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Abstract

With the development of the Internet, cloud computing has become the most popular

paradigm for on-demand provision of computing resources and service solutions. Due

to the high flexibility of cloud computing, a myriad of cloud-based services are de-

signed and implemented to satisfy consumers’ diverse needs, and thus new challenges

have arisen in cloud service selection. One big challenge is how to select the most suit-

able cloud service for potential consumers according to their customized requirements.

Another big challenge is how to perform cloud service selection with high effective-

ness and accuracy, i.e., identifying unreasonable assessments and eliciting credible

assessments. This thesis aims to systematically investigate the above two challenges

of cloud service selection. The main contributions of this thesis are summarized as

follows:

• In prior studies, cloud service selection usually depends on quantitative perfor-

mance analysis without considering cloud consumers’ opinions on service per-

formance. This causes a problem that some vital performance aspects, which

can hardly be evaluated through objective monitoring and testing, e.g., data pri-

vacy and after-sales services, are ignored in cloud service selection. To solve

this problem, we propose a novel model of cloud service selection by aggregat-

ing both subjective assessments from ordinary cloud consumers and objective

assessments extracted through quantitative analysis. By comparing and aggre-

gating such assessments, the result of service selection can reflect the overall

quality of a cloud service with less bias caused by unreasonable assessments.

• We further consider the contexts of cloud assessments and cloud service re-

questers in our proposed model. In this model, a cloud consumer is allowed to

specify under what condition (e.g., specify a particular location or a particular
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period of time) he/she would like to consume a cloud service. Then the service

selection is carried out based on the consumer’s context. In this way, our cloud

service selection model can more effectively reflect potential cloud consumers’

customized requirements.

• In order to improve the accuracy of cloud service selection, we propose a novel

approach to evaluate the credibility of cloud assessments. Considering the dy-

namic nature of cloud services, the proposed approach is based on the continual

assessments over time, and thus has the ability to not only evaluate the dynamic

performance of cloud services, but also resist user collusion of providing ma-

licious assessments. Through this approach, more credible assessments are se-

lected as input for further cloud service selection.

• In addition to the assessment credibility evaluation, we have found another way

to further improve the accuracy of cloud service selection. We propose a novel

incentive mechanism, through which a cloud user would have sufficient incen-

tives to provide continual and truthful assessments of cloud services. This would

benefit both the dynamic evaluation of cloud performance and the further cloud

service selection. Furthermore, the proposed incentive mechanism allows users

to provide uncertain assessments when they are not sure about the real perfor-

mance of cloud services, rather than providing untruthful or arbitrary assess-

ments which may greatly affect the accuracy of service selection.

All the models, approaches and mechanism proposed in this thesis have been val-

idated and evaluated through sufficient experiments and theoretical analysis. The re-

sults have demonstrated that the proposed approaches and mechanisms outperform the

existing work of cloud service selection.
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Chapter 1

Introduction

As the most effective and efficient paradigm for on-demand computing resource shar-

ing and flexible service provision in recent years, cloud computing has been attracting

huge attention. According to the definition from the National Institute of Standards

and Technology (NIST), cloud computing can be defined as follows [109]:

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand net-

work access to a shared pool of configurable computing resources (e.g., networks,

servers, storage, applications, and services) that can be rapidly provisioned and re-

leased with minimal management effort or service provider interaction.”

Although the term “cloud computing” has become popular only since several years

ago, it is not a totally new technology. It is the evolutionary result of many exist-

ing technologies and methodologies. Hence, cloud computing has some of the same

characteristics with other computing concepts. For example, from the perspective of

computing resource delivery, cloud computing is similar to grid computing [13]. The

consumption of the computing resources under both concepts can be treated similarly

as electricity from the real power grid. In addition, cloud computing is also similar to

the concept of utility computing from the resource pricing perspective [11]. All the

resources under both concepts can be metered, so that consumers only need to pay for

the resources they use. However, the concept of cloud computing is still different from

either grid computing or utility computing. For example, distributed computing is the

backbone of grid computing, but cloud computing can also support non-distributed in-

frastructure. On the other hand, utility computing mainly focuses on the pricing model

1



2 Introduction

of the metered resource delivery, but cloud computing not only focuses on the resource

pricing model but also resource deployment, application, dynamic sharing, etc. The es-

sential characteristics of cloud computing are on-demand self-service, broad network

access, resource pooling, rapid elasticity and measured service [109].

In recent years, more and more individuals and organizations have been moving

their daily work into cloud environments, because of its features of flexibility and

low cost. According to consumers’ diverse requirements, a variety of cloud-based

services can be designed and implemented, and some even can be customized for

consumers’ needs. Moreover, cloud consumers are also allowed to develop their own

cloud services based on existing cloud infrastructures or platforms, and provide these

services to other consumers. In addition to the high flexibility of cloud computing, its

pay-as-you-go [11] model hugely reduces the cost of accessing computing resources

and services for cloud consumers. Compared to traditional computing service patterns,

cloud consumers do not need to worry about large upfront cost on expensive computing

hardware and software before setting up their work. Instead, they can access a shared

computing resource or service pool, and pay while using the pool according to their

different needs.

Due to these advantages of cloud computing, diverse cloud services are designed

and implemented. Fig. 1.1 [2] illustrates some popular cloud service providers.

With the emergence of various cloud services, many new challenges have arisen for

cloud consumers. One main challenge is how to discovery and select the most suit-

able one from a myriad of alternative cloud services. Web service selection in gen-

eral service-oriented environments has been sufficiently studied in the literature, e.g.,

[148, 101, 16, 55, 156, 183, 179, 180, 108, 107, 165, 163, 96], but service selection

in cloud environments has not been paid close attention with the widespread use of

cloud computing until recently. Although cloud services have a very close relation to

web services, the research focus of cloud service selection is not totally identical to

that of traditional web service selection due to the features of cloud services. Some

techniques and approaches applied for ordinary web service selection may not be ap-
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Figure 1.1: Cloud Service Providers

plicable in cloud environments, or need to be improved or extended when considering

the cloud features.

1.1 Challenges in Cloud Service Selection

Although cloud services are very similar to traditional web services from the perspec-

tive of ordinary consumers, e.g., SaaS clouds can be nearly considered as web-based

applications, and PaaS clouds and IaaS clouds need to be accessed from web-based

interfaces, new challenges in cloud service selection have arisen due to the features of

cloud computing, and should be addressed for large numbers of potential cloud con-

sumers. Compared to ordinary web services selection, cloud service selection has the

following main challenges:

• More types of services: everything in cloud environments can be taken as ser-

vices, e.g., Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and
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Software-as-a-Service (SaaS), and any individual or organization can develop

their own cloud services based on existing cloud infrastructure or platforms.

Hence, there are a huge number of various cloud services with different func-

tionalities or non-functional performance. For diverse types of cloud services,

consumers’ requirements may be quite different. Hence, users’ requirements

should be paid more attention in cloud service selection, e.g., identifying nec-

essary requirements according to cloud types, and dealing with the subjective

vagueness of requirements.

• More performance criteria: traditional web service selection usually consid-

ers only a few crucial service performance attributes, e.g., service availability,

response time, throughput, etc. Cloud computing can provide the services with

high complex functionalities, e.g., IaaS or PaaS clouds. Hence, many unique

cloud performance attributes, e.g. scalability, elasticity, reliability, payment

policies, security, etc., should be taken into account when carrying out cloud

service selection. Moreover, some specific performance aspects need to be con-

sidered particularly according to different requirements, e.g., persistent storage

and service networking are discussed in [85] for selecting public clouds. Hence,

identifying crucial performance attributes is very important for cloud service

selection.

• More difficult performance evaluation: due to the diversity of performance

criteria of cloud services, accurately collecting and evaluating these criteria be-

comes much more difficult. In general, the values of the criteria are collected

from pre-defined service level agreement (SLA) [174] or service performance

monitoring and testing carried out by cloud providers or end-users. It should be

noted that SLA cannot reflect the real performance of cloud services, and service

evaluation at the runtime requires expertise and extra costs of consuming cloud

services, thus service evaluation is usually provided by cloud providers. How-

ever, such an evaluation cannot be fully trusted. That is because, providers have
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direct interest in service performance, and service-side performance evaluation

may not accurately reflect the experiences of end-users.

Prior to cloud service selection, an evaluation of cloud services should be per-

formed first from the perspective of end-users. In the literature, there are two

types of approaches which can be used to conduct such an evaluation. The first

type of approaches is based on objective performance assessment from ordinary

QoS parameters (Quality-of-Service, e.g., service response time, availability and

throughput) [194, 21, 161] and predesigned benchmark testing [85, 14, 84]. As

cloud services are highly virtualized, some methods and tools for traditional IT

computation measurements can be appropriately applied in cloud environments.

By combining these methods and tools according to the characteristics of cloud

services, many metrics can be quantitatively assessed (e.g., the speed of CPU

and I/O). The second type of approaches is based on ordinary consumers’ sub-

jective assessments extracted from their subjective feedback for every concerned

aspect of cloud services [137, 118]. In this type of approaches, cloud services are

usually treated like traditional web services, thus some rating-based reputation

systems [148, 87, 101] can be utilized for cloud service selection.

Nevertheless, these two types of cloud service evaluation approaches have their

own limitations. That is because, firstly, objective performance assessment can

only be carried out for the performance aspects which can be easily quanti-

fied. Conversely, objective assessments are not appropriate for those aspects

which are quite hard to quantify, such as data security, privacy and after-sales

services. On the other hand, subjective assessments have the risk of inaccu-

racy since users’ subjective feelings are very likely to contain bias and not to

reflect the real situations of cloud performance. Furthermore, there may even

be malicious consumers who give unreasonable subjective assessments with the

intention to deceive others and/or benefit themselves in some cases [117, 101].

As a result, the accuracy of overall subjective assessments for cloud services can
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be significantly affected. Due to all the reasons mentioned above, credible cloud

service evaluation from end-users’ perspective should be a main research topic

in cloud service selection.

• More dynamic performance: cloud services are usually consumed simultane-

ously by a large number of users. The features of cloud computing scalabil-

ity and elasticity guarantee that every user can experience stable service per-

formance at the same time, even the peak-load time, and cloud services have

the capability to distribute required resources to new users near real-time [102].

However, in the real-world situations, cloud services may have unstable per-

formance due to the constantly changing number of users. Hence, the ability of

cloud providers dynamically provisioning computing resources should be evalu-

ated in multi-tenancy environments [81], which has not been adequately studied

in traditional web service selection.

In addition, the performance of cloud service could vary considerably over time

due to the dynamic computing resource allocation and the frequent variation of

the number of cloud consumers. Hence, there should be a way to evaluate the

dynamic performance of cloud services over time. To this end, cloud consumers

should be motived to provide the assessments of cloud service regularly from

user-end over time. However, consumers usually do not have sufficient incen-

tives to do so, and may even provide biased or arbitrary assessments, which may

greatly affect the efficiency of cloud service selection. To solve this problem,

an incentive mechanism for eliciting consumers’ continual and truthful assess-

ments should be designed, and the credibility of cloud assessments should be

carefully evaluated before service selection.

• More varied requirements: in addition to hardly obtain comprehensive and ac-

curate performance evaluation of cloud services, cloud consumers’ requirements

vary considerably. Because of the advantages of cloud services, more and more

organizations and individuals move their work into clouds. The requirements
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from different consumers are quite different. For example, Some industrial con-

sumers may give priority to the overall performance of cloud services as well

as some particular performance aspects, e.g., data privacy and service scalabil-

ity. And individual consumers may take an important consideration on the cost

of services. For different types of consumers, an effective selection approach

should be compatible with various consumers’ customized needs and conditions.

In some cases, consumers may not explicitly know what he/she needs for cloud

services. Thus, the uncertainty of consumers’ requirements should be addressed

in an effective service selection approach.

1.2 Motivation

In this section, an example is introduced to motivate our work in practice. Considering

a health center processing a large amount of sensitive customer data every day, the

security and privacy of customer data have a crucial impact on the center’s reputation.

If the center plans to move its work into cloud environments in order to reduce daily

costs, a suitable cloud provider which has a very good reputation on data security and

privacy needs to be selected. In addition, as the health center is not a professional IT

organization, comprehensive and high quality after-sales services are highly desired.

Moreover, a variety of encryption approaches need to be frequently applied due to the

sensitivity of customer data. Hence, the speed of data encryption and decryption is a

big concern for the center.

In this example, in addition to the ordinary objective performance attributes of

cloud services (e.g., availability and response time), which can be quantitatively moni-

tored, the speed of data encryption and decryption is a big concern for the center since

a variety of encryption approaches need to be frequently applied due to the sensitiv-

ity of customer data. Such performance attributes may need to be specifically tested

through benchmark testing. Moreover, the health center needs to carefully consider

the data privacy and quality of after-sales services, which are very hard to quantify, but
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may easily be assessed through subjective assessments provided by other cloud con-

sumers who consume the same cloud services. Hence, a service selection approach

considering both subjective and objective assessments should be highly desired by the

center. In addition, before carrying out service selection, the credibility of cloud users

on how truthfully they provide subjective or objective assessments should be evaluated

first to guarantee service selection accuracy.

On the other hand, objective assessments of cloud services are usually provided

by professional monitoring and testing organizations, such as CloudHarmony1 and

CloudSleuth2. Such organization usually have a number of cloud monitoring and test-

ing centers all over the world. Thus, there may be multiple testing parties in one city

or region. In addition, ordinary cloud consumers who provide subjective assessments

of cloud services may also be located all around the world. That means that all sub-

jective or objective assessments are provided under their own contexts (e.g., different

locations and time). Therefore, it should be considered that, assessment contexts can

significantly influence the result of assessments. According to the objective statistics

from CloudSleuth, the response time of a cloud service varies significantly under dif-

ferent worldwide QoS monitoring and testing centers, and generally increases with

the increasing distances between the cloud provider and these centers because of the

increasing length of the network routes of cloud service delivery. Meanwhile, the as-

sessed results of response time can also be affected by the time of a day, in other words,

how busy the cloud service and the network accessed by the centers can be at different

times of a day. Therefore, both objective assessments and subjective assessments can

be affected by different assessment contexts. When the health center asks for cloud

service selection, it needs to determine which assessments should be trusted more ac-

cording to its own context, and then be aware of how truthfully these assessments are

provided (i.e., cloud users’ credibility). The assessment evaluation should be a crucial

aspect considered in service selection.

1www.cloudharmony.com
2www.cloudsleuth.net
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Furthermore, in order to maintain the stability of the services offered by the center,

the long-term performance of the selected cloud service is also an important consid-

eration for the center. Once the performance of the cloud service becomes rotten,

the center would hope to find another alternative service as soon as possible. To this

end, the continual assessments of the service play a very vital role in service selec-

tion. However, at the current stage, wherever in literature or in practice, the continual

assessments have not been paid enough attention in service selection, and there is no

existing mechanism proposed for motivating cloud users to provide assessments reg-

ularly over time. Thus, evaluating the dynamic performance of cloud services is still

a challenging problem. This flaw would lead the health center lack of confidence to

consume cloud service.

1.3 Contributions

In a nutshell, the core contribution of the thesis is to enhance the effectiveness of

cloud service selection through comprehensive assessments. In order to address the

significant and challenging issues introduced above, this thesis makes contributions in

the following four major aspects.

1. The first contribution of the thesis focuses on cloud service selection based on

comprehensive assessments.

(a) Different from all the existing approaches, we propose a novel model of

cloud service selection based on the comparison and aggregation of both

subjective assessments from ordinary cloud consumers and the objective

assessments through quantitative performance monitoring or testing. A

framework is proposed to support the proposed model.

(b) In our model, cloud performance is comprehensively evaluated through

the aggregated results of all the subjective assessments and the objective
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assessments through a fuzzy simple additive weighting system [26]. Fur-

thermore, we consider the situation where ordinary cloud consumers’ sub-

jective assessments may be biased and inaccurate since they are usually

not professional IT staff or even some of them are malicious. Thus, in

our model, ordinary consumers’ subjective assessments are compared to

the objective assessments for the same cloud services, so that unreason-

able subjective assessments can be filtered out before aggregation. That is

because objective assessments do not contain subjective bias, and are thus

more reliable than subjective assessments.

2. The second contribution of the thesis focuses on cloud service selection consid-

ering contextual assessments.

(a) We extend our proposed model of cloud service selection by taking the

contexts of assessments into account. In the extended version, according

to a potential cloud consumer’s requirements, the objective assessments

are first applied as a benchmark to filter out biased or unreasonable sub-

jective assessments. In order to guarantee the accuracy of such filtering,

our model considers two assessment features (i.e., location and time) in

contexts, which can commonly affect both objective assessments and sub-

jective assessments.

(b) The process of the filtering is based on the context similarity between ob-

jective assessments and subjective assessments, i.e., the more similar the

context, the more reliable subjective assessments, so that the benchmark

level can be dynamically adjusted according to the corresponding context

similarity. We propose a novel approach for computing the similarity be-

tween assessment contexts based on the bipartite SimRank algorithm [69]

After such filtering, the final aggregated results can reflect the overall per-

formance of cloud services according to potential users’ personalized re-

quirements and context.
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3. The third contribution of the thesis focuses on evaluating cloud users’ credibility

of providing subjective assessments or objective assessments for cloud services.

(a) We propose a model for evaluating cloud users’ credibility of providing

subjective assessments or objective assessments, where subjective assess-

ments are from ordinary cloud consumers (called Ordinary Consumers, OC

for short), and objective assessments are from professional cloud perfor-

mance monitoring and testing parties (called Testing Parties, TP for short).

The credibility of OCs and TP s is respectively represented by trustwor-

thiness of OCs and reputations of TP s, which are separately evaluated

and can be influenced by each other. For this reason, our model can resist

collusion among cloud users providing untruthful assessments to some ex-

tent. Through our model, a successful collusion attack would become very

difficult in practice since a large number of cloud users would have to be

involved in such collusion.

(b) We propose an improved model of cloud service selection considering

both contextual assessments and cloud users’ credibility. When a potential

cloud consumer requests cloud service selection, the context similarities

between the consumer and different TPs are first computed to determine

which TP(s) is/are more reliable. Then, all the TPs are grouped according

to their contexts. Cloud service selection is carried out independently in

every context group of TPs. In each context group, when the benchmark

filtering is carried out, the context similarities between subjective assess-

ments and objective assessments are computed to determine the benchmark

levels, so that dynamic benchmark levels can be set to make such bench-

mark filtering more accurate.

In the meantime, an OC in a context group is considered more credible if

his/her historical subjective assessments are more similar with the major-

ity of subjective or objective assessments from OCs or TPs. In addition,
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the credibility of an OC can also be affected by the difference of variation

trends between the OC’s subjective assessments and TPs’ objective assess-

ments over time, so that the dynamic performance of cloud services can be

evaluated based on the variation trends of assessments. On the other hand,

the credibility of a TP depends on the difference between its objective as-

sessments and the majority of objective or subjective assessments from TPs

or OCs. That makes our model able to resist user collusion. Through the

proposed model, the selection results can comprehensively and accurately

reflect various cloud consumers’ needs in cloud service selection.

4. The fourth contribution of the thesis focuses on the design of an uncertain-

assessment-compatible incentive mechanism for eliciting continual and truthful

assessments of cloud services.

(a) In order to achieve high accuracy in cloud service selection, the contextual

assessments and cloud users’ credibility are studied in our proposed mod-

els. Such a way can be considered as a passive way of improving selection

accuracy. On the other hand, through a suitable incentive mechanism in

cloud environments, cloud users can be motivated to always provide truth-

ful assessments, which can be considered as an active way of improving

selection accuracy. To this end, we design a novel incentive mechanism

based on Game Theory [116] to motive cloud users providing truthful as-

sessments for cloud services.

(b) In cloud environments, service performance may vary substantially and

frequently due to the dynamic nature of cloud services. Thus, continual

assessments over time are needed to effectively reflect the dynamic perfor-

mance of services. In order to motivate a cloud user providing continual as-

sessments, an effective incentive mechanism should be designed, in which

the cloud user can be paid if it provides assessments on schedule. How-

ever, such a simple mechanism cannot prevent a user from “free-riding”
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(i.e., providing arbitrary assessments) [97, 193]. Moreover, sometimes an

honest user could also provide arbitrary assessments in order to obtain

monetary rewards when it does not really know the real performance of

cloud services. Such arbitrary assessments may be erroneous and mislead-

ing, and therefore greatly affect the effectiveness of service evaluations. To

avoid the submission of such arbitrary assessments, an effective incentive

mechanism should motivate users to always tell the truth, i.e., allowing

honest users to provide uncertain assessments to express their uncertainty

about service performance when necessary. To solve this problem, our pro-

posed incentive mechanism is compatible with uncertain assessments, and

thus effective for eliciting continual and truthful assessments.

1.4 Roadmap of the Thesis

The thesis is structured as follows:

Chapter 2 introduces the background knowledge of cloud computing, and proposes

a generic procedure of service selection in cloud environments. After that, a system-

atic literature review of cloud service selection is presented in terms of the proposed

generic procedure.

Chapter 3 presents the cloud service selection framework and model based on both

subjective assessments and objective assessments. This chapter includes our papers

published at IEEE SCC 2013 [131] (refer to the publication list on Pages ix and x).

Chapter 4 presents the improved model of cloud service selection, which takes

contextual assessments into account. This chapter includes our papers published at

IEEE ICWS 2014 [134] and AAMAS 2014 [133].

Chapter 5 presents the approach of evaluating cloud users’ credibility of providing

assessments. This chapter includes our papers published at IEEE ICSOC 2014 [136].

Chapter 6 introduces CCCloud, a combined model of cloud service selection con-

sidering both contextual assessments and users’ credibility. This chapter includes our
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papers published at TSC in 2015 [135].

Chapter 7 introduces the uncertain assessment compatible incentive mechanism for

eliciting continual and truthful assessments of cloud services. This chapter includes

our paper published at AAMAS 2016 [132] and our paper submitted at IEEE ICWS

2016.

Finally, Chapter 8 concludes this thesis.



Chapter 2

Literature Review

In recent years, cloud computing has become the most popular paradigm for storage

or service solutions. Due to the diversity of cloud services, it is usually hard for con-

sumers to select the most suitable service. Thus, many efforts have been made in the

literature for effective cloud service selection.

In this chapter, the background knowledge of cloud computing is first introduced.

Then, a generic procedure of cloud service selection is proposed based on our survey

of cloud service selection. The aim of proposing such a procedure is to classify and

summarize all the related work in the research of cloud service selection, and iden-

tify open issues in this area. After that, a systematic literature review of cloud service

selection is presented based on the proposed procedure. In addition, as introduced in

Chapter 1, an incentive mechanism for eliciting continual and truthful assessments of

cloud services is designed in our proposed approaches for actively improving the ac-

curacy of cloud service selection. Thus, the related techniques of incentive mechanism

design is introduced in this chapter.

This chapter is organized as follows:

• Section 2.1 introduces the main techniques applied in cloud computing, and the

service models and the deployment models of cloud services.

• Section 2.2 proposes a genetic procedure of cloud service selection, which con-

sists of five steps: 1) defining the purpose of cloud service selection, 2) identify-

ing the roles of service selection participants, 3) service criterion modeling, 4)

service criterion evaluation, and 5) service selection execution.

15
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• Section 2.3 presents a survey of cloud service selection. The contributions of the

related studies are classified and summarized according to the proposed generic

procedure.

• Section 2.4 introduces the related techniques and work of incentive mechanism

design.

• Section 2.6 summaries the contents in this chapter.

2.1 Background Knowledge of Cloud Computing

The essential characteristics of cloud computing are on-demand self-service, broad

network access, resource pooling, rapid elasticity and measured service [109]. In or-

der to achieve the above characteristics, two core technologies are applied in cloud

computing. The first one is Service-oriented Architecture (SOA) [35]. In SOA, a task

is accomplished by integrating a range of sub-tasks with independent functions. A

sub-task can be considered as a “Service” rendered to consumers. A service can also

be composed of other services, but is still a “black box” from the view of consumers

[122]. A service in SOA is allowed to be composed and executed repeatedly. Hence,

a wide diversity of flexible services can be created and provided to consumers in the

cloud environments based on SOA. The other core technology for cloud computing is

“Virtualization”. Through the logical abstraction, physical computing resources are

represented to virtual devices, through which users can easily carry out their comput-

ing tasks using the resources without worrying about hardware deployment. A user

can access a remote virtual machine like a local computer through the Internet. And

all kinds of hardware (e.g., CPU, memory, storage, network, etc.) can be virtualized

in cloud environments.

From the perspective of cloud service providers, a cloud environment is composed

of three layers: Physical Resource Layer, Resource Abstraction and Control Layer

and Service Layer [15]. Physical Resource Layer is the fundamental layer of cloud
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Figure 2.1: Cloud Computing Structure

computing, which contains all the hardware computing resources and facilities of es-

tablishing cloud environments. Above the Physical Resource Layer, the Resource Ab-

straction and Control Layer mainly provides hardware virtualization and management

through software abstraction. Virtual machines are typically established at this layer,

through which cloud providers can easily manage physical computing resources, and

make cloud users conveniently access the hardware resources. The top layer is the

application layer, i.e., the Service Layer, where cloud providers define and provision

various services to consumers through user interfaces. Fig. 2.1 illustrates the structure

of cloud computing.

2.1.1 Cloud Service Models

Based on the thinking from the concepts of SOA and Virtualization, everything in

the cloud environments is considered as a service (usually abbreviated as XaaS), e.g.,

Hardware-as-a-Service, Storage-as-a-Service, Database-as-a-Service, and Security-as-

a-Service, Trust-as-a-Service [166, 118]. In general, all cloud services can be typically

classified into three service models: Infrastructure-as-a-Service, Platform-as-a-Service
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and Software-as-a-Service [109] (abbreviated as IaaS, PaaS and SaaS respectively).

• IaaS clouds provide all the hardware-related services, e.g., virtual machines,

storage, network, firewalls and other fundamental computing resources. Com-

pared to PaaS users and SaaS users, IaaS users have the greatest control of cloud

infrastructure. They can develop and deploy nearly any kinds of software, even

their own operating systems. The services provisioned from IaaS clouds are

usually consumed by PaaS clouds and SaaS clouds. Because IaaS clouds need

the deployment of physical computing resource, only a few cloud providers can

have the capability to provide IaaS cloud services, e.g., Amazon EC2 [1] and

Rackspace [6].

• PaaS clouds provide the platforms for users to develop their own applications

through pre-defined programming tools, environments and services supported

by the PaaS providers. The PaaS users do not need to directly manage the fun-

damental cloud infrastructure (e.g., operating systems, storage and network),

but can possibly adjust the configuration settings of the developing platforms as

needed. A PaaS user can use a remote PaaS cloud as a fully configured local

computer without managing any hardware settings. Google App Engine [3] and

Microsoft Azure [5] are the most popular PaaS clouds.

• SaaS clouds provide consumers with the applications, which are developed

based on cloud infrastructure and platforms. A SaaS user can access these ap-

plications through various user interfaces. The most common and convenient

way of building SaaS clouds is to develop web-based applications in cloud en-

vironments, so that a SaaS user does not need to install many software products

on its own computer, and only need a web browser to access the applications

instead, e.g., Google Docs [4]. Compared to the traditional way of applying

software, i.e., purchasing a fully licensed software suite, the cost of consuming

a SaaS application is quite low since a SaaS application can be shared by many
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Figure 2.2: Cloud Deployment Models

different consumers at the same time due to the rapid elasticity [109] feature of

cloud computing.

2.1.2 Cloud Deployment Models

According to who can access the cloud services, cloud computing has four deployment

models: Public Cloud, Private Cloud, Hybrid Cloud and Community Cloud [109].

Fig. 2.2 illustrates the relation among these models.

• Public Clouds: a public cloud is the most common way of deploying cloud

computing. As the name implies, the users of a public cloud can be anyone,

including individuals and organizations, who have purchased the computing re-

sources as needed from the providers. Since the resource pools of a public cloud

are shared by many public users, a public cloud can be easily accessed with low

costs according to the pay-as-you-go model [11]. Due to this advantage, pub-

lic clouds are usually chosen by individuals or small businesses. However, just

because of such public resource sharing, the public cloud users face various po-

tential security or privacy risks. Hence, public clouds are usually consumed by
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the users wanting low costs without the needs of high-level security or privacy

requirements.

• Private Clouds: compared to the public resource sharing of public clouds, a

private cloud is only deployed for a particular organization, thus it is more secure

than a public cloud because of the exclusive use, but more costly since self-

management or maintenance may be needed for a private cloud user. According

to the different requirements of consumers, a private cloud can be managed by

the organization itself or a third party. The third-party hosted private clouds are

usually cheaper than the self-managed private clouds since the expertise of cloud

management is required for the latter ones.

• Community Clouds: the concept of community clouds is between both of the

concepts of public clouds and private clouds. A community cloud can be ac-

cessed and shared among a group of several users (usually organizations) who

have the similar concerns, e.g., similar tasks, requirements or functionalities.

Such a group of users can be considered in the same community. The concept

of community clouds further balances the resource cost savings and security and

privacy risks in cloud environments.

• Hybrid Clouds: the concept of hybrid clouds refer to the combination of two or

more of the other three cloud deployment models. It succeeds the advantages of

the other models, and bring greater flexibility for satisfying various requirements

of consumers. For example, the core tasks of a cloud user’s business, requiring

high-level security and privacy, can be executed in a private cloud operated by

itself for minimizing the possible risks, and the usual tasks can be executed in a

public cloud environment for minimizing costs.

It is due to the diversity of the service models and the deployment models of cloud

computing that cloud service selection is more challenging than traditional web service

selection, and there is no service selection solution which can be applicable in every
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type of cloud services. Hence, in order to cover all the situations of service selection

in cloud environments, we propose a generic procedure of cloud service selection, and

survey and classify the existing works according to the proposed generic procedure

and the applied technologies.

2.2 A Generic Procedure of Cloud Service Selection

In order to cover all the existing approaches or models in the literature, we propose

a generic procedure of cloud service selection, which includes five steps: 1) defining

the purpose of cloud service selection; 2) identifying the roles of service selection par-

ticipants; 3) service criterion modeling; 4) service criterion evaluation; and 5) service

selection execution. We expect to map all the existing works of cloud service selection

into the generic procedure, and hence identify the research focuses of cloud service

selection and the related open issues.

2.2.1 Defining the Purpose of Cloud Service Selection

In the literature, the purposes of cloud service selection can be generally classified into

two kinds: selecting the best service and selecting an optimal composition of services.

• Selecting the best service: the outcome of this kind of cloud service selec-

tion is typically the best alternative service or a service ranking according to

the requirement of a cloud consumer asking for service selection. The selec-

tion process is usually based on the performance of the multi-faceted aspects of

alternative services, and is thus modeled as the multi-criteria decision making

(MCDM) problem. The consumer can determine the importance level for every

performance aspect, and thus the selection result can reflect the consumer’ cus-

tomized requirement. The common approaches for the MCDM problem include

AHP, ANP, weighted sum and fuzzy decision making, etc [39].
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In addition, the best service selection can also be carried out based on the trust-

worthiness evaluation of services or service providers. In the literature of cloud

service selection, the trustworthiness refers to how satisfactory or reliable the

provisioned quality of services is from consumers’ perspectives. In these cases,

trust models or trust-based approaches are applied, e.g., [54, 47, 105, 167].

The results of the best service selection are usually computed for end-consumers.

In some cases, the selection results can also be taken as input for service com-

position executed by application cloud providers.

• Selecting an optimal composition of services: in this kind of cloud service

selection, a consumer usually needs to select a group of composed services in

order to meet his/her requirements on complex functionalities. One simple ex-

ample is that, a travel agency provides a trip plan service, which is composed

by other sub-services, including booking a flight, booking a hotel, renting a car,

ordering admission tickets, etc. Then an optimal trip achieving some objec-

tives, e.g., minimizing the travel duration, is planned for a consumer according

to his/her requirements. Such requirements can be considered as the constraints

in the service composition, e.g., the total cost must be lower than 1000 dollars.

Hence, the service composition problem can be modeled as the knapsack prob-

lem [147], which is typically solved through optimization-based approaches,

e.g., [77, 128, 20].

The optimization process is mostly based on the performance quality of services.

In addition, the trustworthiness of services or service providers is taken into ac-

count in some studies, e.g., [56, 182]. The studies of service composition in

general service-oriented environments usually focus on the composition struc-

tures, e.g., sequence, parallel and loop. However, in the literature, the studies

of cloud service composition focus on either structural or non-structural compo-

sition. For example, an application cloud provider wants to optimize the com-

puting resources, which may be provisioned by different infrastructure cloud
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providers, for satisfying various consumers’ requirements. In this case, the in-

voking relations among service components do not affect the whole service per-

formance since every service component serves different groups of consumers

separately.

2.2.2 Identifying the Roles of Service Selection Participants

In general, service providers and service requesters are the two basic roles in all

service selection problems. In cloud environments, service selection not only hap-

pens between cloud providers and cloud consumers but also between data centers and

cloud providers. Under the latter context, data centers are the service providers; cloud

providers become the service requesters. The cloud providers need to select suitable

data centers to support satisfactory cloud deployment with minimum costs. Further-

more, due to the layers of cloud service models, a cloud provider can be the service re-

quester for some lower-layer cloud providers (e.g., IaaS or PaaS providers), and serve

the higher-layer cloud consumers (e.g., SaaS consumers). Hence, the participants of

cloud service selection can be classified into four groups: end consumers, application

cloud providers, infrastructure cloud providers and data centers.

• End consumers are the ordinary consumers using cloud-based applications.

They first select the cloud services having the required functionalities, and then

concern their non-functionality performance, such as service availability and re-

sponse time. Thus, the service selection for end consumers is usually based

on the MCDM approaches considering both functional and non-functional at-

tributes of cloud services.

• Application cloud providers offer application services to end consumers and

require cloud deployment services from infrastructure cloud providers. They

also require functional services from other application cloud providers, and com-

pose them for complex functionalities. Thus, the service selection for applica-

tion cloud providers may consider both multiple criteria evaluation and optimal
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service composition.

• Infrastructure cloud providers are in charge of cloud deployment, and hence

needs to select suitable cloud hardware and facilities. The cloud hardware are

typically provisioned by worldwide data centers. In order to satisfy the different

levels of service quality for different kinds of consumers, infrastructure cloud

providers need to consider the contexts of the data centers, e.g., geographical

location and peak hour loads. In the literature, some studies have been proposed

from the perspective of location-aware selection of data centers, e.g., [58, 128,

129]. Due to the physical features of hardware, context-aware service selection

should be paid more attention for infrastructure cloud providers.

• Data centers provide the fundamental hardware and resources for cloud deploy-

ment. Every data center has its resource capacity and serves consumers from a

particular region because of the consideration of the latency of resource delivery.

In order to maintain the quality of services for consumers around the world, an

infrastructure cloud provider needs to dynamically allocate and distribute com-

puting resources from different data centers. Hence, a consumer can experience

a stable cloud service regardless of his/her location.

Fig. 2.3 illustrates the relations between these roles in cloud service selection. As

introduced above, cloud service selection may be quite different for different kinds of

cloud providers and consumers, and thus needs to be studied under particular contexts.

In the literature, most of the studies of cloud service selection only consider the gen-

eral provider-requester scenario, and do not specify the application contexts of their

studies.

2.2.3 Service Criterion Modeling

An essential issue of cloud service selection is how to determine the necessary service

criteria, which decide whether an offered cloud service can satisfy both business and
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Figure 2.3: The Roles in Cloud Service Selection

technical requirements of cloud consumers. The requirements includes both functional

and non-functional aspects of cloud services. To be brief, a functional requirement

refers to what specific behavior a service can do; a non-functional requirement refers

to how well a service can behave.

Due to the diversity and complexity of cloud services, determining cloud criteria

for global use is very challenging. Even so, many efforts have been made in the lit-

erature. One widely accepted criterion model for cloud services is the cloud service

measurement index (SMI) proposed in [146], where cloud criteria are grouped into

seven major categories:

• Accountability refers to how much a cloud consumer can rely on a cloud provider,

or put another way, the trustworthiness of a cloud provider to provide satisfac-

tory services.

• Agility represents the ability of a cloud service to quickly respond to consumers’

requirements of changing or extending the use of the service.

• Assurance indicates the ability of a cloud service to provide the expected func-

tions as specified.

• Financial indicates how much money should be paid for accessing an agreed

cloud service.

• Performance represents how well a cloud service can perform as expected.

• Security and Privacy guarantee the secure management of consumers’ data in

a cloud, with unauthorized parties being unable to access these data.
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Category Attribute
Accountability Provider contract / SLA verification

Compliance
Ease of doing business
provider certifications

Agility Scalability
Portability
Elasticity

Assurance Availability
Reliability

Resiliency / fault tolerance
Financial On-going cost

Acquisition and transition costs
Performance Service response time

Functionality
Interoperability

Security and Privacy Access control
Data privacy and data loss

Data integrity
Usability Accessibility

Learnability
Suitability

Table 2.1: Prioritized SMI Attributes

• Usability represents how easily a cloud service can be used. A cloud provider

should provide sufficient business and technical support to various consumers.

In each major category, there are several attributes to represent the specific perfor-

mance aspects. In [146], a tree structure is proposed to present 51 specific attributes

in total. Table 2.1 [146] shows some primary attributes in every major category. Note

that, most of the attributes shown in Table 2.1 are abstract, and the detailed modeling

processes of these attributes are not presented in [146]. Another widely referenced

SMI is SMICloud [45], which focuses on numerically expressing the performance

attributes, including service response time, sustainability, suitability, accuracy, trans-

parency, interoperability, reliability, stability, cost, adaptability, elasticity and usabil-

ity. For each attribute, an intuitive calculation is carried out, the results of which can

be taken as input for any cloud selection approaches.
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It should be noted that these proposed SMIs can only represent the general per-

formance of cloud services, and some of the performance attributes can hardly be

expressed via quantitative forms, e.g., security and privacy. In practice, how to accu-

rately model these attributes is still challenging. A cloud consumer may have more

specific requirements for a cloud service. The result is that the proposed SMIs are

not so likely to be applied in practice since they can hardly reflect the concrete needs

of consumers. Hence, before cloud service selection, the core performance attributes

should be first selected and modeled according to consumers’ personal requirements.

In the literature, many efforts have been made to model and evaluate the con-

crete cloud performance attributes for service selection. Tang and Liu [153] propose

a framework for security control of SaaS clouds, which mainly contains five security

aspects: Function, Auditability, Governability and Interoperability.

Furthermore, a consumer’ preference on each performance attribute can cause

quite a different result of cloud service selection. A consumer should be allowed

to set the importance weight or QoS constraint for each attribute before carrying out

service selection. However, accurately setting such weights or constraints is still tricky

for ordinary consumers. That is because quantifying importance weights or required

constraints usually needs expert judgment. However, ordinary consumers may be lack

of such expertise, and have subjective vagueness or bias in some cases. Hence, service

criterion modeling should support consumers to accurately identify their preference.

2.2.4 Service Criterion Evaluation

After service criterion modeling, how well every concerned attribute performs should

be further determined in the step of service criterion evaluation, i.e., determining QoS

value of every attribute. In the literature, cloud service criterion evaluation can be

generally classified into three types:

• QoS description: in early studies of cloud service selection [140, 52, 115], QoS

values are assumed to be extracted from service description which is commonly
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included in SLA. However, cloud providers in practice may always have incen-

tives to provide unsatisfactory QoS in order to reduce cost. And detecting SLA

violation is costly for ordinary consumers. Thus, recent studies trend to consider

extracting QoS values from other ways rather than service description.

• Service-side QoS evaluation: in the real-world situations, the most common

way of getting QoS values is to apply the key performance indicators (KPI),

which are usually provided by service providers, and executed at service side,

e.g., Amazon CloudWatch1. However, service-side QoS evaluation cannot ef-

fectively reflect end-users’ experience of service quality. Furthermore, the KPIs

provided by cloud providers are usually insufficient to present all the concerned

aspects of service performance for consumers, and may not be fully trusted since

providers may cheat consumers by presenting excellent but fake performance

records.

• End-user-side QoS evaluation: in order to solve the problem in service-side

QoS evaluation, many studies focus on QoS evaluation from end-user side, e.g.,

[54, 118, 167, 32, 101]. Such an evaluation is based on the collection of user

feedback or testing reports. The QoS assessments from end-users may be ei-

ther subjective or objective. Subjective assessments refer to the assessments

extracted from users’ subjective judgements about service quality, e.g., ratings.

Objective assessments refer to the assessments acquired from quantitative per-

formance monitoring or testing at the end-user side. These subjective or objec-

tive assessments are taken as input for cloud service selection approaches.

Note that, in end-user-side QoS evaluation, assessment contexts should be taken

into account, i.e., under what situation an assessment is made. That is because

cloud consumers under different contexts may have quite different experiences

of cloud performance. For example, consumers in different geographic locations

may have different judgments due to the latency of service delivery. In another

1aws.amazon.com/cloudwatch
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example, cloud performance may be different during peak hours and non-peak

hours due to the work-load variations, and thus, cloud assessments collected

from end-users during various moments may be quite different. Considering this

issue, context-aware QoS evaluation should be further studied when carrying out

end-user-side service evaluation. But only few studies [134, 135] in the literature

focus on it.

Based on the above types of cloud service criterion evaluation, QoS assessments

can be classified into two groups:

• Objective assessments are used for the performance attributes which can be rep-

resented through quantitative values, e.g., 95% for service availability and 4ms

for response time. Due to the complexity of cloud services, some performance

attributes cannot be observed directly, e.g., cloud reliability, scalability and elas-

ticity. Furthermore, in some cases, some specific performance aspects needs to

be evaluated according to consumers’ particular requirement, e.g., CPU or stor-

age speed. Thus, many benchmark approaches or tools are specially designed

and proposed for cloud QoS evaluation [23, 14, 27, 84, 40, 24, 65, 48, 65].

• Subjective assessments are usually more convenient to be acquired and col-

lected than objective assessments due to the absence of the cost of quantita-

tive performance evaluation, e.g., extra software development and installation.

Subjective assessments are used for the performance attributes which cannot

be easily quantified but can be customarily judged through consumers’ subjec-

tive experiences in the daily uses of services. For example, a consumer can

judge whether the functions of a service are easy to handle, or whether a ser-

vice provider provides sufficient after-sale supports for its customers. In addi-

tion, for some performance attributes, if a way of quantitative evaluation cannot

be widely accepted for various consumers, consumers’ subjective experiences

could be used as the assessments of these attributes for different situations, e.g.,

service security and privacy.
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Figure 2.4: Service Criterion Evaluation

Note that, a big issue in service criterion evaluation is the trustworthiness of per-

formance assessments. As introduced above, the objective QoS definitions from QoS

description may be violated; objective assessments from service-side evaluation may

not sufficiently reflect end-users’ experiences; and subjective assessments may contain

much noise, which includes consumers’ subjective biased assessments or even mali-

cious assessments on purpose. Hence, some research [99, 101, 136, 135, 163, 117,

118] in regard to the trustworthiness evaluation of performance assessments has been

undertaken. However, most of the studies of cloud service selection tend to assume

that the acquired QoS assessments can be fully trusted.

Fig. 2.4 illustrates the relations between service criterion evaluation types and

QoS assessment types. Objective assessments of cloud services can be acquired in all

the three evaluation types; and subjective assessments are usually extracted from end-

user-side QoS evaluation. And the trustworthiness of both subjective assessments and

objective assessments needs to be evaluated according to the particular requirements

of consumers who request cloud service selection.
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2.2.5 Service Selection Execution

Based on the above steps, a consumer confirms his/her purpose and role of service se-

lection, and determines what performance attributes need to be necessarily considered

and his/her preference of these attributes. After obtaining trustworthy performance

assessments, the final service selection is ready to be executed. In the literature, cloud

service selection can be carried out through four types of approaches: MCDM-based

selection, optimization-based selection, trust-based selection and description-based

selection. The details of these approaches are introduced in the next section.

Fig. 2.5 presents the whole generic procedure of cloud service selection. We

expect to include all the existing works of cloud service selection based on this generic

procedure, so that the research contributions can be summarized, and the further issues

can be identified.
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2.3 Techniques of Cloud Service Selection

In this section, we introduce the techniques of cloud service selection, and then catego-

rize the existing approaches based on our proposed generic procedure. Through such

a categorization, the outstanding contributions of the existing studies are summarized.

2.3.1 MCDM-based Selection

Multiple-criteria decision making [157] is the most common technique applied in

cloud service selection. In this scenario, the overall performance of a cloud service

is expressed via the aggregation of a set of finite attributes, each of which represents

one performance aspect. Hence, the main issues of MCDM-based selection are the

comparison of the performance quality of every attributes among all the alternative

services, and the aggregation of the performance attributes according to consumers’

requirements.

2.3.1.1 QoS Prediction

As introduced in the proposed generic procedure, the QoS assessments applied in

cloud service selection are typically obtained through three ways: pre-defined service

descriptions, ordinary consumers’ judgments or quantitative monitoring and testing.

However, in some cases, such assessments may be missing, e.g., new cloud services

appear or cloud performance records are incomplete. To solve this problem, some

QoS prediction approaches are proposed in the literature of cloud service selection.

The most popular techniques applied in QoS prediction include collaborative filtering

(CF), clustering and matrix factorization.

In [78], Karim et al. propose a performance prediction approach of cloud services

from end-users’ perspective based on collaborative filtering [67]. In this work, it is as-

sumed that a typical cloud solution is composed of two layers of services: 1) software

services satisfying consumers’ functional requirements, and 2) infrastructure services

supporting the software services on service performance. Thus, the quality of services
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an end-user can experiences depends on the combination of the services from the two

layers. If a particular combination of services has not been achieved, the prediction

approach can be applied to estimate the end-performance of such a combination based

on the QoS of similar services which have been combined before.

In [195], Zheng et al. propose a framework of ranking cloud services according to

a particular performance attribute, e.g., response time. The proposed work focuses on

computing the personalized ranking for particular users according to their preferences.

Based on users’ historical ratings for services, the ranking similarity between users is

computed for determining similar users. Finally, a user’s preference for an alternative

service can be predicted through a Greedy Order Algorithm according to the experi-

ences of his/her similar users. In [194], Zheng et al. extend their approach. In the

extended version, the ranking prediction can be achieved without predicting the exact

values of missing QoS, through which the ranking accuracy can be improved due to

the less effect on users’ subjective bias.

In [154], Tang et al. propose a QoS prediction approach for cloud services. The

proposed work focuses on solving the data sparsity problem for cloud QoS prediction.

Cloud users are first clustered based on their location. Then the data smoothing tech-

nique is applied to fill missing QoS values using the average values of the items from

the same user cluster. The final QoS prediction is carried out by combining user-based

and service-based collaborative filtering.

In [184], Yu propose a personalized recommendation approach for cloud services

using matrix-factorization-based clustering. The users who have the similar histor-

ical experiences are assumed to have the similar cloud-related features in common.

Likewise, the cloud services providing similar QoS to users are also considered to

have some common features. Based on these features, cloud users and services are

clustered into a group of communities, which are used to predict users’ future QoS

experiences.
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2.3.1.2 MCDM-based Approaches

After obtaining sufficient assessments of alternative cloud services, the decision-making

process would be carried out. In the literature, various MCDM techniques are applied

for cloud service selection, the most popular techniques of which include Analytic Hi-

erarchy Process/Analytic Network Process (AHP/ANP), weighted sum, Technique for

Order of Preference by Similarity to Ideal Solution (TOPSIS), logic inference, fuzzy

decision making, etc. [39].

In [161, 137, 160, 159], Rehman et al. propose a framework supporting IaaS cloud

selection. In this framework, it is assumed that the performance of a IaaS cloud is

monitored and recorded through a service-side status checker installed on the virtual

machine accessed by IaaS users. Then the cloud performance reports are gathered and

managed by a centralized QoS repository for further service evaluation and selection.

Furthermore, they propose a time-aware selection approach based on different MCDM

techniques, e.g., TOPSIS and AHP. It is argued that the most recent performance re-

ports can more accurately reflect the current performance of cloud services, and thus

are more helpful for cloud consumers. Based on this consideration, the QoS records

of alternative clouds are logistically decayed according to the time distance from the

times pot, at which the selection decision is required to be made. A case study is pre-

sented to demonstrate the effectiveness of the proposed approach based on the real data

of CPU, memory and I/O collected from Amazon EC2. They conclude that different

MCDM techniques may not lead to the same decision results in the same case.

In their further study [162], they propose a service selection approach considering

the dynamic nature of cloud computing. In this work, a cloud service is evaluated

through time-aware QoS monitoring. The continual QoS assessments of alternative

services are divided into many time windows according to their submission time. The

service ranking is carried out in parallel with every time window. Then the ranking

values in each time window are weighted to compute the aggregated ranking of all

alternative services. The weights of the sub-rankings are decayed with time in order to
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guarantee the freshness of service evaluation. At last, the real dataset collected from

CloudClimate2 is applied to validate the proposed approach.

In [49], Godse and Mulik propose a AHP-based approach of SaaS cloud selection.

The SaaS product selection is modeled based on a hierarchy consisting of five main

factors (Level-1), including Functionality, Architecture, Usability, Vendor Reputation

and Cost, and sixteen attributes (Level-2). The proposed hierarchy is applied in a case

study of Sales Force Automation products.

In [71], Gonçalves et al. propose a AHP-based cloud deployment selection driven

by the non-functional performance attributes, including efficiency, cost and scalability.

The proposed approach is employed in a real-world case (WordPress deployed in the

Amazon cloud).

In [7], Achar and Thilagam propose a cloud service selection approach based on

the Service Measurement Index [146]. The selection procedure consists of three steps:

1) identifying concerned criteria according to the SMI; 2) determining the criterion

weights; and 3) ranking alternative services using TOPSIS. A simulation experiment

is carried out to evaluate the proposed approach through the CloudSim toolkit[18].

In [113], Mu et al. focus on the study of precisely estimating users’ preferences for

the performance attributes applied in the decision making of cloud service selection.

The users’ preference represented by the importance weight set for every attribute is

assumed to be classified into two types: subjective weights and objective weights.

The subjective weights are directly set by users. In order to deal with the vagueness

contained in the subjective weights, fuzzy weights are applied to express users’ uncer-

tainty. On the other hand, objective weights are computed from the preference history

of the same service request through Rough Set [125] if users did not set the subjective

weights. Then the subjective weights and objective weights are combined to reflect

users’ preferences. The service selection process is carried out using TOPSIS.

In [142], Sahri et al. focus on the particular selection of cloud-based databases.

The selection is supported by an ontology-based framework named “DBaaS-Expert”,

2www.cloudclimate.com
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and carried out through AHP based on Quality of Service, Capacity of Service and

Cost of Service.

In [149], Sun et al. study the issue of uncertainty in cloud service evaluation based

on users’ subjective judgements, which are expressed through triangle fuzzy numbers.

The operations of addition, subtraction, reciprocal and multiplication are defined based

on the fuzzy set. Through an ontology, the weights of selection criterion are processed

through a fuzzy-based AHP algorithm, and then the alternative services are ranked

through a fuzzy-based TOPSIS algorithm. In their later study [150], two types of inter-

relationships between criteria are taken into account, i.e., supportive and conflicting.

The relations of criteria are modeled through an interactive and interpretive structural

network, based on which the final selection is carried out via ANP [141]. The simi-

lar works of cloud service selection based on fuzzy sets using AHP are proposed in

[152, 59], and another ANP-based work which considers the inter-relationships among

performance attributes is proposed in [25].

In [168], Wang et al. propose a logic-based model for cloud service selection.

The proposed model consists of three steps: 1) the performance of the alternative ser-

vices is first evaluated through fuzzy synthetic decision according to cloud consumers’

personalized preferences; 2) then the quantitative performance values of the services

are converted into uncertainty levels through the Cloud Model [86]; and 3) the out-

puts from Steps 1&2 are taken as input into a Fuzzy Logic Control scheme. Through

rule-based fuzzy inference, the alternative services are ranked for selection.

In [145], Shivakumar et al. propose a fuzzy-based cloud service selection ap-

proach, in which different performance attributes are expressed by different fuzzy

membership functions, and the final decision is extracted from the aggregation of all

the attributes through a pre-defined fuzzy “and” operator.

In [46, 45], Garg et al. propose a framework of ranking cloud services, in which

a service measurement index (SMI) is presented to quantitatively measure the perfor-

mance quality of services. They propose a range of formulas to model the general

performance attributes of cloud services, which may not be easily expressed in quan-
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titative forms, e.g., sustainability, suitability, reliability, stability, etc. Based on this

quantitative modeling, the alternative services are ranked through AHP.

In [143], Saripalli et al. introduce a methodology of cloud service selection based

on MCDM and a cloud taxonomy. Instead of applying technical selection approaches,

the Wide-band Delphi Method [121], which is a structured communication technique

based on iteratively asking opinions from experts, is recommended in this work.

In [79], Karim et al. focus on cloud service selection from end users’ perspective.

In their work, a cloud service is assumed to be composed of two layers of services,

i.e., the SaaS layer and the IaaS layer. cloud consumers’ requirements of service QoS

specifications are first mapped into the SaaS layer, and then mapped into the IaaS

layer through a hierarchy-based model. The services in the IaaS layer are ranked

through AHP. Through such mapping and ranking processes, the authors argue that an

application cloud provider can select the suitable infrastructure cloud services which

can exactly satisfy end-users’ QoS requirements. A similar mapping mechanism is

proposed based on QoS ontology in [80], which is implemented via OWL-S (Web

Ontology Language for Services) [53] and SWRL (Semantic Web Rule Language)

[61].

In [110, 111], Menzel et al. propose a framework for cloud infrastructure service

comparison, and present a generic procedure for immigrating old-school business into

clouds. The proposed framework and procedure are designed to be compatible to any

specific requirements and preference as well as any MCDM techniques, e.g., AHP and

ANP. A prototype is proposed to validate the feasibility of the proposed framework.

Qu et al. propose a range of studies in cloud service selection [131, 134, 133,

136, 135]. In these works, they argue that, cloud service evaluation and selection are

typically based on either subjective assessments from ordinary consumers (e.g., rat-

ings) or objective assessments through quantitative performance monitoring and test-

ing. Either type of assessments has the corresponding limitation in comprehensively

reflecting cloud performance. Thus, they propose a framework of cloud service se-

lection based on the comparison and aggregation of both subjective assessments and
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objective assessments [131]. In their further study [134], they focus on personalized

and credible service selection, and take the contexts of assessments and users’ credi-

bility into account. They argue that the cloud assessments generated under a context

are more reliable for the cloud requestors under the similar context. In this work, two

assessment context features (location and time) are considered for determining more

accurate assessments in service selection. Furthermore, a theoretical model is pro-

posed in [135] to evaluate the credibility of cloud users who offer assessments The

proposed model can thus effectively reduce the impact caused by biased assessments

and noisy assessments in cloud service selection.

In [148], Srivastava and Sorenson argue that users’ preference of QoS performance

usually varies non-linearly with the real QoS performance, and thus propose a ser-

vice selection approach based on users’ subjective judgments instead of objective QoS

value. Their study focuses on finding out an accurate relation between users’ ratings

and actual QoS performance, which is solved by the mid-level splitting method [19].

The main drawback of this work is that the accurate relation needs to be learned from

substantial queries to users. In addition, users’ subjective vagueness and bias are not

taken into account.

2.3.2 Optimization-based Selection

In service selection, optimization-based selection refers to finding the most suitable

service or service group, which can achieve one or more objectives, e.g., minimizing

costs, maximizing performance quality, etc. Moreover, the optimization objectives

typically need to be achieved under specific constraints, which are usually required

by service users, e.g., consumption budgets. Hence, in this scenario, service selection

can be modeled as the Selective Multiple Choice Knapsack Problem which has been

proved to be a NP-hard problem [166].

In the general service-oriented environments, optimization-based selection is widely

studied in the field of service composition. Many efforts have been made in this area,
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e.g., [16, 55, 63, 9, 64, 95, 98, 158, 186, 185, 10]. In these studies, services are

structurally composed for a single task. For each task component, there are multiple

functionality-equivalent alternative services. According to the capacities of the alter-

native services and users’ demands, an optimal service composition plan is determined.

In addition to structural service composition, in cloud environments, optimization-

selection can also be applied in non-structural service combination. For example, an

infrastructure cloud providers need to select multiple data centers serving worldwide

consumers in order to minimize service response time. In this case, the structural re-

lationships among the data centers are not important for the final performance of the

provider.

In [58] and [57], Hans et al. propose a heuristic approach for an infrastructure

cloud provider selecting a set of data centers with the goal of minimizing the total

cost. The provider aims to provide services to consumers distributed in different ge-

ographical locations. In order to reduce the latency of service delivery and maintain

the quality of services, the provider expects to select multiple data centers in different

locations, each of which serves the consumers in the near location. The data center

selection problem is modeled as an optimization problem solved using integer pro-

gramming. In order to improve the computation efficiency, a priority-based heuristic

algorithm is proposed based on liner programming relaxation [50].

A similar study of data center selection in cloud environments is presented in [129]

and [128]. Compared to Hans et al.’s work, Qian et al. consider more characteristics in

data center selection. They argue that, in addition to data center distribution and cloud

user distribution, dependencies among application components should be studied due

to the complex composition of distributed applications. Moreover, the locations of

related applications should also be considered in order to reduce the communication

latency between applications. The whole selection problem is modeled into a graph

including data centers, cloud providers, application components and cloud users under

specific constraints (e.g., resource capacities, geographical distances, cost, etc.). A

heuristic approach is proposed to achieve the global goal of selection, i.e., minimizing
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both the total implementation cost and service delivery distance.

In [170], Wang et al. propose a SaaS cloud recommendation approach in multi-

tenant environments, where cloud consumers have different and multi-dimensional

QoS requirements, while cloud providers have their own optimization goals, e.g., min-

imizing costs. The main aim of the proposed approach is to improve the efficiency of

service selection. In this work, cloud tenants are first clustered according to the sim-

ilarity of their requirements on multiple QoS attributes. Then the alternative services

are clustered based on the tenant clusters. The alternative services in a service cluster

are ranked based on their utility values computed through weighted QoS attributes.

At last, a greedy algorithm [29] is applied to find the optimal service composition for

every tenant cluster according to the service rankings in every service cluster. The

experimental results demonstrate that the cluster-based approach can greatly reduce

the computation time, while maintaining the success rates compared to other related

approaches.

In [169], Wang et al. propose a distributed framework of cloud service selection

based on cloud brokers. The framework consists of three layers: user layer, broker

layer and service layer. In the user layer, cloud users submits their requirements of

cloud services to the suitable brokers via user agents. The cloud brokers in the broker

layer are in charge of collecting and updating cloud performance information. Ac-

cording to the types of registered cloud services, cloud brokers are clustered in order

to reduce the service retrieval time. In the service layer, the performance of services is

monitored and registered to the brokers. An incentive function is proposed to motivate

cloud providers submitting effective performance information to the suitable brokers.

Through a set of adaptive learning algorithms, the broker selects the optimal service

with the maximum performance-to-cost rate according to the information collected

from both users and providers.

In [77], Kang et al. focus on modeling cloud users’ vague preferences in cloud

service composition. They argue that the precise user requirements and preferences

required in traditional service composition are hardly achieved in practice. Thus, they
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propose an approach to learn users’ preferences according to their historical ratings of

composed service performance. If a user does not have sufficient records for learning,

the service composition plans from similar users would be recommended. If a new user

does not have any historical record, the most favorite service composition plan would

be recommended until the user generates enough records. Note that, the proposed

approach only considers three structures of service execution plans, i.e., individual

services, sequential services and parallel services.

In [22], Chen et al. model cloud service selection as a multi-objective p-median

problem with dynamic demands, i.e., according to k pre-defined optimization goals,

selecting p cloud services from m alternative services for serving n cloud users, which

is proven NP-hard [83]. The proposed selection model considers four optimization

objectives: minimizing QoS delivery between users and services, minimizing network

transmission cost, minimizing service cost and maximizing the total number of provi-

sion services. In addition, users’ requirements for services can change over time. A

genetic algorithm is proposed in order to address the dynamic-demand setting.

In [89], Li et al. model cloud service selection as a constraint-based optimiza-

tion problem which considers two types of constraints: functional constraints defined

via WSDL (Web Services Description Language) and non-functional constraints ex-

pressed via QoS attributes. The proposed model consider three composition structures:

sequence, parallel and switch (i.e. if-then-else structure). Based on these structures,

a set of QoS aggregation functions are proposed for four QoS attributes, i.e., Time,

Price, Availability and Reliability. The optimization problem is solved through the

standard Particle Swarm Optimization algorithm [126].

In [20], Chang et al. propose a probability-based approach for selecting cloud

storage providers. They argue that a cloud user needs to duplicate his/her data in mul-

tiple storage clouds in order to maximizing the data availability. The novelty of this

work is to consider service selection under a particular context (i.e., storage services),

and thus the selection objectives are determined according to such a context, which

includes minimizing data access failure probability, maximizing data survival proba-
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bility and maximizing the expected number of survival data blocks when some storage

providers fail to work properly. Two dynamic programming algorithms are proposed

in terms of different optimization objectives.

In [60], He et al. propose a QoS-driven cloud selection model for SaaS cloud

providers in the multi-tenant environment. The proposed model is motivated by such

a scenario: a SaaS cloud provider wants to provide an application services to multiple

consumers. These consumers require the same functionality but different QoS per-

formance. Thus the provider tries to satisfy all consumers’ QoS requirements, while

achieving its own goals (e.g., minimizing cost or maximizing performance quality). In

the proposed model, four types of service composition structures are studied, i.e., se-

quence, branch, loop and parallel, based on which the corresponding QoS aggregation

functions are defined for the QoS attributes, including cost, response time, availability

and throughput. For solving the optimization problem, the authors analyze and com-

pare three methods: integer programming, skyline and a greedy algorithm, where the

greedy algorithm outperforms the other methods.

In [34] and [94], Du et al. and Liang et al. study the temporal constraint problem

in cloud service selection and composition. In their studies, the temporal constraints

refer to a kind of time constraints, e.g., a service component is required to be invoked

no later than a specified period of time after a prior component accomplishes its task.

Thus, the violation of temporal constraints should be detected at run time, and then

the corresponding composed services should be re-planned if necessary. To this end, a

penalty-based genetic algorithm is applied for dynamical service composition. In this

algorithm, a checkpoint strategy is used to detect the violation of temporal constraints.

If a violation happens, the fitness of the interim solution in a generation of the algo-

rithm would be reduced in order to ensure finding more optimal solutions in the further

generations.

In order to improve the efficiency of cloud service selection, Sudareswaran et al.

propose a selection approach based on cloud brokers [151]. In their approach, all the

related information of cloud services is encoded and indexed. The cloud services with
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similar characteristics would be clustered for quick service searching. According to

consumers’ requirements, the services having the closet guarantees to the requesters’

queries are selected as the best services through a greedy algorithm according to their

Hamming distances.

In [104], Martens and Teuteberg propose a cloud service selection approach based

on analyzing cost and risk. They argue that most of the decision factors in cloud se-

lection are related to costs, and thus can be represented by cost values, e.g., adoption

costs, maintenance costs, etc. In addition to costs, the risks of consuming cloud ser-

vices are classified into three aspects: integrity, confidentiality and availability. The

final optimization goal is to minimize both the total costs and risks. Several formal

models are proposed for cost and risk evaluations. It is argued that various optimiza-

tion techniques can be applied on the proposed models, e.g., linear or non-linear pro-

gramming, and genetic algorithms.

Different from most of the studies of service composition, Yang et al. [181] fo-

cus on cloud service composition at runtime, rather than the service composing-then-

executing way. They argue that, during service execution, many unpredictable factors

would affect the whole performance of the pre-planned service composition, e.g., alter-

able service requirements and unstable service performance. Hence, service selection

and composition need to be dynamically processed during execution. They model

such a problem via Markov decision process [127]. When a service component in

a task is unavailable or unstable, the rest of required services would be recomposed

based on their utilities. The performance of the following services would be estimated

through MDP. Through experimental simulation, the proposed approach can achieve

a close-to-optimal solution, while greatly reducing the time cost. Note that, only the

sequential composition structure is considered in the proposed approach.

2.3.3 Trust-based Selection

The concept of “trust” has been introduced in many different contexts. In service-

oriented environments, Jøsang et al. define trust as “the subjective probability by
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which an individual expects that another performs a given action on which its welfare

depends [70].” We define that trust-based selection in cloud environments refers to ser-

vice selection based on the evaluation of the trustworthiness of cloud providers or ser-

vices. In trust-based selection approaches, trust models are typically proposed based

on either subjective assessments or objective assessments, or the combination of them.

Subjective assessments are usually extracted from ordinary consumers’ judgements

or expert opinions; and objective assessments are usually obtained from quantitative

performance evaluation or QoS descriptions.

In [54], Habib et al. propose a trust management system in cloud environments,

the aim of which is to help cloud consumers find trustworthy cloud providers from

vague service descriptions. The system can take both subjective assessments from

user feedback and objective assessments from service auditing as input. For each

performance attribute of a cloud service, the corresponding trust is evaluated based on

the average rating of the service, the certainty associated with the average rating and

the initial expectation of the service. Then, all the attribute trust is aggregated through

a logic-based algorithm [139].

As everything can be a service in cloud environments, Noor and Sheng propose a

concept named “Trust-as-a-Service” [118], and carry out a range of studies for trust

management of cloud services [117, 120]. The trust result of every service is evaluated

based on the aggregation of cloud consumers’ feedback. They propose an approach

based on majority consensus and feedback density to evaluate consumers’ credibility

of providing truthful assessments, so that the consumers’ feedback can be weighted by

their credibility. Furthermore, they propose an approach in [119] for the detection of

collusion attacks and Sybil attacks in trust assessment.

In [47], Ghosh et al. propose a framework named “SelCSP” to compute the in-

teraction risk of cloud providers for cloud consumers. The risk computation is based

on the aggregation of the trustworthiness evaluation of providers through consumers’

feedback or direct experiences and the competence evaluation of providers through

the transparency of SLA guarantees. Finally, the risk levels of a cloud provider under
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different contexts can be estimated for a particular consumer.

In [105], Marudhadevi et al. propose a trust model for consumers selecting trust-

worthy cloud services based on previously monitored performance data and consumers’

direct experiences. In this model, the trust degree of a cloud service is computed in

two steps: 1) before signing a SLA, previous QoS data and consumers’ feedback of the

service are collected to compute the first trust degree (L1TD) for a consumer to judge

whether to sign the SLA; and 2) if the degree is over a threshold, the consumer agrees

to consume the service and provide his/her feedback for this service. Then based on

the consumer’s feedback, a new trust degree (L2TD) is computed through Bayesian

inference to determine whether to continue using the service.

In [167], Wang and Wu propose a trust model based on a six-direction trust co-

ordinate. The six directions of the coordinate consists of three groups of trust eval-

uations. The first one is the subjective-objective trust, where subjective trust refers

to the trust evaluation based on users’ subjective judgments; and objective trust is

evaluated through quantitative performance measurements. The second group is the

direct-indirect trust, where direct trust is extracted from a user’ direct experience; and

indirect trust comes from other users’ recommendations. The last group is the inflow-

outflow trust, where inflow trust and outflow trust respectively represent a service’s

received trust from the public and given trust to other services. Then a geometric al-

gorithm is applied based on the coordinate for finding the most trustworthy service

(finding the minimum coverage polyhedron).

In [32], Ding et al. propose a model for trustworthiness evaluation of cloud ser-

vices, named “CSTrust”, based on the aggregation of both customer satisfaction esti-

mation and QoS prediction. Their work takes both qualitative attributes and quantita-

tive attributes of cloud performance into account. The missing QoS values of quanti-

tative attributes are predicted through collaborative filtering based on the performance

records of other similar services. And cloud consumers’ missing ratings for qualitative

attributes can also be estimated through collaborative filtering. The results of objec-

tive prediction and subjective estimation are combined and weighted by customers’
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preference to compute the final service trustworthiness.

In [130], Qu and Buyya propose a hierarchy-based IaaS cloud selection approach.

The novelty of the proposed approach is to determine users’ requirements through

a rule-based fuzzy inference system. In this work, the users’ requirements can be

expressed by various forms, e.g., numerical requirements and linguistic requirements.

The inference system can take all these requirements as input, and then output the

overall trust of every alternative service.

In general web service environments, Galizia et al. propose a trust-based selection

approach for semantic web services [43]. The selection process is based on the Web

Service Modeling Ontology [38], and modeled as a classification problem. It is as-

sumed that every web service or user has a trust profile specifying its trust guarantee

and requirements, which are determined by expert opinions. The selection result is a

group of web services whose trust profiles match a user’s trust profile.

Malik and Bouguettaya carry out a range of studies of credible trust establishment

in service-oriented environments [99, 100, 101]. In their studies, a service consumer

is allowed to share the ratings of the performance quality of services. In order to ac-

curately assess service QoS, the rater’s credibility is evaluated by comparing his/her

ratings to majority consensus and the historical reputations of services. Thus, biased

ratings or even malicious concluded ratings can be identified and set very low credibil-

ity. Then the credibility is used as weights to compute the new reputations of services.

In [163], Vu et al. propose a web service selection approach based on both service

consumers’ feedback and the values of the QoS attributes monitored by some trusted

third parties. The feedback from the trusted agents is assumed to be fully trusted

in the proposed work. According to the agents’ feedback, the credibility of users is

evaluated through comparing their feedback to the trusted feedback. In some cases,

the credibility of a user cannot be evaluated directly since the user is isolated from any

trusted agent. In such a case, the trustworthiness of the user’s feedback is evaluated

through the k-mean clustering algorithm for finding similar users. The final score of

an alternative service is computed through the weighted feedback of users according
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to their credibility.

2.3.4 Description-based Selection

The studies of description-based selection are motivated by the problem of automatic

cloud service selection without human labor. In this scenario, service providers are

usually allowed to advertise their services using a machine-readable language, e.g.,

OWL [144] and WSML [82]. In the meantime, service requestors’ preferences and re-

quirements are also expressed via a broker using the same language. Then an ontology-

based matching algorithm is employed to automatically find the qualified services ac-

cording to the structured service definitions and requirements. In some cases, service

real-time QoS information can also be gathered via autonomous agents for dynamic

service selection.

In [177], Wittern et al focus on expressing cloud services through extended feature

modeling, which is applied to represent the commonalities and differences of cloud

services. The features of a cloud service can be functional or non-functional. Through

variability modeling, all configurations of a services are summarized for further selec-

tion. The cloud service selection process is carried out by finding the configurations

which fulfill all the required objectives. Such a process can be considered as a filter

to reduce the number of valid service configurations. The outcomes of the selection

process can be used as an input for any further decision-making approaches of service

selection. A prototype is demonstrated in [177] for selecting real-world cloud storage

services.

In [190], Zhang et al. propose a declarative recommender system, named “CloudRec-

ommender”, for cloud infrastructure service selection. The aim of this system is to

achieve automatic service selection without human involvement. To this end, a for-

mal mapping is established based on ontology between consumers’ requirements and

service configurations. A prototype is presented to demonstrate the effectiveness of

the proposed system by carrying out a service selection process of real-world infras-
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tructure service providers, including Windows Azure, Amazon, GoGrid, RackSpace,

etc.

In [140], Ruiz-Alvarez and Humphrey propose a XML schema for the descriptions

of cloud storage services. Through such descriptions, consumers’ requirements can

be automatically matched to the targeted services without human effort on reading

service definition documents. In addition, the proposed schema can also be applied to

describe local clusters, and thus the costs and performance changes of service transfer

from local storage to cloud storage can be estimated. A user case is proposed in [140]

for describing the cloud storage services on Amazon and Windows Azure.

In [52], Goscinski and Brock propose a generic framework for cloud-based service

publication, discovery and selection via Web Services Description Language (WSDL)

[164]. Through this framework, service providers are allowed to publish their cur-

rent state and characteristics of services via dynamic attributes defined in the WSDL

documents. A prototype with a web-based user interface is introduced to validate the

effectiveness of the proposed work.

In [115], Ngan and Kanagasabai propose a semantic cloud service discovery and

selection system based on OWL-S which is an ontology for describing semantic web

services [53]. In the proposed system, complex service constraints are first expressed

through logic-based rules, and then input in a dynamic rule engine for semantic match-

making based on real-time ontology population and reasoning. The matching outcome

is a group of services with the corresponding matching levels. Then the alternative ser-

vices can be ranked through a pre-defined scoring function.

In general service-oriented environments, Xu proposes a service discovery and

selection model by combining the pre-defined QoS definitions and service reputa-

tions extracted from consumers’ feedback [180]. The QoS information is provided

by UDDI registries [164]. The reputation of a service is evaluated by a centralized

reputation manager which is in charge of collecting feedback. The calculation of the

reputation scores is designed to reflect the recent performance of services. To this end,

consumers’ feedback is decayed by time in the feedback aggregation. The most re-
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cent feedback has the most important weight. The final score of a service is computed

by weighting both QoS attributes and the corresponding reputations according to a

consumer’s requirement.

In [108] and [107], Maximilien and Singh propose a multi-agent-based framework

for web service selection according to a QoS ontology. The selection is based on dy-

namic assessment of non-functional attributes. The whole framework is driven by a

multi-agent system, in which autonomous agents are used to represent service con-

sumers and providers, and responsible for dynamic configuration of web services and

sharing QoS information with other agents. The definition of services and consumers’

requirements are expressed via a XML policy language. In addition, the dependency

between QoS attributes is taken into account, e.g., high quality performance causes

high price.

Table 2.2 illustrates the main works in the literature of cloud service selection in

terms of the proposed generic procedure.
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2.4 Related Techniques in Incentive Mechanism Design

Incentive mechanisms are applied under various contexts, e.g., e-marketplace, repu-

tation systems, crowdsourcing, etc. In general, an incentive mechanism is typically

designed for the purpose of eliciting the cooperation of participants who are ratio-

nal and self-interested [12], i.e., every participant is motivated to maximize their own

payoffs. Game Theory [116] is the fundamental for designing an effective incentive

mechanism, under which an equilibrium can be achieved among all participants for

some pre-defined goals, e.g., eliciting truthful assessments.

In our studies of cloud service selection, an uncertain compatible incentive mecha-

nism is proposed to motivate cloud users providing continual and truthful assessments.

The proposed mechanism can not only effectively improve the accuracy of cloud ser-

vice selection since cloud users would try to provide less biased or noisy assessment

under the mechanism, but also benefit the evaluation of the dynamic performance of

cloud services.

In the literature, incentive mechanisms for eliciting truthful information are usually

modeled in a seller-buyer scenario, where speaking the truth is an equilibrium for buy-

ers. Suppose there are a group of sellers and a group of buyers. Buyers publish their

satisfaction on the goods or services after they have transactions with sellers. The buy-

ers who are considered to provide honest feedback will be rewarded, and the feedback

will truthfully reflect sellers’ reputation of offering satisfactory goods or services. Ac-

cording to the applied techniques, those mechanisms can generally be classified into

two types: peer-prediction based approaches and reputation-based approaches.

2.4.1 Peer-prediction based Approaches

Miller et al. [112] propose the pioneering “Peer-Prediction” method for eliciting truth-

ful feedback. In their work, every user can obtain monetary payment from an autho-

rized center. The amount of payment depends on how well a user can predict the

signal from some other user (called a reference user) based on its own signal. Their
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work is feasible based on several common knowledge assumptions, e.g., product type

distributions and conditional distributions of signals. However, there is a drawback in

Miller et al.’s work, i.e., there may exist lying equilibria that can bring higher expected

payoffs than the truthful equilibrium [112].

To overcome this drawback, Jurca and Faltings [74, 75] propose a collusion-resistant

feedback payment approach, in which several reference reports are applied in the scor-

ing rules instead of the one-reference-report scheme in the prior work. They prove that

speaking the truth is the unique equilibrium if at least three reports are used.

In the later studies, Witkowski [175] points out that the quality of goods or services

provided by sellers is assumed fixed in prior works. However, in many real-world sit-

uations, the quality is inherently dynamic. Thus, he proposes a payment mechanism

based on the hidden Markov setting to deal with such dynamics. It is worth noting that

all these peer-prediction-based incentive mechanisms make strong common knowl-

edge assumptions. To lift these assumptions, Witkowski and Parkes [176] propose peer

prediction without a common prior. Their mechanism allows participants to adopt sub-

jective and private priors instead of a common prior by asking a participant to offer two

reports (one before the transaction and one afterwards), and their approach is proved

to provide strict incentives for truthful reports. Compared to the peer-prediction-based

approaches, our proposed incentive mechanism needs fewer knowledge assumptions

and no extra belief report submission.

In [72], Jurca et al. propose an incentive compatible reputation mechanism. In this

work, before two agents A and B have a transaction, they need to buy the reputation

information of each other from a broker agent named R-agent to determine whether

to have the transaction. If the transaction is completed, the two agents can sell the

reputation information back to the same R-agent, and agent A can get paid only if the

rating A submits for agent B is the same as the following rating for B submitted by

another agent.

It can be concluded that the incentive mechanism introduced above involves a/an

payment/award function, through which instant payment/award for a participant is cal-
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culated according to its feedback and others’ feedback.

2.4.2 Reputation based Approaches

Some incentive mechanisms focus on evaluating participants’ reputations on how truth-

fully they provide assessments or do something they have committed to. And the rep-

utation would influence a participant’s future opportunities of obtaining profits.

Jurca and Faltings [73] propose an incentive-compatible reputation mechanism,

which allows sellers to “confess” when they did not provide the goods or services as

those they have committed. The proposed mechanism focuses on dealing with oppor-

tunistic behavior where a seller builds an good reputation by providing satisfactory

services or goods first, and then starts to cheat buyers later. The proposed mechanism

is based on fact that a seller trends not to cheat a buyer who has a good reputation

on telling the truth since the cost suffered from the negative report submitted by such

a buyer would exceed the benefit from cheating. Both the seller and the buyer are

asked to submit reports about the quality of the provided services or goods. If they

cooperate (i.e., providing the same reports), the reputations of both of them increase,

otherwise decrease. Due to such a confession, a seller can prevent further losses for

his/her cheating, which give sellers incentives to speak the truth.

Papaioannou and Stamoulis [124], propose a reputation-based incentive mecha-

nism in a peer-to-peer system to motivate peers for truthful reporting. In their work,

a non-credibility metric is designed for controlling a peer’s punishment of having dis-

agreed transaction feedback with other peers. After each transaction, the peers in-

volved in the transaction would be asked to provide reports on whether the transaction

is satisfactory. If the submitted reports are the same, the non-credibility values of all

the peers decrease as rewards, otherwise increase as punishments. Furthermore, unco-

operative peers would be forbidden to participate in further transactions for a period

of time which is exponentially related to their non-credibility. This motivates peers to

always give truthful reporting in order to avoid punishments.
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Zhang et al. [189] propose a trust-based incentive mechanism, which is an ex-

tension of their prior work [188], in a reverse auction scenario. In this mechanism,

a buyer computes personalized reputations of other buyers based on the aggregation

of both public and private reputation evaluations. A buyer is considered trustworthy

if many other buyers have similar reports to the buyers, and thus believe he/she has a

good reputation. On the other hand, sellers compute the reputations of buyers. A buyer

having a good reputation would be rewarded by sellers since the report submitted by

such a buyer is considered more valuable for sellers to build good reputations. Fur-

thermore, a seller whose reputation is below a threshold is forbidden to participate in

future auctions and therefore suffers a loss. Thus, the proposed mechanism can benefit

both honest buyers and sellers in the marketplace.

2.4.3 Incentive Mechanism Studies in Crowdsourcing

In addition to the above approaches, some recent studies of incentive mechanisms

in crowdsourcing environments are proposed for eliciting effective contributions of

workers. In general, all these incentive approaches are proposed for eliciting the co-

operation of users, and therefore are related to our studies.

In [106], Mason and Watts study the relationship between financial incentives and

working performance, and argue that increasing financial incentives could only bring

more workers, but not a working quality improvement as expected. A similar conclu-

sion can be found in DiPalantino and Vojnovic’s work [33]. They argue that worker

participation rates logarithmically increase with monetary rewards.

In [193], Zhang and van der Schaar focus on solving workers’ free-riding prob-

lem and requesters’ false-reporting problem. They designed optimal and sustainable

incentive protocols based on social norms [76]. In the proposed protocol, a service

requester must pay workers in advance no matter how well the workers work. The

aim of this setting is to prevent requesters from falsely reporting working quality. On

the other hand, a worker’s working quality is judged by the requester. Because of the
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setting of ex-ante payments, the requester would always tell the truth about working

quality since cheating cannot bring any profit. According to the requester’s judgment,

the workers’ reputations are computed. If a worker’s reputation is lower than a pre-

defined threshold, which is determined by a range of protocol parameters (e.g., the

probability of the requester falsely judging or a worker’s confidence on obtaining fur-

ther profits), the worker would be isolated from further transactions for a period of

time. Thus, workers would always work well in order to obtain more profit.

In Zhang et al.’s further study [192], a generic rating protocol is proposed for

any type of online communities. Through theoretical analysis, the proposed optimal

protocol is proved to not only feasibly sustain cooperation among users but also solve

the whitewashing problem [41].

2.5 Open Issues in Cloud Service Selection

According to our survey, we discuss some open issues which have not been sufficiently

studied in the literature of cloud service selection.

• Lack of wide-recognized standards of cloud performance: due to the diver-

sity of cloud services and cloud consumers’ customized requirements, setting a

common-acknowledged standard for identifying all cloud performance attributes

and quantitatively describing these attributes is believed impossible in practice.

However, lack of such a standard results that human-decision procedure have to

be involved in cloud selection, and thus fully automatic service selection cannot

be achieved in real-world situations.

Most studies of cloud service selection focus on the selection based on gen-

eral performance attributes without specifying what the attributes are and how

to model them. Only a few studies proposed cloud performance taxonomy or

ontology [146, 45, 143, 149, 79], but these studies have not be commonly recog-

nized since cloud consumers have very different and customized views in cloud
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selection. So far, this is still a issue which cannot be effectively solved in the

application level. If cloud performance can be standardized, the effectiveness

and efficiency of cloud service selection can be greatly improved.

• Lack of classification of cloud performance assessments: in the literature, the

different types of assessments of cloud performance are usually treated equally

and would be typically taken as the input of a MCDM approach for service

selection, which may introduce numerous noise into service selection since as-

sessments given under quite different situations may be quite different. For ex-

ample, from the perspective of service delivery, cloud assessments can be given

from the service side or the end-user side. There may exist a large discrepancy

of cloud performance between both side. In addition, from the perspective of

who offering assessments, cloud assessments can be classified into subjective

assessments and objective assessments. Either type of assessments should be

differently treated. That is because, objective assessments may not be intuitive

for ordinary consumers, who may feel confused when facing numerous quanti-

tative information. On the other hand, although subjective assessments are easy

to get understanding, they may contain bias and malicious assessments, and thus

cannot be fully trusted. In the current studies of cloud service selection, the clas-

sification of cloud assessments before carrying out service selection has not been

paid enough attention.

• Lack of evaluation of assessment credibility according to assessment clas-

sification: whatever assessments are used in cloud service selection, the credi-

bility of assessments should be carefully evaluated in order to make the selec-

tion more accurate. Due to the different types of cloud assessments introduced

in the last paragraph, the ways of computing assessment credibility should be

customized according to assessment types. For example, objective assessments

should be evaluated according to the contexts under which the assessment are

given. And subjective assessment evaluation should focus on filtering out un-
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reasonable ones using bias or malevolence detection techniques. In a nutshell,

different types of assessments should be evaluated in different ways according

to their features. This issue has not been sufficiently studied in the literature.

• Lack of evaluation of long-term performance of cloud services: as intro-

duced in Section 1.1, dynamic performance is a main feature of cloud comput-

ing. A potential cloud consumer desires to know if the selected service can

maintain its service level over long time. To this end, cloud performance eval-

uation should consider the long-term performance of services. The variation

of service performance should be monitored via long-term assessments from

ordinary consumers or professional testing parties. In addition, the credibility

of assessments should also be evaluated over long time in order to judge how

much the parties who offer assessments can be trusted. In the literature, most

of studies apply time-decay functions to aggregate cloud assessments over time.

Through this way, the variation of cloud performance cannot be demonstrated

to consumers. And thus the overall performance of cloud services cannot be

reflected.

• Lack of incentives for eliciting long-term cloud assessments: since long-term

assessments play a very important role in evaluating the dynamic performance of

cloud services, there should be a way to motivate cloud consumers to regularly

provide continual and truthful assessments. This can be considered as the active

way to improve assessment reliability, compared to the traditional way in the

literature, i.e., passively evaluate assessment credibility. However, to the best

of my knowledge, there is no such an incentive mechanism proposed in the

literature.

In this thesis, we propose some solutions for those issues discussed above. The exper-

imental results and theoretical analysis prove the feasibility of our solutions.
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2.6 Conclusion

In this chapter, we first introduce the background knowledge of cloud computing, and

then propose a generic procedure of cloud service selection, consisting of five steps:

defining the purpose of cloud service selection, service criterion modeling, identifying

the roles of service selection participants, service criterion evaluation and service se-

lection execution. The proposed procedure aims to cover all the related studies in the

literature, and thus identify popular research focus areas as well as open issues. Then,

we classify the related models and approaches of cloud service selection based on the

generic procedure, and summarize the main techniques of cloud service selection in

the literature. Then, the related techniques and studies of incentive mechanism design

are introduced. Finally, some open issues in cloud service selection are discussed.
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Chapter 3

Cloud Selection based on Subjective

Assessments and Objective

Assessments

Cloud computing has been attracting huge attention in recent years. Because of the

outstanding advantages of cloud computing, e.g., flexibility and low cost, more and

more individuals and organizations have started to consume cloud services. It should

be noted that the emergence of cloud services also comes with new challenges. One

big challenge is how to evaluate the performance of cloud services. To this end, many

cloud performance monitoring, testing and comparison approaches [45] [85] [137]

have been proposed. The usual way for cloud service evaluation is to compare the

performance differences between similar cloud services. Such a comparison is usu-

ally based on the results of a predesigned set of benchmark tools [85, 84]. As cloud

services are highly virtualized, the benchmark tools for traditional computation per-

formance measurement can be appropriately applied in cloud environments. By com-

bining these benchmark tools according to cloud features, many metrics can be quan-

titatively measured (e.g., the speed of CPU, memory read/write and storage, service

response time and throughput).

Nevertheless, the benchmark testing results usually may not reflect the real per-

formance of cloud services for ordinary cloud consumers. This is because the testing

environment is usually not the same as that of ordinary consumers’ daily work, and a

61
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variety of real tasks currently executed in a cloud may not be perfectly simulated by

a limited number of tests. In addition, these benchmark tests are usually spot-check

tests. It is hard to carry out continuous testing because such tests might lead to costing

no less than that of consuming a real cloud service. Furthermore, some crucial but

qualitative aspects of cloud services can hardly be tested through such objective and

quantitative measurement. For example, considering a company working on process-

ing a large amount of sensitive customer data, the security and privacy of the data have

a crucial impact on the company’s survival. If the company plans to move their work

into clouds in order to reduce the optional costs, it must choose a cloud provider which

has a very good reputation on data security and privacy. In addition, as the company is

not a professional IT company, good and comprehensive after-sales services are highly

desired. Moreover, due to the sensitivity of the company’s data, a variety of encryption

approaches are frequently applied in daily work. Hence, the speed of data encryption

and decryption is a big concern for the company. In this example, in addition to the

typical performance of a cloud service (e.g., CPU, memory, response time and costs)

that can be quantitatively tested by common benchmark testing, the company needs to

carefully consider the data privacy and security and the quality of after-sales services,

which can hardly be quantified. In addition, the benchmark tests of the cryptographic

calculation speed of a cloud service may need to be specifically designed according to

the company’s requirement. All the issues mentioned above may cause great difficulty

for the company in cloud service selection.

In this chapter, we propose a novel model based on the aggregation of the feedback

from cloud consumers and the objective performance measurement from a trusted third

party’s testing. A framework supporting the proposed model is first presented in Sec-

tion 3.1. Then, in Section 3.2, we present the details of our cloud service selection

model that evaluates the performance of cloud services by aggregating all the subjec-

tive assessments and the objective assessments through a fuzzy simple additive weight-

ing system [26]. It should be noted that cloud consumers’ subjective assessments may

be biased and inaccurate since they are usually not professional IT staff and even some
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of them may be malicious users. Hence, in our model, cloud consumers’ subjective

assessments and the third party’s objective assessment are compared, so that unrea-

sonable subjective assessments can be filtered out before aggregation. This makes our

approach more accurate and effective. Finally, a case study is presented in Section 3.3

to illustrate the advantages of our model.

3.1 The Cloud Selection Framework

In this section, we present our framework of cloud service selection based on both

the feedback from cloud users and the objective performance benchmark testing from

a trusted third party. Figure 3.1 illustrates our framework, which consists of four

components, namely, (1) cloud selection service, (2) benchmark testing service, (3)

user feedback management service, and (4) assessment aggregation service, where

cloud selection service is in the higher layer of our framework, and others are in the

lower layer.

3.1.1 Cloud Selection Service

The cloud selection service is in charge of accepting and undertaking the preliminarily

processing of requests for cloud service selection from potential cloud consumers.

In addition, it issues the requests for the services from the lower layer components.

When a potential cloud consumer submits a request for selecting the most suitable

cloud service, the cloud selection service firstly chooses the cloud services which can

meet all the objectives and quantitative requirements (e.g., the type of services, the

specification of virtual machines and costs) of the potential user from a candidate list of

cloud services. Then, according to the user’s further requirements, it sends requests to

the benchmark testing service and the user feedback management service for accessing

the related records of alternative clouds. These records are then sent to the assessment

aggregation service. By aggregating these records through our proposed model (see



64 Cloud Selection based on Subjective Assessments and Objective Assessments

Figure 3.1: Our Proposed Framework for Cloud Service Selection

details in Section 3.2), the assessment aggregation service returns the final score of

each alternative cloud to the cloud selection service. All these scores are shown to the

potential user for cloud selection.

3.1.2 Benchmark Testing Service

The benchmark testing service is provided by a trusted third party which designs a va-

riety of testing scenarios for the common performance aspects of a cloud service (e.g.,

availability, elasticity, service response time, and cost per task) by standard benchmark

suites. In addition, some specific tests can be designed and run according to potential
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cloud consumers’ needs, such as testing the speed of cryptographic calculations. The

common performance tests can be executed in the spot-check form over time for a long

period. The specific tests can run in a continuous but short period according to poten-

tial users’ requirements. Each tested performance aspect of a cloud service can be

considered as the objective attribute of the cloud service. All these objective attributes

are expressed in quantified forms (e.g., 90% for availability, 200ms for response time

or 47.5 benchmark scores for CPU performance). All the attribute values are recorded

and maintained for the requests from the cloud selection service.

3.1.3 User Feedback Management Service

The user feedback management service is used to collect and manage the feedback

from the users who are consuming cloud services. For each performance aspect of a

cloud service, a user gives his/her subjective assessment according to his/her intuitive

feelings. Each aspect that users assess can be considered as the subjective attribute

of the cloud service. These subjective attributes are expressed by linguistic variables

(e.g., “good”, “fair” and “poor”).

Note that some subjective attributes and some objective attributes can represent

the same performance aspect of a cloud service. For example, the response time

of a cloud service can be accurately calculated by benchmark testing under differ-

ent circumstances. By analyzing the testing results, an objective assessment of the

service response time can be given. Meanwhile, a user of this cloud can also give

subjective assessments of response time by feeling how long the cloud responds to

his/her requests in daily work. Figure 3.2 introduces an example to explain the re-

lationship between these attributes. In our framework, such attributes (e.g., response

time which belongs to both subjective attributes and objective attributes) are named as

associated attributes. In Figure 3.2, for a cloud service, we assume there are s sub-

jective attributes, o objective attributes and u associated attributes for a cloud service

(u 6 s, u 6 o), where privacy, after-sales services, availability and response time
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Figure 3.2: The Relationship of Subjective Attributes and the Objective Attributes

are its subjective attributes extracted from users’ feedback. On the other hand, it also

has availability, response time and cryptographic calculation as its objective attributes

extracted from a third party’s benchmark testing. Thus, availability and response time

are considered as the associated attributes. The associated attributes from subjective

assessment are called subjective associated attributes, and those from objective assess-

ment are called objective associated attributes. Therefore, each subjective associated

attribute corresponds to an objective associated attribute.

Furthermore, in some cases, the users’ subjective assessment of a cloud service

may not be absolutely subjective. For those users with an IT background, some simple

testing tools or status checking commands (e.g., Command xentop for Xen Hypervi-

sor1) can be used to help them make an assessment. In such a situation, we consider

that the assessment still belongs to subjective assessment since the results from such

cloud users’ testing are usually incomprehensive and inaccurate without scientific and

statistical analysis.

3.1.4 Assessment Aggregation Service

The assessment aggregation service is in charge of aggregating the values of the sub-

jective attributes from the user feedback management service and the objective at-

1xen.org
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tributes from the benchmark testing service, and computing the final score for each

alternative cloud service according to the importance weights that are set by a poten-

tial cloud user in the form of linguistic variables. In the company example introduced

before, suppose that the company is quite concerned about the issues of user data’s se-

curity and privacy and hopes to receive excellent after-sales service. Therefore, the im-

portance weights for security and privacy as the attribute of a cloud service can be set

as “very high”, and the weight for after-sales service can be set as “high”. Likewise,

all the other subjective attributes and objective attributes are given such importance

weights. By using these weights, the potential cloud user (i.e., the company) can also

determine whether to put more trust on subjective assessment or objective assessment,

so that the final score based on aggregating all these attributes can comprehensively

reflect the various needs of the potential cloud user (i.e., the company).

3.2 The Cloud Service Selection Model

In this section, we propose a novel cloud service selection model which is based on

comparing and aggregating the subjective attributes and the objective attributes of a

cloud service. In our model, for the sake of simplicity, we assume there are sufficient

users offering their subjective assessments, and there is only one third party offering

objective assessment for a cloud service. That is, there is only one set of values for

objective attributes and there are many sets of values for subjective attributes for one

cloud service. In addition, the third party is assumed to be a trusted third party which

offers honest results of the objective performance testing. The trustworthiness of the

third party and the situation with multiple third parties will be considered in Chapter 6.

Hence, in our model, we take objective assessment as a benchmark to evaluate the ac-

curacy of subjective assessments, since objective assessment is usually more accurate

to reflect the real performance of a cloud service than subject feeling.

In order to compare and aggregate subjective attributes and objective attributes,

the values of these attributes should be normalized. Here, we apply a fuzzy simple
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additive weighting system (FSAWS) proposed by Chou et al. [26] to convert all the

attribute values into ratings. Firstly, after gathering both the values of the subjective

attributes and the objective attributes of an alternative cloud service, the values of

the subjective attributes are converted into ratings through a mapping from linguistic

variables to fuzzy numbers. Secondly, the values of the objective attributes are also

converted into the ratings by comparing the values of the same objective attributes

in all the alternative cloud services. Thirdly, as introduced above, for an alternative

cloud service there are many sets of values for the subjective attributes from different

users’ feedback and only one set of values for the objective attributes from the third

party’s testing. We compute the Euclidean distance [31] between the set of values

for the objective associated attributes and each set of the values for the subjective

associated attributes through the corresponding normalized ratings. The set of values

for the subjective attributes with the Euclidean distance over a threshold (e.g., 80%

of the maximum distance) will be considered unreasonable and eliminated from the

following aggregation of all the attributes. After that, the importance weight for each

attribute is computed according to the potential cloud user’s preference. Finally, a

score is calculated for each alternative cloud service. The higher the score, the better

the overall performance of an alternative cloud service.

In real world situations, subjective assessment for cloud services and importance

weight for each performance attribute are usually represented in the form of linguistic

variables (e.g., “good” and “bad”). In order to deal with the inherent uncertainty of

human languages, we apply a fuzzy simple additive weighting system in our model.

Through this system, linguistic variables can be represented by fuzzy numbers for

their fuzziness. And quantitative terms can also be represented in fuzzy number form.

Hence, by using this system, our model can effectively normalize and aggregate all

different types of subjective attributes and objective attributes in real world situations.

Before presenting the details of our model, some basic knowledge of FSAWS will be

introduced.
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3.2.1 Fuzzy Simple Additive Weighting System

The fuzzy simple additive weighting system [26] is originally proposed for solving

the facility location selection problem which is a multiple attributes decision-making

problem under homo/heterogeneous group decision-making environments. In this sys-

tem, the decision makers are grouped together to determine the most suitable facility

location. The evaluation of an alternative location depends on a variety of subjective

attributes and objective attributes. The importance weight and the rating value for each

attribute are represented by trapezoidal fuzzy numbers. An aggregated fuzzy score is

calculated for each alternative location through some fuzzy set operations. Then, each

fuzzy score is defuzzified to a crisp number as the final score of each alternative loca-

tion.

To explain how this system works, some basic knowledge of fuzzy numbers is

introduced in [26].

1. Trapezoidal Fuzzy Number:

Ã = (a, b, c, d) is a fuzzy set on R, where a 6 b 6 c 6 d are real numbers. If

µÃ(x) =



x− a
b− a

, a 6 x 6 b

1, b 6 x 6 c

x− d
c− d

, c 6 x 6 d

0, otherwise,

then Ã = (a, b, c, d) is called a trapezoidal fuzzy number, where µÃ(x) is its mem-

bership function. The most probable value of the evaluation data is represented in

the interval [b, c]. The intervals [a, b] and [c, d] show the fuzziness of the evaluation

data. For example, “good” can be represented by (5, 7, 7, 10), and “very good” can

be represented by (7, 10, 10, 10). In addition, some quantitative terms can also be

represented by trapezoidal fuzzy numbers. For example, “equal to 50” can be rep-

resented by (50, 50, 50, 50), and “approximately equal to 700” can be represented by
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(690, 700, 700, 710).

2. Operations of Trapezoidal Fuzzy Numbers:

Given two trapezoidal fuzzy numbers Ã = (a, b, c, d) and B̃ = (e, f, g, h), and a

real number k, some operations are defined as follows:

Addition:

Ã⊕ B̃ = (a+ e, b+ f, c+ g, d+ h), a > 0, e > 0.

Multiplication:

Ã⊗ B̃ = (ae, bf, cg, dh), a > 0, e > 0;

k ⊗ Ã = (ka, kb, kc, kd), a > 0, k > 0;

Ã⊗ k = (ka, kb, kc, kd), a > 0, k > 0.

Division:

Ã/B̃ = ( a
h
, b
g
, c
f
, d
e
), a > 0, e > 0;

k/Ã = (k
d
, k
c
, k
b
, k
a
), a > 0, k > 0;

Ã/k = (a
k
, b
k
, c
k
, d
k
), a > 0, k > 0.

Commutative operations:

Ã⊕ B̃ = B̃ ⊕ Ã, a > 0, e > 0;

Ã⊗ B̃ = B̃ ⊗ Ã, k ⊗ Ã = Ã⊗ k, k > 0, a > 0, e > 0.

3. Defuzzification:

Taking a trapezoidal fuzzy number Ã = (a, b, c, d) as input, the defuzzified output

is a crisp number defined by computing the signed distance of Ã:

d(Ã) =
1

4
(a+ b+ c+ d). (3.1)

3.2.2 The Cloud Selection Approach

In this section, we present the details of our cloud service selection model. We modify

the fuzzy simple additive weighting system [26] in order to fit our targeted problem.

In addition, in our model, unreasonable subjective assessments can be filtered out be-

fore the aggregation of all the assessments. Therefore, the aggregated score of each
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alternative cloud service can more accurately reflect the overall performance of a cloud

service with less noise.

Assume that a potential cloud user submits its request to the cloud selection service

for finding the most suitable cloud service meeting all the user’s requirements. After

the preliminary selection according to the functional requirements, suppose that there

are m clouds left as the alternative clouds denoted by {Cj}, where j = 1, · · · ,m.

The final score of each alternative cloud is computed based on s subjective attributes

extracted from cloud users’ feedback and o objective attributes extracted from the

benchmark testing of a trusted third party, where there are u (u 6 s, u 6 o) asso-

ciated attributes. Thus, all the subjective attributes and the objective attributes are

denoted as {Ai}, where i = 1, 2, · · · , s + o. {Ai} (i = 1, · · · , s) denotes the subjec-

tive attributes, where {Ai} (i = s − u + 1, · · · , s) denotes the subjective associated

attributes; {Ai} (i = s + 1, · · · , s + o) denotes the objective attributes, where {Ai}

(i = s + 1, · · · , s + u) denotes the objective associated attributes. The corresponding

objective associated attribute of the subjective associated attribute Ai is Ai+u for each

i = s− u+ 1, · · · , s.

For an alternative cloud Cj , the user feedback management service returns n feed-

backs given by n cloud users. Each feedback includes s values in the form of linguistic

variables corresponding to the s subjective attributes. The feedbacks are denoted as

{Fjk}, where k = 1, · · · , n. On the other hand, the benchmark testing service returns

one benchmark testing report for each alternative cloud. Each report includes o values

in the form of quantitative terms corresponding to the o objective attributes. The re-

ports are denoted as {Tj}, where j = 1, · · · ,m. m is the number of all the alternative

cloud services.

It should be clarified that, for an alternative cloud, there are n feedbacks and only

one testing report. That is, all the n feedbacks correspond to only one testing report

since we assume there is only one trusted third party in our model. Here, for an

alternative cloud, we connect the set of values for the o objective attributes from the

only one testing report to the set of values for the s subjective attributes from each
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Decision makers
Attributes

1 2 · · · s+ o

1 A1j1 A2j1 · · · A(s+o)j1

2 A1j2 A2j2 · · · A(s+o)j2

· · · · · · · · · · · · · · ·
n A1jn A2jn · · · A(s+o)jn

Table 3.1: Decision makers of an alternative cloud Cj

feedback. The final score of an alternative cloud is computed based on aggregating all

the sets of values of the s + o attributes. We define such a set of values of the s + o

attributes as a decision maker, denoted as DMjk (k = 1, · · · , n), for an alternative

cloud Cj . Thus, the value of ith attribute of the jth alternative cloud from the kth

decision maker can be denoted as Aijk.

Table 3.1 illustrates the decision makers of an alternative cloud Cj . There are

n decision makers for Cj . n is the number of user feedbacks for Cj . Note that, in

Table 3.1, for each i = s+ 1, · · · , s+ o, all the Aijk are the same for different decision

makers DMjk since they are all the values of the objective attributes from the only

one testing report Tj . That is, for Cj , Aij1 = Aij2 = · · · = Aijn for each i =

s+ 1, · · · , s+ o.

The detailed procedure of our approach is shown below:

Step 1 (Converting the values of subjective attributes into ratings): By using a

mapping from linguistic variables to fuzzy numbers, the linguistic values for the sub-

jective attributes can be converted into fuzzy numbers. We use the mapping illustrated

in Table 3.2 from [26], which is frequently employed in research of the multi-criteria

decision-making problem for real world situations, such as in [93] and [92]. Each

fuzzy number in Table 3.2 represents the fuzzy rating corresponding to the linguis-

tic variable, denoted as r̃. In addition, a crisp rating corresponding to each linguistic

variable is computed by defuzzifying its fuzzy rating with the signed distance (Equa-

tion (3.1)), which is denoted as r. Hence, for a decision maker DMjk of an alternative

cloud Cj , r̃ijk and rijk denote the fuzzy rating and the crisp rating forAijk respectively,

where i = 1, · · · , s.
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Linguistic Variables Fuzzy Ratings (r̃) Crisp Ratings (r)
Very poor (VP) (0, 0, 0, 20) 5

Between very poor and poor (B.VP&P) (0, 0, 20, 40) 15
Poor (P) (0, 20, 20, 40) 20

Between poor and fair (B.P&F) (0, 20, 50, 70) 35
Fair (F) (30, 50, 50, 70) 50

Between fair and good (B.F&G) (30, 50, 80, 100) 65
Good (G) (60, 80, 80, 100) 80

Between good and very good (B.G&VG) (60, 80, 100, 100) 85
Very good (VG) (80, 100, 100, 100) 95

Table 3.2: Mapping from Linguistic Variables to Fuzzy Ratings and Crisp Ratings

Step 2 (Converting the values of objective attributes into ratings): As we have

introduced in Section 3.1, the values in the form of quantitative terms can also be

represented by fuzzy numbers. For any decision maker DMjk of an alternative cloud

Cj , the values of the objective attributes {Aijk} (i = s+ 1, · · · , s+ o) are represented

in the form of fuzzy numbers. Then, these fuzzy numbers are converted into fuzzy

ratings by comparing the values of the same objective attribute in all the alternative

clouds. Let x̃ijk = (aijk, bijk, cijk, dijk) (i = s+ 1, · · · , s+ o) be the fuzzy numbers of

the objective attribute values of the cloud Cj for any DMjk. The fuzzy rating of each

objective attribute value is computed as follows:

r̃ijk = (x̃ijk/max
j

(dijk))⊗ 100,where

i = s+ 1, · · · , s+ o, j = 1, · · · ,m, k = 1, · · · , n.
(3.2)

r̃ijk = (min
j

(aijk)/x̃ijk)⊗ 100,where

i = s+ 1, · · · , s+ o, j = 1, · · · ,m, k = 1, · · · , n.
(3.3)

Equation (3.2) is for the situation that the larger objective attribute value is the

better (e.g., benchmark score for CPU). And Equation (3.3) is for the situation that the

smaller objective attribute value is the better (e.g., response time).

Step 3 (Filtering unreasonable subjective assessments): So far, all the values in

Table 3.1 have been converted into the form of fuzzy ratings. For each decision maker
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DMjk (k = 1, · · · , n) of an alternative cloud Cj , the Euclidean distance between the

ratings of the corresponding subjective associated attributes and the objective associ-

ated attributes is computed as follows:

EDjk =

√√√√ s∑
i=s−u+1

(d(r̃ijk)− d(r̃(i+u)jk))2

=

√√√√ s∑
i=s−u+1

(rijk − r(i+u)jk)2 .

(3.4)

EDjk represents the aggregated difference between the crisp ratings of the corre-

sponding subjective associated attributes and the objective associated attributes of the

decision maker DMjk for the alternative cloud Cj . In our model, we take the objec-

tive assessment as the benchmark to filter out unreasonable subjective assessments. If

the distance exceeds a threshold (e.g., 80% of the maximum Euclidean distance), the

decision maker offering such values of the subjective attributes will be removed from

the list of the decision makers for an alternative cloud.

Step 4 (Computing the importance weight for each attribute): According to

the potential cloud user’ requirement, an importance weight in the form of linguistic

variables is given to each subjective or objective attribute, so that the user can deter-

mine the concern degree of each attribute. In addition, the user can also determine how

much to trust the subjective or objective assessment through these importance weights.

A fuzzy weight in the form of fuzzy numbers is given to each attribute, which is de-

noted as W̃i, where i = 1, · · · , s + o. Table 3.3 [26] illustrates the mapping from

linguistic variables to fuzzy weights. This mapping is also frequently used in prior

studies for real world situations. Then, the fuzzy weights are defuzzified by comput-

ing their signed distances (Equation (3.1)). The crisp weight of the attribute Ai is

denoted as Wi which is computed as follows:

Wi =
d(W̃i)∑s+o
i=1 d(W̃i)

,where i = 1, · · · , s+ o. (3.5)
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Linguistic Variables Fuzzy Weights
Very low (VL) (0, 0, 0, 3)

Low (L) (0, 3, 3, 5)
Medium (M) (2, 5, 5, 8)

High (H) (5, 7, 7, 10)
Very High (VH) (7, 10, 10, 10)

Table 3.3: Mapping from Linguistic Variables to Fuzzy Weights

Step 5 (Aggregating all attributes): Assume there are n′ decision makers left for

the cloud Cj after Step 3. A matrix M̃j based on the fuzzy ratings of each attribute

from different decision makers is constructed as follows:

M̃j =


r̃1j1 r̃2j1 · · · r̃(s+o)j1

r̃1j2 r̃2j2 · · · r̃(s+o)j2

· · · · · · · · · · · ·

r̃1jn′ r̃2jn′ · · · r̃(s+o)jn′

 .
According to the crisp weight of each attribute, the fuzzy scores of the cloud Cj

from every decision maker DMjk (k = 1, · · · , n′) are computed as follows:

S̃j = M̃j ⊗


W1

W2

· · ·

Ws+o

 =


f̃j1

f̃j2

· · ·

f̃jn′

 , (3.6)

where f̃jk is the fuzzy score of Cj from DMjk (k = 1, · · · , n′). Here, the operation ⊗

is generalized to matrices in the standard way of matrix multiplication. Then, the final

score of Cj is computed as follows:

Sj =
1

n′
(
n′∑
k=1

d(f̃jk)) . (3.7)

Finally, according to the final scores, all the alternative cloud services are ranked

for the selection of the potential cloud user.
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3.3 A Case Study

In this section, a case study over the example introduced at the beginning of the chapter

is presented to illustrate the effectiveness of our proposed model for cloud service

selection.

Assume that the company which plans to consume a cloud service requests to select

the most suitable cloud services based on seven attributes, including four subjective

attributes and three objective attributes. The four subjective attributes are privacy (A1),

after-sales service (A2), availability (A3) and service response time (A4); and the three

objective attributes are availability (A5), service response time (A6) and cryptographic

calculation speed (A7), where availability and service response time are the associated

attributes.

Step 1: Assume that there are four alternative cloud services left after preliminary

selection. For each alternative cloud, there are ten feedbacks from the user feedback

management service to assess the four subjective attributes in the form of linguistic

variables. According to Table 3.2, all the linguistic variables are mapped into the

fuzzy numbers which represent the fuzzy ratings for the subjective attributes.

Step 2: Every alternative cloud service has a performance report for the three ob-

jective attributes from the benchmark testing service. The value of the attribute avail-

ability is the average percentage of the times of successfully accessing a cloud service

over the last twelve months. The value of the attribute service response time is the av-

erage of the service response time of every spot-check test over the last twelve months.

The fuzziness of these values depends on the minimum value and the maximum value

for each attribute recorded in the last twelve months. The speed of cryptographic

calculation is represented by a benchmark score from the short-term specific tests ac-

cording to the company’s requirement. The higher the score, the faster the speed.

Table 3.4 illustrates the fuzzy values of the three objective attributes for the four al-

ternative clouds. And according to Equations (3.2) & (3.3), all these fuzzy values are

converted into fuzzy ratings. Table 3.5 illustrates the fuzzy ratings corresponding to
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Alter. Clouds
Obj. Attr.

A5 (%) A6 (ms) A7 (scores)

C1 98.8, 99.2, 99.2, 99.8 50, 56, 56, 60 136.4, 136.4, 136.4, 136.4
C2 99.2, 99.8, 99.8, 100 75, 83, 83, 90 102.5, 102.5, 102.5, 102.5
C3 97.9, 98.5, 98.5, 99.1 180, 200, 200, 220 62.6, 62.6, 62.6, 62.6
C4 98.2, 98.8, 98.8, 99.4 160, 173, 173, 190 69.8, 69.8, 69.8, 69.8

Table 3.4: The fuzzy values of the objective attributes for each alternative cloud

Alter. Clouds
Obj. Attr.

A5 (r̃5) A6 (r̃6) A7 (r̃7)

C1 98.8, 99.2, 99.2, 99.8 83.33, 89.29, 89.29, 100 100, 100, 100, 100
C2 99.2, 99.8, 99.8, 100 55.56, 60.24, 60.24, 66.67 75.15, 75.15, 75.15, 75.15
C3 97.9, 98.5, 98.5, 99.1 22.73, 25, 25, 27.78 45.89 45.89 45.89 45.89
C4 98.2, 98.8, 98.8, 99.4 26.32, 28.90, 28.90, 31.25 51.17, 51.17, 51.17, 51.17

Table 3.5: The fuzzy ratings of the objective attributes for each alternative cloud

Table 3.4.

Step 3: Combining the fuzzy ratings for all the subjective attributes and the ob-

jective attributes, the decision makers are listed for an alternative cloud. For the sake

of simplicity, we only list the decision makers for C1 in Table 3.6. The Euclidean

distance between the corresponding associated attribute pairs are computed for each

decision maker with Equation (3.4). For DM4 and DM8, we can see that the ratings

of the subjective associated attributesA3 andA4 are much lower than the ratings of the

corresponding objective associated attributes A5 and A6. By Equation (3.4), the Eu-

clidean distances of DM4 and DM8 are 120.02 and 113.11 respectively, which exceed

the threshold of 107.48 (i.e., 80% of the maximum distance of 134.35). Thus, DM4

and DM8 are considered unreasonable and filtered out of the decision-maker list.
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Step 4: According to the potential cloud user (i.e., the company)’s requirement,

the importance weight for each attribute is given in the form of linguistic variables.

According to Table 3.3, all the weights are mapped into the fuzzy weights which are

then converted into the crisp weights by Equation (3.5). All the weights are illustrated

in Table 3.7.

Step 5: According to Table 3.6 and Table 3.7, the fuzzy scores of C1 based on the

remaining eight decision makers are computed by Equation (3.6). Finally, by Equa-

tion (3.7), the final score of C1 is 74.3.

Results: Table 3.8 illustrates the scores of the four alternative clouds. Row 2

presents the scores based on our model considering both the subjective attributes and

the objective attributes. Row 3 and Row 4 respectively present the scores of con-

sidering only the subjective attributes and only the objective attributes according to

the corresponding importance weights. The ranking computed based on our model

is C1, C2, C3, C4. The ranking computed based on the subjective assessment only is

C2, C1, C3, C4. And the ranking computed based on the objective assessment only is

C1, C2, C4, C3.

From Table 3.8, we can see that, although the subjective assessment from cloud

users places C1 as the second best, C1 is the best cloud service according to our model

since our model considers both its subjective assessment and objective assessment. It

should be noted that the gap in the scores between C1 and C2 based on our model is

smaller than the gap of the scores between them based on considering only their objec-

tive assessments. That is because our model considers subjective assessment for some

important aspects of a cloud service, which can hardly be measured by quantitative

testing. Thus, in this case, C1 is the best cloud service by comprehensively consider-

ing all the concerned performance aspects of a cloud service according to the potential

cloud user (i.e., the company)’s requirements.
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Attributes
Weights

Linguistic Variable Fuzzy Weights Crisp Weights

A1 Very High 7,10,10,10 0.2022
A2 High 5,7,7,10 0.1585
A3 Low 0,3,3,5 0.0601
A4 Medium 2,5,5,8 0.1093
A5 Medium 2,5,5,8 0.1093
A6 High 5,7,7,10 0.1585
A7 Very High 7,10,10,10 0.2022

Table 3.7: The weights of each attribute

Approaches C1 C2 C3 C4

Sub.&Obj. 74.3 67.8 51.5 50.6
Sub. 54.4 60.5 51.8 47.0
Obj. 96.6 76.0 51.1 54.7

Table 3.8: The scores of each alternative cloud

3.4 Conclusion

In this chapter, we have proposed a novel model of cloud service selection by ag-

gregating subjective assessments from cloud consumers and objective performance

assessment from a trusted third party. We apply a fuzzy simple additive weighting

system to normalize and aggregate all different types of subjective attributes and ob-

jective attributes of a cloud service, so that some specific performance aspects of a

cloud service can also be taken into account according to potential cloud users’ re-

quirements. Furthermore, our model can identify and filter unreasonable subjective

assessments. This makes the results based on our model more accurate and effective

with less noise. Based on the analysis through a case study, our proposed model of

cloud service selection has the following advantages:

(1) By considering subjective assessments from cloud consumers, our model takes

into account some vital but qualitative performance aspects in the selection process of

a cloud service as well as quantitative performance aspects.

(2) Our model considers the situation in the real world, where cloud users’ sub-

jective assessments are fuzzy in linguistic form as well as the importance weight for
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each performance attribute. Thus, our model can effectively deal with the uncertainty

of human languages in cloud service selection.

(3) According to the different concerns of potential cloud users for different sub-

jective attributes and objective attributes, our model presents an overall performance

score for a cloud service by aggregating all subjective assessments and objective as-

sessments with less noise from unreasonable subjective assessments.
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Chapter 4

Cloud Service Selection based on

Contextual Assessments

Due to the diversity and dynamics of cloud services, selecting the most suitable cloud

service has become a major issue for potential cloud consumers. Prior to cloud service

selection, an evaluation of cloud services should be applied first. In the literature, there

are two types of approaches which can be used to conduct such an evaluation. The first

type of approaches is based on objective performance assessments from ordinary QoS

(Quality-of-Service) value (e.g., service response time, availability and throughput)

monitoring and predesigned benchmark testing. The second type of approaches is

based on user subjective assessments which are usually extracted from user ratings for

each concerned aspect of cloud services. In this type of approaches, cloud services are

usually treated like traditional web services, thus some rating-based reputation systems

[148, 87, 101] can be utilized for cloud service selection.

Nevertheless, these two types of cloud service evaluation approaches have their

own limitations. That is because, firstly, objective performance assessment can only

be carried out for the performance aspects which can be easily quantified. Conversely,

objective assessment is not appropriate for those aspects which are quite hard to quan-

tify, e.g., data privacy. On the other hand, subjective assessment has the risk of inaccu-

racy since users’ subjective feelings are very likely to contain bias and not reflect the

real situations of cloud performance. In addition, as cloud users who give subjective

assessments are usually spread throughout the world, for any cloud service, the sub-

83
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jective feelings of a cloud user in a context (e.g., morning in Sydney) may be much

different from those of another user in a different context (e.g., afternoon in Paris). Fur-

thermore, there may be malicious users who give unreasonable subjective assessments

to deceive others and/or benefit themselves in some cases. As a result, the accuracy of

overall subjective assessment for cloud services can be significantly affected. Hence,

a cloud service selection model, which can be used to not only aggregate different per-

formance aspects of cloud services according to cloud consumers’ various needs but

also filter unreasonable user subjective assessments, is highly desirable.

To overcome the aforementioned drawbacks, this chapter proposes a novel context-

aware cloud service selection model based on the comparison and aggregation of

subjective assessments extracted from cloud user feedback and objective assessments

from quantitative performance testing. The proposed model is extended and modi-

fied from our prior work presented in Chapter 3. In this new model, according to a

potential cloud consumer’s requirements, an objective assessment provided by some

professional testing party is first applied as a benchmark to filter out biased or unrea-

sonable subjective assessments. In order to guarantee the accuracy of such filtering,

our work considers two assessment features (i.e., location and time) in contexts, which

can commonly affect both objective assessments and subjective assessments. The pro-

cess of filtering is based on the context similarity between objective assessments and

subjective assessments, i.e., the more similar the context, the more reliable subjective

assessment, so that the benchmark level is dynamically adjusted according to the cor-

responding context similarity, which is computed through a novel approach inspired

by the SimRank Algorithm [69]. After such filtering, the final aggregated results can

reflect the overall performance of cloud services according to potential users’ person-

alized requirements and context.

In Section 4.1, we first introduce the contexts concerned in cloud service selec-

tion. After briefly introducing the preliminaries of our prior cloud selection model

which does not consider assessment contexts, the details of our context-aware model

are discussed in Section 4.2. Finally, Section 4.3 presents the experimental results to
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demonstrate the feasibility of our context-aware model.

4.1 Contexts in Cloud Service Selection

The definition of contexts usually varies in different application environments. In our

cloud service selection model based on both objective assessments and subjective as-

sessments, the context of an assessment for a cloud service refers to a group of values

of the features of the assessment, which can affect the result of the assessment.

To give an example of the impact of a context, according to the objective statis-

tics from CloudSleuth1, the response time of a cloud service varies significantly under

different worldwide QoS monitoring centers, and generally increases with the increas-

ing distances between the cloud provider and these monitoring centers because of the

increasing length of the network routes of cloud service delivery. Meanwhile, the

monitoring results of response time can also be affected by the time of a day, in other

words, how busy the cloud service and the network accessed by the monitoring cen-

ters for monitoring can vary at different times of a day. Therefore, both objective

assessment and subjective assessment can be affected according to different assess-

ment contexts. At the current stage of our work, we consider two assessment features

(i.e., location and time) in our context-aware cloud service selection model.

In our prior cloud service selection model presented in Chapter 3, assessment con-

texts are not taken into account. However, in order to have a more accurate compar-

ison between objective assessment and subjective assessment, the similarity between

the contexts of objective assessments and subjective assessments should be considered.

More similar contexts indicate the subjective assessments are given in the more similar

situation with that of the given objective assessment, thus such subjective assessments

are considered more reliable. Furthermore, in our prior model, a fixed threshold is

used as the benchmark value for the objective assessment to filter out unreasonable

subjective assessments. This threshold reflects how much the objective assessment is

1www.cloudsleuth.net
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trusted. If the threshold is high, more subjective assessments are retained for the fol-

lowing aggregation process, which means more subjective assessments are considered

reasonable, otherwise fewer subjective assessments are retained, which means fewer

subjective assessments are considered reasonable. However, determining such a suit-

able fixed threshold is very difficult. Because the fixed threshold means the subjective

assessments with different contexts are treated equally. If the threshold is determined

too high, more noisy subjective assessments will be left in the final aggregated results.

Conversely, if the threshold is too low, only a few subjective assessments are left so

that only these few subjective assessments can affect the final aggregated results, and,

as a consequence, the final aggregated results cannot reflect most users’ subjective

assessment. An intuitive solution to overcome this drawback is to adjust the thresh-

old dynamically according to the context similarity between objective assessment and

subjective assessment. The more similar the contexts, the more reliable subjective as-

sessments, thus the threshold should be set higher for retaining more of such subjective

assessments. On the contrary, if the contexts are less similar, then the threshold should

be set lower to filter out more subjective assessments which are given in more different

situations. Next, the details of computing such context similarity will be introduced.

4.1.1 Context Similarity

In [155], Tavakolifard et al. introduce a general idea of the calculation of context sim-

ilarity based on the bipartite SimRank algorithm [69] for trust transferability among

similar contexts in electronic transactions. In order to compute the similarity of assess-

ment contexts in our context-aware cloud service selection model, we follow Tavakoli-

fard et al.’s idea and propose a concrete approach for context similarity measurement.

In details, our approach consists of two steps:

The first step is to compute the similarity between two values from the same as-

sessment feature.

The second step is to model all contexts and their relevant assessment features as
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Figure 4.1: An Example of Two Contexts

a graph and compute the overall similarity between contexts.

Figure 4.1 illustrates an example of two contexts A (Sydney, morning) and B (Sin-

gapore, afternoon) belonging to two assessments. Each context contains two values

for two assessment features (i.e., location and time). Sydney and Singapore are the

values of the feature location for both contexts. Likewise, morning and afternoon are

the values of the feature time.

In [155], Tavakolifard et al. only introduced how to compute overall context sim-

ilarity (i.e., the second step) through the bipartite SimRank algorithm and did not

present details on computing the similarity between two values from the same assess-

ment feature (i.e., the first step). For each assessment feature, a specific comparator

needs to be designed for computing similarity among the values of each feature. In

our context-aware cloud service selection model, two features are considered in as-

sessment contexts. Next, we first present a modified version of the bipartite SimRank

algorithm according to our model, and then introduce the design of the comparators

for location and time.

4.1.1.1 Modified Bipartite SimRank

The original bipartite SimRank algorithm [155] is modified to take different context

comparators into account in our model. LetA andB denote two contexts and, s(A,B)
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denote the similarity between A and B. If A = B, then s(A,B) ∈ [0, 1] is defined to

be 1. Let c and d denote assessment features for contexts A and B, and s(c, d) ∈ [0, 1]

denote the similarity between features c and d. Let Vc(A) and Vc(B) denote the values

of the feature c in the contexts A and B respectively. Likewise, Vd(A) and Vd(B)

denote the values of the feature d in the contexts A and B respectively. If c = d, then

s(c, d) = Cmpc(Vc(A), Vc(B)) = Cmpd(Vd(A), Vd(B)) ∈ [0, 1], where Cmpc and

Cmpd are the comparators for the features c and d.

Now, A,B and c, d can be formed to a directed graph pointing from contexts to

features. If we take Figure 4.1 as an example, we have that A = (Sydney,morning),

B = (Singapore, afternoon), c = location, d = time, Vc(A) = Sydney, Vc(B) =

Singapore, Vd(A) = morning and Vd(B) = afternoon. In the directed graph, I(v)

and O(v) denote the set of in-neighbors and out-neighbors of v respectively, where v

is a node in the graph. Ii(v) denotes an individual in-neighbor of v for 1 ≤ i ≤ |I(v)|,

and Oi(v) denotes an individual out-neighbor of v for 1 ≤ i ≤ |O(v)|.

Now we have the recursive equations: for A 6= B,

s(A,B) =
C

|O(A)||O(B)|

|O(A)|∑
i=1

|O(B)|∑
j=1

s(Oi(A), Oj(B)), (4.1)

and for c 6= d,

s(c, d) =
C

|I(c)||I(d)|

|I(c)|∑
i=1

|I(d)|∑
j=1

s(Ii(c), Ij(d)), (4.2)

where C ∈ (0, 1) is a constant which can be considered as either a confidence level

or a decay factor. In the full version [68] of Jeh et al.’s paper [69] proposing bipartite

SimRank, they argue that the constant C can be viewed as the bases of exponential

functions whose only purpose is to map distances to finite intervals. Although the val-

ues of similarity can be affected by C, the relative results of similarity is still retained.

Hence, for the sake of efficiency, we follow Jeh et al.’s setting to set C = 0.8 in our

model. In addition, Jeh et al. have proven that a simultaneous solution s(∗, ∗) ∈ [0, 1]
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Figure 4.2: A Geographical Hierarchy

to the recursive equations (4.1) and (4.2) always exists and is unique.

4.1.1.2 Design of Comparators

According to each assessment feature, a corresponding comparator needs to be de-

signed and applied in the above modified bipartite SimRank algorithm. In our model,

two assessment features are considered, i.e., location and time.

Similarity of Locations:

The effect for both objective assessment and subjective assessment of cloud ser-

vices is usually caused by the delay of the Internet communication between the lo-

cations of where the assessments are given and the target cloud service. In order to

precisely model such an effect, the Internet topology between these parties should be

first determined. However, such a topology should be created by some domain ex-

perts, and is out of the scope of our work. For the sake of simplicity, in this chapter,

we use geographical locations instead of the Internet locations. That is because the

distance between two nodes in the Internet is commonly determined by their geo-

graphical locations. We introduce a similarity measurement based on a hierarchical

ontology structure [187] for the assessment feature location in our model.

According to the real monitoring data from CloudSleuth, we establish a geograph-

ical hierarchy according to the order of regions → countries → cities. Figure 4.2
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illustrates the Aisa/Oceania part of the hierarchy. In order to measure the similar-

ity between any two nodes in the hierarchy, we apply Zhang et al.’s hierarchy-based

approach of similarity measurement [187]. LetD denote the depth of the deepest com-

mon ancestor of two nodes n and n′. For example, the deepest common ancestor of

Beijing and Tokyo is Asia/Oceania in Figure 4.2, thus D(Beijing, Tokyo) = 1. The

smaller D represents the deepest common ancestor of the two nodes is on the upper

layer of the hierarchy, which means the two nodes are fallen into a more general clas-

sification, thus are less similar. Conversely, a larger D means the two nodes are fallen

into a more concrete classification, thus are more similar. Hence, a monotonically

increasing hyperbolic tangent function [187] is defined to model this trend:

Cmp(n, n′) =
eαD(n,n′) − e−αD(n,n′)

eαD(n,n′) + e−αD(n,n′)
, (4.3)

where Cmp(n, n′) represents the similarity comparator returning the similarity value

between n and n′; α ∈ (0, 1) is a constant. Here, we follow Zhang et al.’s setting to

set α = 0.4, which is considered optimal according to their experimental results.

Similarity of Time:

In practice, the reasons why the different times of a day can affect both objective

assessment and subjective assessment of cloud services are quite diverse and compli-

cated, where the main reason for such an effect is how busy the networks used by

users to access cloud services are. However, the extent of how busy networks are

varies frequently according to different users’ situations, thus it is also quite hard to

quantitatively measure such changes.

Hence, in our model of context-aware cloud service selection, we divide 24 hours

of a day into two time intervals. When a potential cloud user asks for cloud service

selection, he/she needs to specify in what period of time he/she hopes to frequently

employ the selected cloud service. The assessments given within that period of time

are considered more reliable for the potential user, and the assessments given within
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Figure 4.3: Similarity of Time

the non-specified period of time are considered less reliable for the user. Therefore, in

our model every subjective assessment contains a time stamp to identify the time when

the assessment is given. We assume that such assessments are required to represent

users’ subjective judgement at that time only. To this end, we propose an incentive

mechanism in Chapter 7 for giving cloud users incentives to provide subjective as-

sessments regularly. Due to the incentive mechanism, most cloud users will give such

subjective assessments with time stamps.

In our model, the assessment feature time has two states, i.e., specified and non-

specified. The similarity between these two states can be computed through the basic

bipartite SimRank algorithm. Figure 4.3 illustrates the graph of similarity of the two

states. Then, the similarity between specified period of time and non-specified period

of time can be computed through Equations (4.1) and (4.2).

It should be noted that, except location and time, there are some other assessment

features which can also affect the assessment results for some reasons (e.g., the Inter-

net service providers). The similarity among the values of such a feature should be

computed through a specific designed comparator. And the modified bipartite Sim-

Rank algorithm introduced above can be applied with any further comparator.
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4.2 Context-aware Cloud Service Selection

In our prior cloud service selection model introduced in Chapter 3, a framework is

proposed for cloud service selection based on both cloud user feedback and objective

performance benchmark testing. This framework is composed of four components,

namely, (1) cloud selection service, (2) benchmark testing service, (3) user feedback

management service, and (4) assessment aggregation service, where cloud selection

service is in the higher layer of the framework to command the others in the lower

layer. Through defining the associated performance attributes (refer to Chapter 3), our

proposed cloud service selection approach consist of five steps: 1) converting the val-

ues of subjective attributes into ratings, 2) converting the values of objective attributes

into ratings, 3) filtering out unreasonable subjective assessments, 4) computing the

importance weight for each attribute, and 5) aggregating all attributes. In our context-

aware model, we basically follow the framework and selection procedure introduced

in Chapter 3, and made some modifications due to considering assessment contexts.

In our context-aware cloud service selection model, we assume there are plenty of

benchmark testing agents spread around the world providing benchmark testing ser-

vices. When a potential cloud user asks for selecting the most suitable cloud service,

according to his/her situation, he/she needs to specify which agents should be selected

to offer objective assessments for all alternative cloud services. Then, the cloud service

selection will be processed independently according to each agent. For each bench-

mark testing agent, the cloud selection service asks the user feedback management

service to provide the subjective assessments for all alternative cloud services from

the cloud users all over the world. Then, all the subjective assessments are classified

according to their contexts (i.e., location and time). As the nodes in the deepest level

of our geographical hierarchy are cities, the location of each subjective assessment is

set as the nearest city to the real location specified in the assessment in the hierarchy.

And due to time differences among cloud users all over the world, the time specified

in every assessment is converted into one standard time.
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Assume that there are l locations shown in all the subjective assessments. As there

are only two states for the assessment feature time in our model, i.e., specified period of

time and non-specified period of time, all the subjective assessments are classified into

2l groups. Then, according to the potential user’s requirement, the benchmark testing

agent provides an objective assessment with contextual information (e.g., objective

performance assessment in the morning of Sydney).

The process of the comparison and aggregation of the objective assessment and

the subjective assessments is the same as that of our prior work without the consid-

eration of assessment contexts, except the importance weight setting and changing a

fixed threshold to a group of dynamical thresholds. Such thresholds are computed as

follows:

Step 1: The potential user first sets the importance weights on how much to

trust objective assessment or subjective assessment through linguistic variables. Then,

through a mapping [26], linguistic weights are converted into fuzzy weights, which are

denoted as W̃o and W̃s for objective assessment and subjective assessment respectively.

Then, the potential user sets the importance weight for each objective or subjective at-

tribute, denoted as W̃i, where i = 1, · · · , s+o. After that, Wi is the normalized weight

of each attribute, which is computed as follow:

Wi =
d(W̃s)

d(W̃s) + d(W̃o)
× d(W̃i)∑s

i=1 d(W̃i)
, i = 1, · · · , s,

Wi =
d(W̃o)

d(W̃s) + d(W̃o)
× d(W̃i)∑s+o

i=s+1 d(W̃i)
, i = s+ 1, · · · , s+ o.

(4.4)

Step 2: Let go denote the context of the objective assessment, and gv denote the

context of each group of the subjective assessments in the total 2l groups, where 1 ≤

v ≤ 2l. Through the approach introduced in Section 4.1, the similarity between each

gv and go is computed and denoted as sv(gv, go).

Step 3: In order to offset the effect caused by the constant C in the modified bipar-
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tite SimRank algorithm, let so(go, go) denote the similarity between the contexts of the

objective assessment and itself, and Edis denote the theoretical maximum Euclidean

distance between corresponding objective associated attributes and subjective associ-

ated attributes according to our model. The filtering threshold Rv for the subjective

assessment group with the context gv is weighted by the attribute importance and the

context similarity as follow:

Rv = (1− d(W̃o)

d(W̃s) + d(W̃o)
)× sv(gv, go)

so(go, go)
× Edis, (4.5)

where v = 1, · · · , 2l. From the above equation, we can see when the potential user

trusts objective assessment more, Rv will become smaller, so that more subjective

assessments are considered unreasonable and will be filtered out. In addition, when the

context similarity sv(gv, go) becomes lower, Rv will become smaller. That means the

subjective assessments are given in a more different situation with that of the objective

assessment, thus such subjective assessments are considered less reliable and will be

filtered out more rigorously. Finally, the rest of the subjective assessments after such

filtering and the objective assessment are aggregated to reflect the overall performance

of a cloud service more accurately.

4.3 Experiments

4.3.1 Experiment Setup

In our experiments, there are three subjective attributes, i.e., cloud provider reputation

on privacy (A1), after-sales services (A2), service response time (A3), and two ob-

jective attributes, i.e., service response time (A4) and CPU performance (A5), where

service response time A3 and A4 are the associated attribute pair.

In order to evaluate our context-aware cloud service selection model, two kinds of

data are required, i.e., subjective ratings from cloud users, and objective results of QoS

monitoring and benchmark testing. In our experiments, we collect the data of response
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time A4 from CloudSleuth and the data of benchmark scores of CPU performance A5

from CloudHarmony2 for 59 real cloud services. To the best of our knowledge, there

is no data set of cloud user ratings published for these 59 cloud services. Hence,

we simulate user ratings of the attributes A1, A2 and A3 according to the collected

objective data (i.e., A4 and A5). In details, the ratings of A1 and A2 are randomly

generated, and the normal ratings of A3 are generated according to the ranking of the

real data of response time in A4. Then, some biased ratings are added into the normal

ratings of A3 to simulate the ratings from the users who are in different contexts with

that of objective assessments. Here, a bias level denoted as BL is set to represent

how much the biased ratings deviate from the normal synthetic ratings of A3, where

BL = 1, · · · , 8 since a rating scale of 1-9 is employed in our model. Moreover, a

biased rating percentage denoted as BRP is set to represent how many biased ratings

there are in all the subjective ratings.

We assume that all the subjective ratings are from the cloud users belonging to two

different contexts. The one context is (Sydney, afternoon) which is also the context

of the objective assessment in our experiments, and the other context is (Hong Kong,

morning). According to the algorithm introduced in Section 4.1, the similarity of

the two contexts is 0.4714. Thus, two thresholds are computed for the comparison

of subjective assessment and objective assessment according to different importance

weights (i.e., W̃o and W̃s).

4.3.2 Evaluation Metric

In our experiments, we first generate 1000 normal ratings for the attributes A1, A2 and

A3 through the way introduced above, and then replace some proportion of normal

ratings with biased ratings. Here, the original normal rating matrix is denoted as Mo,

and the corresponding processed rating matrix including biased ratings is denoted as

Mb.

2www.cloudharmony.com
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As Mo is generated according to the objective assessment, the ratings in Mo are

considered to be very accurate. Thus, the final aggregated result for each alternative

cloud service without filtering between subjective assessment and objective assess-

ment is considered very accurate in representing the overall performance of each cloud

service. Here, R(Mo) denotes the ranking of all the 59 cloud services based on such

aggregated results without filtering according to Mo. Rf (Mb) denotes the ranking of

the cloud services based on our prior cloud service selection model without contex-

tual assessments according to Mb without the consideration of assessment contexts;

Rc(Mb) denotes the ranking of the cloud services based on our context-aware cloud

service selection model according to Mb with dynamic threshold filtering. Rsim(∗, ∗)

denotes the similarity between two ranking lists. IfRsim(R(Mo), Rc(Mb)) > Rsim(R(Mo), Rf (Mb)),

that means our context-aware model is more effective than our prior model.

In our experiments, Rsim(∗, ∗) is calculated through the Kendall tau rank distance

[36] which is a common metric to measure the distance between two rankings through

counting the number of pairwise disagreements between the two rankings. Here, we

use the function corr() provided in Matlab to compute the normalized Kendall tau

distance which lies in the interval [−1, 1], where 1 means two rankings are in the same

order, and −1 means two rankings are in the opposite order.
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Figure 4.4: Ranking Similarity when BRP = 20%

4.3.3 Experimental Results

In our experiments, the importance weight for each attribute is randomly selected.

According to our experiments, the importance weights do not affect the trend of our

experimental results, that is, our context-aware cloud service selection model is more

effective. Table 4.1 shows part of the experimental results for the 59 real cloud services

based on two settings of importance weights. A larger value indicates better ranking

accuracy. In order to more accurately simulate the ratings from real cloud users in our

experiments, every value in Table 4.1 is the average ranking similarity computed based

on every 100 different groups of Mo and Mb. And each group of data is generated in-

dependently. Thus, the generality of experimental data can be kept in our experiments.

Table 4.1 shows that, among different experimental conditions (i.e., different BLs and

BRP s), our context-aware cloud service selection model performs better than our

prior model without the consideration of contexts. And our context-aware model can

achieve approximately 1.5% to 9% improvements.

Table 4.1 shows that our context-aware cloud service selection model based on dy-

namic threshold filtering can more effectively deal with the effect of biased subjective

ratings than our prior cloud service selection model in different conditions (i.e., differ-

ent BLs and BRP s) except the conditions that BL = 1, 2 or 3. That is because, in
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the real world, cloud users’ subjective assessment for a cloud service cannot perfectly

match the objective assessment of the cloud service due to users’ different preferences.

However, users’ subjective assessment should not be far off from objective assessment.

For this consideration, in our experiments, every individual synthetic normal subjec-

tive rating does not perfectly match the objective assessment, and may have a random

small deviation (up to 3). If the deviation (i.e., BL) between biased ratings and nor-

mal ratings is too small, such biased ratings are very likely to be considered as normal

ratings since such a small deviation should not be detected as the deviation between

biased ratings and normal ratings. That leads to the fact that our experimental results

in the conditions of BL = 1, 2 or 3 may be opposite since such biased ratings with

small deviations cannot be detected in our experimental setting. However, in the other

conditions of any BRP and BL = 4, · · · , 8, the trend of our experimental results is

the same. Figure 4.4 illustrates such an example when BRP = 20%.

4.4 Conclusion

This chapter has proposed a novel model of context-aware cloud service selection

based on comparison and aggregation of subjective assessments from cloud consumers

and objective assessments from quantitative QoS monitoring and benchmark testing,

which is extended from our prior work.

The new model considers contextual subjective or objective assessments in cloud

service selection, and uses objective assessment as a benchmark to filter out unrea-

sonable subjective assessments. The process of such filtering is based on a group of

dynamic thresholds which are determined by the similarity between the contexts of

subjective assessments and objective assessments.

In our model, we have considered two assessment features location and time, both

of which would greatly affect the results of cloud service evaluation and selection.

A novel approach is proposed to compute the context similarity based on these two

features. Our similarity computation approach can be easily extended for any other
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type of assessment features.

Our experimental results have demonstrated that our context-aware model per-

forms better than our prior cloud selection model which has no consideration of as-

sessment contexts. Hence, the final aggregated results of cloud services based on our

context-aware model can more accurately reflect the overall performance of cloud ser-

vices according to cloud consumers’ requirements and contexts.



Chapter 5

Evaluating Cloud Users’ Credibility of

Providing Assessments

As introduced in Chapters 3 and 4, cloud service selection is usually based on sub-

jective assessments (e.g., subjective ratings) from ordinary cloud consumers and/or

objective assessments (e.g., benchmark testing results) from professional cloud test-

ing parties. Whichever type of approaches is adopted, the credibility of cloud users

providing assessments has a strong influence on the effectiveness of cloud service se-

lection.

In cloud environments, cloud users can be generally classified into two classes

according to the different purposes of consuming cloud services. The first class com-

prises ordinary cloud consumers whose purpose is to consume a cloud service having

high quality performance and spend as little money as possible. They usually offer

subjective assessment of cloud services through user feedback. The second class com-

prises professional cloud performance monitoring and testing parties whose purpose is

to offer objective assessment of cloud services to potential cloud consumers for help-

ing them select the most suitable cloud services. In general, objective assessment is

considered more reliable than subjective assessment due to scientific and statistical

analysis. However, objective assessment cannot be fully trusted since the parties who

offer assessments may provide untruthful assessments due to their interest. And be-

cause there are only a small number of organizations which carry out objective testing

of cloud services at present, cloud service selection based on the aggregation of both

101
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subjective assessment and objective assessment should be more effective than either

type of approaches alone. To the best of our knowledge, there are no prior approaches

in the literature, which can evaluate the credibility of both types of assessments in

cloud environments.

In this chapter, we propose a novel model for evaluating cloud users’ credibility

of providing subjective assessments or objective assessments, where subjective as-

sessments are from ordinary cloud consumers (called Ordinary Consumers, OC for

short), and objective assessments are from professional cloud performance monitor-

ing and testing parties (called Testing Parties, TP for short). Our model is based on

two classes of cloud users (i.e., OCs and TPs). The credibility of OCs and TP s pro-

viding subjective assessments or objective assessments is respectively represented by

trustworthiness of OCs and reputations of TP s.

For an OC, an authority center computes the relative trustworthiness of the other

OCs who consume the same cloud services as the OC. Relative trustworthiness repre-

sents otherOCs’ trustworthiness from theOC’s prospect. The relative trustworthiness

can also be affected by the difference of variation trend between the other OC’s subjec-

tive assessments and TPs’ objective assessments over time. Then, the authority center

selects the OCs who are considered trustworthy enough by the OC as his/her virtual

neighbors according to all the relative trustworthiness values. The neighborhood re-

lationships of all the OCs form a social network. The global trustworthiness of an

OC on how truthful he/she provides subjective assessment is computed based on the

number of OCs who select him/her as their virtual neighbor.

In the meantime, the reputation of a TP on providing truthful objective assessment

is modeled in a different way based on the difference among the TP’s objective as-

sessments, the majority of objective assessments from other TP s and the majority of

subjective assessments from OCs. That implies that the trustworthiness of OCs and

the reputations of TP s can be influenced by each other. For this reason, our model

can resist collusion among cloud users providing untruthful assessments to some ex-

tent. Through our model, a successful collusion attack would become very difficult
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in practice since a large number of cloud users would have to be involved in such

collusion.

We conduct a series of experiments to evaluate the performance of our model un-

der different circumstances, where some cloud users (OCs and/or TP s) behave ma-

liciously according to different strategies. In contrast to the existing user credibility

evaluation model which is based on subjective ratings only, our experimental results

show that our model can significantly improve the accuracy of evaluating user credi-

bility, and enhance the resistance capability of user collusion in cloud environments,

because the evaluation of cloud users’ credibility in our model is based on both sub-

jective assessments and objective assessments.

In a nutshell, the motivation of proposing such a credibility evaluation model is

to enhance the effectiveness of cloud service selection approaches. If cloud users are

considered more credible, their assessments should be considered more valuable in

cloud service selection. Section 5.1 presents the details of our credibility evaluation

model. Section 5.2 presents the experimental results which validate the feasibility of

our proposed model.

5.1 The Credibility Evaluation Model

In this section, we first introduce the framework of our proposed model for evaluating

cloud users’ credibility, and then present the details of our model.

5.1.1 The Framework for User Credibility Evaluation

Fig. 5.1 illustrates the framework of our model consisting of two sub models, each of

which targets one class of cloud users, i.e., OCs or TP s. In our framework, subjective

assessments for cloud services are extracted from ratings submitted by ordinary con-

sumers, and objective assessments are offered by testing parties using their own bench-

mark testing tools. After that, subjective assessments and objective assessments will
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Figure 5.1: The Framework of the Credibility Evaluation Model

be aggregated in the further cloud service selection process, e.g., the process specified

in [131]. In our framework, there is an authority center which is in charge of manag-

ing assessments of cloud services and evaluating the trustworthiness and reputation of

every OC and TP on how truthfully they provide assessments.

The basic idea behind our work is that, anOC having higher trustworthiness means

that his/her subjective assessments are more similar to those of many other OCs, and

the variation trend of his/her subjective assessments over time are more similar to that

of objective assessments from the TP s having high reputations. In addition, a TP

with a higher reputation means that its objective assessments are more similar with

the majority of objective assessments from other TP s and the majority of subjective

assessments from OCs. It should be noted that, in practice, objective assessments are

usually more reliable than subjective assessments since subjective assessments may

contain users’ subjective bias but objective assessments with scientific and statistical

analysis do not. Thus, a TP should not be simply considered as an OC with more

credibility since it is hard to quantitatively determine how much more credible a TP is

compared to anOC. That is the reason why two sub models are applied to respectively

compute OCs’ trustworthiness and TP s’ reputations.

Without loss of generality, we focus on the situation, where both subjective assess-
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ments and objective assessments evaluate one performance aspect of cloud services.

For example, the response time of a cloud service can be quantitatively tested by TP s.

Meanwhile, an OC consuming the same cloud service can also give his/her subjective

ratings for the service response time by sensing how long the cloud responds to his/her

requests. The situation of considering multiple performance aspects can be modeled

based on evaluating user credibility on every performance attribute separately. We

assume that all assessments are given in similar circumstances to avoid the situation,

where two assessments given by two credible cloud users for a cloud service respec-

tively, are quite different because the circumstances, under which the users give the

assessments are quite different from each other (e.g., two cloud users live geographi-

cally far away).

5.1.2 The Sub Model for Computing Trustworthiness of OCs

The basic idea of evaluating trustworthiness of OCs in this sub model is that, an OC

is considered trustworthy to provide truthful subjective assessments if there are many

other OCs or TP s whose subjective assessments or objective assessments are similar

to his/hers. To this end, we improve Zhang et al.’s approach [189]. Firstly, a series

of multiple ratings commonly employed by most rating systems for cloud services,

such as CloudReviews1, are employed instead of binary ratings (i.e., “0” and “1” rat-

ings) in Zhang et al.’s work to express OCs’ subjective assessments. Secondly, in our

model, the trustworthiness of an OC can also be influenced by the reputations of TP s.

If the variation trend of an OC’s subjective assessments over time is more similar to

those of objective assessments from TP s having high reputations, the OC’s subjec-

tive assessments are considered more trustworthy. For example, suppose that an OC

gives a subjective assessment sequence {1, 4, 2} for a cloud service over time through

a normalized rating system with the scale of 1 − 5. Then a TP gives its objective

assessment sequence {3, 5, 4} over the same time period. Although their assessments

1www.cloudreviews.com
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are quite different, the variation trends of their assessments are very similar. That is

probably because the OC may have subjective bias (e.g., giving lower or higher rat-

ings according to their preference), but the similar variation trend indicates that such

subjective assessments are very likely to be given according to the OC’s real obser-

vation. Hence, our model considering variation trends of objective assessments from

TP s as a ‘semi-trusted judge’ can more accurately evaluate trustworthiness of OCs,

as supported in the literature [194]. Finally, in our model, we apply the PageRank

algorithm [123] to compute global trustworthiness of OCs instead of Zhang et al.’s

method. Through the analysis of a case introduced in Section 5.1.2.2.2, our method is

fairer than Zhang et al.’s. The experimental results also support this conclusion. In the

following sections, we first introduce how to adopt a multiple rating system instead of

a binary rating system, and then present the details of the sub model.

5.1.2.1 Distance Measurement between Multiple Ratings:

In [189], a binary rating system is applied. In order to make our model more practical,

a multiple rating system is applied instead. In our prior work [131], we proposed a

cloud service selection model based on a fuzzy rating system in order to deal with the

uncertainty of human subjective perception. Cloud users’ subjective assessments are

first expressed in linguistic ratings (e.g., “good” or “bad”) which are close to human

language descriptions. Then a mapping from linguistic ratings to fuzzy numbers is

applied. Table 5.1 lists the mapping applied in [131], which is also frequently used

in prior literature, such as [92, 26]. In Table 5.1, each linguistic rating is mapped to

a trapezoidal fuzzy number, denoted as Ã = (a, b, c, d), where a < b < c < d are

real numbers. A defuzzification method is defined to convert fuzzy numbers into crisp

numbers, i.e., the defuzzified value of Ã is its signed distance: d(Ã) = 1
4
(a+b+c+d).

In this sub model, we apply the rating system defined in Table 5.1 to express

OCs’ subjective assessments. In order to compare two ratings, we adopt the approach

proposed by Li and Wang [88], which maps the rating space into a trust space, to

measure the distance between two ratings. As shown in Table 5.1, fuzzy ratings are
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Linguistic Ratings Fuzzy Ratings Crisp Ratings Normalized Ratings (ri)
Very low (VL) (0, 0, 0, 3) 0.75 0

Low (L) (0, 3, 3, 5) 2.75 0.235

Medium (M) (2, 5, 5, 8) 5 0.5

High (H) (5, 7, 7, 10) 7.25 0.765

Very High (VH) (7, 10, 10, 10) 9.25 1

Table 5.1: A Multiple Fuzzy Rating System

first converted into crisp ratings through the signed distance defuzzification method.

Then, the crisp ratings are normalized into the interval [0, 1] according to their val-

ues. The interval [0, 1] is partitioned into k mutually exclusive ratings, denoted as

r1, r2, · · · , ri, · · · , rk, where k is the size of the rating space and 1 6 i 6 k. In our

setting, k = 5 and the five normalized ratings in [0, 1] are shown in Table 5.1. A trust

space for a service is defined as a triple T = {(t, d, u)|t > 0, d > 0, u > 0, t+d+u =

1}. Through Bayesian Inference and the calculation of certainty and expected prob-

ability based on a number of sample ratings, normalized ratings can be put into three

intervals, i.e., for a normalized rating ri ∈ [0, 1], we have

ri is


distrust, if 0 6 ri 6 d;

uncertainty, if d < ri < d+ u;

trust, if d+ u 6 ri 6 1.

A rating in the distrust range means the consumer who gave this rating deems that

the service provider did not provide the service with committed quality, and we have

a contrary conclusion when a rating is in the trust range. A rating in the uncertainty

range means the consumer is not sure whether the service is provided with committed

quality. Here, we call such a range a trust level. In our model, the authority center

can first employ some credible OCs and ask them to provide truthful subjective as-

sessments for cloud services. After collecting sufficient subjective assessments for a

period of time, the center learns such t, d and u from these samples. Note that, other

multiple rating systems can also be applied in our model by determining suitable trust
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levels according to the corresponding rating samples.

5.1.2.2 The Trustworthiness of OCs:

The computation of the trustworthiness of an ordinary consumer OCA is based on

Zhang et al.’s approach [189] without its drawback discussed in Section 5.1.2.2.2.

The detailed process consists of two steps: in Step 1, the authority center computes

all the other OCs’ relative trustworthiness based on OCA’s own experience, and se-

lects a fixed number of top OCs according to the descending order of all their relative

trustworthiness values, where these top OCs are considered as OCA’s virtual neigh-

bors. Here, relative trustworthiness represents otherOCs’ trustworthiness fromOCA’s

prospect. In Step 2, all these neighborhood relationships form a virtual social network,

based on which, the global trustworthiness of all OCs are computed.

The details of these two steps are introduced below:

5.1.2.2.1 Step 1. Computing Relative Trustworthiness of OCs: Suppose there

are two ordinary consumers denoted as OC and OC ′, both of whom consume a group

of cloud services, denoted as {s1, s2, · · · , si, · · · , sl}. The relative trustworthiness

of OC ′ based on OC is denoted as RTr(OC ∼ OC ′), where OC 6= OC ′, and is

computed as follows:

RTr(OC ∼ OC ′) = RTP (OC ′)×

[ω × Spri(OC ∼ OC ′) + (1− ω)× Spub(OC ′ ∼ ALL)].
(5.1)

The details in Eq. (5.1) are introduced below:

1. Spri(OC ∼ OC ′) (private similarity between OC and OC’): All ratings for

a service si rated by OC and OC ′ are ordered into two rating sequences, denoted as
−−−→rOC,si and −−−→rOC′,si respectively, according to the time when the ratings are provided.

The rating sequences are then partitioned in mutually exclusive time windows. The

length of each time window may be fixed or determined by the frequency of the sub-
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mitted ratings for si. Moreover, it should be considerably small so that the performance

of si can hardly change in a time window. After that, a pair of ratings (rOC,si , rOC′,si),

each of which is from its own rating sequence, is said to be correspondent only if they

are given in the same time window. If there are more than one correspondent rating

pairs in a time window, the most recent rOC,si and rOC′,si are put together as the corre-

spondent rating pair for this time window. This setting can prevent a malicious cloud

user from providing numerous untruthful assessments in a short period of time in order

to manipulate cloud services’ reputations.

Let Nsi denote the total number of correspondent rating pairs for si in all the time

windows, then the total number of such pairs for all cloud services is computed as

Nall =
∑l

i=1Nsi . Recall the trust levels introduced above. If the two ratings of

a correspondent rating pair are in the same trust level, such a pair is said positive,

otherwise negative. Thus, if there are Np positive pairs, then the number of negative

pairs is Nall − Np. A positive correspondent rating pair means the ratings submitted

by OC and OC ′ in this time window are similar; A negative pair means they are quite

different. In Eq. (5.1), Spri(OC ∼ OC ′) is called the private similarity of OC ′ which

presents the similarity between the ratings provided by OC and OC ′, and computed

as follows:

Spri(OC ∼ OC ′) =
Np

Nall

. (5.2)

2. Spub(OC ′ ∼ ALL) (public similarity between OC’ and all other OCs): If

there are insufficient correspondent rating pairs between OC and OC ′, OC ′’s public

similarity, denoted as Spub(OC ′ ∼ ALL) in Eq. (5.1), should be calculated. Here, we

follow Zhang et al.’s idea, i.e., the public similarity of OC ′ depends on the similarity

between his/her ratings and the majority of ratings submitted by the otherOCs. In each

time window, the most recent rOC′,si and the average of the other ratings submitted

by the other OCs for si are put together as a correspondent rating pair, denoted as

(rsi , rOC′,si). Suppose the total number of such correspondent rating pairs for all cloud
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services is N ′all, where there are N ′p positive pairs. The public similarity of OC ′ is

computed as follows:

Spub(OC
′ ∼ ALL) =

N ′p
N ′all

. (5.3)

3. ω (weight for private similarity): ω is the weight for how much the private

similarity and the public similarity of OC ′ can be trusted if there are insufficient cor-

respondent rating pairs between OC and OC ′. Such a weight can be calculated based

on the Chernoff Bound [114] as follows:

Nmin = − 1

2ε2
ln

1− γ
2

, (5.4)

ω =


Nall

Nmin

, if Nall < Nmin;

1, otherwise,
(5.5)

where ε is a small value (e.g., 0.1) representing a fixed maximal error bound which

OC can accept, and γ ∈ (0, 1) is OC’s confidence level about his/her own subjective

assessments. In general, OC should trust OC ′’s private similarity more than OC ′’s

public similarity since OC’s own experience is more reliable. Thus, if the number

of correspondent rating pairs between OC and OC ′ exceeds Nmin, OC will only use

Spri(OC ∼ OC ′) in the calculation of OC ′’s relative trustworthiness.

4. RTP (OC ′) (average reputation of similar TPs with OC’): RTP (OC ′) repre-

sents the weighted average of reputation values of TP s, the variation trends of whose

objective assessments over time are similar to that of OC ′’s subjective assessments.

Suppose there are m TP s, denoted as {TP1, TP2, · · · , TPj, · · · , TPm}, providing

objective assessments for the l cloud services mentioned above. Following the time

window partition method introduced above, we build correspondent assessment pairs

betweenOC ′’s subjective assessments and TPj’s objective assessments for each cloud

service, denoted as (rOC′,si , oaTPj ,si), where oa denotes the value of objective assess-
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ments (e.g., 5ms for response time). All rOC′,si and oaTPj ,si are then put together to

build two assessment sequences ordered by the time of every time window, denoted as
−−−→rOC′,si and−−−−→oaTPj ,si respectively. After that, each assessment sequence is converted into

a ranking sequence according to the assessment values. If multiple assessments have

the same value, their assessment ranking value is computed based on the average of

their ranks. For example, if an assessment sequence expressed by fixed-number ratings

is {4, 5, 2, 2, 3} (a larger rating is the better), its ranking sequence is {2, 1, 4.5, 4.5, 3}.

It should be noted that, if the nature of assessment values for a cloud performance

aspect is “the smaller, the better” (e.g., response time), such values should be ranked

in the ascending order, conversely in the descending order. Suppose the converted

ranking sequences for −−−→rOC′,si and −−−−→oaTPj ,si are −−−−→xOC′,si and −−−→yTPj ,si respectively. Then,

the similarity between these two ranking sequences are computed via Spearman’s rank

correlation coefficient [103], which is a common method to compute ranking similar-

ity, as follows:

ρ(OC ′ ∼ TPj, si) =

∑n
k=1(xk − x)(yk − y)√∑n

k=1(xk − x)2
∑n

k=1(yk − y)2
, (5.6)

where n is the size of the ranking sequences, 1 6 k 6 n indicates the corresponding

positions in the sequences, and x and y are the average of the assessment ranking

values in each ranking sequence. Hence, the average similarity of assessment variation

trends between OC ′ and TPj for all cloud services can be computed as follows:

ρ(OC ′ ∼ TPj) =
1

l

l∑
i=1

ρ(OC ′ ∼ TPj , si). (5.7)

All the TP s with ρ(OC ′ ∼ TPj) > 0 are then selected as the TP s whose ob-

jective assessments are similar to OC ′’s subjective assessments. Suppose there are p

such TP s for OC ′, then the weighted average reputation of these TP s in Eq. (5.1) is

computed as follows:

RTP (OC ′) =
1

p
(

p∑
q=1

ρ(OC ′ ∼ TPq)×RTPq), (5.8)
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Figure 5.2: An Example of A Neighborhood Relationship

where RTPq represents TPq’s reputation on how truthfully its objective assessments

are provided. The details of such reputations will be introduced in the next section.

5.1.2.2.2 Step 2. Computing Global Trustworthiness of OCs: Through Eq. (5.1),

the authority center selects a fixed number of virtual neighbors for anOC according to

the descending order of all other OCs’ relative trustworthiness values, and maintains

a virtual social network according to all these neighborhood relationships. If an OC

is selected as a virtual neighbor of many other OCs, the OC should be considered

trustworthy on providing truthful assessments.

In Zhang et al.’s work [189], the trustworthiness of a buyer is computed by count-

ing the number of other buyers who select the buyer as their neighbor. However, such

a method has a drawback in some cases. Consider a simple neighborhood relationship

shown in Fig. 5.2. A’s neighbor is B; B’s is C; C’s is A; D’s is A. If we only count

the number of their neighbors as their trustworthiness, A’s trustworthiness is 2; B’s,

C’s and D’s trustworthiness are both 1. The maximum trustworthiness value in this

example is 3. However, the trustworthiness of C and B should not be equal. That is

because B is trusted by A, and C is trusted by B, but A’s trustworthiness is higher

than B’s. Thus, B’s trustworthiness should be slightly higher than C’s. The similar

opinion is supported by the literature [123, 172, 51], i.e., a party which is trusted by a

more trustworthy party should be more trustworthy.

To this end, we apply the PageRank algorithm [123] in our model. Given a directed

graph of neighborhood relationship G, and an OC is a vertex in G, then the global
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trustworthiness of the OC denoted as Tr(OC) is computed as follows:

Tr(OC) =
1− d
N

+ d

G(OC)∑
OCi∈G(OC)

Tr(OCi), (5.9)

where G(OC) is the set of all vertices who select the OC as their neighbor, N is the

total number of vertexes in G and d is a damping factor which is commonly set to 0.85

[17] in the PageRank algorithm. In our model, Tr(OC) is equivalent to the probability

that a random OC ′ selects the OC as his/her neighbor, and d can be considered as a

trust transference degree [171] between two OCs. In the example of Fig. 5.2, A’s

trustworthiness is 0.3326; B’s is 0.3202; C’s is 0.3097; D’s is 0.0375. Finally, the

global trustworthiness of every OC in the neighborhood relationship can be computed

through the recursive Eq. (5.9).

5.1.3 The Sub Model for Computing Reputations of TP s

In the sub model for computing reputations of TP s, every TP offers objective assess-

ments for the same cloud performance aspect assessed by OCs. The reputation of a

TP depends on comparing its objective assessments to the majority of subjective as-

sessments fromOCs and the majority of objective assessments from other TP s. In the

literature, many approaches [173, 118, 101] are proposed and validated to be effective

for filtering out unfair ratings by comparing ratings with the majority opinion. Thus,

our model follows this idea to determine whether a TP ’s behavior is credible.

We assume that there exists a conversion function2, through which the values of ob-

jective assessments can be converted into normalized ratings introduced in Table 5.1.

Suppose that, for a cloud service si, there is a sequence of normalized ratings, which

is ordered by time and denoted as −−−→rTPj ,si , corresponding to the sequence of objective

assessment values provided by a testing party TPj . Then, −−−→rTPj ,si is partitioned in the

2A simple way of defining such a function is to compare one objective assessment value of a cloud
service for a performance aspect (e.g., 30ms for response time) with those of many other similar cloud
services. After sufficient statistics, a reliable conversion function can be learned. Here, we apply the
conversion function specified in our prior work [131].
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Cases Payoffs (TPj) (rTPj ,si , rTP ,si) (rTPj ,si , rOC,si)

1 εa 1 1
2 εb 1 0
3 εc 0 1
4 εd 0 0

Table 5.2: Reputation Payoff Matrix

same way of time window partition introduced above. In a time window, for si, there

is at least one normalized objective rating rTPj ,si from −−−→rTPj ,si , some subjective nor-

malized ratings from OCs and some objective normalized ratings from other TP s. If

there are multiple rTPj ,si in a time window, then rTPj ,si is the average of these ratings.

Let rTP ,si denote the average of the objective ratings for si provided by all TP s

except TPj in a time window, and rOC,si denote the average of the subjective ratings

provided by all OCs of si in a time window. In each time window, the authority center

gives TPj a reputation payoff to judge its behaviors in the time window. The reputation

payoff matrix is illustrated in Table 5.2, where “1” means that the two corresponding

ratings in a rating pair are in the same trust level, “0” means in different trust levels,

and εa, εb, εc and εd are the reputation payoffs.

In a time window, the reputation payoff that TPj can obtain depends on four cases

as shown in Table 5.2.

Case 1: If rTPj ,si , rTP ,si and rOC,si are all in the same trust level, which means a

high probability of TPj providing truthful objective assessments of si.

Cases 2&3: If (rTPj ,si , rTP ,si) or (rTPj ,si , rOC,si) are in the same trust level, but

(rTPj ,si , rOC,si) or (rTPj ,si , rTP ,si) are not, the probability of TPj of providing truthful

objective assessments should be lower than that in Case 1. Because objective assess-

ments are usually considered more reliable than subjective assessments, the payoff in

Case 2 should be higher than that in Case 3.

Case 4: If both (rTPj ,si , rTP ,si) and (rTPj ,si , rOC,si) are all in the different trust

levels, then TPj is penalized by giving the least reputation payoff. The reputation

payoffs can be defined in the inequality: εa > εb > εc > εd > 0.
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Suppose that the total reputation payoffs that TPj obtains by assessing si in the

total t time windows are denoted as ξTPj ,si , then the reputation of TPj based on si is

computed as follows:

RTPj ,si =
ξTPj ,si
tεa

, (5.10)

and the reputation of TPj for all cloud services is computed as follows:

RTPj =
1

l

l∑
i=1

RTPj ,si . (5.11)

By introducing the majority of subjective assessments and the majority of objec-

tive assessments, our model can more accurately evaluate TP s’ credibility of offering

objective assessments.

5.2 Experiments

5.2.1 Experiment Setup

Because no suitable testing environment exists to evaluate our model. Like in the

model evaluation in the related literature [100, 189], we simulate a cloud service en-

vironment based on our credibility evaluation framework. We collect the data of re-

sponse time from CloudSleuth3 for 59 real cloud services. The real data can describe

the true variation trends of cloud service performance. To the best of our knowledge,

there is no data set of subjective assessments published for the 59 cloud services.

Hence, we select 8 cloud services having similar performance specifications from the

59 real cloud services. We then simulate subjective assessments from 300 OCs and

objective assessments from 36 TP s for the response time of the 8 cloud services. Ev-

ery OC consumes all the 8 cloud services and provides his/her subjective assessments,

3www.cloudsleuth.net
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and every TP provides objective assessments for every cloud service. We simulate

the assessment behavior of all the participants in the cloud environment for a period

of 50 simulated days. The trustworthiness of every OC and the reputation of every

TP are computed and recorded at the end of each day. Each OC or TP has his/her/its

own strategy on how truthful he/she/it provides assessments for the 8 cloud services or

whether he/she/it is involved in a collusion attack.

In our model, a collusion attack refers to that some users colluding to provide sim-

ilar untruthful (too high or too low) assessments for a cloud service in order to manip-

ulate the cloud service’s reputation, and collusive assessments refer to such untruthful

assessments. We require that each OC or TP has his/her/its own percentage of pro-

viding untruthful or collusive assessments. Here, untruthful assessments are randomly

generated based on the real data of the 8 cloud services. An assessment is consid-

ered untruthful if it is in a different trust level with the corresponding real assessment

data. In addition, considering subjective bias in subjective assessments, truthful sub-

jective assessments in our experiments may have a small deviation compared to the

corresponding real data of the truthful assessments.

5.2.2 Experimental Results without Collusion

In this set of experiments, someOCs or TP s randomly provide untruthful assessments

without collusion. All the 300 OCs are equally divided into three groups. The OCs

in each group provide 0%, 25% and 50% random untruthful subjective assessments

respectively. Likewise, the 36 TP s are equally divided into three groups. The TP s

in each group provide 0%, 25% and 50% random untruthful objective assessments re-

spectively. For each OC, the authority center selects 10 other OCs as his/her virtual

neighbors. The reputation payoffs {εa, εb, εc, εd} is set to {1, 2
3
, 1
3
, 0}. The values of

the reputation payoffs and the number of virtual neighbors can only affect the absolute

values of TP s’ reputations and OCs’ trustworthiness, but cannot affect the tendency

of our experimental results. Note that, the number of virtual neighbors should be far
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Figure 5.3: Experimental Results without Collusion

smaller than the total number of OCs. Because, for an OC, only a minority of other

OCs who are considered the most trustworthy should be selected as the OC’s neigh-

bors.

Fig. 5.3 illustrates the average results of trustworthiness of OCs and reputations

of TP s in every group over 50 days. The trustworthiness of an OC represents the

probability that a random OC selects the OC as his/her neighbor. Hence, the value

of the vertical axis in Fig. 5.3a is the average probability of an OC who is selected

as a neighbor. The value of the vertical axis in Fig. 5.3b is the average reputation

payoffs which a TP in each group can obtain. Fig. 5.3 shows that, for OCs, the more

untruthful subjective assessments they provide, the lower the trustworthiness of the

OCs, and for TP s likewise.

Next, we test the tolerance of untruthful assessments of our model, i.e, the maxi-

mum amount of untruthful assessments that our model can withstand to stay effective

(i.e., the more untruthful assessments, the lower the trustworthiness of OCs or repu-

tations of TP s). We fix the proportion of untruthful objective assessments from each

group of TP s, and increase the proportion of untruthful subjective assessments from

each group of OCs. Through 100 rounds of experiments, it is found that our model of

evaluating cloud users’ credibility can stay effective when the proportion of untruthful

subjective assessments is smaller than approximately 55%. That’s because even if half

of the subjective assessments are untruthful, such untruthful assessments can still be
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detected by comparing the variation trends of the subjective assessments to those of

objective assessments from TP s.

5.2.3 Experimental Results with Collusion

In this set of experiments, some OCs and/or TP s collude to provide similar untruthful

assessments for the 8 cloud services. We follow the original setting of the experi-

ments without collusion, i.e., each group of OCs or TP s provide 0%, 25% and 50%

untruthful subjective or objective assessments. Three sub cases are considered in the

experiments with collusion:

Sub Case 1: In this sub case, some OCs provide collusive assessments together,

but some TP s still provide ordinary untruthful assessments according to their original

strategy without collusion with theOCs. Fig. 5.4 illustrates the experimental results in

this sub case, which demonstrates that the more the OCs provide collusive untruthful

subjective assessments, the lower the trustworthiness of the OCs. Meanwhile, the

tendency of the reputations of TP s is still preserved as that in the experiments without

collusion. Like the tolerance testing in the experiments without collusion, we increase

the proportion of the collusion subjective assessments in each group of OCs. The

experimental results show that our model can stay effective when the proportion of

collusive assessments is smaller than approximately 29%. This proportion is lower

than that in the experiments without collusion, because a collusive OC can be easily

selected as a neighbor of another collusive OC since they have similar assessments.

Sub Case 2: This sub case is the reverse of Sub Case 1: some TP s collude, but

some OCs still provide ordinary untruthful assessments according to their original

strategy without collusion with the TP s (i.e., 0%, 25% and 50% in each group re-

spectively). The experimental results shown in Fig. 5.5 are similar to those in Sub

Case 1, i.e., the more the TP s provide collusive untruthful objective assessments, the

lower the reputations of the TP s. When the proportion of collusive objective assess-

ments is smaller than approximately 40%, our model can stay effective. The reason
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Figure 5.4: Experimental Results with Collusion (Sub Case 1)
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Figure 5.5: Experimental Results with Collusion (Sub Case 2)

for reaching such a high proportion to resist TP s’ collusion is that, when a truthful

objective assessment is quite different from the majority of objective assessments due

to a collusion attack, such an assessment may be similar to the majority of subjective

assessments, most of which are truthful. Thus, the reputation payoff is still paid in our

model.

Sub Case 3: In this sub case, some OCs and TP s collude together. The pro-

portions of collusive subjective assessments and objective assessments are set as the

same as that in the original experimental setting (0%, 25% and 50%). The experi-

mental results shown in Fig. 5.6 demonstrate the effectiveness of our model even if

25% of subjective assessments and objective assessments are collusive assessments.

In the further experiments of tolerance of collusive assessments, it is found that our

model can stay effective when the proportion of collusive assessments is smaller than
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Figure 5.6: Experimental Results with Collusion (Sub Case 3)

approximately 26%.

In addition, we have conducted experiments in many different settings. As the

experimental results are similar, we only introduce the main experimental results. Our

experimental results demonstrate that our model can tolerate at least 25% collusive

assessments in different situations. In the real world, reaching such a proportion for a

collusion attack is highly costly. Hence, our model can effectively resist collusion in

practice.

5.2.4 The Comparison of Untruthful/Collusive Assessment Toler-

ance

In this set of experiments, the capacities of untruthful or collusive assessment tolerance

are compared among different models of evaluating users’ credibility. Our proposed

model is compared to Zhang et al.’s work [189] and the version of our proposed model

without TP s, i.e., there are no TP s in this version, and only OCs’ subjective assess-

ments are used to compute their relative trustworthiness without objective assessments

from TP s. The computation of global trustworthiness of OCs still follows the pro-

posed approach. The initial proportions of untruthful or collusive assessments are set

as the same as those in the experiments presented in the last section (i.e., 0%, 25%

and 50%). Then, the proportions of untruthful or collusive subjective assessments are

gradually increased to test the tolerance of the three compared models. Such tolerance
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Subjective
Assessments

Models
Zhang et al.’s model [189] Our model without TP s Our model with TP s

Untruthful Assessments 30% 43% 55%
Collusive Assessments 21% 24% 29%

Table 5.3: Untruthful or Collusive Assessment Tolerance of Different Models

is assessed in two cases: the first case is that some OCs provide ordinary untruth-

ful subjective assessments without collusion. The second is that some OCs provide

collusive untruthful subjective assessments.

The experimental results are shown in Table 5.3, through which, we find that our

model with/without TP s can achieve approximately 83%/43% improvement com-

pared to Zhang et al.’s model in the case of providing untruthful assessments, and

38%/14% in the case of providing collusive assessments. Thus, evaluating cloud users’

credibility based on both subjective assessments and objective assessments together is

much more effective than that based on subjective assessments only in both the evalu-

ation of users’ credibility and the resistance of user collusion.

5.3 Conclusion

In this chapter, we have proposed a novel model for evaluating cloud users’ credibility

of providing subjective assessments or objective assessments for cloud services. Our

model considers two different classes of cloud users (i.e., ordinary users and testing

parties). The trustworthiness of OCs and the reputations of TPs are computed re-

spectively to reflect how truthfully they provide subjective or objective assessments.

Such trustworthiness and reputations can also influence each other, which means the

model has the ability to resist user collusion to some extent. Hence, the cost of a

successful collusion attack against our model would be high since a large number of

cloud users need to participate. Sufficient experiments have been carried out under

different circumstances according to cloud users’ strategies. The experimental results

have demonstrated that our proposed credibility evaluation model considering both
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subjective assessments and objective assessments significantly outperforms the exist-

ing work considering users’ subjective assessment only. Thus, our model can be more

effectively employed in cloud environments.



Chapter 6

CCCloud: Context-aware and

Credible Cloud Service Selection

In Chapter 3, we have studied cloud service selection based on the comparison and

aggregation of both subjective assessments and objective assessments. In Chapter 4,

assessment contexts are taken into account in order to more accurately identify unrea-

sonable assessments in terms of cloud consumers’ personalized needs. In Chapter 5,

we have studied how to evaluate cloud users’ credibility of providing assessments,

which is a crucial aspect impacting the effectiveness of cloud service selection.

In this chapter, we extend our proposed models and approaches in a more gen-

eral circumstance, which considers cloud service selection in such a situation: cloud

services are distributed worldwide. For each cloud service (CS for short), there are

numerous ordinary cloud consumers (called Ordinary Consumers, OC for short) pro-

viding subjective assessments and a number of cloud monitoring and testing parties

(called Testing Parties, TP for short) providing objective assessments for the cloud

service. The assessments provided by these CSs, OCs and TPs have their own con-

texts. And the credibility of every OC or TP is evaluated to demonstrate how truthful

his/her/its assessments are. The final result of cloud service selection is based on both

subjective assessments and objective assessments according to cloud consumers’ cus-

tomized requirements and contexts.

To this end, this chapter proposes CCCloud: a credible and context-aware cloud

service selection model based on subjective assessments from OCs and objective as-

123
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sessments from TPs. In this model, a novel credibility evaluation approach is proposed

to detect biased or malicious cloud users who provide untruthful assessments, and can

also resist user collusion. Moreover, our model considers subjective or objective as-

sessments under different contexts, through which, the performances of cloud services

can be more comprehensively and effectively evaluated from a potential consumer’s

perspective.

The features and contributions of CCCloud are summarized below:

• In contrast to most existing cloud service selection models, our model considers

multiple performance attributes of cloud services. According to the character-

istics of different attributes, those attributes can be assessed through subjective

assessments, objective assessments, or a combination of both. Hence, our model

based on both subjective assessments and objective assessments can comprehen-

sively reflect the overall performance of cloud services.

• Our model takes objective assessments as benchmarks to filter out biased sub-

jective assessments. Such a bias is usually caused by OCs’ different preferences,

contexts or malicious behavior in some cases. Thus, we assume that objective

assessments without any subjective bias are considered more reliable than sub-

jective assessments. The result of cloud service selection with less subjective

bias more accurately reflects the real performance of cloud services.

• Our model takes assessment contexts into account based on two assessment fea-

tures (i.e., location and time). When a potential cloud consumer requests cloud

service selection, the context similarities between the consumer and different

TPs are first computed to determine which TP(s) is/are more reliable. Then, all

the TPs are grouped according to their contexts. Cloud service selection is car-

ried out independently in every context group of TPs. In each context group,

when the benchmark filtering is carried out, the context similarities between

subjective assessments and objective assessments are computed to determine

the benchmark levels, i.e., the more similar the contexts, the more reliable the
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subjective assessments, so that dynamic benchmark levels can be set to make

such benchmark filtering more accurate.

• We propose an approach to evaluate the credibility of OCs and TP s provid-

ing subjective assessments and objective assessments in a context. An OC is

considered more credible if his/her historical subjective assessments are more

similar with the majority of subjective or objective assessments from OCs or

TPs. In addition, the credibility of an OC can also be affected by the difference

of variation trends between the OC’s subjective assessments and TPs’ objective

assessments over time. On the other hand, the credibility of a TP depends on

the difference between its objective assessments and the majority of objective

or subjective assessments from TPs or OCs. That implies that the credibility of

OCs and TPs can be influenced by each other. That makes our model able to

resist user collusion.

• We have conducted a series of experiments to evaluate the performance of our

model under different circumstances, where some cloud users (OCs and/or TP s)

behave maliciously according to different strategies. Compared to a well-known

approach [101], our experimental results show that our model can more effec-

tively evaluate user credibility, and enhance the resistance capability against user

collusion. The final aggregated results of cloud service selection are computed

based on the credibility and contexts of both OCs and TP s. Hence, the re-

sults delivered by our model can comprehensively and effectively reflect various

potential consumers’ preferences and customized requirements.

The rest of this chapter is organized as follows: the improved framework support-

ing CCCloud is introduced in Section 6.1. Section 6.2 presents the details of evaluat-

ing cloud users’ credibility. Section 6.3 introduces the detailed processes of CCCloud.

The experimental results are presented in Section 6.4
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6.1 The CCCloud Framework

In this section, in order to support CCCloud, we present a new framework modified

from our prior work introduced in Chapter 3. Figure 6.1 illustrates the framework,

which is composed of four components, namely, (1) cloud selection service, (2) bench-

mark testing management service, (3) user feedback management service, and (4) as-

sessment aggregation service.

• Cloud Selection Service: The cloud selection service is responsible for accept-

ing and pre-processing the requests for cloud service selection from potential

cloud consumers. In addition, it issues requests to the lower layer components.

When a potential cloud consumer submits a request for selecting the most suit-

able cloud service, the cloud selection service firstly chooses those cloud ser-

vices which can meet all the minimum quantitative functional or non-functional

requirements (e.g., the type of services, targeted functions and costs) of the po-

tential consumer from a candidate list of cloud services. Then, according to

the consumer’s further requirements, it sends requests to the benchmark testing

management service and the user feedback management service for accessing

the related records of alternative cloud services. These records are then sent to

the assessment aggregation service, which returns the final aggregated score of

each alternative cloud service to the cloud selection service.

• Benchmark Testing Management Service: The benchmark testing manage-

ment service is responsible for collecting and managing objective assessments

of cloud services from different TPs through benchmark monitoring and test-

ing. In addition, it can request some TPs to carry out some specific cloud per-

formance tests designed according to potential cloud consumers’ requirements.

Each monitored or tested performance aspect of a cloud service can be consid-

ered as an objective attribute of the cloud service. All these objective attributes

are expressed in quantified forms (e.g., 90% for availability, 100ms for response

time or 35.5 benchmark scores for CPU performance).
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Figure 6.1: The Framework of CCCloud

• User Feedback Management Service: The user feedback management service

is in charge of collecting and managing subjective assessments extracted from

cloud consumer feedback. For each performance aspect of a cloud service, a

consumer gives his/her subjective assessments in his/her context according to

his/her experience and feelings. Each aspect that consumers assess can be con-

sidered as a subjective attribute of the cloud service. These subjective attributes

are expressed by ratings (e.g., 1 - 5) or linguistic variables (e.g., “good”, “fair”

and “poor”). Here, we follow the definition of associated attributes introduced

in Chapter 3 and 4.

• Assessment Aggregation Service: The assessment aggregation service is re-

sponsible for processing assessments further and returning the final aggregated

scores of every alternative cloud service to the cloud selection service according
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to potential cloud consumers’ requirements. A potential consumer requesting for

cloud service selection needs to specify under what context he/she will consume

cloud services, and set the importance weights to every subjective or objective

attribute. Through these weights, the potential consumer can also determine

whether to put more trust on subjective assessments or objective assessments, so

that the final scores of alternative cloud services can comprehensively reflect the

various needs of different consumers.

6.2 The Credibility of Cloud Users

In this section, we present the details of our approach to the evaluation of the credibility

of cloud users, TPs and OCs. The basic idea behind this approach is that the majority

of assessments are taken as a “judge” to determine whether a cloud user’s assessments

are credible. In the literature, many approaches [118, 101] are proposed and validated

to be effective for filtering out unfair ratings by comparing ratings with the majority

opinion.

Specific to our approach, an OC having higher credibility means that his/her sub-

jective assessments are more similar to the majority of subjective assessments from

OCs and the majority of objective assessments from TPs; and the variation trend of

his/her historical subjective assessments over time are more similar to that of the ma-

jority of objective assessments from TPs. Meanwhile, the majority of subjective or

objective assessments should be computed through the subjective or objective assess-

ments weighted by the corresponding OCs or TPs’ credibility. Here, the reason of tak-

ing the similarity of assessment variation trends into account in our approach is that,

though most of the cloud providers assure that the performances of their cloud ser-

vices are consistent, a cloud service may not always perform consistently in practice.

Thus, a cloud user’s perception of a cloud service may vary with the real performance

of the cloud service. In addition, objective assessments are considered more reliable

than subjective assessments. If the variation trend of an OC’s subjective assessments is



§6.2 The Credibility of Cloud Users 129

similar to that of the majority of objective assessments from TPs, such an OC should

be considered honest, even though his/her subjective assessments are not similar to

the majority of TPs’ objective assessments. That is because, subjective assessments

may contain personal subjective preferences. For example, suppose that an OC gives

a subjective assessment sequence {1, 4, 2} for a cloud service over time through a nor-

malized rating system with the scale of 1 − 5. Also suppose that, the sequence of the

majority of TPs’ objective assessments is {3, 5, 4}. Although the subjective assess-

ments and the objective assessments are quite different, the variation trends of these

assessments are very similar. It is possible that the OC may have subjective bias (e.g.,

giving lower or higher ratings according to their preference), but the similar variation

trends indicate that such subjective assessments are very likely to be given honestly

according to the OC’s own perception. Hence, only comparing the difference between

an OC’s subjective assessments to the majority of assessments is not enough to reflect

the OC’s honesty. In our model, we also use the similarity of the variation trends of

assessments to adjust OCs’ credibility.

On the other hand, a TP with higher credibility means that its objective assessments

are more similar with the majority of all TPs’ objective assessments and the majority

of OCs’ subjective assessments. Here, the variation trends of objective assessments

are not taken to adjust TPs’ credibility since objective assessments with scientific and

statistical analysis should not contain subjective bias. For a cloud performance at-

tribute, objective assessments should be only influenced by TPs’ assessment contexts

and honesty. Without any loss of generality, in our credibility evaluation approach, we

require that objective assessments from different TPs are provided in similar contexts

to avoid the situation where two assessments given by two credible TPs are quite dif-

ferent because their assessment contexts are quite different. In Section 6.3, we present

how to aggregate objective assessments from TPs under different contexts for context-

aware cloud service selection. In addition, we assume that subjective assessments and

objective assessments can be normalized for a direct comparison in some way.
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6.2.1 The Credibility of Ordinary Consumers

As introduced above, in CCCloud, the credibility of an OC can be affected by three

factors. The first factor is the similarity between the variation trends of OC’s assess-

ments for all subjective associated attributes and the majority of assessments for all

corresponding objective attributes from TPs over time. The second factor is the dif-

ference between the OC’s assessments of all subjective attributes and the majority of

those from all OCs. The last factor is the difference between the OC’s assessments for

all subjective associated attributes and the majority of assessments for all correspond-

ing objective attributes from TPs.

For a cloud service, let LOC denote a non-empty set of OCs, and |LOC | denote

the total number of OCs. These OCs provide subjective assessments to the cloud

service over a period of time. All these assessments are ordered according to the time

when they are submitted. Then, the assessment sequences are partitioned into mutually

exclusive time windows. The length of each time window may be fixed or determined

by the frequency of the submitted assessments. Moreover, it should be considerably

small so that the performance of cloud services can hardly change in a time window.

In a time window, there is/are one or more than one subjective assessments provided

by each OC for the cloud service. The credibility of OCi (OCi ∈ LOC) at the time

window t is computed as follows:

Crt(OCi) = Crt−1(OCi)× (1 + ρv × Fv(Aai ,Ma
o ))×

[1± Fs(Asi (t),M s
s (t))± Fo(Aai (t),Ma

o (t))],
(6.1)

where Crt−1(OCi) denotes OCi’s credibility at the time window t − 1. Fv, Fs and

Fo represent the three factors to adjust OCi’s credibility: Fv(Aai ,M
a
o ) denotes the fac-

tor on the similarity between the variation trends of OCi’s subjective assessments and

the majority of TP s’ objective assessments from the first time window to the time

window t, where Aai denotes the OCi’s subjective assessment sequence over time and
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Ma
o denotes the sequence of the majority of TP s’ objective assessments over time. In

addition, ρv ∈ [0, 1] is an importance parameter to determine how fast Fv(Aai ,M
a
o )

can influence an OC’s credibility. This parameter can be set by the potential con-

sumer who requests for cloud service selection; Fs(Asi (t),M
s
s (t)) denotes the factor

on the difference between OCi’s subjective assessments and the majority of subjective

assessments from all OCs, where Asi (t) denotes OCi’s subjective assessment for all

subjective attributes at the time window t, and M s
s (t) denotes the majority of all OC’s

subjective assessments for all subjective attributes at t. Here, if OCi submits more

than one subjective assessment in a time window t, then Asi (t) or Aai (t) is the aver-

age of these subjective assessments. This setting can prevent a malicious OCi from

providing numerous untruthful assessments in a short period of time in order to ma-

nipulate cloud services’ reputations. Similarly, Fo(Aai (t),M
a
o (t)) denotes the factor on

the difference between OCi’s subjective assessment and the majority of TP s’ objec-

tive assessments, where Aai (t) denotes OCi’s subjective assessment for all subjective

associated attributes at the time window t, and Ma
o (t) denotes the majority of TP s’

objective assessments for all corresponding objective associated attributes at t. The

main notations in this section are summarized in Table 6.1.
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The details of the three factors are introduced below:

1. The factor based on assessment variation trends: Suppose that there are n

time windows in total, and the index k (1 6 k 6 n) indicates the position of each time

window. And there are s subjective attributes, o objective attributes and u associated

attributes. In a time window t, the subjective assessment Asi (t) is an s-element vector,

in which each element corresponds to a subjective attribute. And the subjective assess-

ment Aai (t) is a u-element vector, in which each element corresponds to a subjective

associated attribute. On the other hand, the majority of all OCs’ subjective assess-

ments M s
s (t) is an s-element vector. And the majority of TP s’ objective assessments

Ma
o (t) is a u-element vector, in which each element corresponds to an objective asso-

ciated attribute. Moreover, Aai or Ma
o is an assessment sequence composed of every

Aai (t) or Ma
o (t) in every time window.

In a time window t, OCi’s subjective assessment Asi (t) is the average of all his/her

assessments in this time window. The majority of all OCs’ subjective assessments

M s
s (t) is the average of all OCs’ subjective assessments weighted by their credibility

in the time window t− 1:

M s
s (t) =

∑|LOC |
i Asi (t)× Crt−1(OCi)∑|LOC |

i Crt−1(OCi)
. (6.2)

Likewise, the majority of TP s’ objective assessments for all objective associated

attributes Ma
o (t) is computed as follows:

Ma
o (t) =

∑|LTP |
j Aaj (t)× Crt−1(TPj)∑|LTP |

j Crt−1(TPj)
, (6.3)

where LTP is the set of TP s which test the same cloud service consumed by OCs,

Crt−1(TPj) is the credibility of a TPj in LTP at t, and Aaj (t) is TPj’s normalized ob-

jective assessment, which is represented by a u-element vector, in which each element

corresponds to an objective associated attribute.

In order to compare the variation trends between Aai and Ma
o , we first compare the
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variation trends between every pair of the corresponding elements (i.e., every pair of

the corresponding associate attributes) in Aai and Ma
o . Aai and Ma

o are converted into

ranking sequences according to their assessment values. If multiple assessments have

the same value, their assessment ranking value is computed based on the average of

their ranks (refer to Chapter 5).

Suppose that the converted ranking sequences for Aai and Ma
o are −→x and −→y re-

spectively. Then, the similarity between these two ranking sequences are computed

via Spearman’s rank correlation coefficient [103], which is a common method to com-

pute ranking similarity, as follows:

Fv(A
a
i ,M

a
o ) =

∑n
k=1(xk − x)(yk − y)√∑n

k=1(xk − x)2
∑n

k=1(yk − y)2
, (6.4)

where x and y are the average of the assessment ranking values in each ranking se-

quence respectively. Here, Fv(Aai ,M
a
o ) is the similarity of variation trends for a single

associate attribute pair. The overall Fv(Aai ,M
a
o ) can be the average similarity for all the

associated attribute pairs or computed based on the normalized importance weights set

to every associate attribute pair by a potential cloud consumer who requests for cloud

service selection. In the former condition, the credibility of OCi can be influenced

by the potential consumer’s preference, i.e., which performance attributes can affect

OCs’ credibility more than others. This can promote the final service selection results

generated from the potential consumer’s perspective. The overall Fv(Aai ,M
a
o ) varies

between −1 and 1, which means that the two variation trends are the same and the

exact opposite respectively.

2. The factor based on the majority of subjective assessments: As introduced

above, Asi (t) and M s
s (t) are both s-element vectors. ED() denotes the Euclidean

distance between two vectors. The factor Fs(Asi (t),M
s
s (t)) on the difference between

the values of OCi’s subjective assessments and the values of the majority of OCs’
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subjective assessments for all subjective attributes is computed as follows:

Fs(A
s
i (t),M

s
s (t)) = (1− ED(Asi (t),M

s
s (t))

max(ED)
)× fs

ρs
, (6.5)

where max(ED) represents the maximum Euclidean distance between two s-element

vectors from a predefined assessment system (e.g., 1 - 5 rating system). ρs is an im-

portance parameter (similar to the “pessimism factor” in [101]), which is used to de-

termine how important the factor based on the majority of subjective assessments can

influence OC’s credibility, and how fast a dishonest OC’s credibility can drop. ρs

can be set according to the importance weights given by the potential consumer for all

performance attributes. Its minimum value should be 2. And fs represents the effect

on adjusting an OC’s credibility due to being similar or dissimilar to the majority of

assessments. Here, we follow the idea in [101] to compute fs as follows:

fs =


1− ED(Asi (t),M

s
s (t))

σs(t)
, if ED(Asi (t),M

s
s (t)) < σs(t);

1− σs(t)

ED(Asi (t),M
s
s (t))

, otherwise,
(6.6)

where σs(t) is the standard deviation of all OC’s subjective assessments in the time

window t.

In Eq. (6.1), the sign before Fs(Asi (t),M
s
s (t)) depends on whetherAsi (t) andM s

s (t)

are similar or not. If yes, OCi is considered honest at t, thus his/her credibility on the

factor based on the majority of subjective assessments will be increased and the sign

should be set to +; otherwise, it is −, which means that OCi should be punished since

his/her subjective assessment is considered untruthful at t. If Asi (t) and M s
s (t) are

completely equal, Fs(Asi (t),M
s
s (t)) reaches the maximum.

3. The factor based on the majority of objective assessments: As we introduced

above, subjective or objective assessments can be converted into normalized assess-

ments (e.g., ratings), thus the factor based on the majority of objective assessments

depends on the direct measurement of the difference between the values of OCi’s sub-
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jective assessments for all the subjective attributes and the values of the majority of

TP s’ objective assessments for all the corresponding objective attributes.

Therefore, similar to the computation of the second factor, Fo(Aai (t),M
a
o (t)) is

computed as follows:

Fo(A
a
i (t),M

a
o (t)) = (1− ED(Aai (t),M

a
o (t))

max(ED)
)× fo

ρo
, (6.7)

and fo is computed as follows:

fo =


1− ED(Aai (t),M

a
o (t))

σo(t)
, if ED(Aai (t),M

a
o (t)) < σo(t);

1− σo(t)

ED(Aai (t),M
a
o (t))

, otherwise,
(6.8)

where σo(t) is the standard deviation of all TPs’ objective assessments in the time

window t, and ρo is an importance parameter for the factor based on the majority

of objective assessments. In general, ρo should not be larger than ρs since objective

assessments are considered more reliable than subjective assessments. Likewise, the

sign before Fo(Aai (t),M
a
o (t)) depends on whether Aai (t) and Ma

o (t) are similar.

6.2.2 The Credibility of Testing Parties

The computation of TP s’ credibility is similar to that of OCs except that the factor

based on assessment variation trends cannot influence TP ’s credibility because objec-

tive assessments do not generally contain subjective bias like subjective assessments.

Thus, the computation of TP s’ credibility can be computed as follows:

Crt(TPj) = Crt−1(TPj)×

[1± Fs(Aaj (t),Ma
s (t))± Fo(Aoj(t),M o

o (t))],
(6.9)

where Aaj (t) is the normalized values of TPj’s objective assessment for all the objec-

tive associated attributes, and Ma
s (t) is the normalized values of the majority of OCs’
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subjective assessments for all the corresponding subjective associated attributes at the

time window t. Aoj(t) is the normalized values of TPj’s objective assessment for all

the objective attributes, and M o
o (t) is the normalized values of the majority of TP s’

objective assessments for all the objective attributes in the time window t. Both Aaj (t)

and Ma
s (t) are u-element vectors corresponding to all the associated attributes. And

Aoj(t) and M o
o (t) are o-element vectors corresponding to all the objective attributes.

Similarly, if TPj gives more than one objective assessment at t, then Aaj (t) or Aoj(t)

is the average of these objective assessments. Moreover, Ma
o (t) and M o

o (t) in the

time window t are computed through weighing every TP ’s credibility at t − 1 (i.e.,

Crt−1(TP )) like Eqs. (6.2) and (6.3). At last, Fs(Aaj (t),M
a
s (t)) and Fo(Aoj(t),M

o
o (t))

are computed like Eqs. (6.5), (6.6) and (6.7), (6.8). If Aaj (t) and Ma
s (t) are simi-

lar, the sign before Fs(Aaj (t),M
a
s (t)) is +; otherwise −. Likewise, the sign before

Fo(A
o
j(t),M

o
o (t)).

Note that, the initial credibility of an/a OC or TP can be any positive value. And

if a new OC joins in at the time window t, his/her credibility is set to the average of

all the current OCs’ credibility, i.e.,
∑|LOC |
i Crt(OCi)

|LOC |
. Likewise, a new TP’s credibility

is set to
∑|LTP |
j Crt(TPj)

|LTP |
. In our approach, the credibility of OCs and TP s can be

influenced by each other. OCs and TP s can be considered as “semi-trusted judges”

for each other, which makes our approach more capable of resisting user collusion.

Here, “semi-trusted” means that a party cannot be fully trusted, but can be trusted to

some extent.

Distance Measurement between Multiple Ratings: in Eq. (6.1) and (6.9), we need

an approach to determine whether two normalized assessments (i.e., ratings) are simi-

lar. Here, we adopt the approach proposed by Li and Wang [88] (refer to Section 5.1),

which maps the rating space into a trust space, to measure the distance between two

ratings.
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6.3 Cloud Service Selection via CCCloud

In our prior models introduced in Chapters 3 and 4, subjective assessments and ob-

jective assessments are compared and aggregated through a modified fuzzy simple

additive weighting system [26]. In this system, subjective assessments are represented

using linguistic variables (e.g., “good”, “fair” and “bad”). That is because, in practice,

people are used to expressing their opinions through human languages. Thus, it is

customary for consumers to assess quality of services using linguistic variables. In the

meantime, applying a fuzzy system can effectively deal with the inherent uncertainty

of human languages. On the other hand, objective assessments in quantified forms can

also be expressed through fuzzy numbers. Hence, in this chapter, we follow the fuzzy

setting.

The detailed procedure of the cloud service selection via CCCloud consists of

seven steps:

Step 1 (Set the importance weight for each attribute): According to a poten-

tial cloud consumer’s requirements, two importance weights in the form of linguistic

variables are first set on how much to trust subjective assessments and objective as-

sessments. Then, the potential consumer sets importance weights to all subjective

attributes and objective attributes. All these weights are converted into trapezoidal

fuzzy numbers (i.e., fuzzy weights) through a mapping (refer to Chapter 3).

Let W̃o and W̃s denote the fuzzy importance weights set for objective attributes

and subjective attributes respectively, and W̃i denote the fuzzy importance weight set

for each subjective or objective attribute (there are s subjective attributes, o objective

attributes and u associated attributes), where i = 1, · · · , s + o. After that, Wi is the

normalized weight of each attribute, which is computed as follows:

Wi =
d(W̃s)

d(W̃s) + d(W̃o)
× d(W̃i)∑s

i=1 d(W̃i)
, i = 1, · · · , s,

Wi =
d(W̃o)

d(W̃s) + d(W̃o)
× d(W̃i)∑s+o

i=s+1 d(W̃i)
, i = s+ 1, · · · , s+ o,

(6.10)
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where W̃s, W̃o and W̃i are expressed in trapezoidal fuzzy numbers. A trapezoidal fuzzy

number denoted as Ã = (a, b, c, d), where a < b < c < d are real numbers, belongs

to a trapezoidal membership function. The most probable value of the evaluation data

is represented in the interval [b, c]. The intervals [a, b] and [c, d] show the fuzziness

of the evaluation data. Then, a defuzzification method is defined to convert fuzzy

numbers into crisp numbers, i.e., the defuzzified value of Ã is its signed distance:

d(Ã) = 1
4
(a+ b+ c+ d) [26].

Step 2 (Group TPs according to their contexts): In our model, we assume that

there are plenty of TP s distributed around the world. Here, we consider two assess-

ment features (i.e., location and time) introduced in Chapter 4. In general, the cloud

selection service should recommend the potential consumer which TP s should be se-

lected to offer objective assessments for all alternative cloud services. The contexts of

the selected TP s should not be quite different from the consumer’s. In addition, the

potential consumer can also select TP s according to his/her preference, and specify in

what periods of time he/she hopes to consume cloud services.

Furthermore, all the selected TP s are divided into several groups according to their

contexts. Suppose that there are l locations shown in all the selected TP s. As there

are only two states for the assessment feature time in our model, i.e., specified period

of time and non-specified period of time, all the TP s are divided into 2l groups. Note

that, each TP can appear in two groups. For example, a TP in Sydney can appear in

the context groups (Sydney, specified time) and (Sydney, non-specified time).

The procedure of cloud service selection for the consumer is first carried out inde-

pendently in each context group. Thus, all objective assessments provided by a context

group of TP s are given in the same context. However, in each group, the context of a

subjective assessment can be different from that of objective assessments. For exam-

ple, objective assessments from the TP s in the group of (Sydney, specified time) can

be compared and aggregated with the subjective assessments with the context of (Sin-

gapore, specified time) in our model. Note that, the time specified in every assessment

should be normalized into standard time due to time differences.
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Suppose that the potential consumer wants to consume cloud service under the

context Cp (e.g., (Sydney, 9am to 5pm)). Let Cq denote the context of a context group

Gq, where 1 6 q 6 2l. Through the proposed approach of context similarity computa-

tion introduced in Chapter 4, the similarity between Cp and each Cq is computed and

denoted as CSim(Cp, Cq).

Step 3 (Normalize subjective assessments into fuzzy ratings): Subjective as-

sessments in our model are expressed by linguistic variables. Here, we apply a map-

ping from linguistic variables to trapezoidal fuzzy numbers (refer to Section 3.2). Ev-

ery fuzzy number represents a fuzzy rating corresponding to a linguistic variable. In

addition, a crisp rating corresponding to each linguistic variable is computed by the

defuzzification method (i.e., signed distance in our model).

Step 4 (Normalize objective assessments into fuzzy ratings): In this step, we

require a conversion function, through which the quantitative values of objective as-

sessments can be normalized into the fuzzy ratings introduced in Step 2. An intuitive

way of defining such a function is to compare one objective assessment value of a

cloud service for a performance aspect (e.g., 30ms for response time) with those of

many other similar cloud services. After sufficient statistics, a reliable conversion

function can be learnt.

As trapezoidal fuzzy numbers can also express crisp values, e.g., 50 can be ex-

pressed by (50, 50, 50, 50), objective assessments expressed by quantitative terms in

our model are first expressed by fuzzy numbers. Then, these fuzzy numbers are

converted into fuzzy ratings by comparing the values of the same objective attribute

in all the alternative cloud services. For a TP in a context group, Let Xi(j) =

(ai(j), bi(j), ci(j), di(j)) denote the fuzzy value of the objective assessment for the

ith objective attribute of the jth alternative cloud service. Then, the fuzzy rating de-

noted as xi(j) corresponding to Xi(j) is computed as follows:

xi(j) =
Xi(j)

maxj(di(j))
⊗ 100, or (6.11)
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xi(j) =
minj(ai(j))

Xi(j)
⊗ 100, (6.12)

where Eq. (6.11) is for the situation where the larger objective attribute value, the bet-

ter, and Eq. (6.12) is for the situation where the smaller the objective attribute value,

the better. max or min represents the maximum or minimum value in all the alterna-

tive cloud services. The details of the operations for fuzzy numbers can be found in

Section 3.2.

Step 5 (Evaluate the credibility of OCs and TPs): In each context group, the

credibility of OCs and TPs based on every alternative cloud service is computed

through the approach introduced in Section 6.2. It should be noted that, the credi-

bility evaluated in this step is not global, but customized based on the specific context

of each context group. In different context groups, the same OC’s credibility may be

different. And according to the different potential consumers’ requirements, the same

TP ’s credibility may be different. In our model, the customized credibility instead

of global credibility can promote a more effective result of cloud service selection for

the potential consumer, since such credibility is specifically evaluated based on his/her

perspective and customized requirements.

Step 6 (Filter biased subjective assessments): The process of filtering biased

subjective assessments is carried out in every context group independently. Recall the

definitions in Section 6.2, where in a time window for a context group, the values

of the subjective associated attributes of every OC’s subjective assessment needs to

be compared to the values of the corresponding objective associated attributes of the

majority of the objective assessments. Following the notations in Section 6.2, Aai (t)

denotesOCi’s subjective assessment at time window t, andMa
o (t) denotes the majority

of the objective assessments based on the specific context of their context group at t.

Then, all Aai (t) (1 6 i 6 |LOC |) are grouped according to their contexts. Suppose

there are l′ locations shown in all the subjective assessments. Thus, there are at most

2l′ groups of subjective assessments.

In each time window t of a context group, the Euclidean distance between Aai (t)
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and Ma
o (t) is computed. If ED(Aai (t),M

a
o (t)) exceeds a threshold Ri(t), then Aai (t)

is considered quite biased and needs to be filtered out. Such a Ri(t) is computed as

follows:

Ri(t) = (1− d(W̃o)

d(W̃s) + d(W̃o)
)×

CSim[cx(Aai (t)), cx(Ma
o (t))]

CSim[cx(Ma
o (t)), cx(Ma

o (t))]
×max(ED),

(6.13)

where cx(Aai (t)) and cx(Ma
o (t)) denote the contexts of Aai (t) and Ma

o (t) respectively.

Here, in order to offset the effect caused by the constant C in the modified bipar-

tite SimRank algorithm introduced in Section 4.1, CSim[cx(Ma
o (t)), cx(Ma

o (t))] is

applied to represent the similarity between the contexts of Ma
o (t) and itself. From

Eq. (6.13), when the potential consumer trusts objective assessments more, Ri(t) be-

comes smaller, so that more subjective assessments are considered biased and will

be filtered out. In addition, when the context similarity CSim[cx(Aai (t)), cx(Ma
o (t))]

becomes lower, Ri(t) becomes smaller. That means the subjective assessments are

given in a more different situation compared to the objective assessments, thus such

subjective assessments are considered less reliable and need to be filtered out more

rigorously.

Step 7 (Aggregate assessments): In each context group, after the filtering process

in Step 6, subjective assessments and objective assessments are aggregated according

to OCs and TP s’ credibility evaluated in Step 5. In the time window t, suppose that

there are |L′OC | OCs left after filtering, and OCi′ denotes one of these OCs. Let LCS

denote the set of all the alternative cloud services. The overall assessment Mk(t) for

an alternative cloud service CSk ∈ LCS in the time window t is computed as follows:

M s
s (t) =

∑|L′
OC |

i′ Asi′(t)× Crt(OCi′)∑|L′
OC |

i Crt(OCi′)
,

Mo
o (t) =

∑|LTP |
j Aoj(t)× Crt(TPj)∑|LTP |

j Crt(TPj)
,

Mk(t) = M s
s (t)⊕Mo

o (t),

(6.14)
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where M s
s (t) is an s-element vector corresponding to subjective attributes, and M o

o (t)

is an o-element vector corresponding to objective attributes. The operator⊕ represents

concatenation, thus Mk(t) is a (s+ o)-element vector corresponding to all attributes.

After that, Mk(t) is weighted by the normalized importance weights computed in

Eq. (6.10). Let M q
k (t) denote the weighted score for the alternative cloud service CSk

in the time window t in the context group Gq. Then, the final score of CSk denoted as

Fk(t) is weighted by the context similarity between the potential consumer and every

context group:

Fk(t) =

∑2l
q M

q
k (t)× CSim(Cp, Cq)∑2l
q CSim(Cp, Cq)

. (6.15)

Finally, according to the final scores of all the alternative cloud services, the cloud

services are ranked for selection. Through our model, all the alternative cloud services

can be effectively and comprehensively evaluated based on the potential consumer’s

perspective and customized requirements. In addition, besides the fuzzy rating system

applied above, our model can also be suitable for any other multiple rating systems in

practice.

6.4 Experimental Evaluation

6.4.1 Experiment Setup

Since there is no suitable real data supporting our cloud service selection model, we

simulate a cloud service environment based on the proposed framework introduced in

Section 6.1. The data used in this environment is partially collected from real cloud

services, and partially generated synthetically based on real cloud services.

In our experiments, there are three subjective attributes: privacy (a1), after-sales

services (a2), response time (a3); and two objective attributes: response time (a4) and

CPU performance (a5), where a3 and a4 are the associated attribute pair. We collect



144 CCCloud: Context-aware and Credible Cloud Service Selection

the data of response time (a4) from CloudSleuth and the data of benchmark scores

of CPU performance (a5) from CloudHarmony for 59 real cloud services. To the

best of our knowledge, there is no published dataset of subjective assessments from

ordinary cloud consumers for the 59 real cloud services, thus, we synthetically gener-

ate subjective assessments from 300 OCs. We select 10 cloud services having similar

performance specifications from the 59 real cloud services, and then synthetically gen-

erate objective assessments from 48 TP s, which are equally divided into two groups

to simulate different context groups of TP s. The TP s in each group have similar con-

texts. As the collected real data can describe the real variation trends of cloud service

performance, we generate truthful subjective assessments for a3 according to the rank-

ing of the real data of response time in a4, and subjective assessments of a1 and a2

are randomly generated. In addition, through the real data, objective assessments are

normalized for a direct comparison with subjective assessments.

In our experiments, we require that everyOC consumes all the 10 alternative cloud

services and provides his/her subjective assessments, and every TP also provides ob-

jective assessments for every cloud service. We simulate the assessment behavior of all

the cloud users for a period of 30 simulated days. The credibility of the OCs and TP s

are computed and recorded at the end of each day. And each OC or TP has his/her/its

own strategy on how truthful he/she/it provides assessments or whether he/she/it is

involved in a collusion attack. Here, a collusion attack refers to the case that some ma-

licious users intentionally provide similar untruthful (too high or too low) assessments

for a cloud service, and collusive assessments refer to such untruthful assessments. We

require that each OC or TP has his/her/its own percentage of providing untruthful or

collusive assessments. Untruthful assessments are randomly generated based on the

real data of the 10 cloud services, i.e., an assessment is considered untruthful if it is in

a different trust level with the corresponding real assessment data. In addition, consid-

ering subjective bias in subjective assessments, truthful subjective assessments in our

experiments may have a small deviation compared to the corresponding real data of

the truthful assessments.
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6.4.2 Experiment 1

In this experiment, we validate our proposed credibility evaluation approach intro-

duced in Section 6.2. In each context group, all OCs or TP s are divided into three

groups. The OCs or TP s in each group provide different percentages of random un-

truthful or collusive assessments. The default percentages for each group are 0%, 25%

and 50% respectively. We have conducted experiments in two cases:

Case 1: some OCs and TP s provide random untruthful assessments indepen-

dently;

Case 2: some OCs provide collusive assessments, but some TP s still provide

random untruthful assessments without collusion

Here, we assume that TP s should be hardly involved in collusion with OCs, but

can provide random untruthful assessments, since TP s are considered semi-trusted in

our approach. Fig. 6.2 illustrates the experimental results of the two cases. The hor-

izontal axes are the 30 simulated days. And vertical axes are the relative credibility

of OCs or TPs, i.e., the values of the relative credibility of OCi or TPj at the verti-

cal axes are Crt(OCi)∑|LOC |
i Crt(OCi)

or Crt(TPj)∑|LTP |
j Crt(TPj)

. The relative credibility of an/a OC/TP

is his/her/its credibility over the sum of the credibility of all OCs/TPs. The trend of

the experimental results in the two cases is similar. The credibility of OCs/TP s ex-

hibits some random fluctuations in the first few days, but their credibility returns to

and maintain the normal trend in the following days. That is because, our credibil-

ity evaluation approach needs some historical assessment records to adjust OCs or

TP s’ credibility. Fig. 6.2 demonstrates that the more collusive/random untruthful as-

sessments the OCs/TP s give, the lower the relative credibility of the OCs/TP s, thus

our approach can effectively detect the OCs or TP s who/which provide untruthful or

collusive assessments.
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Figure 6.2: Experimental Results for Credibility Evaluation

6.4.3 Experiment 2

In this experiment, we evaluate our credibility evaluation approach on estimating the

real performance of a cloud service. We follow the setting in Experiment 1, i.e., the de-

fault percentages of untruthful/collusive assessments fromOCs are set to 0%, 25% and

50%. Furthermore, we compare our approach to a well-known approach - RATEWeb

[101], through which, a rater’s credibility can be evaluated in service-oriented envi-

ronments. In [101], the reputation score of a service is computed via all raters’ ratings

weighted by every rater’s credibility. A rater is considered credible if its ratings are

similar with the majority of ratings and the current reputation score of a service it

consumes.

Fig. 6.3 illustrates the experimental results in four cases, i.e., cloud services per-

form consistently or inconsistently, and some OCs provide random untruthful assess-

ments or collusive assessments. In Fig. 6.3, the left subfigures show the estimated
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scores of a cloud service computed via our approach and RATEWeb, and the real per-

formance scores of the same cloud service over 30 days. And the right subfigures show

the differences between the estimated scores via our approach and RATEWeb and the

real scores. In Fig. 6.3 (a), the cloud service performs consistently, and some OCs

just provide untruthful assessments. In this case, the performance of our approach and

that of RATEWeb are quite similar. However, in Fig. 6.3 (b), our approach performs

better than RATEWeb, i.e., in the most of days, the score differences based on our

approach are smaller than those based on RATEWeb. That is because, RATEWeb as-

sumes that a service performs consistently, thus, in RATEWeb, a rater’s credibility can

be affected by the difference between its current ratings and the current reputation of

the service. However, our approach does not have this assumption. Furthermore, Fig

6.3 (c)&(d) shows that our approach performs better than RATEWeb whether or not a

cloud service performs consistently. That is because, in our approach, TP s are taken

as “semi-trusted judges” to adjust OC’s credibility, but there is no such a mechanism

in RATEWeb. Thus, our model performs better in the collusion situation. In this case,

our approach achieves approximately 34.5% improvement compared to RATEWeb on

reducing the difference between estimated scores and real performance.

Moveover, we compare our approach to RATEWeb and our prior work [134] intro-

duced in Chapter 4, in whichOCs and TP s’ credibility is not taken into account, in the

situations of different percentages of untruthful/collusive assessments. Here, we take

the success rate as a metric. If an estimated score and the real performance score of a

cloud service are similar (i.e., in the same trust level), then such an estimate is consid-

ered successful. The experimental results in Fig. 6.4 illustrate that, with the increasing

percentages of untruthful/collusive assessments, our approach always performs better

than RATEWeb and our prior work. Note that, in the collusion situation, when the per-

centage of collusive assessments is small (about 20%), the success rates based on our

approach and RATEWeb are very close (about 85%). With the increasing percentages

of collusive assessments, the success rates based on our approach and RATEWeb all

drop, but the success rate of RATEWeb drops more dramatically. The minimum suc-



148 CCCloud: Context-aware and Credible Cloud Service Selection

cess rate based on our model stays at about 55%, and that based on RATEWeb drops

to under 10%. That is because, if most of OCs are involved in collusion, such collu-

sive OCs would be dominant to manipulate the credibility evaluation via RATEWeb.

Then, the credibility evaluation error will be further enlarged by the credibility system

in RATEWeb. In that case, our prior work [134] without consideration of credibility

outperforms RATEWeb due to the lack of such credibility errors.

6.4.4 Experiment 3

In this experiment, we evaluate the overall performance of CCCloud. We equally

divide all the 300 OCs and 48 TP s in two groups. Then, we set that one group of 150

OCs and 24 TP s are in Sydney, and the other group of the rest are in Hong Kong. We

assume that a potential consumer wants to select a cloud service from the 10 alternative

cloud services, and consume it under the context (Sydney, Morning).

We first generate truthful objective assessments in the Sydney group. Compared

to the objective assessments in the Sydney group, the objective assessments in the

Hong Kong group for the same cloud services may contain some bias to simulate

the truthful objective assessments under quite a different context. Here, a bias level

denoted asBL is set to represent how much the biased ratings deviate from the normal

synthetic ratings, where BL = 4, · · · , 8 since a fuzzy rating scale of 1-9 is employed

in our model. The conditions that BL = 1, · · · , 3 are not considered here since such

biases are too small to reflect the effect of assessment differences caused by different

contexts in practice. Then, we generate untruthful or collusive subjective assessments

in the two groups. After that, we carry out cloud service selection via our model

and RATEWeb in the two groups of cloud users, where our model takes contextual

subjective assessments and objective assessments into account, but RATEWeb only

considers subjective assessments without contexts. Here, the setting of the percentages

of untruthful or collusive assessments follows Experiment 1.

In the results, two ranks of the alternative cloud services, denoted as Rc and Rr,



§6.4 Experimental Evaluation 149

With/Without Collusion
Models

BL
4 5 6 7 8

RATEWeb 0.9287 0.9195 0.9130 0.8892 0.8472
Without Collusion CCCloud 0.9294 0.9336 0.9315 0.9483 0.9407

RATEWeb 0.8996 0.9024 0.8823 0.8553 0.8212
With Collusion CCCloud 0.9042 0.9182 0.9119 0.9278 0.9260

Table 6.2: Accuracy Comparison based on Ranking Similarity (Experiment 3)

are obtained through our model and RATEWeb respectively. In addition, a rank of

the alternative cloud services, denoted as Ro, is computed based on the original as-

sessments without untruthful or collusive assessments. As Ro is computed without

any noise, Ro is taken as the metric rank. Let Rsim() denote the ranking similarity

calculation through the Kendall tau rank distance [36] which is a common metric to

measure the distance between two ranks through counting the number of pairwise dis-

agreements between the two rankings. If Rsim(Ro, Rc) > Rsim(Ro, Rr), that means

our model is more effective than RATEWeb. The ranking similarity results in Table

6.2 show that our model can more accurately select the suitable cloud service than

RATEWeb from the potential consumer’s perspective in both the collusion and no col-

lusion situations with different BLs. Every value in Table 6.2 is the average ranking

similarity computed based on 50 rounds of experiments, so that the generality of ex-

perimental data can be kept in our experiments. In general, compared to RATEWeb,

our model can achieve approximately 10% improvement at most. Note that, though

our credibility evaluation approach significantly outperforms RATEWeb (in Experi-

ment 2) in estimating the performances of cloud services, the results in Experiment 3

illustrates that RATEWeb is an effective model for ranking alternative cloud services,

but CCCloud performs better than RATEWeb in all the situations. Then, we carry on

many more rounds of experiments. In 98% of these experiments, our model outper-

forms RATEWeb. The few exceptional cases occur due to the noise from the random

generation of the synthetic experimental data in these cases.



150 CCCloud: Context-aware and Credible Cloud Service Selection

6.5 Conclusion

In this chapter, we have proposed CCCloud: a credible and context-aware cloud ser-

vice selection model based on the comparison and aggregation of subjective assess-

ments extracted from ordinary cloud consumers and objective assessments from pro-

fessional performance monitoring and testing parties.

We have first proposed a novel approach to evaluate the credibility of both ordi-

nary consumers (OCs) and testing parties (TPs), where the majority of assessments

from both OCs and TPs are used to adjust their credibility. In addition, the variation

trends of assessments are also used to adjust OCs’ credibility, so that OCs’ subjective

preferences are considered in the credibility evaluation. In this approach, the credibil-

ity of OCs and TPs can be influenced by each other, which makes that our approach

not only accurately evaluates how truthfully they assess cloud services, but also resists

user collusion.

Then, we have considered assessment contexts in cloud service selection. The

context similarity between subjective assessments and objective assessments is used

to dynamically adjust benchmark levels which are used to filter out biased subjective

assessments. In addition, the context similarity between a potential consumer and

different TPs is computed to weight the results of cloud service selection generated

from TPs in different contexts. The final results of cloud service selection based on

assessment credibility are comprehensive and customized according to the potential

consumer’s requirements and context.

We have conducted experiments in many different settings. The experimental re-

sults demonstrate that CCCloud outperforms the existing models under different situ-

ations, especially in the situations where the performance of a service is inconsistent,

and malicious cloud users give collusive assessments.
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Figure 6.3: Estimated Performances Compared to Real Performances



152 CCCloud: Context-aware and Credible Cloud Service Selection

0 0.3 0.6 0.90.9
0

0.2

0.4

0.6

0.8

1

Percentage of Untruthful Assessments

S
u

c
c
e
s
s
 R

a
te

 

 

Our Approach

RATEWeb

Our Prior Work

0 0.3 0.6 0.90.9
0

0.2

0.4

0.6

0.8

1

Percentage of Collusive Assessments

S
u
c
c
e

s
s
 R

a
te

 

 

 

Our Approach

RATEWeb

Our Prior Work

(a) Without Collusion (b) With Collusion

Figure 6.4: Success Rates in Different Situations



Chapter 7

An Incentive Mechanism for Eliciting

Continual and Truthful Assessments

As introduced in Chapter 3, cloud services are typically evaluated based on subjective

assessments from ordinary consumers and objective assessments through quantitative

performance monitoring and testing carried out by professional testing parties1. No

matter what types of assessments are applied, the credibility of cloud users’ assess-

ments has a great impact on the accuracy of cloud service evaluation and selection.

The traditional way of improving selection accuracy is to evaluate users’ credibility in

order to find out more effective assessments. In this chapter, we consider this prob-

lem from a novel perspective, i.e., motivating cloud users to actively provide truthful

assessments, and thus improving selection accuracy.

In cloud environments, service performance may vary substantially and frequently

due to the dynamic nature of cloud services. Thus, continual assessments over time are

needed to effectively reflect the dynamic performance of services. However, eliciting

continual and truthful assessments in cloud environments is still a challenging problem

since it is usually hard to make self-interested users behave cooperatively in an online

community [12]. A cloud user usually does not have sufficient incentives to regularly

provide assessments of cloud services on time. To motivate such users, an effective

incentive mechanism should be designed. A common solution is that a cloud user can

1For avoiding ambiguity, ordinary consumers and testing parties are called cloud users in this chap-
ter.
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be paid if it provides assessments on schedule. The monetary rewards2 may be pro-

vided by some professional cloud evaluation organizations, such as CloudReviews3,

the aim of which is to provide cloud selection services to potential cloud consumers

based on cloud users’ assessments and therefore earn profits from the potential con-

sumers. However, such a simple mechanism cannot prevent a user from “free-riding”

(i.e., providing arbitrary assessments) [97, 193]. Moreover, sometimes an honest user

could also provide arbitrary assessments in order to obtain monetary rewards when it

does not really know the real performance of cloud services (e.g., a user does not con-

sume services on the scheduled time while a user is required to provide an assessment).

Such arbitrary assessments may be erroneous and misleading, and therefore greatly af-

fect the effectiveness of service evaluations. To avoid the submission of such arbitrary

assessments, an effective incentive mechanism should motivate users to always tell

the truth, i.e., allowing honest users to provide uncertain assessments to express their

uncertainty about service performance when necessary.

In order to design an uncertain assessment compatible incentive mechanism, the

process of cloud users providing assessments should be theoretically modeled first.

Then the possible strategies of users need to be analyzed. In order to be compatible

with uncertain assessments, a novel and effective incentive mechanism should be de-

signed based on users’ strategies. Moreover, an optimal incentive mechanism needs to

be further designed in order to achieve some specific goals according to different sit-

uations, e.g., maximize users’ rewards or the total benefits. However, in the literature,

the study of designing such an incentive mechanism is still missing.

Different from all the prior incentive mechanisms, which do not consider uncertain

assessments, in this chapter, we propose an uncertain assessment compatible incentive

mechanism for eliciting continual and truthful assessments of cloud services. The

features and contributions of our work are summarized as follows:

(1) Under our proposed mechanism, a user is considered “honest” if it gives truthful

2The rewards can be paid in any form, e.g., points, discount and privileges, which can be taken as
monetary rewards.

3www.cloudreviews.com



155

assessments most of the time, but may give a small number of uncertain assessments

once it is not sure about the real performance of a service. The word “honest” indicates

such a user always tells the truth. Thus, an UAC (uncertain-assessment-compatible)

assessment scheme is first proposed, which can be extended from any type of ordinary

(subjective or objective) assessment system, but includes an extra uncertain state (see

Section 7.1.1). Then the behaviors of users providing assessments are modeled using

a repeated game framework (see Section 7.1.2).

(2) A user can receive monetary rewards from a professional organization (called

a broker) mentioned above for regularly providing assessments on schedule via a user

agent for the cloud services it consumes. We propose an assessment scoring scheme

for controlling the monetary rewards (see Section 7.1.3). In a nutshell, truthful assess-

ments would bring the most rewards; uncertain assessments would bring less rewards;

untruthful or arbitrary assessments would bring the very least rewards. Through our

proposed mechanism, a rational user would choose his/her best option, i.e., providing

truthful assessments. Once it is not sure about service performance, there still exists a

second-best option, i.e., providing uncertain assessments.

(3) In order to build an effective incentive mechanism, we present the theoretical

analysis (see Sections 7.1.4) of the scoring scheme according to the different strategies

of users (i.e., providing truthful/uncertain/untruthful/arbitrary assessments). More-

over, we discuss how to build an optimal incentive mechanism in our scenario (see

Section 7.1.5) and the feasibility of solving the whitewashing problem [41] based on

our proposed mechanism (see Section 7.1.6).

(4) The results from the theoretical analysis show that our approach is effective in

most circumstances (see Section 7.2.1). Furthermore, in order to evaluate the practi-

cal feasibility of our approach, we carry out simulation experiments under different

situations. The results from the simulation strongly support the theoretic analysis (see

Section 7.2.2).
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7.1 Incentive Mechanism Design

The basic idea behind our approach is as follows: cloud users can get paid by sell-

ing their assessments for cloud services to a broker via a user agent system. Cloud

users are allowed to provide uncertain assessments for the services when they are not

sure about the real performance of the services. The cloud performance evaluation

is carried out by the broker based on cloud users’ assessments, and the broker pays

monetary rewards to the current cloud users for their assessments and obtains profits

from potential cloud consumers by offering cloud selection services.

A user’s incentive is represented through its expected long-term payment. The

long-term payment is composed of the payments obtained in the continual time win-

dows, e.g., 9am - 10am every day. Through an assessment scoring scheme, users’ par-

ticipation of selling their assessments are controlled. In brief, if a user is considered to

submit a truthful assessment in a time window, it can keep on selling assessments until

it is considered to have submitted an uncertain or untruthful assessment in a subse-

quent time window. Due to the submitted uncertain or untruthful assessment, the user

would be isolated from selling assessments for a period of time, so that its long-term

payment would suffer a loss because of such isolation. This is like fixed-term impris-

onment. After the “imprisonment”, the user can still be involved in the subsequent

assessment transactions. Hence, in a time window, the user would believe that truthful

reporting can maximize its long-term payoff and an uncertain assessment would bring

a larger payoff than an untruthful or arbitrary one, if the broker can correctly judge the

truthfulness of an assessment with an overwhelming probability.

7.1.1 The UAC Assessment Schemes

A cloud user can give its own assessments for different performance aspects of cloud

services it consumes. For each aspect, such assessments can be expressed in any rea-

sonable form including subjective or objective assessments. Taking service response

time as an example, a cloud user can give its numerical ratings (e.g., “1”, “2” or “3”)
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or linguistic ratings (e.g., “poor”, “fair” or “good”) to express its subjective assess-

ments. On the other hand, a user can also provide objective assessments according to

QoS testing (e.g., 200ms for response time). For any type of an assessment system,

an uncertain state can be added into the system to express users’ uncertainty about

service performance. For example, if a rating scheme consists of three states: “good”,

“fair” and “poor”. The UAC assessment scheme, which can be applied in our incentive

mechanism, is composed of four states, i.e., “good”, “fair”, “poor” and “uncertain”,

where the first three are considered as the certain assessments.

7.1.2 Game Setup

In this section, we introduce the broker and payment settings in our work as well users’

strategies of giving assessments.

Broker and Payment Settings: the broker requires cloud users to provide continual

assessments for services at regular time intervals. A user can get paid by providing

an assessment in a scheduled time window. In each time window, only the latest

assessment can be paid for by the broker. If the user misses a time window, it cannot

give assessments until the next time window. In addition, we assume that the cloud

users are long-lived, and care about their long-term payoffs of providing assessments.

In each time window, the broker must pay each user no matter what type of an

assessment the user gives. The amount of payment has two levels. If a user gives a

certain assessment, it would get a payment P regardless of the value of the assess-

ment. Conversely, if a user gives an uncertain assessment, it would get a discounted

payment λP for λ ∈ [0, 1]. The reason for why a user can get such a discounted

payment is that uncertain assessments cannot benefit the broker but the user still tells

the truth without giving untruthful or arbitrary assessments which may even make the

broker suffer losses by falsely evaluating the performance of cloud services. If a user

does not provide any assessment in a time window, an uncertain assessment would be

automatically submitted by a user agent instead.
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The compulsory payment setting in our work aims to prevent the broker from

“false-reporting” [37]. If the broker can afterwards decide whether to pay accord-

ing to the quality of assessments, it would always have incentives to refuse to pay to

users by cheating about the real quality of assessments. Thus, the payment from the

broker in our framework can be considered “ex-ante” [193] with two amount levels.

The compulsory payment and the judgement of certain or uncertain assessments can

be supervised by a third-party authority (e.g., a payment management center). The

authority can keep both levels of payment (for a/an certain or uncertain assessment)

before each time window, and then transfers one level of payment to a user according

to the certainty of its assessment, and returns the other level of payment to the broker.

Therefore, the broker cannot deny that an assessment is certain or uncertain.

User Strategies: based on our framework, the payoff matrix between the broker and

a user in a time window can be specified in Table 7.1. We follow the common as-

sumption of incentive mechanisms made in the literature: a user is rational and self-

interested, i.e., every user is motivated to maximize its own payoffs. A user would

have three strategies of “cooperation”, “semi-cooperation” or “non-cooperation”. In

our framework, cooperation for a user means giving a truthful assessment; semi-

cooperation means giving an uncertain assessment; non-cooperation means giving an

untruthful or arbitrary assessment (these two situations will be further discussed sep-

arately). B is the benefit a truthful assessment can create for the broker in a time

window. P is the full payoff a user can obtain by giving a certain assessment. C is the

cost of the effort for a user providing a truthful assessment. In the situations of semi-

cooperation and non-cooperation, we consider that a user does not have any cost since

it does not try to provide a truthful assessment. We follow the common assumption

in the literature of incentive mechanisms, i.e., B > P > C. Here, we consider that

all users are identical in terms of their knowledge and preference, thus B and C are

constant, but P is adjustable. Note that, our work can be easily extended to a situa-

tion where there are different types of users by setting suitable system parameters for

different users. Table 7.1 indicates that a user’s dominant strategy is to always behave
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non-cooperatively, which is not expected by the broker and cause quite negative effects

in cloud performance evaluations.

User
Cooperation Semi-cooperation Non-cooperation

Broker B − P, P − C −λP, λP −P, P

Table 7.1: Payoff Matrix in a Time Window

7.1.3 The Assessment Scoring Scheme

In order to make a user’s dominant strategy cooperation, we propose an assessment

scoring scheme to control users’ participation in the transactions of selling their as-

sessments.

In our framework, a user has an assessment score to determine if it can sell its

assessments to the broker in a time window. At the end of each time window, a new

assessment score will be assigned to each user according to its current score and the

submitted assessment. An assessment score θ is a positive integer from a nonempty

finite set Θ (θ ∈ Θ = {0, 1, 2, · · · , L}), where L is the largest score.

At the end of each time window, the broker can judge whether an assessment is

truthful or untruthful through some approaches (e.g., majority opinions). Then it re-

ports its judgement for every user to the authority. According to the broker’s reports

and users’ current assessment scores, the authority updates a new score for every user.

Note that, the broker would always report the truth about a user’s assessments since

the payment is ex-ante and the broker cannot lie about the certainty of an assessment in

our framework. However, there may exist an error probability α of the broker falsely

reporting without intention, e.g., a truthful assessment is reported as an untruthful one,

and vice versa. And α should be smaller than the probability of random guessing, i.e.,

α ∈ [0, 0.5].

Let τ(θ, b) denote the assessment scoring scheme, and the new score of a user at
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Figure 7.1: The Assessment Scoring Scheme

the end of a time window is computed as follows:

τ(θ, b) =



L, if θ = L and b = T,

hU , if θ = L and b = U,

0, if θ = L and b = UT,

θ + 1, if θ < L,

(7.1)

where θ is a user’s current score and b is its reported behavior. hU can be considered

as a punishment level for users providing uncertain assessments. A user can be re-

ported as having three types of behaviors, i.e., providing truthful (T ), uncertain (U ) or

untruthful (UT ) assessments. Figure 7.1 shows the scoring scheme. If a user having

the largest score L is considered to have submitted a/an truthful/uncertain/untruthful

assessment, its new score will be maintained at L, or become hU or 0 respectively,

where 0 < hU < L. If a user has a score less than L, its score will always increase

by 1. Furthermore, the authority requires that only the users having the score L are

allowed to submit and sell their assessments to the broker. This means that all users

can be classified into two groups: active users and isolated users. If a user is consid-

ered to give a/an uncertain or untruthful assessment, it would be punished by being

prohibited from selling assessments for a period of time. Thus it will suffer a loss in

its future incomes. If a user is not be able to behave cooperatively for some reason,

it has a second-best option, i.e., giving uncertain assessments. That is because giving

uncertain assessments would cause a shorter period of isolation due to the requirement

of 0 < hU < L.
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7.1.4 Effective Incentive Mechanism Design

In order to build an effective incentive mechanism based on the proposed assessment

scoring scheme, we need to analyze the long-term expected payoffs that an “honest”

user can obtain and find out what values of L and hU are necessary for an effective

incentive mechanism.

An honest user refers to a user who gives truthful assessments most of the time,

but may give a small part of uncertain assessments. We apply the infinite-horizon

discounted sum criterion to analyze an honest user’s long-term expected payoffs. Let

p(θ′|θ) denote the transition probability of an honest user’s assessment scores between

two adjacent time windows, which is shown as follows:

p(θ′|θ) =



(1− α)(1− β), if θ = L and θ′ = L,

β, if θ = L and θ′ = hU ,

α(1− β), if θ = L and θ′ = 0,

1, if θ < L and θ′ = θ + 1,

0, otherwise,

(7.2)

where θ represents the user’s current score and θ′ is the user’s new score. α is the

error probability of the broker making a false judgement about the user’s assessment.

β is the probability of the user giving an uncertain assessment in a time window. For

an identical type of users and a broker, α and β should be fixed in all time windows.

Hence, an honest user’s long-term expected payoff in a time window can be computed

by solving the following recursive equation:

v∞(θ) = v(θ) + δ
∑
θ′

p(θ′|θ)v∞(θ′), for all θ ∈ Θ, (7.3)

where v∞(θ) denotes a user’s long-term payoff when it has the assessment score θ in a

time window. And v(θ) denotes the user’s instant payoff after giving its assessment in

the current time window. δ ∈ (0, 1) represents a user’s patience about its future pay-
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Notations Explanations
α The probability for falsely judging an assessment
β The probability of giving uncertain assessments
γ The probability for a user guessing correctly
δ A user’s patient for future payoffs
B The benefit for the broker from a truthful assessment
C The cost of effort of giving a truthful assessment
P The ex-ante price for an assessment
λ The payment discounted factor
L The largest assessment score
hU The assessment score for giving an uncertain assessment

Table 7.2: The Parameters of the Incentive Mechanism

offs. A larger δ means that the user cares more about its future payoffs, and vice versa.

Eq. (7.3) indicates that an honest user’s long-term expected payoff consists of two

parts, i.e., the instant payoff and the expected future payoff based on the score transi-

tion probability shown in Eq. (7.2). The notations of our approach are summarized in

Table 7.2.

Theorem 1 (Existence of Long-term Expected Payoffs): Given the transition

probabilities specified in Eq. (7.2), for any α ∈ [0, 0.5], β ∈ [0, 1], σ ∈ (0, 1), λ ∈ [0, 1]

and P > C, the recursive equation Eq. (7.3) has a unique positive solution.

Proof. According to the transition probability in Eq. (7.2), the recursive equation

Eq. (7.3) can be expressed as follows:

v∞(0) = v(0) + σv∞(1)

. . .

v∞(hU) = v(hU) + σv∞(hU + 1)

. . .

v∞(L) = v(L) + σ[(1− β)(1− α)v∞(L)

+(1− β)αv∞(0) + βv∞(hU)].

As the users having assessment scores less than L are isolated, v(θ) = 0 for ∀θ < L.
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So we have the following equations:

v∞(L) =
v∞(0)

σL
, v∞(hU) =

v∞(0)

σhU
.

Hence, v∞(0) can be computed by solving the following equation:

v∞(0)

σL
= v(L) + σ[(1− β)(1− α)

v∞(0)

σL

+(1− β)αv∞(0) + β
v∞(0)

σhU
],

where v(L) = (1− β)(P −C) + βλP , which is the expected instant payoff an honest

user can get in a time window. Hence, the solution of Eq. (7.3) is as follows:

v∞(0) =
σL(1− β)(P − C) + σLβλP

1− σ(1− β)(1− α)− σL−hU+1β − σL+1α(1− β)
,

v∞(θ) =
v∞(0)

σθ
, for ∀θ ∈ Θ− {0}.

As σ ∈ (0, 1), v∞(0) > 0 according to the conditions in Theorem 1. Thus, Eq. (7.3)

has a unique positive solution.

Based on Theorem 1, we have the following property:

Property 1: The long-term expected payoffs defined in Eq. (7.3) satisfy the fol-

lowing conditions:

(1) v∞(θ + 1) > v∞(θ), for ∀θ ∈ Θ− {L};

(2) v∞(θ + 1)− v∞(θ) > v∞(θ)− v∞(θ − 1),

for ∀θ ∈ Θ− {0, L}.

Proof. (1) According to the proof of Theorem 1, v∞(θ + 1) = v∞(0)
σθ+1 and v∞(θ) =

v∞(0)
σθ

. As σ ∈ (0, 1) and v∞(0) > 0, the statement (1) is proved.
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(2) As σ ∈ (0, 1), v∞(0) > 0 and,

v∞(θ + 1)− v∞(θ) =
v∞(0)(1− σ)

σθ+1
,

v∞(θ)− v∞(θ − 1) =
v∞(0)(1− σ)

σθ
,

the statement (2) is proved.

In Property 1, the statement (1) indicates that the higher the assessment score of

a user, the more the long-term expected payoff. The statement (2) shows that the

increase of the long-term expected payoff between two adjacent assessments scores

becomes larger with the increase of users’ assessment scores. Property 1 demonstrates

that an honest user always has incentives to pursue a higher score for obtaining a higher

long-term payoff.

In our framework, there should be a dominant strategy for a user, and a second-

best strategy if it cannot choose the dominant strategy for some reason. We expect

the dominant strategy is to provide truthful assessments, and the second-best strategy

is to provide uncertain assessments. As a user’s long-term expected payoffs can be

computed in a recursive form, its strategy can be determined based on the one-shot

deviation principle [42], i.e., if a user cannot increase its long-term expected payoff

by choosing a strategy other than the dominant one in a time window, the user would

not be able to increase the payoff by choosing any strategy other than the dominant

one. The one-shot deviation principle can also be applied for the second-best strat-

egy. Hence, we study an active (its assessment score is L) user’s long-term expected

payoff4. If a user provides a truthful (T ) assessment in a time window, and then its

long-term expected payoff can be computed according to Eq. (7.3) as follows:

v∞T (L) = P − C + δ[(1− α)v∞(L) + αv∞(0)]. (7.4)

4Isolated users are not considered here since such users cannot participate in the transactions of
selling assessments until they become active users (their scores increase to L).
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And if a user provides an uncertain (U ) assessment, its payoff can be computed as

follows:

v∞U (L) = λP + δ[v∞(hU)]. (7.5)

At last, if a user provides an untruthful (UT ) assessment, its payoff can be computed

as follows:

v∞UT (L) = P + δ[αv∞(L) + (1− α)v∞(0)]. (7.6)

In order to determine the unique dominant strategy and the second-best strategy, a

user’s long-term expected payoff should satisfy the constraints: v∞T (L) > v∞U (L) >

v∞UT (L), i.e.,

δ[(1− α)v∞(L) + αv∞(0)− v∞(hU)] + (1− λ)P − C > 0,

δ[v∞(hU)− αv∞(L)− (1− α)v∞(0)] + (λ− 1)P > 0.
(7.7)

An assessment scoring scheme satisfying Eq. (7.7) indicates that a user can obtain the

most long-term expected payoffs when giving a truthful assessment, and the second-

best expected payoffs when giving an uncertain assessment.

7.1.4.1 Strategic Users

In Eq. (7.7), we consider that a user only has three kinds of behaviors: providing

truthful, uncertain or untruthful assessments. However, there may be strategic users

who believe that they can guess the real performance of cloud services without actually

knowing it. Even for the users who provide arbitrary assessments, there should be

a small probability that they can guess the right results, so that they would not be

punished for “free-riding”. The free-riders can be considered as a kind of strategic

users. To solve the strategic user problem, we need to reconsider the constraints in

Eq. (7.7) for an effective incentive mechanism in our framework.

For strategic users, the computations of the long-term expected payoff of giving

a/an truthful or uncertain assessment in a time window are the same as Eqs. (7.4) and (7.5).
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Let γ denote the probability that a strategic user (S) guesses the right result of cloud

performance. Likewise, the long-term payoff the user can obtain by giving a strategic

assessment in a time window is computed as follows:

v∞S (L) = P + δ{γ[(1− α)v∞(L) + αv∞(0)]+

(1− γ)[αv∞(L) + (1− α)v∞(0)]}.
(7.8)

Note that, we only consider the most beneficial case for a strategic user, i.e., a strategic

assessment would not incur any cost of effort. Hence, without the consideration of the

broker’s payoffs, an incentive mechanism is said to be effective if it satisfies all the

following constraints:

v∞T (L) > v∞U (L), v∞U (L) > v∞S (L) and v∞U (L) > v∞UT (L). (7.9)

Through straightforward calculations, v∞S (L) > v∞UT (L) if and only if γα < 1
2
. In

practice, α should usually be in the range of (0, 0.5) (0.5 for random guessing), thus

the third constraint in Eq. (7.9) can be omitted in most cases.

7.1.5 Optimal Incentive Mechanism

For a type of users and a broker, there may be many assessment scoring schemes with

different parameters L and hU to satisfy the constraints in Eq. (7.9). In order to find out

which parameters are optimal, the total payoffs obtained by both the broker and a user

should be analyzed. As only the users having the assessment score L can participate

in the transactions of assessments, the total payoffs depend on the proportion of the

active users in all users. Let η(θ) denote the proportion of the users having the score θ.

Because a user’s score is updated at the end of each time window, η(θ) would change

dynamically over time. As we assume that users care about their long-term payoffs,

we analyze the stationary distribution of η(θ) for ∀θ ∈ Θ if all users are honest. Hence,

the stationary distribution can be defined according to the score transition probability
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in Eq. (7.2) as follows:

η(L) = η(L− 1) + (1− α)(1− β)η(L),

η(θ) = η(θ − 1), if hU < θ < L,

η(hU) = η(hU − 1) + βη(L),

η(θ) = η(θ − 1), if 0 < θ < hU ,

η(0) = α(1− β)η(L),∑
θ

η(θ) = 1 and η(θ) > 0, for ∀θ.

(7.10)

Theorem 2 (Existence of a Stationary Distribution): Given the transition prob-

abilities specified in Eq. (7.2), for any α ∈ [0, 0.5], β ∈ [0, 1] and L > hU > 0, there

exists a unique stationary distribution satisfying Eq. (7.10).

Proof. According to the definition of stationary distribution in Eq. (7.10), we have:

η(0) = α(1− β)η(L),

. . . ,

η(hU − 1) = η(hU − 2),

η(hU) = η(hU − 1) + βη(L),

η(hU + 1) = η(hU),

. . . ,

η(L) = η(L− 1) + (1− α)(1− β)η(L).

So we have:

η(hU) = (α + β − αβ)η(L),

η(hU) = η(0) + βη(L),

η(0) = α(1− β)η(L).
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Since
∑

θ η(θ) = 1, we have:

η(L) =
1

(L− hU + 1)α(1− β) + (L− hU)(α + β − αβ) + 1
,

η(hU) =
α + β − αβ

(L− hU + 1)α(1− β) + (L− hU)(α + β − αβ) + 1
,

η(0) =
α(1− β)

(L− hU + 1)α(1− β) + (L− hU)(α + β − αβ) + 1
.

According to the conditions specified in Theorem 2, there exists a unique solution for

η(L), η(hU) and η(0). Hence, Theorem 2 is proved.

Based on Theorem 2, we have the following property:

Property 2: Given the stationary distribution specified in Eq. (7.10), η(L) mono-

tonically increases with hU and monotonically decreases with L.

Proof. According to the unique solution of η(L) in the proof of Theorem 2, given α

and β, η(L) monotonically increases with hU and monotonically decreases with L if

L > hU .

Property 2 indicates that adjusting L and hU can change the proportion of active

users. The proportion can affect the broker’s benefits and users’ total benefits.

The expected total payoffs obtained by the broker and an honest user in a time

window can be computed as follows:

U∗ = η(L)× [(1− β)(B − P + P − C) + β(−λP + λP )]

= η(L)× (1− β)(B − C).
(7.11)

Eq. (7.11) illustrates that U monotonically increases with η(L) and decreases with β.

In addition, the expected payoff the broker can obtain from an honest user in a time

window can be computed as follows:

U = η(L)× [(1− β)(B − P )− βλP ]. (7.12)
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Hence, an effective incentive mechanism in our framework should satisfy the con-

straints specified in Eq. (7.9) and ensure that the broker can obtain a positive expected

payoff in a time window, which is defined as follows:

Definition 1 (Effective Incentive Mechanism): An incentive mechanism with the

adjustable parameters L, hU , λ and P is considered effective if it satisfies the following

constraints:

v∞T (L) > v∞U (L), v∞U (L) > v∞S (L), v∞U (L) > v∞UT (L)

and U > 0.
(7.13)

Here, we consider maximizing the total payoffs U∗ for an optimal incentive mech-

anism. Thus, we have the following definition:

Definition 2 (Optimal Incentive Mechanism): An effective incentive mechanism

is considered optimal if U∗ is the maximum for some L, hU , λ and P .

Note that our work can be simply adjusted for satisfying other targets in any situa-

tion, e.g., maximizing the broker’s payoff U .

7.1.6 Whitewashing

Whitewashing is a common problem for the reputation or score based incentive mech-

anisms [41, 192], which refers to the situation where a user can reset its reputation or

score by repeatedly re-participating in the activity with new identities. In our scenario,

if a user having a score less than L is isolated from assessment transactions, it may

try to create a new identity for transactions and expect to come back sooner from the

isolation. Here, we assume that a user cannot hold multiple identities at the same time.

By finding out suitable mechanism parameters (i.e., L, hU and λ), our approach can

prevent users from whitewashing. In order to solve this problem, a new user should

not enter the assessment transactions instantly. It needs to wait for a period of time

as an initializing period, and therefore cannot obtain any benefits. For a new user, an

initial assessment score I is assigned. In order to prevent whitewashing, the initial
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score should satisfy the following constraint:

v∞(I)− v∞(θ) 6 cw, for ∀θ ∈ Θ and I ∈ Θ, (7.14)

where cw > 0 is the cost of a user whitewashing, e.g., the cost of creating a new iden-

tity. The expression v∞(I) − v∞(θ) indicates the expected long-term gain of a user

with the assessment score θ whitewashing. If the gain is no larger than the cost, a user

would have no motivation to reset its score. Considering the worst case for preventing

whitewashing, i.e., cw = 0, as v∞(0) is the smallest long-term expected payoff accord-

ing to the statement (1) of Property 1, I = 0 (lowest) is always a solution of Eq. (7.14).

Assigning the lowest score to a new user means it can only enter assessment transac-

tions after an initializing period. That means a user with any assessment score cannot

gain more payoffs by carrying out whitewashing.

7.2 Illustrative Results and Simulation Results

7.2.1 Parameter Analysis

In our framework, the parameters of an incentive mechanism (see Table 7.2) can be

grouped into two classes. The first class includes the intrinsic parameters α, β, γ, δ,

B and C. For a type of users and a broker, the intrinsic parameters should be fixed.

Thus, an incentive mechanism designer cannot adjust these parameters for an optimal

incentive mechanism. The second class includes the adjustable parameters P , λ, L and

hU , where P and λ may need to be conditionally adjusted according to the broker’s

requirement since they can affect the broker’s payoffs.

Fig. 7.2 illustrates the impact caused by α. The vertical axis of the left sub-figure

represents the percentage of effective incentive mechanisms in the total number of

solutions. Here, we set that L is adjusted from 2 to 10 and λ increases from 0 to 1

by steps of 0.05. The vertical axis of the right sub-figure represents the stationary

percentage of active users in the corresponding optimal incentive mechanism. Fig. 7.2
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Figure 7.2: Incentive Mechanisms Affected by α

shows that the number of effective incentive mechanisms and active users decrease

with α. When α approaches nearly 0.4, there would not be any possible assessment

scoring scheme which can be applied to building an effective incentive mechanism,

thus the optimal total payoffs (U∗) would be 0. In addition, a larger β would bring

a smaller number of active users since an honest user would more often be punished

for giving more uncertain assessments. Note that, the maximum possible value of α

should only be 0.5 (random guessing) and be much smaller in most of practical cases.

In the literature, many approaches are proposed to improve the accuracy of judging

assessments for service evaluation, e.g., [101, 117]. Thus, the assumption of the error

probability α in our approach is reasonable, so that our work can be applied in most

circumstances.

Likewise, Fig. 7.3 shows that the number of effective incentive mechanisms de-

creases as γ increases. Even if γ reaches a very large value near 0.8, there still exist

effective incentive mechanisms, but in those situations, U∗ would become very low

since the punishment for a strategic user with a high correctness probability should be

more serious to prevent its guessing.

Fig. 7.4 demonstrates the results when the price P is adjusted between C and

B. When P is near C, the constraints specified in Eq. (7.9) can be hardly satisfied.

Conversely, U would be negative when P reaches close to B. Thus, the number of
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Figure 7.3: Incentive Mechanisms Affected by γ
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Figure 7.4: Incentive Mechanisms Affected by P

active users would reach the maximum when P−C
B−C is between 0.4 and 0.7 since more

effective incentive mechanisms can be built based on such P .

7.2.2 Simulation Experiments

Setting: since there are no suitable real environments supporting our framework, in

order to evaluate the real deployment of our work, we have carried out simulation

experiments and compared the simulation results with our theoretical results. We have

simulated a cloud service environment containing many users, in which a user has its

own strategies to provide assessments. Then, we set the same intrinsic parameters

for both the simulation environment and the theoretical analysis, and compared the
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Figure 7.5: Comparison between Simulated Results and Theoretical Results

similarity between the two kinds of results. In the simulation experiments, a setting

of the adjustable parameters is considered to build an effective incentive mechanism

if, after a number of transactions of selling assessments, a user providing a smaller

number of uncertain assessments would get a higher long-term payoff, and a user

providing a proportion of uncertain assessments would get a higher long-term payoff

than another user providing the same proportion of untruthful or strategic assessments.

Results and Analysis: the left sub-figure of Fig. 7.5 illustrates that the optimal L and

hU between the two kinds of results are very similar when adjusting λ. In some cases,

L and hU in these two kinds of results are not exactly equal since there are unavoidable

computational errors in the simulation experiments when taking an action according to

a specific probability. If some values of the constraints in Definition 1 are very small

but still positive in some assessment scoring schemes, such schemes may be evaluated

not to be able to make an effective incentive mechanism in the simulation experiments.

Thus, the number of effective incentive mechanisms in the theoretical analysis is usu-

ally larger than that in the simulation experiments. According to the experimental re-

sults, the average rate between the latter number and the former one is approximately

75%. Likewise, if the values of the constraints are negative but very near 0, such a

scheme may be considered to be effective for an incentive mechanism. Even so, the

experimental results show that at least 93% of the effective incentive mechanisms in
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the simulation experiments are the same as those from the theoretical analysis. The

right sub-figure of Fig. 7.5 shows such results when P is adjusted between C and B.

7.3 Conclusion

This chapter has proposed a novel incentive mechanism for eliciting continual and

truthful assessments in cloud environments. In order to motivate cloud users offering

cloud assessments on schedule, this mechanism allows users to provide uncertain as-

sessments in unavoidable situations (e.g., not sure about the real performance of cloud

services), and thus protects users’ honesty.

Through a suitable assessment scoring scheme, a user would have a dominant strat-

egy (giving truthful assessments) and a second-best strategy (giving uncertain assess-

ments). In the meantime, some optimal goals can be achieved, e.g., maximizing the

total payoffs from assessment transactions.

We have theoretically analyzed our approach based on Game Theory and carried

out illustrative examples and simulation experiments. The proposed theoretical anal-

ysis indicates that our approach is feasible in most circumstances. The simulation

experimental results strongly support results from the theoretical analysis.



Chapter 8

Conclusions

Nowadays, cloud computing has become the most popular paradigm for storage and

service solutions. The widespread use of cloud computing is also accompanied by

some significant issues. One main issue is how to evaluate the performance of cloud

services since it is quite necessary for potential cloud consumers to know the quality

of services they will consume and pay for. Due to the diversity and dynamic nature of

cloud services, selecting the most suitable cloud service has become quite tricky for

potential consumers.

This thesis focuses on the two main challenges of cloud service selection. The first

one is how to select the most suitable cloud service for potential consumers through

comprehensive assessments according to their customized requirements. The other is

how to achieve cloud service selection with high effectiveness and accuracy. To this

end, four major aspects regarding credible cloud service selection have been studied.

• We have proposed a novel model of cloud service selection by aggregating sub-

jective assessments from ordinary cloud consumers and objective performance

assessments from trusted testing parties. In order to consider real world situa-

tions, we have applied a fuzzy simple additive weighting system to normalize

and aggregate all different types of subjective attributes and objective attributes

of cloud services, so that some specific performance aspects of cloud services

can also be taken into account according to potential cloud users’ requirements.

In addition, our model can identify and filter unreasonable subjective assess-

ments. This makes the selection results based on our model more accurate and

175
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effective with less noise. The proposed model can effectively reflect cloud con-

sumers’ requirements in cloud service selection due to the usage of comprehen-

sive assessments.

• We have proposed a model of context-aware cloud service selection based on

comparison and aggregation of subjective assessments and objective assess-

ments. Our model takes the contexts of both subjective assessments and objec-

tive assessments into account, and uses objective assessments as a benchmark

to filter out unreasonable subjective assessments. The process of such filter-

ing is based on a group of dynamic thresholds which are determined by the

similarity between the contexts of subjective assessment and objective assess-

ment. In order to accurately compute the context similarity, we have proposed

a novel approach based on the SimRank Algorithm. Our experimental results

have shown that our context-aware model performs better than our prior cloud

selection model which has no consideration of assessment contexts. Hence, the

final aggregated results of cloud services based on our context-aware model can

more accurately reflect the overall performance of cloud services.

• In order to reduce the impact caused by biased or noisy assessments, we have

proposed a novel model for evaluating cloud users’ credibility of providing sub-

jective assessments or objective assessments for cloud services. Our model con-

siders two different classes of cloud users (i.e., ordinary consumers and testing

parties). The trustworthiness of ordinary consumers and the reputations of test-

ing parties are computed respectively. And such trustworthiness and reputations

can also influence each other, which gives our model the ability to resist user

collusion to some extent.

Inspired by our proposed credibility model, we have proposed CCCloud: a cred-

ible and context-aware cloud service selection model based on the comparison

and aggregation of subjective assessments extracted from ordinary cloud con-

sumers and objective assessments from professional performance monitoring
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and testing parties. We have first proposed an approach to evaluating the credi-

bility of cloud users. Our approach not only accurately evaluates how truthfully

they assess cloud services, but also further resists user collusion. Then, we have

considered assessment contexts in cloud service selection. The context simi-

larity between subjective assessments and objective assessments is used to dy-

namically adjust benchmark levels which are used to filter out biased subjective

assessments. The final results of cloud service selection based on assessment

credibility and contexts are comprehensive and customized according to the po-

tential consumer’s requirements. Hence, our model can satisfy the various needs

of different consumers.

We have conducted experiments in many different settings. The experimental

results have demonstrated that CCCloud outperforms the existing models un-

der different situations, especially in the situations where the performance of a

service is inconsistent, and malicious cloud users give collusive assessments.

• In order to further improve the accuracy of cloud service selection, we have

proposed a novel incentive mechanism for eliciting continual and truthful as-

sessments in cloud environments. The main novelty is that, different from

prior works, our incentive mechanism is compatible with uncertain assessments.

Hence, it can protect a user’s honesty by allowing it to give uncertain assess-

ments in unavoidable situations. Through a suitable assessment scoring scheme,

a user would have a dominant strategy (giving truthful assessments) and a second-

best strategy (giving uncertain assessments). Meanwhile, the total payoffs of

transacting assessments would be maximized. We have theoretically analyzed

our approach and carried out simulation experiments. The proposed theoreti-

cal analysis indicates that our approach is feasible in most circumstances. The

simulation experimental results strongly support the theoretical analysis.
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Appendix A

The Notations in the Thesis

Table A.1: The Notations in Chapter 3
Notations Explanations

s The number of subjective attributes
o The number of objective attributes
u The number of associated attributes
Ã A trapezoidal fuzzy number

µÃ(x) The membership function of trapezoidal fuzzy numbers
d(Ã) The defuzzification method (signed distance)
Cj The jth alternative cloud service

DMjk The attribute values of the jth alternative service
from the kth decision maker

Aijk The value of the ith attribute of the jth alternative service
from the kth decision maker

r̃ijk The fuzzy rating of Aijk
rijk The crisp rating of r̃ijk
EDjk The Euclidean distance between the ratings of the corresponding

subjective associated attributes and the objective associated attributes
W̃i The fuzzy weight for the ith attribute
Wi The crisp weight for the ith attribute
M̃j The decision matrix for the j alternative service
S̃j The fuzzy score of the jth alternative service
Sj The final crisp score of the jth alternative service
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Table A.2: The Notations in Chapter 4
Notations Explanations
s(A,B) The similarity between the contexts A and B
s(c, d) The similarity between the assessment features c and d
Vc(A) The value of the assessment feature c in the context A
Cmpc The comparator of the assessment feature c
C The confidence level in the SimRank algorithm

D(n, n′) The depth of the deepest common ancestor of two nodes n and n′

W̃o The fuzzy weight for objective assessments
W̃s The fuzzy weight for subjective assessments
go The context of the objective assessments
gv The context of the vth group of subjective assessments
Rv The filtering threshold for the vth group of subjective assessments

Table A.3: The Notations in Chapter 5
Notations Explanations

OC Ordinary consumers
TP Testing parties
si The ith alternative cloud service
r The normalized ratings in the interval [0, 1]

RTr(OC ∼ OC ′) The relative trustworthiness of OC ′ based on OC
RTPq TPq’s reputation

RTP (OC ′) The average reputation of similar TP s with OC ′

Spri(OC ∼ OC ′) The private similarity between OC and OC ′

Spub(OC
′ ∼ ALL) The public similarity between OC ′ and all other OCs
ω The weight for private similarity
Nsi The total number of correspondent rating pairs for si
Nall The total number of correspondent rating pairs for all

alternative services
Np The number of positive correspondent rating pairs for all

alternative service
rOC,si The rating of si rated by OC
ρ() The Spearman’ rank correlation coefficient [103]

Tr(OC) The global trustworthiness of OC
εa, εb, εc, εd The reputation payoffs
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Table A.4: The Notations in Chapter 6
Notations Explanations
CS, TP,OC Cloud Service, Testing Party, Ordinary Consumer
Crt(OCi) An ordinary consumer OCi’s credibility in the time window t
Crt(TPj) A testing party TPj’s credibility in the time window t
Fv() The factor based on assessment variation trends

(influencing OCs’ credibility)
Fs() The factor based on the majority of subjective assessments

(influencing the credibility of OCs and TP s)
Fo() The factor based on the majority of objective assessments

(influencing the credibility of OCs and TP s)
Asi (t) OCi’s subjective assessments for all subjective attributes
Aai (t) OCi’s subjective assessments for all subjective associated attributes
M s

s (t) The majority of all OCs’ subjective assessments for all
subjective attributes

Ma
s (t) The majority of all OCs’ subjective assessments for all

subjective associated attributes
Aoj(t) TPj’s objective assessments for all objective attributes
Aaj (t) TPj’s objective assessments for all objective associated attributes
M o

o (t) The majority of all TP s’ objective assessments for all
objective attributes

Ma
o (t) The majority of all TP s’ objective assessments for all

objective associated attributes
Fk(t) The final score of CSk in the time window t
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Table A.5: The Notations in Chapter 7
Notations Explanations

α The probability for falsely judging an assessment
β The probability of giving uncertain assessments
γ The probability for a user guessing correctly
δ A user’s patient for future payoffs
b A user’ reported behavior
B The benefit for the broker from a truthful assessment
C The cost of effort of giving a truthful assessment
P The ex-ante price for an assessment
λ The payment discounted factor
L The largest assessment score
hU The assessment score for giving an uncertain assessment

τ(θ, b) The assessment scoring scheme
p(θ|θ′) The transition probability of an honest user’s score between time windows
U∞T (L) The long-term expected payoff a user obtains by giving a truthful assessment
U∞U (L) The long-term expected payoff a user obtains by giving an uncertain assessment
U∞UT (L) The long-term expected payoff a user obtains by giving an untruthful assessment
U∞S (L) The long-term expected payoff a user obtains by giving a strategic assessment
η(θ) The proportion of the users having the score θ
U∗ The expected total payoffs obtained by the broker and an honest user
U The expected payoff the broker obtains from an honest user



Appendix B

The Acronyms in the Thesis

Table B.1: The Acronyms in All the Sections
Sections Explanations Acronyms

Section 1&5&6 Ordinary Consumer OC
Section 1&5&6 Testing Party TP

Section 2 Service-oriented Architecture SOA
Section 2 Infrastructure-as-a-Service IaaS
Section 2 Platform-as-a-Service PaaS
Section 2 Software-as-a-Service SaaS
Section 2 Service Measurement Indicator SMI
Section 2 Key Performance Indicator KPI
Section 3 Fuzzy Simple Additive Weighting System FSAWS
Section 4 Bias Level BL
Section 4 Biased Rating Percentage BRP
Section 6 Context-aware and Credible Cloud Service Selection CCCloud
Section 6 Cloud Service CS
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