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Summary 

The dual-route cascaded (DRC) model of reading aloud and word recognition has 

achieved considerable success. Despite this, it has faced ongoing criticism for being a static 

model of skilled reading that does not describe reading acquisition. This PhD research 

focused on incorporating learning mechanisms into DRC. Work was divided into two broad 

areas: orthographic learning within DRC’s lexical route, and grapheme–phoneme 

correspondence learning in DRC’s sublexical route. 

To model orthographic learning, a “learning DRC” (L-DRC) was created. L-DRC 

provides a computational account of the self-teaching hypothesis, and in accordance with this, 

models orthographic learning as being self-driven via phonological recoding, with context 

supporting irregular word learning. L-DRC effectively modelled self-teaching and 

orthographic learning, and suggested mechanisms for the difficulties children may face when 

self-teaching difficult words like potentiophones or heterophonic homographs. 

To model sublexical learning, a grapheme–phoneme correspondence (GPC) Learning 

Model was created and tested. This model effectively demonstrated GPC learning, especially 

when trained on an input corpus limited to mono-morphemic words presented once each. 

However, it experienced difficulties when trained on more realistic input corpuses. The 

model’s performance suggests that sublexical route learning is sensitive to morpheme 

structure, and to type-based rather than token-based features in written material. 

The investigation of sublexical-route learning was preceded by a comparison of the 

sublexical routes of two competing dual-route models, the DRC and connectionist dual-

process (CDP+) models. These were assessed against new empirical data on how people 

pronounce nonwords. While neither model provided a good match to the human data, DRC 

performed significantly better than CDP+, or its successor CDP++.  
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Introduction 

The dual-route cascaded (DRC) model of reading aloud and word recognition 

simulates the cognitive mechanisms involved in skilled reading. It is a highly successful 

model, one that has proven able to simulate a wide variety of effects observed in human 

readers (Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001). Despite this success, it has been 

criticised for being a static, non-learning model of skilled reading that is incapable of 

modelling the development of reading skill. This thesis aims to introduce learning to the dual-

route cascaded (DRC) model of reading aloud and word recognition, retaining the existing 

strengths of the DRC model while incorporating this new capacity. 

In this introductory chapter, I first argue why computational modelling of cognitive 

processes is a worthwhile endeavour, before describing the dual-route theory of reading aloud 

and the DRC model of reading aloud and word recognition. Following this, several other 

models of reading are considered, all of which include a learning mechanism. After 

discussing these approaches to modelling learning, I present a framework for understanding 

and comparing the aims and priorities inherent in each model. Next, several challenges to the 

suitability of the learning approach of each of these models is identified. The final sections of 

this introduction will introduce the approach taken in implementing learning in DRC, 

covering separately an orthographic word learning mechanism based on the self-teaching 

hypothesis of Jorm and Share (1983), and a sub-lexical learning mechanism for learning 

grapheme-phoneme correspondences (GPCs). 

Why computational modelling? 

Before considering the computational modelling of learning to read, it is worthwhile 

asking why computational modelling is useful in cognitive science in general. What makes 
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the computational instantiation of a theory any better than a verbal theory alone? I identify 

three broad reasons why computational modelling is useful in cognitive science. 

Firstly, computational models can help reveal the ways in which a theory is 

incomplete. Theories may initially start out simple and intuitive, but as they are developed 

they can become quite complex. For example, the dual-route theory as it is embodied in the 

DRC model includes claims about the representation of words in a lexicon, how word 

frequency information is stored, how graphemes are parsed, where serial processing and 

parallel processing are each involved, and how the activation of a certain phoneme might 

decay should the grapheme parsing system receive additional information and decide that the 

relevant grapheme-phoneme correspondence (GPC) no longer applies. That is just to name a 

few of the intricacies. In covering a large amount of detail, verbal theories run the risk of 

overlooking crucial yet subtle aspects. Constructing a computational model, however, 

requires completeness, since a computational model that is only partially built will not run on 

a computer. The need to specify a computational model in sufficient detail for it to execute 

sets a minimum requirement on the level of detail required in a theory. This strength of 

computational modelling is identified by Lewandowsky and Farrell (2011), who, in their book 

on the subject of computational modelling in cognition, argue that even verbal theories that 

are intuitively highly plausible may turn out to be incoherent. Norris (2005) makes the same 

point, and discusses how hidden assumptions might be dealt with only superficially by a 

verbal theorist seeking to adequately explain experimental data, if they fall short of the rigour 

required by modelling. Coltheart et al. (2001) also acknowledges this when arguing the 

benefits of computational modelling of reading aloud and word recognition. Thus, 

computational modelling forces the researcher to consider greater detail to identify these 

hidden assumptions. 
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Secondly, computational modelling allows for effective adjudication between models 

and the theories they represent. Computational models are used to conduct simulations, and 

these simulations generate something that is akin to experimental data. Having these data 

allows for a rigorous and quantitative comparison between what the theory and model predict 

will happen, and what people actually do.  This is a comparison where differences between 

theory and reality are measured. Lewandowsky and Farrell (2011) capture the significance of 

this when they state that it is typical for several theories or models to vie for the leading role 

as explainers of a set of data. Coltheart et al. (2001) also highlights this advantage. The 

literature on computational modelling of reading certainly attests to this vigorous and 

quantitative measuring of computational model performance versus experimental benchmarks 

(see Perry, Ziegler, and Zorzi (2007) for an extensive list of empirical data benchmarks that a 

model of reading would ideally satisfy to be regarded as an accurate model). 

Finally, computational models are straightforwardly falsifiable. That is, model 

simulations are like specific predictions, and differences between empirical data and 

simulation results can constitute a falsification of the theory embodied in the model. Verbal 

theories can certainly be used to generate predictions which can then be assessed through 

comparison to empirical data. However, the greater rigour implicit in a quantitative analysis 

of computational model results allows for a finer degree of falsification than could be 

provided by a verbal model. For example, several models of reading aloud each purport to 

account for the frequency effect—where higher frequency words are named more quickly 

than low frequency words. However, Perry et al. (2007) are able to conduct an item-level 

variance analysis using the quantitative results of modelling simulations to argue that the 

CDP+ model provides the best account of the way reading-aloud latencies vary from item to 

item. A verbal theory of reading aloud may suggest broadly that some types of words can be 

named quicker than others, but without simulated data for reading-aloud latency of specific 
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words, a verbal theory would not be amenable to the item-level variance analysis conducted 

by Perry et al. 

The DRC model of reading aloud and word recognition 

The dual-route theory of reading aloud 

The dual-route theory of reading aloud (Forster & Chambers, 1973; Marshall & 

Newcombe, 1973) holds that two mental mechanisms are involved in reading aloud: a lexical 

process and a sub-lexical process. The sub-lexical mechanism involves serially constructing a 

phonological representation through knowledge of how constituent parts of the word (e.g., 

graphemes) correspond to meaningful sounds. In contrast, the lexical process involves the 

automatic recognition of whole written words, without needing to parse the constituent parts 

of the word or recognise phonology beforehand. The recognised whole written word is known 

to correspond to a spoken word, and the spoken word is then uttered. 

While originally a verbal theory, often described with the aid of a box-and-arrow 

diagram similar to that shown in Figure 1, the dual-route theory has also been developed into 

a computational model, the dual-route cascaded (DRC) model of word recognition and 

reading aloud (Coltheart, Curtis, Atkins, & Haller, 1993; Coltheart et al., 2001; "Dual-Route 

Cascaded Model 1.2.1," 2009). Following is a brief description of the DRC architecture. 

The computational DRC model 

In accordance with dual-route theory (and Figure 1), the DRC computational model 

(or just “DRC”) simulates two non-semantic cognitive mechanisms involved in reading: a 

sub-lexical route and a lexical route. Visual feature identification and letter identification are 

common to both routes at the input end of the model, and phoneme identification is common 

to both routes at the output end of the model. 
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Figure 1 – The dual-route model of reading aloud and word recognition 

 

Slot-based position coding 

These common levels (visual feature, letter and phoneme) are divided into slots, with 

each slot corresponding to either a letter in the stimulus, at the input end of the model, or a 

phoneme in the output. So, for example, the stimulus CAT will have C active in the first letter 

slot, A in the second, and T in the third. In the phoneme layer, /k/
1
 will be activated in the first 

slot, /{/ in the second slot, and /t/ in the third. 

                                                 
1
 A list of phonemic symbols used in this introduction and most of this thesis is provided in Appendix 

A. Note that in chapter 3, different phonemic symbols are used, which are described within that chapter. These 
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LEXICAL ROUTE NON-LEXICAL ROUTE 
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Representing time in the DRC model 

DRC approximates the passing of time by dividing processing up into cycles, with 

each cycle representing a small interval of time. Activation across the model is calculated 

anew as the model progresses from cycle to cycle. By making the cycles small enough, the 

digital operation of the model approximates continuous real time. The total number of cycles 

taken by the model to perform a task is a measure of the response time or latency for 

performance of that task. While the model approximates real time operation across the 

presentation of one stimulus, it deviates from real-time simulation from stimulus to stimulus. 

This is because the network is typically reset (e.g., all activations reset to zero) at the start of 

each new stimulus, rather than retaining activations (a “memory”) of events from one 

stimulus to the next. 

DRC’s lexical route 

DRC’s lexical route consists of an orthographic lexicon layer and a phonological 

lexicon layer, in addition to the layers shared with the sub-lexical route. Each layer has 

connections in both directions to adjacent layers as represented in Figure 1 by the bi-

directional arrows linking each box. The visual feature layer is an exception and does not 

receive feedback from the letter layer
1
. The lexical route has the following characteristics: 

Connectionist network: the DRC lexical network consists of layers of nodes, with 

weighted connections from one node to another. Each node has an activation level, 

represented by a real-number value between 0.0 and 1.0. Whenever a node has an activation 

level greater than 0.0, it contributes activation to other nodes to which it is connected. While 

there are a broad variety of connectionist architectures, many very different to DRC, the DRC 

lexical route still retains the basic features of a connectionist network. It is based on the well-

                                                                                                                                                         
different symbols are used since chapter 3 details an experiment in which the utterances of Australian English 

speakers were transcribed, and the phonemes used were chosen to describe Australian English. 
1
 This is expected to change in DRC 2.0 (yet to be published) with the introduction of interactivity 

between the visual feature layer and the letter layer. 
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known interactive-activation (IA) connectionist network architecture (McClelland & 

Rumelhart, 1981; Rumelhart & McClelland, 1982). 

Parallel computation: as with most connectionist networks, DRC’s lexical route is a 

form of parallel computing. Each letter receives activation from, and contributes activation to 

the lexical route at the same time. This parallelism continues throughout the lexical route: the 

inputs to each node in each layer, and the activations of each node in each layer, are all 

computed in parallel. 

Despite this parallel computing architecture, the DRC model is run on computers that 

execute instructions serially. The serial operation of the computer is a lower level 

consideration, and does not alter the fact that, at a higher level of description, the DRC lexical 

route is functionally computed in parallel. Another way to think of this is that the serial 

computer is emulating a virtual parallel model. The activity at each node is calculated anew 

every cycle, and the model does not advance to the next cycle until each node has been 

calculated, thereby simulating each node operating simultaneously, in parallel. 

Graded representation: one way to model the process of a mind recognising a word is 

to use a binary representational scheme—either the word is recognised or it is not recognised. 

Another way to model recognition is to use a graded system, where a continuous level of 

activation from 0.0 to 1.0 is used to model recognition, such that an activation of 0.0 indicates 

no recognition at all, an activation of 1.0 suggests perfect recognition, and intermediate values 

such as 0.1 or 0.3 indicate partial recognition. The magnitude of activation suggests how 

strong that recognition is. DRC’s lexical route uses a graded system like this, where nodes can 

have activation values ranging from 0.0 to 1.0. The sole exception to graded representation is 

that a threshold activation value is used to complete the simulation of a word. Once active 

phonemes in each slot all reach this threshold level, the simulation is considered complete, 
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and the stimulus named. There is no graded condition of completion, the simulation is either 

ongoing, or else it has ended. 

Local representation: each node in the DRC lexical route represents specific cognitive 

knowledge. For example, each node in the orthographic lexicon corresponds to a particular 

printed word, and each node in the letter level corresponds to a particular letter in a particular 

position of the input stimulus. This is in contrast to many other kinds of connectionist 

network, where representations of specific cognitive facts are distributed across many nodes 

(e.g., see Rumelhart & McClelland, 1986). 

Interactivity: Considering Figure 1, it might at first seem that information flow must 

be only in one direction, from the input at the visual feature level, down through successive 

levels to the phoneme output level. This is not the case. The DRC lexical route includes 

connections that carry information in the opposite direction too. For example, activated 

orthographic word nodes will contribute activation back to the letter level, and activated 

phonemes will contribute activation back to word nodes in the phonological lexicon. 

McClelland and Rumelhart (1981) demonstrate how this allows top-down expectations to 

support the recognition of symbols at lower levels, allowing their interactive activation model 

(and also the DRC model) to produce a word superiority effect, and giving the model some 

capacity to process degraded input. For example, if the degraded stimulus BRAK?
1
 is 

presented, where the final letter is obscured and represented by a question mark, feedback 

from the word level could help to identify that the unclear letter must be an E, to form the 

word BRAKE. Interactivity also allows the sub-lexical route to interact with the lexical route, 

via feedback from the phoneme level to the phonological lexicon. This interactivity plays an 

                                                 
1
 Throughout this thesis we will use formatting where orthographic representations are presented in 

capital letters, while phonological representations will either be presented by providing the print equivalent in 

inverted commas and lower case, or else using phonemic symbols within forward slashes. For example, DOG 

(orthographic), and “dog” or /dQg/ (phonological). 
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important role in Chapter 2 of this thesis, to allow self-teaching, and is also mentioned in 

Chapter 3, when discussing lexical responses to nonword stimuli. 

Excitatory and inhibitory connections: DRC employs inhibitory connections as well as 

excitatory connections. This means that in addition to activating compatible nodes in adjacent 

layers, an active node will repress incompatible nodes. For example, the letter C in the first 

slot has an excitatory connection to the printed word node CAT in the orthographic lexicon, 

but has an inhibitory connection to the printed word node DOG, so if this letter is activated, it 

will excite the node for CAT, but actively repress the DOG node from being excited. 

Lateral inhibition: In addition to excitatory/inhibitory connections between layers, 

DRC includes lateral inhibition from node-to-node within a layer. For example, if the node for 

the word CAT is activated in the orthographic lexicon, then this active node will contribute 

inhibitory signals to all other word nodes in the orthographic lexicon. 

Cascaded activation: Some models (such as the logogen model proposed by Morton, 

1969) suggest that active nodes will not output signals until their level of activation reaches 

some threshold level. With this architecture, activation would spread through the network in a 

stage-by-stage fashion. Letters would need to reach threshold activation before they 

contribute signals to the orthographic lexicon, orthographic lexicon nodes would need to 

reach threshold before they contributed signals to the phonological lexicon, and so on. DRC 

does not use this approach. Instead, activation in DRC is cascaded. As soon as a node 

receives some level of activation, it begins contributing an output signal with a strength 

proportional to its level of activation. In this way, activation spreads, or cascades, through the 

network rapidly and smoothly, with the strength of activation growing continuously over 

time, rather than in a stage-by-stage fashion as would be the case if thresholds were used. 
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Again, the threshold to determine when reading aloud has occurred is the one exception to the 

cascaded approach. 

“At-each-node” frequency knowledge: The DRC orthographic lexicon nodes and 

phonological lexicon nodes each have a resting activity that is proportional to the log of the 

frequency of the word represented by that node (printed frequency for orthographic nodes, 

and spoken frequency for phonological nodes). This enables DRC to model frequency effects. 

Words that are higher frequency have higher resting activity, so if a stimulus corresponding to 

this word is presented to the model, the word node will activate more rapidly, and reading 

aloud or lexical decision can occur with a shorter response time than if the word had been low 

frequency. 

Static, pre-programmed architecture: DRC’s lexical route is pre-programmed. DRC’s 

modellers pick the words that will be in DRC’s vocabulary, and dictate how nodes are 

connected. Connection strengths and frequency-related resting activities are chosen by the 

programmer, and do not change from simulation to simulation unless the experimenter 

changes them manually. DRC’s lexical route is thus a model of a skilled reader’s cognitive 

mechanisms for reading. By manually changing parameters, acquired impairments may be 

modelled (and perhaps also strategic effects), but not the developmental processes related to 

learning to read. Since this knowledge is pre-programmed rather than learned, DRC is 

considered a static model. 

DRC’s sub-lexical route 

The sub-lexical route shares the visual feature layer, letter layer, and phoneme layer 

with the lexical route. The aspects of this route that are independent of the lexical route 

include a grapheme parsing mechanism and a store of knowledge governing how graphemes 

correspond to phonemes. Chapter 4 of this thesis describes a computational model for 
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learning the grapheme–phoneme correspondences section of the sub-lexical route. The sub-

lexical route has the following characteristics: 

Rule-based: In contrast to the connectionist structure of the lexical route, knowledge 

of how graphemes correspond to phonemes in the sub-lexical route is stored as a list of rules, 

typically referred to as grapheme–phoneme correspondence rules (GPCs). In addition to 

conventional GPCs that each relate one grapheme to one phoneme, DRC’s sub-lexical route 

also includes knowledge of several rules that are not strictly GPCs. These include a multi-

phoneme rule for the grapheme X (it corresponds to two phonemes, /ks/), context rules, and 

output rules. Context rules manipulate the GPCs that apply for a particular grapheme based on 

other aspects of the stimulus, (e.g., if the grapheme C is followed by an E, I or Y, then it 

corresponds to the /s/ phoneme, otherwise, it corresponds to the /k/ phoneme). Output rules 

are included to account for phonotactic and morphophonemic constraints. Output rules are 

applied after GPCs are applied, and alter the pattern of phonemes selected (e.g., one output 

rule replaces /n/ with /N/, if the /n/ phoneme precedes a /k/ phoneme). 

Serial computation: Letters from each slot are not made available to the grapheme 

parser simultaneously in parallel as is the case for the lexical route. This is despite the letters 

themselves being activated in parallel within the letter layer. Instead, letters are made 

available to the grapheme parser one-by-one, from left-to-right, serially. This approach 

suggests that the sub-lexical route employs some form of attention mechanism, where 

attention is allocated serially to each letter. Introducing this serial element to DRC enables 

DRC to account for a number of effects observed in human readers that seem to demonstrate 

serial processing, such as the “whammy effect” (Coltheart et al., 2001; Rastle & Coltheart, 

1998). 
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In previous versions of DRC (i.e., prior to DRC-1.2.1), letters were made available to 

the sub-lexical route at set intervals of time, measured in cycles. This was changed in DRC-

1.2.1, after deficiencies with this approach with respect to the simulation of masked onset-

priming effects were identified (Mousikou, Coltheart, Finkbeiner, & Saunders, 2010; 

Mousikou, Coltheart, Saunders, & Yen, 2010). Now, the introduction of a new letter to the 

sub-lexical route is triggered each time the rightmost activated phoneme in the phoneme layer 

achieves a certain activation, governed by the GPCPhonemeExcitation parameter. So, for the 

stimulus CAT, first the C will be made available to the sub-lexical route, which will 

contribute to the /k/ phoneme being activated. Once the /k/ phoneme reaches the appropriate 

level of activation, the A will be made available to the sub-lexical route, causing the /{/ 

phoneme to begin to receive activation from this route. Once the /{/ phoneme is sufficiently 

activated, the T will be made available, and the /t/ phoneme will begin receiving activation 

via the sub-lexical route. 

Static and pre-programmed: Like the lexical route, the sub-lexical route does not 

learn. The logic behind grapheme parsing, and the full list of GPC rules known to DRC are all 

coded directly by the programmer, such that DRC simulates skilled knowledge. DRC can be 

made to simulate acquired phonological dyslexia by removing some of the rules from the 

DRC sub-lexical route, but DRC-1.2.1 has no mechanism to simulate the developmental 

acquisition of rules. 

DRC and learning 

In addition to lexical and sub-lexical route knowledge being static and pre-

programmed, all other aspects of DRC are also manually coded, rather than learned. DRC is 

pre-programmed with knowledge of letters, knowledge of phonemes, and knowledge of the 

way visual features correspond to particular letters. That DRC does not model the learning 

process has been the focus of ongoing criticism. For example, Dufau et al. (2010) have 
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criticised static models (such as DRC) in general, because they do not explain the dynamic 

acquisition of frequency information, and instead knowledge of word frequency is manually 

inserted into the model by its creators. Perry et al. (2007) argue that the absence of learning 

specifically in the DRC model is a “major shortcoming” (p. 276). Seidenberg and Plaut 

(2006), also specifically criticise DRC for not including a learning mechanism. Having to 

explain how a skilled model has come to be skilled provides a realistic constraint on the 

design of the model. As a hard-wired model of skilled learning, the design of DRC was not 

subject to this constraint, and therefore it is arguable that DRC’s structure is not necessarily 

realistic (Davis, 1999). 

In response to this criticism, Coltheart et al. (2001) counter that constraining a model 

in this way is only an advantage if the constraint is realistic. That is, if the learning 

mechanism is not realistic, then its operation might not allow the model to ever come to 

approximate realistic, skilled reading or the cognitive architecture and functions associated 

with skilled reading. A hard-wired model of skilled reading avoids this problem by avoiding 

the inclusion of a potentially unrealistic learning mechanism. Ideally though, a complete 

model would be able to accurately account for both the true structure and functions of a 

skilled reader, and also realistically model the developmental processes that lead to these. 

DRC remains a successful model of reading aloud, and is able to model a wide variety 

of benchmark effects identified experimentally in human readers (Coltheart et al., 2001), 

despite the specific criticism that it offers no account of learning. For this reason, a 

worthwhile research project is to investigate the design, construction and testing of a 

“learning-DRC” (L-DRC) model.  
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Nested modelling 

Rather than putting DRC aside to build a new model of reading skill acquisition from 

scratch, the approach adopted here is to work with the existing DRC model and augment it. 

This approach is in accordance with the “nested-modelling” approach to model construction, 

as described in Jacobs and Grainger (1994). This modelling philosophy holds that new model 

iterations should be able to account for the same capabilities and effects as existing models. 

The benefits of a new model are diminished if, in developing the capacity to simulate a new 

effect, the capacity to simulate an existing effect is lost. Given DRC’s success, it is sensible to 

work with this model to retain its existing capacities while introducing new ones. More than 

merely addressing criticism of DRC, the introduction of learning will increase DRC’s value as 

an investigative tool to understand the developmental processes involved in learning how to 

read, while retaining DRC’s existing advantages. 

Computational models of reading that learn 

Before deciding on the approach to learning to be taken with DRC, it is worthwhile to 

first consider the approach to learning taken in a variety of existing models of reading aloud 

or word recognition. The models considered are the triangle model family of models of 

reading aloud (Harm & Seidenberg, 1999, 2004; Plaut, McClelland, Seidenberg, & Patterson, 

1996; Seidenberg & McClelland, 1989), the connectionist dual process (CDP) family of 

models of reading aloud (Perry et al., 2007; Perry, Ziegler, & Zorzi, 2010), the Self-

Organising Lexical Acquisition and Recognition (SOLAR) model of visual word recognition 

(Davis, 1999), and the Adaptive Resonance Theory (ART) account of orthographic word form 

learning presented by Glotin et al. (2010). 
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The triangle family of models 

The implicit theory of the triangle model structure is that a separate, rule-based sub-

lexical mechanism is not required to generalise from word to nonword stimuli. This is in 

contrast to DRC, which embodies the theory that there are separate lexical and sub-lexical 

routes, with the sub-lexical route being crucial for the processing of nonword stimuli. That the 

triangle models describe only one non-semantic cognitive route between orthography and 

phonology is one of the most noteworthy differences between the triangle models and DRC. 

There are many other differences in both architecture and operation between the triangle 

models and DRC, and—importantly—differences in modelling philosophy between the 

research groups working with each model. However, I will restrict discussion here to the 

features of the model related to learning. 

The triangle models all use some form of the back-propagation algorithm (Rumelhart, 

Hinton, & Williams, 1986) to permit learning in the model. Back-propagation first received 

widespread exposure after the twin-volume publication Parallel Distributed Processing: 

Explorations In The Microstructure Of Cognition (Rumelhart & McClelland, 1986), though it 

was independently developed much earlier than this by other researchers (e.g., Bryson Jr. and 

Ho (1969), as cited in Russell and Norvig (1995)). This algorithm allows networks with 

multiple layers of processing units (or nodes) to be effectively trained, and such networks are 

more powerful than their older and simpler two-layer predecessors. Multi-layer networks 

employ intermediate layers of so-called “hidden units”, which are not accessible to the 

external world. They receive activation from layers closer to the input, and feed activation 

forward to layers at the output. 

The type of learning achieved via back-propagation can be described as supervised 

learning. The model needs to be provided with both a stimulus, and the corresponding correct 

output for that stimulus. The model then compares its current output in response to the 
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stimulus with the correct output, calculates the error between the two, and propagates 

information about this error back through the network. This error information is used to 

modify connection weights to reduce the output error. From initial conditions characterised by 

random connection weights (i.e., no knowledge), exposure to a great number of stimuli 

accompanied by the correct responses allows connection weights to be honed using back-

propagation. After training, the model is able to produce correct outputs to stimuli in the 

absence of information about what the correct response should be. 

The CDP family of models 

The CDP family of models are similar to DRC in that they are based on dual-route 

theory. The lexical route architecture of these models is almost identical to DRC, though 

CDP++ has a larger vocabulary that includes multi-syllabic words, and several parameters are 

given different values. However, the sub-lexical route of the CDP models is markedly 

different to DRC. Rather than using a list of discrete rules to convert graphemes to phonemes 

as DRC does, the CDP models use a connectionist, two-layer associative network to 

determine which phonemes to activate, based on the graphemes that have been identified in 

the input. DRC is committed to the idea that our cognitive systems include representations of 

rules in the sub-lexical mechanism, which dictate clearly and unambiguously the way 

graphemes correspond to phonemes. The CDP models are not committed to rules, but rather 

represent a commitment to a statistical relationship between orthographic word parts and 

phonological word parts, which allows for significantly more contextual influences in the 

translation of letters to sounds. Pritchard, Coltheart, Palethorpe, and Castles (2012), which is 

included as Chapter 3 of this thesis, provides a more detailed characterisation of these 

differences. 

Like the triangle models, the learning approach adopted by the CDP models can be 

categorised as supervised learning. The CDP models are presented with stimuli matched with 
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correct outputs, and the CDP model learns by calculating the error between its actual output 

and the correct output, and then adjusting connection weights to reduce this error. This 

process of using error signals to modify connection weights does essentially the same thing as 

back-propagation, but for a two-layer network (Anderson, 1995). In a two layer network, the 

learning algorithm is known as the delta rule (Widrow & Hoff, 1960). As with the triangle 

models, the rate of learning is slow, and learning takes place over many trials. Perry et al. 

(2007) report that the CDP+ model received 50 epochs of GPC training and 100 epochs of 

word training (where an epoch involves presenting each word in the training corpus once). 

The training corpus for CDP+ consisted of 7,383 unique orthographic patterns. 

The SOLAR model 

The SOLAR model (Davis, 1999), like most models of reading aloud and/or word 

recognition, includes a theoretical account that is partially realised as a computational model. 

Like DRC, the theoretical account of the SOLAR model includes multiple levels of 

representation, including a letter level, orthographic level, phonological level, and semantic 

level. There are also multiple cognitive routes, such as print–letter recognition–orthography, 

or print–letter recognition–phonology–orthography, which is also similar to DRC. However, 

the computational implementation of the SOLAR model (which is what I am referring to 

hereafter with the term “SOLAR model”) only covers the orthographic level, and is what I 

focus on in my account here. The SOLAR model can perform visual word recognition and 

lexical decision, but given that it only includes an orthographic level, it does not simulate 

reading aloud. 

The SOLAR model learns to associate an ordered list of letters in a stimulus with a 

cognitive representation of an orthographic word. The model architecture consists of “item” 

nodes representing the individual letters in a stimulus, and “list” nodes, representing chunked 

representations of ordered lists of letters. SOLAR possesses multiple levels of orthographic 
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representation, so that it can represent parts of words in addition to complete words by doing 

additional chunking. For example, the word CATALOGUE is comprised of nine letters, and 

one level might chunk these letters into representations for CAT, A, and LOGUE, thereby 

identifying some of the sub-words occurring within the whole word. A subsequent level might 

then chunk these word parts to identify the whole word CATALOGUE. 

Unlike the triangle and CDP models, the SOLAR model uses an unsupervised 

approach to learning. Rather than adjusting connection weights to minimise the error between 

the current output and a supplied correct output, the SOLAR model instead adjusts connection 

weights based on the critical features it has independently identified in various stimuli. It does 

this in the absence of any feedback as to what is correct. Davis designed this approach 

building on earlier work on Adaptive Resonance Theory (Carpenter & Grossberg, 1987) and 

the SONNET model (Nigrin, 1993). These features are used by the model to differentiate 

between different stimuli, and cluster similar stimuli. After a particular stimulus type (e.g., a 

particular word) has been presented enough times, the model will form a “unitised” 

representation of the stimuli, meaning that it has adjusted connection weights in a way that 

results in a single list node representing the stimuli being activated in response to that stimuli. 

Unlike most other models of either word recognition or reading aloud (except CDP++) 

SOLAR is able to process multi-syllabic stimuli, while still recognising the sub-words that 

may be contained within larger words. Focussing only on orthographic learning and avoiding 

phonology may also have enabled this, since the phonological complexities of multi-syllable 

words such as allocation of stress are avoided. 

Adaptive Resonance Theory 

The adaptive resonance theory (ART) (Carpenter & Grossberg, 1987) model of 

orthographic learning of Glotin et al. (2010) (hereafter referred to as simply the “ART 

model”,) is similar to the SOLAR model in that it is an unsupervised, orthographic learning 
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model with no contribution from phonology. The similarity between the ART and SOLAR 

models is not surprising given that ART formed part of the inspiration for the development of 

the SONNET network (Nigrin, 1993) and in turn the SOLAR network (Davis, 1999). 

Approach to modelling 

Each of the models considered above has the capacity to learn, and therefore to 

simulate aspects of the development of reading skill. This is a facet of cognition that DRC 

does not yet possess. In this section, however, the modelling philosophy I have adopted is 

described, and this philosophy raises challenges for each of these models as an account of 

learning how to read. 

Levels of explanation 

In describing how I will proceed to analyse and characterise models of learning to 

read, I will introduce the idea of levels of explanation in cognitive science. This idea of levels 

hinges on a mechanistic understanding of cognition (cf. Bechtel (2008) in which levels of 

explanation and cognitive mechanisms are discussed in some detail). 

The levels of explanation considered by researchers examining how we read could 

extend from the behavioural (the externally observed actions involved in reading, uttering 

words etc.), all the way down to low-level biological explanations (the organisation and 

operation of neurons and chemical processes in the brain). There is a continuum of levels in 

between, which I will broadly classify as either micro-cognitive—for levels of cognition 

closer to the lower-level biology, or macro-cognitive—for levels of cognition closer to the 

behavioural level. An example of an account of reading at the macro-cognitive level might be 

the notion that there are two cognitive mechanisms involved in reading (i.e., the fundamental 

proposition of dual-route theory). An example of a micro-cognitive theory might be the idea 
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that words are represented in the mind across a distributed network of nodes, rather than 

locally at a single node or “address” in memory (a micro-cognitive feature of the triangle 

model of reading). 

None of the models described so far are biological models that attempt to simulate the 

behaviour of actual neurons in the brain, even though it is fair to say that the kinds of 

connectionist structures found in all of these models might have found some inspiration from 

the way neurons form networks (see Chapter 1 of Volume 1 Rumelhart and McClelland 

(1986) for a discussion of whether parallel distributed programming models such as the 

triangle model are cognitive science or neuroscience, where the authors describe themselves 

as cognitive scientists who enjoy neural inspiration). Each of the models of reading previously 

described purports to model the upper levels of cognition and behaviour, in that they are 

capable of specific tasks such as word reading aloud or lexical decision, and include decisions 

about macro-cognition, such as whether or not there are multiple cognitive mechanisms 

involved in reading. The models also (whether explicitly or inadvertently) model aspects of 

micro-cognition, since this kind of detail is frequently demanded in computational modelling 

in order to have a complete, executable model. 

However, the models differ in where they place focus within the cognitive levels. The 

DRC and CDP modellers are more heavily focussed on macro-cognitive functions, structures 

and behaviour when compared to the triangle models, for example. The dual-route hypothesis 

that underpins these models is a theory about how cognition is organised at the macro level. 

Coltheart et al. (2001) describe their approach with the DRC model as being interested in the 

“functional architecture” rather than “network architecture” (p. 205), which suggests 

something of their intent to avoid focussing overly on low-level structural detail. The DRC 

and CDP+ modellers additionally focus heavily on being able to reproduce many benchmark 

behaviours associated with reading with their models. 
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The triangle modellers also seek to have their model reproduce these benchmark 

effects. However, their focus is much more heavily on developing general “computational 

principles that capture how neural activity gives rise to cognition” (Seidenberg & Plaut, 2006, 

p.35). They have conceived of a micro-cognitive architecture (i.e., the parallel distributed 

processing architecture, trained using the back-propagation algorithm) that they argue can be 

generalised across multiple cognitive domains, and the focus of their research seems to be to 

investigate this particular micro-cognitive architecture. They will therefore always retain key 

features of this architecture as a first priority, rather than making accurate simulation on all 

behavioural or psychological benchmarks the first priority. 

Focus of my work: starting macro, progressing towards micro  

In building on DRC, I focus on macro-cognitive structure, and am less concerned—

though not unconcerned—with particular theories of micro-cognitive structure. It is also my 

intention to implement an approach to learning that is psychologically plausible at the highest 

levels of cognition. For example, if children learn to read by being directly instructed in the 

correct pronunciation of each word they are to learn, then that is the type of high-level fact 

about the way we learn to read that I would want to capture in the model. Low-level 

biological facts
1
 related to learning to read, such as how connections between actual neurons 

are formed in response to exposure to print, is not the focus of this work. Micro-cognitive 

structure, such as the particular choice of algorithm to adjust connection weights in response 

to a learning experience, is also not the primary or initial focus. Nevertheless, building a 

computational model provides the impetus to progress from a macro-cognitive theory down 

                                                 
1
 The advent of brain imaging techniques such as MRI, fMRI, MEG, etc. has meant that the biology of 

cognition can be examined at higher levels than the level of individual neuron activity. Such research can serve 

to motivate the conception of new macro-cognitive theories of cognition. However, it is debateable whether or 

not such models thus created are models of brain biology if they don’t also involve modelling brain biology at 

the lowest levels. 
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into the micro-cognitive detail, since computational modelling requires attention to this detail 

in order to create an executable program. 

In focussing on high level cognitive and psychological plausibility when assessing 

models, it is clear that models with a micro-cognitive focus will not be viewed in their best 

possible light. I do acknowledge that these models may also be instructive when viewed with 

a different research focus to my own, one that is more intent on finding and testing general 

micro-cognitive principles. But that is not the focus here. 

The project of fully characterising and comprehending the mind and brain is one of the 

broadest and most complex areas of research undertaken, at the frontiers of human 

knowledge. Perhaps a complete characterisation must involve an account that provides detail 

at all levels of explanation, from the lowest biological levels up to the behavioural level. But 

such an account is well beyond the scope of most individual research projects and outside the 

scope of a single PhD thesis. I will not attempt to argue that the “macro-cognitive level first” 

approach is the best one. Instead, I claim that the macro-cognitive level is a legitimate level to 

focus upon, and practical limitations on the scope of work are sufficient justification for 

focussing on this level. 

A verbal theory can be conceived at the macro-cognitive level, but in implementing 

this theory as a computational model, many micro-cognitive decisions may need to be made. 

The approach to modelling I take in this work is to treat the macro-cognitive level as the core 

level to simulate, while the micro-cognitive decisions made to construct the computational 

model are hypotheses about lower level structure. Modelling and experimentation will likely 

falsify many of these micro-cognitive hypotheses without falsifying the theory at the macro-

cognitive level. So, different micro-cognitive arrangements can be attempted while staying 
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true to the general macro-cognitive theory, and in this way, micro-cognitive levels can 

gradually be explored from the macro-cognitive base. 

Assessing existing learning models 

In this section, the aforementioned existing models of learning to read are critiqued at 

the macro-cognitive level, which is the level most significant to my work. The criticisms I 

propose include: i) a learning approach that only includes supervised learning is implausible; 

ii) learning that can only occur gradually over many trials due to the need to avoid 

catastrophic interference is implausible, and that iii) orthographic learning is not just an 

unsupervised classification task. 

Implausibility of supervised learning as the sole learning mechanism 

Both the PDP models and the CDP models use forms of supervised learning, where 

the model needs to be provided with both a stimulus and the correct response to that stimulus 

in order to learn. This is analogous to a beginning reader receiving direct instruction, such as a 

teacher explaining how to pronounce each novel word or character. However, it is implausible 

that children can learn so many words via direct instruction. Share (1995) argues that direct 

instruction cannot be the principal means by which children acquire new orthographic 

knowledge. Nagy and Herman (1987) as cited in Share (1995) found that 5
th

 graders learn 

approximately 10,000 new words per year, and it is unlikely children acquire words at this 

rate through direct instruction. These findings suggest that, at the macro-cognitive level, a 

computational modelling approach to learning new orthographic words that only involves 

supervised learning is not plausible. This is perhaps less of a challenge for the CDP modellers 

than the triangle modellers, since the learning mechanism in the CDP models is focussed on 

learning the sub-lexical relationships between graphemes and phonemes, not the learning of 

orthographic lexical knowledge. It is perhaps more likely that this sub-lexical knowledge is 
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learned via direct instruction. I note however that the CDP training regime includes extensive 

training with whole words as input, rather than only explicit phonics training, and this amount 

of direct instruction in whole word pronunciation may be unrealistic. 

Implausibility of long-duration training 

Back-propagation has also been criticised as psychologically implausible due to the 

amount of training that the triangle model of reading aloud needs to undergo to become 

skilled (e.g., Norris (2006)). This slow training over many trials is made necessary by the risk 

of catastrophic interference (McCloskey & Cohen, 1989). This is where initially learned 

information can be lost if the connection weights that accurately reflect the initial information 

are modified by subsequent learning experiences in a way that is not compatible with the 

initial learning. Both the triangle models and also the sub-lexical, trained component of the 

CDP models are prone to catastrophic interference. To minimise its impact, triangle models 

are typically trained by presenting the network with an entire corpus of words to learn from, 

with the learning rate (the rate of change of connection strengths) set very low, so that 

individual learning experiences are not likely to cause either complete learning, or 

catastrophic interference. The training corpus is typically presented for many epochs. For 

example, the model of reading described in Plaut et al. (1996) was trained over 300 epochs.  

While the fully trained model can deliver nice results as a model of skilled reading, the 

lengthy process of training seems unlike the way beginning readers learn to read. Human 

readers do not experience catastrophic forgetting, nor do they need to be presented with each 

word hundreds of times to learn to read that word and other words correctly. Indeed, 

beginning readers can acquire new orthographic words in as few as five exposures (Salasoo, 

Shiffrin, & Feustel, 1985), or perhaps even a single exposure (Nation, Angells, & Castles, 

2007; Share, 2004), and learning new words does not jeopardise knowledge of previously 

learned words. Thus, PDP networks trained using back-propagation may have explanatory 
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value to investigators of micro-cognitive levels, but they do not offer the kind of macro-

cognitive account of how learning to read occurs that I am focussed on modelling. 

For similar reasons, the two-layer associative network used in the CDP models with its 

supervised learning via the delta rule is not suitable for my aims. Delta rule training also 

suffers from catastrophic interference (Lewandowsky & Li, 1995), and requires many trials 

using a low rate of learning to minimise this interference. 

Implausibility of orthographic learning as a classification task 

Both the SOLAR model and the ART model use a form of unsupervised learning to 

model the beginning reader undergoing independent learning, in contrast to the supervised 

learning approaches of the triangle and CDP models. Also, the number of presentations 

required for learning to occur is much less than what is required for either the triangle or CDP 

models. Davis (1999) reports that the majority of words presented to the SOLAR model are 

learned in one or two presentations, with only a small number of items taking considerably 

longer. These seem like promising approaches in that they avoid the issues previously 

identified with supervised learning and long-duration training. But what exactly is being 

learned? 

Both the ART and SOLAR models are types of classification network. This type of 

network learns to classify input patterns by autonomously identifying the critical features that 

comprise these input patterns, and using these to distinguish input patterns from one another. 

This type of learning contrasts greatly with associative learning, which is the type of learning 

employed in the triangle and CDP models, where the model is trained to associate a particular 

input with a correct output. As classification networks, the SOLAR and ART models receive 

no instruction as to what critical features are important, or any information about whether a 

particular stimulus is a word or a nonword. 
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The type of learning that both the SOLAR and ART models describe is strictly 

orthographic, and the types of critical features identified by each model are not influenced at 

all by phonology. So for example, when the printed input is CAT, the ART and SOLAR 

models teach themselves to activate a certain “unitized” list node to represent this word, and 

this node classifies this sequence of letters. If learning has been successful, this CAT node 

should not classify different sequences, such as CAN or RAT. 

Is this all that orthographic learning is, chunking groups of letters into words with no 

contribution from phonology or semantics? Davis (1999) certainly includes phonology and 

semantics in his theoretical model, but has chosen to investigate learning computationally in 

the absence of these. Is it worthwhile to investigate orthographic learning in the absence of 

phonology and semantics? I will focus here on SOLAR, though a similar critique would also 

apply to the ART model, were it to be used to simulate lexical decision. 

SOLAR is able to perform lexical decision by first undergoing a training phase, where 

the model acquires lexical knowledge, after which there is a testing phase. In the testing 

phase, the trained network is “reloaded” after each trial, to prevent any learning from one 

particular trial interfering with any subsequent trials. This is the same as switching learning 

off for the testing phase. In addition, the testing phase includes additional structure that is 

specific to this phase and not involved in the learning process (i.e., an opponent processes 

model to perform lexical decision, using activity from the SOLAR model’s various 

orthographic layers as input). So, learning is exclusive to the training phase, while lexical 

decision (i.e., distinguishing the words it has learned from nonwords or novel words) is 

exclusive to the testing phase. 

It is sensible to investigate model performance by ceasing learning during the testing 

phase, so that each stimulus can be tested using the same, unaltered model. In principle 
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though, the model should be able to perform coherently even if it were not reloaded after each 

trial, and learning were allowed to continue over the testing phase. However, SOLAR’s 

capacity to perform lexical decision is eroded if learning continues throughout testing. If 

training were to be ongoing during lexical decision experiments, then there is nothing to stop 

SOLAR from learning to classify the nonwords to which it is exposed. The SOLAR model 

lacks a mechanism to distinguish nonwords from words, other than that words are the stimuli 

to which the model has been exposed sufficiently to have unitised a representation in the 

training phase. Nonwords are identified as such because they are novel. If learning is active 

over the testing phase, then SOLAR will unitise representations of the nonwords presented, 

and therefore begin processing them as familiar words. According to the SOLAR account, if 

an adult, skilled reader were repeatedly exposed to a nonword such as BLERSK, that reader 

would, within a handful of exposures, unitise a representation of this nonword, and then be 

unable to distinguish it as a nonword. It would instead be considered a word. Rather than 

performing lexical decision, it is more accurate to say that SOLAR is distinguishing stimuli 

(whether words or nonwords) that have been previously presented from stimuli (whether 

words or nonwords) that are novel. This does not seem like a psychologically plausible 

account of orthographic learning. This also contrasts with the results reported in Zeelenberg, 

Wagenmakers, and Shiffrin (2004), which found that lexical decision for nonwords became 

easier if the nonwords had previously been presented in lexical decision, rather than more 

difficult or erroneous. 

This isn’t to say that SOLAR isn’t compelling as a model of how orthographic 

classification might occur should a reader be attempting to process a novel stimulus in the 

absence of phonological or semantic information; however, it leaves out the additional 

contribution (whether from semantics or phonology) that must be made for a beginning reader 

to undergo psychologically plausible orthographic learning. The kind of orthographic learning 
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that enables lexical decision is not simply a classification task, it must also involve associative 

learning—we can discriminate nonwords from words not just because they are novel, but 

because they are not associated with a spoken word equivalent, or with any meaning. 

Precisely the same difficulty would be faced by the ART model, were it used to 

simulate lexical decision (Glotin et al., 2010, describe testing the model on its acquisition of 

word identities, but do not test it specifically on lexical decision). Words would be 

distinguished from nonwords through virtue of the words having been previously exposed to 

the model during training, there is no other mechanism for the ART model to attempt to 

distinguish a word from a nonword. 

A macro-cognitive model of orthographic learning 

Having identified shortcomings in a variety of other computational models of learning, 

I now turn to a verbal theory of orthographic learning, which offers a promising macro-

cognitive account of the way people acquire new orthographic knowledge. This approach 

avoids some of the difficulties faced by the aforementioned models. This theory is known as 

the self-teaching hypothesis, and what follows is an account of this theory. This theory will 

form the macro-cognitive basis for a computational account of orthographic learning, which 

will be described in detail in Chapter 2 of this thesis. This computational version of the self-

teaching hypothesis has been constructed and tested, with results also reported in Chapter 2. 

The self-teaching hypothesis 

The self-teaching hypothesis was first proposed in Jorm and Share (1983), who 

indicate that the idea originates in the unpublished doctoral dissertation of Firth (1972). 

Further elaboration of the hypothesis is provided in Share (1995), and Share (2011). The self-

teaching hypothesis is the notion that children can learn to read new written words without the 
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instruction of a teacher (i.e., without supervision). Beginning readers achieve this by 

combining their knowledge of spoken words with knowledge of the way sub-lexical 

orthography corresponds to phonology. The self-teaching hypothesis focuses on orthographic 

word learning, and does not consider the acquisition of other cognitive skills required for 

reading, such as the ability to recognise and represent letter identities, or phonemic awareness. 

These skills are assumed to be either already present, or acquired concurrently to self-

teaching, but self-teaching does not focus on how they are acquired. It is a verbal, macro-

cognitive theory, and lacks detail regarding micro-cognitive implementation. 

Share (1995) suggests that there are three possible mechanisms by which a beginning 

reader could acquire an orthographic representation for a novel written word: direct 

instruction, contextual guessing, or phonological recoding. 

Direct instruction involves a teacher, parent or peer instructing a learning reader as to 

the correct pronunciation of a printed word that is novel to the reader. Share (1995) dismisses 

this as the plausible primary mechanism of learning because children learn too many new 

words too quickly to have been directly instructed as to each one. 

Contextual guessing refers to the possibility that a beginning reader could use the 

context provided by the words and sentences accompanying a novel word in a text to guess 

the correct pronunciation. For example, if a child was encountering the written word VASE 

for the first time, in a sentence such as “The flowers were put in a ????.”, the child might be 

able to guess that the word they did not recognise orthographically corresponded to “vase”, 

assuming they are familiar with the spoken form of this word and its semantics, and were able 

to read the other words in the sentence. 

Finn (1977-1978) as cited in Share (1995), and Gough (1983), as cited in Share 

(1995), are both used by Share to argue that contextual guessing is not sufficiently reliable to 
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explain the ability of beginning readers to acquire the ability to read novel words without 

supervision. In particular, predictability is higher for function words (e.g., AND, THE) than 

content words (e.g., SHIP, QUICK), but it is the content words that are less frequent and most 

likely novel to a beginning reader. 

The self-teaching hypothesis asserts that phonological recoding
1
 is the primary 

mechanism by which beginning readers can teach themselves to read new words, in the 

absence of a teacher or context. Phonological recoding involves the following mental 

processes: 1) the identification of sub-lexical orthographic features in the stimulus (e.g., 

letters, or graphemes, or even larger orthographic units such as bodies), 2) the sub-lexical 

translation of these sub-lexical features into phonological features (e.g., phonemes, rhymes), 

3) the activation of a known phonological word representation, corresponding to the 

phonological features that have been recognised, and 4) recognition that the orthographic 

stimulus therefore corresponds to a known spoken word, and then using this recognition as 

the basis for learning a new whole orthographic word representation for the stimulus. 

This process will potentially fail for stimuli that cannot be correctly translated into 

phonemes matching a spoken word by the sub-lexical orthography-to-phonology translation 

process (i.e., if the stimulus is an irregular word). However, Share (1995) points out that novel 

words are not normally encountered in isolation, but in a text, and the constraints imposed by 

surrounding text (the context) may serve to resolve any ambiguities uncovered in the process 

of matching the decoded phonemes with a phonological word representation. Rather than 

context providing all the information required for learning though, context instead offers 

support to phonological recoding. For example, it is easier to guess that the correct word is 

“yacht” in the following sentence “I went sailing on a y???t”, when the “y” and “t” have been 

                                                 
1
 Jorm and Share, (1983), define two types of phonological recoding, pre-lexical and post-lexical. I 

focus here on pre-lexical phonological recoding, but will abbreviate to just “phonological recoding.” 
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decoded than if this partial decoding had not occurred. It is also easier to identify the word 

“yacht” when it appears in this sentence than to guess that Y???T without any context is the 

word YACHT. 

The self-teaching hypothesis does not attempt to argue that phonological recoding is 

the main mechanism by which a skilled reader reads. Rather, Jorm and Share (1983) argue 

that it is a key mechanism for acquiring orthographic knowledge for beginning readers, even 

if phonological recoding becomes less important for skilled readers who read whole words by 

sight alone. 

Share (1995) makes clear the point at which phonological recoding becomes useful for 

self-teaching. This is not at the very start of learning to read before the child has learned any 

words at all. Share points out that orthographic information is acquired quickly, so very high 

frequency items are likely to be recognised visually or taught via direct instruction with 

minimal phonological processing in the very earliest stages of reading acquisition. Carroll, 

Davies, and Richman (1971), as cited in Share (1995), found that approximately 100 items 

account for about half of all the words appearing in printed school English, and suggests that 

these items would be acquired visually via direct instruction in the earliest stages of reading 

acquisition. Phonological recoding is most useful for items that are completely novel to the 

child, or are as yet still unfamiliar because of their lower frequency of occurrence. 

In early work by Jorm and Share (1983), grapheme–phoneme correspondence rules 

(GPCs) are considered the core of phonological recoding for early readers. They acknowledge 

the possibility of other forms of phonological recoding, such as the activation-synthesis 

approach of Glushko (1979), but point out that such an approach would most likely require a 

lexicon that contains phonemic segments, and these segments would not yet have been 

learned by an early reader. Therefore, they suggest that there might be a rule-based 
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segmentation in early reading, gradually shifting to a lexically-derived segmentation as 

reader’s orthographic lexicon improves. 

In later work, Share steps back from this commitment, and widens the scope of 

phonological recoding to include other potential processes, such as a statistical learning 

mechanism, activation of a connectionist network, an analogical activation-synthesis 

mechanism, or GPCs. Share explicitly draws the self-teaching hypothesis back from a 

commitment to any phonological recoding process in particular (Share, 2011). 

Share also contrasts the dual-route approach and its focus on regular versus irregular 

words, with the dualism inherent in the self-teaching approach, which instead focuses on the 

familiar versus the unfamiliar. The latter “...merges the study of reading with the study of 

human skill learning…” (Share, 2011, p.49). The dualism in skill learning to which Share is 

referring is that there is a “…transition from, slow, deliberating, step-by-step unskilled 

performance to rapid automatized one-step or “unitized” skilled performance…” (Share, 

2011, p. 50). 

From verbal theory to computational realisation 

The self-teaching hypothesis offers a compelling macro-cognitive account of 

orthographic learning, arguing that phonology is involved in the process of self-teaching. The 

theory avoids the criticisms made of the learning approaches of the triangle and CDP models, 

in that it avoids fully supervised learning, and does not imply a need for long duration 

training. Due to the involvement of phonological knowledge, the self-teaching hypothesis can 

explain the way a child might be able to distinguish words from nonwords without artificially 

ceasing learning, thus avoiding the difficulties regarding lexical decision and the nature of 

orthographic learning identified with the SOLAR and ART models. The self-teaching 

hypothesis is a form of associative learning, where an orthographic representation is 
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associated with a phonological one, and yet it is associative learning that requires no external 

teacher. It is internally supervised learning (or self-supervised learning) in that phonological 

recoding with support from context provides the candidate response needed to guide learning. 

It seems to be a promising basis for implementing a learning mechanism within the DRC 

model, and is fully compatible with DRC’s dual-route architecture: the sub-lexical route with 

the aid of context support serves to train the lexical route. However, much micro-cognitive 

detail needs to be determined to implement this type of learning within a computational 

model. 

One aim of my research then is to construct a new version of DRC that maintains 

DRC’s key strengths, while incorporating a form of orthographic learning compatible with the 

self-teaching hypothesis’ account of orthographic learning. In the spirit of nested modelling, 

this learning DRC (“L-DRC”) would come to approximate the performance of the DRC 

model of skilled reading after it has undergone learning, in addition to including much of 

DRC’s existing architecture. Construction of such a model involves making decisions about 

micro-cognitive architecture that are not necessarily covered in the self-teaching hypothesis 

literature. The need to fully specify down to lower levels of explanation is both a constraint 

and an advantage that must accompany computational modelling, with its requirement for full 

specification. 

The design of this new L-DRC will be described in Chapter 2, offering a full 

computational account, and some of the design decisions encountered will be discussed. 

Following this, I will examine: 1) how well the model learns novel words, by seeing whether 

the model effectively creates orthographic nodes for each word it encounters (type learning), 

2) the performance of the model in learning regular words, and 3) the role that context plays 

in learning irregular words in the model, and the degree to which contextual support is needed 

to learn such words. Whether the trained model can account for the frequency effect (token-
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based learning) is important, but beyond the scope of this thesis, and a prime candidate for 

future research. In addition to these specific tests, the construction of a new model offers a lot 

of content for discussion, and this research will also cover changes, future directions, 

challenges encountered, and comparisons to other architectures. 

Modelling sub-lexical learning 

Before introducing the direction taken in modelling sub-lexical route learning, I will 

first describe in greater detail the operation of DRC’s sublexical route. DRC’s sub-lexical 

route consists of three broad mechanisms. Firstly, there is a serial processing mechanism for 

making letters available from the letter level to the sub-lexical route. This mechanism, though 

simple in operation, should not be mistaken for a mere low-level implementation detail. It is 

significant in its own right and worth identifying separately. The operation of this mechanism 

accounts for the strength of any serial effects evident in the output of DRC. Secondly, there is 

a mechanism for parsing the strings of letters made available to the sub-lexical route by the 

first mechanism into strings of graphemes. Finally, there is a mechanism that relates the 

identified graphemes to a sequence of phonemes. All three mechanisms are considered 

briefly, but only the acquisition of grapheme–phoneme correspondences will be studied in 

this research.  

Serial processing and grapheme parsing 

This research does not cover the learning of a serial processing mechanism, or the 

learning of grapheme parsing. The former is arguably an innate capacity, dictated by working 

memory constraints that rule out the parallel delivery of all graphemes to the parser at the 

same time. Grapheme parsing on the other hand is a cognitive ability that must be learned. 

This is particularly the case in a language like English where letters frequently contribute to 

the activation of phonemes through being a constituent of a multi-letter grapheme (such as TH 
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or OUGH), in addition to having an independent single-letter relationship with a different 

phoneme. Such complex relationships are not innate or trivial to acquire. The acquisition of 

this grapheme parsing skill is not researched as part of this work. 

Grapheme-to-phoneme conversion 

For DRC, the mechanism that converts graphemes to phonemes takes the form of a 

memorised list of discrete rules. Once graphemes have been parsed, it is a straightforward and 

swift computational task for DRC to consult this list of rules and determine the phonemes to 

activate based on the activated graphemes and letters. For DRC, this task is also 

unambiguous: with the exception of a small number of context rules, there is a one-to-one 

correspondence between graphemes and phonemes. Once the graphemes have been parsed, 

little logic is required in DRC to determine the phonemes to activate, and there is no 

uncertainty. 

The existence of GPC rules of this nature is a key claim of the DRC model, one that is 

not universally subscribed to by all cognitive reading researchers. For example, the CDP 

family of models (Perry et al., 2007, 2010) instead embody the theory that the relationship 

between graphemes and phonemes in the sub-lexical route is a statistical one, with a many-to-

many correspondence between graphemes and phonemes. That is, the activation of particular 

phonemes can be affected by the activation of multiple graphemes. Chapter 3 of this thesis 

describes new research investigating and comparing the sub-lexical routes of DRC, CDP+ and 

CDP++, also published in Pritchard et al. (2012). Since each of these models is able to 

generate data on how nonwords are pronounced, these data are compared to empirical data on 

how people pronounce nonwords, to adjudicate between the competing sub-lexical 

mechanism of each of the models. 
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Though the outcome of this research lends support to the DRC sub-lexical approach 

relative to the CDP approach, the CDP architecture affords better performance than DRC on 

other experimental benchmarks (Perry et al., 2007). However, the focus of my research is on 

creating a learning DRC. So, in the spirit of nested modelling, I will retain DRC’s 

commitment to GPCs, and consider a learning mechanism that will learn GPCs, rather than 

use a CDP-like approach to the sub-lexical route, implying a large step away from DRC. 

A computational model of sub-lexical route GPC learning 

How do people learn GPCs? There seems to be two broad approaches: direct 

instruction in explicit phonics (i.e., supervised learning of GPCs), or else by implicitly 

inferring GPCs after exposure to many examples of whole written words matched with their 

spoken word equivalents, which is how GPCs might be acquired via a pure “whole language” 

(Goodman, 1989) approach to reading instruction. The two approaches do not need to be 

mutually exclusive. For example a child may learn many simple letter–sound relationships 

through direct instruction. Then, as they become skilled at reading, the child might implicitly 

learn a variety of more complex multi-letter GPCs (e.g., that EIGH corresponds to the 

phoneme /1/) through exposure to whole texts. This idea is similar to the ideas researched in 

Fletcher-Flinn and Thompson (2000), where they discuss beginning readers implicitly 

learning “induced sub-lexical relations” and “invented spelling”, after receiving print lexical 

experience, although Fletcher-Flinn and Thompson distinguish two different phonological 

recoding mechanisms. A macro-cognitive account of GPC learning would allow either type of 

learning. 

A mechanism similar to the self-teaching hypothesis for lexical orthographic learning, 

might also work for sub-lexical route learning. A sufficiently advanced lexical route might be 

able to produce a candidate pronunciation for a word stimulus. Then, using this candidate 

pronunciation, a form of implicit supervised learning could take place, where the candidate 



Chapter 1:         Introduction 

 

38 

 

pronunciation is used by a learning mechanism to infer GPCs. Like the self-teaching 

hypothesis, this kind of learning would appear to be unsupervised from a vantage point 

external to the cognitive system, even though, internal to the system, the lexical route might 

be considered as supervising the learning of the sub-lexical route. 

In Chapter 4 of this thesis, an approach to modelling the sub-lexical route acquisition 

of GPCs is presented. The model developed is a stand-alone model and has not as yet been 

incorporated into a comprehensive L-DRC model. The model describes a form of learning 

where either GPCs can be directly taught, or else they can be inferred if a whole written word 

is presented to the model along with the correct pronunciation of the word. The latter is the 

focus of Chapter 4’s research. Whole-word learning is compatible with externally supervised 

teaching where the correct pronunciation of the printed word is provided by a teacher, and is 

also compatible with internal supervision, where a candidate pronunciation for the printed 

word is provided internal to the cognitive system by the lexical route. However, this simple 

model does not yet describe the processes involved in the lexical route delivering a candidate 

pronunciation to the sub-lexical route for this purpose. That is a future research project. The 

simple model is also very much a macro-cognitive model, and incorporates a variety of 

arbitrary micro-cognitive decisions. 

Summary 

Although it offers no account of how people learn to read, the DRC model embodies a 

compelling theory of the cognitive mechanisms involved in reading aloud. For this reason, it 

seems sensible to adopt a nested modelling approach, and consider additions and changes to 

the DRC architecture to further this model, rather than starting afresh. The focus of this 

research is to build on the DRC model by augmenting it with psychologically plausible 

learning mechanisms. 
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Other models of reading aloud such as the SOLAR model and the triangle model have 

included learning mechanisms. However, these mechanisms do not offer psychologically 

plausible accounts of learning to read. Our aim is to incorporate a psychologically plausible, 

macro-cognitive account of orthographic learning into DRC, and then begin adding micro-

cognitive detail from this base. 

The self-teaching hypothesis offers a psychologically plausible macro-cognitive 

theory of orthographic learning. It suggests that early readers can teach themselves to 

correctly recognise and read novel written words by sight, without direct supervision. Early 

readers do so by using sub-lexical knowledge of how written symbols correspond to sounds 

(e.g., grapheme–phoneme correspondences) to generate a candidate pronunciation and an 

opportunity for learning. Supervision is internal to the reading cognitive system, while from a 

vantage point external to the system, reading is unsupervised. Due to its macro-cognitive 

plausibility, I have chosen to begin incorporating learning into DRC by developing a 

computational account of the self-teaching hypothesis. Chapter 2 of this thesis will describe 

the design and testing of an L-DRC model that attempts to model the self-teaching hypothesis 

using the general structure of DRC as a starting point. 

This research will also examine learning in the sub-lexical route. Specifically, it will 

examine the competing approaches to representing sub-lexical knowledge embodied in both 

DRC and also in the CDP family of models. The CDP models already incorporate sub-lexical 

learning, and this research critically analyses the approach to learning taken in these models. 

Chapter 3 of this thesis will detail research undertaken to adjudicate between the CDP 

approach to sub-lexical knowledge and DRC’s approach. 

Following this, I present a model that embodies the way in which the grapheme–

phoneme correspondence rules that comprise DRC’s sub-lexical route may be learned. This 
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work is presented in Chapter 4. Chapter 5 sums up my research and includes a discussion of 

the promising avenues for future research stemming from this current research. 
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Appendix A 

Phoneme symbols used in this chapter are those used by DRC model 1.2.1. 

Vowels 
 

Consonants 

Symbol Example 
 

Symbol Example 

1 stay 
 

_ jump 

2 sigh 
 

b buy 

3 bird 
 

d dot 

4 boy 
 

f for 

5 goat 
 

g guy 

6 mouth 
 

h hot 

7 beard 
 

j yell 

8 cared 
 

k kite 

9 board 
 

l low 

# hard / palm 
 

m my 

{ cat 
 

n no 

i seen 
 

p pie 

u clue 
 

r run 

E red 
 

s stop 

I bid 
 

t tie 

Q pod 
 

v vent 

U good 
 

w west 

V fun 
 

z zoo 

W few 
 

D then 

   
J chin 

   
N hang 

   
S shoe 

   
T thin 

   
Z measure 
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Abstract 

The dual-route cascaded (DRC) model of reading aloud and word recognition is a 

static model of skilled reading that does not include a learning mechanism. As such, it has 

been previously criticised for offering no account of reading acquisition. We describe a new, 

learning-DRC (L-DRC), which provides a computational account of orthographic learning 

within the dual-route framework. L-DRC is based on a well-regarded psychologically 

plausible verbal account of phonologically-mediated orthographic learning: the self-teaching 

hypothesis. DRC’s sublexical route allows a novel stimulus to be phonologically recoded, and 

recognition that the written stimulus corresponds to a known spoken word is the trigger for 

orthographic learning. Contextual support aids in the learning of irregular words that cannot 

be accurately phonologically recoded. L-DRC also includes a new approach to letter-to-

orthographic lexicon excitation, which simulates cognitive resource allocation, and improves 

L-DRC’s ability to learn successfully. L-DRC was able to effectively demonstrate 

orthographic learning and model the self-teaching hypothesis, though we found that some 

classes of words, for example, heterophonic homographs, heterographic homophones and 

potentiophones, are in some cases challenging for L-DRC to learn via self-teaching. 
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Introduction 

Since at least the 1980s, computational modelling has been a popular tool to explore 

the cognitive mechanisms involved in reading aloud and word recognition. One of the first 

such computational models of reading was the interactive-activation (IA) model of word 

recognition (McClelland & Rumelhart, 1981; Rumelhart & McClelland, 1982). It described a 

network structure that, when presented with an input string of letters, could identify the 

written word to which these letters corresponded. The model was able to demonstrate how 

letter perception was improved when the letters were located within the context of a known 

word, or even in a pronounceable pseudoword. A key characteristic of the IA model was that 

the knowledge of words and letters embodied within it was pre-programmed by its creators, 

and the model did not autonomously learn new knowledge or change its own structure. For 

this reason, we describe it as a static model.  

More recently, the IA model was used as a basis for the dual-route cascaded (DRC) 

model of reading aloud and word recognition (Coltheart, Rastle, Perry, Langdon, & Ziegler, 

2001). The DRC model is a computational implementation of the dual-route theory of 

reading, which has been the subject of ongoing research for many years (e.g., Forster & 

Chambers, 1973; Marshall & Newcombe, 1973). The crux of the dual-route theory is that 

there are two distinct cognitive mechanisms involved in reading aloud. One mechanism uses 

sublexical knowledge (such as knowledge of the sounds corresponding to each letter) to build 

a phonological representation of a written stimulus. The second mechanism uses lexical 

knowledge, and it is this mechanism that adapts the IA model. Using this mechanism, the 

model can recognise when a written stimulus is a word without first needing to identify the 

sounds that comprise this word. Accessing knowledge of the written word allows a 

representation of the corresponding spoken word to be accessed, and then the spoken word to 

be uttered. 
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Like the IA network, the DRC model is a static model. All of the knowledge 

embodied within DRC, from alphabetic knowledge, to written and spoken vocabulary, to 

knowledge of how to parse a written stimulus into its constituent graphemes, and knowledge 

of the phonemes to which those graphemes correspond, is pre-programmed and not 

autonomously learned by the model. For this reason, DRC is a model of a skilled reader, and 

does not simulate the development of reading skill, though it can be used to model acquired 

reading disorders by “lesioning” parts of the model (e.g., Coltheart, Saunders, & Tree, 2010). 

That DRC does not explain the way we learn to read has been highlighted as a 

shortcoming of the DRC model (e.g., Perry, Ziegler, & Zorzi, 2007; Seidenberg & Plaut, 

2006). This criticism is reinforced by the existence of competing computational models of 

reading aloud or word recognition that do learn, such as the triangle model (Harm & 

Seidenberg, 1999; Plaut, McClelland, Seidenberg, & Patterson, 1996; Seidenberg & 

McClelland, 1989), the connectionist dual-process models (CDP+ and CDP++), (Perry et al., 

2007; Perry, Ziegler, & Zorzi, 2010), the self-organising lexical acquisition and recognition 

model of visual word recognition (SOLAR), (Davis, 1999), the adaptive resonance theory 

(ART) model developed by Glotin et al. (2010), or the self-organising map (SOM) model 

developed by Dufau et al. (2010). Coltheart et al. (2001) counter that unless the learning 

mechanism described by a model is psychologically plausible, then a trainable model of 

reading is of no greater use in research than a static model such as DRC. Indeed, Coltheart et 

al. go on to point out that an incorrect learning mechanism may be incapable of producing a 

trained model that accurately describes the abilities of a skilled reader. If a learning 

mechanism were therefore implemented in DRC, a focus would be on it describing a 

psychologically plausible approach to learning. 

While other models of reading include learning mechanisms, these often seem to focus 

on the low-level detail of how the microstructure of a model might be organised, rather than 



Chapter 2:   Modelling the Self-Teaching Hypothesis with a Learning DRC 

 

49 

on higher-level psychological facts regarding learning. For example, the triangle model, 

which is trained using the back-propagation learning algorithm (Rumelhart, Hinton, & 

Williams, 1986), is often described as having an architecture and approach to learning that is 

not specific to reading, but can also simulate other cognitive domains, (Seidenberg & Plaut, 

2006). The focus of the triangle model researchers seems to be on lower level considerations 

such as the way “...cognitive processing is shaped and constrained...by properties of the 

underlying neural substrate.” (Seidenberg & Plaut, 2006, p. 35). By “lower level” we mean 

focussing on the microstructure of cognition and its basis in the brain, rather than on high 

level cognitive and psychological phenomena. Their goal is to “...formulate a set of 

computational principles that capture how neural activity gives rise to cognition.” (Seidenberg 

& Plaut, 2006, p. 35). Hence, they place relatively less emphasis on attaining great accuracy 

in matching higher level empirical behavioural data than some other modellers of reading 

aloud. 

Back-propagation was a revolutionary approach to training feed-forward artificial 

neural networks, which were then used to create models in various cognitive domains, from 

reading to memory. However, it is not clear that back-propagation offers a psychologically 

plausible account of reading skill acquisition. In particular, the triangle model must be trained 

very gradually, with the entire vocabulary of words to be learned presented to the model 

several hundred times before all words are appropriately learned. For example, the model 

described in Plaut et al. (1996) was trained for 300 epochs: that is, each word in the training 

vocabulary was presented to the model 300 times. This gradual learning over many trials must 

be done to minimise the impact of catastrophic interference (McCloskey & Cohen, 1989) 

during the learning process, which is intrinsic to feed-forward networks trained with back-

propagation. This slow approach to learning is unlike the way beginning readers learn and 

indeed, there is research to show that children can acquire new orthographic lexical 

knowledge in as few as five exposures (Salasoo, Shiffrin, & Feustel, 1985), or perhaps even a 
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single exposure (Nation, Angells, & Castles, 2007). In addition, the approach to learning 

taken in the triangle model is a type of supervised learning. When a written stimulus is 

presented to the network during training, the correct pronunciation must be simultaneously 

provided to the network, so that it can use the information to modify its own output to be 

more like the correct pronunciation. As we will see later in this article, this is unlike the way 

children learn to read, because children are able to learn some of the skills and knowledge of 

reading independently, without direct instruction. 

It should be noted that Harm and Seidenberg (1999) and Harm and Seidenberg (2004) 

intended for these versions of the triangle model to simulate real, psychologically plausible 

aspects of learning to read, which is contrary to our criticisms. For example, Harm and 

Seidenberg (1999) identified that prior to learning to read, children have already acquired 

considerable knowledge about the phonological structure of words from their experience with 

spoken language. Therefore, in seeking to make the triangle model more psychologically 

plausible as a model of reading acquisition, Harm and Seidenberg introduced new architecture 

to allow the model to learn about the phonological structure of words. They preceded reading 

acquisition training with training the model purely in phonological structure without any 

exposure to orthography. Harm and Seidenberg were the first to implement such pre-training 

of phonology, this is something not done in previous iterations of the triangle model, nor in 

other models of grapheme–phoneme association learning such as that described in Coltheart, 

Curtis, Atkins, and Haller (1993). 

In addition, both Harm and Seidenberg (1999) and Harm and Seidenberg (2004) claim 

that their models can approximate the self-teaching hypothesis of Jorm and Share (1983). This 

is a curious claim, given that the form of training adopted for the triangle model is strictly 

supervised learning, and does not involve unsupervised or “self-supervised” training. Harm 

and Seidenberg (1999) argue that the provision of the correct pronunciation to their model can 
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either be provided by an external teacher, or, for self-teaching, via knowledge of spoken 

words. However, their model describes no mechanism for the correct spoken word to be 

selected to enable self-teaching. Perhaps it would be straightforward to include a new 

mechanism within the triangle model to enable the retrieval of the correct spoken word from 

memory. However, the triangle model subscribes to the principle that knowledge and 

representations are distributed across nodes and there is no orthographic or phonological 

lexicon, and also to the principle that there is only one direct, non-semantic route from 

orthography to phonology, in contrast to dual-route theory. It is therefore not clear that the 

model described by Harm and Seidenberg (1999) provides a means for the correct 

pronunciation of a word to be internally generated, or that it is compatible with self-teaching. 

Harm and Seidenberg (2004) make a more detailed claim to be compatible with the 

self-teaching hypothesis. They claim that “Connectionist models provide a mechanistic 

interpretation of this type of learning [i.e., self-teaching]...” (p. 665). Their model explored 

the relative influence of the direct orthography-to-semantics route versus the indirect 

orthography-phonology-semantics route in orthographic learning and the acquisition of print-

meaning associations. Although their model is trained via a form of back-propagation and 

thus uses supervised learning, Harm and Seidenberg again argue that the “supervised” correct 

meanings for each printed word do not necessarily come from an external teacher. They write, 

“In other cases the child can be thought of as using various strategies to derive a teaching 

signal rather than using an extrinsically provided one.” (p. 665). Harm and Seidenberg raise 

the idea that contextual support sometimes provides evidence about the correct meaning. At 

other times, the child may internally generate the correct meaning via the “spoken word 

recognition pathway” (p. 665), by saying the word to themselves. It is this latter process that 

Harm and Seidenberg suggest is a version of Jorm and Share (1983)’s self-teaching 

hypothesis. 
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Harm and Seidenberg seem to be suggesting that in their print-to-meaning model, the 

orthography–phonology–semantics route might provide the correct meaning in order to train 

the orthographic–semantic route. While we accept that this sounds appropriate, it still raises 

the question: how is the orthography-phonology route trained? The triangle model still seems 

to suggest that this route is trained via a supervised learning process such as back-

propagation. This would imply that a beginning reader learns the correct pronunciation for a 

printed word via direct external instruction, even if they can then self-teach meanings, which 

seems contrary to the self-teaching hypothesis, at least for pronunciation. 

It is difficult to see how the triangle model could adhere to the principles that define 

the triangle model while also providing a computational account of self-teaching for correct 

reading aloud, and for this reason, we reject the claims of Harm and Seidenberg (1999) and 

Harm and Seidenberg (2004) that their models approximate the self-teaching hypothesis of 

Jorm and Share (1983). The computational instantiations of the triangle model all use 

supervised learning, and for this reason deviate substantially away from psychologically 

plausible learning, and from the self-teaching hypothesis. As will be described later in this 

chapter, modelling the self-teaching hypothesis is considered a promising approach to 

developing a psychologically plausible model of orthographic learning. 

Other models that learn face similar difficulties, all deriving from a focus on effective 

low-level network training, rather than close modelling of higher level cognitive and 

behavioural data. For example, in implementing sublexical route learning, the CDP modellers 

(Perry et al., 2007, 2010) focus more on the nature of the relationships between graphemes 

and phonemes, rather than a psychologically plausible account of how these relationships are 

learned. They suggest that there is a statistical relationship between graphemes and phonemes, 

in contrast to DRC’s adherence to an explicit rule-based conception of the relationship 

between graphemes and phonemes. CDP+ and CDP++ are both trained using a supervised 
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learning algorithm, and while they claim some level of psychological plausibility in arguing 

that the learning algorithm they use (the delta rule) is equivalent to a classical conditioning 

law (Perry et al., 2007), they provide little evidence that grapheme–phoneme relationships are 

only taught by direct instruction, or that the lengthy training regime used to train the 

CDP+/++ models is a good account of the training beginning readers require when learning 

how to read. Having said that, we note that, since the CDP models are dual-route models, it 

would not be difficult to implement a mechanism for the lexical route to provide the target 

pronunciations for the purpose of training the sublexical route, to allow some degree of self-

teaching, and reduce the extent to which sub-lexical route learning relies on direct instruction 

(see Chapter 4). 

A number of existing models of word recognition, such as the SOLAR model (Davis, 

1999), the ART model of Glotin et al. (2010), or the SOM model of Dufau et al. (2010), seem 

to regard orthographic learning as simply learning that particular sequences of letters 

correspond to a written-word representation, without any involvement of phonology (or 

semantics). In contrast to the triangle model approach to learning or the CDP approach to 

learning, these models use an unsupervised learning approach. These models all classify input 

stimuli based on identified critical features, where the critical features are determined by the 

model itself, not provided by an external teacher. This seems promising from a psychological 

plausibility perspective. However, we dispute whether or not these models are truly 

simulating orthographic learning. These models can purportedly simulate lexical decision
1
, 

and are able to do so because stimuli that are words are presented to the model during 

training, while stimuli that are nonwords are not presented to the model during training. 

Rather than performing lexical decision, these models are in fact just distinguishing stimuli 

(whether words or nonwords) that have been previously presented from stimuli that have not 

                                                 
1
 The ART model of Glotin et al. (2010) was not specifically built to simulate lexical decision. Rather it 

was tested only on whether or not word identities had been acquired, without considering nonword stimuli. 

However, this model would still face the same difficulty as the SOLAR model or Dufau et al. (2010)’s SOM 

model in simulating lexical decision, were it used to simulate this. 
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been previously presented. We do not think this is a satisfactory account of orthographic 

learning, because readers are able to perform lexical decision based on more than merely prior 

exposure. A reader may still learn that a stimulus they have not seen before is a word, if the 

stimulus corresponds to a known spoken word. That is, phonology can come into play in 

acquiring the skill of lexical decision. Orthographic learning must also involve learning the 

associations between written words and spoken words, and this is an aspect of orthographic 

learning not covered in the computational simulations with the SOLAR, ART or SOM 

models. Further to this, the self-teaching hypothesis (Share, 1995), a well-regarded and 

plausible account of how orthographic learning occurs, also highlights the central role that 

phonology plays in orthographic learning, in contrast with purely orthographic models of 

learning. 

Creating a Learning DRC model 

Our intent is to work towards creating a DRC model of reading aloud that is capable 

of learning, an “L-DRC”. This will address one of the key criticisms made of DRC, that it 

does not explain reading acquisition. In pursuing this goal, we will begin by implementing 

orthographic learning only, and we will adhere to two general principles: nested modelling 

and psychologically plausible learning. What we mean by these terms is explained below.  

Beginning with orthographic learning 

Acquiring reading skill, as understood in the context of dual-route theory, involves the 

learning of a variety of cognitive sub-skills, including knowledge of the alphabet and capacity 

to perceive letters, phonemic awareness, grapheme–phoneme correspondences (GPCs), a 

written word vocabulary, a spoken word vocabulary, and the associations between letters, 

written words, spoken words and meanings. In reality, children most likely learn many of 

these sub-skills simultaneously. For example, a realistic progression might overlap the 

learning of letter identities with direct instruction in high frequency simple words; or learning 
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GPCs might overlap with orthographic learning and with the expansion of the spoken word 

vocabulary. 

It is tempting to try and implement the learning of all of these cognitive facets 

simultaneously, in order to maximise psychological plausibility. However, this would result in 

a model so complex it would be challenging to begin exploring the model and testing it. 

Instead, in the work described here, we made some simplifications, so that our research could 

proceed in an incremental fashion. The L-DRC that we constructed assumed complete 

knowledge of letters, GPCs, grapheme parsing, phoneme identities, and a full spoken 

vocabulary (full as in equal to DRC’s, though limited to only monosyllabic words, as is the 

case for DRC). The idealised reader we modelled is of course unrealistic, but provided a good 

starting point for making sense of complex cognitive processes. 

The main aim of this study is to implement the cognitive skill of orthographic learning 

as a computational model. By orthographic learning in this context, we mean the creation of a 

unitised representation of the written word within the reader’s mind. This representation is 

associated with the appropriate semantic and phonological representations for the same word. 

The existence of this orthographic representation allows the reader to read and understand the 

word without first needing to recognise the phonological representation, or decode the word 

on a sub-lexical level. Orthographic learning is what enables a reader to become swift and 

automatic in their reading, and this capacity to read so effortlessly has been described as the 

“quintessence” of reading skill, (Share, 2008, p. 34). Because orthographic learning is so 

central to learning to read, this is where we start our implementation of a learning DRC 

model. 

In focussing on orthographic learning, we will look to produce a computational 

account that is accurate at a high level of analysis. That is, we focus on high-level cognitive 

detail, rather than the intricacies of the cognitive processes involved in learning to read. Our 
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initial model design as described in this article will necessarily be quite simplistic when 

viewed from a low-level. Subsequent model iterations can be focussed on slowly delving 

deeper into network architecture and lower-level cognitive considerations, once the high-level 

account has been tested and found to be robust. 

Nested modelling 

Despite being a static model, DRC has been highly successful on other measures as a 

computational model of reading aloud. There are many standard effects seen in data from 

human subjects reading aloud or doing lexical decision that are successfully simulated by 

DRC (Coltheart et al., 2001). For this reason, rather than abandoning the DRC model entirely 

in order to create a learning model, we will seek to retain as much of DRC’s structure and 

performance as we can, and only make changes to introduce or allow learning to take place. 

This is in accordance with the principle of nested modelling, (Jacobs & Grainger, 1994). 

Nested modelling holds that new models should retain the explanatory capabilities of existing 

models, even as they seek to add new capacities. If not, it is unclear whether or not the new 

model can be said to represent an advance in knowledge. 

Psychologically plausible learning: the Self-Teaching Hypothesis 

A well-argued verbal model of psychologically plausible orthographic learning exists, 

and is known as the self-teaching hypothesis (Firth, 1972; Jorm & Share, 1983; Share, 2008, 

2011). The initial conception of this hypothesis was that beginning readers can teach 

themselves to read and recognise new written words without receiving explicit instruction 

from a teacher for each new word, and without relying solely on contextual guessing. They 

are able to do this through “…the ability to translate unfamiliar printed words into their 

spoken equivalents (‘phonological recoding’ or simply ‘decoding’)”, which is “… the central 

means by which orthographic representations are acquired”, (Share, 2008, p. 35). Once the 

printed word has been translated into a phonological representation, if this candidate 
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pronunciation corresponds to an already known spoken word, then an opportunity for 

orthographic learning is created, since the reader will recognise the spoken representation. 

These ideas are compatible with DRC. DRC’s sublexical route can perform the role of 

phonological recoding, since it takes letters as input, and generates a string of phonemes as 

output. A match between this sublexical route output and an item in the phonological lexicon 

(which, in DRC, already contains a vocabulary of almost 8,000 spoken words) can serve as a 

trigger for orthographic learning. So rather than a teacher providing the correct reading aloud 

of a novel written word to supervise learning, DRC can “self-teach”, because the sub-lexical 

route provides the (hopefully correct) reading aloud of the written word, and it is this that is 

used to train orthographic learning in the lexical route. 

It is important to be clear on the concepts hypothesised as part of self-teaching, and 

those hypothesised as part of DRC’s account of reading. Computationally implementing the 

self-teaching hypothesis within the DRC model necessarily involves committing to a specific 

cognitive account of phonological recoding: that it is achieved via the use of explicit GPCs to 

translate from print to speech at a sublexical level. However, the self-teaching hypothesis 

itself does not specify the precise nature of the cognitive mechanism employed to perform 

phonological recoding. Share (2008) emphasises that this mechanism may be the application 

of explicit grapheme–phoneme correspondence rules (GPCs), but it may also be other 

mechanisms such as analogical mechanism (for example, as suggested by (Glushko, 1979) 

and computationally implemented in the triangle model (Seidenberg & McClelland, 1989)), 

or a statistical learning mechanism. So although DRC’s sublexical route is compatible with 

the self-teaching hypothesis, it makes theoretic commitments that are not specifically made as 

part of the self-teaching hypothesis. 

Self-teaching, rather than direct instruction is an important quality of a 

psychologically plausible account of learning to read, for the following reasons. Share (1995) 
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argues that externally supervised learning, such as a teacher giving direct instruction, is not a 

realistic account of the way children acquire orthographic knowledge. This is because 

children acquire new words at a rate far too high for a teacher to possibly be individually 

instructing a child on each word. For example, Nagy and Herman (1987), as cited in Share 

(1995), suggested that a typical 5
th

 grader encounters approximately 10,000 new words per 

year. Share does point out that initially, perhaps 100 high frequency words are taught via 

direct instruction, but that self-teaching plays a central and essential role in learning to read 

the bulk of written words.  

Share also considers the possibility that contextual guessing could guide self-teaching, 

as opposed to phonological recoding. A beginning reader typically encounters novel written 

words within a whole text, and feasibly they could guess the correct pronunciation for a 

written word by constraining the potential options based on the context provided by the 

balance of the text. For example, in the sentence “They climbed aboard the _____ and set 

sail”, it is much more likely that the missing word will be “yacht” than “basketball”. Share 

rejects the possibility of context doing the bulk of the cognitive work involved in self-

teaching because natural text is in general not highly predictable (see Finn (1977-1978), as 

cited in Share (1995)). Also, the words that are most amenable to unambiguous contextual 

guessing are high frequency and/or function words (e.g., THE, AND, THAT), the kinds of 

words beginning readers probably already know via early direct instruction. Low frequency 

content words are precisely the kinds of words that children are likely to have to teach 

themselves, and yet these are the words that are difficult to unambiguously recognise using 

context alone. In the previous example sentence, the missing word might be “yacht”, but it 

could just as well be “ship” or “boat” or “catamaran”. 

A challenge for the self-teaching hypothesis is that many words in a language such as 

English are irregular or inconsistent, and so the process of phonological recoding will not 
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always produce a candidate pronunciation that matches with a known spoken word. This is 

because irregular words are not pronounced according to the sublexical orthographic–

phonological relationships that support phonological recoding. Despite this, Share (1995) 

points out that even highly irregular words such as YACHT have at least some regularity 

(e.g., the Y and T are pronounced regularly). Learning irregular words can therefore be 

assisted via “partial decoding” (Share, 1995, p. 166). According to the self-teaching 

hypothesis, the role of the contextual support provided by, for example, the text 

accompanying a novel word, is to constrain the possible options for a matching spoken word. 

A beginning reader can then use partial decoding along with this shortlist of potential spoken 

words that is constrained by context, to determine what the correct reading aloud of a novel 

written irregular word should be. Contextual guessing provides support for reading aloud 

irregular words, but cannot facilitate this on its own without partial decoding to assist. 

Turning once more to the example sentence, a beginning reader might be able to choose that 

the unfamiliar word is “yacht” rather than an alternative word for a sea vessel if they are able 

to partially decode the word and see that it must start with “y” and end with “t”. 

Summary of our research aims 

We aimed to build a psychologically plausible DRC model that includes the capacity 

for orthographic learning, an L-DRC. Existing approaches to learning in use in other 

computational models are often focussed on microstructure, and the ability to generalise the 

microstructure across multiple cognitive domains, at the expense of psychological and 

behavioural plausibility at higher levels of analysis. Plausibility at these high levels of 

analysis is the focus of our work. The self-teaching hypothesis is a psychologically plausible, 

high-level verbal account of how a beginning reader could teach themselves new orthographic 

word forms. In seeking to incorporate learning into DRC, we will focus on implementing a 

computational version of the self-teaching hypothesis.   
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In accordance with the principles of nested modelling, we retained the capabilities of 

the existing DRC model, even as learning is implemented. To do this, we retained most of 

DRC’s current structure. Changes to DRC’s structure were typically only made to allow for 

learning, or to avoid shortcomings to learning that were unavoidable without changing 

structure. We strove to avoid making changes that would alter DRC’s general performance 

against empirical data benchmarks. 

Architecture of L-DRC 

Introduction to the architecture 

We intended to model phonologically driven orthographic learning, while retaining as 

much of DRC as possible. So a logical place to start is with the existing DRC model. A 

description of DRC’s architecture can be found in Coltheart et al. (2001). This describes the 

first iteration of DRC, 1.0. Our research will use the most current publicly available version, 

DRC-1.2.1
1
 ("Dual-Route Cascaded Model 1.2.1," 2009). 

A box-and-arrow model of DRC’s basic architecture is shown in Figure 1. The two 

cognitive routes or mechanisms are shown, and are labelled as the lexical route and the sub-

lexical route. Note that the semantic layer has not been computationally implemented in 

DRC-1.2.1, but a rudimentary semantic system will be included in L-DRC to allow for 

contextual influence. Some boxes and lines are shown faded. These are the sections of DRC 

that contain knowledge that L-DRC will learn. These areas consist of the orthographic 

lexicon, the connections from the orthographic lexicon to the letter level, and connections 

from the orthographic lexicon to the phonological lexicon. These greyed structures are 

analogous to a human reader’s knowledge of written words (e.g., DOG), their knowledge of 

the particular letters that comprise each written word (e.g., that DOG is comprised of D, O, 

                                                 
1
 Documents describing subsequent changes to DRC’s architecture since the 2001 publication can be 

downloaded at http://www.maccs.mq.edu.au/~ssaunder/DRC/ 
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and G), and their knowledge of the associations between these written words and spoken 

words (e.g., that DOG is the written form of the spoken word “dog”). Note that the greyed 

areas do not include knowledge of actual letters, or knowledge of spoken words. Although we 

modelled an idealised reader that already knows the alphabet and has a spoken word 

vocabulary, this beginning reader still needs to learn the associations from the orthographic 

lexicon to the letter level and to the phonological lexicon. 

 

Figure 1 – The DRC model of reading aloud and word recognition. The greyed out features of 

the diagram are sections of the cognitive mechanism of reading that are to be learned by the L-

DRC model. 
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L-DRC (prior to any training) consists of a newly coded
1
 replica of the standard DRC-

1.2.1 model, but with the greyed-out areas removed completely. L-DRC can therefore be 

understood as a model of an idealised beginning reader, who has acquired a skilled 

knowledge of printed letter representations, and is able to parse graphemes in strings of 

printed letters. It has knowledge of all phonemes in English, a skilled knowledge of English 

GPCs, and a full vocabulary of all monosyllabic spoken words in English. This idealised 

reader is also able to identify all of the phonemes present in each of the words in their spoken 

word vocabulary. 

Operation of L-DRC learning mechanisms 

To illustrate the operation of learning in L-DRC we will describe the step-by-step 

presentation of a novel stimulus to L-DRC. 

Activation of the phonological lexicon via the sub-lexical route 

When a novel stimulus is presented to L-DRC, it causes activation in the visual feature 

and letter layers. As is the case for DRC-1.2.1, the sub-lexical route takes these activated 

letters and generates a regular pronunciation according to GPCs. Phonemes are thereby 

activated, corresponding to this regular pronunciation. Activated phonemes excite the 

phonological lexicon, since the phoneme layer and phonological lexicon layers are interactive. 

Through this process, the sub-lexical route drives the activation of a spoken word 

representation without any prior activation of a written word representation in the 

orthographic lexicon. This is analogous to the concept of “phonological recoding” in the self-

teaching hypothesis. 

                                                 
1
 DRC-1.2.1 (the already existing model of skilled reading) was coded in C++. However, L-DRC is 

coded in a different programming language: C#. There were two reasons for this. Firstly, C# is the language of 

choice known by the first author. Secondly, reconstructing DRC as a first step on the way to building L-DRC 

was a highly useful, hands-on process for the first author in becoming intimately familiar with the low-level 

computational architecture of DRC. The newly coded DRC-1.2.1 replica was tested using both words and 

nonwords, and found to produce the same responses with the same response times to the original, C++ version. 
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Spoken-word recognition as a trigger for learning 

L-DRC uses a threshold level to initiate learning. When a node in the phonological 

lexicon reaches a critical level of activation, the written stimulus is considered to have been 

identified as corresponding to a particular spoken word. This signifies that a learning event 

can commence. We now introduce the first new parameter included in the L-DRC model: 

SpokenWordRecognisedThreshold (a full list of parameters used in L-DRC is included in 

Appendix A). This parameter allows the experimenter to set the level of activation required of 

a node in the phonological lexicon to initiate learning. At the completion of the reading aloud 

simulation, if a phonological node has been activated above this threshold, then a learning 

event begins. A phonological lexicon node activated above this threshold models a reader 

having recognised that the written stimulus corresponds to a known spoken word. 

Once learning is triggered by recognition that the stimulus corresponds to a spoken 

word, there are two possibilities for learning: learning a completely novel written word, which 

is type-based learning, or else improving knowledge of a written word that has previously 

been seen, which is token-based learning. 

Learning a novel written word (type-based learning) 

If the stimulus is a novel written word, then no orthographic word node should have 

been significantly activated by the stimulus. While it is possible that neighbours of the 

stimulus could receive some activation from letters shared with the stimulus, in practice, this 

will rarely occur since DRC-1.2.1 (and thus L-DRC) include a high level of letter-to-

orthographic-lexicon inhibition by default. This inhibition is typically sufficient to prevent the 

activation of orthographic lexicon nodes where even just one letter differs with the stimulus. 

If learning has been triggered by a phonological lexicon node having reached an 

above-threshold level of activation, and no orthographic lexicon node is sufficiently activated, 

then learning of a new orthographic word is triggered. We now introduce the second new 
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parameter exclusive to the L-DRC model: WrittenWordRecognisedThreshold. Learning a new 

written word should only occur if a beginning reader does not already recognise the written 

stimulus. Therefore, in L-DRC, the learning of a new orthographic node is only triggered if 

there is no orthographic node that is activated above this threshold value. This models the 

beginning reader not recognising the written stimulus. When this event is triggered, L-DRC 

will undergo the following structural changes: 

• A new node is created in the orthographic lexicon 

• Bidirectional excitatory and inhibitory connections are created between this node and 

the relevant nodes in the letter layer. That is, excitatory connections are formed with 

the most active letter nodes in each slot, and inhibitory connections are formed with 

other letter nodes. 

• Bidirectional excitatory connections are created between the new orthographic node 

and the most active node in the phonological lexicon, and bidirectional inhibitory 

connections are created between the new orthographic node and all other phonological 

lexicon nodes. 

• Inhibitory connections are created between this new orthographic node and all other 

orthographic nodes (lateral inhibition). 

• The frequency value attached to this node is set to 1, and then multiplied by 

WrittenWordFrequencyMultiplier, where this new parameter is used to control the 

speed of learning token-based information about the stimulus. 

The type-based learning of a novel stimulus in L-DRC is completed in a single 

learning event. The connections to and from this newly created node are not formed with low 

values that will then increase with each subsequent exposure. Rather, the new connections are 

created at full strength similar to what they would be in DRC-1.2.1 for skilled knowledge of a 

written word. The strength of skilled connections is set by the experimenter, who can alter 
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these values by changing the relevant parameters, the same as they would do in DRC-1.2.1. 

L-DRC’s knowledge of a newly learned orthographic word is therefore the same as DRC-

1.2.1’s skilled knowledge of a very low frequency word. The implications of this approach to 

type-based learning are covered in the discussion of architecture following. 

Increasing knowledge of an already known word (token-based learning) 

If a beginning reader encounters a written word they have seen before, they will 

recognise it, and will not need to learn a new representation for this word. To model this in L-

DRC, if the written stimulus has previously been presented to the model and type-based 

learning has already resulted in the creation of an orthographic node for the written stimulus, 

then that orthographic node will likely be activated via excitation from activated letters to a 

value above the WrittenWordRecognisedThreshold value. Activation of an orthographic node 

above this threshold is the way L-DRC models a reader recognising that the written stimulus 

is a word already known. So, if a learning event has been triggered by a sufficiently activated 

phonological lexicon node, then, the existence of an orthographic node also above threshold 

will trigger token-based learning. This type of learning results in the frequency value 

associated with the most active orthographic node being incremented by the 

WrittenWordFrequencyMuliplier value. This parameter is included for practical reasons, to 

allow frequency values to grow to a size commensurate with the frequency values employed 

in DRC-1.2.1, but without needing to present hundreds of thousands of stimuli to achieve this 

(e.g., the most frequent word, THE, has a frequency value in DRC-1.2.1 of over 100,000). In 

this way, L-DRC’s familiarity with already known written words is increased, so that it is able 

to generate phonology for such words more rapidly. 

When does learning occur in L-DRC? 

At present, the computations for learning in L-DRC occur after the reading aloud 

simulation has completed. That is, L-DRC functions identically to DRC-1.2.1 for the purposes 
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of reading aloud a word, though obviously with an orthographic lexicon that only contains 

nodes for words that have been learned. Once reading aloud has been completed (which 

occurs once phonemes are activated above the threshold set with the MinReadingPhonology 

parameter, see Coltheart et al. (2001) for a detailed account of DRC’s reading aloud 

procedures), then cycle-by-cycle processing and activation changes cease, and the model 

begins the learning phase, where nodes in the phonological lexicon and orthographic lexicon 

will be checked to see if any node has reached the threshold level of activation to trigger a 

learning event. 

Future research may explore modifying timing, for example the commencement of 

learning could be triggered by a node in the phonological lexicon reaching a threshold value, 

instead of being delayed until after reading aloud has completed. 

Snapshot of L-DRC structure after learning  

 After learning, L-DRC should possess orthographic nodes for all written words to 

which it has been exposed, and the relevant connections to adjacent layers. It will have 

internalised token-based information in the form of node-specific frequency parameters, with 

the frequency value associated with a particular orthographic node being proportional to the 

number of exposures to the written stimulus represented by that node. That is, L-DRC after 

training should come close to looking and behaving just like the static, skilled DRC model. 

Having provided a general account of the main learning mechanism in L-DRC, we 

now turn to the many exceptions and challenges that will occur in trying to computationally 

model orthographic learning, especially for a language with many irregular words, such as 

English. 
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Context and irregular words 

Activation of phonemes via L-DRC’s sub-lexical route is only guaranteed to result in 

the activation of a node in the phonological lexicon if the written stimulus is a regular word, 

or a pseudo-homophone (e.g., BRANE, “brain”). If the stimulus is an irregular word, or is a 

non-word other than a pseudo-homophone, then the sequence of phonemes activated will 

typically not correspond perfectly to a spoken word, (except in cases where the rule-based 

translation of an irregular word is itself a different actual spoken word, e.g., COME is “comb” 

when regularised. Such words are known as potentiophones (Friedmann & Lukov, 2008)). By 

choosing appropriate parameter settings, it is possible that a phonological lexicon node might 

be activated by phonemes where there is only a partial match. However, DRC-1.2.1’s default 

parameters (and thus also L-DRC) include a high phoneme-to-phonological-lexicon 

inhibition. This high inhibition mostly prevents activation of any node in the phonological 

lexicon unless there is a perfect match between the activated phonemes in each slot and a 

word node in the phonological lexicon. With these default parameters, some other support 

mechanism will need to assist the sub-lexical route in triggering a learning event for irregular 

words, and even with parameter changes, this support mechanism might still be required for 

highly irregular words. How might this be done? 

As described in Chapter 1, Share (1995) argues that contextual support can be used to 

support a partial decoding. Share suggests that it is typically just the vowels in English that 

contribute irregular pronunciations, while consonants are mostly pronounced regularly. 

Beginning readers are able to make use of this partial regularity to generate a partially-correct 

decoding. This would provide some degree of useful information to support the triggering of a 

learning event, but some additional support is required. 

Context is not trivial to model in detail, due to the myriad associations that must 

comprise the links between concepts, and between concepts and words within the cognitive 
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systems for reading. This complexity is no doubt a primary reason why detailed semantic 

representation is frequently omitted from computational models of reading (e.g. neither DRC 

nor CDP++ computationally model the lexical-semantic route, and nor did early versions of 

the triangle model, though Harm and Seidenberg (2004) is one example where some of the 

complexity of the semantic system is computationally implemented in a triangle model). 

Sometimes when the semantic system is specifically considered, it is modelled in a simple or 

partial fashion, for example Coltheart, Woollams, Kinoshita, and Perry (1999) included the 

capacity to activate semantic representations for colour, in order to computationally model the 

Stroop Effect. Rather than producing a detailed computational model of the semantic system, 

we also take a simple approach to modelling the impact of context. We only model the 

provision of activation to the correct word, and do not attempt to model the activation of all of 

the words that might be relevant to a particular context. 

L-DRC’s simple semantic system consists of a new layer, containing a node for each 

word in the L-DRC spoken-word vocabulary. This is shown in Figure 2. Activation of a 

semantic node corresponds to recognition of the semantic content represented by that word. 

Each node in this semantic layer has an excitatory connection to the corresponding word node 

in the phonological lexicon, and inhibitory connections to all other word nodes. When a 

written stimulus is presented to the model, the visual feature layer is excited, but now also the 

semantic layer receives direct excitation. This activation represents the activation of concepts 

due to the action of context. By context, we typically mean the written context provided by 

the text in which the word is embedded, though conceivably the context could be provided by 

the direct instruction of a teacher. The excitation of the semantic layer is modulated by the 

parameter netInput2SemanticNode. The value of this node can be altered to represent the 

confidence and focus that context provides to the identification of a particular word and 

meaning. Connections from the semantic layer to the phonological lexicon are governed by 

the parameters semantic2PhonolexExcitation and semantic2PhonolexInhibition. 
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Figure 2 – Including a semantic layer in L-DRC. Note that the associations between the semantic 

layer and orthographic lexicon are notional, and have not been modelled as yet in L-DRC 

 

Changes to connectivity between letters and words 

Early test simulations with L-DRC revealed an incompatibility between DRC’s 

current structure and adequate learning. For this reason, we introduce a quite fundamental 

change in L-DRC’s architecture away from the structure used in DRC. This change and the 

reasons for it are described as follows. 

In DRC-1.2.1, all orthographic nodes are connected to all letter slots. This is the case 

even for short words that do not take up the full eight slots. Consider the word CAT. The 

orthographic lexicon node for this word will have excitatory connections from the C node in 
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the first letter slot, the A node in the second letter slot, and the T node in the 3
rd

 letter slot. It 

will also have excitatory connections from the null character in the remaining slots four to 

eight. This seems intuitively strange. It means that the orthographic word node CAT receives 

more excitation from five null characters than it does from the three letters that actually 

comprise it! 

This odd connectivity was no doubt implemented in DRC-1.2.1 to avoid introducing 

unwanted length effects into the lexical route. If words were only excited by a single null 

character in addition to the letters they contain, then longer words would receive greater 

activation than shorter words (more letters to contribute excitation) and thus would be more 

quickly read aloud. Instead, Weekes (1997) found that there is little effect of length for high 

frequency words, and for low frequency words, having more letters typically means longer 

reading aloud latencies, not shorter. Ensuring that all orthographic word nodes, whether these 

are for long or short words, receive excitation from eight letter slots eliminates this unwanted 

length effect from the lexical route, even if the means of achieving this seems somewhat 

counter-intuitive. 

This pattern of connectivity, however, poses difficulties for a learning model, 

especially for learning two close neighbours, or for learning longer words that contain a 

subset of letters that comprise a shorter word (e.g., AN and ANT). For example, let us say that 

the word AN has already been learned, and an orthographic node already exists for this word. 

Now the word ANT is presented but is novel to the model, meaning there is no orthographic 

node for ANT. The intended outcome is for the phonological lexicon node for “ant” to be 

activated, but for no node in the orthographic lexicon to be activated above threshold, so that 

a type-based learning event is triggered leading to the creation of a new orthographic node for 

ANT. However, with DRC-1.2.1’s pattern of connectivity, there is only one letter slot out of 

eight difference between A-N-T-+-+-+-+-+ (where ‘+’ is used to represent a null character), 
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and A-N-+-+-+-+-+-+. So if ANT is the written stimulus, the existing orthographic word node 

AN will receive seven slots worth of excitation and only a single slot worth of inhibition. 

There is a good chance that the AN orthographic lexicon node will be inappropriately 

activated under these conditions, since there is no better matching orthographic node yet in 

existence to laterally inhibit its activation. If the orthographic node AN is activated above 

threshold by the stimulus ANT, this would prevent an orthographic node for ANT from ever 

being learned, and instead “ant” would be learned incorrectly as another pronunciation of AN, 

and AN would erroneously seem to L-DRC as a heterophonic homograph. To compound this, 

a kind of “snowball” error can then occur, where the node now associated with “an” and “ant” 

repeatedly has its token frequency incremented with each exposure, and becomes more likely 

to incorrectly become associated with even more neighbouring words (e.g., A, ANTE, ANTS, 

then RANTS). 

In addition to being a problem for learning, DRC-1.2.1’s connectivity between all 

letter slots and orthographic word nodes would also become a problem once DRC is 

augmented to be able to handle much longer multi-syllabic words. A DRC model using the 

current pattern of connectivity, with enough slots to process the word 

ANTIDISESTABLISHMENTARIANISM (28 slots) would use 26 null letter slots to excite 

the 2-letter word AN, in addition to the A and N. Such a model might have a good deal of 

difficulty distinguishing AN from ANT, since these two words would have 27 letter slots 

worth of excitation in common, and only a single slot different. 

From an intuitive point of view, and to avoid this problem of lexical capture by 

neighbouring words, it is preferable for orthographic word nodes to only be excited by their 

constituent letters, plus a single null character. This, however, still leaves an unwanted length 

effect present. This issue can be overcome by implementing normalisation of the excitatory 

activity from the letter later to the orthographic lexical layer. 
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Normalisation to avoid the impact of stimulus length effects or for other reasons has 

been implemented in a variety of other well-known artificial neural network paradigms. For 

example (Davis, 1999) implemented normalisation of input activity in the self-organising 

lexical acquisition and recognition (SOLAR) model of visual word recognition. The ART-1 

model described in Carpenter and Grossberg (1987) uses normalisation (scaling) to ensure 

that a small difference in features between an input pattern and a prototype pattern will be 

treated as noise when the input pattern is complex, while the same small difference when the 

input pattern is simple will be correctly identified as being significant. 

We implement normalisation by ensuring that total letter-to-orthographic-lexicon 

excitation is equivalent to eight slot’s worth of activation. The excitation coming from each 

letter node to the orthographic lexicon is multiplied by a normalisation multiplier. 

The normalisation multiplier is defined as: 
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Normalisation is best illustrated with an example. Consider the stimulus STOP. This 

stimulus will result in S, T, O, and P nodes being activated in letter slots 1 thru 4, and null 

characters being activated in slots 5 thru 8. The orthographic word node for STOP will only 

have excitatory connections coming from the first 5 slots (for each of the letters in the word, 

and a single null character). The excitation contributed by each of these letters will therefore 

be divided by 5, so that the total excitation is roughly equal to a single slot’s worth of 

activation. Following this, excitation is multiplied by the total number of slots which is 8, 

giving total excitation roughly equal to the excitation that would have been provided by all 
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slots contributing excitation. For the stimulus GO, the excitation contributed by the letters G, 

O and a null character, will be each divided by 3 before being multiplied by 8. 

Introducing this normalisation represents a departure from the original DRC structure 

of version 1.2.1, and so its impact will need to be tested. Our claim is that undertaking this 

normalisation will avoid unwanted length effects on reading-aloud latency, will avoid lexical 

capture of novel word stimuli by already learned close neighbours, while still maintaining the 

strengths of the existing DRC approach. 

Theoretical justification for implementing normalisation 

Consider three different models: 1) the standard DRC-1.2.1 model, 2) DRC-1.2.1, but 

with only 1 null slot contributing excitation to the activation of each orthographic lexicon 

word node, 3) DRC-1.2.1 with only 1 null slot contributing excitation to the activation of each 

orthographic lexicon word node, and with normalisation of excitation form the letter level to 

the orthographic lexicon. 

One simple justification for the use of normalisation is that it improves the capacity of 

the model to match the data. While a somewhat ad-hoc model change, the fact that the model 

can better match empirical results with this change suggests that the previous idea that each 

letter in a stimulus contributes equal activation regardless of stimulus strength is incorrect, 

and falsified by empirical data on length effects. Normalisation is not simply tweaking a 

meaningless parameter to achieve the desired result—tweaking a meaningless parameter does 

not clearly imply any change of hypothesis. The inclusion of normalisation is a clear 

statement regarding how information about letter identities must be communicated through 

the lexical route in order to appropriately model real readers, so in this sense it can be 

justified. The change embodies a theoretical commitment, which can be empirically tested. 

Normalisation can also be understood as a process of cognitive-resource allocation. 

Shallice and Cooper (2011) discuss the idea of finite cognitive resources being allocated to 
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achieve particular cognitive tasks (see section 4.5, p. 119, and section 5.3, pp. 159-162). In 

discussing the interpretation of functional magnetic resonance imaging (specifically, the 

blood oxygenation level dependent (BOLD) signal), Shallice and Cooper explore the idea of 

using this BOLD signal as a measure of cognitive resource employed by a particular subject 

in carrying out a task. They state: “We therefore make the assumption here that the level of 

activation for a particular [brain] region corresponds monotonically to the amount of 

[cognitive] resource being employed.” (Shallice & Cooper, 2011, p. 162). To borrow from 

this idea, if the level of activation contributed from the L-DRC letter layer to the L-DRC 

orthographic lexicon is cognitively constrained by available resource, then it makes sense for 

the excitation from any particular letter slot to be scaled according to the number of letter 

slots that are contributing excitation—this normalisation models a constant cognitive resource 

being deployed and spread across the letter slots. The resource available per letter will be 

lower if more letters are being computed at once. It seems reasonable to think that there is a 

finite cognitive resource available to simultaneously contribute information regarding 

multiple letters to the task of recognising a whole word by sight. This doesn’t mean longer 

words necessarily take longer to recognise and read, just that each letter within that word 

individually contributes information to completing the task at a slower rate, the more letters 

there are. 

Finally, as is the case with the ART-1 model described in Carpenter and Grossberg 

(1987), normalisation of letter-to-orthographic lexicon excitation can be considered to 

represent a beginning reader adjusting their perception of what features are critical in 

identifying a stimulus, based on the complexity of the stimulus. Normalisation will mean that 

the letter N in short word like AN will contribute relatively more excitation to the 

orthographic lexicon than the letter N in a longer word like BRANCH, reflecting the relative 

importance of the letter N in identifying the word in each case. If the letter N were missing 

from both words, it would be much easier to guess that BRA-CH is probably the word 
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BRANCH, than it would be to guess that A- is the word AN. AH, AM, AS, AT and AW are 

also possible. N is much more important to recognising the short word AN than the longer 

word BRANCH, which is reflected in the greater excitation coming from this letter in the 

shorter word, after normalisation. 

Simulations: testing the new model 

Overview of simulations 

In building a new model of reading aloud and orthographic learning, testing on a 

variety of measures is required. For example, in the spirit of nested modelling, the new model 

should be tested to ensure it can perform all of the functions that the old model can perform. 

The scope of this article is, however, not to test the L-DRC model against existing empirical 

benchmarks. This will be done in subsequent publications. Instead, the focus of the 

simulations presented here is on testing the basic operation of L-DRC’s learning mechanism, 

to see if and how it works in practice. Should L-DRC prove satisfactory in modelling 

orthographic learning it will be a necessary next step to test L-DRC against existing 

benchmarks. 

Three simulations are presented as part of this research. Simulation 1 tested the impact 

of the changes made to letter-to-orthographic lexicon connectivity, and also to investigate the 

general operation of contextually-supported self-teaching. Simulation 2 investigated the 

impact of changing the simulation completion criteria to model faster or slower reading 

speeds, and how this impacted learning. Simulation 3 explored the conditions under which 

partial decoding works with contextual support to enable the orthographic learning of 

irregular words. For all simulations, the default set of parameter values listed in Appendix A 

was used, unless values chosen for a specific simulation are specified. 
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Simulation 1 – contextual input and normalisation of letter excitation 

Aims 

• To test whether the model can undergo successful and accurate orthographic learning 

• To test how changing the level of contextual support affects the learning performance 

of the model 

• To examine the impact that changing letter-to-orthographic-lexicon connectivity and 

excitation have on model performance. 

Model variations 

Fourteen model variations were used. These were created with two structural 

variations, and a variable tested at seven levels for each structure.  

Structure 1: used DRC-1.2.1’s approach to excitation from the letter layer to the 

orthographic lexicon layer. That is, no normalisation of letter-to-orthographic-lexicon 

excitation, and all eight slots (including null character slots) were connected to each word, 

regardless of word length. 

Structure 2: Each word node in the orthographic lexicon was excited by only its 

constituent letters and a single null character slot (or none for eight-letter words). Total 

excitation from the letter layer to the orthographic lexicon layer was normalised by 

multiplying each excitatory contribution from a letter node to the orthographic lexicon by the 

normalisation multiplier. 

Variable: the contextual input to the semantic layer (referred to from here on as 

“contextual input”) was varied across seven levels: 0.00, 0.02, 0.05, 0.10, 0.25, 0.50 and 1.00. 

Reference model variations: in addition to the fourteen variations described above, 

two reference models were prepared. Each of these variations included a manually-coded 

orthographic lexicon that contains identical orthographic entries and orthographic frequency 
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values to the standard DRC-1.2.1 model. One reference variation used Structure 1, and the 

other used Structure 2. Since they were manually coded, these model variations skip the 

training step described below. 

Training corpus 

A training corpus was created comprising 30,220 separate orthographic word tokens, 

derived from 8,017 word types, with each different pronunciation of a homograph also 

counted as a separate word type. The corpus was created by presenting each of the word types 

a number of times equal to its CELEX orthographic frequency divided by 500, rounded to the 

nearest whole number, then +1 added to each value. The scaling down is necessary to keep 

the training corpus to a manageable size for quick simulation, while maintaining reasonably 

accurate frequency information. +1 is added to each value to ensure that every word type is 

included at least once in the training corpus. In practice, most of the words in the corpus are 

presented only once: this is all of the words with CELEX orthographic frequency values less 

than 250. Only 1,620 of the 8,017 words are presented more than once. The word presented 

the most times was THE, which was presented 2,067 times. Adding +1 will exaggerate the 

relative importance of low frequency words, but we felt that this approach best dealt with the 

trade-off between maintaining the accuracy of relative frequency differences between words, 

whilst ensuring the training corpus was not so large that simulation times became 

unreasonable. The order of all word tokens was randomised in the training corpus. 

Procedure 

Each of the fourteen model variations was first presented with all 30,220 stimuli 

comprising the training corpus, with learning proceeding in the manner previously described. 

Following this, the orthographic lexicon of each model was analysed by examining whether 

words from the training set were now represented by a node in the orthographic lexicon. This 
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was done by direct inspection of model structure by including code to print the orthographic 

lexicon contents to a text file. 

After this training phase, learning was deactivated, contextual input was set to zero, 

and the model was tested on each of the 8,017 word types from the training set, to assess 

pronunciation accuracy. Learning was deactivated for this phase to avoid additional learning 

and order effects potentially impacting the reading aloud of each word following initial 

training. However, there is nothing requiring training and performance to be separate phases. 

Indeed, the model is working to generate phonology throughout the training phase, and is 

clearly intended to learn and read aloud simultaneously. Context was set to zero during this 

testing phase, so that we could properly assess whether the model had learned orthographic 

representations in a way that enabled the kind of context-free reading aloud that a skilled 

reader can do. 

Results and discussion of simulation 1 

The results of Simulation 1 are presented in Table 1, with results for the Structure 1 

variation in the top half of the table, and the Structure 2 results in the bottom half. The first 

row for each structure provides information for the reference model variation. These indicate 

how the model will look if it has learned perfectly, and has an orthographic lexicon the same 

as DRC-1.2.1’s. 

Table 1 includes data on the results of both the learning phase, and the testing phase. 

During the learning phase, if an unfamiliar stimulus was recognised as a word and 

orthographic learning takes place, then a node would have been created in the orthographic 

lexicon for this word. The results of this learning are presented in the columns labelled as 

“node created”. During the testing phase, our intention is to see whether the model is able to 

correctly generate the phonology of words. Words that are read aloud correctly are counted in 
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columns labelled “correct”, and errors counted in columns labelled “incorrect”. Results for 

regular words and irregular words are presented in separate sections of Table 1. 

Some quick observations about the data are helpful for orientation. Firstly, it is 

possible that a word might be read aloud correctly even if no node was created for that word. 

This is most clearly going to happen for regular words, since these words can be pronounced 

correctly through knowledge of GPCs, even if orthographic lexical knowledge of the word is 

not developed. It can be seen clearly that for any of the model variations, regular words for 

which no node was created were still always read aloud correctly. In contrast, irregular words 

for which no node is created were never read aloud correctly. 

It is also possible that despite a node being created for a word, the model might still 

generate the incorrect phonology for that word. This may happen if a model learns a node for 

a particular word, but associates that node with an incorrect spoken word (node in the 

phonological lexicon). Models can also read aloud words incorrectly even if learning has been 

completely accurate—even the reference drc-1.2.1 variations make errors on some irregular 

words. This could happen for example if the sublexical route dominates when reading an 

irregular word, causing a regularisation error. 

The final column of Table 1 provides a count of the number of heterophonic 

homograph nodes that exist in a model after learning. When we use the term heterophonic 

homograph with regards to L-DRC, we mean a written word represented by a single 

orthographic node that is associated with more than one distinct spoken word representation. 

For example, the written word BOW can be pronounced as /b5/
1
, as in “bow-and-arrow”, or 

/b6/ as in the front section of a ship, and the single orthographic node will excite two 

phonological lexicon nodes. Heterophonic homographs are another cause of the reference 

DRC models experiencing errors for some words despite a correct node being present. 

                                                 
1
 The phoneme symbols used in this article are the same as are used in DRC-1.2.1 and L-DRC, and are 

displayed in Appendix B. 
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Table 1 – Results for Simulation 1 

 minReadingPhonology =0.4               

Contextual input 

Regular words Irregular words 

Heterophonic 

homograph nodes 
Node created No node Node created No node 

Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect 

Structure 1: All nulls slots excite words, no normalisation   

N/A
DRC-121

 6,658 - - - 1,286 73 - - 51 

0.00 95 1 6,562 - - - - 1,359 - 

0.02 6,568 15 75 - 826 33 - 500 1 

0.05 6,426 19 213 - 1,243 54 - 62 1 

0.10 6,441 3 214 - 1,228 70 - 61 36 

0.25 6,443 1 214 - 1,226 72 - 61 47 

0.50 6,443 1 214 - 1,226 72 - 61 47 

1.00 6,443 1 214 - 1,226 72 - 61 47 

Structure 2: One null slot excites each word, normalised letter-to-orthographic lexicon excitation 

N/A
DRC-121

 6,658 - - - 1,286 73 - - 51 

0.00 95 1 6,562 - - - - 1,359 - 

0.02 6,630 17 11 - 851 31 - 477 - 

0.05 6,508 20 130 - 1,253 53 - 53 - 

0.10 6,474 4 180 - 1,237 69 - 53 36 

0.25 6,472 1 185 - 1,234 72 - 53 48 

0.50 6,472 1 185 - 1,234 72 - 53 48 

1.00 6,471 2 185 - 1,235 71 - 53 47 

DRC-121 This row gives reference information—this variation is manually-coded to have a full orthographic lexicon the same as DRC-1.2.1. The full DRC-1.2.1 lexicon 

was tested separately for both Structure 1 and Structure 2. 
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If one pronunciation of a heterophonic homograph is intended, and the other pronunciation is 

produced, this has been counted as an error. 

Structure 1 overall performance 

The results of simulation 1 provide a good demonstration that L-DRC is able to 

undergo effective and accurate orthographic learning, provided there is sufficient contextual 

support to aid learning. For Structure 1 variations where contextual input was at least 0.05, L-

DRC failed to create a node for only 213 or 214 out of 6,658 regular words (3.2%), and 61 or 

62 out of 1,359 irregular words (4.6%). This indicates a degree of robustness of learning to 

variations in the level of contextual support. Subsequent to learning, the model was able to 

generate the correct phonology for almost all words in the absence of contextual support, 

especially for variations trained with contextual input values of at least 0.05. For example, 

considering the contextual input equals 0.25 Structure 1 variation, the model correctly 

generated phonology for 6,657 out of 6,658 regular words (99.98%), and 1,226 out of 1,359 

irregular words (90.2%). 

Structure 2 overall performance – examining the impact of changes to letter-to-orthographic-

lexicon excitation 

To recap, structure 2 is the model version with modified letter-to-orthographic lexicon 

excitatory connections, a different structure to DRC-1.2.1’s structure. A first clear indication 

that Structure 2 is robust is that, when looking at just the reference models, it produces exactly 

the same responses to words as Structure 1, meaning the change in Structure did not affect 

DRC’s naming accuracy. When considering Structure 2 as it impacts learning, Structure 2 

variations also perform very well across a range of contextual input values, and improve on 

Structure 1. For Structure 2 variations where contextual input was at least 0.05, L-DRC failed 

to create a node for only 130-185 out of 6,658 regular words (2.0%-2.8%), and failed to create 

a node for only 53 out of 1,359 irregular words (3.9%). Following learning, the Structure 2 
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variations also reads aloud most words correctly for contextual input values of 0.05 or greater. 

For example, considering the contextual input equals 0.25 Structure 2 variation, the model 

correctly reads aloud 6,657 out of 6,658 regular words (99.98%), and 1,234 out of 1,359 

irregular words (90.8%). So despite making substantial changes to the way letter-to-

orthographic-lexicon excitation is treated for Structure 2, L-DRC is still able to learn 

appropriately and correctly generate phonology, even demonstrating a small improvement 

over Structure 1. 

This improvement would most likely be even larger if the very high default value of 

letter-to-orthographic inhibition were reduced, thereby making it easier for orthographic 

neighbours to the stimulus to be activated by that stimulus, instead of being completely 

inhibited by a single letter difference. This inhibition value is set very high in DRC-1.2.1 to 

prevent involvement of the lexical route in non-word reading. However, this was done on the 

assumption that the only correct response to a non-word is a regular response. The results 

presented in Pritchard, Coltheart, Palethorpe, and Castles (2012) (see Chapter 3) suggest that 

this assumption is invalid, because human readers often produce reading-aloud responses to 

nonwords that are not the responses specified by standard GPCs. 

Regular word learning in the absence of contextual support 

We have argued that contextual input is required to support the learning of irregular 

words. However, regular words should be able to be learned even in the absence of contextual 

support from accompanying text. For a beginning reader with strong knowledge of GPCs, the 

application of these GPCs should enable a correct pronunciation to be deduced for an 

unfamiliar-but-regular written word stimulus. This is the kind of reader we are modelling by 

having a fully intact sub-lexical route included in each model variation. Despite this, the two 

model variations for which contextual input equals zero both failed to learn nodes for almost 

all of the regular words. For both Structure 1 and Structure 2, when contextual input equals 
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zero, only 96 out of 6,658 (1.2%) of the regular words were learned and had a node created. 

Ninety-five were subsequently pronounced correctly, with one pronounced incorrectly despite 

having a node created. As expected, these model variations also failed to learn any irregular 

word nodes.  

We investigated activation levels during potential learning events to explore why 

learning was not occurring in the model variations where contextual input equalled zero. This 

revealed a clear cause for the failure to learn regular words. In order for a learning event to 

occur, a phonological lexicon node needs to be activated above the threshold value for 

learning. For simulation 1 (and all further simulations reported here), this parameter was set at 

0.4. When the stimulus is a regular word, and in the absence of any contextual input, the sub-

lexical route should still activate the correct node by first activating the matching phonemes, 

which then interact with the phonological lexicon. This is certainly occurring, as intended. 

However, a simulation concludes when phonemes all reach the MinReadingPhonology 

threshold, which is also set to 0.4 as a default value, intended to simulate fast reading 

responses as typically required in experiments on reading aloud with skilled readers. This is 

identical to the way DRC-1.2.1 concludes a reading-aloud simulation, and is described in 

Coltheart et al. (2001). For the contextual input equals zero variations, the phoneme nodes all 

reach this threshold and the simulation concludes before the correct phonological lexicon 

node has had time to be activated above the learning threshold. Since no node has reached the 

learning threshold, no learning takes place. In effect, the model seems to be simulating quick 

reading with little comprehension, where the reader is making use of grapheme–phoneme 

correspondence knowledge to read aloud the word prior to really thinking about whether the 

written symbols correspond to a known spoken word. 

If the MinReadingPhonology parameter was set to a higher value, thereby simulating 

slower, more careful reading, the phonemes would attain higher activation values, and would 
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have a greater influence over the phonological lexicon. They would also have more cycles in 

which to apply that influence. Modifying MinReadingPhonology to improve regular word 

learning in zero context conditions will be explored in simulation 2. 

Heterophonic homographs 

It can be seen in the rightmost column of Table 1 that contextual support is required 

for heterophonic homographs to be accurately learned by L-DRC. For the Structure 2 model 

variations, contextual input of at least 0.25 seems required to maximise the learning of 

heterophonic homographs. When contextual support is low or absent, heterophonic 

homographs are not learned. This is because once an orthographic node is created for one 

pronunciation of the homograph, this orthographic node will be activated whenever that 

stimulus is presented, and it will in turn activate the one pronunciation for that homograph 

that it has already learned. In order to learn additional pronunciations for that node, sufficient 

contextual support is required to ensure that the alternate pronunciation is excited more 

vigorously than the initial pronunciation will be by the active orthographic node that 

corresponds to and activates both pronunciations. 

That heterophonic homographs are not being learned for low values of contextual 

input explains the errors on some regular words despite the node having been learned, when 

contextual input is low. For example, the Structure 2 model variation where contextual 

input = 0.02 simulated 17 errors on regular words for which a node had nevertheless been 

accurately learned. All of these errors are on heterophonic homographs, where the model had 

first learned an irregular pronunciation for the homograph, but had not had sufficient 

contextual support to subsequently learn the regular pronunciation. 

Note that in the rightmost column of Table 1, the reference model variations contain 

knowledge of 51 heterophonic homographs, while the best that any L-DRC model variation 
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does is to learn 48. The remaining few that are not learned, (AYE, BASS, and BERTHS are 

the three not learned with Structure 2, contextual input=0.25), in addition to being 

heterophonic homographs, are also one of the written representations of a heterographic 

homophone. Heterographic homophones are challenging for L-DRC to learn, as described in 

the next section. 

Heterographic homophones 

Putting the problematic contextual-input-equals-zero variations to one side, we 

observe that a small decrease in regular-word-node learning occurs as contextual support 

increases. This occurs for both the Structure 1 and Structure 2 variations. For example, just 

considering Structure 2, 6,647 regular word nodes are learned for the contextual input = 0.02 

variation, decreasing to 6,528 for the contextual input = 0.05 variation, and dropping to 6,474 

and lower for higher values of contextual input. This is a very counter-intuitive result—we 

would expect that learning would improve with increased contextual support. 

To explore these results, we investigated two model variations in detail. Both were 

Structure 2 variations, one with contextual input = 0.02, and the other with contextual 

input = 0.25. Firstly, all of the nodes and associations learned by the contextual input = 0.02 

model are correct, so its higher rate of regular word node creation is not explained by spurious 

learning. It was observed that all of the regular words learned by the contextual input = 0.25 

variation were also learned by the 0.02 variation. The reverse was not the case though—there 

were 174 orthographic words that were learned by the 0.02 variation that were not learned by 

the 0.25 variation. On inspection, all of these words were found to be one of the orthographic 

representations of a heterographic homophone. These are spoken words that correspond to 

more than one written word. For example, the word /skVl/ corresponds to both SKULL and 

SCULL, so it is a heterographic homophone. An orthographic node for SKULL was learned 
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by the contextual input = 0.02 model variation, but not by the contextual input = 0.25 

variation. 

By examining node activation levels over the course of a reading simulation, it is 

possible to determine the reason why such items are not learned when contextual input is 

higher. Consider the situation where one of the written forms of a heterographic homophone 

has already been learned (e.g., SCULL has been learned), and now the model is being 

exposed for the first time to the second written form (SKULL). When contextual input is high 

the phonological lexicon node corresponding to both written forms (/skVl/) is activated 

strongly. This phonological lexicon node will in turn strongly excite any of the written forms 

to which it corresponds. Since SKULL has not yet been learned, SCULL is the only 

orthographic node excited. Now, since the stimulus is SKULL, the orthographic node for 

SCULL will be receiving some inhibition from the 2
nd

 letter slot where the incongruent letter 

K has been activated by the stimulus. For low values of contextual input, this inhibition seems 

to be enough to prevent SCULL from being activated above the learning threshold, despite it 

receiving excitation from the other letter slots in common between the words, and also from 

the phonological lexical node /skVl/. However, when contextual input is high, the 

phonological lexicon node contributes enough excitation to ensure that SCULL is activated 

above the learning threshold. This means that when SKULL is the stimulus, the model is 

fooled into thinking it has identified SCULL, and increments its learning of this orthographic 

node, instead of learning a completely new orthographic node for SKULL. In effect, the 

contextual input provides such strong recognition of a spoken word, that it overrides letter 

knowledge, causing the written stimulus to be identified incorrectly. 

In L-DRC, the semantic layer is presently only connected to the phonological lexicon, 

not to the orthographic lexicon. If it was also connected to the orthographic lexicon, then 

contextual input could be applied to inhibit the incorrect orthographic representation SKULL, 
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thereby allowing SCULL to be learned. It seems appropriate that, for example, in a sentence 

such as “He continued rowing, scull after scull moving the boat forward.” that context would 

orthographically inhibit activation of SKULL, presuming a beginning reader who read this 

sentence was already familiar with the word SKULL. 

Explaining further errors – more homophones 

Turning now to irregular words, we first note that DRC-1.2.1 is unable to read aloud 

every irregular word without error, despite having a perfectly organised orthographic lexicon. 

The reference model variations make 73 errors on irregular words. However, 51 of these 

“errors” are heterophonic homographs, where the model produced the unintended 

pronunciation (e.g., when the stimulus is BOW and the intended pronunciation is /b5/, the 

model produces /b6/). These are not strictly errors, given that the reading aloud testing is 

being done in the absence of context. The remaining 22 errors all involve an irregularity in the 

first slot. The reference variations regularise this irregularity to produce an error, but generate 

correct phonology for the balance of the word. For example, GYMS is pronounced as /gImz/ 

instead of /_Imz/
1
. Due to its serial operation in DRC, the sub-lexical route accepts input from 

the first letter slot the earliest, (even though the letter slots themselves receive activation in 

parallel from the visual feature layer). Consequently, this first GPC has the most processing 

time to exert its influence. So in a handful of cases, the sub-lexical route is able to overpower 

the lexical route and determine the pronunciation of the first phoneme, even though the 

lexical route is able to dictate the pronunciation of the rest of the word. 

Since the reference model makes these errors despite a well-formed orthographic 

lexicon, we expect various L-DRC variations to make similar errors, and indeed, all model 

variations make errors on some irregular words even when the node has been correctly 

                                                 
1
 In fact, 12 of the remaining 22 errors involve a G in the first letter position, followed by an I or a Y, 

suggesting that perhaps DRC-1.2.1’s GPCs relating to G in the first position may need correcting. 
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learned. Obviously, all model variations, in contrast to the reference model variations, also 

make errors on irregular words for which no node has been learned. We examined a single 

model variation—Structure 2 with contextual input = 0.25—to try and determine the nature of 

these errors. 

This model variation made 126 errors, with 125 of these being on irregular words. Of 

these, 51 were on heterophonic homographs where the model produced the unintended but 

still correct pronunciation for the written stimulus, so these are not actually errors. The model 

also produced 53 errors on words where no orthographic node was learned. All of these errors 

were regularisation errors, which is understandable—without an orthographic lexical node for 

the stimulus, the lexical route has greatly reduced involvement in the reading of the stimulus, 

and the sublexical route produces a regular pronunciation without any contention from the 

lexical route. The remaining 22 errors involved a first position irregularity being regularised, 

but the rest of the word being pronounced correctly. So the errors made by this model 

variation on these items are very similar to the errors made by the reference model variation, 

with the exception of the 53 regularisation errors due to no orthographic node being learned. 

In addition to these 53 unlearned irregular word nodes, this model variation did not 

learn 185 regular words, for a total of 238 unlearned nodes. Why were these nodes not 

learned? Examining them, we find that each of the unlearned orthographic representations is 

one of multiple orthographic representations associated with a homophone. As previously 

described, regular word heterographic homophones are not learned appropriately for higher 

values of contextual input. As well as explaining the reason why more regular word nodes are 

learned in low-context conditions, L-DRCs difficulty with heterographic homophones also 

explains the difficulty that model variations with high contextual input have on irregular 

words for which no node is learned. 
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Summary of simulation 1 

Simulation 1 tested two different structures of L-DRC each under a range of 

contextual support conditions differing in strength. This simulation demonstrated the general 

accuracy of L-DRC in simulating self-teaching to build orthographic knowledge. It also 

revealed that some items, particularly heterographic homophones, are problematic for L-DRC 

when contextual support is high, while other items—especially heterophonic homographs—

are difficult for L-DRC to appropriately learn when contextual support is low. As expected, 

L-DRC has difficulty learning irregular words when contextual support is low or zero, 

however, it was surprising to find that L-DRC also had difficulty learning regular words when 

contextual support was zero. This was due to the model reading aloud the stimulus before a 

phonological node was activated above the threshold required to trigger learning. In effect, it 

seems like the model was simulating a beginning reader with good GPCs who was reading so 

quickly that they were sounding out the stimuli before it even occurred to them that it might 

correspond to a spoken word that they already knew. Simulation 2 will investigate improving 

regular word learning under low contextual support conditions. 

Simulation 1 also revealed that structure 2, which features modified letter-to-

orthographic lexicon connectivity, performs better than structure 1 that retains DRC-1.2.1’s 

original connectivity. 

Simulation 2 – slow reading during learning versus fast reading 

Aim 

To test whether modifying the MinReadingPhonology parameter to simulate slower 

reading improves learning, particularly the learning of regular words when there is no support 

from context for learning. 
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Model variations 

The same model variations were used for Simulation 2 as were used in Simulation 1, 

except the MinReadingPhonology parameter was changed to 0.9, from the value of 0.4 which 

was used in Simulation 1. This change was only made for the learning phase. During the 

testing phase, MinReadingPhonology was again set at 0.4. This was done because we are 

examining the impact that changing MinReadingPhonology has on learning, not on reading 

aloud. 

Training corpus 

The same training corpus as was used for Simulation 1. 

Procedure 

The same procedure as was used for Simulation 1. 

Results and discussion for Simulation 2 

The results of Simulation 2 are presented in Table 2, with results for the Structure 1 

variation again in the top half of the table, and the Structure 2 results in the bottom half. As 

for simulation 1, the first row for each structure provides information for the reference model 

variation. 

The impact of changing MinReadingPhonology 

Changing MinReadingPhonology by increasing it from 0.4 to 0.9 simulates a shift to a 

slower, more meticulous mode of reading behaviour. By making the change, the model 

variations where contextual input equals zero were able to effectively learn regular words, 

though at least one learned node was still pronounced incorrectly in subsequent testing. Both 

model variations learned nodes for the majority of regular words (6,445 out of 6,658, or 

96.8% for Structure 1, and 6,507 out of 6,658, or 97.7% for Structure 2).  
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Table 2 – Results for Simulation 2 

 minReadingPhonology =0.9               

Contextual input 

Regular words Irregular words 

Heterophonic 

homograph nodes 
Node created No node Node created No node 

Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect 

Structure 1: All nulls slots excite words, no normalisation   

N/A
DRC-121

 6,658 - - - 1,286 73 - - 51 

0.00 6,444 1 213 - 8 251 - 1,100 2 

0.02 6,420 18 220 - 966 76 - 317 6 

0.05 6,432 8 218 - 1,228 66 - 65 16 

0.10 6,440 1 217 - 1,221 73 - 65 30 

0.25 6,439 1 218 - 1,223 72 - 64 48 

0.50 6,439 1 218 - 1,223 72 - 64 48 

1.00 6,439 1 218 - 1,221 72 - 66 48 

Structure 2: One null slot excites each word, normalised letter-to-orthographic lexicon excitation 

N/A
DRC-121

 6,658 - - - 1,286 73 - - 51 

0.00 6,506 1 151 - 8 262 - 1,089 - 

0.02 6,455 19 184 - 985 76 - 298 5 

0.05 6.465 9 184 - 1,241 65 - 53 15 

0.10 6,473 1 184 - 1,233 73 - 53 30 

0.25 6,471 2 185 - 1,235 71 - 53 47 

0.50 6,471 2 185 - 1,235 71 - 53 47 

1.00 6,471 2 185 - 1,235 71 - 53 46 

DRC-121 This row gives reference information—this variation is manually-coded to have a full orthographic lexicon the same as DRC-1.2.1. The full DRC-1.2.1 lexicon 

was tested separately for both Structure 1 and Structure 2. 
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These variations in fact learn a greater number of regular word nodes than the higher context 

variations, which is the same result as was seen in simulation 1, and is due to the challenge to 

learning all of the written forms of a homophone when contextual input is high. 

The change in MinReadingPhonology that enabled this improved result is justifiable 

and not ad-hoc, because it is reasonable that a beginning reader would proceed in a slower, 

more considered fashion when encountering novel words. A higher value for 

MinReadingPhonology reflects a more meticulous reader who allows more time for their level 

of confidence to grow that the phonemes they are about to utter are satisfactory. A novice 

reader who was able to construct a pronunciation using sub-lexical information such as that 

provided by GPCs would arguably also take the time for this pronunciation to jog their 

memory of known spoken words, rather than just uttering the pronunciation according to 

GPCs and then moving on without any recognition. 

With the exception of the zero contextual support variations, increasing 

minReadinPhonology did not have any impact on the amount of learning for the Structure 2 

variations, and had only an extremely small but negative impact on learning for the 

Structure 1 variations. Although small, this negative impact is quite revealing. Examination of 

errors revealed that all of the Structure 1 variations in simulation 2 learned to associate 

multiple pronunciations to the same orthographic word node, where most of these 

associations should not have been made. These incorrect associations were often created to 

almost absurd degrees. For example, the Structure 1 variation with contextual input equal to 

0.25 learned erroneous associations between the orthographic node for THE and all of the 

following phonological nodes: “the”, “then”, “she”, “they”, “tie”, “toe”, “thew” and “thy”. 

This is the “snowball” error in action, and again demonstrates the superiority of structure 2 

over structure 1. 
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Potentiophones 

Potentiophones are irregular words which, when pronounced regularly, correspond to 

another word (Friedmann & Lukov, 2008). We became aware of the way potentiophones are 

treated by L-DRC in observing that, for the model variations where contextual input equals 

zero, the models still seem to learn some irregular word nodes. The Structure 1 variation 

learned 259 irregular word nodes, and the Structure 2 variation learned 270 irregular word 

nodes. It struck us as odd that this model variation would learn any irregular word nodes 

without the support of context. 

We investigated node creation in Structure 2 to determine why irregular words were 

being learned. For the Structure 2 variation with contextual input equal to zero, 256 out of the 

270 (94.8%) irregular words for which an orthographic node was created were 

potentiophones. For example, the model learns an orthographic node for the irregular word 

LOVES, but incorrectly associates this with the regular pronunciation /l5vs/. This 

pronunciation corresponds to the spoken form of the word LOAVES. 

When the stimulus is an irregular word, the sub-lexical route still generates a regular 

response. If the stimulus is a potentiophone, this regular response will activate a known 

spoken word in the phonological lexicon, corresponding to the regular pronunciation of the 

potentiophone. With no contextual support to provide information that this activation is 

wrong, the spoken word node will be activated above threshold, triggering a learning event. A 

node will be created for the written stimulus, but it will be incorrectly associated with the 

regular pronunciation that has been activated, rather than the correct irregular pronunciation. 

So even though the orthographic node is created and it seems the word has been successfully 

learned, the model will produce a regularisation error whenever it attempts to read aloud this 

word due to an erroneous association having been created between the learned orthographic 

node and the wrong spoken word node. 
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For 14 out of the 270 irregular word nodes created that were not potentiophones, there 

was still a phonological lexicon node sufficiently close to the regular pronunciation that it was 

activated above the learning threshold. It is not surprising that this was able to happen in 

simulation 2, given that the longer simulation times associated with the higher value of 

MinReadingPhonology mean that there is more time for activation levels to grow above 

threshold. For eight of these 14 words, the phonological lexicon node that was activated 

above threshold happened to be the correct node. The word FRIENDS was one such item. 

The regular pronunciation is /fr2ndz/, which was sufficiently close to the correct 

pronunciation /frEndz/ for the correct phonological lexicon node to be activated above 

threshold and trigger learning of the correct orthographic node. The word STRANGE is an 

example of a non-potentiophone irregular word for which a node was learned, but an incorrect 

association learned, resulting in an incorrect pronunciation. This word was associated with the 

phonological lexicon node /str{nd/. The regular pronunciation of STRANGE is /str{n_/. This 

is a phonological neighbour of both /str{nd/ and the correct pronunciation /str1n_/. However, 

the sublexical route operates serially from left to right, so after four phonemes have been 

activated, the phonological lexicon node for /str{nd/ is as yet receiving no inhibition from 

activated phonemes, while the correct word /str1n_/ is. The existence of a whammy (Rastle & 

Coltheart, 1998), in the last few letters of the word STRANGE also delays the phonological 

lexicon node /str1n_/ receiving its maximum excitation from the regular pronunciation. This 

is enough for the incorrect word to be able to be activated above threshold by the time the 

reading simulation is completed. 

While it might be true that beginning readers trying to expand their orthographic 

vocabulary by self-teaching would have difficulties with irregular words, and more 

specifically, potentiophones, it is also true that they do eventually learn to read 

potentiophones correctly. It might be that contextual support is required to avoid 
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potentiophones being incorrectly learned. Simulation 3 explored altering L-DRC’s default 

parameters to try and facilitate partial decoding and improve the learning of irregular words in 

low context conditions. 

Simulation 3 – testing the sub-lexical contribution to irregular word 

learning 

Partial decoding 

Share (1995) argues that irregular word learning is still dependent on phonological 

recoding, which, in L-DRC, has been modelled as the influence of GPC knowledge through 

the sublexical route on phoneme activation. Some research shows that nonword reading 

accuracy (which is used as one measure of phonological recoding ability) correlates to a 

degree with irregular word reading accuracy (e.g., Baron, 1979), though there is a stronger 

correlation between regular word reading accuracy and nonword reading accuracy. Share cites 

further research that found that younger readers with poor decoding skill had difficulty 

learning novel irregular words relative to good readers (e.g., Gough and Walsh (1991), as 

cited in Share (1995)). 

The self-teaching hypothesis proposes that, in natural text, irregular words still have 

sufficient letter–sound regularity for the correct spoken word to be selected from a set of 

possible pronunciations. That is, even if context is not sufficient for a reader to 

unambiguously decide what spoken word corresponds to the novel written stimulus, it may be 

sufficient for the reader to narrow down the set of spoken words, so that a partial decoding of 

the written stimulus could enable the correct pronunciation to be selected, and learning to 

occur (Share, 1995). Wang, Castles, Nickels, and Nation (2011) provide empirical evidence 

that context is more important for children learning novel irregular words than it is for 

learning novel regular words. Wang, Castles, and Nickels (2012) provide empirical evidence 
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that, in accordance with self-teaching, it is easier for children to learn novel regular stimuli 

than irregular stimuli. 

From the results of simulation 1 and 2, it is unclear whether or not L-DRC is 

simulating an interaction between partial decoding and contextual support in learning 

irregular words. While irregular words were not correctly learned under zero contextual input 

conditions, and were learned with high values of contextual input, it is not clear that partial 

decoding contributes anything. Contextual input could be doing all of the work. L-DRC, by 

default, has a phoneme-to-phonological lexicon inhibition parameter value that is much 

stronger than its phoneme-to-phonological lexicon excitation parameter value. This would 

make it difficult for a set of active phonemes to excite a node in the phonological lexicon 

unless these activated phonemes corresponded exactly to a particular phonological lexicon 

node. Even one phoneme different would strongly inhibit a word node. 

However, it may not be necessary to keep this inhibition at its high default level. 

Indeed, this inhibition was set lower in the CDP+ model (Perry et al., 2007) that in it is in 

DRC-1.2.1, and these two models have a similar lexical route structure. It may be that the 

involvement of partial decoding can be increased by decreasing phoneme-to-phonological 

lexicon inhibition, and exploring this is the basis of simulation 3. 

Aim 

To investigate whether L-DRC can better simulate the self-teaching hypothesis and 

partial decoding, and whether the positive influence of partial decoding on learning in L-DRC 

can be increased. This was investigated by modifying the phoneme-to-phonological lexicon 

inhibition, thereby allowing the sub-lexical route to have greater involvement in the learning 

of irregular words. 
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Model variations 

Twenty-four model variations (all of the structure 2 variety) were used, produced with 

different levels of two variables: 

Variable 1: Contextual input, with values 0.00, 0.001, 0.05, 0.1, 0.15, and 0.25. Note 

that the 0.00 and 0.001 variations all also used a MinReadingPhonology value of 0.9 as per 

simulation 2, to ensure learning could take place. Variations using higher contextual input 

values used a MinReadingPhonology value of 0.4. 

Variable 2: Phoneme-to-phonological-lexicon inhibition, with values 0.00, 0.02, 0.04, 

and 0.16. The last value is the default value, as used in DRC-1.2.1. 

Training corpus 

The training corpus is the same as that used in Simulation 1 and 2. 

Procedure 

The procedure is the same as that used in Simulation 1 and 2. Note that the phoneme-

to-phonological-lexicon inhibition values for a variation were maintained over both the 

learning and testing phases, while the MinReadingPhonology value was always set to 0.4 

during the testing phase, even if it had been set to 0.9 during learning for the low contextual 

input variations. 

Results and discussion of simulation 3 

The aim of this simulation was to see if L-DRC could better simulate the self-teaching 

hypothesis by ensuring that partial decoding contributed to the learning of irregular words. 

We investigated whether reducing phoneme-to-phonological-lexicon inhibition would allow 

the phonemes activated by the sublexical route to activate multiple phonological lexicon 

nodes, and thereby allow partial decoding to contribute more to the activation of the target 

spoken word. This is instead of such words being activated and learned exclusively through 
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the information provided by contextual input. To remain true to the self-teaching hypothesis, 

contextual input should only play a supporting role in the learning of novel written words, and 

not be the sole source of information. Results of simulation 3 are presented in Table 3. 

The results are mixed. While decreasing phoneme-to-phonological-lexicon inhibition 

seems to result in improvements to irregular word learning in some cases, it can also result in 

an increase in erroneous irregular word learning. In some cases, a seeming improvement is a 

result of the impact of different inhibition values during the testing phase, rather than an 

impact on learning during the training phase. 

Positive impact of partial decoding on irregular word learning under low context conditions 

When contextual input equals 0.00 and the default value for phoneme-to-

phonological-lexicon inhibition is used, only 270 irregular word nodes are created, and only 

eight of these resulted in a correct response during testing. That is, there is barely any correct 

learning of irregular words, and some degree of incorrect irregular word learning, which, as 

previously discussed in simulation 2, is due to the presence of potentiophones. When 

inhibition was decreased, there was an increase in correct irregular word node learning. For 

inhibition = 0.04, 196 irregular words are learned and read aloud correctly. This demonstrates 

that decreasing inhibition in low context conditions can increase irregular word learning. 

The same result applies for the contextual input = 0.001 variations. Only 48 irregular 

words were learned and correctly pronounced for the default value of inhibition, while more 

irregular words were learned and correctly pronounced for lower values of inhibition. For 

inhibition = 0.02, 390 irregular word nodes are learned and correctly read aloud. 
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Table 3 

 
Phoneme-to-phonological-

lexicon inhibition 

Regular words Irregular words 
Heterophonic 

homograph nodes 
Node created No node Node created No node 

Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect 

Contextual input = 0.00
a 

  

0.00 4,178 1,061 1,419 - 161 834 - 364 85 

0.02 5,509 288 861 - 189 845 - 325 154 

0.04 6,162 24 472 - 196 790 - 373 130 

0.16
b 

6,506 1 151 - 8 262 - 1,089 - 

Contextual input = 0.001
a
  

0.00 5,271 419 968 - 378 676 - 305 145 

0.02 5,913 74 671 - 390 685 - 284 193 

0.04 6,286 2 370 - 387 653 - 319 97 

0.16
b 

6,502 - 156 - 48 259 - 1,052 - 

Contextual input = 0.05 

 0.00 6,503 21 134 - 1,274 32 - 53 - 

0.02 6,503 21 134 - 1,276 30 - 53 - 

0.04 6,503 21 134 - 1,275 31 - 53 - 

0.16
b 

6,508 20 130 - 1,253 53 - 53 - 

Contextual input = 0.10  

0.00 6,472 6 180 - 1,259 47 - 53 37 

0.02 6,472 6 180 - 1,261 45 - 53 36 

0.04 6,474 4 180 - 1,258 48 - 53 38 

0.16
b 

6,474 4 180 - 1,237 69 - 53 36 

Contextual input = 0.15  

0.00 6,474 1 183 - 1,254 52 - 53 48 

0.02 6,474 1 183 - 1,256 50 - 53 48 

0.04 6,474 1 183 - 1,255 51 - 53 48 

0.16
b 

6,474 1 183 - 1,234 72 - 53 48 

Contextual input = 0.25  

0.00 6,472 1 185 - 1,254 52 - 53 48 

0.02 6,472 1 185 - 1,256 50 - 53 48 

0.04 6,472 1 185 - 1,255 51 - 53 48 

0.16
b 

6,472 1 185 - 1,234 72 - 53 48 
aThe variations with contextual input = 0 or 0.001 all used a minReadingPhonology value of 0.9, as per simulation 2, to ensure appropriate learning occurred. All other contextual input 

cases used the value of 0.4. 
bThe default phoneme-to-phonological lexicon inhibition value is 0.16. 
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Negative impact of partial decoding on learning 

While decreasing inhibition allows more irregular words to be correctly learned when 

contextual input is zero or very low, it also results in a marked increase in erroneous learning 

of irregular words. In simulation 2, we saw that potentiophones cause learning errors when 

contextual input is zero, because the regular pronunciation generated by the sublexical route 

corresponds to a different spoken word other than the correct, irregular word target. As a 

result, the regularly-pronounced word is incorrectly associated with the written stimulus. 

When phoneme-to-phonological-lexicon inhibition is decreased, then a similar kind of error 

occurs. The regular pronunciation generated by the sublexical route results in multiple 

phonological lexicon nodes being activated, especially nodes that are phonological 

neighbours to the regular pronunciation. In many cases, L-DRC will learn to associate one of 

those pronunciations with the written stimulus, but the pronunciation selected will not be the 

correct one. For example, in the variation where contextual input = 0.001, and 

inhibition = 0.02, the word BULL is learned and incorrectly associated with the spoken word 

/bVt/ (“but”). When this written word is presented to the model, the sub-lexical route 

generates the regular pronunciation /bVl/. This does not correspond to any spoken word, but 

under low inhibition conditions, several neighbouring actual spoken word nodes are activated 

in the phonological lexicon, one of which is /bVt/. This node is activated above the learning 

threshold, resulting in a learning error. When inhibition is high, this neighbouring node will 

not be activated. 

The same kind of error even occurs with regular words when contextual input is low. 

For example, when contextual input = 0.001, and inhibition = 0.02, 74 regular words are 

learned, yet are read aloud incorrectly, because they have been incorrectly associated with the 

wrong pronunciation. For example, the word BAIT is incorrectly associated with the word 

/bVt/. Words with high spoken-word frequency that are neighbours to the correct, regular 
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pronunciation can sometimes be incorrectly associated with a stimulus over the correct 

pronunciation, if the correct pronunciation is low frequency. The lower the inhibition, the 

more of these sorts of errors occur, and the number of these sorts of errors is also highest 

when contextual input is lowest. 

Partial decoding when contextual input is high 

Erroneous irregular word node learning, while prevalent at low levels of contextual 

input and low values of inhibition, is greatly reduced at higher levels of contextual input. This 

is because the influence of context ensures that only correct phonological lexicon nodes will 

be activated, while incorrect nodes are inhibited. High context effectively renders the impact 

of partial decoding irrelevant, and the excitation of phonological lexicon nodes as driven by 

the sublexical route is negligible compared to the strong influence of contextual input on the 

excitation and inhibition of phonological lexicon nodes. 

For contextual input values of 0.05 or greater, there is a small but identifiable positive 

impact of decreasing phoneme-to-phonological-lexicon inhibition on irregular word learning. 

However, this seeming improvement is illusory. Considering the contextual input equals 0.05 

variations as an example, all variations no matter what level of phoneme-to-phonological-

lexicon inhibition were able to learn 1,306 of the 1,359 irregular word nodes (96.1%). 

However, when phoneme-to-phonological-lexicon inhibition was set to its default value of 

0.16, 53 of those words were still read aloud incorrectly, while for an inhibition value of 0.00, 

only 32 of these words were read aloud incorrectly. It seems as though there are fewer 

erroneous nodes being learned at lower values of inhibition. Inspecting the model variations, 

however, reveals that this seeming small improvement in reading-aloud accuracy for irregular 

words is due to the impact of the change in inhibition during reading aloud testing, not due to 

any change during learning. Even DRC-1.2.1 makes 73 errors on irregular words, despite 

having a well formed orthographic lexicon with correct associations between orthographic 
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nodes and phonological nodes. Decreasing the phoneme-to-phonological lexicon parameter 

results in an improvement in irregular word accuracy by reducing the number of these errors. 

However, in the learning phase, the change in inhibition did not have an impact on learning. 

Both the inhibition = 0.00 variation and the inhibition = 0.16 (default) variation learned the 

same number of irregular word nodes, and with the same associations. 

Summary 

As expected, reducing phoneme-to-phonological lexicon inhibition did increase the 

opportunity for partial decoding. Decreasing this inhibition results in a greater number of 

irregular words being correctly learned and read aloud, for the cases where contextual input is 

zero or otherwise very low. The default value for phoneme-to-phonological lexicon 

inhibition, which is a high value of -0.16, almost entirely prevents the sublexical route from 

activating irregular word nodes in the phonological lexicon, while decreasing inhibition 

allows a range of word nodes that are neighbours to the regular pronunciation of a stimulus to 

be activated. However, relaxing inhibition to allow partial decoding was not without 

problems. In the absence of significant contextual support, decreasing inhibition resulted in a 

large increase in incorrect node learning for both regular and irregular words, even if the total 

number of correctly learned irregular word nodes had increased. These results present a 

challenge for L-DRC as a model of the self-teaching hypothesis.  

General Discussion 

A learning DRC that provides a computational account of the self-teaching 

hypothesis 

The dual-route cascaded (DRC) model of reading aloud and word recognition is a 

successful computational cognitive model, yet it has faced ongoing criticism for not explicitly 
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modelling a learning process. To address this criticism, we have drawn on the self-teaching 

hypothesis (Jorm & Share, 1983; Share, 1995) to prepare a “learning” DRC, or L-DRC. 

According to the self-teaching hypothesis, beginning readers increase their written word 

vocabulary too quickly for it to be plausible that this learning is achieved via direct instruction 

from a teacher. This means that beginning readers somehow acquire new written words by 

phonologically recoding the written word into a candidate pronunciation. If the candidate 

pronunciation matches a familiar spoken word, an opportunity for orthographic learning is 

created. Contextual support and partial decoding are assumed to work together to enable self-

teaching of irregular words.  

The self-teaching hypothesis is a verbal account of how beginning readers build their 

written word vocabulary, and, as a result, lacks the detail and robustness of a computational 

model account. So in constructing L-DRC we have sought to explore the self-teaching 

hypothesis at the finer grain of detail afforded by computational modelling, while also 

addressing criticisms of DRC that it does not model learning. 

Balancing lexical route and sublexical route activity 

The standard DRC model 1.2.1 uses a specific set of parameters to achieve the results 

and match to empirical data that makes it such a successful model. While these parameters 

can certainly be altered to explore DRC’s operation, they are set to certain default values for 

the purpose of benchmark testing (see Perry et al., 2007 for a list of benchmarks). DRC is set 

up in a way that the sublexical route has sufficient activity to strongly contribute to nonword 

reading, and to influence the reading-aloud latency of irregular words relative to regular 

words, but not so strongly that it overrides the lexical route and causes regularisation errors in 

more than a handful of cases. All of these parameters are chosen so that the rate at which 

activation cascades through each route produces a good match to empirical data. 
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L-DRC introduces a new source of activation: contextual support. This has been 

modelled as an input of varying strength that excites the semantic layer, which in turn 

interacts with the phonological lexicon layer. Implementing context in this manner has shed 

light on the vulnerability of DRC’s parameter choices to varying levels of excitation. When 

contextual support is high, then activation builds up more quickly in the lexical route than 

when contextual input is very low or zero. This means that the importance of the sublexical 

route relative to the lexical route in reading aloud varies with the level of contextual support. 

It seems psychologically plausible that a reader would experience fewer regularisation errors 

and lower reliance on phonological recoding when the contextual support for a particular 

lexical representation is strong. However, the challenge becomes one of parameter choice and 

benchmarking. Rather than just benchmarking L-DRC under one set of conditions, such as the 

zero-contextual-input condition, the performance of L-DRC must be separately benchmarked 

under a range of levels of contextual input, to determine whether or not the sublexical route 

involvement in reading aloud is appropriate at varying levels of contextual input. 

The notion of cognitive resource allocation may have some role to play in considering 

this challenge. Simulations 1 and 2 demonstrated that modelling the allocation of cognitive 

resources to orthographic processing by normalising the excitation from the letter level to the 

orthographic lexicon level was useful in ensuring that stimuli of different lengths still 

contributed roughly the same amount of excitation to the orthographic lexicon. Perhaps a 

similar model of resource allocation could be applied at the output end of L-DRC. To ensure 

that the involvement of the lexical route and the sublexical route in exciting phonemes is 

appropriately balanced despite varying levels of context, one idea might be to model the 

contribution of each route as being determined by the cognitive resources allocated to each 

route. This could be modelled by normalising the excitation provided by the phonological 
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lexicon to the phoneme level, and in turn normalising the excitation of the phoneme level to 

the phonological lexicon. 

Empirical evidence for how beginning readers learn challenging words 

Our simulations showed that L-DRC experiences difficulties learning certain types of 

words, such as heterophonic homographs, heterographic homophones, and potentiophones. 

Do beginning readers experience similar difficulties? If so, then rather than L-DRC’s 

imperfect performance being a shortcoming, it would instead reflect a real life effect. What 

kind of experiments might identify whether L-DRC is accurately modelling difficulties that 

readers face as opposed to merely demonstrating a shortcoming in L-DRCs own operation? 

Difficulty learning new words when reading quickly, without contextual support 

DRC has difficulty learning any words—even regular words—when contextual 

support is zero and the MinReadingPhonology parameter is set to 0.4, simulating speeded 

reading. It seems intuitively obvious that beginning readers will have great difficulty trying to 

learn to recognise and read novel written words when they are reading words quickly and in 

isolation, without the contextual support of the text accompanying the word. Therefore, it 

seems highly plausible for DRC to also have difficulty in learning under these conditions. 

Still, this aspect of the model could be empirically tested by teaching young readers how to 

pronounce isolated pseudowords (which mimic novel words) under various speed conditions, 

then assessing the extent of orthographic learning under each condition. Wang et al. (2011) 

provide examples of how orthographic learning can be measured, including spelling tests, an 

orthographic choice task (identify the target item when it is presented along with a 

homophone and two visual distracters), and an orthographic decision task (a variation of the 

orthographic choice task where the candidate orthographic forms are not presented 

simultaneously, but are instead presented in random order on flash cards, with the participant 

having to answer yes or no if the flash card being considered presented a correctly learned 
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orthographic form). These results could then also be contrasted to children attempting to learn 

pseudowords embedded in text, without time pressure, a process also described in, for 

example, Wang et al. (2012). 

Heterophonic homographs 

L-DRC has trouble learning the multiple pronunciations of heterophonic homographs 

under low context conditions. Whether beginning readers experience the same difficulty could 

be investigated empirically in a number of ways. Firstly, early readers could be compared 

with skilled control readers on pronunciation of heterophonic homographs, and also on 

pronunciation of matched homophonic homographs. The target pronunciation could be varied 

for the heterophonic homographs by altering the context in which the stimuli are presented 

(e.g., present the word BOW in two separate sentences, such as “The captain stood on the 

BOW of the ship.” and “I tied the knot in a BOW.” and context could likewise be varied for 

the homophonic homographs, e.g., “I took my money to the BANK.” and “I stood by the 

BANK of the river.” If early readers show a higher error rate for heterophonic homographs, 

compared to homophonic homographs, this would show that such items are generally 

challenging for early readers. 

A second experiment could involve teaching early readers pseudoword heterophonic 

homographs, with each pronunciation for a homograph accompanied with a concocted 

context. The accuracy and speed of learning could be compared for learning pseudoword 

heterophonic homographs under clear contextual conditions, versus ambiguous contextual 

conditions, versus no context conditions. This would shed light on the role context may play 

in assisting early readers to learn the multiple pronunciations and the context in which each 

applies. 
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Heterographic homophones 

L-DRC has trouble learning the multiple orthographic representations of heterographic 

homophones under higher context conditions, but was able to do so more successfully when 

context was low. This result could be empirically tested by presenting early readers with 

pseudoword heterographic homophones both with and without context, and observing the 

impact that context plays on the success of learning the multiple orthographic representations. 

For example, participants could be taught the word SKALL-/sk9l/ in the sentence “I use a 

skall for cleaning my fishtank.” and also taught the word SCALL-/sk9l/ in a sentence like “A 

scall of waves crashed on the beach.”, and their capacity for learning assessed against a 

control group learning these words and pronunciations without any context.  

Potentiophones 

L-DRC was prone to incorrectly learning to associate a regular pronunciation with an 

irregular word, if the irregular word was a potentiophone. Friedmann and Lukov (2008) have 

already found that surface dyslexics are more error prone when reading aloud irregular words 

that were potentiophones than reading aloud irregular words that were not potentiophones. In 

some respects, the idealised beginning reader we are modelling, with an intact sublexical 

route and an empty orthographic lexicon is the same as an ideal surface dyslexic, so it is not 

surprising that L-DRC has trouble with potentiophones. To the extent that beginning readers 

can be regarded as developmental surface dyslexics, L-DRC is accurately reflecting a 

difficulty for beginning readers in reading and self-teaching potentiophone pronunciations. To 

more conclusively demonstrate this, the experiments conducted by Friedmann and Lukov 

could be repeated, but with young readers rather than surface dyslexics, to see whether young 

readers have similar difficulties with potentiophones to those encountered by the surface 

dyslexics, and by L-DRC. 
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Irregular words 

L-DRC has difficulty learning irregular words under low context conditions, but 

improves with the provision of contextual support. This could be easily investigating by 

investigating the success of teaching early readers irregular pseudowords both with and 

without context. Such research has already been conducted by Wang et al. (2011), who found 

that contextual support improves irregular pseudoword learning, but not regular pseudoword 

learning. 

The problem of partial decoding 

While L-DRC is able to display a degree of partial decoding for irregular words if 

phoneme-to-phonological-lexicon inhibition is reduced, it is not able to do so without 

introducing a good deal of erroneous learning and incorrect reading aloud. The existence of 

these errors suggests that a permanent change to a lower level of inhibition as a default value 

would be problematic. Alternatively, temporarily reducing inhibition just to display the 

capacity for partial decoding for a particular experiment is ad-hoc and hard to justify. Before 

we make any other changes to the model, a good understanding of the way partial decoding 

contributes to learning to read across a range of skill levels is required. 

The ideal form of learning is that a beginning reader could take advantage of partial 

decoding as required to provide additional information when attempting to read a novel word, 

without having partial decoding contribute to error making. Whether or not this ideal form of 

learning is an accurate account of how people actually learn to read is not clear. What is clear 

is that whether or not partial decoding contributes to errors, skilled readers eventually do learn 

how to read correctly. In its current form, L-DRC possesses no mechanism to correct errors. 

L-DRC will need to be modified to either reduce the potential of partial decoding to cause 

errors, or else to introduce a mechanism for errors to be corrected if better information is 

presented. 
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One promising way to further explore partial decoding in L-DRC is to investigate an 

alternative approach to simulating varying levels of certainty provided by contextual input. In 

the present L-DRC model, context provides excitation to only a single phonological lexicon 

node. We are in effect simulating that contextual input is completely unambiguous in 

identifying the spoken word to which the written stimulus corresponds, while the speed with 

which this contextual information contributes to recognition of the spoken word varies 

depending on the magnitude of the contextual input selected. A different way of simulating 

contextual input would be to have multiple phonological lexicon nodes activated, with the 

number of nodes activated being indicative of the level of certainty provided by context. If 

context and semantic activity provide a clear indication of what the word should be, then 

maybe only a single node in the phonological lexicon will be excited by the semantic layer. 

But if context and semantic activity cannot provide a clear indication, then this could be 

modelled as multiple phonological lexicon nodes receiving excitation from the semantic layer. 

Rather than simulating the uncertainty in reading the stimulus by varying the strength of 

context, this uncertainty could instead be simulated by having more phonological lexicon 

nodes receive excitation from the semantic layer. For example, in the sentence “Red means 

stop and green means __”, the contextual information provided by the sentence suggests that 

only the spoken word “go” should receive much excitation from the semantic layer in L-DRC. 

However, for the sentence “My favourite animal to see at the zoo is the ___”, many different 

spoken words could be appropriate, and the uncertainty as to the correct one could be 

simulating by distributing excitation to all of them. Under this approach then perhaps the 

influence of partial decoding could be better simulated. With such an approach, it might be 

possible to choose a phoneme-to-phonological-lexicon value that allows for partial decoding 

to select the correct spoken word from the multiple phonological lexicon nodes that are 
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activated by context, without introducing the kinds of erroneous learning that is apparent 

when inhibition is decreased too much. 

It would be prohibitively complex to determine an appropriate “map” of words to be 

activated for the countless contextual conditions in which various words might be 

encountered. But we are not interested in accurately modelling semantics at this stage, we are 

just interested in how contextual support can impact self-teaching. Therefore, to model this, 

contextual ambiguity can be simulated by just activating random nodes in the phonological 

lexicon, in addition to the correct node (e.g., if the target word is “yacht”, maybe three 

random other spoken words could be excited. They could be anything, say “dog”, “catch” and 

“raise”. Semantically this is nonsensical, but in terms of self-teaching and the operation of the 

non-semantic lexical and sublexical routes, it is computationally indistinguishable from a case 

where more meaningful spoken words are activated.) 

Black and white learning 

L-DRC uses a simple approach to learning. If beginning readers find that a novel 

stimulus seems to correspond to a known spoken word, they are in a position to learn, and 

maybe a single exposure will serve to create confidence in a particular association between a 

written stimulus and a particular pronunciation. However, L-DRC is stark in the choices it 

makes. If a phonological node is activate above threshold, then a learning event is triggered, 

which involves the definite creation of an orthographic node with all the requisite connections 

between this new node and the letter and phonological lexicon layers. So after a single 

exposure, L-DRC is able to develop strong, unambiguous knowledge about a word, and 

deliver a confident response when subsequently reading aloud this stimulus. While continued 

exposure to this word will change its frequency and thereby impact the time taken to read 

aloud the word, even one exposure is sufficient for naming accuracy, and for the model to 

simulate orthographic knowledge of the word. 
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This simplistic approach to learning is ultimately not psychologically plausible. While 

previous studies indicate that orthographic learning can certainly happen in a small number of 

exposures (e.g., Nation et al., 2007), L-DRC takes this to an extreme, and does so for every 

learning instance. Research that suggests there is an ongoing impact of increased orthographic 

vocabulary size, such as work on the lexical tuning hypothesis (Castles, Davis, Cavalot, & 

Forster, 2007; Castles, Davis, & Letcher, 1999; Forster & Taft, 1994), also runs counter to the 

absolutism of learning in L-DRC. 

As well as learning instantly, L-DRCs approach to learning is final—no mechanism is 

described that could allow for a node that was learned with incorrect associations to be 

modified by subsequent learning, such as direct instruction from a teacher. To increase the 

psychological plausibility of L-DRC’s learning mechanism, L-DRC would need to have the 

capacity to alter or improve existing learning, and re-learn how to read a word correctly after 

having self-taught an error. 

L-DRC’s design is a useful starting point for exploring the self-teaching hypothesis 

while retaining as much of DRC-1.2.1’s existing approach as possible. However, to provide a 

better account of a more gradual approach to learning, one that allows for errors to be made 

and also provides a mechanism to allow for the correction of these errors, a more advanced 

structure is required. Such a structure would likely involve the introduction of varying 

connection strengths, based on how well a node has been learned. This might also facilitate 

frequency information being embodied in connection strengths, instead of in the node-specific 

resting activity arrangement currently used in DRC-1.2.1 and L-DRC. 

The SOLAR model of visual word recognition might be a useful model to adapt for 

this purpose. It provides a well-researched and argued mechanism for the gradual acquisition 

of orthographic knowledge, while also avoiding the lengthy learning processes associated 
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with other connectionist models such as feed-forward back-propagation trained networks. In 

the results reported in Davis (1999), orthographic learning typically occurred in only a few 

trials, but this could vary from a single trial for some words, to several dozen trials for some 

words. This seems like a more realistic distribution of the speed at which orthographic 

learning could occur for a range of words than L-DRC’s single-presentation learning in every 

case. One aspect of the computational implementation of SOLAR model that we found 

incompatible with our goals was that it describes single-route, purely orthographic learning, 

with no involvement of phonological recoding, and therefore no capacity to simulate self-

teaching. This made the computational version of the SOLAR model seem incompatible with 

the self-teaching hypothesis. Future work could look to adapting the SOLAR model so that 

the learning and restructuring that it undergoes is initiated by appropriate activation of a 

phonological lexicon node. In this way, the orthographic nodes that come to classify 

particular strings of letters according to a SOLAR-type approach to learning could also be 

associated with a spoken word in the phonological lexicon. Such an approach implies a 

significant step away from the interactive-activation structure that has to-date been central to 

DRC’s computational account. 

Moving from an idealistic model to a realistic model 

L-DRC assumes a fully-intact spoken word vocabulary, and a comprehensive 

knowledge of graphemes and grapheme–phoneme correspondences. This is an idealised 

model, and in reality, some beginning readers would be self-teaching new orthographic forms 

with an incomplete knowledge of GPCs, such as just simple knowledge of single-letter–

single-phoneme correspondences, and no knowledge of complex graphemes. Some beginning 

readers might also receive very little direct instruction regarding GPCs, and instead impute 

their own GPCs based on a strong mix of direct instruction and textual constraints, as may be 

the case for a child learning to read via a pure “whole-language” method of reading 
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instruction (Goodman, 1989). A psychologically plausible account of learning to read should 

include learning mechanisms to handle this type of learning as well. 

To develop a complex computational model able to describe realistic learning is a 

considerable undertaking. One way of incrementally approaching this realistic model by 

building on L-DRC would be to experiment with lesioning parts of L-DRC. For example, 

instead of simulating self-teaching with a fully skilled sublexical route, a version of L-DRC 

could be trained that only has knowledge of a simple set of GPCs, e.g. perhaps only one- and 

two-letter graphemes, with no context rules and no multi-letter graphemes comprised of three 

or more letters. This would be straightforward to investigate, and provide a view of what self-

teaching might look like with a more rudimentary knowledge of GPCs. Similarly, letter 

knowledge or phonological lexicon knowledge could also be lesioned to simulate a young, 

beginning reader trying to learn despite having incomplete letter knowledge, or a limited 

spoken vocabulary. 

Conclusion 

L-DRC has successfully introduced learning to the DRC model, and provides a basis 

for further investigations of the dynamic learning-to-read process within the dual-route 

framework. In addition, L-DRC provides a starting point for adding lower-level detail to the 

verbal self-teaching hypothesis. This research has shown the promise of implementing the 

self-teaching hypothesis within the dual-route framework, and also highlights the nature of 

the difficulties posed by certain classes of words such as potentiophones, heterographic 

homophones and heterophonic homographs to a reader trying to self teach. 
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Appendix A 

Parameters specific to L-DRC, default values: 

SpokenWordRecognisedThreshold 0.4 

WrittenWordRecognisedThreshold 0.4 

Semantic2PhonolexExcitation 0.3 

Semantic2PhonolexInhibition 0 

ContextInput2Semantic 0.25 

WrittenWordFrequencyMultiplier 10 

Parameters common to both L-DRC and DRC-1.2.1, default values: 

General parameters 

ActivationRate 0.2 

FrequencyScale 0.05 

MinReadingPhonology 0.4 

Feature Level Parameters 

FeatureLetterExcitation 0.005 

FeatureLetterInhibition 0.15 

Letter Level Parameters 

LetterOrthlexExcitation 0.07 

LetterOrthlexInhibition 0.48 

LetterLateralInhibition 0 

Orthographic Lexicon Parameters 

OrthlexPhonlexExcitation 0.25 

OrthlexPhonlexInhibition 0 

OrthlexLetterExcitation 0.3 

OrthlexLetterInhibition 0 

OrthlexLateralInhibition 0.06 

Phonological Lexicon Parameters 

PhonlexPhonemeExcitation 0.09 

PhonlexPhonemeInhibition 0 

PhonlexOrthlexExcitation 0.25 

PhonlexOrthlexInhibition 0 

PhonlexLateralInhibition 0.07 

Phoneme Level Parameters 

PhonemePhonlexExcitation 0.04 

PhonemePhonlexInhibition 0.16 

PhonemeLateralInhibition 0.147 

PhonemeUnsupportedDecay 0.05 

GPC Route Parameters 

GPCPhonemeExcitation 0.051 

GPCCriticalPhonology 0.05 

GPCOnset 26 
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Appendix B 

Phoneme symbols are those used in both DRC model 1.2.1 and L-DRC. 

Vowels 
 

Consonants 

Symbol Example 
 

Symbol Example 

1 stay 
 

_ jump 

2 sigh 
 

b buy 

3 bird 
 

d dot 

4 boy 
 

f for 

5 goat 
 

g guy 

6 mouth 
 

h hot 

7 beard 
 

j yell 

8 cared 
 

k kite 

9 board 
 

l low 

# hard / palm 
 

m my 

{ cat 
 

n no 

i seen 
 

p pie 

u clue 
 

r run 

E red 
 

s stop 

I bid 
 

t tie 

Q pod 
 

v vent 

U good 
 

w west 

V fun 
 

z zoo 

W few 
 

D then 

   
J chin 

   
N hang 

   
S shoe 

   
T thin 

   
Z measure 
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Abstract 

Two prominent dual-route computational models of reading aloud are the dual-route 

cascaded (DRC) model, and the connectionist dual-process plus (CDP+) model. While 

sharing similarly designed lexical routes, the two models differ greatly in their respective non-

lexical route architecture, such that they often differ on nonword pronunciation. Neither 

model has been appropriately tested for nonword reading pronunciation accuracy to date. We 

argue that empirical data on the nonword reading pronunciation of people is the ideal 

benchmark for testing. Data were gathered from 45 Australian-English-speaking psychology 

undergraduates reading aloud 412 nonwords. To provide contrast between the models, the 

nonwords were chosen specifically because DRC and CDP+ disagree on their pronunciation. 

Both models failed to accurately match the experiment data, and have deficiencies in nonword 

reading performance. However, the CDP+ model performed significantly worse than the DRC 

model. CDP++, the recent successor to CDP+, had improved performance over CDP+, but 

was also significantly worse than DRC. In addition to highlighting performance shortcomings 

in each model, the variety of nonword responses given by participants points to a need for 

models that can account for this variety. 
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Introduction 

The dual-route theory of reading aloud was first described in the early 1970s (Forster 

& Chambers, 1973; Marshall & Newcombe, 1973), and has been the subject of ongoing 

research since that time. This theory suggests that two separate mental mechanisms, or 

cognitive routes, are involved in reading aloud, with output of either or both mechanisms 

contributing to the pronunciation of a written stimulus. One mechanism, termed the non-

lexical route, is the process whereby the reader can “sound out” a written stimulus by 

identifying the constituent parts of the stimulus (letters, graphemes) and, through knowledge 

of how these parts are associated with phonemes, build up a phonological representation and 

read the stimulus aloud. The other mechanism, termed the lexical route, is the process 

whereby skilled readers can recognize known words by sight alone without first accessing 

phonological word representations or the phonemes associated with the constituent 

graphemes. Direct recognition of the entire written word allows the reader to determine the 

associated spoken word as a whole, and produce this when reading aloud. 

Dual-route theory was initially conceived as a verbal model, often supported with box-

and-arrow diagramming (e.g., see Marshall & Newcombe, 1973, p. 189, Fig. 1; Patterson & 

Shewell, 1987, p. 274, Fig. 13.1). See also Figure 1 for an example of how dual-route theory 

may be represented in this format. However, over the last three decades, it has become 

commonplace to implement theories about reading aloud as computational models. 

Computational modelling is useful because it requires completeness and explicitness, and puts 

theories into a testable format (see also Norris, 2005, on the benefits of computational 

modeling).  
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Figure 1 Box-and-arrow depiction of a dual-route model of reading. Note. The dual-route theory 

also includes a semantic system as part of the lexical route. It is omitted in this diagram for 

simplicity, because it is not typically implemented in computational models. a) Breaking the 

letter-to-orthographic-lexicon connections prevents orthographic lexical capture. b) Breaking 

the phoneme-to-phonological-lexicon connections prevents phonological lexical capture. 

 

Two prominent computational implementations of the dual-route theory of reading 

aloud that are currently the subject of research and debate are the dual-route cascaded (DRC) 

model of reading aloud and word recognition (Coltheart, Rastle, Perry, Langdon, & Ziegler, 

2001), and the connectionist dual-process plus (CDP+) model (Perry, Ziegler, & Zorzi, 2007). 

While these two models were constructed according to the broad theory that there are dual 

routes for reading, there are computational differences between the two models at a finer grain 
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of analysis. Most significantly, CDP+ adopts a connectionist structure for its non-lexical route 

that includes the capacity to learn or be trained. This is in contrast to DRC’s classical, rule-

based approach, which is static and does not model learning. The aim of the current work was 

to use new empirical data to test these substantial differences. This will contribute to an 

understanding of the strengths and weaknesses of each model in providing an account of 

human reading. 

Another prominent family of computational models of reading is the parallel 

distributed processing (PDP) group of models (Harm & Seidenberg, 1999, 2004; Plaut, 

McClelland, Seidenberg, & Patterson, 1996; Seidenberg, 2005; Seidenberg & McClelland, 

1989). The PDP models also include two routes from orthography to phonology, one of which 

is via semantics. Despite this, PDP modellers do not identify their models as embodying the 

dual-route theory of reading because they include only a single non-semantic route from 

orthography to phonology. In contrast, dual-route theory and computational dual-route models 

such as DRC and CDP+ include two routes that are independent of the semantic system. The 

PDP models are not considered further in this work, since our focus is on examining the 

difference between two computational accounts of dual-route theory. 

Comparison of Model Architecture 

Both DRC and CDP+ share a near identical lexical route, structurally the same but 

with different parameter settings. In particular, the DRC model has a higher ratio of inhibition 

to excitation in parts of its lexical route than CDP+. Despite the identical lexical route 

structure, these parameter value differences between the lexical routes of each model can still 

result in important performance differences. While lexical route parameter settings are more 

relevant to understanding word naming and reaction time differences than they are to 

nonword pronunciation differences, they may still impact nonword pronunciation, since 
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altering some parameters can affect the degree to which the lexical route becomes involved in 

nonword processing. 

The identical structural implementation of the lexical route for each model is 

described in detail in Coltheart et al. (2001). In constructing CDP+, Perry et al. (2007) sought 

to build on DRC by developing a new and improved non-lexical route, while retaining many 

of the capabilities and structure of DRC. In using aspects of the DRC model, the CDP+ 

modellers were following the philosophy of nested modelling (Jacobs & Grainger, 1994), 

according to which new models should build on the capacities of previous models, and be 

able to account for all of the empirical effects that previous models can simulate, even as they 

seek to account for additional effects. 

DRC and CDP+ differ most in the structure and operation of their respective non-

lexical routes, although some similarities remain. Both models feature a non-lexical route 

comprised of the same two functions, which are both depicted in Figure 1. These are 1) 

parsing of an input sequence of letters into graphemes (grapheme recognition), and 2) 

activation of phoneme representations based on the identified graphemes (grapheme-to-

phoneme conversion). The grapheme parsing procedures of each model are quite alike, and 

both involve a “hard-wired” (that is, no model training is required) rule-based algorithm for 

choosing graphemes, although the grapheme representations programmed into each model are 

different. In addition to being coded with different sets of graphemes, each model has been 

programmed to handle grapheme position differently. DRC processes graphemes as occurring 

at the beginning, middle, or end of a word. In contrast, CDP+ processes graphemes as 

occurring in the onset, vowel, or coda of a word. For example, DRC would parse the word 

THRIFT as TH (beginning), R (middle), I (middle), F (middle), T (end), while CDP+ would 

parse the same word as TH (onset), R (onset), I (vowel), F (coda), T (coda).  
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It is in the second function, the activation of phonemes based on the identified 

graphemes, that the difference between the two models is most acute. DRC’s method of 

selecting phonemes based on the identified graphemes is rule-based, and hard-wired. The 

DRC model incorporates knowledge of 236 explicit grapheme–phoneme correspondence 

rules (GPCs), including 27 context-sensitive rules and 8 output rules ("Dual-Route Cascaded 

Model 1.2.1," 2009). These rules were programmed into DRC by its creators, who derived the 

rules by choosing the most common phoneme associated with a particular grapheme across 

the set of English monosyllables containing that grapheme (Coltheart et al., 2001; Rastle & 

Coltheart, 1999). The rules are chosen based on type frequency rather than token frequency. 

Having been constructed this way, the DRC non-lexical route therefore includes no 

knowledge of grapheme-phoneme associations that are not the most common for that 

grapheme. For example, DRC includes knowledge that the regular pronunciation of the 

grapheme OO is the phoneme /ʉː/
1
, as in TOOL and BOOT. However, DRC does not include 

any information that OO corresponds to /ʊ/ in many words, such as BOOK and WOOL. The 

latter is quite common, just not quite as common as the former. The relationship between 

graphemes and phonemes in DRC could be broadly characterized as one-to-one, since, with 

the exception of the small number of context-sensitive rules, the GPCs relate individual 

graphemes to individual phonemes, and only the most common rule—the regular rule—is 

ever applied. The rules applied by the DRC model to particular stimuli are unambiguous and 

transparent to the modeller. 

In contrast, CDP+’s mechanism for translating graphemes to phonemes is statistical 

rather than rule-based, and instead of being hard-wired, the knowledge of grapheme–phoneme 

associations known by the model must be learned by the model. CDP+ employs a 

connectionist, two-layer associative (TLA) network to compute which phonemes to activate, 

                                                 
1
 1The phoneme symbols used in this article are those proposed for Australian English by Harrington, 

Cox, and Evans (1997), and are listed in Table A1 of the Appendix. 
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given the input graphemes that have been identified. Knowledge of how to activate phonemes 

given the identified graphemes is spread across the weights of many connections that link 

every input grapheme node to every output phoneme node in the TLA network. There is a 

many-to-many relationship between graphemes and phonemes in CDP+, in that each output 

phoneme may be determined by more than one of the input graphemes, and individual 

graphemes may contribute to the activation of more than one output phoneme. This structure 

means the choice of correspondences applied by CDP+ to particular stimuli is somewhat 

opaque to the modeller, since it is challenging for the modeller to identify how 

correspondences are applied just through inspection of the 200,000+ connection weights in 

the TLA network. 

This difference in grapheme-to-phoneme conversion is also the reason that the CDP+ 

model—and indeed other connectionist models such as the PDP model (Plaut et al., 1996)—

only include explicit knowledge of a much smaller set of graphemes than DRC. CDP+ 

includes knowledge of 96 graphemes, less than half the number known by DRC. With its 

rule-based system and large set of known graphemes, most of the computational work of the 

DRC non-lexical route is in the parsing of graphemes, and the grapheme-to-phoneme 

conversion process is a simple table lookup procedure. In contrast, the CDP+ model and other 

connectionist models spread this knowledge over both the parsing of graphemes and 

subsequent conversion to phonemes. It is the computational complexity of the connectionist 

network that seems to drive the CDP modellers to use a smaller number of explicitly known 

graphemes. The preference to locate knowledge within the connection weights of the network 

seems to be a connectionist design strategy (see Hinton, 1990; as cited in Plaut et al., 1996). 

These differences can be clearly understood with an example. Consider the word BAKE. 

DRC will identify the split grapheme A.E while parsing this word, and once this grapheme 

has been identified, it is a simple matter of producing the corresponding sound, which is /æɪ/. 
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When CDP+ undertakes grapheme parsing, it identifies A and E as two separate graphemes, 

placing A in the vowel slot and E in a coda slot, since the split grapheme A.E is unknown to 

CDP+ (CDP+ does not recognize any split graphemes). However, the task of correctly 

producing the long vowel /æɪ/ is performed in the grapheme-to-phoneme conversion process. 

The complexities of the pattern of connection weights trained for the CDP+ model ensure that 

the activated A and E grapheme nodes, along with the activation of a consonant node between 

these two graphemes, work together to produce the correct phoneme /æɪ/. In a sense, the CDP 

models adopt a more relaxed definition of what a grapheme is, with multiple graphemes 

potentially contributing to the activation of multiple phonemes. This is compared to DRC’s 

more strictly adhered to definition that a grapheme is a group of letters corresponding to a 

single phoneme
1
. 

One significant advantage of the CDP+ connectionist structure over DRC is that it can 

capture relationships between graphemes and phonemes that are present in words, but are not 

necessarily the most common, such as the irregular but common OO–/ʊ/ correspondence. 

While the DRC non-lexical route will always produce regular responses, the CDP+ non-

lexical route can deviate away from regularity. It can do this if the pattern of all graphemes 

present in the input, combined with the learned knowledge embodied in the connection 

weights, support an irregular correspondence. In effect, the connectionist structure of CDP+ 

allows its non-lexical route to include knowledge beyond just grapheme-phoneme 

correspondences. It may also effectively embody knowledge about correspondences between 

larger orthographic units (such as word bodies or even whole words) and groups of 

phonemes. This is perhaps the reason why the CDP+ modellers prefer the term “sub-lexical 

route”, rather than “non-lexical route” (Perry et al., 2007). This capacity is advantageous 

when it comes to modelling responses to nonword stimuli which, according to dual-route 

                                                 
1
 The obvious exception for DRC is the grapheme X, which corresponds to the two phonemes /ks/, 

rather than a single phoneme. 
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theory, depend strongly on the operation of the non-lexical route for their pronunciation. 

Andrews and Scarratt (1998), Glushko (1979) and Treiman, Kessler, and Bick (2003) found 

that people often produce irregular responses when reading aloud nonword stimuli, and this is 

particularly the case for nonwords that have bodies that are often or always pronounced 

irregularly when found in words. For example, the nonword BALF possesses the body -ALF, 

which is never pronounced regularly as /ælf/ in real monosyllabic words, but is instead 

pronounced irregularly with no /l/ as /ɐːf/ such as in the word “calf” in Australian English. 

The DRC non-lexical route is unable to model the often irregular responses people produce to 

such nonwords, while CDP+ has the potential to do so, if it has learnt to produce irregular 

pronunciations in just the same way that people do. 

Whether or not CDP+ produces nonword pronunciations in the same way that people 

do has not been adequately determined. When assessing the nonword pronunciation 

performance of CDP+, Perry et al. (2007) adopted the scoring criterion of Seidenberg, Plaut, 

Petersen, McClelland, and McRae (1994) (who adopted this criterion after noting that it was 

also used by Glushko (1979) and McCann and Besner (1987)). According to this criterion, 

nonword responses are deemed correct if the output phoneme string incorporates only 

grapheme–phoneme or body–rime relationships that exist in real words. Using this criterion, 

CDP+ had an error rate of 6.25% when reading aloud the 592 nonwords that Seidenberg et al. 

reported. Perry et al. argue that this is acceptable performance for CDP+ since it is similar to 

the human error rate of 7.3% reported in Seidenberg et al. However, it could be argued that 

this criterion is not an adequate measure of nonword correctness, because many responses are 

scored correct even though people may in fact not respond in the same way. Consider for 

example the nonword BONTH. CDP+ pronounces this to rhyme with “month”, i.e., 

pronouncing the O as a U. According to the scoring criterion, this would be considered a 

correct nonword response. However, it seems unlikely that many—if any—people would 
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pronounce BONTH in this way. Perry et al. implicitly acknowledge that this method of 

measuring nonword reading performance may not be sufficiently rigorous, since they label it 

as a “lenient error scoring criterion” (p. 285). 

DRC’s nonword pronunciations have also not been appropriately tested. Coltheart et 

al. (2001) used regularity as the sole measure of correctness when assessing the nonword 

pronunciation performance of DRC. They found that DRC made 75 errors when tested on 

7,000 three- to seven-letter monosyllabic nonwords obtained from the ARC Nonword 

Database (Rastle, Harrington, & Coltheart, 2002), an error rate of 1.07%. However, it is now 

well known that because people often produce irregular pronunciations for nonwords 

(Andrews & Scarratt, 1998), regularity is not an appropriate measure of correctness. 

Given that the nonword pronunciation accuracy of the two models has not been 

adequately tested and reported to date, we sought to perform this assessment. But in order to 

do so, the first step is to determine acceptable criteria for judging the correctness of model 

responses to nonwords. We contend that the optimal benchmark for determining nonword 

pronunciation accuracy for the models is actual human pronunciation. Previous studies 

(Andrews & Scarratt, 1998; Glushko, 1979; Masterson, 1985) have found that many 

nonwords are given more than one common pronunciation when read aloud by people, and in 

light of this, our analysis did not simply take the most frequent human response to a nonword 

as the only correct response when assessing the models. We also considered the less common 

nonword responses. With this in mind, we aimed to gather data on the way people pronounce 

nonwords, in order to then use these data to assess the nonword reading performance of CDP+ 

and DRC. 
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Method 

The nonwords that are most useful in distinguishing nonword reading performance 

between the two computational models are those where the models differ on pronunciation. 

Our approach was therefore to develop a set of nonwords where DRC and CDP+ disagree, 

test these nonwords with human readers, and use these as a focus of investigation. 

While our aim was initially to assess the nonword pronunciation performance of only 

DRC and CDP+, two other model variations were also considered in our analysis. Perry et al. 

(2007) suggest that reducing the phoneme naming activation criterion parameter of the CDP+ 

model from its default value of 0.67 down to 0.50 is more appropriate for nonword-only 

reading. The rationale they provide for this change is that nonwords in the CDP+ model 

typically produce less activation than words, since they do not have lexical entries and 

therefore the lexical route contributes little to the activation of output phonemes. Regardless 

of whether or not such a parameter change could be justified for nonword-only reading, if 

adjusting the phoneme naming activation criterion in this way does improve nonword reading, 

then the CDP+ modellers may elect to permanently alter this parameter for all reading, 

assuming it does not result in CDP+ performance deteriorating on other benchmarks. In light 

of this possibility, all of the nonwords we ran through DRC and CDP+ were also input to 

CDP+ with the phoneme naming activation criterion set to 0.50, and we included these model 

results in our analysis. Results for this variation are labelled as “CDP.50”. 

Subsequent to the testing described in this experiment, the CDP++ model of multi-

syllabic reading was published (Perry, Ziegler, & Zorzi, 2010) and we also conducted 

simulations of reading aloud with this model and have included these in our analysis. Perry et 

al. (2010) indicate that for monosyllabic words, CDP++ should operate similarly to CDP+. 

However, we have included CDP++ separately in our analysis, because several aspects of 
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CDP++ may still cause its performance to differ from that of CDP+ on monosyllabic nonword 

reading. Firstly, CDP++ has been coded to recognize an updated set of graphemes to CDP+, 

so differences in grapheme parsing may result in CDP++ producing a different pronunciation 

to CDP+ for monosyllabic stimuli. Secondly, CDP++ was trained on a different corpus of 

training words to CDP+ (disyllabic words were included). Finally, lexical feedback from 

disyllabic words in the CDP++ lexicon may still impact on the pronunciation of nonwords in 

ways that causes CDP++ to produce a different pronunciation to CDP+. 

Stimulus Selection 

A set of 1,475 nonwords two-to-seven letters in length was randomly selected from a 

subset of the ARC Nonword Database (Rastle et al., 2002). We did not select nonwords 

greater than seven letters because DRC is only able to process to completion nonwords of up 

to seven letters. DRC has eight letter slots, but for nonword processing, the end-of-stimulus 

character must be present for completion of processing, and takes up the eighth slot. 

The nonwords were selected from a subset of the database consisting of only 

monosyllabic, monomorphemic nonwords. In addition, all nonwords were comprised of 

existing onsets, existing bodies and legal bigrams. This was done to avoid contentious aspects 

of nonword reading. Perry et al. (2007) acknowledge that the CDP+ model may have 

difficulty reading nonwords with extremely uncommon or illegal spelling patterns. However, 

they argue that the reading of illegal nonwords is not a viable benchmark of reading 

performance, because they are read aloud in a manner qualitatively different from normal 

reading. Finally, none of the nonwords selected were pseudohomophones, since the ARC 

Nonword Database website gives the option of selecting either “nonwords” or 

“pseudohomophones” but not a mix, and we elected to choose from only the items marked as 

“nonwords”.  
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In order to select only those nonwords where DRC and CDP+ differ, the 1,475 

nonwords were run through each model, and also later run through CDP.50 and CDP++. The 

default set of parameters for each model were used. The only exception was to modify the 

phoneme naming activation criterion for CDP.50. These simulations revealed that DRC and 

CDP+ differed in pronunciation for 412 of the 1,475 selected nonwords (27.9%). The 412 

nonwords became the testing set of nonwords that we used in the experiment. The responses 

of the four models to these 412 nonwords are tabled in the Appendix. 

Participants 

Participants were 47 Standard-Australian-English-speaking psychology 

undergraduates from Macquarie University. Each participant was awarded course credit for 

their involvement. Two participants’ data were discarded, one because the recording quality 

had been too low for transcription, and the other because the participant had an American 

accent (DRC, CDP+ and CDP++ all primarily derive their pronunciation knowledge from the 

CELEX Lexical Database (Baayen, Piepenbrock, & Gulikers, 1995), based on British 

English. While pronunciation might vary, Australian English and British English, as non-

rhotic accents, use almost identical phoneme sets and grapheme-phoneme correspondences. 

General American English, being rhotic, is somewhat different). This left 45 participants 

(eight male) for our analysis. 

Procedure 

Participants were informed that they would be viewing a series of “nonsense words”. 

The nonwords viewed by the participants were presented in uppercase white 36pt Times New 

Roman font on black background. The order of nonwords was randomized for each 

participant. The nonwords were presented one at a time, in the centre of a CRT computer 

screen using the software DMDX (Forster & Forster, 2003). Participants were asked to read 
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each nonword out loud, and their responses were recorded using the audio-capture capabilities 

of DMDX. The experiment was an untimed experiment. Participants had up to 10 seconds to 

respond, although responses were typically given in under two seconds. 

A voice key advanced the experiment to the next nonword after each utterance, to 

avoid unnecessary delay should the participant answer in a much shorter time than 10 

seconds. Participants had the opportunity to rest after every 44 words. The experiment 

duration was typically around 50 minutes. 

Transcription 

Recordings were transcribed into written phonemic representations separately by two 

transcribers. The first transcriber (the third author) is an experienced speech transcriber who 

worked with the aid of spectral analysis using the EMU Speech Database System and 

associated speech analysis tools (Cassidy & Harrington, 2001). The first transcriber had no 

access to the pronunciations generated by each of the computational models. The second 

transcriber (the first author) did the transcription by ear, to assist in detecting errors. 

Responses where the two transcribers disagreed were revisited, with agreement 

usually reached on the transcription. In the event of continued disagreement (<5% of 

responses), the transcription of the first, experienced transcriber would typically be used. 

Data Cleaning 

On occasion, multiple answers were recorded by a single participant in response to the 

one stimulus, for example because the participant spoke too quietly to initially trigger 

advancement to the next item and the participant repeated themselves, or because the 

participant had quickly attempted to alter their response before recording ceased. Multiple 

answers that were identical were treated as a single response. Where the multiple answers 

differed, however, they were discarded (0.54% of responses). 1.7% of recordings were 
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discarded because non-vocal noise prematurely triggered a progression to the next item 

resulting in a truncated recording that included either no response or else a partial response 

without a vowel. In total, 2.3% of the recordings were discarded. As a result, the dataset used 

in our analysis consisted of 18,118 valid recordings, coming from 45 participants tested on 

412 words. 

Results and Discussion 

Participant responses were collated to identify frequency of response to each item (see 

the Appendix), which includes the three most common pronunciations that the participants 

gave for each nonword). Table 1 provides descriptive statistics, including both by-item and 

by-subject statistics, detailing the degree of match between each of the models. It is clear 

from these results that none of the models does an adequate job of reproducing the human 

data. No model matches the most frequent participant responses sufficiently well to be an 

adequate model of an average reader, and no model properly accounts for the large variety of 

responses produced for many of the items tested. Comparing the models, the results clearly 

indicate—even without statistical analysis—that the DRC model produced a significantly 

better match to the participant pronunciations than did any of the CDP model variations. 

Figure 2 charts the degree of match between each of the models and the participant responses, 

separately showing how often each model matches the most frequent response to a nonword, 

the second, third, and subsequent most frequent responses, and also the percentage of the 412 

nonwords for which each of the models fails to match any of the participants. 

As can be seen in the first row of Table 1, and in Figure 2, DRC matched the most 

frequent participant response far more often than any of the CDP models. CDP++ also 

matched the most frequent human response less than DRC, but more than the two CDP+ 
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model variations, indicating that this new iteration of the CDP structure offers improvements 

over its predecessors that go beyond its headline capacity to process multi-syllabic words. 

 

Table 1. Comparison of Model and Participant Pronunciations, By-Item and By-Subject 

Descriptive statistics DRC CDP+ CDP+.50 CDP++ 

Percentage of nonwords in which a model matches: 

The most frequent 

participant response 
73.5 12.1 19.9 37.6 

None of the participants 1.5 49.0 40.0 26.9 

By-subject: percentage of nonwords for which a participant matches a model 

Minimum 29.3 4.9 8.1 17.8 

Maximum 68.2 16.2 23.5 38.5 

M 53.0 11.3 17.5 30.1 

SD 9.0 2.5 3.0 4.4 

Mdn
 

52.7a 11.4b 17.5b 30.8b 

By-item: percentage of participants who match a model for a given nonword 

Minimum 0.0 0.0 0.0 0.0 

Maximum 100.0 100.0 100.0 100.0 

M 52.8 11.2 17.4 30.0 

SD 28.3 18.5 25.3 32.3 

Mdn
 

53.3a 2.2b 4.4b 15.7b 

Note. DRC medians (a) both by-subject and by-item are significantly greater than the 

medians of each CDP model (b), p < .001 

 

However, examining only the most frequent responses is insufficient because these 

nonwords were usually given several different responses amongst participants. The mean 

number of different pronunciations given for a nonword was 8.4 (SD = 4.5), and the mean 

percentage of participants giving the most frequent response to a nonword was only 61.2% 

(SD = 21.4%), suggesting a lot of variety on participant responses. There were only five 

nonwords out of 412 where the 45 participants were unanimous: ENT, FOZ, GERT, OL and 
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SPRA. This result is in accordance with previous nonword studies that have found a variety of 

common pronunciations to some nonwords (Andrews & Scarratt, 1998; Glushko, 1979; 

Masterson, 1985). 

Figure 2. How well each model matches participant responses. Each of the model responses to 

each nonword is classified as one of: a) matching the most frequent participant response to that 

nonword, b) matching the 2nd most frequent, c) matching the 3rd most frequent, d) matching 

the 4th most frequent or some other less common participant response, or e) failing to match 

any participant. This chart displays the percentage of items that fall into each classification for 

each model. 

 

Moving beyond most frequent responses to consider all responses, we calculated the 

mean and median percentage of participants who agreed with each model on pronunciation 

over the 412 nonwords, and the mean and median percentage of the 412 nonwords for which 

a participant would agree with each model. The median is a more instructive measure of 

model performance for this analysis, due to the highly non-normal distribution of the by-items 
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data, and so we used non-parametric methods (Wilcoxon Signed–Rank) to test for the 

significance of any difference in median performance between the models. By subjects, the 

median percentage of the 412 nonwords for which DRC agreed with a participant was 

significantly greater than the median percentage of nonwords where CDP+ agreed with a 

participant, z = 5.8, p < .001, r = .61, significantly greater than the median percentage for 

CDP.50, z = 5.8, p < .001, r = .61, and significantly greater than the median percentage of 

nonwords for CDP++, z = 5.8, p < .001, r = .61. The by-subjects data minimums and 

maximums also indicate that even the participant who agreed with DRC the least 

(min = 29.3% of nonwords), still matched DRC on more nonwords than any participant 

matched CDP+ (max = 16.2% of nonwords) or CDP.50 (max = 23.5% of nonwords). By 

items, the median percentage of participants agreeing with DRC on a given nonword was 

significantly greater than the percentage agreeing with CDP+, z = 14.6, p < .001, r = .51. It 

was also significantly greater than the median percentage of participants agreeing with 

CDP.50, z = 13.5, p < .001, r = .47, and significantly greater than the median percentage of 

participants agreeing with CDP++, z = 10.6, p < .001, r = .37. 

The poorest outcome for a computer model on any given nonword is that it fails to 

match any of the participant responses for that nonword. For almost half of the 412 nonwords 

(49.0%), the CDP+ model produced a response that did not match any of the 45 participant 

responses. CDP+.50 and CDP++ also regularly output pronunciations that did not match any 

participant response, although both variations improved over CDP+, CDP++ greatly so. In 

comparison, DRC rarely generated pronunciations that did not match any participant (only six 

nonwords, or 1.5 % of the 412 nonwords). The six nonwords for which DRC matched none of 

the participants are CHIEL, FRYMPH, GEECH, GERT, QUE, and RHUKE. Interestingly, 

one of these items (GERT) was pronounced unanimously by the participants, which provides 
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strong evidence that DRC’s modellers may need to modify the rule that causes the 

mispronunciation.  

Analysis of Nonword Responses 

To better understand why each of the models did not match the experiment data, we 

examined the types of responses given by the experimental participants and the by the 

models. We took two approaches to this task. Firstly, we identified response that were 

lexicalizations (a word response to a nonword stimulus), and compared the rate of 

lexicalization between each of the models and the experiment participants. Secondly, we 

developed a simple computational algorithm to perform a classification of responses. This 

analysis enabled us to search for any systematic type of response that might be causing each 

of the models to pronounce nonwords differently from people. 

Lexicalizations 

In order to be an accurate model of human reading performance, a model needs to a) 

produce approximately the same percentage of lexicalizations as people do, b) produce these 

in response to the same nonwords as people do, and c) produce the same word response to 

each of these nonwords as people. Having implicitly addressed the latter two points in the 

main results section where it was clear that each of the models is typically not well matched 

to the participant data, we focus here on the first point of whether the models produce the 

same percentage of lexicalizations as people. We identified whether a response was a word or 

not by searching for the phonemic response string in the CELEX Lexical Database (Baayen et 

al., 1995). This enabled us to calculate the overall percentage of lexicalizations for each of the 

models and for the experimental participants across the 412 nonwords, which were: 

experiment participants 8.5%, DRC 0.0%, CDP+ 26.5%, CDP.50 19.9%, and CDP++ 16.5%. 
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DRC, the CDP models and the experiment participants all produced strikingly 

different rates of lexicalization. Unlike the experiment participants, DRC did not produce any 

lexicalizations. In contrast, all of the CDP model variations produced high rates of 

lexicalization, which was also unlike the experiment participants. CDP+ in particular 

produced word responses to over a quarter of the 412 nonwords, more than triple the rate of 

lexicalization evident in the experimental data. 

To understand the different lexicalization behaviour of the models, we considered the 

mechanisms by which dual-route models can produce word responses to nonword stimuli. 

There are three operations by which a dual-route computational model such as DRC or the 

CDP models could generate a word response: 

1. Orthographic lexical capture: activation cascading from the letter level to the 

orthographic lexicon level may result in orthographic neighbours to the nonword stimulus 

receiving high activation. This activity could continue on through the lexical route and may 

eventually influence the choice of phonemes at the output, resulting in a word response. This 

is analogous to a reader seeing a written nonword, but confusing it with an orthographically 

similar written word, e.g. confusing NATCH with WATCH. 

2. Phonological lexical capture: in both the DRC and CDP models, activation of the 

phoneme level by the non-lexical route can potentially back-activate spoken word 

representations in the phonological lexicon level, which, once activated, would then feed back 

to the phoneme level and alter the activation of phonemes. This is a purely phonological 

interaction, not involving the orthographic lexicon. It is analogous to a reader preparing a 

response to a nonword through sounding out the nonword grapheme by grapheme, but, while 

preparing the response, the reader comes to confuse the potential nonword speech utterance 

with a similar, actual spoken word (e.g. tentatively reading the nonword BLIGN as “bline” 
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(rhyming with “line”), but being influenced by the similarity of this utterance to the spoken 

word “blind”, and uttering this instead). 

3. Regular and irregular pseudohomophones: the general operation of the non-lexical 

route may inadvertently result in a word response, completely independently of the lexical 

route. For DRC, this only happens if the nonword stimulus is a regular pseudohomophone—a 

nonword that happens to sound the same as a word when pronounced regularly. For example, 

the nonword BRANE is a regular pseudohomophone since it is pronounced as the word 

“brain” according to regular grapheme–phoneme correspondences. However, for each of the 

CDP models, the non-lexical route converts graphemes to phonemes in a categorically 

different manner to DRC. The CDP non-lexical route can independently produce a spoken 

word response, even for irregular nonwords. From the perspective of a CDP modeller, these 

might be regarded as irregular pseudohomophones. For instance, the regular pronunciation of 

BREKE is “breek”, but the CDP+ non-lexical route, even when operating completely 

independently of the lexical route, outputs the lexical response “brake” to this nonword. 

DRC produces no lexical responses for two reasons. Firstly, inhibition parameters in 

DRC are set such that the lexical route will not contribute to the production of a nonword 

response at all. Letter-to-orthographic lexicon (L-to-O) inhibition and phoneme-to-

phonological lexicon (P-to-P) inhibition are set sufficiently high that orthographic and 

phonological word neighbours to a nonword stimulus will not be activated. Even one letter or 

phoneme different contributes sufficient inhibition to prevent activation. These parameter 

settings were chosen in the context of irregular nonword responses being deemed incorrect by 

the DRC modellers, a position that is now seen as inappropriate based on the data in the 

current paper. As a result, DRC will not experience orthographic lexical capture or 

phonological lexical capture. Secondly, none of the nonwords selected from the ARC 

nonword database was a regular pseudohomophone. The experiment results seem to point to a 
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need for adjustment of lexical-route parameters for DRC. In producing no lexical responses, 

DRC is very much unlike the experimental participants, and an easing of inhibitory 

parameters in the lexical route to allow more lexical route involvement in nonword 

pronunciation may allow DRC to produce lexical responses in the way people do. 

To investigate which of these three mechanisms were involved in the generation of 

lexical responses in the CDP+ model, which had the highest rate of lexical response of all the 

models, we prepared two test variations of CDP+. The first of these involved setting the L-to-

O excitation parameter to zero. By breaking this L-to-O connection, the CDP+ model is 

unable to produce lexicalizations via orthographic lexical capture. The second variation 

involved setting the P-to-P excitation parameter to zero. By breaking this P-to-P connection, 

the CDP+ model is unable to produce lexicalizations via phonological lexical capture. The 

location of these connection and parameter changes are noted on the diagram of the full DRC 

model displayed in Figure 1. 

The 412 nonwords were processed using these two CDP+ variations, and the 

percentage of lexicalizations recorded for each. CDP+ with the L-to-O connection broken 

produced almost the same degree of lexicalization as the default CDP+ model (in fact, there 

was only one nonword out of 412 for which they differed). This suggests that CDP+ is not 

producing lexicalizations via orthographic lexical capture. With P-to-P excitation set to zero, 

CDP+ produced a lower percentage of lexicalizations (20.9%) than the default CDP+ 

(26.5%). This suggests that the difference—approximately one fifth of the lexicalizations 

produced by the default CDP+ model—is due to phonological lexical capture. The remaining 

four-fifths of lexicalizations produced by CDP+ must therefore be a product of the training 

and structure of the connectionist CDP+ non-lexical route. To the CDP+ model, these 

nonwords are irregular pseudohomophones. 
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Classification by Algorithm 

We also sought to categorize the responses of each of the models and of the 

experimental participants in depth, looking to identify types of responses that might be the 

main contributors to the poor performance of each model. Model and participant responses 

were organized into several specific categories, using a classification algorithm coded 

specifically for this task. The algorithm screens the strings of phonemes produced by a model 

or transcribed for a participant, and places the strings into categories. The categories are: 

1. Regular: regular pronunciation (identical to DRC’s response). 

2. Vowel difference: the vowel produced in the response differs from the regular 

pronunciation, all consonants are the same as the regular pronunciation. 

3. Dropped phoneme: almost the same as the regular pronunciation, but for a single phoneme 

omitted. 

4. Extra phoneme: almost the same as the regular pronunciation, but for the inclusion of an 

additional phoneme(s). 

5. s/z coda difference: differs from the regular response in that one uses an /s/ in the coda, 

while the other uses a /z/ (e.g. if the regular pronunciation of BLISE is /blɑes/ then /blɑez/ 

would be classed as an s/z coda difference. 

6. Consonant difference: the same as the regular pronunciation, but for a single disagreeing 

consonant (excluding the s/z coda differences). 

7. Other: some combination of the above differences. 

The classification algorithm was applied to the responses to the 412 nonwords for 

which DRC and CDP+ disagreed, since these were the nonwords that were also tested with 
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the experiment participants. Results of the categorization process are given in Table 2 for each 

of the models and the experiment participants. 

We first consider regularity. All of the DRC model’s responses were regular 

responses, in that they adhered to the discrete set of GPC rules coded into DRC. However, 

only 53.0% of participant responses were regular, far less than DRC. This strict adherence to 

regularity for all nonword responses is an unambiguous shortcoming of the DRC model, one 

that is also responsible for the poor performance of DRC on the nonword consistency 

benchmark (that people don’t always use the most common grapheme–phoneme 

correspondences when reading nonwords) reported in Perry et al. (2007). The failure of DRC 

to produce irregular responses to nonwords while people often do is well known and has been 

previously noted (Treiman et al., 2003) and is an issue that DRC modellers will need to 

remedy to achieve tolerable performance on the fundamental benchmark of nonword 

pronunciation. 

Table 2. Classification of Pronunciations Given by Experiment Participants and by Each Model 

Classification Exp
a 

DRC CDP+ CDP.50 CDP++ 

Regular 53.0 100.0 0.0 9.0 32.5 

Vowel different 20.3 0.0 36.7 35.7 31.6 

Dropped phoneme 1.2 0.0 11.4 5.1 2.4 

Extra phoneme 4.0 0.0 7.3 5.1 2.9 

s/z coda difference 4.0 0.0 10.9 11.9 9.2 

Consonant different 5.1 0.0 16.7 20.1 9.2 

Other 12.4 0.0 17.0 13.1 12.1 

a
Experiment participants 

 



Chapter 3:         Nonword reading accuracy of DRC, CDP+ and CDP++ 

 

145 

 

In contrast, CDP+ produced only irregular responses to the nonwords used in the 

experiment. While CDP+ would routinely be capable of producing regular responses to 

nonwords, the basis of selecting nonwords in this experiment was that DRC and CDP+ 

disagreed on pronunciation. Since DRC is always regular, it follows that none of CDP+’s 

responses to these particular nonwords could have been regular, since then the response 

would have agreed with DRC. The fact that CDP+ did not produce a regular response to these 

nonwords is also quite unlike the experiment data. CDP+.50 and CDP++ both produced some 

regular responses (9.0% for CDP.50 and 32.5% for CDP++). Considering the wider set of 

1,475 nonwords, CDP+ produced a regular response for 71.7% of the 1,475 nonwords; 

CDP.50 produced a regular response for 73.2%, and CDP++ 75.1%. To the extent that 

CDP.50 can be regarded as more suited to reading nonwords than CDP+, and CDP++ 

regarded as an updated version of CDP+, there is a progression towards increased production 

of regular responses with CDP model iterations, greater agreement with DRC, and greater 

agreement with the experiment participants. 

Turning now to irregular responses, the category accounting for the biggest share of 

irregular responses produced by each of the CDP models was the vowel difference category. 

This is not surprising, given that a key advantage claimed for the CDP models over DRC is 

that the CDP models are able to produce irregular-but-consistent nonword responses (Perry et 

al., 2007), and such responses will typically involve a different vowel to the regular response 

(e.g., pronouncing DOOK to rhyme with “book”, instead of with the regular vowel sound as 

in “pool”). The experimental data show that when deviating from regularity, people also most 

often produce a vowel difference response. However, the participants produced this type of 

response for fewer nonwords than did any of the CDP models, and a produced a greater 

percentage of regular responses. 
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The CDP models produced a range of other types of irregular response, as did the 

experimental participants. The data in Table 2 indicate that the CDP models provide a 

distribution of response classifications that is in closer agreement with the participants than 

DRC, due to DRC’s adherence to regularity. CDP++ in particular seems to parallel the 

participant distribution of responses across categories better than the other models. However, 

though they seem to produce broadly the same kind of responses as the participants, the CDP 

models do not match the participants on an item-by-item basis. We examined the performance 

of each model within category to ascertain whether some types of response were more 

problematic for the CDP models than others. 

Table 3 displays the match between the types of responses and the experiment data for 

each of the CDP models. It is clear that one reason CDP.50 and CDP++ match the participant 

data better than CDP+ is because they sometimes produce regular responses. Both CDP.50 

and CDP++ are in agreement with the participants for over 60% of nonwords pronounced 

regularly. For over 80% of items where each of these models gave a regular response, they 

matched the most frequent human response. CDP.50 or CDP++ mostly matched at least some 

participants for those items where they produced a regular response. 

Responses from some categories seem more problematic for the CDP models than 

others. The vowel difference type responses were much less problematic than most other types 

of response. Almost one fifth of the vowel difference responses corresponded to the most 

frequent participant response for each of the CDP models. While still a low percentage, this is 

better than the average match to most frequent participant response across all categories. 

However, vowel difference responses also failed to match any participants on almost a quarter 

of the occasions when this type of response is made, for each of the models. 
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Table 3. CDP+, CDP+.50 and CDP++ Model Performance within Each Nonword Response 

Classification 

Classification 
% of 

responses 

% match
a 

Mean (SD) 

% match 

most 

frequent
b
 

% match 

none
c 

CDP+ 

Regular 0.0 
    

Vowel different 36.7 17.3 (20.1) 19.9 23.8 

Dropped phoneme 11.4 0.5 (1.2) 0.0 83.0 

Extra phoneme 7.3 3.6 (13.9) 6.7 93.3 

s/z coda difference 10.9 27.1 (21.7) 28.9 4.4 

Consonant different 16.7 6.4 (17.5) 4.3 72.5 

Other 17.0 3.3 (7.3) 2.9 67.1 

All 100.0 11.2 (18.5) 12.1 49.0 

CDP.50 

Regular 9.0 66.0 (28.3) 86.5 8.1 

Vowel different 35.7 16.6 (19.3) 18.4 23.8 

Dropped phoneme 5.1 0.4 (0.9) 0.0 81.0 

Extra phoneme 5.1 5.1 (16.5) 9.5 90.5 

s/z coda difference 11.9 27.0 (21.6) 28.6 4.1 

Consonant different 20.1 7.8 (18.9) 6.0 66.3 

Other 13.1 4.0 (8.3) 3.7 63.0 

All 100.0 17.4 (25.3) 19.9 40.0 

CDP++ 

Regular 32.5 61.8 (27.5) 83.6 3.0 

Vowel different 31.6 17.5 (21.6) 18.5 24.6 

Dropped phoneme 2.4 0.7 (1.1) 0.0 70.0 

Extra phoneme 2.9 8.9 (21.4) 16.7 83.3 

s/z coda difference 9.2 27.7 (21.9) 26.3 2.6 

Consonant different 9.2 10.9 (25.2) 13.2 63.2 

Other 12.1 4.1 (8.4) 4.0 66.0 

All 100.0 30.0 (32.3) 37.6 26.9 
a
mean % of participants matched by the model over all of the model responses in a class 

b
% of nonwords where the model matches the most frequent participant response 

c
% of nonwords where the model matches none of the participants 

 

The s/z coda difference responses were also less problematic for the CDP models than 

other types of response. The CDP models rarely failed to match any participant when they 
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produce this kind of response. However, each of the CDP models produced this type of 

response more often than the participants. 

CDP.50 produced less than half the number of dropped phoneme type of differences 

that CDP+ produced, supporting the original argument of Perry et al. (2007) that lowering the 

phoneme naming activation criterion for nonword-only reading would reduce missing 

phoneme errors. The benefit of reducing such errors is evident in Table 3, where it is clear 

that for each of the CDP model variations, dropped phoneme type responses never matched 

the most frequent response given by the experimental participants, and in most cases, failed to 

match any of the responses given by the participants. Even ignoring item-by-item matches 

and focusing instead on the general type of response, the experimental participants typically 

did not make dropped phoneme type responses (only 1.2% of experimental responses were 

classed as dropped phoneme). 

The participants made extra phoneme type responses on some occasions (4.0% of 

responses), similarly to the CDP models. However, on an item-by-item level, the extra 

phoneme responses are highly problematic for the CDP models. Roughly 90% of the extra 

phoneme responses made by CDP+ and CDP.50, and over 80% of extra phoneme responses 

made by CDP++, failed to match any of the participants. So even though people sometimes 

seem to include an extra phoneme when pronouncing nonwords, it seems the CDP models are 

not including extra phonemes for the same nonwords and in the same way that people do. 

Like the dropped phoneme and extra phoneme type responses, responses of the CDP 

models that were classed as consonant difference or else as other were typically not well 

matched to the experiment data. Such responses rarely matched a large percentage of 

participant responses, rarely matched the most frequent participant response, and often 

(approximately two-thirds of the time for both categories) failed to match any participant 
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response for each of the CDP model variations. Of particular note within the Consonant 

different category are nonwords that begin with the grapheme TH. Such nonwords comprise 

9.7% of the 412 nonwords, suggesting that pronunciation of this grapheme in the initial 

position is a key source of difference between DRC and CDP+. DRC always uses the regular, 

unvoiced pronunciation (e.g., the same pronunciation as occurs in the word “thick”) for this 

grapheme at the start of a stimulus. CDP+ uses the voiced TH pronunciation (e.g., the same as 

occurs in the word “then”) for 50% of these nonwords, and drops the phoneme corresponding 

to TH altogether on another 20%. CDP.50 avoids dropping phonemes, but otherwise uses the 

voiced TH often, like CDP+. CDP++ is more likely than the CDP+ to use the regular, 

unvoiced TH, but still uses the voiced TH for 32.5% of the nonwords beginning with TH in 

the experiment dataset. In comparison, the experiment participants almost always used the 

regular, unvoiced pronunciation, similar to DRC. There were only six uses of the voiced TH 

out of 1,765 valid participant utterances for nonwords beginning with TH. This finding is in 

agreement with the results reported by Campbell and Besner (1981), who also found that 

people tend to use the unvoiced version of TH when reading aloud individual nonwords. As a 

result, the CDP models—particular CDP+—perform poorly on the nonwords that begin with 

TH, and typically do not match any participants when using the voiced TH. 

CDP++ produced fewer irregularities than the other CDP models across all categories, 

and of its irregular responses, a greater proportion were classified as vowel difference (46.8% 

of irregular responses) than was the case for CDP+ or CDP+.50, where vowel difference 

responses made up 36.7% and 39.2% of irregular responses respectively. This suggests that 

CDP++ has been honed so that it produces less irregular responses to nonwords, and when it 

does deviate from regularity, it does so by producing more irregular-but-consistent (vowel 

difference) responses, while avoiding the more problematic dropped phoneme or extra 



Chapter 3:         Nonword reading accuracy of DRC, CDP+ and CDP++ 

 

150 

 

phoneme type of responses. Overall, CDP++
1
 seemed to match the participant data better than 

either CDP+ or CDP.50, pointing to progress in the right direction for the CDP structure in 

general. 

General Discussion 

The purpose of this research was to use empirical nonword pronunciation data to 

assess the nonword pronunciation performance of DRC, CDP+ and CDP++. We focused on 

this benchmark because DRC and the CDP models differ mainly in the design of their non-

lexical routes, so nonword reading highlights these differences. In addition, the nonword 

pronunciation performance of each of the models has not been adequately tested (i.e., 

compared with actual human responses) to date. None of the models accurately match the 

experimental data, although DRC was in agreement with participants significantly more often 

than any CDP model variation. 

DRC produces no lexicalizations to nonword stimuli, unlike the experiment 

participants. DRC does not give word responses because its lexical route parameter settings 

minimize lexical route involvement in nonword processing. Lowering either L-to-O inhibition 

or P-to-P inhibition or both in the DRC model would enable it to produce lexical responses, 

however further analysis of the mechanisms by which people produce lexicalizations to 

nonwords is required to ensure that any parameter changes can be properly justified. 

In contrast, the CDP models produce lexical responses far more often than the 

participants did. Analysis of the CDP+ model revealed that even though the CDP+ lexical 

                                                 
1
 The CDP++ model generated one isolated but noteworthy multisyllabic response: it output the word 

“breakfast” in response to the stimulus BREC. In the whole dataset of 1,475 nonwords, this was the only 

instance where CDP++ produced a disyllabic output to the monosyllabic stimulus. The nonword BREC was re-

simulated with CDP++ after first setting phoneme-to-phonology excitation to 0. Doing so resulted in the output 

changing to “brek”, indicating that it is involvement of the lexical route via interaction between the phonological 

lexicon and phoneme layers that results in the lexicalization to “breakfast”. The DRC and CDP+ models do not 

produce multisyllabic output since they are monosyllable-only models. 
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route contributes partly to the high number of word responses generated by this model, it is 

the trained non-lexical route that is solely responsible for most of the lexicalizations. Any 

improvements made to CDP+ would therefore necessarily involve modifications to the non-

lexical route and its training, rather than simple lexical route parameter changes. That is, the 

parts of CDP+ rendering it distinct from DRC are those that would need to be modified. 

DRC only produces regular nonword responses, which is clearly unlike the 

experimental data. The CDP models produce irregular responses in roughly the way people do 

when considered broadly, but on an item-by-item basis, they have a poor match to the 

experimental data. Some types of irregular response seem more problematic than others, with 

dropped phoneme and extra phoneme type responses being especially problematic for the 

CDP models. 

These results also suggest that the lenient criteria for measuring the accuracy of 

nonword pronunciations used by Perry et al. (2007) and others are not without shortcomings 

as a measure of nonword reading performance, since they include too many pronunciation 

possibilities that readers simply do not consider. It is clear that using regularity as the only 

benchmark of correctness as was done for DRC (Coltheart et al., 2001) is also inappropriate. 

Improving the computational models 

The nonword responses of participants suggest that people favour regular responses, 

but will sometimes produce irregular responses. However, the number of irregular responses 

is not as high as might be expected from the patterns in the accepted pronunciations of words. 

For DRC, changes must be motivated by the need for a greater number of irregular responses 

in order to better match participants, while for the CDP models, the number of lexicalizations 

and other irregular responses is too high. 
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For DRC, lexical route parameter changes may produce more lexicalizations, but it 

seems clear that non-lexical route changes will also be required. There are a variety of options 

for modifying the non-lexical route to allow for some percentage of irregular pronunciation, 

including: introducing different rule strengths for different GPC rules, an idea that was raised 

in Rastle and Coltheart (1999). This could be combined with the inclusion of multiple rules of 

varying strengths for individual graphemes that might correspond to more than one phoneme, 

depending on context. This may allow some rules to dominate other rules in particular 

circumstances, leading to irregular pronunciations. Another option is to include non-lexical 

route rules for larger orthographic units such as bodies, which might override grapheme-

phoneme correspondences for relevant stimuli (e.g. pronounce OO as /ʊ/ when followed by a 

K, as in the body –OOK). 

The CDP models experience a variety of problematic response types, which might 

require different modifications to avoid. For example, we have seen that dropped phoneme 

responses are unwanted, and can be reduced by changing the criteria for processing 

completion. Another change to the CDP model might be to modify the training regime, on the 

assumption that perhaps some problematic responses could be avoided with better model 

training. It is likely that at least some of the issues with CDP model nonword pronunciation 

arise from catastrophic interference (see McCloskey and Cohen (1989), as cited in French 

(1999)), where more recent learning erodes previous learning, a well known challenge for 

many types of connectionist learning model. Perhaps concurrently training CDP+ on GPCs 

and whole words, instead of sequentially training first on GPCs only, before then switching to 

training on words, may improve performance, particularly on words starting with TH, where 

it seems clear that the CDP+ nonlexical route does not retain information on using unvoiced 

TH after GPC training concludes and word training commences. The CDP models use a 

limited set of graphemes compared to DRC, and it might be that using an expanded set of 
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graphemes (with a corresponding increase in input nodes and network size) would allow the 

CDP models to produce better nonword responses. Lastly, it could also be the case that the 

two-layer associative network lacks the computational sophistication to adequately learn the 

pattern of regular and irregular pronunciations in English, and altering network architecture to 

enable it to perform more complex operations than a two-layer network might improve 

nonword naming. 

The variety of responses provided to these nonwords point to the need for models that 

can account for this variety, as highlighted by Zevin and Seidenberg (2006). Many 

computational models of reading—including DRC, CDP+ and CDP++—have been employed 

to date as static models of an archetypal skilled reader, and thus only produce a single, ideal 

response to each nonword. However, there is no such thing as the average or ideal 

pronunciation of a nonword. If some nonwords are given multiple, different, non-outlier 

pronunciations by human readers, computational models need to include mechanisms that can 

account for this variety. The DRC model may be able to account for variety if researchers 

were to produce multiple model instances, each with a different array of parameter settings, 

and different sets of known GPCs. To avoid the appearance that these parameter adjustments 

are ad-hoc model fitting, DRC researchers could either demonstrate that the parameter 

changes reflect meaningful differences between the cognitive mechanisms of readers, or else 

investigate and evaluate the theoretical implications of making particular parameter 

adjustments. For example, if all participants pronounce GERT as /gɜːt/ while DRC 

pronounces this as /ʤɜːt/, DRC’s context rule that an initial G followed by an E should be 

pronounced as /ʤ/ could be omitted, provided additional benchmark testing was done to see if 

DRC’s overall pronunciation of words starting with GE were not adversely affected, and if 

response-time related benchmark effects were not negatively impacted. 



Chapter 3:         Nonword reading accuracy of DRC, CDP+ and CDP++ 

 

154 

 

The CDP models may be able to account for this variety if researchers produce 

multiple model instances that differ due to having undergone different training regimes 

(different words, or different orders of exposure). Such a process could also avoid the 

appearance of being ad-hoc if, for example, it were demonstrated that the variety of training 

regimes used are derived from plausible accounts of the different learning experiences of 

people. At present, it is not clear that the training regime used for even the currently published 

CDP models is more than loosely based on the learning experiences of children (Perry et al., 

2007, 2010). 

This research also adds to the discussion of the relative merits of statistical learning 

models such as CDP+ and CDP++ versus a hard-wired model such as DRC. The 

connectionist learning mechanism incorporated into the CDP models gives them additional 

sensitivity to the statistical variety in the English language over the DRC model. However, as 

is shown by the consideration of nonwords beginning with TH in our experiment, the 

sensitivity to this variety can mean that the model learns features of the language that people 

do not use when generalizing to novel stimuli. People almost never seem to use the voiced TH 

when reading aloud nonwords, despite the occurrence of the voiced TH being common in the 

English language and therefore a correspondence that the CDP models all learn. The generally 

poor item-by-item performance of each CDP model in matching empirical nonword 

pronunciation data also indicates that the learning undergone by these models seems unlike 

the way people learn to read aloud. 
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Appendix 

Table A1. Phoneme symbols used in this study are those proposed for Australian English 

published in Harrington et al. (1997). 

Vowels Consonants 

Symbol Example 
 

Symbol Example 

iː seen 
 

p pie 

ɪ bid 
 

b buy 

e red 
 

t tie 

æ cat 
 

d dot 

ɐː hard / palm 
 

k kite 

ɐ fun 
 

g guy 

ɔ pod 
 

tʃ chin 

oː board 
 

ʤ jump 

ʊ good 
 

m my 

ʉː clue 
 

n no 

ɜː bird 
 

ŋ hang 

æɪ stay 
 

f for 

ɑe sigh 
 

v vent 

æɔ mouth 
 

θ thin 

əʉ goat 
 

ð then 

oɪ boy 
 

s stop 

ɪǝ beard 
 

z zoo 

eː cared 
 

ʃ shoe 

   
ʒ fusion 

   
h hot 

   
r rot 

   
j you 

   
w wet 

   
l lie 
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Table A2. Model and Participant Responses to the 412 Nonwords Used in the Experiment 

Note. Only the three most frequent participant responses to each nonword are included. The 

complete dataset of model responses to all 1,475 nonwords, and all participant responses can 

be found at: http://personal.maccs.mq.edu.au/~spritcha/111020NonwordReading.xls 

 

Nonword DRC CDP+ CDP+.50 CDP++ 
Participant responses 

1st n 2nd n 3rd n 

BAFF bæf bɐːf bɐːf bæf bæf 44 bɐːf 1     

BASP bæsp bɐːsp bɐːsp bæsp bæsp 35 bɐːsp 7 bælsp 1 

BLAUCE bloːs bloː bloːs bloː bloːs 14 blæɔs 7 blæɔtʃ 4 

BLAUCHE bloːʃ bloː bloː bloːtʃ bloːʃ 10 blæɔʃ 9 blæɔtʃ 7 

BLEASE bliːs bliːz bliːz bliːz bliːz 28 bliːs 16 bǝliːz 1 

BLIGN blɪn blɑend blɑen blɑen blɑen 34 blɪŋ 2 bliːn 1 

BLINE blɑen blɑend blɑen blɑen blɑen 41 blɑe 1 bliːn 1 

BLIRGE blɜːʤ blɜː blɜː blɜːʤ blɜːʤ 28 blɜːʒ 4 blɜːrʤ 3 

BLISE blɑes blɑez blɑez blɑes blɑes 15 blɑez 12 bliːs 7 

BLUISE blʉːs blʉːz blʉːz blʉːz blʉːz 19 blʉːs 10 blʉːwiːz 3 

BLYNCH blɪntʃ blɑentʃ blɑentʃ blɪntʃ blɪntʃ 30 blɑentʃ 11 blɪŋθ 1 

BOUCHE bæɔʃ bæɔtʃ bæɔtʃ bæɔtʃ bʉːʃ 20 bæɔtʃ 7 bæɔʃ 4 

BRASK bræsk brɐːsk brɐːsk brɐːsk bræsk 28 brɐːsk 14 bræɪsk 2 

BREC brek bre brek brekfǝst brek 43 briːk 1 bretʃ 1 

BREKE briːk bræɪk bræɪk bræɪk briːk 21 brek 12 bræɪk 5 

BRETE briːt bræɪt bret bræɪt briːt 20 bret 15 bræɪt 4 

BROLK brɔlk brəʉlk brəʉlk brəʉlk brɔlk 39 brəʉk 1 brəʉlɔk 1 

BROR broː broːt broː broː broː 32 broːr 8 brɔr 2 

BRORE broː broːt broː broː broː 26 broːr 12 brɜːr 2 

BROS brɔs brɔz brɔz brɔz brɔs 23 brəʉz 17 brɔz 2 

BUKE bjʉːk bjʊk bjʊk bjʊk bjʉːk 26 bʉːk 17     

BUNE bjʉːn bɐn bɐn bɐn bʉːn 22 bjʉːn 19 bəʉn 1 

CANC kæŋk kæn kænk kænk kæŋk 30 kæns 3 kæn 2 

CEB seb keb keb seb seb 33 keb 10 kep 1 

CEBB seb keb keb seb seb 27 keb 15 tʃeb 2 

CELK selk kek kelk selk selk 23 kelk 15 tʃelk 3 

CERM sɜːm kɜːm kɜːm sɜːm sɜːm 25 kɜːm 13 krem 2 

CES ses kez kez ses ses 27 kes 7 sez 5 

CESH seʃ keʃ keʃ seʃ seʃ 20 keʃ 19 kleʃ 1 

CHACH tʃætʃ tʃæk tʃæk tʃætʃ tʃætʃ 19 kætʃ 4 tʃæk 3 

CHIEL tʃɑel tʃiːl tʃiːl tʃiːl tʃiːl 27 ʃiːl 5 tʃɪl 3 

CHONGE tʃɔnʤ tʃɔnʒ tʃɔnʒ tʃəʉnʤ tʃɔnʤ 18 kɔnʤ 5 tʃɔŋg 3 

CHUILT tʃʉːlt tʃɪlt tʃɪlt tʃɪlt tʃɪlt 9 tʃʊlt 9 tʃǝlt 5 

CHYNCH tʃɪntʃ tʃɑentʃ tʃɑentʃ tʃɪntʃ tʃɪntʃ 18 sɪntʃ 5 ʃɪntʃ 4 
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Nonword DRC CDP+ CDP+.50 CDP++ 
Participant responses 

1st n 2nd n 3rd n 

CICE sɑes kɑes kɑes sɑes sɑes 22 siːs 8 kɑes 2 

CID sɪd kɪd kɪd kɪd sɪd 36 kɪd 5 sɪds 1 

CILTH sɪlθ kɪlθ kɪlθ kɪlθ sɪlθ 24 kɪlθ 9 klɪθ 5 

CLALF klælf klɐːs klɐːf klɐː klælf 16 klɐːf 9 klæf 6 

CLALVE klælv klɐː klɐːv klɐː klælv 21 klɐːlv 6 klɐːv 4 

CLOME kləʉm kləʉmz kləʉm kləʉm kləʉm 40 klɔm 2 kləʉ 1 

CLUGUE klʉːg klɐg klɐg klɐg klʉːg 15 klʉːʒ 7 klʉːʤ 6 

COWTH kæɔθ kəʉθ kəʉθ kæɔθ kæɔθ 39 kæɔ 2 kəʉθ 1 

CRICHE krɪʃ krɑetʃ krɑetʃ krɑetʃ kriːʃ 18 kriːtʃ 6 krɪʃ 3 

CRUSQUE krɐsk krʉːsk krɐsk krɐsk krʉːsk 23 krɐsk 11 krʉːskǝ 1 

DANGE dænʤ dæɪnʒ dænʒ dæɪnʤ dænʤ 20 dæɪnʤ 15 dæɪŋg 2 

DAUCHE doːʃ doː doː doː doːʃ 18 dæɔʃ 8 doːtʃ 6 

DECHE deʃ de de diː diːʃ 11 deʃ 8 diːtʃ 5 

DONGE dɔnʤ dɔnʒ dɔnʒ dɔnʤ dɔnʤ 36 dəʉnʤ 2 dɔŋg 2 

DREVE driːv drev drev dræɪv driːv 33 drev 6 driː 1 

DRICHE drɪʃ drɑe drɑetʃ drɑetʃ driːʃ 14 drɑeʃ 7 driːtʃ 6 

DRIECE driːs drɑes drɑes drɑes driːs 23 drɑes 7 driːʃ 3 

DROSE drəʉs drəʉz drəʉz drəʉs drəʉz 25 drəʉs 14 drɔs 1 

DWAL dwæl dwoːl dwoːl dwoːl dwoːl 13 dwæl 10 dwɐːl 10 

DWALP dwælp dwoːlp dwoːlp dwoːlp dwɔlp 16 dwælp 15 dwoːlp 7 

DWARB dwɐːb dweːb dweːb dweːb dwoːb 27 dwɐːb 16 dvɐːb 1 

DWARN dwɐːn dwoːn dwoːn dwoːn dwoːn 28 dwɐːn 13 dwoː 1 

DWAS dwæs dwʉːz dwʉːz dwɔs dwæs 21 dwɔz 10 dwɐs 3 

DWAWSE dwoːs dwoːz dwoːz dwoːz dwoːs 16 dwoːz 7 dwæɪz 5 

DWEKE dwiːk dwæɪk dwæɪk dwæɪk dwiːk 30 dwek 11 dwiː 1 

DWI dwɑe dwɪ dwɪ dwɪ dwɑe 23 dwiː 21     

DWOU dwæɔ dwʉː dwʉː dwʉː dwæɔ 17 dwʉː 14 dwəʉ 6 

DWOUSE dwæɔs dwʉːs dwʉːs dwʉːs dwæɔs 22 dwæɔz 8 dwʉːs 6 

DWUDD dwɐd dwʉːd dwʉːd dwʉːd dwɐd 38 dwʉːd 3 dwʊd 2 

DWUP dwɐp dwʉːp dwʉːp dwʉːp dwɐp 35 dwʉːp 5 dwʊp 2 

ELCH eltʃ weltʃ weltʃ eltʃ eltʃ 33 elk 9 ɪltʃ 1 

ENGE enʤ enʒ enʒ enʤ enʤ 38 eŋg 3 ɪnʤiː 1 

ENT ent went ent ent ent 44         

FAC fæk fækt fækt fæk fæk 41 fɐːk 2 fæ 1 

FASP fæsp fɐːsp fɐːsp fæsp fæsp 33 fɐːsp 11 fwɐːsp 1 

FATH fæθ fɐːθ fɐːθ fɐːθ fæθ 43 fæɪθ 1 fɐːθ 1 

FENE fiːn fen fen fen fiːn 27 fen 11 feniː 2 

FLALSE flæls flæɪls flæɪls flæls flɔls 15 flæls 12 flælz 3 

FLES fles flez flez flez fles 26 flez 12 fliːs 3 
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Nonword DRC CDP+ CDP+.50 CDP++ 
Participant responses 

1st n 2nd n 3rd n 

FLOLL flɔl fləʉl fləʉl fləʉl flɔl 43 floːl 1 fɔl 1 

FLOUGHT floːt flæɔ flæɔ flɐt floːt 21 flæɔt 19 flæɔ 1 

FLOZ flɔz fləʉz fləʉz fləʉz flɔz 42 fɔlz 1 fləʉs 1 

FOLF fɔlf fəʉlf fəʉlf fɔlf fɔlf 42 flǝlf 1 fɔlɔf 1 

FOOSH fʉːʃ fʊʃ fʊʃ fʊʃ fʉːʃ 36 fʊʃ 7 fʉːs 1 

FOZ fɔz fəʉz fəʉz fɔz fɔz 45         

FRA frɐː fræm fræ fræ frɐː 43 fræ 2     

FRAK fræk frækt fræk fræɪk fræk 41 frɐːk 2 fræɪk 1 

FRAUSE froːs froːz froːz froːz froːz 15 fræɔs 9 fræɔz 8 

FREAR frɪǝ frɪǝm frɪǝm frɪǝ frɪǝ 26 frɪǝr 11 freː 3 

FREBE friːb freb freb freb friːb 30 freb 6 fræɪb 2 

FRECH fretʃ frentʃ frentʃ fretʃ fretʃ 27 freʃ 6 frek 5 

FRIME frɑem frɔm frɑem frɑem frɑem 34 frɪm 5 friːm 2 

FROCHE frɔʃ frɔm frɔm frəʉ frəʉʃ 17 frɔʃ 7 frəʉtʃ 7 

FRONGE frɔnʤ frɔmʒ frɔnʒ frɔʤ frɔnʤ 36 frɐnʤ 3 frɔŋ 2 

FROOR froː froːm froːm froː froː 24 frʉːr 7 froːr 7 

FROSE frəʉs frəʉz frəʉz frəʉz frəʉz 31 frəʉs 9 frǝ 1 

FRUGUE frʉːg frɐg frɐg frɐg frʉːʤ 15 frʉːg 11 frʉːʒ 7 

FRUILT frʉːlt frɪlt frɪlt frɪlt frɪlt 11 frʊlt 10 frʉːt 5 

FRUR frɜː frɜːm frɜː frɜː frɜː 15 frɜːr 9 frʉːr 7 

FRYMPH frɪmf frɔmf frɔmf frɪmf frɪmpf 28 frɪmp 6 frɑempf 5 

GANC gæŋk gænd gænd gæn gæŋk 36 gæns 2 gænǝs 1 

GEECH ʤiːtʃ giːtʃ giːtʃ giːtʃ giːtʃ 33 giːʃ 7 gek 2 

GERT ʤɜːt gɜːt gɜːt gɜːt gɜːt 45         

GESK ʤesk esk gesk gesk gesk 39 geks 1 ʤesk 1 

GEVE ʤiːv giːv giːv giːv giːv 22 ʤiːv 14 gev 3 

GHELCH geltʃ eltʃ geltʃ geltʃ geltʃ 37 gelk 2 geleʃ 1 

GHEP gep ep ep ep gep 36 gelp 2 kelp 2 

GHESH geʃ eʃ geʃ geʃ geʃ 30 giːʃ 6 gwiːʃ 1 

GHETE giːt get get get giːt 16 get 15 gæɪt 3 

GHIGN gɪn gɑen gɑen gɑen gɑen 16 gɪn 5 gɪnʤ 4 

GHIMP gɪmp ɪmp gɪmp gɪmp gɪmp 39 ʤɪmp 1 gɪm 1 

GHOW gæɔ gəʉ gəʉ gəʉ gæɔ 30 gəʉ 5 gləʉ 1 

GHURR gɜː gɜːd gɜːd gɜːd gɜː 27 gɜːr 14 grʉːr 1 

GHUTE gjʉːt gʉːt gjʉːt gʉːt gʉːt 30 gjʉːt 6 ʤʉːt 2 

GINT gɪnt ɪnt gɪnt gɪnt gɪnt 39 gɑent 2 ʤɪnt 2 

GIS gɪs gɪz gɪz gɪs gɪs 29 ʤɪs 8 gɪz 5 

GLALF glælf glɐːl glɐːl glɐːlf glælf 22 glæf 6 gælf 4 

GLASK glæsk glɐːsk glɐːsk glɐːsk glæsk 22 glɐːsk 19 gɐːsk 1 
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Nonword DRC CDP+ CDP+.50 CDP++ 
Participant responses 

1st n 2nd n 3rd n 

GLAUK gloːk glɐːk glɐːk gloːk gloːk 24 glæɔk 15 glɔk 2 

GLIEF glɑef gliːf gliːf gliːf gliːf 34 glɑef 3 glʉːjef 1 

GLUIT glʉːt glɪt glɪt glɪt glʉːt 23 glʉːwɪt 12 glʉːwiːt 3 

GNALPH nælf næl næl nælf nælf 24 gnælf 11 nɔlf 2 

GNANC næŋk nænk nænk nænk næŋk 11 næk 9 gnæk 4 

GNEUTH nʉːθ njʉːθ njʉːθ njʉːθ nʉːθ 14 njʉːθ 7 gnʉːθ 6 

GNOMB nɔm nəʉm nəʉm nəʉmbl nəʉm 18 nɔm 13 gnɔm 3 

GNOOSH nʉːʃ nʊʃ nʊʃ nʊʃ nʉːʃ 20 gnʉːʃ 10 nʊʃ 6 

GNOSE nəʉs nəʉz nəʉz nəʉz nəʉz 22 nʉːs 6 nəʉs 4 

GNUSE njʉːs nʉːs nʉːs nʉːs nʉːs 14 nʉːz 9 gnʉːz 6 

GNYTH nɪθ nɑeθ nɑeθ nɪθ nɑeθ 10 gɪnθ 7 nɪθ 6 

GRACH grætʃ græ græ grætʃ grætʃ 19 græʃ 7 græk 5 

GRAUNT groːnt grænts groːnts groːnt groːnt 36 græɔnt 5 grʊnt 1 

GRELCH greltʃ grel greltʃ greltʃ greltʃ 37 grelk 4 grelʃ 2 

GROUGHT groːt græɪt groːt grɐt græɔt 23 groːt 14 grʉːt 3 

GROZ grɔz grəʉz grəʉz grəʉz grɔz 39 grəʉz 4 grɐz 1 

GRUKE grʉːk grɐk grɐk græɪk grʉːk 44 grəʉk 1     

GWALF gwælf gwoːl gwoːl gwoːlf gwælf 17 gwɔlf 17 gwoːf 3 

GWANK gwæŋk gwoːŋk gwoːŋk gwæŋk gwæŋk 37 gwɔŋk 3 gweŋk 2 

GWARN gwɐːn gwoːn gwoːn gwoːn gwoːn 25 gwɐːn 18 gwoː 1 

GWENE gwiːn gwen gwen ʤwen gwiːn 28 gwen 8 gwene 2 

GWI gwɑe gwɪ gwɪ gwɪ gwiː 35 gwɑe 8 ʤwiː 1 

GWIEL gwɑel gwɪl gwɪl gwɪl gwiːl 33 gwɑel 3 gwɪl 2 

GYNCH gɪntʃ ʤɪntʃ ʤɪntʃ ʤɪntʃ gɪntʃ 28 gɑentʃ 5 gɪn 2 

HACE hæɪs hæs hæs hæɪs hæɪs 38 hæs 2 hiːs 1 

HALC hælk hæl hæl hɐːl hælk 33 hɔlk 4 hɐlk 4 

HASE hæɪs hæz hæɪz hæɪs hæɪz 26 hæɪs 14 hæs 2 

HAUVE hoːv hæv hoːv hoːv hoːv 24 hæɔv 7 həʉv 4 

HESE hiːs hiːz hiːz hes hiːs 15 hiːz 15 hes 4 

HIECE hiːs hɑes hɑes hɑe hiːs 20 hɑes 12 hɑek 3 

HOLL hɔl həʉl həʉl həʉl hɔl 42 həʉl 2     

JEICH ʤæɪtʃ ʤæɪ ʤæɪk ʤæɪtʃ ʤiːʃ 8 ʤiːtʃ 7 ʤæɪtʃ 6 

JIEVE ʤiːv ʤɑev ʤɑev ʤiːv ʤiːv 28 ʤɑev 6 ʤɪv 2 

JIS ʤɪs ʤɪz ʤɪz ʤɪs ʤɪs 33 ʤɪz 10 ʒɪs 1 

KNOL nɔl nəʉl nəʉl nəʉl nɔl 36 knɔl 5 nəʉl 3 

KNOUCH næɔtʃ nəʉtʃ nəʉtʃ nɔtʃ næɔtʃ 14 nʉːʃ 6 gnæɔtʃ 3 

KUNGE kɐnʤ kɐnʒ kɐnʒ kjɐnʤ kɐnʤ 25 kʉːnʤ 8 kʊnʤ 3 

LARCE lɐːs lɐːst lɐːst lɐːs lɐːs 39 lɐː 2 lɐːrs 1 

LASP læsp lɐːsp lɐːsp lɐːsp læsp 35 lɐːsp 9 lɐsp 1 
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Nonword DRC CDP+ CDP+.50 CDP++ 
Participant responses 

1st n 2nd n 3rd n 

LOOTH lʉːθ lʉː lʉː lʉːð lʉːθ 43 lʉːð 1 θʊlθ 1 

MOLF mɔlf məʉlf məʉlf məʉlf mɔlf 43 moːlf 1 mʊlf 1 

NACH nætʃ næ næk nætʃ nætʃ 19 næʃ 12 næ 2 

NALK nælk noːkk noːkk noːkk nælk 17 noːk 10 nɔlk 9 

NENGE nenʤ nenʒ nenʒ nenʤ nenʤ 37 neŋ 3 neŋg 1 

NIS nɪs nɪz nɪz nɪz nɪs 41 nɪz 3 nʉːs 1 

NOF nɔf nɔt nɔt nɔf nɔf 43 nəʉf 1 nʊf 1 

NOOSH nʉːʃ nʊʃ nʊʃ nʉːʃ nʉːʃ 37 nʊʃ 7 nɜːʃ 1 

NUNE njʉːn njɐn njɐn njʉːn nʉːn 30 njʉːn 12 nʉː 1 

NYTH nɪθ nɑeθ nɑeθ nɑeθ nɪθ 19 nɑeθ 15 niːθ 6 

OL ɔl əʉl əʉl əʉl ɔl 45         

OOSH ʉːʃ ʊʃ ʊʃ ʊʃ ʉːʃ 31 ʊʃ 13 ʉːtʃ 1 

PHEASE fiːs fiːz fiːz fiːz fiːz 38 fiːs 3 piːz 1 

PHLAUCE floːs floː floː floː floːs 13 flæɔs 12 flæɔk 2 

PHLERSE flɜːs flɜːz flɜːz flɜːz flɜːs 29 flɜːz 2 fɪlǝreseː 1 

PHLEUCE flʉːs flʉː flʉːs flʉːs flʉːs 24 plʉːs 3 floːs 1 

PHLOLT flɔlt fləʉlt fləʉlt fləʉlt flɔlt 29 fɔlt 6 flɔt 3 

PHLOMB flɔm fləʉm fləʉm fləʉm flɔm 23 fləʉm 8 flɔmb 5 

PHLOSE fləʉs fləʉz fləʉz fləʉz fləʉz 23 fləʉs 12 flʉːs 2 

PHLOTH flɔθ fləʉθ fləʉθ fləʉθ flɔθ 27 plɔθ 5 fləʉθ 3 

PHOIN foɪn foɪnd foɪnd foɪn foɪn 35 fəʉn 3 fɑejɔn 1 

PHOL fɔl fəʉl fəʉl fəʉl fɔl 42 fəʉl 1 pɔl 1 

PHOLK fɔlk fəʉk fəʉkk fəʉlk fɔlk 38 fəʉk 3 pɔlk 2 

PHOMP fɔmp frɔmp fɔmp fɔmp fɔmp 38 pǝmp 1 fɔm 1 

PHONK fɔŋk fəʉŋk fəʉŋk fəʉŋk fɔŋk 41 pɔŋk 2 fɔŋ 1 

PHOZ fɔz fəʉz fəʉz fəʉz fɔz 40 fəʉz 2 fʉːz 2 

PHRALPH frælf fræɪl fræɪl frælf frælf 30 frɐːlf 2 rælf 2 

PHROOK frʉːk frʊk frʊk frʊk frʉːk 22 frʊk 18 prʊk 2 

PHUGE fjʉːʤ fjɐʤ fjɐʤ fjɐʤ fʉːʤ 21 fʉːʒ 8 fjʉːʤ 6 

PHUISE fʉːs fʉːz fʉːz fʉːz fjʉːz 10 fʉːz 8 fʉːs 5 

PLALL plæl ploːl ploːl ploːl plæl 16 ploːl 12 flæl 8 

PLANGE plænʤ plæɪnʒ plænʒ plæɪnʤ plænʤ 23 plæɪnʤ 6 flænʤ 5 

PLAUCHE ploːʃ ploː ploːtʃ ploːtʃ ploːʃ 11 plæɔʃ 11 plæɔtʃ 4 

PLENGE plenʤ plenʒ plenʒ plenʤ plenʤ 36 flenʤ 5 plɪnʤ 1 

PLU plʉː plɐs plɐ plɐ plʉː 42 flʉː 2 plɐ 1 

PRAUGH proː prɐːf prɐːf proː proː 10 præɔ 8 prɐːg 6 

PREACE priːs priːsts priːs priːs priːs 31 priːtʃ 3 priːæɪs 2 

PREBE priːb preb preb preb priːb 29 præɪb 4 preb 4 

PRUDD prɐd prʉːd prʉːd prʉːd prɐd 34 prʉːd 8 prǝd 2 
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PSAISE sæɪs pæɪz pæɪz pæɪz sæɪz 15 psæɪz 10 sæɪs 7 

PSAMB sæm pæm pæm pæmb sæm 16 sæmb 7 sɐːm 7 

PSAR sɐː pɐː pɐː pɐː sɐː 27 psɐː 10 pǝsɐː 3 

PSAUGE soːʤ poːʤ poːʤ poːʤ soːʤ 13 soːʒ 5 sæɔʤ 4 

PSAUNCH soːntʃ poːntʃ poːntʃ poːntʃ soːntʃ 24 psoːntʃ 8 sæɔntʃ 2 

PSAWP soːp poːp poːp poːp soːp 14 swɔp 7 psoːp 4 

PSEEF siːf piːf piːf piːf siːf 26 psiːf 8 sef 4 

PSELSE sels pels pels sels sels 17 psels 4 selz 2 

PSEN sen pen pen pen sen 25 psen 14 pǝsen 1 

PSEUCE sʉːs pjʉːs pjʉːs pjʉːs sʉːs 15 sjʉːs 5 pǝsʉːs 2 

PSICH sɪtʃ pɪtʃ pɪtʃ pɪtʃ sɪtʃ 15 siːtʃ 3 sɑek 3 

PSIRP sɜːp pɜːp pɜːp sɜːp sɜːp 20 psɜːp 7 psɜːrp 3 

PSIZ sɪz pɪz pɪz pɑez sɪz 19 psɪz 10 fɪz 2 

PSOATH səʉθ pəʉθ pəʉθ pəʉθ səʉθ 25 psəʉθ 6 sæɔθ 3 

PSONGE sɔnʤ pɔnʒ pɔnʒ pɔnʤ sɔnʤ 19 psɔnʤ 6 sɔn 3 

PSOOSH sʉːʃ pʊʃ pʊʃ pʊʃ sʉːʃ 20 psʉːʃ 4 psʊʃ 4 

PSOOTH sʉːθ pʉː pʉːð pʉːθ sʉːθ 22 psʉːθ 8 sʉːð 5 

PSORB soːb poːb poːb poːb soːb 32 psoːb 11 psoːrb 1 

PUISE pʉːs pʉːz pʉːz pʉːz pjʉːz 12 pʉːz 7 pjʉːs 6 

PUSQUE pɐsk pʉːsk pʉːsk pʉːsk pʉːsk 10 pɐsk 9 pjʉːsk 4 

QUE kwiː kwe kwe kwe kjʉː 36 ke 4 kwe 3 

RALL ræl roːl roːl roːl roːl 20 ræl 19 rɐːl 4 

RENGE renʤ renʒ renʒ renʤ renʤ 39 rɔnʤ 1 riːnʤ 1 

RHAFF ræf rɐːf rɐːf rɐːf ræf 38 hræf 3 rɐːf 3 

RHAWSE roːs roːz roːz roːz roːs 16 roːz 10 ræɔs 5 

RHETE riːt ræɪt ræɪt ræɪt riːt 22 ret 9 ræɪt 2 

RHINGE rɪnʤ rɪnʒ rɪnʒ rɪnʤ rɪnʤ 36 rɪŋ 1 rɪn 1 

RHOUSE ræɔs ræɔz ræɔz rʉːz ræɔs 19 rʉːs 10 ræɔz 5 

RHUKE rjʉːk rɐk rɐk rʉːk rʉːk 39 hrʉːk 5 rʊk 1 

RINGE rɪnʤ rɪnʒ rɪnʒ rɪnʤ rɪnʤ 35 rɪŋ 3 rɑenʤ 2 

ROLT rɔlt rəʉlt rəʉlt rəʉlt rɔlt 41 wɔlt 1 rǝlt 1 

ROUCHE ræɔʃ ræɔtʃ ræɔtʃ rəʉtʃ rʉːʃ 22 ræɔtʃ 5 ræɔʃ 4 

ROWSE ræɔs rəʉz rəʉz rəʉz ræɔz 19 ræɔs 18 rəʉz 5 

RUILT rʉːlt rɪlt rɪlt rɪlt rʊlt 12 rɪlt 11 rʉːlt 6 

RURSE rɜːs rɜːz rɜːz rɜːs rɜːs 18 rɜːrs 4 rʉːrs 4 

SALM sælm sɐːm sɐːm sɐːm sælm 23 sɐːm 14 sɐːlm 2 

SARR sɐː sɐːd sɐːd sɐːd sɐː 37 sɐːr 7     

SCAQUE skæɪk skæk skæk skæɪk skɐːk 10 skæk 9 skæɪk 4 

SCILTH sɪlθ skɪlθ skɪlθ skɪlθ skɪlθ 28 sɪlθ 8 sɪlk 1 
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SCINE sɑen skɑen skɑen skɑen skɑen 18 sɑen 12 siːn 6 

SCRALK skrælk skræk skrækk skrækk skrælk 14 skrɔlk 14 skroːlk 8 

SCRALL skræl skroːl skroːl skroːl skroːl 22 skræl 10 skrɐːl 7 

SCRIPE skrɑep skrɑept skrɑept skrɑep skrɑep 36 skrɑeb 3 skrep 2 

SCROLK skrɔlk skrəʉl skrəʉlk skrəʉlk skrɔlk 40 skɔlk 1 skrɔlɔk 1 

SCROME skrəʉm skriːm skrəʉm skrəʉm skrəʉm 38 skrɔm 2 skrǝ 1 

SCROSE skrəʉs skrəʉz skrəʉz skrəʉz skrəʉz 22 skrəʉs 14 skrɔs 2 

SCRUKE skrʉːk skrɐk skrɐk skrɐk skrʉːk 39 ʃrʉːk 2 skrɐŋk 1 

SCRYM skrɪm skrɑem skrɑem skrɑem skrɪm 24 skrɑem 16 skriːm 2 

SCUTE skjʉːt skɐt skɐt skʉːt skʉːt 27 skjʉːt 15 ʃʉːt 1 

SHALSE ʃæls ʃæɪls ʃæɪls ʃæls ʃæls 21 ʃɔls 8 ʃælz 6 

SHECHE ʃeʃ ʃiː ʃiː ʃiː ʃeʃ 6 ʃiːʃ 6 ʃiːtʃ 4 

SHESE ʃiːs ʃiːz ʃiːz ʃiːs ʃiːs 17 ʃiːz 11 ʃes 5 

SHINC ʃɪŋk ʃɪnk ʃɪnk ʃɪnk ʃɪŋk 35 ʃɪntʃ 3 sɪntʃ 2 

SHIS ʃɪs ʃɪz ʃɪz ʃɪz ʃɪs 21 ʃɪz 14 ʃɪʃ 4 

SHOS ʃɔs ʃɔz ʃɔz ʃɔz ʃɔs 25 ʃɔz 7 ʃəʉz 5 

SHOULE ʃæɔl ʃʉːl ʃʉːl ʃəʉl ʃʉːl 16 ʃæɔl 5 ʃoːl 5 

SHOWTH ʃæɔθ ʃəʉθ ʃəʉθ ʃəʉθ ʃəʉθ 21 ʃæɔθ 14 ʃɔθ 3 

SHRAQUE ʃræɪk ʃrɐːk ʃrɐːk ʃræɪk ʃræk 17 ʃrɐːk 8 ʃræɪk 2 

SHRAS ʃræs ʃrɐːz ʃrɐːz ʃræz ʃræs 18 ʃræz 18 ʃræ 1 

SHRAUK ʃroːk ʃræk ʃræk ʃroːk ʃroːk 21 ʃræɔk 11 ʃrɐŋk 1 

SHRIC ʃrɪk ʃrɪ ʃrɪ ʃrɪk ʃrɪk 38 ʃriːk 3 ʃɜːk 2 

SHRIRR ʃrɜː ʃrɜːd ʃrɜːd ʃrɜːd ʃrɪǝr 18 ʃrɪǝ 6 ʃrɜːr 5 

SHRUICE ʃrʉːs ʃrʉː ʃrʉː ʃrʉː ʃrʉːs 22 ʃrʉːwɪs 4 skrʉːs 2 

SHRUKE ʃrʉːk ʃrɐk ʃrɐk ʃræɪk ʃrʉːk 40 ʃrʉː 2 ʃrɐk 1 

SHRUNGE ʃrɐnʤ ʃrɐnʒ ʃrɐnʒ ʃrɐnʤ ʃrɐnʤ 21 ʃrʉːnʤ 10 srɐnʤ 3 

SHUGE ʃjʉːʤ ʃɐʤ ʃɐʤ ʃɐʤ ʃʉːʤ 15 ʃʉːg 8 ʃʉːʒ 6 

SILGE sɪlʤ stɪlʤ stɪlʤ sɪlʤ sɪlʤ 35 sɪlg 3 sɪlʒ 3 

SILN sɪln stɪl stɪln sɪln sɪln 35 slɪn 3 sɪl 2 

SKALC skælk skæl skæl skɐːl skælk 29 skɐlk 4 skɔlk 3 

SKARCE skɐːs skɐː skɐːs skɐː skɐːs 33 skɐːk 4 skɐːrs 2 

SKECHE skeʃ skiː skiː skiː sketʃ 12 skiːtʃ 9 skeʃ 7 

SKUBE skjʉːb skɐb skɐb skɐb skʉːb 32 skjʉːb 10 skɐb 1 

SLARR slɐː slɐːd slɐːd slɐːd slɐː 35 slɐːr 8 splɐː 1 

SLULE slʉːl slɐl slɐl slɐl slʉːl 25 slʉː 4 slɐl 3 

SLUS slɐs slɐz slɐz slɐz slɐs 27 slʉːs 8 slɐz 3 

SLYS slɪs slɑez slɑez slɑez slɑes 12 slɪs 12 slɑez 12 

SMEKE smiːk smæɪk smæɪk smæɪk smiːk 26 smek 16 smɪk 1 

SMEPE smiːp smep smep smep smiːp 23 smep 10 smæɪp 4 
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SMOCHE smɔʃ sməʉ sməʉ sməʉ smʉːtʃ 15 sməʉʃ 8 smɔtʃ 6 

SMOUTH smæɔθ smæɔ smæɔ smæɔθ smæɔθ 34 smʉːθ 5 smæɔð 3 

SMYNC smɪŋk smɑek smɑenk smɪŋk smɪŋk 30 smɑeŋk 7 smɪntʃ 3 

SMYNCH smɪntʃ smɑentʃ smɑentʃ smɑentʃ smɪntʃ 33 smɑentʃ 5 smɪŋk 2 

SMYS smɪs smɑez smɑez smɑez smɑes 12 smɪs 11 smɑez 10 

SNENGE snenʤ sniːnʒ snenʒ snenʤ snenʤ 31 sneʤ 3 snɪnʤ 1 

SNESE sniːs sniːz sniːz sniːs sniːz 21 snes 7 sniːs 5 

SNICHE snɪʃ snɑetʃ snɪtʃ snɑetʃ sniːʃ 11 snɪtʃ 8 snɑetʃ 4 

SNONGE snɔnʤ snɔnʒ snɔnʒ snəʉn snɔnʤ 32 snəʉnʤ 3 snɐnʤ 1 

SNOWL snæɔl snəʉl snəʉl snəʉl snæɔl 25 snəʉl 13 snɔl 5 

SOOSE sʉːs sʉː sʉːz sʉːs sʉːs 29 sʉːz 12 sʉːʒ 1 

SPEINT spæɪnt spent spent spent spɑent 15 spiːnt 12 spæɪnt 5 

SPEVE spiːv spev spev spev spiːv 35 spev 7 spɪ 1 

SPEWTH spjʉːθ spʉːθ spjʉːθ spjʉːθ spjʉːθ 23 spʉːθ 9 splʉːθ 2 

SPLACH splætʃ splæ splæ splætʃ splætʃ 26 splæʃ 6 splæk 6 

SPLALM splælm splɐːm splɐːm splɐːm splɐːm 12 splælm 8 splæm 7 

SPLANC splæŋk splænk splænk splænk splæŋk 34 splɐːŋk 4 splɔŋk 2 

SPLEASE spliːs spliːz spliːz spliːz spliːz 36 spliːs 6 spiːz 1 

SPLICHE splɪʃ splɑetʃ splɪtʃ splɑetʃ spliːʃ 13 splɪtʃ 7 spliːtʃ 6 

SPLOL splɔl spləʉl spləʉl spləʉl splɔl 43 slɔl 1     

SPLOURT sploːt sploːts sploːt sploːt sploːt 18 splæɔrt 4 splæɔt 4 

SPLOWSE splæɔs spləʉz spləʉz splæɔz splæɔs 26 splæɔz 6 spləʉs 6 

SPOLK spɔlk spəʉl spəʉlk spəʉlk spɔlk 43 spəʉk 1 spʊlk 1 

SPRA sprɐː spræ spræ spræ sprɐː 44         

SPRARR sprɐː sprɐːd sprɐːd sprɐːd sprɐː 23 sprɐːr 15 spɐːr 4 

SPRARSE sprɐːs sprɐːz sprɐːz sprɐːz sprɐːs 26 spɐːs 4 spɐːrs 2 

SPRAUK sproːk sprɐːk sprɐːk sproːk sproːk 24 spræɔk 11 sprɐːk 3 

SPREN spren sprend spren spren spren 42 spriːn 3     

SPRURSE sprɜːs sprɜː sprɜːs sprɜːs sprɜːs 16 sprɜːz 4 sprʉːs 3 

SPUBE spjʉːb spʉːb spɐb spʉːb spʉːb 24 spjʉːb 14 spʉː 1 

STAISE stæɪs stæɪz stæɪz stæɪz stæɪz 24 stæɪs 12 stræɪs 3 

STAITCH stæɪtʃ stæɪts stæɪts stæɪtʃ stæɪtʃ 29 stræɪtʃ 4 stætʃ 2 

STAUSE stoːs stoːz stoːz stoːz stoːs 14 stæɔs 13 stoːz 7 

STILN stɪln stɪl stɪln stɪln stɪln 35 stɪlǝn 5 stɪl 2 

STOARSE stoːs stoːz stoːz stoːz stoːs 29 stroːs 3 stoːwɐːs 2 

STOLK stɔlk stəʉk stəʉk stəʉl stɔlk 41 stoːlk 2 stəʉk 1 

STRASE stræɪs stræɪz stræɪz stræɪz stræɪs 16 stræɪz 10 strɐːs 7 

STRATH stræθ strɐːθ strɐːθ strɐːθ stræθ 37 strɐːθ 4 stræ 1 

STREPE striːp strep strep strep striːp 25 strep 10 strɪp 2 
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STRIQUE strɪk strɑeks strɑeks strɑek striːk 21 strɪk 7 strɑek 6 

STRONGE strɔnʤ strɔŋʒ strɔŋʒ strəʉn strɔnʤ 20 strəʉnʤ 5 strɔŋ 5 

STROOK strʉːk strʊk strʊk strʊk strʉːk 32 strʊk 12     

STROW stræɔ strəʉ strəʉ strəʉ strəʉ 33 stræɔ 10 ʃtrəʉ 1 

STUKE stjʉːk stɐk stɐk stɐk stʉːk 28 stjʉːk 10 strʉːk 4 

SUILE sʉːl skʉːl skʉːl sʉːl sʉːl 13 sjʉːl 8 swiːl 8 

SWATT swæt swɔt swɔt swɔt swɔt 36 swæt 7 swɐt 1 

SWIC swɪk swɪs swɪs swɪk swɪk 39 swɑek 1 zwɪk 1 

SWIEL swɑel swiːl swiːl swoːl swiːl 35 swæɪl 2 swɑel 1 

SWOUNGE swæɔnʤ swæɔnʒ swæɔnʒ swæɔnʤ swæɔnʤ 28 swʉːnʤ 7 swɐnʤ 2 

SWUS swɐs swɐ swɐz swʉːz swɐs 27 swʉːs 6 swʊs 5 

THAC θæk ðæk ðæk θæk θæk 40 θwæk 2 ðæk 1 

THAG θæg ðæg ðæg θæg θæg 41 θɐːg 2 ðæg 1 

THAK θæk ðæk ðæk θæk θæk 38 θɐːk 2 θælk 1 

THALC θælk ðæl ðæl ðoːl θælk 35 θoːlk 2 θɔlk 2 

THANCH θæntʃ ðæntʃ ðæntʃ ðæntʃ θæntʃ 28 θæŋk 5 θoːntʃ 2 

THAQUE θæɪk ðæk ðæk θæɪk θæk 18 θɐːk 4 θoːk 4 

THECHE θeʃ ðiː ðiː ðiː θeʃ 9 θetʃ 7 θiːʃ 6 

THEDGE θeʤ ðeʤ ðeʤ ðeʤ θeʤ 44 θeʤǝ 1     

THEEL θiːl ðiːl ðiːl θiːl θiːl 40 θwiːl 1 tiːl 1 

THEIL θæɪl ðel ðel θel θiːl 34 θel 2 θɪl 2 

THEL θel ðel ðel ðel θel 40 θiːl 3 θwel 1 

THELK θelk elk θelk θelk θelk 42 θælk 1 θwelk 1 

THELM θelm ðelm ðelm ðelm θelm 44 θwelm 1     

THERP θɜːp ðɜːp ðɜːp ðɜːp θɜːp 38 θwɜːp 2 θrep 2 

THESK θesk esk ðesk ðesk θesk 42 θiːsk 2 desk 1 

THESS θes ðes ðes ðes θes 36 θiːs 5 θres 1 

THET θet ðet ðet ðet θet 41 θiːt 3 θe 1 

THETCH θetʃ ðetʃ ðetʃ ðetʃ θetʃ 40 θe 1 θretʃ 1 

THINGE θɪnʤ θɪnʒ θɪnʒ θɪnʤ θɪnʤ 35 θɪŋg 3 θɪŋ 2 

THITE θɑet ɑet θɑet θɑet θɑet 35 θiːt 6 θiːθ 1 

THODD θɔd ðɔd ðɔd θɔd θɔd 43 θrɔd 1 θɔ 1 

THOLVE θɔlv ðɔlv ðɔlv θɔlv θɔlv 37 θwɔlv 4 θʊlv 1 

THRALC θrælk θræl θræl θroːl θrælk 29 θrɔlk 4 θrelk 1 

THRANC θræŋk θrænk θrænk θræŋk θræŋk 36 θrɔŋk 2 θwæŋk 1 

THREAR θrɪǝ θreː θreː θrɪǝ θrɪǝr 17 θrɪǝ 16 θreː 7 

THROUSE θræɔs θrʉːz θrʉːz θrʉːs θræɔs 26 θræɔz 9 θrʉːs 5 

THRUME θrʉːm θrɐm θrɐm θrʉːm θrʉːm 38 θrʉːmb 1 θrɔm 1 

THUBE θjʉːb θjɐb θjɐb θjʉːb θʉːb 35 θjʉːb 5 tjʉːb 1 
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THUPE θjʉːp θʉːp θjʉːp θʉːp θʉːp 36 θjʉːp 4 θɜːp 1 

THUSE θjʉːs ðʉːs ðjʉːs ðʉːs θʉːz 25 θʉːs 11 θjʉːz 5 

THWALC θwælk woːl θwoːl θwoːl θwælk 22 θwɔlk 15 θwoːk 2 

THWAZZ θwæz θwoːz θwoːz θwoːz θwæz 21 θwɔz 8 θwæ 2 

THWEB θweb web θweb θweb θweb 41 θwiːb 1 θwe 1 

THWELVE θwelv welv welv θwelv θwelv 29 twelv 8 θwelf 3 

THWINGE θwɪnʤ θwɪnʒ θwɪnʒ θwɪnʤ θwɪnʤ 34 twɪnʤ 2 twɪns 1 

THWOLVE θwɔlv wɔlv θwɔlv θwɔlv θwɔlv 28 θwʊlv 6 twɔlv 3 

THWONCH θwɔntʃ wɔntʃ θwɔntʃ θwɔntʃ θwɔntʃ 34 twɔŋk 2 θwɐnɐtʃ 1 

THWOS θwɔs ðwɔz ðwɔz ðwɔz θwɔs 26 θwɔz 5 θwəʉs 4 

THWOWN θwæɔn θwɔn θwɔn θwæɔn θwəʉn 21 θwæɔn 13 θwɔn 3 

THWUILT θwʉːlt θwɪlt θwɪlt θwʉːlt θwɪlt 18 θwɔlt 6 θwʊlt 5 

TOWSE tæɔs təʉz təʉz təʉz tæɔs 16 tæɔz 13 təʉs 3 

TRASS træs trɐːs trɐːs trɐːs træs 32 trɐːs 7 træz 2 

TREESE triːs triːz triːz triːz triːs 24 triːz 15 θriːz 2 

TROW træɔ trəʉ trəʉ trəʉ trəʉ 18 træɔ 18 θrəʉ 4 

TRURE troː trʉː trʉː trʉː trʉːr 14 trʉː 5 trɜːr 4 

TRURSE trɜːs trɜːz trɜːz trɜːs trɜːs 18 trʉːs 6 trʉːz 4 

TUISE tʉːs tʉːz tʉːz tjʉːz tʉːz 7 twiːs 5 twiːz 5 

TUME tjʉːm tjɐm tjɐm tjɐm tjʉːm 22 tʉːm 18 tɐm 2 

TWALPH twælf twæɪl twæɪl twoːlf twælf 20 twɔlf 10 θwælf 5 

TWARK twɐːk twoːk twoːk tweːk twoːk 18 twɐːk 15 θwoːk 6 

TWERE twɪǝ tweː tweː tweː twɜː 20 θwɜː 6 tweː 4 

TWOLE twəʉl twʉːl twʉːl twəʉl twɔl 35 θwɔl 3 twəʉl 2 

TWORE twoː toː toː toː twoː 31 θwoː 6 twoːr 4 

TWOWN twæɔn twʉːn twʉːn twæɔn twəʉn 11 twæɔn 11 twɔn 5 

TWUG twɐg twʉːg twʉːg twɐg twɐg 33 θwɐg 6 twʊg 2 

TWUSQUE twɐsk twʉːsk twʉːsk twʉːs twʉːsk 10 twɐsk 9 θwɐsk 3 

VACHE væʃ væɪ væɪ væɪ væʃ 10 væɪʃ 8 vætʃ 6 

VANC væŋk vænd vænk vænk væŋk 33 vɔŋk 2 vɐŋk 2 

VAS væs væz væz væz væs 36 vɐːs 4 væz 3 

VEESE viːs viːz viːz viːz viːs 27 viːz 12 viːsiː 2 

VIGN vɪn vɑen vɑen vɑen vɑen 17 vɪgǝn 5 vɪnʤ 4 

WAICE wæɪs wæɪ wæɪs wæɪ wæɪs 31 wɑes 4 wæɪk 3 

WALC wælk wel wel woːl wɔlk 18 wælk 14 woːk 4 

WAUCE woːs woː woː woː woːs 20 wæɔs 7 wɐs 2 

WEICH wæɪtʃ wæɪk wæɪk wæɪtʃ wiːtʃ 18 wɑek 4 wæɪtʃ 4 

WHA wɐː wʉː wʉː wæɪ wɐː 37 wæ 4 woː 1 

WHALL wæl woːl woːl woːl woːl 24 wæl 5 wɐːl 4 
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Nonword DRC CDP+ CDP+.50 CDP++ 
Participant responses 

1st n 2nd n 3rd n 

WHAUCHE woːʃ woː woːtʃ woːtʃ woːtʃ 10 woːʃ 8 wæɔtʃ 7 

WHAZZ wæz wɔz wæz wæɪz wæz 32 wɐz 3 wɔz 3 

WHOLT wɔlt wʉːlt wʉːlt wəʉlt wɔlt 29 hɔlt 6 hwɔlt 5 

WHONE wəʉn wʉːn wʉːn wʉːn wəʉn 26 hwəʉn 9 həʉn 5 

WHOS wɔs wɔz wɔz wɔz hʉːz 27 wɔs 4 hʉːs 3 

WHUMB wɐm wʉːm wʉːm wɐmbl wɐm 21 wɐmb 8 hwɐmb 2 

WIS wɪs wɪz wɪz wɪz wɪs 32 wɪz 11 vɪs 1 

WOUGE wæɔʤ wɔʤ wɔʤ wæɔʤ wʉːʒ 10 wʉːʤ 10 wæɔʤ 5 

WRAWSE roːs roːz roːz roːz roːs 14 roːz 8 ræɔz 2 

WREWTH rʉːθ rjʉːθ rjʉːθ rjʉːθ rʉːθ 18 reθ 8 riːθ 4 

WRICHE rɪʃ rɑetʃ rɑetʃ rɑetʃ rɑetʃ 10 riːʃ 9 riːtʃ 7 

WROUNGE ræɔnʤ ræɔnʒ ræɔnʒ ræɔnʤ ræɔnʤ 33 rʉːnʤ 5 rəʉnʤ 2 

YALK jælk joːk joːkk joːkk jælk 21 jɔlk 12 joːlk 7 

YEC jek jes jes jek jek 42 zek 1 jetʃ 1 

YEESE jiːs jiː jiːz jiːz jiːs 33 jiːz 6 jiːsiː 3 

YIVE jɑev jɪv jɪv jɑev jɑev 33 jiːv 4 jɪv 4 

YONT jɔnt jɔn jɔn jɔnt jɔnt 43 jʊnt 1 jəʉnt 1 

YOUNGE jæɔnʤ jɔnʒ jɔnʒ jʉːnʤ jæɔnʤ 16 jɐnʤ 7 jʉːnʤ 7 

ZALPH zælf zæɪl zæl zælf zælf 41 zoːlf 2 zɔlf 1 

ZAQUE zæɪk zæk zæk zæɪk zæk 23 zɐːk 5 zæɪk 5 

ZARSE zɐːs zɐːz zɐːz zɐːz zɐːs 35 zɐːz 6 zɐːrs 2 

ZAUSE zoːs zoːz zoːz zoːz zoːs 15 zæɔs 15 zoːz 10 

ZENGE zenʤ zeʒ zeʒ zenʤ zenʤ 33 zeŋ 3 zeŋg 3 

ZI zɑe zɪ zɪ zɪ ziː 36 zɑe 6 zɪ 2 

ZOOK zʉːk zʊk zʊk zʊk zʉːk 31 zʊk 14     

ZOOSE zʉːs zʉːz zʉːz zʉːz zʉːs 37 zʉːz 8     

ZOS zɔs zəʉz zəʉz zɔz zɔs 31 zɔz 10 zəʉs 2 
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Abstract 

Coltheart, Curtis, Atkins, and Haller (1993) described an algorithm for learning 

grapheme–phoneme correspondences (GPCs). When presented with written words paired 

with their correct pronunciations, the algorithm could deduce GPCs. This algorithm was not 

comprehensively tested by its creators. In the present study, we programmed a GPC Learning 

Model that was based on the earlier work of Coltheart et al., and tested it more 

comprehensively than the earlier model was tested. Results show that the GPC Learning 

Model is able to learn GPCs, but that it experiences a range of difficulties. These include that 

it is more prone to error when trained with multi-morphemic words, and also when single-

letter and multi-letter rules are learned in the same training phase. Its performance also 

deteriorates when trained with a realistic, token-based input corpus, as opposed to a type-

based corpus where each word is presented only once. Despite these challenges for the GPC 

Learning Model, its operation raises interesting possibilities regarding the interaction of 

morphemic structure and GPC learning, and regarding whether GPC learning should be 

sensitive to type-based or token-based information. 
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Introduction 

The dual-route cascaded model of reading aloud and word recognition (Coltheart, 

Rastle, Perry, Langdon, & Ziegler, 2001; "Dual-Route Cascaded Model 1.2.1," 2009), is a 

static model of skilled reading. By “static”, we mean that DRC does not model the acquisition 

of reading skill, just the cognitive mechanisms involved in skilled reading. DRC does not 

improve or learn with additional exposure to print. It has been pre-programmed by its creators 

with knowledge relevant to reading, such as a written and spoken word vocabulary, 

knowledge of letters, knowledge of graphemes and how the graphemes correspond to 

phonemes. 

That DRC does not explain the way people learn to read has been a point of ongoing 

criticism (e.g., Perry, Ziegler, & Zorzi, 2007; Seidenberg & Plaut, 2006). Despite this 

criticism DRC can account for a large range of empirical data regarding the way people read 

(Coltheart et al., 2001), and through examination of how the model performs when parts of it 

are lesioned, the DRC model offers an account of various types of acquired dyslexia 

(Coltheart, 2006; Coltheart, Saunders, & Tree, 2010). Due to its success in modelling these 

phenomena, DRC is regarded as a highly successful model of reading aloud and word 

recognition (e.g., Adelman, Marquis, Sabatos-DeVito, & Estes, in press; Protopapas & 

Nomikou, 2009; Sprenger-Charolles, Siegel, Jimenez, & Ziegler, 2011). 

Due in part to its success, a sensible approach to computationally modelling reading 

skill acquisition is to introduce learning to the DRC model, rather than start afresh in creating 

a new model. This article examines one possible approach to introducing learning to DRC, 

focussing specifically on the sublexical route. This approach is a model for learning grapheme 

identities (e.g., knowing that SH is a grapheme that corresponds to a single phoneme, and is 

present in a word like WISHED) and grapheme–phoneme correspondences (GPCs) (e.g., that 
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SH corresponds to /S/
1
). We define a grapheme as being either a letter or sequence of letters 

that corresponds to a single phoneme. 

Coltheart, Curtis, Atkins and Haller (1993) previously described an algorithm for 

learning graphemes and GPCs. This algorithm took a supervised learning approach to GPC 

learning, where the inputs to the algorithm are written words accompanied by their correct 

spoken pronunciation. The written word was input to the model as a string of alphabetic 

letters, and the corresponding spoken word was input to the model in the form of a string of 

phonemic symbols (e.g. /pEt/ for the word “pet”). The task performed by the algorithm was to 

analyse the written and spoken word strings, and determine which letters or groups of letters 

corresponded to each phoneme. It was trained using a corpus 2,897 words that was developed 

by Seidenberg and McClelland (1989) to train their connectionist model of reading. 

Seidenberg and McClelland indicate that “morphologically complex words” (p. 530) were 

removed from this corpus, suggesting it contained only mono-morphemic words. 

It is important to recognise that Coltheart et al. (1993)’s algorithm was not simply 

learning GPCs. It was also learning grapheme identities. Before a reader can make use of 

GPCs, they must decide what letters constitute graphemes. Their algorithm did not attempt to 

model the learning of grapheme parsing, and instead was pre-programmed with knowledge of 

which graphemes to apply and under what circumstances, similar to the way graphemes are 

parsed in DRC (Coltheart et al., 2001). Their algorithm also assumed knowledge of letter 

identities, and phoneme identities. Unfortunately, this algorithm is no longer available, having 

been programmed almost two decades ago. 

The aim of this research was to re-examine the learning algorithm proposed in 

Coltheart et al. (1993). This involved re-programming a version of the algorithm (hereafter 

                                                 
1
 A list of phonemic symbols used in this article is included in Appendix A. 
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referred to as the “GPC Learning Model”, or simply “the model”), based on the account 

provided in Coltheart et al. While we attempted to accurately recreate the original algorithm, 

this was challenging to do with only the written description available, so there were some 

differences between the present model and the original algorithm. 

The output of this new model is a set of GPC rules. These rules will be in a form that 

can be used in the existing most-current DRC model ("Dual-Route Cascaded Model 1.2.1," 

2009). We assessed the capacity of the GPC Learning Model in appropriately and plausibly 

learning GPCs via five measures: 1) comparing the accuracy of using the newly learned GPCs 

in DRC to the accuracy of DRC with its default GPCs, in naming words; 2) testing the GPCs 

learned against the empirical nonword naming data reported in Pritchard, Coltheart, 

Palethorpe, and Castles (2012); 3) testing whether the learned GPCs allow better nonword 

naming than DRC, or the connectionist dual process models (CDP+/CDP++) (Perry et al., 

2007; Perry, Ziegler, & Zorzi, 2010); 4) by inspecting the GPCs learned and observing 

whether any obviously incorrect GPCs are learned, and 5) by considering the psychological 

plausibility of the model, especially in light of previous criticism of Coltheart et al.’s original 

algorithm published in Andrews and Scarratt (1998). 

Design of the GPC learning algorithm 

The GPC Learning Model is based on an intuitively plausible, high-level 

psychological account of GPC learning: if a beginning reader is exposed to printed words, 

while also being provided with, or having knowledge of, the spoken words to which these 

printed words correspond, the reader can learn to recognise graphemes and deduce GPCs, if 

the reader already has knowledge of phoneme identities. For example, if a beginning reader is 

presented with the written word CAT, and also has knowledge that this corresponds to the 

spoken word /k{t/, then they might identify the possibility that C corresponds to /k/, A to /{/ 
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and T to /t/. After encountering many other words using these graphemes and phonemes, the 

beginning reader might increase their confidence that these three GPCs are reliable, to the 

point where the reader is able to apply these GPCs to sound out other words in which they are 

used, without supervision. This account of implicit GPC learning describes how children 

might acquire GPCs if they were taught under a whole language (Goodman, 1989) teaching 

regime, where there is less focus on explicit phonics instruction. 

Knowledge of the spoken word to which each written word corresponds is typically 

assumed to come via direct instruction, such as a teacher reading with a child and voicing the 

spoken word while pointing to the printed word. However, we make the point that the correct 

pronunciation of written words that is required for learning GPCs could also be obtained 

independently by the beginning reader via a separate cognitive mechanism, such as the lexical 

route proposed as part of the dual-route theory of reading (Baron & Strawson, 1976; Marshall 

& Newcombe, 1973), a route that is implemented in the DRC model. For example, a child 

who has already learned that the word CAT corresponds to /k{t/ and has memorised this 

written-word–spoken-word correspondence could then use this knowledge to deduce 

sublexical relationships such as GPCs.  

While this high-level account of GPC learning seems plausible, it is not sufficiently 

detailed to fully specify a computational model. A good deal of lower level detail is required 

to adequately computationally model an activity such as “deducing GPCs”. The GPC 

Learning Model described here provides one computational account of this lower-level detail. 

We now present a summary of how the new GPC Learning Model functions. 

The model’s operation consists of two stages, an “information gathering” stage, and a 

“rule consolidation” stage. In the information gathering stage the model is presented one by 

one with many inputs (the “input corpus”), where each input consists of a written-word–

spoken-word pair (e.g., CAT–/k{t/). All words used in the input corpus were monosyllabic in 
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the simulations conducted for this research. The model attempts to identify graphemes and 

GPCs in each input, and keeps track of the number of times it identifies a GPC as it proceeds 

through the input corpus. After the full corpus has been presented, the model will thus have 

developed a list of candidate GPCs, with a number associated with each one indicating the 

number of times that GPC was identified in the input corpus of word pairs. 

In the rule consolidation stage, the model examines its knowledge of GPCs, and 

makes changes, including: dropping (or forgetting, or ignoring) GPCs that have only been 

infrequently identified; modifying GPCs that apply to the same grapheme (e.g., if both C–/k/ 

and C–/s/ have been learned) by converting them to “context” rules, thereby specifying the 

circumstances under which each GPC should be applied; and extrapolating some rules so that 

they can be more broadly applied, if this will not result in a contention. These processes are 

now described in more detail. 

Information gathering stage 

The GPC Learning Model is “rule-based”, rather than connectionist (see Perry et al., 

2007 for an example of a connectionist approach to learning sublexical knowledge). The 

model identifies each input as being one of three types, and applies a particular procedure for 

each type. We now describe the three types of input and how each is processed. Note that 

while the processing steps describe parsing the stimuli to search for graphemes, these parsing 

procedures are exclusive to the GPC learning process, and are different to the pre-

programmed parsing procedures used in DRC to model reading aloud. 

Type 1: number of letters equals number of phonemes 

For inputs where the number of letters equals the number of phonemes, the model 

assumes that only single-letter graphemes are present, and that there is a one-to-one 

correspondence between graphemes and phonemes. For example, for CAT–/k{t/, the model 
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will identify this word-pair as the GPCs: C–/k/, A–/{/, T–/t/. There are three single-letter 

graphemes and three phonemes. 

Type 2: number of phonemes is less than the number of letters 

When there are fewer phonemes in the spoken word than there are letters in the written 

word part of the input, the model will deduce that a multi-letter grapheme must be present, 

and will search for it. This is done by identifying and incrementing the count for already 

known single-letter GPCs, and taking them out of the input. After this is done, if the 

remainder consists of only one phoneme and some letters, the model will deduce that the 

letters correspond to the phoneme. For example, if the model is presented with the input 

THAT–/D{t/, and has already seen A–/{/ and T–/t/ (perhaps from previously encountering 

CAT–/k{t/), the model will identify and remove the A and T GPCs, leaving an orthographic 

remainder of TH, and a phonological remainder of /D/. It will deduce that TH corresponds to 

/D/. A more detailed computational account of how this is done is provided in Coltheart et al. 

(1993). Note that the GPC Learning Model can cope with multi-letter graphemes that are also 

split graphemes (e.g., A.E–/1/ in the word BAKE), without requiring any logic specific to 

split graphemes. For such items, once all of the single-letter GPCs have been identified, the 

remainder still consists of a multi-letter grapheme and a single phoneme, and the split 

grapheme is learned as corresponding to the single phoneme. The GPC Learning Model can 

also cope with silent letters. If, after matching off all of the single-letter GPCs there is a 

remainder letter but no remainder phoneme, the model will deduce that a silent letter must be 

present. The remainder letter will be paired off with an adjacent letter to form a digraph, 

corresponding to the phoneme to which the adjacent letter corresponds. For example, when 

learning from the input KNIT–/nIt/, the N, I, and T are matched to the phonemes, leaving the 

K as an orthographic remainder with no phonemic remainder. The K is then grouped with the 

adjacent letter N, and the GPC KN–/n/ will be learned. This process also applies for learning 

geminate consonants, such as FF–/f/ in the word PUFF. 
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Note also that the GPC Learning Model does not necessarily learn from every input. If 

the model has not already learned the single-letter graphemes present in an input containing a 

multi-letter grapheme, it will be unable to reduce the remainder to a single phoneme. For 

example, if T–/t/ had not yet been identified, the remainder for THAT–/D{t/after taking out 

the already known A–/{/ GPC would be THT–/Dt/, which has more than one phoneme. Under 

such circumstances, the model would not be able to learn from this input. Similarly, if there is 

more than one multi-letter grapheme the model will not learn from the input. For example, for 

an input such as CHAIN–/J1n/, the model will not be able to remove known single-letter 

GPCs in a way that will result in a single phoneme in the remainder (after removing N–/n/, 

CHAI–/J1/ remains). Although the model does not learn from such inputs, it does not seem 

reasonable that beginning readers would fail to learn anything from such words. This is a 

shortcoming that will hopefully be corrected in future iterations of the GPC Learning Model, 

but for now, we hypothesise that there will be sufficient content in the input items that do not 

contain more than one multi-letter grapheme for the model to learn. 

In summary, type 2 inputs, where there are fewer phonemes in the spoken word than 

letters in the written word, will only result in a learning experience if all of the single-letter 

GPCs in the input are already known, and if the input does not contain more than one multi-

letter grapheme. 

Type 3: words containing the letter X 

Nearly all inputs will be either type 1 (where the number of letters equals the number 

of phonemes) or type 2 (where there are more letters than phonemes). However, there is also 

the comparatively uncommon occurrence of input word pairs where there are more phonemes 

than letters. These will all involve the letter X. Inputs that include X are a special case, since 

X is the only grapheme in English that corresponds to more than one phoneme (X–/ks/). This 

means that words containing X might actually contain more phonemes than letters, (e.g., 
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BOX–/bQks/ has three letters and four phonemes). The GPC Learning Model needs to 

identify whether the input contains the letter X, and, if so, it will process the input only if the 

spoken word has exactly one more phoneme than there are letters in the input. If this is the 

case, all of the known single-letter GPCs are identified and removed, and the remainder 

should be the single letter X and two phonemes, which are then learned as a GPC. For inputs 

that contain the letter X and at least one multi-letter grapheme (e.g. COAX–/k5ks/), no 

learning will occur, and inputs where not all of the other single letter GPCs are as yet learned 

will also not result in any learning. We note that searching the input for the letter X happens 

prior to identifying whether the input is of type 1 or type 2. This means that inputs such as 

COAX which include the letter X and where the number of letters equals the number of 

phonemes will be identified as type 3 inputs, and not as type 1 inputs. 

Rule consolidation stage 

After the information gathering stage, the GPC Learning Model will have in memory a 

list of GPCs that it has identified, with a count next to each GPC of how many times that 

particular GPC has been identified over the course of the information gathering stage. This 

list comprises the candidate set of GPCs, which are now refined. The following refinement 

steps occur: a) delete low frequency rules; b) form context-sensitive rules, and c) extrapolate 

rules. These steps are explained below. 

Delete low frequency rules 

Written English is characterised by a high number of irregular words. By this, we 

mean that, while many words in English seem to be pronounced according to clear grapheme–

phoneme correspondences, there are many exceptions to this. These are termed “irregular 

words”. For example, the grapheme CH is typically pronounced as /J/, but in the word CHEF 

it is pronounced as /S/. The GPC Learning Model will identify many such pronunciations as it 

proceeds through the information gathering stage. If a particular GPC is identified in less-
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than-a-threshold number of instances (referred to as “low frequency” GPCs here on in) during 

the information gathering stage, then the GPC is dropped from the set. The threshold number 

of instances to avoid being dropped is set by the experimenter as a parameter choice. 

Form context-sensitive rules 

Even after the low frequency rules have been deleted, the draft list of GPCs may still 

contain contentious rules. These are rules that apply to the same grapheme but indicate a 

correspondence to different phonemes. For example, there are many words where C 

corresponds to /k/ (e.g., COT and CAT) and many words where C corresponds to /s/ (e.g., 

CELL and CITE). So it is possible that both correspondences will have been identified with 

sufficiently high frequency to avoid being dropped. During the formation-of-context-

sensitive-rules step, the GPC Learning Model will systematically go through its draft list of 

GPCs, and group the GPCs into small sets, where each set consists of GPCs all applying to 

the same grapheme. For each small set, the GPC that will be regarded as the default rule is the 

one that was observed the most number of times during the information gathering stage. For 

the other GPCs in each set, if their frequency relative to the GPC with maximum frequency is 

less than a value determined by the experimenter and specified as a parameter choice, then 

they are dropped from the list. If any of the non-highest-frequency rules in a set are above the 

relative frequency cut-off, then the model will take the one with the highest frequency, and 

attempt to form a context-sensitive rule for it. To do this, the model will go back and loop 

through the full list of inputs in the input corpus, looking for the instances when the GPC 

under consideration was identified. Whenever it finds an input where this is the case, it will 

take note of the letters that precede and follow the letter comprising the GPC, and record how 

many times it notices the GPC with particular preceding and following letters. After doing 

this, the model will have a list of preceding and following letters, with a frequency count for 

each letter. If one particular letter is seen to precede or follow the rule with a frequency that 

dominates the frequency of the other preceding or following letters (with “dominance” 
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meaning it has a frequency relative to the frequency of other preceding/following letters 

greater than the value set by the modeller via a parameter value choice) then a context-

sensitive rule is formed. 

The formation of context rules is best illustrated with an example: 

Suppose we choose the following parameter values: 

Absolute frequency threshold: 2 

Relative context frequency threshold: 0.15 

Context letter dominance threshold: 2 

Suppose the algorithm learned the following rules in the information gathering stage, 

and then grouped them into a set during the form-context-rules step because they all apply to 

the single-letter grapheme C: 

C–/k/, frequency 160 

C–/s/, frequency 130 

C–/J/, frequency 40 

C–/S/, frequency 16 

C–/I/, frequency 1 

The rule C–/I/ has a frequency less than the absolute frequency threshold, so it will be 

discarded, leaving four GPCs in the set. 

The algorithm will try and form a context sensitive rule for all rules apart from the one 

with highest frequency, which is considered a default rule. 

C–/k/ is the highest frequency rule, so it is treated as the default rule. 
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C–/S/ is fairly low frequency, and its frequency relative to the highest frequency rule 

is less than the relative context frequency threshold. So it, too, will be discarded. That leaves 

C–/s/, and C–/J/ as rules that may have context sensitivities. 

The model will now re-examine the complete input corpus for any words that contain 

the rule C–/s/, and compiles a list of all the letters that precede or follow the letter C on inputs 

where this rule was identified. Assume that the model notices that the most frequent letter 

either preceding or following the GPC C–/s/ is that the C is followed by an E (as in the word 

CELL–/sEl/), and that this is seen 80 times. The model also notices that the rule is followed 

by an I 30 times (as in the word CITE–/s2t/). 

Since the E is seen following the rule the most times, it is the prime candidate for 

creation of a context-sensitive GPC. The E dominates the I by more than the context letter 

dominance parameter, and so the following context GPC is formed: C[E]–/s/. This notation 

means that when a C is followed by an E, pronounce it as /s/. 

The same process is applied for C–/J/, and a context rule will also be formed for this 

rule, if a dominant context is discovered. If no dominant context is discovered, then no 

context rule will be formed, and the rule will be discarded. 

Note: even though the following rules should also be formed C[I]–/s/ and C[Y]–/s/, 

the model will only learn the context sensitivity for the E, the following contextual letter that 

dominates the other potential contextual letters I or Y. This is a clear shortcoming of the 

model that we hope to correct in future iterations. One way to correct this would be to 

dispense with the idea of contextual dominance, and instead make a rule for any contextual 

conditions that occur a sufficient number of times. 
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Extrapolate rules 

In order to explain the extrapolate rules step, we must first discuss GPC position, 

which we have avoided til now for simplicity. The DRC model understands GPCs as being 

the correspondence between a grapheme and phoneme, where the grapheme occurs at a 

particular position within the word. DRC identifies graphemes in three separate positions: 

beginning of a word (the first grapheme), end of a word (the last grapheme), and the middle 

of a word (all other positions)
1
. The same grapheme corresponding to the same phoneme but 

in a different position is considered a separate GPC. For example, B–/b/ in the beginning 

position is one GPC, and B–/b/ in the end position is another GPC
2
. 

During the extrapolate rules step, the model will identify graphemes for which there 

are GPCs in two positions, but no GPC for that grapheme in the 3
rd

 position. For any such 

graphemes that are found, if the grapheme corresponds to the same phoneme in the two 

positions where GPCs have already been identified, then this correspondence will be 

extrapolated to the 3
rd

 position. For example, if OO–/u/ was identified in the middle and end 

positions during the information gathering stage, then, assuming that no rule was previously 

identified for OO in the beginning position, OO–/u/ will be extrapolated to the beginning 

position. 

Learning single-letter and multi-letter graphemes in different phases 

Our description of the learning of multi-letter graphemes makes clear that, in order to 

learn a multi-letter grapheme from a particular input item, the single-letter graphemes in that 

input item must have first been identified. This raises the question of timing—should the 

                                                 
1
 There is some ambiguity about the position of split graphemes, since they include parts that seem to be 

in multiple positions (e.g., A.E in the word BAKE seems to occupy the middle position with the A, but the end 

position with the E. This ambiguity is resolved by taking the position as corresponding to the location of the 

phoneme to which the split grapheme corresponds. For example, in BAKE–/b1k/ the split grapheme corresponds 

to the /1/ phoneme, which is in the middle of the word. Therefore the applicable grapheme is A.E in the middle 

position, not the end position. 
2
 Perusing DRC’s “gpcrules” file will reveal that, where the same grapheme corresponds to the same 

phoneme in the beginning, middle and end positions, the relevant entries in the file will be combined into a 

single entry listed as an “all positions” rule. Even though it is listed as a single line item in DRC’s gpcrules file, 

this single line can still be understood as three separate GPCs, one for each position. 
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model even attempt to learn multi-letter rules before it has been well-trained on single-letter 

rules? It seems plausible that beginning readers might learn single-letter GPCs first, but there 

would likely still be some overlap. For example, TH–/T/ is plausibly acquired prior to X–/ks/. 

One approach to timing would be to allow the model to proceed once through the 

entire input corpus. It will of course fail to learn any multi-letter graphemes initially, but, as 

more and more single-letter graphemes are identified, it will be able to slowly begin learning 

multi-letter graphemes. After proceeding through the input corpus one or more times (we will 

refer to each presentation of the corpus form hereon as an “epoch”, which is the term typically 

used in connectionist model training), a single rule consolidation stage is then performed. 

An alternative approach is to divide learning into two phases. During the first phase, 

the model might be presented with each written-word–spoken-word pair in the input corpus 

for one or more epochs, and only attempt to learn single letter rules, and then perform rule 

consolidation on these single-letter GPCs. Following this, a second phase might occur, where 

the model again receives one or more epochs of the input corpus, this time with the capacity 

to also learn multi-letter GPCs, and a second rule consolidation stage occurs for this second 

phase. Very similar to this approach is the idea of dividing the input corpus into words that 

only contain words with simple single-letter graphemes, which are presented in one phase, 

and words that contain at least one multi-letter grapheme, which are presented in the second 

phase. That is, the input corpus is altered from phase to phase, instead of modifying what the 

model learns from phase to phase. However, doing this is almost identical to the model only 

learning single-letter rules from the entire input corpus, since the model will ignore any words 

that contain multi-letter rules while doing this. For this reason we will not separately consider 

the case of dividing the input corpus, and will only consider an approach where the model 

learns single-letter GPCs from the one entire corpus in the first phase, and multi-letter GPCs 

from the same corpus in the second phase. 
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The alternative approach of dividing learning into two phases seems intuitively to 

offer greater potential for effective GPC learning, but it may be unnecessary and may also 

raise questions of psychological and behavioural plausibility. Coltheart et al.’s original 

algorithm was only tested using a two-phase approach, though they suggested their algorithm 

should still work appropriately if single-letter and multi-letter GPC learning were combined 

into a single phase. We will test the impact of trying to learn all GPCs in a single phase versus 

learning single-letter and multi-letter GPCs in separate phases as part of this research. Now 

we turn to testing the newly programmed GPC Learning Model. 

Word-reading simulations 

Our aims in conducting simulations with this new version of the GPC learning 

algorithm were as follows. Firstly, to determine whether the new model could accurately and 

appropriately learn GPCs, and match the results reported in Coltheart et al. (1993) for the 

previous model on which it is based. Secondly, to investigate how altering the training corpus 

might affect learning. We test a training corpus with multi-morphemic words and one with 

only mono-morphemic words, and we also test a type-based training corpus where each word 

is presented only once, versus a token-based training corpus where each word is presented a 

number of times according to its frequency. And finally, we aim to examine the impact on 

performance of dividing learning up into different phases. 

A number of preliminary, exploratory simulations were first conducted to determine a 

working set of parameter values. The best results (in terms of the percentage of words named 

correctly using the learned GPCs) were obtained by using the following parameter settings: 

Minimum absolute frequency threshold: 2 

Minimum relative frequency threshold: 0.09 
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Minimum contextual dominance:  2 

These parameter settings were used in all simulations, unless otherwise indicated. 

Simulation 1: performance with multi-morphemic words 

This simulation aims to test the performance of the GPC Learning Model using a 

monosyllabic input corpus that includes multi-morphemic words (e.g., words such as 

STACKED). 

Input corpus 

The input corpus for simulation 1 is comprised of all the 8,017 monosyllabic words in 

DRC-1.2.1’s vocabulary (nine 9-letter words were removed, since they are too long to be 

processed by an 8-letter-slot model such as DRC, and DRC-1.2.1 ignores them). This includes 

the multiple pronunciations of homographs and a large number of monosyllabic but multi-

morphemic words, such as EATS, CHECKED, and YIELDS. The order of words in the 

corpus was randomised before being used to train the GPC Learning Model. 

Procedure 

The GPC Learning Model was trained using a two-phase process: an information 

gathering stage where only single-letter GPCs are learned, and the input corpus is presented 

once. Following this a rule consolidation stage is performed. This is the first phase. In the 

second phase, an information gathering stage is performed where the input corpus is again 

presented once, but only multi-letter GPCs are learned. This is followed by a second and final 

rule consolidation stage. This is a similar modelling procedure to that used in the previous 

model of Coltheart et al. (1993). 

The output of the learning model is a set of GPC rules. This set of GPC rules is then 

used in the DRC model, in place of DRC’s default, pre-programmed set of GPC rules. The 

DRC model with the newly generated GPC rules is used to model sublexical-route-only 
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responses to all of the words in the input corpus. By “sublexical-route-only” we mean that 

DRC’s lexical route is not used in the simulations, and the output to each stimulus is 

generated solely by the sublexical route
1
. This is because we are testing for differences in 

sublexical route output as a result of different GPC rules, and lexical route involvement would 

obscure these differences. The output of DRC with the generated set of GPC rules is 

compared to: 1) the correct pronunciations for the words in the corpus, and 2) DRC’s 

sublexical-route-only output to the corpus while using its original set of GPC rules. 

Results and discussion of simulation 1 

The results for simulation 1 (in addition to the results for simulations 2, 3 and 4) are 

presented in Table 1. This table also includes results for testing DRC with its default set of 

GPCs, and also the results reported in Coltheart et al. (1993) for their model, to aid in 

benchmarking performance. Note that the comparison to Coltheart et al.’s earlier model 

should not be considered too precise, due to the use of different word corpuses. 

We first note that none of the model results presented in Table 1, not even for DRC-

1.2.1 using its default GPCs, gets 100% of the words correct. This is simply because English 

is irregular, and it is central to dual-route theory that the sublexical route should be unable to 

generate correct pronunciations for every word. Using its default GPCs, DRC-1.2.1 does 

pronounce all of the regular words correctly, and none of the irregular words. This is because 

we define “regular” words as those that DRC-1.2.1’s sublexical route can name correctly. 

The GPC Learning Model does not perform well when the input corpus includes 

multi-morphemic words (Simulation 1). It performs substantially worse than the Coltheart et 

al. model, and substantially worse than DRC’s default GPCs. It seems clear that this 

difference is more than just random order effects, due to the magnitude of difference in 

performance. So what explains these differences? 

                                                 
1
 DRC-1.2.1 has a built-in mechanism to quickly test non-lexical-route only responses, using the 

“- -reg" argument when initiating a simulation 
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Table 1- Simulation results for simulations 1 to 4. 

Model Input corpus Testing corpus 

% correct % match to 

DRC-1.2.1's 

default 

GPCs all words 
regular 

words 

irregular 

words 

DRC-1.2.1 

default GPCs 

8,017 

multimorph. 

8,017 

multimorph. 
83.0 100.0 0.0 - 

DRC-1.2.1 

default GPCs 

(no outrules) 

8,017 

multimorph. 

8,017 

multimorph. 
58.9 70.9 0.1 71.9 

DRC-1.2.1 

default GPCs 

3,540 

monomorph. 

3,540 

monomorph. 
83.7 100.0 0.0 - 

Coltheart et al. 

(1993) 

2,997 

monomorph. 

2,997 

monomorph. 
78.2 - - - 

Simulation 1 
8,017 

multimorph. 

8,017 

multimorph. 
52.7 59.4 19.6 55.1 

Simulation 1 

(+ output rules) 

8,017 

multimorph. 

8,017 

multimorph. 
59.1 66.6 22.6 61.5 

Simulation 2 
3,540 

monomorph. 

3,540 

monomorph. 
77.0 88.2 19.8 82.9 

Simulation 2 

(+ phonotactic 

outrules) 

3,540 

monomorph. 

3,540 

monomorph. 
77.3 88.6 19.8 83.2 

Simulation 2 

(reordered) 

3,540 

monomorph. 

(reordered) 

3,540 

monomorph. 
78.0 88.9 22.0 83.4 

Simulation 3, 

Variation 1 

3,540 

monomorph. 

3,540 

monomorph. 
61.8 69.4 22.7 65.2 

Simulation 3, 

Variation 2 

3,540 

monomorph. 

3,540 

monomorph. 
71.2 80.7 22.5 76.2 

Simulation 4 
102,574 tokens, 

monomorph. 

3,540 

monomorph. 
62.5 69.0 29.6 62.8 

Simulation 4 

(alt. freq. cutoff) 

102,574 tokens, 

monomorph. 

3,540 

monomorph. 
62.1 69.1 26.2 63.4 

 

The new GPC Learning Model, when trained with the large 8,017 word input corpus, 

learns many strange rules. For example, rules learned include <end position> PED - /t/ or 

<end position> WED - /d/. Counter-intuitive rules like these are acquired from multi-

morphemic words in the input corpus like STOPPED - /stQpt/ or ROWED - /r5d/, but would 

cause problems when reading aloud words like SPED or WED. The reduced corpus of words 

used by Coltheart et al. to train the earlier algorithm omitted morphologically complex words, 

so presumably the earlier GPC learning algorithm avoided learning strange rules as a result. 
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Another reason for its seemingly poor performance is that DRC-1.2.1’s default GPCs 

include “output” rules. These include both phonotactic constraint rules (e.g., when an end-

position /d/ is preceded by a /p/, /k/, /S/ or /J/ it is pronounced as /t/), and morphophonemic 

rules (e.g., when a final /s/ is preceded by an /n/, it should instead be pronounced as /z/) 

(Coltheart et al., 2001). These rules will have a great impact on the successful pronunciation 

of multi-morphemic rules, which are comprised largely of plural or past-tense words ending 

in -/d/ or -/s/. When DRC-1.2.1’s output rules were added to the set of learned GPCs and this 

new set tested, performance was greatly improved, and when DRC-1.2.1’s default rules were 

tested with all output rules removed, its performance dropped substantially. These results 

highlight the importance of these output rules in correctly reading aloud many of the multi-

morphemic words in the monosyllabic input corpus. 

To further test whether the complications introduced by multi-morphemic words were 

indeed responsible for the overall low percentage of words read correctly, we created and 

tested a monomorphemic monosyllabic corpus, as described in Simulation 2. 

Simulation 2: performance with monomorphemic words 

This simulation aimed to test the performance of the GPC Learning Model using an 

input corpus consisting of only mono-morphemic monosyllabic words, to avoid the issues 

observed with simulation 1. The impact of changing word order in the input corpus was also 

investigated, as was the inclusion of phonotactic constraints. 

Input corpus 

The input corpus for Simulation 2 was comprised of 3,540 mono-morphemic 

monosyllabic words obtained from CELEX (Baayen, Piepenbrock, & Gulikers, 1995), and 

using British English pronunciations compatible with DRC-1.2.1. 
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Procedure 

The same two-phase training process as in simulation 1 was used, training single-letter 

GPCs first. The performance of the learned GPCs was again tested by using these GPCs in 

conjunction with the DRC model. The words tested were the 3,540 monomorphemic words 

used in the input corpus for training. That is, as well as being trained on a different corpus to 

simulation 1, the output of the GPC Learning Model for simulation 2 was also tested on this 

different corpus. 

Results and discussion of simulation 2 

The results (presented in Table 1) show the GPC Learning Model performs similarly 

to the results reported in Coltheart et al. (1993) in terms of overall word pronunciation 

accuracy, when trained and tested on the mono-morphemic and mono-syllabic input corpus. 

This result suggests that the poor performance of the GPC Learning Model in Simulation 1 

was a result of the use of multi-morphemic words in the input corpus, which lead to 

dysfunctional GPCs being learned. Despite the improved result, beginning readers are 

certainly not limited to mono-morphemic words as was the case in this simulation, so the 

challenge of appropriate learning in a multi-morphemic environment remains. 

In considering the performance of the GPC rules determined by the GPC Learning 

Model relative to DRC’s static, pre-programmed GPCs, we again considered DRC’s output 

rules. It is justifiable that the phonotactic constraint rules (though not the morpho-phonemic 

rules) could be included with the rules learned by the GPC learning algorithm, since 

phonotactic constraints aren’t learned, but are a product of our articulatory anatomy. For this 

reason, we also tested the GPC rules learned in Simulation 2 with phonotactic output rules 

from DRC-1.2.1 included. This, as expected, resulted in a small improvement in performance. 

The results of this additional simulation are also included in Table 1. 
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To explore the impact of changing the order of words in the input corpus, we also re-

ran simulation 2 using the same input corpus, but with the order of words in the corpus 

randomly altered. The resulting set of rules generated performed slightly better than the rules 

generated with the initial ordering. These results suggest that the order of rule acquisition is 

somewhat dependent on the order of words in the input corpus, and changing the order of 

words will change rules acquired, even if by only a small amount. 

Simulation 3: testing simultaneous learning of single- and multi-letter GPCs 

Coltheart et al. (1993) suggested that learning single-letter GPCs in a separate pass 

prior to learning multi-letter GPCs was not essential. However, they did not test this 

approach. The aim of simulation 3 was to test whether the GPC Learning Model can maintain 

performance if multi-letter GPCs are learned in the same phase as single-letter GPCs. 

Input corpus 

The same 3,540 mono-morphemic, monosyllabic input corpus as was used in 

simulation 2. 

Procedure 

Two training variations were tested: 

Variation 1: Single-phase learning, one rule-consolidation step: the model conducted 

one information gathering stage, where the input corpus was presented for two epochs, and 

the model attempted to learn both single-letter and multi-letter GPCs during this one stage. 

Following this, a single rule-consolidation stage was performed. 

Variation 2: “Repeated-phase” mixed learning, with two information gathering stages, 

and two rule consolidation stages: the model was presented with the input corpus for a single 

epoch in an information-gathering stage, and attempted to learn both single-letter and multi-

letter GPCs simultaneously during this stage. After this, a rule-consolidation stage was 
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performed, which removes infrequent rules, extrapolates rules, and creates context rules. A 

second information gathering stage was then performed for one epoch, and again, both single-

letter and multi-letter GPCs could be learned in this stage. Finally, this was followed by a 

second rule-consolidation stage. In this variation, the model had the opportunity to 

consolidate rules after the first information gathering phase, to see if this would aid the 

learning of additional rules in the repeated information gathering phase. 

Both variations were tested similarly to simulation 2, where the generated GPC rules 

were used in conjunction with the DRC model to generate pronunciations for the 3,540 mono-

morphemic and monosyllabic words in the input corpus. 

Results and discussion of simulation 3 

Both variations incurred a drop in performance relative to the two-phase training 

approach used in simulation 2, though variation 1 was much worse than variation 2. This 

demonstrates that, for the GPC Learning Model, there is benefit in breaking learning up into 

different phases. Even if single-letter and multi-letter GPCs are learned concurrently, learning 

is improved if the model has an opportunity to consolidate its learning from the first pass 

through the input corpus, extrapolate some rules and learn context rules, before proceeding 

through a second pass of the input corpus. These results are in partial disagreement with the 

suggestion in Coltheart et al. (1993), that single-letter and multi-letter GPCs could be learned 

concurrently. GPCs can certainly be learned when single-letter and multi-letter GPCs are 

learned concurrently, but the number of words pronounced correctly with the GPCs learned 

decreases. 

Simulation 4: token-based learning 

In the previous simulations each word was presented a single time. We characterise 

this as “type-based” learning, because the model is exposed to different word types, without 

receiving any information about which words occur more commonly in standard printed texts. 
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However, beginning readers are not exposed to each word once when learning. Instead, they 

may see some words many times (e.g. a very frequent word such as THE) and some words 

they may see only very rarely (e.g., VAUNT). We characterise learning from words based on 

frequency as “token-based” learning. This kind of learning would present the model with 

some indication of the frequency of each word, perhaps by presenting frequent words multiple 

times. 

The nature of the input corpus has implications for the GPC Learning Model, because 

the GPC Learning Model discards rules that are infrequently observed. Also, when two rules 

conflict, the GPC Learning Model will take the rule it has observed most often as the default 

rule, and attempt to make a context rule out of the other. So a rule that is observed 

infrequently with a type-based input corpus might get discarded, but that same rule might end 

up being retained if the input corpus is token-based. For example, TH in the beginning 

position most frequently corresponds to the unvoiced /T/ (as in a word like THIN) when 

considering words by type, but for token-based learning, the high frequency of function words 

using voiced TH (as in words like THE, THEN and THAT) may mean that TH–/D/ would be 

seen more often (Campbell & Besner, 1981). 

The aim of Simulation 4 was to investigate whether there are any differences in 

performance when a token-based input corpus was used relative to a type-based input corpus. 

Input corpus 

Starting with the 3,540-word mono-morphemic input corpus from Simulation 2, we 

prepared a token-based corpus. This was done by including each word a number of times 

equal to its orthographic frequency (as reported in CELEX (Baayen et al., 1995)), divided by 

100, rounding up, and adding 1. These manipulations ensure that the number of tokens in the 

final corpus would not be impractically huge, while ensuring that each of the 3,540 words was 

still presented at least once. The rounding and adding of 1 slightly distorted the frequency 
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distribution, mainly by making extremely infrequent words seem slightly more frequent, but 

this was necessary to keep the corpus to a manageable size, while still ensuring that each 

word was presented at least once. There were 102,574 word tokens in the final corpus, 

derived from the 3,540 word types. The order of these 102,574 word tokens was randomised. 

The word presented the most times was THE, which was presented 10,330 times. One-

hundred-and-sixty of the 3,540 words types were presented only once (e.g., SCULPT was 

presented only once). The mean number of presentations for any particular word was M = 

29.0, and SD = 280.3. The median was two presentations. 

Procedure 

Two variations were simulated, both using two-phase learning with single-letter GPCs 

learned first, and multi-letter GPCs learned in the second phase, as per Simulations 1 and 2. 

Variation 1: uses the default GPC Learning Model parameters, as for previous 

simulations. 

Variation 2: used an increased minimum absolute frequency threshold value of 4. We 

tested this variation since the large number of words presented meant that the model was 

seeing many rules more often than in the previous simulations, and so it is possible that 

increasing this minimum threshold could help to remove problematic low frequency rules that 

are observed more than twice within the large input corpus. 

While the variations were trained on a token-based input corpus, they were tested on 

each word just once using the 3,540 word type-based input corpus. 

Results and discussion 

Both variations performed worse than the type-based learning model of Simulation 2. 

Variation 2 performed slightly worse than Variation 1, indicating that even some of the very 

low frequency rules learned by Variation 1 but removed for Variation 2 were useful in correct 
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reading aloud. These results suggest that GPC knowledge may not be best learned by a 

mechanism that is sensitive to word frequency. Rather, it seems that GPCs might be better 

derived from word types. 

Nonword reading 

The results reported in the simulations all focus on the word-reading performance of 

DRC’s sublexical route only, using a set of GPCs learned by the GPC Learning Model. 

However, given the dominance of DRC’s lexical route in determining the pronunciation of 

word stimuli, the differences highlighted between the various model variations may possibly 

not result in problems with word reading aloud accuracy when both cognitive routes 

contribute to the response. A clearer measure of GPC acquisition accuracy would be to assess 

the performance of the model variations against empirical data on how people pronounce 

nonwords. This would better isolate the action of the sublexical route, since the lexical route 

in dual-route models is typically not heavily involved in nonword pronunciation. 

Empirical data on nonword pronunciation was recently published in Pritchard et al. 

(2012). They presented 412 nonwords to 45 participants for the purposes of obtaining data to 

adjudicate between the nonword naming performance of DRC-1.2.1, and the connectionist 

dual-process models, CDP+ and CDP++ (Perry et al., 2007, 2010). 

We used the GPC rules from simulation 2 (without adding the phonotactic rules, and 

with the 1
st
 randomised order, rather than the 2

nd
 randomised order) to simulate reading of 

these 412 nonwords, then compared the results to those reported for the models in Pritchard et 

al. Results are displayed in Table 2. 
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Table 2 – Nonword reading performance. Note. DRC medians both by subject and by item (a) are 

significantly greater than the medians of the GPC Learning Model (d), p < .001. GPC Learning Model 

medians both by subject and by item (d) are significantly greater than the medians of the CDP+ model 

(b), p < .001. The GPC Learning Model median (d) by subject is significantly greater than the CDP++ 

model median (c), p < .001, however, by items, there is no significant difference between the GPC 

Learning Model median (d), and the CDP++ median (c). The Wilcoxon signed-rank non-parametric 

test was used for significance testing, due to the non-normality of the data. 

Summary statistics DRC default CDP+ CDP++ 

GPC 

Learning 

Model 

Percentage of nonwords in which a model’s response matches: 

The most frequent participant response 73.5 12.1 37.6 40.5 

None of the participants 1.5 49.0 26.9 42.2 

By Subject: Percentage of nonwords for which a participant matches a model 

Minimum 29.3 4.9 17.8 18.5 

Maximum 68.2 16.2 38.5 42.2 

M 53.0 11.3 30.1 32.9 

SD 9.0 2.5 4.4 4.9 

Mdn 52.7a 11.4b 30.8c 33.1d 

By Item: Percentage of participants who match a model for a given nonword 

Minimum 0.0 0.0 0.0 0.0 

Maximum 100.0 100.0 100.0 100.0 

M 52.8 11.2 30.0 30.7 

SD 28.3 18.5 32.3 34.6 

Mdn 53.3a 2.2b 15.7c 13.6d 

 

The results indicated that the learned GPC rules were less suitable for nonword 

naming than DRC’s default rules, but achieved better nonword naming accuracy than the 

CDP+ model, and comparable—if not slightly better—accuracy when compared to CDP++. 

By subjects, the median percentage of the 412 nonwords for which DRC with its default rules 

agreed with a participant was significantly greater than the median percentage of nonwords 

where DRC using the GPC Learning Model’s rules agreed with a participant, z = 5.8, 

p < .001, r = .61. However, DRC using the GPC Learning Model’s rules had a significantly 
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higher by-subjects median than either the CDP+ model (z = 5.8, p < .001, r = .61), or the 

CDP++ model (z = 4.1, p < .001, r = .43). The by-subjects minimums and maximums also 

indicate that even the participant who least agreed with the GPC Learning Model’s rules 

(agreed on 18.5% of nonword pronunciations) still matched the GPC Learning Model more 

than any participant matched the CDP+ model (the participant who most agreed with CDP+ 

matched its pronunciation for 16.2% of the nonwords). By items, the median percentage of 

participants agreeing with DRC with its default rules on a given nonword was significantly 

greater than the percentage agreeing with DRC using the GPC Learning Model’s rules, 

z = 11.5, p < .001, r = 0.40. However, DRC using the GPC Learning Model’s rules had a 

significantly higher by-items median than the CDP+ model (z = 8.1, p < .001, r = .28). There 

was no significant difference between the by-items medians of the CDP++ model and the 

GPC Learning Model rules. 

General discussion 

Exploring the rules learned 

We explored the rules learned by the model in Simulation 2 (without phonotactic rules, and 

on the first randomised input corpus ordering). A full list of these rules is provided in 

Appendix B. Most of the rules seem straightforward and uncontroversial. However, it is easy 

to see why the GPC Learning Model seems to do reasonably well when its output is used to 

pronounce words, compared to nonwords. It learns some strange rules, for example 

<beginning position> O[N]–/w/. Presumably, this rule is acquired from word-pairs such as 

ONE–/wVn/ and ONCE–/wVns/. Given there are only three words beginning with O 

followed by N in the mono-morphemic and monosyllabic corpus used to test this model, it is 

clear that this odd rule is “regular” in a domain restricted to this corpus. However, when 

pronouncing nonwords such as ONT or ONCH, it seems unlikely that a reader would employ 
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this rule to produce /wnt/ and /wnJ/ or even /wVnt/ and /wVnJ/ (the latter two are not 

pronounced by the model because it learns to always pronounce N as /n/, and the occurrence 

of N–/V/ in words like ONE is not frequent enough to avoid being dropped.) Similarly, 

<middle position> AL–/#/ seems a strange rule, acquired from words such as CALM–/k#m/ 

and PALM–/p#m/. While this might lead to some words being incorrectly pronounced (e.g., 

SALT is pronounced using the model’s rules as /s#t/), many words will still be pronounced 

correctly. Again, while this might be regarded as the model’s idea of regularity when 

considering words, the problem becomes clearer when nonword pronunciation is examined. 

For example, using this rule, DRC using the generated GPCs pronounces DWALP as /dw#p/, 

a pronunciation that none of the 45 participants produced. Another example of a strange rule 

is <middle position> O.B–/u/, presumably from a words like TOMB and WOMB. 

The learning of counter-intuitive rules like these may reflect a shortcoming in the GPC 

Learning Model. This shortcoming might be in the type of training (word-based training, 

rather than training in explicit phonics), or it may be a shortcoming in the procedures of the 

algorithm itself. Increasing the cut-off frequency to drop these strange rules (which are 

typically only observed infrequently) is no solution, since many other low frequency rules 

learned by the model are valuable, and if these rules were dropped, performance would be 

negatively impacted. It seems that, if we are to accept that the cognition of reading involves 

learning GPCs in a manner analogous to the GPC Learning Model, people must retain certain 

GPCs despite them being infrequently used, while still rejecting other GPCs of similarly low 

frequency. 

Another interesting aspect of the learned set of rules concerns middle-position rules 

and multi-morphemic words, as illustrated with the following example. The GPC Learning 

Model acquires <middle position> IE–/i/, and <end position> IE–/2/. In comparison, DRC’s 

default rules include only <all positions> IE–/2/. Presumably, DRC includes only the one 
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pronunciation in all positions because there are many plural and past tense words in DRC’s 

vocabulary where IE in the middle of the word is pronounced as /2/ (e.g., DIES, CRIED, 

LIED, PIES). So DRC regards words such as SHRIEK, THIEF, and SHIELD as irregular. 

However, when trained on a purely mono-morphemic input corpus, the GPC Learning Model 

perceives that IE corresponds to /i/ more often than /2/ when found in the middle of the word, 

and, according to the GPC Learning Model’s rules, words like SHRIEK, THIEF and SHIELD 

are regular, not irregular. These results suggest the possibility that GPCs might be learned and 

applied with morphology in mind. A similar situation occurs with other GPCs (e.g., DRC uses 

the rule EAR–/7/ in all positions, and regards multi-morphemic words like SEARS and 

FEARED as regular, and regards mono-morphemic words such as HEARD, LEARN and 

PEARL as irregular. Yet the GPC Learning Model when trained on a mono-morphemic input 

corpus learns <middle position> EAR–/3/ and <end position> EAR–/7/). 

Psychological Plausibility 

The simulations show that the GPC Learning Model can successfully acquire GPCs. 

However, being able to acquire GPCs does not necessarily mean that the model is an effective 

model of cognitive processes, or that it can provide insight into the cognition of learning to 

read. Nor does it mean that the procedures for training the GPC Learning Model are an 

accurate account of the procedures a beginning reader undertakes to acquire GPCs. So how 

does the model fare in these respects? 

From a behavioural viewpoint, the way the GPC Learning Model is trained seems akin 

to implicitly learning phonics via a “whole language” (Goodman, 1989) method of 

instruction. Rather than presenting the model with explicit relationships between individual 

letters/graphemes and phonemes, the GPC Learning Model is presented with whole-word 

correspondences, and left to try and deduce GPCs on its own. So while the simulations 

conducted for this research may provide an account of the cognitive processes involved in 
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learning GPCs via a whole-language type instruction program, they do not accurately portray 

the learning of GPCs under an explicit phonics program. This is unlike what was done for the 

CDP+ model, which was pre-trained on explicit grapheme–phoneme relationships (Perry et 

al., 2007). This is important, because it may explain some of the difficulty the GPC Learning 

Model has in acquiring GPCs—it is straightforward that the model, or a reader, who is not 

explicitly trained in phonics will be less likely to have internalised a knowledge of GPCs that 

maximises reading performance, or is characterised by rigid set of standard GPCs. The GPC 

Learning Model could be trained in a way more in keeping with explicit phonics training if its 

input corpus included grapheme–phoneme pairs in addition to written-word–spoken-word 

pairs. This might also improve performance. Even in a whole-language learning environment, 

it seems likely that most readers would receive some direct instruction in explicit phonics, 

especially for single letters and common digraphs, if not from teachers then from parents and 

other family members, or education programming on television. 

More generally, the previous Coltheart et al. (1993) algorithm was criticised on 

psychological plausibility grounds (Andrews & Scarratt, 1998). These criticisms included that 

the model incorporated arbitrary design and parameter decisions rather than theoretically-

motivated decisions, that the separation of single-letter GPC and multi-letter GPC learning 

into distinct phases was not realistic, and that the success of rule acquisition might be 

dependent on the order in which words are presented in the input corpus, in a way that doesn’t 

occur with human readers. While none of these criticisms can be completely dismissed, we do 

make a number of points in response. 

Firstly, on the question of arbitrary design choices, we argue that the current GPC 

Learning Model (and also Coltheart et al.’s previous model) is based on a high-level 

hypothesis regarding the way beginning readers learn GPCs when presented with printed 

words matched with spoken words—that they can deduce GPCs by examining the way 
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orthographic and phonological word forms are comprised, and how they relate to one another. 

To implement this computationally, many lower-level choices were made. To some extent, 

these are decisions made simply to complete a fully-executable model, rather than important 

choices regarding theory. If some of these low-level decisions were to greatly impact 

performance, they would be considered hypotheses about the cognitive processes involved in 

learning GPCs, which can be tested against empirical data. For example, Andrews and 

Scarratt suggested it was arbitrary for low frequency rules to be deleted. But this 

computational procedure models a plausible action on the part of a beginning reader: that 

candidate GPCs that do not seem to apply very often should not play a role in subsequent 

reading. A beginning reader upon first seeing the word CORPS–/k9/ might notice that ORPS 

seems to correspond to the phoneme /9/, and is a possible grapheme. However, since this 

correspondence will be rarely seen, it seems plausible that they might “ignore” it in future 

reading. The choice of a particular parameter value to decide the cut-off frequency may seem 

arbitrary, but it is not. It seems plausible that a beginning reader would settle on a means of 

ignoring low-frequency correspondences that maximises their reading performance. 

Secondly, with regards to the separation of single-letter and multi-letter grapheme 

learning and the separation of rule consolidation and information gathering phases: we agree 

that it is artificial to so completely separate the learning of each of these. However, it is 

probably not controversial to suggest that children generally begin to learn single-letter 

correspondences before more complex correspondences, particularly split graphemes, or 

graphemes with more than two letters, perhaps even the less common digraphs. In the context 

of implicit grapheme learning where the beginning reader is attempting to deduce 

correspondences without direct instruction or phonics training, it is even more plausible that a 

beginning reader would focus on simple relationships before they were able to make sense of 

complex ones. We demonstrated that, while performance does deteriorate if all graphemes are 

learned in the same phase, most GPCs are still learned and performance largely maintained. 
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These results are promising for development of a future model that preferences the early 

learning of single-letter correspondences without having a clear-cut boundary between single-

letter and multi-letter correspondence learning. With regards to the separation of the rule-

consolidation phase (e.g., learning context rules) from the information gathering phase, this 

seems like a clear shortcoming of the GPC Learning Model, one that perhaps could be 

addressed in future model iterations. 

Finally, Andrews and Scarratt questioned whether it would be realistic if the order of 

presentation of words to the model greatly impacted on the GPCs that were learned. In 

Simulation 2, we demonstrated that performance is affected by the order of acquisition, which 

justifies this criticism. However, to temper the criticism, performance might have changed, 

but it was not by much (the first ordering resulted in 77.0% of words being named correctly, 

while the second ordering resulted in 78.0% correct), and arguably there would be minor 

order of acquisition differences between beginning readers who are not explicitly taught 

phonics. 

Beyond the criticisms of Andrews and Scarratt, there are other areas that stretch the 

psychological plausibility of the GPC Learning Model. In particular, the treatment of the 

letter X, and the way context rules are learned. The GPC Learning Model checks each input 

for the presence of the letter X, to determine whether or not to apply a procedure specific to 

this letter. While it is plausible that X is a challenging letter for beginning readers, since it 

corresponds to two phonemes, and it is less frequently used than many other letters, it is hard 

to justify treating it as a special case. 

With respect to context rule learning, the GPC Learning Model implies that beginning 

readers first identify when learned GPCs provide conflicting pronunciations at a frequency 

too high to ignore, and then re-examine the entire input corpus to deduce the context rules that 

can solve the contention. Alternatively, beginning readers keep constant track of the context 
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in which each GPC occurs (quite a feat of memory), so that they can identify a context rule if 

the need arises due to conflicting GPCs being identified. Both alternatives seem somewhat 

questionable in terms of psychological plausibility. 

Multi-morphemic words 

The outcomes of Simulation 1 are especially problematic for the GPC Learning 

Model. This simulation showed that the GPC Learning Model performed considerably worse 

when the input corpus included multi-morphemic words. This sensitivity to choice of input 

corpus might indicate that the GPC Learning Model is fundamentally flawed. Another 

possibility is that GPC Learning Model contributes evidence that beginning readers identify 

morphemic structure when attempting to implicitly learn GPCs, in a way that the GPC 

Learning Model currently does not handle. Perhaps readers do not attempt to apply GPCs 

across morpheme boundaries. This is a hypothesis that is easily tested against empirical data. 

The nature of learning in a realistic, multi-morphemic input environment has not been 

adequately explored even by other models of reading that learn. The triangle models (e.g., 

Seidenberg & McClelland, 1989) were trained on word corpuses less than 3,000 words that 

did not seem to include any morphologically complex items. While the CDP models (Perry et 

al., 2007, 2010) were trained on large word corpuses that did include multi-morphemic words, 

these models also received explicit pre-training on individual grapheme–phoneme 

correspondences which may compensate for any deleterious learning due to multi-morphemic 

words. And even with this pre-training Pritchard et al. (2012) found that the CDP models 

experience significant problems with nonword naming accuracy when assessed against human 

data. 

The DRC model can handle multi-morphemic words and performed significantly 

better against the empirical data in Pritchard et al. than the CDP models. However, it is a 

static model that does not explain GPC acquisition. DRC-1.2.1 ("Dual-Route Cascaded Model 
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1.2.1," 2009) includes a number of context-sensitive GPCs as well as output rules that seem to 

be tailored specifically to aiding the pronunciation of multi-morphemic words and nonwords 

with a similar structure (e.g., DRC-1.2.1 includes the rule that when -ED is found at the end 

of a word and is preceded by vowel followed by 1-3 consonants, such as in a word like 

BANGED, then it should be pronounced as /d/. This ensures that BANGED is pronounced as 

/b{Nd/ by DRC’s sublexical route, and not as /b{NEd/, with two syllables). It is not evident 

how such rules could be acquired, and the GPC Learning Model certainly does not acquire 

complex context rules like this. 

The GPC Learning Model possesses a fairly basic approach to developing context-

sensitive rules, and we earlier highlighted shortcomings with learning some context rules. 

Future iterations might look to make improvements to this aspect of the Model. Such 

improvements may look to ensure that more—and more complex—context rules are learned, 

so that useful GPCs can be learned from multi-morphemic training items, and fewer errors 

made when subsequently pronouncing multi-morphemic words. 

Type versus token learning 

If the psychological plausibility of the GPC Learning Model is debateable, of what use 

is this model? Coltheart et al. (1993) seemed to be using their earlier implementation of the 

model to demonstrate that the vocabulary on which it was trained contained sufficient 

information for comprehensive sub-lexical knowledge to be derived. They did this while 

critiquing the reading model of Seidenberg and McClelland (1989)—this model was found to 

be poor at reading nonwords accurately, while its creators argued that this was due to the 

impoverished set of words used to train the model (Seidenberg and McClelland (1990), as 

cited in Coltheart et al. (1993)). Coltheart et al. sought to demonstrate that this argument was 

incorrect. Does the current model offer anything new? 
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A new insight provided by the present model concerns whether beginning readers 

learn according to type or according to token. The sensitivity of readers to word frequency is 

well known (e.g., Forster & Chambers, 1973), suggesting that learning is sensitive to words 

being seen multiple times. However, in our simulations we found that the performance of the 

GPC Learning Model was higher if the model is trained only once or twice on each word 

type, rather than with multiple word tokens dependent on frequency. This strongly suggests 

that sublexical knowledge as proposed in dual-route models of reading might be learned 

according to type, rather than token, and challenges the token-sensitive learning approach to 

sublexical knowledge of the GPC Learning Model. It also challenges the token-sensitive 

learning approach of many connectionist models, such as the CDP models (Perry et al., 2007, 

2010) and the triangle models (Harm & Seidenberg, 1999; Plaut, McClelland, Seidenberg, & 

Patterson, 1996; Seidenberg & McClelland, 1989). Even if beginning readers are exposed to 

words by token (which they obviously are) they seem to acquire knowledge that is type-

based. Our findings add to the evidence for type-based sublexical learning already gathered 

by Pritchard et al. (2012), who pointed out that one reason the CDP models performed worse 

than DRC was because they were sensitive to token frequency, especially on the 

pronunciation of nonwords beginning with TH. Most experiment participants pronounce such 

nonwords with an unvoiced /T/, which is more common by type, while the CDP models were 

more likely to pronounce these nonwords with a voiced /D/, which is more common by token, 

due to the high frequency of words such as THIS and THAT. This idea is also in keeping with 

results published in Campbell and Besner (1981), who also found that people are more like to 

pronounce nonwords starting with TH using the unvoiced phoneme /T/ instead of the voiced 

/D/. This is unless the nonword is used in a sentence in place of a function word, in which 

case it is more likely to be pronounced voiced, again suggesting an interaction between 

learning morphology and learning and applying GPCs. 
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Future research 

There are clear opportunities to conduct further research using the GPC Learning 

Model. These include: a) investigating explicit phonics training for the model, b) adding the 

capacity to learn grapheme parsing, rather than just learning GPCs, c) creating a new model 

where the rule-consolidation stage and the information gathering stage are merged into the 

one stage, to make the model more psychologically plausible, and d) incorporating the GPC 

Learning Model into a wider model of reading aloud. Exploring this last idea could be used, 

for example, to investigate how sublexical route learning might influence or be influenced by 

the concurrent learning of other facets of the cognitive systems involved in reading, such as 

orthographic learning. 
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Appendix A 

Phoneme symbols used in this study are those used by DRC model 1.2.1. 

Vowels 
 

Consonants 

Symbol Example 
 

Symbol Example 

1 stay 
 

_ jump 

2 sigh 
 

b buy 

3 bird 
 

d dot 

4 boy 
 

f for 

5 goat 
 

g guy 

6 mouth 
 

h hot 

7 beard 
 

j yell 

8 cared 
 

k kite 

9 board 
 

l low 

# hard / palm 
 

m my 

{ cat 
 

n no 

i seen 
 

p pie 

u clue 
 

r run 

E red 
 

s stop 

I bid 
 

t tie 

Q pod 
 

v vent 

U good 
 

w west 

V fun 
 

z zoo 

W few 
 

D then 

   
J chin 

   
N hang 

   
S shoe 

   
T thin 

   
Z measure 
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Appendix B 

GPCs learned by the GPC Learning Model, trained with two-phases, with single-letter 

GPCs learned in the first phase, and multi-letter GPCs in the second phase. Parameter settings 

were: Absolute frequency threshold: 2, Relative context frequency threshold: 0.09, Context 

letter dominance threshold: 2. Note, for position: A = all positions, b = beginning, 

m = middle, and e = end. Context rules are denoted with use of square brackets. The letter 

within the brackets provides the context for the grapheme outside of the brackets. 

Position Grapheme Phoneme 

A augh 9 

e ough 6 

A eigh 1 

A igh 2 

e dge _ 

e rsh S 

m ear 3 

e are 8 

e eer 7 

e tch J 

e rch J 

A oar 9 

e oor 9 

e ear 7 

e ach J 

e ier 7 

A our 9 

A air 8 

e che S 

e ase z 

e ece s 

m eig 1 

b ear 3 

m hoo u 

e urr 3 

e ore 9 

e ath T 

e ugh f 

e ech J 

e rge _ 

Position Grapheme Phoneme 

m uoi 4 

e ere 7 

e ege _ 

m ie i 

m y.e 2 

A sh S 

A a.e 1 

A ch J 

A aw 9 

A ou 6 

m i.e 2 

A oo u 

A ar # 

A ng N 

A o.e 5 

e dd d 

e oe 5 

A oi 4 

e ck k 

e ff f 

A e.e i 

m ow 6 

A ai 1 

A ea i 

A oa 5 

A er 3 

m o.b u 

A th T 

A ee i 

e ss s 
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Position Grapheme Phoneme 

e ey 1 

m al # 

A or 9 

e se s 

e ye 2 

e ze z 

b wh w 

m o.l 5 

e ll l 

A a.l 9 

m u.l U 

e ie 2 

e zz z 

A ur 3 

A ae 1 

e ay 1 

A ue u 

m au 9 

e ce s 

A ew W 

e ow 5 

e tt t 

m ei 1 

e ge _ 

e ve v 

m ui u 

A ir 3 

e mb m 

e oy 4 

b bu b 

A ph f 

e mn m 

m a.s # 

b gu g 

b wr r 

m ha # 

e nn n 

m u.k w 

b kn n 

m ol 5 

A x ks 

m n[k] N 

Position Grapheme Phoneme 

m [q]u w 

m a[s] # 

m o[l] 5 

b g[e] _ 

b o[n] w 

e [n]s z 

A s s 

m e E 

A n n 

A d d 

A t t 

A r r 

A u V 

A m m 

b h h 

m i I 

A l l 

A f f 

m a { 

A b b 

m o Q 

A c k 

A k k 

A p p 

A g g 

A v v 

A w w 

b j _ 

b a { 

e e i 

A q k 

e y 2 

e i i 

m y I 

b o Q 

b y j 

e o 5 

b i I 

A z z 

e a # 

b e E 
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Introduction 

In this general discussion, I will provide a short overview of the research presented in 

this thesis, and describe the contributions made by my research to the study of the cognition 

of reading. This will be followed by a discussion of the future avenues for research that could 

build on my work. 

In conducting this research, my primary aim was to introduce learning to the dual-

route cascaded (DRC) model of reading aloud and word recognition (Coltheart, Rastle, Perry, 

Langdon, & Ziegler, 2001). As a static model of skilled reading, DRC has been quite 

successful, but the absence of any account of reading acquisition is often regarded as a 

shortcoming of the model. In introducing learning to the DRC model, my approach involved 

focussing on computationally modelling a high-level psychologically plausible account of 

reading acquisition. This is as opposed to emphasising the consideration of lower-level micro-

cognitive or biological plausibility. 

In researching the introduction of learning to DRC, I divided the task into two broad 

areas: orthographic learning in the non-semantic lexical route of DRC which was described in 

Chapter 2, and learning in DRC’s sublexical route which was described in Chapter 4. Separate 

modelling exercises were conducted for each area. I did this to be both practical and 

systematic: it was sensible to keep my investigation initially simple by separately examining 

cognitive sub-mechanisms involved in reading, with a view to incorporating knowledge about 

each sub-mechanism into a unified model of reading as future work. The modelling work on 

sublexical route learning was also supported by new empirical research as detailed in 

Chapter 3, which sought to adjudicate between two competing accounts of sublexical route 

structure and operation: DRC’s grapheme–phoneme correspondence (GPC) rule-based 

account, and the connectionist account of the connectionist dual-process (CDP) models of 

reading aloud (Perry, Ziegler, & Zorzi, 2007, 2010). 
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Lexical-route learning 

To investigate incorporating learning into DRC’s lexical route, I designed, 

programmed, and tested a “learning-DRC” (L-DRC) model, which provides a computational 

account of orthographic learning. L-DRC makes use of the existing DRC framework so that 

DRC’s functions of reading aloud and word recognition are maintained in the new model. 

Maintaining DRC’s capabilities while investigating new ones is in accordance with the idea 

of “nested modelling” (Jacobs & Grainger, 1994). 

L-DRC’s approach to orthographic learning is a computational account of the self-

teaching hypothesis (Share, 1995, 2011), a well-regarded proposal for how children acquire 

the capacity to quickly and automatically read written words. According to the self-teaching 

hypothesis, beginning readers acquire new orthographic knowledge without comprehensive 

direct instruction as to the correct pronunciation of each and every word. They do this by 

using phonological recoding as a means of generating candidate pronunciations and thereby 

self-teaching, a process that is aided by contextual support when reading irregular words that 

cannot be fully decoded via a sublexical mechanism like phonological recoding. 

The L-DRC model of orthographic learning and reading aloud was broadly successful 

in simulating the self-teaching hypothesis, while its learning mechanism also resulted in a 

structure and performance that approaches that of the static, skilled DRC-1.2.1 model ("Dual-

Route Cascaded Model 1.2.1," 2009), post learning. Despite this success, a variety of 

challenges and problems were still exposed. 

This research contributed on a number of levels to the pool of knowledge regarding 

the cognitive mechanisms of reading, and the computational modelling of reading aloud, word 

recognition, and reading skill acquisition. These contributions are now summarised. 
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Demonstrated DRC is compatible with learning 

The approach to learning developed as part of the L-DRC model is compatible with 

DRC’s general structure. This is significant because previous analysis of DRC’s static 

structure questioned whether it was possible to learn such a structure. The development of L-

DRC addresses this criticism, and improves the claim that DRC is a successful model of the 

cognitive mechanisms involved in reading. 

A computational account of the Self-Teaching Hypothesis 

The self-teaching hypothesis is a verbal theory, and lacks both detail and a means of 

being rigorously tested. In creating L-DRC I have produced a computational implementation 

that can be tested, and is thus more subject to falsification than a verbal theory. A 

computational account also commits to providing detail at finer levels than is provided by a 

purely verbal theory, such as the nature of the phonological recoding mechanism, or the way 

that partial decoding and contextual support might interact to enable irregular word learning. 

Challenges for self-teaching 

My research provided detail on how self-teaching might be problematic for certain 

word types: L-DRC finds it challenging to learn heterographic homophones (e.g., 

SALE/SAIL), heterophonic homographs (e.g., BOW), and potentiophones (e.g., BEAR, when 

pronounced regularly, becomes “beer”), suggesting that perhaps children will have similar 

difficulty when self-teaching. While it is not a surprise to suggest that children might have 

difficulty with such words, L-DRC goes a step further by providing specific explanations and 

hypotheses as to exactly why these words come to be challenging, and suggests a promising 

empirical research program to investigate how children learn such words. 
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Self-supervised learning, versus supervised or unsupervised learning 

As a new computational model of orthographic learning, L-DRC can be contrasted 

with other computational models of reading that learn, and other theories of learning to read. 

Specifically, in building on the self-teaching hypothesis, L-DRC adopts a self-supervised (or 

internally-supervised, or semi-supervised) approach to learning, using the sub-lexical route to 

assist in training the lexical route. This contrasts sharply with the computational 

implementation of learning presented in the triangle model which uses back-propagation, a 

supervised learning approach. It seems implausible that beginning readers acquire the bulk of 

their reading skill via direct instruction regarding the correct pronunciation of every word, as 

is implied in the triangle model approach to learning. While Harm and Seidenberg (1999) and 

Harm and Seidenberg (2004) both argue that the triangle model is compatible with self-

teaching, they do not adequately describe a computational mechanism—either verbally or 

computationally—that could achieve this type of learning within the triangle model 

framework. 

L-DRC is also contrasted with clustering algorithms that are completely unsupervised 

in their approach to orthographic learning, such as the computational implementation of the 

Self-Organising Lexical Acquisition and Recognition (SOLAR) model of reading (Davis, 

1999) or the Adaptive Resonance Theory (ART) model of Glotin et al. (2010). These models 

do not learn to associate orthographic word forms with phonological word forms, and we 

argued in Chapter 2 that this kind of associative learning is central to orthographic learning, in 

order for lexical decision to be possible. The SOLAR model which is presented as being able 

to learn to do lexical decision, is in fact not performing lexical decision—it is instead just 

learning to distinguish orthographic stimuli that have been previously presented (whether 

words or nonwords) from orthographic stimuli that are novel (whether words or nonwords). 

L-DRC differs from this in that it can learn which of the orthographic stimuli it sees are words 

and which are nonwords, even if these words and nonwords are seen equally often. It does 
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this because orthographic learning is guided by the recognition that a particular orthographic 

stimulus corresponds to a spoken word. While it was not explicitly tested on the lexical 

decision task, the ART model of Glotin et al. would experience the same difficulty as 

SOLAR, as would the self-organising map (SOM) model of orthographic learning described 

in Dufau et al. (2010). 

A new approach to avoid length effects in DRC 

DRC avoids unwanted length effects when simulating reading aloud by having any 

stimulus—regardless of length—contribute eight slots worth of excitation to compatible 

orthographic word nodes. DRC achieves this by having null (or blank) letters contribute 

excitation to make up eight slots worth of excitation for words that are shorter than eight slots 

(e.g., the orthographic word node for DOG will be excited by D, O, G, and 5 null characters). 

This seems implausible. For example, the node for the word AN in the orthographic lexicon 

should not be excited by six null letters, which would provide more excitation than the two 

letters actually comprising the word. Similarly, a completely different two-letter orthographic 

word such as GO should not receive six slots worth of excitation from null letters if AN is the 

stimulus. This approach to eliminating length effects when reading words is also likely to be 

problematic for a future DRC model that attempts to handle longer, multi-syllabic words. A 

model that could handle both of the words ENCYCLOPAEDIA and AN, for example, would 

need to contribute at least 11 slots worth of null-letter excitation to the AN orthographic node 

for this node to receive the same excitation from letters that the ENCYCLOPAEDIA 

orthographic node would receive. Otherwise, the longer word will be activated more rapidly, 

and named in shorter time. 

In L-DRC, we introduced an alternative approach that involved orthographic word 

nodes being excited by only a single, end-of-word null letter each, with length effects being 

avoided by normalising the excitatory signals from the letter layer to the orthographic lexicon. 
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We demonstrated that this new mechanism performs as well as DRC’s original mechanism 

during skilled reading, and this approach also improved performance when learning, by 

avoiding lexical capture associated with the excitation coming from null-letter slots. 

A computational model of the interaction between partial decoding and 

contextual support 

L-DRC attempts to model the combination of partial decoding and contextual support 

in aiding the self-teaching of irregular words. It was shown that in its current form, L-DRC 

has difficulty simulating partial decoding in a way that does not result in erroneous 

pronunciations being learned. Both L-DRC and DRC function by strongly inhibiting 

phonological lexicon nodes that are somewhat incompatible with the phonemes that have 

been activated. If this inhibition is too strong, partial decoding is not possible in L-DRC, 

because the correct irregular spoken-word representation will not be activated, even if the 

regular phonemes activated by the sub-lexical route comprise a near neighbour. But if this 

inhibition is too weak, then errors become more frequent, because lots of neighbouring word 

nodes will be excited. 

In the general discussion of chapter 2, I suggested an alternative means of simulating 

context that may result in a computational model (L-DRC 2.0?) that is better able to simulate 

the interaction of partial decoding and context to learn irregular words with fewer errors. 

Sub-lexical route learning 

To explore sub-lexical route learning, I constructed a GPC Learning Model which was 

based on an earlier GPC learning algorithm described in Coltheart, Curtis, Atkins, and Haller 

(1993). I tested this new GPC Learning Model more comprehensively than the earlier model 

had been tested. 
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Analysis of the new GPC Learning Model highlighted the extent to which this model 

aimed for high-level psychological plausibility, while also discussing its deviation from 

psychological plausibility at lower levels of analysis. Like the L-DRC model of orthographic 

learning, the GPC Learning Model achieves some success. However, my research also 

highlighted several problems, which were extensively discussed in Chapter 4. 

Research on the GPC Learning model, in addition to the empirical research described 

in Chapter 3, resulted in several contributions to the pool of knowledge on the cognitive 

mechanisms of reading, which are now described. 

A new dataset of nonword pronunciations 

Chapter 3 describes the development of a new corpus of nonwords, accompanied by a 

comprehensive dataset of empirical, human pronunciations for these nonwords. This dataset 

provides new insight into the variety of real-life pronunciations people produce to nonwords, 

and is potentially another important empirical benchmark for assessing both verbal and 

computational models of reading. 

Improved assessment of the nonword naming accuracy of DRC, CDP+ and 

CDP++ 

Chapter 3 also included a critique of the nonword naming accuracy of DRC, CDP+ 

and CDP++. Previous methods of assessing the nonword naming accuracy of these models 

were deemed unsatisfactory. and assessing the nonword pronunciations of these models 

against an empirical dataset of human pronunciations considered a better measure. This 

chapter also includes data/analysis to inform the debate over whether sublexical knowledge is 

rule-based or statistical (connectionist) in nature. 
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Type-based versus token-based sublexical knowledge 

My research provided both evidence and argument that sub-lexical knowledge may be 

type-based rather than token-based. Results reported on both the models comparison of 

Chapter 3 and the GPC Learning Model described in Chapter 4 show that type-based training 

seems to afford some benefits over token-based training. This might mean that, when learning 

sub-lexical orthographic–phonological associations, people are more sensitive to type than 

token. This is a challenge not just for the GPC Learning Model but also for the CDP models, 

and for other models that employ statistical, token-sensitive training regimes, such as the 

triangle models. 

Learning sublexical knowledge from multi-morphemic words 

The GPC Learning Model performs worse when trained on a large corpus that 

includes many multimorphemic words, as compared to a smaller corpus comprised of only 

monomorphemic words. Additionally, there is a slight change in performance when the order 

of items in the training corpus is altered. This result may offer one avenue to understanding 

and improving the nonword naming accuracy of CDP+ and CDP++. The sublexical route of 

these models was trained on word corpuses including multimorphemic words. If these 

training corpuses were limited to monomorphemic words, then perhaps the performance of 

CDP+ and CDP++ in naming nonword as reported in Pritchard, Coltheart, Palethorpe, and 

Castles (2012) may be improved. In sum, my research raises questions regarding how 

morphology and the learning of sublexical route knowledge may interact. 

Future directions 

There are a number of very clear paths forward to build upon the research described in 

this thesis. A first clear task is to test a variety of trained instances of the L-DRC model 

against the full gamut of empirical benchmarks (e.g., as listed in Perry et al. (2007)), to ensure 
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that, in the spirit of nested modelling, L-DRC can account for the same range of behavioural 

phenomena that DRC-1.2.1 can. Additional avenues for future research are as follows. 

An alternative way of modelling contextual constraints 

In Chapter 2, I described one mechanism for modelling the way context may act to aid 

the processes of self-teaching and reading aloud. This mechanism involved a single node (for 

the target word) being activated in the semantic layer, with the strength of this activation 

being a reflection of the degree to which contextual information (e.g., from the text that might 

accompany the stimuli) works to assist in identifying the spoken word corresponding to the 

written stimulus. This method seemed to show difficulties for L-DRC in modelling the way 

partial decoding might interact with context to facilitate irregular word self-teaching. By 

modelling weak context as being low excitation from the semantic layer to the phonological 

lexicon, more work is placed on the way phonemes excite the phonological lexicon, for the 

correct word to be excited. Using this approach to modelling context, we have seen that it is 

not possible to choose phoneme-to-phonological-lexicon inhibition in a way that allows 

partial decoding to occur without resulting in errors. 

At the end of Chapter 2, I alluded to an alternative means of modelling context. 

Instead of the level of support provided by context being represented by a single semantic 

node receiving more or less excitation, an alternative way to model the usefulness of 

contextual support would be to activate greater or fewer nodes in the semantic layer. For cases 

where context provides a strong, unambiguous indication of the identity of the written 

stimulus, then a single node in the semantic layer can be activated. For example, only the 

node GO would be activated in the semantic layer when trying to read the missing word in the 

sentence ‘RED MEANS STOP AND GREEN MEANS ___’. When context is less clear about 

the identity of the written stimulus, then multiple nodes (most likely including the correct 

node) could be activated in the semantic layer, and since we are not attempting to model 
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semantic accuracy, only the impact context might have on self-teaching, the nodes activated 

other than the correct one could be randomly chosen. The number of additional random nodes 

activated in addition to the correct one could be used as a parameter to control the level of 

contextual ambiguity in identifying the written stimulus. More words activated equates to a 

more ambiguous contextual constraint. 

This alternative approach may be more amenable to modelling the use of partial 

decoding with ambiguous/weak context. In the current L-DRC approach, when phoneme-to-

phonological-lexicon inhibition is set low enough, phonemes activated by the sublexical route 

activate multiple neighbouring word nodes in the phonological lexicon, and the weak action 

of context tries to choose the correct one, but often fails, since weak context is simulated as 

weak excitation. The alternative approach would see weak context activating multiple nodes 

in the phonological lexicon, with strong activation from the phonemes activated by the lexical 

route serving to choose the correct word node from the context-constrained shortlist of 

possibilities. 

Investigating the L-DRC approach to learning at the micro-cognitive level 

Being focussed on macro-cognitive ideas such as the self-teaching hypothesis meant 

that I adopted a simple approach to node creation and connection creation, once a learning 

event had been triggered. This simulates a “black-and-white” learning process, where novel 

words are self-taught in a single exposure, or else unable to be learned correctly (e.g., a 

potentiophone). While subsequent exposures influence the frequency value attached to a 

specific word, this only impacts reaction time, and doesn’t really reflect a beginning reader 

gradually acquiring orthographic knowledge over more than one exposure. An obvious task 

for future development of L-DRC would be to retain self-teaching and the dual-route structure 

at the macro-cognitive level, but introduce more complexity at the micro-cognitive level in 
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order to more realistically simulate variety in the number of exposures required to acquire 

orthographic knowledge of a new word. How might this be done? 

In Chapter 2’s discussion we highlighted the value of the Self-Organising Lexical 

Acquisition and Recognition (SOLAR) model in describing—at the micro-cognitive level—

an approach to orthographic learning. SOLAR describes an approach whereby individual 

connection strengths and node representations are modified by learning. The SOLAR model 

learns most words in only a few exposures, while occasionally some words take many more. 

This capacity for variety in the number of exposures required for orthographic learning seems 

more psychologically plausible than the simple approach adopted in L-DRC in this respect. 

We opted not to base our work on the SOLAR model, however, since it did not involve 

phonology in orthographic learning, and while it purported to model lexical decision, it is 

only able to distinguish words from nonwords through virtue of previous exposure. An 

interesting project for future research would be to attempt to include some of SOLAR’s 

approach within L-DRC. Instead of self-teaching triggering a very simple node creation 

computation, maybe a more finely tuned account of how learning happens at the micro-

cognitive level could be developed by having self-teaching trigger a SOLAR-like node and 

connection-strength-changing learning process. Doing this would provide L-DRC with more 

plausibility at the micro-cognitive level to match its plausibility at the macro-cognitive level 

at which the self-teaching hypothesis has its explanatory value. 

On the question of normalisation in other parts of DRC 

Chapter 2 included the successful inclusion of a new approach to managing length 

effects in DRC and L-DRC. The new approach only has one end-of-word letter per word 

contribute excitation to the orthographic lexicon, while length effects are avoided by 

normalising this excitation. Should normalisation be limited to just the letter-to-orthographic 

connections though? 
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At the moment in DRC-1.2.1 and L-DRC, the interaction between the phoneme layer 

and the phonological lexicon layer is such that phonological lexicon word nodes only receive 

activation from the phonemes comprising the word, and just a single end-of-word phoneme. 

In DRC-1.2.1 and in L-DRC, excitation from the phoneme layer to the phonological lexicon 

is not normalised. This means that a longer sequence of phonemes corresponding to a word 

will interact more vigorously with the corresponding word node in the phonological lexicon 

than a shorter sequence of phonemes, because there are more phonemes to contribute 

excitation. Since DRC-1.2.1 is a model of reading and not spelling, and since the activation of 

phonemes in L-DRC’s self-teaching processes is dominated by the serial addition of letters to 

the sublexical route, no unintended length effects due to the lack of normalisation at the 

phoneme level have yet been observed. A future experiment and simulation may yet be 

determined that would expose this, but even if not, it seems theoretically inconsistent to 

normalise letter-to-orthographic lexicon excitation in L-DRC, and not do the same for 

phoneme-to-phonological lexicon excitation. It is also psychologically implausible that a 

short spoken word would be more slowly excited by the small number of phonemes that 

comprise it than a long spoken word. 

This is not the only area of DRC or L-DRC where normalisation might be introduced. 

With the introduction of a semantic layer, the rate at which the lexical route cascades 

activation from the letter layer through the phoneme layer will change, depending on whether 

context-based activation of the semantic layer is present or not. This presents a challenge for 

balancing the relative contributions of the lexical route and the sublexical route when 

simulating reading aloud. It might be the case that it is sensible for the lexical route to 

overpower the sublexical route when contextual support is strong, or it might not be the case. 

If needs be, the relative excitation delivered to the phoneme level by each route could be 

normalised, to ensure that the presence or absence of context does not change the relative 

contribution of each route. 
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Improving the GPC Learning Model 

In Chapter 4 we presented the GPC Learning Model, and described its capacity to 

plausibly model the way a beginning reader might implicitly acquire GPCs after being trained 

on the correct pronunciation of whole words. In addition, we identified and discussed 

shortcomings of the GPC Learning Model. Seidenberg (2005) notes that it is easy to falsify a 

computational model because every model is necessarily limited in scope. However, 

falsifications and shortcomings are important contributors to the formation of new 

hypotheses, and can drive new research. For example, although the GPC Learning Model is 

negatively impacted by being trained on a realistic, token-based word corpus, this result has 

led to the hypothesis that sublexical knowledge is acquired via sensitivity to word types, not 

word tokens. 

Even so, the GPC Learning Model can be further investigated by developing new 

versions that seek to address perceived shortcomings. One shortcoming of the existing model 

is that learning is divided into various stages for reasons of computational practicality, rather 

than because beginning readers learn different GPCs in discrete stages. An updated version of 

the GPC Learning Model would look to try and incorporate the information gathering stage 

and the rule consolidation stage, so that both steps occur concurrently. For example, it seems 

unlikely that human readers form context rules in a separate stage to other rules. It also seems 

unlikely that extrapolation of rules would need to occur in a separate phase, rather than being 

something that the model can accomplish during the information gathering phase as it learns 

new GPCs. 

Another shortcoming of the GPC Learning Model is that the simulations detailed in 

Chapter 4 involve training the model on only whole written-word-spoken-word 

correspondences, leaving it to the model to deduce GPCs from these. This effectively 

simulates a kind of whole-language approach (Goodman, 1989) to GPC knowledge 
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acquisition. In order to model the acquisition of GPC knowledge via explicit phonics training, 

the GPC Learning Model could instead be presented with individual grapheme–phoneme 

correspondences, as was done for CDP+ (Perry et al., 2007). For example, if the GPC 

Learning Model were first trained on all single-letter graphemes, common two-letter 

graphemes, and common context rules (such as C before E, I or Y being pronounced as “s”), 

then, in addition to achieving better results when simulating word and nonword reading, the 

GPC Learning Model might also be able to subsequently learn more complex GPCs with 

greater ease. It seems trivial that the GPC Learning Model would perform better if trained 

with explicit GPCs rather than whole words. 

Incorporating the GPC Learning Model into L-DRC 

Another challenging, but highly interesting avenue for future research would be 

include the GPC Learning Model as a part of L-DRC. This would enable a complex 

investigation of the simultaneous (or at least overlapping) acquisition of multiple sub-skills of 

reading. Self-teaching could be investigated dynamically, observing how it is affected by an 

evolving sublexical route. The potential self-teaching of the sublexical route, by having L-

DRC’s lexical route provide the pronunciations to the GPC Learning Model, could also be 

investigated. 

Conclusion 

Computational modelling has proven to be a popular and useful approach to 

investigating cognition, one that has been pursued vigorously in the study of the cognitive 

mechanisms involved in reading aloud and word recognition. Computational modelling has 

been used to develop accounts of organisation of our mental reading apparatus that focus on 

the micro-cognitive level, such as the triangle model (Harm & Seidenberg, 1999; Plaut, 

McClelland, Seidenberg, & Patterson, 1996; Seidenberg & McClelland, 1989), and accounts 
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that are more geared towards matching empirical results and the behavioural level and 

developing a robust macro-cognitive account, such as DRC (Coltheart et al., 2001) or CDP++ 

(Perry et al., 2010). 

DRC has proven a successful model of the macro-cognitive hypothesis that there are 

two separate cognitive mechanisms involved in reading (e.g., Adelman, Marquis, Sabatos-

DeVito, & Estes, in press; Protopapas & Nomikou, 2009; Sprenger-Charolles, Siegel, 

Jimenez, & Ziegler, 2011), which are termed the lexical route and the sublexical route within 

DRC. Perceptions of DRC’s success have previously been subdued slightly by the 

observation that DRC provided no theory about reading skill acquisition (e.g., Perry et al., 

2007; Seidenberg & Plaut, 2006). It is hoped that this research goes some way towards 

addressing this concern, and can contribute to improving our understanding of the mind, of 

how we read, how we learn to read, and how best to assist beginning readers in acquiring this 

crucial life skill.  
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