this, it is the same as ... what if I try this … I know what is going to 

happen because …”. As children recognised similarities in concepts across different 

contexts, their understandings deepened, they became more fluent in their recall of 

information, and they were more willing and able to transfer information to a wider 

variety of contexts. I began to recognise patterns in the way children were learning 

across various curriculum areas. This recognition of everyday patterns led to the initial 

phase of this research, inquiring into the role of pattern within and beyond mathematical 

thinking. 
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From 2010 to 2013 I held a position as a numeracy consultant for Catholic Education 

in South Australia. In this role I was able to explore children’s patterns of thinking, 

particularly in mathematics, in much greater depth. I designed and structured 

professional learning in mathematics education for early years teachers. The 

professional learning engaged teachers in exploring the “teacher researcher” pedagogy, 

whereby they inquired as a community of learners into elements of their practice and 

children’s mathematical thinking, through collecting and reflecting upon documentation 

together. Over a 3-year period the early years group that I led collectively analysed 

children’s levels of thinking as the children explored various concepts within and across 

the mathematical strands of number and algebra, and measurement and geometry, in the 

Australian Curriculum: Mathematics (ACM). A range of learning continua were 

constructed outlining the breadth and depth of thinking that children had revealed as 

they explored the various mathematical concepts. In leading this processes I found that 

children’s thinking was deepened particularly through teachers’ practice of noticing and 

questioning children to clarify current levels of understanding and inform future 

directions for learning. This process explicitly and systematically engaged the ACM 

proficiencies of understanding, problem solving, reasoning, and fluency through an 

emerging pedagogical structure that: 

 

• used provocations to draw upon and connect with children’s current levels of 

understanding; 

• engaged children in a range of investigations, questioning them to bring them 

into conversation and identify similarities about the concept across contexts; 

• embedded whole-group mathematical discourse to support and provide 

opportunities for the children to explain their thinking and hear different ways 

of exploring problems, revealing levels of reasoning about concepts explored; 

and  

• re-engaged the children in further investigation to clarify, challenge, or 

stretch their understanding further. 

 

Through this process of noticing and documenting children’s understanding, I 

observed that the children’s fluency strengthened as their patterns of knowing were re-

engaged and they had opportunities to generalise concepts across contexts. Similarly, I 
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observed from the teachers’ experience that their ability to notice, identify, and question 

individual children’s thinking also strengthened alongside their fluency in knowing the 

next step of learning for their students. The documentation of this research is currently 

being prepared for publication by Catholic Education South Australia to support 

teachers in identifying young children’s mathematical thinking.  

 

As a researcher, I was inspired to explore and make further connections with how the 

mathematical proficiencies worked together dynamically to support greater depth of 

children’s conceptual understanding and their ability to generalise patterns of thinking 

in mathematics. This led to the second phase of my research: identifying the role of 

reasoning within the ACM.  

 

My consultancy role enabled me to attend conferences in the field of mathematics 

education and network with various researchers in the field. I was fortunate to meet with 

Joanne Mulligan from Macquarie University in my initial year of consultancy and to 

have the opportunity to discuss my ideas for further research. Macquarie University’s 

research into the Pattern and Structure Mathematics Awareness Program (PASMAP) 

captured my interest as it outlined the importance of children having an awareness of 

pattern and structure and the essential role of developing structural understandings in 

supporting children’s future mathematical growth.  Given that I had noticed that there 

was a pattern in the way that children build understandings generally and that research 

was affirming that an awareness of pattern and structure was essential in the 

development of mathematical concepts, my driving question was: What is the role of 

pattern and structure within and beyond mathematical thinking? Thus I pursued this 

master’s research to primarily to explore the relationship of patterning across contexts.  
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1 
CHAPTER 

1 
__________________________ 

______________________________ 

 

INTRODUCTION 

 

Patterns are the very essence of mathematics, the language in which it is 

expressed. In recognizing and creating patterns of every conceivable type, 

mathematics is an art. It is also the science of analyzing and synthesizing such 

patterns.   

(Sandefur & Camp, 2004, p. 211)  

 

 

1.1   Introduction 
 
The term “pattern” is used widely across various domains of knowledge. A pattern is a template 

used to replicate something. There are patterns we follow to carry out procedures; patterns of 

thinking we engage in to problem solve; patterns we notice in the weather and in nature; and 

patterns that occur throughout our daily lives. In each instance, and across domains, patterns 

help us to make accurate predictions in both familiar and new situations. Patterns seem to 

emerge and be reflected in every aspect of our experiences, as Piaget (1950) claimed, “Life 

itself is a creator of patterns” (p. 167).  

 

Pattern is viewed as both the language and science of mathematics (Sandefur & Camp, 2004; 

Steen, 1990). Broadly it is “defined as any predictable regularity” (Mulligan & Mitchelmore, 

2009, p. 34). Generalising about the nature of patterns leads to the development of abstract 

understandings and a greater ability to apply generalisations in new situations (White & 

Mitchelmore, 2010). Patterning also supports the way we engage mathematically with concepts 

(Papic & Mulligan, 2005). 

 

In the fields of neuropsychology and cognitive neuroscience, the term pattern is used to refer 

to the neural structures and the processes through which understandings are encoded in the 

brain. The recognition of these patterns in new situations allows stored information to be readily 

applied (Devlin, 2010; Goldberg, 2005; Willis, 2010).   

 

Across domains, the ability to pattern is a recurring process in the building of understanding. 

This resonates with the view that mathematics is “seen as connected with … and part of the 

whole fabric of human knowledge” (Ernest, 1991, p. 26), implying that the way we learn, the 

way we engage, is experienced similarly across fields of knowledge. This thesis will explore 



2          1  /  INTRODUCTION 
 

 
this view of pattern across the domains of mathematics education, neuropsychology, the 

psychology of mathematics education, and cognitive neuroscience with the aim of proposing a 

generalised model of patterning.  

 

1.2   Rationale 
 
Prior knowledge is readily drawn upon when engaging in new learning. This knowledge is not 

necessarily domain specific, but connects with a generalised understanding about how to 

recognise a similar situation or solve that “type of problem”. We recognise new situations as 

being similar if we have encountered something like this before. Goldberg refers to the 

formation of generic memories. These build neural structures that encase a pattern of experience 

(Goldberg, 2005). This capacity to recognise similarity supports new learning and is something 

we naturally do, but is not necessarily a conscious process. This instantaneous knowing “takes 

the form of pattern recognition rather than problem solving” (Goldberg, 2005, p. 20). Similarly, 

Franz (2003) acknowledged this type of “human intuition as subconscious pattern recognition” 

(pp. 265–266).  

 

In the field of mathematics education, intentionally exploring similarity across contexts 

supports the development of abstract understandings (White & Mitchelmore, 2010). Mason, 

Drury, and Bills (2007) claimed that “experiencing and expressing generality is natural to 

human beings” (p. 42). They made recommendations that generalisation of structural 

understandings be embedded in the design of learning in mathematics education. However, they 

identify that not all types of generalisation are acquired intentionally, and refer to “Enactive 

generalisation … in which the body perceives a generality before the intellect becomes aware of 

it” (p. 51). This description of generalisation is similar to the pattern recognition that Goldberg 

refers to. Pattern recognition in this form reinforces the interplay between intentional and non-

intentional processes in building understandings as well as the similarity in cross-domain 

perspectives in building generalisations.  

 

1.3   Aims  
 

I aim to investigate the relationship between patterning as a mathematical construct and 

patterning as a neuropsychological construct, highlighting any similarities that lend themselves 

to the development of a generalised model of patterning. I then endeavour to address 

educational implications that could emerge as a result of a generalised view of patterning within 

and beyond mathematical thinking.   
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1.4   Research questions 
 
The central questions addressed within this thesis are: 

 
1. What is similar about the construct of pattern across the fields of mathematics education 

and neuropsychology? 

2. Is a generalised view of patterning applicable across broader fields of knowledge? 

3. What are the educational implications of a generalised model of patterning? How is 

reasoning, the ability to express and justify generalised understandings, articulated in 

and developed through the proficiencies in the Australian Curriculum: Mathematics 

(ACM)? 

 
Thus, the purpose of the thesis is to articulate how a generalised view of patterning is 

developed and applied to mathematics learning. The theoretical approach provides an integrated 

perspective that is cross-disciplinary.  

 

I compare theoretical perspectives about the role of pattern initially across the fields of 

mathematics education/learning and neuropsychology, then across the broader fields of the 

psychology of mathematics education and cognitive neuroscience. I highlight what is 

intrinsically similar and different about the concept of patterning in each field and propose a 

generalised model of patterning (GMP) that is applicable to the mathematics education domain. 

 

The implications of using a GMP are examined within mathematics education. In doing this, 

the role of the proficiencies in building a capacity to reason and construct generalised 

understandings within the ACM is discussed. The interaction of the proficiencies highlights the 

essential role of pattern and structure in the development of conceptual understanding within 

and beyond mathematical thinking.  

 

In this thesis I present three publications that together support a proposed generalised model 

of patterning (GMP).  

 

1.5   Structure of the thesis 
 

This thesis is presented in a thesis by publication format, and contains three publications that 

systematically focus on the role of pattern within and beyond mathematical thinking.  

 
1.5.1   Research phases 
 
This thesis comprises two phases: 
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1. The initial phase is a theoretical inquiry drawing upon the theoretical perspectives in 

Chapter 2 to compare and contrast the construct of patterning across fields of 

mathematics education/learning and neuropsychology, then across the broader fields of 

the psychology of mathematics education and cognitive neuroscience. Publications 1 

and 2 reflect the findings of this inquiry. A generalised model of patterning is proposed 

initially in Publication 1 and expanded on in Publication 2 to explain the similarity in 

the construct of patterning across four differing fields. 

 
2. The second phase applies this generalised notion of patterning by examining the 

incidence of Key Proficiency Terms embedded in the ACM. This inquiry identifies the 

mathematical proficiency of reasoning as being inherent in the building of generalised 

understandings 

 
Tables 1.1 and 1.2 provide a summary of the two phases of the research. 

 

Table 1.1  

First Research Phase 

Research method Research outcomes & activities  

Compare and contrast the construct 
of pattern across: 

• The neuropsychological 
domain 

• Mathematics education 
 

Ascertain feedback from research 
community (MERGA36) 

Publication 1: Does an ability to pattern indicate 
that the way we think is mathematical? 
Refer to Chapter 3, Section 3.3. 
 
This is a peer-reviewed publication presented at the 
MERGA36 conference and published in the 
conference proceedings. 
 
A generalised view of patterning is proposed to 
explain similarities in elements of patterning in the 
building of generalised understandings across both 
domains 
Refer to Table 1: Abstraction across domains, 
Chapter 3, Section 3.3.  

 
Expand generalised view of 
patterning across broader fields of 
knowledge: 

• Psychology of 
mathematics education 

• Cognitive neuroscience 
 

 
Publication 2: The role of pattern within and beyond 
mathematical thinking. This publication is prepared 
for submission to a mathematics education 
(philosophy) journal such as For the Learning of 
Mathematics FLM  
Refer to Chapter 4, Section 4.3. 
 
A revised generalised model of patterning is 
proposed.   Refer to Table 2 in Chapter 4, Section 
4.3.  
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Table 1.2  

Second Research Phase 

Research method Research outcomes & activities  

Explore educational implications of a 
generalised view of patterning.  

• Propose analysis of use of Key 
Proficiency Terms  (KPTs) 
identifying the proficiency 
reasoning in the ACM 

• Feedback from research community 
(MERGA 38) 

Short communication abstract: The pattern and 
structure of the Australian Curriculum: 
Mathematics; MERGA38 
Refer to Chapter 5, Section 5.2, and Appendix 
C. 
Introduce generalised model of patterning as a 
means of further promoting reasoning in 
mathematics education. 
 

Content analysis:  
• Identify use of KPTs which relate 

to reasoning embedded in content 
descriptions in the ACM 
 

Analysis of KPTs in the ACM: F–9 
Refer to Appendix E. 

A comparison of KPTs identified in 
rationale and opening descriptions of 
proficiencies with KPTs embedded 
throughout content descriptions F-9.  
 
Ascertain feedback from research 
community 

Publication 3: The role of reasoning within the 
Australian Curriculum: Mathematics. 
Refer to Chapter 5, Section 5.3. 
This paper was submitted for peer review for 
inclusion in MERGA39. 

An extended version of this paper is contained 
in Appendix D. It is anticipated that feedback 
obtained from presenting Publication 3 at 
MERGA39 will indicate modifications and 
future directions for this fourth publication. 

 

The first publication was peer-reviewed and published in the conference proceedings of the 

Mathematics Education Research Group of Australasia (MERGA36) Mathematics Education: 

Yesterday, Today and Tomorrow (2013). Publication 3 has been submitted for peer-review for 

inclusion in the 2016 conference proceedings of the Mathematics Education Research Group of 

Australasia (MERGA39) Opening up Mathematics Education Research. 

 

1.5.2   Overview of publications 
 

The first publication of this thesis Does an Ability to Pattern Indicate That We Think 

Mathematically? was presented as a position paper at the MERGA36 conference in 2013. The 

aim of this paper was to gather initial feedback from researchers in mathematics education about 

the scope of the theoretical inquiry and the research questions.   
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Following the MERGA36 conference, this paper was rewritten and expanded for submission 

for publication in a mathematics education journal. As a result, The Role of Pattern Within and 

Beyond Mathematical Thinking became the second publication of this thesis. This second 

publication includes broader consideration across the fields of mathematics education, 

psychology of mathematics education, and cognitive neuroscience to propose a stronger 

argument for a generalised view of patterning that was proposed in the initial paper. This 

publication also includes a discussion of educational implications.  

 

In the third publication, The Role of Reasoning in the Australian Curriculum: Mathematics, I 

explored the role of the proficiencies in the ACM in developing generalised understandings. I 

inquired into an imbalance identified by other researchers about the incidence of key language 

terms pertaining to reasoning in the curriculum (Atweh, Miller, & Thornton, 2012). I conducted 

a content analysis to gather more explicit data about this proposed imbalance (see Appendix E). 

A lack of reference to key language terms pertaining to reasoning in the curriculum content 

descriptions F-9 was substantiated. This finding is discussed in terms of educational 

implications for adopting a generalised view of patterning to support the development of 

reasoning in mathematics education.  

 

1.5.3   Overview of chapters 
 

In Chapter 1 of this thesis (the current chapter) I provide an introduction to and rationale for the 

research, the aims and the purpose, and the key research questions. I outline the structure of the 

thesis, including a description of the research phases and an overview of publications and 

chapters. I conclude this chapter with acknowledgement of the coauthors’ contributions.  

 

In Chapter 2 I present theoretical perspectives about the role of patterning across domains of 

knowledge. I refer to literature that supports each phase of the research and underpins the three 

publications. In Chapters 3, 4, and 5 I present the three publications. These chapters include an 

introduction in which I describe the focus for each publication and the research question the 

publication is addressing as well as a preamble in which I describe the focus for and 

development of each publication. In the postscript in each chapter I summarise reflections about 

the publication, feedback gathered from presenting these publications and future directions for 

my research.  

 

In Chapter 6 I summarise the findings of the research and identify areas for further 

investigation.  In this chapter I also reflect upon the research process undertaken throughout this 

thesis. 
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1.6   Coauthors’ contributions 

 
All three publications were coauthored by my supervisors, Professor Joanne Mulligan and 

Associate Professor Michael Mitchelmore. I directed the theoretical approach and took the key 

responsibility for conducting, analysing, and reporting the findings. I developed the theoretical 

framework of the thesis based on Goldberg (2005); Professor Mulligan provided perspective on 

relevant theories on pattern and structure (Mulligan & Mitchelmore, 2009). A/P Mitchelmore 

provided insight into a comparative theory of abstraction (White & Mitchelmore, 2010). I 

integrated these perspectives into a generalised model of patterning, which represents my 

independent thought and insight.  I initiated the content analysis of the Australian Curriculum: 

Mathematics (ACM) following a literature review of another study (Atweh et al. 2012). 

Professor Mulligan assisted primarily with ensuring that the methods used in the analysis were 

reliable and presented accurately. 

 

My supervisors provided critical feedback on the structure of each publication to ensure that 

the argument reflected a balanced view from relevant literature, and they steered me toward 

appropriate research to expand my ideas. Both my supervisors supported me in preparing for 

conference presentations and developing publications appropriate for submission. 

 

Michael Mitchelmore primarily assisted in preparing the paper for submission in the 

conference proceedings at MERGA36 in 2013. Joanne Mulligan primarily supported me in 

compiling the presentation of the position paper at MERGA36 and the short communication at 

MERGA38 in 2015, and with writing and the preparation of the research report for MERGA39 
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CHAPTER 

2 
__________________________ 

______________________________ 

 

 

CROSS-DISCIPLINARY PERSPECTIVES  

2.1   Introduction 
 
In the initial phase of this thesis I inquire into cross-disciplinary perspectives from the fields of 

neuropsychology, mathematics education, the psychology of mathematics education, and 

cognitive neuroscience, concerning the role of pattern in the construction of mathematical 

understanding. In presenting these perspectives, I discuss theoretical considerations that were 

instrumental in the formation of this research inquiry. This involved a discussion on principles 

of quasi-empiricism and the embodiment of mathematical understandings. Finally I discuss the 

second phase of this thesis, that being the implications for mathematics education curricula and 

practice of adopting a cross-disciplinary view of patterning. 

 

This chapter contains the following three sections: 

 

1. Theoretical considerations, 

2. Cross-disciplinary perspectives, and 

3. Educational implications. 

 

2.2   Theoretical considerations 
 
In Sriraman and English’s (2005, 2010) discussion about theories influencing mathematics 

education, they acknowledged the need for a synthesis of theories. In referring to a research 

forum convened at the annual conference of the psychology of mathematics educators (PME) in 

2005, questions regarding “how theories from the general domain of cognition [could] 

contribute to mathematics education research” were raised (Sriraman & English, 2005, p. 452). 

Discussion about how “cognitively oriented theories have emphasized the mental structures that 

constitute and underlie mathematical learning, [and] how these structures develop” (p. 453) 

emerged from the forum.  

 

Mathematics education directly involves the fields of mathematics and education. However, 

“numerous other disciplines [also] interact with these two fields” (Sriraman & English, 2010,  

p. 7). Understanding the interaction between fields of knowledge, and the possible fields 
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involved, is needed for reconstructing an evolving view of mathematics education that enables 

“theoretical frameworks to interact systemically, eliminating dichotomies in discourse on 

thinking” (Kilpatrick, 2010, p. 3). Such a theory would view the common thread across fields of 

knowledge, and that we “should aspire to build such a theory. … This type of theory responds to 

a need for broad schemes of thought that can help us organize the field and relate our field to 

other fields” (Silver & Herbst, 2007, as cited in Sriraman & English, 2010, p. 17).  

 

In Sriraman and English’s discussion (2005) reference is also made to Lakoff and Nunez’s 

(2000) embodiment of mathematical understanding whereby “the body and brain together with 

everyday experiences structure our conceptual systems” (Sriraman & English, 2005, p. 453). 

This suggests that there is still much to discover about how mathematical understanding is fully 

formed. Lakoff and Nunez (2000) asserted that  

“mathematics by itself does not and cannot empirically study human ideas; human 

cognition is simply not its subject matter. It is up to cognitive science and the 

neurosciences to do what mathematics itself cannot do — namely, apply the 

science of mind to human mathematical ideas” (pp. xi, xii).  

This line of thinking moves towards a fallibilist view of mathematics, whereby mathematical 

ideas are viewed as not fully formed and are influenced by new fields of knowledge within the 

social context  (Sriraman & English, 2005, 2010).  

 

Sriraman and English (2005, 2010) refer to quasi-empiricism, a philosophical view of 

mathematics education developed by Imre Lakatos (1976, 1978). This view recognises that 

“mathematical activity is human activity” (Lakatos, 1976, p. 146) and like all human 

endeavours is fallible, uncertain, and therefore needs to be rigorously questioned. Mathematics 

knowledge “is seen as connected with, and … part of the whole fabric of human knowledge” 

(Ernest, 1991, p. 26). “Mathematics is what mathematicians do and have done, with all the 

imperfections inherent in any human activity or creation” (pp. 36–37) and “represents a new 

direction in the philosophy of mathematics” (pp. 34–35).  

 

Ernest (1991) summarised the following principles of quasi-empiricism. 
 

• Mathematics knowledge is fallible and like all knowledge should be questioned. 

• Mathematics is hypothetico-deductive and is built upon hypothetical premises, 

meaning that potential falsifiers can be the informal theorems of pre-existing theory. 

• Mathematical knowledge evolves, the history of mathematical knowledge being 

viewed as the “evolution of mathematical knowledge” (p. 36); new knowledge is 

therefore part of this ongoing process of knowledge creation. 
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• There is a “primacy of informal mathematics” (p. 36) in that all formal mathematics 

is derived from informal human experiences. 

• There is a “genesis of mathematical knowledge” (p. 36) in that the creation of 

mathematical knowledge derives from the creation of human knowledge. 

 

Interestingly, Ernest (1991) referred to a “pattern of mathematical discovery” or a “growth of 

informal mathematical theories” (p. 36) that moves through the following stages: 

• primitive conjecture 

• an argument, analysing the conjecture is proposed 

• counter-examples to the conjecture are identified  

• hidden examples may be built into the original idea to improve the conjecture. 

 

This view is in contrast to absolutist theories which view mathematics as “being fully formed 

and perfectly finished knowledge” requiring only “effective transmission of mathematical 

knowledge” or because of its pre-existence “just needs to be actively noticed and understood 

(Ernest, 1994, p. 1). However, there are many times when one does not notice or understand the 

meaning behind concepts being explored. Absolutist theories therefore do not account for those 

who are still developing their interpretation or understanding, and consequently infer that one 

needs to look beyond definitive terms to ones that are evolving. There is a known tension, 

recognised by many in education, that needs to be acknowledged. As a community of educators, 

we need to become familiar, and comfortable with, “not knowing” and open to discovering 

newness in learning, stepping into this “pattern of mathematical discovery” (Ernest, 1991,  

p. 36).  

 

Constructivists’ theories of learning affirm the processes through which understanding is 

built rather than transmitted, in “which the evolving organism must adapt to its environment in 

order to survive … personal theories are constructed as constellations of concepts” (Ernest, 

1994, p. 1). Theorists such as Piaget (1936, 1937, 1975), Vygotsky (1978, 1986, 1987), von 

Glasersfeld (1989, 1995a, 1995b), Davis, Maher, and Noddings (1990), Davis (1992), Steffe 

(1991a, 1991b, 1995), and Ernest (1991, 1994) have been instrumental in building this view of 

mathematics as evolving, and therefore fallible and reconstructable knowledge.  

 

2.3   Cross-disciplinary perspectives 
 
This thesis draws upon research about the role of patterning from the following fields of 

knowledge: neuropsychology, mathematics education, the psychology of mathematics 

education, and cognitive neuroscience. 
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2.3.1   Neuropsychology and patterning 
 
Elkhonon Goldberg, a renowned neuropsychologist, through his text The Wisdom Paradox 

(2005), proposed that in building our understandings we essentially pattern our experiences, 

whereby “common aspects of the situations are learned much faster that distinguishing aspects” 

(p. 124). The overlapping elements become encoded as a generic pattern that is “the shared 

properties of a whole class of similar things or events” (p. 125) and results from an 

accumulation of similar experiences. 

 

Goldberg (2005) likened the ability to instantaneously read a situation as engaging pattern 

recognition. This process involves being able to understand the elements involved, knowing 

what action to take, and what outcomes could emerge. Therefore, “decision making takes the 

form of pattern recognition rather than of problem solving” (p. 20). Goldberg drew upon the 

words of Herbert Simon, founder of the theory of artificial intelligence (1966) in substantiating 

the role of pattern recognition as “the most powerful mechanism of human cognition” 

(Goldberg, 2005, p. 20). Herbert Simon has theorised about our ability to instantaneously know, 

describing “human intuition as subconscious pattern recognition … and complementary to 

analytical thinking” (Frantz, 2003, pp. 265–266).  

 

Goldberg (2005) explicitly refers to pattern recognition in terms of demonstrating the 

coveted attribute of wisdom. These resilient patterns accumulate over a lifetime to create neural 

structures, cognitive templates, that Goldberg described as generic memories. Goldberg referred 

to these generic memories as an “abstract representation” of a set of similar experiences that is 

much more resilient than “concrete representations corresponding to unique things” (p. 125). 

Generic memories “capture the essence of a wide range of specific situations and the most 

effective actions associated with them” (p. 79) leading to high levels of competent, efficient 

decision making. Goldberg proposed that generic memories draw upon a network of common 

neural pathways related to the similar attribute of the experience they share, alluding to their 

inherent structure. He acknowledged the role of language in “shaping our cognition by imposing 

certain patterns on the world” (p. 91). However Goldberg did not refer to the role of 

mathematical thinking in the encoding of, and retrieval of, patterns of understanding. Also the 

possibility that the structure of these neural patterns are mathematical objects that similarly 

shape our cognition is left unnoticed.  

 

2.3.2   Mathematics education and patterning 
 
In the field of mathematics education, “a mathematical pattern may be described as any 

predictable regularity, usually involving numerical, spatial or logical relationships” and its 

structure is defined “as the way a pattern is organised” (Mulligan & Mitchelmore, 2009, p. 34). 
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Patterning is the process of recognising, identifying, manipulating, and generalising about the 

nature of patterns, and is therefore “critical to the abstraction of mathematical ideas and 

relationships, and the development of mathematical reasoning” (Papic & Mulligan, 2005,  

p. 609). The process of generalising is intrinsically connected to patterning as “generalising 

starts when you sense an underlying pattern, even if you cannot articulate it” (Mason, Burton, & 

Stacey, 2010, p. 8). The process of generalising about the nature of patterns is described as both 

a conscious and intuitive one, similar to the patterning process described in the 

neuropsychological domain.  

 

Mathematics has been referred to as the “science of patterns … Seeing and revealing hidden 

patterns are what mathematicians do best” (Steen, 1990, p.1). In his text, On the Shoulders of 

Giants: New Approaches to Numeracy, Steen (1990) suggested that the field of mathematics has 

significantly expanded because of this innate desire to “search for pattern” (p. 1). He elaborated 

on the significance of patterning in the work of mathematicians. “Mathematics seeks to 

understand every kind of pattern—patterns that occur in nature, patterns invented by the human 

mind, and even patterns created by other patterns” (p. 8). Steen acknowledged the integral role 

of patterning in all aspects of mathematical study, stating how identifying and understanding the 

nature of patterns, and interestingly also the patterns in nature, is actually the process through 

which mathematical knowledge is created.  

 

Structural understanding is an outcome of the generalisation and abstraction of patterns and 

has been linked to the development of pre-algebraic thinking (Papic, Mulligan, & Mitchelmore, 

2011). “Young children are capable of abstraction and generalization of mathematical ideas. An 

intuitive awareness of patterning concepts and structural relationships … [is] … critical to 

fundamental mathematics learning” (Papic et al., 2011, p. 237). In simplest terms, structural 

awareness is a recognition of structures within a pattern that are “the same … Every pattern is a 

type of generalisation in that it involves a relationship that is ‘everywhere the same’ ” (p. 240) 

and involves “a relationship that holds over the entire class of values, not only in isolated 

instances” (p. 239). The importance of structural awareness in the development of prealgebraic 

thinking in the early years of schooling and the later development of wider mathematical 

concepts is substantiated through a growing body of research (Mason, 1996; Mason, Dury, & 

Bills, 2007; Mason, Graham, & Johnston-Wilder, 2005; Mason, Stephens, & Watson, 2009; 

Papic et al., 2011). This research raises questions about how generalisations of mathematical 

concepts are embodied in contemporary mathematical education practice. 

 

Succinctly described, “the power of mathematics lies in relations and transformations which 

give rise to patterns and generalisations. Abstracting patterns is the basics of structural 
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knowledge, the goal of mathematics learning” (Warren, 2005, p. 26). An awareness of 

mathematical structure has the power to transform and engage mathematical thinking, but is 

dependent upon teachers’ awareness of “structural relationships … [and strategies for] … 

bringing structural relationships to the fore” (Mason, Stephens, & Watson, 2009, p. 29). 

 

Abstraction arises from opportunities to generalise about patterns, and the degree of 

abstraction relates to the extent that a concept is connected to a particular context (Skemp, 1986; 

White & Mitchelmore, 2010). There is a direct relationship between the degree of abstractness 

and the extent to which it is removed from specific situations, leading to a greater ability to 

generalise similarity about the concept across a range of contexts: “Knowledge is more general 

and its applicability to different situations is increased” (White & Mitchelmore, 2010, p. 2). In 

the model of teaching for abstraction (White & Mitchelmore, 2010), the role of the teacher in 

drawing students’ attention to the similarities within and between contexts is highlighted 

through various stages. This deliberate process engages students in operating more deeply with 

abstract concepts. This type of mathematical thinking, guided through intentional instruction, is 

described as a conscious process.  In forming this model, White and Mitchelmore drew from the 

psychology of mathematics education literature, particularly the thinking of Richard Skemp.  

 

2.3.3   The psychology of mathematics education and patterning 
 

In his book The Psychology of Learning Mathematics, Skemp (1986) described the process of 

abstraction as “becoming aware of similarities ... among our experiences … resulting in lasting 

mental change” (p. 21). Essentially the concept represents the similarities and is the product of 

abstraction. Hence, explicitly engaging with the elements of similarity across contexts will lead 

to a greater structural understanding of concepts explored. Thinking mathematically is primarily 

viewed as an intentional process involving rigorous thinking about one’s thinking. Mueller, 

Yankelewitz, and Maher (2010) refer to Ball and Bass’ (2003) claim that understanding is 

“meaningless without a serious emphasis on reasoning … to understand the relationships and 

make connections to new ideas” (p. 308). Therefore the process of building mathematical 

understanding is not a passive one. 

 

In defining mathematical thinking, David Tall (2009) reflected on the work of John Mason, 

describing the teacher’s role in supporting students’ thinking to “discriminate between and see 

similarity across objects, to conjecture and inquire” (p. 17). Tall also acknowledged that our 

thinking is developed “through refining our knowledge structures … so that we can talk about 

them” and further referred to “Mason’s insight” into thinking as “a delicate shift in attention 

“which involves “the discipline of noticing” (p. 23). 
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David Tall (2009) commented on Skemp’s exploration into “how the human mind works 

through perception, action and reflection” (p. 23), clarifying that reflection is the vital element 

in creating mental links between perception and action. Tall developed a construct about how 

mathematical thinking develops and named it as “ recognition, repetition and language” which 

leads to “thinkable concepts” (p. 24). These concepts can be further developed by engaging 

them as mathematical objects. Essentially these operate as “mental objects of attention to work 

at higher levels” of thinking (p. 24).  

 

In exploring the structure of conceptual understanding, Skemp (1986) described the process 

of the expansion and reconstruction of schemas. For him, “a schema is a conceptual structure”, a 

mental tool that “assimilates new knowledge (expands) and also reconstructs to adapt and make 

sense of new situations. … It integrates existing knowledge, acts as a tool for future learning 

and makes possible understanding” (pp. 37, 62, 41). The term understanding is complex. Paul 

Ernest (1994) explained the relationship between “knowledge development and acquiring 

understanding” (p. 156) as being an interaction between the application of mathematical 

operations and concepts in new contexts. If the concept “can be integrated into the open 

situation naturally … [it] … produces nearly no problem with understanding” (p. 157). Ernest 

was referring to the process of, and end product of, understanding, which involves the ease of 

transferring and assimilating mathematical concepts. However, the development of new 

understanding involves additional processes to reconstruct and adapt the understanding of the 

concept further or differently.  

 

Robert Davis (1992) stressed the importance of new understanding being dependent upon the 

breadth and depth of previous understanding:  “One gets a feeling of understanding when a new 

idea can be fitted into a larger framework of previously assembled ideas” (p. 228). The 

framework Davis described is in essence a structural pattern of understanding that has emerged 

through engagement with similar ideas. This process is comparable to Goldberg’s description of 

pattern recognition, whereby the sense of similarity experienced across ideas connects with a 

previously encoded pattern.  Mueller, Yankelewitz, and Maher (2010) elaborated on the work of 

Davis, referring to the process of understanding involving “representational structures that a 

learner builds as a collection of assimilation paradigms” (pp. 308–309). Skemp (1986) further 

explained the relationship between assimilation and understanding by pointing out that “to 

understand something is to assimilate it into an appropriate schema”, and that “better 

organisation of a schema may improve understanding” (pp. 43–44). In this instance, schema can 

be compared with the term pattern, and assimilate with the term connect. Therefore, rephrasing 

Skemp’s point reveals a similarity with the neuropsychological construct of pattern recognition: 

to understand something is to connect it into an appropriate pattern.  This again affirms 
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similarities in the description of the construction of across these domains. Skemp was also 

indicating the importance of challenging and expanding current understanding. Developing 

further understanding involves the processes of assimilation, accommodation, and expansion of 

the current schema. Through these processes, understanding is actively constructed and 

reconstructed to accommodate growing awareness and insight. In this way, the psychology of 

mathematics education perspective connects visibly with the view of intentional instruction in 

mathematics education in supporting the capacity to reason and develop generalised patterns of 

understanding. 

 

2.3.4   Cognitive neuroscience and patterning 
 
Cognitive neuroscience “informs our understanding of cognitive behaviours relevant to 

education” (Geake & Cooper, 2003, p. 8). This field eventuated from the merging of two 

academic fields of knowledge, neuroscience and cognitive psychology, in the late 1970s in an 

endeavour to “understand how the brain enabled cognition” (Gazzangia, Ivry, & Mangun, 2002, 

p. 21).  Neuropsychology is a specialisation within the broader field of cognitive neuroscience 

(Gazzangia et al., 2002; Goldberg, 2005). Researchers within and across this broad field 

describe the construction of understanding using various terms such as neural networks, 

cognitive templates, internal maps, mental representations, and patterns of thinking (Devlin, 

2010; Dispenza, 2007; Gazzangia et al., 2002; Geake, 1997). These terms all describe the neural 

structures involved through the process of building cognitive patterns. “Our minds are very 

good at recognising patterns, seeing connections, and making rapid judgements and inferences” 

(Devlin, 2010 p. 171). The processes Devlin refers to reaffirm the elements of pattern 

recognition identified earlier (Goldberg, 2005): that is, recognising patterns, seeing similarities 

and relationships between the elements, making connections, and using this to generalise and 

apply understanding in new situations.  

 

Human memory relies heavily on the associations it develops with and between patterns of 

conceptual understanding (Devlin, 2010). When new experiences are connected with prior 

understandings, this “enables the brain to link new information with well encoded ideas” (Wiles 

& Wiles, 2003 p. 18). Hebbian learning, proposed by Donald Hebb (1949), describes the 

process through which we engage our associative memory to learn new information (Dispenza, 

2007). It asserts that a weak association, something novel or unfamiliar, can be made strong by 

attaching known connections to the learning (Dispenza, 2007). This results in a change in the 

synaptic response of the cells involved (Gazzangia et al., 2002). It follows the notion that “cells 

that fire together, wire together” (Dispenza, 2007, p. 184) and consequently make strong, 

lasting, and resilient connections. These neural networks are a cognitive representation of an 

understanding and “develop as a result of continuous neural activation” (Dispenza, 2007,  
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p. 185) through reengagement with similar experiences. This is the result of the neuroplasticity 

of the brain, which describes “the capacity of the brain to change at a neurophysiological level 

in response to changes in the cognitive environment” (Geake & Cooper, 2003, p. 14). The 

similarity recognised across experiences enables patterns to be actively engaged and 

restructured through this process of neural plasticity.  

 

Neural networks are both locally and globally encoded in the brain (Geake, 1997). Thoughts 

of one thing lead to another, and connections between those thought patterns are stimulated 

along with all the other connections present in the various neuronal groups. This activity leads 

to a creation of internal maps. When these maps overlap there is a mapping of maps, a making 

of meaning, and interpretation is possible. “The interconnections allow each cluster to correlate 

their information” (Geake, 1997, p. 28). Edelman, the founder of the theory of neuronal group 

selection (Edelman, 1992) proposed that the brain selects an appropriate interpretation of these 

maps through “natural selection”. This form of neural Darwinism “leads to superior contextual 

fitness” (Geake, 1997, pp. 28, 32). “The most useful correlated clustering … is selected … 

determining consequent behaviour … in a Darwinian adaptive sense” (Geake 1997, p. 28). Over 

time these maps accumulate, becoming resilient, fluently recalled patterns that have not 

succumbed to the process of natural selection.  

 

Others in the field of cognitive neuroscience concur. “Successful, extensive patterning leads 

to more accurate predictions … extending and strengthening neural networks” (Willis, 2010,  

p. 61). Similarly, Elkhonon Goldberg (2005) described the formation of generic patterns 

through “exposure to the same or similar thing  … [this] … will breathe life into the 

reverberating loop supporting the formation of the memory about it … The more frequently 

encountered information usually wins” (p. 123). Patterns that are engaged more regularly have a 

greater chance of being encoded in long-term memory stores. Frequency and repetition of 

experience seem to be dominating factors in the formation of generic memories and patterns of 

thinking. Intentional instruction supporting the structure of patterns fosters the development of 

generalisations in mathematics education. This line of inquiry leads to questioning the role of 

patterning within the Australian Curriculum: Mathematics (ACM). 

 

2.4   Educational implications of patterning within the ACM 
 
In the rationale of the ACM, the field of mathematics is described as “composed of multiple but 

inter-related and inter-dependent concepts and systems” (Australian Curriculum and 

Assessment Reporting Authority [ACARA], 2015, p. 4). This description anticipates that 

schools will engage with the curriculum in a dynamic and symbiotic way. The goal of 
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mathematics is also clearly articulated in the rationale statement: “It aims to instil in students an 

appreciation of the elegance and power of mathematical reasoning” (ACARA, 2015).  

 

Mathematical reasoning is one of the four proficiencies named in the ACM, the other three 

being understanding, fluency, and problem solving. These proficiencies together describe the 

mathematical thinking and actions that students are engaged in: “They describe how the content 

is explored or developed; that is, the thinking and doing of mathematics” (ACARA, 2015, p. 5).  

Reasoning is described as the “capacity for logical thought and actions, such as analysing, 

proving, evaluating, explaining, inferring, justifying and generalising” (ACARA, 2015). 

Mathematical reasoning invites students into the process of enquiring and generalising about the 

nature of mathematical concepts.  

 

The role of patterning within the teaching of mathematics is highlighted in the ACM through 

the interaction of the four mathematical proficiencies. However, throughout the ACM the 

proficiencies are named and described individually at the beginning of each year level without 

any indication about how they interact. In Engaging the Curriculum-Mathematics: Perspectives 

from the Field, Atweh, Miller, and Thornton (2012) identified challenges that schools and 

educators could face in interpreting and implementing the curriculum due to a “possible lack of 

cohesion between the aims and rationale, the content and its articulation” (p. 2). In particular, 

they noted inconsistency between the weighting of individual proficiencies and they expressed 

concern about the underrepresentation of reasoning identified in the content descriptions.  

 

An interrelated view of the proficiencies is described in the United States report to the 

National Research Council (Kilpatrick, Swafford, & Findell, 2001). In this report, Kilpatrick et 

al. (2001) refer to a model, focused on mathematical proficiency, that is based on five strands: 

conceptual understanding, procedural fluency, strategic competence, adaptive reasoning, and 

productive disposition. In this model, the term mathematical proficiency is used to “capture 

what we think it means for anyone to learn mathematics successfully … The most important 

observation we make about these five strands is that they are interwoven and interdependent… 

[and] … represent different aspects of a complex whole” (Kilpatrick et al., 2001, pp. 5, 116). 

Kilpatrick et al. (2001) stressed the importance of the relationship between all strands in 

building resilient understandings that can be fluently applied in new situations.  

 

An integrated view of the proficiencies acknowledges their interrelationship in building and 

deepening mathematical understanding. Engaging mathematical reasoning naturally draws 

students into greater levels of fluency as they connect their understanding in new problem-

solving contexts, and have opportunities to explain and justify their thinking. Sullivan (2012) 
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proposed that teacher learning should focus on “ways of identifying tasks that can facilitate 

student engagement with all four of these proficiencies” (p. 183) as the “intention is that the full 

range of mathematical actions apply to each aspect of the content” (Sullivan, 2011, p. 8).  

 

What remains unclear is how the role of patterning, that underpins the development of 

reasoning, abstraction, and generalisation is developed in a general sense through an interrelated 

view of the proficiencies. 

 

2.5   Making connections to inform the research inquiry 
 

Abstraction and generalisation in mathematics arise from opportunities to generalise about 

patterns, and the degree of abstraction relates to the extent to which a concept is connected to a 

particular context. Therefore, the degree of abstraction is directly related to the breadth and 

depth of the generalisation (Skemp, 1986; White & Mitchelmore, 2010). From this process of 

generalising, structural understandings can emerge. The intentional practice of reasoning, 

promoted through mathematics education, aims to support this goal of mathematics education 

(ACARA, 2015; Warren, 2005, 2008). 

 

2.5.1   Cross-disciplinary role of patterning 
 
From the neuropsychological field, mathematical abstraction resonates with Goldberg’s 

description of patterning as a neural construction of generalised understandings, a generic 

memory that can be fluently recalled and applied generally in new contexts. This process of 

accessing generic memory supports the theoretical perspective that mathematical knowledge 

cannot be separated from human knowledge. 

 

2.5.2   Conclusion 
 
In concluding this chapter, pattern recognition can be described as a “superior form of 

contextual fitness” and “neuronal efficiency” (Geake, 1997, p. 32), from which Goldberg (2005) 

proposed the “cognitive dimension of wisdom” emerges (p. 11) as an ability to instantly 

recognise new situations as familiar ones. Familiarity and re-engagement with a concept allows 

similarity to be reexperienced and understood. Over time, similarities are encoded in the 

conceptual structure of patterns. These patterns are activated when similarity is again 

recognised, and strong resilient patterns of understanding support new connections to be made 

with less familiar contexts. Over time, a “patterning of patterns” accumulates, creating resilient 

generic memories that are in essence intuitive forms of recognising and understanding new 

situations as familiar ones.  These patterns result from an ability to generalise about the 
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properties of similar experiences and concepts. Interestingly, there is similarity in the processes 

through which understandings are constructed as patterns across domains of knowledge. 
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CHAPTER 

3 
__________________________ 

______________________________ 

 

PUBLICATION 1 
 

Does an Ability to Pattern Indicate We Think Mathematically? 
 
 
3.1 Introduction 
 
In this chapter I present the first publication of this thesis, a position paper presented to the 

Mathematics Education Research Group Australasia (MERGA) in July 2013. This publication 

addressed the first research question in this thesis: What is similar about the construct of pattern 

across the fields of mathematics education and neuropsychology? (In this publication I refer to 

the neurological field rather than neuropsychology. This discrepancy is addressed in the 

postscript.) 

 

There were two key themes in the paper: 

 

1. comparing the role of pattern as a mathematical construct with pattern as a neurological 

construct, and 

2. introducing an emerging view of a generalised model of patterning across the 

mathematical and neurological domains of knowledge. 

 

The chapter begins with a preamble outlining the development and purpose of the paper. The 

postscript provides a discussion addressing key issues arising through the feedback from 

colleagues and my supervisors following the presentation of the paper. Through this feedback I 

reviewed my approach by providing a broader view of patterning across additional domains of 

knowledge to build a stronger theoretical position for the generalised model of patterning.  

Technical and structural aspects of the paper that needed further attention are addressed. I also 

identified areas for future research that were drawn upon to develop Publication 2: The Role of 

Patterning Within and Beyond Mathematical Thinking.  This publication is provided in Chapter 

4. 
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3.2   Preamble 

Intelligence as a whole, takes the form of a structuring, which impresses certain 

patterns on the interaction between the subject … and … surrounding objects.  

(Piaget, 1950, p. 167) 

This quotation from Piaget promotes a view of intelligence as comprising patterns that encode 

meaningful elements of experiences.  Similarities between certain patterns therefore would be 

encoded as a relationship, an overlapping of experience that forms a structure enabling that type 

of experience to be more readily understood. Hence, Piaget is describing the relationship 

between patterning, structuring, and intelligence.  

It is the role of patterning in building mathematical understanding that is the focus of this 

chapter.  I explore how the process of forming patterns could be mathematical. Pattern and 

structure underlie the development of a broad range of mathematical concepts. However, the 

concept of pattern also occurs in other fields. Therefore, in this paper I compare pattern 

recognition, a neurological construct based on the work of Goldberg (2005), with pattern as 

defined in the field of mathematics education, to highlight what is intrinsically similar about the 

concept in these fields. An emerging model of patterning is proposed to describe this 

relationship. 

3.3   Publication 1:  Does an ability to pattern indicate that our thinking is mathematical? 

The following publication appeared in the MERGA36 conference proceedings.  Its full 

reference is the following: 

McCluskey, C., Mitchelmore, M. C., & Mulligan, J. T. (2013). Does an ability to pattern 

indicate that our thinking is mathematical? In V. Steinle, L. Ball, & C. Bandini (Eds.), 

Mathematics education: Yesterday, today and tomorrow: Proceedings of the 36th Annual 

Conference of the Mathematics Education Research Group of Australasia (pp. 482–489). 

Melbourne, VIC: MERGA. 

The text reproduced below retains the wording of the original publication, but font pitch, line 

spacing, page margins, and other aspects of formatting have been altered to conform to 

Macquarie University regulations for theses as well as other text within this thesis. 

https://merga.net.au/Public/Public/Publications/Annual_Conference_Proceedings/2013_MERGA_CP.aspx

https://merga.net.au/Public/Public/Publications/Annual_Conference_Proceedings/2013_MERGA_CP.aspx
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Research affirms that pattern and structure underlie the development of a broad 
range of mathematical concepts. However, the concept of pattern also occurs in 
other fields. This theoretical paper explores pattern recognition, a neurological 
construct based on the work of Goldberg (2005), and pattern as defined in the 
field of mathematics to highlight what is intrinsically similar about the concept 
in these domains. An emerging model of patterning is proposed to describe this 
relationship. 

In contemplating the term pattern, what comes to mind? A number pattern, lyrics in a song, 
patterns in a design, rhythms of nature, a sequence of events, chords in a tune, or a template to 
make an outfit? What about the use of the term pattern to describe how we learn from our 
experiences? The term pattern has distinct meanings across differing domains; what is 
intrinsically similar about the concept of patterning in each instance?  

 
This paper will explore the concept of patterning across two domains, exploring the 

relationship between patterning as a neurological construct, the processes through which our 
understandings are encoded, and patterning as defined in the field of mathematics. Is there any 
similarity in the concept of patterning across these two domains? What is fundamentally 
different about patterning in each context, and is it viable to create a generalised model of 
patterning across these domains? 

Theoretical background 

Quasi-empiricism, a philosophical view of mathematics developed by Imre Lakatos (1976, 
1978), recognises that “mathematical activity is human activity” (Lakatos, 1976, cited in Ernest, 
1991, p. 37) and like all human endeavours is fallible and uncertain and therefore needs to be 
rigorously questioned (Ernest, 1991). If mathematics knowledge “is seen as connected with, and 
... part of the whole fabric of human knowledge” (Ernest, 1991, p. 26), is there any difference 
with how we construct our knowledge generally? 

 

There are four aspects of quasi-empiricism that this paper builds upon: 

 

• Mathematics knowledge is fallible and like all knowledge can and needs to be 
questioned. 

• Mathematical knowledge evolves; new mathematical knowledge is then part of an on-
going process of knowledge creation. 

• The primacy of informal mathematics: all formal mathematics is derived from informal 
human experiences. 
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• The genesis of mathematical knowledge: the creation of mathematical knowledge 

cannot be separated from the creation of human knowledge (Ernest, 1991, pp. 35–36). 

 
This paper asserts the view that mathematical knowledge is not created differently and 

should not be separated from human knowledge. In fact, this paper is essentially an inquiry into 
knowledge creation, identifying the possible mathematical elements involved in this process. I 
use the term patterning to describe the processes through which understandings are constructed.  

 
The role of pattern has enjoyed a history of speculation in the field of mathematics. Steen in 

his groundbreaking text On the shoulders of giants (1990) has been widely cited as claiming 
that “mathematics is the science of patterns” (Steen, 1990, p. 1). Earlier, Piaget (1950) noted 
that “life itself is a creator of patterns” (cited in Lilejedahl, 2004, p. 24). Both are asserting the 
inherent role of pattern in the construction of knowledge, life knowledge and the formation of 
mathematical knowledge. 

 
If “virtually all mathematics is based on pattern and structure” (Mulligan & Mitchelmore, 

2009, p. 33), and “mathematical activity is human activity” which “produces mathematics” 
(Lakatos, 1976, cited in Ernest, 1991, p. 36), then is human activity also based upon pattern and 
structure? Are the elements of pattern and structure that are evident in mathematics also evident 
in human activity, and does this mean human activity is therefore mathematical? This question 
forms the basis of this paper. It is this relationship between mathematics and the nature of life 
itself that will be explored through the construct of patterning in both the mathematical and 
neurological domain. If this relationship can be substantiated, could a theory of mathematics 
evolve which views patterning, a mathematical construct, as the structure through which we 
create all our understandings? 

Patterning as a neurological construct 

In The Wisdom Paradox (2005), Elkhonon Goldberg, a world renowned neuropsychologist 
proposes that in building our understandings we are essentially patterning our experiences and 
retrieving them through the process of pattern recognition, which he refers to as an “ability to 
recognise a new problem as a member of an already familiar class of objects or problems” (p. 
85). This pattern recognition eventuates from an accumulation of similar experiences, and 
“decision making takes the form of pattern recognition rather than problem solving” (p. 20). 
Goldberg cites the words of Herbert Simon (1966) in substantiating the role of pattern 
recognition as “the most powerful mechanism of human cognition” (p. 20). Goldberg refers to 
these patterns as “cognitive templates, each capturing the essence of a large number of pertinent 
experiences” which he relates to the acquisition of “wisdom … and a cognitive gain of aging” 
(pp. 21-22). These patterns enable us to rapidly recognise solutions to seemingly new situations 
as if they were familiar ones. The process involves being able to understand the elements 
involved, knowing what action to take and the possible outcomes that could result. Goldberg 
explicitly refers to this type of pattern recognition in terms of demonstrating the coveted 
attribute of wisdom and that these resilient patterns accumulate over a life time. 

 
In everyday terms, Goldberg describes our ability to naturally sort and classify our 

experiences by relating what we know to past patterns of understanding; these being built 
through an accumulation of similar experiences over time. There are elements of new situations 
that have been experienced before and outcomes that have been previously tested. Goldberg 
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claims that cognitive templates, which encase these familiar elements, are formed physically in 
the brain and are engaged through the process of pattern recognition.  

 
The process of reconnecting to similar patterns over time creates neural structures, which 

Goldberg (2005) describes as “generic memories”; essentially these are “memories for patterns” 
(p. 125). “The more generic a pattern is … the vaster the set of experiences on whose overlap it 
emerged, the more robust … it is” (p. 125). Goldberg refers to these generic memories as an 
abstract representation of a set of similar experiences which is much more resilient than 
“concrete representations corresponding to unique things” (p. 125). Generic memories “capture 
the essence of a wide range of specific situations and the most effective actions associated with 
them,” leading to high levels of competent, efficient decision making (p. 79).  

 
Generic memory draws upon a network of common neural pathways related to the similar 

attribute of the experience they share. This overlapping of neural space becomes eventually “a 
shared network ... a mental representation of not any single thing or event, but rather the shared 
properties of a whole class of similar things or events” (p. 125), alluding to their inherent 
structure. The network not only represents the condensation of past experiences but also 
embodies information about “essential properties of class members” (p. 126), which can be 
added to, expanded upon and utilized in future situations, allowing rapid pattern recognition and 
application.  

 
Goldberg acknowledges the role of language in “shaping our cognition by imposing certain 

patterns on the world” (p. 91); however he does not mention that pattern recognition, a 
neurological construct, could be mathematical. We have already explored though how this 
cognitive process involves sorting, classifying, identifying similarity, creating generic 
memories; all leading essentially to the development of abstract understandings and the 
application of these to predict in future situations. The purpose of this paper is to highlight how 
this everyday process is mathematical.  

Pattern as a mathematical construct 

Mathematics has been referred to as the “science of patterns … seeing and revealing hidden 
patterns are what mathematicians do best” (Steen, 1990, p. 1). In Steen’s text On the shoulders 
of giants: New approaches to numeracy (1990), he suggests that the field of mathematics has 
significantly expanded because of this innate desire to “search for pattern” (p. 1). He elaborates 
on the significance of pattern in the field and work of mathematicians. “Mathematics seeks to 
understand every kind of pattern-patterns that occur in nature, patterns invented by the human 
mind, and even patterns created by other patterns” (p. 8). In both instances Steen acknowledges 
the integral role of pattern in all aspects of mathematical study, and alludes to the role of 
patterns in life.  He states how identifying and understanding the nature of patterns; and 
interestingly also the patterns in nature; is actually the process through which mathematical 
knowledge is created. This affirms the philosophical view that mathematical knowledge is 
derived from human knowledge and the desire to understand the world we live in.  

 
In the field of mathematics, “a mathematical pattern may be described as any predictable 

regularity, usually involving numerical, spatial or logical relationships” and its structure is 
defined as “the way a pattern is organised” (Mulligan & Mitchelmore, 2009, p. 34). Replicating 
regularity involves recognising, predicting, and repeating what is deemed similar. Structural 
understanding emerges from generalising about the similarity; it involves exploring “a 
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relationship that holds over the entire class of values, not only in isolated instances” (Papic, 
Mulligan, & Mitchelmore, 2011 p. 239).  

 
Recent research (Arcavi, 2003; Lilejedahl, 2004; Mulligan & Mitchelmore, 2009; Papic et 

al., 2011; Warren, 2008) confirms that it is the actual process of exploring pattern and structure 
and developing visualisation that builds broader mathematical understandings. This process 
involves identifying patterns and similarities between patterns, constructing generalisations, the 
creation of abstract mathematical objects and structural awareness, as “abstracting patterns is 
the basis for structural knowledge, the goal of mathematics learning” (Warren, 2008, p. 759). In 
simplest terms, structural awareness is a recognition of structures within a pattern which are 
“the same … every pattern is a type of generalisation in that it involves a relationship that is 
‘everywhere the same’” (Papic et al., 2011 p. 240).  

 
When a prediction is made that is based upon a generalisation about the pattern, this type of 

mathematical thinking leads to the ability to abstract (White & Mitchelmore, 2010). Structural 
understandings, an identified goal of mathematics, are developed through this ability to engage 
abstractly with patterns (Warren, 2008). The term abstraction, as used in the mathematical 
context, refers to “the degree to which a unit of knowledge (or a relationship) is tied to a 
specific context” (White & Mitchelmore, 2010, p. 1). There is a direct relationship between the 
degree of abstractness and the extent to which it is removed from specific situations, leading to 
a greater ability to generalise about “relevant conceptual attributes” across a range of contexts, 
so that “knowledge is more general and its applicability to different situations is increased” 
(White & Mitchelmore, 2010, p. 2).  

 
Richard Skemp (1986), known for his pioneering work into the psychology of mathematics 

education, describes the process of abstraction as becoming “aware of similarities (in the 
everyday, not the mathematical sense) among our experiences”, resulting “in some kind of 
lasting mental change” (Skemp, 1986, p. 21). Skemp explains that the act of naming objects is a 
form of classification. This involves identifying that a particular object belongs to a category 
based upon some predetermined criteria which is satisfied by the whole class of objects. Skemp 
links this process of classification to conceptual development, “a concept therefore requires for 
its formation a number of experiences which have something in common” (p. 21). White and 
Mitchelmore (2010) elaborate further on the nature of the similarities that Skemp is referring to, 
not in terms of superficial appearances but of underlying structure “in a sense the concept 
embodies or reifies the similarities” (p. 206). Essentially the concept represents the similarities 
and is the end product of abstraction. 

The relationship between mathematical and neurological patterning 

In this description of mathematical pattern, we hear familiar words that Goldberg echoed in his 
definition of pattern recognition the ability to identify similarity, distinguish difference, and 
essentially to understand and apply the predictable elements to new situations in a generalised 
way. Mathematical abstraction resonates visibly with Goldberg’s description of patterning as a 
neural construction of our generalised understandings, further affirming the theoretical 
perspective that mathematical knowledge cannot be separated from human knowledge (Ernest, 
1991). It is this relationship between mathematical abstraction and pattern recognition which 
will be explored further. 

White and Mitchelmore (2010) outline a theory of how students develop generalised 
mathematical understandings through abstraction and propose an approach to teaching, called 
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Teaching for Abstraction, designed to support and strengthen this process. In this model, 
students engage in exploring a concept across a range of contexts and, as their sense of 
familiarity increases, learn to recognise similarity across contexts and develop generalised 
understandings, leading to a growing ability to predict and abstract.  

 
The Teaching for Abstraction model has four phases, namely familiarity, similarity, 

reification, and application.  
 
• In the familiarity phase, students explore a concept through engaging in a variety of 

contexts, becoming “familiar with the underlying structure of each context”.  
• The similarity phase involves frequent matching and explicit attention to structural 

similarities within the varying contexts and differences with other contexts. 
• The reification phase moves students into operating with and developing abstract 

concepts.  
• The application phase allows students to consolidate their understanding of the abstract 

concept through application to new situations  (White & Mitchelmore, 2010, p. 5) 

 
Similarly, Goldberg (2005) describes pattern recognition as an ability to pattern our 

experiences and draw upon these patterns in future instances. In doing so, we naturally go about 
seeking similarity, discriminating difference, and creating varying measures of understanding by 
relating new experiences to what is already known and understood. What is common about the 
experience helps to reinforce and expand the pattern even further. Over time these patterns are 
encoded as cognitive templates, predicting possible solutions to future problems becomes a 
matter of pattern recognition.  

 
Each phase of the development of mathematical abstraction, as summarised in the Instruction 

for Abstraction model, can be aligned with Goldberg’s description of pattern recognition, as 
shown in Table 1. 

 
Goldberg describes how our everyday generalised understandings are constructed 

cognitively as generic memories and how in the long term this can lead to the rapid application 
of pattern recognition in new situations. This appears to be an intuitive process, as everyday 
understandings are constructed below our level of awareness. Situations can feel familiar 
because past experiences have merged to create a mental construct, a patterning of similar 
understandings, which is challenged and changed with each new experience.  

 
In the mathematical domain the focus is on understanding and communicating the nature of 

patterns, which involves the ability to sort and classify; becoming familiar with the properties of 
mathematical objects across differing contexts; recognising similarities and using these to 
create, predict and generalise; leading to an ever increasing ability to deal with concepts in an 
abstract sense. Knowledge that is generalised across a range of contexts can be applied to new 
situations. Through this process of abstraction, freed from specific contexts. each generalisation 
“becomes a mathematical object in its own right” (White & Mitchelmore, 2010, p. 1). 
Increasing understanding leads to the development of “a point of view which guides our 
thinking” (Cassirer, 1923, cited in Van Oers, 2001, p. 284). 
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Table 1 
Abstraction Across Domainsa  

Mathematical domain Neurological domain 

Familiarity:  
• explore a concept through a variety of   

contexts  
• become familiar with the underlying 

structure of each context  

• Engagement with a range of situations set the 
scene for experiencing and sensing what is 
familiar about these situations.  

 

Similarity: 
• frequent matching 
• explicit attention to similarities within and 

between varying contexts 

• Further attention and engagement with familiar 
situations allows connections to emerge as we 
recognise what is similar about these experiences. 

• Engagement with these experiences enables 
similarity to be matched, measured, and 
understood. 

• Overlapping of neural networks encode the 
similarity experienced. 

Reification: 
• moves students into operating with abstract 

concepts 

• Over time a pattern is encoded as a generic 
memory, a mental representation of the 
similarities and shared properties of a ‘type’ of 
experience.  

Application: 
• consolidation of the concept 
• application to new situations 

• Pattern recognition refers to the ability to readily 
access this pattern in similar situations in the 
future.  

aInformation collated from White and Mitchelmore (2010) and Goldberg (2005), respectively. 

 
At each stage, the mathematical structure described through the Teaching for Abstraction 

Model (White & Mitchelmore, 2010) mimics the process of pattern recognition proposed by 
Goldberg (2005). There appears to be mathematics inherent in the way we construct generalised 
everyday understandings which implicitly guide our thinking and our future choices in new 
situations. Could the generic memories that Goldberg refers to in the process of pattern 
recognition be viewed as mathematical objects, a by-product of our ability to generalise? 

 
In their analysis of the process of reification, Thompson and Sfard (1994) also elaborate on 

the nature of mathematical objects. “Objects ... are in a sense, figments of our mind. They help 
put structure and order into our experience (p. 11), “objectness comes from possessing 
coordinated schemes” (p. 16) that are linked together “because we feel somehow they represent 
the same thing” (p. 2). By this definition, coordination of thinking is aligned through the 
structural awareness we put in place to understand a concept. Structural awareness is developed 
through the process of generalising and abstracting the patterns we encounter. This concept ... 
this structure ... this pattern ... this object is re-engaged each time we encounter a similar 
experience, whether this experience is classified in mathematical or everyday terms.   

 
In both the mathematical and neurological domain, structural awareness emerges from 

engaging with familiar patterns; similar elements of patterns across varying contexts merge to 
form structural understandings which encase the conceptual experience. This process leads to 
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generalised understandings which can be applied in new situations to further engage and deepen 
the concept at hand. There are noticeable similarities in the terms used to describe the elements, 
processes and outcomes of patterning in both the mathematical and neurological domains.  

Summary  

Exploring the relationship between mathematical learning and the formation of everyday 
understandings through the construct of patterning has highlighted the similarities between the 
two contexts. In both cases, learning follows a similar cognitive process, involving the seeking 
of similarity, understanding of differences, and iteration of what is common through the 
repetition of experience. Patterning also explores the relationship between the elements, leading 
to a structural awareness of how the concept is organised and what is the same in each instance. 
This structural awareness enables one to generalise the relationships inherent in the pattern and 
apply an abstract understanding of the concept to make predictions in new situations.  

 
Essentially we experience patterning through our everyday encounters and patterning is a 

process through which we construct our understandings. If mathematical activity though is 
human activity (Lakatos, 1976 cited in Ernest 1991) and all formal mathematics is derived from 
informal human experience (Ernest 1991), and if mathematical knowledge “is seen as connected 
with, and ... part of the whole fabric of human knowledge” (Ernest, 1991, p. 26), then can the 
mathematical concept of pattern be viewed as the formal embodiment of the informal sense of 
patterning we encounter through our life experiences?  

 
It appears that the very processes through which we construct our understandings and 

ultimately experience life itself are essentially mathematical. Could a generalised model of 
patterning evolve, one which views pattern, a mathematical construct, as the structure through 
which we create and build our understandings? How could a generalised model of patterning 
support the development of both mathematical and everyday understandings? What implications 
could such a model have for our educational practices? 
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3.4   Postscript 
 
Presenting the position paper at MERGA provided me with opportunity to gather feedback to 

ensure I was using correct terminology and presenting a coherent theoretical argument (Refer to 

Appendices B2 and B3). The feedback supported the expansion of the proposed generalised 

model of patterning and assisted in developing educational implications regarding the 

implementation of the model. Issues raised included: 

 

1. Use of correct terminology 

Elkhonon Goldberg is a neuropsychologist, and therefore it was identified that this 

research is drawing upon the construct of pattern from a neuropsychological field not 

neurological field. The field of neuroscience is continually expanding to encompass 

specialised fields. Therefore, the correct use of terminology is reflected in my research 

and has been addressed in Publication 2.  

 

2. Clarifying levels of abstraction across domains 

In Table 1 within the publication above, Goldberg’s description of the development of 

pattern recognition (Goldberg, 2005) had been aligned with the stages of abstraction 

outlined in White and Mitchelmore’s teaching for abstraction model (White & 

Mitchelmore, 2010). One participant questioned whether Goldberg’s construct of 

pattern recognition aligned more closely with the reification stage of White and 

Mitchelmore’s model, rather than the application stage. After discussion with Mike 

Mitchelmore, he clarified that  

 

• pattern recognition refers to the ability to readily access patterns in similar 

situations in the future, aligning more correctly with the reification stage in 

the teaching for abstraction model; and 
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• the application stage therefore involves recognising familiar patterns more 

fluently and applying patterns of knowing by recognising new problems as 

having similar characteristics to familiar ones. 

 

Essentially, the application stage involves recognising the same pattern in new 

situations. As a result, Table 1: Abstraction Across Domains was adjusted and re-named 

the generalised model of patterning when Publication 2 was finalised in 2014 to reflect 

this difference and provide better clarification between the stages of abstraction.  

 

3. Revising the title of the paper.  

The title of Publication 1, Does an Ability to Pattern Indicate That We Think 

Mathematically? came under question. In the feedback from colleagues I was asked to 

clarify what I meant by “thinking mathematically”. I was questioned by participants 

whether this meant in a broad sense, namely that we think mathematically through our 

everyday encounters, or whether I was referring to thinking mathematically as occurring 

more specifically within the field of mathematics. Through the discussion it became 

clear that there was a distinct difference between these two contexts.  

 

The argument in Publication 1 was structured around the proposition that if elements 

of mathematical pattern could be identified in the construction of everyday 

understandings, and if pattern and structure underlie the broad development of 

mathematical understandings, the construction of our generalised understandings could 

be viewed as mathematical. Comparing the role of patterning across the domains 

identified similarities in the stages of pattern and structure evident in the construction of 

understandings. In the title I was alluding to the analogy that the common elements of 

both mathematical and generic understandings were pattern and structure. Since pattern 

and structure are integral elements of mathematical thinking and “mathematics is an 

exploratory science that seeks to understand every kind of pattern” (Steen, 1990, p. 8), I 

felt my argument was justified: The way we think is mathematical because the elements 

of pattern have been identified and used. 

 

However, in a mathematical sense, thinking mathematically is an intentional process 

involving metacognition, an awareness of one’s thinking. Understanding is developed 

“when a new idea can be fitted into a larger framework of previously assembled ideas” 

(Davis, 1992, p. 228). The process of building mathematical understanding is not a 

passive one. Mueller, Yankelewitz, and Maher (2010) refer to Ball and Bass’s (2003) 

claim that understanding is “meaningless without a serious emphasis on reasoning … to 
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understand the relationships and make connections to new ideas” (p. 308). This view 

supports the notion that mathematical thinking is strengthened through capacity to 

generalise about relationships and transfer understandings in new contexts. In defining 

mathematical thinking, David Tall (2009) reflected on the work of John Mason, 

describing the teacher’s role in supporting students’ thinking as being to “discriminate 

between and see similarity across objects, to conjecture and inquire” (p. 17). Tall also 

argued that our thinking is developed “through refining our knowledge structures … so 

that we can talk about them”, and further referred to Mason’s insight into thinking as “a 

delicate shift in attention” … [involving] … “the discipline of noticing” (p. 23).  Again, 

mathematical thinking is described as a conscious and deliberate process. 

 

The role of the teacher in drawing students’ attention to the similarities within and 

between contexts is highlighted through the various stages of abstraction in White and 

Mitchelmore’s model of teaching for abstraction. This deliberate process engages 

students in operating with more abstract concepts. Conceptual understanding in 

mathematics therefore is deepened when awareness of similarities encountered in 

familiar and new situations is engaged. Again, this type of thinking is regarded as a 

conscious process.   

 

However, In Goldberg’s description of pattern recognition, the development of 

generic patterns occurs over time as an accumulation of experiences and is not always a 

conscious process. “Memories for patterns” are supported through “every new exposure 

to the same or similar thing” and this exposure “will breathe life into the reverberating 

loop supporting the formation of the memory about it … the more frequently 

encountered information wins” (Goldberg, 2005, p. 123). Every new exposure is not 

necessarily intentionally created, or consciously formed. Patterns that are engaged more 

regularly have a greater chance of being encoded in long-term memory stores. The 

frequency and repetition of experience seem to be dominating variables in the formation 

of generic memories. At this stage the involvement of conscious deliberation of 

concepts has yet to be explored in the formation of generic patterns. The involvement of 

conscious intent in the formation of memory is an area for further research.  

 

Consequently, in consultation with my supervisors, it was decided to title the second 

publication The Role of Pattern Within and Beyond Mathematical Thinking. This title 

more accurately describes this research inquiry into the role of pattern rather than an 

argument about the “mathematical” way we think and construct understandings.  
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4. Discussion arose about the role of pedagogical interventions focused on pattern and 

structure in supporting children with special learning rights. If conceptual understanding 

develops through a greater sense of pattern and structure, how might the broader field of 

education capitalise upon the role of pattern in the building of generalised 

understandings? What could be the impact on learning when elements of pattern and 

structure are intentionally embedded in learning designs, both in a mathematical sense 

and through emphasising patterning generally across learning areas? The implications 

for learning are introduced in Publication 2 and further explored in Publication 3. 

 

5. In the presentation at MERGA36, I introduced the potential relationship between the 

role of pattern across domains, illustrated in Table 1 within this chapter, and the 

development of the generalised understandings described through the proficiency 

strands in the Australian Curriculum: Mathematics. There was interest by participants in 

how this relationship could be developed further. In Publication 3, The Role of 

Reasoning Within the Australian Curriculum: Mathematics, the role of the 

mathematical proficiencies in building generalised understanding is explored in order to 

investigate this possible relationship. Two main questions emerged: 

 

• How could explicit use of the mathematical proficiencies build fluent, 

generalised understandings, and strengthen reasoning skills?  

• What are the implications for learning within and beyond mathematics 

education? 
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CHAPTER 

4 
__________________________ 

______________________________ 

 

PUBLICATION 2 
 

The Role of Pattern Within and Beyond Mathematical Thinking 
 

The human mind is a pattern recogniser. The ability to see patterns and similarities is one 

of the greatest strengths of the human mind.   

(Devlin, 2010, p. 169) 

 

4.1   Introduction 
 
In this chapter I present the second publication of this thesis: The Role of Pattern Within And 

Beyond Mathematical Thinking. This second publication is as an extension of Publication 1 and 

includes reference to the theoretical perspectives provided in Chapter 2. This publication 

addresses the second and third research questions for this thesis: Is a generalised view of 

patterning applicable across broader fields of knowledge? What are the educational implications 

of a generalised model of patterning?  

 

This chapter comprises: 

 

1. A preamble outlining the development of the paper, including:  

 

• the purpose of Publication 2; 

• modifications made from the original MERGA paper, including a discussion about 

the rationale for Publication 2; and 

• theoretical perspectives on the role of patterning. 

 

2. Publication 2: The Role of Pattern Within and Beyond Mathematical Thinking.  

 

3. A postscript that provides a reflection about how the theoretical perspectives in the 

paper can inform future research. 

 

4.2   Preamble  
 
4.2.1   Purpose of Publication 2 
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Publication 2 expands on the theoretical framework underpinning the generalised view of 

patterning proposed in Publication 1 and sets the scene for addressing educational implications 

explored in Publication 3: The Role of Reasoning in the Australian Curriculum: Mathematics.  

 
4.2.2   Developing a broader view of the role of pattern across knowledge domains 
 
In the following four points I address the feedback from presenting at MERGA36 to build a 

more comprehensive view about the role of pattern within Publication 2: 

 

1. I revised Table 1 in Publication 1 to reflect similarity at each stage of the development 

of patterning across both fields. These changes were also identified in the postscript in 

Section 3.4 and have been incorporated in Publication 2. In order to reflect these 

changes, this table has been renamed the generalised model of patterning. 

 

2. In Publication 2, I revisit the term “thinking mathematically”. This required critical 

examination of what is known and understood by this term in the field of mathematics 

education. This has been discussed in Chapter 2 and is further addressed in Publication 

2 to provide a more balanced argument. Discussion about this term also led to the 

change of title for Publication 2. This change indicated the need for further exploration 

of the role of patterning across domains without this being limited to, or indicative of, 

mathematical thinking.  

 

3. Publication 2 addresses mathematical thinking more broadly across the fields of the 

psychology of mathematics education and cognitive neuroscience to substantiate the 

proposed generalised model of patterning.  

 

4. The educational implications of a generalised model of patterning are discussed. 

Although implications were raised in the presentation at MERGA36 they were not 

discussed in Publication 1 (refer to postscript, Section 3.4). 

 

In developing the structure of Publication 2, decisions were made regarding which elements 

of the original MERGA paper would be used and/or referred to in the second extended 

publication. There were two clear directions that were deliberated upon. These were to: 

 

• build upon the theoretical position proposed in the original paper by adding a broader 

range of research from the fields of the psychology of mathematics education and 

cognitive neuroscience, and 
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• summarise feedback and recommendations from the position paper and use this to build 

a wider view of the generalised construct of patterning. 

It was considered that presenting the same theoretical position in a second publication would 

appear repetitive. However, in this second paper the theoretical position is argued more 

coherently as a full paper using the background research that the proposed generalised model of 

patterning (GMP) was developed from. Consequently, in Publication 2 we have built a stronger 

view of the GMP that is the core of this research. 

 

4.2.3   Structure of theoretical perspectives 
 
Entries in Table 4.1 outline the theoretical perspectives from Chapter 2 that this second 

publication has drawn upon. 

 

Table 4.1  

Structure of Theoretical Perspectives  

Field of research Elements of research 

Neuroscience 
Neuropsychology 
Cognitive neuroscience 

 

• Clarify differences between disciplines 
• Identify how the broader field of 

neuroscience describes the process of 
patterning, including physiological 
changes in the brain 

Mathematics 
Psychology of mathematics 
Mathematics education 

• Reviewing the connection between the 
construction of conceptual schemas and 
the construct of patterning and how this 
aligns with the GMP. 

 

 

4.3   Publication 2  The role of pattern within and beyond mathematical thinking 
 
The following publication has not yet been submitted to a journal.  However, it would be 

suitable for a philosophy of mathematics education journal such as For the Learning of 

Mathematics (FLM). 

 

The text reproduced below contains the wording that is intended for the article that will be 

submitted, but font pitch, line spacing, and other aspects of formatting conform to Macquarie 

University regulations for theses as well as other text in this thesis.  Appropriate alterations, 

according to the target journal’s requirements, will be made prior to submission. 
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The Role of Pattern Within and Beyond Mathematical Thinking 

 
Catherine McCluskey, Michael Mitchelmore, and Joanne Mulligan 

 
A generalised model of patterning has been proposed to describe the 

relationship between the mathematical construct of pattern and the 

neuropsychological construction of patterning.  The purpose of this paper is to 

further investigate this generalisation of patterning across the broader fields of 

cognitive neuroscience and the psychology of mathematics education. This 

paper expands upon the generalised model of patterning to describe the role of 

pattern within and beyond mathematical thinking, highlighting educational 

implications.  

 

A pattern is a mathematical construct that can be defined as “any predictable regularity” and its 

structure is defined as “the way a pattern is organised” (Mulligan & Mitchelmore, 2009, p. 34). 

In the field of neuropsychology, the term pattern refers to a cognitive construct that encases and 

encodes a type of understanding. Through repetition, common elements of similar experiences 

become encoded as a pattern, a way of knowing and understanding the familiar elements of 

certain types of experiences. Over time, familiarity grows and key elements of the experience 

become instantly recognisable. Elkhonon Goldberg (2005), a world-renowned neuro-

psychologist, refers to this intuitive knowing as pattern recognition.   

 

McCluskey, Mitchelmore, and Mulligan (2013) explored the role of mathematical pattern in 

the construction of understanding, highlighting elements of pattern inherent in both the 

mathematical and neuropsychological fields. From this analysis a generalised view of patterning 

was proposed and identified as abstraction across domains. The purpose of this paper is to 

further explore the construct of patterning through the wider fields of the psychology of 

mathematics education and cognitive neuroscience. Two questions are addressed:  Does a 

generalised view of patterning apply across wider fields of knowledge? and What is the role of 

patterning in the construction of  understandings? 

 

Theoretical background 
 
Quasi-empiricism is a philosophical view of mathematics that asserts that all formal 

mathematics is derived from informal human experiences, that mathematics knowledge should 

not be separated from human knowledge, and that new knowledge is part of an ongoing process 

of knowledge creation (Ernest, 1991). With this in mind, mathematics could be viewed as a way 

and means of naming, describing, comparing, measuring, quantifying, and reflecting upon our 

experiences. Something is understood because it feels familiar and is similar to a past 
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experience. This sense of familiarity draws us to engage in situations, possibly knowing how to 

respond because we already have a pattern of engaging with this type of experience before.  

Through this process of comparison, differences across situations become evident, challenging 

and expanding understanding further. Mathematics provides the means to compare, 

differentiate, and recognise what is familiar and known through our everyday experiences, and 

how to make predictions in less familiar experiences. 

 

Identifying patterns and common elements across similar type patterns develops structural 

understandings. This involves exploring “a relationship that holds over the entire class of 

values, not only in isolated instances” (Papic, Mulligan, & Mitchelmore, 2011, p. 239). 

Structural understandings develop through a capacity to generalise what is similar and to predict 

in new situations, leading to the development of abstract understandings, which is a recognised 

goal for all mathematics education (Warren, 2008).  

 

However this process of patterning and developing generalised understandings does not just 

occur in the field of mathematics. McCluskey, Mitchelmore, and Mulligan, (2013) proposed a 

generalised view of patterning through constructing the model that they called abstraction across 

domains. In this model they identified the similarities between Goldberg’s theory of pattern 

recognition as outlined in his text The Wisdom Paradox (2005), and White and Mitchelmore’s 

model of teaching for abstraction (White & Mitchelmore, 2010). White and Mitchelmore’s 

model of teaching for abstraction outlines how, as a sense of familiarity about a concept is 

engaged, students learn to recognise similarity, and through guided instruction develop 

generalised understandings. This generalisation leads to a growing ability to predict and develop 

abstract understandings. Each stage of the development of mathematical abstraction, as 

summarised in the model of teaching for abstraction, can be aligned with Goldberg’s description 

of pattern recognition. In both the neuropsychological and mathematics education domains, 

generalised understandings emerge from engaging with familiar patterns, and similar elements 

of the patterns across varying contexts merge to form structural understandings that encase the 

conceptual experience. These generalised understandings can be applied in new situations to 

predict, test, and reason. This type of thinking strengthens and expands conceptual 

understanding further.  

 

The abstraction across domains model (McCluskey, Mulligan, & Mitchelmore, 2013) has 

been modified to better delineate stages in terms of similarity across both domains. Table 1 

outlines these similarities in building generalised understandings across the mathematical and 

neuropsychological domains. 
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Table 1 

Generalised Model of Patterning (GMP)a  

Mathematical domain  
Teaching for abstraction model 

Neuropsychological domain  
Goldberg: Pattern recognition 

Familiarity:  

• Explore a concept through a variety of 
contexts  

• Become familiar with the underlying 
structure of each context  

 

• Engagement with a range of situations set 
the scene for experiencing and sensing what 
is familiar about these situations.  

 

Similarity: 

• Frequent matching 
• Explicit attention to similarities within 

and between varying contexts 

 
• Further attention and engagement with 

familiar situations allows connections to 
emerge as what is similar about these 
experiences is recognised. 

• Engagement with these experiences enables 
similarity to be matched, measured, and 
understood. 

• Overlapping of neural networks encode the 
similarity experienced across different 
contexts. 

Reification: 

• Moves students into operating with 
abstract concepts 

 

• Over time a pattern is encoded as a generic 
memory, a mental representation of the 
similarities and shared properties of a 
“type” of experience.  

• Pattern recognition refers to the ability to 
readily access this pattern in similar 
situations in the future 

Application: 

• Consolidation of the concept 
• Application to new situations 

 

• Recognise familiar patterns more fluently. 
Automated, efficient, and competent 
decision making. 

• Applying patterns of knowing by 
recognising new problems as having similar 
characteristics to familiar ones … the same 
pattern in new situations. 

a Collated from White and Mitchelmore (2010) and Goldberg (2005) respectively, and subsequently 
adapted from McCluskey, Mitchelmore, and Mulligan (2013). 

 

In comparing the role of pattern across both domains, what is intrinsically different about the 

type of thinking is also discussed in both fields. Mathematics is a language of reason and 
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therefore is a rigorous, explicit discipline. It involves a conscious process of theorising, testing, 

and restructuring ideas. In the instruction for abstraction model, there is intentional attention 

drawn to the attributes of mathematical objects to greater understand their similarities and 

differences. The process of constructing generalisations and consequent abstract mathematical 

understandings is conscious and deliberate. On the other hand, in the neuropsychological field 

pattern recognition occurs gradually, often happening below a level of conscious awareness. 

Situations feel familiar because over time and re-engagement with similar types of experiences, 

the inherent similarities emerge as a form of knowingness. Generalised understandings develop 

through repetition of experience and engaging familiar patterns of thinking that might or might 

not eventuate through intentional means. 

 

The process of patterning is evident in both instances. However, the discriminating feature is 

the level of awareness brought to developing abstract understandings. The field of mathematics 

recognises the power of reasoning in the development and expansion of resilient conceptual 

understanding. In the field of neuropsychology, pattern recognition is strengthened through the 

formation of generic patterns produced by the repetition of similar types of experience. Other 

factors contributing to the development of resilient patterns that can be fluently recalled need to 

be explored.  

 

Further inquiry/argument 
 
A generalised model of patterning (GMP) has been proposed by McCluskey, Mitchelmore, and 

Mulligan (2013) to explain the similarities in the construct of patterning across the two fields of 

mathematics education and neuropsychology. An issue that arises is whether the GMP might be 

applicable across other fields of knowledge. Therefore, the role of patterning in the wider fields 

of the psychology of mathematics education and cognitive neuroscience is explored in this 

paper. 

 

Conceptual understanding and the generalised model of patterning 
 
White and Mitchelmore’s model of teaching for abstraction (2010), referred to above in the 

GMP, was based upon the work of Richard Skemp (1986). Skemp is known for his pioneering 

work into the psychology of mathematics education. He described the process of abstraction as 

becoming “aware of similarities (in the everyday, not the mathematical sense) among our 

experiences”, resulting “in some kind of lasting mental change” (p. 21) and he explained that 

the act of naming objects is actually a form of classification. This involves identifying that a 

particular object belongs to a category based upon some predetermined criteria that are satisfied 

by the whole class of objects. Skemp linked this process of ongoing classification to conceptual 

development: “A concept therefore requires for its formation a number of experiences which 
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have something in common” (p. 21). A pattern, then, can be viewed as a conceptual structure 

that over time encodes the common elements of experiences. 

 

In exploring the structure of conceptual understanding, Skemp described the process of the 

expansion and reconstruction of schemas: “A schema is a conceptual structure” … a mental tool 

that “assimilates new knowledge (expands) and also reconstructs to adapt and make sense of 

new situations … It integrates existing knowledge, acts as a tool for future learning and makes 

possible understanding” (Skemp, 1986, pp. 37, 62, & 41). It is not clear at what stage this 

process of assimilation moves from recognising similarity to the fluent, efficient pattern 

recognition that Goldberg refers to. 

 

Describing the processes involved in building understanding is complex. In the field of 

mathematics, Paul Ernest (1994) explained the relationship between “knowledge development 

and acquiring understanding” (p. 156) as an interaction between the application of mathematical 

operations and concepts in new contexts. If the concept “can be integrated into the open 

situation naturally … [it] … produces nearly no problem with understanding” (p. 157). Ernest is 

referring here to the process, and end product, of understanding that involves the ease of 

transferring and assimilating mathematical concepts. If understanding involves the process of 

assimilation, the development of understanding would bring in additional processes to 

reconstruct and adapt the understanding of the concept further. 

 

Robert Davis (1992) stressed the importance of new understanding being dependent upon the 

breadth and depth of previous understanding: “One gets a feeling of understanding when a new 

idea can be fitted into a larger framework of previously assembled ideas” (p. 228). Mueller, 

Yankelewitz, and Maher (2010) have elaborated on the work of Davis, referring to the process 

of understanding involving “representational structures that a learner builds as a collection of 

assimilation paradigms” (pp. 308–9). Skemp (1986) had explained the relationship between 

assimilation and understanding in that “to understand something is to assimilate it into an 

appropriate schema”, and that “better organisation of a schema may improve understanding” 

(pp. 43–44). In this instance, Skemp was indicating the importance of challenging and 

expanding current understanding. Developing further understanding involves the processes of 

assimilation and accommodation, of the current schema. In the process, understanding is 

actively engaged and reconstructed to accommodate growing awareness and insight.  

 

These stages of schematic understanding can also be compared alongside the GMP in  

Table 1. Elements of patterning are evident in the development of schematic structures and 

move through similar stages to those identified also in the instruction for abstraction model 
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(White & Mitchelmore, 2010) and Goldberg’s development of pattern recognition (Goldberg, 

2005). 

 
To further understand these connections across contexts, the field of cognitive neuroscience 

can offer insight into the role of patterning in the assimilation and accommodation of schematic 

understandings, shedding further light on the applicability of the proposed GMP. 

 

The role of patterning as a neurological construct 
 

In forming the GMP, McCluskey, Mitchelmore, and Mulligan (2013) drew primarily upon the 

work of Elkhonon Goldberg (2005) who described the process of intuitive knowing as pattern 

recognition. He is not alone in his view of patterning as a neuropsychological construct. The 

wider field of cognitive neuroscience “informs our understanding of cognitive behaviours 

relevant to education” (Geake & Cooper, 2003, p. 8). Researchers within and across this broad 

field describe the construction of understanding using various terms such as neural networks, 

cognitive templates, internal maps, mental representations, and patterns of thinking (Devlin, 

2010; Dispenza, 2007; Gazzangia, Ivry, & Mangun, 2002; Geake, 1997). These terms describe 

neural structures, which are in essence the patterns of condensed understandings that Goldberg 

identified through the process of building pattern recognition.  

 

Devlin (2010) described our minds as “very good at recognising patterns, seeing 

connections, and making rapid judgements and inferences” (p. 171). The processes Devlin 

referred to reaffirm the elements of pattern recognition identified earlier: recognising patterns, 

seeing similarities and relationships between the elements, making connections, and using these 

to generalise and apply understanding in new situations. This is also a result of the 

neuroplasticity of the brain, which “is the capacity of the brain to change at a 

neurophysiological level in response to changes in the cognitive environment” (Geake & 

Cooper, 2003, p. 14).  

 

Human memory relies heavily on the associations it develops with and between patterns of 

conceptual understanding (Devlin, 2010). When new experiences are connected with prior 

understandings, this “enables the brain to link new information with well encoded ideas” (Wiles 

& Wiles, 2003, p. 18). This theory, Hebbian learning, was proposed by Donald Hebb (1949) and 

describes the process through which we engage our associative memory to acquire new 

information (Dispenza, 2007). It asserts that a weak association, something novel or unfamiliar, 

can be made strong by attaching known connections to the learning (Dispenza, 2007). This 

results in a change in the synaptic response of the cells involved (Gazzangia et al., 2002). It 

follows the notion that “cells that fire together, wire together” (Dispenza, 2007, p. 184) and 
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consequently make strong, lasting, and resilient connections. These neural networks are a 

cognitive representation of an understanding, and “develop as a result of continuous neural 

activation” (Dispenza, 2007, p. 185). Adaptive plasticity is the capacity of the brain to 

accommodate and retain new information (Geake & Cooper, 2003) and in the process actively 

access familiar patterns recognised.  

  

Neural networks are both locally and globally encoded in the brain (Geake, 1997). Thoughts 

of one thing lead to another, and connections between those thought patterns are stimulated 

along with all the other connections present in the various neuronal groups. This activity leads 

to a creation of internal maps. When these maps overlap there is a mapping of maps, a making 

of meaning—and interpretation is possible. “The interconnections allow each cluster to correlate 

their information” (Geake, 1997, p. 28).  

 

This mapping of neuronal groups is similar to Goldberg’s description of the formation of 

generic understandings as depicted in Figure 1. This image illustrates numerous networks 

representing information about various dogs. This visual mapping of a patterning of patterns 

highlights the common aspects of the experience. The common elements identify what is 

similarly encountered and understood about the concept of a dog across a range of contexts and 

experiences. 

 

 
 

 

 

 

 

 

 

 

 

Figure 1.  Network overlap of a dog (Goldberg, 2005, p. 125). 

 

Edelman, the founder of the theory of neuronal group selection (Edelman, 1992) proposed 

that the brain selects an appropriate interpretation of these maps through “natural selection” 

(Geake, 1997, p. 28) and that this form of neural Darwinism “leads to superior contextual 

fitness” (Geake, 1997, p. 32). “The most useful correlated clustering … is selected … 

determining consequent behaviour … in a Darwinian adaptive sense” (Geake, 1997, p. 28). 

Over time, these maps accumulate, becoming resilient patterns that provide the structure to 
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enable the effortless pattern recognition that Goldberg referred to. Others in the field of 

neuroscience concur: “Successful, extensive patterning leads to more accurate predictions … 

extending and strengthening neural networks” (Willis, 2010, p. 61). In essence, pattern 

recognition describes the “superior form of contextual fitness” and “neuronal efficiency” 

(Geake, 1997, p. 32), from which Goldberg (2005) proposed that the “cognitive dimension of 

wisdom” emerges (p. 11) as our ability to instantly recognise new situations as familiar ones.   

 

These descriptions of the role that pattern plays in the building of conceptual understanding 

again affirm the stages outlined in the proposed GMP. Familiarity and re-engagement with a 

concept allow similarity to be experienced and understood. Over time, the similarity is encoded 

in the conceptual structure of the pattern. These patterns are activated when similarity is 

recognised, and strong resilient patterns of understanding support new connections to be made 

with less familiar contexts. Over time, patterning of patterns accumulates, creating resilient 

generic memories, which are in essence intuitive forms of knowing and understanding. 

 

The GMP outlined in Table 1 can also be expanded to accommodate the construct of 

patterning identified through the psychology of mathematics domain as well as the wider field 

of cognitive neuroscience. This is demonstrated in Table 2.  

 

The revised GMP, as outlined in Table 2, affirms the role of patterning within and beyond 

mathematical thinking in all stages of building generalised understandings. This raises questions 

about its applicability within mathematics education and across wider learning areas.  

 

Educational implications 
 
Highlighting the role of pattern in the construction of understandings leads to a consideration of 

the implications for learning and associated pedagogies. A greater understanding of the physical 

and neuropsychological changes occurring in the brain when we learn could have an impact on 

the design of learning within and beyond mathematics. Educational implications occur in three 

main areas. These are outlined below. 

 

Ascertaining prior understanding and revisiting familiar concepts 

Gathering and connecting with students’ prior understandings is a valued educational practice as 

it allows opportunities for students to “view the new idea as ‘just like’ or ‘similar to’ an existing 

experience and use this to accommodate new knowledge” (Davis & Maher, 1993, as cited in 

Mueller, Yankelewitz, & Maher, 2010, p. 309). This process strengthens pathways to current 

and recognised patterns of knowing and supports links with making sense of new information. 

Geake and Cooper (2003) affirmed the importance of the “strength of synaptic functioning” and  
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the impact of “synchronised neural pathways” which “become more efficient in response to 

repeated coincident stimulation of the synapses along the route” (p. 14).  Therefore, 

opportunities to regularly revisit familiar concepts, across varying contexts, with attentive 

instruction and guidance, supports the development of efficient neuronal pathways, depth of 

conceptual understanding, and fluent patterns of knowing (Geake & Cooper, 2003; White & 

Mitchelmore, 2010; Willis, 2010). These implications are not new in the field of education; 

however, they affirm and give importance to what is already known and accepted as effective 

practice. 

 

Provocation and explicit instruction in supporting conceptual understanding 

The educational issue of overfamiliarity with a concept can result in a narrowed perception of 

understanding. Designing provocations that challenge current modes of thinking, along with 

intentional instruction, is necessary in expanding understanding further. Skemp (1986) affirmed 

the importance of further developing students’ conceptual understanding through the explicit 

process of expanding and reconstructing schemas.  For him, “a schema is … a mental tool 

which assimilates new knowledge (expands) and also reconstructs to adapt and make sense of 

new situations” (p. 62). White and Mitchelmore’s model of teaching for abstraction clearly 

outlines the intentional role of the educator in carefully constructing the design of learning to 

engage the current level of students’ understanding and guide this through the stages of 

familiarity, similarity, and reification to support concepts to be more readily applied to new 

contexts, and therefore expand understanding further.  

 

Teacher education and conceptual understanding 

In the field of mathematics education, the term understanding has been used to describe one of 

the four mathematical proficiencies in the Australian Curriculum (ACARA, 2015, p. 5):  

 

Students build robust knowledge of adaptable and transferable mathematical 
concepts. They make connections between related concepts and progressively 
apply the familiar to develop new ideas … Students build understanding when 
they connect related ideas, when they represent concepts in different ways, when 
they identify commonalities and differences between aspects of content, when 
they describe their thinking mathematically and when they interpret mathematical 
information. 

 

In mathematics education there is a need to know how understanding is built, particularly 

with regard to the role that other proficiencies play in developing the breadth and depth of 

students’ understanding. Through explicit attention to instruction, the mathematical 

proficiencies have the potential to intertwine and thus continually engage deeper levels of 

reasoning that challenge and expand students’ current schemas. In building resilient 

understanding, students require opportunities to engage in familiar contexts (problem solving), 
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connect, explain, and justify their thinking (reasoning), and develop greater levels of fluency as 

they reveal patterns of knowing and (fluency). Teachers’ design of learning needs to 

systematically engage the mathematical proficiencies in order to intentionally build and 

reconstruct students’ current levels of thinking. As a result, there is a need for teachers’ own 

conceptual understanding in mathematics to be engaged and developed, too, as educators can 

only lead the development of what they have an awareness and understanding of. Professional 

learning that leads educators through this process is recommended. 

 

Summary 

Essentially, we experience patterning through our everyday encounters, and patterning is a 

process through which we construct our understandings, often occurring below our level of 

awareness. In the mathematical domain, patterning is primarily recognised as a conscious and 

deliberate process we enter into as we explore and investigate mathematical concepts. Exploring 

patterns of similarity across mathematical contexts builds generalised understanding, an ability 

to predict, reason, generalise, and abstract. This process expands mathematical understanding 

further.  

 

Pattern is a mathematical construct. However, it is also the structure through which we create 

and build general, everyday understandings. The GMP indicated the relationship between 

elements of patterning across mathematics education, the psychology of mathematics education, 

neuropsychology, and the wider field of cognitive neuroscience. At each stage there were 

similarities in the construct of patterning to describe how understanding is deepened and 

generalised across domains of knowledge. In this paper, we have proposed that a GMP 

highlights the role of pattern within and beyond mathematical thinking. We query how such a 

model of patterning could support the development of both mathematical and everyday 

understandings and discuss some implications that this model could have for our pedagogical 

practices and design of learning. 
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4.4   Postscript 
 
In this postscript I reflect on the positioning of this publication as the second component in the 

sequence of the three papers that together embody the structure of this thesis.  

 

Publication 2 culminates the first research phase of this thesis (refer to Table 1.1, Section 

1.5.1) and raises implications for education that are investigated in the next phase of the 

research. 

 

Key outcomes of Publication 2 were: 

 

• expanding the GMP to encompass broader areas of cognitive neuroscience and the 

psychology of mathematics education, and 

• highlighting educational implications to direct future areas of research.  

 

The GMP was expanded to explain the similarity in the construct of generalised 

understandings across domains. How, then, is an ability to generalise developed within 

mathematics education practice and curricula generally? How are mathematical understandings 

developed systematically and as patterns in mathematical thinking?  
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There are four mathematical proficiencies identified in the Australian Curriculum 

Mathematics: understanding, fluency, problem solving, and reasoning. These proficiencies refer 

to the thinking and actions that students are engaged in while learning the content. The ability to 

reason and generalise about concepts has been highlighted as a goal of mathematics education 

(ACARA, 2015). What evidence is there that indicates reasoning is emphasised in the 

curriculum?  

 

This line of inquiry led to the formation of Publication 3: The Role of Reasoning in the 

Australian Curriculum: Mathematics, which is the focus of the next chapter. 
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CHAPTER 

5 
__________________________ 

______________________________ 

 

PUBLICATION 3 
 

The Role of Reasoning Within the Australian Curriculum: 
Mathematics 

 
The mathematics you learn, if you understand it, will teach you a way of thinking ... 

structural thinking. Thinking in structures, how structures fit into one another. How do 

they relate to each other and so on. … As long as you get the idea of what mathematical 

thinking is like, you can apply it to all sorts of other situations.  

(Sriraman & Lesh, 2007, p. 63). 

 
 

5.1   Introduction 
 
In this chapter I present the third publication of this thesis: The Role of Reasoning in the 

Australian Curriculum: Mathematics (ACM). This third publication is the full version of the 

research report that was submitted for inclusion in the MERGA39 (2016) conference 

proceedings.  

 

The theoretical perspectives addressed in Phase 1 of this research are connected with the 

discussion about the ACM. This discussion addresses the research questions: What are the 

educational implications of a generalised model of patterning? and How is reasoning, and the 

ability to express and justify generalised understandings, articulated in, and developed through, 

the proficiencies in the ACM? Therefore in this chapter I explore the role of reasoning through a 

content analysis of key proficiency terms (KPTs) that relate to reasoning embedded throughout 

the content descriptions in the ACM. 

 
This chapter comprises: 

 

1. A preamble outlining this second phase of the thesis — the application of the theoretical 

model to the ACM. 

 

2. The third publication of this thesis: The Role of Reasoning in the Australian 

Curriculum: Mathematics. This publication reports the analysis of key proficiency 

terms (KPTs) identifying the incidence of reasoning articulated in the ACM. 

 

3. A postscript that provides:  

• a reflection on the role of reasoning within the ACM, 
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• a discussion of the proposed proficiency cycle (pedagogical structure),  

• a summary of areas identified for future research, and 

• information about a publication that is proposed as a sequel to Publication 3. 

 

5.2   Preamble  
 
Purpose of Publication 3 
 
The exploration of the relationship between patterning as a neuropsychological concept and 

patterning as defined in the field of mathematics have been the focus of Phase 1 of this thesis. 

From this, a generalised model of patterning has been proposed to describe the similarities 

encountered in the construction of patterns of thinking within and beyond the field of 

mathematics.  

 

In Phase 2 of this thesis I turn to mathematics education curricula and practice. I inquire 

into how generalised understandings and a capacity to reason are developed within the ACM 

and the use of intentional pedagogies that support the development of reasoning. According to 

Mason (1996),  

“generalisation is the heartbeat of mathematics, and appears in many forms. If 

teachers are unaware of its presence and are not in the habit of getting students to 

work at expressing their own generalisations, then mathematical thinking is not 

taking place” (p 65).  

This affirms the importance of teachers providing opportunities for students to construct 

generalisations about the similarities they are noticing within and between mathematical 

concepts. Just like the heartbeat that keeps a bodily system alive, developing a capacity to 

generalise is also self-perpetuating in connecting with and ‘stretching’ mathematical thinking 

further. Similarly, Wood (2002) proposed a shift in the learning of mathematics to 

acknowledging it as “a subject that consists of patterns and relationships that are understandable 

through mental activity that involves mathematical reasoning and logic” (p. 61). Wood 

acknowledges the role of reasoning in exploring patterns and constructing generalisations about 

the relationships between concepts. This type of thinking leads to structural thinking, which is 

the result of abstracting patterns generally. Thinking structurally is not limited to particular 

mathematical strands or topics but a means of engaging with mathematical concepts abstractly 

as “attention to structure runs through the whole of mathematics” (Mason, Stephens, & Watson, 

2009, p. 12).   

 

Therefore, this chapter addresses the third research question, initially explored by 

presenting a short communication at the Mathematics Education Research Group of Australasia 
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conference in 2015. Refer to Appendix C1. At this presentation a handout showing the proposed 

generalised model of patterning (GMP) was circulated to gather feedback regarding the 

interaction of the proficiencies in building patterns of understanding in mathematics. This 

handout is provided in Appendix C2. 

 

In Publication 3 I identify and describe how generalised understandings in mathematics are 

systematically built throughout the ACM through analysing KPTs that articulate the proficiency 

reasoning. I connect a cyclic view of the mathematical proficiencies with a generalised view of 

patterning. Thus, the purpose of this publication is to highlight the role of reasoning in teaching 

mathematics and connect it with the generalised view of patterning proposed in Phase 1.  

 
 

5.3   Publication 3: The role of reasoning within the Australian Curriculum: Mathematics 
 
The text reproduced below retains the wording of the original submission to MERGA for 

publication in its conference proceedings, but font pitch, line spacing, page margins, and other 

aspects of formatting have been altered to conform to Macquarie University regulations for 

theses as well as other text within this thesis. 

 

The Role of Reasoning in the Australian Curriculum: Mathematics 

Catherine McCluskey 
Macquarie University 

<catherine.mccluskey@unisa.edu.au> 

Joanne Mulligan 
Macquarie University 

<joanne.mulligan@mq.edu.au> 
Michael Mitchelmore 
Macquarie University 

<mike.mitchelmore@mq.edu.au> 

The mathematical proficiencies in the Australian Curriculum: Mathematics of 
understanding, problem solving, reasoning, and fluency are intended to be 
entwined actions that work together to build generalised understandings of 
mathematical concepts. A content analysis identifying the incidence of key 
proficiency terms (KPTs) embedded in the content descriptions from 
Foundation to Year 9 revealed a much lower representation of “actions” relating 
to the proficiency reasoning than to the other three proficiencies. A generalised 
model of patterning is proposed to provide an interrelated view of the 
proficiencies and to further support the development of generalised 
understandings in mathematics education. 

Mathematics is widely accepted “as a subject that consists of patterns and relationships that are 
understandable through mental activity that involves mathematical reasoning and logic” (Wood, 
2002, p. 61). The goal of mathematics education is clearly articulated in the Australian 
Curriculum: Mathematics (ACM) rationale statement: “It aims to instil in students an 
appreciation of the elegance and power of mathematical reasoning” (Australian Curriculum and 
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Assessment Reporting Authority [ACARA], 2015, p. 4). Reasoning is recognised as paramount 
in the development and growth of mathematical understanding (Ball & Bass, 2003; Mason, 
Stephens, & Watson, 2009). In the ACM reasoning is singled out as one of the four 
mathematical proficiencies: understanding, problem solving, reasoning, and fluency. These are 
identified as key processes that describe “the actions in which students can engage when 
learning and using the content” and similarly inform teachers “how the content is explored or 
developed” (ACARA, 2015, pp. 4, 5). The content knowledge in the ACM is structured around 
three strands that “describe what is to be taught and learnt” (p. 5) and the mathematical actions 
of the proficiencies are embedded in the content descriptions. Therefore it is the interaction 
within and between these content strands and the four proficiencies that builds conceptual 
understanding in mathematics.  

Mathematical reasoning is described as the “capacity for logical thought and actions such as 
analysing, proving, evaluating, explaining, inferring, justifying and generalising” (ACARA, 
2015, p. 5). Reasoning involves recognising similarity and differences encountered in concepts 
explored across multiple contexts leading to the development of abstract understandings. 
Explaining and justifying thinking enables knowledge to become “more general and its 
applicability to different situations … increased” (White & Mitchelmore, 2010, p. 2). 
Intentional instruction supports conceptual understanding to deepen, become more fluently 
recalled, and applicable in new learning contexts. Ball and Bass (2003) emphasise the role of 
the teacher in promoting reasoning, as “mathematical understanding is meaningless without a 
serious emphasis on reasoning” (p. 28). Engaging students in mathematical reasoning naturally 
draws students into greater levels of fluency as they connect their understandings in new 
problem-solving contexts.  

Sullivan (2012) proposes that teacher learning should focus on “ways of identifying tasks 
that can facilitate student engagement with all four of these proficiencies” (p. 183) as the 
“intention is that the full range of mathematical actions apply to each aspect of the content” 
(Sullivan, 2011, p. 8). However, the organisational structure of the curriculum as three content 
strands comprising number and algebra, measurement and geometry, and statistics and 
probability, draws attention to content knowledge. How the proficiencies together build 
entwined conceptual understanding is well intended in the rationale of the ACM but not clearly 
articulated within the content strands. This raises key questions addressed in this paper:  In what 
ways do the proficiencies in the ACM build generalised understandings and reasoning skills?  Is 
this relationship between reasoning and generalised understanding of mathematics evident and 
transparent to teachers accessing the curriculum? 

At a theoretical level, an interrelated view of the proficiencies will be discussed in light of a 
generalised model of patterning proposed by McCluskey, Mitchelmore, and Mulligan (2013) to 
highlight the importance of reasoning. An outcome of this paper is to identify how the 
proficiencies are articulated in the ACM through a content analysis of key language terms 
embedded in the content descriptions denoting the “actions” of the four proficiencies across 
Foundation to Year 9.  

Background 

In the rationale of the ACM the role of the mathematical proficiencies is highlighted: “The 
curriculum focuses on developing increasingly sophisticated and refined mathematical 
understanding, fluency, logical reasoning, analytical thought and problem solving skills” 
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(ACARA, 2015, p. 4). They are described as capabilities that “enable students to respond to 
familiar and unfamiliar situations by employing mathematical strategies to make informed 
decisions and solve problems efficiently” (ACARA, 2015, p. 4). The ACM describes the field 
of mathematics as “composed of multiple but inter-related and interdependent concepts and 
systems” (ACARA, 2015, p. 4), anticipating that teachers and students will engage with the 
ACM in a dynamic and symbiotic way and thus implying, similarly, that the proficiencies are 
also interrelated. 

There is a clear intent in the introductory sections of the ACM to highlight the mathematical 
proficiencies as integral aspects of the curriculum. They are described in the Key Ideas section 
directly following the rationale and aims, and they are also outlined again in the next section, 
Structure, before the description of the content strands. Importantly, the proficiencies are 
embedded in the language of the content descriptions and achievement standards as verbs that 
describe the mathematical actions students engage with (Sullivan, 2012). This is demonstrated 
in the following content description: “Interpret and compare data displays” (ACARA, 2015, 
Section ACMS069): the verbs interpret and compare identify use of the mathematical 
proficiencies. Throughout the ACM the proficiencies are described individually, rather than an 
entwined system at the beginning of each year level. However, naming and identifying 
individual proficiencies may not encourage teachers to focus on the potential interrelationships 
between the proficiencies to build and deepen conceptual understanding. It is their 
connectedness that is not well articulated and thus does not resonate clearly with the rationale.  

In Engaging the Curriculum-Mathematics: Perspectives from the field, Atweh, Miller, and 
Thornton (2012) identified challenges that schools and educators could face in interpreting and 
implementing the curriculum due to this “possible lack of cohesion between the aims and 
rationale, the content and its articulation” (p. 2). In particular, they noted inconsistencies in 
emphasis between the proficiencies, such as the role of reasoning which they argued was 
underrepresented in the content elaborations. Therefore, in this paper an interrelated view of the 
proficiencies is explored to address this imbalance and support the development of generalised 
understandings in mathematics. 

Interrelationships Between Mathematical Proficiencies 

Atweh et al. (2012) highlight the interrelationships between the proficiencies, explaining that 
these “proficiencies are not disjointed … [and that] … some content elaborations may relate to 
one or more of the proficiencies” (p. 8). They refer to a model, focused on mathematical 
proficiency, described in the United States report to the National Research Council (Kilpatrick, 
Swafford, & Findell, 2001). In this model, based on five strands, the term mathematical 
proficiency is used to “capture what we think it means for anyone to learn mathematics 
successfully … the most important observation we make about these five strands is that they are 
interwoven and interdependent” (Kilpatrick et al., 2001, p. 5) and “represent different aspects of 
a complex whole” (p. 116). For Kilpatrick et al., these strands are adaptive reasoning, strategic 
competence, conceptual understanding, productive disposition, and procedural fluency. The 
following descriptions explain the mathematical actions relating to these strands of proficiency 
from this model.  

• Conceptual understanding “includes the comprehension of mathematical concepts, 
operations and relations”. 
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• Procedural fluency includes skill “in carrying out procedures flexibly, accurately, 

efficiently, and appropriately, and, in addition to these procedures, having factual 
knowledge and concepts that come to mind readily”. 

• Strategic competence is “the ability to formulate, represent and solve mathematical 
problems”. 

• Adaptive reasoning is “the capacity for logical thought, reflection, explanation and 
justification”.  

• Productive disposition is “a habitual inclination to see mathematics as sensible, useful 
and worthwhile, coupled with a belief in diligence and one’s own efficacy” (Watson & 
Sullivan, 2008 as cited in Sullivan, 2011, pp. 6–7). 

Kilpatrick et al. (2001) stressed the importance of the relationship between all strands in 
building resilient understandings that can be fluently applied in new situations. They refer to 
findings from cognitive science that indicate that “competence … depends upon knowledge that 
is not merely stored but represented mentally and organized (connected and structured) in ways 
that facilitate appropriate retrieval and application …. Organization improves retention, 
promotes fluency, and facilitates learning related material” (p. 118). Proficiency in mathematics 
involves the construction of effective neural networks that are structured in resilient and flexible 
ways to both connect understanding and accommodate new learning efficiently. This 
description proposes a view of the proficiencies in the ACM working interdependently to build 
conceptual understanding systematically. However, defining the proficiencies as individual 
strands still accentuates their separateness, not their integrated relationship in building patterns 
of thinking. 

The ACM Proficiencies as an Opportunity for Changing Practice 

Sullivan (2012) has asserted that the ACM provides an opportunity for educators to re-think and 
reshape mathematics learning for students by focussing on “the principles that underpin the 
structure of the curriculum and the use of these principles to inform teacher learning” (p. 175). 
These principles are that: 

• the four proficiencies provide a framework for mathematical processes, 

• the ACM has been designed to emphasise teacher decision making, and 

• there is a focus on depth rather than breadth to address challenges of equity.  

Sullivan identified the mathematical proficiencies as the first key principle that connects the 
other two principles, emphasising that engagement with the mathematical proficiencies 
encourages educators to make pedagogical decisions to explore not just the breadth but also 
importantly the depth of mathematical concepts. Incorporating learning experiences in relevant 
problem-based contexts creates opportunities for students to engage meaningfully with the 
mathematical proficiencies. “Mathematics … is more than following rules and procedures but 
can be about creating connections, developing strategies, effective communication … this view 
is not obvious in the content descriptions … it is part of the opportunity for those supporting 
teachers to communicate such views … [and is] … communicated through the proficiencies that 
underpin the curriculum” (Sullivan, 2012, p. 179). This raises the issue of whether the language 
identifying the proficiencies is visible to, and used by, teachers accessing the curriculum. 
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Identifying the Language of the Proficiencies 

In describing this dynamic view of learning, Sullivan refers to the use of verbs identifying the 
actions of individual proficiencies. It is intended that teachers look within, across, and beyond 
the content descriptions to connect with the language that articulates the proficiencies. Taking 
up this point, Atweh et al. (2012) analysed the occurrence of the proficiencies stated in the 
ACM Year 8 content elaborations, finding that “53% relate to experiences to develop 
understanding … 56% relate to developing fluency … 12% relate to problem solving … and 7% 
refer to reasoning” (pp. 8–9). In this analysis, the proficiency of reasoning, an essential element 
in the development of generalised understandings, was rarely identified in the content 
elaborations.  

However, reasoning may be represented in the use of language terms describing problem 
solving. Sullivan (2012) highlights the role of problem solving by engaging the proficiencies, in 
particular reasoning, through problem-based contexts. Investigating problem-based approaches 
assumes that “the teacher draws upon the various strategies used by the students” and that the 
learning “experience will communicate to students that there are many ways to approach 
mathematical tasks, they can choose their own approach, and that some approaches are more 
efficient than others” (p. 179). This type of thinking, authentically embedded in problem-
solving contexts, builds a capacity to reason but is dependent upon teachers’ awareness of 
“structural relationships … [and] strategies … [for]… bringing structural relationships to the 
fore” (Mason, Stephens, & Watson, 2009, p. 29). Structural relationships emerge from engaging 
in opportunities to reason. This involves generalising commonalities about concepts across 
contexts. Therefore the use of language terms in the ACM that relate to various proficiencies, in 
particular reasoning, requires further investigation.  

Content Analysis: Reasoning 

In the research reported here, an initial phase of a content analysis was used to identify the type 
of language used to describe the actions of the proficiencies. This was conducted to find 
evidence of terms related to reasoning that were articulated in the ACM. This content analysis 
extracted key proficiency terms (KPTs) that “can be thought of as verbs” (Sullivan, 2012, p. 
179) from the content descriptions. (Note that some terms such as efficiently, accurately, and 
appropriately are adverbs and were included as KPTs if they modified a verb in the content 
description). The process occurred in the following four stages: 

 

1. Each proficiency description in the key ideas section was analysed for KPTs.  

2. A framework was constructed, identifying the KPTs that related to each proficiency. 
Table 1 indicates the KPTs by proficiency.  

3. The KPTs embedded in the content descriptions from Foundation to Year 9 were 
extracted and categorised using the framework in Table 1 to compare the frequency of 
their use throughout the content descriptions from Foundation to Year 9. (Note, some 
KPTs recorded in Table 1 relate to more than one proficiency; however each KPT 
extracted from the content descriptions was counted to calculate the total number of 
occurrences relating to each proficiency.) 

4. The KPTs embedded in the content descriptions from Foundation to Year 9 were 
counted and categorised using the framework in Table 1, to compare the frequency of 



60          5  /  PUBLICATION 3:  THE ROLE OF REASONING 
 

 
their use throughout the content descriptions from Foundation to Year 9. Table 2 
contains entries that summarise the total number KPTs identified across F–2, 3–6, and 
7–9 content descriptions. 

 
Table 1  

Key Proficiency Terms (KPTs) 

Proficiency strand Key proficiency terms (KPTs) 

Understanding Apply, build, connect, describe, develop, identify, interpret, 
make, represent 

Fluency Accurately, answering, appropriately, calculate, carrying, 
choose, choosing, develop, efficiently, find, manipulate, 
flexibly, recall, recalling, readily, recognise, regularly, use  

Problem solving Apply, communicate, design, develop, effectively, formulate, 
interpret, investigate, make, model, plan, represent, seek, 
solve, use, verify 

Reasoning Adapt, analysing, compare, contrast, deduce, develop, 
evaluating, explain, explaining, generalising, increasingly, 
inferring, justify, justifying, known, mathematically, prove, 
proving, reached, reasoning, transfer, thinking, used  

 

 
Table 2  

Frequencies and Percentages of Key Proficiency Terms (KPTs) Across the ACM a 

 

Year level 
clusters 

ACM proficiency strands  
 

Total KPTs 
Under-

standing 
Fluency Problem 

solving 
Reasoning 

F–Year 2 33 (26) 36 (29) 32 (26) 24 (19) 125 (100) 

Years 3–6 83 (29) 65 (22) 102 (35) 42 (14) 292 (100) 

Years 7–9 33 (17) 50 (25) 89 (45) 25 (13) 197 (100) 

F–Year 9 149 (24) 151 (25) 223 (36) 91 (15) 614 (100) 

a  Cell entries are frequencies (row percentages) 
 

One could assume for each year level clustering (i.e., F–2, 3–6, and 7–9) that the individual 
proficiencies would be equally represented, with a similar proportion of KPTs relating to each 
of understanding, fluency, problem solving, and reasoning. However, this is not the case, with 
problem solving noticeably over-represented in Years 3–9: F–2: 26%, 3–6: 35%, and 7–9: 45%; 
and reasoning consistently under-represented across the year level clusters: F–2: 19%, 3–6: 
14%, and 7–9: 13%.  
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Across the early years of school (F–2), a total of 125 terms were extracted from the F–2 

content descriptions. From these, 19% related to reasoning, 29% related to fluency, and 26% 
each for KPTs relating to understanding and problem solving. This reflects the emphasis in the 
early years of developing conceptual understanding and fluency of procedural knowledge and 
processes through problem-solving contexts. However, reasoning is critical in the development 
of mathematical concepts. Further analysis will reveal if KPTs identifying reasoning are 
represented more in the later years of school. Throughout the primary years (3–6) there is an 
increasing incidence of KPTs embedded overall in the content descriptions. KPTs identifying 
understanding and problem solving were noted more frequently than were those identifying 
fluency and reasoning. KPTs relating to reasoning were identified 42 times from an overall 
count of 292 KPTs, resulting in only 14% of the total terms extracted. Similarly, in the middle 
years (7–9) an increasing focus on exploring content through problem-solving contexts is 
recognised, as 45% of the total KPTs identified across Years 7–9 related specifically to the 
proficiency problem solving. Fluency received 25% of the KPTs, understanding 17%, and 
reasoning 13%. 

Overall, problem solving is predominantly represented in this content analysis, with 36% of 
total terms relating to developing this proficiency across years F–9. Understanding and fluency 
are similarly weighted, with 24% and 25% of the KPTs respectively. However, only 15% of 
KPTs from Foundation to Year 9 describe actions that relate specifically to students engaging in 
reasoning in their learning in mathematics. A higher representation of KPTs identifying problem 
solving could be attributed to the intent described in the ACM rationale “these proficiencies 
enable students to respond to familiar and unfamiliar situations by employing mathematical 
strategies to make informed decisions and solve problems efficiently” (ACARA, 2015, p. 4). It 
could be inferred in the ACM that reasoning would be built into this process of problem solving. 
However, this is not evident in the KPTs extracted. This is a limitation of the analytic process 
used here and the problem that differentiating the proficiencies individually presents. If 
reasoning is embedded in problem-solving contexts, this could be made explicit in the 
description of the proficiencies as an integrated system. 

Integrating the Proficiencies 

A generalised model of patterning (McCluskey, Mitchelmore, & Mulligan, 2013) has been 
proposed as a means of describing the abstraction of patterning across differing domains of 
knowledge. It was noted that patterning moves through a progressive cycle in building 
generalised understandings within and beyond mathematics in that: 

• a sense of familiarity is experienced with known situations, 
• similarity experienced across contexts is encoded in the conceptual structure of the 

pattern, 
• patterns are activated when similarity is recognised, and 
• familiar patterns are accessed more fluently and applied in new contexts. 

Thus, we propose that, all four proficiency strands of understanding, fluency, problem 
solving, and reasoning in the ACM can naturally work together as an integrated whole, in a 
cyclic structure, building and deepening generalised patterns of mathematical understanding 
with a focus “on depth of learning rather than breadth” (Sullivan, 2012, p. 185). For example, as 
understanding is connected across problem-solving contexts, similarities about mathematical 
concepts are recognised, and students develop reasoning as they construct generalisations. Over 
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time, fluency in recognising and engaging with similar problems is strengthened with an 
increasing capacity to transfer understanding to new contexts. The four proficiencies have a 
combined role in systematically building patterns of generalised understandings through this 
pedagogical cycle.  

Summary and Recommendations 

The ACM heralds in an opportunity for educators to focus on the interrelated development of 
the mathematical proficiencies, a key principle that underpins the curriculum (Sullivan, 2012). 
The importance of reasoning is clearly articulated in the rationale in the ACM. However, the 
KPTs that articulate reasoning appear to be noticeably under-represented in the content 
descriptions from Foundation–Year 9. In contrast, a clear emphasis on students engaging their 
thinking through problem-solving contexts was identified throughout the F–9 curriculum 
content descriptions. Sullivan (2011, 2012) has emphasised pedagogical use of relevant 
problem-solving contexts and approaches as a means of engaging a greater breadth and depth of 
proficiencies through teachers’ choice of task design and consequent learning experiences for 
students. Similarly, the heavier weighting of KPTs relating to problem solving, identified 
through the content analysis, could encourage teachers to adopt practices and design learning 
experiences that will realise the intention of an integrated view of the proficiencies. 

We propose a pedagogical cycle that could support teachers in engaging students’ sense of 
reasoning systematically through problem-solving contexts. This structure acknowledges the 
mathematical proficiencies as being interrelated aspects that together build conceptual 
understanding through opportunities for students to: 

• engage their current understandings through familiar experiences, 

• identify and describe similarities in concepts, 

• question and engage in mathematical discourse to communicate their thinking, 

• generalise their conceptual understanding about concepts across contexts,  

• develop fluent patterns of knowing how to engage with similar type problems, 

• apply these patterns of understanding in new and unfamiliar contexts, and 

• explain and justify their reasoning, which in turn re-shapes and strengthens conceptual 
understanding. 

Adopting such an integrated view of the role of the mathematical proficiencies has 
implications for professional learning to ensure teachers’ pedagogical content knowledge and 
promotion of reasoning enables their students’ to develop generalised understandings of 
mathematical concepts.  
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5.4   Postscript 
 
5.4.1   Reflection on research questions  
 
In this chapter I have inquired into the educational implications of a generalised model of 

patterning, and how reasoning was articulated in and developed through the mathematical 

proficiencies in the ACM. It was found that reasoning was highlighted throughout the 

introductory sections of the ACM and examples of reasoning were also offered at the beginning 

of each year level before the content descriptions. However, throughout the content analysis, the 

occurrence of KPTs identifying reasoning revealed an underrepresentation compared with the 

other proficiencies, particularly problem solving, from Foundation to Year 9.   

 

It was considered that reasoning may well be represented through the proficiency problem 

solving. However, this connection is not explicitly drawn in the ACM. Direct references to 

individual proficiencies supported their “separateness” as opposed to promoting 

interrelationships. There were few examples of how the proficiencies were actually interrelated 

in terms of student learning. It is therefore recommended that an integrated, dynamic view of 

the proficiencies be considered as a means of explicitly highlighting reasoning and generalised 

understandings in mathematics education.  

 

5.4.2   Application of proposed proficiency cycle 
 
The pedagogical structure was proposed to support the development of generalised 

understandings, drawing upon an innate ability to reason throughout the cycle (refer to Figure 2, 

Appendix D). I implemented this proposed proficiency cycle with a group of 5- to 6-year-olds 

in a foundation year setting. In this context, the children were engaging in an outside learning 

space where they had previously planted broad bean seeds that were now growing, The teachers 

involved noticed children discussing how tall the broad bean plants in the garden had grown 

over the term break.  

 

1. Engaging students’ prior and current understandings and familiar experiences 

The children were observed directly comparing themselves to the height of the plants, 

using nonverbal gestures and expressing a range of comparative statements through 

their conversations. The children were also observed building constructions that would 

fall down and they exhibited a growing interest in discovering how high they could 

build them. Again, a diverse range of language and gesture was noted as children used 

their bodies as reference points to compare the height of these constructions. 
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2. Connect understanding through identifying similarities about concepts across problem-

solving contexts 

Digital images of the children engaged in both play contexts were displayed, and the 

children shared stories about what they remembered. Comparative language to describe 

size and relative “bigness” emerged from the children’s description of the experiences. 

Similarities in key mathematical concepts about attributes of objects, comparison of 

length, and growing patterns emerged from the type of language the children revealed. 

 

3. Intentionally question to explain thinking and elicit levels of reasoning about concepts 

explored 

The role of the teacher here was paramount in supporting the children to:  

• clarify their thinking, 

• connect their understanding across both contexts, and 

• challenge and stretch understanding further though engaging in new problem-

solving contexts. 

 

4. Fluency is strengthened as patterns of knowing are frequently re-engaged and 

generalised 

Children’s use of language to describe their thinking and strategies for comparing were 

more readily observed and visibly transferred to new contexts. Again, the teacher’s role 

in connecting children’s prior understanding to new situations supports what is 

experienced as being similar across contexts, leading to generalisations about 

mathematical concepts. 

 

5. Patterns of understanding can be more readily applied in new problem-solving 

situations 

A greater range of language and strategies to compare size was noticed in new learning 

contexts initiated by the children. Throughout this proficiency cycle, elements of 

reasoning are engaged at each stage, for example:  

 

• noticing and engaging with familiarity; 

• identifying similarity encountered in problems and experiences; 

• describing and explaining thinking, fluently predicting what could happen in 

new learning contexts; and 

• applying understanding and reasoning through self-and group initiated play. 
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5.4.3   Summary of areas identified for future research 
 
5.4.3.1   Content analysis: Limitations 
 
The analysis was not as simple as extracting the verbs and adverbs in the content descriptions, 

as the nouns and adjectives also provided important indicators of mathematical actions students 

could be engaging with. In the field of mathematics, nouns name the object of mathematical 

study: 

“mathematical structures … are somewhat more complex nouns, and consist of 

mathematical objects linked together by certain relationships or laws of 

combination. The symbols of combination or of relation … play a similar role to 

that of verbs … [and] … the existence of more complicated mathematical objects 

may likewise be experienced in terms of how one interacts with the objects” 

(Davis, Hersch, & Marchisotto, 2011, pp. 156, 159).  

This interaction with the object is described by adjectives and their relationship with the object. 

Therefore, identifying and calculating the occurrence of proficiencies might also involve terms 

describing the depth of structural understandings of concepts (objects) explored and hence could 

refer to the identification of not just verbs/adverbs but also adjectives and nouns.  

 

 In summary, this process of identifying KPTs was challenging and there were some 

limitations needing addressing if a second phase of a content analysis were to be conducted. For 

these reasons, a second phase of a content analysis is recommended to identify 

 

• complex nouns, in particular those that have a direct relationship to the proficiencies 

(e.g., understanding and reasoning are both nouns but are also both proficiencies) 

• adjectives that qualify complex nouns (concepts), and 

• the KPTs embedded in not just the content descriptions but content elaborations and 

achievement standards. 

 

5.4.3.2   Educational implications 
 
In describing an entwined view of the mathematical proficiencies, Kilpatrick et al. (2001) refer 

to findings from cognitive science that assert the importance of “connected and structured”  

(p. 118) neural networks in the encoding, storing, and retrieval of information. Therefore the 

type of thinking and processes involved in the construction of such effective networks needs 

further investigation.  

 

Geake and Cooper (2003) emphasised the importance of reasoning to establish “clear 

relationships within learning contexts” (p. 15), thus supporting neuronal efficiency in actively 
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recognising and selecting what is deemed to be familiar across patterns of understanding. Others 

in the field of neuroscience concur: “The human mind is a pattern recogniser” (Devlin, 2010,  

p. 169) and that “our brains perceive and generate patterns and use these patterned networks to 

predict the correct response to new stimuli. … Successful, extensive patterning leads to more 

accurate predictions … extending and strengthening neural networks” (Willis, 2010, pp. 59, 61). 

Edelman, the founder of the theory of neuronal group selection (TNGS, Edelman, 1992) 

proposed that the brain selects an appropriate interpretation of these patterns through “natural 

selection” (Geake, 1997 p. 28). Over time these maps of thinking accumulate, becoming 

resilient, fluently recalled patterns. This patterning is the result of “the meaningful organisation 

and categorisation of information” (Willis, 2010, p. 59). 

 

The inter-related aspects of cognition work together to connect and stretch new 

understanding further. “When new information is recognised as prior knowledge [fluency] 

learning extends [understanding] and is available through transfer to create new predictions 

[reasoning] and solutions to problems [problem solving] in other areas beyond the classroom” 

(Willis, 2010, pp. 60–61). In each stage of Willis’ description of patterning, the actions of the 

ACM’s proficiencies could be associated, working together to connect with and build 

understanding in new contexts. For this reason connecting research from a cognitive 

neuroscience perspective to a generalised view of mathematical understanding could support an 

interrelated view of the proficiencies and the development of associated pedagogies. The 

emergence of cross-disciplinary research may be possible. 

 

5.4.4   Proposal for Publication 4 
 
Publication 3 was an edited, concise version of the full paper that is contained in Appendix D. 

The purpose for submitting a research paper to the MERGA39 conference proceedings was to 

gather feedback to modify the expanded version for publication in an appropriate mathematics 

education journal.  
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CHAPTER 

6 
__________________________ 

______________________________ 

 

DISCUSSION AND CONCLUSIONS 
 

 
6.1   Introduction 
 
In this chapter I discuss the analyses across both phases of this research. In each research phase 

I address the research questions (Section 1.4) and connect these to the rationale and theoretical 

perspectives. I raise implications for pedagogy and practice. I reflect upon the challenges and 

limitations of this thesis. Finally, I consider the implications of the research and identify 

directions for future research. 

 

6.2   Discussion 
 
6.2.1   Research Phase 1  
 
This phase focused on two initial research questions: What is similar about the construct of 

pattern across the fields of mathematics education and neuropsychology? and Is a generalised 

view of patterning applicable across broader fields of knowledge?  

 

The outcome of this research phase was the development of an integrated theoretical 

perspective, to propose a generalised construct of patterning across fields of knowledge. An 

initial comparison identified similarities and differences in the use of the construct patterning 

across the fields of mathematics education and neuropsychology. This was summarised in Table 

1: Abstraction across domains (Section 3.3). This analysis was then expanded to encompass the 

similarities across the wider fields of the psychology of mathematics education and cognitive 

neuroscience, contributing to the proposed generalised model of patterning that is presented in 

Table 2: Revised generalised model of patterning (Section 4.3).  

 

The comparative analyses indicated that the notion of patterning moved through similar 

stages or aspects in the development of generalised understandings across all domains. A 

common aspect was that the repeated exposure to familiar experiences enabled a sense of 

similarity to emerge that reflected what was commonly experienced across contexts. Over time 

and repeated occurrences, an abstraction, or knowingness, about how to engage in these types of 

situations, was recognised. This led to a greater ability to reengage and apply this pattern in new 

situations. Thus this important insight, which supported a generalised view of patterning, was 

found to be common with the process of mathematical generalisation.  
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The comparison between domains also highlighted differences in the use of the construct of 

patterning. These differences centred on the level of awareness that the learner engaged in when 

constructing patterns of thinking. In mathematics education, engaging with a sense of reasoning 

to build generalisations is recognised as an intentional mathematical process. However, 

applying a sense of intuitive knowingness when engaging with mathematical concepts is also 

differentiated in the mathematics education research (Fischbein, 1999; Fischbein & Grossman, 

1997; Gray & Tall, 2007; Mason, 2008).  

 

6.2.2   Research Phase 2 
 
This phase focused on the research questions: What are the educational implications of a 

generalised model of patterning? and How is reasoning, the ability to express and justify 

generalised understandings, articulated in and developed through the proficiencies in the ACM? 

 

This phase addresses the second part of the research enquiry identified in Section 1.5.1, 

regarding the educational implications of adopting a generalised model of patterning. Reasoning 

is paramount in building generalised patterns of understanding. Therefore, the focus of Phase 2 

was a content analysis to identify key proficiency terms (KPTs) that indicated the incidence of 

reasoning throughout the Australian Curriculum: Mathematics (ACM) from Foundation to  

Year 9.  

 

From the content analysis, KPTs identifying reasoning were consistently underrepresented 

throughout the content descriptions with F–2 (19%), 3-6 (14%), 7–9 (13%), and overall KPTs 

indicating reasoning occurring F–9 (15%). However, it was also noted that the proficiency 

problem solving was overrepresented throughout years 3–9 in the content descriptions with F–2 

(27%), 3–6 (34%), 7–9 (45%), and overall F-9 (36%). It was acknowledged that the proficiency 

reasoning could be inferred through engagement with problem solving contexts. However, this 

was not explicit in either the description of the proficiencies or the content descriptions.  

 

6.2.3   Content analysis: Key proficiency terms 
 
In Research Phase 2 of this thesis I engaged in an initial stage of a content analysis that involved 

extracting KPTs from the content descriptions in the ACM. KPTs comprised verbs and adverbs 

as they related specifically to the actions of the mathematical proficiencies embedded in the 

content. However, through this process I questioned my reasoning for not including adjectives 

and nouns as key terms, as they also provided relevant indicators to consider in relation to the 

action of the mathematical proficiencies. The following examples highlight the difficulties 

experienced in determining how KPTs should be defined. 
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1. In the content description “Identify symmetry in the environment” (ACARA, 2015, 

[ACMMG066]), identify is recognised as the KPT, and symmetry was discounted as it 

was classified as a noun. However, it names a mathematical relationship that would 

naturally engage students’ sense of reasoning to identify it. 

 

2. Adjectives, such as efficient, effective, and familiar, were not included as KPTs. 

However building efficient and effective strategies would require a capacity to reason, 

as well as a capacity to explain and justify thinking and choice of strategies. Similarly, 

engaging in familiar contexts or with familiar materials and concepts is essential in the 

development of generalised understandings. Therefore, adjectives might also validly be 

included in a second phase of a content analysis. 

 

A more thorough analysis is required to characterise the classification of KPTs to discern 

terms that also warrant inclusion in the content analysis. Also extracting the KPTs from content 

elaborations and the achievement strands would generate valuable data to further understand the 

role of reasoning in building and assessing patterns of thinking throughout the ACM.  

 

6.3   Implications for pedagogy and practice 
 
There were discrepancies between the goal of reasoning articulated in the rationale section of 

the curriculum and the lack of KPTs indicating reasoning throughout the content descriptions. 

The mathematical proficiencies were consistently described individually, minimising their 

possible interaction in the building of conceptual understanding. This could cause confusion for 

educators accessing the curriculum to design learning structures that maximise the role of 

reasoning in developing mathematical thinking. 

 

6.3.1   Pedagogical cycle 
 
A dynamic view of the proficiencies working together in an interrelated way was proposed to 

address the discrepancy between the view of reasoning articulated in the rationale section of the 

ACM and the occurrence of KPTs relating to reasoning embedded in the content descriptions. A 

supplementary pedagogical cycle was proposed to connect the role of all the proficiencies in 

systematically building a capacity to reason with the generalised model of patterning. 

Similarities in the construct of patterning were connected with a cyclic view of the proficiencies 

to illustrate the combined role the proficiencies play in connecting with and deepening 

mathematical thinking.  
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6.3.2   Professional learning 
 
Sullivan (2011, 2012) advocated the use of pedagogies, immersed in problem-solving contexts 

that encompass all the mathematical proficiencies. This type of practice supports the 

development of structural understandings within mathematics education. The ACM provides an 

opportunity to reflect on current practice and adopt a dynamic view of teaching and learning in 

mathematics. In realising this intent of the ACM, professional learning that engages teachers in 

designing learning experiences that systematically build proficiency in mathematical reasoning 

is essential. Developing structures for noticing mathematical behaviours, in both formal and 

informal contexts, could support teachers in drawing on children’s current understandings, 

developing discourse around the similarities they experience across contexts, and supporting 

children in making connections to new learning experiences. Over time patterns of knowing, in 

the sense of professional pedagogical behaviours, become more fluently recalled and applied. 

Structural elements of effective learning design for students, and associated pedagogical 

practice for teachers and pre-service teachers, are areas for further theoretical and applied 

research. 

 

6.4   Reflection on the research process:  Challenges and limitations 
 
In Phase 1, I engaged in a theoretical analysis of the literature to compare and contrast the role 

and construct of patterning, I found it challenging to identify cross-disciplinary literature that 

focused on a generalised view of patterning. I was able to provide new insight into the levels of 

awareness involved in constructing and connecting patterns across domains. The analysis of 

intuitive forms of knowing in building patterns of thinking was evident in several domains and 

remains a cross-disciplinary research area that can be pursued. 

 

Initially this thesis was a theoretical inquiry to establish a generalised perspective on the role 

of patterning within and beyond mathematics, and to highlight the consequent educational 

implications. In addressing educational implications I became interested in how the proficiency 

of reasoning was developed throughout the ACM. In the text, Engaging the Curriculum 

Mathematics: Perspectives From the Field (Atweh, Goos, Jorgensen, & Siemon, 2012), the 

chapters by both Sullivan and Atweh et al. referred to analysing the use of verbs that identify 

actions of the proficiencies. However, access to their research data and analysis was limited. 

This limitation provided me with the impetus to undertake an initial stage of a content analysis 

in order to identify the language related to the proficiency of reasoning. This process was time 

consuming but generated valuable data and insight into the structure of the ACM. As mentioned 

before, a more rigorous content analysis could explore a wider range of key terms and the 

relationship between them.  
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6.5   Implications and directions for further research 
 
6.5.1   The embodiment of mathematical understandings 
 
The role of intuitive forms of knowing in constructing patterns of mathematical understanding 

has been investigated in several studies with young children (Mulligan, English, & 

Mitchelmore, 2013; Warren & Cooper, 2008). However, the relationship between explicit and 

implicit mathematical knowledge, derived from both formal and informal contexts, in 

developing generalisation through the various stages of learning requires systematic, 

longitudinal investigation. In this way, evidence of patterns of mathematical thinking can be 

linked with more generic patterns demonstrated by the learner.  

 

An example of this intuitive knowing in an informal context is included within the 

postscript, situated in Section 5.4.2. In this context, early years children were noticed engaging 

in a pattern of knowing about the concept of linear measurement. Informal play contexts that the 

children were freely engaging with were in essence connecting with children’s innate sense of 

measurement. Comparative language, and nonverbal gestures used by the children revealed this 

type of thinking. This is an example of implicit knowledge that the children revealed in an 

informal setting that provides a valuable context to investigate reasoning and patterns of 

thinking.  

 

The pedagogical choices educators make when connecting these informal understandings to 

more formal and explicit opportunities invite further research. This would involve a review of 

literature to synthesise research into the embodiment of mathematical understanding. Tall 

(2005) declared that our human facility to “observe one or more objects and to have a primitive 

sense of ‘numerosity’ [is] already set in our cognitive structure” (p. 3). This is witnessed 

through young children noticing changes in small sets of objects presented to them (Tall, 2005). 

He referred to “set-before” and “met-before” categories of embodiment. The term “met before” 

relates to prior knowledge that is accumulated through experience, whereas “set-before” relates 

to what is known and carried within the body genetically (p. 4). Therefore, “cognitive growth is 

revealed as a story of each individual born differently endowed with an underlying set-before 

structure and having a variety of experiences that construct met-befores used later to develop 

highly individual mental capacities” (p. 5). The relationship between set-before and met-before 

structures in the development of generalised mathematical knowledge requires further 

investigation to explore the influence of both formal and informal contexts. 
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6.5.2   Structures for noticing 
 
I am interested in engaging in research that develops pedagogical structures for noticing young 

children’s embodied mathematical understanding as emerging patterns of knowingness. Agnes 

Macmillan (2009) referred to “Bishop’s (1988) six mathematical activities: counting, 

measuring, locating, designing, playing and explaining” (p. 21) that together support the 

analysis of mathematical discourse in early childhood. However, not all children articulate their 

understandings verbally: “There is much of children’s thinking that is not captured when we 

only consider their verbal expressions. Before and without speech, children seem to already 

possess prelinguistic thinking processes … [and] exhibit conceptual knowing in and through 

their bodies” (Kim, Roth, & Thom, 2011, p. 209). Therefore, the development of pedagogical 

processes that intentionally notice children’s nonverbal interaction with each other and their 

environment could direct new research about children’s emerging patterns of mathematical 

understandings.  

 

6.5.3   Generalised models of learning 
 
Developing the generalised model of patterning has raised my awareness about similarities in 

the patterns of conceptual understanding across different learning content areas. This is 

currently investigated through national initiatives such as integrating science, technology, 

engineering, and mathematics (iSTEM, 2012). Research into educational initiatives that 

promote authentic integration across learning areas, needs to question whether learning is 

connected by common patterns of understanding. For example, as a homeroom educator in an 

early years context I have documented key experiences in a child’s first year of school and 

mapped this to the Australian curriculum to uncover generalised patterns of understanding 

across different learning areas. This informal research could be developed to systematically 

connect areas of the curriculum and provide authentic contexts for integrative learning in the 

early and primary years of school. 

 

This research could contribute to solving the difficulties of a crowded curriculum 

experienced by educators in early childhood and primary settings. The Australian Primary 

Principals Association (APPA) described the Australian curriculum as “a crowded curriculum 

that is impossible for primary teachers to implement successfully … too much, too soon, too 

complex” (Australian Primary Principals Association, 2014, p. 2). Researching the pedagogical 

cycle proposed in Publication 3 could be expanded to engage various learning areas 

simultaneously to identify common elements and simplify what has become complex to 

implement. This raises the question whether a greater capacity to reason could eventuate from 

engaging with and building generalised patterns of understanding across learning areas. In 
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early childhood, measuring changes in generalised patterns would involve the development of 

pedagogical structures for noticing the embodiment of mathematical behaviours. 

 

6.6   Concluding remarks 
 
Adopting a cross-disciplinary view of the role patterning in developing mathematics 

understanding has been advantageous in broadening awareness of the need to identify common 

underlying aspects of human cognition. Taking a broader perspective based on the theory of 

Goldberg has highlighted the important similarities but explicit differences in attempting to 

integrate different domain-specific views into new models. Cognitive neuroscience describes the 

construction of understanding using various terms such as neural networks, cognitive templates, 

internal maps, mental representations, and patterns of thinking (Devlin, 2010; Dispenza, 2007; 

Gazzangia et al., 2002; Geake, 1997). These terms all describe the neural structures involved in 

the process of building cognitive patterns. “Our minds are very good at recognising patterns, 

seeing connections, and making rapid judgements and inferences” (Devlin, 2010  

p. 171). The processes Devlin refers to generally are readily applicable in mathematics, showing 

the important connection between pattern formation within and across disciplines.  

 

This thesis has raised questions about the application of pattern as a learning process both 

generically and in terms of mathematics learning. The possibilities for examining this construct 

across many aspects of knowledge development is unlimited and yet to be explored.  The 

contribution of a mathematics education perspective may offer the most appropriate pathway for 

recognising the role of patterning in the development of generalised understandings. I conclude 

with the question raised in the thesis, yet to be fully answered: 

 

Is an ability to form patterns fundamentally mathematical? 
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APPENDIX A 

Previous Postgraduate Research Papers 
 

This appendix comprises a table that contains the titles and descriptions of research papers that I 
wrote as part of my previous postgraduate studies. 

Table A.1 

Previous Postgraduate Research Papers  

Paper Description 

Imagine that!  
The science of 
visualisation  
April 2007 
 

Literature review investigating the role of visualisation, how it 
compares with perceiving information visually. Highlights role of 
similar neural structures and processes in both contexts. Explores the 
role of visualisation and intention in setting goals.  

Magic moments 
July 2007 

Literature review outlining different types of memory patterns and the 
structure of their formation.  
 

The nature of 
consciousness 
October 2007 
 
 

Literature review exploring contemporary views about the role of 
consciousness in the building of understanding and formation of 
memories.  

Is the sum 
greater than the 
whole? 
April 2008 
 

Literature review comparing and contrasting the similarities and 
differences between intelligence and creativity in gifted education. 

So you want to 
be creative? 
July 2008 
 

A critical examination of creativity in the building and expression of 
understanding and intelligence. Includes implications for practice. 

Visual thinking  
October 2008 

Comparing the process of visualisation and mental imagery with 
visual perception. What are the creative elements of mental, visual 
synthesis? How does drawing and other forms of representation 
support the visualisation process? 
 
 

Visual thinking 
and giftedness 
April 2009 

Comparing models of visual thinking with Gagne’s model of 
giftedness and Edelman’s model of neuronal group selection. This 
analysis highlighted the role of visualisation in gifted education.  
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APPENDIX B 
 

Feedback on the Position Paper: MERGA 2013 

 
This appendix contains information about the presentation of the position paper Does an Ability 
to Pattern Indicate That We Think Mathematically? at the Mathematics Education Research 
Group of Australasia (MERGA36) conference, Mathematics Education: Yesterday, Today and 
Tomorrow in 2013.  It contains three sections. 

 Page 

  

MERGA 2013 Review panel recommendations 86 

Reflections on MERGA 2013 presentation 88 

Summary of feedback from MERGA presentation 90 
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Appendix B1 

MERGA 2013 Review Panel Recommendations 

 

Title: Does an ability to pattern indicate our thinking is mathematical? 

Code: RP110 

MERGA acknowledges many forms of scholarly inquiry and accepts a broad range of research 
approaches. This paper is essentially (delete irrelevant points): 

o a position paper 
 

Following refereeing, the recommendation of the review panel to the Editorial Committee is that a paper 
be (delete irrelevant point): 

o ACCEPTED as a paper to be published in the proceedings and presented at this conference 

Note that there is no option for rejection of a paper. A paper considered by a panel to be not 

suitable for inclusion in the conference (e.g. it is an advertisement for teaching materials, it is 

not related to mathematics education research) will be referred to the VP Conferences, 

Roberta Hunter <R.Hunter@massey.ac.nz>) for a final decision.  

 

The criteria upon which papers will be considered relate to the quality of each of the 
following: 

1. Statement of problem/issue and discussion of its significance: 

2. Literature review and theoretical framework: 

3. Methodology, and data analysis where applicable: 

4. Results and discussion: 

5. Conclusions and implications: 

 

Recommendations for the author(s) will be made by panels in relation to: 

o Oral presentation of the paper (e. g.  request the author(s) to address specific points or supply 
more details in the conference presentation): 
 
Recommendations could also include 

o Re-writing and publication as a journal article (e.g., what should be expanded, which journal 

could be approached, which sections need more detail and examples): 
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REQUIRED EDITS 

Mismatch page 2 para 2: Steen (1991) whereas is Steen (1990) in reference list 

Mismatch  page 1 states Lakatos, 1976 cited in Ernest, 1991 

  Page 2  Lakatos, 1976 directly quoted 

  Page 6  Lakatos, 1976 cited in Ernest, 1991 

If Lakatos (1976) is just cited then should not appear in reference list. If primary source has 

been used then should not use citing. 

Mismatch page 3 final para: Lijedahl should read Lilejedahl 

Mismatch  page 4  Skemp (1986) in text, Skemp (1990) in reference list 

Cassirer is only cited in the paper, so should not appear in reference list. 
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Appendix B2 

Reflections on MERGA 2013 Presentation 

 

Presenting my position paper Does the role of pattern indicate our thinking is mathematical? at 

the Mathematics Education Research Group Australasia (MERGA36) conference, Mathematics 

Education: Yesterday, Today and Tomorrow in 2013, offered me an opportunity to gather 

feedback from researchers in the field of mathematics on my initial thesis question: 

What is similar about the construct of pattern across the fields of mathematics education and 

neuropsychology? 

This paper explored the relationship between  

• pattern as a neuropsychological construct, the processes through which our 

understandings are encoded, and  

• pattern as defined in the field of mathematics.  

 

The purpose of the position paper was to  

• explore similarity in the concept of pattern across these two domains and  

• to propose a generalised model of patterning applicable across these domains 

 

This position paper was based on the premise that if “virtually all mathematics is based on 

pattern and structure” (Mulligan & Mitchelmore, 2009, p. 33), and “mathematical activity is 

human activity” which “produces mathematics” (Lakatos, 1976, p. 146), then is human activity 

also based upon pattern and structure? 

 

Comments from the field: 

• This inquiry was drawing upon the specific field of neuropsychology (Elkhonon 

Goldberg), not the neurological field. Correct use of terminology needs to be used for 

specific fields within the broader field of neuroscience. 

• In comparing the similarities between White and Mitchelmore’s model of teaching for 

abstraction and Goldberg’s construct of pattern recognition the boundary between the 

reification and application stage was unclear and needed to be defined 

• In reference to the neuropsychological field, how do the pattern networks start? 
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• The terms pattern and patterning have been used throughout the paper, what is 

specifically meant by both terms in each field? 

• What is meant by the term ‘Thinking Mathematically’? In the field of mathematics what 

is commonly understood about the term mathematical thinking? 

• Is the position paper capturing the whole picture? I have highlighted the similarities 

between pattern and generalised thinking, but I haven’t explored how mathematical 

thinking is different to generalised thinking. A comparison has been made across the 

fields but not a contrast.  

• Interest into how a generalised model of patterning could describe the role of the 

mathematical proficiencies in building fluent conceptual understanding in the 

Australian Curriculum: Mathematics (ACM) was shown from the field at the end of the 

presentation. 

• Could an empirical research component be designed to further explore the role of 

pattern in building conceptual understanding?  

 

Exploring the questions…what actions need to be taken? 

1. Use of terminology: Clarify the difference between neurology and neuropsychology and 

which field to refer to in respect to this research. 

2. Reification vs application stage in Abstraction across domains table 

3. Pattern…or patterning? 

4. How does a pattern start? 

5. Thinking mathematically…what do I mean? 

6. Exploring the contrast…too one sided 

7. The role of pattern/patterning in building the mathematical proficiencies 

8. Could this research have an empirical component? 
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Appendix B3 

Summary of Feedback From MERGA Presentation 

 

• Use of correct terminology…this paper is comparing the construct of pattern from a neuro-

psychological perspective/field as opposed to ‘neurological’ field which is too broad a 

term. When I draw in the findings from others in the field of neuroscience will need to 

consider which branch of neuroscience is being referred to 

• In Table 1, Abstraction across domains, rethink and clarify Goldberg’s construct of pattern 

recognition…does it sit in the reification stage or application stage alongside 

White/Mitchelmore’s Model of Teaching for Abstraction? If it is in the reification stage 

then what would be in the application stage? Does it span both stages? Will need to clarify 

this with Mike Mitchelmore. 

• I was asked what is meant by the term “we think ‘mathematically’”…is this in a broad 

sense…we think mathematically in an everyday sense? Or, do I need to unpack the term 

‘thinking mathematically’ more? What is ‘thinking mathematically’ mean in the 

mathematical field? In this paper I was exploring the sense of pattern, structure and 

abstraction inherent in the process of building conceptual understandings generally not just 

purely in the ‘mathematical’ sense, and not just in the ‘mathematical field’. However 

because we draw upon this innateness to pattern, structure our thinking and develop 

abstract understandings generally; and that pattern, structure and abstraction underlie a 

broad range of mathematical understandings; this is what I meant by the term ‘thinking 

mathematically.’ 

• Is this research purely theoretical or will there be an empirical component? This Masters 

research is exploring a theoretical position about the role of pattern in the construction of 

understandings to propose an emerging generalised view of pattern across domains of 

knowledge. This question however made me consider if there could be an empirical 

component. This led to Phase 2 of this research whereby I undertook a content analysis as a 

means of analysing use of language terms that indicated the proficiency reasoning 

embedded in the content descriptions in the ACM. 

• Could exploring, collecting data on children’s embodied mathematical understandings and 

categorising this into stages of AMPS alongside the GMP provide empirical evidence?  

• Did I answer my original question? No, this research is exploring a generalised view of 

patterning. The term ‘thinking mathematically’ needs further investigation. 
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• If understanding though could be built through developing a greater sense of pattern and 

structure then how does the field of education capitalise upon this? There was some 

discussion at the end of the presentation about pattern and structure intervention in 

supporting children with special learning rights. What could be the impact on learning 

when elements of pattern and structure are embedded in the learning design, both in a 

mathematical sense and generally across learning areas? 

• How could explicit use of the ‘mathematical proficiency cycle’ build fluent conceptual 

understanding? This could lead to a comparison of the mathematical proficiencies with 

Goldberg’s pattern recognition and White/Mitchelmore’s Model of teaching for 

Abstraction? Which proficiency could be compared with pattern recognition? Or is it a 

combination of the proficiencies that leads to pattern recognition and generalised 

understandings? 
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APPENDIX C 
 

Proposing the Generalised Model of Patterning: 
MERGA 2015 

 
This appendix contains information about the presentation of a short communication at the 
Mathematics Education Research Group Australasia (MERGA38) conference, Mathematics 
Education in the Margins in 2015. It includes a short communication abstract that outlines the 
purpose of the presenting Phase 2 of this thesis research, and the proposed generalised model of 
patterning that was circulated during the presentation.   

It contains 2 sections. 

 Page 

  

Short communication abstract 94 

The proposed generalised model of patterning (GMP) 95 
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Appendix C1 

MERGA 2015 Short Communication Abstract 

 

The pattern and structure of the Australian Curriculum—Mathematics 

Catherine McCluskey 

Macquarie University 

<catherine.mccluskey@students.mq.edu.au> 

Joanne Mulligan 

Macquarie University 

<joanne.mulligan@mq.edu.au> 

Michael Mitchelmore 

Macquarie University 

<mike.mitchelmore@mq.edu.au> 

The mathematical proficiencies in the Australian Curriculum—Mathematics describe 
the processes students are engaged in while developing mathematical concepts 
(ACARA, 2014). This presentation focuses on how the proficiencies: understanding, 
problem solving, reasoning and fluency, may work together to build patterns of 
thinking which can lead to generalised understandings of mathematical concepts. The 
authors connect the combined role of these proficiencies with a proposed Generalised 
Model of Patterning (McCluskey, Mitchelmore, & Mulligan, 2013), highlighting the 
role of patterning in the development of conceptual understandings within and beyond 
mathematics. 

References 
Australian Curriculum Assessment and Reporting Authority [ACARA ] (2014). Australian curriculum. 

Retrieved 11 October, 2014, http://www.australiancurriculum.edu.au/  

McCluskey, C., Mitchelmore, M.  C., & Mulligan, J. T. (2103). Does an ability to pattern indicate that 
our thinking is mathematical? In V. Steinle, L. Ball, & C. Bandini (Eds.), Mathematics education: 
Yesterday, today & tomorrow (Proceedings of the 36th annual conference of the Mathematics 
Education Research Group of Australasia, Melbourne, pp. 482-489). Adelaide: MERGA. 
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Appendix C2 

Generalised Model of Patterning 
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APPENDIX D 
 

Expanded Version of Publication 3  
 
This appendix contains the expanded version of Publication 3 that was submitted for inclusion 
in MERGA39 conference proceedings. The full version of this paper is intended to provide the 
basis for a fourth publication that is responsive to feedback generated from presenting 
Publication 3 at the MERGA conference and from the evaluation of research in this masters 
thesis. Appendix E contains data generated from the content analysis relevant to this 
publication. 

 

Key Terms Identifying Reasoning Within the Australian Curriculum: Mathematics 
 

Catherine McCluskey, Joanne Mulligan, and, Michael Mitchelmore 

 
The mathematical proficiencies in the Australian Curriculum: Mathematics (ACM) of 

understanding, problem solving, reasoning, and fluency are intended to be 

entwined actions that work together to build generalised understandings of 

mathematical concepts. A content analysis identifying the incidence of key 

proficiency terms (KPTs) embedded in the content descriptions from Foundation to 

Year 9 revealed a much lower representation of “actions” relating to the 

proficiency reasoning than the other three proficiencies. However, reasoning is 

affirmed in the rational of the ACM, therefore a generalised model of patterning is 

proposed to provide an inter-related view of the proficiencies and to further support 

the development of generalised understandings in mathematics education.  

 

Mathematics is widely accepted “as a subject that consists of patterns and relationships that are 

understandable through mental activity that involves mathematical reasoning and logic” (Wood, 

2002, p. 61). The goal of mathematics education is clearly articulated in the Australian 

Curriculum: Mathematics (ACM) rationale statement: “It aims to instil in students an 

appreciation of the elegance and power of mathematical reasoning” (Australian Curriculum and 

Assessment Reporting Authority [ACARA], 2015, p. 4). Reasoning is recognised as paramount 

in the development and growth of mathematical understanding (Ball & Bass, 2003; Mason, 

Stephens, & Watson, 2009; Mueller & Maher, 2010). In the ACM, reasoning is singled out as 

one of the four mathematical proficiencies: understanding, problem solving, reasoning, and 

fluency. These are identified as key processes that describe “the actions in which students can 

engage when learning and using the content” and similarly inform teachers, “how the content is 
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explored or developed” (ACARA, 2015, pp. 4, 5). The content knowledge in the ACM is 

structured around three strands that “describe what is to be taught and learnt” (p. 5) and the 

mathematical actions of the proficiencies are embedded in the content descriptions in the ACM. 

Therefore it is interaction within and between these content strands and the four proficiencies 

that builds conceptual understandings in mathematics. 

 

Mathematical reasoning is described as the “capacity for logical thought and actions such as 

analysing, proving, evaluating, explaining, inferring, justifying and generalising” (ACARA 

2015, p. 5). Reasoning involves recognising similarities and differences encountered in concepts 

explored across multiple contexts leading to the development of abstract understandings. 

Explaining and justifying thinking enables knowledge to become “more general and its 

applicability to different situations … increased” (White & Mitchelmore, 2010, p. 2). 

Intentional instruction supports conceptual understanding to deepen, become more fluently 

recalled, and applicable in new learning contexts. Ball and Bass (2003) emphasise the role of 

the teacher in promoting reasoning, as “mathematical understanding is meaningless without a 

serious emphasis on reasoning” (p. 28). Engaging mathematical reasoning naturally draws 

students into greater levels of fluency as they connect their understanding in new problem-

solving contexts.  

 

Sullivan (2012) proposes that teacher learning should focus on “ways of identifying tasks 

that can facilitate student engagement with all four of these proficiencies” (p. 183) as the 

“intention is that the full range of mathematical actions apply to each aspect of the content” 

(Sullivan, 2011, p. 8). However, the organisational structure of the curriculum as three content 

strands comprising number and algebra, measurement and geometry, and statistics and 

probability, draws attention to content knowledge. How the proficiencies together build 

entwined conceptual understanding is well intended in the rationale of the ACM but not clearly 

articulated within the content strands. This raises the key questions addressed in this paper:  In 

what ways do the proficiencies build generalised understandings and reasoning skills? And is 

this relationship between reasoning and generalised understandings of mathematics evident and 

transparent to teachers accessing the curriculum? 

 

At a theoretical level, an interrelated view of the proficiencies will be discussed in light of a 

generalised model of patterning proposed by McCluskey, Mitchelmore, and Mulligan (2013) to 

highlight the importance of reasoning. An outcome of this paper is to identify how the 

proficiencies are articulated in the ACM through a content analysis of key language terms 

embedded in the content descriptions denoting the “actions” of the four proficiencies  

across K–9.  
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Background 

 
In the rationale of the ACM the role of the mathematical proficiencies is highlighted: “The 

curriculum focuses on developing increasingly sophisticated and refined mathematical 

understanding, fluency, logical reasoning, analytical thought and problem solving skills” 

(ACARA, 2015, p. 4). These mathematical proficiencies are described as capabilities that 

“enable students to respond to familiar and unfamiliar situations by employing mathematical 

strategies to make informed decisions and solve problems efficiently” (ACARA, 2015, p. 4). 

More generally, the curriculum describes the field of mathematics as “composed of multiple but 

interrelated and interdependent concepts and systems” (ACARA, 2015, p. 4), anticipating that 

schools will engage with the ACM in a dynamic and symbiotic way and thus implying, 

similarly, that the proficiencies are also interrelated. 

 

There is a clear intent in the introductory sections of the ACM to highlight the mathematical 

proficiencies as integral aspects of the curriculum. They are described in the Key Ideas section 

directly following the rationale and aims, and they are outlined again under the next section, 

Structure, before the description of the content strands. Importantly, the proficiencies are 

embedded in the language of the content descriptions and achievement standards as verbs that 

describe the mathematical actions students engage with (Sullivan, 2012). This is demonstrated 

in the following content description: “Interpret and compare data displays” (ACARA, 2015, 

Section ACMSP070): the verbs interpret, and compare identify use of the mathematical 

proficiencies.  

 

Throughout the ACM the proficiencies are described individually, rather than as an entwined 

system, at the beginning of each year level. The extract below illustrates examples of how the 

proficiencies are developed in the foundation year content. The verbs italicised in the text 

identify the actions students are engaged in as they explore the content. (Note, terms such as 

readily are adverbs and were included as KPTs if they modified a verb in the description) 
 
At this year level: 

1. understanding includes connecting names, numerals and quantities 
2. fluency includes readily counting numbers in sequences, continuing patterns and 

comparing the lengths of objects 
3. problem-solving includes using materials to model authentic problems, sorting 

objects, using familiar counting sequences to solve unfamiliar problems and 
discussing the reasonableness of the answer 

4. reasoning includes explaining comparisons of quantities, creating patterns and 
explaining processes for indirect comparison of length. (ACARA, 2015) 
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Highlighting the interaction of the proficiencies individually within the content could support 

teachers noticing the type of learning intended and designing learning activities that engage that 

specific proficiency. However, naming and identifying individual proficiencies may not 

encourage teachers to focus on the potential interrelationships between the proficiencies to build 

and deepen conceptual understanding. It is their connectedness that is not well articulated and 

thus does not resonate clearly within the rationale.  

In Engaging the Curriculum-Mathematics: Perspectives from the field, Atweh, Miller, and 

Thornton (2012) identified challenges that schools and educators could face in interpreting and 

implementing the curriculum due to this “possible lack of cohesion between the aims and 

rationale, the content and its articulation” (p. 2). In particular, they noted inconsistencies 

between the proficiencies, such as the role of reasoning, which they argued was 

underrepresented in the content elaborations. It may not be intended or necessary for the four 

proficiencies to be represented equally across the ACM. What is important is whether the 

reasoning proficiency is well articulated through the KPTs and whether teachers see the critical 

link with the problem solving proficiency. Therefore, in this paper an interrelated view of the 

proficiencies is explored. We aim to address this possible imbalance between the view proposed 

in the rationale and the incidence of key language terms articulated in the content, to support the 

development of generalised understandings in mathematics at the student level. 

Inter-relationship between mathematical proficiencies 
 
Atweh et al. (2012) highlight the inter-relationship between the proficiencies, that these 

“proficiencies are not disjointed … [and that] … some content elaborations may relate to one or 

more of the proficiencies” (p. 8). They refer to a model, mathematical proficiency, described in 

the United States report to the National Research Council (Kilpatrick, Swafford, & Findell, 

2001) on how the U.S. national standards promote proficiencies in learning mathematics. (Note: 

The U.S. model of proficiency differs to the four strands of proficiency adopted by the ACM, 

whereby productive disposition has not been included.) In this model, the term mathematical 

proficiency is used to “capture what we think it means for anyone to learn mathematics 

successfully … The most important observation we make about these five strands is that they 

are interwoven and interdependent … [and] … represent different aspects of a complex whole” 

(Kilpatrick et al., 2001, pp. 5, 116). For Kilpatrick et al., these strands are adaptive reasoning, 

strategic competence, conceptual understanding, productive disposition, and procedural fluency. 

The inter-relationship of these strands is illustrated in Figure 1.  
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  Figure 1.  Intertwined strands of proficiency (Kilpatrick et al., 2001, p.117). 
 
 

Watson and Sullivan (2008) succinctly describe the mathematical actions relating to these 

strands of proficiency from this model. They argue that: 

 

• Conceptual understanding “includes the comprehension of mathematical concepts, 

operations and relations”. 

• Procedural fluency includes skill “in carrying out procedures flexibly, accurately, 

efficiently, and appropriately, and, in addition to these procedures, having factual 

knowledge and concepts that come to mind readily”. 

• Strategic competence is “the ability to formulate, represent and solve mathematical 

problems”. 

• Adaptive reasoning is “the capacity for logical thought, reflection, explanation and 

justification”.  

• Productive disposition is “a habitual inclination to see mathematics as sensible, useful 

and worthwhile, coupled with a belief in diligence and one’s own efficacy” (Watson & 

Sullivan, 2008, as cited in Sullivan, 2011, pp. 6–7). 

Kilpatrick et al. (2001) stress the importance of the relationship between all strands in 

building resilient understandings that can be fluently applied in new situations. They refer to 

findings from cognitive science that indicate that attention to structural features of mathematical 

concepts supports effective coding of information, “Organization improves retention, promotes 
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fluency, and facilitates learning related material” (p. 118). Proficiency in mathematics involves 

the construction of effective neural networks that are structured in resilient and flexible ways to 

both connect understanding and accommodate new learning. This involves the capacity of the 

brain to adapt to and retain new information effectively. Findings from cognitive neuroscience 

indicate that we develop patterns of understandings, and encode these patterns for effective 

retrieval of information, “Patterning refers to the meaningful organisation and categorisation of 

information…the brain…connect[s] incoming information with stored patterns, categories of 

data, or past experiences, thereby extending existing patterns with new input” (Willis, 2010, p. 

59). In a similar way, the image in Figure 1 illustrates the individual strands woven together in a 

pattern as an entwined whole. This illustrates the interconnectedness of the different strands. 

This description of the process of patterning from cognitive neuroscience proposes a view of the 

proficiencies in the ACM working interdependently to build conceptual understanding 

systematically. However, the definition and image of the proficiencies as individual strands still 

accentuates their separateness, not their integrated relationship with each other in building 

patterns of thinking. 

The ACM proficiencies as an opportunity for changing practice 

Sullivan (2012) has asserted that the ACM provides an opportunity for educators to rethink and 

reshape mathematics learning for students by focussing on “the principles that underpin the 

structure of the curriculum and the use of these principles to inform teacher learning” (p. 175). 

These principles  are that: 

 

• the four proficiencies provide a framework for mathematical processes 

• the ACM has been designed to emphasise teacher decision making, and  

• there is a focus on depth rather than breadth to address challenges of equity. 

 

Sullivan identified the mathematical proficiencies as the first key principle that enacts the 

other two principles, emphasising that engagement with the mathematical proficiencies 

encourages educators to make pedagogical decisions to explore not just the breadth but also 

importantly the depth of mathematical concepts. Incorporating learning experiences in relevant 

problem-based contexts creates opportunities for students to engage meaningfully with the 

mathematical proficiencies:  

“Mathematics … is more than following rules and procedures but can be about 

creating connections, developing strategies, effective communication … This view 

is not obvious in the content descriptions … It is part of the opportunity for those 

supporting teachers to communicate such views” … [and is] … “communicated 

through the proficiencies that underpin the curriculum” (Sullivan, 2012, p. 179). 
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Identifying the language of the proficiences 

 
In describing this dynamic view of learning, Sullivan refers to the use of verbs identifying the 

actions of individual proficiencies. It is intended that teachers look within, across, and beyond 

the content descriptions to connect with the language that articulates the use of the proficiencies 

in connecting with and deepening mathematical thinking.  

 

Taking up this point, Atweh et al. (2012) analysed the occurrence of the proficiencies stated 

in the Year 8 content elaborations, finding that “53% relate to experiences to develop 

understanding … 56% relate to developing fluency … 12% relate to problem solving … and 7% 

refer to reasoning” (pp. 8–9). In this analysis, the proficiency of reasoning, an essential element 

in the development of generalised understandings, was rarely identified in the content 

elaborations. However, reasoning may be well represented in the KPTs describing problem 

solving. For example in The Australian Curriculum: Mathematics as an opportunity to support 

teachers and improve student learning, Sullivan (2012) has previously outlined the value of 

engaging the proficiencies through problem-based contexts. Investigating problem-based 

approaches assumes that:  

“the teacher draws upon the various strategies used by the students … [and that the 

learning] … experience will communicate to students that there are many ways to 

approach mathematical tasks, they can choose their own approach, and that some 

approaches are more efficient than others” (pp. 178–179).  

This type of thinking, authentically embedded in problem-solving contexts, builds a capacity to 

reason but is dependent on teachers’ awareness of “structural relationships … [and] strategies 

… [for]… bringing structural relationships to the fore” (Mason, Stephens, & Watson, 2009, p. 

29). Structural relationships emerge from engaging in opportunities to reason. This involves 

generalising commonalities about concepts across contexts. Therefore the use of language in the 

ACM that indicates the incidence of the proficiencies, in particular reasoning, requires further 

investigation.  

 

Content analysis of reasoning: content descriptions 
 
In the research reported here, an initial phase of a content analysis was used to identify the type 

of language used to describe the actions of the proficiencies. This was conducted to find 

evidence of terms related to reasoning that were articulated in the ACM. This content analysis 

extracted key proficiency terms (KPTs) that “can be thought of as verbs” (Sullivan, 2012, p. 

179) from the content descriptions. (Note, adverbs were also included in this content analysis.) 

This process occurred in the following four stages: 
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1. Each proficiency description in the key ideas section was analysed for KPTs.  

 

2. A framework was constructed identifying the KPTs that related to each proficiency. 

 

3. The KPTs embedded in the content descriptions from Foundation to Year 9 were 

extracted and categorised using the framework in Table 1 to compare the frequency of 

their use throughout the content descriptions from Foundation to Year 9. (Note, some 

KPTs recorded in Table 1 relate to more than one proficiency; however each KPT 

extracted from the content descriptions was counted to calculate the total number of 

occurrences relating to each proficiency.) 

 

4. Table 2 contains entries that summarise the total number KPTs identified across F-2, 3-

6, and 7-9 content descriptions. 

Table 1  

Key Proficiency Terms (KPTs) 

Proficiency strand Key proficiency terms (KPTs) 

Understanding Apply build connect describe develop identify interpret 
make represent 

Fluency Accurately answering appropriately calculate carrying 
choose choosing develop efficiently find manipulate 
flexibly recall recalling readily recognise regularly use  

Problem 
solving 

Apply communicate design develop effectively formulate 
interpret investigate make model plan represent seek solve 
use verify  

Reasoning Adapt analysing compare contrast deduce develop 
evaluating explain explaining generalising increasingly 
inferring justify justifying known mathematically prove 
proving reached reasoning something transfer thinking 
used  
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Table 2  

Frequencies and Percentages of Key Proficiency Terms (KPTs) Across the Curriculuma 

 
 

Year level 
clusters 

ACM proficiency strands  
 
 

Total KPTs 
Under-

standing 
Fluency Problem 

solving 
Reasoning 

F–Year 2 33 (26) 36 (29) 32 (26) 24 (19) 125 (100) 

Years 3–6 83 (29) 65 (22) 102 (35) 42 (14) 292 (100) 

Years 7–9 33 (17) 50 (25) 89 (45) 25 (13) 197 (100) 

F–Year 9 149 (24) 151 (25) 223 (36) 91 (15) 614 (100) 

a  Cell entries are frequencies (row percentages) 

 

For each year level clustering (i.e., F–2, 3–6, and 7–9) it was questioned whether the 

individual proficiencies would be equally represented, with a similar proportion of KPTs 

relating to each of understanding, fluency, problem solving, and reasoning. However, this was 

not the case, with problem solving noticeably over-represented from years 3–9: F–2: 26%, 3–6: 

35%, and 7–9: 45%; and reasoning consistently under-represented throughout the content 

descriptions across the year level clusters: F–2: 19%, 3–6: 14%, and 7–9: 13%.  

 

Across the early years of school (F–2), a total of 125 terms were extracted from the F–2 content 

descriptions. From these 19% related to reasoning, with 29% relating to fluency, and 26% each 

for KPTs relating to understanding and problem solving. This reflects the emphasis in the early 

years of developing conceptual understanding and fluency of procedural knowledge and 

processes through problem-solving contexts.  However, reasoning is critical in the development 

of mathematical concepts. Further analysis will reveal if KPTs identifying reasoning are 

represented more in the later years of school.  

 

Throughout the primary years there is an increasing incidence of KPTs embedded overall in 

the content descriptions. KPTs identifying understanding and problem solving were noted more 

frequently than were those identifying fluency and reasoning. KPTs relating to reasoning were 

identified 42 times from an overall count of 292 KPTs, resulting in only 14% of the total terms 

extracted.   

 

Similarly, in the middle years (7-9) an increasing focus on exploring content through 

problem-solving contexts is recognised, as 45% of the total KPTs identified across Years 7–9 
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related specifically to the proficiency problem solving. Fluency received 25% of the KPTs, 

understanding 17%, and reasoning 13%. 

 

 Overall, problem solving is predominantly represented in this analysis, with 36% of total 

terms relating to developing this proficiency across years F–9. Understanding and fluency are 

similarly weighted, with 25% and 24% of the KPTs respectively. However, only 15% of KPTs 

from Foundation to Year 9 describe actions that relate specifically to students engaging in 

reasoning in their learning in mathematics. A higher representation of KPTs identifying problem 

solving could be attributed to the intent described in the ACM rationale “that these proficiencies 

enable students to respond to familiar and unfamiliar situations by employing mathematical 

strategies to make informed decisions and solve problems efficiently” (ACARA, 2014, p. 4). It 

could be inferred in the ACM that reasoning would be built into this process of problem solving 

and this concurs with Sullivan’s assertion that teachers use problem-based approaches to engage 

the proficiencies (Sullivan, 2012).  However, this is not evident in the KPTs extracted. This is a 

limitation of the analytic process used here and the problem that differentiating the proficiencies 

individually presents. If reasoning is embedded in problem-solving contexts, this could be made 

explicit in the description of the proficiencies as an integrated system. 

 

Integrating the proficiencies 
 
In previous work, we proposed a generalised model of patterning (McCluskey, Mitchelmore, & 

Mulligan, 2013) as a means of describing the abstraction of patterning across differing domains 

of knowledge. We suggest that patterning moves through a progressive cycle in building 

generalised understandings within and beyond mathematics in that: 

 

• a sense of familiarity is experienced with known situations, 

• similarity experienced across contexts is encoded in the conceptual structure of the 

pattern 

• patterns are activated when similarity is recognised, and 

• familiar patterns are accessed more fluently when applied in new contexts. 

 

Thus, we propose that, all four proficiency strands of understanding, fluency, problem 

solving, and reasoning in the ACM can naturally work together as an integrated whole, in a 

cyclic structure, building and deepening generalised patterns of mathematical understanding 

with a focus “on depth of learning rather than breadth” (Sullivan, 2012, p. 185).  For example, 

as understanding is connected across problem-solving contexts, similarities about mathematical 

concepts are recognised, and students develop reasoning as they construct generalisations. Over 

time, fluency in recognising and engaging with similar problems is strengthened with an 
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increasing capacity to transfer understanding to new contexts. The four proficiencies have a 

combined role in systematically building patterns of generalised understandings. 

 

In Figure 2 this integrated view of the proficiencies is illustrated in the proposed pedagogical 

cycle. In the centre the four proficiencies are labelled as inter-related aspects of a greater whole 

with their inter-connectedness engaging with and deepening conceptual understanding. 

Surrounding this is a cycle of processes describing how the progressive cycle of the generalised 

model of patterning could highlight the systematic interaction of the proficiencies working in 

this dynamic way.  

 

 

 

 

 

 

 

 

 

 

Figure 2.  The proposed pedagogical cycle. 

 

 

 This pedagogical structure assumes that there is interaction and relationship of all four 

proficiencies in connecting with and deepening mathematical thinking, As learning is engaged, 

understanding is connected and stretched further across problem-solving contexts, similarities 

about mathematical concepts are recognised, and students reveal levels of reasoning as they 

construct generalisations about concepts and explore the applicability and use of problem-

solving approaches. Over time, patterns of recognising and engaging with similar problems 

become more fluently recalled and readily transferred in new contexts. 

  

1. Engage students’ prior and current 
understandings and familiar experiences. 

2. Connect understanding 
through identifying 

similarities about concepts 
across problem-solving 

 

 4. Fluency is strengthened 
as patterns of knowing are 
frequently reengaged and 

generalised. 

3.Intentionally question to 
explain thinking and elicit 
levels of reasoning about 

concepts explored. 

5. Patterns of 
understanding can be 

applied in new problem 
solving situations. 

Understanding 

Problem solving 

Fluency 

Reasoning 
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Summary and recommendations 

The ACM heralds in an opportunity for educators to focus on the interrelated development of 

the mathematical proficiencies, a key principle that underpins the curriculum (Sullivan, 2012). 

The importance of reasoning is clearly articulated in the rationale in the ACM. However, the 

KPTs that articulate reasoning appear to be noticeably under-represented in the content 

descriptions from Foundation–Year 9. In contrast, a clear emphasis on students engaging their 

thinking through problem-solving contexts was identified throughout the F–9 curriculum 

content descriptions.  

 Sullivan (2011, 2012) has emphasised pedagogical use of relevant problem-solving contexts 

and approaches as a means of engaging a greater breadth and depth of proficiencies through 

teachers’ choice of task design and consequent learning experiences for students. Similarly, the 

heavier weighting of KPTs relating to problem solving, identified through the content analysis, 

could encourage teachers to adopt practices and design learning experiences that will realise the 

intention of an integrated view of the proficiencies.  

 If problem solving can be used to support the development of all the proficiencies then 

pedagogical cycles, including the one outlined in Figure 2, could in turn support teachers in 

engaging students’ sense of reasoning, fluency and understanding systematically through 

problem solving contexts. Such pedagogical cycles acknowledge the mathematical proficiencies 

as being interrelated aspects of cognition that together build conceptual understanding through 

opportunities for students to: 

• engage their current understandings through familiar experiences, 

• identify and describe similarities in concepts, 

• question and engage in mathematical discourse to communicate their thinking, 

• generalise their conceptual understanding about concepts across contexts,  

• develop fluent patterns of knowing how to engage with similar types of problems, 

• apply these patterns of understanding in new and unfamiliar contexts, and 

• explain and justify their reasoning, which in turn would reshape and strengthen 

conceptual understanding. 

 

 Adopting such an integrated view of the role of the mathematical proficiencies has 

implications for professional learning to ensure teachers’ pedagogical content knowledge and 

promotion of reasoning enables their students’ to develop generalised understandings of 

mathematical concepts.  
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APPENDIX E 
 

Content Analysis of Key Proficiency Terms (KPTs) 

 
This appendix contains information about the content analysis of KPTs embedded in the content 
descriptions in the Australian Curriculum: Mathematics (ACM) from Foundation to Year 9. It 
contains three sections: 

 

 Page 

  

1.  KPTs from Foundation to Year 9 112 

2.  KPTs across year level clusters: F–Year 2; Years 3–6; Years 7–9 122 

3.  KPTs across Foundation to Year 9 125 
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Section 1 

Key Proficiency Terms: Foundation- Year 9 

 

  Proficiency 

Strand 

Key Proficiency Terms (KPTs) 

Foundation 

Addit 

(KPTs) 

Freq. 

% 

Understanding apply build connect describe develop 
identify interpret make represent  

connecting 5 
21% 

Fluency accurately answering appropriately  
calculate  carrying choose choosing 
develop efficiently find manipulate 
flexibly recall recalling readily 
recognise regularly use  

counting 
continuing 
comparing 

5 
21% 

Problem 

Solving 

apply communicate design develop 
effectively formulate interpret 
investigate make model plan represent 
seek solve use verify  

using 
sorting 
counting 
discussing 
 

5 
21% 

Reasoning adapt analysing compare contrast 
deduce develop evaluating explain 
explaining generalizing increasingly 
inferring justify justifying known  
prove proving reached reasoning 
something transfer thinking used  

creating 
explaining 

 
9 

37% 

Other verbs 

identified in 

content 

description 

establish including subitise order 
classify copy decide name answer 
collect moving 

  

Total Key 

Proficiency 

Terms 

  24 
100% 
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Proficiency Strand Key Proficiency Terms (KPT)  

Year 1 

Addit 

(KPT) 

Freq. 

% 

Understanding apply build connect describe develop 
identify interpret make represent  

connecting 
partitioning 

 
10 

29.5% 

Fluency accurately answering appropriately 
calculate carrying choose choosing 
develop efficiently find manipulate 
flexibly recall recalling readily 
recognise regularly use  

counting 
readily  
locating 
naming 

 
 

10 
29.5% 

Problem Solving apply communicate design develop 
effectively formulate interpret 
investigate make model plan 
represent seek solve use verify 

using model 
giving 

receiving 
counting solve  

discussing 

 
11 

32% 

Reasoning adapt analysing compare contrast 
deduce develop evaluating explain 
explaining generalizing increasingly 
inferring justify justifying known 
prove proving reached reasoning  
transfer used  

using 
created 

explaining  
 

 
 

 
3 

9% 

Other verbs identified 
in content descriptions 

starting read write order 
rearranging measure formed tell 
classify give follow gather 

  

Total KPT   34 
 

100% 
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Proficiency 

Strand 

Key Proficiency Terms (KPT)  

Year 2 

Addit 

(KPT) 

Freq. 

% 

Understanding apply build connect describe develop 
identify interpret make represent  

connecting 
counting 

partitioning 
combining 

flexibly 
identifying 
describing 

 
 

18 
27% 

Fluency accurately answering appropriately 
calculate carrying choose choosing 
develop efficiently find manipulate 
flexibly recall recalling readily 
recognise regularly use  

counting 
using 

iteratively 
compare 

comparing 
describe 

describing 

 
21 

31% 

Problem 

Solving 

apply communicate design develop 
effectively formulate interpret 
investigate make model plan represent 
seek solve use verify 

formulating 
using 

matching 

 
16 

24% 

Reasoning adapt analysing compare contrast 
deduce develop evaluating explain 
explaining generalizing increasingly 
inferring justify justifying known 
prove proving reached reasoning  
transfer used 

using 
derive 

comparing 
contrasting 

creating 
interpreting 

related 

 
12 

18% 

Other verbs 

identified in 

content 

descriptions 

moving order group rearrange facilitate 
explore written repeated grouping 
according based tell name determine 
draw involve gather collect check classify 

  

Total KPT   65 
 

100% 
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Proficiency 

Strand 

Key Proficiency Terms (KPT) 

Year 3 

Addit. 

(KPT) 

Freq. 

% 

Understanding apply build connect describe 
develop identify interpret make   

represent 

connecting  
partitioning 

combining  flexibly 
representing  using 

identifying 
communicate 

 
 
 
 

23 
28% 

Fluency accurately answering appropriately 
calculate carrying choose choosing 
develop efficiently find manipulate 

flexibly recall recalling readily 
recognise regularly use 

recalling using   order 
compare  identifying 

describing  
interpreting 

communicating 

 
22 

27% 

Problem Solving apply communicate design develop 
effectively formulate interpret 
investigate make model plan 

represent seek solve use verify 

formulating  modelling 
planning  making 
using  continue 

 
23 

28% 

Reasoning adapt analysing  compare contrast 
deduce develop evaluating explain 

explaining generalizing 
increasingly inferring justify 

justifying known prove proving 
reached reasoning transfer thinking 

used 

using generalizing 
comparing  creating 

interpreting 

 
14 

17% 

Other verbs identified 

in content 

descriptions 

rearrange regroup involving 
written complete count performing 
measure tell show conduct collect 

organise 

  

 

Total KPT 

   
82 
100
% 
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Proficiency 

Strand 

Key Proficiency Terms (KPT)  

Year 4 

Addit. 

(KPT) 

Freq

. 

% 

Understanding apply build connect describe develop 
identify interpret  make  represent  

making  
partitioning 
combining 

flexibly extending 
using describing  

 
 
 

17 
27% 

Fluency accurately answering appropriately 
calculate carrying choose choosing develop 
efficiently find manipulate flexibly recall 
recalling readily recognise regularly use  

recalling 
communicating 
using measure 

creating 
collecting 
recording 

 
 

13 
21% 

Problem 

Solving 

apply  communicate design develop 
effectively formulate interpret investigate 
make model plan represent seek solve use 
verify 

formulating 
modelling 
recording  

comparing  using 
continue 

26 
41% 

Reasoning adapt analysing  compare contrast deduce 
develop evaluating explain explaining 
generalizing increasingly inferring justify 
justifying known prove proving reached 
reasoning transfer thinking used 

deriving 
comparing 

communicating 

 
 
7 

11% 

Other verbs 

identified in 

content 

descriptions 

 order rearrange regroup assist count 
locate explore involving  find convert 
splitting contained classify happen select 
trial including construct illustrating 

  

 

Total KPT 

  63 
 

100
% 
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Proficiency 

Strand 

Key Proficiency Terms (KPT)  

Year 5 

Addit. 

(KPT) 

Freq. 

% 

Understanding apply build connect describe develop  
identify  interpret make represent  

making 
connections using 

represent 
comparing 
ordering 

representing 
describing 
identifying 

 
26 

34% 

Fluency accurately answering appropriately 
calculate carrying choose choosing 
develop efficiently find manipulate 
flexibly recall recalling readily 
recognise regularly use  

 using check 
measure 

 
16 

21% 

Problem Solving apply communicate design develop 
effectively formulate interpret 
investigate make model plan represent 
seek solve use verify 

formulating 
solving using 

creating 

 
 

23 
30% 

Reasoning adapt analysing compare contrast 
deduce develop evaluating explain 
explaining generalizing increasingly 
inferring justify justifying known 
prove proving reached reasoning 
transfer used 

investigating 
perform 

continuing 
involving 

interpreting posing  

 
12 

15% 

Other verbs 

identified in content 

descriptions 

including locate extended resulting 
convert construct explore estimate list 
collect including  

  

 

Total KPT 

   
77 

100% 
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Proficiency 

Strand 

Key Proficiency Terms (KPT)  

Year 6 

Addit. 

(KPT) 

Freq. 

% 

Understanding apply build connect describe develop 
identify interpret make represent  

describing using 
representing 

making 

 
 
 

17 
24% 

 
 

Fluency accurately answering appropriately 
calculate carrying choose choosing 
develop efficiently find manipulate 
flexibly recall recalling readily 
recognise regularly use  

representing 
calculating using 

converting 
measuring 

interpreting 

 
 

 
14 

20% 

Problem Solving apply  communicate design develop 
effectively formulate interpret 
investigate make model plan 
represent seek solve use verify  

formulating 
solving using 
interpreting 

finding 

 
 
 

30 
43% 

Reasoning adapt analysing compare contrast 
deduce develop evaluating explain 
explaining generalizing increasingly 
inferring justify justifying known 
prove proving reached reasoning 
transfer thinking used  

performing 
describing 

continuing differ 

 
9 

13% 

Other verbs 

identified in content 

descriptions 

select  involving locate result add 
subtract check multiply divide  create 
write explore construct conduct 
expected presented  

  

 

Total KPT 

   
70 
100
% 
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Proficiency Strand Key Proficiency Terms 

(KPT)  

Year 7 

Addit. 

(KPT) 

Freq. 

% 

Understanding apply build connect describe 
develop identify interpret make 
represent  

describing 
recognizing plotting 
identifying formed 

crossing connecting 

15 
19% 

Fluency accurately answering 
appropriately calculate carrying 
choose choosing develop 
efficiently find manipulate 
flexibly recall recalling readily 
recognise regularly use  

calculating 
representing 

investigating finding  

 
 

20 
26% 

Problem Solving apply communicate design 
develop effectively formulate 
interpret investigate make model 
plan represent seek solve use 
verify 

formulating solving 
using working 

identifying 
calculating 
interpreting 

 
32 

41% 

Reasoning adapt analysing  compare 
contrast deduce develop 
evaluating explain explaining 
generalizing increasingly 
inferring justify justifying 
known prove proving reached 
reasoning transfer thinking used  

applying 
interpreting 

 
 

11 
14% 

Other verbs identified 

in content 

descriptions 

written order add subtract 
locate including multiply divide 
express  introduce create 
substituting extend establish 
draw  classify construct assign 
determine involving collected 
demonstrate  

  

 

Total KPT 

   
78 

100% 
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Proficiency Strand Key Proficiency Terms (KPT)  

Year 8 

Addit. 

(KPT) 

Freq. 

% 

Understanding apply build connect describe 
develop identify interpret make y  
represent  

describing 
identifying 
connecting 
explaining 

7 
13% 

Fluency accurately answering appropriately 
calculate carrying choose choosing 
develop efficiently find manipulate 
flexibly recall recalling readily 
recognise regularly use  

calculating 
recognizing 
factorizing 
simplifying 
evaluating 
including 

 
16 

29% 

Problem Solving apply are communicate design 
develop effectively formulate 
interpret investigate make model 
plan represent seek solve use verify  

formulating 
modelling using 

calculate 

 
29 

53% 

Reasoning adapt analysing are compare 
contrast deduce develop evaluating 
explain explaining generalizing 
increasingly inferring justify 
justifying known mathematically 
prove proving reached reasoning 
transfer used  

justifying 
deriving using 
finding deduce 

 
3 

5% 

Other verbs identified 

in content descriptions 

establish written involving extend  
plot verify convert define establish  
explore drawn 
 

  

 

Total KPT 

   
55 

100% 
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Proficiency 

Strand 

Key Proficiency Terms (KPT)  

Year 9 

Addit. 

(KPT) 

Freq. 

% 

Understanding apply build connect describe develop 
identify interpret make represent  

describing 
simplifying 

explaining estimate 
use 

 
11 

17% 

Fluency accurately answering appropriately 
calculate carrying choose choosing 
develop efficiently find manipulate 
flexibly recall recalling readily 
recognise regularly use  

applying expressing 
listing developing 

involving calculating 

 
 

14 
22% 

Problem 

Solving 

apply communicate design develop 
effectively formulate interpret 
investigate make model plan represent 
seek solve use verify  

formulating 
modelling involving 

applying solving 
collecting investigate 

 
28 

44% 

Reasoning adapt analysing compare contrast 
deduce develop evaluating explain 
explaining generalizing increasingly 
inferring justify justifying known prove 
proving reached reasoning something 
transfer used  

following evaluating 
using clarify 
developing 

investigate sketching 

 
11 

17% 

Other verbs 

identified in 

content 

descriptions 

list assign determine  how construct 
explore corresponding extend including 
collect located graphing including 
 
 

  

 

Total KPT 

   
64 

100% 
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Section 2 

Key Proficiency Terms Across Year Level Clusters 

 

 

 

 

 

 

 

 

 

 

 

  

Key Proficiency Terms: F-2: Early Years Cluster 

 
 

Year Level 

KPT: Proficiency Strands  
 

Total KPT Understanding Fluency Problem 
Solving 

Reasoning 

Foundation 
% total KPT 

 

5 
21% 

5 
21% 

5 
21% 

9 
37% 

24 
100% 

Year 1 
% total KPT 

10 
29.5% 

10 
29.5% 

11 
32% 

3 
9% 

34 
100% 

Year 2 
% 

total KPT 

18 
27% 

 

21 
31% 

16 
24% 

12 
18% 

67 
100% 

F-2 Cluster 
% total KPT 
 

33 
26% 

36 
29% 

 

32 
26% 

24 
19% 

125 
100% 
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Key Proficiency Terms: Year 3-6: Primary Years Cluster 

Year Level KPT: Proficiency Strands Total KPT 

Understanding Fluency Problem 
Solving 

Reasoning 

Year 3 
% total KPT 

 

23 
28% 

22 
27% 

23 
28% 

14 
17% 

82 
100% 

Year 4 
% total KPT 

 

17 

27% 

13 

21% 

26 

41% 

7 

11% 

63 

100% 

Year 5 
% total KPT 

 

26 
34% 

 

16 
21% 

23 
30% 

12 
15% 

77 
100% 

Year 6 
% total KPT 

 

17 
24% 

14 
20% 

 

30 
43% 

9 
13% 

70 
100% 

Yr 3-6 Cluster 
 

% total KPT 

83 
 

29% 

65 
 

22% 

102 
 

35% 

42 
 

14% 

292 
 

100% 
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Key Proficiency Terms: 7-9: Middle Years Cluster 

 
 

Year Level 

KPT: Proficiency Strands  
 

Total KPT Understanding Fluency Problem 
Solving 

Reasoning 

Year 7 
% total KPT 

 

15 
19% 

20 
26% 

32 
41% 

11 
14% 

78 
100% 

Year 8 
% total KPT 

7 
13% 

16 
29% 

29 
53% 

3 
5% 

55 
100% 

Year 9 
% 

total KPT 

11 
17% 

 

14 
22% 

28 
44% 

11 
17% 

64 
100% 

7-9 Cluster 
% total KPT 
 

33 
17% 

50 
25% 

 

89 
45% 

25 
13% 

197 
100% 
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Section 3 

Key Proficiency Terms Across Foundation – Year 9 

 

 

 

 

Key Proficiency Terms: F-2; 3-6; 7-9 

 
Year Level 

Cluster  

KPT: Proficiency Strands  
 

Total KPT Understanding Fluency Problem 
Solving 

Reasoning 

F- Year 2 
% total KPT 

 

33 
26% 

36 
29% 

32 
26% 

24 
19% 

125 
100% 

Year 3-6 
% total KPT 

83 
29% 

65 
22% 

102 
35% 

42 
14% 

292 
100% 

Year 7-9 
% 

total KPT 

33 
17% 

 

50 
25% 

89 
45% 

25 
13% 

197 
100% 

7-9 Cluster 
% total KPT 
 

149 
24% 

151 
25% 

 

223 
36% 

91 
15% 

614 
100% 


