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Abstract 
Over the past half a century, machine-based text summarization has been addressed from many 

different perspectives in a variety of application domains. Deep neural networks recently show 

promising results for text summarization and this thesis explores this application domain. In this 

research study, a deep auto-encoder is used to rank sentences based on the most salient information. 

More precisely, a deep neural network has been used for extractive query-oriented single-document 

summarization. Also, the use of an Ensemble Noisy Auto-Encoder (ENAE) for this task has been 

evaluated. ENAE is a stochastic version of an auto-encoder that adds noise to the input text and selects 

the top sentences from an ensemble of runs. Our experiments show that although a deep auto-encoder 

can be an effective summarizer, deep auto-encoders trained with stochastic noise in the input and run 

multiple times with different noise in the input can make improvements. The architecture of ENAE 

changes the application of the auto-encoder from a deterministic feed-forward network to a stochastic 

model. To cover a wide range of topics and structures, we perform experiments on two different 

publicly available email corpora that are specifically designed for text summarization. 
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Chapter 1 

1. Introduction 
The main goal of text summarization is to produce a condensed version of the original texts using an 

automatic technique. Indeed, providing a user with a summary of a document can be highly 

informative and greatly facilitates finding the required information in a large volume of the structured 

and unstructured data. Indeed, summarization and text search can be considered as the two pieces of 

the information extraction puzzle that complement each other. Having a returned set of documents 

from a text search engine, text summarizers generate a summary of a document for a quick 

examination. This is what most popular search engines (e.g. Google) are doing when they present the 

search results, including snippets of text that are related to the query. Text summarization can play 

an important role in different application domains. For instance, when performing a search in the 

mailbox according to a keyword, the user could be shown short summaries of the relevant emails. 

This is especially attractive when using a smart phone with a small screen.  

With the advances of information technology and the increase of digital data available world-wide it 

is becoming impossible to summarize information manually. Not only the amount of data is 

challenging but summarization, especially for technical texts, requires a considerable number of 

qualified unbiased experts, considerable time and budget. Even with experts, the quality of the 

abstract of a text might vary widely since human summarization is subjective. The drawbacks of 

manual text summarization grabbed experts' attention to propose a machine based approach, from the 

late 50's (Luhn 1958). 

Generally speaking, summarization can be categorized into two distinct classes: abstractive and 

extractive (Hovy 2005). In the abstractive summarization the summarizer has to re-generate the 

extracted content; however, in extractive category the sentences have to be ranked based on the most 

salient information. Extractive summarization has become a more popular research field mainly 

because truly abstractive summarization requires a complex linguistic process and real-word 

knowledge. In many research studies extractive summarization is equally known as sentence ranking 

(Edmundson 1969, Carbonell and Goldstein 1998, Maybury 1999). Both extractive and abstractive 

summarization systems differ according to function, target reader, processing level point of view, and 

applied tools.  

From another perspective, a summarizer will be providing a generic summary or query-based 

summary (Mani 2001). A generic summary provides a general sense of the document's contents 
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whereas a query-based summary presents the contents of the document that are closely related to the 

query. A query-based summarizer aims to retrieve and summarize a document or a set of documents 

satisfying a request for information expressed by a user query. The query-based summarization is 

sometimes also called "user-focused summarization".  

In practice, most researchers in automated text summarization have identified three distinct stages: 

topic identification, topic fusion and summary generation (Hovy 2005). Figure 2-1 shows the three 

stages. The first stage is where the system identifies the most important unit(s) (words, sentences, 

paragraphs, etc.) and can either list them (in automatic extracting) or display them diagrammatically 

(having a schematic summary). In the topic fusion stage (or interpretation stage), in which extractive 

summarization systems from abstractive systems can be distinguished, identified topics are fused and 

expressed by a new formulation (i.e. concepts and words) that is not presented in the original text. In 

the third phase, with having the summary content through abstracting or extracting information, in 

internal notation, it is required to use natural language generation techniques to produce the output 

summary (Hovy 2005). Most approaches only embody the first stage (topic identification) as a text 

summarization system. 

 

Figure 1-1 Text summarization based on the topic identification + interpretation + generation. 

When it comes to applying a technique, defining a summarizer's task is a key factor. For example, the 

summarizer will work on either single document or multi-document and the purpose of summarizer 

can be either generic or query-based summarization. The target reader, for whom summarization will 

be on the basis of domain specific (e.g. medicine) or not, is quite decisive as well.  

There have been investigations on how empirical methods have been applied to develop a text 

summarizer (Nenkova 2005, Das and Martins 2007). Evaluation measures such as coverage (i.e. to 

show the performance of a system in capturing content selection), readability and coherence, in both 

single and multi-document summarization, have been tested and compared. The evidence shows that 

to have the best performing system with reliable statistical significance the function of summarizer is 

quite significant.  

In addition to statistical, linguistic and graph-based methods that can be used separately and in 

combination, most recent research on document summarization uses machine learning and artificial 

intelligence techniques. To be more exact, closely related fields (e.g. information retrieval and text 

mining) have been investigated and adapted for text summarization. The techniques vary based on 

the application and the objective of the summarization.  
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1.1 Automatic Text Summarization Using Unsupervised Deep 

Learning 

One of the most recent and successful methods for text processing is deep learning (LeCun et al. 

2015, Schmidhuber 2015). In general, most machine learning techniques for Natural Language 

Processing (NLP) are limited to numerical optimization of weights for human designed features from 

the text; one of the key characteristics of deep or representation learning, however, is to automatically 

develop features or representations from the original text, appropriate for NLP tasks. This 

characteristic and other capabilities have motivated many researchers to explore the application of 

deep structures in NLP, for instance in text summarization. Indeed, in order to learn complicated 

functions that can present high-level abstractions, such as NLP tasks, a deep architecture may be 

required (Deng and Yu 2014).  

Given a text, our system makes a summary based on either heading of the text or key phrases. Indeed, 

the model was designed to rank and extract sentences that are semantically similar to the subject of a 

text or previously selected key phrases of a text. The pivot of the model is a deep auto-encoder (AE) 

as an unsupervised model and the key factor of the model is the word representation (see section 3.3). 

In this thesis, AE was used to map the input (i.e. word representation) to a semantic space where 

meaningfully similar sentences can have less distance from each other compared to other sentences. 

Also, a voting algorithm, in which sentences can be selected, has been explored. The architecture of 

this ensemble noisy auto-encoder (ANAE) changes the application of the AE from a deterministic 

feed-forward network to a stochastic model.  

To evaluate the model, a series of experiments have been conducted on two different publicly 

available email datasets. Although summarization systems are usually evaluated on newswire text, 

research community of this application domain also used other corpora (e.g. the IMDB movie review 

sentiment corpus), in particular with deep learning techniques (Denil et al. 2014). We also 

demonstrate the application of the domain other than newswire. Unlike newswire text, emails have 

more variety of structures, tend to be less formal and do not undergo any meticulous editorial process. 

Also, each email may have a separate topic whereas in most newswire-based corpora the number of 

topics is more restricted. With evaluating the system using two different datasets, developed from 

three different email sources, the system could be extensively explored.  

Using the word "automatic" in text summarization goes back to (Luhn 1958). Luhn (1958) appears 

to have introduced the first known machine-based summarization mentioned: 
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Abstract: Excerpts of technical papers and magazine articles that serve the purposes of 

conventional abstracts have been created entirely by automatic means… Conclusion: 

auto-abstracts have a … as they are the product of a statistical analysis of the author’s 

own words … The auto-abstract is perhaps the first example of a machine-generated 

equivalent of a completely intellectual task in the field of literature evaluation (Luhn 

1958). 

A key concept of deep learning, in particular AEs, is "automatically learning features". In fact, in this 

thesis, the word "automatic" presents different concept with historically using of this word in text 

summarization community. In the literature "automatic" indicates to a machine-based solution 

whereas in this thesis the word implies the feature learning process.  

1.2 Outline of the Thesis 

This thesis is divided into five chapters. The next section of this chapter is a description of 

contributions of the thesis. Chapter two is literature review including previous investigations, corpora 

and evaluation metrics. Chapter three is dedicated to our model. First a Restricted Boltzmann 

Machine (RBM) and AEs will be described in terms of topology and training algorithms. Then our 

system framework and the word representation will be presented. Chapter four presents results and 

discussion on the two datasets. In chapter five, the conclusion of the thesis and future work will be 

presented. Bibliography and appendix are placed at the end of this thesis.  

1.3 Contributions of This Research 

A brief explanation of the contributions of this thesis is following: 

 One key factor of most machine learning techniques for text summarization is relying on 

labeled training set; however, almost all researchers of this application domain agreed that 

there is no single best summary for a text, consequently no appropriate labeling. Also, 

unintentional human mistakes during annotation process is an inevitable issue. Therefore, we 

introduce an unsupervised approach for extractive summarization using AEs. Although AEs 

has previously applied for summarization as a word filter (Zhong et al. 2015), to the best of 

our knowledge we are the first to use the AE for summarization in this sentence ranking 

fashion.  

 There have been many studies to develop word representations, in particular to address with 

sparsity of the word representation. This thesis explores how an AE can handle sparsity due 

to word representation and also addresses sparsity with adding random noise in addition to 

the local word representation. When it comes to adding random noise, the structure changes 

the application of the AE from a deterministic feed-forward network to a stochastic model. 



 

5 
 

To our best knowledge, this representation technique is not previously explored in the 

application of auto-encoders. 

 We introduce the Ensemble Noisy Auto-encoder (ENAE) in which the model is trained once 

and used multiple times on the same input, each time with different added noise. In the thesis, 

we explore how adding stochastic noise to the input and running an ensemble on the same 

input can make improvements.  

 In email summarization domain, most summarizers rely on features that are completely 

dependent to human-crafted techniques. They are mostly limited to numerical optimization of 

weights for human designed features (e.g. position of sentence, subjectivity labels) from the 

text; one of the key characteristics of our framework, however, is to automatically develop 

features or representations from the original text. This automatic feature extraction is indeed 

one of the goals of designing shallow and deep neural network structures (Bengio 2009, Deng 

et al. 2014). The thesis expands the email summarization features beyond a set of features and 

develop to automatically extracted features.  
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Chapter 2 

2. Related Work 
For the purpose of this chapter, previous studies will be classified based on applied techniques into 

three categories: classic, machine learning and neural network-based techniques. In this section, the 

three categories will be reviewed, separately. In fact, the section is based on analyzing different 

methods of text summarization while presenting a variety of applications. Also, there will be a 

subsection for reviewing some commonly used corpora and evaluation metrics.  

2.1 Classic Methods 

Most early summarizers were based on the frequency of the word occurrence in a text as a factor to 

measure the significance of a sentence to give a score in the ranking phase. The idea was that 

repeatedly using a word shows the word's significance for the writer.  

The language model in the classic summarization techniques was mostly a unigram probability 

distribution over a word. This model is only based on the frequency of words, so-called bag-of-words 

(BOW) (see section 3.3), and it ignores the position of the words. Other word and sentence level 

features were relative position of the sentence and key phrases (e.g. title and heading words). These 

features have been used for both generic and query-based summarization.  

To obtain a generic summary, a commonly used method is to compute a relevance score between 

each sentence and the whole document (Gong and Liu 2001). For each term, there would be two 

different term-frequency (tf) weightings (see section 3.3), one based on local weighting and the other 

based on the global weighting. Having the weighted tf vector of a sentence and the weighted tf vector 

of the whole document, the inner product of the two vectors will be the relevance score. Sentences 

with the highest relevance score will be ranked and added into the summary.  

The term "relevance" in query-based summarization reflects the relevance of a document or multi-

document to a user-specific query. More precisely, a user needs information expressed as a query 

(e.g. a clinical query: What is the most effective malaria prophylaxis during pregnancy?) and a 

summarizer provides the most relevant and salient characteristics of the documents according to that 

query (Berger and Mittal 2000). In addition to tf representation, term frequency - inverse document 

frequency (tf-idf) (see section 3.3) has been commonly used in query-relevant summarization. 

Variations of the tf-idf weighting technique are often used for weighting a document and the query 

(Wu et al. 2008).  
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In a document, there are probably a set of sentences that convey similar information and each sentence 

may have high relevance scores; thus, the summary will not cover the major topics of the document, 

but only a content in the different sentences. Minimizing redundancy in the summary is an important 

phase for both query-based and generic summarization. In particular, multi-document summarization 

requires a redundancy phase. To tackle this deficiency, one simple but effective technique is that 

when a sentence get selected to be added into the summary, not only the sentence has to be eliminated 

from the document, but all the terms of the sentence also have to be deleted from the document. This 

procedure ensures that the subsequent sentence selection will convey new information and have 

minimum overlap with the previous selected sentences. Another robust technique is that once a 

system extracts a set of sentences, in which sentences carry somewhat similar information (e.g. using 

clustering), one of these sentences can be chosen to represent the set. Barzilay and McKeown (2005) 

presented more complicated approaches. They are more applicable to an abstractive summarization. 

Maximum marginal relevance (MMR) is a commonly used technique to ensure both minimum 

redundancy and maintaining relevance for ranking (Carbonell et al. 1998). In MMR a linear 

combination of relevance and information-novelty has been proposed and this combination is called 

"marginal relevance". The approach tries to maximize the combination to simultaneously have 

relevant sentence to the query and contain minimal similarity to previous selected sentences. This 

algorithm is applied in the sentence selection phase. After ranking sentences in descending order in 

accordance with their relevance scores (with a given threshold), sentences are selected iteratively to 

put into the summary. Each time the sentence will be added to the summary if it is not significantly 

similar to sentences already picked for the summary, otherwise the sentence has to be put aside. The 

iteration is continued up until the limitation of the summary being met. More recently, McDonald 

(2007) proposed a dynamic programming approach based on solutions to the knapsack problem; he 

replaced, the greedy search of MMR with the dynamic programming approach in which optimal 

accuracy and scaling properties have been guaranteed.  

Clustering and graph-based models have also been successfully adapted and used for text 

summarization. For example, centroid models such as the k-means algorithm and MEAD (a centroid-

based summarization using a feature-based generic summarization toolkit (Radev et al. 2000)) have 

presented promising results. In particular, MEAD uses the centroids of the clusters to identify which 

sentences are central to the topic of the cluster. The centroids of the clusters could be produced using 

modified tf-idf feature vectors. Erkan and Radev (2004) introduced several other criteria to assess 

sentence centrality (or salience) on the basis of a graph modeling. These criteria were established to 

find the sentences (as salient) that are similar to many of the other sentences in a cluster rather than 

the centrality of the words that sentence contains.  
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2.2 Machine Learning Approaches 

Machine learning summarizers are trainable systems in which models learns how to generalize its 

parameters to extract salient points. The feature sets in the techniques are mostly the same in classic 

methods alongside other features (e.g. features based on bigram (N-gram) language model). Most of 

machine learning approaches in text summarization are inspired from information retrieval and 

adapted into the task such as Bayesian models, Hidden Markov Models (HMM), Support Vector 

Machines (SVM) and Support Vector Regression (SVR) (Cortes and Vapnik 1995, Manning and 

Schütze 1999). In general, many supervised and unsupervised approaches have been proposed and 

they can be categorized into the following groups: Latent topic models as unsupervised techniques, 

classification and regression as the supervised techniques.  

Latent topic models such as probabilistic Latent Semantic Analysis (pLSA) and Latent Dirichlet 

Allocation (LDA) have been widely used in text summarization (Hennig 2009, Li and Li 2014). Most 

LDA and pLSA based summarizers are being trained in an unsupervised manner. In pLSA, the 

probability of each co-occurrence of words and documents is being considered a mixture of 

conditionally independent distributions. On the other hand, Blei et al. (2003) introduced LDA. It is a 

three-level hierarchical Bayesian model and the topic is assumed to have a Dirichlet prior. One key 

point is that the pLSA model can be considered equivalent to the LDA model under a uniform 

Dirichlet prior probability distribution.  

HMM has been used as a statistical model for text summarization. In contrast to a Naive Bayes 

Classifier that has independency assumption, the HMM has fewer assumptions. In the naive Bayes, 

the probability of a sentence to be chosen to add into summary is independent of whether previous 

sentence is in the summary. Additionally, a Naive Bayes Classifier has the assumption that features 

are all independent. However, in HMM (Conroy and O'leary 2001) independency of selected 

sentences was not assumed and a joint distribution of the feature set was used.  

SVM has been another supervised approach for setting up a summarizer. Li et al. (2009) proposed 

the graph structure of the output variables and also employed structural SVM to solve its optimization 

problem. The notion was to provide a structural SVM with three constraints to have more diversity, 

coverage and balance in the summary.  

A motivation to use Applying Support Vector Regression (SVR) for text summarization is that it can 

estimate the importance of sentences with providing continuous values. More clearly, the regression 

type of SVM can rank sentences with continuous values instead of putting sentences into classes. 

Ouyang et al. (2011) developed a regression model for query-focused multi-document 
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summarization. It uses SVR to learn a sentence scoring function with the proposed feature set of the 

study. 

2.3 Artificial Neural Network Models 

Neural networks are trainable statistical models based on an analogy with the structure of the human 

brain. Different classifications of artificial neural networks haven been presented on the basis of 

training algorithms, topologies and applications (Anderson 1995, Bishop 1995, Hagan et al. 1996, 

Bengio 2009, Deng et al. 2014, Bengio 2015). One commonly used classification is based on how 

deep a neural network is. To be more exact, a neural network with only one hidden layer is considered 

as a shallow neural network and with more than one hidden layer as a deep structure. The main focus 

of this section is deep architectures. 

2.3.1 Text Summarization Using Shallow Neural Networks 

Kaikhah (2004) successfully introduced a shallow neural network for automatic text summarization. 

The summarizer had three phases: general training to learn the relevant characteristics of sentences, 

prune the neural network to eliminate the unimportant features and select highly ranked sentences. 

This system motivated other researchers to use artificial neural networks for summarization. Kulkarni 

and Prasad (2010) proposed a combination of the multilayer perceptron (MLP) with fuzzy logic and 

they reported that this combination improves the result. Also, Krysta Svore (2007) proposed a neural-

network-based system, called NetSum. This technique was inspired from (Burges et al. 2005). All 

mentioned systems use the same feature level (e.g. sentence position, sentence length, title similarity 

score), have supervised training algorithm and feed-forward structure.  

In addition to feed-forward neural networks, recurrent neural networks (RNNs) have been applied for 

text summarization (Prasad 2009). In spite of different topology, the approach was generally inspired 

from (Kaikhah 2004).  

2.3.2 Text Summarization Using Deep Learning 

The concept of deep learning can be considered as a wide class of machine learning approaches and 

architectures in which the main characteristic is hierarchically using many layers (i.e. more than one 

hidden layer) of nonlinear information processing. The aim of the techniques is learning feature 

hierarchies with higher level features of the hierarchy extracted from the composition of lower level 

features (Bengio 2009). In fact, with automatically learning features at multiple levels of abstraction 

a system may execute complex functions to directly transfer the input to the output, completely 

independent from human-crafted features.  
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The successful application of deep neural networks to speech, image, vision and NLP tasks shows 

the capability and flexibility of the idea. In particular, Arisoy et al. (2012) proposed a deep structure 

for language modeling (LM) where the aim is to assign a probability to any arbitrary sequence of the 

words (or other linguistic symbols such as letters, characters, phonemes, etc.). Also, application to 

NLP is currently one of the most promising areas in deep learning research. Although NLP also deals 

with sequences of words, the task is highly diverse and not just focusing on assigning probabilities 

for linguistic symbols. One example of successfully applying deep learning for NLP tasks was 

presented by Collobert et al. (2011). They introduced a semi-supervised learning method for the 

shared tasks of part-of-speech tagging, chunking, named entity recognition, and semantic role 

labeling. All the tasks were integrated into a single system to be trained jointly.  

Applying deep neural networks to text summarization has shown promising results (Liu et al. 2012, 

PadmaPriya and Duraiswamy 2013). The intersection between the studies is the application of the 

Restricted Boltzmann Machine (RBM) (see section 3.1.1). A RBM is a generative model (i.e. learning 

a join probability distribution over observation and hidden variables) with one layer of (typically 

Bernoulli or Gaussian) stochastic visible (or observable) units and one layer of (typically Bernoulli) 

stochastic hidden units. However, the difference between (Liu et al. 2012) and (PadmaPriya et al. 

2013) is to some extend fundamental. PadmaPriya et al. (2013) used the sentence level features while 

Liu et al. (2012) applied tf representation. 

In the seminal paper of (Bengio et al. 2003), a new neural-network-based LM technique was 

proposed. The proposed method provides a distributed representation for words called “word 

embeddings”. The representation is now a crucial part of many applications such as extractive 

summarization (Kågebäck et al. 2014). Indeed, in contrast to n-gram language models in which words 

are treated as discrete entities, the neural network language model (NNLM) embeds words in a 

continuous space. This estimation was performed by a feed-forward or recurrent shallow neural 

network. More recently, deep neural network language models (DNN LMs) offers improvements 

over the NNLM (Arisoy et al. 2012). It is claimed that a distributed representation of a word is in fact 

a vector of features which characterizes the meaning of the word; however, it is still an open question.  

After successful application of word embeddings, researchers have been developing vector 

representations for different pieces of text such as phrases, sentences and paragraphs (Palangi et al. , 

Tomáš 2012, Mikolov et al. 2013, Le and Mikolov 2014). One of the main motivation is that word 

embedding is indifferent to the word order and also it is not easy to provide a fixed-length 

representation for a document. Sentence embeddings can mostly overcome the deficiency of word 

embedding; however, it is not clear how well the vector space reflects the documents semantic 
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meaning or discovers salient words and topics in a sentence. Paragraph embeddings give rise to even 

more complex questions. 

As mentioned earlier, deep learning has been used in a wide variety of applications and consequently 

they have mutually inspired one another. One example of this inspiration is convolutional neural 

networks (CNNs). Denil et al. (2014) proposed a novel visualization approach, inspired from CNNs 

for computer vision, that shows promising results to produce a compelling automatic summarization 

system for documents. It is true that CNNs are in nature able to handle variable-length input, but the 

input of the CNN is word embeddings and the system tries to work well as a review sentiment 

classifier. The task of the model can be divided into two phases: word embeddings to sentence 

embeddings and sentence embeddings to document embeddings. Similar to CNNs application in 

computer vision, the system is a supervised technique; it is trained to classify sentiment labels that 

are either positive or negative (i.e. a binary label). 

Recursive neural networks (RNNs) in which the same set of weights applies recursively have been 

successfully used in NLP. Quite recently this type of deep neural networks has been used for text 

summarization (Cao et al. 2015). In fact, with the capability of dealing with a variable-length input 

in a RNN, the proposed system formulates the sentence ranking task in a hierarchical regression 

fashion. It measures the salience of a sentence and its constituents (e.g., phrases), simultaneously. 

The model is a supervised technique and uses hand-crafted word features as inputs. 

2.4 Summarization Corpora 

It is quite important to have a trustable dataset in text summarization since the most challenging part 

of providing a dataset for this task is manual annotations. Indeed, not only the developers have to 

handle privacies, domain specific issues and the cost of the project, also annotators should be well 

trained both for extractive and abstractive tasks. In spite of all these difficulties, the summarization 

community produced a wide variety of datasets for general and domain specific applications. For 

example, Document Understanding Conference1 (DUC), Text Analysis Conference2 (TAC) and Text 

REtrieval Conference3 (TREC) are among the most popular corpora for text summarization. They all 

comprise newswire articles.  

Many research groups developed domain specific corpora, for instance, evidence-based medicine 

summarization (Molla and Santiago-Martinez 2011), to achieve their specific goals. Databases 

                                                           
1 http://duc.nist.gov/ 
2 http://www.nist.gov/tac/ 
3 http://trec.nist.gov/data.html 



 

12 
 

consist of meeting records were also developed for summarization (e.g. Augmented Multiparty 

Interaction1 (AMI)). 

The most popular email dataset is the Enron corpus2. This uncensored corpus, that was made public 

during the legal investigation into the Enron Corporation, is a treasure for a wide variety of purposes. 

Since Enron contains over 300,000 threads only a part of the corpus was manually annotated for 

summarization in the University of British Columbia and it is not publicly available. However, other 

research groups have developed and manually annotated email datasets that are publicly available 

such as the British Columbia Conversation Corpus3 (BC3) and Summarization and Keyword 

Extraction from Emails4 (SKE).  

Although datasets on which almost all summarization research studies have evaluated are developed 

specifically for summarization, Denil et al. (2014) used a sentiment analysis dataset for text 

summarization. Indeed, Denil et al. (2014) implicitly argued that during the prediction of a sentiment 

of a movie reviewer, text summarization can be defined.  

2.5 Evaluation Metrics 

Unlike many NLP tasks, there is no single golden-standard evaluation metric for summarization. In 

addition to manual techniques, there are standard machine-based evaluation approaches. The goal of 

all metrics is to determine how much the generated summary is similar to human generated one for 

both extractive and abstractive summarization.  

The most trusted evaluation metric is Recall-Oriented Understudy for Gisting Evaluation (ROUGE) 

as a set of automatic metrics and a software package (Lin 2004). This metric counts the overlap units 

such as unigram and bigram and therefore it is based on n-gram similarity between the model 

summary (i.e. human generated) and the system summary (i.e. machine generated). The ROUGE 

package provides the average Precision, Recall and F-score:  

precision =  
|{relevent sentences}∩{retrieved sentences}|

|{retrieved sentences}|
     (2.1) 

recall =  
|{relevent sentences}∩{retrieved sentences}|

|{relevent sentences}|
     (2.2) 

F-score =  2 ×
precision×recall

precision+recall
       (2.3) 

                                                           
1 http://www.amiproject.org/ 
2 https://www.cs.cmu.edu/~./enron/ 
3 https://www.cs.ubc.ca/cs-research/lci/research-groups/natural-language-processing/bc3.html 
4 http://web.eecs.umich.edu/~mihalcea/downloads.html 
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Precision index shows how many extracted items are relevant and recall index shows how many 

relevant items are extracted by the model. F-score is a weighted harmonic average of precision and 

recall and an index of a test's accuracy. 

ROUGE has different measures: ROUGE-N (i.e. N-gram Co-Occurrence Statistics), ROUGE-L (i.e. 

Longest Common Subsequence), ROUGE-W (i.e. Weighted Longest Common Subsequence), and 

ROUGE-S (i.e. Skip-Bigram Co-Occurrence Statistics). Although accepting this metric across all 

domains has not been established, (Dang and Owczarzak 2008) observed that among all ROUGE 

measures ROUGE-2 recall has the highest correlation with manual scores.  

Deep learning shows promising results in NLP and developing an evaluation metric for 

summarization using deep neural network is one of these outcomes. Genest et al. (2011) introduced 

an automatic approach to score a summary. This structure using both unsupervised and supervised 

training algorithm gave a good result for each individual summary, but not in the average scores. 

Also, in an unconventional approach, Denil et al. (2014) introduced a new quantitative measure for 

summary evaluation. They argue that without any labeled (i.e. human annotated sentences), correct 

sentence selection can result in the easier identification of a movie reviewer's sentiment (i.e. a label); 

therefore, the sentence has to be selected for the summary. 

With the assumption of having no single best summary, Pyramid method (Nenkova et al. 2007) is a 

predominant quantitative evaluation. It is an indirect manual evaluation in which human content 

selection variations incorporate in the evaluation. Indeed, this technique relies on agreement of the 

human summaries. More precise, summary content units (SCUs) extracted from the models (i.e. 

multiple human generated summaries) and appeared in most of the models are weighted more highly. 

The SCUs are mostly no bigger than a clause. Then, the SCUs are arranged in a pyramid architecture 

and provide pyramid score.  
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Chapter 3 

3. The Methods and Algorithms 

of the Architecture 
The thesis explores two different summarization settings in which a document is summarized based 

on a written text not included in the original text. Thus, the algorithm can be considered as an 

extractive query-oriented summarization.  

This chapter describes the architecture of our model. The AE is explained, in detail, in the first part. 

The section elaborates on topology and mathematic of pre-training and fine-tune phases. In the second 

section, regularization method is described. Section three presents the word representations as the 

input of the AE. The sentence ranking phase is described in the fourth section. In the last section, 

iterative data fusion and voting that is indeed sentence selection phase is presented. 

3.1 The Deep Auto-encoder 

AE neural networks are a particular type of unsupervised feature (or representation) learning 

technique in which a transformation of original data to a representation that is proper for a machine 

learning task is required. In representation learning, the system can learn for a specific task and the 

features themselves, both automatically.  

An AE is a feed-forward network that learns to reconstruct the input x (Hinton and Zemel 1997). 

More precise, it is trained to encode the input x using a set of recognition weights into a feature space 

C(x). Then, the features (codes) C(x) are converted into an approximate reconstruction of 𝑥̂ using a 

set of generative weights. The generative weights are indeed obtained firstly from unrolled weights 

of encoder and then from fine-tune phase. As illustrated in figure 3-1, through the encoder (i.e. 

mapping to a hidden representation) the dimensionality of x is reduced to the give number of codes. 

The codes are then mapped to 𝑥̂ through the decoder. Both non-linear mappings are deterministic. 

Because there is no labeled training data, the algorithm is an unsupervised learning. 

Each layer has its own topological structure and although coding layer (a.k.a discriminative layer or 

bottleneck) usually consists of a reduced number of units, other hidden layers may have more units 

than the input. What a deep AE performs is transforming the original input to a better representation 

over a hierarchical features or representations, each level of this hierarchy corresponding a different 

level of abstraction.  
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Figure 3-1 the structure of an AE for dimensionality reduction. The weights of decoder are obtained from unrolled weights 

of encoder. x and 𝑥̂ denote the input and reconstructed inputs respectively. ℎ𝑖 are the hidden layers and 𝑤𝑖  are the weights. 

Features (codes) C(x) are in this instance extracted from the output of the hidden layer ℎ4. 

Although stacking linear projections can end up a lower-dimensional representation, this model is not 

a deep structure and can be seen as a principal component analysis (PCA) (Baldi and Hornik 1989). 

In general, when an AE has linear activation function and the number of hidden units are less than 

the input dimension, the AE projects a subspace of the principal components of the input. However, 

it is expected the AE with non-linear activation functions learns more useful feature-detectors (Hinton 

and Salakhutdinov 2006a). Also, in most deep AE and in our case the number of first layer units is 

more than the input dimension, expecting a richer representation in the layer. 

It is true that early algorithms were successful in accomplishing a given task using AEs, the network 

took a long time to be trained. Another weak point of early approaches was that the back-propagated 

gradients of the error were very small when they arrive at the lower layers (Hinton et al. 2006a). This 

phenomenon is known as the vanishing back-propagated gradients. Following the introduction of 

deep architectures, many researchers tried to solve the mentioned problems but failed until the mid-

2000s. Hinton et al. (2006b) introduced an algorithm that was fast enough and could address the 

problem of vanishing back-propagated gradients. The approach uses an unsupervised method in 

which a new algorithm was introduced for pre-training followed by a fine-tuning training phase. AEs 

with pre-training have been successfully applied primarily to documents retrieval (Salakhutdinov and 

Hinton 2009, Genest et al. 2011). This thesis explores applying this technique to shorter texts. 

In contrast to the commonly used fine-tune phase, Huang et al. (2004) presented an algorithm called 

"extreme learning machine" (ELM) and showed that all the parameters of a single-hidden layer feed-

forward network do not need to be tuned and hidden nodes/neurons can be randomly chosen. This 

approach has been called the extreme learning machine (ELM) since training a single-hidden layer 

feed-forward network with this algorithm can be very fast. Although one may criticize that ELM is 
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not good for highly complex tasks compared with back-propagation based deep structures, ELM has 

a promising future (McDonnell and Vladusich 2015). 

Our model has two training stages: pre-training and fine-tune. Pre-training is an approach to find an 

appropriate starting point for the fine-tune phase. That is, obtained parameters in pre-training phase 

will be the initial weights of the fine-tune phase. This initialization could significantly improve the 

performance of an AE in a wide variety of applications compared with random initialization (Hinton 

et al. 2006a, Hinton et al. 2006b).  

3.1.1 Pre-training Phase 

The observations (i.e. the input of the network) as produced samples from a stochastic generative 

model can be modeled using a generative model such as Restricted Boltzmann Machine (RBM) 

(Hinton 2002, Hinton 2010). The RBM, demonstrated in figure 3-2, is the undirected graphical model 

that can be considered as a two-layer neural network with one layer of observable units and one layer 

of hidden units (i.e. feature detectors). The weighted connections are restricted between hidden units 

and visible units, symmetrically, and there are no connections between units of the same layer. 

Depending on the function of the network, in addition to the exponential family units presented by 

Welling et al. (2004), the visible and hidden units could be considered as Bernoulli, Gaussian or 

Multinomial, binomial, rectified linear. The main focus of the thesis is on Bernoulli-Bernoulli units 

and Gaussian-Bernoulli units.  

 

Figure 3-2 the structure of Restricted Boltzmann Machine (RBM) as an undirected graphical model. 

For binary states of visible units and binary feature detectors (i.e. Bernoulli-Bernoulli units) and in 

this energy-based network, the energy function (Hopfield 1982) is bilinear: 

𝐸 (𝒙, 𝒉; 𝜃) =  −∑ 𝑏𝑖𝑥𝑖 − ∑ 𝑎𝑗ℎ𝑗 − ∑ 𝑥𝑖ℎ𝑗𝑤𝑖𝑗𝑖,𝑗𝑗∈hidden𝑖∈visible   (3.1) 

Where 𝑤𝑖,𝑗 is the weights between visible units 𝑥𝑖 and hidden units ℎ𝑗 , 𝑏𝑖 and 𝑎𝑗 are their biases. In 

terms of the energy function the joint distribution 𝑝(𝒙, 𝒉; 𝜃) has following equation: 

𝑝(𝒙, 𝒉; 𝜃) =
exp (−𝐸(𝒙,𝒉;𝜃))

𝑍
       (3.2) 
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Where 𝑍 = ∑ exp (−𝐸(𝒙, 𝒉; 𝜃))𝒙,𝒉  is a normalization factor (a.k.a the partition function). The 

marginal probability of assigning to a visible vector is: 

𝑝(𝒙; 𝜃) =
∑ exp (−𝐸(𝒙,𝒉;𝜃))𝒉

𝑍
        (3.3) 

Based on above mentioned equations and because of symmetric structure of the network the 

conditional probabilities for Bernoulli-Bernoulli RBM: 

𝑝(ℎ𝑗 = 1|𝒙; 𝜃) =
exp (∑ 𝑤𝑖𝑗𝑥𝑖+𝑎𝑗𝑖 )

1+exp (∑ 𝑤𝑖𝑗𝑥𝑖+𝑎𝑗𝑖 )
= 𝑓(∑ 𝑤𝑖𝑗𝑥𝑖 + 𝑎𝑗𝑖 )    (3.4) 

𝑝(𝑥𝑖 = 1|𝒉; 𝜃) =
exp (∑ 𝑤𝑖𝑗ℎ𝑗+𝑏𝑖𝑗 )

1+exp (∑ 𝑤𝑖𝑗ℎ𝑗+𝑏𝑖𝑗 )
= 𝑓(∑ 𝑤𝑖𝑗ℎ𝑗 + 𝑏𝑖𝑗 )    (3.5) 

When visible units are real values and hidden units binary, the energy function becomes: 

𝐸 (𝒙, 𝒉; 𝜃) =  ∑
(𝑥𝑖−𝑏𝑖)

2

2𝜎𝑖
2 −∑ 𝑎𝑗ℎ𝑗 − ∑

𝑥𝑖

𝜎𝑖
ℎ𝑗𝑤𝑖𝑗𝑖,𝑗𝑗∈hidden𝑖∈visible    (3.6) 

Where 𝜎𝑖 is the standard deviation. With unit-variance for this Gaussian-Bernoulli conditional 

probabilities are: 

𝑝(ℎ𝑗 = 1|𝒙; 𝜃) =
exp (∑ 𝑤𝑖𝑗𝑥𝑖+𝑎𝑗𝑖 )

1+exp (∑ 𝑤𝑖𝑗𝑥𝑖+𝑎𝑗𝑖 )
= 𝑓(∑ 𝑤𝑖𝑗𝑥𝑖 + 𝑎𝑗𝑖 )    (3.7) 

𝑝(𝑥𝑖|𝒉; 𝜃) =  
1

√2𝜋
𝑒
(−

(𝑥−𝑏𝑖−∑ 𝑤𝑖𝑗ℎ𝑗𝑗 )
2

2
)

 = 𝑁(∑ 𝑤𝑖𝑗ℎ𝑗 + 𝑏𝑖𝑗 , 1)   (3.8) 

To estimate the parameters of the network, maximum likelihood estimation (equivalent to minimizing 

the negative log-likelihood) can be applied. Taking the derivative of the negative log-probability of 

the inputs with respect to the weights is: 

∂−log𝑝(𝒙)

𝜕𝜃𝑖,𝑗
=

𝜕

𝜕𝜃
(−log∑ 𝑃(𝒙, 𝒉)𝒉 )                           (3.9) 

         = 
𝜕

𝜕𝜃
(−log∑

𝑒(−𝐸(𝒙,𝒉))

𝑍𝒉 )       (3.10) 

         = −
𝑍

∑ 𝑒(−𝐸(𝒙,𝒉))𝒉
(∑

1

𝑍𝒉
𝜕𝑒(−𝐸(𝒙,𝒉))

𝜕𝜃
− ∑

𝑒(−𝐸(𝒙,𝒉))

𝑍2𝒉
𝜕𝑍

𝜕𝜃
)    (3.11) 

         = ∑ (
𝑒(−𝐸(𝒙,𝒉))

∑ 𝑒
(−𝐸(𝒙,𝒉̂))

𝒉̂

𝜕𝐸(𝒙,𝒉)

𝜕𝜃
)𝒉 +

1

𝑍

𝜕𝑍

𝜕𝜃
      (3.12) 

         = ∑ 𝑃(𝒉|𝒙)
𝜕𝐸(𝒙,𝒉)

𝜕𝜃
−
1

𝑍
∑ 𝑒(−𝐸(𝒙,𝒉))

𝜕𝐸(𝒙,𝒉)

𝜕𝜃𝒙,𝒉𝒉      (3.13) 

         = ∑ 𝑃(𝒉|𝒙)
𝜕𝐸(𝒙,𝒉)

𝜕𝜃
− ∑ 𝑃(𝒙, 𝒉)

𝜕𝐸(𝒙,𝒉)

𝜕𝜃𝒙,𝒉𝒉      (3.14) 

∂−log𝑝(𝒙)

𝜕𝜃𝑖,𝑗
 = 𝐸 [

𝜕𝐸(𝒙,𝒉)

𝜕𝜃
|𝒙] − 𝐸 [

𝜕𝐸(𝒙,𝒉)

𝜕𝜃
]                 (3.15) 
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∂−log𝑝(𝒙)

𝜕𝜃𝑖,𝑗
 = < 𝑥𝑖ℎ𝑗 >𝑑𝑎𝑡𝑎−< 𝑥𝑖ℎ𝑗 >𝑟𝑒𝑐𝑜𝑛                (3.16) 

The angle brackets denote the expectation of the distribution of the subscriptions. This leads to a 

learning algorithm in which the update rule for weights of a RBM is given by: 

∆𝑤𝑖𝑗 = 𝜀(< 𝑥𝑖ℎ𝑗 >𝑑𝑎𝑡𝑎−< 𝑥𝑖ℎ𝑗 >𝑟𝑒𝑐𝑜𝑛)      (3.17) 

Where 𝜀 is a learning rate, < 𝑥𝑖ℎ𝑗 >𝑑𝑎𝑡𝑎 is the so-called positive phase contribution and 

< 𝑥𝑖ℎ𝑗 >𝑟𝑒𝑐𝑜𝑛 is the so-called negative phase contribution. In particular, the positive phase is trying 

to decrease the energy of observation and negative phase increase the energy defined by the model.  

Although it is not easy to compute the expectation defined by the model, the k-step contrastive 

divergence (CD-k) approximation provides surprising results. In practice, Hinton (2002) presented 

that maximizing the likelihood or log-likelihood of the data is equivalent to minimize Kullback–

Leibler (KL) divergence between data distribution and the equilibrium distribution over the visible 

variables. Thus, to avoid the computational complexity of the log-likelihood gradient, the contrastive 

divergence (CD) method, which approximately follows the gradient of the difference of the two KL 

divergences, can be used. The approximation is based on Gibbs sampling and this sampling procedure 

can be shown as such figure 3-3. 

 

Figure 3-3 Gibbs sampler for an infinity sampling steps (figure redrawn after figure 4 of Hinton et al. (2006b)). 

There has been numerical comparison between calculating the update rule with exact log-likelihood 

gradient and CD-k (Carreira-Perpinan and Hinton 2005). To have a very good approximation and low 

computational complexity we used CD-1, with running one step Gibbs sampler that is: 

𝒙 = 𝒙0
𝑃(𝒉|𝒙0)
→    𝒉0

𝑃(𝒙|𝒉0)
→    𝒙1

𝑃(𝒉|𝒙1)
→    𝒉1       (3.18) 

To draw a conclusion, learning was done with 1-step Contrastive Divergence. 

The RBM blocks can be stacked to form the topology of the desired AE. During pre-training, the AE 

is trained in a greedy layer-wise fashion using individual RBMs, where the output of one trained 

RBM is used as input for the next layer RBM (Figure 3). 
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Figure 3-4 Stacking n generative RBM model on top of each other. 

In this thesis, first RBM is Gaussian-Bernoulli and the other RBMs are Bernoulli-Bernoulli. More 

precisely, with a corresponding topology of AE, the weights obtained from stacked RBMs are used 

as the initial weights of the AE. Erhan et al. (2009) showed that the pre-training process of the first 

layer can even be as effective as a fully pre-training of the network. Authors argued that empirical 

simulations showed this procedure. However, our pre-training phase is for the all layers. 

3.1.1 Global Adjustment 

In this phase, the weights obtained from the greedy layer-wise pre-training are used as an initialization 

point of AE with a corresponding configuration. In terms of topology, stacking RBM on top of each 

other and unrolling them (i.e. tied weights) to have a fine-tune phase is the global adjustment of the 

model. Our AE has the fine-tune phase. The phase is for the entire network (i.e. all the layers together) 

by a gradient-based optimization algorithm (e.g. Conjugate gradient (CG)). In this unsupervised fine-

tuning phase, given the encoding C(x), the whole network tries to minimize the cross-entropy error 

as the loss function using (BP) algorithm: 

−log𝑃(𝒙|𝑐(𝒙)) =  −
1

𝑁
∑ 𝑥𝑖 log 𝑥̂𝑖 −
𝑁
𝑖=1 ∑ (1 − 𝑥𝑖)log (1 − 𝑥̂𝑖)

𝑁
𝑖=1    (3.19) 

Where 𝑛 is the total number of items of training data, 𝑥 is the input of the AE, 𝑥̂ = 𝑓𝜃(𝑐(𝑥)) is the 

reconstructed values.  

Over the training phase, the algorithm optimizes weights by minimize the overall loss function, that 

is: 

𝜃∗ = argmin𝜃Ƚ(𝑓𝜃, 𝒙)        (3.20) 

           Ƚ(𝑓𝜃, 𝒙) = ∑ 𝐿(𝒙, 𝑓𝜃(𝑐(𝒙)))𝑖 + 𝛾Ω(𝜃)               (3.21) 

Where 𝑓𝜃 is the parametric function of the network, 𝐿 is the loss fuction, 𝛾 is penalty factor which has 

been a fixed value in the thesis and Ω(𝜃) = ∑ 𝑤𝑖𝑗
2

𝑖,𝑗  is penalty term. The second term is a regularization 

term (a.k.a weight decay term).  
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To back-propagate the gradient, the derivative of the cross-entropy function can be written as: 

𝜕−logP(𝒙|𝑐(𝑥))

𝜕𝜃
= −

1

𝑁
∑ (

𝑥𝑖

𝑥̂𝑖
−
(1−𝑥𝑖)

1−𝑥̂𝑖
)𝑁

𝑖=1
𝜕𝑥̂𝑖

𝜕𝜃
      (3.22) 

The equation can be simplified to become: 

𝜕−logP(𝒙|𝑐(𝑥))

𝜕𝜃
= −

1

𝑁
∑ (𝑥̂𝑖 − 𝑥𝑖)
𝑁
𝑖=1        (3.23) 

The equation shows that the rate of parameters' optimization has a direct relation to the error between 

desire output and the output.  

Briefly, the equations of back-propagation are:  

𝛿𝐿 = ∇𝑎𝐶𝑓′(z
𝐿)         (3.24) 

𝛿𝑙 = ((𝑤𝑙)𝑇𝛿𝑙+1)𝑓′(z𝑙)         (3.25) 

𝜕𝐶

𝜕𝑏𝑙
= 𝛿𝑙           (3.26) 

𝜕𝐶

𝜕𝑤𝑙
= 𝑎𝑙+1(𝛿𝑙)𝑇          (3.27) 

Where 𝐶 is cost function (here cross-entropy), 𝑎 is the output of neurons, 𝑓 is activation function 

(here sigmoid) and ∇𝑎𝐶 =
𝜕𝐶

𝜕𝑎𝑙
 , 𝑧𝑙 = 𝑤𝑙𝑎𝑙−1 + 𝑏𝑙 . 𝛿𝑙 is the so-called "error term". 𝑤 is weight matrix 

and 𝑏 is the bias matrix for each layer, 𝑙 where 𝑙 = 𝐿 − 1, 𝐿 − 2,… , 2. I used "" to denote the 

element-wise product operator. 

In general, gradient descent algorithms (e.g. back-propagation) take a sequence of steps in weight 

space. The step comprises a step size and a direction. A simple approach uses a small constant for the 

step size. However, assuming a properly selected direction, line search algorithm is a commonly used 

technique to obtain the step size. To guarantee the convergence to the minimum in a finite number of 

steps or make the process faster, the search direction in weight space can also be effective. Conjugate 

gradients in which the new step direction can be a compromise between the new gradient direction 

and the previous search direction (i.e. the search direction and the gradient direction are orthogonal) 

has been developed and has been widely used for optimization. In conjugate gradients algorithm of 

this thesis, the Polak-Ribiere rule is used to compute search directions (Fletcher and Reeves 1964, 

Shewchuk 1994). 

In practice, the network parameters can be updated using mini-batch. Indeed, when a gradient-based 

learning algorithm rely on a simple sample, the variance in the parameter update can make the 

convergence unsmooth; thus, with picking a mini-batch of the dataset, the algorithm tend to average 

more training samples thereby smoother convergence. 
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Although stochastic gradient descent method (SGD) (a.k.a online gradient descent) is a common 

methodology to fine-tune a neural network, it has a point. The main key disadvantage is difficult 

tuning. That is, parameters like learning rates have to be tuned by multiple running the algorithm and 

picking the one that provides the highest performance. Ngiam et al. (2011) evaluated different types 

of optimization algorithm included SGD and CG. It has been observed that mini-batch CG with line 

search can simplify and speed up different types of AEs compared to SGD.  

3.2 Regularization Method 

Applying a progressively complex model results in a wide range of freedom and consequently the 

model is adapted to a small change of input data. That is, when a model is more complex than 

necessary it can be more sensitive to small changes. This small change is indeed the difference 

between train set and test set. One way to address this situation is regularizing the model, that is, 

putting constraint on the model parameters to have a less degree of freedom. Figure 3-5 demonstrates 

the relation between error and complexity of a model. It shows minimizing the training error does not 

necessarily optimize the model for new information.  

 

Figure 3-5 the relation between error and complexity of a model. 

In the deep structures with millions of parameter, one important factor in training process is 

generalization. That is, after training, the error on train set becomes very smaller, but for test set (i.e. 

new data) the error is still large. This problem is called over-fitting (as presented in right side of the 

figure 3-5) and the techniques for addressing it is regularization. For example, in an AE with more 

hidden units than inputs (so-called over-complete setting), the network only learns the identify 

function and although it could precisely reconstruct the input, encoding ends up in a useless features 

and the network does not learn to generalize for the new data.  

There have been extensive investigations to introduce more effective and efficient regularization 

approaches, in particular for AEs. Training algorithms such as sparsity constraint, contractive 

mapping, dropout, denoising, L2 regularization (i.g. weight-decay) are among the most commonly 

used techniques to prevent overfitting and have a regularized AE (Vincent et al. 2008, Ngiam et al. 
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2011, Rifai et al. 2011, Srivastava et al. 2014). Although all mentioned approaches are different 

training algorithms or constraints, they are mostly known as variants of AE in the research 

community.  

Many mentioned regularization techniques rely on applying a regularization term for the cost 

function. The thesis uses a range of techniques such as early stopping and L2 regularization to address 

overfitting. Also, there is evidence that the unsupervised pre-training support better generalization 

(Erhan et al. 2010).  

One example of applied method in the thesis is early stopping. That is, stopping fine-tuning phase 

before getting into a local optimum. It is true that applying a gradient based algorithm would increase 

weights gradually, corresponding to a regularized learning process (Collobert and Bengio 2004), there 

is no guarantee to have a regularized AE using the early stopping method. Additional techniques such 

as L2 regularization (i.e. penalizing the sum of squared weights) helps guarantee to have a regularized 

AE.  

3.3 Word Representation 

A word representation can be seen as a type of math object regarding each word. The representation 

of each word could be a value or vector. For example, a binary digit can show the word existence or 

non-existence, or a continuous value can present a probability. In continuous vector space, each 

dimension usually corresponds to a lexical semantic or syntactic interpretation. Distributional 

representation (i.e. words with similar distributions can have same meaning thereby same 

representations), distributed representation (i.e. presenting a latent feature of the word in each 

dimension of a real-value vector) and bag-of-words (BOW) representation are among the most 

commonly used representations. All mentioned representations does not contain task-specific 

features. The term space of this thesis will be the BOW representation.  

In the BOW representation, a sentence or a document is presented as the bag of its words ignoring 

the exact ordering of the words and only retaining the number of occurrences of each word. A 

characteristic of the variants of BOW representation is providing a fix size vector (each dimension 

equal to a word of the vocabulary) for documents with different size. It is intuitive that sentences or 

documents with similar BOW representations can be similar in content. Although BOW losses word 

order, neural network with this representation as the input can learn a distributed semantic 

representation by which semantically related words has less distance from each other in the generated 

vector space (Turian et al. 2010).  

The most common BOW representations used in information retrieval and text summarization 

systems is term frequency - inverse document frequency (tf-idf) (Wu et al. 2008). tf-idf represents 
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each word in the document using its term frequency tf in the document, as well as over all documents 

(idf): 

tfidft,d = tft,d × idft        (3.28) 

Where idf of a term t in document d is log
𝑁

𝑑𝑓𝑡
 (N is the total number of documents in a dataset).  

In the context of text summarization, the tf-idf representations are constructed for each sentence. This 

means that the input vectors are very sparse because each sentence only contains a small number of 

words. Sparse representations such as tf-idf can cause two problems for the model. First, not observing 

(enough) data in training process. For example, for tf-idf representation with 10-fold cross-validation, 

on average 6.8% and 5.9% of words of vocabulary is not observed in train set for the SKE and BC3 

datasets respectively; therefore, the network has to address words that have never seen over the train 

process and are just appeared in the test set. Second, too much zero (e.g. for the SKE dataset, 99.5% 

of the dimensions contain zero with vocabulary size 1000) in input and output of AE. Extensive zeros 

in the output has effect on the derivative. That is, the small errors on the zeroes can dominate the 

larger error on the ones when back-propagation reaches the first layer of hidden nodes. Genest et al. 

(2011) presented a re-sampling algorithm to solve this problem for AE.  

However, to address the sparsity, we explore weighted term-frequency (we call it tf over the next 

sections of the thesis) representation using local vocabulary. Due to locally weighting, there will be 

no unobserved words for network in the train set and the percentage of none zero element of input 

can increase significantly. For example, for the SKE corpus, with vocabulary size 60, 2.3% of the 

input dimension contains non-zero for tf-idf representation and this percentage is 8.3% for the tf 

representation. Also, over experiments we added small values (noise) to the tf representation to have 

no zero in the input. The idea is that when the noise is small, the information in the noisy inputs is 

essentially the same as in the input vectors without noise, however, the noisy inputs do not contain 

zeros anymore. 

More precisely, in this tf representation, the vocabulary for each document is constructed separately 

from the most frequent words occurring in each document. The representation is also normalized to 

Euclidean distance of the vocabulary. We use the same number of words in the vocabulary for each 

document (presented in figure 3-6). This local representation is less sparse compared to the tf-idf 

because the dimensions in the input now correspond to words that all occur in the current document.  
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Figure 3-6 locally weighted tf representation. In this example, let's assume the total number of words of the document is 

50 and assume 8 words occur more than one time. Also, vocabulary size is 8 and the frequency of each word is 2, 4, 3, 5, 

11, 7, 9 and 2. Sentence one from document one has 3 words, Sentence two has 4 words, Sentence n has 2 words. 

Because the goal is to summarize each single document and only the important factor is the semantic 

similarity of the words of a given document, the AE can map the term space into a concept space. 

Also, because this tf representation relies only on each document, different databases can be 

concatenated in the input of the AE for the training process.  

To stop overfitting, denoising auto-encoders use noise in the input of AE. In a denoising auto-encoder, 

in order to prevent learning identity function, thereby capturing important information about the input 

in hidden layers, the input is corrupted and the network tries to undo the effect of this corruption. The 

intuition is that this rectification can occurs if the network can capture the dependences between the 

inputs. However, in our model, the training algorithm adds very small noise to the input but the output 

is still the same as input. While denoising auto-encoders only use noisy input in the training phase, 

we use the input representations with added noise both during training and also later when we use the 

trained model as a summarizer. In general, in the model, the lowest layer represents the tf (added with 

a noise) of a document and the coding layer provides the semantic space.  

3.4 Sentence Ranking 

Extractive text summarization is also known as sentence ranking. The system ranks the sentences 

based on the most relevant and salient characteristics of the documents; thus, this ranking process can 

be categorized into the query-oriented summarization and over the thesis we call the given 

information: a query.  

In the tf representation, the query is addressed as an individual sentence. Figure 3-7 illustrates the 

transformation of the term space into the concept space using the AE. One key element of this ranking 

process comes from the BOW representation.  
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Figure 3-7 the distance between the query and sentences of a document changes on the basis of the semantic mapping. 

In the concept space, the cosine similarity, for real values, and Hamming distance, for binary codes, 

are standard metrics to rank sentences. In a different studies Hinton and Salakhutdinov (2011) and 

Huang et al. (2013) developed deep structures to provide semantic space for document, but not for 

sentences, and used Hamming distance and cosine similarity respectively. The AE learns a low-

dimensional concept space (i.e. the most essential features of the sentences) 𝑐𝑄 = 𝐶(𝑥|𝑄), 𝑐𝑠 =

𝐶(𝑥|𝑆1, … , 𝑠𝑛) where C(x) is the mapping, 𝑄 is the query and 𝑆 is the sentences. The relevance score, 

driven from concept codes, between the query (𝑐𝑄) and the sentences (𝑐𝑄) is calculated by cosine 

similarity as following:  

𝑅(𝑄, 𝐷) = 𝑐𝑜𝑠(𝑐𝑄 , 𝑐𝑠) =
𝑐𝑄.𝑐𝑠

||𝑐𝑄|| ||𝑐𝑠||
     (3.29) 

Sentences can be ranked according to the relevance score.  

3.5 Iterative Data Fusion and Voting 

Ensemble methods use multiple models such as classifiers or experts that are combined to solve a 

particular problem. In general, ensemble models can be categorized into two structures: classifier 

selection, classifier fusion. In most variants of classifier selection, each individual classifier (also 

called "expert") is trained in a small regions of feature space whereas in classifier fusion algorithms, 

all classifiers are trained, in parallel, over the entire feature space (Hansen and Salamon 1990, 

Breiman 1996, Woods et al. 1996, Fawagreh et al. 2015). The model can be put into the fusion 

category one.  

In our case, after ranking the sentences of a document based on the cosine distance of them, they must 

be selected to be included into the summary. A straightforward selection strategy adopted in most 

extractive summarization systems is just to use the top ranked sentences. This selection strategy is 

for the AE with BOW representation (without additive noise).  

However, we explore a more complicated selection strategy that exploits the noisy input 

representations introduced in the word representation section. By adding random noise to the input, 
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the experiment can be repeated using the same input but with different noise several times, each of 

which potentially produces a slightly different ranking. Then, an ensemble approach that aggregates 

the rankings of different experiments on the same input document, each obtained with different added 

random noise, is used. Finally, the top sentences will be selected according to the final ranking to 

produce the summary. 

In particular, after running the sentence ranking procedure multiple times, each time with different 

noise in the input, we use a majority voting scheme for fusing the ranks. Since the first rankings have 

been obtained using a small additive noise (not deterministic input), in the voting algorithm, the first 

rank of each sentence is not taken into account and only the number of occurrence provides the score.  

A detailed schematic of the full model is presented in Figure 3-8. The main difference between our 

approach and the commonly used ensemble methods lies in the number of applied models. Whereas 

multiple models are used in the process of ensemble learning, this model only needs to train one 

model (i.e. an AE) and only one time. 

 

Figure 3-8 the model for noisy input representation. 

Thus, in the final sentence selection phase we have a set of items D (the total number of sentences 

produced by 𝑡 experiments) and the algorithm picks a subset 𝑆𝑛 ⊂ 𝐷 (where 𝑛 is the number of the 

sentences of the final summary). In a greedy approach 𝑠̂𝑘  is picked given: 

𝑆𝑘−1 = {𝑠̂1, … , 𝑠̂𝑘−1}        (3.30) 

Where 𝑆𝑘 = 𝑆𝑘−1  ∪  {𝑠̂𝑘} with the following formula: 

𝑠̂𝑘 = argmax𝑠𝑘∈𝐷|𝑆𝑘−1[𝑠𝑐𝑜𝑟𝑒(𝑠𝑘)]      (3.31) 

Where 𝑠𝑐𝑜𝑟𝑒(𝑠𝑘) is the number of times 𝑠𝑘 is selected by each component.  

The model is an integrated system to automatically rank the sentences semantically related to a query. 

Indeed, this technique can be considered as an iterative ranking of sentences in which the highest 

occurrence in the top ranking results in being selected to put into the summary. Although after 

training, an AE applies a deterministic non-linear transformation to compute a new feature space for 

the data, the model changes AEs from a deterministic feed-forward network to a stochastic model. 
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Chapter 4 

4. Results and Discussion 
This chapter presents the implementation and evaluation of the model. The goal of thesis is the 

extensive exploration of the model in different conditions. To do so, two different publicly available 

email datasets, coming from three different email sources, have been selected. In addition to model 

evaluation, the datasets will be explored using tf-idf as a standard and commonly used technique for 

information retrieval and summarization.  

Although summarization systems are usually evaluated on newswire text, research community of this 

application domain also used other corpora (e.g. the IMDB movie review sentiment corpus), in 

particular with deep learning techniques (Denil et al. 2014). We also demonstrate the application of 

the domain other than newswire. Unlike newswire text, emails have more variety of structures, tend 

to be less formal and do not undergo any meticulous editorial process. Also, each email may have a 

separate topic whereas in most newswire-based corpora the number of topics is more restricted.  

The first dataset, Summarization and Keyword Extraction from Emails (SKE), recently developed for 

text summarization (Loza et al. 2014). The other dataset was developed in the British Columbia 

University named BC3 (Ulrich et al. 2008).  

Due to conversational structure of email threads writers usually tend to write the gist of required 

information and shortly. This issue will be explored in this chapter using a sample email. This trend 

may cause not having redundant sentences for an email thread; thus, this leads us to address the thread 

emails as single email and ending up in single-document summarization.  

We use tf-idf as the baseline. One key part of tf-idf is the size of vocabulary. There is no general 

agreement on a vocabulary of a certain size in literature and the application of this representation is 

a decisive factor. For example, Genest et al. (2011) used less than 1.5% of the unique words of Text 

Analysis Conference (TAC) corpus, as a very large dataset, for the input of an AE. To provide 

comparable results, we chose vocabularies with different size but the same size for both datasets. 

Assuming words with frequency 1 as idiosyncratic words, the longest vocabulary in all experiments 

can be 1000 words. This size guarantees that the minimum frequency of each word is more than one 

in both datasets. Also, because tf-idf (𝑣 = 1000) provides the best results compared to tf-idf with 

other vocabulary sizes, we will follow a discussion on tf-idf (𝑣 = 1000) and the models.  
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We apply the AE model to several different input representations: tf-idf, tf constructed using local 

vocabularies, tf with added Gaussian or Uniform noise. The number of experiments are 5 for ENAE, 

that is, 5 experiments of NAE (i.e. training once and 5 times running the experiment with 5 randomly 

added noise to tf representation). We used 10-fold cross-validation for all experiments. 

The pre-processing procedure was the same for both corpora. First, in each text, derivatively related 

words that have similar meaning and come from the same family were altered to a common base 

form. There were two options for this step: lemmatization (i.e. morphological analysis of words) and 

stemming (i.e. reducing inflected words to their stem form, but not necessarily identical to the 

morphological root). Since the thesis only relies on word occurrence, we selected stemming. The 

Porter stemmer (Porter 1980) was used for this phase. In the second phase, we removed stop-words. 

Indeed, the most common English words that can influence the word representation as a noise were 

taken out.  

The variance of the additive noise is the same for both Gaussian and Uniform noise over the all 

experiments. This additive noise is not a deterministic noise that means a noise that is generated once 

and is used for all data. The additive noise is randomly generated for each individual experiment.  

In accordance with the task, the training parameters of the AE have been assigned and were constant 

over the experiments: learning rate, the number of epochs in pre-training and training were 0.1, 50, 

200/500 respectively. The average cross-entropy error for the train set was used for fine-tune phase 

where the mini-batch (contains 1000 random sample data) CG method with line search was applied. 

Batch size for pre-training was 100. In the fine-tune phase, the penalty term was 5 × 10−5. Also, the 

network's topology and the number of hidden units were fixed for all experiments. In details, we use 

a 140-40-30-10 architecture in pre-training phase and a 140-40-30-10-30-40-140 architecture as the 

AE.  

The results of the experiments is presented in the next sections of this chapter. Next section presents 

the applied evaluation metric of the thesis. The second section presents experiments on SKE where 

the generated summary is compared with both abstractive and extractive model summaries. The 

results of the BC3 corpus, where evaluations were compared with abstractive model summary, will 

be presented in the third section. In the fourth section, the generalization of the model is presented. 

The last section presents a discussion on the results, in general. 

4.1 Evaluation Metric 

The Evaluation of the produced summary is a challenging phase in a text summarization task. 

Questions such as is there any automatic metric to evaluate the correlation between generated 

summary and human generated one? If not is there any manual alternative? or even is there any need 
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to have a golden standard human summary? are still open in this application domain (Louis and 

Nenkova 2013). One option is pyramid metric as an indirect manual evaluation. This technique has 

previously used for BC3. However, due to lack of resource we applied a fully automatic metric. 

The ROUGE evaluation package has been commonly used as a fully automatic evaluation metric. 

This package was developed on the basis of n-gram similarity between the model summary (i.e. 

human generated) and the system summary (i.e. machine generated). Although accepting this metric 

across all domains has not been established, Dang et al. (2008) observed that among all ROUGE 

measures ROUGE-2 recall has the highest correlation with manual scores. In particular, ROUGE-2 

recall has been applied for a deep structure in the evaluation of email summarization (Zajic et al. 

2008, Genest et al. 2011). We provide the average ROUGE-2 recall for all experiments (see Appendix 

for tables showing Precision, Recall and f-score). Over the experiments, the confidence intervals is 

95% and a jackknifing procedure was used for multi-annotation evaluation of ROUGE scores (Lin 

2004). Also, to have more sample for training, we concatenated SKE, BC3 and the corpus developed 

by Molla et al. (2011)1.   

4.2 Evaluation on SKE 

Among email datasets the Enron corpus is one of the most popular. This publicly available corpus 

has been commonly used for a wide variety of NLP purposes. Part of the corpus was manually 

annotated for text summarization in the University of British Columbia; however, it is not publicly 

available.  

However, Loza et al. (2014) developed SKE and made it publicly available. This corpus was released 

for general-purpose summarization and keyword extraction for both extractive and abstractive 

summarization. SKE is a dataset that the majority of emails were selected from Enron email dataset. 

Other emails were provided by volunteers. The corpora consists of single emails and email threads 

where each email is manually annotated by two different annotators.  

In SKE, there are 349 emails, from which 319 were selected from the Enron dataset and 30 were 

provided by volunteers. The 319 Enron emails were from 150 mailboxes and were categorized into 

private and corporate emails (i.e. emails were exchanged within work environment and between 

employees and employees or friends or their family). Both the private and corporate emails were 

divided into two parts: single email (with at least 10 lines) and email threads (with at least 3 emails). 

This categorization was also appears to the 30 emails provided by volunteers. This classification was 

presented in table 4-1.  

                                                           
1 Molla et al. (2011) with 20939 samples has been used to provide additional data for both pre-training and training. 
The results are the same whether or not this corpus is included. 
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Count 

(from Volunteers) 

Count 

(from Enron email source) 

Type Group 

13 103 Private Single 

- 109 Corporate Single 

17 45 Private Thread 

- 62 Corporate Thread 

Table 4-1 the number of emails in each category over the dataset. 

The corpus consists of a total of more than 100,000 words, 46,603 words after stemming and stop 

word removal process, and 7478 unique words. There is 6801 sentences (19.5 sentences per email) 

that are all uniquely identified. The average number of words per email is 303 and per sentence is 

15.5. Figure 4-2 shows a randomly selected email. Quotation emails that are repetitions of text from 

earlier messages were removed by the developers. 

For each email in the manual annotation process, each of two annotators created four types of 

annotation: an abstractive summary, an extractive summary, a set of key phrases and labeling each 

email as it is either private or corporate. Annotators were restricted to generate abstractive summaries 

with less than 450 characters (Loza et al. 2014). In practice, none of generated abstractive summaries 

are less than 33 words or more than 96 words. On average, the number of words for abstractive 

summary is about 73 words per email.  

For extractive summaries, the annotators identified 5 different sentences (or lines) by selecting a 

subset of original sentences as the most important sentences of each email. This identification was 

indeed a sentence ranking. This reverse ranking was illustrated in figure 4-2. The process of 

identification was repeated for extracting 5 phrases. The developers ask annotators to extract at most 

4 words for each key phrases and in practice they extracted 2.1 words per phrase, on average.  

The dataset contains 7478 unique words that can provide a vocabulary for BOW representation. This 

was to be expected that the frequency of words decreases very rapidly with increasing the vocabulary 

size (figure 4-1). The frequency is more than 88, 54, 26, 9 and 1 for vocabulary size 60, 150, 374, 

1000 and 3600 respectively.  

 

Figure 4-1 the frequency of the whole words. 
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Figure 4-2 A randomly selected sample email thread from corporate section (ECT020.xml). The subject of this email is 

"Nissho NDA" and it consists of 4 emails and 13 sentences. 

SKE developers provide some information regarding agreement of annotators, for both summary and 

key phrase extraction:  

Considering one annotator as the ground truth, and another as the “system”, the 

agreement on the keyword extraction task was 25.33% precision, 25.33% recall, 25.33% 

F-score, and 14.50% Jaccard similarity. For sentence extraction task the values were 

51.33% precision, 51.33% recall, 51.33% F-score. Precision, recall, and F-score values 

are the same because both annotators annotated the same number of key phrases and 

sentences per document. The validation of the private/corporate classification during the 

annotation stage shows a 95% concordance for both annotators, and an inter-annotator 

agreement of 88%. (Loza et al. 2014) 
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Figure 4-3 the abstractive summaries, 5 selected sentences and key-phrases of the sample email presented in figure 4-1. 

4.2.1 Experiment Setup 

To analyze the structure, we perform three different threads of experiments on SKE. First, we generate 

summaries based on the subject of each email. Although, in the real world, the subject of emails 

commonly contains informative words, one problem in this approach was empty subjects of SKE. To 

solve the problem we excluded emails with empty subjects. After this removal, there was 289 emails 

out of 349 emails. On average, each email of this data set has 3.1 words per subject.  

In the second experiment, we generate summaries using the annotated key phrases as queries (key-

phrase-oriented summarization). In the third subsection, this key-phrase-oriented summaries will be 

compared with abstractive summaries generated by annotators. It is true that our summarization is 

extractive, in the third experiment the extracted summaries will be analogue with human generate 

abstractive summary as a golden standard. As all emails in the corpus have been annotated with 

keyword phrases, this experiment was performed on the whole dataset (i.e. 349 emails).  

Since 5 sentences were selected by annotators and this number is fixed for all emails, the system 

summaries also contain 5 sentences in all experiments of this section. When it comes to 

implementation, we merge all different emails, both private and corporate.  

4.2.2 Results 

To produce comparable results, we chose the same settings for the three experiments that includes 

the size of vocabulary, the number of experiments and hidden units/layers of the network. Also, all 

additive noise had the same variance and were generated randomly for each experiment.  
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4.2.2.1. Subject-oriented Summarization 

As a convention, a writer of an email tries to choose the most important words and concepts for the 

subject of the email. In this experiment, the subject is used as a query to extract a summary related to 

the subject. In this way, the AE will change the input representation (i.e. word space) into a low-

dimensional feature space (i.e. concept space). More precisely, AE has been used to map the 

representation from BOW into a concept space (i.e. codes generated in the bottleneck layer).  

In this experiment, SKE (289 emails) contains 6423 unique words and we constructed tf-idf vectors 

based on the 1000, 320 (5% of the whole vocabulary), 128 (2% of the whole vocabulary), and 60 

most frequently occurring words. This corresponds to words with a minimum frequency of at least 7, 

24, 48 and 76 for vocabulary size 1000, 320, 128 and 60 respectively. For tf representation the size 

of vocabulary is 60 and to have a comparable result we present 𝑣 = 60 for tf-idf as well. 

Figure 4-4 illustrates the ROUGE-2 recall of the tf-idf baselines and the AE model with various input 

representations. This is hardly surprising that increasing the number of sentences (i.e. summaries with 

1, 2, 3, 4, 5 sentences) results in a slight improvement of the recall for tf-idf. This increment is to 

some extend constant for tf-idf with different size of vocabulary. This trend is somewhat the same 

when tf-idf representation has been used as the input of AE. However, tf-idf with longer vocabulary 

size provides less effective representation for AE. This may come from the sparsity. That is, most of 

the tf-idf matrix contains zero and increasing the size of vocabulary increases the ratio of zero element 

to non-zero.  

The main thing to note is that AE (tf) (i.e. tf as the input of AE) is always much better than tf. The 

difference between ROUGE scores even becomes larger when the number of sentences of summaries 

is increased. It shows that AE can enhance the representation and provide more discriminative 

features.  

Increasing the number of sentences significantly improves the ROUGE score of AE with all variants 

of representation; however, the scale of this improvement is not the same for all. In general, the 

ROUGE score of AE (tf), Noisy Auto-Encoder (NAE) and Ensemble Noisy Auto-Encoder (ENAE), 

that are perturbed with either Gaussian or Uniform noise, is itself noisy (i.e. having no deterministic 

order) for summaries with only one sentence. This trend is not the same when the number of extracted 

sentences increases. The ROUGE score of AE with all variants of input representation is closer to 

each other for summaries with 5 sentences.  



 

35 
 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

0

0.05

0.1

0.15

0.2

ROUGE-2 Recall

0

0.05

0.1

0.15

0.2

0.25

ROUGE-2 Recall

0

0.07

0.14

0.21

0.28

0.35

ROUGE-2 Recall

0
0.07
0.14
0.21
0.28
0.35
0.42

ROUGE-2 Recall



 

36 
 

 

(e) 

Figure 4-4 ROUGE-2 recall score for tf-idf, tf and AE with different input representations. (a), (b), (c), (d) and (e) are 

ROUGE scores when the summaries contains 1, 2, 3, 4 and 5 sentences respectively. 
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Table 4-2 ROUGE-2 recall of tf-idf, tf and models versus the number of selected sentences. 𝑛 is the number of sentences 

for a summary. 

Table 4.2 more clearly presents the ROUGE scores. It shows more relevant sentences can be extracted 

using ENAE (Gaussian) and AE (tf) compared to NAE (with either Gaussian or Uniform noise) and 

ENAE with voted from Uniform noise runs. For summaries with one sentences the best approach is 

tf-idf; however, for summaries with more sentences AE preforms much better. This may show that 

for subject-based summaries mapping term space to concept space is not quite accurate for every 

single vector, but the mapping is much useful on average (i.e. the summaries with more sentences). 

The highest performance of tf-idf, where summaries contains 5 sentence, is still less than half of 

ENAE (Gaussian). 
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To have a more exact evaluation, we analyze the sample email presented in figure 4-1. As presented 

in figure 4-5, from 5 extracted sentences, 3 and 4 sentences were also extracted by annotator 1 and 2 

respectively. It is true that sentence number 5 has not been ranked among the first 5 sentences by the 

system, but this sentence has been ranked at the last priority by both annotators. In general, only 

sentence number 8 is not ranked by annotators. In this example, sentences number 3, 8, 4, 6 and 11 

are ranked first to fifth by the system. The ranking is sentences number 3, 4, 10, 11 and 5 by first 

annotator and 3, 4, 11, 6 and 5 by second annotator. 

Subject of email: Nissho NDA 
 

System summary (ENAE): 
03 - Diamond-san, As I wrote in the past, Nissho Iwai's LNG related department has been transferred into a new joint venture company 

between Nissho and Sumitomo Corp. as of October 1, 2001, namely, "LNG Japan Corp.". 
08 - We are internally discussing when we start our official meeting. 

04 - In this connection, we would like to conclude another NDA with LNG Japan Corp, as per attached. 

06 - Also, please advise us how we should treat Nissho's NDA in these circumstances. 

11 - They need to change the counterparty name due to a joint venture. 

 

First Annotator 
------------------------ 

Extractive summary: 

03 - Diamond-san, As I wrote in the past, Nissho Iwai's LNG related department has been transferred into a new joint venture company 

between Nissho and Sumitomo Corp. as of October 1, 2001, namely, "LNG Japan Corp.". 

04 - In this connection, we would like to conclude another NDA with LNG Japan Corp, as per attached. 

10 - Please approve or make changes to their new NDA. 

11 - They need to change the counterparty name due to a joint venture. 

05 - Please review it and it would be great if you could make original again and send us for Mr.Miyazawa's signature. 

 

Second Annotator  

---------------------------- 

Extractive summary: 

03 - Diamond-san, As I wrote in the past, Nissho Iwai's LNG related department has been transferred into a new joint venture company 

between Nissho and Sumitomo Corp. as of October 1, 2001, namely, "LNG Japan Corp.". 

04 - In this connection, we would like to conclude another NDA with LNG Japan Corp, as per attached. 

11 - They need to change the counterparty name due to a joint venture. 

06 - Also, please advise us how we should treat Nissho's NDA in these circumstances. 

05 - Please review it and it would be great if you could make original again and send us for Mr.Miyazawa's signature. 

Figure 4-5 the extracted summary using ENAE (Gaussian) and the extractive summaries of both annotators from the 

sample email thread presented in figure 4-1. 

4.2.2.2. Key-phrase-oriented Summarization 

Text Summarization based on key phrase extraction has been extensively studied (Qazvinian et al. 

2010, Zhao et al. 2011, Bhaskar 2013). Key phrase extraction itself requires complicated technique 

and this thesis does not cover it; however, SKE provides the key phrase of each email and we explore 

this application domain using the AE.  

In this experiment, the five manually extracted key phrases are a query. We constructed tf-idf vectors 

based on the 1000, 374 (5% of the whole vocabulary), 150 (2% of the whole vocabulary) and 60 most 

frequently occurring words. This corresponds to words with a minimum frequency of at least 9, 26, 

54 and 88 for vocabulary size 1000, 374, 150 and 60 respectively. For tf representation the size of 

vocabulary is 60 and to have a comparable result we present 𝑣 = 60 for tf-idf as well. 
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Figure 4-6 shows the ROUGE-2 recall of the tf-idf baselines and the AE model with various input 

representations. It was expected that using carefully extracted key phrases can help improve the 

performance of the summarization. Although this improvement can be seen for all techniques, the 

rate of this improvement is not the same for each technique.  
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(d) 

 

(e) 

Figure 4-6 ROUGE-2 recall score for tf-idf, tf and AE with different input representations. (a), (b), (c), (d) and (e) are 

ROUGE scores when the summaries contains 1, 2, 3, 4 and 5 sentences respectively.  

With only one sentence in summaries, tf-idf improves the results compared to its counterpart in 

subject-oriented summarization, but not significantly. Using tf-idf, increasing the number of sentences 

enhances the summarization quality and the ROUGE score for summaries with 5 sentences is more 

than 2 times of its counterpart in subject-oriented summarization.  

Key phrases contribute the AE (tf-idf) to improve the result but the trend is opposite to the subject-

oriented summarization. More clearly, AE (tf-idf) with vocabulary size 150 preforms better than 60 

words. The reason may lie in the importance of the query. In contrast with subject of email, key 

phrases provide more important information and it can make more influence than sparsity increment.  

The performance of AE (tf) is better than tf. A key difference between subject-oriented and key-

phrase-oriented summarization for SKE corpus is when the length of extracted summaries is one 

sentence. In 𝑛 = 1, the ROUGE score of the AE with various input representations is higher than tf-

idf and AE (tf-idf ). The reason may come from the centrality of the query. Calculating the distance 

of a query and a sentence (i.e. considering the query in the center of the given document) requires 

more accurate place of the query in the concept space. Also, even if we assume that the subject of an 

email is as important as key phrases, the average length of each subject is about 3.1 words per email 
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while this length is 10.5 (2.1 words per phrase) for a key-phrase-based query. The differences help 

queries to be placed in a more appropriate position in the term space and thereby concept space.  

In summaries with more sentences, AE (tf) mostly keeps its superior and for five sentence summaries 

AE with various tf representations are better than tf-idf and tf. Table 4.3 shows that AE (tf) and ENAE 

(uniform) provide better results in comparison with other techniques.  

tf-idf with the vocabulary size 150 and 60 words cannot provide good performance. However, 

transferring tf-idf representation into the concept space using AE significantly enhances the quality 

of extracted summaries. For example, the highest ROUGE score of tf-idf with 𝑣 = 150 and 𝑣 = 60 

is 0.3166 and 0.2224 respectively; whereas this score is 0.4795 and 0.4220 for AE (tf-idf) with the 

vocabulary size 150 and 60 respectively. 
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Table 4-3 ROUGE-2 recall of tf-idf, tf and models versus the number of selected sentences. 𝑛 is the number of sentences 

for a summary. 

Figure 4-7 explores the case study presented in 4.1. The intersection between the system summary 

and the model summary (2 annotators) is the sentence number 10, 3, 4 and 6. The key change from 

the subject-oriented summarization is the order of the ranking and the inclusion of the sentence 

number 12. Indeed, if we calculate precision and recall score of this sample email, the extraction 

performance is the same as the subject-oriented summarization, but the indexes cannot present the 

accuracy of ranking order for truly extracted sentences. In the sample subject-oriented summary, 

mistaken extracted sentence had high rank whereas with key phrases sentence number 12 was ranked 

lower. We will see in the next experiment that sentence number 12 is not a fault extraction.  
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System summary (ENAE): 
10 - Please approve or make changes to their new NDA. 

03 - Diamond-san, As I wrote in the past, Nissho Iwai's LNG related department has been transferred into a new joint venture company 

between Nissho and Sumitomo Corp. as of October 1, 2001, namely, "LNG Japan Corp.". 

04 - In this connection, we would like to conclude another NDA with LNG Japan Corp, as per attached. 

12 - I wanted to let you know this was coming in as soon as Mark approves the changes. 

06 - Also, please advise us how we should treat Nissho's NDA in these circumstances. 

 

First Annotator 
------------------------ 

Extractive summary: 

03 - Diamond-san, As I wrote in the past, Nissho Iwai's LNG related department has been transferred into a new joint venture company 

between Nissho and Sumitomo Corp. as of October 1, 2001, namely, "LNG Japan Corp.". 

04 - In this connection, we would like to conclude another NDA with LNG Japan Corp, as per attached. 

10 - Please approve or make changes to their new NDA. 

11 - They need to change the counterparty name due to a joint venture. 

05 - Please review it and it would be great if you could make original again and send us for Mr.Miyazawa's signature. 

 

Key phrases: 

1 - Joint venture 

2 - LNG Japan Corp. 

3 - NDA 

4 - Change the counterparty 

5 - Make original 

 

Second Annotator 
---------------------------- 

Extractive summary: 

03 - Diamond-san, As I wrote in the past, Nissho Iwai's LNG related department has been transferred into a new joint venture company 

between Nissho and Sumitomo Corp. as of October 1, 2001, namely, "LNG Japan Corp.". 

04 - In this connection, we would like to conclude another NDA with LNG Japan Corp, as per attached. 

11 - They need to change the counterparty name due to a joint venture. 

06 - Also, please advise us how we should treat Nissho's NDA in these circumstances. 

05 - Please review it and it would be great if you could make original again and send us for Mr.Miyazawa's signature. 

 

Key phrases: 

1 - LNG Japan Corporation 

2 - Joint venture company 

3 - Change the counterparty name 

4 - Nissho and Sumitomo Corp. 

5 - Manager of Enron Global Finance 

Figure 4-7 The extracted summary based on key phrases using ENAE (Gaussian), the extractive summaries and key 

phrases of both annotators from the sample email thread presented in figure 4-1.  

4.2.2.3. Key-phrase-oriented Summarization Versus Abstractive 

Summary 

In addition to extracted sentences by annotators, SKE has abstractive summaries. In this section, the 

system summary is extracted sentences whereas the model summary is abstractive summaries 

(generated by human). The abstractive summaries can be seen as the golden standard for a system 

and it can be fruitful to analyze the results of techniques with this golden standard. The average 

number of words per email is about 73 for abstractive summaries.  

Table 4.4 present the ROUGE-2 recall of the extracted sentences compared with abstractive 

summaries. It was expected that the score (i.e. recall) decrease to small values because the extracted 

sentences are being compared with the abstractive summaries generated by human. However, the 

trend is the same when the extracted sentences are compared with extractive summaries. This 

experiment shows that AE (tf) can perform better than tf-idf and tf.  
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Precision Recall  

0.1552 0.2120 tf-idf V = 1000 

0.1310 0.1848 tf-idf V = 5% 

0.0966 0.1424 tf-idf V = 2% 

0.0629 0.0942 tf-idf V = 60 

0.1694 0.2115 AE (tf-idf, V = 2%) 

0.1632 0.1875 AE (tf-idf, V = 60) 

0.1618 0.2137 tf V = 60 

0.1679 0.2319 AE (tf) 

0.1647 0.2110 NAE (Gaussian) 

0.1676 0.2255 ENAE (Gaussian) 

0.1600 0.2210 NAE (Uniform) 

0.1675 0.2299 ENAE (Uniform) 

Table 4-4 ROUGE-2 recall of tf-idf, tf and models. 

To show whether the incorrect extracted sentences are related to a golden standard or not, the 

abstractive summaries can be an appropriate benchmark. Figure 4-8 presents the abstractive 

summaries by annotators and the result of ENAE (Gaussian). Taking the sentence number 12 into 

consideration, we can find out that although this sentences was not chosen for extractive summaries 

by annotators, it contains informative information that both annotators has been informed in their 

abstractive summaries. 

System summary (ENAE): 
10 - Please approve or make changes to their new NDA. 

03 - Diamond-san, As I wrote in the past, Nissho Iwai's LNG related department has been transferred into a new joint venture company 

between Nissho and Sumitomo Corp. as of October 1, 2001, namely, "LNG Japan Corp.". 

04 - In this connection, we would like to conclude another NDA with LNG Japan Corp, as per attached. 

12 - I wanted to let you know this was coming in as soon as Mark approves the changes. 

06 - Also, please advise us how we should treat Nissho's NDA in these circumstances. 

 

First Annotator 
------------------------ 

Abstractive summary: 

- LNG Japan Corp. is a new joint venture between Nissho and Sumitomo Corp. Given this situation a new NDA is needed and sent for 

signature to Daniel Diamond. Daniel forward the NDA to Mark for revision. 

 

Key phrases 

1 - Joint venture 

2 - LNG Japan Corp. 

3 - NDA 

4 - Change the counterparty 

5 - Make original 

 

Second Annotator 

----------------------- 
Abstractive summary: 

- An Enron employee is informed by an employee of Nissho Iwai that the Nissho Iwai's LNG related department has been transferred 

into a new joint venture company, namely, 'LNG Japan Corp.'. As a result, there is a need to change the counterparty name in the new 

NDA. The new change has to be approved and then applied to the new NDA with LNG Japan Corporation. 

 

Key phrases 

1 - LNG Japan Corporation 

2 - Joint venture company 

3 - Change the counterparty name 

4 - Nissho and Sumitomo Corp. 

5 - Manager of Enron Global Finance 

Figure 4-8 The extracted summary based on key phrases using ENAE (Gaussian), the abstractive summaries and extracted 

key phrases by annotators from the sample email thread presented in figure 4-1. 
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4.3 Evaluation on BC3 

It can be more helpful when the model provides summaries from other annotated corpus. To do so, 

we chose BC3 dataset collected from World Wide Web Consortium1 email corpus. W3C contains of 

more than 50,000 email threads taken from mailing lists. Emails from mailing lists mostly are not as 

informal and personal as a mailbox.  

BC3 is a publicly available dataset specifically developed for summarization. The dataset contains of 

40 email threads (3222 sentences) each of which on average has less than 11 emails and less than 6 

participants. In the annotation process, 10 annotators were involved and each email thread was 

annotated by 3 different annotators. The dataset has been annotated for both extractive and abstractive 

summarization (with a 250 word limit) and labeled with speech act, meta sentences and subjectivity 

(Ulrich et al. 2008). We only use the abstractive summaries. 

The raw BC3 contains of 3222 sentences (lines in xml format), but in practice, the dataset needs to 

be cleaned and organized. We removed repetitions of text from early massages for each thread. Also, 

we eliminated signatures, sign offs and senders' name. This left 736 sentences (18.4 sentence per 

email thread) and more than 15,000 words. We further preprocessed the data by stemming and 

removing common stop words. After this step, there were 7101 words. The number of unique words 

was 2306. The average number of words per email thread and per sentence was 380 and 21 

respectively.  

Figure 4-9 shows a typical email thread for BC3. The subject of this email thread is "Next face to 

face meeting" and the email thread includes 6 emails. This email has been cleaned and organized. 

One example of this organization can be seen in the first email, sentence 1 (with sentence number 1-

1) where "Dear all" counts as a sentence and "Hoping that we will …" counts as a separate sentence, 

in the original BC3 corpus. Although "Dear all" is not informative, we would not lose it. We 

reorganized it to one sentence "Dear all, Hoping that we will …". This reorganization is because we 

want to have similar settings as SKE.  

In the BC3 corpus, there was no limitation for annotators to identify important sentences. In practice, 

for extractive summarization, annotators extracted at least 4, at most 34 and on average 14 sentences 

per email thread. However, for abstractive summarization, annotators were restricted to generate less 

than 250 words for each email thread and on average the generated summaries has 122 words per 

email thread.  

 

                                                           
1 http://research.microsoft.com/en-us/um/people/nickcr/w3c-summary.html 
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Subject of email: Next face to face meeting 

 

Email Thread 

------------------ 
1-1 Dear all, Hoping that we will have a last call review shortly (see my next email) we are planning a face to face meeting at which 

we can resolve issues raised, and generally tidy the document up (write up lots more good techniques).  

1-2 At the moment we are talking to a potential host in the Boston area about a meeting on thursday and friday 7-8 October.  

1-3 More details as they come to hand.  

2-1 Folks, Please note that this meeting would be on at the same time as the ATIA meeting in Orlando, Florida.  

2-2 If the time is impossible for anyone please let us know as soon as possible at the moment the next closest possible times are a week 

earlier (which will cut into the time available for last call review) or ten days later (which will possibly push our schedule back further).  

3-1 Hello, I have other meetings tentatively scheduled for 6 and 7 October in Boston.  

3-2 I would probably be able to attend starting the 7th.  

4-1 I believe that I will be in Rome on the 6th and 7th.  

5-1 Dear working group participants, As discussed, the meeting will indeed be held on thursday 7 and friday 8 October.  

5-2 I am pleased to announce that Allaire Corp will be our hosts, and look forward to a productive two days, and some time to say hi. 

The nitty-gritty.  

5-3 Meeting registration is open from now until 1 October.  

5-4 register via the meeting page at http://www.w3.org/WAI/AU/f2f-oct99 which also provides details on location, accommodation, 

etc.  

5-5 There are a limited number of rooms available in the Royal Sonesta Hotel (which is the meeting venue) at a discounted rate in 

order to qualify for this rate reservations and meeting registration must be completed by September 10.  

5-6 Since October is the peak season for Boston hotels, rooms are expensive and hotels book out early, so you are advised to make 

your plans and reservations as soon as possible.  

5-7 If you have any questions or special requirements please contact me as early as possible.  

6-1 Most important if you haven't registered yet, don't forget.  

6-2 http://www.w3.org/WAI/AU/f2f-oct99 for the details.  

6-3 Given that there are a small number of us, I thought I would ask what people want to eat for lunch.  

6-4 The default choices are roast turkey breast with vegetables (without turkey if you are a vegan), and pasta with vegetable rataouille.  

6-5 Possible substitutions: baked Scrod (fish) chicken caesar salad hommus roll-up sandwich with salad salad with crab cakes churrasco 

flank steak with chimichurri and onions.  

6-6 I will do this in the following way: If you cannot eat one of these things please make that very clear.  

6-7 It will take at least two votes to change something, and will have to be compatible with what people can't do.  

6-8 The deadline is 3pm (boston time) Monday.  

6-9 No response will not be considered a vote for the default it will be considered a vote for "whatever gets chosen" Sorry to bore you 

with administrivia, but I figure that having food that people like helps the meeting go well. 

Figure 4-9 a sample email thread from BC3 (list number: 058-13714734). 

It was expected that the frequency of words decreases very rapidly with increasing the vocabulary 

size (figure 4-10). This frequency is more than 16, 10 and 1 for vocabulary size 60, 120 and 1000 

respectively. 

 

Figure 4-10 the frequency of each word in a descendent order.  
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4.3.1 Experiment Setup 

All 40 email threads of BC3 have an informative subject and we perform a subject-oriented 

summarization. The number of words for subject are 5.2 (per email thread), on average.  

For extractive summaries, there was not limitation for the number of selected sentences by annotators 

and they picked many sentences and the number of sentences were not uniform. Nevertheless, we 

need fix length summaries to be able to compare with other techniques and draw a conclusion. Also, 

the number of extracted sentences for the whole dataset is 563 (on average for the three annotators) 

and it is not acceptable to extract more than half of sentences of a dataset as the summary of the 

dataset.  

Because the minimum length of the extractive summaries by annotators was 4 sentences, we interpret 

this length as an agreement of all three annotators that all email threads need at least 4 sentences in 

their summaries. As a rule of thumb, on average, a summary with 4 sentences will be about 22% of 

an email thread. Our solution was extracting 4 sentences for each summary and comparing with the 

abstractive summary as a golden standard generated by human annotator. 

BC3 has 2306 unique words and we constructed tf-idf vectors based on the 1000, 120 (about 5% of 

the whole vocabulary) and 60 (about 2% of the whole vocabulary) of the most frequently occurring 

words. This corresponds to words with a minimum frequency of at least 1, 10 and 16 for vocabulary 

size 1000, 120 and 60 respectively. For tf representation the size of vocabulary is 60.  

4.3.2 Results 

Figure 4-11 shows how much extracted summaries are close to human generated one. The figure 

provides the ROUGE-2 recall for summaries with length 1, 2, 3, 4 sentences. Although 4 sentence 

summaries are the output of the experiment, analyzing summaries with different length may help us 

to better exploration of the techniques. As can be seen, tf-idf, AE (tf) and NAE (Gaussian) have fairly 

good scores compared with other techniques for summaries with only 1 sentence. A key issue is the 

low score of AE (tf-idf), in particular for summaries with less sentences.  

This is hardly surprising that the ROUGE score is fairly low for all techniques due comparison of 

extractive summaries with abstractive ones. Also, the results of AE (tf-idf) with smaller vocabulary 

(𝑣 = 2%) is better than larger one (𝑣 = 5%). This phenomenon is the same for subject-oriented 

summarization on SKE. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4-11 ROUGE-2 recall score for tf-idf, tf and AE with different input representations. (a), (b), (c) and (d) are 

ROUGE scores when the summaries contains 1, 2, 3 and 4 sentences respectively. 
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Table 4.5 presents exact value of the ROUGE score of tf-idf baselines, tf and AEs. In summaries with 

4 sentences, AE with different representations provides better results compared with tf-idf and tf.  

Although annotators provide abstractive summaries, the model can extract important information. 

This issue can be concluded from figure 4-12 where only 4 sentences were extracted by the model 

out of 24 sentences of the email thread. The information such as who is the host, duration (5-2), place 

and time of meeting (1-2), some people may not attend (6-3), lunch planning (6-3) and another 

meeting at the same time somewhere else (2-1) are included. 

System summary (ENAE): 
5-2 I am pleased to announce that Allaire Corp will be our hosts, and look forward to a productive two days, and some time to say hi. 

The nitty-gritty. 

1-2 At the moment we are talking to a potential host in the Boston area about a meeting on thursday and friday 7-8 October.  

6-3 Given that there are a small number of us, I thought I would ask what people want to eat for lunch.  

2-1 Folks, Please note that this meeting would be on at the same time as the ATIA meeting in Orlando, Florida. 

 

First annotator: 
1-1,2 Charles sends an email letting the group know that a face-to-face meeting is necessary and provides a time in October in Boston 

as a possibility. 

3-2 Ian indicates that he can likely attend. 

4-1 Kynn replies and states that he will likely be out of the country at the proposed time. 

5-4,5,6 Charles then sends some administrative information, including the registration site and tips on booking accommodation in 

Boston. 

6-3,4 Charles also asks the participants for their lunch request. 

 

Second annotator: 
1-1 Charles informs the WAI Guidelines committee that there is a meeting planned to resolve issues and revamp the document. 

1-2 He mentions a possible meeting in Boston during Oct 7 and 8. 

2-1 Charles then adds that the meeting is planned for the same time as the ATIA meeting in Orlando. 

2-2 He asks people to let him know if they cannot make the Boston meeting so it can be rescheduled. 

3-1 Ian replies that he has other meetings scheduled in Boston at that time. 

3-2 He can however probably start attending on Oct 7. 

4-1 Kynn says he will be in Rome during that time and thus cannot attend. 

5-1 Charles says that the meeting is confirmed for Boston Oct 7 and 8. 

5-3,4 Registration is now open at the provided link. 

5-5 Hotel rooms are available to be booked. 

5-7 He asks people to contact him if they have questions. 

6-4,5 Charles mentions a list of possible food choices. 

6-3,6,7 He asks people to email him with their choices and if they wish to have certain foods avoided. 

 

Third annotator: 
1-1 This thread is compiled from a list of communications from people who would like to have meeting to tidy up their issues. 

1-2 The proposal is for the meeting to be in the Boston area on Thursday and Friday of October 7 and 8. 

2-1 The meeting is at the same time as the ATIA meeting in Orlando, Florida. 

2-2 The schedule may be changed to fit other people's schedules. 

3-2 Ian replies saying that he may be able to attend 

5-2 Allaire Corp will be the hosts for the meeting. 

5-3 meeting registration is open until the first of October through the website, http://www.w3.org/WAI/AU/f2f-oct99 

6-3,9 Charles is trying to organize the menu for the meeting. 

Figure 4-12 the extracted summary based on subject of the email using ENAE (Gaussian) and three different abstractive 

summaries by annotators from the sample email thread presented in figure 4-9. The order of sentences is not according to 

their rankings, but they only show the generated sentences are related to which sentence in the email thread. However, 

the order of system's result shows the ranking. 
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n = 4 n = 3 n = 2 n = 1  

0.1002 

0.1304 

0.0856 

0.1582 

0.0636 

0.1697 

0.0380 

0.2269 

tf-idf V = 1000           (Recall) 

                                   (Precision) 

0.0711 

0.0838 

0.0612 

0.1032 

0.0517 

0.1269 

0.0359 

0.1950 

tf-idf V = 5%              (Recall) 

                                   (Precision) 

0.0583 

0.0749 

0.0528 

0.0942 

0.0420 

0.1191 

0.0294 

0.1716 

tf-idf V = 2%              (Recall) 

                                   (Precision) 

0.0594 

0.1134 

0.0429 

0.1157 

0.0300 

0.1357 

0.0145 

0.1255 

AE (tf-idf, V = 5%)    (Recall) 

                                   (Precision) 

0.0697 

0.1277 

0.0522 

0.1278 

0.0315 

0.1284 

0.0166 

0.1268 

AE (tf-idf, V = 2%)    (Recall) 

                                   (Precision) 

0.0967 

0.1171 

0.0758 

0.1235 

0.0566 

0.1321 

0.0317 

0.1740 

tf V = 60                     (Recall) 

                                   (Precision) 

0.1084 

0.1194 

0.0853 

0.1239 

0.0659 

0.1321 

0.0362 

0.1604 

AE (tf)                        (Recall) 

                                   (Precision) 

0.1001 

0.1328 

0.0825 

0.1442 

0.0650 

0.1627 

0.0406 

0.1958 

NAE (Gaussian)        (Recall) 

                                   (Precision) 

0.1017 

0.1288 

0.0839 

0.1335 

0.0606 

0.1498 

0.0264 

0.1491 

ENAE (Gaussian)      (Recall) 

                                   (Precision) 

0.1010 

0.1230 

0.0832 

0.1319 

0.0566 

0.1375 

0.0354 

0.1857 

NAE (Uniform)         (Recall) 

                                   (Precision) 

0.1028 

0.1289 

0.0827 

0.1304 

0.0581 

0.1412 

0.0334 

0.1511 

ENAE (Uniform)       (Recall) 

                                   (Precision) 

Table 4-5 ROUGE-2 recall of tf-idf, tf and models versus the number of selected sentences. 𝑛 is the number of sentences 

for a summary. 

4.4 Generalization 

To have a generalized model and avoid over-fitting, it is important to analyze the test set error over 

the training process. Figure 4-13 shows how AE with tf representation as the input can learn the train 

set and test set. As 10-fold cross-validation approach has been used, the average of these validation 

errors is presented in figure 4-13 both for train and test set.  

As can be seen, the training process of AE with both types of input can optimize the average error. 

This optimization stopped after 500 iterations for AE and 200 iteration for NAE (Uniform). After 

training the error of test set is close to train set. With a rule of thumb, there was about 31,430 

parameters for training. 

 

(a) 
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(b) 

Figure 4-13 the average squared reconstruction error of the train and test set versus the number of epochs (iterations) for 

AE (a) and NAE (Uniform) (b) for the SKE corpus. 

4.5 Data Comparison 

The general trend for both datasets is the same. However, because BC3 contains only 40 emails while 

SKE contains 349 emails and has more variants of structures, it seems more valuable that we analyze 

SKE. 

Although we hoped that the reduced sparsity stemming from the added noise will improve the results 

even more, the experiments show that this is not the case – AE (tf) (that is without noise) performs 

mostly better than the noisy AE. However, when combining the rankings of the noisy ensemble, the 

results are consistent small improvement than a single noisy AE and may even improve over the AE 

(tf). Figure 4-14 shows this improvement. 

 

Figure 4-14 ROUGE-2 recall using the keyword phrases as queries. The left panel shows the results based on Gaussian 

noise. The right panel presents the results based on Uniform noise. The values come from tables 4-3.  

Figure 4-15 illustrates the ROUGE-2 recall of the best baseline, tf and the AE models with both tf-idf 

and tf input representations using keyword phrases as queries and varying the length of the generated 

summaries versus the extractive summaries of annotators in SKE. While the AE model’s results 

improve almost linearly over the 5 sentences, tf-idf gains less from increasing the summary length, 
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particularly from 4 to 5 sentences. The scores are almost the same for tf, tf-idf and the AE (tf) with 1 

and 2 sentences. Starting from 3 sentences, the AE performs clearly better compared to tf-idf. As can 

be seen, AE enhance the tf representation, specifically when summaries contain more sentences.  

 

Figure 4-15 ROUGE-2 recall for summaries containing different number of sentences using the keyword phrases as 

queries. The values come from tables 4-3. 

From all experiments of this thesis, the main thing to note is that the AE performs in most cases much 

better than tf-idf baseline, especially when using subjects as queries. The only scenario where tf-idf 

can compete with the AE is with the vocabulary of size 1000 and when using keyword phrases as 

queries. This is because the manually annotated keyword phrases do in many cases contain the same 

words as the extracted summary sentences, especially because the queries and summaries where 

annotated by the same annotators. However, when the vocabulary size is the same as used in the AE, 

tf-idf scores are much lower. 

The second thing to notice is that although AE (tf-idf) mostly performs better than tf-idf, it is still 

quite a bit worse than AEs derived from the local vocabularies. We believe it is so because the deep 

AE can extract additional information from the tf-idf representations, but the AE learning is more 

effective when using less sparse inputs, provided by the tf representations constructed from local 

vocabularies. Also, over the all experiments AE (tf) performs better than tf. This demonstrates that 

term space maps into a new space that provides more discriminative features.  
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Chapter 5 

5. Conclusion and Future Work 
In this thesis, we presented single-document summarization using an unsupervised deep neural 

network. Our system is query-based, intended to summarize a document, satisfying a request for 

information expressed by a user's query. We used the deep auto-encoder. 

In general, most machine learning techniques for natural language processing (NLP) are limited to 

numerical optimization of weights for human designed features from the text; our goal however is to 

learn features. 

To evaluate the model, a series of experiments have been conducted on two different publicly 

available email datasets developed from three different email sources. Experiments on SKE with a 

wide variety of structures could provide a good explanation on the model. Also evaluations on BC3 

as a well-established dataset, but only contains 40 email thread, provided more explorations. To 

analyze the structure, we performed different threads of experiments: extracting summaries based on 

the subject of each email, extracting summaries using the annotated keyword phrases as queries and 

comparing the extracted summaries with extractive and abstractive summaries generated by 

annotators. 

We compared the auto-encoder-based models with the tf-idf baseline and showed that AE can enhance 

tf-idf representation. In the experiments, AE (tf) performs in most cases much better than the tf-idf 

baseline. The only scenario where the tf-idf can compete with the AE is with the vocabulary of size 

1000. There is considerable difference between the results when using the email subjects or keyword 

phrases as queries with keyword phrases leading to better summaries. This was to be expected 

because the keyword phrases have been carefully extracted by the annotators. The keyword phrases 

give the highest positive contribution to the td-idf baselines with largest vocabularies, which clearly 

benefits from the fact that the annotated sentences contain the extracted keyword phrases. 

Also, using local vocabularies to construct tf representation as the input of the AE has been analyzed. 

Comparing the results of tf representation and AE with tf representation clearly shows the AE can 

provide a more discriminative feature space. More precisely, Recall of tf representation improves 

about 11.2%. Indeed, because the goal is to summarize each single document and only the important 

factor is the semantic similarity of the words of a given document, the AE is capable of mapping this 

term space into a concept space.  



 

52 
 

Although we hoped that the reduced sparsity stemming from the added noise will improve the results 

even more, the experiments show that this is not the case. However, when combining the rankings of 

the noisy ensemble, the results are much better than a single noisy AE and even in some cases improve 

over the AE (tf). Although after training, an AE applies a deterministic non-linear transformation to 

compute a new feature space for the data, this ensemble noisy auto-encoder changes the AE from a 

deterministic feed-forward network to a stochastic model. 

In future: 

We intend to extend the model for generic summarization. The model is not designed to extract 

generic information, but with a combination of the model and other techniques this aim can be 

achieved.  

Another idea is to use semi-supervised learning techniques. This type of learning algorithm may help 

improve the performance. 

For a supervised deep structure, noisy labeling may help reduce the manual annotation process. This 

idea may also complement semi-supervised learning techniques. 

In addition to the bag-of-words representation, word-embedding has been successfully used in 

different NLP tasks. This word representation may help improve and develop the model. 
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Appendix 

ROUGE-2 Scores 

Although in literature ROUGE-2 recall has been referred, the average precision and f-score of the 

results may help show more information regarding the outcomes. Figure 1, 2 and 3 shows the results 

of ROUGE-2 for subject-oriented summarization, key-phrase-oriented summarization, and key-

phrase-oriented summarization versus extractive summaries, respectively, on SKE dataset. Also, 

figure 4 presents the results of ROUGE-2 on BC3 dataset.  

f-score Precision Recall  

0.2221         0.2254 0.2312 tf-idf V = 1000 

0.1749         0.1764 0.1838 tf-idf V = 5% 

0.1348         0.1363 0.1435 tf-idf V = 2% 

0.1011         0.1041 0.1068 tf-idf V = 60 

0.3769         0.4134 0.3580 AE (tf-idf, V = 2%) 

0.4091         0.4429 0.3913 AE (tf-idf, V = 60) 

0.3222 0.3208 0.3349 tf V = 60 

0.5056         0.5270 0.4948 AE (tf) 

0.4792         0.5029 0.4664 NAE (Gaussian) 

0.5102         0.5264 0.5031 ENAE (Gaussian) 

0.4673         0.5052 0.4428 NAE (Uniform) 

0.4555         0.4867 0.4377 ENAE (Uniform) 

(a) 

f-score Precision Recall  

0.2143         0.2188 0.2217 tf-idf V = 1000 

0.1614         0.1641 0.1688 tf-idf V = 5% 

0.1217         0.1229 0.1291 tf-idf V = 2% 

0.0885         0.0907 0.0935 tf-idf V = 60 

0.3384         0.3724 0.3227 AE (tf-idf, V = 2%) 

0.3561         0.3853 0.3422 AE (tf-idf, V = 60) 

0.2930 0.2949 0.3032 tf V = 60 

0.4289         0.4457 0.4251 AE (tf) 

0.4105         0.4300 0.4033 NAE (Gaussian) 

0.4356         0.4498 0.4325 ENAE (Gaussian) 

0.3779         0.4121 0.3592 NAE (Uniform) 

0.3776         0.4035 0.3659 ENAE (Uniform) 

(b) 
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f-score Precision Recall  

0.2018         0.2098 0.2062 tf-idf V = 1000 

0.1459         0.1508 0.1509 tf-idf V = 5% 

0.1048         0.1095 0.1074 tf-idf V = 2% 

0.0800         0.0838 0.0823 tf-idf V = 60 

0.2691         0.2980 0.2572 AE (tf-idf, V = 2%) 

0.2958         0.3196 0.2871 AE (tf-idf, V = 60) 

0.2417 0.2498 0.2452 tf V = 60 

0.3390         0.3565 0.3360 AE (tf) 

0.3335         0.3518 0.3289 NAE (Gaussian) 

0.3520         0.3653 0.3510 ENAE (Gaussian) 

0.2777         0.3106 0.2618 NAE (Uniform) 

0.2813         0.3064 0.2711 ENAE (Uniform) 

(c) 

f-score Precision Recall  

0.1968         0.2030 0.2002 tf-idf V = 1000 

0.1452         0.1500 0.1473 tf-idf V = 5% 

0.1043         0.1089 0.1048 tf-idf V = 2% 

0.0852         0.0901 0.0860 tf-idf V = 60 

0.2021         0.2265 0.1951 AE (tf-idf, V = 2%) 

0.2360         0.2567 0.2310 AE (tf-idf, V = 60) 

0.1701 0.1827 0.1682 tf V = 60 

0.2273         0.2409 0.2272 AE (tf) 

0.2229         0.2368 0.2219 NAE (Gaussian) 

0.2460         0.2569 0.2471 ENAE (Gaussian) 

0.1701         0.1961 0.1583 NAE (Uniform) 

0.1899         0.2077 0.1843 ENAE (Uniform) 

(d) 

f-score Precision Recall  

0.1939         0.1984 0.1936 tf-idf V = 1000 

0.1454         0.1482 0.1453 tf-idf V = 5% 

0.0986         0.1014 0.0985 tf-idf V = 2% 

0.0862         0.0886 0.0859 tf-idf V = 60 

0.1291         0.1354 0.1277 AE (tf-idf, V = 2%) 

0.1818         0.1876 0.1805 AE (tf-idf, V = 60) 

0.1159 0.1213 0.1165 tf V = 60 

0.1218         0.1286 0.1205 AE (tf) 

0.1064         0.1119 0.1067 NAE (Gaussian) 

0.1357         0.1385 0.1370 ENAE (Gaussian) 

0.0851  0.0912 0.0841 NAE (Uniform) 

0.1141         0.1177 0.1140 ENAE (Uniform) 

(e) 

Figure 1 ROUGE-2 for subject-oriented summarization. Table (a), (b), (c), (d) and (e) are the results for summarization 

with 5, 4, 3, 2, and 1 sentences respectively.  
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f-score Precision Recall  

0.4772 0.4817 0.4845 tf-idf V = 1000 

0.4111 0.4120 0.4217 tf-idf V = 5% 

0.3041 0.3036 0.3166 tf-idf V = 2% 

0.2114 0.2119 0.2224 tf-idf V = 60 

0.4909         0.5139 0.4795 AE (tf-idf, V = 2%) 

0.4422         0.4762 0.4220 AE (tf-idf, V = 60) 

0.5002 0.5134 0.4972 tf V = 60 

0.5564         0.5556 0.5657 AE (tf) 

0.5228         0.5359 0.5179 NAE (Gaussian) 

0.5346         0.5406 0.5370 ENAE (Gaussian) 

0.5257         0.5228 0.5380 NAE (Uniform) 

0.5409         0.5406 0.5504 ENAE (Uniform) 

(a) 

f-score Precision Recall  

0.4548         0.4613 0.4607 tf-idf V = 1000 

0.4022         0.4040 0.4118 tf-idf V = 5% 

0.2945         0.2942 0.3060 tf-idf V = 2% 

0.1998         0.2000 0.2103 tf-idf V = 60 

0.4133         0.4324 0.4077 AE (tf-idf, V = 2%) 

0.3813         0.4098 0.3678 AE (tf-idf, V = 60) 

0.4400 0.4533 0.4395 tf V = 60 

0.4857         0.4785 0.5035 AE (tf) 

0.4558         0.4643 0.4581 NAE (Gaussian) 

0.4724         0.4742 0.4809 ENAE (Gaussian) 

0.4720         0.4685 0.4872 NAE (Uniform) 

0.4798         0.4774 0.4938 ENAE (Uniform) 

(b) 

f-score Precision Recall  

0.4007         0.4101 0.4059 tf-idf V = 1000 

0.3391         0.3478 0.3437 tf-idf V = 5% 

0.2594         0.2643 0.2655 tf-idf V = 2% 

0.1889         0.1895 0.1988 tf-idf V = 60 

0.3215         0.3388 0.3179 AE (tf-idf, V = 2%) 

0.3004         0.3303 0.2879 AE (tf-idf, V = 60) 

0.3664 0.3760 0.3708 tf V = 60 

0.4147         0.4069 0.4365 AE (tf) 

0.3863         0.3966 0.3887 NAE (Gaussian) 

0.3937         0.3974 0.4017 ENAE (Gaussian) 

0.4100         0.4055 0.4277 NAE (Uniform) 

0.4150         0.4100 0.4334 ENAE (Uniform) 

(c) 

f-score Precision Recall  

0.3354         0.3414 0.3432 tf-idf V = 1000 

0.2834         0.2929 0.2874 tf-idf V = 5% 

0.2115         0.2160 0.2176 tf-idf V = 2% 

0.1590         0.1616 0.1661 tf-idf V = 60 

0.2260         0.2388 0.2251 AE (tf-idf, V = 2%) 

0.2263         0.2412 0.2226 AE (tf-idf, V = 60) 

0.2992 0.3064 0.3044 tf V = 60 

0.3248         0.3225 0.3410 AE (tf) 

0.3045         0.3105 0.3107 NAE (Gaussian) 

0.3087         0.3115 0.3168 ENAE (Gaussian) 

0.3245         0.3209 0.3416 NAE (Uniform) 

0.3305         0.3298 0.3450 ENAE (Uniform) 

(d) 
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f-score Precision Recall  

0.2218 0.2252 0.2217 tf-idf V = 1000 

0.2099 0.2124 0.2105 tf-idf V = 5% 

0.1470 0.1486 0.1482 tf-idf V = 2% 

0.1215 0.1242 0.1215 tf-idf V = 60 

0.1326 0.1372 0.1321 AE (tf-idf, V = 2%) 

0.1297 0.1337 0.1291 AE (tf-idf, V = 60) 

0.2025 0.2060 0.2034 tf V = 60 

0.2346 0.2339 0.2397 AE (tf) 

0.2187 0.2209 0.2200 NAE (Gaussian) 

0.1852 0.1869 0.1870 ENAE (Gaussian) 

0.2509 0.2514 0.2547 NAE (Uniform) 

0.2145 0.2149 0.2179 ENAE (Uniform) 

Figure 2 ROUGE-2 for key-phrase-oriented summarization. Table (a), (b), (c), (d) and (e) are the results for 

summarization with 5, 4, 3, 2, and 1 sentences respectively. 

f-score Precision Recall  

0.1733 0.1552 0.2120 tf-idf V = 1000 

0.1480 0.1310 0.1848 tf-idf V = 5% 

0.1108 0.0966 0.1424 tf-idf V = 2% 

0.0724 0.0629 0.0942 tf-idf V = 60 

0.1816 0.1694 0.2115 AE (tf-idf, V = 2%) 

0.1685 0.1632 0.1875 AE (tf-idf, V = 60) 

0.1784 0.1618 0.2137 tf V = 60 

0.1895 0.1679 0.2319 AE (tf) 

0.1795 0.1647 0.2110 NAE (Gaussian) 

0.1872 0.1676 0.2255 ENAE (Gaussian) 

0.1801 0.1600 0.2210 NAE (Uniform) 

0.1882 0.1675 0.2299 ENAE (Uniform) 

Figure 3 ROUGE-2 for key-phrase-oriented summarization compared with extractive summaries generated by human.  

 

f-score Precision Recall  

0.1025 0.1304 0.1002 tf-idf V = 1000 

0.0673 0.0838 0.0711 tf-idf V = 5% 

0.0604 0.0749 0.0583 tf-idf V = 2% 

0.0722 0.1134 0.0594 AE (tf-idf, V = 5%) 

0.0831 0.1277 0.0697 AE (tf-idf, V = 2%) 

0.0970 0.1171 0.0967 tf V = 60 

0.1054 0.1194 0.1084 AE (tf) 

0.1047 0.1328 0.1001 NAE (Gaussian) 

0.1063 0.1288 0.1017 ENAE (Gaussian) 

0.0993 0.1230 0.1010 NAE (Uniform) 

0.1049 0.1289 0.1028 ENAE (Uniform) 

(a) 

f-score Precision Recall  

0.1001 0.1582 0.0856 tf-idf V = 1000 

0.0670 0.1032 0.0612 tf-idf V = 5% 

0.0624 0.0942 0.0528 tf-idf V = 2% 

0.0590 0.1157 0.0429 AE (tf-idf, V = 5%) 

0.0691 0.1278 0.0522 AE (tf-idf, V = 2%) 

0.0863 0.1235 0.0758 tf V = 60 

0.0925 0.1239 0.0853 AE (tf) 

0.0955 0.1442 0.0825 NAE (Gaussian) 

0.0928 0.1335 0.0839 ENAE (Gaussian) 

0.0901 0.1319 0.0832 NAE (Uniform) 

0.0939 0.1304 0.0827 ENAE (Uniform) 

(b) 
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f-score Precision Recall  

0.0844 0.1697 0.0636 tf-idf V = 1000 

0.0640 0.1269 0.0517 tf-idf V = 5% 

0.0569 0.1191 0.0420 tf-idf V = 2% 

0.0468 0.1357 0.0300 AE (tf-idf, V = 5%) 

0.0476 0.1284 0.0315 AE (tf-idf, V = 2%) 

0.0726 0.1321 0.0566 tf V = 60 

0.0814 0.1321 0.0659 AE (tf) 

0.0827 0.1627 0.0650 NAE (Gaussian) 

0.0781 0.1498 0.0606 ENAE (Gaussian) 

0.0702 0.1375 0.0566 NAE (Uniform) 

0.0774 0.1412 0.0581 ENAE (Uniform) 

(c) 

f-score Precision Recall  

0.0585 0.2269 0.0380 tf-idf V = 1000 

0.0538 0.1950 0.0359 tf-idf V = 5% 

0.0441 0.1716 0.0294 tf-idf V = 2% 

0.0252 0.1255 0.0145 AE (tf-idf, V = 5%) 

0.0283 0.1268 0.0166 AE (tf-idf, V = 2%) 

0.0484 0.1740 0.0317 tf V = 60 

0.0531 0.1604 0.0362 AE (tf) 

0.0590 0.1958 0.0406 NAE (Gaussian) 

0.0416 0.1491 0.0264 ENAE (Gaussian) 

0.0531 0.1857 0.0354 NAE (Uniform) 

0.0512 0.1511 0.0334 ENAE (Uniform) 

(d) 

Figure 4 ROUGE-2 for subject-oriented summarization on evaluated BC3 dataset. Table (a), (b), (c) and (d) are the results 

for summarization with 4, 3, 2, and 1 sentences respectively.  
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