Proteomic study of beta-catenin

protein interactions in colon cancer

Crystal Semaan

Bachelor of Medical Sciences, Honours (Macquarie University)

Supervisor: Associate Professor Mark Molloy

A thesis for the degree of

Doctor of Philosophy

Department of Chemistry and Biomolecular Sciences

Macquarie University, Sydney, Australia

April 2016

Declaration

I certify that the work presented in this thesis entitled "Proteomic study of beta-catenin protein interactions in colon cancer" has not been submitted for the purpose of obtaining a degree to any other university or institution. Unless otherwise acknowledged, the work presented in this thesis was carried out by the author.

The research involving genetically modified cell lines was performed at Westmead Millennium Institute, under the approval of the Western Sydney Local Health District Institutional Biosafety Committee (WSLHD-IBC) (IBC Ref 04/08).

Crystal Semaan 41199588 April 2016

ii

Abstract

 β -catenin is a protein well-known for its association with several human cancers and is known to accumulate in the nucleus with cancer progression. It is a multi-functional protein that can be found at different subcellular localisations, regulated in part by protein interactions and phosphorylation. The aim of this thesis was to use proteomics to investigate β -catenin protein interactions in colon cancer and explore the role of phosphorylation at amino acid Y654 in regulating these interactions. It was hypothesised that determining β -catenin protein interactions could reveal new functional roles for it.

Recombinant human full-length β -catenin constructs were used as affinity baits to isolate protein binding partners from stable isotope labelled SW480 and HT29 colon cancer cell lines while high-resolution mass spectrometry (Orbitrap ELITE) was used for protein identification and quantitation. For wildtype β -catenin (Y654), 379 and 123 putative protein interactors were detected in SW480 and HT29 respectively. For the phosphomimetic (Y654E) construct, 92 and 224 putative protein interactors were detected in SW480 and HT29 respectively. For the non-phosphorylatable (Y654F) construct, 129 and 48 putative proteins interactors were detected in SW480 and HT29 respectively. A number of these candidate binding proteins were further validated by immunoprecipitation and immunofluorescence and strongest evidence was shown for golgi protein COPB and mitochondrial HSP70 – providing both a novel interaction and localisation for β -catenin. These observations confirm the multi-functional roles of β catenin in colon cancer confirming dependence on protein interactions to regulate its subcellular localisation and function.

Acknowledgements

Undertaking a PhD is not accomplishable without the efforts of many. First and foremost I thank God for continuing to bless me with His graces and guiding me along the best path.

To my supervisor, Associate Professor Mark Molloy. I am lucky to have had your direction over my PhD and prior to it. The first mentor you have sets a standard that you will strive to reach for the rest of your career. In this case, I will always endeavour to work hard and with integrity. To my co-supervisor, Associate Professor Beric Henderson, my time spent working with your lab is valued beyond measure. Your virtues are also ones that will stay with me. Manisha, your tutorship and friendship will never be forgotten.

To all of my dear friends from the lab. You are all an inspiration and you are not just some of the most intelligent people I have met, but the kindest. Particular gratitude goes to Rob, Albert, KK, Juan, Cara, Kate, Ardeshir, Christoph, Matt, Jenny and Daniel. Christina and Sarah – our bond will last a lifetime and I cherish it.

To my beautiful parents, Pierre and Rose. I remember every night you sat with me to help me with my homework. Even when I got past the age you could help, you sat there silently supporting me. I know you always tell me how proud you are of me, but I am so proud of you also. To my sister Marianne, as an older sister you have always been there to listen, comfort, and guide me. I adore you all so much and thank you endlessly.

To my wonderful husband, Charlie. You have been there since the beginning of this journey and you have been nothing less than my rock. I am sorry for every night you ate alone, slept alone or were alone. You did so without a complaint and I thank you for putting our life on hold so I could finish my studies. I love you and will return the support you gave.

This thesis and all its efforts are dedicated to all of you.

Publications

- Jamieson C, Mills K, Lui C, Semaan C, Molloy MP, Sharma M, Forwood K, Henderson BR. Characterization of a beta-catenin nuclear localization defect in MCF-7 breast cancer cells. Exp Cell Res. 2016. 341:196-206.
- Martínez-Aguilar J, Chik J, Nicholson J, Semaan C, McKay MJ, Molloy MP. Quantitative mass spectrometry for colorectal cancer proteomics. Proteomics Clin Appl. 2013. 7:42-54.

Poster presentations

- <u>C. Semaan</u>, M. Sharma, B. Henderson and M. P. Molloy. Identification of new beta-catenin protein interactors in colon cancers by mass spectrometry. US HUPO conference, Arizona, USA, 2015
- <u>C. Semaan</u>, M. Sharma, B. Henderson and M. P. Molloy. Detection of novel beta-catenin protein interactors in colon cancer. 20th Proteomics Symposium, Lorne, Australia, 2015
- <u>C. Semaan</u>, M. Sharma, B. Henderson and M. P. Molloy. Novel interactions of β-catenin in colon cancer investigated by mass spectrometry. 18th Proteomics Symposium, Lorne, Australia, 2013

Awards

- Awarded a Macquarie University Post Graduate Research Fund for 2015 (Funding of \$5,000 for travel to an international conference to present research for thesis enhancement)
- Awarded a Northern Translational Cancer Research Unit (NTCRU) Research Scholar Award for 2013 (Funding of \$10,000 to support research)
- Awarded an Australian Postgraduate Award (APA) for a Doctorate of Philosophy in Cancer Proteomics (2011)

Abbreviations

%	Percent
°C	Degrees Celsius
2YT	Yeast extract tryptone
ACN	Acetonitrile
APC	Adenomatous polyposis coli
Arg	Arginine
Arm	Armadillo
AUC	Area under the curve
BCA	Bicinchoninic acid assay
Bis-Tris	1,3-bis(tris(hydroxymethyl)methylamino)propane
BSA	Bovine serum albumin
Ca++/Ca2+	Calcium/calcium ion
CaCl ₂	Calcium chloride
CaMKII	Calmodulin-dependent kinase II
CID	Collision-induced dissociation
CMX-Ros	Chloromethyl-x-rosamine
CO ₂	Carbon dioxide
CSK	C-Src kinase
CSK buffer	Cytoplasmic extraction buffer
CTNNB1	Beta-catenin gene
CV	Column Volume

DAPI	4',6-diamidino-2-phenylindole
DMEM	Dulbecco's modified eagle medium
DMSO	Dimethyl sulfoxide
DNA	Deoxyribonucleic acid
dNTP	Deoxynucleotide triphosphate
DTT	Dithiothreitol
Dvl	Dishevelled
Е	Glutamic acid
E. coli	Escherichia coli
EDTA	Ethylenediaminetetraacetic acid
EGTA	Ethylene glycol tetraacetic acid
EMT	Epithelial-mesenchymal transition
ER	Endoplasmic reticulum
F	Phenylalanine
FA	Formic acid
FAP	Familial adenomatous polyposis
FBS	Fetal bovine serum
FDR	False discovery rate
FITC	Fluorescein isothiocyanate
g	G-force
GSK3β	Glycogen synthase kinase 3 beta
GST	Glutathione S-transferase
GTP	Guanosine triphosphate
h	Hour(s)

HCC	Hepatocellular carcinoma
HCD	Higher-energy collisional dissociation
HCl	Hydrochloric acid
HEPES	4-(2-hydroxyethyl)-1-piperazine ethane sulfonic acid
IAA	Iodoacetamide
IP	Immunoprecipitation
IPTG	Isopropyl β -D-1-thiogalactopyranoside
iTRAQ	Isobaric tag for relative and absolute quantitation
JNK	c-Jun N-terminal protein kinase
kDa	Kilodalton
L	Litre
LC/MS	Liquid chromatography mass spectrometry
LDS	Lithium dodecyl sulphate
LEF	Lymphoid enhancer-binding factor
LFQ	Label-free quantitation
LRP	Lipoprotein receptor-related protein
М	Molar
m/z	Mass-to-charge ratio
mAb	Monoclonal
MBP	Maltose binding protein
mg	Milligram
MgSO ₄	Magnesium sulphate
min	Minutes
ml	Millilitre

mM	Millimolar
MMP	Matrix metalloproteinase
MnCl ₂	Manganese chloride
MOPS	3-(N-morpholino)propane sulfonic acid
MS	Mass spectrometry
MS/MS	Tandem mass spectrometry
Na ₃ VO ₄	Sodium vanadate
NaCl	Sodium chloride
NF-AT	Nuclear factor of activated T-cells
ΝΓκβ	Nuclear factor kappa beta
ng	Nanogram
NH ₄ HCO ₃	Ammonium bicarbonate
NHS	N-hydroxysuccinimide
NLS	Nuclear localisation sequence
nM	Nanomolar
NPC	Nuclear pore complex
Nups	Nucleoporins
O/N	Overnight
OD	Optical density
pAb	Polyclonal
PBS	Phosphate buffered saline
PCR	Polymerase chain reaction
РКС	Protein kinase C
PKD	Protein kinase D

PMSF	Phenylmethanesulfonylfluoride
PO ₄	Phosphate
POL	Polarised light
RbCl	Rubidium chloride
RIPA	Radioimmunoprecipitation assay
ROCK	RhoA-Rho-associated kinase
rpm	Revolutions per minute
RT	Room temperature
S	Second
S/N	Supernatant
SDS	Sodium dodecyl sulfate
SDS-PAGE	Sodium dodecyl sulfate polyacrylamide gel electrophoresis
SILAC	Stable isotope labelling by amino acids in cell culture
	Sequential window acquisition of all theoretical mass
SWAIN	spectra
	N',N'-dimethyl-N-[4-[(E)-(3-methyl-1,3-benzothiazol-2-
SYBR	ylidene)methyl]-1-phenylquinolin-1-ium-2-yl]-N-
	propylpropane-1,3-diamine
TBS	Tris buffered saline
TBS-T	Tris buffered saline with Tween
TCF	T-cell factor
TFA	Trifluoroacetic acid
TMT	Tandem mass tags
Tris	Tris(hydroxymethyl)aminomethane

TRITC	Tetramethylrhodamine
μg	Microgram
μL	Microliter
uPA	Urokinase receptor
V	Volts
WT	Wildtype
WTX	Wilms tumour gene on X chromosome
XIC	Extracted ion chromatogram
Y	Tyrosine

Table of Contents

DECLARATION	II
ABSTRACT	III
ACKNOWLEDGEMENTS	IV
PUBLICATIONS	V
POSTER PRESENTATIONS	VI
AWARDS	VII
ABBREVIATIONS	VIII
1 INTRODUCTION	1
1.1 THE CATENIN FAMILY	<u>1</u>
1.1.2 Functions and interactions of the catenins	3 6 6
 1.2.2 The canonical Wnt signalling pathway - β-catenin	8 12 ASE
<u>14</u> 1.3.1 Cancer	16
1.3.2 Type II Diabetes1.3.3 Pleiotropic effects	19 19
1.4 ROLES OF THE CATENIN FAMILY IN DISEASE 1.4.1 Aberrant expression in development	<u>21</u> 21
 1.4.2 Aberrant localisation of β-catenin in cancer 1.4.3 Mutations of the β-catenin gene (CTNNB1) and accumulation of β-catenin 1.4.4 Nuclear accumulation of β-catenin in human tumours 	22 23 24
1.4.5 Nuclear accumulation of β-catenin in mouse models 1.5 NUCLEAR IMPORT OF B-CATENIN	26 27
1.6 THE EFFECT OF PHOSPHORYLATION AT TYROSINE-654 (Y654) ON B-CATENIN. 1.7 THERAPEUTIC STRATEGIES FOR TARGETING B-CATENIN IN CANCER 1.8 DROTED LOTION OF D. GATENIN.	<u>29</u> <u>31</u> 24
1.8 PROTEIN INTERACTIONS OF B-CATENIN 1.9 QUANTITATIVE MASS SPECTROMETRY 1.9.1 Metabolic labelling: stable-isotope labelling by amino acids in cell culture (SILAC) 1.9.2 Isobaric labelling: isobaric tag for relative and absolute quantitation (iTRAQ) and tander	<u>34</u> <u>37</u> 38 m
mass tag (TMT) 1.9.3 Label-free quantitative (LFQ) MS 1.10 INVESTIGATION OF B-CATENIN PROTEIN INTERACTIONS IN CANCER STUDIED B	40 43 <u>Y</u>
$\frac{MS}{1.11} \frac{44}{INVESTIGATION OF THE EFFECT OF TYROSINE PHOSPHORYLATION AT Y654 ON}{1.11}$	<u> B-</u>
<u>CATENIN</u>	<u>47</u> 51

	•••••
OF MBP-B-CATENIN FUSION-PROTEINS	52
miets	<u>52</u>
$H5\alpha$) cells using RbCl ₂	53
cells	53
	54
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	54
1-proteins	55
n-proteins	55
roteins	56
	57
<u></u>	<u>57</u>
	58
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	59
	50
······	<u>59</u> 50
isay	59 50
	39
ACRYLAMIDE GEL ELECTROPHORESIS (SDS-	C O
	<u>60</u>
	60
	60
	60
TEIN AND MS	<u>62</u>
d amylose resin	62
extraction	63
	64
/sis	65
	67
polyclonal rabbit antibodies) and protein G agarose	
	67
CO-LOCALISATION	<u>68</u>
	68
	69
GE HEALTHCARE)	69
ONS OF B-CATENIN IN SW480	••••
	70
·····	71
	71
	71
tenin phospho-mutants	74
	76
SW480	79
ed-down in SW480	79
s of β -catenin in SW480	83
osine-654 on the protein interactions of β -catenin in	
s of phosphorylated-Y654-β-catenin in SW480	94
s of non-phosphorlatable-Y654-β-catenin in SW480	98
f WT, phosphomimetic, and non-phosphorylatable β -	
	03
	07
1	08
	DF MBP-B-CATENIN FUSION-PROTEINS ructs H5a) cells using RbCl2 .cells proteins m-proteins roteins Ssay (ACRYLAMIDE GEL ELECTROPHORESIS (SDS- TEIN AND MS id amylose resin extraction ysis polyclonal rabbit antibodies) and protein G agarose DCO-LOCALISATION GE HEALTHCARE) DNS OF B-CATENIN IN SW480 es of β-catenin in SW480 osine-654 on the protein interactions of β-catenin in sw480 s of phosphorylated-Y654-β-catenin in SW480 f WT, phosphomimetic, and non-phosphorylatable β- I

i.	Mitochondrial HSP70 - mtHSP70	
ii.	Dynamin-like 120 kDa protein - Opa1	
3.3.2	β-catenin at the golgi	
i.	Coat protein (COP) complex I – COPI	
3.3.3	β-catenin and nuclear import and export	
i.	Heterogeneous nuclear ribonucleoprotein K - hnRNPK	
<u>3.4</u>	Conclusion	

4 NOVEL PROTEIN INTERACTIONS OF B-CATENIN IN HT29113

.2 RE	SULTS	114
4.2.1 0	Candidate novel interacting proteins of β-catenin in HT29	.114
4.2.2 1	The effect of phosphorylation at tyrosine-654 on the protein interactions of β -catenin in	
HT29 1	19	
i. (Candidate novel interacting proteins of phosphorylated-Y654-β-catenin in HT29	. 119
ii. (Candidate novel interacting proteins of non-phosphorylatable-Y654-β-catenin in HT29.	. 125
iii. A	l comparison of binding-partners of WT, phosphomimetic, and non-phosphorylatable β -	-
catenii	n in HT29	. 128
<u>4.3</u> <u>Dis</u>	SCUSSION	133
4.3.1 S	W480 versus HT29	. 133
4.3.2 (Common protein interactors of β-catenin between SW480 and HT29	. 136
4.4 Co	NCLUSION	143

<u>5.1</u> In	NTRODUCTION	44
<u>5.2</u> <u>R</u>	Lesults	48
5.2.1	Coatomer subunit beta (COPB)	49
i.	Validation by immunoprecipitation	149
ii.	Validation by immunofluorescence microscopy	151
5.2.2	Mitochondrial heat shock protein 70 (mtHSP70)	157
i.	Validation by immunoprecipitation	157
ii.	Validation by immunofluorescence	160
5.2.3	Other novel protein interactor candidates	166
i.	182 kDa tankyrase-1-binding protein (Tab182)	167
ii.	Kinesin light chain 4 (KCL4)	170
iii.	Heterogeneous nuclear ribonucleoprotein K (hnRNPK)	173
iv.	Dynamin-like 120 kDa protein, mitochondrial (Opa1)	!74
<u>5.3</u> <u>D</u>	DISCUSSION1	<u>79</u>
5.3.1	β-catenin at the golgi	179
i.	Evidence of β -catenin and COPB interaction in MCF-7	180
ii.	β -catenin at the golgi in the current literature	182
5.3.2	β-catenin at the mitochondria	184
i.	β -catenin and the mitochondria in the current literature	185
ii.	β-catenin and mtHSP70	186
<u>5.4</u> <u>C</u>	Conclusion	<u>89</u>
6 GENI	ERAL DISCUSSION	191

<u>6.1</u>	OVERVIEW AND KEY NOVEL FINDINGS	191
6.2	PROTEIN INTERACTIONS OF B-CATENIN IN COLON CANCER	
6.2.1	Significant of β-catenin binding to COPB and mtHSP70	
i.	Impact of a β -catenin/COPB interaction	

ii. Impact of a β-catenin/mtHSP70 interaction	197
6.2.2 Conclusion	199
6.3 THE EFFECT OF PHOSPHORYLATION	200
6.4 EVALUATION OF METHODOLOGY	202
6.4.1 Use of an MBP tag	202
6.4.2 Pull-down experiments	205
<i>i.</i> Pull-down (using purified protein) in preference of IP (using antibody)	205
ii. Cell lysis method	
6.5 <u>FUTURE DIRECTIONS</u>	<u> 207</u>
6.5.1 Functional relevance of protein interactors	
6.5.2 Other cell lines	
6.5.3 Effect of phosphorylation at Y654	
0.3.4 Conclusion	
7 REFERENCES	م 4 • • • • • • • • • • • • • • • • • • •
8 APPENDICES	••••••
8 APPENDICES 8.1 CANDIDATE NOVEL INTERACTING PROTEINS OF FULL-LENGTH WT B-CATH	<u>ENIN IN</u>
8 APPENDICES	<u>ENIN IN</u> 243
8 APPENDICES 8.1 CANDIDATE NOVEL INTERACTING PROTEINS OF FULL-LENGTH WT B-CATH SW480 8.2 CANDIDATE NOVEL INTERACTING PROTEINS OF THE PHOSPHOMIMETIC MU	<u>enin in</u> 243 <u>jtant</u>
8 APPENDICES 8.1 CANDIDATE NOVEL INTERACTING PROTEINS OF FULL-LENGTH WT B-CATH SW480. 8.2 CANDIDATE NOVEL INTERACTING PROTEINS OF THE PHOSPHOMIMETIC MU OF B-CATENIN AT TYROSINE-654 IN SW480.	<u>enin in</u> 243 <u>jtant</u> 277
 8 APPENDICES	<u>enin in</u> 243 <u>jtant</u> 277 <u>`Able</u>
 8 APPENDICES 8.1 CANDIDATE NOVEL INTERACTING PROTEINS OF FULL-LENGTH WT B-CATH SW480 8.2 CANDIDATE NOVEL INTERACTING PROTEINS OF THE PHOSPHOMIMETIC MU OF B-CATENIN AT TYROSINE-654 IN SW480. 8.3 CANDIDATE NOVEL INTERACTING PROTEINS OF THE NON-PHOSPHORYLAT MUTANT OF B-CATENIN AT TYROSINE-654 IN SW480. 	<u>ENIN IN</u> 243 JTANT 277 ZABLE 285
 8 APPENDICES	<u>ENIN IN</u> 243 JTANT 277 YABLE 285
 8 APPENDICES	<u>ENIN IN</u> 243 <u>JTANT</u> 277 <u>`ABLE</u> 285 297
 8 APPENDICES 8.1 <u>CANDIDATE NOVEL INTERACTING PROTEINS OF FULL-LENGTH WT B-CATH</u> SW480. 8.2 <u>CANDIDATE NOVEL INTERACTING PROTEINS OF THE PHOSPHOMIMETIC MU</u> OF B-CATENIN AT TYROSINE-654 IN SW480. 8.3 <u>CANDIDATE NOVEL INTERACTING PROTEINS OF THE NON-PHOSPHORYLAT</u> MUTANT OF B-CATENIN AT TYROSINE-654 IN SW480. 8.4 <u>CANDIDATE NOVEL INTERACTING PROTEINS OF B-CATENIN THAT MAY BE</u> AFFECTED BY PHOSPHORYLATION. 8.5 CANDIDATE NOVEL INTERACTING PROTEINS OF FULL-LENGTH WT B-CATH 	<u>ENIN IN</u> 243 <u>JTANT</u> 277 `ABLE 285 297 ENIN IN
 8 APPENDICES 8.1 CANDIDATE NOVEL INTERACTING PROTEINS OF FULL-LENGTH WT B-CATT SW480. 8.2 CANDIDATE NOVEL INTERACTING PROTEINS OF THE PHOSPHOMIMETIC MU OF B-CATENIN AT TYROSINE-654 IN SW480. 8.3 CANDIDATE NOVEL INTERACTING PROTEINS OF THE NON-PHOSPHORYLAT MUTANT OF B-CATENIN AT TYROSINE-654 IN SW480. 8.4 CANDIDATE NOVEL INTERACTING PROTEINS OF B-CATENIN THAT MAY BE AFFECTED BY PHOSPHORYLATION. 8.5 CANDIDATE NOVEL INTERACTING PROTEINS OF FULL-LENGTH WT B-CATT HT29 325 	<u>ENIN IN</u> 243 JTANT 277 ZABLE 285 297 ENIN IN
 8 APPENDICES 8.1 CANDIDATE NOVEL INTERACTING PROTEINS OF FULL-LENGTH WT B-CATH SW480. 8.2 CANDIDATE NOVEL INTERACTING PROTEINS OF THE PHOSPHOMIMETIC MU OF B-CATENIN AT TYROSINE-654 IN SW480. 8.3 CANDIDATE NOVEL INTERACTING PROTEINS OF THE NON-PHOSPHORYLAT MUTANT OF B-CATENIN AT TYROSINE-654 IN SW480. 8.4 CANDIDATE NOVEL INTERACTING PROTEINS OF B-CATENIN THAT MAY BE AFFECTED BY PHOSPHORYLATION. 8.5 CANDIDATE NOVEL INTERACTING PROTEINS OF FULL-LENGTH WT B-CATH HT29. 325 8.6 CANDIDATE NOVEL INTERACTING PROTEINS OF THE PHOSPHOMIMETIC MI 	<u>ENIN IN</u> 243 <u>JTANT</u> 277 <u>`ABLE</u> 285 297 <u>ENIN IN</u> ITANT
 8 APPENDICES 8.1 CANDIDATE NOVEL INTERACTING PROTEINS OF FULL-LENGTH WT B-CATH SW480. 8.2 CANDIDATE NOVEL INTERACTING PROTEINS OF THE PHOSPHOMIMETIC MU OF B-CATENIN AT TYROSINE-654 IN SW480. 8.3 CANDIDATE NOVEL INTERACTING PROTEINS OF THE NON-PHOSPHORYLAT MUTANT OF B-CATENIN AT TYROSINE-654 IN SW480. 8.4 CANDIDATE NOVEL INTERACTING PROTEINS OF B-CATENIN THAT MAY BE AFFECTED BY PHOSPHORYLATION. 8.5 CANDIDATE NOVEL INTERACTING PROTEINS OF FULL-LENGTH WT B-CATH HT29. 325 8.6 CANDIDATE NOVEL INTERACTING PROTEINS OF THE PHOSPHOMIMETIC MU OF B-CATENIN AT TYROSINE-654 IN HT29 	ENIN IN 243 JTANT 277 ABLE 285 297 ENIN IN JTANT 337
 8 APPENDICES 8.1 CANDIDATE NOVEL INTERACTING PROTEINS OF FULL-LENGTH WT B-CATT SW480. 8.2 CANDIDATE NOVEL INTERACTING PROTEINS OF THE PHOSPHOMIMETIC MU OF B-CATENIN AT TYROSINE-654 IN SW480. 8.3 CANDIDATE NOVEL INTERACTING PROTEINS OF THE NON-PHOSPHORYLAT MUTANT OF B-CATENIN AT TYROSINE-654 IN SW480. 8.4 CANDIDATE NOVEL INTERACTING PROTEINS OF B-CATENIN THAT MAY BE AFFECTED BY PHOSPHORYLATION. 8.5 CANDIDATE NOVEL INTERACTING PROTEINS OF FULL-LENGTH WT B-CATT HT29. 325 8.6 CANDIDATE NOVEL INTERACTING PROTEINS OF THE PHOSPHOMIMETIC MU OF B-CATENIN AT TYROSINE-654 IN HT29. 8.7 CANDIDATE NOVEL INTERACTING PROTEINS OF THE PHOSPHOMIMETIC MU OF B-CATENIN AT TYROSINE-654 IN HT29. 	ENIN IN 243 JTANT 277 ABLE 285 297 ENIN IN JTANT 337
 8 APPENDICES 8.1 CANDIDATE NOVEL INTERACTING PROTEINS OF FULL-LENGTH WT B-CATT SW480 8.2 CANDIDATE NOVEL INTERACTING PROTEINS OF THE PHOSPHOMIMETIC MU OF B-CATENIN AT TYROSINE-654 IN SW480 8.3 CANDIDATE NOVEL INTERACTING PROTEINS OF THE NON-PHOSPHORYLAT MUTANT OF B-CATENIN AT TYROSINE-654 IN SW480 8.4 CANDIDATE NOVEL INTERACTING PROTEINS OF B-CATENIN THAT MAY BE AFFECTED BY PHOSPHORYLATION 8.5 CANDIDATE NOVEL INTERACTING PROTEINS OF FULL-LENGTH WT B-CATT HT29. 325 8.6 CANDIDATE NOVEL INTERACTING PROTEINS OF THE PHOSPHOMIMETIC MU OF B-CATENIN AT TYROSINE-654 IN HT29 8.7 CANDIDATE NOVEL INTERACTING PROTEINS OF THE NON-PHOSPHORYLAT MUTANT OF D. CATENINIA AT TYROSINE 654 IN HT29 	ENIN IN 243 JTANT 277 ABLE 285 297 ENIN IN JTANT 337 ABLE 258
 8 APPENDICES 8.1 CANDIDATE NOVEL INTERACTING PROTEINS OF FULL-LENGTH WT B-CATT SW480. 8.2 CANDIDATE NOVEL INTERACTING PROTEINS OF THE PHOSPHOMIMETIC MU OF B-CATENIN AT TYROSINE-654 IN SW480. 8.3 CANDIDATE NOVEL INTERACTING PROTEINS OF THE NON-PHOSPHORYLAT MUTANT OF B-CATENIN AT TYROSINE-654 IN SW480. 8.4 CANDIDATE NOVEL INTERACTING PROTEINS OF B-CATENIN THAT MAY BE AFFECTED BY PHOSPHORYLATION. 8.5 CANDIDATE NOVEL INTERACTING PROTEINS OF FULL-LENGTH WT B-CATT HT29. 325 8.6 CANDIDATE NOVEL INTERACTING PROTEINS OF THE PHOSPHOMIMETIC MU OF B-CATENIN AT TYROSINE-654 IN HT29. 8.7 CANDIDATE NOVEL INTERACTING PROTEINS OF THE NON-PHOSPHORYLAT MUTANT OF B-CATENIN AT TYROSINE-654 IN HT29. 	ENIN IN 243 JTANT 277 ABLE 285 285 297 ENIN IN JTANT 337 ABLE 358
 8 APPENDICES 8.1 CANDIDATE NOVEL INTERACTING PROTEINS OF FULL-LENGTH WT B-CATT SW480. 8.2 CANDIDATE NOVEL INTERACTING PROTEINS OF THE PHOSPHOMIMETIC MU OF B-CATENIN AT TYROSINE-654 IN SW480. 8.3 CANDIDATE NOVEL INTERACTING PROTEINS OF THE NON-PHOSPHORYLAT MUTANT OF B-CATENIN AT TYROSINE-654 IN SW480. 8.4 CANDIDATE NOVEL INTERACTING PROTEINS OF B-CATENIN THAT MAY BE AFFECTED BY PHOSPHORYLATION. 8.5 CANDIDATE NOVEL INTERACTING PROTEINS OF FULL-LENGTH WT B-CATT HT29. 325 8.6 CANDIDATE NOVEL INTERACTING PROTEINS OF THE PHOSPHOMIMETIC MU OF B-CATENIN AT TYROSINE-654 IN HT29. 8.7 CANDIDATE NOVEL INTERACTING PROTEINS OF THE NON-PHOSPHORYLAT MUTANT OF B-CATENIN AT TYROSINE-654 IN HT29. 8.8 CANDIDATE NOVEL INTERACTING PROTEINS OF THE NON-PHOSPHORYLAT 	ENIN IN 243 JTANT 277 ABLE 285 285 297 ENIN IN JTANT 337 ABLE 358 EFFECT

List of Tables

Table 1 Associated diseases of mutated Wnt pathway components	15
<u>Table 2</u> Known interacting partners of β -catenin in the literature	36
<u>Table 3</u> Other studies using MS to investigate binding partners of β -catenin	45
Table 4 Other studies that have utilised Y654E/F mutant constructs to investigate ef	fect
of phosphorylation at Y654.	48
<u>Table 5</u> Primer sequences used to sequence β -catenin-MBP DNA constructs	52
Table 6 Human cancer cell lines	57
Table 7 Antibodies and dyes	61
<u>Table 8</u> Peptides of β -catenin from purified β -catenin-MBP detected by MS	74
<u>Table 9</u> Point mutations in purified β -catenin-MBP detected by MS.	74
<u>Table 10</u> Known interactors of β-catenin in SW480.	82
<u>Table 11</u> Candidate novel interacting proteins of full-length WT β -catenin in SW48	085
<u>Table 12</u> Golgi-related candidate novel interacting proteins of full-length WT β -cate	enin
in SW480.	88
Table 13 Mitochondrial-related candidate novel interacting proteins of full-length W	VT β -
catenin in SW480	89
Table 14 Nuclear import and export related candidate novel interacting proteins of f	ull-
length WT β-catenin in SW480.	90
<u>Table 15</u> BioGRID 3.3 protein interactors of β -catenin and relevance to SW480 data	aset.
	91
<u>Table 16</u> Candidate novel interacting proteins of the phosphomimetic mutant of β -	
catenin at tyrosine-654 in SW480	96
Table 17 Golgi-related candidate novel interacting proteins of phosphomimetic mut	ant
of β-catenin at tyrosine-654 in SW480.	97
Table 18 Mitochondrial-related candidate novel interacting proteins of phosphomim	netic
mutant of β-catenin at tyrosine-654 in SW480	97
Table 19 Nuclear import related candidate novel interacting proteins of phosphomin	netic
mutant of β-catenin at tyrosine-654 in SW480	97
Table 20 Candidate novel interacting proteins of the non-phosphorylatable mutant of	ofβ-
catenin at tyrosine-654 in SW480	100

Table 21 Golgi-related candidate novel interacting proteins of non-phosphorylatable
mutant of β-catenin at tyrosine-654 in SW480101
Table 22 Mitochondrial-related candidate novel interacting proteins of non-
phosphorylatable mutant of β-catenin at tyrosine-654 in SW480102
Table 23 Nuclear import and export related candidate novel interacting proteins of non-
phosphorylatable mutant of β-catenin at tyrosine-654 in SW480102
<u>Table 24</u> Candidate novel interacting proteins of β -catenin that may be affected by
phosphorylation
<u>Table 25</u> Candidate novel interacting proteins of full-length WT β -catenin in HT29116
Table 26 Golgi-, mitochondrial- and nuclear import and export related candidate novel
interacting proteins of WT β-catenin in HT29
<u>Table 27</u> Candidate novel interacting proteins of the phosphomimetic mutant of β -
catenin at tyrosine-654 in HT29
Table 28 Golgi-, mitochondrial- and nuclear import and export related candidate novel
interacting proteins of phosphomimetic mutant β -catenin at tyrosine-654 in HT29 123
<u>Table 29</u> Candidate novel interacting proteins of the non-phosphorylatable mutant of β -
catenin at tyrosine-654 in HT29
Table 30 Golgi-, mitochondrial- and nuclear import and export related candidate novel
interacting proteins of non-phosphorylatable mutant of β -catenin at tyrosine-654 in
HT29
<u>Table 31</u> Candidate novel interacting proteins of β -catenin that may be effect by
phosphorylation
<u>Table 32</u> Candidate protein interactors of β -catenin common to SW480 and HT29139
<u>Table 33</u> Putative novel protein interactors of β-catenin
<u>Table 34</u> Methods used to validate novel candidate protein interactors of β -catenin 147

List of Figures

<u>Figure 1</u> Crystal structure of β -catenin demonstrating the N-terminus, core Arm domain
and C-terminus (C-terminal α-helix is named helix C)2
<u>Figure 2</u> Linear schematic of β-catenin
Figure 3 The canonical and non-canonical Wnt signalling pathways. Figure from
Jansson <i>et al.</i> (2015) [67]7
<u>Figure 4</u> The role of β -catenin at the plasma membrane in cell-cell adhesion. Figure from
Perry <i>et al.</i> (2010) [85]
Figure 5 The Wnt signalling pathway. Figure from Reya et al. (2005) [84]11
<u>Figure 6</u> Sequestration of GSK3 β into multivesicular bodies. Figure from Taelman <i>et al.</i>
(2010) [100]
Figure 7 Basic and most characteristic features of epithelial-mesenchymal transition.
Figure from Kalluri <i>et al.</i> (2009) [155]
<u>Figure 8</u> Serial section of a tumour showing nuclear accumulation of β -catenin at the
tumour invasion front of human colorectal adenocarcinoma. Figure from Schmalhofer et
<i>al.</i> (2009) [227]
Figure 9 Schematic of the SILAC methodology
Figure 10 Structure of an iTRAQ 4-plex isobaric tag reagent. Figure from Greer et al.
(2015) [325]
Figure 11 Diagram of expression vector pMALC2 (New England BioLabs pMAL
Protein Fusion and Purification System Manual, #E8000S)
Figure 12 Flow-chart depicting expression and purification of proteins
Figure 13 Flow-chart depicting pull-down, mass spectrometry and data analysis
methodology
<u>Figure 14</u> Coomassie Blue staining of purified β -catenin-MBP
<u>Figure 15</u> Western blot of purified β -catenin-MBP using α - β -catenin antibody73
<u>Figure 16</u> MS/MS spectra of β -catenin Y654, Y654E and Y654F75
Figure 17 Incorporation of heavy lysine into amino acids in cell culture
Figure 18 Incorporation of heavy arginine into amino acids in cell culture
Figure 19 Regression plots of heavy:light ratios across replicates in the SW480 wildtype
dataset

<u>Figure 20</u> Plot of differentially detected wildtype β -catenin protein interactors in SW480
<u>Figure 21</u> Pull-down performed using β-catenin-MBP constructs and probed for known
interactor, APC
Figure 22 Distribution of processes and functions of candidate novel binding partners of
β-catenin in SW480
Figure 23 Plot of differentially detected phosphomimetic-Y654-β-catenin protein
interactors in SW480
<u>Figure 24</u> Plot of differentially detected non-phosphorylatable-Y654- β -catenin protein
Eigure 25 A Venn diagram representing overlap of condidate protein hinders of R
<u>Figure 25</u> A veni diagram representing overlap of candidate protein binders of p-
catenin across wildtype, phosphomimetic and non-phosphorylatable datasets in S w 480.
<u>Figure 26</u> Plot of differentially detected wildtype β-catenin protein interactors in HT29
Figure 27 Distribution of processes and functions of candidate novel binding partners of
β -catenin in HT29
Figure 28 Plot of differentially detected phosphomimetic-Y654-β-catenin protein
interactors in HT29
Figure 29 Plot of differentially detected non-phosphorylatable-Y654-β-catenin protein
interactors in SW480 125
<u>Figure 30</u> A Venn diagram representing overlap of candidate protein binders of β -
catenin across wildtype, phosphomimetic and non-phosphorylatable datasets in HT29.
<u>Figure 31</u> Endogenous expression of β -catenin in SW480 compared to HT29. Image
provided by Kate Mills, WMI
<u>Figure 32</u> Immunofluorescence presenting localisation of β -catenin (red) in SW480 (left)
and HT29 (right). Nuclei stained with Hoechst (blue) while another protein (Drp) is
depicted by green
<u>Figure 33</u> Venn diagram portraying protein binders of β -catenin found across both
SW480 and HT29 datasets

<u>Figure 34</u> Validation of IP protocol by IP using α - β -catenin antibody and probing for
known interactor, APC
<u>Figure 35</u> Detection of novel β -catenin–COPB protein interactions by
immunoprecipitation
Figure 36 Co-localisation of COPB and golgi-marker (TGN46) in A) SW480 and B)
HT29 cells (scalebar = 5 μ m)
Figure 37 Co-localisation of β -catenin and COPB in SW480 cells before and after CSK
detergent extraction of soluble proteins (scalebar = $20 \ \mu m$)
<u>Figure 38</u> Co-localisation of β -catenin and COPB in SW480 (inset zoom of <u>Figure 37</u>).
Image on left was taken at x100 magnification
Figure 39 A secondary antibody control demonstrates the specificity of the secondary
antibodies utilised
<u>Figure 40</u> Evidence for interaction between β -catenin and mtHSP70
<u>Figure 41</u> Co-localisation of mtHSP70 and mitochondria in SW480 (scalebar = $15 \mu m$)
<u>Figure 42</u> Co-localisation of mtHSP70 and mitochondria in HT29 cells (scalebar = 5
μm)163
<u>Figure 43</u> Co-localisation of β -catenin and mtHSP70 in HEK293T (non-cancer control)
and SW480 cells (scalebar = $20 \ \mu m$)
Figure 44 Co-localisation of β-catenin and mtHSP70 in SW480 (inset zoom)165
Figure 45 Evidence for interaction of β-catenin and Tab182 in SW480168
<u>Figure 46</u> Co-localisation of β -catenin and Tab182 in SW480 (scalebar = 20 μ m) 169
Figure 47 Evidence for interaction of β-catenin and KCL4 in SW480171
<u>Figure 48</u> Co-localisation of β -catenin and KCL4 in SW480 (scalebar = 20 μ m) 172
<u>Figure 49</u> Evidence of an interaction between β -catenin and hnRNPK
<u>Figure 50</u> Evidence for the interaction of β -catenin and Opa1
<u>Figure 51</u> Co-localisation of Opa1 and the mitochondria (scalebar = $20 \ \mu m$)
Figure 52 Co-localisation of β -catenin and Opa1 in SW480, HT29 and HEK293T (non-
cancer control) (scalebar = $20 \ \mu m$)
Figure 53 Co-localisation of β-catenin and Opa1 in SW480 CSK-washed cells
<u>Figure 54</u> β -catenin co-localisation with COPB at the golgi in breast cancer MCF-7.
Figure from Jamieson <i>et al.</i> (2016) [364]

Figure 55 Illustration of potential cross-talk between β-catenin, mtHSP70 and p53....188

1 Introduction

1.1 The catenin family

1.1.1 Structure of the catenins

The catenins are a family of 80-110 kDa proteins comprising of α -catenin, β -catenin, δ catenin and γ -catenin [1]. Between members of the catenin family there is a range of only 10-60 % sequence homology and so what classifies the catenins as a family is their interactions, functions, and with the exception of α -catenin, they all they contain an Armadillo (Arm) domain within their protein structure [2-4].

The Arm domain was first discovered in the common fruit fly *Drosophila* and consists of repeating amino acid sequences of about 40 residues, which are termed Arm repeats [5, 6]. Each Arm repeat is composed of three α -helices that form a hairpin structure [6]. These repeats fold to produce a superhelix of helices containing a positively charged groove which contains crucial binding interfaces for protein interactors of the catenin family [6]. Protein interactors include the cadherins [7, 8] and components of the Wnt pathway such as adenomatous polyposis coli (APC) and axin [9] or TCF/LEF-1 [10]. Figure 1 demonstrates the protein structure of one catenin family member, β -catenin.

 β -catenin is comprised of an N-terminus (130 amino acids), Arm domain (550 amino acids) and C-terminus (100 amino acids) [11-14]. The N-terminal regulatory sequence contains phosphorylation sites for casein kinase I (CKI) and glycogen synthase kinase 3 beta (GSK3 β) while the C-terminal transactivation sequence is the domain required for activation of target genes [15-17]. The N-terminal and C-terminal domains are unstructured and have the potential to interact with the Arm domain which consists of 12 Arm repeats [18, 19].

<u>Figure 1</u> Crystal structure of β -catenin demonstrating the N-terminus, core Arm domain and C-terminus (C-terminal α -helix is named helix C).

The blue (helix 1), green (helix 2) and yellow (helix 3) represent the three α -helices that make up each individual Arm repeat (with the exception of repeat 7, composed of only two α -helices). Here, β -catenin contains twelve Arm repeats. Figure from Xing *et al.* (2008) [18].

1.1.2 Functions and interactions of the catenins

The catenin family members are considered multi-functional proteins, relying on interactions with other proteins to provide specificity and functional consequences. The word catenin stems from the latin word for chain, *catena* [20], reflecting the function of catenins in linking cadherin to the actin cytoskeleton at adherens junctions [21, 22]. Catenin family members were originally isolated while complexed with cadherins such as E-cadherin or N-cadherin at cell-cell junctions, where their functions are multifaceted and under much current investigation [4, 23].

Interactions of the catenins at the cytoskeleton involve cadherin-dependent morphogenic movements that promote contractile forces at cell-cell contact zones [24]. One type of cell-cell contact zone is the microfilament-associated (actin-associated) adherens junctions, which facilitates the attachment of epithelial cells to one another [25]. Another type of major adhesive junction is the intermediate filament-associated desmosomes. The catenins also function here, linking to the intermediate filament system as opposed to the actin cytoskeleton [26-28]. At the desmosome, the catenins bind to the cytoplasmic domain of desmosomal cadherins (the desmogleins and desmocollins) [29]. Tight junctions are another type of cell-cell adhesion but instead of initiating and mediating cell-cell contacts, tight junctions regulate the paracellular pathway for ions and solutes in between cells [30]. The catenins do not function in this type of cell-cell adhesion.

Family member β -catenin was originally identified at the adherens junctions [31] where it binds the cytoplasmic tails of cadherins such as E-cadherin, and anchors the adhesion complex to the actin cytoskeleton by interacting with α -catenin [32-35]. It was previously found that α -catenin exists as a monomer or a homodimer with particular binding properties [36]. The interaction between monomeric α -catenin and E-cadherin/ β catenin was strong, whereas the dimer conversely bound actin filaments. It was widely accepted that α -catenin binds to E-cadherin/ β -catenin and bridges these components to actin [36] but later it was discovered that α -catenin was unable to bind simultaneously to E-cadherin/ β -catenin and actin, indicating its functioning as a molecular switch, where binding to one partner changes the ability to interact with the other [37].

The catenin family, in particular, β -catenin, also functions in the nucleus [38-40]. Although the adherens junction pool of β -catenin is highly stable, non-junctional, cytoplasmic β -catenin is rapidly degraded [41-43]. In response to Wnt signalling (discussed later in section 1.2.2), the β -catenin destruction complex (also discussed in section 1.2.2) is inhibited, allowing stabilisation of β -catenin [44]. Ordinarily this destruction complex (comprised of proteins including APC and axin) results in the phosphorylation and consequential degradation of β -catenin by the proteasome [45, 46]. The stabilisation of β -catenin allows it accumulate to a sufficiently high enough level that it is able to translocate into the nucleus and alter gene activity by interacting with transcription factors such as T-cell factor (TCF) and lymphoid enhancer-binding factor (LEF) [47, 48]. Downstream outcomes of β -catenin interactions with transcription factors include stem-cell maintenance, stem-cell differentiation, proliferation and apoptosis [49-52].

The catenins can also be regulated or modified by various kinases and phosphatases that are enriched at cell-cell contacts [53, 54]. Phosphorylation of the catenins promotes their release from the adherens junction, allowing for their re-localisation to the cytoplasm or nucleus where they can perform a range of site-specific functions [4]. For example, receptor tyrosine kinase stimulation can lead to the dissociation of β -catenin and E-cadherin, resulting in the ability of β -catenin to move freely to the cytoplasm or nucleus [55, 56].

The interactions of the catenins, in particular, β -catenin, implicate this family of proteins in influencing cadherin-dependent cell adhesion, motility, and cell polarity, consequentially impacting larger processes including development, morphogenesis, tissue homeostasis and progression of diseases including cancer [4]. Figure 2 demonstrates some protein interactors of β -catenin, and the particular domains of β catenin that they bind [18].

Figure 2 Linear schematic of β-catenin.

Various binding partners bind to the different domains of β -catenin. For example, TCF binds Arm 3-8 β -catenin, while the cadherins bind Arm 1-12 β -catenin. Figure from Gottardi *et al.* (2008) [57].

1.2 The Wnt signalling pathway

1.2.1 Discovery and roles of the Wnt signalling pathway

The Wnt signalling pathway is a highly evolutionarily conserved pathway in both vertebrates and invertebrates [58, 59]. The pathway consists of a complex network of proteins, passing signals from cell surface receptors to the nucleus to regulate transcription of target genes [60].

Almost 40 years ago, the Wnt gene was discovered in *Drosophila*, where mutation of the gene resulted in the absence of wing and haltere and was thus named Wingless (Wg) [61]. Another study identified integration-1 (Int-1) as a gene that could induce tumorigenesis in mice [62]. Upon findings that the Wg and Int-1 genes were homologues, the gene was renamed Wnt by fusion of the two names [63]. Since the discovery of dual roles in development and carcinogenesis, the Wnt signalling pathway has been an area of interest for many researchers.

The role of the Wnt pathway in embryogenesis and early development consists of regulating a number of cellular processes including pattern formation (spatial orientation of cells), cell proliferation, differentiation and migration, induction of polarity and gene expression [64]. This is achieved by two of the three Wnt signalling pathways, the non-canonical planar cell polarity Wnt pathway and the non-canonical Wnt/Ca²⁺ pathway (Figure 3). These non-canonical pathways lead to regulation of cytoskeleton or calcium inside the cell [65]. The third pathway, the canonical pathway, comprises a series of events that lead to the regulation of transcription by β -catenin [66].

All Wnt pathways are activated by Wnt ligand binding to the Frizzled receptor. The canonical pathway (left) is mediated by β -catenin which translocates into the nucleus and activates transcription factors (eg. LEF/TCF). For the non-canonical pathways, Frizzled activates Dishevelled (Dvl) resulting in calcium (Ca⁺⁺) release from the endoplasmic reticulum and activation of calcium-binding proteins such as protein kinase C (PKC), calmodulin-dependent kinase II (CaMKII) and transcription factor NF-AT. The Wnt/Ca⁺⁺ pathway has roles in embryogenesis by regulating cell movement and axis formation (middle), while the Wnt/planar cell polarity pathway (right) is mediated by GTPases RhoA and Ras, which affect the cytoskeleton by activation of RhoA-Rho-associated kinase (ROCK) or c-Jun N-terminal protein kinase (JNK).

1.2.2 The canonical Wnt signalling pathway - β -catenin

The focus of this thesis is the canonical pathway, where β -catenin is the primary effector. β -catenin is a 90 kDa multifunctional and oncogenic protein [68], first identified at the plasma membrane [31] linking E-cadherin to the cytoskeleton and aiding cell adhesion (Figure 4) [69]. Later research in *Drosophila* [70] and colorectal tumours [71-73] revealed that β -catenin was not just at the plasma membrane and that other pools of β -catenin existed in the nucleus and cytoplasm, regulated by Wnt signalling.

The Wnt pathway is activated by binding of Wnt ligand to cell surface receptor Frizzled which then interacts with Dishevelled [66]. This inhibits the formation of a destruction complex (consisting of proteins including axin, APC, GSK3 β) that would otherwise lead to the degradation of β -catenin [45, 46]. Thus, when the Wnt pathway is activated, β -catenin accumulates in the cytoplasm and translocates into the nucleus, where it transcribes its target genes [66] involved in cell cycle regulation and transmigration [74].

In the absence of Wnt signalling β -catenin is recruited into the destruction complex, phosphorylated, tagged for ubiquitination and subsequently degraded by the proteasome [45, 46]. Each protein in the destruction complex serves a purpose. Axin assists as a scaffolding protein, holding the complex together [32, 41]. GSK3 β (a serine/threonine kinase) phosphorylates β -catenin (along with APC and axin) [75, 76]. CKI phosphorylates β -catenin at serine residues [46] and phosphorylation sites constitute a recognition motif for β -TrCP, a ubiquitin ligase [41].

However, not all β -catenin that has been phosphorylated will be degraded. For example, N-terminally phosphorylated β -catenin has been detected at centrosomes, where it may contribute to centrosomal cohesion, separation at the formation of the mitotic spindle and segregation of chromosomes [77, 78]. Other components of the destruction complex have been reported at the centrosome, including APC and axin, suggesting a role of these components in centrosomal separation and maintenance [79-81]. For example, both APC and axin have been shown to regulate microtubule nucleation and growth from the centrosome [82, 83].

An illustration depicting the inactive and active Wnt pathway is shown in Figure 5 [84]. The following section covers the stabilisation of β -catenin through inhibition of the destruction complex which mimics activation of the Wnt pathway.

<u>Figure 4</u> The role of β -catenin at the plasma membrane in cell-cell adhesion. Figure from Perry *et al.* (2010) [85].

E-cadherin is a transmembrane protein and its extracellular domains (yellow and orange) bind each other in a calcium-dependent manner. Its intracellular domains (blue) interact with the actin cytoskeleton (red) by interactions with α -catenin (light green), β -catenin (pink) and δ -catenin (dark green). This interaction constitutes the adherens junction.

Figure 5 The Wnt signalling pathway. Figure from Reya et al. (2005) [84].

A) The inactive Wnt pathway: In the absence of Wnt signalling, β -catenin remains at the plasma membrane or interacts with a degradation complex consisting of proteins including axin, APC and GSK3 β . β -catenin is phosphorylated and degraded.

B) The active Wnt pathway: In the presence of Wnt signalling the destruction complex is disrupted when axin is recruited to the plasma membrane. β -catenin is uncoupled from the degradation complex and translocates to the nucleus where it binds transcription factors such as TCF/LEF and activates target genes.

1.2.3 Inhibition of the destruction complex and stabilisation of β-catenin

Inhibition of the destruction complex stabilises β -catenin allowing it to accumulate in the cytoplasm and translocate into the nucleus. The precise mechanism driving the inhibition of the destruction complex is still largely unknown although there are a few theories relating to the inhibition of GSK3 β .

The most popular model of Wnt-induced stabilisation of β -catenin proposes that phosphorylation of GSK3 β inhibits its kinase activity. It states that GSK3 β is phosphorylated by growth factor activated protein kinase B/Akt which inactivates it [86-88]. It has also been speculated that Erk associates with GSK3 β and primes it for inactivation [89].

Another model suggests that GSK3 β is inhibited by low-density lipoprotein receptorrelated protein 6 (LRP6). The destruction complex is recruited to the plasma membrane upon stimulation of the Wnt pathway [90-94] and a cascade of events leads to the phosphorylation of LRP6 by GSK3 β [95-97]. Phosphorylated LRP6 recruits axin-bound GSK3 β to the plasma membrane [98] while also binding to the catalytic pocket of GSK3 β [99]. The theory asserts that these two events prevent the activity of GSK3 β towards β -catenin.
Briefly, other theories concerning inhibition of the destruction complex include inhibition of GSK3 β when Wnt signalling promotes the internalisation of GSK3 β into multivesicular bodies [100] (Figure 6), degradation and, therefore, limitation of axin [101-103] and dissociation of β -TrCP from the destruction complex which affects ubiquitination of β -catenin [45].

<u>Figure 6</u> Sequestration of GSK3β into multivesicular bodies. Figure from Taelman *et al.* (2010) [100].

Binding of GSK3 β (red) to the Wnt receptor complex (includes axin, Frizzled, Dishevelled) sequesters it into multivesicular bodies, resulting in stabilisation of its cytosolic substrates such as β -catenin (blue).

1.3 Dysregulation of the canonical Wnt signalling pathway and disease

Dysregulation of the Wnt pathway has been associated with a number of diseases including cancer and type II diabetes. Given the role of Wnt signalling in development and homeostasis it is not surprising that impairment of the pathway is linked to several human diseases. Table 1 demonstrates various proteins involved in Wnt signalling and their associated diseases upon the mutation or alteration of their gene. Discussed further in this section are mutations in APC and β -catenin.

Wnt		Mutation/		
component	Function	Alteration	Associated disease	Reference
			Familial adenomatous	
			polyposis, lung cancer,	
	β-catenin	Loss of	medulloblastoma, gastric	
APC	degradation	function	cancer, colorectal cancer	[104-109]
			Caudal duplication, tooth	
			agenesis, hepatocellular	
	β-catenin	Loss of	carcinoma, colorectal cancer,	
Axin	degradation	function	medulloblastoma	[110-116]
			Pilomatrixoma (hair follicle	
			tumour), pancreatic cancer,	
			colorectal cancer, ovarian	
			cancer, prostate cancer,	
	Primary Wnt	Gain of	hepatocellular carcinoma,	[71, 117-
β-catenin	effector	function	medulloblastoma, melanoma	120]
	β-catenin			
	transcriptiona	Loss of		
LEF1	l partner	function	Sebaceous skin tumour	[121]
			Hyperparathyroid tumours,	
			osteoporosis, high bone mass,	
			osteoporosis-pseudoglioma,	
			vascular eye defects, early	
LRP5 &	Wnt co-	Loss/gain	coronary disease, breast and	
LRP6	receptors	of function	thyroid cancer	[122-128]
	β-catenin			
	transcriptiona	Gain of	Type II diabetes, colorectal	
TCF4	l partner	function	cancer	[129-131]
Wnt ligands			Tetra-amelia, Mullerian-duct	
(Wnt-3, 4,			regression and virilisation,	
7a, 10a,	Ligands for	Loss of	Fuhrmann syndrome, dermal	
10b)	Wnt pathway	function	hypoplasia, obesity	[132-136]
	β-catenin	Loss of		
WTX	degradation	function	Wilms tumour	[137, 138]

<u>Table 1</u> Associated diseases of mutated Wnt pathway components

1.3.1 Cancer

A well-known link between the Wnt pathway and human disease is a genetic lesion that occurs early in the onset of colon cancer. Patients with familial adenomatous polyposis (FAP) develop hundreds or even thousands of polyps in the colon, and without early detection and removal these polyps can develop into malignant carcinomas [139]. Extracolonic lesions may also develop and include desmoid fibromas, epidermoid cysts and osteomas [140].

The polyps that arise are due to heterozygous mutations in the APC gene that lead to truncated APC and have been defined in patients with FAP and patients with frequent sporadical colorectal cancers, the latter representing 85 % of human colorectal cancers [141-143]. A single mutation in the APC gene is usually insufficient for the initiation of colon cancer but a mutation in the second allele predisposes to susceptibility of colon cancer.

For patients with sporadical colorectal cancer, it has been reported that a portion of patients have a gain of function mutation in the β -catenin gene which prevents degradation of β -catenin [72]. Although some mutated forms of APC can still bind β -catenin, most lack the SAMP motif which is required to recruit axin into a stable destruction complex [144, 145]. Therefore, it is mutations in APC and β -catenin that generally lead to stabilisation of β -catenin.

Mutations of other Wnt pathway components have also been implicated in cancer, such as β -catenin (discussed later in 1.4). Briefly, increased β -catenin nuclear levels are associated with malignant tumours by consequential constitutive transcriptional activation of Wnt target genes including proto-oncogenes.

Other components of the pathway involved in cancer include Wnt ligands such as Wnt1. Wnt1 was first discovered as breast cancer a proto-oncogene [146] and due to its involvement in development, a process requiring rapid cell division and migration, dysregulation of Wnt1 can result in unwanted cell growth and movement, and potentially development of tumours [146].

The Wnt pathway has also been associated with metastasis of cancers due to its involvement in epithelial-mesenchymal transition (EMT) (Figure 7) [147, 148]. Several oncogenic pathways, including the Wnt/ β -catenin can induce EMT and the repression of E-cadherin has been found to be a critical event in this [147, 149, 150]. Because β -catenin is released from E-cadherin into the cytoplasm during EMT, it was thought that Wnt/ β -catenin contributed to EMT [151]. Upon investigation of this, it was discovered that in EMT induced by hypoxia-inducible factor 1a (HIF-1a) in prostate cancer, there was an upregulation of vimentin, N-cadherin and fibronectin, and downregulation of E-cadherin and cytokeratin-18. This was consistent with the invasive behaviour switch of prostate cancer cells by EMT [151].

Wnt-1 and β -catenin were also found to be upregulated in prostate cancer cells, and increase in β -catenin and phosphorylated GSK3 β (inactive GSK3 β) expression was found to be associated with EMT [151]. Furthermore, inhibition of GSK3 β has been found to lead to transcription of E-cadherin transrepressor, Snail [152]. Transcription and stabilisation of Snail resulted in the repression of E-cadherin and EMT [152]. These results suggest that Wnt/ β -catenin may be involved in EMT in prostate cancer.

Wnt/ β -catenin has also been implicated in metastasis of breast cancer. DiMeo *et al.* (2009) observed that metastasis of basal-like breast cancer to the lung was inhibited by repression of the canonical Wnt pathway [154]. Inhibition of Wnt signalling (through LRP6, a signal transducer of the Wnt pathway) was found to reduce the ability of cancer cells to self-renew and seed tumours *in vivo* and resulted in the repression of EMT transcription factors [154].

The transition from the epithelial phenotype to the mesenchymal phenotype involves loss of epithelial markers (eg. E-cadherin) and an increase of mesenchymal markers (eg. β -catenin). Loss of epithelial markers results in events such as adherens and tight junction dissociation while the increase of mesenchymal markers results in events such as cytoskeletal organisation, cell migration, and invasion.

1.3.2 Type II Diabetes

The Wnt pathway is also involved in insulin sensitivity and dysregulation of the pathway could be involved with the development type II diabetes [156]. Insulin functions in increasing uptake of glucose from the blood, a process mediated by activation of the canonical Wnt pathway, which can lead to an increase in the cells sensitivity to insulin [157]. Overexpression of Wnt ligands may increase susceptibility to diabetes due to its role in fat production [158]. Wnt can also activate mitochondrial biogenesis, generating reactive oxygen species (ROS), which can cause acute hepatic insulin resistance [159]. Mutations in Wnt-associated transcription factors such as TCF7L2 have also been linked to the development of type II diabetes [130].

1.3.3 Pleiotropic effects

There are other, pleiotropic effects of APC gene mutations, impacting more than β catenin. APC has been found to shape the cytoskeleton by promoting actin assembly [160], attaching onto growing microtubule ends [161], stabilising them and connecting them to actin [162, 163]. An earlier study found that staining of wildtype (WT) APC in mammalian cells revealed a filamentous network, extending through the cytoplasm and co-localising with microtubules [164]. Staining of mutant APC revealed a diffuse cytoplasmic pattern and this contrast in staining suggested that only WT APC associates with the actin cytoskeleton [164].

APC also interacts with IQGAP1 and APC-stimulated guanine nucleotide exchange factor (Asef) [161]. IQGAP1 moderates the association of APC with cortical actin in the leading edge of migrating cells and both proteins are necessary for directional migration and cell polarisation. APC also stimulates the activity of Asef, regulating the actin cytoskeleton and, therefore, cell adhesion, migration and morphology. Thus, when APC is truncated in colorectal cancer, the mutant APC activates Asef constitutively, inducing abnormal migratory properties which may be an important factor in the formation of adenomas and tumour progression [161].

APC mutations have also been found to have an effect on mitochondria in colon cancer cells [165]. Truncating mutations in APC eliminated its ability to bind Miro/Milton (a mitochondrial kinesin-motor complex), reducing formation of the complex. This resulted in disruption of mitochondrial distribution suggesting that APC is involved with driving mitochondria to the membrane in order to supply energy for processes such as cell migration [165].

1.4 Roles of the catenin family in disease

The roles that the catenin family play in the normal functioning of the cell can conversely be implicated in disease if their expression is dysregulated or they are localised aberrantly.

1.4.1 Aberrant expression in development

Roles of the catenins in development, in particular, β -catenin, include the modulation of cadherin function and the transduction of canonical Wnt signals in the Wnt pathway [14]. In vertebrates and invertebrates, a number of studies have shown that whole-animal knock-outs or knock-downs of β -catenin result in embryonic lethality [52, 166-169]. Other studies have provided evidence for the necessity of β -catenin and its role in maintaining stem cell compartments, differentiation, apoptosis and proliferation [40, 49-52].

Removal of another catenin, δ -catenin, was shown to impact vertebrate development, where its absence was embryonic lethal [170]. Other studies in mice implicated δ catenin in cell hyper-proliferation and the development of neoplasia, due to the relationship of δ -catenin and nuclear factor- $\kappa\beta$ (NF- $\kappa\beta$) signalling [171-173].

1.4.2 Aberrant localisation of β-catenin in cancer

Pathological contributions of β -catenin to the progression of cancer have also been clarified. In the presence of Wnt ligand, and in many cancers where there are mutations in the β -catenin gene, cytoplasmic β -catenin is stabilised, translocates into the nucleus [45, 174, 175] and increases transcription of genes involved in cancer development [4] (covered in 1.1.2 and 1.2.3). Briefly, nuclear β -catenin activates the LEF1/TCF family of transcription factors [45] resulting in upregulation of several genes linked to key cellular processes [176, 177]. This activates tumour promoting genes involved in cell proliferation (c-myc [178] and cyclin D [179]) and invasion (MMPs [180], uPA receptor [181]) and is a key contributor to cancer progression [49].

Recent research has found an association of β -catenin with colorectal cancer [182], melanoma [183], hepatocellular cancer [184], prostate cancer [184], thyroid cancer [185], ovarian cancer [186], breast cancer [187], medulloblastoma [188], pancreatic cancer [189] and gastric cancer [190]. In particular, it is the increased protein levels of β catenin that have been linked to cancer [191-193]. Gene mutations of β -catenin, particularly N-terminal mutations [119] resulting in its stabilisation [194] have been found in several types cancers including colorectal cancer [71, 72, 195], hepatocellular carcinoma [196, 197] and melanoma [198].

Stabilisation of β -catenin (covered in section 1.2.3) can occur due to mutations in components of the degradation complex such as axin [111] or APC [72] or by mutations in β -catenin itself, such as the loss or mutation of the N-terminus which alters GSK-phosphorylation sites critical for degradation [14].

1.4.3 Mutations of the β-catenin gene (CTNNB1) and accumulation of β-catenin

Mutations in CTNNB1 result in the accumulation of β -catenin in many cancers. The majority of colorectal cancers (80 %) acquire mutations in both copies of the APC gene resulting in loss of function of the protein, which subsequently causes inefficient breakdown of β -catenin [199]. In a subset of tumours, oncogenic β -catenin mutations are detected at the N-terminal phosphorylation sites [84, 200, 201]. Both of these mutations result in stabilised β -catenin which activates downstream target genes and initiates tumour formation [202]. However, human colorectal tumours with β -catenin mutations are typically less aggressive and smaller in size than those with APC mutations [203]. In the colon cancer cell lines used in the research presented in this thesis (SW480 and HT29) β -catenin is WT. However, APC is mutated in both cell lines. In SW480 APC is truncated at aa1337 [204], while in HT29 two truncated forms of APC are observed at aa853 and aa1555 [204].

Several mutations in CTNNB1 have been reported in gastric cancers, which occur with increased incidence in patients with FAP [205, 206]. Gene mutations of β -catenin have also been implicated in hepatoblastoma and hepatocellular carcinoma (HCC) where missense mutations and internal deletions of β -catenin have been reported [207, 208]. In the case of HCC, the frequency of CTNNB1 mutations is 20 %, and even higher for HCCs associated with the hepatitis C virus [196, 209, 210]. Poor prognosis was shown to be associated with nuclear accumulation of β -catenin in HCC where there was enhanced nuclear staining in the invasive compartments of the tumours [211].

Other cancers that have been associated with mutations in CTNNB1 include melanoma [212], ovarian cancer [213], lung adenocarcinoma [214] and prostate cancer [215]. In prostate cancer, in addition to a CTNNB1 mutation, decreased levels of E-cadherin were reported [216]. This resulted in an increase of β -catenin which was free to bind and activate androgen receptors, facilitating tumour invasion and progression [217]. A high frequency of CTNNB1 mutations have also been found in anaplastic thyroid cancers [218, 219], while pilomatrixoma were found to have the highest percentage of CTNNB1 mutations of all human tumours examined so far, with at least 75 % possessing a β -catenin mutation [118, 220].

1.4.4 Nuclear accumulation of β-catenin in human tumours

Increased β -catenin signalling has also been associated with tumour progression, where heterogeneous patterns of nuclear, cytoplasmic and plasma membrane-bound β -catenin are observed in colorectal tumours [221].

Colorectal adenomas were the first tumours to be discovered to have nuclear localisation of β -catenin [222, 223] and increased nuclear β -catenin has since been found to be associated with invasion and EMT [224]. Levels of nuclear β -catenin have been shown to be at their highest at the invasion front of colorectal adenocarcinomas (Figure 8) [225-227] and have also been found to be associated with tumour size and grade of dysplasia [228-230]. These findings have led researchers to believe that nuclear β -catenin is important for the induction of invasive and metastatic colorectal tumours [231, 232].

Although CTNNB1 mutations have been observed in malignant melanoma, nuclear accumulation of β -catenin is far more common, with a third of tumours displaying nuclear accumulation of β -catenin [212, 233]. Similarly, CTNNB1 mutations were reported in only a small subset of endometrial and ovarian carcinomas, yet levels of nuclear β -catenin were increased in many more of the tumours [234]. Another study found that in 60 % of endometrial cancers there was an elevated level of β -catenin in the nucleus while only 10 % had mutations in CTNNB1 [235].

These findings suggest that there are other mechanisms at play that are associated with the stabilisation and accumulation of β -catenin, other than mutations in CTNNB1, and that high levels of nuclear β -catenin are implicated in the progression of a number of cancers.

<u>Figure 8</u> Serial section of a tumour showing nuclear accumulation of β -catenin at the tumour invasion front of human colorectal adenocarcinoma. Figure from Schmalhofer *et al.* (2009) [227].

A) Membranous staining of β -catenin (brown) and little nuclear β -catenin (nuclear counterstain in blue) in cells from the central area of a tumour.

B) Loss of membranous β -catenin and increased cytoplasmic/nuclear β -catenin (brown) in cells from the invasion front of a tumour (nuclear counterstain in blue).

1.4.5 Nuclear accumulation of β-catenin in mouse models

Studies using experimental mouse models found that loss of APC [236] or overexpression of active β -catenin [237] was sufficient for the formation of polyps. Transgenic mice overexpressing active β -catenin developed multifocal dysplastic lesions in the small intestine [238] while deletion of a β -catenin N-terminal fragment led to adenomatous polyposis [237].

Mutations in CTNNB1 were also identified in half of the hepatocellular carcinomas generated by transgenic expression of c-myc in murine liver [209], suggesting that CTNNB1 mutations occur during hepatocellular carcinoma tumour progression, in association with a cancer pathway facilitated by c-myc. Another study found an association between the activated mutant of β -catenin and development of skin tumours in mice. Transgenic mice expressing this activated mutant form of β -catenin in the skin showed increased hair follicle morphogenesis and were predisposed to developing pilomatrixoma-like skin tumours [239].

1.5 Nuclear Import of β-catenin

Researchers are endeavouring to shed light on the nuclear translocation mechanism of β catenin because there is limited empirical evidence on how it shuttles in and out of the nucleus without possessing a nuclear localisation sequence (NLS), which is usually required for the nuclear import of proteins [240]. The principle nuclear entry pathway for proteins is through a chaperone system mediated by the importin receptors. Proteins that possess an NLS bind to importin- α , which binds importin- β which docks the complex to the nuclear pore by binding to nucleoporins (Nups) [241]. This protein-NLSimportin complex translocates through the nuclear pore by means of an energydependent pathway [241]. β -catenin lacks a distinct NLS sequence and its accumulation in the nucleus is independent of the importin system [241].

Orsulic *et al.* (1999) investigated β -catenin mediated nuclear transcription. It was found that cadherin overexpression caused the recruitment of β -catenin to the adherens junction, which meant that there was less β -catenin available to bind interactors in the nucleus and so β -catenin mediated nuclear transcription was reduced. Here, overexpression of β -catenin interactors (cadherin) effected β -catenin nuclear localisation. In contrast, overexpression of a nuclear interactor such as LEF-1 resulted in the translocation of β -catenin into the nucleus [242]. Furthermore, reduction in cell-cell adhesion during EMT may result in the release of β -catenin, contributing to increased nuclear transcription [243, 244].

The importins and β -catenin share similarities in their central cores, the Arm repeats. These Arm repeats have been implicated in many protein interactions and are required and sufficient for the nuclear localisation of β -catenin [245]. Our collaborators at the Westmead Millennium Institute (led by Dr Beric Henderson) have evidence behind the Arm 10-12 domain mediating the strongest nuclear import and export activity of β catenin. They found that direct interaction of β -catenin with specific Nups allowed for translocation and that β -catenin functioned like a nuclear transport receptor in its ability to independently translocate across the nuclear pore complex (NPC). Furthermore, they found that activity was stimulated by phosphorylation at tyrosine-654 (Y654) (source: personal communication).

Another factor regulating protein interactions of β -catenin is phosphorylation, which can cause changes in the affinity of protein binding partners [246]. Our collaborators at the Westmead Millennium Institute found that mutations of Y654 altered transport activity. Mutagenesis of Y654 to a phosphomimetic (Y654E) or non-phosphorylatable (Y654F) mutant showed that both mutations resulted in increased import rate when compared to the WT. Regarding export rates, the phosphomimetic and WT showed comparable rates while the non-phosphorylatable mutant demonstrated a significantly slower rate.

1.6 The effect of phosphorylation at tyrosine-654 (Y654) on β -catenin

The phosphorylation of proteins is a post-translational modification (PTM) of particular amino acids (serine, threonine and tyrosine) that involves sequence-specific kinases and phosphatases [247]. Phosphorylation modulates protein activity (acting like a switch), altering protein folding, and hindering or enhancing interactions of other proteins [247].

Phosphorylation has been evidenced as central to cancer biology due to its roles in cell proliferation, oncogenic kinase signalling [248], transcriptional regulation [72], and the fact that phosphorylation is frequently altered by mutations in cancer, providing selective advantages to tumour cells [247]. A study investigating somatic cancer mutation datasets found that there was significant enrichment for mutations which resulted in gain/loss of phosphorylation when compared to other mutations (eg. random amino acid substitutions) [249]. Mutations in kinase genes in particular represented the highest number of mutations that disrupted phosphorylation, suggesting that phosphorylation target site mutations are associated with aberrant phosphorylation [249].

Phosphorylation has also been shown to be pivotal in treatment, as it is a pharmacologically targetable mechanism [250, 251]. Chapman *et al.* (2011) found that BRAF kinase inhibitor vemurafenib (PLX4032) showed promise for patients with metastatic melanoma carrying the BRAF V600E mutation [250].

Relevant to this thesis is that in a variety of tumours, β -catenin is stabilised by point mutations of N-terminus phosphorylation sites [192, 193, 252]. For example, phosphorylation of serine residues in the N-terminus of β -catenin is required for its degradation [14] and suppresses its nuclear transcriptional role [253-255]. β -catenin is also phosphorylated on its tyrosine residues and this is thought to increase β -catenin nuclear accumulation and tumour invasiveness [256]. Furthermore, a link has been found between Y654 phosphorylation and intestinal tumorigenesis in mice. Intestinal tumours that presented with nuclear β -catenin (highest nuclear levels at the invasive front of the tumours) and overexpression of β -catenin phosphorylated at Y654 predisposed mice to intestinal tumour development [256].

Other research provides a link between phosphorylation at Y654 and a change in binding. Roura *et al.* (1999) found that phosphorylation at Y654 resulted in a decreased binding of β -catenin to E-cadherin, suggesting this interaction is controlled by phosphorylation at this amino acid. Piedra *et al.* (2001) provided further evidence for changes in structure and binding partners of β -catenin upon phosphorylation at Y654. It was discovered that Y654 phosphorylation decreased binding to E-cadherin due to the negative charge that a phosphorylation presents. That is, the interaction is dependent on the absence of a negative charge at Y654 [257]. In contrast, it was found that binding of TATA-binding protein to β -catenin was enhanced by Y654 phosphorylation due to phosphorylation resulting in decreased association of the C-terminal to the Arm domain, allowing for binding (absence of steric hindrance of C-terminus) [257].

1.7 Therapeutic strategies for targeting β-catenin in cancer

A well-established base of empirical evidence in the literature has provided a link between nuclear β -catenin and cancer and this has generated significant interest among researchers to explore blocking the Wnt/ β -catenin pathway in cancer treatment. Along with the research presented in this thesis that has investigated novel protein binding partners of β -catenin, it is conceivable that these same novel interactors could also become new therapeutic targets. Currently, there are alternative ways in which the Wnt/ β -catenin pathway can be targeted for treatment.

Protein inhibitors of the Wnt/ β -catenin pathway have been identified and prevent the interaction of β -catenin and TCF and reduce transcriptional output. However, these inhibitors are unsuccessful at controlling the high levels of stabilised β -catenin observed in cancer. Examples include Chibby which works with 14-3-3 to regulate subcellular distribution of β -catenin [258] or Duplin which binds β -catenin to inhibit β -catenin-dependent TCF activation [259]. Fragile histidine triad (Fhit) acts as a tumour suppressor by repressing transcriptional activity of β -catenin [260] as does protein inhibitor tax-interacting protein 1 [261]. ICAT prevents the interaction of β -catenin and the TCF/LEF family of transcription factors [262] while hydrogen peroxide-induced clone 5 (HIC5) represses TCF/LEF-driven transcription [263].

There is an interest in molecular inhibitors that target upstream events such as Wnt and Frizzled receptors [41, 139, 264]. Antibodies against Wnt ligand Wnt-1 have been shown to induce apoptosis in a number of human cancer cells including non-small cell lung cancer (NSCLC), breast cancer, mesothelioma and sarcoma [265]. Other studies have shown that small molecule and peptide inhibitors that interfere with Frizzled/Dishevelled interactions inhibit Wnt signalling [266, 267]. Inhibition of Wnt lipidation and secretion has also been achieved by studies using small molecules to disrupt Wnt signalling [268].

Other therapeutic strategies include non-steroidal anti-inflammatory drugs (NSAIDs) such as COX-2 inhibitor celecoxib which reduces nuclear β -catenin localisation and transcription [269, 270] or small molecules that disrupt β -catenin/TCF interactions [271]. Targeting β -catenin-coactivator interactions has had mixed success [272] due to complications in targeting interactions of β -catenin/TCF without interfering with other critical bindings partners such as APC, axin and E-cadherin, which bind the same region of β -catenin [273].

Tankyrase inhibitors (TNKSi) are emerging as potential targets in therapy, however, the functional consequence of this inhibition remains to be resolved because tankyrase binds an array of proteins [274]. The inhibitors stabilise axin (a key component in β -catenin degradation) and induce mobile degradosomes (which consist of destruction complex components) to rapidly turn over β -catenin, even in the presence of truncated APC [274].

32

De La Roche *et al.* (2014) found that β -catenin could be shielded from inactivation by axin in colorectal carcinomas, resulting in the desensitisation of colon cancer cells to TNKSi. After prolonged Wnt stimulation, β -catenin became unresponsive to TNKSi by its association with LEF1 and BCL9-2/B9L, which accumulate during Wnt stimulation and are upregulated in colorectal carcinomas [275]. Results suggest that for successful inhibition, interactions of β -catenin and LEF1/BCL9/B9L need to be targeted.

Research presented in this thesis may lead to the discovery of new, specific targets, in the form of protein interactors of β -catenin that are involved/aid in its role in the progression of cancer.

1.8 Protein interactions of β-catenin

 β -catenin interacts with a number of intracellular proteins, and these interactions can occur simultaneously [14]. Interactions are regulated by the abundance of β -catenin and phosphorylation at specific serine and tyrosine residues within various domains [246]. When levels of β -catenin are relatively low, due to an absence of Wnt signalling, there is strong competition between protein binders for the limited amount of β -catenin [14]. When β -catenin is abundant, due to an activation of Wnt signalling or overexpression in some cancers, competition of protein binders is alleviated, allowing β -catenin to function in cell adhesion and Wnt signalling [276, 277]. Other studies have investigated the protein binders of β -catenin and Table 2 lists some reported in the literature.

One of the most well-studied roles of β -catenin is at adherens junctions where it plays an important structural role by interacting with E-cadherin [7, 278, 279], N-cadherin [280] and VE-cadherin [281, 282]. The cadherins bind Arm 1-12 of β -catenin, linking it to the actin cytoskeleton [246]. While the majority of cellular β -catenin is engaged in this structural role, the multifunctional activities of β -catenin are due to other protein interactions at other cellular locations [283, 284].

As described in 1.1.1 the Arm domain of β -catenin is where the majority of protein interactions occur [14], making it a domain of interest for those studying protein interactions of β -catenin. Section 1.5 outlined how Arm 10-12 has been implicated in nuclear transport and that phosphorylation of an amino acid within this domain, Y654 effects binding partners [246, 256, 257, 285].

While the literature has explored β -catenin at the nucleus, only a few studies concern the roles of β -catenin at other subcellular locations such as the mitochondria. Mitochondria, the powerhouse of the cell is essential for the health of cells and dysfunction of the mitochondria can result in a number of diseases, including cancer [286]. Some research has shown that β -catenin can have a negative effect on homeostasis of mitochondria which is significant because alteration in respiratory activity and mitochondrial DNA (mtDNA) transcription is a key feature of cancer cells [287, 288]. Mezhybovska *et al.* (2006) also found that β -catenin was capable of translocating to the mitochondria.

The golgi is another organelle of interest. The golgi receives proteins from the endoplasmic reticulum (ER) and prepares proteins for their role in the cell, or secretion out of the cell, by packing them into membrane-bound vesicles [289]. The golgi is also involved in lipid transport and lysosome formation [289]. Brunner *et al.* (2006) located β -catenin at golgi vesicles in tumours of the meningeal brain tissue (meningiomas) [290] while another study provided evidence that the interaction of β -catenin with presenilin occurred at the golgi [291].

<u>Table 2</u> Known interacting partners of β -catenin in the literature.

*Subcellular location listed is the most commonly reported subcellular location. Note:

this is also dependent on cell type

Known	Site of		Subcellular	
interactor	interaction	Function	location*	Reference
	N-terminus		Cytoplasmic	
α-catenin	and Arm 1	Adhesion		[292]
Adenomatous			Cytoplasmic/nuclear	
polyposis coli				
(APC)	Arm 3-7	Degradation		[293]
Axin	Arm3-7	Degradation	Cytoplasmic/nuclear	[294]
Cadherins	Arm 1-12	Adhesion	Cell membrane	[31]
		Membrane	Cell membrane	
Caveolin-1	Not validated	localisation		[295]
Epidermal			Cell membrane	
growth factor				
receptor		Catenin		
(EGFR)	Arm repeats	phosphorylation		[296]
Fascin	Arm repeats	Adhesion	Cytoplasmic	[297]
F-box/WD			Cytoplasmic/nuclear	
repeat-				
containing				
protein 1A	N-terminus	Degradation		[298]
LEF-1	Arm repeats	Transactivation	Nuclear	[284]
Paxillin	Not validated	Adhesion	Cytoplasmic	[299]
			Cell membrane, ER-	
			membrane, golgi-	
Presenilin	Not validated	Degradation	apparatus membrane	[300]
RasGTPase-			Cytoplasmic	
activating-like	N-terminus			
protein IQGAP1	and Arm 1	Adhesion		[301]
WW and PDZ			Cell membrane	
domain-				
containing				
protein 1	C-terminus	Adhesion		[302]

1.9 Quantitative Mass Spectrometry

Mass spectrometry (MS) has emerged as a powerful tool in proteomics over the past decade, useful for both peptide identification and quantitation. [303-305]. In fact, a draft of the human proteome equivalent to the human genome sequence did not exist prior to 2014 until mass spectrometry made a mass spectrometry-based draft map possible [306, 307].

Quantitative MS allows for comparisons between biological samples to determine molecular changes at the expressed protein level. The most widespread form of proteomic MS experiments are 'bottom-up', where comparisons are made on the peptide level and data extrapolated to the protein level. Quantitation can be achieved through labelling (metabolic or chemical) or in a label-free manner. SILAC is the best applied metabolic labelling (discussed 1.9.1) utilised for a number of studies including investigation of protein complexes [308], identification of cancer biomarkers [309], temporal dynamics of signalling pathways [310, 311] and research into enzyme substrate [312].

1.9.1 Metabolic labelling: stable-isotope labelling by amino acids in cell culture (SILAC)

SILAC is a reliable strategy for simultaneous identification and quantitation of two or more samples of complex protein mixtures, such as cell lysates [313]. It is a simple and efficient method enabling *in vivo* incorporation of specific stable isotope labelled amino acids into newly synthesised proteins [313]. Figure 9 demonstrates the SILAC methodology. In a two-plex experiment, it involves the culturing of two populations of cells – one grown in medium containing 'light' amino acids, and the other grown in medium containing 'heavy' amino acids incorporating ¹³C and ¹⁵N [314]. Therefore, when the 'heavy' amino acid is incorporated into peptides in growing cells, a known mass shift occurs when compared with the peptide that contains the 'light' amino acid, with no other chemical changes [314]. For example, for the amino acid arginine (Arg), which contains six carbons, there will be a difference of +6 Da (3 m/z for a doubly charged tryptic peptide) from 'light' to 'heavy' Arg when ¹³C Arg replaces light ¹²C Arg in the culture media.

The advantages of SILAC (a metabolic labelling strategy) include the exclusion of byproducts from incomplete chemical labelling and mixing of samples occurs at the earliest possible step prior to fractionation and digestion, thereby minimising bias [314, 315].

Figure 9 Schematic of the SILAC methodology.

'Light' and 'heavy' amino acids are incorporated into cells while they are being cultured. Mixing of the cells or proteins after lysis and consequential MS allows for quantitation by comparing intensity of signals between the samples.

1.9.2 Isobaric labelling: isobaric tag for relative and absolute quantitation (iTRAQ) and tandem mass tag (TMT)

iTRAQ or TMT tagging are two chemical labelling methods that use N-hydroxysuccinimide (NHS) based reagents for derivatization of peptide free amines [316-318]. The procedure requires peptides from samples for comparison to be individually labelled with isobaric tags that react with the primary amines of peptides to generate unique 'reporter ions' upon peptide fragmentation that are useful for peptide quantitation [319]. iTRAQ and TMT tags chemically consist of a charged reporter group, a peptide reactive group, and a neutral balance group to maintain an overall isobaric mass (Figure 10). A combination of ^{12/13}C and ^{14/15}N is used to produce isobaric reagents. The workflow consists of reducing, alkylating and digesting peptides, then labelling them separately before pooling at equal ratios and MS analysis [319].

When a peptide is fragmented by CID or HCD, the reporter groups are liberated, yielding specific product ions at low mass m/z values (reporter values). For example, iTRAQ 8-plex reagents yield the following reporter ions m/z: 114, 115, 115, 117, 118, 119, 121, 122 [319, 320]. Reporter ion intensities are proportional to the abundance of each peptide in the samples being compared and, therefore, used to quantitate changes in peptide abundance [320, 321]. In addition to these reporter ion signals used for quantitation, fragmentation also produces strong y- and b-ion signals to assist in confident peptide identification [319, 320].

40

A significant advantage of using isobaric tagging reagents is that they enable sample multiplexing, which is ideal for examining replicates and conducting temporal studies in a single MS experiment [320]. These chemical labelling strategies are an alternative when other methods such as metabolic labelling are not optional. For example, metabolic labelling requires dividing cells for label incorporation, so is unsuitable for plasma samples [322]. Cons of chemical labelling are that it involves chemical reactions that may not be completed and side-products may be produced [323, 324]. The labelling step is also introduced after the proteomes being compared have been digested, somewhat increasing sample error and variance between replicates. Chemical labelling reagents are also rather expensive so this needs to be considered in any experimental plan.

Figure 10 Structure of an iTRAQ 4-plex isobaric tag reagent. Figure from Greer et al. (2015) [325].

A) Structure the tag which is comprised of a uniquely charged reporter group (114-117 Da), an amine-

reactive group and a neutral balance group (31-28 Da).

B) Isobaric incorporations. For example, the 115-label has incorporated a ¹⁵N atom into the reporter group

and a $^{13}\text{C}/$ ^{18}O into the neutral balance group.

C) Reporter ion groups generated in 4-plex iTRAQ.

1.9.3 Label-free quantitative (LFQ) MS

Label-free approaches offer the advantage of compatibility with any biological sample type, with quantitation being derived from either precursor ion detection or product ion spectra. Label-free quantitation uses extracted ion chromatograms (XIC) from MS1 or MS2 spectra for peak integration [320]. Provided sufficient duty cycle has been set to enable 8-10 measurements across the eluting peak, area under the curve (AUC) quantitation is highly quantitative and reliable. More recently data-independent acquisition methods such as sequential window acquisition of all theoretical mass spectra (SWATH) have become topical [326-328]. While the acquisition method does not rely on precursor intensity to trigger MS/MS scans, the resultant quantitation is simply determined from AUC measurements of MS2 fragment ions. A simpler approach for LFQ that provides semi-quantitative data is to simply count the number of peptide spectra observed in a data-dependent acquisition experiment [329]. The number of MS/MS spectra is proportionate to protein abundance [329]. To be quantitatively reliable sufficient peptide counts per protein must be observed. Label-free strategies are beneficial when labelling methods (eg. metabolic labelling) are not compatible with the samples to be analysed (eg. plasma samples) or when labelling methods are not available or economical.

1.10 Investigation of β-catenin protein interactions in cancer studied by MS

Mass spectrometry has become a significant approach for research in proteomics, allowing qualitative and quantitative analysis of various samples. The research presented in this thesis utilised labelled MS and other studies have also used MS to investigate protein binding partners of β -catenin in cancer. Examples are listed below in Table 3.

<u>Table 3</u> Other studies using MS to investigate binding partners of β -catenin.

Methou description	Interactors identified	Cell	Validation	Ref
		line(s)		
P using β-catenin antibody in HEK293T	Twelve. Two were known.	HEK293T	IP,	[330]
overexpressing β -catenin and samples analysed by	Focused on 14-3-3zeta (1	(non-	reverse-IP	
LC-MS/MS	peptide)	cancer)		
ntroduced 3xFLAG tag into the DNMT1 locus in	Dnmt1 (they were studying	HCT116	IP,	[331]
HCT116. MS identified 2 peptides of β -catenin.	Dnmt1 and identified 2	and RKO	reverse- IP	
nteraction detected in RKO only when Wnt	peptides of β -catenin by	(colon	and IF	
bathway was activated (increased levels of β-catenin as RKO has low endogenous levels unlike HCT116)	AP-MS	cancer)		
P P N N N N N N N N N N N N N	using β -catenin antibody in HEK293T rerexpressing β -catenin and samples analysed by C-MS/MS troduced 3xFLAG tag into the DNMT1 locus in CT116. MS identified 2 peptides of β -catenin. teraction detected in RKO only when Wnt thway was activated (increased levels of β -catenin RKO has low endogenous levels unlike HCT116)	x x using β-catenin antibody in HEK293TTwelve. Two were known.rerexpressing β-catenin and samples analysed byFocused on 14-3-3zeta (1C-MS/MSpeptide)troduced 3xFLAG tag into the DNMT1 locus inDnmt1 (they were studyingCT116. MS identified 2 peptides of β-catenin.Dnmt1 and identified 2teraction detected in RKO only when Wntpeptides of β-catenin bythway was activated (increased levels of β-cateninAP-MSRKO has low endogenous levels unlike HCT116)K	Image: ProblemImage: Problemusing β-catenin antibody in HEK293TTwelve. Two were known.HEK293Trerexpressing β-catenin and samples analysed by rerexpressing β-catenin and samples analysed by peptide)Focused on 14-3-3zeta (1) peptide)(non- cancer)C-MS/MSpeptide)cancer)troduced 3xFLAG tag into the DNMT1 locus in troduced 3xFLAG tag into the DNMT1 locus in CT116. MS identified 2 peptides of β-catenin. Dnmt1 and identified 2 peptides of β-catenin. Dnmt1 and identified 2 teraction detected in RKO only when Wnt thway was activated (increased levels of β-catenin AP-MS(colon cancer)RKO has low endogenous levels unlike HCT116)Ke has low endogenous levels unlike HCT116)Ke has low endogenous levels unlike HCT116)	Image: constraint of the DNMT1 locus in troduced 3xFLAG tag into the DNMT1 locus in troduced in RKO only when Wnt treaction detected in RKO only when Wnt RKO has low endogenous levels unlike HCT116Twelve. Two were known. Focused on 14-3-3zeta (1 peptide)HEK293T (non- cancer)IP,C-MS/MSCancer)peptide)cancer)IP,C-MS/MSDnmt1 (they were studying peptides of β-catenin.HCT116IP,CT116. MS identified 2 peptides of β-catenin. thway was activated (increased levels of β-catenin thway was activated (increased levels of β-catenin)Dnmt1 and identified 2 peptides of β-catenin by AP-MS(colon cancer)RKO has low endogenous levels unlike HCT116Image: concert mage: concertImage: concert mage: concertImage: concert mage: concert

Mass spectrometry	Method description	Interactors identified	Cell	Validation	Ref
			line(s)		
Multidimensional	HEK293 cells expressing Flag-tagged α -catenin, β -	α-catenin, LEF1, TCF	HEK293	Western	[34]
protein identification	catenin, LEF1 and TCF4 were used for affinity		(non-	blot of	
technology (MudPIT)	purification and MudPIT analysis. Cells treated/non-		cancer)	Flag-	
	treated to stabilise β -catenin, allowing for nuclear			tagged α-	
	accumulation. Assessed effect of phospho-Y177-a-			catenin,	
	catenin on binding to β -catenin using IP with Flag: α -			LEF1 and	
	catenin-Y177 and Flag:α-catenin-Y177F. No effect			TCD	
	was found				

1.11 Investigation of the effect of tyrosine phosphorylation at Y654 on β catenin

Other studies have investigated the effect of phosphorylation at Y654 on protein binders or function of β -catenin. Other research performed utilising recombinant β -catenin with the introduction of a point mutation at amino acid Y654 in order to produce a phosphomimetic (Y > E) or non-phosphorylatable (Y > F) are listed below in <u>Table 4</u>.

Construct	Focus	Cell	Notes	Ref
		line(s)		
GST-	Effect of phosphorylation	Caco-2	• First study to assess effect of tyrosine phosphorylation at Y654	[285],
tagged	on β-catenin/E-cadherin	(colon	• Phosphorylation at this amino acid in particular (when compared to other	section
Y654E/F	using binding assays,	cancer)	tyrosine residues) affected binding to E-cadherin	1.5
β-catenin	GST- and polyhistidine-		• Binding of E-cadherin was reduced by phosphorylation at Y654	
	tagged constructs		• For reasons of validation demonstrated that only the WT β -catenin construct	
			could be phosphorylated and not the mutants	

<u>Table 4</u> Other studies that have utilised Y654E/F mutant constructs to investigate effect of phosphorylation at Y654.
Construct	Focus	Cell	Notes	Ref
		line(s)		
GST-	Effect of phosphorylation	SW480	Phosphorylation at Y654 increased binding to TBP	[257],
tagged	on β -catenin/TATA-	(colon	• Investigated structural basis for differences in binding and described	section
Y654E/F	binding protein (TBP)	cancer)	phosphorylation at Y654 as decreasing association of the Arm domain with	1.5
β-catenin	using GST-tagged		the C-terminus, opening the region up for interaction	
	constructs and		• Found that for β -catenin/TBP steric hindrance of the C-terminus is an issue	
	polyhistidine- and X-		but for β -catenin/E-cadherin it is the negative charge of the phosphorylation	
	Press®- tagged		that is the issue	
	constructs		• Studied the interaction <i>in vivo</i> and measured the amount of associated TBP	
			with the constructs to find binding was increased when Y654 was	
			phosphorylated	
1				1

Construct	Focus	Cell	Notes	Ref
		line(s)		
GFP-	Effect of phosphorylation	Cos-1	• Provided <i>in vivo</i> evidence that phosphorylation at Y654 decreases affinity to	[256],
tagged	on Wnt signalling and	(non-	E-cadherin using a conditional knock-in mouse model into which a Y654E	section
Y654E/F	intestinal tumorigenesis	cancer)	modification was introduced into CTNNB1	1.5
β-catenin	in vivo using GFP-tagged		• Transfected cells with GFP-tagged constructs and found phosphorylation at	
	constructs and a		Y654 facilitated phosphorylation at S675	
	conditional knock-in		• Results contrast the current belief that phosphorylation of Y654 aids tumour	
	mouse model for Y654E		progression to a more invasive phenotype, showing that it increases tumour	
			initiation by enhancing Wnt signalling	
			• This enhanced Wnt signalling was attributed to facilitated phosphorylation of	
			S675 which increases Wnt signalling by recruiting transcriptional co-activators	
1			[332-335], and reduced affinity to E-cadherin leading to an increased	
			cytoplasmic pool of which the destruction complex has to control [285, 336]	

1.12 Thesis aims and scope

This thesis aims to identify new protein interacting partners of β -catenin using a discovery oriented approach. This is significant because β -catenin exerts its functional effects through interactions with binding partners. An unbiased proteomic approach using MS will enable hitherto unknown interactors to be detected.

Therefore, the aims of this thesis are to:

- 1. Use MS to identify putative β -catenin binding proteins in SW480 and HT29 colon cancer cells.
- 2. Examine the effect of β -catenin-Y654 phosphorylation on protein interactors.
- 3. Use orthogonal approaches including immunoprecipitation and immunofluorescence to validate putative novel β -catenin protein interactors.

This research in this thesis was conducted within the scope of a 4 year timeframe and restricted to human colon cancer cells lines. The study was approached from a proteomic perspective for candidate discovery and concluded with cell biology techniques for validation of binders. It is hypothesised that novel protein binders of β -catenin will be detected and that phosphorylation will have an effect on this interactome. These novel protein binders may shed light on the activity of β -catenin in the cell.

2 Methods and materials

2.1 Expression and purification of MBP-β-catenin fusion-proteins

2.1.1 Sequencing of β-catenin DNA constructs

Full-length, WT human β -catenin fused with N-terminal MBP in a pMALC2 vector (<u>Figure 11</u>) was obtained from GenScript. Point mutagenesis was performed by GenScript to produce phosphomimetic-Y654E and non-phosphorylatable-Y654F β -catenin. DNA sequencing conducted at the Australian Genome Research Facility confirmed the mutated DNA sequences were in-frame. Primers used are listed in <u>Table</u>

<u>5</u>.

<u>Figure 11</u> Diagram of expression vector pMALC2 (New England BioLabs pMAL Protein Fusion and Purification System Manual, #E8000S)

<u>Table 5</u> Primer sequences used to sequence β -catenin-MBP DNA constructs.

Name	Sequence
pMALC2 forward	GGTCGTCAGACTGTCGATGAAGCC
pMALC2 reverse	TGTCCTACTCAGGAGAGCGTTCAC

2.1.2 Preparation of competent *E. coli* (DH5a) cells using RbCl₂

A loop of DH5 α cells was used to inoculate 2YT broth which was incubated overnight (O/N) at 37 °C at 220 rpm. This culture was used to inoculate 50 ml 2YT broth/1 ml 1 M MgSO₄ and was incubated at 37 °C at 220 rpm until OD₆₀₀= 0.8-1. Cells were pelleted at 4500 rpm for 5 min at 4 °C. Supernatant (S/N) was discarded and cells resuspended in transformation buffer (TB) 1 (30 mM potassium acetate, 10 mM CaCl₂, 50 mM MnCl, 100 mM RbCl and 15 % glycerol) and incubated on ice for 5 min. Cells were pelleted at 4500 rpm for 5 min at 4 °C and resuspended in TB 2 (MOPS, 75 mM CaCl₂, 10 mM RbCl, 15 % glycerol) and incubated on ice for 30 min. Aliquots were stored at -80 °C.

2.1.3 Transformation of competent DH5a cells

Competent cells were thawed on ice and once thawed were incubated on ice for a further 10 min. DNA was added to the competent cells and incubated on ice for 30 min. Cells were heat pulsed in a 42 °C water bath for 2 min followed by an incubation on ice for 5 min and an incubation at RT for 5 min. 2YT broth was added to the cells and incubated at 37 °C for 1 h at 200 rpm. Cells were pelleted at 3000 rpm for 3 min and S/N discarded. Cells were resuspended in 2YT and plated onto 2YT/ampicillin agar. Plates were incubated at 37 °C O/N.

2.1.4 Colony screening

Colonies grown O/N were screened for the DNA of interest. PCR reactions were made up using Taq polymerase, 10x Taq buffer, 25 mM MgCl₂, 10 mM dNTP, water and relevant primers. Colonies were transferred into the PCR reaction and prior to cycling the reactions were incubated for 2 min at 50 °C and then 2 min at 95 °C. The reactions were cycled using a two-step protocol consisting of 40 cycles of 1 min at 95 °C and 1 min at 60 °C. After cycling, reactions were subjected to melting curve analysis, where the temperature was raised from 60 °C to 95 °C over a period of 20 min and SYBR green fluorescence was continually monitored.

Fragments were validated by purification of the PCR product (Wizard SV Gel and PCR Clean-Up System Kit, Promega) according to manufacturer's instructions and running them on an agarose gel where correct size could be checked against a molecular DNA ladder.

2.1.5 Preparation of glycerol stocks

Transformed colonies were grown in O/N cultures of 2YT/ampicillin broth. 700 μ l of O/N culture was combined with 300 μ l of 50 % glycerol and stored at -80 °C.

2.1.6 Expression of MBP-β-catenin fusion-proteins

A loop of glycerol stock was used to inoculate 10 ml 2YT/ampicillin broth and incubated O/N at 37 °C, 220 rpm. This culture was used to inoculate 200 ml 2YT/ ampicillin broth at 37 °C, 220 rpm until $OD_{595}=1.0$. IPTG was added (final concentration of 0.3 mM) and incubated at 25 °C for 4 h. Cells were pelleted at 5000 rpm for 5 min and S/N discarded. Cells were washed in TBS and pelleted at 5000 rpm for 5 min and S/N discarded. Cells were resuspended in H-buffer (TEDM, 0.5 M NaCl, protease inhibitor) (TEDM = 20 mM Tris (pH 8), 1 mM EDTA, 1 mM DTT, 5 mM MgCl₂) and lysate sonicated for 10 s at 10 % output (x10) and spun at 20,000 x g for 30 min at 4 °C. S/N was stored at 4 °C.

2.1.7 Purification of MBP-β-catenin fusion-proteins

Amylose columns were sanitised with 1 CV water, 3 CV 0.1 % SDS, 1 CV water, 2 CV 1 M NaCl and 1 CV water and pre-equilibrated with 2 CV TEDM followed by 5 CV Hbuffer. Lysate was loaded onto the column followed by washes with 2 CV H-buffer and 10 CV TEDM. Protein was eluted with E-buffer (TEDM + 36 mg/ml maltose + protease inhibitor). The column was regenerated with 1 CV water, 3 CV 0.1 % SDS, 1 CV water, 2 CV 1 M NaCl, 1 CV water and 10 CV TBS and stored in fresh TBS.

2.1.8 Dialysis of MBP-β-catenin fusion-proteins

Dialysis was conducted according to manufacturer instructions using Slide-A-Lyzer dialysis cassettes (Thermo Scientific). Briefly, fusion-proteins were dialysed against TEDM for 2 h at 4 °C followed by a change of buffer and further dialysis for 2 h at 4 °C. Dialysis buffer was changed and the protein dialysed O/N at 4 °C.

A flow-chart which illustrates the methodology of expression and purification of proteins from transformation of cells to dialysis of purified proteins is shown in <u>Figure 12</u>.

2.2 Cell culture

2.2.1 Cell line propagation

Human cancer cell lines were cultured. Cell lines are shown in Table 6.

Table 6 Human cancer cell lines.

Cell Line	Cancer Type	
SW480	Colon	
HT29	Colon	
HEK293T	Non-cancer (human embryonic kidney)	

Cells grown in non-SILAC media were cultured in Dulbecco's Modified Eagle Medium (DMEM) + Glutamax media (Invitrogen) supplemented with 10 % fetal bovine serum (FBS) (Invitrogen), 1 % Penicillin/Streptomycin (Invitrogen) and 10 mM HEPES (Invitrogen). Incubator conditions were 37 °C, 5 % CO₂. When confluency reached 70-80 %, cells were washed with phosphate-buffered saline (PBS) (Astral Scientific) and detached with trypsin (Invitrogen). Cells were then seeded into flasks (Corning Incorporated) or dishes (Greiner-BioOne).

Cells grown in SILAC media were cultured in DMEM minus L-Lysine and L-Arginine (Thermo Scientific) supplemented with 10 % dialysed fetal bovine serum (FBS) (Invitrogen), 1 % Penicillin/Streptomycin (Invitrogen).

Crystal Semaan: Proteomic study of β *-catenin protein interactions in colon cancer*

Heavy labelled media was supplemented with 84 mg/L L-Arginine (${}^{13}C_6$, ${}^{15}N_4$) (Cambridge Isotopes) and 146.2 mg/L L-Lysine (${}^{13}C_6$, ${}^{15}N_4$) (Cambridge Isotopes). Light labelled media was supplemented with 84 mg/L L-Arginine (${}^{12}C_6$, ${}^{14}N_4$) (Cambridge Isotopes) and 146.2 mg/L L-Lysine (${}^{12}C_6$, ${}^{14}N_4$) (Cambridge Isotopes). Incorporation of heavy isotope labels was confirmed by MS after at least six doublings.

Incubator conditions were 37 °C, 5 % CO₂. When confluency reached 70-90 %, cells were washed with phosphate-buffered saline (PBS) (Astral Scientific) and detached with trypsin (Invitrogen). Cells were then seeded into flasks (Corning Incorporated) or dishes (Greiner-BioOne).

2.2.2 Whole cell lysis

Cells in dishes were washed in PBS and lysed directly with RIPA buffer (pH 7.5) (20 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1 % Triton X-100) supplemented with protease inhibitor (2.5 mM sodium pyrophosphate, 1 mM β -glycerophosphate, 1 mM Na₃VO₄, 1 µg/ml leupeptin) (Roche Diagnostics). Cell lysate was collected using cell scrapers (Corning Incorporated) and sonicated for 10 s. Samples were centrifuged at 10,000 rpm and the S/N retained. Samples were stored at -20 °C.

2.2.3 Cell thawing and freezing

Cells were thawed from -80 °C freezer aliquots in a 37 °C water bath and placed into media and media changed the next day. Cells were also frozen for -80 °C stocks. Freezing media consisted of 10 % DMSO cooled to 4 °C before being added to cell pellets and transferred into cryo-vials. Cryo-vials were placed into an isopropanol freezing container for 24 h before being transferred to -80 °C storage.

2.3 Protein quantitation

2.3.1 Bicinchoninic acid (BCA) protein assay

BCA assays were conducted according to manufacturer's instructions (BCA Protein Assay Kit, Thermo Scientific). Briefly, standard curves were prepared using bovine serum albumin (BSA) (Sigma). BCA reagent was added to the standards and samples of unknown concentration. After incubation at 37 °C for 30 min, absorbance was measured at 595 nm against a standard curve using the Fluorostar Optima (BMG Labtech).

2.3.2 Bradford assay

Bradford assays were conducted according to manufacturer's instructions (Bradford reagent, Biorad). Briefly, Bradford reagent was diluted with water (1:5). Known concentrations of BSA or 1 μ l of unknown sample was added to 1 ml of the Bradford dilution. Samples were incubated for 5 min at RT and absorbance measured at 595 nm against a standard curve using a LambdaBio spectrophotometer (Perkin-Elmer).

2.4 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)

2.4.1 SDS-PAGE

Samples comprised of protein, LDS (Invitrogen), reducing agent (Invitrogen) and water were heated at 95 °C for 5 min with gentle shaking and loaded into 4-12 % Bis-Tris gels (Invitrogen). Gels were run in $1 \times$ MOPS Running Buffer (Invitrogen) at 200 V for 40 min.

2.4.2 Coomassie Blue gel staining

Gels were fixed in 40 % methanol, 7 % acetic acid for 20 min and stained with Coomassie G250 (Sigma) for 10 min. Gels were destained with 25 % methanol.

2.4.3 Western blotting

The gel was transferred onto a nitrocellulose membrane by a transfer performed at 30 V for 90 min. Membranes were washed with tris-buffered saline (TBS) (1 M Tris-HCl, 3 M NaCl) and blocked using 5 % skim milk (Diploma Skim Milk Powder) in TBS-T (TBS with 0.1 % Tween 20). Membranes were washed with TBS-T and incubated with primary antibody (diluted in 5 % BSA/TBS-T) for 1 h at RT. Primary antibodies employed are listed in <u>Table 7</u>. Membranes were washed in TBS-T and incubated with secondary antibody for 30 min at RT. Secondary antibodies employed are also listed in <u>Table 7</u>. Membranes were and imaged using the Odyssey Licor 3.0 (Millennium Sciences) at 700 nm or 800 nm.

Primary antibodies					
Name	Company	Catalog number	Species		
APC Ab1	Calbiochem	OP44	Mouse		
APC H290	Santa Cruz	sc-7930	Rabbit		
β-catenin	BD	610154	Mouse		
β-catenin	Santa Cruz	sc-7199	Rabbit		
β-catenin-pY654	Metagene	sc-57599	Mouse		
СОРВ	Thermo Scientific	Pa1-061	Rabbit		
Cdk1	BD	610037	Mouse		
COPS5	Cell Signalling	6895	Rabbit		
hnRNPK	Santa Cruz	sc-25373	Rabbit		
HSP70 (mito)	Thermo Scientific	MA3-028	Mouse		
HSP90	Cell Signalling	4874	Rabbit		
KCL4	Metagene	sc-376702	Mouse		
KPNA1	Thermo Scientific	PA5-21032	Rabbit		
Opa1	BD	612606	Mouse		
Rab11	Cell Signalling	5589	Rabbit		
Rab5	Cell Signalling	3547	Rabbit		
Rab7	Cell Signalling	9367	Rabbit		
Tab182	Thermo Scientific	PA5-28728	Rabbit		
	Secondary antibodies	6			
IRDye 800CW goat α-rabbit	Millennium Science	926-32211	Rabbit		
IRDye 800CW goat α-mouse	Millennium Science	926-32210	Mouse		
IRDye 680CW goat α-rabbit	Millennium Science	926-32221	Rabbit		
IRDye 680CW goat α-mouse	Millennium Science	926-32220	Mouse		
AlexaFluor® 405 α-mouse	Invitrogen	RM2626	Mouse		
AlexaFluor® 405 α-rabbit	Invitrogen	A31556	Rabbit		
AlexaFluor® 488 α-mouse	Invitrogen	A11029	Mouse		
AlexaFluor® 488 α-rabbit	Invitrogen	A11034	Rabbit		
AlexaFluor® 594 α-mouse	Invitrogen	A11032	Mouse		
AlexaFluor® 594 α-rabbit	Invitrogen	A11037	Rabbit		
	Dyes				
CMX-Ros	Invitrogen	M7512	n/a		
Hoechst 33254 (nuclear stain)	Sigma-Aldrich	H6024	n/a		

Table 7 Antibodies and dyes.

2.5 Pull-downs using fusion-protein and MS

2.5.1 Pull-down using MBP-constructs and amylose resin

Each pull-down was performed in triplicate, using independent cell lysates for each replicate. Furthermore, the β -catenin-MBP used for each replicate was purified in a single experiment (single cell extracts).

Amylose beads were centrifuged at 2000 rpm for 2 min and S/N discarded. Beads were incubated in TEDM at RT for 5 min with gentle shaking. Beads were centrifuged at 2000 rpm for 1 min and S/N discarded. Beads were resuspended in TEDM (1:1) and 120 μ g used for the pull-down. Excess fusion-protein or MBP-tag (200 μ g) was incubated with the beads for 1 h at 4°C with gentle shaking.

Beads (now with the tag bound) were centrifuged at 2000 rpm for 30 s and S/N discarded. Beads were washed in TEDM to remove unbound protein and incubated in excess cell lysate (1 mg) for 1 h 10 min at 4°C with gentle shaking. Samples were centrifuged at 2000 rpm for 30 s and pellets washed in PBS by gentle pipetting to remove any unbound proteins.

Samples were centrifuged at 2000 rpm for 30 s and S/N discarded. Bound proteins were eluted by a 5 min incubation at RT with maltose (100 mM maltose in TEDM). Eluates were loaded onto gels for SDS-PAGE.

2.5.2 In-gel trypsin digestion and peptide extraction

Following SDS-PAGE and gel staining/destaining, protein bands of interest were cut out and washed in 100 mM ammonium bicarbonate (NH₄HCO₃). They were dehydrated with 50 % acetonitrile (ACN)/100 mM bicarbonate for 10 min and washed for 5 min in 100 % ACN. Samples were reduced with 10 mM dithiothreitol (DTT) (Biorad) in 100 mM NH₄HCO₃ for 30 min at 56 °C and alkylated with 25 mM iodoacetamide (IAA) (Sigma) in 100 mM NH₄HCO₃ for 30 min at RT in the dark. Pieces were washed in 100 μ l 100 mM NH₄HCO₃ for 5 min and 50 % ACN/50 mM NH₄HCO₃ for 5 min and dehydrated with 100 % ACN. 13 ng/ μ l trypsin solution was used to cover gel pieces and the digest occurred at 37 °C for 16-18 h.

Peptides were extracted using sonication and 0.1 % trifluoroacetic acid) (TFA) (Sigma) followed by drying down of the peptides by vacuum centrifugation (SpeedVac SC110A, Thermo Scientific). Peptides were stored at -20 °C and resuspended in 0.1 % FA for MS.

2.5.3 Mass spectrometry (LC/MS/MS)

Samples were analysed using LC-MS instrumentation consisting of an Easy nano-flow HPLC system (Thermo Scientific) coupled via a nanoelectrospray ion source (Thermo Scientific) to an Orbitrap Elite mass spectrometer (Thermo Scientific). Peptide separation was performed on a 20 cm x 100 μ m column packed in-house with Halo® 2.7 μ m 160 Å ES-C18 (Advanced Materials Technology). Peptides were loaded in buffer A (0.1 % (v/v) FA) and eluted with a 97 min linear gradient of buffer B (100 % (v/v) ACN/0.1 % (v/v) FA) at 300 nL/min (2-85 % buffer B in 97 min). Mass spectra were acquired in a data-dependent manner, with an automatic switch between MS and MS/MS using a top 15 method. MS spectra were acquired in the Orbitrap analyser with a mass range of 350-1800 *m*/*z* and 120000 resolution at *m*/*z* 400 (Orbitrap Elite) and AGC target of 1e6 ions. HCD peptide fragments, acquired at 35 normalized collision energy, were analysed at high resolution in the Orbitrap with dynamic exclusion of ions for 10 sec.

2.5.4 Data acquisition and statistical analysis

Raw files were processed for through Proteome Discoverer 1.3 (Thermo Scientific). In the spectrum selector nodule, minimum-maximum precursor mass was set to 200-2000 Da. Peptide identification was performed with Mascot (Matrix Science) against the SwissProt human database and a reversed human decoy database. Searches specified 10 ppm precursor mass tolerance, 0.02 Da fragment mass tolerance, maximum 2 missed cleavages, fixed modifications of carbamidomethylation (C) and variable modifications of oxidation (M), acetylation (N-terminal), ${}^{13}C_6$, ${}^{15}N_2$ on lysine (K), and ${}^{13}C_6$, ${}^{15}N_4$ on arginine (R) and peptides filtered at 0.01 % FDR. SILAC pairs (heavy/light ratio calculation) were identified and quantitated using the built-in SILAC 2-plex quantification method (Proteome Discoverer 1.3) using Arg-10 and Lys-8 labels and mass precision set to 2 ppm for event detection.

Utilising the data from Proteome Discoverer 1.3, candidate lists were produced. This list excluded proteins not present in all 3 replicates at a fold-change of > 2 for light (β catenin-MBP):heavy (MBP). A t-statistic was generated using the equivalent of a onesample t-test to test deviance from a fold-change of > 2. Based on this t-statistic a pvalue was generated by using a one-tailed t-distribution with two-degrees of freedom. Proteins with a p-value of > 0.05 were excluded from the candidate list.

A flow-chart which illustrates the methodology from pull-down through to data analysis is shown in Figure 13.

Crystal Semaan: Proteomic study of β *-catenin protein interactions in colon cancer*

Figure 13 Flow-chart depicting pull-down, mass spectrometry and data analysis methodology.

2.6 Immunoprecipitation (IP)

2.6.1 Protocol for sepharose A beads (for polyclonal rabbit antibodies) and protein G agarose beads (for monoclonal mouse antibodies)

Sepharose A beads were prepared by swelling 150 mg of beads in 5 ml water and allowing them to settle. S/N was removed and 2 ml of water added. Upon beads settling, S/N was removed and 5 ml of lysis buffer added. Upon beads settling, S/N was removed and 2 ml of lysis buffer added. S/N was removed and final bead volume in lysis buffer made up to 1 ml (3:1 slurry of beads:buffer).

Cells were lysed in RIPA buffer (with protease inhibitor) and incubated on ice for 10 min, spun at 13,000 rpm for 10 min and S/N collected. 1 mg of lysate was used for 2 μ g of polyclonal rabbit antibody (

) or 2 mg of lysate for 1 μ g of the monoclonal mouse antibody (

). Samples were placed on a rotating wheel O/N at 4 °C. 30 µl sepharose A or protein G agarose was added to the lysate/antibody complex and rotated on a wheel for 2 h at 4 °C. Samples were centrifuged at 2000 rpm for 3 min at 4 °C and S/N removed. Pellets were washed in 700 µl RIPA, spun on a rotating wheel for 5 min at 4 °C and centrifuged at 2000 rpm for 3 min at 4 °C. S/N was removed, pellets washed in 700 µl TBS, spun on a rotating wheel for 5 min at 4 °C. S/N was removed at 2000 rpm for 3 min at 4 °C. S/N was removed, pellets washed in 700 µl TBS, spun on a rotating wheel for 5 min at 4 °C. S/N was removed at 2000 rpm for 3 min at 4 °C. S/N was removed at 2000 rpm for 3 min at 4 °C. S/N was removed at 2000 rpm for 3 min at 4 °C. S/N was removed and the lysate/antibody complex eluted from beads using Laemmli buffer and incubation at 95 °C for 7 min. Samples were spun at 13,000 rpm for 1 min and loaded onto a gel.

2.7 Immunofluorescence (IF) and co-localisation

Cells were seeded into 6-well plates with a microscopy slide in each well. At the conclusion of the experiment, the slides were removed from the wells and mounted in order to be viewed under the microscope.

Upon cells reaching ~ 80 % confluency, wells were washed three times in PBS. Cells were fixed in methanol-acetone (1:1) for 10 min at -20 °C and washed in PBS three times. Cells were blocked with 3% BSA/PBS for 1 h, washed three times in PBS and incubated with primary antibody for 1 h at RT. Antibodies (

) were diluted in 3 % BSA/PBS and added to each well. Cells were washed in PBS three times and secondary antibody/Hoechst nuclear stain (

) added for 1 h at RT. Cells were washed three times in PBS and slides mounted using Vectashield and stored at 4 °C until ready for imaging on the DeltaVision (GE Healthcare).

2.7.1 CSK wash

Cell lines with a high amount of cytoplasmic β -catenin required a CSK/0.1 % triton X-100 wash. This wash, performed on ice, washes out some cytoplasmic content, reducing cytoplasmic β -catenin signal intensity. CSK buffer consists of 100 mM NaCl, 300 mM sucrose, 1 mM MgCl₂, 10 mM PIPES, 1 mM EGTA, 1 mM DTT, 1 mM PMSF, protease inhibitor and 0.1 % triton X-100. The CSK wash is performed before cell fixation in the IF protocol.

2.7.2 Mitochondrial staining

CMX-Ros dye (

) was used to stain the mitochondria. At the beginning of the IF protocol (before the cells are first washed in PBS three times after media is removed), CMX-Ros dye is added to wells containing media at 1:10,000. Cells are incubated for 10 min at 37 °C in the dark.

2.8 Imaging on the DeltaVision (GE Healthcare)

The DeltaVision is a high-resolution fluorescence microscope used to image IF experiments. This microscope is capable of deconvolution of images and z-stacking. IF slides were viewed by the microscope which detects DAPI probes (blue dye), FITC probes (green dye) and TRITC probes (red dye). SoftWoRx Explorer 1.3 software was used to view and analyse images acquired off the DeltaVision.

3 Novel protein interactions of β-catenin in SW480

3.1 Introduction

In this chapter, the colon cancer cell line SW480 was used to investigate protein interactors of β -catenin. The Wnt pathway in SW480 is constitutively active and β -catenin is wildtype (WT). β -catenin is expressed in high levels in this cell line, and its localisation is both cytoplasmic and nuclear. All these characteristics make it an appropriate cell line to use when investigating protein interacting partners.

Recombinant β -catenin-MBP was used to pull-down protein binding partners in SW480 and with the use of amylose resin, this complex was captured and eluted. Eluates were run on SDS-PAGE and gel bands excised and peptides prepared for MS. The approach utilised in this thesis uses the advantages of SILAC labelling, in order to reduce variation between replicates. Therefore, all cells in cell culture (consequently used for pull-downs) had been grown in heavy or light SILAC media, and validation of incorporation of the labels was performed before any pull-down experiments were conducted. High-resolution LC/MS (Orbitrap Elite, Thermo Scientific) was used in order to best identify novel interacting partners of β -catenin.

3.2 Results

3.2.1 β-catenin-MBP DNA constructs

Full-length, WT human β -catenin fused with N-terminal MBP in a pMALC2 vector was obtained from GenScript. Point mutagenesis was performed by GenScript to produce phosphorylation mutants of full-length β -catenin at Y654 to obtain Y654E (phosphomimetic) and Y654F (non-phosphorylatable). DNA sequencing conducted at the Australian Genome Research Facility confirmed the mutated DNA sequences were in-frame.

3.2.2 Purification of fusion-proteins

Recombinant protein was produced by expression in *E.coli* (DH5 α) and purification on an amylose resin column. A number of checks were performed on the purified protein to ensure they were fit for experimental use and were performed by Coomassie Blue staining, western blot and MS. Checks include ensuring the purified proteins were β catenin, the MBP tag had not been cleaved, there was little or no bacterial protein contamination, there was little or no degradation of the purified protein and that the point mutations were present in the expressed gene products.

<u>Figure 14</u> shows a Coomassie Blue stained SDS-PAGE gel of the MBP- β -catenin fusion-protein. From these images, it is clear that most of the signal was at the expected molecular mass (130 kDa) and that there was only minor degradation of the protein and little background contamination due to other bacterial proteins. <u>Figure 15</u> shows immunodetection of β -catenin further confirming the identity of the recombinant protein.

Figure 14 Coomassie Blue staining of purified β-catenin-MBP.

Coomassie Blue staining shows minimal degradation of the protein and the molecular weight of the protein (130 kDa) provides evidence that the MBP tag has not been cleaved off.

- A) WT β -catenin-MBP purified protein.
- B) Phosphomimetic β -catenin-MBP purified protein.
- C) Non-phosphorylatable β -catenin-MBP purified protein.

Crystal Semaan: Proteomic study of β *-catenin protein interactions in colon cancer*

Figure 15 Western blot of purified β-catenin-MBP using α-β-catenin antibody.

Western blot with α - β -catenin antibody shows that the protein produced was β -catenin, and that there is minimal degradation of the protein. Furthermore, the molecular weight (130 kDa) of the protein provides evidence that the MBP tag has not been cleaved off.

- A) WT β -catenin-MBP purified protein.
- B) Phosphomimetic β -catenin-MBP purified protein.
- C) Non-phosphorylatable β -catenin-MBP purified protein.

3.2.3 Mass spectrometric analysis of β-catenin phospho-mutants

The purified protein was separated by SDS-PAGE and bands of interest were excised and underwent trypsin digest in preparation for MS. <u>Table 8</u> shows the number of β catenin peptides detected at > 95 % confidence using Protein Pilot 4.2 and the percentage of β -catenin sequence covered. <u>Table 9</u> shows the detection of the actual mutations. Each peptide was detected at > 99 % confidence.

Furthermore, fragmentation evidence for amino acid mutations is illustrated in <u>Figure</u> <u>16</u>. A comparison of peptide sequence NEGVATYAAAVLFR is shown between the Y654E, Y654F and Y654 in order to validate the amino acid mutation at Y654.

By Coomassie Blue staining, western blot and MS, it has been demonstrated that highyield and high-purity fusion-proteins were produced, fit for use in protein interaction pull-down experiments.

Construct	B-catenin peptides	Sequence coverage (%)
Y654	305	71.7
Y654E	200	60.8
Y654F	379	84.3

<u>Table 8</u> Peptides of β-catenin from purified β-catenin-MBP detected by MS.

<u>Table 9</u> Point mutations in purified β -catenin-MBP detected by MS.

Construct	Peptide Sequence	Modification	No. of Peptides with
	Detected		Modification
Y654	NEGVATYAAAVLFR	None	30
Y654E	NEGVAT <mark>E</mark> AAAVLFR	Tyr->Glu@7	24
Y654F	NEGVAT <mark>P</mark> AAAVLFR	Tyr->Phe@7	33

A MS/MS spectra of peptide NEGVATEAAAVLFR for Y654E

Figure 16 MS/MS spectra of β-catenin Y654, Y654E and Y654F.

A) MS/MS spectra showing the tyrosine to glutamic acid residue mutation at amino acid 7 in the peptide

NEGVATEAAAVLFR.

B) MS/MS spectra showing the tyrosine to phenylalanine residue mutation at amino acid 7 in the peptide

NEGVAT<u>F</u>AAAVLFR.

C) MS/MS spectra of the WT peptide NEGVATYAAAVLFR.

3.2.4 SILAC incorporation

For the quantitative proteomics in this thesis, SILAC was utilised for *in vivo* incorporation of 'heavy' and 'light' lysine and arginine labels into proteins for MS. After a number of cell divisions, there was a check for full incorporation of these labels into the cell lines. This was achieved by collecting lysate from the 'heavy' and 'light' labelled cells. A known and consistent amount of 'heavy', 'light' and mixed (1:1 of heavy:light) lysate was run on the mass spectrometer (Orbitrap Elite, Thermo Scientific). Analysis of the spectra showed full incorporation of the labels (Figure 17 and Figure 18).

Figure 17 Incorporation of heavy lysine into amino acids in cell culture.

A) Light peptide $\underline{m/z} = 560.80$ is underlined in the light sample (denoted by an asterisk to its right).

B) Light peptide $\underline{m/z} = 560.80$ is underlined in the mixed sample (denoted by an asterisk to its right) along with its heavy counterpart at $\underline{m/z} = 564.81$ (denoted by a hashtag to its right).

C) Heavy peptide $\underline{m/z} = 564.81$ is underlined in the heavy sample (denoted by a hashtag to its right) as the heavy lysine has been fully incorporated.

Figure 18 Incorporation of heavy arginine into amino acids in cell culture.

A) Light peptide $\underline{m/z} = 622.81$ is underlined in the light sample (denoted by an asterisk to its right).

B) Light peptide $\underline{m/z} = 622.81$ is underlined in the mixed sample (denoted by an asterisk to its right) along with its heavy counterpart at $\underline{m/z} = 627.82$ (denoted by a hashtag to its right).

C) Heavy peptide $\underline{m/z} = 627.82$ is underlined in the heavy sample (denoted by an asterisk to its right) as

the heavy arginine has been fully incorporated.

3.2.5 Protein interactions of β-catenin in SW480

The present research investigates protein interactors of human full-length WT β -catenin by pull-downs. Experiments were performed in triplicate using SILAC labelled SW480 cell lysate. Purified β -catenin-MBP was used as protein bait for pulling out binding partners from the lysate and appropriate reproducibility was demonstrated between replicate analyses (average r² > 0.85) (

<u>Figure 19</u>). 379 proteins were pulled-down that fulfilled candidate list parameters. These parameters include that the protein had to be present in all three replicates, have a p-value of < 0.05 and a fold-change of > 2 for light (β -catenin-MBP):heavy (MBP control) (<u>Figure 20</u>). This list included well-known protein interactors of β -catenin.

i. Known interactors of β -catenin pulled-down in SW480

<u>Table 10</u> displays known interactors of β -catenin which serves as evidence for the utility of the experiment. Only known interactors that could have an average fold-change generated are listed. That is, their fold-change had a value assigned rather than being listed as an infinite fold-change. Well-known interactors detected with infinite ratios (and therefore could have no average generated) include junction plakoglobin [337], KN motif and ankyrin repeat domain-containing protein 1 [338], membrane-associated guanylate kinase WW and PDZ domain-containing protein 1 [302] and S-phase kinaseassociated protein 1 [339]. Known interactors in <u>Table 10</u> were present in all three replicates, have a p-value of < 0.05 and a fold-change of > 2 for light (β -catenin-MBP):heavy (MBP control). The validity of the pull-down method was confirmed by immunoblot for known interactor APC (Figure 21).

Figure 19 Regression plots of heavy:light ratios across replicates in the SW480 wildtype dataset

The linearity of the graph (average r^2 -value of > 0.85) demonstrates the reproducibility of β -catenin protein interactors between the three replicates.

Log2 fold-change of proteins is plotted against the -log10 p-value reporting threshold (1.3) (red-dashed line).

Accession number	·	Unique peptides	Average fold- change
	Known interactor		(β-catenin:control)
	Adenomatous polyposis coli protein	5	
P25054	[293]		749
P35221	Catenin alpha-1 [340]	33	534
O60716	Catenin delta-1 [337]	4	680
	Four and a half LIM domains protein 2	13	
Q14192	[341]		976
	Na(+)/H(+) exchange regulatory cofactor	5	
O14745	NHE-RF1 [342]		680
P49023	Paxillin [299]	3	486
Q9Y265	RuvB-like 1 [343]	19	583

Table 10 Knowr	interactors o	of B -catenin	in SW480.
----------------	---------------	----------------------	-----------

Figure 21 Pull-down performed using β-catenin-MBP constructs and probed for known interactor,

APC.

Figure shows that known interactor of β -catenin, APC (160 kDa) binds to the various β -catenin-MBP constructs but not the control (MBP). This further validates the pull-down method.

ii. Candidate novel interacting proteins of β -catenin in SW480

Novel candidate interacting proteins of β -catenin were pulled-out during a SILAC experiment performed in triplicate using full-length WT β -catenin-MBP, using MBP binders as control. Candidates had to be present in all 3 replicates, have a p-value of < 0.05 and a fold-change of > 2 for light (β -catenin-MBP):heavy (MBP). The full candidate list (378 proteins) can be found in appendix 8.1. A shorter and highly stringent reporting threshold analysis of candidate interactors is shown in <u>Table 11</u>, where 64 candidates are reported. This table has candidates where an average fold-change could be generated based on all three replicates. The fold-change needed to range between 350-1000 due to the distribution of known interactors and their average fold-change of ~ 700. Furthermore, \geq 5 unique peptides in total were detected.

Gene accession numbers were converted into Uniprot IDs using the Uniprot ID mapping tool (http://www.uniprot.org/mapping) where gene accession numbers were entered (under UniProtKB AC/ID) and converted into Uniprot IDs (under UniprotKB). A GO annotation was then downloaded for each Uniprot ID (using Uniprot Biomart). Following the GO annotation report, candidates were assigned a main process of function based on this GO annotation. Distribution of the various processes/functions is shown in Figure 22. Of particular interest were golgi-proteins, mitochondrial-proteins and proteins involved in nuclear import and export. An example of a group belonging to the 'other' category is cytoskeletal proteins. Proteins grouped as golgi-, mitochondrial-, or nuclear import and export- related are displayed in Table 12, Table 13, Table 14 respectively.

Crystal Semaan: Proteomic study of β *-catenin protein interactions in colon cancer*

Furthermore, the candidate list was compared to interactors of β -catenin provided by BioGRID 3.3. BioGRID 3.3 is an interaction repository of data compiled based on published empirical evidence. Upon entering β -catenin's gene name (CTTNB1) into BioGRID 3.3's gene/identifier search bar, 272 protein interactors of β -catenin were generated, and these were compared to the SW480 interactor candidate list reported in this thesis. <u>Table 15</u> shows 28 proteins shared with BioGRID 3.3 and the SW480 dataset presented in this thesis. A literature search was performed on each protein in order to understand the sample type where the interaction was observed.

It is of note that one of the highest fold-changes detected was for β -catenin (in all experiments, but an example is listed in <u>Table 11</u>). This is most likely due to the large excess of β -catenin-MBP present in the eluate rather than β -catenin dimerisation. Although α -catenin is known to form homodimers, β -catenin is not known to dimerise [36]. The higher level of β -catenin-MBP was detected from analysis of a gel band ~ 130 kDa. This gel band was analysed in attempt to detect other proteins of similar molecular mass, a strategy that was successful and a number of proteins of ~ 130 kDa were detected including vinculin, reticulin and exportin-5.
<u>Table 11</u> Candidate novel interacting proteins of full-length WT β -catenin in SW480.

Accession	Protein	Unique peptides	Average fold-change (B-catenin:control)
P61160	Actin-related protein 2	7	<u>(p cutchini.control)</u> 553
P25054	Adenomatous polyposis coli protein	5	749
000170	AH recentor-interacting protein	6	618
P01000	Alpha-1-antitrynsin	24	018
D01023	Alpha 2 macroglobulin	5	901
101023	ATPase family AAA domain-	5	901
Q5T9A4	containing protein 3B	6	680
P53004	Biliverdin reductase A	5	356
099439	Calponin-2	6	599
P35221	Catenin alpha-1	33	535
P35222	Catenin beta-1	32	912
013185	Chromobox protein homolog 3	5	363
P53621	Coatomer subunit alpha	19	498
	Cullin-associated NEDD8-dissociated	-	
Q86VP6	protein 1	12	351
	Cytoplasmic FMR1-interacting protein		
Q7L576	1	5	365
D 22002	DNA replication licensing factor	22	(01
P33992	MUM5	- 22	621
P04843	protein glycosyltransferase subunit 1	13	351
104045	Eukarvotic translation initiation factor	15	551
Q99613	3 subunit C	5	679
Q9BSJ8	Extended synaptotagmin-1	7	438
Q14192	Four and a half LIM domains protein 2	13	976
P07954	Fumarate hydratase, mitochondrial	5	494
P78347	General transcription factor II-I	7	519
P11413	Glucose-6-phosphate 1-dehydrogenase	9	365
P06737	Glycogen phosphorylase, liver form	9	921
P52292	Importin subunit alpha-2	5	449
Q13418	Integrin-linked protein kinase	7	675
P41252	IsoleucinetRNA ligase, cytoplasmic	15	437
Q9NSK0	Kinesin light chain 4	7	920
P20700	Lamin-B1	5	675
P09960	Leukotriene A-4 hydrolase	11	498
P10619	Lysosomal protective protein	8	592
Q3ZCQ8	Mitochondrial import inner membrane	6	350

Accession number	Protein	Unique peptides	Average fold-change (β-catenin:control)
	translocase subunit TIM50		
O14745	Na(+)/H(+) exchange regulatory cofactor NHE-RF1	5	680
09V31/	Nitric oxide synthase-interacting	5	363
P50479	PDZ and LIM domain protein 4	5	854
1 JU479	PDZ and LIM domain protein 7	10	1000
Q9INK12	PERO amino acid_rich with GYE	10	1000
O75420	domain-containing protein 1	7	507
Q99959	Plakophilin-2	7	549
O15355	Protein phosphatase 1G	5	520
Q9Y570	Protein phosphatase methylesterase 1	5	473
Q96C36	Pyrroline-5-carboxylate reductase 2	7	445
Q92900	Regulator of nonsense transcripts 1	12	574
Q8WUF5	RelA-associated inhibitor	12	823
Q15293	Reticulocalbin-1	7	426
Q9Y265	RuvB-like 1	19	564
Q9Y230	RuvB-like 2	25	621
P49591	SerinetRNA ligase, cytoplasmic	9	461
	Signal transducer and activator of		
P42224	transcription 1-alpha/beta	7	668
075533	Splicing factor 3B subunit 1	15	429
Q9UBT2	SUMO-activating enzyme subunit 2	10	668
P78371	T-complex protein 1 subunit beta	15	354
P02766	Transthyretin	5	879
P40939	Trifunctional enzyme subunit alpha, mitochondrial	11	351
014134	Tripartite motif-containing protein 29	6	812
O9BUF5	Tubulin beta-6 chain	7	385
P18031	Tyrosine-protein phosphatase non- receptor type 1	6	668
P45974	Ubiquitin carboxyl-terminal hydrolase 5	7	672
P22314	Ubiquitin-like modifier-activating enzyme 1	15	354
Q9Y224	UPF0568 protein C14orf166	6	722
Q96QK1	Vacuolar protein sorting-associated protein 35	8	668
P18206	Vinculin	18	389
Q9Y5K8	V-type proton ATPase subunit D	6	539

<u>Figure 22</u> Distribution of processes and functions of candidate novel binding partners of β -catenin in SW480.

Table 12 Golgi-related candidate novel interacting proteins of full-length WT β-

catenin in SW480.

Accession number	Protein	Unique peptides
P84085	ADP-ribosylation factor 5	1
P62330	ADP-ribosylation factor 6	2
P01009	Alpha-1-antitrypsin	24
P04114	Apolipoprotein B-100	52
P16278	Beta-galactosidase	4
P11717	Cation-independent mannose-6-phosphate receptor	11
P09496	Clathrin light chain A	4
P53621	Coatomer subunit alpha	19
P35606	Coatomer subunit beta'	7
O14579	Coatomer subunit epsilon	3
P61923	Coatomer subunit zeta-1	3
Q02750	Dual specificity mitogen-activated protein kinase kinase 1	1
P36507	Dual specificity mitogen-activated protein kinase kinase 2	1
Q92538	Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1	1
Q15382	GTP-binding protein Rheb	2
Q9Y6B6	GTP-binding protein SAR1b	1
	Lipopolysaccharide-responsive and beige-like anchor	5
P50851	protein	
Q14697	Neutral alpha-glucosidase AB	15
000442	Phosphatidylinositol 4-phosphate 3-kinase C2 domain-	5
D61026	Des related protein Bab 10	1
P01020	Ras-related protein Rab-10	4
P02820	Ras-related protein Rab-1R	
Q9H004	Ras-related protein Rab-1B	2
Q90L23	Somin III	12
P30434	Serting powin 5	12
Q913A3	Softing next in a second and the second seco	5
	Vacuolar protein sorting associated protein 29	8
Q90QK1	Vacuotar protein sorting-associated protein 55	3
069619	Vesicle-associated membrane protein-associated protein	6
O95292	B/C	0
Q12907	Vesicular integral-membrane protein VIP36	3

Accession Unique number peptides Protein 2-oxoglutarate dehydrogenase, mitochondrial 3 Q02218 6 39S ribosomal protein L37, mitochondrial Q9BZE1 6 099714 3-hydroxyacyl-CoA dehydrogenase type-2 19 40S ribosomal protein S3 P23396 3 Q99798 Aconitate hydratase, mitochondrial 2 P12235 ADP/ATP translocase 1 5 ADP/ATP translocase 2 P05141 6 P78540 Arginase-2, mitochondrial 14 P25705 ATP synthase subunit alpha, mitochondrial 9 ATP synthase subunit O, mitochondrial P48047 6 ATPase family AAA domain-containing protein 3B **Q5T9A4** 10 ATP-binding cassette sub-family E member 1 P61221 Coiled-coil-helix-coiled-coil-helix domain-containing protein 4 Q9NX63 3, mitochondrial 4 Cytochrome c oxidase subunit 2 P00403 4 P54886 Delta-1-pyrroline-5-carboxylate synthase Dihydrolipoyllysine-residue succinyltransferase component of 4 2-oxoglutarate dehydrogenase complex, mitochondrial P36957 9 P38117 Electron transfer flavoprotein subunit beta 4 Elongation factor Ts, mitochondrial P43897 15 P49411 Elongation factor Tu, mitochondrial 5 P07954 Fumarate hydratase, mitochondrial 3 Q9UIJ7 GTP:AMP phosphotransferase, mitochondrial 1 P52789 Hexokinase-2 3 O9H2U2 Inorganic pyrophosphatase 2, mitochondrial 4 O43837 Isocitrate dehydrogenase [NAD] subunit beta, mitochondrial 4 P48735 Isocitrate dehydrogenase [NADP], mitochondrial 2 Lon protease homolog, mitochondrial P36776 2 095573 Long-chain-fatty-acid--CoA ligase 3 3 O60488 Long-chain-fatty-acid--CoA ligase 4 3 Q9Y3D6 Mitochondrial fission 1 protein Mitochondrial import inner membrane translocase subunit 6 03ZC08 TIM50 2 075439 Mitochondrial-processing peptidase subunit beta NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, 2 075489 mitochondrial 6 P30044 Peroxiredoxin-5, mitochondrial

<u>Table 13</u> Mitochondrial-related candidate novel interacting proteins of full-length WT β -catenin in SW480.

Accession number	Protein	Unique peptides
Q9BPW8	Protein NipSnap homolog 1	6
P32322	Pyrroline-5-carboxylate reductase 1, mitochondrial	5
Q00796	Sorbitol dehydrogenase	5
Q9UJZ1	Stomatin-like protein 2	6
P53597	Succinyl-CoA ligase [ADP/GDP-forming] subunit alpha, mitochondrial	5
P40939	Trifunctional enzyme subunit alpha, mitochondrial	11
Q9HB07	UPF0160 protein MYG1, mitochondrial	5
P21796	Voltage-dependent anion-selective channel protein 1	6
P45880	Voltage-dependent anion-selective channel protein 2	6

<u>Table 14</u> Nuclear import and export related candidate novel interacting proteins of full-length WT β -catenin in SW480.

Accession			Unique
number	Protein	Туре	Peptides
P06493	Cyclin-dependent kinase 1	Nuclear import	11
Q9HAV4	Exportin-5	Nuclear export	2
Q9UIA9	Exportin-7	Nuclear export	4
P52292	Importin subunit alpha-2	Nuclear import	5
P78406	mRNA export factor	Nuclear export	4
		Nuclear import	8
P12270	Nucleoprotein TPR	and export	
P61326	Protein mago nashi homolog	Nuclear export	3
P60468	Protein transport protein Sec61 subunit beta	Nuclear import	3
Q92900	Regulator of nonsense transcripts 1	Nuclear export	12
Q01130	Serine/arginine-rich splicing factor 2	Nuclear export	5
Q13838	Spliceosome RNA helicase DDX39B	Nuclear export	2
Q13263	Transcription intermediary factor 1-beta	Nuclear import	8

<u>Table 15</u> BioGRID 3.3 protein interactors of β -catenin and relevance to SW480

dataset.

* Cell lines denoted in bold text.

Name	Protein	Cancer: cell line	Relevance
APC	Adenomatous polyposis coli	Colon: HT29	Known interactor
		SW480, HCT116.	
		KMS-4, KMS-8,	
		LS174T. Prostate:	
		LNCapFGC, PC-	
		3 . <i>Breast</i> ; MCF-7.	
		Cervical; HeLa.	
		Osteosarcoma;	
		U2OS. Human	
		embryonic kidney	
		(non-cancer);	
		HEK293	
CDK2	Cyclin-dependent kinase 2	Rat fibroblast;	CDK2 and CDK1
	(p33)	Rat1. Human	pulled-down using
		embryonic kidney	WT-β-catenin
		(non-cancer);	
		HEK293	
CDK5R1	Cyclin-dependent kinase 5,	Yeast two-hybrid	
	regulatory subunit 1 (p35)	system	
COPS3	COP9 signalosome subunit	Colon; HT29,	COP9 signalosome
	3	HCT116.	complex subunit 5
COPS5	COP9 signalosome subunit	Cervical; HeLa.	pulled-down using
	5	Mouse B8	WT-β-catenin
COPS8	COP9 signalosome subunit	fibroblast.	
	8		
CTNNA1	Catenin (cadherin-associated	Colon; LS174T.	Known interactor
	protein), alpha 1, 102kDa	Human embryonic	
		kidney (non-	
		<i>cancer</i>); HEK293 .	
		Gastric; HSC-39,	
		HSC-404.	
		Epidermoid;	
		A431. Intestinal	
		epitnelial (non-	
		<i>cancer)</i> ; IEC18 ,	
		IEUIO-K-ras	
		(inutant).	
		<i>r uncreanc</i> , DW/D1	
CTNND1	Catanin (andharin associated	Reast MDA	Known interactor
	Catemin (Caunelini-associated	Dreusi, MDA-	Known interactor

Name	Protein	Cancer; cell line	Relevance
	protein), delta 1	MB-468, MDA-	
		MB-361, BT549,	
		MCF-104.	
		Epidermoid; A431	
CUL1	Cullin 1	Human embryonic	Cullin-associated
		kidney (non-	NEDD8-
		cancer); HEK293	dissociated protein
CUL4B	Cullin 4B	Embryonal;	1 pulled-down
		PCC4.	using WT-β-
		Mouse embryonic;	catenin
		C3HT10.	
		Cervical; HeLa.	
		W I Drosophila	
DDV1		embryo.	A month and f DNIA
DDX1 DDX5	DEAD box helicase 1		A number of KNA
DDX5	DEAD box helicase 5		nencases puned-
			down across
ЕНІ 2	Four and a half LIM	Corvical: Hol a	Known interactor
111122	domains 2	Veast-two hybrid	Known interactor
	domains 2	system	
FUS	FUS RNA binding protein	Colon: DLD-1	A number of
100	(HNRNPP2)		HNRNPs pulled-
HNRNPA1	Heterogeneous nuclear	Human embrvonic	down across
	ribonucleoprotein A1	kidnev (non-	datasets (H, F, K,
	1	cancer); HEK239	Q, A2/B1)
HNRNPA2B1	Heterogeneous nuclear	Colon; DLD-1.	
	ribonucleoprotein A2/B1	Human embryonic	
HNRNPK	Heterogeneous nuclear	kidney (non-	
	ribonucleoprotein K	cancer); HEK293	
HNRNPM	Heterogeneous nuclear		
	ribonucleoprotein M		
HSP90AB1	Heat shock protein 90kDa	Human embryonic	Heat shock protein
	alpha (cytosolic), class B	kidney (non-	HSP 90-alpha
	member 1	cancer); HEK293	(HSP90AA1)
			pulled-down using
			phosphomimetic β -
			catenin
HSPAIB	Heat shock protein /0kDa		Heat shock 70 kDa
	protein IB		protein IA/IB
HSPA8	Heat shock protein /0kDa		(HSPAIA) pulled
	protein 8		uown using
			phospholinneuc-
			nhoenhorvlatabla
			B-catenin

Name	Protein	Cancer; cell line	Relevance
ILK	Integrin-linked kinase (p59)	Colon; DLD1	Pulled-down using
			WT-β-catenin
RPSA	Ribosomal protein SA	Human embryonic	Pulled-down using
		kidney (non-	non-
		<i>cancer</i>); HEK293	phosphorylatable
			β-catenin
RUVBL1	RuvB-like AAA ATPase 1	Colon; SW480.	RUVBL1 known
		Human embryonic	interactor.
		kidney (non-	RUVBL1 and
		cancer); HEK293	RUVBL2 pulled-
RUVBL2	RuvB-like AAA ATPase 2	Prostate; LNCaP.	down.
		Human embryonic	
		kidney (non-	
		cancer); HEK293	
SNRPD1	Small nuclear	Human embryonic	SNRPs pulled-
	ribonucleoprotein D1	kidney (non-	down using WT-β-
	polypeptide 16 kDa	cancer); HEK293	catenin. Include E,
			Sm D2 and Sm D3
TAX1BP3	Tax1 (human T-cell	Crystallisation of	Pulled-down using
	leukemia virus type I)	purified	non-
	binding protein 3	TAX1BP3 (<i>E</i> .	phosphorylatable -
		<i>coli</i>) and	β-catenin
		purchased C-	
		terminal β-catenin	
		peptide	
		(NQLAWFDTDL)	
TUBA1A	Tubulin, alpha 1a	Human embryonic	Pulled-down using
		kidney (non-	phosphomimetic β-
		<i>cancer)</i> ; HEK293	catenin

3.2.6 The effect of phosphorylation at tyrosine-654 on the protein interactions of β-catenin in SW480

Full-length β -catenin-MBP containing Y654 mutants were produced to explore the potential role of phosphorylation in mediating β -catenin protein interactions. The experiment was performed in triplicate using SW480 cells.

i. Candidate novel interacting proteins of phosphorylated-Y654-β-catenin in SW480

To mimic the phosphorylation of Y654, this residue was replaced with glutamic acid (Glu), to provide the negative charge associated with amino acid phosphorylation. This construct was used to isolate binding proteins and compared with MBP control using a SILAC strategy. 92 putative interacting proteins were detected by MS and are shown in appendix 8.2 and Figure 23. Table 16 reports a shorter and highly stringent reporting threshold analysis of candidate protein interactors. This table has candidates where an average fold-change could be generated based on 3 replicates. Furthermore, ≥ 5 unique peptides needed to be detected.

Proteins annotated as being localised as golgi-, mitochondrial-, or nuclear import and export- related based on GO cellular component criteria are displayed in <u>Table 17</u>, <u>Table 18</u> and Table 19 respectively.

<u>Figure 23</u> Plot of differentially detected phosphomimetic-Y654-β-catenin protein interactors in SW480

Log2 fold-change of proteins (reporting threshold = 1)(vertical red-dashed line) is plotted against the -

log10 p-value reporting threshold (1.3) (horizontal red-dashed line).

<u>Table 16</u> Candidate novel interacting proteins of the phosphomimetic mutant of β -

catenin at tyrosine-654 in SW480.

* This table has candidates where an average fold-change could be generated based on 3

replicates. Furthermore, ≥ 5 unique peptides needed to be detected

number Drotein nontides (Restanin-control)	
number rotem peptides (p-catemin:control)	
P61247 40S ribosomal protein S3a 7 2	
60 kDa heat shock protein,	
P10809 mitochondrial 10 5	
P6291360S ribosomal protein L1153	
78 kDa glucose-regulated	
P11021 protein 18 5	
O43707 Alpha-actinin-4 7 14	
P06733 Alpha-enolase 6 3	
Bifunctional purine	
P31939biosynthesis protein PURH63	
P35221 Catenin alpha-1 12 804	
P35222 Catenin beta-1 32 1000	
P15924 Desmoplakin 8 162	
E3 ubiquitin/ISG15 ligase	
Q14258 TRIM25 6 2	
GMP synthase [glutamine-	
P49915hydrolyzing]54	
Heat shock 70 kDa protein	
P08107 1A/1B 5 3	
Heat shock protein HSP 90-	
P0/900 alpha 7 3	
Q86YZ3 Hornerin 5 122	
Insulin-like growth factor 2	
Q9Y6M1 mRNA-binding protein 2 / 4	
Deltactate denydrogenase A	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Q00850 Peroxiledoxili-1 0 5	
Protein-glutamine gamma- P21080 glutamyltransferase 2 0 114	
Pyruvate kinase isozymes	
P14618 M1/M2 12 2	
Q9Y230 RuvB-like 2 13 761	
P38646Stress-70 protein, mitochondrial8277	
P29401 Transketolase 8 15	
P60174Triosephosphate isomerase53	

Table 17 Golgi-related candidate novel interacting proteins of phosphomimetic

mutant of	β-catenin at	tyrosine-654	in SW480.
-----------	--------------	--------------	-----------

Accession number	Protein	Unique Peptides
P11021	78 kDa glucose-regulated protein	18
P16278	Beta-galactosidase	4
P17655	Calpain-2 catalytic subunit	4
Q00610	Clathrin heavy chain 1	20
Q9Y5X1	Sorting nexin-9	3
	Transitional endoplasmic reticulum	1
P55072	ATPase	

<u>Table 18</u> Mitochondrial-related candidate novel interacting proteins of phosphomimetic mutant of β -catenin at tyrosine-654 in SW480.

Accession number	Protein	Unique Peptides
P10809	60 kDa heat shock protein, mitochondrial	10
	ATP-binding cassette sub-family E	6
P61221	member 1	
P41250	GlycinetRNA ligase	4
P08107	Heat shock 70 kDa protein 1A/1B	5
Q12931	Heat shock protein 75 kDa, mitochondrial	2
P38646	Stress-70 protein, mitochondrial	8

<u>Table 19</u> Nuclear import related candidate novel interacting proteins of phosphomimetic mutant of β -catenin at tyrosine-654 in SW480.

Accession number	Protein	Tyne	Unique Pentides
P62829	60S ribosomal protein L23	Nuclear import	<u>4</u>
P21333	Filamin-A	Nuclear import	7
P07900	Heat shock protein HSP 90-alpha	Nuclear import	7
Q06830	Peroxiredoxin-1	Nuclear import	6
P02545	Prelamin-A/C	Nuclear import	10

ii. Candidate novel interacting proteins of non-phosphorlatable-Y654-β-catenin in SW480

To mimic the un-phosphorylatable amino acid of Y654, this residue was replaced with phenylalanine (Phe), providing an amino acid identical to the tyrosine, but missing the – OH group, making it un-phosphorylatable. This construct was used to isolate binding proteins and compared with an MBP control using a SILAC strategy. 129 putative interacting proteins were detected by MS and shown in appendix 8.3 and Figure 24. Table 20 reports a subset of these in a highly stringent list of candidate protein interactors. This table has candidates where an average fold-change could be generated based on 3 replicates. Furthermore, ≥ 4 unique peptides needed to be detected.

Proteins annotated as being localised as golgi-, mitochondrial-, or nuclear import and export- related based on GO cellular component criteria are displayed in <u>Table 21</u>, <u>Table 22</u> and <u>Table 23</u> respectively.

Log2 fold-change of proteins (reporting threshold = 1)(vertical red-dashed line) is plotted against the -

log10 p-value reporting threshold (1.3) (horizontal red-dashed line).

Table 20 Candidate novel interacting proteins of the non-phosphorylatable mutant

of β -catenin at tyrosine-654 in SW480.

* This table has candidates where an average fold-change could be generated based on 3 replicates. Furthermore, ≥ 4 unique peptides needed to be detected

Accession		Unique	Average fold-change
number	Protein	peptides	(β-catenin:control)
P62913	60S ribosomal protein L11	4	6
P11021	78 kDa glucose-regulated protein	7	4
Q8N6T3	ADP-ribosylation factor GTPase- activating protein 1	4	421
O00571	ATP-dependent RNA helicase DDX3X	14	522
P11586	C-1-tetrahydrofolate synthase, cytoplasmic	7	433
P35221	Catenin alpha-1	8	796
P35222	Catenin beta-1	31	975
P62633	Cellular nucleic acid-binding protein	4	213
O60313	Dynamin-like 120 kDa protein, mitochondrial	4	269
P49411	Elongation factor Tu, mitochondrial	4	36
	Eukaryotic translation initiation		
P23588	factor 4B	5	19
P49327	Fatty acid synthase	27	4
Q14192	Four and a half LIM domains protein 2	4	234
P04406	Glyceraldehyde-3-phosphate dehydrogenase	8	3
P06737	Glycogen phosphorylase, liver form	5	3
P08107	Heat shock 70 kDa protein 1A/1B	6	3
P31943	Heterogeneous nuclear ribonucleoprotein H	4	672
P61978	Heterogeneous nuclear ribonucleoprotein K	10	8
P22626	Heterogeneous nuclear ribonucleoproteins A2/B1	4	9
Q9Y6M1	Insulin-like growth factor 2 mRNA- binding protein 2	6	49
Q9NSK0	Kinesin light chain 4	4	649

Accession		Unique	Average fold-change
number	Protein	peptides	(β-catenin:control)
Q14847	LIM and SH3 domain protein 1	11	11
P00338	L-lactate dehydrogenase A chain	6	40
P50479	PDZ and LIM domain protein 4	7	753
O75420	PERQ amino acid-rich with GYF domain-containing protein 1	7	710
Q6Y7W6	PERQ amino acid-rich with GYF domain-containing protein 2	10	182
Q86UU1	Pleckstrin homology-like domain family B member 1	7	242
P21980	Protein-glutamine gamma- glutamyltransferase 2	6	5
Q8WUF5	RelA-associated inhibitor	12	784
Q9Y265	RuvB-like 1	8	522
Q9Y230	RuvB-like 2	17	766
P38646	Stress-70 protein, mitochondrial	4	185
Q9UGI8	Testin	5	91
P68363	Tubulin alpha-1B chain	8	3
P62979	Ubiquitin-40S ribosomal protein S27a	4	3

<u>Table 21</u> Golgi-related candidate novel interacting proteins of nonphosphorylatable mutant of β -catenin at tyrosine-654 in SW480.

		Unique
Accession number	Protein	peptides
P11021	78 kDa glucose-regulated protein	7
Q8N6T3	ADP-ribosylation factor GTPase-activating protein 1	4
P48444	Coatomer subunit delta	3
Q567U6	Coiled-coil domain-containing protein 93	2
Q14697	Neutral alpha-glucosidase AB	3
4P07237	Protein disulfide-isomerase	4
Q9Y5X1	Sorting nexin-9	3

Table 22 Mitochondrial-related candidate novel interacting proteins of non-

Accession		Unique
number	Protein	peptides
O00571	ATP-dependent RNA helicase DDX3X	14
	Deoxyuridine 5'-triphosphate nucleotidohydrolase,	1
P33316	mitochondrial	
O60313	Dynamin-like 120 kDa protein, mitochondrial	4
P38117	Electron transfer flavoprotein subunit beta	2
P49411	Elongation factor Tu, mitochondrial	4
P08107	Heat shock 70 kDa protein 1A/1B	6
P48735	Isocitrate dehydrogenase [NADP], mitochondrial	1
Q04837	Single-stranded DNA-binding protein, mitochondrial	1
P38646	Stress-70 protein, mitochondrial	4
	Succinyl-CoA ligase [ADP/GDP-forming] subunit alpha,	2
P53597	mitochondrial	
P40939	Trifunctional enzyme subunit alpha, mitochondrial	2

phosphorylatable mutant of β -catenin at tyrosine-654 in SW480.

Table 23 Nuclear import and export related candidate novel interacting proteins of

non-phosphorylatable mutant of β -catenin at tyrosine-654 in SW480.

Accession			Unique
number	Protein	Туре	peptides
		Nuclear	3
P08865	40S ribosomal protein SA	export	
		Nuclear	2
P52294	Importin subunit alpha-5	import	
	Protein transport protein Sec61 subunit	Nuclear	1
P60468	beta	import	

A comparison of binding-partners of WT, phosphomimetic, and nonphosphorylatable β-catenin in SW480

 β -catenin protein interactors based on Y654 phosphorylation status were compared from data obtained using WT (Y654), phosphomimetic (E654) and non-phosphorylatable (F654) constructs. The full list (512 proteins) can be found in appendix 8.4. This table has their presence or absence across all three datasets. A Venn diagram represents the overlap of potential candidates in Figure 25.

A shorter and highly stringent reporting threshold analysis of candidate interactors is reported in <u>Table 24</u>, where 49 candidates are reported. This table has candidates which were affected by phosphorylation. That is, the proteins were present in the WT dataset and unique to either the phosphomimetic or non-phosphorylatable dataset. For example, the data shown in <u>Table 24</u> for alpha-actinin-4 (O43707) demonstrates it only binds to β catenin when tyrosine-654 is phosphorylated, as determined by using phosphomimetic Y654E. On the other hand, kinase light chain 4 (Q9NSK0) only bound to β -catenin in the absence of phosphorylation at tyrosine-654. Furthermore, a known interactor such as RuvB-like 1 (Q9Y265) may only bind to β -catenin in the absence of phosphorylation at tyrosine-654.

<u>Figure 25</u> A Venn diagram representing overlap of candidate protein binders of β -catenin across wildtype, phosphomimetic and non-phosphorylatable datasets in SW480.

<u>Table 24</u> Candidate novel interacting proteins of β -catenin that may be affected by phosphorylation.

*PM denotes phosphomimetic and NP denotes non-phosphorylatable

**White denotes absence of that protein in the dataset

***Grey denotes presence of that protein in the dataset

Accession				
number	Protein	Wildtype	PM	NP
P68032	Actin, alpha cardiac muscle 1			
O43707	Alpha-actinin-4			
	ATP-binding cassette sub-family E			
P61221	member 1			
P16278	Beta-galactosidase			
P30711	Glutathione S-transferase theta-1			
Q86YZ3	Hornerin			
Q9NZI8	Insulin-like growth factor 2 mRNA- binding protein 1			
O00425	Insulin-like growth factor 2 mRNA- binding protein 3			
Q9BYZ2	L-lactate dehydrogenase A-like 6B			
O14744	Protein arginine N-methyltransferase 5			
P26640	ValinetRNA ligase			
P62906	60S ribosomal protein L10a			
Q01813	6-phosphofructokinase type C			
P17858	6-phosphofructokinase, liver type			
	C-1-tetrahydrofolate synthase,			
P11586	cytoplasmic			
Q99439	Calponin-2			
O60716	Catenin delta-1			
P33992	DNA replication licensing factor MCM5			
P62877	E3 ubiquitin-protein ligase RBX1			
	Electron transfer flavoprotein subunit			
P38117	beta			
P49411	Elongation factor Tu, mitochondrial			
P23588	Eukaryotic translation initiation factor 4B			
Q14192	Four and a half LIM domains protein 2			
P04406	Glyceraldehyde-3-phosphate dehydrogenase			
P06737	Glycogen phosphorylase, liver form			
Q16576	Histone-binding protein RBBP7			
P48735	Isocitrate dehydrogenase [NADP], mitochondrial			

Accession				
number	Protein	Wildtype	PM	NP
Q9NSK0	Kinesin light chain 4			
	Leucine-rich repeat-containing protein			
A6NHZ5	14B			
P09960	Leukotriene A-4 hydrolase			
	LIM and senescent cell antigen-like-			
P48059	containing domain protein 1			
	LIM and senescent cell antigen-like-			
P0CW20	containing domain protein 3-like			
Q14847	LIM and SH3 domain protein 1			
O43684	Mitotic checkpoint protein BUB3			
O76041	Nebulette			
Q14697	Neutral alpha-glucosidase AB			
P50479	PDZ and LIM domain protein 4			
	PERQ amino acid-rich with GYF			
075420	domain-containing protein 1			
	PEST proteolytic signal-containing			
Q8WW12	nuclear protein			
015355	Protein phosphatase 1G			
	Protein transport protein Sec61 subunit			
P60468	beta			
Q8WUF5	RelA-associated inhibitor			
Q9Y265	RuvB-like 1			
	Signal recognition particle receptor			
Q9Y5M8	subunit beta			
	Succinyl-CoA ligase [ADP/GDP-			
P53597	forming] subunit alpha, mitochondrial			
Q9UGI8	Testin			
P04183	Thymidine kinase, cytosolic			
	Trifunctional enzyme subunit alpha,			
P40939	mitochondrial			

3.3 Discussion

 β -catenin is a multi-faceted protein that elicits its varied functions through numerous protein-protein interactions. While there are several well described and functionally explained consequences of β -catenin interactions (for example with cadherins at the cell membrane), the functional significance of other interactions remains to be elucidated [14]. By applying a discovery-based proteomics approach the aim here was to identify putative new β -catenin binding partners as a first step towards understanding the multi-layered activities of this well-known protein in the context of colon cancer.

In this chapter, hundreds of proteins were shown to bind to β -catenin based on affinity purification and MS analysis. Many of the known interactors that have been validated in the literature were also detected here, confirming the reliability of the described experiments. Results showed that known β -catenin interactors accounted for just 3 % of targets, suggesting that most have been reported for the first time, representing putative novel interactors. As shown in Figure 22, a considerable number of β -catenin protein interactors were proteins annotated to reside at subcellular locations associated with mitochondria, golgi and nuclear import/export.

3.3.1 β-catenin at the mitochondria

10 % of the novel candidate protein interactor list is comprised of proteins with reported roles at the mitochondria such as mitochondrial HSP70 (mtHSP70) and dynamin-like 120 kDa protein (Opa1). Not only the interaction of these proteins with β -catenin themselves is novel, but also the localisation of β -catenin at the mitochondria is novel, making these findings significant in two ways. It is important to note that pull-downs were performed in cells lysed in RIPA buffer (with Triton X-100), and it is expected that organelle membranes such as the mitochondrial membrane will rupture in this buffer [344-348], resulting in leaching of protein content into the soluble cytoplasmic fraction. Binding of proteins thereupon may be real but otherwise, would not occur *in vivo* where membrane partitioning would prevent these interactions from occurring.

i. Mitochondrial HSP70 - mtHSP70

mtHSP70 is involved in the folding of proteins outside the mitochondria and unidirectional translocation across the mitochondrial membrane [349, 350]. It also degrades misfolded proteins and assists the movement of tumour suppressor p53, into the outer mitochondrial membrane [350]. In yeast, mtHSP70 is required for cell viability [351] where it interacts with inner mitochondrial membrane protein TIM44, and is an essential part of mitochondrial import machinery [352]. In mammalian cells, it is involved in mitochondrial activity and biogenesis [353] and is induced by glucose deprivation [354]. A number of studies have also found that mtHSP70 is upregulated in human cancer cell lines and tumours [350, 355-357]. Its association with β -catenin will be discussed later in 5.3.2.

ii. Dynamin-like 120 kDa protein - Opa1

Opa1 is a dynamin-related GTPase, localised to the inner mitochondrial membrane [358]. It is a protein essential for the fusion of the inner mitochondrial membrane [359], maintains the structure and integrity of mitochondrial cristae, acts a diffusion barrier for proteins across the cristae [360], and regulates apoptosis which involves the reshaping of mitochondrial cristae [361].

Overexpression of β -catenin has been associated with increased mtDNA and consequential altered respiratory activity, both of these being important features of cancer cells [342] and so it is possible that the interaction of β -catenin with Opa1 inhibits Opa1 from performing its roles which are beneficial to mitochondrial health. That is, overexpression of β -catenin and its association with cancer by dysregulation of the mitochondria could be attributed to it inhibiting the functional role of Opa1 and keeping healthy mitochondria.

3.3.2 β -catenin at the golgi

There is not much documented in the literature about β -catenin and the golgi. Pull-down experiments in this thesis identified a number golgi-related proteins (8 % of the candidate interactor list), and for many of these proteins multiple members of the family were detected. These include 4xcoatomer subunits, 2xdual specificity mitogen-activated protein kinases, 4xRas-related proteins, 2xvacuolar protein sorting-associated proteins and 2xvesicle-associated membrane proteins. Due to empirical evidence found by our collaborators, the coatomer complex was of particular interest.

i. Coat protein (COP) complex I – COPI

During protein synthesis, membrane proteins and proteins destined for secretion are targeted to the endoplasmic reticulum (ER), where synthesis, folding and modification of proteins occurs [362]. The proteins are then transported to the golgi in membrane vesicles encased by coat protein (COP) complexes, for further processing [362]. COPI-coated vesicles are 1/3 types protein coated vesicles (the other two are clathrin-coated and COPII-coated vesicles) [363]. COPI-coated vesicles are involved in vesicular trafficking (retrograde and anterograde trafficking from ER-golgi and golgi-ER) and are composed of seven subunits; COPA, COPB, COPB', COPG, COPD, COPE and COPZ [363]. Here, pull-downs identified 4/7 of these subunits in SW480 cells: COPB', COPA, COPE, COPZ. A fifth subunit, COPB was found by our collaborators to interact with β -catenin by IF in breast cancer cell line MCF-7 [364]. Upon discussion, it was decided to further the investigation of β -catenin and the coatomer complex by use of COPB as there was a well-characterised antibody against it.

110

3.3.3 β-catenin and nuclear import and export

i. Heterogeneous nuclear ribonucleoprotein K - hnRNPK

Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a family of RNA-binding proteins [365, 366]. They are multifunctional proteins with roles in processing heterogeneous nuclear RNAs (hnRNAs) into mature mRNAs and acting as *trans*-factors in regulating gene expression [367]. Other roles include pre-mRNA processing and splicing and mRNA export, localisation, translation and stability [368]. Many of the hnRNPs associate with mRNA as it is being transported through nuclear pores to ribosomes, constantly shuttling between the nucleus and the cytoplasm [368, 369]. A number of hnRNPs bound to the non-phosphorylatable mutant of β -catenin in SW480 by pull-down and include hnRNPF, hnRNPH, hnRNPK, hnNRPU and hnRNP A2/B1.

The shuttling of the hnRNP proteins to and from nucleus to cytoplasm may provide a mechanism for β -catenin shuttling. hnRNP A1 contains a glycine-rich nucleocytoplasmic shuttling (NS) domain called M9, necessary for nuclear localisation [370]. M9 is a nuclear localisation domain and does not bear a resemblance to the classical NLS [367] and also acts like a nuclear export signal, allowing the protein to shuttle between nucleus and cytoplasm. hnRNPK possesses both an NLS and an NS domain [371] and can also shuttle between nucleus and cytoplasm [372]. hnRNPK has several cellular roles including transcription, mRNA shuttling, RNA editing and translation [373]. This protein has also been implicated in tumorigenesis. Its expression has been seen to be regulated by the p53/MDM2 pathway and it has been found to increase transcription of oncogene c-myc [373]. Ciarlo *et al.* (2012) looked at the complexing of β -catenin with hnRNPK in prostate cancer cells where hnRNPK is overexpressed and found that this interaction may play a role in prostate cancer progression and resistance to treatment [374]. β -catenin signalling was activated during progression to the treatment-resistant phenotype. It was proposed that protein kinase Akt controls hnRNPK/ β -catenin phosphorylation and their transcriptional activities leading to the treatment-resistant phenotype.

Other studies have also identified hnRNPs to interact with β -catenin. In colon cancer cell line DLD-1 it was found that hnRNPK, hnRNP A2/B1 [375] and hnRNP A1 [330] interact with β -catenin.

3.4 Conclusion

In conclusion, hundreds of novel candidate protein interactors of β -catenin were pulleddown in SW480 by use of β -catenin-MBP constructs. Along with pull-down of known interactors which validated the pull-down method, novel interactors were detected by MS and also provided potential novel localisations for β -catenin. Of particular interest were a number of mitochondrial- and golgi-related proteins because β -catenin has not previously been found at either of these organelles. Following this chapter, the same experiments were performed in another cell line, HT29, which has the same mutational status of β -catenin (WT). By doing so, the aim is to make the data in this current chapter stronger by reiterating particular protein interactors detected in SW480, providing further evidence for these proteins to interact with β -catenin in colon cancer.

4 Novel protein interactions of β-catenin in HT29

4.1 Introduction

In chapter 3, colon cancer SW480 was used to identify novel β -catenin binding proteins. SW480 cells are characterised by a constitutively active Wnt pathway, WT β -catenin which is highly and ubiquitously expressed and mutated APC. In this chapter, the same SILAC MS strategy was used but in colon cancer cell line HT29. Reasons for why this cell line was selected for comparison against the SW480 dataset are discussed in 4.3. Essentially, both cell lines have a constitutively active Wnt pathway, with WT β -catenin and mutated APC. However, it was found that the localisation and abundance of β catenin is different between the two cell lines.

Recombinant β -catenin-MBP was used to pull-down protein binding partners and with the use of amylose resin, this complex was captured and eluted. Eluates were run on SDS-PAGE and gel bands excised and prepared for MS. The approach used in this thesis utilised the advantages of SILAC labelling, in order to reduce variation between replicates. Therefore, all cells in cell culture (consequently used for pull-downs) had been grown in heavy or light SILAC media, and validation of incorporation of the labels was performed before any pull-down experiments were conducted. High-resolution LC/MS (Orbitrap Elite, Thermo Scientific) was used in order to best identify novel interacting partners of β -catenin, which may aid the shuttling of β -catenin into the nucleus and support its nuclear accumulation. *Crystal Semaan: Proteomic study of* β *-catenin protein interactions in colon cancer*

4.2 Results

4.2.1 Candidate novel interacting proteins of β-catenin in HT29

Candidate interacting proteins of β -catenin were pulled-out in HT29 cell lysate during a SILAC experiment performed in triplicate using full-length WT β -catenin-MBP, and comparing to an MBP control. Candidates had to be present in all 3 replicates, have a p-value of < 0.05 and a fold-change of > 2 for light (β -catenin-MBP):heavy (MBP) (Figure <u>26</u>). The full candidate list (123) can be found in appendix 8.5.

A shorter version of this candidate list can be found in <u>Table 25</u>. This table has candidates where an average fold-change could be generated based on 3 replicates. Furthermore, \geq 5 unique peptides needed to be detected.

A GO annotation of all candidates was performed and each protein assigned a main process or function. Distribution of the various processes/functions that all candidates are involved is shown in Figure 27. Of particular interest were golgi-related proteins, mitochondrial proteins and proteins involved in nuclear import and export. An example of a group belonging to the 'other' category is cytoskeletal proteins. Proteins grouped as golgi-, mitochondrial-, or nuclear import and export- related are displayed in <u>Table 26</u>.

Log2 fold-change of proteins is plotted against the -log10 p-value reporting threshold (1.3) (horizontal red-dashed line) and log2 fold-change threshold (1) (vertical red-dashed line).

Accession number	Protein	Unique peptides	Average fold-change (β-catenin:control)
	182 kDa tankvrase-1-binding	peptides	(p cutomiteonition)
Q9C0C2	protein	11	453
P62269	40S ribosomal protein S18	6	3
P15880	40S ribosomal protein S2	6	4
P23396	40S ribosomal protein S3	13	2
P61247	40S ribosomal protein S3a	7	4
P62241	40S ribosomal protein S8	7	3
P46781	40S ribosomal protein S9	7	4
P46777	60S ribosomal protein L5	5	4
P18124	60S ribosomal protein L7	5	2
P06733	Alpha-enolase	8	3
P07355	Annexin A2	12	4
P27708	CAD protein	31	336
P35222	Catenin beta-1	28	667
Q00610	Clathrin heavy chain 1	20	214
P68104	Elongation factor 1-alpha 1	5	4
P49327	Fatty acid synthase	46	667
	Glyceraldehyde-3-phosphate		
P04406	dehydrogenase	10	5
DC2244	Guanine nucleotide-binding	0	4
P63244	protein subunit beta-2-like I	9	4
P0/900	Heat snock protein HSP 90-alpha	6	3
P08238	Heat shock protein HSP 90-beta	6	16
P52272	ribonucleoprotein M	10	61
Q14847	LIM and SH3 domain protein 1	5	7
P00338	L-lactate dehydrogenase A chain	9	3
P07195	L-lactate dehydrogenase B chain	6	5
	Peptidyl-prolyl cis-trans		
P62937	isomerase A	8	5
Q06830	Peroxiredoxin-1	7	3
Q15149	Plectin	164	3
P09874	Poly [ADP-ribose] polymerase 1	5	581
P11940	Polyadenylate-binding protein 1	7	8
P02545	Prelamin-A/C	23	87
P14618	Pyruvate kinase isozymes M1/M2	11	5
Q9Y230	RuvB-like 2	16	667
P08670	Vimentin	17	2

<u>Table 25</u> Candidate novel interacting proteins of full-length WT β-catenin in HT29.

<u>Figure 27</u> Distribution of processes and functions of candidate novel binding partners of β -catenin in HT29.

Table 26 Golgi-, mitochondrial- and nuclear import and export related candidate

novel interacting proteins of WT β-catenin in HT29.

Accession			Unique
number	Protein	Process/function	peptides
Q00610	Clathrin heavy chain 1	Golgi	20
P61106	Ras-related protein Rab-14	Golgi	1
P49327	Fatty acid synthase	Golgi	46
P10619	Lysosomal protective protein	Golgi	3
	ATP synthase subunit alpha,		3
P25705	mitochondrial	Mitochondrial	
	Voltage-dependent anion-selective		4
P21796	channel protein 1	Mitochondrial	
P08107	Heat shock 70 kDa protein 1A/1B	Mitochondrial	6
P08238	Heat shock protein HSP 90-beta	Mitochondrial	6
		Mitochondrial /	6
P07900	Heat shock protein HSP 90-alpha	Nuclear import	
		Mitochondrial /	5
P09874	Poly [ADP-ribose] polymerase 1	Nuclear import	
P30101	Protein disulfide-isomerase A3	Nuclear import	3
Q06830	Peroxiredoxin-1	Nuclear import	7
P02545	Prelamin-A/C	Nuclear import	23
		Nuclear import and	4
P62826	GTP-binding nuclear protein Ran	export	

4.2.2 The effect of phosphorylation at tyrosine-654 on the protein interactions of β-catenin in HT29

Here, the effect of phosphorylation at tyrosine-654 on the interactor network of β catenin was assessed. Mutants of full-length β -catenin-MBP were produced, to mimic a phosphorylation at tyrosine-654 or a non-phosphorylatable amino acid at tyrosine-654. These mutants were used for pull-downs in SILAC labelled HT29 which were performed in triplicate.

i. Candidate novel interacting proteins of phosphorylated-Y654-β-catenin in HT29

Candidate interacting proteins of β -catenin were pulled-out during a SILAC experiment performed in triplicate using full-length phosphomimetic β -catenin-Y654E-MBP, and comparing to an MBP control. Candidates had to be present in all 3 replicates, have a pvalue of < 0.05 and a fold-change of > 2 for light (β -catenin-MBP):heavy (MBP) (Figure <u>28</u>). The full candidate list (224 proteins) can be found in appendix 8.6.

A shorter version of this candidate list can be found in <u>Table 27</u>. This table has candidates where an average fold-change could be generated based on 3 replicates. Furthermore, ≥ 6 unique peptides needed to be detected.

Proteins grouped as golgi-, mitochondrial-, or nuclear import and export- related are displayed in Table 28.

Figure 28 Plot of differentially detected phosphomimetic-Y654-β-catenin protein interactors in

HT29

Log2 fold-change of proteins is plotted against the -log10 p-value reporting threshold (1.3) (horizontal red-dashed line) and log2 fold-change threshold (1) (vertical red-dashed line).
<u>Table 27</u> Candidate novel interacting proteins of the phosphomimetic mutant of β -

catenin at tyrosine-654 in HT29.

Accession		Unique	Average fold-change
number	Protein	peptides	(β-catenin:control)
P62280	40S ribosomal protein S11	7	337
P39019	40S ribosomal protein S19	8	5
P15880	40S ribosomal protein S2	8	9
P23396	40S ribosomal protein S3	14	4
P61247	40S ribosomal protein S3a	8	6
	40S ribosomal protein S4, X		
P62701	isoform	7	6
P46781	40S ribosomal protein S9	7	7
P26373	60S ribosomal protein L13	6	9
P50914	60S ribosomal protein L14	6	225
P36578	60S ribosomal protein L4	7	11
P18124	60S ribosomal protein L7	7	5
P62424	60S ribosomal protein L7a	6	6
P11021	78 kDa glucose-regulated protein	7	5
P60709	Actin, cytoplasmic 1	10	4
P07355	Annexin A2	16	4
	ATP-dependent RNA helicase		
O00571	DDX3X	7	384
544504	C-1-tetrahydrofolate synthase,		
P11586	cytoplasmic	7	469
P27708	CAD protein	15	503
P35221	Catenin alpha-1	16	865
P35222	Catenin beta-1	28	1000
Daaaaa	DNA replication licensing factor	_	0.57
P33993	MCM/	/	957
P68104	Elongation factor 1-alpha 1	7	5
P13639	Elongation factor 2	12	4
D20042	Eukaryotic translation initiation	C	2
P20042		0	3
P49327	Fatty acid synthase	21	838
P04406	debydrogenase	9	7
104400	Glycogen phosphorylase brain	,	
P11216	form	11	587
	Guanine nucleotide-binding		
P63244	protein subunit beta-2-like 1	12	8
P08107	Heat shock 70 kDa protein 1A/1B	7	9

Accession		Unique	Average fold-change
number	Protein	peptides	(β-catenin:control)
	Heat shock cognate 71 kDa		
P11142	protein	11	4
P08238	Heat shock protein HSP 90-beta	7	61
0.0506	Heterogeneous nuclear	0	<i>c</i> 0
060506	ribonucleoprotein Q	8	69
P22626	ribonucleoproteins A2/B1	6	684
014847	LIM and SH3 domain protein 1	6	339
P00338	Lactate dehydrogenase A chain	8	5
P07105	L lactate dehydrogenase R chain	7	6
014607	Neutral alpha gluagaidaga A P	7	860
Q14097	Pentidyl_prolyl cis_trans	/	800
P62937	isomerase A	8	6
102907	Peptidyl-prolyl cis-trans	0	
P23284	isomerase B	6	337
Q06830	Peroxiredoxin-1	7	3
P09874	Poly [ADP-ribose] polymerase 1	8	7
P11940	Polyadenylate-binding protein 1	7	8
P02545	Prelamin-A/C	19	7
	Probable ATP-dependent RNA		
P17844	helicase DDX5	6	547
P35232	Prohibitin	8	5
P14618	Pyruvate kinase isozymes M1/M2	14	5
P13489	Ribonuclease inhibitor	6	92
Q9Y265	RuvB-like 1	8	674
Q9Y230	RuvB-like 2	12	723
	Serine/threonine-protein kinase		
Q9UHD2	TBK1	6	450
Q14247	Src substrate cortactin	6	839
	Tripartite motif-containing		
Q14134	protein 29	7	643
O00159	Unconventional myosin-Ic	6	728
P08670	Vimentin	14	5
D10075	X-ray repair cross-		
P12956	complementing protein 6	6	5

<u>Table 28</u> Golgi-, mitochondrial- and nuclear import and export related candidate novel interacting proteins of phosphomimetic mutant β -catenin at tyrosine-654 in HT29.

Accession			Unique
number	Protein	Process/function	peptides
P11021	78 kDa glucose-regulated protein	Golgi	7
P60953	Cell division control protein 42 homolog	Golgi	2
P35606	Coatomer subunit beta'	Golgi	1
P11142	Heat shock cognate 71 kDa protein	Golgi	11
Q15084	Protein disulfide-isomerase A6	Golgi	5
Q15436	Protein transport protein Sec23A	Golgi	1
Q15437	Protein transport protein Sec23B	Golgi	1
P63000	Ras-related C3 botulinum toxin substrate 1	Golgi	3
P61026	Ras-related protein Rab-10	Golgi	1
095292	Vesicle-associated membrane protein- associated protein B/C	Golgi	2
P18085	ADP-ribosylation factor 4	Golgi	3
Q14697	Neutral alpha-glucosidase AB	Golgi	7
P61106	Ras-related protein Rab-14	Golgi	1
P49327	Fatty acid synthase	Golgi	21
P10619	Lysosomal protective protein	Golgi	3
	Aspartate aminotransferase,		1
P00505	mitochondrial	Mitochondrial	
OONUI7	ATPase family AAA domain-containing	Mitaahandrial	4
Q9INVI/	ATP-binding cassette sub-family F	Wittochondriai	1
P61221	member 1	Mitochondrial	
	ATP-binding cassette sub-family F		2
Q9UG63	member 2	Mitochondrial	
	Coiled-coil-helix-coiled-coil-helix		4
00NV63	domain-containing protein 3,	Mitochondrial	
D00402	Cutochondriai	Mitochondrial	1
P/0/11	Elongation factor Tu, mitochondrial	Mitochondrial	4
012031	Heat shock protein 75 kDa mitochondrial	Mitochondrial	1
016801	Mitochondrial inner membrane protein	Mitochondrial	1
Q10091	Voltage-dependent anion-selective	Wittoenondinar	5
P45880	channel protein 2	Mitochondrial	
P38646	Stress-70 protein, mitochondrial	Mitochondrial	4
P21796	Voltage-dependent anion-selective	Mitochondrial	4

Accession number	Protein	Process/function	Unique peptides
	channel protein 1		I II I I I I
P08107	Heat shock 70 kDa protein 1A/1B	Mitochondrial	7
P08238	Heat shock protein HSP 90-beta	Mitochondrial	7
P09874	Poly [ADP-ribose] polymerase 1	Mitochondrial / Nuclear import	8
P62829	60S ribosomal protein L23	Nuclear import	4
Q14974	Importin subunit beta-1	Nuclear import	2
Q99623	Prohibitin-2	Nuclear import	3
Q13263	Transcription intermediary factor 1-beta	Nuclear import	4
Q06830	Peroxiredoxin-1	Nuclear import	7
P02545	Prelamin-A/C	Nuclear import	19
P09651	Heterogeneous nuclear ribonucleoprotein A1	Nuclear import and export	3
P50402	Emerin	Nuclear import and export	2
P62826	GTP-binding nuclear protein Ran	Nuclear import and export	5

ii. Candidate novel interacting proteins of non-phosphorylatable-Y654-βcatenin in HT29

Candidate interacting proteins of β -catenin were pulled-out during a SILAC experiment performed in triplicate using full-length non-phosphorylatable β -catenin-Y654F-MBP, and comparing to an MBP control. Candidates had to be present in all 3 replicates, have a p-value of < 0.05 and a fold-change of > 2 for light (β -catenin-MBP):heavy (MBP) (<u>Figure 29</u>). The full candidate list (48 proteins) can be found in appendix 8.7.

A shorter version of this candidate list can be found in <u>Table 29</u>. This table has candidates where an average fold-change could be generated based on 3 replicates. Proteins grouped as golgi-, mitochondrial-, or nuclear import and export- related are displayed in <u>Table 30</u>.

<u>Figure 29</u> Plot of differentially detected non-phosphorylatable-Y654-β-catenin protein interactors in SW480

Log2 fold-change of proteins is plotted against the -log10 p-value reporting threshold (1.3) (horizontal red-dashed line) and log2 fold-change threshold (1) (vertical red-dashed line).

Table 29 Candidate novel interacting proteins of the non-phosphorylatable mutant

of β -catenin at tyrosine-654 in HT29.

Accession number	Protein	Unique peptides	Average fold-change (B-catenin:control)
P04114	Apolipoprotein B-100	3	666
P35221	Catenin alpha-1	13	207
P35222	Catenin beta-1	25	1000
	Electron transfer flavoprotein		
P13804	subunit alpha, mitochondrial	1	4
P58107	Epiplakin	38	671
P49327	Fatty acid synthase	49	3
P56470	Galectin-4	3	608
P30711	Glutathione S-transferase theta-1	1	1000
	Glycogen phosphorylase, brain		
P11216	form	13	133
P08107	Heat shock 70 kDa protein 1A/1B	5	4
P08238	Heat shock protein HSP 90-beta	6	3
P02042	Hemoglobin subunit delta	1	1000
Q02241	Kinesin-like protein KIF23	6	4
012765	Nascent polypeptide-associated	2	6
Q13765	complex subunit alpha	3	0
Q14697	Neutral alpha-glucosidase AB	6	3
Q9Y446	Plakophilin-3	11	3
Q15149	Plectin	157	3
Q01658	Protein Dr1	1	4
Q8WVV4	Protein POF1B	5	454
Q9Y230	RuvB-like 2	14	662
Q14247	Src substrate cortactin	8	4
P38646	Stress-70 protein, mitochondrial	8	3
P29401	Transketolase	4	3

<u>Table 30</u> Golgi-, mitochondrial- and nuclear import and export related candidate novel interacting proteins of non-phosphorylatable mutant of β -catenin at tyrosine-654 in HT29.

Accession			Unique
number	Protein	Process/function	peptides
P61204	ADP-ribosylation factor 3	Golgi	1
P04114	Apolipoprotein B-100	Golgi	3
P18085	ADP-ribosylation factor 4	Golgi	1
Q14697	Neutral alpha-glucosidase AB	Golgi	6
P49327	Fatty acid synthase	Golgi	4
P10619	Lysosomal protective protein	Golgi	3
	Electron transfer flavoprotein subunit		1
P13804	alpha, mitochondrial	Mitochondrial	
P38646	Stress-70 protein, mitochondrial	Mitochondrial	8
P08107	Heat shock 70 kDa protein 1A/1B	Mitochondrial	5
P08238	Heat shock protein HSP 90-beta	Mitochondrial	6
P40926	Malate dehydrogenase, mitochondrial	Mitochondrial	3
P55060	Exportin-2	Nuclear export	1

A comparison of binding-partners of WT, phosphomimetic, and nonphosphorylatable β-catenin in HT29

Candidate proteins were compared across the WT, phosphomimetic and nonphosphorylatable experiments. The full list (270 proteins) can be found in appendix 8.8. This table has their presence or absence across all three datasets. A Venn diagram represents the overlap of potential candidates in <u>Figure 30</u>.

A shorter version of this candidate list can be found in <u>Table 31</u>. This table has candidates which were affected by phosphorylation. Proteins were present in the WT dataset and unique to either the phosphomimetic or non-phosphorylatable dataset.

For example based on the data one may assume that 182 kDa tankyrase-1-bindingprotein (Q9C0C2) only binds to β -catenin when tyrosine-654 is phosphorylated. On the other hand, heterogeneous nuclear ribonucleoprotein D0 (Q14103) may only bind to β catenin in the absence of phosphorylation at tyrosine-654. Furthermore, a known interactor such as RuvB-like 1 (Q9Y265) may only bind to β -catenin in the presence of phosphorylation at tyrosine-654.

<u>Figure 30</u> A Venn diagram representing overlap of candidate protein binders of β -catenin across wildtype, phosphomimetic and non-phosphorylatable datasets in HT29.

<u>Table 31</u> Candidate novel interacting proteins of β -catenin that may be effect by

phosphorylation.

*PM denotes phosphomimetic and NP denotes non-phosphorylatable

**White denotes absence of that protein in the dataset

***Grey denotes presence of that protein in the dataset

Accession				
number	Protein	Wildtype	PM	NP
Q9C0C2	182 kDa tankyrase-1-binding protein			
P62280	40S ribosomal protein S11			
P62277	40S ribosomal protein S13			
P62263	40S ribosomal protein S14			
P62244	40S ribosomal protein S15a			
P62249	40S ribosomal protein S16			
P62269	40S ribosomal protein S18			
P39019	40S ribosomal protein S19			
P15880	40S ribosomal protein S2			
P62851	40S ribosomal protein S25			
P42677	40S ribosomal protein S27			
P23396	40S ribosomal protein S3			
P61247	40S ribosomal protein S3a			
P62701	40S ribosomal protein S4, X isoform			
P62753	40S ribosomal protein S6			
P62241	40S ribosomal protein S8			
P46781	40S ribosomal protein S9			
P05388	60S acidic ribosomal protein P0			
P62913	60S ribosomal protein L11			
P26373	60S ribosomal protein L13			
P40429	60S ribosomal protein L13a			
P50914	60S ribosomal protein L14			
P61313	60S ribosomal protein L15			
Q07020	60S ribosomal protein L18			
P84098	60S ribosomal protein L19			
P35268	60S ribosomal protein L22			
P62750	60S ribosomal protein L23a			
P83731	60S ribosomal protein L24			
P61353	60S ribosomal protein L27			
P46776	60S ribosomal protein L27a			

Accession				
number	Protein	Wildtype	PM	NP
P46779	60S ribosomal protein L28			
P62888	60S ribosomal protein L30			
P18077	60S ribosomal protein L35a			
Q9Y3U8	60S ribosomal protein L36			
P46777	60S ribosomal protein L5			
Q02878	60S ribosomal protein L6			
P18124	60S ribosomal protein L7			
	Activated RNA polymerase II			
P53999	transcriptional coactivator p15			
P02765	Alpha-2-HS-glycoprotein			
P07355	Annexin A2			
P09525	Annexin A4			
P27708	CAD protein			
Q9HB71	Calcyclin-binding protein			
P68104	Elongation factor 1-alpha 1			
P60842	Eukaryotic initiation factor 4A-I			
P47756	F-actin-capping protein subunit beta			
	Glyceraldehyde-3-phosphate			
P04406	dehydrogenase			
P62826	GTP-binding nuclear protein Ran			
D(2070	Guanine nucleotide-binding protein			
P62879	G(I)/G(S)/G(T) subunit beta-2			
P63244	Subunit beta-2-like 1			
P0//792	Heat shock protein beta-1			
104772	Heterogeneous nuclear			
P52272	ribonucleoprotein M			
	Heterogeneous nuclear			
P22626	ribonucleoproteins A2/B1			
015347	High mobility group protein B3			
P16403	Histone H1.2			
P16401	Histone H1.5			
Q96KK5	Histone H2A type 1-H			
O60814	Histone H2B type 1-K			
	Inosine-5'-monophosphate			
P12268	dehydrogenase 2			ļ
P14923	Junction plakoglobin			
Q14847	LIM and SH3 domain protein 1			
P00338	L-lactate dehydrogenase A chain			
P07195	L-lactate dehydrogenase B chain			
P60660	Myosin light polypeptide 6			

Accession	Protoin	Wildtypo	DM	ND
D10105	Myosin regulatory light chain 12A	whitype	1 111	
F 19103	Nuclear receptor subfamily 2 group C			
P49116	member 2			
Q9NR12	PDZ and LIM domain protein 7			
P62937	Peptidyl-prolyl cis-trans isomerase A			
Q06830	Peroxiredoxin-1			
P09874	Poly [ADP-ribose] polymerase 1			
P11940	Polyadenylate-binding protein 1			
Q13310	Polyadenylate-binding protein 4			
P02545	Prelamin-A/C			
P17844	Probable ATP-dependent RNA helicase DDX5			
P35232	Prohibitin			
P14618	Pyruvate kinase isozymes M1/M2			
P61106	Ras-related protein Rab-14			
Q9Y265	RuvB-like 1			
P62136	Serine/threonine-protein phosphatase PP1-alpha catalytic subunit			
O14907	Tax1-binding protein 3			
P49368	T-complex protein 1 subunit gamma			
P07437	Tubulin beta chain			
P68371	Tubulin beta-4B chain			
P61088	Ubiquitin-conjugating enzyme E2 N			
P08670	Vimentin			
P21796	Voltage-dependent anion-selective channel protein 1			
P61981	14-3-3 protein gamma			
P63261	Actin, cytoplasmic 2			
Q14919	Dr1-associated corepressor			
Q14103	Heterogeneous nuclear ribonucleoprotein D0			

4.3 Discussion

4.3.1 SW480 versus HT29

Colon cancer cell line HT29 was chosen for experiments in this chapter as it would complement the data collected from colon cancer cell line SW480. As mentioned previously, SW480 has a constitutively active Wnt pathway and the β -catenin is WT. These two properties are shared between the two chosen cell lines, further validating any interacting partners pulled-down, as they would, therefore, be present across two cell lines that shared the same mutational properties.

However, although β -catenin is abundant in SW480, in HT29 its levels are reduced (Figure 31). The localisation of β -catenin in HT29 is also different, where in SW480 localisation is both cytoplasmic and nuclear and in HT29 β -catenin is strictly localised to the cell membrane (Figure 32). These differences in expression and localisation may impact the findings of β -catenin interactions using our β -catenin-MBP bait approach. For example in SW480 cells, high endogenous cytoplasmic/nuclear levels may compete with β -catenin-MBP to bind interacting proteins, while in HT29 (β -catenin at the cell membrane) different protein interactors may be expected. In this regard the data shown here is comprehensive, investigating the potential of both membrane-bound and free cytosolic β -catenin to bind interacting partner proteins.

There were marked differences between the two cell lines where only 111 proteins were shared in common between the two cell lines. However it is known that SW480 and HT29 differ in morphology, migratory characteristics, EMT markers, metastasis potential, and most relevant to our study, Wnt activity [376].

Utilising data from both cell lines and looking at protein binders shared between the two datasets really narrows down the list of potential candidates to the strongest and strictest partners. This will provide insight on the importance and effect of β -catenin localisation and its interactome.

<u>Figure 31</u> Endogenous expression of β -catenin in SW480 compared to HT29. Image provided by Kate Mills, WMI.

<u>Figure 32</u> Immunofluorescence presenting localisation of β -catenin (red) in SW480 (left) and HT29 (right). Nuclei stained with Hoechst (blue) while another protein (Drp) is depicted by green.

4.3.2 Common protein interactors of β-catenin between SW480 and HT29

Across SW480 and HT29 datasets, 672 proteins were identified as potential candidate interacting partners of β -catenin. Of these proteins, only 111 proteins were common to both cell lines in at least one aspect. That is, the protein was detected in either the WT, phosphomimetic or non-phosphorylatable dataset for either cell line (<u>Table 32</u>). Figure <u>33</u> depicts this in Venn diagram.

Importantly, candidate proteins of interest in Chapter 3 (SW480) were also identified as candidates in Chapter 4 (HT29). These include COPB2, mtHSP70 and a number of hnRNPs. COPB2 bound to phosphomimetic β -catenin in HT29 and WT β -catenin in SW480. mtHSP70 bound all three β -catenin constructs in HT29 (WT, phosphomimetic and non-phosphorylatable), while in SW480 it bound to the phosphomimetic and non-phosphorylatable β -catenin. Regarding the hnRNPs, hnRNPH and hnRNPQ bound to the non-phosphorylatable β -catenin in HT29 but bound to the phosphomimetic β -catenin in SW480. hnRNP A2/B1 bound to the WT and phosphomimetic β -catenin in HT29, while binding the non-phosphorylatable β -catenin in SW480. The differences in preference for the various β -catenin constructs across cell lines needs to be further investigated so the reason why is clear.

Other studies have also utilised the differences and commonalities between SW480 and HT29 for their research. Yang *et al.* (2006) looked at the regulation of β -catenin phosphorylation and degradation by APC mutations in colon cancer. They utilised three colon cancer cell lines in particular – SW480, HT29 and DLD-1 - each selected by reason that each cell line carries mutated APC (which stabilises β -catenin as discussed in 1.3.1).

Inhibition of phosphorylation by APC in the cell lines was expected yet a high level of β -catenin phosphorylation was found [377]. However, ubiquitination and degradation of β -catenin was inhibited in SW480 but not HT29 and DLD-1. This inhibition of ubiquitination in SW480 was rescued by exogenous expression of APC, and domains of APC necessary for ubiquitination of β -catenin were analysed. Results indicate that phosphorylation and ubiquitination of β -catenin is regulated by distinct domains of APC and separate molecular mechanisms. Here, the cell lines chosen were appropriate for the study because they were all colon cancer cell lines with WT β -catenin but possessed different APC truncations.

Bahrawy *et al.* (2004) also utilised SW480 and HT29 in order to determine if there was a correlation between β -catenin and APC mutations and growth pattern/distribution of the E-cadherin/catenin complex. These factors did not appear to be affected by the mutations but rather were influenced by presence or absence of cell-cell contact. These cell lines, in particular, were significance to the study because both cell lines express mutant APC and possess different patterns of E-cadherin [378].

Dvory-Sobol *et al.* (2006) used HT29 and SW480 in their study as both cell lines display hyperactive β -catenin/Tcf signalling and their focus was to target this active pathway in cancer treatment [379]. These studies, like the research presented in this thesis used the similar and different properties of the cell lines to benefit their research.

<u>Table 32</u> Candidate protein interactors of β -catenin common to SW480 and HT29.

*W denotes WT; N denotes non-phosphorylatable; M denotes phosphomimetic

*White denotes absence of that protein in the dataset

**Grey denotes presence of that protein in the dataset

		HT29		SW480		80	
Accession	Protoin	XX/	N	м	XX/	N	м
	182 kDa tankyrase-1-binding protein	•••	1	IVI	• •	1	IVI
P62277	40S ribosomal protein S13						
P62263	40S ribosomal protein S13						
P62269	405 ribosomal protein 514						
P15880	40S ribosomal protein S10						
P60866	405 ribosomal protein 52						
P23396	40S ribosomal protein S20						
P61247	40S ribosomal protein S3						
P46781	40S ribosomal protein S9d						
P08865	40S ribosomal protein SA						
P05388	60S acidic ribosomal protein P0						
P62906	60S ribosomal protein L10a						
P62913	60S ribosomal protein L11						
P62829	60S ribosomal protein L23						
P18124	60S ribosomal protein L25						
P11021	78 kDa glucose-regulated protein						
P60709	Actin. cytoplasmic 1						
P63267	Actin, gamma-enteric smooth muscle						
P61160	Actin-related protein 2						
P59998	Actin-related protein 2/3 complex subunit 4						
P11766	Alcohol dehydrogenase class-3						
P02765	Alpha-2-HS-glycoprotein						
P06733	Alpha-enolase						
P04114	Apolipoprotein B-100						
P25705	ATP synthase subunit alpha, mitochondrial						
P61221	ATP-binding cassette sub-family E member 1						
O00571	ATP-dependent RNA helicase DDX3X						
P11586	C-1-tetrahydrofolate synthase, cytoplasmic						
P27708	CAD protein						
P35221	Catenin alpha-1						
P35222	Catenin beta-1						

		H	HT29		SW480		30
Accession	Protein	w	Ν	м	w	N	м
O60716	Catenin delta-1	•••	11	171	•••	11	171
000610	Clathrin heavy chain 1						
P35606	Coatomer subunit beta'						
100000	Coiled-coil-helix-coiled-coil-helix domain-containing						
Q9NX63	protein 3, mitochondrial						
P21291	Cysteine and glycine-rich protein 1						
P00403	Cytochrome c oxidase subunit 2						
P60981	Destrin						
P33992	DNA replication licensing factor MCM5						
P33993	DNA replication licensing factor MCM7						
Q14258	E3 ubiquitin/ISG15 ligase TRIM25						
P49411	Elongation factor Tu, mitochondrial						
P14625	Endoplasmin						
015371	Eukaryotic translation initiation factor 3 subunit D						
P15311	Ezrin						
P49327	Fatty acid synthase						
P30711	Glutathione S-transferase theta-1						
P04406	Glyceraldehyde-3-phosphate dehydrogenase						
	Glyceraldehyde-3-phosphate dehydrogenase, testis-						
014556	specific						
P11216	Glycogen phosphorylase, brain form						
DC2244	Guanine nucleotide-binding protein subunit beta-2-						
P63244							
P0810/	Heat shock /0 kDa protein IA/IB						
Q12931	Heat shock protein 75 kDa, mitochondrial						
P0/900	Heat shock protein HSP 90-alpha						
P31943	Heterogeneous nuclear ribonucleoprotein H						
060506	Heterogeneous nuclear ribonucleoprotein Q						
P22626	Heterogeneous nuclear ribonucleoproteins A2/B1						
Q96KK5	Histone H2A type 1-H						
O60814	Histone H2B type 1-K						
Q15181	Inorganic pyrophosphatase						
Q9Y6M1	Insulin-like growth factor 2 mRNA-binding protein 2						
P14923	Junction plakoglobin						
Q9NSK0	Kinesin light chain 4						
P20700	Lamin-B1						
Q14847	LIM and SH3 domain protein 1						
Q86W92	Liprin-beta-1	1					

		Н	HT29		SW480		30
Accession		***	ът	N		NT	ъл
number	Protein	W	N	N	W	N	IVI
P00338	L-lactate denydrogenase A chain						
P10619	Lysosomal protective protein						1
Q14697	Neutral alpha-glucosidase AB	_					
P504/9	PDZ and LIM domain protein 4						
Q9NR12	PDZ and LIM domain protein 7						
P62937	Peptidyl-prolyl cis-trans isomerase A						
Q06830	Peroxiredoxin-1						
P32119	Peroxiredoxin-2	_					
Q15365	Poly(rC)-binding protein 1						
Q13310	Polyadenylate-binding protein 4						
P26599	Polypyrimidine tract-binding protein 1						
P02545	Prelamin-A/C						
Q92841	Probable ATP-dependent RNA helicase DDX17						
P17844	Probable ATP-dependent RNA helicase DDX5						
Q15185	Prostaglandin E synthase 3						
P21980	Protein-glutamine gamma-glutamyltransferase 2						
P14618	Pyruvate kinase isozymes M1/M2						
P61026	Ras-related protein Rab-10						
P51148	Ras-related protein Rab-5C						
Q8WUF5	RelA-associated inhibitor						
Q96PK6	RNA-binding protein 14						
Q01844	RNA-binding protein EWS						
P35637	RNA-binding protein FUS						
Q9Y265	RuvB-like 1						
Q9Y230	RuvB-like 2						
Q00796	Sorbitol dehydrogenase						
Q14247	Src substrate cortactin						
P38646	Stress-70 protein, mitochondrial						
O14907	Tax1-binding protein 3						
P40227	T-complex protein 1 subunit zeta						
Q13263	Transcription intermediary factor 1-beta						
P29401	Transketolase						
014134	Tripartite motif-containing protein 29						
P68363	Tubulin alpha-1B chain						
P68366	Tubulin alpha-4A chain						
P07437	Tubulin beta chain						
013885	Tubulin beta-2A chain						
P68371	Tubulin beta-4B chain						

		HT29			SW480		
Accession number	Protein	w	Ν	Μ	W	Ν	Μ
Q9BUF5	Tubulin beta-6 chain						
O00159	Unconventional myosin-Ic						
O95292	Vesicle-associated membrane protein-associated protein B/C						
P21796	Voltage-dependent anion-selective channel protein 1						
P45880	Voltage-dependent anion-selective channel protein 2						
P12956	X-ray repair cross-complementing protein 6						

Figure 33 Venn diagram portraying protein binders of β -catenin found across both SW480 and HT29 datasets

4.4 Conclusion

In conclusion, novel candidate interactors of β -catenin were pulled-down in HT29 by use of β -catenin-MBP constructs and a SILAC MS strategy. Some of the proteins detected in this chapter which were also found in SW480 are followed-up in Chapter 5 (validations chapter), due to them being found to interact with β -catenin in two colon cancer cell lines, supporting the notion their interaction with β -catenin is associated with cancer. These proteins include COPB, mtHSP70, KCL4 and Tab182.

5 Validation of candidate protein binding partners of β-catenin

5.1 Introduction

Putative β -catenin protein binding partners were identified by MS in Chapters 3 and 4 and were selected for further study (<u>Table 33</u>). These proteins were selected based on their function and subcellular location. That is, protein binders with a function of interest (eg. Nuclear proteins that may aid β -catenin in shuttling) or protein binders implicating β -catenin to be at a novel organelle (eg. Mitochondrial or golgi proteins) were selected. In this chapter, immunoprecipitation (IP) and immunofluorescence (IF) techniques were explored in efforts to confirm the validity of these proteins as novel β -catenin protein binders. Identification of such β -catenin protein interactors would likely provide new insights into the functional activities of β -catenin and its regulatory roles in cancer.

For IPs, β -catenin antibody (<u>Table 7</u>) was used for protein isolation in SW480 cell lysate followed by western blot using a specific antibody against the novel candidate protein of interest. For IF, antibodies against β -catenin and the novel candidate protein were used in SW480, HT29 or HEK293T (non-cancer control) cell lines in order to shed light on their potential interaction or co-localisation. The following putative β -catenin binding proteins were investigated in this chapter by methods of IP, pull-down and IF imaging – COPB, mtHSP70, Tab182, KCL4, hnRNPK and Opa1. From these studies, the most promising new β -catenin binding proteins, COPB and mtHSP70, are discussed in-depth within the context of β -catenin biology because they showed positive results across all investigative methods – MS, IP, pull-down and IF. <u>Table 34</u> lists the proteins above in the context of the methods used to validate them.

<u>Table 33</u> Putative novel protein interactors of β -catenin. *WT = WT dataset; pD = non-phosphorylatable dataset, pM = phosphomimetic dataset **Numbers in WT, Y654F, Y654E columns are fold-change (β -catenin:MBP) ***Bar denotes fold-change where '0' means absent and '1000' means present at over 1000 times in the experimental vs control

1000 500 0									
			SW480			НТ29			
	Subcellular			Y654	Y654		Y654	Y654	
Protein name	location	Function	WT	F	E	WT	F	E	Justification for pursuit
182 kDa tankyrase-1- binding protein (Tab182) (Q9C0C2)	Cytoplasm	Ankyrin-binding protein associated with cortical actin in the cytoplasm but also resides in the nucleus [380]	796			786		345	 Bound β-catenin in both cell lines with high fold-change compared to control. Tab182 binds tankyrase 1 which downregulates axin and thereby helps stabilise β-catenin [381, 382], implicating Tab182 in regulating the stability of β-catenin. Tab182 also binds ankyrin and ankyrin regulates Wnt signaling by altering β-catenin localisation [383].
Coatomer subunit beta' (COPB') (P35606)	Golgi	Part of Golgi coatomer 7- protein complex that coats non-clathrin-coated vesicles, involved in protein transport from ER, required for Golgi budding/vesicular trafficking [384]	1000					478	Novel putative role and localisation of β-catenin at the Golgi. 4 out of 7 subunits of the whole protein complex were identified by proteomics. Bound β-catenin in both cell lines. COPB selected as collaborators were working on it and had convincing results and antibody was available
COP9 signalosome complex subunit 5 (COPS5) (Q92905)	Cytoplasm	Part of the COP9 signalosome complex, roles in cellular and developmental processes, ubiquitin conjugation pathway [385]	325						Bound β-catenin in SW480 cells. COP9 signalosome may have a role in β-catenin degradation
Dynamin-like 120 kDa protein, mitochondrial (Opa1)	Mitochondria	Regulates mitochondrial fusion and cristae structure in the inner mitochondrial membrane [386-388]		268					Novel putative role and localisation of β-catenin at the mitochondria

			l	SW480		НТ29			
	Subcellular			Y654	Y654		Y654	Y654	
Protein name	location	Function	WT	F	Ε	WT	F	E	Justification for pursuit
(060313)									
Heat shock 70		Molecular chaperone							
kDa protein		stabilising proteins against							
1A/1B,		aggregation and							
mitochondrial		misfolding, stabilising or							Novel putative role and localisation of β -catenin at the
(mtHSP70)		degrading mutant proteins							mitochondria. Bound β -catenin in both cell lines at similar
(P08107)	Mitochondria	[389]		3	3	6	5	9	fold-changes
Heat shock		Molecular chaperone							
protein HSP		binding and folding							
90-alpha		proteins into their							Another heat shock protein and molecular chaperone (aside
(HSP90)		functional structure [390,							from mtHSP70) that may have a role at the mitochondria
(P07900)	Cytoplasm	391]			3	4			[392]
Heterogeneous		Binds RNA, roles in pre-							
nuclear		mRNA processing and							
ribonucleoprot		mRNA							
ein K		metabolism/transport,							Numerous hnRNPs bound β -catenin across both cell lines.
(hnRNPK)		transcription activation and							hnRNP interaction with β -catenin could be involved with
(P61978)	Nucleus	repression [393]		8					the β -catenin nuclear shuttling.
		Microtubule-associated							
Kinesin light		protein, roles in organelle							
chain 4		transport, light chain							
(KCL4)		involved in coupling cargo							Bound β -catenin in both cell lines with high fold-change
(Q9NSK0)	Cytoplasm	to heavy chain [394]	920	649				572	compared to control
Ras-related		Regulate intracellular							
protein Rab-		membrane trafficking,							
5A (Rab5a)		form transport vesicles							Numerous Rabs bound β -catenin in both cell lines including
(P20339)	Cytoplasm	[395-398]	798						Rab1b, 4a, 5b, 5c, 8a, 10, 14

Protein	Mass	Pull-	Immunoprecipitation	Immunofluorescence		
	spectrometry	down	(IP)	(IF)		
COPB	Positive	Positive	Positive	Positive		
mtHSP70	Positive	Positive	Positive	Positive		
Tab182	Positive	Positive	Positive (length of	Positive		
			Tab182 makes results			
			unclear)			
KCL4	Positive	Positive	High background.	Positive		
		but very	Reverse-IP positive			
		faint				
		signal				
hnRNPK	Positive	N/A	High background	Need more data		
Opa1	Positive	Positive	High background	Positive		

<u>Table 34</u> Methods used to validate novel candidate protein interactors of β -catenin.

5.2 Results

The immunoprecipitation assay (referred to here as IP) was one method used to validate protein interactions. An IP control experiment was performed, where APC, a well-characterised interactor of β -catenin was detected in an IP with α - β -catenin antibody, but not with the control IgG antibody (Figure 34). This provides insight into the quality of the IP protocol where minimal false signal is detected in the control lane for a known, high-affinity binder.

Mutant endogenous form of APC (~160 kDa) is immunoprecipitated by α - β -catenin antibody (*) but not the IgG control, in extract from SW480 cells, supporting the IP protocol utilised within. Note that the mutant form of APC detected here is known to retain β -catenin binding sites.

5.2.1 Coatomer subunit beta (COPB)

i. Validation by immunoprecipitation

Coatomer subunit beta (COPB), a known golgi protein [399, 400] was identified by MS to bind to WT full-length β -catenin-MBP in SW480 and the phosphomimetic in HT29 cells. A protein pull-down strategy with β -catenin-MBP and western blot for COPB demonstrated the potential for interaction in SW480 cells (Figure 35A). Despite identifying COPB in the phosphomimetic condition in HT29 this could not be readily validated by IP as no reliable phosphospecific antibody was available for β -catenin Y654.

To further investigate this potential novel interaction in SW480, a series of IPs were performed using α - β -catenin antibody and subsequent western blot using α -COPB antibody (Figure 35B). Taken together with the pull-down data this provides evidence for a novel interaction of β -catenin with COPB.

Two other vesicle-related proteins of interest (COPS5 and Rab5a) were also detected to interact with β -catenin by mass spectrometry and assessed in IP experiments, but neither provided evidence for β -catenin interaction and so investigation of these proteins was not continued. Thus, the confirmation of interaction between COPB and β -catenin is rather specific.

Figure 35 Detection of novel β-catenin–COPB protein interactions by immunoprecipitation.

SW480 total cell extract was subjected to pull-down or IP.

(A) In a pull-down, SW480 extract was mixed with beads coated with β -catenin-MBP, then the complexes washed, separated by SDS-PAGE and blotted for detection of COPB (110 kDa). As shown, a COPB specific antibody detected COPB in the input sample and modestly in the β -catenin-MBP sample lane (*), but not with MBP control.

(B) When SW480 cell extract was subjected to IP using α - β -catenin antibody, COPB (*) was clearly detected, whereas very little COPB was captured by the IgG control.

(C) COPS5 (37 kDa) and; (D) Rab5a (25 kDa) were not immunoprecipitated by α-β-catenin antibody.

ii.

Validation by immunofluorescence microscopy

Immunofluorescent imaging in SW480 cells was performed as an orthogonal approach to confirm the interaction of β -catenin and COPB. First, an experiment was performed to establish that COPB is at the golgi using golgi-marker TGN46.

SW480 and HT29 cells were incubated fixed with methanol-acetone and blocked with 3 % BSA/PBS. The cells were incubated with α -COPB and α -TGN46 antibody followed by incubation with secondary antibody (includes Hoechst stain for nuclei). Slides were then mounted for microscopy using Vectashield and cells imaged on the DeltaVision (GE Lifesciences) at x100 magnification. Images were analysed by SoftWoRx Explorer 1.3 (Figure 36). For image analysis, a co-localisation was deemed positive if the protein staining patterns showed at least partial overlap. Utilisation of red (AlexFluor®594) and green (AlexFluor®488) fluorophores meant that co-localisation was identified by the production of yellow colouration in the merged images. Figure 36 shows spots of co-localisation of COPB (green) and TGN46 (red), depicted by yellow colour or partial overlap when images were compared. There are some spots of co-localisation although there does not seem to be a strong overlap between the two proteins. It is suggested that COPB can be at the golgi although it cannot be considered as a golgi-marker.

After confirming some co-localisation of COPB to the golgi cells were grown on slides, fixed with methanol-acetone and blocked with 3 % BSA/PBS before being incubated with α - β -catenin antibody and α -COPB antibody. The cells were then incubated with secondary antibody (includes Hoechst stain for nuclei) and the slides mounted for microscopy using Vectashield. The cells were imaged on the DeltaVision (GE Lifesciences) at x100 magnification and images analysed by SoftWoRx Explorer 1.3 (Figure 37). A zoom of an inset of cells is shown in Figure 38. Figure 39 shows a secondary antibody control.

Prior to fixation, a mild cytoplasmic extraction (CSK Triton X-100 detergent wash, 1 min) was performed in the SW480 cells, causing mild permeabilisation of the plasma membrane and progressive loss of soluble proteins from the cell, leading to a reduced background. Only immobile and anchored proteins are resilient to the extraction process. In this instance, the CSK extraction caused loss of some cytoplasmic β -catenin staining and allowed a clearer detection of potential co-localisation with COPB.

<u>Figure 36</u> Co-localisation of COPB and golgi-marker (TGN46) in A) SW480 and B) HT29 cells (scalebar = $5 \mu m$).

Cells were fixed with methanol-acetone, blocked with 3 % BSA/PBS and incubated with α -COPB and α -TGN46 antibody. The cells were then incubated with secondary antibody and slides mounted for microscopy on the DeltaVision (magnification x100). Although not strong, there is some co-localisation of COPB (green) with the TGN46 (red) indicating that COPB can sometimes be found at the golgi although it cannot be considered as a golgi-marker.

<u>Figure 37</u> Co-localisation of β -catenin and COPB in SW480 cells before and after CSK detergent extraction of soluble proteins (scalebar = 20 μ m).

SW480 cells underwent a mild CSK-wash followed by fixation with methanol-acetone. The cells were blocked with 3 % BSA/PBS and incubated with primary antibody (β -catenin and COPB). The cells were then incubated with secondary antibody and slides mounted for microscopy on the DeltaVision at magnification x100. The non-CSK washed SW480 cells (left) have a highly saturated signal of cytoplasmic β -catenin (red). This image demonstrates the need for a CSK wash to release non-anchored cytoplasmic β -catenin in order allow for detection of spots of co-localisation with COPB (green).

<u>Figure 38</u> Co-localisation of β -catenin and COPB in SW480 (inset zoom of <u>Figure 37</u>). Image on left was taken at x100 magnification.

An inset zoom of a CSK washed SW480 IF experiment of β -catenin (red) and COPB (green). Arrows on the right point to sites of co-localisation.

Figure 39 A secondary antibody control demonstrates the specificity of the secondary antibodies utilised.

SW480 cells were fixed with methanol-acetone and blocked with 3 % BSA/PBS. Cells were not incubated with primary antibody but instead incubated with secondary antibody α -rabbit AlexaFluor®594 (red) and α -mouse AlexaFluor®488 (green) and slides mounted for microscopy on the DeltaVision at magnification x100. There is very low background, that is, there is very low non-specific binding of the secondary antibodies.
5.2.2 Mitochondrial heat shock protein 70 (mtHSP70)

i. Validation by immunoprecipitation

Mitochondrial heat shock protein 70 (mtHSP70), a known mitochondrial protein [401], was found to bind all constructs (WT, phosphomimetic and non- phosphorylatable β catenin) across both cell lines (SW480 and HT29) by MS, meaning that this interaction
is not dependent on phosphorylation at Y654. Since β -catenin has been not been
previously detected at mitochondria, it was decided to further investigate this potential
interaction. Thus, IPs were performed in SW480 cell extract using α - β -catenin antibody
and subsequent western blot using α -mtHSP70 antibody.

A pull-down of mtHSP70 by β -catenin-MBP is shown in <u>Figure 40A</u> and an IP of mtHSP70 by α - β -catenin antibody is displayed in <u>Figure 40B</u>. Two bands (~ 75 kDa and ~ 100 kDa) were detected by the mtHSP70 antibody in <u>Figure 40B</u>. The band of interest is the lower band due to the mass of mtHSP70 (70 kDa) and the fact that the migration pattern of mtHSP70 has been detected at this molecular mass before using the same antibody (refer to <u>Figure 40A</u>).

The IP of another chaperone, HSP90 by α - β -catenin antibody is shown in Figure 40C, followed by a pull-down of HSP90 by β -catenin-MBP (Figure 40D). This is a very interesting result because researchers have documented that HSP90 and mtHSP70 are associated with tumorigenesis, possibly by regulation of cell cycle components including p53 [402, 403] (discussed in 5.3.2). Furthermore, mitochondrial HSP90 is also involved in transport of proteins into the mitochondria. mtHSP70 was further explored on its own in order to begin initial investigations for β -catenin at the mitochondria.

Another chaperone, nuclear-related hnRNPK was immunoprecipitated by α - β -catenin antibody (Figure 40E) however, this was not specific as it also bound to the IgG control. Furthermore, a reverse-IP by α -hnRNPK antibody immunoprecipitated β -catenin, however, this was not specific as it also bound to the IgG control (Figure 40F). Repeat experiments need to be performed in order to either confirm or deny an interaction of hnRNPK with β -catenin.

Figure 40 Evidence for interaction between β-catenin and mtHSP70.

(A) In a pull-down, SW480 extract was mixed with beads and coated with β -catenin-MBP, then complexes washed, separated by SDS-PAGE and blotted for detection of mtHSP70 (70 kDa). As shown, a mtHSP70 specific antibody detected mtHSP70 in the input sample and in the β -catenin-MBP lane (*) with low signal for the MBP control.

(B) When SW480 cell extract was subjected to IP using α - β -catenin antibody, mtHSP70 was clearly detected (*), whereas no mtHSP70 was captured by the IgG control.

(C) A pull-down performed in SW480 extract using β -catenin-MBP was blotted for detection of HSP90. As shown, a HSP90 specific antibody detected HSP90 modestly in the input lane and clearly in the β -catenin-MBP lane (*) with no signal for the MBP control.

(D) When SW480 extract was subjected to IP using α - β -catenin antibody, HSP90 was clearly detected (*) whereas no HSP90 was captured by the IgG control.

(E) When SW480 cell extract was subjected to IP using α - β -catenin antibody, hnRNPK was clearly detected in the β -catenin sample but was also captured by the IgG control.

(F) A reverse-IP was performed in SW480 extract using α -hnRNPK antibody and β -catenin was detected in the hnRNPK sample but also the IgG control.

ii. Validation by immunofluorescence

Immunofluorescence was performed in order to investigate and further study the potential interaction of β -catenin and mtHSP70 in whole cells. First, an experiment was performed to establish that mtHSP70 is at the mitochondria, and confirm it is a mitochondrial marker as the literature states [404].

SW480 and HT29 cells were incubated with mitochondrial marker CMX-ros (MitoTracker®, LifeTech) to stain mitochondria and cells were then fixed with methanol-acetone and blocked with 3 % BSA/PBS. The cells were incubated with α -mtHSP70 antibody followed by incubation with secondary antibody (includes Hoechst stain for nuclei) and then they were mounted for microscopy using Vectashield. The cells were imaged on the DeltaVision (GE Lifesciences) at x100 magnification and images analysed by SoftWoRx Explorer 1.3 (Figure 41). The image displays obvious and almost total co-localisation of mtHSP70 and the mitochondria.

After establishing mtHSP70 as a mitochondrial marker, another IF experiment was performed. SW480 and HEK293T (non-cancer) cells underwent a mild CSK-wash (1 min), were fixed with methanol-acetone and blocked with 3 % BSA/PBS before being incubated with α - β -catenin antibody and α -mtHSP70 antibody. The cells were then incubated with secondary antibody and mounted for microscopy. The cells were imaged on the DeltaVision (GE Lifesciences) at x100 magnification and images analysed by SoftWoRx Explorer 1.3 (Figure 43). A zoom of an inset of SW480 cells is shown in Figure 44.

160

For image analysis, a co-localisation was deemed positive if the protein staining patterns showed at least partial overlap. Utilisation of red (AlexFluor®594) and green (AlexFluor®488) fluorophores meant that co-localisation was identified by the production of yellow colouration in the merged images. Figure 44 shows spots of co-localisation of β -catenin (red) with mtHSP70 (green), depicted by yellow colour or partial overlap patterning when images were compared.

While it is often difficult to detect β -catenin at the mitochondria, under conditions where β -catenin background was decreased by CSK-extraction there was visible co-localisation with mtHSP70, which at least partly supports the MS, IP and pull-down data for complex formation and co-localisation.

If further IF experiments do not demonstrate β -catenin and mtHSP70 to interact (contradicting MS, IP and pull-down data), a reasoning behind this may be that the proteomics data identifying mtHSP70 and other mitochondrial proteins as potential β -catenin partners, was analysed from a pull-down performed in RIPA lysed cells. This type of cell lysis generates total cell lysate comprising a soup of proteins which allows for the opportunity of non-specific interactions to occur [344]. In fact, other researchers have used RIPA buffer (Triton X-100) to rupture the cell membrane and mitochondrial membranes specifically [345-348]. Therefore, although this binding in whole cell lysate is detectable, it may not be possible *in vivo* where partitioning of cell membranes would block such interactions.

mtHSP70/CMX/DAPI

mtHSP70

<u>Figure 41</u> Co-localisation of mtHSP70 and mitochondria in SW480 (scalebar = 15 μ m)

SW480 cells were stained with CMX-ros, a mitochondrial dye. Cells were then fixed with methanolacetone, blocked with 3 % BSA/PBS and incubated with α -mtHSP70 antibody. The cells were then incubated with secondary antibody (includes Hoechst stain for nuclei) and slides mounted for microscopy on the DeltaVision at magnification x100. The SW480 (left) and HT29 (right) cells have mtHSP70 (green) localising to mitochondria (red) almost completely. Arrows point out some points of co-localisation.

mtHSP70/CMX/DAPI mtHSP70/CMX

<u>Figure 42</u> Co-localisation of mtHSP70 and mitochondria in HT29 cells (scalebar = 5 μ m).

HT29 cells were stained with CMX-ros, a mitochondrial dye. Cells were then fixed with methanolacetone, blocked with 3 % BSA/PBS and incubated with α -mtHSP70 antibody. The cells were then incubated with secondary antibody (includes Hoechst stain for nuclei) and slides mounted for microscopy on the DeltaVision at magnification x100. The SW480 (left) and HT29 (right) cells have mtHSP70 (green) localising to mitochondria (red) almost completely. Arrows point out some points of co-localisation.

<u>Figure 43</u> Co-localisation of β -catenin and mtHSP70 in HEK293T (non-cancer control) and SW480 cells (scalebar = 20 µm).

SW480 cells underwent a mild CSK-wash followed by being fixed by methanol-acetone. The cells were then blocked with 3 % BSA/PBS and incubated with primary antibody (β -catenin or mtHSP70). The cells were then incubated with secondary antibody (includes Hoechst stain for nuclei) and slides mounted for microscopy on the DeltaVision at magnification x100. The HEK293T cells (left) have β -catenin (red) localising to the cell membrane while the SW480 cells (right) have β -catenin (red) localising to the cytoplasm and nucleus. The localisation for β -catenin in the SW480 cells allows for a higher chance of interaction with mtHSP70 (green).

Figure 44 Co-localisation of β-catenin and mtHSP70 in SW480 (inset zoom).

An inset zoom of a CSK washed SW480 IF experiment of β -catenin (red) and mtHSP70 (green). Arrows on the bottom panel point to sites of co-localisation. It should be noted that co-localising spots are not always yellow, but rather the pattern of overlap should be considered.

5.2.3 Other novel protein interactor candidates

Our study pulled-down hundreds of potential novel protein interactors of β -catenin. Only a small subset of these could be further tested and this subset was chosen carefully and justified (<u>Table 33</u>). The following proteins were subjected to further testing but were met with unclear results.

182 kDa tankyrase-1-binding protein (Tab182)

i.

Tab182, a nuclear protein potentially possessing two nuclear localisation sequences [380], was identified by MS to bind WT β -catenin in both colon cancer cell lines (SW480 and HT29) and the phosphomimetic in HT29. It was further investigated as a potential protein interactor of β -catenin.

Upon pull-down using β -catenin-MBP and western blot with Tab182 antibody, no specific signal at the expected molecular weight for Tab182 (182 kDa) was observed in SW480 cell lysates and so an antibody characterisation was performed (<u>Figure 45</u>A). Results showed that for SW480, Tab182 was detected at ~ 50 kDa and ~ 85 kDa.

A pull-down performed in SW480 using β -catenin-MBP showed that for Tab182 a band (~ 85 kDa) was present in the β -catenin-MBP lane but not the control (Figure 45B). An IP was performed in SW480 cells and a signal was detected at ~ 85 kDa for β -catenin with much lower signal present for the control (Figure 45C). However, low signal in the input lanes makes these results unclear because detection in the input lanes was inconsistent.

The absence of signal at the expected molecular mass (182 kDa) makes it impossible to determine if an interaction occurs using these approaches. However, we recently discovered that a truncated version exists at 83 kDa (source: Uniprot). Tab182 western blots presented in this thesis present a band at this expected weight, potentially meaning that β -catenin is interacting with this mutated, truncated form.

IF experiments were also performed in CSK-washed SW480 cells using β -catenin and Tab182 antibody (Figure 46). Results suggest that binding of β -catenin and Tab182 occurs in the nucleus – evidence pointing towards an interaction of β -catenin being implicated in nuclear shuttling as they are seen in the nucleus together.

Figure 45 Evidence for interaction of β-catenin and Tab182 in SW480.

A) Antibody characterisation for Tab182 showing that in SW480, two bands are clear, at ~ 50 kDa and ~ 85 kDa.

B) A pull-down was performed in SW480 using β -catenin-MBP demonstrating that Tab182 (~ 85 kDa) bound to the β -catenin-MBP but not the MBP control.

C) IP performed in SW480 using β -catenin antibody showed that here is a clear band for Tab182 (~ 85 kDa) and lower signal detected for the IgG control. However, lack of a band in the input makes the result unclear.

β-catenin/Tab182/DAPI

β-catenin/Tab182

Tab182

β-catenin

<u>Figure 46</u> Co-localisation of β -catenin and Tab182 in SW480 (scalebar = 20 μ m).

SW480 cells underwent a mild CSK-wash followed by being fixed by methanol-acetone and blocked with 3 % BSA/PBS and incubated with primary antibody (β -catenin and Tab182). The cells were then incubated with secondary antibody and slides mounted for microscopy on the DeltaVision at magnification x60. Results suggest that β -catenin (red) and Tab182 (green) interact in the nucleus. Arrows point to potential sites of interaction depicted by either yellow colour or overlap patterning.

ii. Kinesin light chain 4 (KCL4)

KCL4 was identified by an MS screen to bind to WT and non-phosphorylatable-Y654- β catenin in SW480 while binding to phosphomimetic-Y654E- β -catenin in HT29. This interaction was investigated further and a reverse-IP was performed using α -KCL4antibody to IP β -catenin (90 kDa) in SW480 cells which was positive (<u>Figure 47</u>A).

Furthermore, a pull-down performed using β -catenin-MBP in SW480 cells had a very slight signal for KCL4 (<u>Figure 47B</u>) while an IP using β -catenin antibody and probing for KCL4 (69 kDa) appeared negative (<u>Figure 47C</u>).

The most convincing evidence for an interaction of β -catenin and KCL4 comes from an IF experiment where antibodies against β -catenin and KCL4 were utilised in SW480 cells (Figure 48).

Figure 47 Evidence for interaction of β-catenin and KCL4 in SW480.

- A) A reverse-IP performed in SW480 using KCL4 antibody to IP β-catenin was positive where signal for β-catenin was detected for the KCL4 lane but not the control. β-catenin was also detected in the input.
- B) After a pull-down performed in SW480 using β-catenin-MBP, a very faint band can be seen for KCL4.
- C) An IP performed in SW480 using β -catenin antibody has KCL4 signal in both the IgG and β -catenin experiments.

β-catenin/KCL4/DAPI

β-catenin

β-catenin/KCL4

SW480 cells underwent a mild CSK-wash followed by being fixed by methanol-acetone and blocked with 3 % BSA/PBS and incubated with primary antibody (β -catenin and KCL4). The cells were then incubated with secondary antibody and slides mounted for microscopy on the DeltaVision at magnification x100. Results suggest that β -catenin (green) and Tab182 (red) as indicated by arrows pointing to potential sites of interaction depicted by either yellow colour or overlap patterning.

iii. Heterogeneous nuclear ribonucleoprotein K (hnRNPK)

The weight of hnRNPK (60 kDa) made it a difficult protein to observe after western blot of an IP in SW480 as the β -catenin antibody heavy chain at 50 kDa tended to overshadow the 60 kDa molecular weight band of hnRNPK (Figure 49A). After multiple attempts at gel separation, it was possible to observe the 60 kDa weight band after IP with β -catenin in SW480 (Figure 49B). There is signal for both the β -catenin lane and the IgG control lane. However, this was performed once and needs to be further confirmed.

<u>Figure 49</u> Evidence of an interaction between β-catenin and hnRNPK.

A) IPs were performed using β -catenin antibody in SW480 cell lysate and upon western blot with hnRNPK antibody, a band for hnRNPK (60 kDa) could not be seen due to an overshadowing 50 kDa heavy chain.

B) Gel separation allowed hnRNPK to be observed at 60 kDa after an IP performed using β -catenin antibody in SW480 however background (IgG) was high. It should be noted that the heavy chain ran just below the 50 kDa weight marker and ran off the gel as it was being run.

iv.

Dynamin-like 120 kDa protein, mitochondrial (Opa1)

Opa1 had conflicting results where multiple pull-downs (followed by MS and western blot) demonstrated a binding of β -catenin to Opa1, however, IPs showed that Opa1 was also binding to the control (Figure 50). Furthermore, MS data found that Opa1 bound the non-phosphorylatable construct (Table 33) while pull-downs followed by western blot found that it bound all constructs albeit with different strengths (Figure 50A). The signal for Opa1 binding the various β -catenin-MBP constructs was 2-6 times stronger than the MBP control when signal intensities were compared. Figure 50B shows that Opa1 binds β -catenin antibody but also the control in the IP. However, it should be noted that based on the MS data (strongest binding of Opa1 to non-phosphorylatable β -catenin) in order to successfully IP Opa1 the phosphorylation status of β -catenin may need to be controlled. Use of WT β -catenin antibody during the IP meant that phosphorylation was not controlled as kinases would still be active within the lysate. Here, validations could not confirm initial MS data.

IF experiments were also conducted to investigate the interaction of β -catenin and Opa1. First, it was tested that Opa1 does mainly localise to the mitochondria because the intention of validating Opa1 was not just to focus on the interaction of it with β -catenin but to also find some evidence for β -catenin being at the mitochondria (to show that β -catenin interacts with Opa1 at the mitochondria). This was achieved by IF experiments in SW480 using Opa1 antibody and CMX-Ros dye which stains mitochondria [405-407] (Figure 51).

After confirming that Opa1 did mainly localise to the mitochondria, an IF experiment was performed in CSK-washed SW480 cells, HT29 cells and HEK293T cells using β -catenin and Opa1 antibody (Figure 52). Results showed that Opa1 may have the opportunity to interact with β -catenin in SW480 as β -catenin is not sequestered at the cell membrane. However, β -catenin localisation at the cell membrane in HT29 and HEK293T makes it less likely that β -catenin interacts with Opa1 in these cells lines.

<u>Figure 53</u> demonstrates that there is some co-localisation of Opa1 and β -catenin in SW480 based on their staining patterns.

A) Upon a pull-down in SW480 cell lysate using β -catenin-MBP constructs (phosphomimetic, non-phosphorylatable and WT), it was found that all constructs bound Opa1 (80/100 kDa) but not MBP control. The constructs bound Opa1 with different strengths, as indicated by their signal intensities (I.I). (MBP = 1.29 I.I, Y654E = 5.02 I.I, Y654F = 2.24 I.I, Y654 = 5.11 I.I, input = 10.21 I.I).

B) IP of Opa1 by β -catenin antibody in SW480 was successful, however the background (IgG control) signal is high . (IgG = 1.96 I.I, β -catenin = 2.99 I.I, input = 25.54 I.I).

Opa1/CMX/DAPI

SW480 cells were stained with Hoechst (nuclear stain), Opa1 and CMX-Ros (mitochondrial dye). Cells were imaged using the DeltaVision at magnification x100. As indicated by arrows and comparison of Opa1 and CMX-Ros staining patterns, Opa1 does co-localise to the mitochondria.

<u>Figure 52</u> Co-localisation of β -catenin and Opa1 in SW480, HT29 and HEK293T (non-cancer control) (scalebar = 20 µm).

SW480 (CSK-washed), HT29 and HEK293T cells were fixed by methanol-acetone and blocked with 3 % BSA/PBS followed by incubation with primary antibody (β -catenin and Opa1). The cells were then incubated with secondary antibody (includes Hoechst stain for nuclei) and slides mounted for microscopy on the DeltaVision at magnification x100. The HT29 and HEK293T cells have β -catenin (red) localising to the cell membrane while the SW480 cells have β -catenin (red) localising to the cytoplasm and nucleus. The localisation for β -catenin in the SW480 cells allows for a higher chance of interaction with Opa1 (green) at the mitochondria.

SW480 cells underwent a mild CSK-wash followed by being fixed by methanol-acetone and blocked with 3 % BSA/PBS and incubated with primary antibody (β -catenin and Opa1). The cells were then incubated with secondary antibody and slides mounted for microscopy on the DeltaVision at magnification x100. Results suggest that β -catenin (red) and Opa1 (green) may interact or co-localise at the mitochondria (as indicated by arrows).

5.3 Discussion

5.3.1 β -catenin at the golgi

As stated earlier, currently there is not much scientific evidence on β -catenin localising to the golgi. Research conducted in this thesis resulted in the pull-down a number of golgi-related proteins (8 % of the candidate protein interactor) including a number of coatomer subunits including as COPB'. Another subunit, COPB was found to interact with β -catenin in MCF-7 breast cancer cells by our collaborators (discussed in the following section) and so with the availability of a specific COPB' antibody, COPB' was chosen to use in the investigations of β -catenin at the golgi in this thesis.

As shown in 5.2.1, a pull-down by β -catenin-MBP and subsequent western blot using COPB antibody was positive (Figure 35A) (correlates with MS data) while an IP was also positive where COPB was found to bind β -catenin by IP in SW480 whole cell lysate (Figure 35B). In SW480 CSK-washed whole cells, IF was performed using β -catenin and COPB antibody and results indicated an interaction of the two proteins (Figure 38).

i. Evidence of β -catenin and COPB interaction in MCF-7

Our collaborators at Westmead Millennium Institute (Henderson lab) have found evidence for the binding of COPB to β -catenin in breast cancer cell line MCF-7 (<u>Figure 54</u>) [364].

Generally, it is mutations in components of the β -catenin destruction complex that lead to its stabilisation and nuclear accumulation and ~ 90 % of cases in colorectal cancer harbour these mutations (discussed in 1.3.1) [72, 107, 119, 142]. However, in breast cancer these mutations are rare [408] and so our collaborators investigated the subcellular location of β -catenin in breast cancer.

Excessive Wnt activation occurs in breast cancer due to overexpression of Wnt ligands and receptors [409-412] and upon Wnt treatment of MCF-7 breast cancer cells, cytoplasmic and membrane-bound β -catenin atypically did not relocate to the nucleus due to unusually low expression of LEF/TCF [364]. Upon reconstitution of LEF-1 or TCF4 expression, β -catenin was able to localise to the nucleus after Wnt treatment. In the cytoplasm, they found that β -catenin accumulated in recycling endosomes, golgi and at COPB positive coatomer complexes. The peripheral association with endosomes declined after Wnt treatment, releasing β -catenin into the cytoplasm for nuclear entry.

It was proposed that β -catenin may have a role in cytoplasmic functions such as golgi-ER transport in addition to its normal roles in the nucleus [364].

Co-localisation of β -catenin with COPB at transport vesicles (often overlap the golgi) with Wnt3a (stimulates the Wnt pathway) or control L-cell conditioned media (LCM). In the left panel (- CSK) and (+/- exposure to Wnt3a) revealed co-localisation in the perinuclear region. In the right panel (+CSK) the relative intensity of β -catenin diminished in the cytoplasm and in particular at COPB vesicles.

ii.

β -catenin at the golgi in the current literature

Brunner *et al.* (2006) analysed the expression and subcellular location of β -catenin/Ecadherin in human meningioma by reason that a hallmark of meningioma tumorigenesis is loss of a tumour suppressor that controls cell-cell adhesion (neurofibromatosis type 2 gene, NF2) [290]. Loss of β -catenin at the cell membrane was found in meningioma, and it was then mostly localised to the golgi [290]. There was no correlation between loss of NF2 and loss of β -catenin at the cell membrane, showing that altered localisation is independent of NF2. Thus, interactors of β -catenin at the golgi (such as COPB) are brought into the spotlight when considering tumorigenesis. Current studies such as this can localise β -catenin to the golgi, but have not investigated binding partners, making this research and results unique and novel to the current literature.

Shtutman *et al.* (2011) identified the COPZ gene as essential for various tumours but not normal cells [413]. The study found isoform COPZI in particular as a potential cancerspecific target because its depletion induced cell death in dividing and non-dividing tumour cells, but not normal cells. Furthermore, normal cells expressed two isoforms of COPZ (COPZ1 and COPZ2) while tumour cells expressed only COPZ1 due to silencing of the COPZ2 gene. This is evidence for the importance of COPI subunits in cancer.

Some research indicates that the epidermal growth factor receptor (EGFR) family localises in the nucleus [414]. A retrograde route from golgi-ER is thought to be involved in the EGFR trafficking to the nucleus, yet the mechanism remains unknown [414]. Wang *et al.* (2010) found that membrane-embedded vesicular trafficking was involved in the nuclear transport of EGFR and that blocking retrograde trafficking (by disassembly of the COPI coat to the golgi) inhibited EGFR transport to the nucleus. It was concluded that nuclear transport of EGFR is regulated by COPI-mediated vesicular trafficking. Because β -catenin shuttles in and out of the nucleus freely, it may be implicated in the localisation of EGFR to the nucleus by its interaction with COPI.

Though there is some literature reporting localisation of β -catenin at the golgi, it is yet to be determined which golgi proteins associate with β -catenin at the golgi, and/or mediate its localisation to that organelle. In lieu of this, the proteomics screen in this thesis resulted in the pull-down of 4/7 subunits of COPI. This interaction of β -catenin and COPI may function in the formation of the COPI vesicular coat or transport of the vesicles between the ER and golgi [415], implicating the golgi as a site of vesicle transport for β -catenin.

5.3.2 β-catenin at the mitochondria

As previously stated, the localisation of β -catenin at the mitochondria has been difficult for studies to confirm by cell staining and imaging. This means that any mitochondrial proteins pulled-down by our mass spectrometric screen do not only provide a novel candidate protein interactor, but also a novel localisation for β -catenin at the mitochondria. 10 % of the novel candidate protein interactor list is comprised of proteins with reported roles at mitochondria such as mtHSP70. mtHSP70, a well-known mitochondrial marker [404], was found to bind both the phosphomimetic and nonphosphorylatable constructs of β -catenin-MBP in both cell lines.

As shown in 5.2.2, pull-down using β -catenin-MBP in SW480 followed by western blot using mtHSP70 antibody was positive (<u>Figure 40</u>A), along with an IP performed using β -catenin antibody which immunoprecipitated mtHSP70 (<u>Figure 40</u>B).

IF experiments were also performed in SW480 cells and non-cancer control cell line HEK293T. For the HEK293T cells, it was clear that mtHSP70, which is normally mitochondria-specific in its localisation pattern, did not bind β -catenin because the β -catenin was mainly localised to the cell membrane (Figure 43). For SW480, there were spots of co-localisation, suggesting an interaction of β -catenin and mtHSP70 or at least a co-localisation of β -catenin and the mitochondria (Figure 44).

i.

β -catenin and the mitochondria in the current literature

Little is known about the roles of β -catenin in mitochondrial activity and cellular respiration [288]. One study was able to show that β -catenin-deficient hepatocytes demonstrated mitochondrial dysfunctions, including impairments in oxidative phosphorylation and decreased ATP production [288]. The study concluded that β -catenin was important in maintenance of mitochondrial homeostasis and that conditions altering β -catenin signalling may serve as a novel therapeutic treatment for liver disease.

Another study showed that altered respiratory activity and mitochondrial DNA transcription are important features of cancer cells. They found that a proinflammatory mediator implicated in chronic inflammation and cancer causes the translocation of β -catenin to the mitochondria and to the nucleus [287]. At the mitochondria they showed β -catenin to associate with Bcl-2 (identifying a role of β -catenin in cell survival) while fulfilling its normal roles of transcription in the nucleus [287].

Yoon *et al.* (2010) identified that Wnt proteins, including β -catenin, were associated with mitochondrial abundance, regulation and function. They reported that increased Wnt signalling was a potent activator of mitochondrial biogenesis and the generation of reactive oxygen species [416].

ii. β*-catenin and mtHSP70*

The heat shock proteins (HSP) increase in expression during stressful conditions such as heat shock, oxidative stress or inflammation [417]. In cell survival, their increased expression results in protection and disaggregation of stress-labile proteins and the breakdown of damaged proteins [418, 419]. Family member mtHSP70 (and Hsp90) is thought to affect tumorigenesis by regulating proteins involved in cell cycle control such as p53 [402, 403]. mtHSP70 has been previously described in 3.3.1.

Although not previously reported, β -catenin cross-talk with mitochondrial protein mtHSP70 in particular could be due to their interaction with p53. mtHSP70 has been shown to inactivate tumour suppressor p53 [350] while β -catenin has been reported to be down-regulated by p53 [420]. An illustration of this cross-talk is presented in Figure 55.

The accumulation of β -catenin, characteristic of several types of cancers and tumours as described earlier can also be associated with mutational inactivation of p53 [420]. Sadot *et* al. (2001) showed that overexpression of p53 down-regulated β -catenin but that this was not the case for a common tumour-associated inactive mutant p53 [420]. It has also been found that the down-regulation of β -catenin by p53 involves changes in the rate of β -catenin phosphorylation [421].

Human tumour cells (including colon cancer cells and breast cancer cells) have high levels of cytoplasmic WT p53, and for colon carcinomas, in particular, this accumulation correlates with poor prognosis [422]. It is thought that HSP70 family members are involved in this cytoplasmic sequestration of p53 [417]. It has been proposed that p53 has three potential nuclear localisation sequences that allow it to enter into the nucleus but that mutant importin- α (identified in breast cancer cells) is deficient in its ability to import WT p53 into the nucleus, resulting in p53 cytoplasmic accumulation [423, 424]. Members of the HSP70 family that perform functions in the mitochondria have been shown to interact with accumulated cytoplasmic WT p53 [425] and so it has been proposed that molecular chaperones such as mtHSP70 are involved in the localisation of p53 [417].

Although the increased expression of HSP70 (and other heat shock proteins) is part of an adaptive mechanism for stress tolerance, this same adaptive mechanism can also result in negative effects on regulation of cell growth and apoptosis [417]. These unknown effects of HSP70 can present problems for new therapeutic applications which involve regulation of HSP70 expression to induce apoptosis in cancer cells [426] and the use of HSP70 for new types of adjuvants for vaccines that specifically target tumour cells [427-429].

As stated earlier in 3.3.1, mtHSP70 mediates the folding and unfolding of proteins in response to stressful conditions, controlling their stability and transport in the cell. Of particular interest is p53, which mtHSP70 assists into the outer mitochondrial membrane [350]. Given the results for the interaction of β -catenin and mtHSP70, perhaps mtHSP70 is playing a similar role for β -catenin that it does for p53, aiding transport of β -catenin into the mitochondria. Furthermore, given the fact that mtHSP70 inactivates the protein that inactivates β -catenin (p53), it is possible that by inactivating the p53 tumour suppressor, mtHSP70 inhibits the down-regulation of β -catenin, allowing for the overexpression of β -catenin, and therefore the progression of cancer.

A) β -catenin is a protein associated with the progression of several human cancers.

B) mtHSP70 is known to inactivate p53, and inactivation of p53 is associated with several cancers [350].

C) β-catenin is known to down-regulated by p53 [418].

D) Merging the information from the literature, as presented in A-C, there is potential for cross-talk between β -catenin, mtHSP70 and p53. mtHSP70 inactivation of p53 may result in up-regulation of β -catenin and therefore the development or progression of cancer.

5.4 Conclusion

In summary, this chapter validated some data founded by MS in chapters 3 and 4. In particular, COPB and mtHSP70 have some convincing evidence behind them in the form of pull-down and MS, IP and IF that they bind β -catenin in SW480. Functional analysis needs to be performed in future studies in order to clarify the purpose and importance of these interactions. However, the interaction of these two proteins with β catenin also presents a novel localisation of β -catenin at the golgi (COPB) and mitochondria (mtHSP70). This presents β -catenin as a protein with roles at the golgi and involvement in health and regulation of the mitochondria.

The effect of phosphorylation on the interaction of β -catenin and COPB in particular also could be taken further. A phospho-Y654- β -catenin antibody should be characterised followed by other experiments such as kinase inhibitions (on C-Src kinase which phosphorylates Y654) that would serve to observe the effect of phosphorylation on Y654 and the protein interactors of β -catenin. Phosphomutants were not examined further in this thesis due to lack of specific antibody availability for nonphosphorylatable β -catenin and β -catenin phosphorylated at Y654. Section 6.5.3 discusses alternative methods of examining the phosphomutant datasets in the context of cell signalling and pathways.

The other suite of proteins investigated has had positive results, however, because they have been unsuccessful in at least one method of validation conducted in this thesis, they are not discussed further. It should be noted that the ambiguity of these results is not negative but more experimental work needs to be undertaken before these proteins are discarded as potential protein interactors of β -catenin. Tab182 and KCL4 in particular look to be promising if additional research is conducted on them or repeated.

6 General discussion

6.1 Overview and key novel findings

 β -catenin, a signal transducer of the Wnt signalling pathway, is involved in the progression of several human cancers, including colon cancer. Research has shown that the involvement of β -catenin in the progression of cancer may be linked to its nuclear translocation and accumulation. However, β -catenin is a multi-functional protein and interacts with other proteins to regulate its subcellular localisation and function. It has been speculated that protein phosphorylation may influence these protein interactions. Thus, the objective of this thesis was to explore β -catenin protein interactions in the context of colon cancer and focus on detecting putative new interactors by proteomics and validating these by affinity enrichments and imaging.

Using SILAC quantitation and high-resolution mass spectrometry hundreds of candidate β -catenin protein interactors were detected in SW480 and HT29 colon cancer cells. A novel aspect of this thesis was the investigation of β -catenin Y654 phosphorylation in the Arm 10-12 domain and how this affects protein interactions. Three recombinant β -catenin-MBP constructs were purified – wildtype, phosphomimetic-Y654E and non-phosphorylatable-Y654F. These purified proteins were utilised in pull-down experiments performed in triplicate in two SILAC labelled colon cancer cell lines SW480 (Chapter 3) and HT29 (Chapter 4). The two cell lines have the same endogenous β -catenin mutational status but β -catenin localises to different subcellular locations (SW480 cytoplasmic/nuclear; HT29 membrane).

High-resolution mass spectrometry using an Orbitrap mass analyser was used and peptide identification and SILAC quantitation performed using Proteome Discoverer 1.3. A series of parameters for data acceptance was developed which included protein presence in all three replicates, statistical analysis involving p-value < 0.05 and fold-change between experimental:control of 2.

For validation studies, β -catenin candidate interactors were selected based on current literature, function of the candidate proteins in the context of cancer and subcellular localisation. IP and IF were used in efforts to validate the novel interaction with β -catenin that was originally proposed from the MS data (Chapter 5).

Several novel candidate protein interactors of β -catenin were confirmed, with COPB and mtHSP70 showing the strongest results evidenced by pull-down, MS, IP and IF. Both these proteins not only present a novel interaction of β -catenin but also a novel co-localisation of β -catenin at the golgi and mitochondria respectively. This is novel because the literature details and characterises β -catenin in the nucleus and cytoplasm but no other organelles.
6.2 Protein interactions of β-catenin in colon cancer

Utilising SILAC-labelled SW480 cells, pull-downs using wild-type β -catenin-MBP and mass spectrometry, over 350 putative protein interactors of β -catenin were detected (Chapter 3).

Of these protein interaction candidates, 4 % were proteins involved in nuclear import and export, 10 % were mitochondrial proteins and 8 % were classified as golgi proteins. The remaining proteins were grouped into 'other main processes' which includes proteins involved in other functions such as cytoskeletal proteins or particular pathways such as glycogenolysis.

These groupings were assigned based on GO annotation and manual grouping of each protein. Of particular interest were the nuclear import and export proteins, mitochondrial proteins and golgi-related proteins due to the role of nuclear accumulation of β -catenin in cancer and the fact that β -catenin had not been definitively reported at the mitochondria or golgi previously. It should be noted that the interactions with the β -catenin constructs were detected in whole lysed cells and specific subcellular structures were not isolated by centrifugation prior to complex purification. Although there was insufficient time to carry out those experiments in this thesis it is a recommendation for future work that the experiments be repeated using enriched fractions of mitochondria and golgi vesicles.

Protein interactors of β -catenin were investigated further in another colon cancer cell line, HT29 (Chapter 4). Mutational status of β -catenin is the same in HT29 as it is in SW480 in that it is wildtype β -catenin, although differences exist in APC truncations. Upon data analysis of the pull-downs performed in triplicate (across all three β -catenin-MBP constructs), a smaller list of putative β -catenin interactors was observed in the HT29 cells, perhaps due to the sequestering of endogenous β -catenin at the plasma membrane in complexes with E-cadherin. The method used for cell lysate preparation does not accommodate for cell membrane proteins as the high spin at 10,000 rpm would be insufficient at enriching these proteins and thus they would be absent from analysis.

6.2.1 Significant of β-catenin binding to COPB and mtHSP70

Importantly, particular proteins found in the HT29 dataset reinforced empirical evidence obtained from the SW480 dataset and was an added reason why specific proteins were further validated. These proteins include COPB, mtHSP70, KCL4 and Tab182. Only COPB and mtHSP70 are discussed at depth in this thesis because they had positive, unambiguous results across all methods of validation.

i. Impact of a β -catenin/COPB interaction

During protein synthesis, proteins are targeted to the ER (for synthesis, folding and modification) and then transported to the golgi for further processing in vesicles encased by COP complexes [362]. COPI coated vesicles (a type of protein vesicular carrier system) are implicated in anterograde (ER-golgi) and retrograde (golgi-ER) transport and are composed of several subunits including COPB [363]. These vesicles also mediate protein and lipid transport in the early secretory pathway [430].

Our collaborators discovered that a large pool of cytoplasmic β -catenin accumulated in recycling endosomes, golgi and COPB positive COPI complexes in breast cancer MCF-7 cells [364]. These findings linked β -catenin to functions in transport between the ER and golgi and an implication of this interaction is that β -catenin may regulate assembly of the COPI vesicular coat or transport of the COPI vesicles which is required for transport between golgi and ER.

Another effect of β -catenin/COPB can be inferred by examining bryostatin 1, a protein kinase D (PKD) modulator with antineoplastic qualities. In recent years, it has been used in clinical trials to treat human cancers with minimal success and so researchers have looked into the mechanism behind it in order to improve treatment [431]. PKD1 regulates β -catenin/E-cadherin activity and upon activation of PKD1 by bryostatin 1, the cytoplasmic pool of β -catenin co-localises with PKD1, trans-golgi markers, and proteins associated with vesicular trafficking [432]. Downregulation of PKD1 also decreased the expression and transcriptional activity of β -catenin [432].

Perhaps, golgi proteins such as COPB sequester β -catenin to the golgi once β -catenin has re-localised upon PKD1 activation, decreasing its transcriptional activity and its role in cancer progression. Complementary to this, it was found that the inhibitory effect of PKD1 on cell proliferation was rescued by β -catenin, suggesting PKD1 decreases cell proliferation, motility, and invasion while the loss of it increases expression of β -catenin and cell proliferation [433]. Modulation of β -catenin signalling by bryostatin 1 through PKD1 identifies a novel mechanism to improve the efficacy of cancer treatment using bryostatin 1, and COPB may be a protein of interest allowing β -catenin to remain at the golgi as opposed to performing its nuclear roles that aid in cancer progression.

Conversely, another study correlated subcellular re-localisation of β -catenin with cancer when it was found that β -catenin at cell membrane re-localised to the golgi in human meningioma [290]. This is another example where COPB may sequester β -catenin to the golgi, however in this case golgi localisation is involved in tumorigenesis.

Nuclear transport of epidermal growth factor receptor (EGFR) is thought to be controlled by COPI-mediated vesicular trafficking [414]. Although this provides a mechanism for EGFR movement, the mechanism of EGFR transport from these vesicles to the nucleus is yet to be elucidated. Results presented in this thesis and that in the literature suggest that EGFR and COPI interact, and upon binding of β -catenin, EGFR may be able to translocate into the nucleus. Nuclear EGFR ultimately results in cell proliferation and metastasis and so research has attempted to inhibit its activity [434]. Here, targeting COPB/ β -catenin may also be useful.

ii. Impact of a β -catenin/mtHSP70 interaction

The notion of mtHSP70/mitochondria/ β -catenin complexing and co-localising has been discussed previously in 3.3.1 and 5.3.2. In summary, mtHSP70 is involved in the folding of proteins and degrading of misfolded proteins and assisting movement of p53 into the outer mitochondrial membrane [350]. Its roles in mitochondrial activity and biogenesis, and the fact that it is upregulated in human cancer cell lines and tumours [350, 353, 355-357] makes it stand out as a protein of interest that may aid β -catenin in its role in cancer progression. The impact of β -catenin/mtHSP70, β -catenin at the mitochondria, or targeting such interactions in cancer therapy can be inferred from the literature.

Mitochondrial protein and marker mtHSP70 is thought to affect tumorigenesis by regulation of cell cycle proteins such as p53. mtHSP70 inactivates tumour suppressor p53 [350] while it has also been reported that β -catenin is down-regulated by p53 [420]. Here, the link between β -catenin and mtHSP70 could be the common binder p53. This is possible due to the ability of mtHSP70 to suppress the role of p53 in tumour suppression and aiding the development of cancer while the downregulation of β -catenin is associated with the progression of cancer (described in sections 1.4.3 and 1.4.4). Here perhaps, while mtHSP70 disrupts the role of p53 in tumour suppression, it could also be disrupting the downregulation of β -catenin by p53. Both of these traits have the opposite effect of keeping cancer at bay. It should also be noted that accumulation of p53 [420], which means this theory is feasible.

If mtHSP70 is responsible for inactivation of tumour suppressor p53 and consequential disruption of downregulation of β -catenin, one may assume that mtHSP70 be a potential target for cancer therapy. However, other functions of mtHSP70 would also be affected. These roles include those of mtHSP70 in adapting to stress [417] and transport of proteins into the outer mitochondrial membrane [350].

Collecting data on specificity, affinity and kinetics of the potential mtHSP70/p53/ β catenin interaction will be important components of validation. Biacore (uses surface plasmon resonance biosensors) is a method capable of validating this interaction, elucidating its function and defining the stability of the complex. Another strategy to examine the link between mtHSP0/p53/ β -catenin includes knocking-down one of the proteins in the complex using siRNA and following the effects it has on the other two proteins of the complex (eg. Follow their expression and see if they are upregulated or downregulated).

6.2.2 Conclusion

In conclusion, the data in this thesis provides insight into protein interactors of β catenin, demonstrating the β -catenin does not just hold the traditional roles at the plasma membrane or in the nucleus. Rather, it is a dynamic protein that can interact with a number of proteins that are involved in a myriad of functions and localises at a number of organelles – demonstrated here by pull-down of more than just plasma membrane and nuclear-related proteins.

6.3 The effect of phosphorylation

Upon utilising constructs with point mutations at Y654 to mimic a phosphorylatable or non-phosphorylatable amino acid, the same pull-downs were performed in triplicate in SW480. For the phosphomimetic, the candidate list consisted of 92 proteins while the non-phosphorylatable data set contained 129. For the phosphomimetic list, 5 % were grouped into nuclear import and export related proteins, 7 % mitochondrial related and 5 % golgi related. For the non-phosphorylatable list, 2 % were grouped into nuclear import and export related and 5 % golgi related.

When comparing the phosphorylation mutant datasets there were distinctions between the lists, for example, kinesin light chain 4 (KCL4) bound to β -catenin only in the absence of phosphorylation at Y654. That is, KCL4 bound to the non-phosphorylatable construct and the WT. Due to the nature of the experiments, the contrast in bindingpartners of β -catenin across phosphomimetic and non-phosphorylatable datasets can be attributed to the phosphorylation at Y654.

The literature has reported that phosphorylation at this site can either inhibit protein interactions or mediate them. For example, the negative charge that a phosphorylation imposes can block an interaction (eg. E-cadherin [257, 285], potentially KCL4) while in other cases (eg. TATA-binding protein [257]) phosphorylation at this amino acid opens up the Arm domain from the C-terminus, abolishing C-terminal steric hindrance and allowing for proteins to bind the Arm domain. In summary, it has been shown in the literature and in this thesis that phosphorylation at Y654 can effect binding partners (block or enhance them), by changing β -catenin tertiary structure and charge.

Future directions validating the effect of phosphorylation beyond the initial proteomic screen are discussed in 6.5.3.

6.4 Evaluation of methodology

6.4.1 Use of an MBP tag

The research in this thesis was conducted using purified recombinant protein with a maltose-binding-protein (MBP) tag. Although other affinity tags could have been used (eg. β -catenin-GST), there were very well established protocols for MBP constructs (expression, purification) available in the lab, in particular for β -catenin-MBP. Use of the MBP tag comes with other advantages.

Some tags, including MBP, are known to protect the target protein from degradation during expression by mediating translocation of the protein to a cellular location where fewer proteases exist [435, 436]. For MBP, the target protein is passed from the cytosol of *E. coli* to the cell membrane [437]. An important aspect to consider when choosing a fusion tag is the purpose for which it is needed, for example, purposes of solubility improvement or affinity purification. The research in this thesis requires both these factors and MBP is suitable for both [438, 439]. In fact, MBP was ranked as the best affinity tag for making soluble fusions [440, 441]. Among 8 other tags, it was also ranked as the most cost-effective [442]. Furthermore, MBP allows for gentle protein purification conditions [443] and has strong translational initiation signals, resulting in high expression [444].

Furthermore, MBP is also not only known to attract chaperones, driving its partner protein into a chaperone-mediated pathway but also has intrinsic chaperone-like activity in itself [436]. In some cases when fusion proteins are produced, they aggregate as insoluble folding intermediates known as inclusion bodies. Using large affinity tags such as MBP leads to the avoidance of inclusion bodies [445]. Hydrophobic patches of MBP interact with partially folded passenger proteins, encouraging proper folding and preventing self-aggregation [438].

A disadvantage of the MBP tag is its large size (43 kDa) which can potentially influence the structure or biological activity of the partner [446]. However, the fact that known interactors of β -catenin were isolated from pull-downs suggests this did not negatively impact the experiment.

Antibodies can also be utilised to investigate interactors of particular proteins (as opposed to recombinant proteins) however the use of β -catenin antibody was not appropriate for our study because there was no phosphomimetic or non-phophorylatable β -catenin-Y654 antibody available at the conception of the project.

An advantage of using antibodies is the feature that endogenous β -catenin is immunoprecipitated, consequentially pulling out protein interactors already bound to β catenin. Our method of adding exogenous β -catenin-MBP suggests the potential to miss true protein binders which are bound to endogenous β -catenin. However, the introduction of excess β -catenin-MBP must result in competition for binders between it and the endogenous β -catenin because several known interactors were pulled-down using our method.

6.4.2 Pull-down experiments

Pull-down experiments are useful for *in vitro* determination of protein interactions. The pull-downs conducted in this thesis involve the addition of β -catenin-MBP purified protein, or 'bait', to cell lysate.

i. Pull-down (using purified protein) in preference of IP (using antibody)

An advantage of pull-downs over immunoprecipitations (use antibody as opposed to purified protein) is that when there is no appropriate or specific antibody available (which was the case in this thesis where Y654 phospho-mutants were required), the exact protein desired can be designed and produced (eg. mutants, certain domains).

However, both methods may allow for isolation of non-specific proteins, for example proteins that bind the amylose beads. To combat non-specific binding using the pull-down method, the lysate is 'pre-cleared'. That is, the lysate is incubated with the amylose beads, allowing for non-specific binders to bind the beads. The beads are then discarded and the lysate incubated with fresh beads that have been bound to the purified protein.

Furthermore, pull-down of known interactors validated that the method utilised did mimic *in vivo* conditions.

ii. Cell lysis method

The lysis method of cells (RIPA buffer with 1 % Triton X-100) which creates whole cell lysate used for pull-downs could be altered. If looking specifically for proteins involved in nuclear transport, perhaps a nuclear fractionation could be performed and pull-downs performed in that fraction. This, however, may provide an artificial preference for interaction. That is, if β -catenin-MBP is only allowed the option of interacting with nuclear proteins, there may be artificial interactions occurring by chance. This is potentially something that occurred when β -catenin was allowed to interact with mitochondrial or golgi proteins using our lysis method where organelle partitioning was eliminated. Disruption of cell membranes interrupts cell compartmentalisation as discussed in 5.2.2.ii. This may lead to protein binders that are not relevant, but rather are artefacts. These potential artefacts are one of the many reasons protein binders need to be validated by other methodologies, including methodologies that immunoprecipitate endogenous β -catenin, or investigate interactions in whole cells (IF).

However, when β -catenin-MBP is permitted to interact with proteins in whole cell lysate, this may be a more accurate reflection of *in vivo* interactions because a myriad of proteins would be competing for the interaction. Another explanation is that these proteins may reside in other accessible locations as a result of a mutation in the protein (eg. protein truncation). The proteomics approach used cannot decipher this and high-resolution imaging is needed to confirm the interaction *in vivo*.

6.5 Future directions

The research in this thesis has established a foundation upon which future investigations on β -catenin's involvement in cancer can be carried out. These future studies will advance knowledge of the biological relevance and function of the protein interactions found in this thesis and may even target these proteins or interactions in cancer therapy. In order to validate the candidate interactors of β -catenin explored in this thesis, the following ideas can be explored.

6.5.1 Functional relevance of protein interactors

Future directions should include functional assays that lead to elucidation of the relevance of the novel interactions of β -catenin found in this thesis.

Early experiments should consist of knock-down/overexpression of β -catenin or its interactor and looking at the effect by observing expression or function of the other. Experiments involving FRAP assays (fluorescence recovery after photobleaching) could be used to assess the effect of these interactions on the rate of nuclear import or export, or even import or export in other organelles such as the mitochondria. Other examples of assays that demonstrate the functionality of β -catenin interactions includes cell proliferation, migration or invasion assays that can assess the effect on the progression of cancer.

6.5.2 Other cell lines

A limited number of cell lines were used in this thesis - two colon cancer cell lines. Noncancer cell lines should be used as a control or baseline. A non-cancer cell line such as HEK293T could be used as it has a low endogenous level of β -catenin, unlike SW480.

Colon cancer cell lines with mutated β -catenin could be utilised (HCT116) to contrast the interactors identified in β -catenin WT cell lines (SW480 and HT29) to shed light on the effect of mutated β -catenin on interactors.

6.5.3 Effect of phosphorylation at Y654

Regarding the phosphorylation component of this thesis, there is much that can be taken on by future studies. The research presented here focused on protein interactors of phosphorylated and non-phosphorylatable β -catenin at Y654 using purified protein in pull-down experiments. The importance of phosphorylation could be further investigated utilising a specific antibody against phospho-Y654- β -catenin. At the inception of this project such an antibody was unavailable, and so in order to investigate the effect of phosphorylation, the constructs created in this thesis had to be used. Should a reliable phospho-specific β -catenin Y654 antibody become available, one could perform IPs using the antibody or co-localisation experiments using the antibody for IF.

Kinase inhibitions or knock-downs could be performed on C-Src kinase (CSK), the kinase that phosphorylates Y654, and then protein interactions thought to be affected by phosphorylation based on data presented in this thesis could be monitored. Finally, β -catenin may be stabilised by activation of the Wnt pathway using Wnt3a or LiCl (inhibits GSK3 β which would normally result in the phosphorylation and destruction of β -catenin) and effect on interactors or subcellular location observed.

6.5.4 Conclusion

This thesis has investigated protein interactors of β -catenin in colon cancer cell lines and proposed many new putative interactors and validated a few by affinity enrichment and immunofluorescent imaging. The effect of phosphorylation at Y654 on binding partners of β -catenin has been explored.

The most significant findings are the immune-validation of β -catenin interacting with golgi protein COPB and mitochondrial protein mtHSP70. Future research will elucidate the functional relevance of such interactions, giving new knowledge to the molecular cell biology regulated through these interactions. With such knowledge, the potential for therapeutic disruption of specific β -catenin interactions can be investigated.

7 References

- 1. Qian, Z.R., et al., *Role of E-cadherin, alpha-, beta-, and gamma-catenins, and p120 (cell adhesion molecules) in prolactinoma behavior.* Mod Pathol, 2002. **15**(12): p. 1357-65.
- 2. Benjamin, J.M. and W.J. Nelson, *Bench to bedside and back again: molecular mechanisms of alpha-catenin function and roles in tumorigenesis.* Semin Cancer Biol, 2008. **18**(1): p. 53-64.
- 3. Kobielak, A. and E. Fuchs, *Alpha-catenin: at the junction of intercellular adhesion and actin dynamics*. Nat Rev Mol Cell Biol, 2004. **5**(8): p. 614-25.
- 4. McCrea, P.D. and D. Gu, *The catenin family at a glance*. J Cell Sci, 2010. **123**(Pt 5): p. 637-42.
- 5. Choi, H.J. and W.I. Weis, *Structure of the armadillo repeat domain of plakophilin 1.* J Mol Biol, 2005. **346**(1): p. 367-76.
- 6. Ju, D., et al., *The armadillo repeats of the Ufd4 ubiquitin ligase recognize ubiquitin-fusion proteins.* FEBS Lett, 2007. **581**(2): p. 265-70.
- 7. Huber, A.H. and W.I. Weis, *The structure of the beta-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin.* Cell, 2001. **105**(3): p. 391-402.
- 8. Shapiro, L. and W.I. Weis, *Structure and biochemistry of cadherins and catenins*. Cold Spring Harb Perspect Biol, 2009. **1**(3): p. a003053.
- 9. Xing, Y., et al., Crystal structure of a beta-catenin/axin complex suggests a mechanism for the beta-catenin destruction complex. Genes Dev, 2003. 17(22): p. 2753-64.
- Graham, T.A., et al., *Crystal structure of a beta-catenin/Tcf complex*. Cell, 2000. 103(6): p. 885-96.
- Castano, J., et al., *Beta-catenin N- and C-terminal tails modulate the coordinated binding of adherens junction proteins to beta-catenin.* J Biol Chem, 2002. 277(35): p. 31541-50.
- 12. Hatzfeld, M., *The armadillo family of structural proteins*. Int Rev Cytol, 1999. **186**: p. 179-224.
- 13. Winer, I.S., et al., *Lysine residues Lys-19 and Lys-49 of beta-catenin regulate its levels and function in T cell factor transcriptional activation and neoplastic transformation.* J Biol Chem, 2006. **281**(36): p. 26181-7.

- Zhurinsky, J., M. Shtutman, and A. Ben-Ze'ev, *Plakoglobin and beta-catenin:* protein interactions, regulation and biological roles. J Cell Sci, 2000. 113 (Pt 18): p. 3127-39.
- 15. Amit, S., et al., *Axin-mediated CKI phosphorylation of beta-catenin at Ser 45: a molecular switch for the Wnt pathway.* Genes Dev, 2002. **16**(9): p. 1066-76.
- 16. Verheyen, E.M. and C.J. Gottardi, *Regulation of Wnt/beta-catenin signaling by protein kinases.* Dev Dyn, 2010. **239**(1): p. 34-44.
- 17. Vleminckx, K., R. Kemler, and A. Hecht, *The C-terminal transactivation domain* of beta-catenin is necessary and sufficient for signaling by the LEF-1/beta-catenin complex in Xenopus laevis. Mech Dev, 1999. **81**(1-2): p. 65-74.
- Xing, Y., et al., *Crystal structure of a full-length beta-catenin*. Structure, 2008. 16(3): p. 478-87.
- 19. Huber, A.H., W.J. Nelson, and W.I. Weis, *Three-dimensional structure of the armadillo repeat region of beta-catenin*. Cell, 1997. **90**(5): p. 871-82.
- 20. Ozawa, M., H. Baribault, and R. Kemler, *The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species.* EMBO J, 1989. **8**(6): p. 1711-7.
- 21. Abe, K. and M. Takeichi, *EPLIN mediates linkage of the cadherin catenin complex to F-actin and stabilizes the circumferential actin belt.* Proc Natl Acad Sci U S A, 2008. **105**(1): p. 13-9.
- 22. Pappas, D.J. and D.L. Rimm, *Direct interaction of the C-terminal domain of alpha-catenin and F-actin is necessary for stabilized cell-cell adhesion*. Cell Commun Adhes, 2006. **13**(3): p. 151-70.
- 23. McCrea, P.D., M.T. Maher, and C.J. Gottardi, *Nuclear signaling from cadherin adhesion complexes*. Curr Top Dev Biol, 2015. **112**: p. 129-96.
- 24. Gumbiner, B.M., *Regulation of cadherin-mediated adhesion in morphogenesis*. Nat Rev Mol Cell Biol, 2005. **6**(8): p. 622-34.
- 25. Bornslaeger, E.A., et al., Breaking the connection: displacement of the desmosomal plaque protein desmoplakin from cell-cell interfaces disrupts anchorage of intermediate filament bundles and alters intercellular junction assembly. J Cell Biol, 1996. **134**(4): p. 985-1001.
- 26. Garrod, D. and M. Chidgey, *Desmosome structure, composition and function*. Biochim Biophys Acta, 2008. **1778**(3): p. 572-87.
- 27. Green, K.J. and C.L. Simpson, *Desmosomes: new perspectives on a classic.* J Invest Dermatol, 2007. **127**(11): p. 2499-515.

- 28. Schmidt, A. and P.J. Koch, *Desmosomes: just cell adhesion or is there more?* Cell Adh Migr, 2007. **1**(1): p. 28-32.
- 29. Choi, H.J., et al., Interactions of plakoglobin and beta-catenin with desmosomal cadherins: basis of selective exclusion of alpha- and beta-catenin from desmosomes. J Biol Chem, 2009. **284**(46): p. 31776-88.
- Hartsock, A. and W.J. Nelson, Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta, 2008. 1778(3): p. 660-9.
- 31. Kemler, R., *From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion*. Trends Genet, 1993. **9**(9): p. 317-21.
- 32. Valenta, T., G. Hausmann, and K. Basler, *The many faces and functions of betacatenin*. EMBO J, 2012. **31**(12): p. 2714-36.
- 33. Benham-Pyle, B.W., B.L. Pruitt, and W.J. Nelson, *Cell adhesion. Mechanical strain induces E-cadherin-dependent Yap1 and beta-catenin activation to drive cell cycle entry.* Science, 2015. **348**(6238): p. 1024-7.
- Choi, S.H., et al., alpha-Catenin interacts with APC to regulate beta-catenin proteolysis and transcriptional repression of Wnt target genes. Genes Dev, 2013. 27(22): p. 2473-88.
- 35. Stamos, J.L. and W.I. Weis, *The beta-catenin destruction complex*. Cold Spring Harb Perspect Biol, 2013. **5**(1): p. a007898.
- 36. Drees, F., et al., *Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly.* Cell, 2005. **123**(5): p. 903-15.
- 37. Yamada, S., et al., *Deconstructing the cadherin-catenin-actin complex*. Cell, 2005. **123**(5): p. 889-901.
- 38. Daniel, J.M., *Dancing in and out of the nucleus: p120(ctn) and the transcription factor Kaiso*. Biochim Biophys Acta, 2007. **1773**(1): p. 59-68.
- 39. McCrea, P.D., D. Gu, and M.S. Balda, *Junctional music that the nucleus hears: cell-cell contact signaling and the modulation of gene activity*. Cold Spring Harb Perspect Biol, 2009. **1**(4): p. a002923.
- 40. Stepniak, E., G.L. Radice, and V. Vasioukhin, *Adhesive and signaling functions of cadherins and catenins in vertebrate development*. Cold Spring Harb Perspect Biol, 2009. **1**(5): p. a002949.
- 41. Clevers, H. and R. Nusse, *Wnt/beta-catenin signaling and disease*. Cell, 2012. **149**(6): p. 1192-205.

- 42. Johnson, M., et al., *Regulation of beta-catenin trafficking to the membrane in living cells*. Cell Signal, 2009. **21**(2): p. 339-48.
- 43. Bruun, J., et al., *Prognostic Significance of beta-Catenin, E-Cadherin, and SOX9 in Colorectal Cancer: Results from a Large Population-Representative Series.* Front Oncol, 2014. **4**: p. 118.
- 44. Kimelman, D. and W. Xu, *beta-catenin destruction complex: insights and questions from a structural perspective.* Oncogene, 2006. **25**(57): p. 7482-91.
- 45. Li, V.S., et al., *Wnt signaling through inhibition of beta-catenin degradation in an intact Axin1 complex.* Cell, 2012. **149**(6): p. 1245-56.
- 46. Burgess, A.W., et al., *Wnt signaling and colon tumorigenesis--a view from the periphery*. Exp Cell Res, 2011. **317**(19): p. 2748-58.
- 47. Arce, L., N.N. Yokoyama, and M.L. Waterman, *Diversity of LEF/TCF action in development and disease*. Oncogene, 2006. **25**(57): p. 7492-504.
- 48. Willert, K. and K.A. Jones, *Wnt signaling: is the party in the nucleus?* Genes Dev, 2006. **20**(11): p. 1394-404.
- 49. Cadigan, K.M. and M. Peifer, *Wnt signaling from development to disease: insights from model systems.* Cold Spring Harb Perspect Biol, 2009. **1**(2): p. a002881.
- 50. Chien, A.J., W.H. Conrad, and R.T. Moon, *A Wnt survival guide: from flies to human disease.* J Invest Dermatol, 2009. **129**(7): p. 1614-27.
- 51. Clevers, H., *Wnt/beta-catenin signaling in development and disease*. Cell, 2006. **127**(3): p. 469-80.
- 52. Grigoryan, T., et al., *Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice.* Genes Dev, 2008. **22**(17): p. 2308-41.
- 53. Daniel, J.M. and A.B. Reynolds, *Tyrosine phosphorylation and cadherin/catenin function*. Bioessays, 1997. **19**(10): p. 883-91.
- 54. Lilien, J. and J. Balsamo, *The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta-catenin.* Curr Opin Cell Biol, 2005. **17**(5): p. 459-65.
- 55. Brembeck, F.H., et al., *Essential role of BCL9-2 in the switch between betacatenin's adhesive and transcriptional functions.* Genes Dev, 2004. **18**(18): p. 2225-30.
- 56. Wheelock, M.J. and K.R. Johnson, *Cadherin-mediated cellular signaling*. Curr Opin Cell Biol, 2003. **15**(5): p. 509-14.

- 57. Gottardi, C.J. and M. Peifer, *Terminal regions of beta-catenin come into view*. Structure, 2008. **16**(3): p. 336-8.
- 58. Rigo-Watermeier, T., et al., *Functional conservation of Nematostella Wnts in canonical and noncanonical Wnt-signaling*. Biol Open, 2012. **1**(1): p. 43-51.
- 59. Holstein, T.W., *The evolution of the Wnt pathway*. Cold Spring Harb Perspect Biol, 2012. **4**(7): p. a007922.
- 60. Hoppler, S. and C.L. Kavanagh, *Wnt signalling: variety at the core*. J Cell Sci, 2007. **120**(Pt 3): p. 385-93.
- 61. Sharma, R.P. and V.L. Chopra, *Effect of the Wingless (wg1) mutation on wing and haltere development in Drosophila melanogaster.* Dev Biol, 1976. **48**(2): p. 461-5.
- 62. Nusse, R. and H.E. Varmus, *Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome.* Cell, 1982. **31**(1): p. 99-109.
- 63. Komiya, Y. and R. Habas, *Wnt signal transduction pathways*. Organogenesis, 2008. **4**(2): p. 68-75.
- 64. Petersen, C.P. and P.W. Reddien, *Wnt signaling and the polarity of the primary body axis*. Cell, 2009. **139**(6): p. 1056-68.
- 65. Hayward, P., T. Kalmar, and A.M. Arias, *Wnt/Notch signalling and information processing during development*. Development, 2008. **135**(3): p. 411-24.
- 66. Huelsken, J. and J. Behrens, *The Wnt signalling pathway*. J Cell Sci, 2002. **115**(Pt 21): p. 3977-8.
- 67. Jansson, L., G.S. Kim, and A.G. Cheng, *Making sense of Wnt signaling-linking hair cell regeneration to development*. Front Cell Neurosci, 2015. **9**: p. 66.
- 68. Saifo, M.S., et al., *Targeting the oncogenic protein beta-catenin to enhance chemotherapy outcome against solid human cancers*. Mol Cancer, 2010. **9**: p. 310.
- 69. Noritake, J., et al., *IQGAP1: a key regulator of adhesion and migration*. J Cell Sci, 2005. **118**(Pt 10): p. 2085-92.
- McCrea, P.D., C.W. Turck, and B. Gumbiner, A homolog of the armadillo protein in Drosophila (plakoglobin) associated with E-cadherin. Science, 1991. 254(5036): p. 1359-61.
- 71. Korinek, V., et al., *Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma*. Science, 1997. **275**(5307): p. 1784-7.

- 72. Morin, P.J., et al., *Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC*. Science, 1997. **275**(5307): p. 1787-90.
- 73. Munemitsu, S., et al., *Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein.* Proc Natl Acad Sci U S A, 1995. **92**(7): p. 3046-50.
- 74. Freese, J.L., D. Pino, and S.J. Pleasure, *Wnt signaling in development and disease*. Neurobiol Dis, 2010. **38**(2): p. 148-53.
- 75. Doble, B.W. and J.R. Woodgett, *GSK-3: tricks of the trade for a multi-tasking kinase*. J Cell Sci, 2003. **116**(Pt 7): p. 1175-86.
- 76. Willert, K., S. Shibamoto, and R. Nusse, *Wnt-induced dephosphorylation of axin releases beta-catenin from the axin complex.* Genes Dev, 1999. **13**(14): p. 1768-73.
- 77. Bahmanyar, S., et al., *beta-Catenin is a Nek2 substrate involved in centrosome separation*. Genes Dev, 2008. **22**(1): p. 91-105.
- 78. Huang, P., T. Senga, and M. Hamaguchi, *A novel role of phospho-beta-catenin in microtubule regrowth at centrosome*. Oncogene, 2007. **26**(30): p. 4357-71.
- 79. Chilov, D., et al., *Phosphorylated beta-catenin localizes to centrosomes of neuronal progenitors and is required for cell polarity and neurogenesis in developing midbrain*. Dev Biol, 2011. **357**(1): p. 259-68.
- 80. Hadjihannas, M.V., M. Bruckner, and J. Behrens, *Conductin/axin2 and Wnt signalling regulates centrosome cohesion*. EMBO Rep, 2010. **11**(4): p. 317-24.
- 81. Quyn, A.J., et al., Spindle orientation bias in gut epithelial stem cell compartments is lost in precancerous tissue. Cell Stem Cell, 2010. 6(2): p. 175-81.
- 82. Lui, C., et al., *APC functions at the centrosome to stimulate microtubule growth.* Int J Biochem Cell Biol, 2016. **70**: p. 39-47.
- 83. Fumoto, K., et al., Axin localizes to the centrosome and is involved in microtubule nucleation. EMBO Rep, 2009. **10**(6): p. 606-13.
- 84. Reya, T. and H. Clevers, *Wnt signalling in stem cells and cancer*. Nature, 2005. **434**(7035): p. 843-50.
- 85. Perry, J.K., et al., *Regulation of invasive growth: similar epigenetic mechanisms underpin tumour progression and implantation in human pregnancy.* Clin Sci (Lond), 2010. **118**(7): p. 451-7.
- 86. Cross, D.A., et al., *Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B.* Nature, 1995. **378**(6559): p. 785-9.

- 87. Stambolic, V. and J.R. Woodgett, *Mitogen inactivation of glycogen synthase kinase-3 beta in intact cells via serine 9 phosphorylation*. Biochem J, 1994. **303** (**Pt 3**): p. 701-4.
- 88. Sutherland, C., I.A. Leighton, and P. Cohen, *Inactivation of glycogen synthase* kinase-3 beta by phosphorylation: new kinase connections in insulin and growth-factor signalling. Biochem J, 1993. **296** (**Pt 1**): p. 15-9.
- 89. Ding, Q., et al., *Erk associates with and primes GSK-3beta for its inactivation resulting in upregulation of beta-catenin.* Mol Cell, 2005. **19**(2): p. 159-70.
- 90. Bilic, J., et al., Wnt induces LRP6 signalosomes and promotes dishevelleddependent LRP6 phosphorylation. Science, 2007. **316**(5831): p. 1619-22.
- 91. Fiedler, M., et al., *Dishevelled interacts with the DIX domain polymerization interface of Axin to interfere with its function in down-regulating beta-catenin.* Proc Natl Acad Sci U S A, 2011. **108**(5): p. 1937-42.
- 92. Hendriksen, J., et al., *Plasma membrane recruitment of dephosphorylated betacatenin upon activation of the Wnt pathway.* J Cell Sci, 2008. **121**(11): p. 1793-802.
- 93. Mao, J., et al., *Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway.* Mol Cell, 2001. **7**(4): p. 801-9.
- 94. Yamamoto, H., H. Komekado, and A. Kikuchi, *Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of beta-catenin.* Dev Cell, 2006. **11**(2): p. 213-23.
- 95. Davidson, G., et al., *Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction*. Nature, 2005. **438**(7069): p. 867-72.
- 96. Mi, K., P.J. Dolan, and G.V. Johnson, *The low density lipoprotein receptorrelated protein 6 interacts with glycogen synthase kinase 3 and attenuates activity.* J Biol Chem, 2006. **281**(8): p. 4787-94.
- 97. Zeng, X., et al., *A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation.* Nature, 2005. **438**(7069): p. 873-7.
- 98. Zeng, X., et al., Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development, 2008. **135**(2): p. 367-75.
- 99. Cselenyi, C.S., et al., *LRP6 transduces a canonical Wnt signal independently of Axin degradation by inhibiting GSK3's phosphorylation of beta-catenin.* Proc Natl Acad Sci U S A, 2008. **105**(23): p. 8032-7.

- 100. Taelman, V.F., et al., *Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes.* Cell, 2010. **143**(7): p. 1136-48.
- 101. Kofron, M., et al., Wnt11/beta-catenin signaling in both oocytes and early embryos acts through LRP6-mediated regulation of axin. Development, 2007. 134(3): p. 503-13.
- 102. Lee, E., et al., *The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway.* PLoS Biol, 2003. **1**(1): p. E10.
- 103. Yamamoto, H., et al., Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3beta regulates its stability. J Biol Chem, 1999. 274(16): p. 10681-4.
- 104. Ohgaki, H., et al., APC mutations are infrequent but present in human lung cancer. Cancer Lett, 2004. 207(2): p. 197-203.
- 105. Akiri, G., et al., Wnt pathway aberrations including autocrine Wnt activation occur at high frequency in human non-small-cell lung carcinoma. Oncogene, 2009. **28**(21): p. 2163-72.
- 106. Huang, H., et al., *APC mutations in sporadic medulloblastomas*. Am J Pathol, 2000. **156**(2): p. 433-7.
- 107. Kinzler, K.W., et al., *Identification of a gene located at chromosome 5q21 that is mutated in colorectal cancers*. Science, 1991. **251**(4999): p. 1366-70.
- 108. Nishisho, I., et al., *Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients*. Science, 1991. **253**(5020): p. 665-9.
- 109. Clements, W.M., et al., *beta-Catenin mutation is a frequent cause of Wnt pathway activation in gastric cancer*. Cancer Res, 2002. **62**(12): p. 3503-6.
- 110. Oates, N.A., et al., *Increased DNA methylation at the AXIN1 gene in a monozygotic twin from a pair discordant for a caudal duplication anomaly.* Am J Hum Genet, 2006. **79**(1): p. 155-62.
- 111. Satoh, S., et al., AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat Genet, 2000. 24(3): p. 245-50.
- 112. Lammi, L., et al., *Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer.* Am J Hum Genet, 2004. **74**(5): p. 1043-50.
- Liu, W., et al., Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating beta-catenin/TCF signalling. Nat Genet, 2000. 26(2): p. 146-7.

- 114. Clevers, H., Axin and hepatocellular carcinomas. Nat Genet, 2000. 24(3): p. 206-8.
- 115. Jin, L.H., et al., *Detection of point mutations of the Axin1 gene in colorectal cancers*. Int J Cancer, 2003. **107**(5): p. 696-9.
- 116. Dahmen, R.P., et al., *Deletions of AXIN1, a component of the WNT/wingless pathway, in sporadic medulloblastomas.* Cancer Res, 2001. **61**(19): p. 7039-43.
- 117. Lowy, A.M., et al., Dysregulation of beta-catenin expression correlates with tumor differentiation in pancreatic duct adenocarcinoma. Ann Surg Oncol, 2003. 10(3): p. 284-90.
- 118. Chan, E.F., et al., A common human skin tumour is caused by activating mutations in beta-catenin. Nat Genet, 1999. **21**(4): p. 410-3.
- 119. Polakis, P., Wnt signaling and cancer. Genes Dev, 2000. 14(15): p. 1837-51.
- 120. Polakis, P., *The many ways of Wnt in cancer*. Curr Opin Genet Dev, 2007. **17**(1): p. 45-51.
- 121. Takeda, H., et al., *Human sebaceous tumors harbor inactivating mutations in LEF1*. Nat Med, 2006. **12**(4): p. 395-7.
- 122. Bjorklund, P., G. Akerstrom, and G. Westin, *An LRP5 receptor with internal deletion in hyperparathyroid tumors with implications for deregulated WNT/beta-catenin signaling*. PLoS Med, 2007. **4**(11): p. e328.
- 123. Boyden, L.M., et al., *High bone density due to a mutation in LDL-receptorrelated protein 5.* N Engl J Med, 2002. **346**(20): p. 1513-21.
- 124. Gong, Y., et al., *LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development.* Cell, 2001. **107**(4): p. 513-23.
- 125. Little, R.D., et al., A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet, 2002. 70(1): p. 11-9.
- Toomes, C., et al., Mutations in LRP5 or FZD4 underlie the common familial exudative vitreoretinopathy locus on chromosome 11q. Am J Hum Genet, 2004. 74(4): p. 721-30.
- 127. Mani, A., et al., *LRP6 mutation in a family with early coronary disease and metabolic risk factors.* Science, 2007. **315**(5816): p. 1278-82.
- 128. Bjorklund, P., et al., *The internally truncated LRP5 receptor presents a therapeutic target in breast cancer*. PLoS One, 2009. **4**(1): p. e4243.

- 129. Florez, J.C., et al., *TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program.* N Engl J Med, 2006. **355**(3): p. 241-50.
- 130. Grant, S.F., et al., *Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes.* Nat Genet, 2006. **38**(3): p. 320-3.
- 131. Cuilliere-Dartigues, P., et al., *TCF-4 isoforms absent in TCF-4 mutated MSI-H colorectal cancer cells colocalize with nuclear CtBP and repress TCF-4-mediated transcription*. Oncogene, 2006. **25**(32): p. 4441-8.
- 132. Niemann, S., et al., *Homozygous WNT3 mutation causes tetra-amelia in a large consanguineous family*. Am J Hum Genet, 2004. **74**(3): p. 558-63.
- 133. Biason-Lauber, A., et al., A WNT4 mutation associated with Mullerian-duct regression and virilization in a 46,XX woman. N Engl J Med, 2004. **351**(8): p. 792-8.
- 134. Woods, C.G., et al., *Mutations in WNT7A cause a range of limb malformations, including Fuhrmann syndrome and Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome.* Am J Hum Genet, 2006. **79**(2): p. 402-8.
- 135. Adaimy, L., et al., *Mutation in WNT10A is associated with an autosomal recessive ectodermal dysplasia: the odonto-onycho-dermal dysplasia.* Am J Hum Genet, 2007. **81**(4): p. 821-8.
- 136. Christodoulides, C., et al., *WNT10B mutations in human obesity*. Diabetologia, 2006. **49**(4): p. 678-84.
- 137. Major, M.B., et al., *Wilms tumor suppressor WTX negatively regulates WNT/beta-catenin signaling*. Science, 2007. **316**(5827): p. 1043-6.
- 138. Rivera, M.N., et al., An X chromosome gene, WTX, is commonly inactivated in Wilms tumor. Science, 2007. **315**(5812): p. 642-5.
- 139. Gehrke, I., R.K. Gandhirajan, and K.A. Kreuzer, *Targeting the WNT/beta-catenin/TCF/LEF1 axis in solid and haematological cancers: Multiplicity of therapeutic options.* Eur J Cancer, 2009. **45**(16): p. 2759-67.
- 140. Halberg, R.B., et al., *The pleiotropic phenotype of Apc mutations in the mouse: allele specificity and effects of the genetic background*. Genetics, 2008. **180**(1): p. 601-9.
- 141. Ashton-Rickardt, P.G., et al., *High frequency of APC loss in sporadic colorectal carcinoma due to breaks clustered in 5q21-22.* Oncogene, 1989. **4**(10): p. 1169-74.
- 142. Groden, J., et al., *Identification and characterization of the familial adenomatous polyposis coli gene*. Cell, 1991. **66**(3): p. 589-600.

- 143. Kinzler, K.W. and B. Vogelstein, *Lessons from hereditary colorectal cancer*. Cell, 1996. **87**(2): p. 159-70.
- 144. Matsui, C., et al., *Identification of a link between the SAMP repeats of adenomatous polyposis coli tumor suppressor and the Src homology 3 domain of DDEF.* J Biol Chem, 2008. **283**(47): p. 33006-20.
- Kaieda, S., et al., Structural basis of the recognition of the SAMP motif of adenomatous polyposis coli by the Src-homology 3 domain. Biochemistry, 2010. 49(25): p. 5143-53.
- 146. McMahon, A.P. and A. Bradley, *The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain.* Cell, 1990. **62**(6): p. 1073-85.
- 147. Larue, L. and A. Bellacosa, *Epithelial-mesenchymal transition in development* and cancer: role of phosphatidylinositol 3' kinase/AKT pathways. Oncogene, 2005. **24**(50): p. 7443-54.
- 148. Taki, M., et al., Down-regulation of Wnt-4 and up-regulation of Wnt-5a expression by epithelial-mesenchymal transition in human squamous carcinoma cells. Cancer Sci, 2003. **94**(7): p. 593-7.
- 149. Batlle, E., et al., *The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells.* Nat Cell Biol, 2000. **2**(2): p. 84-9.
- 150. Cano, A., et al., *The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression*. Nat Cell Biol, 2000. **2**(2): p. 76-83.
- 151. Jiang, Y.G., et al., *Role of Wnt/beta-catenin signaling pathway in epithelialmesenchymal transition of human prostate cancer induced by hypoxia-inducible factor-lalpha.* Int J Urol, 2007. **14**(11): p. 1034-9.
- 152. Bachelder, R.E., et al., *Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial-mesenchymal transition.* J Cell Biol, 2005. **168**(1): p. 29-33.
- 153. Yook, J.I., et al., *Wnt-dependent regulation of the E-cadherin repressor snail.* J Biol Chem, 2005. **280**(12): p. 11740-8.
- 154. DiMeo, T.A., et al., A novel lung metastasis signature links Wnt signaling with cancer cell self-renewal and epithelial-mesenchymal transition in basal-like breast cancer. Cancer Res, 2009. **69**(13): p. 5364-73.
- 155. Kalluri, R. and R.A. Weinberg, *The basics of epithelial-mesenchymal transition*. J Clin Invest, 2009. **119**(6): p. 1420-8.

- 156. Palsgaard, J., et al., Cross-talk between insulin and Wnt signaling in preadipocytes: role of Wnt co-receptor low density lipoprotein receptor-related protein-5 (LRP5). J Biol Chem, 2012. **287**(15): p. 12016-26.
- 157. Abiola, M., et al., Activation of Wnt/beta-catenin signaling increases insulin sensitivity through a reciprocal regulation of Wnt10b and SREBP-1c in skeletal muscle cells. PLoS One, 2009. **4**(12): p. e8509.
- 158. Welters, H.J. and R.N. Kulkarni, *Wnt signaling: relevance to beta-cell biology and diabetes.* Trends Endocrinol Metab, 2008. **19**(10): p. 349-55.
- 159. Zhai, L., S.W. Ballinger, and J.L. Messina, *Role of reactive oxygen species in injury-induced insulin resistance*. Mol Endocrinol, 2011. **25**(3): p. 492-502.
- 160. Okada, K., et al., Adenomatous polyposis coli protein nucleates actin assembly and synergizes with the formin mDia1. J Cell Biol, 2010. **189**(7): p. 1087-96.
- 161. Akiyama, T. and Y. Kawasaki, *Wnt signalling and the actin cytoskeleton*. Oncogene, 2006. **25**(57): p. 7538-44.
- 162. Munemitsu, S., et al., *The APC gene product associates with microtubules in vivo and promotes their assembly in vitro.* Cancer Res, 1994. **54**(14): p. 3676-81.
- 163. McCartney, B.M. and I.S. Nathke, *Cell regulation by the Apc protein Apc as master regulator of epithelia*. Curr Opin Cell Biol, 2008. **20**(2): p. 186-93.
- 164. Smith, K.J., et al., *Wild-type but not mutant APC associates with the microtubule cytoskeleton*. Cancer Res, 1994. **54**(14): p. 3672-5.
- 165. Mills, K.M., M.G. Brocardo, and B.R. Henderson, *APC binds the Miro/Milton motor complex to stimulate transport of mitochondria to the plasma membrane*. Mol Biol Cell, 2016. **27**(3): p. 466-82.
- 166. Cattelino, A., et al., *The conditional inactivation of the beta-catenin gene in endothelial cells causes a defective vascular pattern and increased vascular fragility.* J Cell Biol, 2003. **162**(6): p. 1111-22.
- 167. Haegel, H., et al., *Lack of beta-catenin affects mouse development at gastrulation*. Development, 1995. **121**(11): p. 3529-37.
- 168. Hierholzer, A. and R. Kemler, *Beta-catenin-mediated signaling and cell adhesion in postgastrulation mouse embryos.* Dev Dyn, 2010. **239**(1): p. 191-9.
- 169. Rudloff, S. and R. Kemler, *Differential requirements for beta-catenin during mouse development*. Development, 2012. **139**(20): p. 3711-21.
- 170. Fang, X., et al., Vertebrate development requires ARVCF and p120 catenins and their interplay with RhoA and Rac. J Cell Biol, 2004. **165**(1): p. 87-98.

- 171. Li, W., Y. Li, and F.B. Gao, Abelson, enabled, and p120 catenin exert distinct effects on dendritic morphogenesis in Drosophila. Dev Dyn, 2005. **234**(3): p. 512-22.
- 172. McCrea, P.D. and J.I. Park, *Developmental functions of the P120-catenin subfamily*. Biochim Biophys Acta, 2007. **1773**(1): p. 17-33.
- 173. Perez-Moreno, M., et al., *p120-catenin mediates inflammatory responses in the skin*. Cell, 2006. **124**(3): p. 631-44.
- 174. Henderson, B.R. and F. Fagotto, *The ins and outs of APC and beta-catenin nuclear transport*. EMBO Rep, 2002. **3**(9): p. 834-9.
- 175. Haq, S., et al., *Stabilization of beta-catenin by a Wnt-independent mechanism regulates cardiomyocyte growth.* Proc Natl Acad Sci U S A, 2003. **100**(8): p. 4610-5.
- 176. Herbst, A., et al., *Comprehensive analysis of beta-catenin target genes in colorectal carcinoma cell lines with deregulated Wnt/beta-catenin signaling.* BMC Genomics, 2014. **15**: p. 74.
- 177. Zhang, S., et al., *Wnt/beta-catenin signaling pathway upregulates c-Myc expression to promote cell proliferation of P19 teratocarcinoma cells.* Anat Rec (Hoboken), 2012. **295**(12): p. 2104-13.
- 178. Bernard, S. and M. Eilers, *Control of cell proliferation and growth by Myc proteins*. Results Probl Cell Differ, 2006. **42**: p. 329-42.
- 179. Wang, S., et al., *The role of cell cycle regulatory protein, cyclin D1, in the progression of thyroid cancer.* Mod Pathol, 2000. **13**(8): p. 882-7.
- 180. Stamenkovic, I., *Matrix metalloproteinases in tumor invasion and metastasis*. Semin Cancer Biol, 2000. **10**(6): p. 415-33.
- 181. Rabbani, S.A. and R.H. Xing, *Role of urokinase (uPA) and its receptor (uPAR) in invasion and metastasis of hormone-dependent malignancies.* Int J Oncol, 1998. **12**(4): p. 911-20.
- 182. Qiu, Y., et al., *Rock2 stabilizes beta-catenin to promote tumor invasion and metastasis in colorectal cancer.* Biochem Biophys Res Commun, 2015.
- 183. Xu, S., et al., Increased levels of beta-catenin, LEF-1, and HPA-1 correlate with poor prognosis for acral melanoma with negative BRAF and NRAS mutation in BRAF exons 11 and 15 and NRAS exons 1 and 2. DNA Cell Biol, 2015. **34**(1): p. 69-77.
- 184. Lee, E., S. Ha, and S.K. Logan, *Divergent Androgen Receptor and Beta-Catenin Signaling in Prostate Cancer Cells.* PLoS One, 2015. **10**(10): p. e0141589.

- 185. Cho, S.W., et al., *Therapeutic potential of Dickkopf-1 in wild-type BRAF papillary thyroid cancer via regulation of beta-catenin/E-cadherin signaling*. J Clin Endocrinol Metab, 2014. **99**(9): p. E1641-9.
- 186. Pangon, L., et al., JRK is a positive regulator of beta-catenin transcriptional activity commonly overexpressed in colon, breast and ovarian cancer. Oncogene, 2015.
- 187. Yasuhara, R., et al., *The beta-catenin signaling pathway induces aggressive potential in breast cancer by up-regulating the chemokine CCL5*. Exp Cell Res, 2015. **338**(1): p. 22-31.
- 188. Zinke, J., et al., *beta-Catenin-Gli1 interaction regulates proliferation and tumor growth in medulloblastoma*. Mol Cancer, 2015. **14**: p. 17.
- 189. Kumaran, S., K.S. Samantha, and D. Halagowder, *Does beta-Catenin Cross-Regulate NFkappaB Signalling in Pancreatic Cancer and Chronic Pancreatitis?* Pathobiology, 2015. 82(1): p. 28-35.
- 190. Di Bartolomeo, M., et al., Osteopontin, E-cadherin, and beta-catenin expression as prognostic biomarkers in patients with radically resected gastric cancer. Gastric Cancer, 2015.
- 191. Ben-Ze'ev, A., *Cytoskeletal and adhesion proteins as tumor suppressors*. Curr Opin Cell Biol, 1997. **9**(1): p. 99-108.
- Ben-Ze'ev, A. and B. Geiger, *Differential molecular interactions of beta-catenin and plakoglobin in adhesion, signaling and cancer*. Curr Opin Cell Biol, 1998. 10(5): p. 629-39.
- 193. Polakis, P., *The oncogenic activation of beta-catenin*. Curr Opin Genet Dev, 1999. **9**(1): p. 15-21.
- 194. Yokoya, F., et al., *beta-catenin can be transported into the nucleus in a Ranunassisted manner*. Mol Biol Cell, 1999. **10**(4): p. 1119-31.
- 195. Iwao, K., et al., Activation of the beta-catenin gene by interstitial deletions involving exon 3 in primary colorectal carcinomas without adenomatous polyposis coli mutations. Cancer Res, 1998. **58**(5): p. 1021-6.
- 196. Miyoshi, Y., et al., Activation of the beta-catenin gene in primary hepatocellular carcinomas by somatic alterations involving exon 3. Cancer Res, 1998. 58(12): p. 2524-7.
- 197. Lee, J.M., et al., *beta-Catenin signaling in hepatocellular cancer: Implications in inflammation, fibrosis, and proliferation.* Cancer Lett, 2014. **343**(1): p. 90-7.

- 198. Rubinfeld, B., et al., *Stabilization of beta-catenin by genetic defects in melanoma cell lines*. Science, 1997. **275**(5307): p. 1790-2.
- 199. Kwong, L.N. and W.F. Dove, *APC and its modifiers in colon cancer*. Adv Exp Med Biol, 2009. **656**: p. 85-106.
- 200. Fodde, R., R. Smits, and H. Clevers, *APC, signal transduction and genetic instability in colorectal cancer*. Nat Rev Cancer, 2001. **1**(1): p. 55-67.
- 201. Luo, J., et al., *Wnt signaling and human diseases: what are the therapeutic implications?* Lab Invest, 2007. **87**(2): p. 97-103.
- 202. Albuquerque, C., et al., *Colorectal cancers choosing sides*. Biochim Biophys Acta, 2011. **1816**(2): p. 219-31.
- 203. Samowitz, W.S., et al., *Beta-catenin mutations are more frequent in small colorectal adenomas than in larger adenomas and invasive carcinomas.* Cancer Res, 1999. **59**(7): p. 1442-4.
- 204. Brocardo, M., et al., *Mitochondrial targeting of adenomatous polyposis coli* protein is stimulated by truncating cancer mutations: regulation of Bcl-2 and implications for cell survival. J Biol Chem, 2008. **283**(9): p. 5950-9.
- 205. Park, W.S., et al., *Frequent somatic mutations of the beta-catenin gene in intestinal-type gastric cancer*. Cancer Res, 1999. **59**(17): p. 4257-60.
- 206. To, K.F., et al., Alterations of frizzled (FzE3) and secreted frizzled related protein (hsFRP) expression in gastric cancer. Life Sci, 2001. **70**(4): p. 483-9.
- 207. Buendia, M.A., *Genetics of hepatocellular carcinoma*. Semin Cancer Biol, 2000.
 10(3): p. 185-200.
- 208. Tannapfel, A. and C. Wittekind, *Genes involved in hepatocellular carcinoma: deregulation in cell cycling and apoptosis.* Virchows Arch, 2002. **440**(4): p. 345-52.
- 209. de La Coste, A., et al., Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci U S A, 1998. **95**(15): p. 8847-51.
- 210. Huang, H., et al., Beta-catenin mutations are frequent in human hepatocellular carcinomas associated with hepatitis C virus infection. Am J Pathol, 1999. **155**(6): p. 1795-801.
- 211. Nhieu, J.T., et al., Nuclear accumulation of mutated beta-catenin in hepatocellular carcinoma is associated with increased cell proliferation. Am J Pathol, 1999. **155**(3): p. 703-10.

- 212. Reifenberger, J., et al., *Molecular genetic analysis of malignant melanomas for aberrations of the WNT signaling pathway genes CTNNB1, APC, ICAT and BTRC.* Int J Cancer, 2002. **100**(5): p. 549-56.
- 213. Palacios, J. and C. Gamallo, *Mutations in the beta-catenin gene (CTNNB1) in endometrioid ovarian carcinomas.* Cancer Res, 1998. **58**(7): p. 1344-7.
- 214. Sunaga, N., et al., *Constitutive activation of the Wnt signaling pathway by CTNNB1 (beta-catenin) mutations in a subset of human lung adenocarcinoma*. Genes Chromosomes Cancer, 2001. **30**(3): p. 316-21.
- 215. Voeller, H.J., C.I. Truica, and E.P. Gelmann, *Beta-catenin mutations in human prostate cancer*. Cancer Res, 1998. **58**(12): p. 2520-3.
- 216. Davies, G., W.G. Jiang, and M.D. Mason, *Cell-cell adhesion molecules and signaling intermediates and their role in the invasive potential of prostate cancer cells*. J Urol, 2000. **163**(3): p. 985-92.
- 217. Yang, F., et al., *Linking beta-catenin to androgen-signaling pathway*. J Biol Chem, 2002. **277**(13): p. 11336-44.
- 218. Cetta, F., et al., *Germline mutations of the APC gene in patients with familial adenomatous polyposis-associated thyroid carcinoma: results from a European cooperative study.* J Clin Endocrinol Metab, 2000. **85**(1): p. 286-92.
- 219. Garcia-Rostan, G., et al., *Frequent mutation and nuclear localization of betacatenin in anaplastic thyroid carcinoma*. Cancer Res, 1999. **59**(8): p. 1811-5.
- 220. Karim, R., et al., *The significance of the Wnt pathway in the pathology of human cancers*. Pathology, 2004. **36**(2): p. 120-8.
- 221. Brabletz, T., et al., *Nuclear overexpression of the oncoprotein beta-catenin in colorectal cancer is localized predominantly at the invasion front.* Pathol Res Pract, 1998. **194**(10): p. 701-4.
- 222. Inomata, M., et al., Alteration of beta-catenin expression in colonic epithelial cells of familial adenomatous polyposis patients. Cancer Res, 1996. **56**(9): p. 2213-7.
- 223. Lustig, B. and J. Behrens, *The Wnt signaling pathway and its role in tumor development*. J Cancer Res Clin Oncol, 2003. **129**(4): p. 199-221.
- 224. Kirchner, T. and T. Brabletz, *Patterning and nuclear beta-catenin expression in the colonic adenoma-carcinoma sequence. Analogies with embryonic gastrulation.* Am J Pathol, 2000. **157**(4): p. 1113-21.

- 225. Brabletz, T., et al., Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U S A, 2001. **98**(18): p. 10356-61.
- 226. Brabletz, S., O. Schmalhofer, and T. Brabletz, *Gastrointestinal stem cells in development and cancer*. J Pathol, 2009. **217**(2): p. 307-17.
- Schmalhofer, O., S. Brabletz, and T. Brabletz, *E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer.* Cancer Metastasis Rev, 2009. 28(1-2): p. 151-66.
- 228. Brabletz, T., et al., *Expression of nuclear beta-catenin and c-myc is correlated with tumor size but not with proliferative activity of colorectal adenomas.* Am J Pathol, 2000. **156**(3): p. 865-70.
- 229. Hao, X., et al., *Reciprocity between membranous and nuclear expression of betacatenin in colorectal tumours.* Virchows Arch, 1997. **431**(3): p. 167-72.
- 230. Wong, S.C., et al., *Prognostic and diagnostic significance of beta-catenin nuclear immunostaining in colorectal cancer*. Clin Cancer Res, 2004. **10**(4): p. 1401-8.
- 231. Brabletz, T., et al., *Opinion: migrating cancer stem cells an integrated concept of malignant tumour progression*. Nat Rev Cancer, 2005. **5**(9): p. 744-9.
- 232. Fodde, R. and T. Brabletz, *Wnt/beta-catenin signaling in cancer stemness and malignant behavior*. Curr Opin Cell Biol, 2007. **19**(2): p. 150-8.
- 233. Rimm, D.L., et al., *Frequent nuclear/cytoplasmic localization of beta-catenin without exon 3 mutations in malignant melanoma*. Am J Pathol, 1999. **154**(2): p. 325-9.
- 234. Gamallo, C., et al., beta-catenin expression pattern in stage I and II ovarian carcinomas : relationship with beta-catenin gene mutations, clinicopathological features, and clinical outcome. Am J Pathol, 1999. **155**(2): p. 527-36.
- 235. Ashihara, K., et al., *Mutation of beta-catenin gene in endometrial cancer but not in associated hyperplasia.* Med Electron Microsc, 2002. **35**(1): p. 9-15.
- 236. Moser, A.R., H.C. Pitot, and W.F. Dove, *A dominant mutation that predisposes* to multiple intestinal neoplasia in the mouse. Science, 1990. **247**(4940): p. 322-4.
- 237. Harada, N., et al., Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene. EMBO J, 1999. **18**(21): p. 5931-42.
- 238. Romagnolo, B., et al., Intestinal dysplasia and adenoma in transgenic mice after overexpression of an activated beta-catenin. Cancer Res, 1999. 59(16): p. 3875-9.

- 239. Gat, U., et al., *De Novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin.* Cell, 1998. **95**(5): p. 605-14.
- 240. Lange, A., et al., *Classical nuclear localization signals: definition, function, and interaction with importin alpha.* J Biol Chem, 2007. **282**(8): p. 5101-5.
- 241. Fagotto, F., U. Gluck, and B.M. Gumbiner, *Nuclear localization signal-independent and importin/karyopherin-independent nuclear import of beta-catenin*. Curr Biol, 1998. **8**(4): p. 181-90.
- 242. Simcha, I., et al., Suppression of tumorigenicity by plakoglobin: an augmenting effect of N-cadherin. J Cell Biol, 1996. **133**(1): p. 199-209.
- 243. Espada, J., et al., *H-Ras activation promotes cytoplasmic accumulation and phosphoinositide 3-OH kinase association of beta-catenin in epidermal keratinocytes.* J Cell Biol, 1999. **146**(5): p. 967-80.
- 244. Eger, A., et al., *Epithelial mesenchymal transition by c-Fos estrogen receptor activation involves nuclear translocation of beta-catenin and upregulation of beta-catenin/lymphoid enhancer binding factor-1 transcriptional activity.* J Cell Biol, 2000. **148**(1): p. 173-88.
- 245. Funayama, N., et al., *Embryonic axis induction by the armadillo repeat domain of beta-catenin: evidence for intracellular signaling.* J Cell Biol, 1995. **128**(5): p. 959-68.
- 246. Ben-Ze'ev, A., M. Shtutman, and J. Zhurinsky, *The integration of cell adhesion with gene expression: the role of beta-catenin.* Exp Cell Res, 2000. **261**(1): p. 75-82.
- 247. Reimand, J., O. Wagih, and G.D. Bader, *The mutational landscape of phosphorylation signaling in cancer*. Sci Rep, 2013. **3**: p. 2651.
- 248. Smith, C.C., et al., Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature, 2012. **485**(7397): p. 260-3.
- 249. Radivojac, P., et al., *Gain and loss of phosphorylation sites in human cancer*. Bioinformatics, 2008. **24**(16): p. i241-7.
- 250. Chapman, P.B., et al., *Improved survival with vemurafenib in melanoma with BRAF V600E mutation*. N Engl J Med, 2011. **364**(26): p. 2507-16.
- Tiacci, E., et al., *BRAF mutations in hairy-cell leukemia*. N Engl J Med, 2011.
 364(24): p. 2305-15.
- 252. Morin, P.J., *beta-catenin signaling and cancer*. Bioessays, 1999. **21**(12): p. 1021-30.

- 253. Aberle, H., et al., *beta-catenin is a target for the ubiquitin-proteasome pathway*. EMBO J, 1997. **16**(13): p. 3797-804.
- 254. Orford, K., et al., Serine phosphorylation-regulated ubiquitination and degradation of beta-catenin. J Biol Chem, 1997. **272**(40): p. 24735-8.
- 255. Salomon, D., et al., *Regulation of beta-catenin levels and localization by overexpression of plakoglobin and inhibition of the ubiquitin-proteasome system.* J Cell Biol, 1997. **139**(5): p. 1325-35.
- 256. van Veelen, W., et al., *beta-catenin tyrosine 654 phosphorylation increases Wnt signalling and intestinal tumorigenesis.* Gut, 2011. **60**(9): p. 1204-12.
- 257. Piedra, J., et al., *Regulation of beta-catenin structure and activity by tyrosine phosphorylation.* J Biol Chem, 2001. **276**(23): p. 20436-43.
- 258. Li, F.Q., et al., *Chibby cooperates with 14-3-3 to regulate beta-catenin subcellular distribution and signaling activity.* J Cell Biol, 2008. **181**(7): p. 1141-54.
- 259. Sakamoto, I., et al., A novel beta-catenin-binding protein inhibits beta-catenindependent Tcf activation and axis formation. J Biol Chem, 2000. 275(42): p. 32871-8.
- 260. Weiske, J., K.F. Albring, and O. Huber, *The tumor suppressor Fhit acts as a repressor of beta-catenin transcriptional activity*. Proc Natl Acad Sci U S A, 2007. **104**(51): p. 20344-9.
- 261. Kanamori, M., et al., *The PDZ protein tax-interacting protein-1 inhibits betacatenin transcriptional activity and growth of colorectal cancer cells.* J Biol Chem, 2003. **278**(40): p. 38758-64.
- 262. Graham, T.A., et al., *The crystal structure of the beta-catenin/ICAT complex reveals the inhibitory mechanism of ICAT*. Mol Cell, 2002. **10**(3): p. 563-71.
- 263. Ghogomu, S.M., et al., *HIC-5 is a novel repressor of lymphoid enhancer factor/T-cell factor-driven transcription.* J Biol Chem, 2006. **281**(3): p. 1755-64.
- 264. MacDonald, B.T., K. Tamai, and X. He, *Wnt/beta-catenin signaling:* components, mechanisms, and diseases. Dev Cell, 2009. **17**(1): p. 9-26.
- 265. He, B., et al., *A monoclonal antibody against Wnt-1 induces apoptosis in human cancer cells.* Neoplasia, 2004. **6**(1): p. 7-14.
- 266. Shan, J., et al., *Identification of a specific inhibitor of the dishevelled PDZ domain.* Biochemistry, 2005. **44**(47): p. 15495-503.
- 267. Zhang, Y., et al., *Inhibition of Wnt signaling by Dishevelled PDZ peptides*. Nat Chem Biol, 2009. **5**(4): p. 217-9.
- 268. Chen, B., et al., *Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer*. Nat Chem Biol, 2009. **5**(2): p. 100-7.
- 269. Grosch, S., et al., COX-2 independent induction of cell cycle arrest and apoptosis in colon cancer cells by the selective COX-2 inhibitor celecoxib. FASEB J, 2001. 15(14): p. 2742-4.
- 270. Maier, T.J., et al., *Targeting the beta-catenin/APC pathway: a novel mechanism to explain the cyclooxygenase-2-independent anticarcinogenic effects of celecoxib in human colon carcinoma cells.* FASEB J, 2005. **19**(10): p. 1353-5.
- 271. Lepourcelet, M., et al., *Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex*. Cancer Cell, 2004. **5**(1): p. 91-102.
- 272. Emami, K.H., et al., *A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]*. Proc Natl Acad Sci U S A, 2004. **101**(34): p. 12682-7.
- 273. Barker, N. and H. Clevers, *Mining the Wnt pathway for cancer therapeutics*. Nat Rev Drug Discov, 2006. **5**(12): p. 997-1014.
- 274. Thorvaldsen, T.E., et al., *Structure, Dynamics, and Functionality of Tankyrase Inhibitor-Induced Degradasomes.* Mol Cancer Res, 2015. **13**(11): p. 1487-501.
- 275. de la Roche, M., et al., *LEF1 and B9L shield beta-catenin from inactivation by Axin, desensitizing colorectal cancer cells to tankyrase inhibitors.* Cancer Res, 2014. **74**(5): p. 1495-505.
- 276. Hinck, L., W.J. Nelson, and J. Papkoff, *Wnt-1 modulates cell-cell adhesion in mammalian cells by stabilizing beta-catenin binding to the cell adhesion protein cadherin.* J Cell Biol, 1994. **124**(5): p. 729-41.
- 277. Shibamoto, S., et al., *Cytoskeletal reorganization by soluble Wnt-3a protein signalling*. Genes Cells, 1998. **3**(10): p. 659-70.
- 278. Ponce, E., M.C. Louie, and M.B. Sevigny, *Acute and chronic cadmium exposure* promotes *E-cadherin degradation in MCF7 breast cancer cells*. Mol Carcinog, 2015. **54**(10): p. 1014-25.
- 279. Davies, G., W.G. Jiang, and M.D. Mason, *HGF/SF modifies the interaction between its receptor c-Met, and the E-cadherin/catenin complex in prostate cancer cells.* Int J Mol Med, 2001. **7**(4): p. 385-8.
- 280. Ouyang, M., et al., *N-cadherin regulates spatially polarized signals through distinct p120ctn and beta-catenin-dependent signalling pathways*. Nat Commun, 2013. **4**: p. 1589.

- 281. Guo, M., et al., VE-cadherin and beta-catenin binding dynamics during histamine-induced endothelial hyperpermeability. Am J Physiol Cell Physiol, 2008. **294**(4): p. C977-84.
- 282. Oas, R.G., et al., *p120-catenin and beta-catenin differentially regulate cadherin adhesive function*. Mol Biol Cell, 2013. **24**(6): p. 704-14.
- 283. Orsulic, S., et al., *E-cadherin binding prevents beta-catenin nuclear localization and beta-catenin/LEF-1-mediated transactivation*. J Cell Sci, 1999. 112 (Pt 8): p. 1237-45.
- 284. Behrens, J., et al., *Functional interaction of beta-catenin with the transcription factor LEF-1*. Nature, 1996. **382**(6592): p. 638-42.
- 285. Roura, S., et al., *Regulation of E-cadherin/Catenin association by tyrosine phosphorylation.* J Biol Chem, 1999. **274**(51): p. 36734-40.
- 286. McBride, H.M., M. Neuspiel, and S. Wasiak, *Mitochondria: more than just a powerhouse*. Curr Biol, 2006. **16**(14): p. R551-60.
- 287. Mezhybovska, M., et al., *Beta-catenin is involved in alterations in mitochondrial activity in non-transformed intestinal epithelial and colon cancer cells.* Br J Cancer, 2009. **101**(9): p. 1596-605.
- 288. Lehwald, N., et al., *beta-Catenin regulates hepatic mitochondrial function and energy balance in mice*. Gastroenterology, 2012. **143**(3): p. 754-64.
- 289. Day, K.J., L.A. Staehelin, and B.S. Glick, *A three-stage model of Golgi structure and function*. Histochem Cell Biol, 2013. **140**(3): p. 239-49.
- 290. Brunner, E.C., et al., *Altered expression of beta-catenin/E-cadherin in meningiomas.* Histopathology, 2006. **49**(2): p. 178-87.
- 291. Zhang, Z., et al., *Destabilization of beta-catenin by mutations in presenilin-1 potentiates neuronal apoptosis.* Nature, 1998. **395**(6703): p. 698-702.
- 292. Aberle, H., et al., *Single amino acid substitutions in proteins of the armadillo gene family abolish their binding to alpha-catenin.* J Biol Chem, 1996. **271**(3): p. 1520-6.
- 293. Rubinfeld, B., et al., *Association of the APC gene product with beta-catenin*. Science, 1993. **262**(5140): p. 1731-4.
- 294. Behrens, J., et al., Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science, 1998. **280**(5363): p. 596-9.
- 295. Galbiati, F., et al., *Caveolin-1 expression inhibits Wnt/beta-catenin/Lef-1 signaling by recruiting beta-catenin to caveolae membrane domains.* J Biol Chem, 2000. **275**(30): p. 23368-77.

- 296. Hoschuetzky, H., H. Aberle, and R. Kemler, *Beta-catenin mediates the interaction of the cadherin-catenin complex with epidermal growth factor receptor.* J Cell Biol, 1994. **127**(5): p. 1375-80.
- 297. Tao, Y.S., et al., *beta-Catenin associates with the actin-bundling protein fascin in a noncadherin complex.* J Cell Biol, 1996. **134**(5): p. 1271-81.
- 298. Hart, M., et al., *The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell.* Curr Biol, 1999. **9**(4): p. 207-10.
- 299. Dubrovskyi, O., et al., *Identification of paxillin domains interacting with betacatenin.* FEBS Lett, 2012. **586**(16): p. 2294-9.
- 300. Murayama, M., et al., *Direct association of presenilin-1 with beta-catenin*. FEBS Lett, 1998. **433**(1-2): p. 73-7.
- 301. Fukata, M., et al., *Cdc42 and Rac1 regulate the interaction of IQGAP1 with beta-catenin.* J Biol Chem, 1999. **274**(37): p. 26044-50.
- 302. Dobrosotskaya, I.Y. and G.L. James, *MAGI-1 interacts with beta-catenin and is associated with cell-cell adhesion structures*. Biochem Biophys Res Commun, 2000. **270**(3): p. 903-9.
- 303. Mann, M., R.C. Hendrickson, and A. Pandey, *Analysis of proteins and proteomes* by mass spectrometry. Annu Rev Biochem, 2001. **70**: p. 437-73.
- 304. Kuster, B., et al., *Mass spectrometry allows direct identification of proteins in large genomes.* Proteomics, 2001. **1**(5): p. 641-50.
- 305. Aebersold, R. and M. Mann, *Mass spectrometry-based proteomics*. Nature, 2003. **422**(6928): p. 198-207.
- 306. Kim, M.S., et al., *A draft map of the human proteome*. Nature, 2014. **509**(7502): p. 575-81.
- 307. Wilhelm, M., et al., *Mass-spectrometry-based draft of the human proteome*. Nature, 2014. **509**(7502): p. 582-7.
- 308. Guerrero, C., et al., An integrated mass spectrometry-based proteomic approach: quantitative analysis of tandem affinity-purified in vivo cross-linked protein complexes (QTAX) to decipher the 26 S proteasome-interacting network. Mol Cell Proteomics, 2006. 5(2): p. 366-78.
- 309. Gronborg, M., et al., *Biomarker discovery from pancreatic cancer secretome* using a differential proteomic approach. Mol Cell Proteomics, 2006. **5**(1): p. 157-71.

- 310. Blagoev, B., et al., *Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics*. Nat Biotechnol, 2004. **22**(9): p. 1139-45.
- 311. Olsen, J.V., et al., *Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.* Cell, 2006. **127**(3): p. 635-48.
- 312. Neher, S.B., et al., *Proteomic profiling of ClpXP substrates after DNA damage reveals extensive instability within SOS regulon.* Mol Cell, 2006. **22**(2): p. 193-204.
- 313. Ong, S.E., et al., *Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics.* Mol Cell Proteomics, 2002. **1**(5): p. 376-86.
- 314. Mann, M., Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol, 2006. 7(12): p. 952-8.
- Harsha, H.C., H. Molina, and A. Pandey, *Quantitative proteomics using stable isotope labeling with amino acids in cell culture*. Nat Protoc, 2008. 3(3): p. 505-16.
- 316. Thompson, A., et al., *Electrospray ionisation-cleavable tandem nucleic acid mass tag-peptide nucleic acid conjugates: synthesis and applications to quantitative genomic analysis using electrospray ionisation-MS/MS*. Nucleic Acids Res, 2007. **35**(4): p. e28.
- Ross, P.L., et al., Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics, 2004. 3(12): p. 1154-69.
- 318. Unwin, R.D., J.R. Griffiths, and A.D. Whetton, *Simultaneous analysis of relative protein expression levels across multiple samples using iTRAQ isobaric tags with 2D nano LC-MS/MS*. Nat Protoc, 2010. **5**(9): p. 1574-82.
- 319. Luo, R. and H. Zhao, *Protein quantitation using iTRAQ: Review on the sources of variations and analysis of nonrandom missingness.* Stat Interface, 2012. **5**(1): p. 99-107.
- 320. Martinez-Aguilar, J., et al., *Quantitative mass spectrometry for colorectal cancer proteomics*. Proteomics Clin Appl, 2013. **7**(1-2): p. 42-54.
- 321. Wang, Q., et al., *Cloning and characterization of a cathepsin L-like cysteine protease from Taenia pisiformis.* Vet Parasitol, 2013. **194**(1): p. 26-34.
- 322. Chen, E.I. and J.R. Yates, 3rd, *Cancer proteomics by quantitative shotgun proteomics*. Mol Oncol, 2007. **1**(2): p. 144-59.

- 323. Liu, T., J. Hu, and H. Li, *iTRAQ-based shotgun neuroproteomics*. Methods Mol Biol, 2009. **566**: p. 201-16.
- 324. Zhao, Y., W.N. Lee, and G.G. Xiao, *Quantitative proteomics and biomarker discovery in human cancer*. Expert Rev Proteomics, 2009. **6**(2): p. 115-8.
- 325. Greer, T., et al., *Custom 4-Plex DiLeu Isobaric Labels Enable Relative Quantification of Urinary Proteins in Men with Lower Urinary Tract Symptoms (LUTS).* PLoS One, 2015. **10**(8): p. e0135415.
- 326. Liu, Y., et al., *Quantitative measurements of N-linked glycoproteins in human plasma by SWATH-MS*. Proteomics, 2013. **13**(8): p. 1247-56.
- 327. Liu, Y., et al., *Glycoproteomic analysis of prostate cancer tissues by SWATH* mass spectrometry discovers N-acylethanolamine acid amidase and protein tyrosine kinase 7 as signatures for tumor aggressiveness. Mol Cell Proteomics, 2014. **13**(7): p. 1753-68.
- 328. Selevsek, N., et al., *Reproducible and consistent quantification of the Saccharomyces cerevisiae proteome by SWATH-mass spectrometry*. Mol Cell Proteomics, 2015. **14**(3): p. 739-49.
- 329. Zybailov, B., et al., *Correlation of relative abundance ratios derived from peptide ion chromatograms and spectrum counting for quantitative proteomic analysis using stable isotope labeling*. Anal Chem, 2005. **77**(19): p. 6218-24.
- 330. Tian, Q., et al., Proteomic analysis identifies that 14-3-3zeta interacts with betacatenin and facilitates its activation by Akt. Proc Natl Acad Sci U S A, 2004. 101(43): p. 15370-5.
- 331. Song, J., et al., A Protein Interaction between beta-Catenin and Dnmt1 Regulates Wnt Signaling and DNA Methylation in Colorectal Cancer Cells. Mol Cancer Res, 2015. 13(6): p. 969-81.
- 332. Hino, S., et al., *Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase stabilizes beta-catenin through inhibition of its ubiquitination.* Mol Cell Biol, 2005. **25**(20): p. 9063-72.
- 333. Taurin, S., et al., *Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase*. J Biol Chem, 2006. **281**(15): p. 9971-6.
- 334. Taurin, S., et al., *Phosphorylation of beta-catenin by PKA promotes ATP-induced proliferation of vascular smooth muscle cells*. Am J Physiol Cell Physiol, 2008. **294**(5): p. C1169-74.
- 335. Goessling, W., et al., *Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration*. Cell, 2009. **136**(6): p. 1136-47.

- 336. Bonvini, P., et al., Geldanamycin abrogates ErbB2 association with proteasomeresistant beta-catenin in melanoma cells, increases beta-catenin-E-cadherin association, and decreases beta-catenin-sensitive transcription. Cancer Res, 2001. **61**(4): p. 1671-7.
- 337. Kucerova, D., et al., *Expression and interaction of different catenins in colorectal carcinoma cells.* Int J Mol Med, 2001. **8**(6): p. 695-8.
- 338. Wang, Y., et al., *Nucleo-cytoplasmic shuttling of human Kank protein accompanies intracellular translocation of beta-catenin.* J Cell Sci, 2006. **119**(Pt 19): p. 4002-10.
- 339. Wu, G., et al., *Structure of a beta-TrCP1-Skp1-beta-catenin complex:* Destruction motif binding and lysine specificity of the SCF beta-TrCP1 ubiquitin ligase. Molecular Cell, 2003. **11**(6): p. 1445-1456.
- 340. Huber, O., M. Krohn, and R. Kemler, *A specific domain in alpha-catenin mediates binding to beta-catenin or plakoglobin.* J Cell Sci, 1997. **110** (**Pt 15**): p. 1759-65.
- 341. Wei, Y., et al., *Identification of the LIM protein FHL2 as a coactivator of betacatenin.* J Biol Chem, 2003. **278**(7): p. 5188-94.
- 342. Shibata, T., et al., *EBP50, a beta-catenin-associating protein, enhances Wnt signaling and is over-expressed in hepatocellular carcinoma.* Hepatology, 2003.
 38(1): p. 178-86.
- Bauer, A., O. Huber, and R. Kemler, *Pontin52, an interaction partner of beta-catenin, binds to the TATA box binding protein.* Proc Natl Acad Sci U S A, 1998.
 95(25): p. 14787-92.
- 344. Holden, P. and W.A. Horton, *Crude subcellular fractionation of cultured mammalian cell lines.* BMC Res Notes, 2009. **2**: p. 243.
- 345. Gurtubay, J.I., et al., *Triton X-100 solubilization of mitochondrial inner and outer membranes.* J Bioenerg Biomembr, 1980. **12**(1-2): p. 47-70.
- 346. Gurtubay, J.I., *Solubilization of inner mitochondrial membranes by triton X-100. Effect of ionic strength and temperature.* Rev Esp Fisiol, 1980. **36**(1): p. 83-7.
- 347. Bell, R.L., et al., Labeling of complex III, with [35S]diazobenzenesulfonate: orientation of this electron transfer segment in the mitochondrial inner membrane. Proc Natl Acad Sci U S A, 1979. **76**(2): p. 741-5.
- 348. Riccio, P., et al., *bc1-Complex from beef heart. One-step purification by hydroxyapatite chromatography in Triton X-100, polypeptide pattern and respiratory chain characteristics.* Biochim Biophys Acta, 1977. **459**(2): p. 250-62.

- 349. Mizukoshi, E., et al., *Fibroblast growth factor-1 interacts with the glucoseregulated protein GRP75/mortalin.* Biochem J, 1999. **343 Pt 2**: p. 461-6.
- 350. Wadhwa, R., et al., *Hsp70 family member, mot-2/mthsp70/GRP75, binds to the cytoplasmic sequestration domain of the p53 protein.* Exp Cell Res, 2002. **274**(2): p. 246-53.
- 351. Craig, E.A., et al., SSC1, an essential member of the yeast HSP70 multigene family, encodes a mitochondrial protein. Mol Cell Biol, 1989. **9**(7): p. 3000-8.
- 352. Schulke, N., et al., A multisubunit complex of outer and inner mitochondrial membrane protein translocases stabilized in vivo by translocation intermediates. J Biol Chem, 1999. **274**(32): p. 22847-54.
- Ornatsky, O.I., M.K. Connor, and D.A. Hood, *Expression of stress proteins and mitochondrial chaperonins in chronically stimulated skeletal muscle*. Biochem J, 1995. **311 (Pt 1)**: p. 119-23.
- 354. Merrick, B.A., et al., Induction of novel Grp75 isoforms by 2-deoxyglucose in human and murine fibroblasts. Cancer Lett, 1997. **119**(2): p. 185-90.
- 355. Bini, L., et al., *Protein expression profiles in human breast ductal carcinoma and histologically normal tissue*. Electrophoresis, 1997. **18**(15): p. 2832-41.
- 356. Kaul, S.C., et al., *Malignant transformation of NIH3T3 cells by overexpression of mot-2 protein*. Oncogene, 1998. **17**(7): p. 907-11.
- 357. Takano, S., et al., *Elevated levels of mortalin expression in human brain tumors*. Exp Cell Res, 1997. **237**(1): p. 38-45.
- 358. Santarelli, R., et al., *OPA1-related auditory neuropathy: site of lesion and outcome of cochlear implantation*. Brain, 2015. **138**(Pt 3): p. 563-76.
- 359. Olichon, A., et al., *Mitochondrial dynamics and disease, OPA1*. Biochim Biophys Acta, 2006. **1763**(5-6): p. 500-9.
- 360. Frezza, C., et al., *OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion*. Cell, 2006. **126**(1): p. 177-89.
- 361. Anand, R., et al., *The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission*. J Cell Biol, 2014. **204**(6): p. 919-29.
- 362. Trosse, C., F. Nilsen, and S. Dalvin, *RNA interference mediated knockdown of the KDEL receptor and COPB2 inhibits digestion and reproduction in the parasitic copepod Lepeophtheirus salmonis.* Comp Biochem Physiol B Biochem Mol Biol, 2014. **170**: p. 1-9.
- 363. Futatsumori, M., et al., *Identification and characterization of novel isoforms of COP I subunits*. J Biochem, 2000. **128**(5): p. 793-801.

- 364. Jamieson, C., et al., *Characterization of a beta-catenin nuclear localization defect in MCF-7 breast cancer cells.* Exp Cell Res, 2016. **341**(2): p. 196-206.
- 365. Dreyfuss, G., et al., *hnRNP proteins and the biogenesis of mRNA*. Annu Rev Biochem, 1993. **62**: p. 289-321.
- 366. Pinol-Roma, S., et al., *Immunopurification of heterogeneous nuclear ribonucleoprotein particles reveals an assortment of RNA-binding proteins*. Genes Dev, 1988. **2**(2): p. 215-27.
- 367. Chaudhury, A., P. Chander, and P.H. Howe, *Heterogeneous nuclear* ribonucleoproteins (hnRNPs) in cellular processes: Focus on hnRNP E1's multifunctional regulatory roles. RNA, 2010. **16**(8): p. 1449-62.
- 368. Dreyfuss, G., V.N. Kim, and N. Kataoka, *Messenger-RNA-binding proteins and the messages they carry*. Nat Rev Mol Cell Biol, 2002. **3**(3): p. 195-205.
- 369. Kamma, H., D.S. Portman, and G. Dreyfuss, *Cell type-specific expression of hnRNP proteins*. Exp Cell Res, 1995. **221**(1): p. 187-96.
- 370. Siomi, H. and G. Dreyfuss, *A nuclear localization domain in the hnRNP A1 protein.* J Cell Biol, 1995. **129**(3): p. 551-60.
- 371. Michael, W.M., P.S. Eder, and G. Dreyfuss, *The K nuclear shuttling domain: a novel signal for nuclear import and nuclear export in the hnRNP K protein.* EMBO J, 1997. **16**(12): p. 3587-98.
- 372. Habelhah, H., et al., *ERK phosphorylation drives cytoplasmic accumulation of hnRNP-K and inhibition of mRNA translation.* Nat Cell Biol, 2001. **3**(3): p. 325-30.
- 373. Carpenter, B., et al., *Heterogeneous nuclear ribonucleoprotein K is over expressed, aberrantly localised and is associated with poor prognosis in colorectal cancer.* Br J Cancer, 2006. **95**(7): p. 921-7.
- 374. Ciarlo, M., et al., Regulation of neuroendocrine differentiation by AKT/hnRNPK/AR/beta-catenin signaling in prostate cancer cells. Int J Cancer, 2012. **131**(3): p. 582-90.
- 375. Sato, S., et al., *Beta-catenin interacts with the FUS proto-oncogene product and regulates pre-mRNA splicing*. Gastroenterology, 2005. **129**(4): p. 1225-36.
- 376. Nowakowska, M., et al., *Diverse effect of WWOX overexpression in HT29 and SW480 colon cancer cell lines.* Tumour Biol, 2014. **35**(9): p. 9291-301.
- 377. Yang, J., et al., Adenomatous polyposis coli (APC) differentially regulates betacatenin phosphorylation and ubiquitination in colon cancer cells. J Biol Chem, 2006. **281**(26): p. 17751-7.

- 378. El-Bahrawy, M., et al., *Characterization of the E-cadherin/catenin complex in colorectal carcinoma cell lines*. Int J Exp Pathol, 2004. **85**(2): p. 65-74.
- 379. Dvory-Sobol, H., et al., *Targeting the active beta-catenin pathway to treat cancer cells*. Mol Cancer Ther, 2006. **5**(11): p. 2861-71.
- 380. Seimiya, H. and S. Smith, *The telomeric poly(ADP-ribose) polymerase, tankyrase 1, contains multiple binding sites for telomeric repeat binding factor 1 (TRF1) and a novel acceptor, 182-kDa tankyrase-binding protein (TAB182).* J Biol Chem, 2002. **277**(16): p. 14116-26.
- 381. Huang, S.M., et al., *Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling*. Nature, 2009. **461**(7264): p. 614-20.
- 382. Bao, R., et al., *Inhibition of tankyrases induces Axin stabilization and blocks Wnt signalling in breast cancer cells.* PLoS One, 2012. **7**(11): p. e48670.
- Durak, O., et al., Ankyrin-G regulates neurogenesis and Wnt signaling by altering the subcellular localization of beta-catenin. Mol Psychiatry, 2015. 20(3): p. 388-97.
- Gaynor, E.C., T.R. Graham, and S.D. Emr, COPI in ER/Golgi and intra-Golgi transport: do yeast COPI mutants point the way? Biochim Biophys Acta, 1998. 1404(1-2): p. 33-51.
- 385. Wei, N. and X.W. Deng, *The COP9 signalosome*. Annu Rev Cell Dev Biol, 2003. **19**: p. 261-86.
- 386. Mishra, P., et al., *Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation*. Cell Metab, 2014. **19**(4): p. 630-41.
- 387. Song, Z., et al., *OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L.* J Cell Biol, 2007. **178**(5): p. 749-55.
- 388. van der Bliek, A.M., Q. Shen, and S. Kawajiri, *Mechanisms of mitochondrial fission and fusion*. Cold Spring Harb Perspect Biol, 2013. **5**(6).
- 389. Cai, K., et al., Human mitochondrial chaperone (mtHSP70) and cysteine desulfurase (NFS1) bind preferentially to the disordered conformation, whereas co-chaperone (HSC20) binds to the structured conformation of the iron-sulfur cluster scaffold protein (ISCU). J Biol Chem, 2013. **288**(40): p. 28755-70.
- 390. Zhao, R. and W.A. Houry, *Hsp90: a chaperone for protein folding and gene regulation*. Biochem Cell Biol, 2005. **83**(6): p. 703-10.

- 391. Li, J., J. Soroka, and J. Buchner, *The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones.* Biochim Biophys Acta, 2012. **1823**(3): p. 624-35.
- 392. Young, J.C., N.J. Hoogenraad, and F.U. Hartl, *Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70.* Cell, 2003. **112**(1): p. 41-50.
- 393. Mikula, M., et al., *Heterogeneous nuclear ribonucleoprotein (HnRNP) K* genome-wide binding survey reveals its role in regulating 3'-end RNA processing and transcription termination at the early growth response 1 (EGR1) gene through XRN2 exonuclease. J Biol Chem, 2013. **288**(34): p. 24788-98.
- 394. Wong, Y.L. and S.E. Rice, *Kinesin's light chains inhibit the head- and microtubule-binding activity of its tail.* Proc Natl Acad Sci U S A, 2010. **107**(26): p. 11781-6.
- 395. Gulappa, T., C.L. Clouser, and K.M. Menon, *The role of Rab5a GTPase in endocytosis and post-endocytic trafficking of the hCG-human luteinizing hormone receptor complex.* Cell Mol Life Sci, 2011. **68**(16): p. 2785-95.
- 396. Chen, P.I., et al., *Rab5 isoforms differentially regulate the trafficking and degradation of epidermal growth factor receptors.* J Biol Chem, 2009. **284**(44): p. 30328-38.
- 397. Rosenfeld, J.L., et al., *Lysosome proteins are redistributed during expression of a GTP-hydrolysis-defective rab5a*. J Cell Sci, 2001. **114**(Pt 24): p. 4499-508.
- 398. de Hoop, M.J., et al., *The involvement of the small GTP-binding protein Rab5a in neuronal endocytosis.* Neuron, 1994. **13**(1): p. 11-22.
- 399. Duden, R., et al., *Beta-COP*, a 110 kd protein associated with non-clathrincoated vesicles and the Golgi complex, shows homology to beta-adaptin. Cell, 1991. **64**(3): p. 649-65.
- 400. Donaldson, J.G., et al., *ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein beta-COP to Golgi membranes.* Proc Natl Acad Sci U S A, 1992. **89**(14): p. 6408-12.
- 401. Azem, A., et al., *The mitochondrial hsp70 chaperone system. Effect of adenine nucleotides, peptide substrate, and mGrpE on the oligomeric state of mhsp70.* J Biol Chem, 1997. **272**(33): p. 20901-6.
- 402. Helmbrecht, K., E. Zeise, and L. Rensing, *Chaperones in cell cycle regulation and mitogenic signal transduction: a review.* Cell Prolif, 2000. **33**(6): p. 341-65.

- 403. Jolly, C. and R.I. Morimoto, *Role of the heat shock response and molecular chaperones in oncogenesis and cell death.* J Natl Cancer Inst, 2000. **92**(19): p. 1564-72.
- 404. Hashimi, H., et al., *Trypanosome Letm1 protein is essential for mitochondrial potassium homeostasis.* J Biol Chem, 2013. **288**(37): p. 26914-25.
- 405. Jayaraman, S., Flow cytometric determination of mitochondrial membrane potential changes during apoptosis of T lymphocytic and pancreatic beta cell lines: comparison of tetramethylrhodamineethylester (TMRE), chloromethyl-X-rosamine (H2-CMX-Ros) and MitoTracker Red 580 (MTR580). J Immunol Methods, 2005. **306**(1-2): p. 68-79.
- 406. Pendergrass, W., N. Wolf, and M. Poot, *Efficacy of MitoTracker Green and CMXrosamine to measure changes in mitochondrial membrane potentials in living cells and tissues.* Cytometry A, 2004. **61**(2): p. 162-9.
- 407. Yu, W., B.G. Sanders, and K. Kline, *RRR-alpha-tocopheryl succinate-induced* apoptosis of human breast cancer cells involves Bax translocation to mitochondria. Cancer Res, 2003. **63**(10): p. 2483-91.
- 408. Schlosshauer, P.W., et al., *APC truncation and increased beta-catenin levels in a human breast cancer cell line*. Carcinogenesis, 2000. **21**(7): p. 1453-6.
- 409. Bafico, A., et al., An autocrine mechanism for constitutive Wnt pathway activation in human cancer cells. Cancer Cell, 2004. **6**(5): p. 497-506.
- 410. Milovanovic, T., et al., *Expression of Wnt genes and frizzled 1 and 2 receptors in normal breast epithelium and infiltrating breast carcinoma*. Int J Oncol, 2004. 25(5): p. 1337-42.
- 411. Roarty, K. and J.M. Rosen, *Wnt and mammary stem cells: hormones cannot fly wingless.* Curr Opin Pharmacol, 2010. **10**(6): p. 643-9.
- 412. Schlange, T., et al., *Autocrine WNT signaling contributes to breast cancer cell proliferation via the canonical WNT pathway and EGFR transactivation*. Breast Cancer Res, 2007. **9**(5): p. R63.
- 413. Shtutman, M., et al., *Tumor-specific silencing of COPZ2 gene encoding coatomer protein complex subunit zeta 2 renders tumor cells dependent on its paralogous gene COPZ1*. Proc Natl Acad Sci U S A, 2011. **108**(30): p. 12449-54.
- 414. Wang, Y.N., et al., *COPI-mediated retrograde trafficking from the Golgi to the ER regulates EGFR nuclear transport.* Biochem Biophys Res Commun, 2010. **399**(4): p. 498-504.

- 415. Jackson, L.P., *Structure and mechanism of COPI vesicle biogenesis*. Current Opinion in Cell Biology, 2014. **29**: p. 67-73.
- 416. Yoon, J.C., et al., *Wnt signaling regulates mitochondrial physiology and insulin sensitivity*. Genes Dev, 2010. **24**(14): p. 1507-18.
- 417. Zylicz, M., F.W. King, and A. Wawrzynow, *Hsp70 interactions with the p53 tumour suppressor protein*. EMBO J, 2001. **20**(17): p. 4634-8.
- 418. Skowyra, D., C. Georgopoulos, and M. Zylicz, *The E. coli dnaK gene product, the hsp70 homolog, can reactivate heat-inactivated RNA polymerase in an ATP hydrolysis-dependent manner.* Cell, 1990. **62**(5): p. 939-44.
- 419. Wickner, S., M.R. Maurizi, and S. Gottesman, *Posttranslational quality control: folding, refolding, and degrading proteins.* Science, 1999. **286**(5446): p. 1888-93.
- 420. Sadot, E., et al., *Down-regulation of beta-catenin by activated p53*. Mol Cell Biol, 2001. **21**(20): p. 6768-81.
- 421. Levina, E., M. Oren, and A. Ben-Ze'ev, *Downregulation of beta-catenin by p53 involves changes in the rate of beta-catenin phosphorylation and Axin dynamics.* Oncogene, 2004. **23**(25): p. 4444-53.
- 422. Bosari, S., et al., *p53 gene mutations*, *p53 protein accumulation and compartmentalization in colorectal adenocarcinoma*. Am J Pathol, 1995. **147**(3): p. 790-8.
- 423. Zerrahn, J., et al., *Correlation between the conformational phenotype of p53 and its subcellular location*. Oncogene, 1992. **7**(7): p. 1371-81.
- 424. Kim, I.S., et al., *Truncated form of importin alpha identified in breast cancer cell inhibits nuclear import of p53*. J Biol Chem, 2000. **275**(30): p. 23139-45.
- 425. Wadhwa, R., et al., *Inactivation of tumor suppressor p53 by mot-2, a hsp70 family member.* J Biol Chem, 1998. **273**(45): p. 29586-91.
- 426. Nylandsted, J., K. Brand, and M. Jaattela, *Heat shock protein 70 is required for the survival of cancer cells*. Ann N Y Acad Sci, 2000. **926**: p. 122-5.
- 427. Janetzki, S., et al., Immunization of cancer patients with autologous cancerderived heat shock protein gp96 preparations: a pilot study. Int J Cancer, 2000.
 88(2): p. 232-8.
- 428. Menoret, A., R.Y. Chandawarkar, and P.K. Srivastava, *Natural autoantibodies* against heat-shock proteins hsp70 and gp96: implications for immunotherapy using heat-shock proteins. Immunology, 2000. **101**(3): p. 364-70.

- 429. Srivastava, P.K. and N.S. Jaikaria, *Methods of purification of heat shock proteinpeptide complexes for use as vaccines against cancers and infectious diseases.* Methods Mol Biol, 2001. **156**: p. 175-86.
- 430. Reinhard, C., et al., Functional reconstitution of COPI coat assembly and disassembly using chemically defined components. Proc Natl Acad Sci U S A, 2003. **100**(14): p. 8253-7.
- 432. Jaggi, M., et al., Bryostatin 1 modulates beta-catenin subcellular localization and transcription activity through protein kinase D1 activation. Mol Cancer Ther, 2008. **7**(9): p. 2703-12.
- 433. Syed, V., et al., *Beta-catenin mediates alteration in cell proliferation, motility and invasion of prostate cancer cells by differential expression of E-cadherin and protein kinase D1.* J Cell Biochem, 2008. **104**(1): p. 82-95.
- 434. Brand, T.M., et al., *The nuclear epidermal growth factor receptor signaling network and its role in cancer*. Discov Med, 2011. **12**(66): p. 419-32.
- 435. Butt, T.R., et al., *SUMO fusion technology for difficult-to-express proteins*. Protein Expr Purif, 2005. **43**(1): p. 1-9.
- 436. Costa, S., et al., Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system. Front Microbiol, 2014. 5: p. 63.
- 437. Nikaido, H., *Maltose transport system of Escherichia coli: an ABC-type transporter*. FEBS Lett, 1994. **346**(1): p. 55-8.
- 438. Fox, J.D., R.B. Kapust, and D.S. Waugh, *Single amino acid substitutions on the surface of Escherichia coli maltose-binding protein can have a profound impact on the solubility of fusion proteins.* Protein Sci, 2001. **10**(3): p. 622-30.
- 439. Kapust, R.B. and D.S. Waugh, *Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused.* Protein Sci, 1999. **8**(8): p. 1668-74.
- 440. Dyson, M.R., et al., *Production of soluble mammalian proteins in Escherichia coli: identification of protein features that correlate with successful expression.* BMC Biotechnol, 2004. **4**: p. 32.
- 441. Kataeva, I., et al., Improving solubility of Shewanella oneidensis MR-1 and Clostridium thermocellum JW-20 proteins expressed into Esherichia coli. J Proteome Res, 2005. 4(6): p. 1942-51.
- 442. Lichty, J.J., et al., *Comparison of affinity tags for protein purification*. Protein Expr Purif, 2005. **41**(1): p. 98-105.

- 443. Guo, F. and G. Zhu, Presence and removal of a contaminating NADH oxidation activity in recombinant maltose-binding protein fusion proteins expressed in Escherichia coli. Biotechniques, 2012. **52**(4): p. 247-53.
- 444. Malhotra, A., *Tagging for protein expression*. Methods Enzymol, 2009. **463**: p. 239-58.
- 445. Terpe, K., Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol, 2003. **60**(5): p. 523-33.
- 446. Zhao, X., G. Li, and S. Liang, *Several affinity tags commonly used in chromatographic purification*. J Anal Methods Chem, 2013. **2013**: p. 581093.

8 Appendices

8.1 Candidate novel interacting proteins of full-length WT β-catenin in SW480.

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	116 kDa U5 small nuclear ribonucleoprotein component										
	OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 -										
Q15029	[U5S1_HUMAN]	5	6	0.001	n/a	n/a			4	3	2
	182 kDa tankyrase-1-binding protein OS=Homo sapiens						629.3	0.000			
Q9C0C2	GN=TNKS1BP1 PE=1 SV=4 - [TB182_HUMAN]	4	5	lost	0.003	0.001	1	5	lost	3	3
	1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase										
	gamma-1 OS=Homo sapiens GN=PLCG1 PE=1 SV=1 -										
P19174	[PLCG1_HUMAN]	1	2	lost	n/a	n/a	0	0	lost	1	1
	26S protease regulatory subunit 10B OS=Homo sapiens							5.8E-			
P62333	GN=PSMC6 PE=1 SV=1 - [PRS10_HUMAN]	6	6	0.017	0.002	0.001	93.02	05	6	3	1
	26S protease regulatory subunit 6A OS=Homo sapiens										
P17980	GN=PSMC3 PE=1 SV=3 - [PRS6A_HUMAN]	8	12	0.220	0.137	0.185	13.27	0.003	8	8	6
	26S protease regulatory subunit 6B OS=Homo sapiens							0.000			
P43686	GN=PSMC4 PE=1 SV=2 - [PRS6B_HUMAN]	6	7	0.008	0.043	0.001	37.19	4	4	6	5
	26S protease regulatory subunit 8 OS=Homo sapiens										
P62195	GN=PSMC5 PE=1 SV=1 - [PRS8_HUMAN]	8	9	0.344	0.023	0.015	3.43	0.04	8	6	4
	26S proteasome non-ATPase regulatory subunit 1 OS=Homo										
Q99460	sapiens GN=PSMD1 PE=1 SV=2 - [PSMD1_HUMAN]	5	6	n/a	0.002	0.015	80.95	0.004	2	3	2
	26S proteasome non-ATPase regulatory subunit 14 OS=Homo										
O00487	sapiens GN=PSMD14 PE=1 SV=1 - [PSDE_HUMAN]	3	3	0.008	0.233	0.284	3.83	0.03	2	3	2
	26S proteasome non-ATPase regulatory subunit 2 OS=Homo										
Q13200	sapiens GN=PSMD2 PE=1 SV=3 - [PSMD2_HUMAN]	13	14	0.265	0.259	0.223	18.85	0.001	9	8	6

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	116 kDa U5 small nuclear ribonucleoprotein component										
	OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 -										
Q15029	[U5S1_HUMAN]	5	6	0.001	n/a	n/a			4	3	2
	26S proteasome non-ATPase regulatory subunit 3 OS=Homo										
O43242	sapiens GN=PSMD3 PE=1 SV=2 - [PSMD3_HUMAN]	13	14	0.275	0.232	0.001	3.88	0.03	7	7	7
	2-oxoglutarate dehydrogenase, mitochondrial OS=Homo										
Q02218	sapiens GN=OGDH PE=1 SV=3 - [ODO1_HUMAN]	3	4	n/a	n/a	0.001			1	2	3
	39S ribosomal protein L37, mitochondrial OS=Homo sapiens							0.000			
Q9BZE1	GN=MRPL37 PE=1 SV=2 - [RM37_HUMAN]	6	7	0.039	0.015	0.001	43.61	3	5	2	3
	3-hydroxyacyl-CoA dehydrogenase type-2 OS=Homo sapiens										
Q99714	GN=HSD17B10 PE=1 SV=3 - [HCD2_HUMAN]	6	6	0.008	0.266	0.194	4.48	0.02	1	6	5
	40S ribosomal protein S18 OS=Homo sapiens GN=RPS18										
P62269	PE=1 SV=3 - [RS18_HUMAN]	12	13	0.283	0.388	0.176	3.56	0.04	9	10	11
	40S ribosomal protein S3 OS=Homo sapiens GN=RPS3 PE=1										
P23396	SV=2 - [RS3_HUMAN]	19	19	0.224	0.423	0.213	3.13	0.04	18	19	17
	4-trimethylaminobutyraldehyde dehydrogenase OS=Homo						3982.	8.0E-			
P49189	sapiens GN=ALDH9A1 PE=1 SV=3 - [AL9A1_HUMAN]	3	4	0.001	0.002	n/a	02	05	3	2	1
	60S ribosomal protein L10a OS=Homo sapiens GN=RPL10A										
P62906	PE=1 SV=2 - [RL10A_HUMAN]	10	10	0.360	0.440	0.273	2.94	0.05	5	7	9
	6-phosphofructokinase type C OS=Homo sapiens GN=PFKP										
Q01813	PE=1 SV=2 - [K6PP_HUMAN]	7	12	0.061	0.248	0.001	5.34	0.02	6	9	3
	6-phosphofructokinase, liver type OS=Homo sapiens										
P17858	GN=PFKL PE=1 SV=6 - [K6PL_HUMAN]	2	6	n/a	0.002	n/a			3	4	1
	6-phosphofructokinase, muscle type OS=Homo sapiens										
P08237	GN=PFKM PE=1 SV=2 - [K6PF_HUMAN]	4	6	0.002	0.160	0.011	8.64	0.007	3	4	3
Q9UBM	7-dehydrocholesterol reductase OS=Homo sapiens GN=DHCR7										
7	PE=1 SV=1 - [DHCR7_HUMAN]	5	5	0.272	0.033	0.017	4.75	0.02	5	3	2

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	116 kDa U5 small nuclear ribonucleoprotein component										
	OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 -										
Q15029	[U5S1_HUMAN]	5	6	0.001	n/a	n/a			4	3	2
	Acetyl-coenzyme A synthetase, cytoplasmic OS=Homo sapiens										
Q9NR19	GN=ACSS2 PE=1 SV=1 - [ACSA_HUMAN]	4	5	n/a	0.001	0.001	0	0	3	3	3
	Aconitate hydratase, mitochondrial OS=Homo sapiens										
Q99798	GN=ACO2 PE=1 SV=2 - [ACON_HUMAN]	3	5	0.097	0.004	n/a	9.59	0.03	2	2	1
	Actin, alpha cardiac muscle 1 OS=Homo sapiens GN=ACTC1										
P68032	PE=1 SV=1 - [ACTC_HUMAN]	1	12	0.332	0.406	0.257	3.91	0.03	11	12	10
	Actin-related protein 2 OS=Homo sapiens GN=ACTR2 PE=1										
P61160	SV=1 - [ARP2_HUMAN]	7	8	0.265	0.002	0.001	4.68	0.02	4	5	3
	Actin-related protein 2/3 complex subunit 3 OS=Homo sapiens										
O15145	GN=ARPC3 PE=1 SV=3 - [ARPC3_HUMAN]	6	6	0.002	0.262	0.321	3.11	0.04	1	5	5
	Actin-related protein 2/3 complex subunit 4 OS=Homo sapiens										
P59998	GN=ARPC4 PE=1 SV=3 - [ARPC4_HUMAN]	6	6	0.380	0.352	0.205	3.46	0.04	4	5	4
	Acyl-CoA desaturase OS=Homo sapiens GN=SCD PE=1 SV=2										
O00767	- [ACOD_HUMAN]	2	2	0.004	0.282	0.013	4.39	0.02	1	2	2
	Acyl-coenzyme A thioesterase 1 OS=Homo sapiens										
Q86TX2	GN=ACOT1 PE=1 SV=1 - [ACOT1_HUMAN]	2	2	0.021	0.359	0.001	3.21	0.04	2	1	1
	Adenomatous polyposis coli protein OS=Homo sapiens						985.7	0.000			
P25054	GN=APC PE=1 SV=2 - [APC_HUMAN]	5	7	lost	0.002	0.001	2	3	lost	5	5
	ADP/ATP translocase 1 OS=Homo sapiens GN=SLC25A4										
P12235	PE=1 SV=4 - [ADT1_HUMAN]	2	9	n/a	0.425	n/a			4	8	6
	ADP/ATP translocase 2 OS=Homo sapiens GN=SLC25A5										
P05141	PE=1 SV=7 - [ADT2_HUMAN]	5	14	0.321	0.355	0.286	8.96	0.006	10	11	9
	ADP-ribosylation factor 5 OS=Homo sapiens GN=ARF5 PE=1										
P84085	SV=2 - [ARF5_HUMAN]	1	4	n/a	n/a	0.001			4	4	4

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	116 kDa U5 small nuclear ribonucleoprotein component										
	OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 -										
Q15029	[U5S1_HUMAN]	5	6	0.001	n/a	n/a			4	3	2
	ADP-ribosylation factor 6 OS=Homo sapiens GN=ARF6 PE=1										
P62330	SV=2 - [ARF6_HUMAN]	2	4	n/a	0.409	n/a			1	4	1
	AH receptor-interacting protein OS=Homo sapiens GN=AIP										
O00170	PE=1 SV=2 - [AIP_HUMAN]	6	8	0.001	0.373	0.001	3.02	0.05	2	4	6
	Alcohol dehydrogenase class-3 OS=Homo sapiens GN=ADH5										
P11766	PE=1 SV=4 - [ADHX_HUMAN]	9	9	0.386	0.331	0.275	5.28	0.02	2	7	7
	Alpha-1-antitrypsin OS=Homo sapiens GN=SERPINA1 PE=1						6445.	1.2E-			
P01009	SV=3 - [A1AT_HUMAN]	24	24	0.001	0.001	0.001	46	08	8	24	15
	Alpha-2-HS-glycoprotein OS=Homo sapiens GN=AHSG PE=1						1248	3.2E-			
P02765	SV=1 - [FETUA_HUMAN]	4	5	0.001	0.001	0.001	9.61	09	5	5	4
	Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1						3518.	4.0E-			
P01023	SV=3 - [A2MG_HUMAN]	5	6	0.001	0.001	0.001	04	08	4	6	5
	Alpha-actinin-4 OS=Homo sapiens GN=ACTN4 PE=1 SV=2 -										
O43707	[ACTN4_HUMAN]	33	53	0.411	0.358	0.267	3.68	0.03	45	47	43
	Alpha-fetoprotein OS=Homo sapiens GN=AFP PE=1 SV=1 -										
P02771	[FETA_HUMAN]	3	4	n/a	0.001	0.001	0	0	2	2	3
	Angiomotin-like protein 1 OS=Homo sapiens GN=AMOTL1										
Q8IY63	PE=1 SV=1 - [AMOL1_HUMAN]	1	2	lost	n/a	0.352			lost	2	1
	Annexin A11 OS=Homo sapiens GN=ANXA11 PE=1 SV=1 -										
P50995	[ANX11_HUMAN]	5	6	0.059	0.001	n/a	16.19	0.02	4	2	2
	Antithrombin-III OS=Homo sapiens GN=SERPINC1 PE=1						5266.	6.0E-			
P01008	SV=1 - [ANT3_HUMAN]	5	5	0.001	0.002	n/a	17	05	4	2	1
	AP-2 complex subunit beta OS=Homo sapiens GN=AP2B1										
P63010	PE=1 SV=1 - [AP2B1_HUMAN]	6	7	n/a	0.020	0.001	52.86	0.006	1	6	2

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	116 kDa U5 small nuclear ribonucleoprotein component										
	OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 -										
Q15029	[U5S1_HUMAN]	5	6	0.001	n/a	n/a			4	3	2
	Apolipoprotein A-I OS=Homo sapiens GN=APOA1 PE=1										
P02647	SV=1 - [APOA1_HUMAN]	6	7	n/a	0.001	0.001	0	0	1	6	1
	Apolipoprotein B-100 OS=Homo sapiens GN=APOB PE=1										
P04114	SV=2 - [APOB_HUMAN]	52	53	n/a	0.001	0.001	0	0	1	52	29
	Arginase-2, mitochondrial OS=Homo sapiens GN=ARG2 PE=1										
P78540	SV=1 - [ARGI2_HUMAN]	6	6	0.161	0.377	0.155	3.68	0.03	3	4	4
Q9UBB	Ataxin-10 OS=Homo sapiens GN=ATXN10 PE=1 SV=1 -						373.2	0.000			
4	[ATX10_HUMAN]	5	6	0.004	0.001	n/a	1	9	6	4	3
	ATP synthase subunit alpha, mitochondrial OS=Homo sapiens										
P25705	GN=ATP5A1 PE=1 SV=1 - [ATPA_HUMAN]	14	14	0.291	0.311	0.114	4.17	0.03	10	10	7
	ATP synthase subunit O, mitochondrial OS=Homo sapiens										
P48047	GN=ATP5O PE=1 SV=1 - [ATPO_HUMAN]	9	9	0.008	0.158	0.084	9.61	0.005	6	7	6
	ATPase family AAA domain-containing protein 3B OS=Homo							0.000			
Q5T9A4	sapiens GN=ATAD3B PE=1 SV=1 - [ATD3B_HUMAN]	6	7	0.026	0.001	0.001	59.25	1	3	5	5
	ATP-binding cassette sub-family A member 3 OS=Homo										
Q99758	sapiens GN=ABCA3 PE=1 SV=2 - [ABCA3_HUMAN]	1	1	lost	0.001	0.001	0	0	lost	1	1
	ATP-binding cassette sub-family E member 1 OS=Homo										
P61221	sapiens GN=ABCE1 PE=1 SV=1 - [ABCE1_HUMAN]	10	10	0.203	0.002	0.194	5.58	0.02	6	7	5
	ATP-dependent DNA helicase Q1 OS=Homo sapiens										
P46063	GN=RECQL PE=1 SV=3 - [RECQ1_HUMAN]	5	5	n/a	0.362	n/a			1	5	2
	ATP-dependent RNA helicase DDX39A OS=Homo sapiens										
O00148	GN=DDX39A PE=1 SV=2 - [DX39A_HUMAN]	2	11	0.289	0.015	0.282	3.38	0.04	7	9	5
	Basic leucine zipper and W2 domain-containing protein 2						1544.	2.1E-			
Q9Y6E2	OS=Homo sapiens GN=BZW2 PE=1 SV=1 -	3	6	0.002	0.001	0.001	42	07	4	4	4

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	116 kDa U5 small nuclear ribonucleoprotein component										
	OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 -										
Q15029	[U5S1_HUMAN]	5	6	0.001	n/a	n/a			4	3	2
	[BZW2_HUMAN]										
	Beta-galactosidase OS=Homo sapiens GN=GLB1 PE=1 SV=2 -						3117	5.1E-			
P16278	[BGAL_HUMAN]	4	5	0.001	0.001	0.001	7.21	10	3	2	1
	Beta-parvin OS=Homo sapiens GN=PARVB PE=1 SV=1 -										
Q9HBI1	[PARVB_HUMAN]	1	2	n/a	n/a	0.001			1	1	2
	Biliverdin reductase A OS=Homo sapiens GN=BLVRA PE=1										
P53004	SV=2 - [BIEA_HUMAN]	5	6	0.259	0.015	0.001	4.87	0.02	3	3	2
Q9NWV	BRISC and BRCA1-A complex member 1 OS=Homo sapiens										
8	GN=BABAM1 PE=1 SV=1 - [BABA1_HUMAN]	1	1	n/a	n/a	0.987			1	1	1
	C-1-tetrahydrofolate synthase, cytoplasmic OS=Homo sapiens										
P11586	GN=MTHFD1 PE=1 SV=3 - [C1TC_HUMAN]	25	25	0.308	0.276	0.001	3.13	0.04	21	22	15
	Calcium-binding protein 39 OS=Homo sapiens GN=CAB39										
Q9Y376	PE=1 SV=1 - [CAB39_HUMAN]	2	3	0.337	n/a	n/a			2	3	1
	Calpain-1 catalytic subunit OS=Homo sapiens GN=CAPN1										
P07384	PE=1 SV=1 - [CAN1_HUMAN]	6	6	0.280	0.166	0.001	4.33	0.02	3	6	3
	Calponin-2 OS=Homo sapiens GN=CNN2 PE=1 SV=4 -										
Q99439	[CNN2_HUMAN]	6	6	0.001	0.391	0.001	2.84	0.05	2	3	4
	Carbonyl reductase [NADPH] 3 OS=Homo sapiens GN=CBR3										
075828	PE=1 SV=3 - [CBR3_HUMAN]	1	3	n/a	n/a	0.073			1	2	3
Q9BXW	Cat eye syndrome critical region protein 5 OS=Homo sapiens										
7	GN=CECR5 PE=1 SV=1 - [CECR5_HUMAN]	3	3	0.002	n/a	n/a			1	2	2
	Catenin alpha-1 OS=Homo sapiens GN=CTNNA1 PE=1 SV=1						646.0	1.2E-			
P35221	- [CTNA1_HUMAN]	33	35	0.003	0.003	0.001	9	06	30	28	23

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	116 kDa U5 small nuclear ribonucleoprotein component										
	OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 -										
Q15029	[U5S1_HUMAN]	5	6	0.001	n/a	n/a			4	3	2
	Catenin beta-1 OS=Homo sapiens GN=CTNNB1 PE=1 SV=1 -						4188.	2.8E-			
P35222	[CTNB1_HUMAN]	32	39	0.001	0.001	0.001	69	08	36	37	39
	Catenin delta-1 OS=Homo sapiens GN=CTNND1 PE=1 SV=1 -						1615.	1.9E-			
O60716	[CTND1_HUMAN]	4	4	0.002	0.002	0.001	70	07	1	3	2
	Cation-independent mannose-6-phosphate receptor OS=Homo						615.5	0.000			
P11717	sapiens GN=IGF2R PE=1 SV=3 - [MPRI_HUMAN]	11	11	lost	0.003	0.001	1	5	lost	2	11
A5YKK	CCR4-NOT transcription complex subunit 1 OS=Homo sapiens						2371	1.3E-			
6	GN=CNOT1 PE=1 SV=2 - [CNOT1_HUMAN]	6	6	lost	0.001	0.001	4.67	05	lost	2	6
Q7LBR	Charged multivesicular body protein 1b OS=Homo sapiens										
1	GN=CHMP1B PE=1 SV=1 - [CHM1B_HUMAN]	4	4	n/a	n/a	n/a	0	0	1	3	1
	Chromobox protein homolog 3 OS=Homo sapiens GN=CBX3							0.000			
Q13185	PE=1 SV=4 - [CBX3_HUMAN]	5	5	0.001	0.016	0.028	62.41	1	1	3	4
	Chromodomain-helicase-DNA-binding protein 4 OS=Homo										
Q14839	sapiens GN=CHD4 PE=1 SV=2 - [CHD4_HUMAN]	4	7	n/a	n/a	0.001			1	3	6
	Clathrin light chain A OS=Homo sapiens GN=CLTA PE=1										
P09496	SV=1 - [CLCA_HUMAN]	4	5	0.291	0.016	0.197	4.12	0.03	3	3	5
	Cleavage and polyadenylation specificity factor subunit 6										
	OS=Homo sapiens GN=CPSF6 PE=1 SV=2 -										
Q16630	[CPSF6_HUMAN]	2	2	0.096	0.002	n/a	9.57	0.03	1	2	1
	Coatomer subunit alpha OS=Homo sapiens GN=COPA PE=1										
P53621	SV=2 - [COPA_HUMAN]	19	20	0.002	0.297	0.001	4.06	0.03	6	15	15
	Coatomer subunit beta' OS=Homo sapiens GN=COPB2 PE=1										
P35606	SV=2 - [COPB2_HUMAN]	7	8	n/a	n/a	0.001			4	3	3
014579	Coatomer subunit epsilon OS=Homo sapiens GN=COPE PE=1	3	5	n/a	0.444	n/a			2	4	5

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	116 kDa U5 small nuclear ribonucleoprotein component										
	OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 -										
Q15029	[U5S1_HUMAN]	5	6	0.001	n/a	n/a			4	3	2
	SV=3 - [COPE_HUMAN]										
	Coatomer subunit zeta-1 OS=Homo sapiens GN=COPZ1 PE=1										
P61923	SV=1 - [COPZ1_HUMAN]	3	3	0.460	0.462	0.423	4.06	0.03	2	2	1
	Cofilin-2 OS=Homo sapiens GN=CFL2 PE=1 SV=1 -										
Q9Y281	[COF2_HUMAN]	1	5	0.464	n/a	n/a			3	4	4
Q9NVE	Coiled-coil domain-containing protein 87 OS=Homo sapiens										
4	GN=CCDC87 PE=2 SV=2 - [CCD87_HUMAN]	1	2	0.001	0.001	0.001	0	0	2	1	1
	Coiled-coil-helix-coiled-coil-helix domain-containing protein 3,										
Q9NX6	mitochondrial OS=Homo sapiens GN=CHCHD3 PE=1 SV=1 -										
3	[CHCH3_HUMAN]	4	4	0.092	n/a	0.135	17.92	0.02	3	2	2
	Complement factor D OS=Homo sapiens GN=CFD PE=1 SV=5										
P00746	- [CFAD_HUMAN]	1	1	0.001	0.001	0.001	0	0	1	1	1
	Condensin complex subunit 1 OS=Homo sapiens GN=NCAPD2										
Q15021	PE=1 SV=3 - [CND1_HUMAN]	9	10	lost	0.001	0.001	0	0	lost	7	7
	Constitutive coactivator of PPAR-gamma-like protein 1										
Q9NZB	OS=Homo sapiens GN=FAM120A PE=1 SV=2 -										
2	[F120A_HUMAN]	5	5	0.418	n/a	n/a			2	3	3
	COP9 signalosome complex subunit 5 OS=Homo sapiens										
Q92905	GN=COPS5 PE=1 SV=4 - [CSN5_HUMAN]	4	4	0.010	0.001	0.224	5.77	0.01	1	2	1
	Creatine kinase B-type OS=Homo sapiens GN=CKB PE=1										
P12277	SV=1 - [KCRB_HUMAN]	5	5	0.381	0.018	0.167	2.95	0.05	3	3	2
	Cullin-associated NEDD8-dissociated protein 1 OS=Homo										
Q86VP6	sapiens GN=CAND1 PE=1 SV=2 - [CAND1_HUMAN]	12	14	0.020	0.292	0.001	4.21	0.03	5	9	5
P06493	Cyclin-dependent kinase 1 OS=Homo sapiens GN=CDK1 PE=1	11	13	0.075	0.227	0.131	8.02	0.008	7	10	12

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	116 kDa U5 small nuclear ribonucleoprotein component										
	OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 -										
Q15029	[U5S1_HUMAN]	5	6	0.001	n/a	n/a			4	3	2
	SV=3 - [CDK1_HUMAN]										
	Cyclin-dependent kinase 2 OS=Homo sapiens GN=CDK2 PE=1						230.8	9.4E-			
P24941	SV=2 - [CDK2_HUMAN]	3	6	0.007	0.001	0.001	7	06	5	4	3
	Cysteine and glycine-rich protein 1 OS=Homo sapiens										
P21291	GN=CSRP1 PE=1 SV=3 - [CSRP1_HUMAN]	5	5	0.061	0.201	0.117	9.16	0.006	3	3	4
	Cytochrome c oxidase subunit 2 OS=Homo sapiens GN=MT-										
P00403	CO2 PE=1 SV=1 - [COX2_HUMAN]	4	4	0.355	0.001	0.014	3.26	0.04	3	4	2
Q8NCM	Cytoplasmic dynein 2 heavy chain 1 OS=Homo sapiens										
8	GN=DYNC2H1 PE=1 SV=4 - [DYHC2_HUMAN]	1	4	n/a	0.004	n/a			3	2	1
	Cytoplasmic FMR1-interacting protein 1 OS=Homo sapiens										
Q7L576	GN=CYFIP1 PE=1 SV=1 - [CYFP1_HUMAN]	5	6	0.011	0.272	0.001	4.57	0.02	4	3	4
	Cytoskeleton-associated protein 5 OS=Homo sapiens										
Q14008	GN=CKAP5 PE=1 SV=3 - [CKAP5_HUMAN]	4	4	lost	0.024	0.001	42.61	0.007	lost	2	4
	Dedicator of cytokinesis protein 9 OS=Homo sapiens						1106.	0.000			
Q9BZ29	GN=DOCK9 PE=1 SV=2 - [DOCK9_HUMAN]	15	17	lost	0.002	0.001	67	3	lost	9	17
	Delta-1-pyrroline-5-carboxylate synthase OS=Homo sapiens						680.0	1.1E-			
P54886	GN=ALDH18A1 PE=1 SV=2 - [P5CS_HUMAN]	4	5	0.003	0.001	0.001	8	06	4	2	1
	Dihydrolipoyllysine-residue succinyltransferase component of										
	2-oxoglutarate dehydrogenase complex, mitochondrial							0.000			
P36957	OS=Homo sapiens GN=DLST PE=1 SV=4 - [ODO2_HUMAN]	4	5	0.056	0.003	0.001	26.61	7	2	3	2
Q9NY3	Dipeptidyl peptidase 3 OS=Homo sapiens GN=DPP3 PE=1										
3	SV=2 - [DPP3_HUMAN]	3	4	0.465	n/a	n/a			1	3	1
	DNA (cytosine-5)-methyltransferase 1 OS=Homo sapiens						1888.	0.000			
P26358	GN=DNMT1 PE=1 SV=2 - [DNMT1_HUMAN]	2	2	lost	0.002	0.001	73	2	lost	1	2

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	116 kDa U5 small nuclear ribonucleoprotein component										
	OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 -										
Q15029	[U5S1_HUMAN]	5	6	0.001	n/a	n/a			4	3	2
	DNA polymerase delta catalytic subunit OS=Homo sapiens										
P28340	GN=POLD1 PE=1 SV=2 - [DPOD1_HUMAN]	2	3	n/a	n/a	n/a	0	0	1	2	2
	DNA replication licensing factor MCM2 OS=Homo sapiens										
P49736	GN=MCM2 PE=1 SV=4 - [MCM2_HUMAN]	12	14	0.022	0.305	0.001	3.98	0.03	12	10	6
	DNA replication licensing factor MCM3 OS=Homo sapiens										
P25205	GN=MCM3 PE=1 SV=3 - [MCM3_HUMAN]	17	18	0.255	0.345	0.001	2.91	0.05	14	12	9
	DNA replication licensing factor MCM4 OS=Homo sapiens										
P33991	GN=MCM4 PE=1 SV=5 - [MCM4_HUMAN]	12	13	0.249	0.128	0.001	5.24	0.02	7	11	7
	DNA replication licensing factor MCM5 OS=Homo sapiens										
P33992	GN=MCM5 PE=1 SV=5 - [MCM5_HUMAN]	22	25	0.104	0.001	0.001	13.56	0.003	11	18	15
	DNA replication licensing factor MCM7 OS=Homo sapiens										
P33993	GN=MCM7 PE=1 SV=4 - [MCM7_HUMAN]	20	20	0.143	0.222	0.001	5.84	0.01	14	11	9
	DNA-(apurinic or apyrimidinic site) lyase OS=Homo sapiens										
P27695	GN=APEX1 PE=1 SV=2 - [APEX1_HUMAN]	6	8	0.148	0.308	0.164	5.77	0.01	4	7	6
	DNA-dependent protein kinase catalytic subunit OS=Homo										
P78527	sapiens GN=PRKDC PE=1 SV=3 - [PRKDC_HUMAN]	44	52	lost	0.196	0.136	11.10	0.03	lost	34	45
	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase										
	subunit 1 OS=Homo sapiens GN=RPN1 PE=1 SV=1 -										
P04843	[RPN1_HUMAN]	13	15	0.282	0.001	0.020	4.40	0.02	12	8	5
	Doublesex- and mab-3-related transcription factor A1										
Q5VZB	OS=Homo sapiens GN=DMRTA1 PE=2 SV=1 -										
9	[DMRTA_HUMAN]	1	3	n/a	n/a	n/a	0	0	2	3	2
	Dual specificity mitogen-activated protein kinase kinase 1										
Q02750	OS=Homo sapiens GN=MAP2K1 PE=1 SV=2 -	1	3	n/a	n/a	n/a	0	0	1	2	3

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	116 kDa U5 small nuclear ribonucleoprotein component										
	OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 -										
Q15029	[U5S1_HUMAN]	5	6	0.001	n/a	n/a			4	3	2
	[MP2K1_HUMAN]										
	Dual specificity mitogen-activated protein kinase kinase 2										
	OS=Homo sapiens GN=MAP2K2 PE=1 SV=1 -										
P36507	[MP2K2_HUMAN]	1	2	n/a	n/a	n/a	0	0	2	2	1
	Dynactin subunit 2 OS=Homo sapiens GN=DCTN2 PE=1							0.000			
Q13561	SV=4 - [DCTN2_HUMAN]	3	3	0.030	0.001	0.016	58.84	1	3	2	2
	E3 ubiquitin-protein ligase HUWE1 OS=Homo sapiens						1211.	0.000			
Q7Z6Z7	GN=HUWE1 PE=1 SV=3 - [HUWE1_HUMAN]	12	14	lost	0.002	0.001	67	3	lost	7	10
	E3 ubiquitin-protein ligase RBX1 OS=Homo sapiens										
P62877	GN=RBX1 PE=1 SV=1 - [RBX1_HUMAN]	2	2	n/a	0.214	n/a			1	2	1
	E3 ubiquitin-protein ligase TRIM32 OS=Homo sapiens						567.9	1.5E-			
Q13049	GN=TRIM32 PE=1 SV=2 - [TRI32_HUMAN]	3	3	0.001	0.004	0.001	8	06	2	2	1
	E3 ubiquitin-protein ligase UBR4 OS=Homo sapiens						1198.	0.000			
Q5T4S7	GN=UBR4 PE=1 SV=1 - [UBR4_HUMAN]	4	6	lost	0.002	0.001	51	3	lost	4	4
	EF-hand domain-containing protein D2 OS=Homo sapiens										
Q96C19	GN=EFHD2 PE=1 SV=1 - [EFHD2_HUMAN]	9	11	0.348	0.437	0.254	2.91	0.05	6	9	9
	Electron transfer flavoprotein subunit beta OS=Homo sapiens										
P38117	GN=ETFB PE=1 SV=3 - [ETFB_HUMAN]	9	9	0.006	0.313	0.196	3.68	0.03	3	7	6
	Elongation factor Ts, mitochondrial OS=Homo sapiens										
P43897	GN=TSFM PE=1 SV=2 - [EFTS_HUMAN]	4	5	0.177	0.335	0.012	3.50	0.04	2	3	3
	Elongation factor Tu, mitochondrial OS=Homo sapiens										
P49411	GN=TUFM PE=1 SV=2 - [EFTU_HUMAN]	15	16	0.456	0.420	0.340	2.78	0.05	13	11	8
	Eukaryotic initiation factor 4A-II OS=Homo sapiens										
Q14240	GN=EIF4A2 PE=1 SV=2 - [IF4A2_HUMAN]	4	15	0.221	0.017	0.011	6.05	0.01	12	10	11

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	116 kDa U5 small nuclear ribonucleoprotein component										
	OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 -										
Q15029	[U5S1_HUMAN]	5	6	0.001	n/a	n/a			4	3	2
	Eukaryotic translation initiation factor 3 subunit C OS=Homo							0.000			
Q99613	sapiens GN=EIF3C PE=1 SV=1 - [EIF3C_HUMAN]	5	5	0.026	0.001	0.001	57.98	1	4	4	2
	Eukaryotic translation initiation factor 3 subunit H OS=Homo						475.2	2.2E-			
O15372	sapiens GN=EIF3H PE=1 SV=1 - [EIF3H_HUMAN]	3	4	0.004	0.001	0.001	9	06	3	3	3
	Eukaryotic translation initiation factor 4B OS=Homo sapiens										
P23588	GN=EIF4B PE=1 SV=2 - [IF4B_HUMAN]	8	8	0.381	0.141	0.016	2.99	0.05	6	4	2
Q9NQT	Exosome complex component RRP40 OS=Homo sapiens										
5	GN=EXOSC3 PE=1 SV=3 - [EXOS3_HUMAN]	3	3	0.073	0.045	0.001	22.03	0.001	1	3	2
Q9HAV	Exportin-5 OS=Homo sapiens GN=XPO5 PE=1 SV=1 -										
4	[XPO5_HUMAN]	2	5	lost	n/a	n/a	0	0	lost	3	2
	Exportin-7 OS=Homo sapiens GN=XPO7 PE=1 SV=3 -						643.7	0.000			
Q9UIA9	[XPO7_HUMAN]	4	4	0.003	0.001	n/a	7	5	2	2	1
	Extended synaptotagmin-1 OS=Homo sapiens GN=ESYT1										
Q9BSJ8	PE=1 SV=1 - [ESYT1_HUMAN]	7	8	0.371	0.003	0.001	3.04	0.05	3	4	3
	F-actin-capping protein subunit alpha-1 OS=Homo sapiens										
P52907	GN=CAPZA1 PE=1 SV=3 - [CAZA1_HUMAN]	3	6	0.347	0.299	n/a	7.31	0.04	4	3	4
	Far upstream element-binding protein 2 OS=Homo sapiens										
Q92945	GN=KHSRP PE=1 SV=4 - [FUBP2_HUMAN]	4	6	0.312	0.391	0.330	6.51	0.01	5	2	3
	Fatty acid synthase OS=Homo sapiens GN=FASN PE=1 SV=3										
P49327	- [FAS_HUMAN]	65	69	0.087	0.371	0.235	3.29	0.04	4	59	61
Q2WGJ	Fer-1-like protein 6 OS=Homo sapiens GN=FER1L6 PE=2										
9	SV=2 - [FR1L6_HUMAN]	1	2	lost	n/a	n/a	0	0	lost	1	2
	Four and a half LIM domains protein 2 OS=Homo sapiens						1964	1.3E-			
Q14192	GN=FHL2 PE=1 SV=3 - [FHL2_HUMAN]	13	13	0.001	0.001	0.001	9.29	09	6	11	11

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	116 kDa U5 small nuclear ribonucleoprotein component										
	OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 -										
Q15029	[U5S1_HUMAN]	5	6	0.001	n/a	n/a			4	3	2
	Fumarate hydratase, mitochondrial OS=Homo sapiens GN=FH						194.6	1.3E-			
P07954	PE=1 SV=3 - [FUMH_HUMAN]	5	6	0.003	0.001	0.009	2	05	6	2	2
	Fumarylacetoacetase OS=Homo sapiens GN=FAH PE=1 SV=2										
P16930	- [FAAA_HUMAN]	1	1	0.004	0.324	0.001	3.64	0.03	1	1	1
	Galactokinase OS=Homo sapiens GN=GALK1 PE=1 SV=1 -						2589.	0.000			
P51570	[GALK1_HUMAN]	3	3	0.001	n/a	0.001	56	1	3	1	1
Q8TEQ	Gem-associated protein 5 OS=Homo sapiens GN=GEMIN5						156.6				
6	PE=1 SV=3 - [GEMI5_HUMAN]	7	8	lost	0.025	0.019	8	0.002	lost	5	5
	General transcription factor II-I OS=Homo sapiens GN=GTF2I						425.7	2.8E-			
P78347	PE=1 SV=2 - [GTF2I_HUMAN]	7	9	0.003	0.005	0.001	4	06	3	5	3
	Glucose-6-phosphate 1-dehydrogenase OS=Homo sapiens							0.000			
P11413	GN=G6PD PE=1 SV=4 - [G6PD_HUMAN]	9	9	0.062	0.001	0.013	25.35	8	5	4	3
	Glucosidase 2 subunit beta OS=Homo sapiens GN=PRKCSH										
P14314	PE=1 SV=2 - [GLU2B_HUMAN]	6	6	0.051	0.003	0.180	7.97	0.008	2	4	4
	Glutathione S-transferase omega-1 OS=Homo sapiens										
P78417	GN=GSTO1 PE=1 SV=2 - [GSTO1_HUMAN]	11	12	0.267	0.349	0.148	4.20	0.03	6	10	10
	Glutathione S-transferase theta-1 OS=Homo sapiens										
P30711	GN=GSTT1 PE=1 SV=4 - [GSTT1_HUMAN]	1	1	0.001	0.001	0.001	0	0	1	1	1
	Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens										
P04406	GN=GAPDH PE=1 SV=3 - [G3P_HUMAN]	12	13	0.427	0.373	0.253	2.90	0.05	10	10	10
	Glycogen phosphorylase, brain form OS=Homo sapiens										
P11216	GN=PYGB PE=1 SV=5 - [PYGB_HUMAN]	7	11	0.249	0.001	0.112	5.30	0.02	2	10	7
	Glycogen phosphorylase, liver form OS=Homo sapiens						4849.	2.1E-			
P06737	GN=PYGL PE=1 SV=4 - [PYGL_HUMAN]	9	15	0.001	0.001	0.001	75	08	2	7	11

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	116 kDa U5 small nuclear ribonucleoprotein component										
	OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 -										
Q15029	[U5S1_HUMAN]	5	6	0.001	n/a	n/a			4	3	2
	Golgi-specific brefeldin A-resistance guanine nucleotide										
	exchange factor 1 OS=Homo sapiens GN=GBF1 PE=1 SV=2 -										
Q92538	[GBF1_HUMAN]	1	3	n/a	n/a	0.001			2	2	2
	GTP:AMP phosphotransferase, mitochondrial OS=Homo										
Q9UIJ7	sapiens GN=AK3 PE=1 SV=4 - [KAD3_HUMAN]	3	4	0.055	0.300	0.179	4.54	0.02	1	3	2
	GTPase-activating protein and VPS9 domain-containing protein										
	1 OS=Homo sapiens GN=GAPVD1 PE=1 SV=2 -										
Q14C86	[GAPD1_HUMAN]	2	3	lost	0.003	n/a			lost	3	1
	GTP-binding protein Rheb OS=Homo sapiens GN=RHEB										
Q15382	PE=1 SV=1 - [RHEB_HUMAN]	2	2	0.307	0.001	0.001	3.89	0.03	1	1	1
	GTP-binding protein SAR1b OS=Homo sapiens GN=SAR1B										
Q9Y6B6	PE=1 SV=1 - [SAR1B_HUMAN]	1	3	n/a	0.227	n/a			2	2	2
	Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit										
	gamma-12 OS=Homo sapiens GN=GNG12 PE=1 SV=3 -							0.000			
Q9UBI6	[GBG12_HUMAN]	4	4	0.002	0.032	0.010	55.34	2	3	4	2
	Guanine nucleotide-binding protein subunit beta-2-like 1										
	OS=Homo sapiens GN=GNB2L1 PE=1 SV=3 -										
P63244	[GBLP_HUMAN]	17	18	0.375	0.405	0.217	2.87	0.05	13	14	15
	Heterogeneous nuclear ribonucleoprotein L OS=Homo sapiens										
P14866	GN=HNRNPL PE=1 SV=2 - [HNRPL_HUMAN]	4	4	0.022	0.002	n/a	47.85	0.007	1	4	2
	Heterogeneous nuclear ribonucleoprotein U-like protein 2										
Q1KMD	OS=Homo sapiens GN=HNRNPUL2 PE=1 SV=1 -										
3	[HNRL2_HUMAN]	2	3	0.001	n/a	0.001	0	0	2	2	1
P52789	Hexokinase-2 OS=Homo sapiens GN=HK2 PE=1 SV=2 -	1	3	n/a	n/a	n/a	0	0	1	3	1

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	116 kDa U5 small nuclear ribonucleoprotein component										
	OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 -										
Q15029	[U5S1_HUMAN]	5	6	0.001	n/a	n/a			4	3	2
	[HXK2_HUMAN]										
	Histone H1x OS=Homo sapiens GN=H1FX PE=1 SV=1 -										
Q92522	[H1X_HUMAN]	2	2	0.085	0.278	0.149	5.82	0.01	1	1	1
Q96KK	Histone H2A type 1-H OS=Homo sapiens GN=HIST1H2AH										
5	PE=1 SV=3 - [H2A1H_HUMAN]	1	4	0.237	0.366	0.015	2.86	0.05	4	3	3
	Histone H2A type 2-B OS=Homo sapiens GN=HIST2H2AB										
Q8IUE6	PE=1 SV=3 - [H2A2B_HUMAN]	1	3	0.480	n/a	n/a			3	1	1
	Histone-binding protein RBBP4 OS=Homo sapiens						728.9	0.000			
Q09028	GN=RBBP4 PE=1 SV=3 - [RBBP4_HUMAN]	2	8	0.002	n/a	0.001	9	4	6	6	6
	Histone-binding protein RBBP7 OS=Homo sapiens						7056.	4.5E-			
Q16576	GN=RBBP7 PE=1 SV=1 - [RBBP7_HUMAN]	2	7	n/a	0.001	0.001	58	05	5	6	5
	Hornerin OS=Homo sapiens GN=HRNR PE=1 SV=2 -						174.7				
Q86YZ3	[HORN_HUMAN]	4	4	lost	0.007	0.001	6	0.002	lost	3	3
	Hsp90 co-chaperone Cdc37 OS=Homo sapiens GN=CDC37										
Q16543	PE=1 SV=1 - [CDC37_HUMAN]	4	5	0.009	0.020	n/a	85.07	0.004	4	2	2
	Hypoxia up-regulated protein 1 OS=Homo sapiens						262.8				
Q9Y4L1	GN=HYOU1 PE=1 SV=1 - [HYOU1_HUMAN]	14	14	lost	0.005	0.001	6	0.001	lost	11	7
	Ig gamma-1 chain C region OS=Homo sapiens GN=IGHG1										
P01857	PE=1 SV=1 - [IGHG1_HUMAN]	2	6	0.001	0.001	0.001	0	0	2	5	3
	Importin subunit alpha-2 OS=Homo sapiens GN=KPNA2 PE=1							0.000			
P52292	SV=1 - [IMA2_HUMAN]	5	5	0.057	0.003	0.001	26.00	7	4	2	2
	InaD-like protein OS=Homo sapiens GN=INADL PE=1 SV=3 -						100.0	5.0E-			
Q8NI35	[INADL_HUMAN]	1	1	0.016	0.001	0.001	7	05	1	1	1

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	116 kDa U5 small nuclear ribonucleoprotein component										
	OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 -										
Q15029	[U5S1_HUMAN]	5	6	0.001	n/a	n/a			4	3	2
Q9Y2U	Inner nuclear membrane protein Man1 OS=Homo sapiens										
8	GN=LEMD3 PE=1 SV=2 - [MAN1_HUMAN]	1	1	0.381	n/a	n/a			1	1	1
Q9H2U	Inorganic pyrophosphatase 2, mitochondrial OS=Homo sapiens										
2	GN=PPA2 PE=1 SV=2 - [IPYR2_HUMAN]	3	4	0.306	0.001	0.001	3.91	0.03	2	3	2
	Inorganic pyrophosphatase OS=Homo sapiens GN=PPA1 PE=1										
Q15181	SV=2 - [IPYR_HUMAN]	8	10	0.327	0.368	0.295	8.12	0.007	6	8	7
	Inositol monophosphatase 1 OS=Homo sapiens GN=IMPA1							8.0E-			
P29218	PE=1 SV=1 - [IMPA1_HUMAN]	3	3	0.002	0.001	0.020	79.27	05	2	3	2
	Insulin-like growth factor 2 mRNA-binding protein 1										
	OS=Homo sapiens GN=IGF2BP1 PE=1 SV=2 -										
Q9NZI8	[IF2B1_HUMAN]	11	12	0.256	0.020	0.296	3.60	0.03	8	6	8
	Insulin-like growth factor 2 mRNA-binding protein 3										
	OS=Homo sapiens GN=IGF2BP3 PE=1 SV=2 -										
O00425	[IF2B3_HUMAN]	3	5	n/a	n/a	n/a	0	0	2	4	2
	Integrin-linked protein kinase OS=Homo sapiens GN=ILK							0.000			
Q13418	PE=1 SV=2 - [ILK_HUMAN]	7	7	0.039	0.001	0.001	38.31	3	6	3	2
	Inter-alpha-trypsin inhibitor heavy chain H2 OS=Homo sapiens						9290.	5.8E-			
P19823	GN=ITIH2 PE=1 SV=2 - [ITIH2_HUMAN]	3	3	0.001	0.001	0.001	78	09	2	2	3
	Intron-binding protein aquarius OS=Homo sapiens GN=AQR										
O60306	PE=1 SV=4 - [AQR_HUMAN]	1	1	lost	0.451	n/a			lost	1	1
	Isochorismatase domain-containing protein 1 OS=Homo sapiens						423.9	0.000			
Q96CN7	GN=ISOC1 PE=1 SV=3 - [ISOC1_HUMAN]	3	4	0.003	0.001	n/a	6	8	1	2	2
	Isocitrate dehydrogenase [NAD] subunit beta, mitochondrial										
O43837	OS=Homo sapiens GN=IDH3B PE=1 SV=2 -	4	4	0.264	0.001	0.001	4.69	0.02	1	2	3

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	116 kDa U5 small nuclear ribonucleoprotein component										
	OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 -										
Q15029	[U5S1_HUMAN]	5	6	0.001	n/a	n/a			4	3	2
	[IDH3B_HUMAN]										
	Isocitrate dehydrogenase [NADP], mitochondrial OS=Homo										
P48735	sapiens GN=IDH2 PE=1 SV=2 - [IDHP_HUMAN]	4	6	0.028	0.001	n/a	36.05	0.009	4	3	1
	IsoleucinetRNA ligase, cytoplasmic OS=Homo sapiens							0.000			
P41252	GN=IARS PE=1 SV=2 - [SYIC_HUMAN]	15	18	0.004	0.025	0.001	64.78	1	4	14	13
	Isopentenyl-diphosphate Delta-isomerase 1 OS=Homo sapiens										
Q13907	GN=IDI1 PE=1 SV=2 - [IDI1_HUMAN]	6	7	0.277	0.013	0.010	4.52	0.02	1	6	4
	Junction plakoglobin OS=Homo sapiens GN=JUP PE=1 SV=3 -										
P14923	[PLAK_HUMAN]	2	11	n/a	n/a	n/a	0	0	6	8	10
Q9NSK	Kinesin light chain 4 OS=Homo sapiens GN=KLC4 PE=1						4774.	2.2E-			
0	SV=3 - [KLC4_HUMAN]	7	10	0.001	0.001	0.001	71	08	3	4	6
	KN motif and ankyrin repeat domain-containing protein 1										
	OS=Homo sapiens GN=KANK1 PE=1 SV=3 -										
Q14678	[KANK1_HUMAN]	1	2	lost	n/a	n/a	0	0	lost	1	2
	Lamin-B1 OS=Homo sapiens GN=LMNB1 PE=1 SV=2 -							0.000			
P20700	[LMNB1_HUMAN]	5	6	0.040	0.001	0.001	37.27	4	5	2	2
	Large neutral amino acids transporter small subunit 1										
	OS=Homo sapiens GN=SLC7A5 PE=1 SV=2 -										
Q01650	[LAT1_HUMAN]	5	5	0.262	0.187	0.127	7.91	0.008	2	4	4
Q9NQ4	Leucine zipper transcription factor-like protein 1 OS=Homo										
8	sapiens GN=LZTFL1 PE=1 SV=1 - [LZTL1_HUMAN]	5	6	0.004	0.321	0.022	3.74	0.03	2	5	3
A6NHZ	Leucine-rich repeat-containing protein 14B OS=Homo sapiens						655.8	1.2E-			
5	GN=LRRC14B PE=3 SV=3 - [LR14B_HUMAN]	1	1	0.001	0.003	0.001	5	06	1	1	1
P09960	Leukotriene A-4 hydrolase OS=Homo sapiens GN=LTA4H	11	13	0.272	0.002	0.001	4.53	0.02	8	8	5

		Unique		R1	R2	R3		_	R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	116 kDa U5 small nuclear ribonucleoprotein component										
	OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 -										
Q15029	[U5S1_HUMAN]	5	6	0.001	n/a	n/a			4	3	2
	PE=1 SV=2 - [LKHA4_HUMAN]										
	LIM and senescent cell antigen-like-containing domain protein										
	1 OS=Homo sapiens GN=LIMS1 PE=1 SV=4 -										
P48059	[LIMS1_HUMAN]	4	6	n/a	0.001	0.014	79.58	0.004	3	3	3
	LIM and senescent cell antigen-like-containing domain protein										
P0CW2	3-like OS=Homo sapiens GN=LIMS3L PE=2 SV=1 -										
0	[LIM3L_HUMAN]	4	4	n/a	0.019	0.001	54.62	0.006	2	2	1
	LIM and SH3 domain protein 1 OS=Homo sapiens GN=LASP1										
Q14847	PE=1 SV=2 - [LASP1_HUMAN]	12	13	0.355	0.431	0.259	3.04	0.05	8	12	12
	Lipopolysaccharide-responsive and beige-like anchor protein										
	OS=Homo sapiens GN=LRBA PE=1 SV=4 -										
P50851	[LRBA_HUMAN]	5	5	lost	0.036	0.020	57.66	0.006	lost	4	3
Q86W9	Liprin-beta-1 OS=Homo sapiens GN=PPFIBP1 PE=1 SV=2 -										
2	[LIPB1_HUMAN]	2	3	n/a	n/a	n/a	0	0	1	3	1
Q9BYZ	L-lactate dehydrogenase A-like 6B OS=Homo sapiens										
2	GN=LDHAL6B PE=1 SV=3 - [LDH6B_HUMAN]	1	3	n/a	0.001	n/a			1	3	2
	Lon protease homolog, mitochondrial OS=Homo sapiens										
P36776	GN=LONP1 PE=1 SV=2 - [LONM_HUMAN]	2	2	lost	n/a	0.001			lost	1	1
	Long-chain-fatty-acidCoA ligase 3 OS=Homo sapiens										
O95573	GN=ACSL3 PE=1 SV=3 - [ACSL3_HUMAN]	2	3	n/a	n/a	n/a	0	0	2	2	1
	Long-chain-fatty-acidCoA ligase 4 OS=Homo sapiens						4864.	6.5E-			
O60488	GN=ACSL4 PE=1 SV=2 - [ACSL4_HUMAN]	3	4	0.001	0.001	n/a	28	05	3	2	1
	Lysosomal protective protein OS=Homo sapiens GN=CTSA							0.000			
P10619	PE=1 SV=2 - [PPGB_HUMAN]	8	8	0.001	0.032	0.001	47.83	2	3	5	7

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	116 kDa U5 small nuclear ribonucleoprotein component										
	OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 -										
Q15029	[U5S1_HUMAN]	5	6	0.001	n/a	n/a			4	3	2
	Malectin OS=Homo sapiens GN=MLEC PE=1 SV=1 -										
Q14165	[MLEC_HUMAN]	4	4	0.293	0.398	0.396	3.97	0.03	1	4	4
	Mannose-1-phosphate guanyltransferase alpha OS=Homo						972.6	0.000			
Q96IJ6	sapiens GN=GMPPA PE=1 SV=1 - [GMPPA_HUMAN]	5	5	0.002	n/a	0.001	9	3	5	1	1
	Mannose-P-dolichol utilization defect 1 protein OS=Homo										
O75352	sapiens GN=MPDU1 PE=1 SV=2 - [MPU1_HUMAN]	1	1	0.205	0.076	0.001	6.82	0.01	1	1	1
	Membrane-associated guanylate kinase, WW and PDZ domain-										
	containing protein 1 OS=Homo sapiens GN=MAGI1 PE=1										
Q96QZ7	SV=3 - [MAGI1_HUMAN]	4	6	lost	n/a	0.001			lost	2	4
	Membrane-associated progesterone receptor component 1										
	OS=Homo sapiens GN=PGRMC1 PE=1 SV=3 -										
O00264	[PGRC1_HUMAN]	2	5	n/a	0.219	0.200	30.88	0.01	1	3	4
	Microtubule-actin cross-linking factor 1, isoforms 1/2/3/5										
Q9UPN	OS=Homo sapiens GN=MACF1 PE=1 SV=4 -						1408.	0.000			
3	[MACF1_HUMAN]	33	37	lost	0.002	0.001	87	2	lost	23	26
	Misshapen-like kinase 1 OS=Homo sapiens GN=MINK1 PE=1										
Q8N4C8	SV=2 - [MINK1_HUMAN]	1	2	n/a	n/a	n/a	0	0	1	2	1
Q9Y3D	Mitochondrial fission 1 protein OS=Homo sapiens GN=FIS1										
6	PE=1 SV=2 - [FIS1_HUMAN]	3	3	0.365	0.361	0.135	2.80	0.05	2	3	2
	Mitochondrial import inner membrane translocase subunit										
Q3ZCQ	TIM50 OS=Homo sapiens GN=TIMM50 PE=1 SV=2 -										
8	[TIM50_HUMAN]	6	7	0.259	0.021	0.001	4.91	0.02	4	4	4
	Mitochondrial-processing peptidase subunit beta OS=Homo										
O75439	sapiens GN=PMPCB PE=1 SV=2 - [MPPB_HUMAN]	2	2	n/a	n/a	n/a	0	0	2	1	1

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	116 kDa U5 small nuclear ribonucleoprotein component										
	OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 -										
Q15029	[U5S1_HUMAN]	5	6	0.001	n/a	n/a			4	3	2
	Mitotic checkpoint protein BUB3 OS=Homo sapiens										
O43684	GN=BUB3 PE=1 SV=1 - [BUB3_HUMAN]	5	5	0.033	0.164	0.139	9.66	0.005	4	5	4
	mRNA export factor OS=Homo sapiens GN=RAE1 PE=1 SV=1						109.4	4.2E-			
P78406	- [RAE1L_HUMAN]	4	5	0.015	0.002	0.001	7	05	3	4	4
	Muscleblind-like protein 1 OS=Homo sapiens GN=MBNL1										
Q9NR56	PE=1 SV=2 - [MBNL1_HUMAN]	4	4	0.215	0.300	0.010	3.78	0.03	2	4	3
Q9NZM	Myoferlin OS=Homo sapiens GN=MYOF PE=1 SV=1 -										
1	[MYOF_HUMAN]	4	6	lost	n/a	0.020			lost	1	5
	Na(+)/H(+) exchange regulatory cofactor NHE-RF1 OS=Homo							0.000			
O14745	sapiens GN=SLC9A3R1 PE=1 SV=4 - [NHRF1_HUMAN]	5	6	0.025	0.001	0.001	62.38	1	5	3	4
	Na(+)/H(+) exchange regulatory cofactor NHE-RF2 OS=Homo						1867.	0.000			
Q15599	sapiens GN=SLC9A3R2 PE=1 SV=2 - [NHRF2_HUMAN]	5	5	n/a	0.002	0.001	29	2	1	2	5
	NADH dehydrogenase [ubiquinone] iron-sulfur protein 3,										
	mitochondrial OS=Homo sapiens GN=NDUFS3 PE=1 SV=1 -										
O75489	[NDUS3_HUMAN]	2	3	0.407	n/a	n/a			1	1	3
Q9GZZ	N-alpha-acetyltransferase 50 OS=Homo sapiens GN=NAA50										
1	PE=1 SV=1 - [NAA50_HUMAN]	4	5	0.115	0.284	0.013	4.59	0.02	2	4	2
	Nardilysin OS=Homo sapiens GN=NRD1 PE=1 SV=2 -										
O43847	[NRDC_HUMAN]	2	2	lost	n/a	n/a	0	0	lost	1	1
Q6X4W	Nasal embryonic luteinizing hormone-releasing hormone factor						1289.	3.0E-			
1	OS=Homo sapiens GN=NELF PE=1 SV=1 - [NELF_HUMAN]	2	3	0.002	0.002	0.001	60	07	1	2	3
	Nebulette OS=Homo sapiens GN=NEBL PE=1 SV=1 -										
O76041	[NEBL_HUMAN]	2	3	lost	0.263	n/a			lost	1	3
P12036	Neurofilament heavy polypeptide OS=Homo sapiens	1	4	n/a	n/a	n/a	0	0	2	3	3

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	116 kDa U5 small nuclear ribonucleoprotein component										
	OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 -										
Q15029	[U5S1_HUMAN]	5	6	0.001	n/a	n/a			4	3	2
	GN=NEFH PE=1 SV=4 - [NFH_HUMAN]										
	Neutral alpha-glucosidase AB OS=Homo sapiens GN=GANAB										
Q14697	PE=1 SV=3 - [GANAB_HUMAN]	15	15	0.379	0.023	0.001	2.98	0.05	9	10	8
	Nitric oxide synthase-interacting protein OS=Homo sapiens										
Q9Y314	GN=NOSIP PE=1 SV=1 - [NOSIP_HUMAN]	5	5	0.002	0.002	0.191	6.92	0.01	2	3	3
	Non-POU domain-containing octamer-binding protein										
	OS=Homo sapiens GN=NONO PE=1 SV=4 -										
Q15233	[NONO_HUMAN]	5	8	0.090	n/a	0.016	12.12	0.03	4	4	5
Q9NVX	Notchless protein homolog 1 OS=Homo sapiens GN=NLE1										
2	PE=1 SV=4 - [NLE1_HUMAN]	1	1	0.010	n/a	n/a			1	1	1
	Nuclear autoantigenic sperm protein OS=Homo sapiens										
P49321	GN=NASP PE=1 SV=2 - [NASP_HUMAN]	4	4	0.395	0.331	0.229	3.77	0.03	2	2	3
	Nuclear receptor coactivator 2 OS=Homo sapiens GN=NCOA2										
Q15596	PE=1 SV=2 - [NCOA2_HUMAN]	1	1	lost	0.001	0.001	0	0	lost	1	1
	Nuclease-sensitive element-binding protein 1 OS=Homo										
P67809	sapiens GN=YBX1 PE=1 SV=3 - [YBOX1_HUMAN]	2	5	0.029	0.045	0.247	5.62	0.02	4	4	3
	Nucleoprotein TPR OS=Homo sapiens GN=TPR PE=1 SV=3 -										
P12270	[TPR_HUMAN]	8	10	lost	n/a	0.012			lost	4	8
	Nucleosome assembly protein 1-like 1 OS=Homo sapiens						129.2	3.0E-			
P55209	GN=NAP1L1 PE=1 SV=1 - [NP1L1_HUMAN]	3	4	0.001	0.014	0.010	8	05	2	3	4
	Nucleotide-binding oligomerization domain-containing protein										
	1 OS=Homo sapiens GN=NOD1 PE=1 SV=1 -										
Q9Y239	[NOD1_HUMAN]	1	2	lost	0.001	0.001	0	0	lost	2	1
Q96RS6	NudC domain-containing protein 1 OS=Homo sapiens	2	2	n/a	0.001	n/a			1	1	1

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	116 kDa U5 small nuclear ribonucleoprotein component										
	OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 -										
Q15029	[U5S1_HUMAN]	5	6	0.001	n/a	n/a			4	3	2
	GN=NUDCD1 PE=1 SV=2 - [NUDC1_HUMAN]										
	PDZ and LIM domain protein 4 OS=Homo sapiens						1925.	1.3E-			
P50479	GN=PDLIM4 PE=1 SV=2 - [PDLI4_HUMAN]	5	6	0.002	0.001	0.001	81	07	4	5	4
	PDZ and LIM domain protein 7 OS=Homo sapiens										
Q9NR12	GN=PDLIM7 PE=1 SV=1 - [PDLI7_HUMAN]	10	10	0.001	0.001	0.001	0	0	9	7	7
	Peptidyl-prolyl cis-trans isomerase D OS=Homo sapiens										
Q08752	GN=PPID PE=1 SV=3 - [PPID_HUMAN]	6	8	0.049	0.001	n/a	19.94	0.02	6	3	2
	Peptidyl-prolyl cis-trans isomerase H OS=Homo sapiens										
O43447	GN=PPIH PE=1 SV=1 - [PPIH_HUMAN]	3	4	n/a	0.017	n/a			1	2	3
	Peroxiredoxin-5, mitochondrial OS=Homo sapiens GN=PRDX5										
P30044	PE=1 SV=4 - [PRDX5_HUMAN]	6	6	0.036	0.354	0.001	3.29	0.04	3	6	5
	Peroxisomal bifunctional enzyme OS=Homo sapiens										
Q08426	GN=EHHADH PE=1 SV=3 - [ECHP_HUMAN]	3	3	0.006	n/a	n/a			2	1	2
	PERQ amino acid-rich with GYF domain-containing protein 1										
	OS=Homo sapiens GN=GIGYF1 PE=1 SV=2 -						114.2	3.8E-			
O75420	[PERQ1_HUMAN]	7	8	0.015	0.002	0.001	0	05	2	3	5
Q8WW1	PEST proteolytic signal-containing nuclear protein OS=Homo										
2	sapiens GN=PCNP PE=1 SV=2 - [PCNP_HUMAN]	2	2	n/a	0.112	n/a			1	1	2
	Phosphatidylinositol 4-phosphate 3-kinase C2 domain-										
	containing subunit alpha OS=Homo sapiens GN=PIK3C2A										
O00443	PE=1 SV=2 - [P3C2A_HUMAN]	5	6	lost	n/a	0.030			lost	4	4
	Phosphoserine aminotransferase OS=Homo sapiens GN=PSAT1										
Q9Y617	PE=1 SV=2 - [SERC_HUMAN]	9	10	0.130	0.254	0.218	8.13	0.007	8	6	5
Q99959	Plakophilin-2 OS=Homo sapiens GN=PKP2 PE=1 SV=2 -	7	9	0.004	0.002	0.001	497.0	2.0E-	5	5	5
		Unique		R1	R2	R3			R1	R2	R3
--------	--	----------	----------	-------	-------	-------	-------	-------	----------	----------	----------
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	116 kDa U5 small nuclear ribonucleoprotein component										
	OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 -										
Q15029	[U5S1_HUMAN]	5	6	0.001	n/a	n/a			4	3	2
	[PKP2_HUMAN]						8	06			
	Poly(rC)-binding protein 1 OS=Homo sapiens GN=PCBP1										
Q15365	PE=1 SV=2 - [PCBP1_HUMAN]	4	6	0.413	0.396	0.251	2.86	0.05	6	6	5
	Polypyrimidine tract-binding protein 1 OS=Homo sapiens						313.7				
P26599	GN=PTBP1 PE=1 SV=1 - [PTBP1_HUMAN]	6	6	0.020	n/a	0.017	8	0.001	3	5	3
	Pregnancy zone protein OS=Homo sapiens GN=PZP PE=1										
P20742	SV=4 - [PZP_HUMAN]	1	2	0.001	0.001	0.001	0	0	2	2	2
	Probable ATP-dependent RNA helicase DDX10 OS=Homo										
Q13206	sapiens GN=DDX10 PE=1 SV=2 - [DDX10_HUMAN]	1	2	lost	n/a	n/a	0	0	lost	1	1
	Proteasome subunit alpha type-3 OS=Homo sapiens										
P25788	GN=PSMA3 PE=1 SV=2 - [PSA3_HUMAN]	7	8	0.417	0.416	0.347	4.62	0.02	6	3	5
	Proteasome subunit alpha type-4 OS=Homo sapiens										
P25789	GN=PSMA4 PE=1 SV=1 - [PSA4_HUMAN]	6	6	0.440	0.377	0.308	3.28	0.04	5	6	4
	Proteasome subunit alpha type-5 OS=Homo sapiens										
P28066	GN=PSMA5 PE=1 SV=3 - [PSA5_HUMAN]	5	6	0.001	0.282	0.307	3.10	0.05	3	5	6
	Proteasome subunit alpha type-6 OS=Homo sapiens										
P60900	GN=PSMA6 PE=1 SV=1 - [PSA6_HUMAN]	10	10	0.434	0.411	0.379	5.78	0.01	5	7	9
	Protein arginine N-methyltransferase 1 OS=Homo sapiens										
Q99873	GN=PRMT1 PE=1 SV=2 - [ANM1_HUMAN]	11	11	0.320	0.344	0.217	5.27	0.02	8	8	5
	Protein arginine N-methyltransferase 5 OS=Homo sapiens						156.1				
O14744	GN=PRMT5 PE=1 SV=4 - [ANM5_HUMAN]	4	5	0.007	0.001	n/a	7	0.002	3	3	1
	Protein canopy homolog 2 OS=Homo sapiens GN=CNPY2										
Q9Y2B0	PE=1 SV=1 - [CNPY2_HUMAN]	3	3	n/a	0.221	n/a			1	3	2

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	116 kDa U5 small nuclear ribonucleoprotein component										
	OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 -										
Q15029	[U5S1_HUMAN]	5	6	0.001	n/a	n/a			4	3	2
Q9NUQ	Protein FAM49B OS=Homo sapiens GN=FAM49B PE=1										
9	SV=1 - [FA49B_HUMAN]	2	2	n/a	0.001	0.001	0	0	1	2	1
	Protein flightless-1 homolog OS=Homo sapiens GN=FLII PE=1						573.4	0.000			
Q13045	SV=2 - [FLII_HUMAN]	8	9	lost	0.003	0.001	6	6	lost	5	4
	Protein mago nashi homolog OS=Homo sapiens GN=MAGOH										
P61326	PE=1 SV=1 - [MGN_HUMAN]	3	3	n/a	0.342	n/a			1	1	1
	Protein NDRG1 OS=Homo sapiens GN=NDRG1 PE=1 SV=1 -										
Q92597	[NDRG1_HUMAN]	2	3	0.077	0.022	0.001	20.72	0.001	2	3	2
Q9BPW	Protein NipSnap homolog 1 OS=Homo sapiens										
8	GN=NIPSNAP1 PE=1 SV=1 - [NIPS1_HUMAN]	6	7	n/a	0.001	0.130	6.73	0.05	3	6	4
	Protein NipSnap homolog 2 OS=Homo sapiens GN=GBAS										
075323	PE=1 SV=1 - [NIPS2_HUMAN]	4	5	n/a	0.107	0.001	8.39	0.04	1	4	3
	Protein phosphatase 1 regulatory subunit 3E OS=Homo sapiens										
Q9H7J1	GN=PPP1R3E PE=2 SV=2 - [PPR3E_HUMAN]	2	3	n/a	n/a	0.209			2	1	1
	Protein phosphatase 1G OS=Homo sapiens GN=PPM1G PE=1							9.1E-			
O15355	SV=1 - [PPM1G_HUMAN]	5	5	0.002	0.001	0.021	74.15	05	2	3	2
	Protein phosphatase inhibitor 2 OS=Homo sapiens GN=PPP1R2										
P41236	PE=1 SV=2 - [IPP2_HUMAN]	3	3	0.004	0.261	0.147	4.88	0.02	1	3	2
	Protein phosphatase methylesterase 1 OS=Homo sapiens										
Q9Y570	GN=PPME1 PE=1 SV=3 - [PPME1_HUMAN]	5	5	0.002	0.328	0.001	3.58	0.04	4	3	4
	Protein PRRC2A OS=Homo sapiens GN=PRRC2A PE=1 SV=3										
P48634	- [PRC2A_HUMAN]	3	3	lost	0.033	0.001	30.47	0.01	lost	2	2
	Protein RCC2 OS=Homo sapiens GN=RCC2 PE=1 SV=2 -						1640.	1.9E-			
Q9P258	[RCC2_HUMAN]	4	4	0.002	0.001	0.001	56	07	2	2	3

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	116 kDa U5 small nuclear ribonucleoprotein component										
	OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 -										
Q15029	[U5S1_HUMAN]	5	6	0.001	n/a	n/a			4	3	2
	Protein SET OS=Homo sapiens GN=SET PE=1 SV=3 -										
Q01105	[SET_HUMAN]	4	4	0.026	0.250	0.001	5.15	0.02	3	3	4
	Protein TBRG4 OS=Homo sapiens GN=TBRG4 PE=1 SV=1 -										
Q969Z0	[TBRG4_HUMAN]	2	2	0.002	n/a	n/a			1	1	2
	Protein transport protein Sec61 subunit beta OS=Homo sapiens										
P60468	GN=SEC61B PE=1 SV=2 - [SC61B_HUMAN]	3	3	0.001	0.131	0.026	11.28	0.004	1	3	3
	Putative ATP-dependent RNA helicase DHX30 OS=Homo										
Q7L2E3	sapiens GN=DHX30 PE=1 SV=1 - [DHX30_HUMAN]	6	7	lost	0.056	n/a			lost	4	4
	Putative nascent polypeptide-associated complex subunit alpha-										
Q9BZK	like protein OS=Homo sapiens GN=NACAP1 PE=5 SV=1 -										
3	[NACP1_HUMAN]	1	2	0.379	n/a	n/a			1	1	1
Q9NQ2	Putative RNA-binding protein Luc7-like 1 OS=Homo sapiens										
9	GN=LUC7L PE=1 SV=1 - [LUC7L_HUMAN]	1	3	n/a	0.001	0.001	0	0	3	1	2
	Putative RNA-binding protein Luc7-like 2 OS=Homo sapiens							0.000			
Q9Y383	GN=LUC7L2 PE=1 SV=2 - [LC7L2_HUMAN]	4	6	0.065	0.048	0.018	33.30	5	4	3	3
	Pyridoxal kinase OS=Homo sapiens GN=PDXK PE=1 SV=1 -										
O00764	[PDXK_HUMAN]	5	6	n/a	0.032	0.141	7.55	0.04	1	5	5
	Pyrroline-5-carboxylate reductase 1, mitochondrial OS=Homo										
P32322	sapiens GN=PYCR1 PE=1 SV=2 - [P5CR1_HUMAN]	5	6	0.188	0.115	0.001	7.34	0.009	5	2	4
	Pyrroline-5-carboxylate reductase 2 OS=Homo sapiens							0.000			
Q96C36	GN=PYCR2 PE=1 SV=1 - [P5CR2_HUMAN]	7	8	0.003	0.048	0.001	31.27	5	4	5	6
	Ras-related protein Rab-10 OS=Homo sapiens GN=RAB10										
P61026	PE=1 SV=1 - [RAB10_HUMAN]	4	8	0.399	0.337	0.352	7.36	0.009	4	6	7
P62820	Ras-related protein Rab-1A OS=Homo sapiens GN=RAB1A	4	13	0.368	0.422	0.253	3.05	0.05	12	9	8

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	116 kDa U5 small nuclear ribonucleoprotein component										
	OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 -										
Q15029	[U5S1_HUMAN]	5	6	0.001	n/a	n/a			4	3	2
	PE=1 SV=3 - [RAB1A_HUMAN]										
Q9H0U	Ras-related protein Rab-1B OS=Homo sapiens GN=RAB1B										
4	PE=1 SV=1 - [RAB1B_HUMAN]	2	10	0.272	0.235	0.243	22.34	0.001	9	9	8
	Ras-related protein Rab-21 OS=Homo sapiens GN=RAB21										
Q9UL25	PE=1 SV=3 - [RAB21_HUMAN]	2	2	0.267	0.300	0.001	3.29	0.04	1	1	2
	Ras-related protein Rab-4A OS=Homo sapiens GN=RAB4A										
P20338	PE=1 SV=3 - [RAB4A_HUMAN]	1	2	n/a	n/a	0.001			1	1	2
	Ras-related protein Rab-5A OS=Homo sapiens GN=RAB5A										
P20339	PE=1 SV=2 - [RAB5A_HUMAN]	1	4	n/a	0.001	n/a			3	3	2
	Ras-related protein Rab-5B OS=Homo sapiens GN=RAB5B										
P61020	PE=1 SV=1 - [RAB5B_HUMAN]	2	4	n/a	0.388	n/a			2	4	3
	Ras-related protein Rab-5C OS=Homo sapiens GN=RAB5C										
P51148	PE=1 SV=2 - [RAB5C_HUMAN]	3	5	0.284	0.036	0.134	4.82	0.02	5	5	5
	Ras-related protein Rab-8A OS=Homo sapiens GN=RAB8A										
P61006	PE=1 SV=1 - [RAB8A_HUMAN]	3	8	n/a	0.015	n/a			4	6	8
	Regulation of nuclear pre-mRNA domain-containing protein 1B										
Q9NQG	OS=Homo sapiens GN=RPRD1B PE=1 SV=1 -										
5	[RPR1B_HUMAN]	2	2	n/a	n/a	0.001			1	1	1
	Regulator of nonsense transcripts 1 OS=Homo sapiens										
Q92900	GN=UPF1 PE=1 SV=2 - [RENT1_HUMAN]	12	12	0.001	0.075	0.001	19.31	0.001	3	5	10
Q8WUF	RelA-associated inhibitor OS=Homo sapiens GN=PPP1R13L						1373.	2.7E-			
5	PE=1 SV=4 - [IASPP_HUMAN]	12	13	0.002	0.001	0.001	16	07	5	3	9
	Replication factor C subunit 3 OS=Homo sapiens GN=RFC3										
P40938	PE=1 SV=2 - [RFC3_HUMAN]	2	2	0.004	0.002	0.318	3.74	0.03	1	2	1

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	116 kDa U5 small nuclear ribonucleoprotein component										
	OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 -										
Q15029	[U5S1_HUMAN]	5	6	0.001	n/a	n/a			4	3	2
	Reticulocalbin-1 OS=Homo sapiens GN=RCN1 PE=1 SV=1 -										
Q15293	[RCN1_HUMAN]	7	7	0.339	0.004	0.001	3.43	0.04	6	5	5
Q9NQC	Reticulon-4 OS=Homo sapiens GN=RTN4 PE=1 SV=2 -										
3	[RTN4_HUMAN]	3	4	0.326	0.017	0.001	3.64	0.03	4	2	3
	Retinol dehydrogenase 11 OS=Homo sapiens GN=RDH11										
Q8TC12	PE=1 SV=2 - [RDH11_HUMAN]	2	2	n/a	0.005	n/a			1	1	1
	Ribonuclease P protein subunit p30 OS=Homo sapiens										
P78346	GN=RPP30 PE=1 SV=1 - [RPP30_HUMAN]	5	6	n/a	0.001	0.001	0	0	2	4	3
	Ribose-phosphate pyrophosphokinase 2 OS=Homo sapiens										
P11908	GN=PRPS2 PE=1 SV=2 - [PRPS2_HUMAN]	1	4	0.012	n/a	0.001	91.63	0.003	3	2	2
	RNA-binding motif protein, X chromosome OS=Homo sapiens										
P38159	GN=RBMX PE=1 SV=3 - [RBMX_HUMAN]	5	6	0.287	0.010	0.261	3.56	0.04	5	4	2
	RNA-binding protein FUS OS=Homo sapiens GN=FUS PE=1										
P35637	SV=1 - [FUS_HUMAN]	2	2	0.126	0.237	0.013	5.79	0.01	2	2	2
	RuvB-like 1 OS=Homo sapiens GN=RUVBL1 PE=1 SV=1 -						562.4	1.6E-			
Q9Y265	[RUVB1_HUMAN]	19	19	0.004	0.002	0.001	1	06	16	14	16
	RuvB-like 2 OS=Homo sapiens GN=RUVBL2 PE=1 SV=3 -							6.0E-			
Q9Y230	[RUVB2_HUMAN]	25	25	0.017	0.001	0.001	91.06	05	20	20	23
	S-adenosylmethionine synthase isoform type-2 OS=Homo										
P31153	sapiens GN=MAT2A PE=1 SV=1 - [METK2_HUMAN]	6	6	0.032	0.338	0.014	3.54	0.04	5	4	4
Q9NVA	Septin-11 OS=Homo sapiens GN=SEPT11 PE=1 SV=3 -										
2	[SEP11_HUMAN]	5	7	0.428	0.329	0.344	4.29	0.03	5	5	5
	Septin-2 OS=Homo sapiens GN=SEPT2 PE=1 SV=1 -										
Q15019	[SEPT2_HUMAN]	8	8	0.048	0.280	0.317	3.38	0.04	7	5	4

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	116 kDa U5 small nuclear ribonucleoprotein component										
	OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 -										
Q15029	[U5S1_HUMAN]	5	6	0.001	n/a	n/a			4	3	2
	Serine/arginine-rich splicing factor 2 OS=Homo sapiens										
Q01130	GN=SRSF2 PE=1 SV=4 - [SRSF2_HUMAN]	5	6	0.342	0.279	0.253	7.85	0.008	3	4	4
	Serine/threonine-protein kinase 4 OS=Homo sapiens GN=STK4										
Q13043	PE=1 SV=2 - [STK4_HUMAN]	1	1	0.019	0.002	n/a	56.66	0.006	1	1	1
	Serine/threonine-protein phosphatase 2A 55 kDa regulatory										
	subunit B alpha isoform OS=Homo sapiens GN=PPP2R2A										
P63151	PE=1 SV=1 - [2ABA_HUMAN]	4	5	n/a	0.014	0.001	78.29	0.004	1	3	4
	Serine/threonine-protein phosphatase PP1-gamma catalytic										
	subunit OS=Homo sapiens GN=PPP1CC PE=1 SV=1 -										
P36873	[PP1G_HUMAN]	2	8	0.003	n/a	n/a			2	8	8
	SerinetRNA ligase, cytoplasmic OS=Homo sapiens						180.4	1.5E-			
P49591	GN=SARS PE=1 SV=3 - [SYSC_HUMAN]	9	9	0.004	0.010	0.001	2	05	2	5	6
	Serpin H1 OS=Homo sapiens GN=SERPINH1 PE=1 SV=2 -										
P50454	[SERPH_HUMAN]	12	13	0.284	0.401	0.123	2.87	0.05	9	6	8
	Sialic acid synthase OS=Homo sapiens GN=NANS PE=1 SV=2							5.3E-			
Q9NR45	- [SIAS_HUMAN]	3	3	0.002	0.017	0.001	97.44	05	2	3	2
	Signal peptidase complex subunit 2 OS=Homo sapiens										
Q15005	GN=SPCS2 PE=1 SV=3 - [SPCS2_HUMAN]	1	2	n/a	0.391	n/a			1	2	1
Q9Y5M	Signal recognition particle receptor subunit beta OS=Homo										
8	sapiens GN=SRPRB PE=1 SV=3 - [SRPRB_HUMAN]	7	10	0.202	0.019	0.079	7.42	0.009	4	7	3
	Signal transducer and activator of transcription 1-alpha/beta										
	OS=Homo sapiens GN=STAT1 PE=1 SV=2 -										
P42224	[STAT1_HUMAN]	7	8	0.395	0.001	0.001	2.80	0.05	2	6	4
P62304	Small nuclear ribonucleoprotein E OS=Homo sapiens	2	2	0.230	0.256	0.116	7.00	0.01	2	2	1

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	116 kDa U5 small nuclear ribonucleoprotein component										
	OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 -										
Q15029	[U5S1_HUMAN]	5	6	0.001	n/a	n/a			4	3	2
	GN=SNRPE PE=1 SV=1 - [RUXE_HUMAN]										
	Small nuclear ribonucleoprotein Sm D3 OS=Homo sapiens										
P62318	GN=SNRPD3 PE=1 SV=1 - [SMD3_HUMAN]	2	2	0.257	0.433	0.189	2.85	0.05	2	1	1
	Sodium/potassium-transporting ATPase subunit alpha-1										
	OS=Homo sapiens GN=ATP1A1 PE=1 SV=1 -										
P05023	[AT1A1_HUMAN]	15	16	0.272	0.034	0.001	4.67	0.02	7	12	8
	Sorbin and SH3 domain-containing protein 1 OS=Homo sapiens							0.000			
Q9BX66	GN=SORBS1 PE=1 SV=3 - [SRBS1_HUMAN]	4	5	0.037	n/a	0.001	32.85	5	4	1	1
	Sorbitol dehydrogenase OS=Homo sapiens GN=SORD PE=1										
Q00796	SV=4 - [DHSO_HUMAN]	5	6	0.031	0.168	0.001	8.45	0.007	5	4	3
Q9Y5X	Sorting nexin-5 OS=Homo sapiens GN=SNX5 PE=1 SV=1 -						233.1				
3	[SNX5_HUMAN]	4	5	0.005	n/a	0.001	7	0.001	3	1	1
	S-phase kinase-associated protein 1 OS=Homo sapiens						214.8				
P63208	GN=SKP1 PE=1 SV=2 - [SKP1_HUMAN]	3	4	n/a	0.020	0.015	5	0.001	2	3	2
	Spliceosome RNA helicase DDX39B OS=Homo sapiens										
Q13838	GN=DDX39B PE=1 SV=1 - [DX39B_HUMAN]	2	11	0.001	0.024	0.265	4.79	0.02	7	9	5
	Splicing factor 3A subunit 3 OS=Homo sapiens GN=SF3A3										
Q12874	PE=1 SV=1 - [SF3A3_HUMAN]	2	3	0.001	n/a	n/a			1	2	1
	Splicing factor 3B subunit 1 OS=Homo sapiens GN=SF3B1						262.3	7.3E-			
075533	PE=1 SV=3 - [SF3B1_HUMAN]	15	16	0.008	0.004	0.001	8	06	5	10	12
	Splicing factor 3B subunit 3 OS=Homo sapiens GN=SF3B3										
Q15393	PE=1 SV=4 - [SF3B3_HUMAN]	3	4	lost	n/a	0.001			lost	3	3
	Splicing factor, proline- and glutamine-rich OS=Homo sapiens						678.9	0.000			
P23246	GN=SFPQ PE=1 SV=2 - [SFPQ_HUMAN]	4	5	n/a	0.002	0.001	8	5	2	4	5

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	116 kDa U5 small nuclear ribonucleoprotein component										
	OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 -										
Q15029	[U5S1_HUMAN]	5	6	0.001	n/a	n/a			4	3	2
	Stomatin-like protein 2 OS=Homo sapiens GN=STOML2 PE=1										
Q9UJZ1	SV=1 - [STML2_HUMAN]	6	7	0.244	0.058	0.024	5.71	0.01	6	3	3
	Structural maintenance of chromosomes flexible hinge domain-										
A6NHR	containing protein 1 OS=Homo sapiens GN=SMCHD1 PE=1										
9	SV=2 - [SMHD1_HUMAN]	1	2	lost	n/a	0.266			lost	1	1
Q9UQE	Structural maintenance of chromosomes protein 3 OS=Homo						121.3				
7	sapiens GN=SMC3 PE=1 SV=2 - [SMC3_HUMAN]	9	12	lost	0.009	0.001	3	0.003	lost	7	7
	Succinyl-CoA ligase [ADP/GDP-forming] subunit alpha,										
	mitochondrial OS=Homo sapiens GN=SUCLG1 PE=1 SV=4 -										
P53597	[SUCA_HUMAN]	5	5	0.325	0.362	n/a	8.39	0.04	2	5	4
Q9UBE	SUMO-activating enzyme subunit 1 OS=Homo sapiens										
0	GN=SAE1 PE=1 SV=1 - [SAE1_HUMAN]	6	7	0.259	0.393	0.311	4.62	0.02	5	3	6
Q9UBT	SUMO-activating enzyme subunit 2 OS=Homo sapiens										
2	GN=UBA2 PE=1 SV=2 - [SAE2_HUMAN]	10	12	0.356	0.001	0.001	3.22	0.04	8	7	6
Q9Y4G	Talin-2 OS=Homo sapiens GN=TLN2 PE=1 SV=4 -										
6	[TLN2_HUMAN]	1	4	lost	n/a	n/a	0	0	lost	2	3
	TBC1 domain family member 4 OS=Homo sapiens						1809.	0.000			
O60343	GN=TBC1D4 PE=1 SV=2 - [TBCD4_HUMAN]	9	10	lost	0.002	0.001	01	2	lost	8	6
	T-complex protein 1 subunit beta OS=Homo sapiens GN=CCT2										
P78371	PE=1 SV=4 - [TCPB_HUMAN]	15	16	0.399	0.017	0.001	2.78	0.05	11	11	7
	Testin OS=Homo sapiens GN=TES PE=1 SV=1 -										
Q9UGI8	[TES_HUMAN]	10	10	0.319	0.269	0.003	3.09	0.05	6	7	4
	Thymidine kinase, cytosolic OS=Homo sapiens GN=TK1 PE=1										
P04183	SV=2 - [KITH_HUMAN]	2	2	0.004	n/a	n/a			1	1	1

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	116 kDa U5 small nuclear ribonucleoprotein component										
	OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 -										
Q15029	[U5S1_HUMAN]	5	6	0.001	n/a	n/a			4	3	2
Q9Y2W	Thyroid hormone receptor-associated protein 3 OS=Homo						3553.	9.0E-			
1	sapiens GN=THRAP3 PE=1 SV=2 - [TR150_HUMAN]	2	2	lost	0.001	0.001	00	05	lost	2	2
Q9UDY	Tight junction protein ZO-2 OS=Homo sapiens GN=TJP2 PE=1										
2	SV=2 - [ZO2_HUMAN]	6	7	lost	0.241	0.176	8.94	0.04	lost	6	2
Q8WZ4	Titin OS=Homo sapiens GN=TTN PE=1 SV=4 -										
2	[TITIN_HUMAN]	2	22	n/a	n/a	n/a	0	0	12	8	8
	Transcription elongation factor SPT5 OS=Homo sapiens						155.1	2.1E-			
O00267	GN=SUPT5H PE=1 SV=1 - [SPT5H_HUMAN]	4	4	0.005	0.003	0.014	7	05	1	1	4
	Transcription intermediary factor 1-beta OS=Homo sapiens										
Q13263	GN=TRIM28 PE=1 SV=5 - [TIF1B_HUMAN]	8	8	0.033	0.286	0.001	4.37	0.02	6	7	6
	Translational activator GCN1 OS=Homo sapiens GN=GCN1L1						798.7	0.000			
Q92616	PE=1 SV=6 - [GCN1L_HUMAN]	28	31	lost	0.002	0.001	5	4	lost	21	24
	Translin OS=Homo sapiens GN=TSN PE=1 SV=1 -										
Q15631	[TSN_HUMAN]	4	6	0.083	0.388	0.089	3.12	0.04	2	3	5
	Transthyretin OS=Homo sapiens GN=TTR PE=1 SV=1 -						2628.	7.2E-			
P02766	[TTHY_HUMAN]	5	5	0.001	0.002	0.001	75	08	2	5	3
	Trifunctional enzyme subunit alpha, mitochondrial OS=Homo										
P40939	sapiens GN=HADHA PE=1 SV=2 - [ECHA_HUMAN]	11	11	0.351	0.019	0.001	3.30	0.04	9	4	5
	Tripartite motif-containing protein 29 OS=Homo sapiens						2171.	1.1E-			
Q14134	GN=TRIM29 PE=1 SV=2 - [TRI29_HUMAN]	6	6	0.001	0.002	0.001	14	07	3	3	5
	Tripeptidyl-peptidase 2 OS=Homo sapiens GN=TPP2 PE=1						234.6				
P29144	SV=4 - [TPP2_HUMAN]	9	9	lost	0.005	0.001	6	0.001	lost	3	7
	Tropomyosin alpha-4 chain OS=Homo sapiens GN=TPM4										
P67936	PE=1 SV=3 - [TPM4_HUMAN]	5	7	0.033	0.023	n/a	96.49	0.003	4	6	4

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	116 kDa U5 small nuclear ribonucleoprotein component										
	OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 -										
Q15029	[U5S1_HUMAN]	5	6	0.001	n/a	n/a			4	3	2
	Tubulin beta-2A chain OS=Homo sapiens GN=TUBB2A PE=1										
Q13885	SV=1 - [TBB2A_HUMAN]	1	17	0.001	n/a	n/a			17	17	17
Q9BUF	Tubulin beta-6 chain OS=Homo sapiens GN=TUBB6 PE=1										
5	SV=1 - [TBB6_HUMAN]	7	14	0.007	0.398	0.001	2.78	0.05	12	12	13
Q9BTW	Tubulin-specific chaperone D OS=Homo sapiens GN=TBCD										
9	PE=1 SV=2 - [TBCD_HUMAN]	2	3	n/a	n/a	n/a	0	0	1	1	1
	Tyrosine-protein phosphatase non-receptor type 1 OS=Homo										
P18031	sapiens GN=PTPN1 PE=1 SV=1 - [PTN1_HUMAN]	6	7	0.379	0.001	0.001	2.96	0.05	4	4	4
	Tyrosine-protein phosphatase non-receptor type 23 OS=Homo										
Q9H3S7	sapiens GN=PTPN23 PE=1 SV=1 - [PTN23_HUMAN]	2	2	lost	n/a	n/a	0	0	lost	1	1
	Ubiquitin carboxyl-terminal hydrolase 5 OS=Homo sapiens										
P45974	GN=USP5 PE=1 SV=2 - [UBP5_HUMAN]	7	9	0.068	0.001	0.001	21.30	0.001	5	5	2
	Ubiquitin-conjugating enzyme E2 variant 1 OS=Homo sapiens										
Q13404	GN=UBE2V1 PE=1 SV=2 - [UB2V1_HUMAN]	1	5	0.013	0.241	0.001	5.31	0.02	4	5	3
	Ubiquitin-conjugating enzyme E2 variant 2 OS=Homo sapiens										
Q15819	GN=UBE2V2 PE=1 SV=4 - [UB2V2_HUMAN]	2	4	0.003	0.084	n/a	11.30	0.03	3	4	2
	Ubiquitin-like modifier-activating enzyme 1 OS=Homo sapiens										
P22314	GN=UBA1 PE=1 SV=3 - [UBA1_HUMAN]	15	16	0.388	0.017	0.001	2.88	0.05	15	12	10
	UBX domain-containing protein 1 OS=Homo sapiens										
Q04323	GN=UBXN1 PE=1 SV=2 - [UBXN1_HUMAN]	3	4	n/a	n/a	0.001			1	1	2
	Uncharacterized protein C19orf68 OS=Homo sapiens										
Q86XI8	GN=C19orf68 PE=1 SV=2 - [CS068_HUMAN]	1	2	n/a	n/a	n/a	0	0	2	2	1
	Unconventional myosin-Ic OS=Homo sapiens GN=MYO1C										
O00159	PE=1 SV=4 - [MYO1C_HUMAN]	15	18	0.181	0.008	0.116	7.90	0.008	11	7	7

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	116 kDa U5 small nuclear ribonucleoprotein component										
	OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 -										
Q15029	[U5S1_HUMAN]	5	6	0.001	n/a	n/a			4	3	2
	Unconventional myosin-Id OS=Homo sapiens GN=MYO1D										
O94832	PE=1 SV=2 - [MYO1D_HUMAN]	4	4	0.014	n/a	0.001	78.38	0.004	1	1	2
	UPF0160 protein MYG1, mitochondrial OS=Homo sapiens										
Q9HB07	GN=C12orf10 PE=1 SV=2 - [MYG1_HUMAN]	5	5	0.044	n/a	n/a			3	2	1
	UPF0568 protein C14orf166 OS=Homo sapiens GN=C14orf166						296.6	5.7E-			
Q9Y224	PE=1 SV=1 - [CN166_HUMAN]	6	6	0.006	0.001	0.001	2	06	1	3	5
Q9UBQ	Vacuolar protein sorting-associated protein 29 OS=Homo										
0	sapiens GN=VPS29 PE=1 SV=1 - [VPS29_HUMAN]	5	5	0.007	0.327	0.017	3.65	0.03	2	4	1
Q96QK	Vacuolar protein sorting-associated protein 35 OS=Homo										
1	sapiens GN=VPS35 PE=1 SV=2 - [VPS35_HUMAN]	8	8	0.256	0.001	0.001	4.86	0.02	3	6	4
	ValinetRNA ligase OS=Homo sapiens GN=VARS PE=1										
P26640	SV=4 - [SYVC_HUMAN]	15	17	0.021	0.188	0.010	7.42	0.009	8	8	16
	Vesicle-associated membrane protein 3 OS=Homo sapiens										
Q15836	GN=VAMP3 PE=1 SV=3 - [VAMP3_HUMAN]	3	3	0.001	0.019	n/a	54.67	0.006	2	3	1
	Vesicle-associated membrane protein-associated protein B/C										
	OS=Homo sapiens GN=VAPB PE=1 SV=3 -										
O95292	[VAPB_HUMAN]	6	9	n/a	0.002	0.022	48.84	0.007	3	7	7
	Vesicular integral-membrane protein VIP36 OS=Homo sapiens										
Q12907	GN=LMAN2 PE=1 SV=1 - [LMAN2_HUMAN]	3	4	n/a	0.002	n/a			2	2	2
	Vigilin OS=Homo sapiens GN=HDLBP PE=1 SV=2 -										
Q00341	[VIGLN_HUMAN]	5	7	lost	0.001	n/a			lost	5	2
	Vinculin OS=Homo sapiens GN=VCL PE=1 SV=4 -										
P18206	[VINC_HUMAN]	18	18	0.371	0.006	0.001	3.05	0.05	12	13	11
P21796	Voltage-dependent anion-selective channel protein 1 OS=Homo	6	7	0.368	0.425	0.280	3.38	0.04	7	6	6

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	116 kDa U5 small nuclear ribonucleoprotein component										
	OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 -										
Q15029	[U5S1_HUMAN]	5	6	0.001	n/a	n/a			4	3	2
	sapiens GN=VDAC1 PE=1 SV=2 - [VDAC1_HUMAN]										
	Voltage-dependent anion-selective channel protein 2 OS=Homo										
P45880	sapiens GN=VDAC2 PE=1 SV=2 - [VDAC2_HUMAN]	6	6	0.308	0.442	0.251	2.93	0.05	3	5	4
	V-type proton ATPase subunit B, brain isoform OS=Homo						2858.	6.1E-			
P21281	sapiens GN=ATP6V1B2 PE=1 SV=3 - [VATB2_HUMAN]	3	3	0.001	0.002	0.001	15	08	2	1	1
Q9Y5K	V-type proton ATPase subunit D OS=Homo sapiens						379.9	3.5E-			
8	GN=ATP6V1D PE=1 SV=1 - [VATD_HUMAN]	6	6	0.002	0.001	0.005	4	06	2	4	5
	X-ray repair cross-complementing protein 6 OS=Homo sapiens										
P12956	GN=XRCC6 PE=1 SV=2 - [XRCC6_HUMAN]	20	21	0.161	0.013	0.193	6.81	0.01	11	13	10
Q9Y5A	YTH domain family protein 2 OS=Homo sapiens GN=YTHDF2										
9	PE=1 SV=2 - [YTHD2_HUMAN]	1	4	n/a	n/a	n/a	0	0	2	2	2

8.2 Candidate novel interacting proteins of the phosphomimetic mutant of β-catenin at tyrosine-654 in SW480.

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	40S ribosomal protein S13 OS=Homo sapiens GN=RPS13										
P62277	PE=1 SV=2 - [RS13_HUMAN]	4	4	0.432		0.546			4	4	1
	40S ribosomal protein S14 OS=Homo sapiens GN=RPS14										
P62263	PE=1 SV=3 - [RS14_HUMAN]	2	2	0.396	0.295	0.385	4.4	0.02	2	2	1
	40S ribosomal protein S2 OS=Homo sapiens GN=RPS2 PE=1										
P15880	SV=2 - [RS2_HUMAN]	8	8	0.427	0.443				7	3	1
	40S ribosomal protein S3a OS=Homo sapiens GN=RPS3A										
P61247	PE=1 SV=2 - [RS3A_HUMAN]	7	7	0.507	0.508	0.520	2.9	0.05	4	5	1
	40S ribosomal protein S9 OS=Homo sapiens GN=RPS9 PE=1										
P46781	SV=3 - [RS9_HUMAN]	7	7	0.465	0.529				7	1	1
	60 kDa heat shock protein, mitochondrial OS=Homo sapiens										
P10809	GN=HSPD1 PE=1 SV=2 - [CH60_HUMAN]	10	10	0.225	0.189	0.159	16.2	0.002	7	3	8
	60S acidic ribosomal protein P0 OS=Homo sapiens GN=RPLP0										
P05388	PE=1 SV=1 - [RLA0_HUMAN]	3	3	0.480	0.450	0.441	3.7	0.03	3	2	1
	60S ribosomal protein L11 OS=Homo sapiens GN=RPL11										
P62913	PE=1 SV=2 - [RL11_HUMAN]	5	5	0.280	0.297	0.334	12.4	0.003	5	3	3
	60S ribosomal protein L23 OS=Homo sapiens GN=RPL23										
P62829	PE=1 SV=1 - [RL23_HUMAN]	4	4	0.505	0.506	0.506	13.0	0.003	4	4	1
	60S ribosomal protein L7 OS=Homo sapiens GN=RPL7 PE=1										
P18124	SV=1 - [RL7_HUMAN]	5	5	0.381	0.479				5	3	1
	78 kDa glucose-regulated protein OS=Homo sapiens										
P11021	GN=HSPA5 PE=1 SV=2 - [GRP78_HUMAN]	18	20	0.242	0.174	0.234	13.2	0.003	15	10	13
P68032	Actin, alpha cardiac muscle 1 OS=Homo sapiens GN=ACTC1	1	10		0.414				8	10	5

		Unique	-	R1	R2	R3		-	R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	PE=1 SV=1 - [ACTC_HUMAN]										
	Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1										
P60709	SV=1 - [ACTB_HUMAN]	1	14			0.477			12	12	8
	Alpha-2-HS-glycoprotein OS=Homo sapiens GN=AHSG PE=1						5401	1.71E			
P02765	SV=1 - [FETUA_HUMAN]	3	3	0.001	0.001	0.001	3.2	-10	3	2	2
	Alpha-actinin-1 OS=Homo sapiens GN=ACTN1 PE=1 SV=2 -										
P12814	[ACTN1_HUMAN]	1	9		0.275	0.336			6	8	8
	Alpha-actinin-4 OS=Homo sapiens GN=ACTN4 PE=1 SV=2 -										
O43707	[ACTN4_HUMAN]	7	15	0.030	0.226	0.319	3.6	0.03	10	10	11
	Alpha-amylase 1 OS=Homo sapiens GN=AMY1A PE=1 SV=2										
P04745	- [AMY1_HUMAN]	1	6	0.001					5	4	4
	Alpha-enolase OS=Homo sapiens GN=ENO1 PE=1 SV=2 -										
P06733	[ENOA_HUMAN]	6	6	0.387	0.300	0.436	3.1	0.04	2	6	4
	ATP-binding cassette sub-family E member 1 OS=Homo										
P61221	sapiens GN=ABCE1 PE=1 SV=1 - [ABCE1_HUMAN]	6	6	0.035	0.002				4	2	1
	ATP-dependent RNA helicase A OS=Homo sapiens										
Q08211	GN=DHX9 PE=1 SV=4 - [DHX9_HUMAN]	1	1	0.012	lost				1		1
	Beta-galactosidase OS=Homo sapiens GN=GLB1 PE=1 SV=2 -						1305	2.93E			
P16278	[BGAL_HUMAN]	4	4	0.001	0.001	0.001	6.0	-09	4	3	4
	Bifunctional purine biosynthesis protein PURH OS=Homo										
P31939	sapiens GN=ATIC PE=1 SV=3 - [PUR9_HUMAN]	6	6	0.282	0.266	0.345	8.4	0.007	3	1	4
	CAD protein OS=Homo sapiens GN=CAD PE=1 SV=3 -										
P27708	[PYR1_HUMAN]	18	18	0.370	lost	0.373	85.5	0.004	15		7
	Calpain-2 catalytic subunit OS=Homo sapiens GN=CAPN2										
P17655	PE=1 SV=6 - [CAN2_HUMAN]	4	4	0.304	0.137	0.240	5.6	0.02	2	1	3
	Catenin alpha-1 OS=Homo sapiens GN=CTNNA1 PE=1 SV=1						3296.	4.60E			
P35221	- [CTNA1_HUMAN]	12	12	0.002	0.001	0.001	9	-08	2	7	9

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	Catenin beta-1 OS=Homo sapiens GN=CTNNB1 PE=1 SV=1 -										
P35222	[CTNB1_HUMAN]	32	37	0.001	0.001	0.001	0	0	36	30	36
	Clathrin heavy chain 1 OS=Homo sapiens GN=CLTC PE=1										
Q00610	SV=5 - [CLH1_HUMAN]	20	20	0.340	lost	0.360	15.4	0.02	17		15
	Creatine kinase M-type OS=Homo sapiens GN=CKM PE=1						1120.	3.98E			
P06732	SV=2 - [KCRM_HUMAN]	1	1	0.002	0.003	0.001	3	-07	1	1	1
	Cytoplasmic dynein 1 heavy chain 1 OS=Homo sapiens										
Q14204	GN=DYNC1H1 PE=1 SV=5 - [DYHC1_HUMAN]	3	3	0.005	lost				2		1
	Dermcidin OS=Homo sapiens GN=DCD PE=1 SV=2 -						2002.	1.25E			
P81605	[DCD_HUMAN]	2	2	0.001	0.001	0.002	6	-07	2	2	2
	Desmoplakin OS=Homo sapiens GN=DSP PE=1 SV=3 -							2.93E			
P15924	[DESP_HUMAN]	8	8	0.006	0.005	0.009	412.9	-06	3	3	3
	Destrin OS=Homo sapiens GN=DSTN PE=1 SV=3 -										
P60981	[DEST_HUMAN]	4	5	0.335	0.286	0.310	13.6	0.003	5	1	2
	DNA-binding protein A OS=Homo sapiens GN=CSDA PE=1										
P16989	SV=4 - [DBPA_HUMAN]	1	3				0	0	1	3	1
	E3 ubiquitin/ISG15 ligase TRIM25 OS=Homo sapiens										
Q14258	GN=TRIM25 PE=1 SV=2 - [TRI25_HUMAN]	6	6	0.441	0.432	0.401	6.2	0.01	6	2	3
	Endoplasmin OS=Homo sapiens GN=HSP90B1 PE=1 SV=1 -										
P14625	[ENPL_HUMAN]	1	2				0	0	1	1	2
	Eukaryotic translation initiation factor 3 subunit D OS=Homo										
O15371	sapiens GN=EIF3D PE=1 SV=1 - [EIF3D_HUMAN]	1	1	0.002		0.321			1	1	1
	Fatty acid synthase OS=Homo sapiens GN=FASN PE=1 SV=3										
P49327	- [FAS_HUMAN]	39	39	0.414	lost	0.425	14.8	0.02	34		23
	Filamin-A OS=Homo sapiens GN=FLNA PE=1 SV=4 -										
P21333	[FLNA_HUMAN]	7	7	0.280	lost	0.291	37.8	0.008	5		3
075369	Filamin-B OS=Homo sapiens GN=FLNB PE=1 SV=2 -	5	5	0.061	lost	0.036	36.5	0.009	4		2

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	[FLNB_HUMAN]										
	Fructose-bisphosphate aldolase A OS=Homo sapiens										
P04075	GN=ALDOA PE=1 SV=2 - [ALDOA_HUMAN]	3	3			0.278			1	1	1
	Glucose-6-phosphate isomerase OS=Homo sapiens GN=GPI										
P06744	PE=1 SV=4 - [G6PI_HUMAN]	2	2	0.391	0.365	0.367	14.8	0.002	1	2	2
	Glutathione S-transferase theta-1 OS=Homo sapiens						2366.	8.93E			
P30711	GN=GSTT1 PE=1 SV=4 - [GSTT1_HUMAN]	1	1	0.001	0.002	0.001	7	-08	1	1	1
	Glyceraldehyde-3-phosphate dehydrogenase, testis-specific										
	OS=Homo sapiens GN=GAPDHS PE=1 SV=2 -										
014556	[G3PT_HUMAN]	1	2			0.001			1	1	2
	GlycinetRNA ligase OS=Homo sapiens GN=GARS PE=1										
P41250	SV=3 - [SYG_HUMAN]	4	4	0.322		0.032			2	1	3
	GMP synthase [glutamine-hydrolyzing] OS=Homo sapiens										
P49915	GN=GMPS PE=1 SV=1 - [GUAA_HUMAN]	5	5	0.334	0.241	0.199	6.1	0.01	3	2	3
	Heat shock 70 kDa protein 1A/1B OS=Homo sapiens										
P08107	GN=HSPA1A PE=1 SV=5 - [HSP71_HUMAN]	5	8	0.268	0.353	0.367	5.6	0.02	6	3	6
	Heat shock protein 75 kDa, mitochondrial OS=Homo sapiens										
Q12931	GN=TRAP1 PE=1 SV=3 - [TRAP1_HUMAN]	2	3				0	0	1	1	3
	Heat shock protein HSP 90-alpha OS=Homo sapiens										
P07900	GN=HSP90AA1 PE=1 SV=5 - [HS90A_HUMAN]	7	15	0.354	0.242	0.292	6.3	0.01	11	12	13
	Histone H2B type 1-K OS=Homo sapiens GN=HIST1H2BK										
O60814	PE=1 SV=3 - [H2B1K_HUMAN]	3	3	0.318	0.344	0.380	8.5	0.007	2	1	1
	Hornerin OS=Homo sapiens GN=HRNR PE=1 SV=2 -							8.72E			
Q86YZ3	[HORN_HUMAN]	5	5	0.024	0.021	0.004	75.7	-05	3	3	1
	Insulin-like growth factor 2 mRNA-binding protein 1										
	OS=Homo sapiens GN=IGF2BP1 PE=1 SV=2 -										
Q9NZI8	[IF2B1_HUMAN]	6	8	0.299	0.330				6	4	2

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	Insulin-like growth factor 2 mRNA-binding protein 2										
Q9Y6M	OS=Homo sapiens GN=IGF2BP2 PE=1 SV=2 -										
1	[IF2B2_HUMAN]	7	9	0.279	0.336	0.192	5.5	0.02	8	6	5
	Insulin-like growth factor 2 mRNA-binding protein 3										
	OS=Homo sapiens GN=IGF2BP3 PE=1 SV=2 -										
O00425	[IF2B3_HUMAN]	1	4			0.007			3	1	1
	Junction plakoglobin OS=Homo sapiens GN=JUP PE=1 SV=3 -										
P14923	[PLAK_HUMAN]	3	8		0.008				5	8	5
	L-lactate dehydrogenase A chain OS=Homo sapiens										
P00338	GN=LDHA PE=1 SV=2 - [LDHA_HUMAN]	11	15	0.416	0.401	0.473	3.2	0.04	14	7	9
Q9BYZ	L-lactate dehydrogenase A-like 6B OS=Homo sapiens										
2	GN=LDHAL6B PE=1 SV=3 - [LDH6B_HUMAN]	1	3	0.001	0.001				3	2	1
	Lysosomal protective protein OS=Homo sapiens GN=CTSA										
P10619	PE=1 SV=2 - [PPGB_HUMAN]	2	2	0.010		0.002			2	2	2
	Myosin-10 OS=Homo sapiens GN=MYH10 PE=1 SV=3 -										
P35580	[MYH10_HUMAN]	2	10	0.015	lost				10		4
	Myosin-9 OS=Homo sapiens GN=MYH9 PE=1 SV=4 -										
P35579	[MYH9_HUMAN]	28	35	0.349	lost	0.379	9.2	0.03	33		18
	Pancreatic alpha-amylase OS=Homo sapiens GN=AMY2A										
P04746	PE=1 SV=2 - [AMYP_HUMAN]	1	6	0.001	0.001				5	5	4
	Peptidyl-prolyl cis-trans isomerase A OS=Homo sapiens										
P62937	GN=PPIA PE=1 SV=2 - [PPIA_HUMAN]	8	8	0.362		0.432			7	3	4
	Peroxiredoxin-1 OS=Homo sapiens GN=PRDX1 PE=1 SV=1 -										
Q06830	[PRDX1_HUMAN]	6	7	0.418	0.338	0.365	5.4	0.02	7	2	2
	Peroxiredoxin-2 OS=Homo sapiens GN=PRDX2 PE=1 SV=5 -										
P32119	[PRDX2_HUMAN]	2	3	0.340	0.213				2	1	1
Q15365	Poly(rC)-binding protein 1 OS=Homo sapiens GN=PCBP1	4	5	0.413	0.432	0.448	6.9	0.01	3	3	3

		Unique		R1	R2	R3		,	R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	PE=1 SV=2 - [PCBP1_HUMAN]										
	Polyadenylate-binding protein 4 OS=Homo sapiens										
Q13310	GN=PABPC4 PE=1 SV=1 - [PABP4_HUMAN]	1	4			0.448			4	3	3
	Prelamin-A/C OS=Homo sapiens GN=LMNA PE=1 SV=1 -										
P02545	[LMNA_HUMAN]	10	10	0.336		0.426			9	3	6
	Probable ATP-dependent RNA helicase DDX17 OS=Homo										
Q92841	sapiens GN=DDX17 PE=1 SV=2 - [DDX17_HUMAN]	2	4	0.004					3	1	2
	Probable ATP-dependent RNA helicase DDX5 OS=Homo										
P17844	sapiens GN=DDX5 PE=1 SV=1 - [DDX5_HUMAN]	4	6			0.534			3	1	5
	Profilin-1 OS=Homo sapiens GN=PFN1 PE=1 SV=2 -										
P07737	[PROF1_HUMAN]	3	3	0.028		0.329			3	1	2
	Protein arginine N-methyltransferase 5 OS=Homo sapiens										
O14744	GN=PRMT5 PE=1 SV=4 - [ANM5_HUMAN]	3	3	0.029	0.003	0.313	3.9	0.03	3	1	1
	Protein-glutamine gamma-glutamyltransferase 2 OS=Homo										
P21980	sapiens GN=TGM2 PE=1 SV=2 - [TGM2_HUMAN]	9	9	0.241	0.003	0.193	4.9	0.02	8	4	9
	Protocadherin alpha-8 OS=Homo sapiens GN=PCDHA8 PE=2										
Q9Y5H6	SV=1 - [PCDA8_HUMAN]	1	1	0.001	0.001	0.001	0	0	1	1	1
	Pyruvate kinase isozymes M1/M2 OS=Homo sapiens										
P14618	GN=PKM PE=1 SV=4 - [KPYM_HUMAN]	12	12	0.444	0.375	0.448	3.3	0.04	11	9	11
	RNA polymerase II elongation factor ELL2 OS=Homo sapiens							6.16E			
O00472	GN=ELL2 PE=1 SV=2 - [ELL2_HUMAN]	1	1	0.004	0.002	0.002	901.0	-07	1	1	1
	RuvB-like 2 OS=Homo sapiens GN=RUVBL2 PE=1 SV=3 -						3756	3.54E			
Q9Y230	[RUVB2_HUMAN]	13	13	0.004	0.001	0.001	4.4	-10	5	11	5
	Sorting nexin-9 OS=Homo sapiens GN=SNX9 PE=1 SV=1 -										
Q9Y5X1	[SNX9_HUMAN]	3	3	0.059		0.007			2	1	1
	Spectrin alpha chain, non-erythrocytic 1 OS=Homo sapiens										
Q13813	GN=SPTAN1 PE=1 SV=3 - [SPTN1_HUMAN]	22	22	0.208	lost	0.218	56.2	0.006	20		7

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	Peptides	Peptides
	Stress-70 protein, mitochondrial OS=Homo sapiens										
P38646	GN=HSPA9 PE=1 SV=2 - [GRP75_HUMAN]	8	8	0.015	0.001	0.071	22.2	0.001	5	4	6
	Tax1-binding protein 3 OS=Homo sapiens GN=TAX1BP3										
O14907	PE=1 SV=2 - [TX1B3_HUMAN]	1	1	0.001		0.002			1	1	1
	T-complex protein 1 subunit eta OS=Homo sapiens GN=CCT7										
Q99832	PE=1 SV=2 - [TCPH_HUMAN]	2	2	0.437	0.424	0.361	3.9	0.03	1	1	2
	Transitional endoplasmic reticulum ATPase OS=Homo sapiens										
P55072	GN=VCP PE=1 SV=4 - [TERA_HUMAN]	1	1	0.405	0.389	0.383	15.9	0.002	1	1	1
	Transketolase OS=Homo sapiens GN=TKT PE=1 SV=3 -										
P29401	[TKT_HUMAN]	8	8	0.307	0.027	0.329	2.9	0.05	6	2	4
	Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1							0.000			
P60174	SV=3 - [TPIS_HUMAN]	5	5	0.330	0.312	0.318	34.4	4	5	4	2
	Tripartite motif-containing protein 29 OS=Homo sapiens										
Q14134	GN=TRIM29 PE=1 SV=2 - [TRI29_HUMAN]	3	3	0.005	0.002				1	1	1
	Tubulin alpha-1A chain OS=Homo sapiens GN=TUBA1A										
Q71U36	PE=1 SV=1 - [TBA1A_HUMAN]	4	9	0.373	0.346	0.429	4.8	0.02	4	9	5
	Tubulin alpha-4A chain OS=Homo sapiens GN=TUBA4A										
P68366	PE=1 SV=1 - [TBA4A_HUMAN]	1	6	0.002	0.001				4	6	2
	Tubulin beta chain OS=Homo sapiens GN=TUBB PE=1 SV=2										
P07437	- [TBB5_HUMAN]	1	12	0.369	0.418	0.434	4.7	0.02	10	9	5
	Tubulin beta-2A chain OS=Homo sapiens GN=TUBB2A PE=1										
Q13885	SV=1 - [TBB2A_HUMAN]	2	11		0.031	0.045			8	8	6
	Tubulin beta-4A chain OS=Homo sapiens GN=TUBB4A PE=1										
P04350	SV=2 - [TBB4A_HUMAN]	2	11				0	0	8	8	4
	Ubiquitin-40S ribosomal protein S27a OS=Homo sapiens										
P62979	GN=RPS27A PE=1 SV=2 - [RS27A_HUMAN]	1	3				0	0	2	1	2
P62987	Ubiquitin-60S ribosomal protein L40 OS=Homo sapiens	1	3	0.476					2	1	2

Acc #	Protein	Unique peptides	Peptides	R1 H/L	R2 H/L	R3 H/L	tstat	pval	R1 Peptides	R2 Peptides	R3 Peptides
	GN=UBA52 PE=1 SV=2 - [RL40_HUMAN]										
	ValinetRNA ligase OS=Homo sapiens GN=VARS PE=1										
P26640	SV=4 - [SYVC_HUMAN]	2	2	0.008	lost	0.018	102.7	0.003	2		1

8.3 Candidate novel interacting proteins of the non-phosphorylatable mutant of β-catenin at tyrosine-654 in SW480.

		Unique		R1	R2	R3			R1	R2 Pentid	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	es	Peptides
	26S protease regulatory subunit 7 OS=Homo sapiens		_		0.14				_		_
P35998	GN=PSMC2 PE=1 SV=3 - [PRS7_HUMAN]	1	1	0.230	4	0.004	5.66	0.01	1	1	1
	40S ribosomal protein S20 OS=Homo sapiens GN=RPS20				0.39						
P60866	PE=1 SV=1 - [RS20_HUMAN]	3	3	0.383	1	0.234	3.21	0.04	2	2	3
	40S ribosomal protein SA OS=Homo sapiens GN=RPSA				0.30						
P08865	PE=1 SV=4 - [RSSA_HUMAN]	3	3	0.276	9	0.218	8.75	0.006	3	2	3
	60S ribosomal protein L10a OS=Homo sapiens GN=RPL10A										
P62906	PE=1 SV=2 - [RL10A_HUMAN]	2	2	0.386					2	1	1
	60S ribosomal protein L11 OS=Homo sapiens GN=RPL11				0.22						
P62913	PE=1 SV=2 - [RL11_HUMAN]	4	4	0.153	3	0.147	13.33	0.003	3	4	3
	6-phosphofructokinase type C OS=Homo sapiens GN=PFKP										
Q01813	PE=1 SV=2 - [K6PP_HUMAN]	3	5			0.001			2	2	4
	6-phosphofructokinase, liver type OS=Homo sapiens										
P17858	GN=PFKL PE=1 SV=6 - [K6PL_HUMAN]	2	4	0.170					1	1	3
	78 kDa glucose-regulated protein OS=Homo sapiens				0.25						
P11021	GN=HSPA5 PE=1 SV=2 - [GRP78_HUMAN]	7	9	0.357	2	0.266	6.30	0.01	5	4	7
	7SK snRNA methylphosphate capping enzyme OS=Homo										
Q7L2J0	sapiens GN=MEPCE PE=1 SV=1 - [MEPCE_HUMAN]	1	1			0.134			1	1	1
	Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1										
P60709	SV=1 - [ACTB_HUMAN]	1	13			0.425			11	8	11
	Actin, gamma-enteric smooth muscle OS=Homo sapiens										
P63267	GN=ACTG2 PE=1 SV=1 - [ACTH_HUMAN]	1	9			0.357			7	5	8

										R2	
A oo #	Protoin	Unique	Dontidos	R1 11/1	R2	R3	tetat	nyol	R1 Pontidos	Peptid	R3 Pontidos
Att #	Adapulul cyclasa associated protein 1 OS-Homo capions	peptides	Teptues	11/12	0.52	11/12	เรเลเ	pvai	Teptides	63	Teptues
001518	GN=CAP1 PF=1 SV=5 - [CAP1 HIMAN]	2	2		0.52				1	1	1
201310	ADP-ribosylation factor GTPase-activating protein 1		2		Ŭ				1	1	1
	OS=Homo saniens GN=ARFGAP1 PF=1 SV=2 -				0.00		432.9	2 7E-			
O8N6T3	[ARFG1 HUMAN]	4	4	0.005	4	0.001	4	06	1	2	2
(Alpha-2-HS-glycoprotein OS=Homo sapiens GN=AHSG				0.00		245.6	8.3E-			
P02765	PE=1 SV=1 - [FETUA HUMAN]	3	3	0.004	8	0.001	2	06	2	3	3
	Alpha-actinin-1 OS=Homo sapiens GN=ACTN1 PE=1 SV=2										
P12814	- [ACTN1_HUMAN]	4	16				0	0	10	11	9
	Alpha-amylase 1 OS=Homo sapiens GN=AMY1A PE=1				0.00		3920.	8.1E-			
P04745	SV=2 - [AMY1_HUMAN]	1	1		1	0.001	84	05	1	1	1
	Asparagine synthetase [glutamine-hydrolyzing] OS=Homo				0.27						
P08243	sapiens GN=ASNS PE=1 SV=4 - [ASNS_HUMAN]	2	2	0.080	9	0.150	5.66	0.01	1	2	1
	ATP-citrate synthase OS=Homo sapiens GN=ACLY PE=1				0.40						
P53396	SV=3 - [ACLY_HUMAN]	2	2	0.418	6		15.18	0.02	2	1	1
	ATP-dependent RNA helicase DDX3X OS=Homo sapiens				0.06						
O00571	GN=DDX3X PE=1 SV=3 - [DDX3X_HUMAN]	14	14	0.001	7	0.001	21.86	0.001	12	9	5
	BTB/POZ domain-containing protein KCTD5 OS=Homo				0.00		1215.	3.4E-			
Q9NXV2	sapiens GN=KCTD5 PE=1 SV=1 - [KCTD5_HUMAN]	3	3	0.001	2	0.001	00	07	3	2	2
								0.000			
	C-1-tetrahydrofolate synthase, cytoplasmic OS=Homo sapiens				0.05			7022			
P11586	GN=MTHFD1 PE=1 SV=3 - [C1TC_HUMAN]	7	7	0.004	6	0.001	26.66	02	4	4	4
	Calponin-2 OS=Homo sapiens GN=CNN2 PE=1 SV=4 -	_			0.01						
Q99439	[CNN2_HUMAN]	3	3	0.086	0	0.061	19.98	0.001	3	3	3
	Catenin alpha-1 OS=Homo sapiens GN=CTNNA1 PE=1	_	_	0.00-	0.00		2106.	1.1E-			_
P35221	SV=1 - [CTNA1_HUMAN]	8	8	0.002	1	0.001	15	07	6	4	6

										R2	
		Unique		R1	R2	R3			R1	Peptid	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	es	Peptides
	Catenin beta-1 OS=Homo sapiens GN=CTNNB1 PE=1 SV=1				0.00		1866	1.4E-			
P35222	- [CTNB1_HUMAN]	31	35	0.001	1	0.001	9.24	09	31	31	30
	Catenin delta-1 OS=Homo sapiens GN=CTNND1 PE=1				0.00						
O60716	SV=1 - [CTND1_HUMAN]	4	4		5				1	2	2
	Cellular nucleic acid-binding protein OS=Homo sapiens				0.18						
P62633	GN=CNBP PE=1 SV=1 - [CNBP_HUMAN]	4	4	0.168	4	0.002	6.56	0.01	3	4	2
	Chloride intracellular channel protein 4 OS=Homo sapiens				0.33						
Q9Y696	GN=CLIC4 PE=1 SV=4 - [CLIC4_HUMAN]	2	2	0.332	3	0.270	9.06	0.006	1	2	1
	Coatomer subunit delta OS=Homo sapiens GN=ARCN1 PE=1										
P48444	SV=1 - [COPD_HUMAN]	3	3			0.002			1	1	2
								0.000			
	Coiled-coil domain-containing protein 93 OS=Homo sapiens						341.3	9326			
Q567U6	GN=CCDC93 PE=1 SV=2 - [CCD93_HUMAN]	2	2	0.004		0.001	0	45	1	1	2
	Cysteine and glycine-rich protein 2 OS=Homo sapiens				0.04						
Q16527	GN=CSRP2 PE=1 SV=3 - [CSRP2_HUMAN]	2	2	0.004	0		26.32	0.01	1	2	1
	Cytoplasmic dynein 1 intermediate chain 2 OS=Homo sapiens				0.33						
Q13409	GN=DYNC1I2 PE=1 SV=3 - [DC1I2_HUMAN]	2	2	0.415	2	0.399	4.62	0.02	2	1	1
	Deoxyuridine 5'-triphosphate nucleotidohydrolase,										
	mitochondrial OS=Homo sapiens GN=DUT PE=1 SV=4 -				0.30						
P33316	[DUT_HUMAN]	1	1	0.278	0		19.60	0.02	1	1	1
	DNA replication licensing factor MCM5 OS=Homo sapiens										
P33992	GN=MCM5 PE=1 SV=5 - [MCM5_HUMAN]	3	3			0.164			2	1	1
	DNA-binding protein A OS=Homo sapiens GN=CSDA PE=1										
P16989	SV=4 - [DBPA_HUMAN]	2	4			0.001			2	1	2
	DnaJ homolog subfamily A member 1 OS=Homo sapiens				0.37						
P31689	GN=DNAJA1 PE=1 SV=2 - [DNJA1_HUMAN]	1	1		0				1	1	1

										R2	
A oo #	Ductoin	Unique	Dontidoa	R1	R2	R3	tatat	nvol	R1 Dontidos	Peptid	R3 Dontidos
ACC #		pepudes	Pepudes	H/L	H/L	H/L	เรเลเ	pvai	Pepudes	es	Pepudes
	D-tyrosyl-tRNA(1yr) deacylase 1 US=Homo sapiens	1	1	0.400	0.28	0.157	2.04	0.05	1	1	1
Q8IEA8	GN=DIDIPE=ISV=2 - [DIDI_HUMAN]	1	1	0.409	9	0.157	2.94	0.05	1	1	1
	Dynamin-like 120 kDa protein, mitochondrial OS=Homo				0.01		147.6	2.3E-			_
060313	sapiens GN=OPA1 PE=1 SV=3 - [OPA1_HUMAN]	4	4	0.003	3	0.002	0	05	2	2	3
	E3 ubiquitin-protein ligase RBX1 OS=Homo sapiens				0.24						
P62877	GN=RBX1 PE=1 SV=1 - [RBX1_HUMAN]	2	2	0.006	1	0.002	5.28	0.02	1	2	1
	Electron transfer flavoprotein subunit beta OS=Homo sapiens				0.17						
P38117	GN=ETFB PE=1 SV=3 - [ETFB_HUMAN]	2	2	0.215	4	0.039	6.72	0.01	1	2	1
	Elongation factor Tu, mitochondrial OS=Homo sapiens				0.21						
P49411	GN=TUFM PE=1 SV=2 - [EFTU_HUMAN]	4	4	0.011	9	0.075	6.46	0.01	3	2	2
	Eukaryotic translation initiation factor 2A OS=Homo sapiens										
Q9BY44	GN=EIF2A PE=1 SV=3 - [EIF2A_HUMAN]	2	2			0.004			1	1	2
	Eukaryotic translation initiation factor 4B OS=Homo sapiens				0.20						
P23588	GN=EIF4B PE=1 SV=2 - [IF4B_HUMAN]	5	5	0.022	6	0.153	6.82	0.01	3	3	4
								0.000			
	Eukaryotic translation initiation factor 4E type 2 OS=Homo				0.02			1405			
O60573	sapiens GN=EIF4E2 PE=1 SV=1 - [IF4E2 HUMAN]	3	3	0.001	6	0.001	59.64	11	2	1	1
	Ezrin OS=Homo sapiens GN=EZR PE=1 SV=4 -				0.12						
P15311	[EZRI HUMAN]	5	6	0.039	0		10.34	0.03	3	3	1
	Fatty acid synthase OS=Homo sapiens GN=FASN PE=1				0.30						
P49327	SV=3 - [FAS_HUMAN]	27	27	0.331	9	0.200	5.41	0.02	22	17	3
	Four and a half LIM domains protein 2 OS=Homo sapiens				0.01		132.3	2.9E-			
Q14192	GN=FHL2 PE=1 SV=3 - [FHL2 HUMAN]	4	4	0.003	4	0.004	9	05	3	4	2
	Glyceraldehyde-3-phosphate dehydrogenase OS=Homo				0.42						
P04406	sapiens GN=GAPDH PE=1 SV=3 - [G3P HUMAN]	8	8	0.435	9	0.336	3.13	0.04	8	5	4
P06737	Glycogen phosphorylase, liver form OS=Homo sapiens	5	6	0.314	0.34	0.266	7.99	0.008	3	4	3

		T T •		D 1	Da	D 2			D1	R2	D 2
Acc #	Protein	Unique peptides	Peptides	KI H/L	KZ H/L	K3 H/L	tstat	pval	K1 Peptides	Peptid es	R3 Peptides
	GN=PYGL PE=1 SV=4 - [PYGL_HUMAN]	I - P	_ · F ·····		8			I	F		
	Heat shock 70 kDa protein 1A/1B OS=Homo sapiens				0.33						
P08107	GN=HSPA1A PE=1 SV=5 - [HSP71_HUMAN]	6	8	0.287	6	0.306	13.27	0.003	3	4	6
								0.000			
	Heterogeneous nuclear ribonucleoprotein F OS=Homo sapiens				0.11			8018			
P52597	GN=HNRNPF PE=1 SV=3 - [HNRPF_HUMAN]	1	3	0.093	8	0.061	24.94	55	3	3	2
	Heterogeneous nuclear ribonucleoprotein H OS=Homo				0.06						
P31943	sapiens GN=HNRNPH1 PE=1 SV=4 - [HNRH1_HUMAN]	4	6	0.001	8	0.001	21.49	0.001	5	4	3
	Heterogeneous nuclear ribonucleoprotein K OS=Homo				0.17						
P61978	sapiens GN=HNRNPK PE=1 SV=1 - [HNRPK_HUMAN]	10	10	0.172	7	0.075	10.80	0.004	7	6	9
	Heterogeneous nuclear ribonucleoprotein Q OS=Homo				0.23						
O60506	sapiens GN=SYNCRIP PE=1 SV=2 - [HNRPQ_HUMAN]	3	3	0.218	0	0.126	9.44	0.006	1	3	3
	Heterogeneous nuclear ribonucleoprotein U OS=Homo				0.01		135.1	2.7E-			
Q00839	sapiens GN=HNRNPU PE=1 SV=6 - [HNRPU_HUMAN]	1	1	0.004	3	0.001	5	05	1	1	1
	Heterogeneous nuclear ribonucleoproteins A2/B1 OS=Homo				0.05						
P22626	sapiens GN=HNRNPA2B1 PE=1 SV=2 - [ROA2_HUMAN]	4	4	0.282	1	0.229	4.49	0.02	2	2	2
	Histone-binding protein RBBP7 OS=Homo sapiens				0.05						
Q16576	GN=RBBP7 PE=1 SV=1 - [RBBP7_HUMAN]	1	1		0				1	1	1
	Importin subunit alpha-5 OS=Homo sapiens GN=KPNA1		-		0.00		332.6	4.5E-			
P52294	PE=1 SV=3 - [IMA5_HUMAN]	2	2	0.002	6	0.001	3	06	1	1	1
	Insulin-like growth factor 2 mRNA-binding protein 2							0.000			
0.011.014	OS=Homo sapiens GN=IGF2BP2 PE=1 SV=2 -		-	0.000	0.05	0.010	20.15	3206	2		
Q9Y6M1	[IF2B2_HUMAN]	6	6	0.032	2	0.010	39.47	8	3	3	3
D40725	Isocitrate dehydrogenase [NADP], mitochondrial OS=Homo					0.000					
P48/35	sapiens GN=IDH2 PE=1 SV=2 - [IDHP_HUMAN]	1	1			0.002			1	1	1
P14923	Junction plakoglobin OS=Homo sapiens GN=JUP PE=1	1	5				0	0	4	5	4

		Unique		R1	R2	R3			R1	R2 Peptid	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	es	Peptides
	SV=3 - [PLAK_HUMAN]										_
	Kinesin light chain 4 OS=Homo sapiens GN=KLC4 PE=1				0.00		535.7	1.7E-			
Q9NSK0	SV=3 - [KLC4_HUMAN]	4	4	0.001	4	0.001	9	06	3	1	1
	Leucine-rich repeat-containing protein 14B OS=Homo sapiens				0.00		2777.	6.5E-			
A6NHZ5	GN=LRRC14B PE=3 SV=3 - [LR14B_HUMAN]	1	1	0.002	1	0.001	81	08	1	1	1
	Leucine-rich repeat-containing protein 47 OS=Homo sapiens										
Q8N1G4	GN=LRRC47 PE=1 SV=1 - [LRC47_HUMAN]	2	2			0.015			1	2	2
	Leukotriene A-4 hydrolase OS=Homo sapiens GN=LTA4H				0.01						
P09960	PE=1 SV=2 - [LKHA4_HUMAN]	1	1		6	0.002	67.65	0.005	1	1	1
	LIM and senescent cell antigen-like-containing domain							0.000			
	protein 1 OS=Homo sapiens GN=LIMS1 PE=1 SV=4 -				0.00		524.2	6071			
P48059	[LIMS1_HUMAN]	2	2	0.004	6		8	39	1	1	1
	LIM and senescent cell antigen-like-containing domain										
	protein 3-like OS=Homo sapiens GN=LIMS3L PE=2 SV=1 -				0.07						
P0CW20	[LIM3L_HUMAN]	1	1	0.278	3	0.002	4.61	0.02	1	1	1
	LIM and SH3 domain protein 1 OS=Homo sapiens				0.16						
Q14847	GN=LASP1 PE=1 SV=2 - [LASP1_HUMAN]	11	11	0.130	5	0.053	11.61	0.004	8	4	8
								0.000			
	LIM domain only protein 7 OS=Homo sapiens GN=LMO7				0.04			4636			
Q8WWI1	PE=1 SV=3 - [LMO7_HUMAN]	1	1	0.005	7	0.001	32.82	74	1	1	1
	L-lactate dehydrogenase A chain OS=Homo sapiens				0.15						
P00338	GN=LDHA PE=1 SV=2 - [LDHA_HUMAN]	6	8	0.009	0	0.389	2.86	0.05	6	6	6
	Lupus La protein OS=Homo sapiens GN=SSB PE=1 SV=2 -				0.05						
P05455	[LA_HUMAN]	3	3	0.273	2	0.015	4.80	0.02	2	2	2
	L-xylulose reductase OS=Homo sapiens GN=DCXR PE=1										
Q7Z4W1	SV=2 - [DCXR_HUMAN]	2	2	0.404					1	2	1

										R2	
		Unique	D	R1	R2	R3			R1	Peptid	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	es	Peptides
	Lysosomal protective protein OS=Homo sapiens GN=CTSA				0.00		475.7	2.2E-			
P10619	PE=1 SV=2 - [PPGB_HUMAN]	2	2	0.011	8	0.007	5	06	2	1	1
								0.000			
	Mitotic checkpoint protein BUB3 OS=Homo sapiens						2080.	1529			
O43684	GN=BUB3 PE=1 SV=1 - [BUB3_HUMAN]	3	3	0.001		0.001	75	78	3	1	2
	Nebulette OS=Homo sapiens GN=NEBL PE=1 SV=1 -				0.01		130.1	3.0E-			
O76041	[NEBL_HUMAN]	2	2	0.001	4	0.004	4	05	2	2	2
								0.000			
	Neutral alpha-glucosidase AB OS=Homo sapiens				0.02		341.6	9317			
Q14697	GN=GANAB PE=1 SV=3 - [GANAB_HUMAN]	3	3		5	0.022	2	63	2	3	1
	Nucleolin OS=Homo sapiens GN=NCL PE=1 SV=3 -				0.33						
P19338	[NUCL_HUMAN]	4	4	0.327	7		33.58	0.01	2	2	1
	Partner of Y14 and mago OS=Homo sapiens GN=WIBG				0.30						
Q9BRP8	PE=1 SV=1 - [WIBG_HUMAN]	1	1	0.157	7	0.002	3.92	0.03	1	1	1
	Paxillin OS=Homo sapiens GN=PXN PE=1 SV=3 -				0.00		247.0	8.2E-			
P49023	[PAXI_HUMAN]	3	3	0.003	8	0.001	3	06	3	1	2
	PDZ and LIM domain protein 4 OS=Homo sapiens				0.00		522.4	1.8E-			
P50479	GN=PDLIM4 PE=1 SV=2 - [PDLI4_HUMAN]	7	7	0.001	4	0.001	0	06	6	2	5
	Peflin OS=Homo sapiens GN=PEF1 PE=1 SV=1 -				0.01		110.6	4.1E-			
Q9UBV8	[PEF1_HUMAN]	1	1	0.011	7	0.002	5	05	1	1	1
-	Peroxiredoxin-2 OS=Homo sapiens GN=PRDX2 PE=1 SV=5				0.42						
P32119	- [PRDX2_HUMAN]	1	2		7				1	2	1
	PERQ amino acid-rich with GYF domain-containing protein 1										
	OS=Homo sapiens GN=GIGYF1 PE=1 SV=2 -				0.00		836.5	7.1E-			
075420	[PERQ1_HUMAN]	7	7	0.001	3	0.001	4	07	7	3	3
Q6Y7W6	PERQ amino acid-rich with GYF domain-containing protein 2	10	10	0.012	0.01	0.003	174.6	1.6E-	9	5	2

		.		Di					D.	R2	
A oo #	Drotoin	Unique	Dontidos	KI H/I	R2 Ц/Т	К3 Ц/Г	tetat	nyol	KI Pontidos	Peptid	R3 Pontidos
Att #	OS-Homo saniens GN-GIGYE2 PE-1 SV-1	peptides	replices	11/12	11/L 0	11/12	151a1 6		Teptides	63	replices
	[PERO2_HUMAN]				0		0	05			
O8WW1	PEST proteolytic signal-containing nuclear protein OS=Homo				0.26						
2	sapiens GN=PCNP PE=1 SV=2 - [PCNP HUMAN]	2	2		9	0.233	14.03	0.02	1	2	1
	Pleckstrin homology-like domain family B member 1										
	OS=Homo sapiens GN=PHLDB1 PE=1 SV=1 -				0.02			8.2E-			
Q86UU1	[PHLB1_HUMAN]	7	7	0.002	2	0.004	77.95	05	6	2	1
	Poly(rC)-binding protein 1 OS=Homo sapiens GN=PCBP1				0.29						
Q15365	PE=1 SV=2 - [PCBP1_HUMAN]	3	4	0.345	4	0.237	6.68	0.01	2	3	3
	Probable ATP-dependent RNA helicase DDX17 OS=Homo				0.00		675.6	1.1E-			
Q92841	sapiens GN=DDX17 PE=1 SV=2 - [DDX17_HUMAN]	2	3	0.001	3	0.001	9	06	2	2	1
	Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3				0.45						
Q15185	PE=1 SV=1 - [TEBP_HUMAN]	1	1		2				1	1	1
	Protein disulfide-isomerase OS=Homo sapiens GN=P4HB				0.06						
P07237	PE=1 SV=3 - [PDIA1_HUMAN]	4	4		1	0.029	28.21	0.01	1	3	2
	Protein phosphatase 1G OS=Homo sapiens GN=PPM1G										
015355	PE=1 SV=1 - [PPM1G_HUMAN]	3	3	0.002		0.036	28.39	0.01	2	1	2
	Protein transport protein Sec61 subunit beta OS=Homo				0.00		425.9	2.8E-			
P60468	sapiens GN=SEC61B PE=1 SV=2 - [SC61B_HUMAN]	1	1	0.003	5	0.001	4	06	1	1	1
DO 1000	Protein-glutamine gamma-glutamyltransferase 2 OS=Homo	-		0.107	0.22	0.005	10 51	0.001		-	
P21980	sapiens GN=TGM2 PE=1 SV=2 - [TGM2_HUMAN]	6	6	0.187	4	0.235	19.51	0.001	4	5	2
OOLDIGG	Ras GTPase-activating protein-binding protein 2 OS=Homo			0.064	0.03	0.000	6.00	0.01			
Q9UN86	sapiens GN=G3BP2 PE=I SV=2 - [G3BP2_HUMAN]	1	1	0.064	6	0.239	6.09	0.01	1	1	1
	REIA-associated inhibitor US=Homo sapiens GN=PPP1R13L	10	10	0.001	0.00	0.001	938.5	5./E-	0	2	-
Q8WUF5	PE=1 SV=4 - [IASPP_HUMAN]	12	12	0.001	3	0.001	5	0/	9	3	5
P60891	Ribose-phosphate pyrophosphokinase 1 OS=Homo sapiens	1	1				0	0	1	1	1

		Unique		R1	R2	R3			R1	R2 Pentid	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	Peptides	es	Peptides
	GN=PRPS1 PE=1 SV=2 - [PRPS1_HUMAN]		-						-		-
	RNA-binding protein 14 OS=Homo sapiens GN=RBM14				0.01		112.7	3.9E-			
Q96PK6	PE=1 SV=2 - [RBM14_HUMAN]	3	3	0.004	5	0.018	2	05	2	1	2
	RNA-binding protein EWS OS=Homo sapiens GN=EWSR1				0.00						
Q01844	PE=1 SV=1 - [EWS_HUMAN]	1	1		3				1	1	1
	RuvB-like 1 OS=Homo sapiens GN=RUVBL1 PE=1 SV=1 -				0.00		551.7	1.6E-			
Q9Y265	[RUVB1_HUMAN]	8	8	0.003	4	0.001	9	06	5	4	4
	RuvB-like 2 OS=Homo sapiens GN=RUVBL2 PE=1 SV=3 -				0.00		990.9	5.1E-			
Q9Y230	[RUVB2_HUMAN]	17	17	0.001	3	0.001	0	07	12	11	13
	Serine/threonine-protein phosphatase PP1-beta catalytic							0.000			
D (01 10	subunit OS=Homo sapiens GN=PPP1CB PE=1 SV=3 -			0.001	0.00	0.000		1492			
P62140	[PPIB_HUMAN]	1	1	0.001	4	0.028	57.86	96	1	1	1
07(004	Signal recognition particle 72 kDa protein OS=Homo sapiens	1	1			0.000			1	1	1
076094	$GN=SRP/2 PE=1 SV=3 - [SRP/2_HUMAN]$	1	1		0.01	0.266	117.0	2 (F	1	1	1
OOVEMO	Signal recognition particle receptor subunit beta US=Homo	1	1	0.010	0.01	0.002	117.2	3.6E-	1	1	1
Q915M8	Sapiens GN=SRPRB PE=1 SV=3 - [SRPRB_HUMAN]	1	1	0.010	/	0.003	4	05	1	1	1
	Single-stranded DNA-binding protein, mitochondrial				0.16						
004837	US=HOIIIO SAPIEIIS UN=SSDP1 PE=1 SV=1 -	1	1	0.126	0.10	0.041	10.91	0.004	1	1	1
Q04637	[SSBF_HUMAN]	1	1	0.120	0.24	0.041	10.01	0.004	1	1	1
P62306	Small nuclear monucleoprotein F OS-Homo saplens CN-SNPPE PE-1 SV-1 [PUYE HUMAN]	1	1		0.54				1	1	1
102300	Son of sevenless homolog 1 OS-Homo series GN-SOS1	1	1		0.00				1	1	1
007889	PF-1 SV-1 - [SOS1 HIJMAN]	1	1	0.001	0.00	0.001	0	0	1	1	1
207007		1	1	0.001		0.001	0	0.000	1	1	1
	Sorting nexin-9 OS=Homo sapiens GN=SNX9 PF=1 SV=1 -				0.02			1604			
Q9Y5X1	[SNX9_HUMAN]	3	3	0.004	9	0.001	55.81	75	2	1	3

				-		-				R2	
Acc #	Protein	Unique pentides	Pentides	R1 H/L	R2 H/L	R3 H/L	tstat	nval	R1 Pentides	Peptid	R3 Pentides
	Src substrate cortactin OS=Homo sapiens GN=CTTN PE=1	peptides	replaces	11/12	0.01	11/12	istat	pvar	reptites	Co	replaces
014247	SV=2 - [SRC8 HUMAN]	4	4		0.01				2	4	1
	Stress-70 protein, mitochondrial OS=Homo sapiens				0.21						
P38646	GN=HSPA9 PE=1 SV=2 - [GRP75_HUMAN]	4	4	0.002	2	0.155	6.01	0.01	2	2	3
	Succinyl-CoA ligase [ADP/GDP-forming] subunit alpha,										
	mitochondrial OS=Homo sapiens GN=SUCLG1 PE=1 SV=4 -				0.00		218.3				
P53597	[SUCA_HUMAN]	2	2		6	0.001	2	0.001	1	1	1
	Tax1-binding protein 3 OS=Homo sapiens GN=TAX1BP3				0.00		1271.	3.1E-			
O14907	PE=1 SV=2 - [TX1B3_HUMAN]	3	3	0.002	1	0.001	35	07	2	2	2
	T-complex protein 1 subunit zeta OS=Homo sapiens				0.52						
P40227	GN=CCT6A PE=1 SV=3 - [TCPZ_HUMAN]	2	2	0.529	0	0.524	9.12	0.006	1	1	1
								0.000			
	Testin OS=Homo sapiens GN=TES PE=1 SV=1 -	_	_		0.03			1928		_	
Q9UGI8	[TES_HUMAN]	5	5	0.007	7	0.010	50.90	7	4	5	2
	Thymidine kinase, cytosolic OS=Homo sapiens GN=TK1				0.01		112.6	3.9E-			
P04183	PE=1 SV=2 - [KITH_HUMAN]	1	1	0.004	6	0.002	6	05	1	I	1
015654	Thyroid receptor-interacting protein 6 OS=Homo sapiens			0.007	0.00	0.001	292.5	5.8E-			
Q15654	GN=TRIP6 PE=1 SV=3 - [TRIP6_HUMAN]	1	1	0.007	3	0.001	3	06	1	1	1
015260	Transcription elongation factor B polypeptide 1 OS=Homo	2	2	0.059	0.11	0.142	15 (9	0.002	1	2	1
Q15369	Sapiens GN=TCEBT PE=T SV=T - [ELOC_HUMAN]	Z	2	0.058	8	0.142	15.08	0.002	1	L	1
D20401	Transketolase US=Homo sapiens GN=TKT PE=1 SV=3 -	C	C	0.496		0.491	6.00	0.05	2	1	2
P29401	[IKI_HUMAN] Trifunctional anguma subunit alpha mitashandrial OS_Hama	0	0	0.480		0.481	0.00	0.03	3	1	3
P40030	Signature CN-HADHA PE-1 SV-2 [ECHA HIMAN]	2	2	0.002		0.008	130.4	0.002	1	1	2
140737	Tripartite motif containing protein 20 OS-Homo serions	2	2	0.002		0.008	130.6	0.002	1	1	2
014134	GN=TRIM29 PE=1 SV=2 - [TRI29 HUMAN]	4	4	0.005		0.003	+30.0	7391	3	2	4

		Timione		D1	БЭ	D2			D1	R2 Dentid	D2
Acc #	Protein	peptides	Peptides	KI H/L	KZ H/L	KS H/L	tstat	pval	R1 Peptides	es	K5 Peptides
								62			
	Tropomyosin alpha-3 chain OS=Homo sapiens GN=TPM3				0.01						
P06753	PE=1 SV=2 - [TPM3_HUMAN]	1	2		3				1	2	1
	Tubulin alpha-1B chain OS=Homo sapiens GN=TUBA1B				0.39						
P68363	PE=1 SV=1 - [TBA1B_HUMAN]	8	8	0.442	4	0.330	3.42	0.04	5	4	5
	Tubulin beta chain OS=Homo sapiens GN=TUBB PE=1				0.27						
P07437	SV=2 - [TBB5_HUMAN]	1	12	0.228	0		12.18	0.03	8	12	8
	Tubulin beta-1 chain OS=Homo sapiens GN=TUBB1 PE=1										
Q9H4B7	SV=1 - [TBB1_HUMAN]	0	4				0	0	1	4	2
	Tubulin beta-2A chain OS=Homo sapiens GN=TUBB2A				0.00						
Q13885	PE=1 SV=1 - [TBB2A_HUMAN]	1	11		3				7	11	8
	Tubulin beta-2B chain OS=Homo sapiens GN=TUBB2B				0.34						
Q9BVA1	PE=1 SV=1 - [TBB2B_HUMAN]	1	11		8				7	11	8
	Tubulin beta-3 chain OS=Homo sapiens GN=TUBB3 PE=1						3557.	8.9E-			
Q13509	SV=2 - [TBB3_HUMAN]	1	10	0.001		0.001	07	05	6	9	6
	Tubulin beta-4A chain OS=Homo sapiens GN=TUBB4A				0.30						
P04350	PE=1 SV=2 - [TBB4A_HUMAN]	1	10		0				6	9	6
	Tubulin beta-4B chain OS=Homo sapiens GN=TUBB4B				0.00		103.9	4.6E-			
P68371	PE=1 SV=1 - [TBB4B_HUMAN]	1	12	0.001	1	0.015	5	05	8	11	9
	Ubiquitin-40S ribosomal protein S27a OS=Homo sapiens				0.33						
P62979	GN=RPS27A PE=1 SV=2 - [RS27A_HUMAN]	4	4	0.445	7	0.262	2.86	0.05	2	4	1
	WD repeat-containing protein 82 OS=Homo sapiens										
Q6UXN9	GN=WDR82 PE=1 SV=1 - [WDR82_HUMAN]	1	1				0	0	1	1	1

Crystal Semaan: Proteomic study of β -catenin protein interactions in colon cancer

8.4 Candidate novel interacting proteins of β-catenin that may be affected by phosphorylation.

*PM denotes phosphomimetic and NP denotes non-phosphorylatable

**White denotes absence of that protein in the dataset

***Grey denotes presence of that protein in the dataset

Acc #	Protein	PM	NP	Wildtype
P62277	40S ribosomal protein S13 OS=Homo sapiens GN=RPS13 PE=1 SV=2 - [RS13_HUMAN]			
P62263	40S ribosomal protein S14 OS=Homo sapiens GN=RPS14 PE=1 SV=3 - [RS14_HUMAN]			
P15880	40S ribosomal protein S2 OS=Homo sapiens GN=RPS2 PE=1 SV=2 - [RS2_HUMAN]			
P61247	40S ribosomal protein S3a OS=Homo sapiens GN=RPS3A PE=1 SV=2 - [RS3A_HUMAN]			
P46781	40S ribosomal protein S9 OS=Homo sapiens GN=RPS9 PE=1 SV=3 - [RS9_HUMAN]			
P10809	60 kDa heat shock protein, mitochondrial OS=Homo sapiens GN=HSPD1 PE=1 SV=2 - [CH60_HUMAN]			
P05388	60S acidic ribosomal protein P0 OS=Homo sapiens GN=RPLP0 PE=1 SV=1 - [RLA0_HUMAN]			
P62829	60S ribosomal protein L23 OS=Homo sapiens GN=RPL23 PE=1 SV=1 - [RL23_HUMAN]			
P18124	60S ribosomal protein L7 OS=Homo sapiens GN=RPL7 PE=1 SV=1 - [RL7_HUMAN]			
P06733	Alpha-enolase OS=Homo sapiens GN=ENO1 PE=1 SV=2 - [ENOA_HUMAN]			
Q08211	ATP-dependent RNA helicase A OS=Homo sapiens GN=DHX9 PE=1 SV=4 - [DHX9_HUMAN]			
P31939	Bifunctional purine biosynthesis protein PURH OS=Homo sapiens GN=ATIC PE=1 SV=3 - [PUR9_HUMAN]			
P27708	CAD protein OS=Homo sapiens GN=CAD PE=1 SV=3 - [PYR1_HUMAN]			

Acc #	Protein	PM	NP	Wildtype
P17655	Calpain-2 catalytic subunit OS=Homo sapiens GN=CAPN2 PE=1 SV=6 - [CAN2_HUMAN]			
Q00610	Clathrin heavy chain 1 OS=Homo sapiens GN=CLTC PE=1 SV=5 - [CLH1_HUMAN]			
P06732	Creatine kinase M-type OS=Homo sapiens GN=CKM PE=1 SV=2 - [KCRM_HUMAN]			
Q14204	Cytoplasmic dynein 1 heavy chain 1 OS=Homo sapiens GN=DYNC1H1 PE=1 SV=5 - [DYHC1_HUMAN]			
P81605	Dermcidin OS=Homo sapiens GN=DCD PE=1 SV=2 - [DCD_HUMAN]			
P15924	Desmoplakin OS=Homo sapiens GN=DSP PE=1 SV=3 - [DESP_HUMAN]			
P60981	Destrin OS=Homo sapiens GN=DSTN PE=1 SV=3 - [DEST_HUMAN]			
Q14258	E3 ubiquitin/ISG15 ligase TRIM25 OS=Homo sapiens GN=TRIM25 PE=1 SV=2 - [TRI25_HUMAN]			
P14625	Endoplasmin OS=Homo sapiens GN=HSP90B1 PE=1 SV=1 - [ENPL_HUMAN]			
O15371	Eukaryotic translation initiation factor 3 subunit D OS=Homo sapiens GN=EIF3D PE=1 SV=1 - [EIF3D_HUMAN]			
P21333	Filamin-A OS=Homo sapiens GN=FLNA PE=1 SV=4 - [FLNA_HUMAN]			
O75369	Filamin-B OS=Homo sapiens GN=FLNB PE=1 SV=2 - [FLNB_HUMAN]			
P04075	Fructose-bisphosphate aldolase A OS=Homo sapiens GN=ALDOA PE=1 SV=2 - [ALDOA_HUMAN]			
P06744	Glucose-6-phosphate isomerase OS=Homo sapiens GN=GPI PE=1 SV=4 - [G6PI_HUMAN]			
O14556	Glyceraldehyde-3-phosphate dehydrogenase, testis-specific OS=Homo sapiens GN=GAPDHS PE=1 SV=2 - [G3PT_HUMAN]			
P41250	GlycinetRNA ligase OS=Homo sapiens GN=GARS PE=1 SV=3 - [SYG_HUMAN]			
P49915	GMP synthase [glutamine-hydrolyzing] OS=Homo sapiens GN=GMPS PE=1 SV=1 - [GUAA_HUMAN]			
Q12931	Heat shock protein 75 kDa, mitochondrial OS=Homo sapiens GN=TRAP1 PE=1 SV=3 - [TRAP1_HUMAN]			
P07900	Heat shock protein HSP 90-alpha OS=Homo sapiens GN=HSP90AA1 PE=1 SV=5 - [HS90A_HUMAN]			
O60814	Histone H2B type 1-K OS=Homo sapiens GN=HIST1H2BK PE=1 SV=3 - [H2B1K_HUMAN]			

Acc #	Protein	PM	NP	Wildtype
P35580	Myosin-10 OS=Homo sapiens GN=MYH10 PE=1 SV=3 - [MYH10_HUMAN]			
P35579	Myosin-9 OS=Homo sapiens GN=MYH9 PE=1 SV=4 - [MYH9_HUMAN]			
P04746	Pancreatic alpha-amylase OS=Homo sapiens GN=AMY2A PE=1 SV=2 - [AMYP_HUMAN]			
P62937	Peptidyl-prolyl cis-trans isomerase A OS=Homo sapiens GN=PPIA PE=1 SV=2 - [PPIA_HUMAN]			
Q06830	Peroxiredoxin-1 OS=Homo sapiens GN=PRDX1 PE=1 SV=1 - [PRDX1_HUMAN]			
Q13310	Polyadenylate-binding protein 4 OS=Homo sapiens GN=PABPC4 PE=1 SV=1 - [PABP4_HUMAN]			
P02545	Prelamin-A/C OS=Homo sapiens GN=LMNA PE=1 SV=1 - [LMNA_HUMAN]			
P17844	Probable ATP-dependent RNA helicase DDX5 OS=Homo sapiens GN=DDX5 PE=1 SV=1 - [DDX5_HUMAN]			
P07737	Profilin-1 OS=Homo sapiens GN=PFN1 PE=1 SV=2 - [PROF1_HUMAN]			
Q9Y5H6	Protocadherin alpha-8 OS=Homo sapiens GN=PCDHA8 PE=2 SV=1 - [PCDA8_HUMAN]			
P14618	Pyruvate kinase isozymes M1/M2 OS=Homo sapiens GN=PKM PE=1 SV=4 - [KPYM_HUMAN]			
O00472	RNA polymerase II elongation factor ELL2 OS=Homo sapiens GN=ELL2 PE=1 SV=2 - [ELL2_HUMAN]			
Q13813	Spectrin alpha chain, non-erythrocytic 1 OS=Homo sapiens GN=SPTAN1 PE=1 SV=3 - [SPTN1_HUMAN]			
Q99832	T-complex protein 1 subunit eta OS=Homo sapiens GN=CCT7 PE=1 SV=2 - [TCPH_HUMAN]			
P55072	Transitional endoplasmic reticulum ATPase OS=Homo sapiens GN=VCP PE=1 SV=4 - [TERA_HUMAN]			
P60174	Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN]			
Q71U36	Tubulin alpha-1A chain OS=Homo sapiens GN=TUBA1A PE=1 SV=1 - [TBA1A_HUMAN]			
P68366	Tubulin alpha-4A chain OS=Homo sapiens GN=TUBA4A PE=1 SV=1 - [TBA4A_HUMAN]			
P62987	Ubiquitin-60S ribosomal protein L40 OS=Homo sapiens GN=UBA52 PE=1 SV=2 - [RL40_HUMAN]			
P35998	26S protease regulatory subunit 7 OS=Homo sapiens GN=PSMC2 PE=1 SV=3 - [PRS7_HUMAN]			
P60866	40S ribosomal protein S20 OS=Homo sapiens GN=RPS20 PE=1 SV=1 - [RS20_HUMAN]			

Acc #	Protein	PM	NP	Wildtype
P08865	40S ribosomal protein SA OS=Homo sapiens GN=RPSA PE=1 SV=4 - [RSSA_HUMAN]			
Q7L2J0	7SK snRNA methylphosphate capping enzyme OS=Homo sapiens GN=MEPCE PE=1 SV=1 - [MEPCE_HUMAN]			
P63267	Actin, gamma-enteric smooth muscle OS=Homo sapiens GN=ACTG2 PE=1 SV=1 - [ACTH_HUMAN]			
Q01518	Adenylyl cyclase-associated protein 1 OS=Homo sapiens GN=CAP1 PE=1 SV=5 - [CAP1_HUMAN]			
Q8N6T3	ADP-ribosylation factor GTPase-activating protein 1 OS=Homo sapiens GN=ARFGAP1 PE=1 SV=2 - [ARFG1_HUMAN]			
P08243	Asparagine synthetase [glutamine-hydrolyzing] OS=Homo sapiens GN=ASNS PE=1 SV=4 - [ASNS_HUMAN]			
P53396	ATP-citrate synthase OS=Homo sapiens GN=ACLY PE=1 SV=3 - [ACLY_HUMAN]			
O00571	ATP-dependent RNA helicase DDX3X OS=Homo sapiens GN=DDX3X PE=1 SV=3 - [DDX3X_HUMAN]			
Q9NXV2	BTB/POZ domain-containing protein KCTD5 OS=Homo sapiens GN=KCTD5 PE=1 SV=1 - [KCTD5_HUMAN]			
P62633	Cellular nucleic acid-binding protein OS=Homo sapiens GN=CNBP PE=1 SV=1 - [CNBP_HUMAN]			
Q9Y696	Chloride intracellular channel protein 4 OS=Homo sapiens GN=CLIC4 PE=1 SV=4 - [CLIC4_HUMAN]			
P48444	Coatomer subunit delta OS=Homo sapiens GN=ARCN1 PE=1 SV=1 - [COPD_HUMAN]			
Q567U6	Coiled-coil domain-containing protein 93 OS=Homo sapiens GN=CCDC93 PE=1 SV=2 - [CCD93_HUMAN]			
Q16527	Cysteine and glycine-rich protein 2 OS=Homo sapiens GN=CSRP2 PE=1 SV=3 - [CSRP2_HUMAN]			
Q13409	Cytoplasmic dynein 1 intermediate chain 2 OS=Homo sapiens GN=DYNC112 PE=1 SV=3 - [DC112_HUMAN]			
P33316	Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial OS=Homo sapiens GN=DUT PE=1 SV=4 - [DUT_HUMAN]			
P31689	DnaJ homolog subfamily A member 1 OS=Homo sapiens GN=DNAJA1 PE=1 SV=2 - [DNJA1_HUMAN]			
Q8TEA8	D-tyrosyl-tRNA(Tyr) deacylase 1 OS=Homo sapiens GN=DTD1 PE=1 SV=2 - [DTD1_HUMAN]			
O60313	Dynamin-like 120 kDa protein, mitochondrial OS=Homo sapiens GN=OPA1 PE=1 SV=3 - [OPA1_HUMAN]			
Acc #	Protein	PM	NP	Wildtype
--------	---	----	----	----------
Q9BY44	Eukaryotic translation initiation factor 2A OS=Homo sapiens GN=EIF2A PE=1 SV=3 - [EIF2A_HUMAN]			
O60573	Eukaryotic translation initiation factor 4E type 2 OS=Homo sapiens GN=EIF4E2 PE=1 SV=1 - [IF4E2_HUMAN]			
P15311	Ezrin OS=Homo sapiens GN=EZR PE=1 SV=4 - [EZRI_HUMAN]			
P52597	Heterogeneous nuclear ribonucleoprotein F OS=Homo sapiens GN=HNRNPF PE=1 SV=3 - [HNRPF_HUMAN]			
P31943	Heterogeneous nuclear ribonucleoprotein H OS=Homo sapiens GN=HNRNPH1 PE=1 SV=4 - [HNRH1_HUMAN]			
P61978	Heterogeneous nuclear ribonucleoprotein K OS=Homo sapiens GN=HNRNPK PE=1 SV=1 - [HNRPK_HUMAN]			
O60506	Heterogeneous nuclear ribonucleoprotein Q OS=Homo sapiens GN=SYNCRIP PE=1 SV=2 - [HNRPQ_HUMAN]			
Q00839	Heterogeneous nuclear ribonucleoprotein U OS=Homo sapiens GN=HNRNPU PE=1 SV=6 - [HNRPU_HUMAN]			
P22626	Heterogeneous nuclear ribonucleoproteins A2/B1 OS=Homo sapiens GN=HNRNPA2B1 PE=1 SV=2 - [ROA2_HUMAN]			
P52294	Importin subunit alpha-5 OS=Homo sapiens GN=KPNA1 PE=1 SV=3 - [IMA5_HUMAN]			
Q8N1G4	Leucine-rich repeat-containing protein 47 OS=Homo sapiens GN=LRRC47 PE=1 SV=1 - [LRC47_HUMAN]			
Q8WWI1	LIM domain only protein 7 OS=Homo sapiens GN=LMO7 PE=1 SV=3 - [LMO7_HUMAN]			
P05455	Lupus La protein OS=Homo sapiens GN=SSB PE=1 SV=2 - [LA_HUMAN]			
Q7Z4W1	L-xylulose reductase OS=Homo sapiens GN=DCXR PE=1 SV=2 - [DCXR_HUMAN]			
P19338	Nucleolin OS=Homo sapiens GN=NCL PE=1 SV=3 - [NUCL_HUMAN]			
Q9BRP8	Partner of Y14 and mago OS=Homo sapiens GN=WIBG PE=1 SV=1 - [WIBG_HUMAN]			
P49023	Paxillin OS=Homo sapiens GN=PXN PE=1 SV=3 - [PAXI_HUMAN]			
Q9UBV8	Peflin OS=Homo sapiens GN=PEF1 PE=1 SV=1 - [PEF1_HUMAN]			
Q6Y7W6	PERQ amino acid-rich with GYF domain-containing protein 2 OS=Homo sapiens GN=GIGYF2 PE=1 SV=1 - [PERQ2_HUMAN]			

Acc #	Protein	PM	NP	Wildtype
Q86UU1	Pleckstrin homology-like domain family B member 1 OS=Homo sapiens GN=PHLDB1 PE=1 SV=1 - [PHLB1_HUMAN]			
Q15185	Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN]			
P07237	Protein disulfide-isomerase OS=Homo sapiens GN=P4HB PE=1 SV=3 - [PDIA1_HUMAN]			
Q9UN86	Ras GTPase-activating protein-binding protein 2 OS=Homo sapiens GN=G3BP2 PE=1 SV=2 - [G3BP2_HUMAN]			
P60891	Ribose-phosphate pyrophosphokinase 1 OS=Homo sapiens GN=PRPS1 PE=1 SV=2 - [PRPS1_HUMAN]			
Q96PK6	RNA-binding protein 14 OS=Homo sapiens GN=RBM14 PE=1 SV=2 - [RBM14_HUMAN]			
Q01844	RNA-binding protein EWS OS=Homo sapiens GN=EWSR1 PE=1 SV=1 - [EWS_HUMAN]			
P62140	Serine/threonine-protein phosphatase PP1-beta catalytic subunit OS=Homo sapiens GN=PPP1CB PE=1 SV=3 - [PP1B_HUMAN]			
O76094	Signal recognition particle 72 kDa protein OS=Homo sapiens GN=SRP72 PE=1 SV=3 - [SRP72_HUMAN]			
Q04837	Single-stranded DNA-binding protein, mitochondrial OS=Homo sapiens GN=SSBP1 PE=1 SV=1 - [SSBP_HUMAN]			
P62306	Small nuclear ribonucleoprotein F OS=Homo sapiens GN=SNRPF PE=1 SV=1 - [RUXF_HUMAN]			
Q07889	Son of sevenless homolog 1 OS=Homo sapiens GN=SOS1 PE=1 SV=1 - [SOS1_HUMAN]			
Q14247	Src substrate cortactin OS=Homo sapiens GN=CTTN PE=1 SV=2 - [SRC8_HUMAN]			
P40227	T-complex protein 1 subunit zeta OS=Homo sapiens GN=CCT6A PE=1 SV=3 - [TCPZ_HUMAN]			
Q15654	Thyroid receptor-interacting protein 6 OS=Homo sapiens GN=TRIP6 PE=1 SV=3 - [TRIP6_HUMAN]			
Q15369	Transcription elongation factor B polypeptide 1 OS=Homo sapiens GN=TCEB1 PE=1 SV=1 - [ELOC_HUMAN]			
P06753	Tropomyosin alpha-3 chain OS=Homo sapiens GN=TPM3 PE=1 SV=2 - [TPM3_HUMAN]			
P68363	Tubulin alpha-1B chain OS=Homo sapiens GN=TUBA1B PE=1 SV=1 - [TBA1B_HUMAN]			
Q9H4B7	Tubulin beta-1 chain OS=Homo sapiens GN=TUBB1 PE=1 SV=1 - [TBB1_HUMAN]			

Acc #	Protein	PM	NP	Wildtype
Q9BVA1	Tubulin beta-2B chain OS=Homo sapiens GN=TUBB2B PE=1 SV=1 - [TBB2B_HUMAN]			
Q13509	Tubulin beta-3 chain OS=Homo sapiens GN=TUBB3 PE=1 SV=2 - [TBB3_HUMAN]			
P68371	Tubulin beta-4B chain OS=Homo sapiens GN=TUBB4B PE=1 SV=1 - [TBB4B_HUMAN]			
Q6UXN9	WD repeat-containing protein 82 OS=Homo sapiens GN=WDR82 PE=1 SV=1 - [WDR82_HUMAN]			
P62913	60S ribosomal protein L11 OS=Homo sapiens GN=RPL11 PE=1 SV=2 - [RL11_HUMAN]			
P11021	78 kDa glucose-regulated protein OS=Homo sapiens GN=HSPA5 PE=1 SV=2 - [GRP78_HUMAN]			
P60709	Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN]			
P12814	Alpha-actinin-1 OS=Homo sapiens GN=ACTN1 PE=1 SV=2 - [ACTN1_HUMAN]			
P04745	Alpha-amylase 1 OS=Homo sapiens GN=AMY1A PE=1 SV=2 - [AMY1_HUMAN]			
P16989	DNA-binding protein A OS=Homo sapiens GN=CSDA PE=1 SV=4 - [DBPA_HUMAN]			
P08107	Heat shock 70 kDa protein 1A/1B OS=Homo sapiens GN=HSPA1A PE=1 SV=5 - [HSP71_HUMAN]			
Q9Y6M1	Insulin-like growth factor 2 mRNA-binding protein 2 OS=Homo sapiens GN=IGF2BP2 PE=1 SV=2 - [IF2B2_HUMAN]			
P00338	L-lactate dehydrogenase A chain OS=Homo sapiens GN=LDHA PE=1 SV=2 - [LDHA_HUMAN]			
P32119	Peroxiredoxin-2 OS=Homo sapiens GN=PRDX2 PE=1 SV=5 - [PRDX2_HUMAN]			
Q92841	Probable ATP-dependent RNA helicase DDX17 OS=Homo sapiens GN=DDX17 PE=1 SV=2 - [DDX17_HUMAN]			
P21980	Protein-glutamine gamma-glutamyltransferase 2 OS=Homo sapiens GN=TGM2 PE=1 SV=2 - [TGM2_HUMAN]			
Q9Y5X1	Sorting nexin-9 OS=Homo sapiens GN=SNX9 PE=1 SV=1 - [SNX9_HUMAN]			
P38646	Stress-70 protein, mitochondrial OS=Homo sapiens GN=HSPA9 PE=1 SV=2 - [GRP75_HUMAN]			
O14907	Tax1-binding protein 3 OS=Homo sapiens GN=TAX1BP3 PE=1 SV=2 - [TX1B3_HUMAN]			
P29401	Transketolase OS=Homo sapiens GN=TKT PE=1 SV=3 - [TKT_HUMAN]			

Acc #	Protein	PM	NP	Wildtype
P07437	Tubulin beta chain OS=Homo sapiens GN=TUBB PE=1 SV=2 - [TBB5_HUMAN]			
P04350	Tubulin beta-4A chain OS=Homo sapiens GN=TUBB4A PE=1 SV=2 - [TBB4A_HUMAN]			
P62979	Ubiquitin-40S ribosomal protein S27a OS=Homo sapiens GN=RPS27A PE=1 SV=2 - [RS27A_HUMAN]			
Q15029	116 kDa U5 small nuclear ribonucleoprotein component OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 - [U5S1_HUMAN]			
Q9C0C2	182 kDa tankyrase-1-binding protein OS=Homo sapiens GN=TNKS1BP1 PE=1 SV=4 - [TB182_HUMAN]			
P19174	1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1 OS=Homo sapiens GN=PLCG1 PE=1 SV=1 - [PLCG1_HUMAN]			
P62333	26S protease regulatory subunit 10B OS=Homo sapiens GN=PSMC6 PE=1 SV=1 - [PRS10_HUMAN]			
P17980	26S protease regulatory subunit 6A OS=Homo sapiens GN=PSMC3 PE=1 SV=3 - [PRS6A_HUMAN]			
P43686	26S protease regulatory subunit 6B OS=Homo sapiens GN=PSMC4 PE=1 SV=2 - [PRS6B_HUMAN]			
P62195	26S protease regulatory subunit 8 OS=Homo sapiens GN=PSMC5 PE=1 SV=1 - [PRS8_HUMAN]			
Q99460	26S proteasome non-ATPase regulatory subunit 1 OS=Homo sapiens GN=PSMD1 PE=1 SV=2 - [PSMD1_HUMAN]			
O00487	26S proteasome non-ATPase regulatory subunit 14 OS=Homo sapiens GN=PSMD14 PE=1 SV=1 - [PSDE_HUMAN]			
Q13200	26S proteasome non-ATPase regulatory subunit 2 OS=Homo sapiens GN=PSMD2 PE=1 SV=3 - [PSMD2_HUMAN]			
O43242	26S proteasome non-ATPase regulatory subunit 3 OS=Homo sapiens GN=PSMD3 PE=1 SV=2 - [PSMD3_HUMAN]			
Q02218	2-oxoglutarate dehydrogenase, mitochondrial OS=Homo sapiens GN=OGDH PE=1 SV=3 - [ODO1_HUMAN]			
Q9BZE1	39S ribosomal protein L37, mitochondrial OS=Homo sapiens GN=MRPL37 PE=1 SV=2 - [RM37_HUMAN]			
Q99714	3-hydroxyacyl-CoA dehydrogenase type-2 OS=Homo sapiens GN=HSD17B10 PE=1 SV=3 - [HCD2_HUMAN]			
P62269	40S ribosomal protein S18 OS=Homo sapiens GN=RPS18 PE=1 SV=3 - [RS18_HUMAN]			

Acc #	Protein	PM	NP	Wildtype
P23396	40S ribosomal protein S3 OS=Homo sapiens GN=RPS3 PE=1 SV=2 - [RS3_HUMAN]			
P49189	4-trimethylaminobutyraldehyde dehydrogenase OS=Homo sapiens GN=ALDH9A1 PE=1 SV=3 - [AL9A1_HUMAN]			
P08237	6-phosphofructokinase, muscle type OS=Homo sapiens GN=PFKM PE=1 SV=2 - [K6PF_HUMAN]			
Q9UBM7	7-dehydrocholesterol reductase OS=Homo sapiens GN=DHCR7 PE=1 SV=1 - [DHCR7_HUMAN]			
Q9NR19	Acetyl-coenzyme A synthetase, cytoplasmic OS=Homo sapiens GN=ACSS2 PE=1 SV=1 - [ACSA_HUMAN]			
Q99798	Aconitate hydratase, mitochondrial OS=Homo sapiens GN=ACO2 PE=1 SV=2 - [ACON_HUMAN]			
P61160	Actin-related protein 2 OS=Homo sapiens GN=ACTR2 PE=1 SV=1 - [ARP2_HUMAN]			
O15145	Actin-related protein 2/3 complex subunit 3 OS=Homo sapiens GN=ARPC3 PE=1 SV=3 - [ARPC3_HUMAN]			
P59998	Actin-related protein 2/3 complex subunit 4 OS=Homo sapiens GN=ARPC4 PE=1 SV=3 - [ARPC4_HUMAN]			
O00767	Acyl-CoA desaturase OS=Homo sapiens GN=SCD PE=1 SV=2 - [ACOD_HUMAN]			
Q86TX2	Acyl-coenzyme A thioesterase 1 OS=Homo sapiens GN=ACOT1 PE=1 SV=1 - [ACOT1_HUMAN]			
P25054	Adenomatous polyposis coli protein OS=Homo sapiens GN=APC PE=1 SV=2 - [APC_HUMAN]			
P12235	ADP/ATP translocase 1 OS=Homo sapiens GN=SLC25A4 PE=1 SV=4 - [ADT1_HUMAN]			
P05141	ADP/ATP translocase 2 OS=Homo sapiens GN=SLC25A5 PE=1 SV=7 - [ADT2_HUMAN]			
P84085	ADP-ribosylation factor 5 OS=Homo sapiens GN=ARF5 PE=1 SV=2 - [ARF5_HUMAN]			
P62330	ADP-ribosylation factor 6 OS=Homo sapiens GN=ARF6 PE=1 SV=2 - [ARF6_HUMAN]			
O00170	AH receptor-interacting protein OS=Homo sapiens GN=AIP PE=1 SV=2 - [AIP_HUMAN]			
P11766	Alcohol dehydrogenase class-3 OS=Homo sapiens GN=ADH5 PE=1 SV=4 - [ADHX_HUMAN]			
P01009	Alpha-1-antitrypsin OS=Homo sapiens GN=SERPINA1 PE=1 SV=3 - [A1AT_HUMAN]			
P01023	Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=3 - [A2MG_HUMAN]			

Acc #	Protein	РМ	NP	Wildtype
P02771	Alpha-fetoprotein OS=Homo sapiens GN=AFP PE=1 SV=1 - [FETA_HUMAN]			
Q8IY63	Angiomotin-like protein 1 OS=Homo sapiens GN=AMOTL1 PE=1 SV=1 - [AMOL1_HUMAN]			
P50995	Annexin A11 OS=Homo sapiens GN=ANXA11 PE=1 SV=1 - [ANX11_HUMAN]			
P01008	Antithrombin-III OS=Homo sapiens GN=SERPINC1 PE=1 SV=1 - [ANT3_HUMAN]			
P63010	AP-2 complex subunit beta OS=Homo sapiens GN=AP2B1 PE=1 SV=1 - [AP2B1_HUMAN]			
P02647	Apolipoprotein A-I OS=Homo sapiens GN=APOA1 PE=1 SV=1 - [APOA1_HUMAN]			
P04114	Apolipoprotein B-100 OS=Homo sapiens GN=APOB PE=1 SV=2 - [APOB_HUMAN]			
P78540	Arginase-2, mitochondrial OS=Homo sapiens GN=ARG2 PE=1 SV=1 - [ARGI2_HUMAN]			
Q9UBB4	Ataxin-10 OS=Homo sapiens GN=ATXN10 PE=1 SV=1 - [ATX10_HUMAN]			
P25705	ATP synthase subunit alpha, mitochondrial OS=Homo sapiens GN=ATP5A1 PE=1 SV=1 - [ATPA_HUMAN]			
P48047	ATP synthase subunit O, mitochondrial OS=Homo sapiens GN=ATP5O PE=1 SV=1 - [ATPO_HUMAN]			
Q5T9A4	ATPase family AAA domain-containing protein 3B OS=Homo sapiens GN=ATAD3B PE=1 SV=1 - [ATD3B_HUMAN]			
Q99758	ATP-binding cassette sub-family A member 3 OS=Homo sapiens GN=ABCA3 PE=1 SV=2 - [ABCA3_HUMAN]			
P46063	ATP-dependent DNA helicase Q1 OS=Homo sapiens GN=RECQL PE=1 SV=3 - [RECQ1_HUMAN]			
O00148	ATP-dependent RNA helicase DDX39A OS=Homo sapiens GN=DDX39A PE=1 SV=2 - [DX39A_HUMAN]			
Q9Y6E2	Basic leucine zipper and W2 domain-containing protein 2 OS=Homo sapiens GN=BZW2 PE=1 SV=1 - [BZW2_HUMAN]			
Q9HBI1	Beta-parvin OS=Homo sapiens GN=PARVB PE=1 SV=1 - [PARVB_HUMAN]			
P53004	Biliverdin reductase A OS=Homo sapiens GN=BLVRA PE=1 SV=2 - [BIEA_HUMAN]			
Q9NWV8	BRISC and BRCA1-A complex member 1 OS=Homo sapiens GN=BABAM1 PE=1 SV=1 - [BABA1_HUMAN]			
Q9Y376	Calcium-binding protein 39 OS=Homo sapiens GN=CAB39 PE=1 SV=1 - [CAB39_HUMAN]			

Acc #	Protein	PM	NP	Wildtype
P07384	Calpain-1 catalytic subunit OS=Homo sapiens GN=CAPN1 PE=1 SV=1 - [CAN1_HUMAN]			
075828	Carbonyl reductase [NADPH] 3 OS=Homo sapiens GN=CBR3 PE=1 SV=3 - [CBR3_HUMAN]			
Q9BXW7	Cat eye syndrome critical region protein 5 OS=Homo sapiens GN=CECR5 PE=1 SV=1 - [CECR5_HUMAN]			
P11717	Cation-independent mannose-6-phosphate receptor OS=Homo sapiens GN=IGF2R PE=1 SV=3 - [MPRI_HUMAN]			
A5YKK6	CCR4-NOT transcription complex subunit 1 OS=Homo sapiens GN=CNOT1 PE=1 SV=2 - [CNOT1_HUMAN]			
Q7LBR1	Charged multivesicular body protein 1b OS=Homo sapiens GN=CHMP1B PE=1 SV=1 - [CHM1B_HUMAN]			
Q13185	Chromobox protein homolog 3 OS=Homo sapiens GN=CBX3 PE=1 SV=4 - [CBX3_HUMAN]			
Q14839	Chromodomain-helicase-DNA-binding protein 4 OS=Homo sapiens GN=CHD4 PE=1 SV=2 - [CHD4_HUMAN]			
P24941	chuk			
P09496	Clathrin light chain A OS=Homo sapiens GN=CLTA PE=1 SV=1 - [CLCA_HUMAN]			
Q16630	Cleavage and polyadenylation specificity factor subunit 6 OS=Homo sapiens GN=CPSF6 PE=1 SV=2 - [CPSF6_HUMAN]			
P53621	Coatomer subunit alpha OS=Homo sapiens GN=COPA PE=1 SV=2 - [COPA_HUMAN]			
P35606	Coatomer subunit beta' OS=Homo sapiens GN=COPB2 PE=1 SV=2 - [COPB2_HUMAN]			
O14579	Coatomer subunit epsilon OS=Homo sapiens GN=COPE PE=1 SV=3 - [COPE_HUMAN]			
P61923	Coatomer subunit zeta-1 OS=Homo sapiens GN=COPZ1 PE=1 SV=1 - [COPZ1_HUMAN]			
Q9Y281	Cofilin-2 OS=Homo sapiens GN=CFL2 PE=1 SV=1 - [COF2_HUMAN]			
Q9NVE4	Coiled-coil domain-containing protein 87 OS=Homo sapiens GN=CCDC87 PE=2 SV=2 - [CCD87_HUMAN]			
Q9NX63	Coiled-coil-helix-coiled-coil-helix domain-containing protein 3, mitochondrial OS=Homo sapiens GN=CHCHD3 PE=1 SV=1 - [CHCH3_HUMAN]			
P00746	Complement factor D OS=Homo sapiens GN=CFD PE=1 SV=5 - [CFAD_HUMAN]			

Acc #	Protein	PM	NP	Wildtype
Q15021	Condensin complex subunit 1 OS=Homo sapiens GN=NCAPD2 PE=1 SV=3 - [CND1_HUMAN]			
Q9NZB2	Constitutive coactivator of PPAR-gamma-like protein 1 OS=Homo sapiens GN=FAM120A PE=1 SV=2 - [F120A_HUMAN]			
Q92905	COP9 signalosome complex subunit 5 OS=Homo sapiens GN=COPS5 PE=1 SV=4 - [CSN5_HUMAN]			
P12277	Creatine kinase B-type OS=Homo sapiens GN=CKB PE=1 SV=1 - [KCRB_HUMAN]			
Q86VP6	Cullin-associated NEDD8-dissociated protein 1 OS=Homo sapiens GN=CAND1 PE=1 SV=2 - [CAND1_HUMAN]			
P06493	Cyclin-dependent kinase 1 OS=Homo sapiens GN=CDK1 PE=1 SV=3 - [CDK1_HUMAN]			
P21291	Cysteine and glycine-rich protein 1 OS=Homo sapiens GN=CSRP1 PE=1 SV=3 - [CSRP1_HUMAN]			
P00403	Cytochrome c oxidase subunit 2 OS=Homo sapiens GN=MT-CO2 PE=1 SV=1 - [COX2_HUMAN]			
Q8NCM8	Cytoplasmic dynein 2 heavy chain 1 OS=Homo sapiens GN=DYNC2H1 PE=1 SV=4 - [DYHC2_HUMAN]			
Q7L576	Cytoplasmic FMR1-interacting protein 1 OS=Homo sapiens GN=CYFIP1 PE=1 SV=1 - [CYFP1_HUMAN]			
Q14008	Cytoskeleton-associated protein 5 OS=Homo sapiens GN=CKAP5 PE=1 SV=3 - [CKAP5_HUMAN]			
Q9BZ29	Dedicator of cytokinesis protein 9 OS=Homo sapiens GN=DOCK9 PE=1 SV=2 - [DOCK9_HUMAN]			
P54886	Delta-1-pyrroline-5-carboxylate synthase OS=Homo sapiens GN=ALDH18A1 PE=1 SV=2 - [P5CS_HUMAN]			
P36957	Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex, mitochondrial OS=Homo sapiens GN=DLST PE=1 SV=4 - [ODO2_HUMAN]			
Q9NY33	Dipeptidyl peptidase 3 OS=Homo sapiens GN=DPP3 PE=1 SV=2 - [DPP3_HUMAN]			
P26358	DNA (cytosine-5)-methyltransferase 1 OS=Homo sapiens GN=DNMT1 PE=1 SV=2 - [DNMT1_HUMAN]			
P28340	DNA polymerase delta catalytic subunit OS=Homo sapiens GN=POLD1 PE=1 SV=2 - [DPOD1_HUMAN]			
P49736	DNA replication licensing factor MCM2 OS=Homo sapiens GN=MCM2 PE=1 SV=4 - [MCM2_HUMAN]			
P25205	DNA replication licensing factor MCM3 OS=Homo sapiens GN=MCM3 PE=1 SV=3 - [MCM3_HUMAN]			

Acc #	Protein	РМ	NP	Wildtype
P33991	DNA replication licensing factor MCM4 OS=Homo sapiens GN=MCM4 PE=1 SV=5 - [MCM4_HUMAN]			
P33993	DNA replication licensing factor MCM7 OS=Homo sapiens GN=MCM7 PE=1 SV=4 - [MCM7_HUMAN]			
P27695	DNA-(apurinic or apyrimidinic site) lyase OS=Homo sapiens GN=APEX1 PE=1 SV=2 - [APEX1_HUMAN]			
P78527	DNA-dependent protein kinase catalytic subunit OS=Homo sapiens GN=PRKDC PE=1 SV=3 - [PRKDC_HUMAN]			
P04843	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 1 OS=Homo sapiens GN=RPN1 PE=1 SV=1 - [RPN1_HUMAN]			
Q5VZB9	Doublesex- and mab-3-related transcription factor A1 OS=Homo sapiens GN=DMRTA1 PE=2 SV=1 - [DMRTA_HUMAN]			
Q02750	Dual specificity mitogen-activated protein kinase kinase 1 OS=Homo sapiens GN=MAP2K1 PE=1 SV=2 - [MP2K1_HUMAN]			
P36507	Dual specificity mitogen-activated protein kinase kinase 2 OS=Homo sapiens GN=MAP2K2 PE=1 SV=1 - [MP2K2_HUMAN]			
Q13561	Dynactin subunit 2 OS=Homo sapiens GN=DCTN2 PE=1 SV=4 - [DCTN2_HUMAN]			
Q7Z6Z7	E3 ubiquitin-protein ligase HUWE1 OS=Homo sapiens GN=HUWE1 PE=1 SV=3 - [HUWE1_HUMAN]			
Q13049	E3 ubiquitin-protein ligase TRIM32 OS=Homo sapiens GN=TRIM32 PE=1 SV=2 - [TRI32_HUMAN]			
Q5T4S7	E3 ubiquitin-protein ligase UBR4 OS=Homo sapiens GN=UBR4 PE=1 SV=1 - [UBR4_HUMAN]			
Q96C19	EF-hand domain-containing protein D2 OS=Homo sapiens GN=EFHD2 PE=1 SV=1 - [EFHD2_HUMAN]			
P43897	Elongation factor Ts, mitochondrial OS=Homo sapiens GN=TSFM PE=1 SV=2 - [EFTS_HUMAN]			
Q14240	Eukaryotic initiation factor 4A-II OS=Homo sapiens GN=EIF4A2 PE=1 SV=2 - [IF4A2_HUMAN]			
Q99613	Eukaryotic translation initiation factor 3 subunit C OS=Homo sapiens GN=EIF3C PE=1 SV=1 - [EIF3C_HUMAN]			
015372	Eukaryotic translation initiation factor 3 subunit H OS=Homo sapiens GN=EIF3H PE=1 SV=1 - [EIF3H_HUMAN]			

Acc #	Protein	PM	NP	Wildtype
Q9NQT5	Exosome complex component RRP40 OS=Homo sapiens GN=EXOSC3 PE=1 SV=3 - [EXOS3_HUMAN]			
Q9HAV4	Exportin-5 OS=Homo sapiens GN=XPO5 PE=1 SV=1 - [XPO5_HUMAN]			
Q9UIA9	Exportin-7 OS=Homo sapiens GN=XPO7 PE=1 SV=3 - [XPO7_HUMAN]			
Q9BSJ8	Extended synaptotagmin-1 OS=Homo sapiens GN=ESYT1 PE=1 SV=1 - [ESYT1_HUMAN]			
P52907	F-actin-capping protein subunit alpha-1 OS=Homo sapiens GN=CAPZA1 PE=1 SV=3 - [CAZA1_HUMAN]			
Q92945	Far upstream element-binding protein 2 OS=Homo sapiens GN=KHSRP PE=1 SV=4 - [FUBP2_HUMAN]			
Q2WGJ9	Fer-1-like protein 6 OS=Homo sapiens GN=FER1L6 PE=2 SV=2 - [FR1L6_HUMAN]			
P07954	Fumarate hydratase, mitochondrial OS=Homo sapiens GN=FH PE=1 SV=3 - [FUMH_HUMAN]			
P16930	Fumarylacetoacetase OS=Homo sapiens GN=FAH PE=1 SV=2 - [FAAA_HUMAN]			
P51570	Galactokinase OS=Homo sapiens GN=GALK1 PE=1 SV=1 - [GALK1_HUMAN]			
Q8TEQ6	Gem-associated protein 5 OS=Homo sapiens GN=GEMIN5 PE=1 SV=3 - [GEMI5_HUMAN]			
P78347	General transcription factor II-I OS=Homo sapiens GN=GTF2I PE=1 SV=2 - [GTF2I_HUMAN]			
P11413	Glucose-6-phosphate 1-dehydrogenase OS=Homo sapiens GN=G6PD PE=1 SV=4 - [G6PD_HUMAN]			
P14314	Glucosidase 2 subunit beta OS=Homo sapiens GN=PRKCSH PE=1 SV=2 - [GLU2B_HUMAN]			
P78417	Glutathione S-transferase omega-1 OS=Homo sapiens GN=GSTO1 PE=1 SV=2 - [GSTO1_HUMAN]			
P11216	Glycogen phosphorylase, brain form OS=Homo sapiens GN=PYGB PE=1 SV=5 - [PYGB_HUMAN]			
Q92538	Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1 OS=Homo sapiens GN=GBF1 PE=1 SV=2 - [GBF1_HUMAN]			
Q9UIJ7	GTP:AMP phosphotransferase, mitochondrial OS=Homo sapiens GN=AK3 PE=1 SV=4 - [KAD3_HUMAN]			
Q14C86	GTPase-activating protein and VPS9 domain-containing protein 1 OS=Homo sapiens GN=GAPVD1 PE=1 SV=2 - [GAPD1_HUMAN]			
Q15382	GTP-binding protein Rheb OS=Homo sapiens GN=RHEB PE=1 SV=1 - [RHEB_HUMAN]			

Acc #	Protein	PM	NP	Wildtype
Q9Y6B6	GTP-binding protein SAR1b OS=Homo sapiens GN=SAR1B PE=1 SV=1 - [SAR1B_HUMAN]			
Q9UBI6	Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-12 OS=Homo sapiens GN=GNG12 PE=1 SV=3 - [GBG12_HUMAN]			
P63244	Guanine nucleotide-binding protein subunit beta-2-like 1 OS=Homo sapiens GN=GNB2L1 PE=1 SV=3 - [GBLP_HUMAN]			
P14866	Heterogeneous nuclear ribonucleoprotein L OS=Homo sapiens GN=HNRNPL PE=1 SV=2 - [HNRPL_HUMAN]			
Q1KMD3	Heterogeneous nuclear ribonucleoprotein U-like protein 2 OS=Homo sapiens GN=HNRNPUL2 PE=1 SV=1 - [HNRL2_HUMAN]			
P52789	Hexokinase-2 OS=Homo sapiens GN=HK2 PE=1 SV=2 - [HXK2_HUMAN]			
Q92522	Histone H1x OS=Homo sapiens GN=H1FX PE=1 SV=1 - [H1X_HUMAN]			
Q96KK5	Histone H2A type 1-H OS=Homo sapiens GN=HIST1H2AH PE=1 SV=3 - [H2A1H_HUMAN]			
Q8IUE6	Histone H2A type 2-B OS=Homo sapiens GN=HIST2H2AB PE=1 SV=3 - [H2A2B_HUMAN]			
Q09028	Histone-binding protein RBBP4 OS=Homo sapiens GN=RBBP4 PE=1 SV=3 - [RBBP4_HUMAN]			
Q16543	Hsp90 co-chaperone Cdc37 OS=Homo sapiens GN=CDC37 PE=1 SV=1 - [CDC37_HUMAN]			
Q9Y4L1	Hypoxia up-regulated protein 1 OS=Homo sapiens GN=HYOU1 PE=1 SV=1 - [HYOU1_HUMAN]			
P01857	Ig gamma-1 chain C region OS=Homo sapiens GN=IGHG1 PE=1 SV=1 - [IGHG1_HUMAN]			
P52292	Importin subunit alpha-2 OS=Homo sapiens GN=KPNA2 PE=1 SV=1 - [IMA2_HUMAN]			
Q8NI35	InaD-like protein OS=Homo sapiens GN=INADL PE=1 SV=3 - [INADL_HUMAN]			
Q9Y2U8	Inner nuclear membrane protein Man1 OS=Homo sapiens GN=LEMD3 PE=1 SV=2 - [MAN1_HUMAN]			
Q9H2U2	Inorganic pyrophosphatase 2, mitochondrial OS=Homo sapiens GN=PPA2 PE=1 SV=2 - [IPYR2_HUMAN]			
Q15181	Inorganic pyrophosphatase OS=Homo sapiens GN=PPA1 PE=1 SV=2 - [IPYR_HUMAN]			
P29218	Inositol monophosphatase 1 OS=Homo sapiens GN=IMPA1 PE=1 SV=1 - [IMPA1_HUMAN]			

Acc #	Protein	PM	NP	Wildtype
Q13418	Integrin-linked protein kinase OS=Homo sapiens GN=ILK PE=1 SV=2 - [ILK_HUMAN]			
P19823	Inter-alpha-trypsin inhibitor heavy chain H2 OS=Homo sapiens GN=ITIH2 PE=1 SV=2 - [ITIH2_HUMAN]			
O60306	Intron-binding protein aquarius OS=Homo sapiens GN=AQR PE=1 SV=4 - [AQR_HUMAN]			
Q96CN7	Isochorismatase domain-containing protein 1 OS=Homo sapiens GN=ISOC1 PE=1 SV=3 - [ISOC1_HUMAN]			
O43837	Isocitrate dehydrogenase [NAD] subunit beta, mitochondrial OS=Homo sapiens GN=IDH3B PE=1 SV=2 - [IDH3B_HUMAN]			
P41252	IsoleucinetRNA ligase, cytoplasmic OS=Homo sapiens GN=IARS PE=1 SV=2 - [SYIC_HUMAN]			
Q13907	Isopentenyl-diphosphate Delta-isomerase 1 OS=Homo sapiens GN=IDI1 PE=1 SV=2 - [IDI1_HUMAN]			
Q14678	KN motif and ankyrin repeat domain-containing protein 1 OS=Homo sapiens GN=KANK1 PE=1 SV=3 - [KANK1_HUMAN]			
P20700	Lamin-B1 OS=Homo sapiens GN=LMNB1 PE=1 SV=2 - [LMNB1_HUMAN]			
Q01650	Large neutral amino acids transporter small subunit 1 OS=Homo sapiens GN=SLC7A5 PE=1 SV=2 - [LAT1_HUMAN]			
Q9NQ48	Leucine zipper transcription factor-like protein 1 OS=Homo sapiens GN=LZTFL1 PE=1 SV=1 - [LZTL1_HUMAN]			
P50851	Lipopolysaccharide-responsive and beige-like anchor protein OS=Homo sapiens GN=LRBA PE=1 SV=4 - [LRBA_HUMAN]			
Q86W92	Liprin-beta-1 OS=Homo sapiens GN=PPFIBP1 PE=1 SV=2 - [LIPB1_HUMAN]			
P36776	Lon protease homolog, mitochondrial OS=Homo sapiens GN=LONP1 PE=1 SV=2 - [LONM_HUMAN]			
O95573	Long-chain-fatty-acidCoA ligase 3 OS=Homo sapiens GN=ACSL3 PE=1 SV=3 - [ACSL3_HUMAN]			
O60488	Long-chain-fatty-acidCoA ligase 4 OS=Homo sapiens GN=ACSL4 PE=1 SV=2 - [ACSL4_HUMAN]			
Q14165	Malectin OS=Homo sapiens GN=MLEC PE=1 SV=1 - [MLEC_HUMAN]			
Q96IJ6	Mannose-1-phosphate guanyltransferase alpha OS=Homo sapiens GN=GMPPA PE=1 SV=1 - [GMPPA_HUMAN]			

Acc #	Protein	PM	NP	Wildtype
075352	Mannose-P-dolichol utilization defect 1 protein OS=Homo sapiens GN=MPDU1 PE=1 SV=2 - [MPU1_HUMAN]			
Q96QZ7	Membrane-associated guanylate kinase, WW and PDZ domain-containing protein 1 OS=Homo sapiens GN=MAGI1 PE=1 SV=3 - [MAGI1_HUMAN]			
O00264	Membrane-associated progesterone receptor component 1 OS=Homo sapiens GN=PGRMC1 PE=1 SV=3 - [PGRC1_HUMAN]			
Q9UPN3	Microtubule-actin cross-linking factor 1, isoforms 1/2/3/5 OS=Homo sapiens GN=MACF1 PE=1 SV=4 - [MACF1_HUMAN]			
Q8N4C8	Misshapen-like kinase 1 OS=Homo sapiens GN=MINK1 PE=1 SV=2 - [MINK1_HUMAN]			
Q9Y3D6	Mitochondrial fission 1 protein OS=Homo sapiens GN=FIS1 PE=1 SV=2 - [FIS1_HUMAN]			
Q3ZCQ8	Mitochondrial import inner membrane translocase subunit TIM50 OS=Homo sapiens GN=TIMM50 PE=1 SV=2 - [TIM50_HUMAN]			
075439	Mitochondrial-processing peptidase subunit beta OS=Homo sapiens GN=PMPCB PE=1 SV=2 - [MPPB_HUMAN]			
P78406	mRNA export factor OS=Homo sapiens GN=RAE1 PE=1 SV=1 - [RAE1L_HUMAN]			
Q9NR56	Muscleblind-like protein 1 OS=Homo sapiens GN=MBNL1 PE=1 SV=2 - [MBNL1_HUMAN]			
Q9NZM1	Myoferlin OS=Homo sapiens GN=MYOF PE=1 SV=1 - [MYOF_HUMAN]			
O14745	Na(+)/H(+) exchange regulatory cofactor NHE-RF1 OS=Homo sapiens GN=SLC9A3R1 PE=1 SV=4 - [NHRF1_HUMAN]			
Q15599	Na(+)/H(+) exchange regulatory cofactor NHE-RF2 OS=Homo sapiens GN=SLC9A3R2 PE=1 SV=2 - [NHRF2_HUMAN]			
075489	NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial OS=Homo sapiens GN=NDUFS3 PE=1 SV=1 - [NDUS3_HUMAN]			
Q9GZZ1	N-alpha-acetyltransferase 50 OS=Homo sapiens GN=NAA50 PE=1 SV=1 - [NAA50_HUMAN]			
O43847	Nardilysin OS=Homo sapiens GN=NRD1 PE=1 SV=2 - [NRDC_HUMAN]			
Q6X4W1	Nasal embryonic luteinizing hormone-releasing hormone factor OS=Homo sapiens GN=NELF PE=1 SV=1 -			

Acc #	Protein	РМ	NP	Wildtype
	[NELF_HUMAN]			
P12036	Neurofilament heavy polypeptide OS=Homo sapiens GN=NEFH PE=1 SV=4 - [NFH_HUMAN]			
Q9Y314	Nitric oxide synthase-interacting protein OS=Homo sapiens GN=NOSIP PE=1 SV=1 - [NOSIP_HUMAN]			
Q15233	Non-POU domain-containing octamer-binding protein OS=Homo sapiens GN=NONO PE=1 SV=4 - [NONO_HUMAN]			
Q9NVX2	Notchless protein homolog 1 OS=Homo sapiens GN=NLE1 PE=1 SV=4 - [NLE1_HUMAN]			
P49321	Nuclear autoantigenic sperm protein OS=Homo sapiens GN=NASP PE=1 SV=2 - [NASP_HUMAN]			
Q15596	Nuclear receptor coactivator 2 OS=Homo sapiens GN=NCOA2 PE=1 SV=2 - [NCOA2_HUMAN]			
P67809	Nuclease-sensitive element-binding protein 1 OS=Homo sapiens GN=YBX1 PE=1 SV=3 - [YBOX1_HUMAN]			
P12270	Nucleoprotein TPR OS=Homo sapiens GN=TPR PE=1 SV=3 - [TPR_HUMAN]			
P55209	Nucleosome assembly protein 1-like 1 OS=Homo sapiens GN=NAP1L1 PE=1 SV=1 - [NP1L1_HUMAN]			
Q9Y239	Nucleotide-binding oligomerization domain-containing protein 1 OS=Homo sapiens GN=NOD1 PE=1 SV=1 - [NOD1_HUMAN]			
Q96RS6	NudC domain-containing protein 1 OS=Homo sapiens GN=NUDCD1 PE=1 SV=2 - [NUDC1_HUMAN]			
Q9NR12	PDZ and LIM domain protein 7 OS=Homo sapiens GN=PDLIM7 PE=1 SV=1 - [PDLI7_HUMAN]			
Q08752	Peptidyl-prolyl cis-trans isomerase D OS=Homo sapiens GN=PPID PE=1 SV=3 - [PPID_HUMAN]			
O43447	Peptidyl-prolyl cis-trans isomerase H OS=Homo sapiens GN=PPIH PE=1 SV=1 - [PPIH_HUMAN]			
P30044	Peroxiredoxin-5, mitochondrial OS=Homo sapiens GN=PRDX5 PE=1 SV=4 - [PRDX5_HUMAN]			
Q08426	Peroxisomal bifunctional enzyme OS=Homo sapiens GN=EHHADH PE=1 SV=3 - [ECHP_HUMAN]			
O00443	Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit alpha OS=Homo sapiens GN=PIK3C2A PE=1 SV=2 - [P3C2A_HUMAN]			
Q9Y617	Phosphoserine aminotransferase OS=Homo sapiens GN=PSAT1 PE=1 SV=2 - [SERC_HUMAN]			

Acc #	Protein	PM	NP	Wildtype
Q99959	Plakophilin-2 OS=Homo sapiens GN=PKP2 PE=1 SV=2 - [PKP2_HUMAN]			
P26599	Polypyrimidine tract-binding protein 1 OS=Homo sapiens GN=PTBP1 PE=1 SV=1 - [PTBP1_HUMAN]			
P20742	Pregnancy zone protein OS=Homo sapiens GN=PZP PE=1 SV=4 - [PZP_HUMAN]			
Q13206	Probable ATP-dependent RNA helicase DDX10 OS=Homo sapiens GN=DDX10 PE=1 SV=2 - [DDX10_HUMAN]			
P25788	Proteasome subunit alpha type-3 OS=Homo sapiens GN=PSMA3 PE=1 SV=2 - [PSA3_HUMAN]			
P25789	Proteasome subunit alpha type-4 OS=Homo sapiens GN=PSMA4 PE=1 SV=1 - [PSA4_HUMAN]			
P28066	Proteasome subunit alpha type-5 OS=Homo sapiens GN=PSMA5 PE=1 SV=3 - [PSA5_HUMAN]			
P60900	Proteasome subunit alpha type-6 OS=Homo sapiens GN=PSMA6 PE=1 SV=1 - [PSA6_HUMAN]			
Q99873	Protein arginine N-methyltransferase 1 OS=Homo sapiens GN=PRMT1 PE=1 SV=2 - [ANM1_HUMAN]			
Q9Y2B0	Protein canopy homolog 2 OS=Homo sapiens GN=CNPY2 PE=1 SV=1 - [CNPY2_HUMAN]			
Q9NUQ9	Protein FAM49B OS=Homo sapiens GN=FAM49B PE=1 SV=1 - [FA49B_HUMAN]			
Q13045	Protein flightless-1 homolog OS=Homo sapiens GN=FLII PE=1 SV=2 - [FLII_HUMAN]			
P61326	Protein mago nashi homolog OS=Homo sapiens GN=MAGOH PE=1 SV=1 - [MGN_HUMAN]			
Q92597	Protein NDRG1 OS=Homo sapiens GN=NDRG1 PE=1 SV=1 - [NDRG1_HUMAN]			
Q9BPW8	Protein NipSnap homolog 1 OS=Homo sapiens GN=NIPSNAP1 PE=1 SV=1 - [NIPS1_HUMAN]			
075323	Protein NipSnap homolog 2 OS=Homo sapiens GN=GBAS PE=1 SV=1 - [NIPS2_HUMAN]			
Q9H7J1	Protein phosphatase 1 regulatory subunit 3E OS=Homo sapiens GN=PPP1R3E PE=2 SV=2 - [PPR3E_HUMAN]			
P41236	Protein phosphatase inhibitor 2 OS=Homo sapiens GN=PPP1R2 PE=1 SV=2 - [IPP2_HUMAN]			
Q9Y570	Protein phosphatase methylesterase 1 OS=Homo sapiens GN=PPME1 PE=1 SV=3 - [PPME1_HUMAN]			
P48634	Protein PRRC2A OS=Homo sapiens GN=PRRC2A PE=1 SV=3 - [PRC2A_HUMAN]			

Acc #	Protein	PM	NP	Wildtype
Q9P258	Protein RCC2 OS=Homo sapiens GN=RCC2 PE=1 SV=2 - [RCC2_HUMAN]			
Q01105	Protein SET OS=Homo sapiens GN=SET PE=1 SV=3 - [SET_HUMAN]			
Q969Z0	Protein TBRG4 OS=Homo sapiens GN=TBRG4 PE=1 SV=1 - [TBRG4_HUMAN]			
Q7L2E3	Putative ATP-dependent RNA helicase DHX30 OS=Homo sapiens GN=DHX30 PE=1 SV=1 - [DHX30_HUMAN]			
Q9BZK3	Putative nascent polypeptide-associated complex subunit alpha-like protein OS=Homo sapiens GN=NACAP1 PE=5 SV=1 - [NACP1_HUMAN]			
Q9NQ29	Putative RNA-binding protein Luc7-like 1 OS=Homo sapiens GN=LUC7L PE=1 SV=1 - [LUC7L_HUMAN]			
Q9Y383	Putative RNA-binding protein Luc7-like 2 OS=Homo sapiens GN=LUC7L2 PE=1 SV=2 - [LC7L2_HUMAN]			
O00764	Pyridoxal kinase OS=Homo sapiens GN=PDXK PE=1 SV=1 - [PDXK_HUMAN]			
P32322	Pyrroline-5-carboxylate reductase 1, mitochondrial OS=Homo sapiens GN=PYCR1 PE=1 SV=2 - [P5CR1_HUMAN]			
Q96C36	Pyrroline-5-carboxylate reductase 2 OS=Homo sapiens GN=PYCR2 PE=1 SV=1 - [P5CR2_HUMAN]			
P61026	Ras-related protein Rab-10 OS=Homo sapiens GN=RAB10 PE=1 SV=1 - [RAB10_HUMAN]			
P62820	Ras-related protein Rab-1A OS=Homo sapiens GN=RAB1A PE=1 SV=3 - [RAB1A_HUMAN]			
Q9H0U4	Ras-related protein Rab-1B OS=Homo sapiens GN=RAB1B PE=1 SV=1 - [RAB1B_HUMAN]			
Q9UL25	Ras-related protein Rab-21 OS=Homo sapiens GN=RAB21 PE=1 SV=3 - [RAB21_HUMAN]			
P20338	Ras-related protein Rab-4A OS=Homo sapiens GN=RAB4A PE=1 SV=3 - [RAB4A_HUMAN]			
P20339	Ras-related protein Rab-5A OS=Homo sapiens GN=RAB5A PE=1 SV=2 - [RAB5A_HUMAN]			
P61020	Ras-related protein Rab-5B OS=Homo sapiens GN=RAB5B PE=1 SV=1 - [RAB5B_HUMAN]			
P51148	Ras-related protein Rab-5C OS=Homo sapiens GN=RAB5C PE=1 SV=2 - [RAB5C_HUMAN]			
P61006	Ras-related protein Rab-8A OS=Homo sapiens GN=RAB8A PE=1 SV=1 - [RAB8A_HUMAN]			

Acc #	Protein	PM	NP	Wildtype
Q9NQG5	Regulation of nuclear pre-mRNA domain-containing protein 1B OS=Homo sapiens GN=RPRD1B PE=1 SV=1 - [RPR1B_HUMAN]			
Q92900	Regulator of nonsense transcripts 1 OS=Homo sapiens GN=UPF1 PE=1 SV=2 - [RENT1_HUMAN]			
P40938	Replication factor C subunit 3 OS=Homo sapiens GN=RFC3 PE=1 SV=2 - [RFC3_HUMAN]			
Q15293	Reticulocalbin-1 OS=Homo sapiens GN=RCN1 PE=1 SV=1 - [RCN1_HUMAN]			
Q9NQC3	Reticulon-4 OS=Homo sapiens GN=RTN4 PE=1 SV=2 - [RTN4_HUMAN]			
Q8TC12	Retinol dehydrogenase 11 OS=Homo sapiens GN=RDH11 PE=1 SV=2 - [RDH11_HUMAN]			
P78346	Ribonuclease P protein subunit p30 OS=Homo sapiens GN=RPP30 PE=1 SV=1 - [RPP30_HUMAN]			
P11908	Ribose-phosphate pyrophosphokinase 2 OS=Homo sapiens GN=PRPS2 PE=1 SV=2 - [PRPS2_HUMAN]			
P38159	RNA-binding motif protein, X chromosome OS=Homo sapiens GN=RBMX PE=1 SV=3 - [RBMX_HUMAN]			
P35637	RNA-binding protein FUS OS=Homo sapiens GN=FUS PE=1 SV=1 - [FUS_HUMAN]			
P31153	S-adenosylmethionine synthase isoform type-2 OS=Homo sapiens GN=MAT2A PE=1 SV=1 - [METK2_HUMAN]			
Q9NVA2	Septin-11 OS=Homo sapiens GN=SEPT11 PE=1 SV=3 - [SEP11_HUMAN]			
Q15019	Septin-2 OS=Homo sapiens GN=SEPT2 PE=1 SV=1 - [SEPT2_HUMAN]			
Q01130	Serine/arginine-rich splicing factor 2 OS=Homo sapiens GN=SRSF2 PE=1 SV=4 - [SRSF2_HUMAN]			
Q13043	Serine/threonine-protein kinase 4 OS=Homo sapiens GN=STK4 PE=1 SV=2 - [STK4_HUMAN]			
P63151	Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B alpha isoform OS=Homo sapiens GN=PPP2R2A PE=1 SV=1 - [2ABA_HUMAN]			
P36873	Serine/threonine-protein phosphatase PP1-gamma catalytic subunit OS=Homo sapiens GN=PPP1CC PE=1 SV=1 - [PP1G_HUMAN]			
P49591	SerinetRNA ligase, cytoplasmic OS=Homo sapiens GN=SARS PE=1 SV=3 - [SYSC_HUMAN]			
P50454	Serpin H1 OS=Homo sapiens GN=SERPINH1 PE=1 SV=2 - [SERPH_HUMAN]			

Acc #	Protein	PM	NP	Wildtype
Q9NR45	Sialic acid synthase OS=Homo sapiens GN=NANS PE=1 SV=2 - [SIAS_HUMAN]			
Q15005	Signal peptidase complex subunit 2 OS=Homo sapiens GN=SPCS2 PE=1 SV=3 - [SPCS2_HUMAN]			
P42224	Signal transducer and activator of transcription 1-alpha/beta OS=Homo sapiens GN=STAT1 PE=1 SV=2 - [STAT1_HUMAN]			
P62304	Small nuclear ribonucleoprotein E OS=Homo sapiens GN=SNRPE PE=1 SV=1 - [RUXE_HUMAN]			
P62318	Small nuclear ribonucleoprotein Sm D3 OS=Homo sapiens GN=SNRPD3 PE=1 SV=1 - [SMD3_HUMAN]			
P05023	Sodium/potassium-transporting ATPase subunit alpha-1 OS=Homo sapiens GN=ATP1A1 PE=1 SV=1 - [AT1A1_HUMAN]			
Q9BX66	Sorbin and SH3 domain-containing protein 1 OS=Homo sapiens GN=SORBS1 PE=1 SV=3 - [SRBS1_HUMAN]			
Q00796	Sorbitol dehydrogenase OS=Homo sapiens GN=SORD PE=1 SV=4 - [DHSO_HUMAN]			
Q9Y5X3	Sorting nexin-5 OS=Homo sapiens GN=SNX5 PE=1 SV=1 - [SNX5_HUMAN]			
P63208	S-phase kinase-associated protein 1 OS=Homo sapiens GN=SKP1 PE=1 SV=2 - [SKP1_HUMAN]			
Q13838	Spliceosome RNA helicase DDX39B OS=Homo sapiens GN=DDX39B PE=1 SV=1 - [DX39B_HUMAN]			
Q12874	Splicing factor 3A subunit 3 OS=Homo sapiens GN=SF3A3 PE=1 SV=1 - [SF3A3_HUMAN]			
075533	Splicing factor 3B subunit 1 OS=Homo sapiens GN=SF3B1 PE=1 SV=3 - [SF3B1_HUMAN]			
Q15393	Splicing factor 3B subunit 3 OS=Homo sapiens GN=SF3B3 PE=1 SV=4 - [SF3B3_HUMAN]			
P23246	Splicing factor, proline- and glutamine-rich OS=Homo sapiens GN=SFPQ PE=1 SV=2 - [SFPQ_HUMAN]			
Q9UJZ1	Stomatin-like protein 2 OS=Homo sapiens GN=STOML2 PE=1 SV=1 - [STML2_HUMAN]			
A6NHR9	Structural maintenance of chromosomes flexible hinge domain-containing protein 1 OS=Homo sapiens GN=SMCHD1 PE=1 SV=2 - [SMHD1_HUMAN]			
Q9UQE7	Structural maintenance of chromosomes protein 3 OS=Homo sapiens GN=SMC3 PE=1 SV=2 - [SMC3_HUMAN]			
Q9UBE0	SUMO-activating enzyme subunit 1 OS=Homo sapiens GN=SAE1 PE=1 SV=1 - [SAE1_HUMAN]			

Acc #	Protein	PM	NP	Wildtype
Q9UBT2	SUMO-activating enzyme subunit 2 OS=Homo sapiens GN=UBA2 PE=1 SV=2 - [SAE2_HUMAN]			
Q9Y4G6	Talin-2 OS=Homo sapiens GN=TLN2 PE=1 SV=4 - [TLN2_HUMAN]			
O60343	TBC1 domain family member 4 OS=Homo sapiens GN=TBC1D4 PE=1 SV=2 - [TBCD4_HUMAN]			
P78371	T-complex protein 1 subunit beta OS=Homo sapiens GN=CCT2 PE=1 SV=4 - [TCPB_HUMAN]			
Q9Y2W1	Thyroid hormone receptor-associated protein 3 OS=Homo sapiens GN=THRAP3 PE=1 SV=2 - [TR150_HUMAN]			
Q9UDY2	Tight junction protein ZO-2 OS=Homo sapiens GN=TJP2 PE=1 SV=2 - [ZO2_HUMAN]			
Q8WZ42	Titin OS=Homo sapiens GN=TTN PE=1 SV=4 - [TITIN_HUMAN]			
O00267	Transcription elongation factor SPT5 OS=Homo sapiens GN=SUPT5H PE=1 SV=1 - [SPT5H_HUMAN]			
Q13263	Transcription intermediary factor 1-beta OS=Homo sapiens GN=TRIM28 PE=1 SV=5 - [TIF1B_HUMAN]			
Q92616	Translational activator GCN1 OS=Homo sapiens GN=GCN1L1 PE=1 SV=6 - [GCN1L_HUMAN]			
Q15631	Translin OS=Homo sapiens GN=TSN PE=1 SV=1 - [TSN_HUMAN]			
P02766	Transthyretin OS=Homo sapiens GN=TTR PE=1 SV=1 - [TTHY_HUMAN]			
P29144	Tripeptidyl-peptidase 2 OS=Homo sapiens GN=TPP2 PE=1 SV=4 - [TPP2_HUMAN]			
P67936	Tropomyosin alpha-4 chain OS=Homo sapiens GN=TPM4 PE=1 SV=3 - [TPM4_HUMAN]			
Q9BUF5	Tubulin beta-6 chain OS=Homo sapiens GN=TUBB6 PE=1 SV=1 - [TBB6_HUMAN]			
Q9BTW9	Tubulin-specific chaperone D OS=Homo sapiens GN=TBCD PE=1 SV=2 - [TBCD_HUMAN]			
P18031	Tyrosine-protein phosphatase non-receptor type 1 OS=Homo sapiens GN=PTPN1 PE=1 SV=1 - [PTN1_HUMAN]			
Q9H3S7	Tyrosine-protein phosphatase non-receptor type 23 OS=Homo sapiens GN=PTPN23 PE=1 SV=1 - [PTN23_HUMAN]			
P45974	Ubiquitin carboxyl-terminal hydrolase 5 OS=Homo sapiens GN=USP5 PE=1 SV=2 - [UBP5_HUMAN]			

Acc #	Protein	PM	NP	Wildtype
Q13404	Ubiquitin-conjugating enzyme E2 variant 1 OS=Homo sapiens GN=UBE2V1 PE=1 SV=2 - [UB2V1_HUMAN]			
Q15819	Ubiquitin-conjugating enzyme E2 variant 2 OS=Homo sapiens GN=UBE2V2 PE=1 SV=4 - [UB2V2_HUMAN]			
P22314	Ubiquitin-like modifier-activating enzyme 1 OS=Homo sapiens GN=UBA1 PE=1 SV=3 - [UBA1_HUMAN]			
Q04323	UBX domain-containing protein 1 OS=Homo sapiens GN=UBXN1 PE=1 SV=2 - [UBXN1_HUMAN]			
Q86XI8	Uncharacterized protein C19orf68 OS=Homo sapiens GN=C19orf68 PE=1 SV=2 - [CS068_HUMAN]			
O00159	Unconventional myosin-Ic OS=Homo sapiens GN=MYO1C PE=1 SV=4 - [MYO1C_HUMAN]			
O94832	Unconventional myosin-Id OS=Homo sapiens GN=MYO1D PE=1 SV=2 - [MYO1D_HUMAN]			
Q9HB07	UPF0160 protein MYG1, mitochondrial OS=Homo sapiens GN=C12orf10 PE=1 SV=2 - [MYG1_HUMAN]			
Q9Y224	UPF0568 protein C14orf166 OS=Homo sapiens GN=C14orf166 PE=1 SV=1 - [CN166_HUMAN]			
Q9UBQ0	Vacuolar protein sorting-associated protein 29 OS=Homo sapiens GN=VPS29 PE=1 SV=1 - [VPS29_HUMAN]			
Q96QK1	Vacuolar protein sorting-associated protein 35 OS=Homo sapiens GN=VPS35 PE=1 SV=2 - [VPS35_HUMAN]			
Q15836	Vesicle-associated membrane protein 3 OS=Homo sapiens GN=VAMP3 PE=1 SV=3 - [VAMP3_HUMAN]			
095292	Vesicle-associated membrane protein-associated protein B/C OS=Homo sapiens GN=VAPB PE=1 SV=3 - [VAPB_HUMAN]			
Q12907	Vesicular integral-membrane protein VIP36 OS=Homo sapiens GN=LMAN2 PE=1 SV=1 - [LMAN2_HUMAN]			
Q00341	Vigilin OS=Homo sapiens GN=HDLBP PE=1 SV=2 - [VIGLN_HUMAN]			
P18206	Vinculin OS=Homo sapiens GN=VCL PE=1 SV=4 - [VINC_HUMAN]			
P21796	Voltage-dependent anion-selective channel protein 1 OS=Homo sapiens GN=VDAC1 PE=1 SV=2 - [VDAC1_HUMAN]			
P45880	Voltage-dependent anion-selective channel protein 2 OS=Homo sapiens GN=VDAC2 PE=1 SV=2 - [VDAC2_HUMAN]			
P21281	V-type proton ATPase subunit B, brain isoform OS=Homo sapiens GN=ATP6V1B2 PE=1 SV=3 - [VATB2_HUMAN]			

Acc #	Protein	PM	NP	Wildtype
Q9Y5K8	V-type proton ATPase subunit D OS=Homo sapiens GN=ATP6V1D PE=1 SV=1 - [VATD_HUMAN]			
P12956	X-ray repair cross-complementing protein 6 OS=Homo sapiens GN=XRCC6 PE=1 SV=2 - [XRCC6_HUMAN]			
Q9Y5A9	YTH domain family protein 2 OS=Homo sapiens GN=YTHDF2 PE=1 SV=2 - [YTHD2_HUMAN]			
P68032	Actin, alpha cardiac muscle 1 OS=Homo sapiens GN=ACTC1 PE=1 SV=1 - [ACTC_HUMAN]			
O43707	Alpha-actinin-4 OS=Homo sapiens GN=ACTN4 PE=1 SV=2 - [ACTN4_HUMAN]			
P61221	ATP-binding cassette sub-family E member 1 OS=Homo sapiens GN=ABCE1 PE=1 SV=1 - [ABCE1_HUMAN]			
P16278	Beta-galactosidase OS=Homo sapiens GN=GLB1 PE=1 SV=2 - [BGAL_HUMAN]			
P30711	Glutathione S-transferase theta-1 OS=Homo sapiens GN=GSTT1 PE=1 SV=4 - [GSTT1_HUMAN]			
Q86YZ3	Hornerin OS=Homo sapiens GN=HRNR PE=1 SV=2 - [HORN_HUMAN]			
Q9NZI8	Insulin-like growth factor 2 mRNA-binding protein 1 OS=Homo sapiens GN=IGF2BP1 PE=1 SV=2 - [IF2B1_HUMAN]			
O00425	Insulin-like growth factor 2 mRNA-binding protein 3 OS=Homo sapiens GN=IGF2BP3 PE=1 SV=2 - [IF2B3_HUMAN]			
Q9BYZ2	L-lactate dehydrogenase A-like 6B OS=Homo sapiens GN=LDHAL6B PE=1 SV=3 - [LDH6B_HUMAN]			
O14744	Protein arginine N-methyltransferase 5 OS=Homo sapiens GN=PRMT5 PE=1 SV=4 - [ANM5_HUMAN]			
P26640	ValinetRNA ligase OS=Homo sapiens GN=VARS PE=1 SV=4 - [SYVC_HUMAN]			
P62906	60S ribosomal protein L10a OS=Homo sapiens GN=RPL10A PE=1 SV=2 - [RL10A_HUMAN]			
Q01813	6-phosphofructokinase type C OS=Homo sapiens GN=PFKP PE=1 SV=2 - [K6PP_HUMAN]			
P17858	6-phosphofructokinase, liver type OS=Homo sapiens GN=PFKL PE=1 SV=6 - [K6PL_HUMAN]			
P11586	C-1-tetrahydrofolate synthase, cytoplasmic OS=Homo sapiens GN=MTHFD1 PE=1 SV=3 - [C1TC_HUMAN]			
Q99439	Calponin-2 OS=Homo sapiens GN=CNN2 PE=1 SV=4 - [CNN2_HUMAN]			
O60716	Catenin delta-1 OS=Homo sapiens GN=CTNND1 PE=1 SV=1 - [CTND1_HUMAN]			

Acc #	Protein	PM	NP	Wildtype
P33992	DNA replication licensing factor MCM5 OS=Homo sapiens GN=MCM5 PE=1 SV=5 - [MCM5_HUMAN]			
P62877	E3 ubiquitin-protein ligase RBX1 OS=Homo sapiens GN=RBX1 PE=1 SV=1 - [RBX1_HUMAN]			
P38117	Electron transfer flavoprotein subunit beta OS=Homo sapiens GN=ETFB PE=1 SV=3 - [ETFB_HUMAN]			
P49411	Elongation factor Tu, mitochondrial OS=Homo sapiens GN=TUFM PE=1 SV=2 - [EFTU_HUMAN]			
P23588	Eukaryotic translation initiation factor 4B OS=Homo sapiens GN=EIF4B PE=1 SV=2 - [IF4B_HUMAN]			
Q14192	Four and a half LIM domains protein 2 OS=Homo sapiens GN=FHL2 PE=1 SV=3 - [FHL2_HUMAN]			
P04406	Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN]			
P06737	Glycogen phosphorylase, liver form OS=Homo sapiens GN=PYGL PE=1 SV=4 - [PYGL_HUMAN]			
Q16576	Histone-binding protein RBBP7 OS=Homo sapiens GN=RBBP7 PE=1 SV=1 - [RBBP7_HUMAN]			
P48735	Isocitrate dehydrogenase [NADP], mitochondrial OS=Homo sapiens GN=IDH2 PE=1 SV=2 - [IDHP_HUMAN]			
Q9NSK0	Kinesin light chain 4 OS=Homo sapiens GN=KLC4 PE=1 SV=3 - [KLC4_HUMAN]			
A6NHZ5	Leucine-rich repeat-containing protein 14B OS=Homo sapiens GN=LRRC14B PE=3 SV=3 - [LR14B_HUMAN]			
P09960	Leukotriene A-4 hydrolase OS=Homo sapiens GN=LTA4H PE=1 SV=2 - [LKHA4_HUMAN]			
P48059	LIM and senescent cell antigen-like-containing domain protein 1 OS=Homo sapiens GN=LIMS1 PE=1 SV=4 - [LIMS1_HUMAN]			
P0CW20	LIM and senescent cell antigen-like-containing domain protein 3-like OS=Homo sapiens GN=LIMS3L PE=2 SV=1 - [LIM3L_HUMAN]			
Q14847	LIM and SH3 domain protein 1 OS=Homo sapiens GN=LASP1 PE=1 SV=2 - [LASP1_HUMAN]			
O43684	Mitotic checkpoint protein BUB3 OS=Homo sapiens GN=BUB3 PE=1 SV=1 - [BUB3_HUMAN]			
O76041	Nebulette OS=Homo sapiens GN=NEBL PE=1 SV=1 - [NEBL_HUMAN]			
Q14697	Neutral alpha-glucosidase AB OS=Homo sapiens GN=GANAB PE=1 SV=3 - [GANAB_HUMAN]			
P50479	PDZ and LIM domain protein 4 OS=Homo sapiens GN=PDLIM4 PE=1 SV=2 - [PDLI4_HUMAN]			

Acc #	Protein	PM	NP	Wildtype
075420	PERQ amino acid-rich with GYF domain-containing protein 1 OS=Homo sapiens GN=GIGYF1 PE=1 SV=2 - [PERQ1_HUMAN]			
Q8WW12	PEST proteolytic signal-containing nuclear protein OS=Homo sapiens GN=PCNP PE=1 SV=2 - [PCNP_HUMAN]			
O15355	Protein phosphatase 1G OS=Homo sapiens GN=PPM1G PE=1 SV=1 - [PPM1G_HUMAN]			
P60468	Protein transport protein Sec61 subunit beta OS=Homo sapiens GN=SEC61B PE=1 SV=2 - [SC61B_HUMAN]			
Q8WUF5	RelA-associated inhibitor OS=Homo sapiens GN=PPP1R13L PE=1 SV=4 - [IASPP_HUMAN]			
Q9Y265	RuvB-like 1 OS=Homo sapiens GN=RUVBL1 PE=1 SV=1 - [RUVB1_HUMAN]			
Q9Y5M8	Signal recognition particle receptor subunit beta OS=Homo sapiens GN=SRPRB PE=1 SV=3 - [SRPRB_HUMAN]			
P53597	Succinyl-CoA ligase [ADP/GDP-forming] subunit alpha, mitochondrial OS=Homo sapiens GN=SUCLG1 PE=1 SV=4 - [SUCA_HUMAN]			
Q9UGI8	Testin OS=Homo sapiens GN=TES PE=1 SV=1 - [TES_HUMAN]			
P04183	Thymidine kinase, cytosolic OS=Homo sapiens GN=TK1 PE=1 SV=2 - [KITH_HUMAN]			
P40939	Trifunctional enzyme subunit alpha, mitochondrial OS=Homo sapiens GN=HADHA PE=1 SV=2 - [ECHA_HUMAN]			
P02765	Alpha-2-HS-glycoprotein OS=Homo sapiens GN=AHSG PE=1 SV=1 - [FETUA_HUMAN]			
P35221	Catenin alpha-1 OS=Homo sapiens GN=CTNNA1 PE=1 SV=1 - [CTNA1_HUMAN]			
P35222	Catenin beta-1 OS=Homo sapiens GN=CTNNB1 PE=1 SV=1 - [CTNB1_HUMAN]			
P49327	Fatty acid synthase OS=Homo sapiens GN=FASN PE=1 SV=3 - [FAS_HUMAN]			
P14923	Junction plakoglobin OS=Homo sapiens GN=JUP PE=1 SV=3 - [PLAK_HUMAN]			
P10619	Lysosomal protective protein OS=Homo sapiens GN=CTSA PE=1 SV=2 - [PPGB_HUMAN]			
Q15365	Poly(rC)-binding protein 1 OS=Homo sapiens GN=PCBP1 PE=1 SV=2 - [PCBP1_HUMAN]			

Acc #	Protein	PM	NP	Wildtype
Q9Y230	RuvB-like 2 OS=Homo sapiens GN=RUVBL2 PE=1 SV=3 - [RUVB2_HUMAN]			
Q14134	Tripartite motif-containing protein 29 OS=Homo sapiens GN=TRIM29 PE=1 SV=2 - [TRI29_HUMAN]			
Q13885	Tubulin beta-2A chain OS=Homo sapiens GN=TUBB2A PE=1 SV=1 - [TBB2A_HUMAN]			

8.5 Candidate novel interacting proteins of full-length WT β-catenin in HT29.

		Unique		R1	R2	R3			R 1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	14-3-3 protein epsilon OS=Homo sapiens										
P62258	GN=YWHAE PE=1 SV=1 - [1433E_HUMAN]	3	6	0.322					4	3	2
	14-3-3 protein gamma OS=Homo sapiens										
P61981	GN=YWHAG PE=1 SV=2 - [1433G_HUMAN]	2	6	0.282	0.282	0.368	6.6	0.01	4	4	4
	14-3-3 protein theta OS=Homo sapiens										
P27348	GN=YWHAQ PE=1 SV=1 - [1433T_HUMAN]	1	5	0.345					3	2	2
	14-3-3 protein zeta/delta OS=Homo sapiens										
P63104	GN=YWHAZ PE=1 SV=1 - [1433Z_HUMAN]	4	7	0.170	0.096		9.899	0.03205	4	4	3
	182 kDa tankyrase-1-binding protein OS=Homo										
Q9C0C	sapiens GN=TNKS1BP1 PE=1 SV=4 -							7.14E-			
2	[TB182_HUMAN]	11	11	0.001	0.003	0.001	837.0	07	3	8	1
	40S ribosomal protein S11 OS=Homo sapiens										
P62280	GN=RPS11 PE=1 SV=3 - [RS11_HUMAN]	4	4	0.168	0.221	0.250	12.0	0.003	1	4	2
	40S ribosomal protein S13 OS=Homo sapiens										
P62277	GN=RPS13 PE=1 SV=2 - [RS13_HUMAN]	3	3	0.194	0.278	0.211	10.7	0.004	3	3	1
	40S ribosomal protein S14 OS=Homo sapiens										
P62263	GN=RPS14 PE=1 SV=3 - [RS14_HUMAN]	2	2		0.125	0.111	54.17	0.00588	1	2	2
	40S ribosomal protein S15a OS=Homo sapiens										
P62244	GN=RPS15A PE=1 SV=2 - [RS15A_HUMAN]	3	3	0.188	0.310	0.001	3.7	0.03	2	3	2
	40S ribosomal protein S16 OS=Homo sapiens										
P62249	GN=RPS16 PE=1 SV=2 - [RS16_HUMAN]	5	5	0.180	0.287	0.178	8.0	0.008	3	4	2
	40S ribosomal protein S18 OS=Homo sapiens										
P62269	GN=RPS18 PE=1 SV=3 - [RS18_HUMAN]	6	6	0.233	0.299	0.205	9.1	0.006	5	6	4

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	40S ribosomal protein S19 OS=Homo sapiens										
P39019	GN=RPS19 PE=1 SV=2 - [RS19_HUMAN]	5	5	0.163	0.219		11.06	0.0287	2	2	3
	40S ribosomal protein S2 OS=Homo sapiens										
P15880	GN=RPS2 PE=1 SV=2 - [RS2_HUMAN]	6	6	0.135	0.180	0.152	26.0	0.0007	4	4	3
	40S ribosomal protein S25 OS=Homo sapiens										
P62851	GN=RPS25 PE=1 SV=1 - [RS25_HUMAN]	3	3	0.241	0.323	0.280	9.2	0.006	3	3	1
	40S ribosomal protein S27 OS=Homo sapiens										
P42677	GN=RPS27 PE=1 SV=3 - [RS27_HUMAN]	3	3	0.067	0.190	0.176	9.1	0.006	1	3	2
	40S ribosomal protein S3 OS=Homo sapiens										
P23396	GN=RPS3 PE=1 SV=2 - [RS3_HUMAN]	13	13	0.304	0.295	0.151	5.1	0.02	10	11	8
	40S ribosomal protein S3a OS=Homo sapiens										
P61247	GN=RPS3A PE=1 SV=2 - [RS3A_HUMAN]	7	7	0.160	0.232	0.012	5.7	0.01	6	4	4
	40S ribosomal protein S4, X isoform OS=Homo										
	sapiens GN=RPS4X PE=1 SV=2 -										
P62701	[RS4X_HUMAN]	7	7	0.191	0.246	0.092	7.2	0.009	3	6	4
	40S ribosomal protein S6 OS=Homo sapiens										
P62753	GN=RPS6 PE=1 SV=1 - [RS6_HUMAN]	5	5	0.178	0.236	0.179	15.9	0.002	5	5	4
	40S ribosomal protein S8 OS=Homo sapiens										
P62241	GN=RPS8 PE=1 SV=2 - [RS8_HUMAN]	7	7	0.190	0.294	0.189	7.9	0.008	4	5	5
	40S ribosomal protein S9 OS=Homo sapiens										
P46781	GN=RPS9 PE=1 SV=3 - [RS9_HUMAN]	7	7	0.155	0.236	0.001	5.3	0.02	5	5	4
	60S acidic ribosomal protein P0 OS=Homo										
	sapiens GN=RPLP0 PE=1 SV=1 -										
P05388	[RLA0_HUMAN]	5	5	0.238	0.235	0.001	4.4	0.02	4	5	1
	60S ribosomal protein L11 OS=Homo sapiens										
P62913	GN=RPL11 PE=1 SV=2 - [RL11_HUMAN]	4	4	0.133	0.153	0.012	9.1	0.006	3	4	3
P26373	60S ribosomal protein L13 OS=Homo sapiens	4	4	0.130	0.220	0.001	6.0	0.01	2	3	3

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	GN=RPL13 PE=1 SV=4 - [RL13_HUMAN]										
	60S ribosomal protein L13a OS=Homo sapiens										
P40429	GN=RPL13A PE=1 SV=2 - [RL13A_HUMAN]	4	4	0.226	0.017	0.176	5.7	0.01	3	4	2
	60S ribosomal protein L14 OS=Homo sapiens										
P50914	GN=RPL14 PE=1 SV=4 - [RL14_HUMAN]	3	3	0.143	0.002	0.167	7.7	0.008	2	3	1
	60S ribosomal protein L15 OS=Homo sapiens										
P61313	GN=RPL15 PE=1 SV=2 - [RL15_HUMAN]	4	4	0.128	0.225		6.649	0.04752	3	3	1
	60S ribosomal protein L18 OS=Homo sapiens										
Q07020	GN=RPL18 PE=1 SV=2 - [RL18_HUMAN]	4	4	0.161	0.238	0.223	12.3	0.003	4	4	2
	60S ribosomal protein L19 OS=Homo sapiens										
P84098	GN=RPL19 PE=1 SV=1 - [RL19_HUMAN]	2	2		0.246				1	2	1
	60S ribosomal protein L22 OS=Homo sapiens										
P35268	GN=RPL22 PE=1 SV=2 - [RL22_HUMAN]	2	2	0.121	0.028	0.156	10.4	0.005	2	1	2
	60S ribosomal protein L23a OS=Homo sapiens										
P62750	GN=RPL23A PE=1 SV=1 - [RL23A_HUMAN]	3	3	0.193	0.207	0.191	59.7	0.0001	2	3	3
	60S ribosomal protein L24 OS=Homo sapiens										
P83731	GN=RPL24 PE=1 SV=1 - [RL24_HUMAN]	5	5	0.172	0.296	0.013	4.1	0.03	4	4	2
	60S ribosomal protein L27 OS=Homo sapiens										
P61353	GN=RPL27 PE=1 SV=2 - [RL27_HUMAN]	1	1		0.283				1	1	1
	60S ribosomal protein L27a OS=Homo sapiens										
P46776	GN=RPL27A PE=1 SV=2 - [RL27A_HUMAN]	3	3	0.179	0.258		7.078	0.04468	2	3	2
	60S ribosomal protein L28 OS=Homo sapiens										
P46779	GN=RPL28 PE=1 SV=3 - [RL28_HUMAN]	4	4	0.183	0.261		7.184	0.04403	1	2	3
	60S ribosomal protein L30 OS=Homo sapiens										
P62888	GN=RPL30 PE=1 SV=2 - [RL30_HUMAN]	2	3	0.134		0.001	6.496	0.04862	3	2	1
	60S ribosomal protein L31 OS=Homo sapiens										
P62899	GN=RPL31 PE=1 SV=1 - [RL31_HUMAN]	2	2	0.117	0.222	0.001	6.0	0.01	1	2	1

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	60S ribosomal protein L35a OS=Homo sapiens										
P18077	GN=RPL35A PE=1 SV=2 - [RL35A_HUMAN]	3	3	0.128	0.307	0.231	5.4	0.02	2	2	3
Q9Y3U	60S ribosomal protein L36 OS=Homo sapiens										
8	GN=RPL36 PE=1 SV=3 - [RL36_HUMAN]	3	3	0.135	0.149	0.171	33.0	0.0005	3	3	2
	60S ribosomal protein L5 OS=Homo sapiens										
P46777	GN=RPL5 PE=1 SV=3 - [RL5_HUMAN]	5	5	0.151	0.208		11.24	0.02825	2	4	2
	60S ribosomal protein L6 OS=Homo sapiens										
Q02878	GN=RPL6 PE=1 SV=3 - [RL6_HUMAN]	2	2	0.136	0.241	0.059	6.7	0.01	2	2	1
	60S ribosomal protein L7 OS=Homo sapiens										
P18124	GN=RPL7 PE=1 SV=1 - [RL7_HUMAN]	5	5	0.263	0.324	0.001	3.1	0.05	2	3	3
	Actin, cytoplasmic 2 OS=Homo sapiens										
P63261	GN=ACTG1 PE=1 SV=1 - [ACTG_HUMAN]	1	9				0.0	0	6	9	8
	Activated RNA polymerase II transcriptional										
	coactivator p15 OS=Homo sapiens GN=SUB1										
P53999	PE=1 SV=3 - [TCP4_HUMAN]	2	2	0.145	0.164		36.86	0.00863	1	2	1
	Adenosylhomocysteinase OS=Homo sapiens										
P23526	GN=AHCY PE=1 SV=4 - [SAHH_HUMAN]	4	4		0.002	0.001	754	0.00042	1	2	3
	Alpha-2-HS-glycoprotein OS=Homo sapiens							2.98E-			
P02765	GN=AHSG PE=1 SV=1 - [FETUA_HUMAN]	1	1	0.001	0.001	0.001	4095.4	08	1	1	1
	Alpha-enolase OS=Homo sapiens GN=ENO1										
P06733	PE=1 SV=2 - [ENOA_HUMAN]	8	8	0.244	0.304	0.282	12.9	0.003	1	5	5
	Annexin A2 OS=Homo sapiens GN=ANXA2										
P07355	PE=1 SV=2 - [ANXA2_HUMAN]	12	12	0.146	0.163	0.016	8.5	0.007	5	12	7
	Annexin A4 OS=Homo sapiens GN=ANXA4										
P09525	PE=1 SV=4 - [ANXA4_HUMAN]	3	3	0.001	0.001	0.001	0.0	0	2	3	1
	Annexin A5 OS=Homo sapiens GN=ANXA5										
P08758	PE=1 SV=2 - [ANXA5_HUMAN]	3	3	0.139					2	2	1

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	ATP synthase subunit alpha, mitochondrial										
	OS=Homo sapiens GN=ATP5A1 PE=1 SV=1 -										
P25705	[ATPA_HUMAN]	3	3			0.001			1	2	1
	CAD protein OS=Homo sapiens GN=CAD PE=1										
P27708	SV=3 - [PYR1_HUMAN]	31	31	0.001	0.121	0.001	11.5	0.004	19	26	1
Q9HB7	Calcyclin-binding protein OS=Homo sapiens										
1	GN=CACYBP PE=1 SV=2 - [CYBP_HUMAN]	2	2		0.067				1	1	2
	Catenin beta-1 OS=Homo sapiens GN=CTNNB1										
P35222	PE=1 SV=1 - [CTNB1_HUMAN]	28	34	0.001	0.001	0.001	0.0	0	33	34	31
	Clathrin heavy chain 1 OS=Homo sapiens							7.61E-			
Q00610	GN=CLTC PE=1 SV=5 - [CLH1_HUMAN]	20	20	0.002	0.007	0.001	256.3	06	8	16	1
	Destrin OS=Homo sapiens GN=DSTN PE=1										
P60981	SV=3 - [DEST_HUMAN]	1	2				0.0	0	1	1	2
	Dr1-associated corepressor OS=Homo sapiens										
Q14919	GN=DRAP1 PE=1 SV=3 - [NC2A_HUMAN]	1	1	0.070	0.108		21.87	0.01454	1	1	1
	Elongation factor 1-alpha 1 OS=Homo sapiens										
P68104	GN=EEF1A1 PE=1 SV=1 - [EF1A1_HUMAN]	5	5	0.166	0.213	0.207	20.7	0.001	4	5	4
	Eukaryotic initiation factor 4A-I OS=Homo										
	sapiens GN=EIF4A1 PE=1 SV=1 -										
P60842	[IF4A1_HUMAN]	4	4		0.239	0.191	11.98	0.02651	1	4	3
	Eukaryotic translation initiation factor 2 subunit										
	3 OS=Homo sapiens GN=EIF2S3 PE=1 SV=3 -										
P41091	[IF2G_HUMAN]	3	3	0.185	0.268	0.210	11.3	0.004	1	3	1
	F-actin-capping protein subunit alpha-2										
	OS=Homo sapiens GN=CAPZA2 PE=1 SV=3 -										
P47755	[CAZA2_HUMAN]	2	2	0.001	0.125		7.061	0.04478	2	2	1
P47756	F-actin-capping protein subunit beta OS=Homo	3	3		0.001				1	2	1

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	sapiens GN=CAPZB PE=1 SV=4 -										
	[CAPZB_HUMAN]										
	Fatty acid synthase OS=Homo sapiens										
P49327	GN=FASN PE=1 SV=3 - [FAS_HUMAN]	46	46	0.001	0.001	0.001	0.0	0	26	44	2
	Galectin-4 OS=Homo sapiens GN=LGALS4										
P56470	PE=1 SV=1 - [LEG4_HUMAN]	2	2	0.001	0.001	0.001	0.0	0	1	2	1
	Glyceraldehyde-3-phosphate dehydrogenase										
	OS=Homo sapiens GN=GAPDH PE=1 SV=3 -										
P04406	[G3P_HUMAN]	10	11	0.133	0.147	0.116	40.4	0.0003	4	8	8
	Glyceraldehyde-3-phosphate dehydrogenase,										
	testis-specific OS=Homo sapiens GN=GAPDHS										
014556	PE=1 SV=2 - [G3PT_HUMAN]	1	2		0.001	0.001	0	0	1	2	2
	GTP-binding nuclear protein Ran OS=Homo										
	sapiens GN=RAN PE=1 SV=3 -										
P62826	[RAN_HUMAN]	4	4	0.328	0.332	0.438	3.7	0.03	3	4	4
	Guanine nucleotide-binding protein										
	G(I)/G(S)/G(T) subunit beta-2 OS=Homo										
	sapiens GN=GNB2 PE=1 SV=3 -										
P62879	[GBB2_HUMAN]	3	3	0.139	0.094		17.17	0.01851	2	1	1
	Guanine nucleotide-binding protein subunit beta-										
	2-like 1 OS=Homo sapiens GN=GNB2L1 PE=1										
P63244	SV=3 - [GBLP_HUMAN]	9	9	0.146	0.161	0.001	7.8	0.008	6	8	4
	Heat shock 70 kDa protein 1A/1B OS=Homo										
	sapiens GN=HSPA1A PE=1 SV=5 -										
P08107	[HSP71_HUMAN]	6	9	0.158					6	5	1
	Heat shock protein beta-1 OS=Homo sapiens										
P04792	GN=HSPB1 PE=1 SV=2 - [HSPB1_HUMAN]	3	3	0.351	0.368		16.42	0.01936	3	2	2

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	Heat shock protein HSP 90-alpha OS=Homo										
	sapiens GN=HSP90AA1 PE=1 SV=5 -										
P07900	[HS90A_HUMAN]	6	14	0.217	0.267		10.32	0.03074	14	7	3
	Heat shock protein HSP 90-beta OS=Homo										
	sapiens GN=HSP90AB1 PE=1 SV=4 -										
P08238	[HS90B_HUMAN]	6	16	0.107	0.026		10.71	0.02965	15	8	3
	Heterogeneous nuclear ribonucleoprotein D0										
	OS=Homo sapiens GN=HNRNPD PE=1 SV=1 -										
Q14103	[HNRPD_HUMAN]	2	2		0.240				1	2	1
	Heterogeneous nuclear ribonucleoprotein M										
	OS=Homo sapiens GN=HNRNPM PE=1 SV=3 -										
P52272	[HNRPM_HUMAN]	10	10	0.008	0.018		97.26	0.00327	7	2	1
	Heterogeneous nuclear ribonucleoproteins A2/B1										
	OS=Homo sapiens GN=HNRNPA2B1 PE=1										
P22626	SV=2 - [ROA2_HUMAN]	4	4	0.010	0.021		87.01	0.00366	2	4	1
	High mobility group protein B3 OS=Homo										
	sapiens GN=HMGB3 PE=1 SV=4 -										
015347	[HMGB3_HUMAN]	2	2	0.125	0.013	0.001	11.5	0.004	1	2	1
	Histone H1.2 OS=Homo sapiens										
P16403	GN=HIST1H1C PE=1 SV=2 - [H12_HUMAN]	3	3	0.121	0.109	0.009	11.8	0.004	2	3	1
	Histone H1.5 OS=Homo sapiens										
P16401	GN=HIST1H1B PE=1 SV=3 - [H15_HUMAN]	2	2	0.121	0.167	0.001	8.2	0.007	2	2	1
	Histone H2A type 1-H OS=Homo sapiens										
Q96KK	GN=HIST1H2AH PE=1 SV=3 -										
5	[H2A1H_HUMAN]	1	2		0.374				1	2	1
	Histone H2A.Z OS=Homo sapiens GN=H2AFZ										
P0C0S5	PE=1 SV=2 - [H2AZ_HUMAN]	1	2				0.0	0	2	1	1

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	Histone H2B type 1-K OS=Homo sapiens										
	GN=HIST1H2BK PE=1 SV=3 -										
O60814	[H2B1K_HUMAN]	2	2	0.290	0.405	0.280	4.4	0.02	1	2	2
	Inosine-5'-monophosphate dehydrogenase 2										
	OS=Homo sapiens GN=IMPDH2 PE=1 SV=2 -							6.01E-			
P12268	[IMDH2_HUMAN]	4	4	0.001	0.002	0.001	2884.4	08	1	3	2
	Junction plakoglobin OS=Homo sapiens										
P14923	GN=JUP PE=1 SV=3 - [PLAK_HUMAN]	4	10	0.009		0.001	129.4	0.00246	9	6	7
	LIM and SH3 domain protein 1 OS=Homo										
	sapiens GN=LASP1 PE=1 SV=2 -										
Q14847	[LASP1_HUMAN]	5	5	0.085	0.106	0.001	13.6	0.003	1	3	5
	L-lactate dehydrogenase A chain OS=Homo										
	sapiens GN=LDHA PE=1 SV=2 -										
P00338	[LDHA_HUMAN]	9	10	0.201	0.198	0.224	35.7	0.0004	4	9	6
	L-lactate dehydrogenase B chain OS=Homo										
	sapiens GN=LDHB PE=1 SV=2 -										
P07195	[LDHB_HUMAN]	6	7	0.146	0.113	0.010	10.0	0.005	4	5	4
	Lysosomal protective protein OS=Homo sapiens										
P10619	GN=CTSA PE=1 SV=2 - [PPGB_HUMAN]	3	3	0.001	0.001		0	0	2	2	1
	Myosin light polypeptide 6 OS=Homo sapiens										
P60660	GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN]	3	3	0.167	0.219		11.69	0.02716	3	1	1
	Myosin regulatory light chain 12A OS=Homo										
	sapiens GN=MYL12A PE=1 SV=2 -										
P19105	[ML12A_HUMAN]	4	4	0.197	0.016	0.001	6.8	0.01	3	4	2
	N6-adenosine-methyltransferase 70 kDa subunit										
Q86U4	OS=Homo sapiens GN=METTL3 PE=1 SV=2 -										
4	[MTA70_HUMAN]	1	1			0.001			1	1	1

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	Nuclear receptor subfamily 2 group C member 2										
	OS=Homo sapiens GN=NR2C2 PE=1 SV=1 -										
P49116	[NR2C2_HUMAN]	1	1	0.001	0.001	0.001	0.0	0	1	1	1
	PDZ and LIM domain protein 7 OS=Homo										
Q9NR1	sapiens GN=PDLIM7 PE=1 SV=1 -										
2	[PDLI7_HUMAN]	5	5		0.001				1	4	2
	Peptidyl-prolyl cis-trans isomerase A OS=Homo										
	sapiens GN=PPIA PE=1 SV=2 -										
P62937	[PPIA_HUMAN]	8	8	0.135	0.138	0.219	12.2	0.003	4	8	4
	Peptidyl-prolyl cis-trans isomerase B OS=Homo										
	sapiens GN=PPIB PE=1 SV=2 -										
P23284	[PPIB_HUMAN]	3	3	0.127	0.001	0.001	10.9	0.004	2	1	2
	Peroxiredoxin-1 OS=Homo sapiens GN=PRDX1										
Q06830	PE=1 SV=1 - [PRDX1_HUMAN]	7	7	0.252	0.255	0.001	3.9	0.03	5	5	3
	Plectin OS=Homo sapiens GN=PLEC PE=1										
Q15149	SV=3 - [PLEC_HUMAN]	164	167	0.207	0.303	0.219	8.5	0.007	122	148	10
	Poly [ADP-ribose] polymerase 1 OS=Homo										
	sapiens GN=PARP1 PE=1 SV=4 -										
P09874	[PARP1_HUMAN]	5	5	0.001	0.001	0.140	9.8	0.005	3	3	3
	Polyadenylate-binding protein 1 OS=Homo										
	sapiens GN=PABPC1 PE=1 SV=2 -										
P11940	[PABP1_HUMAN]	7	9	0.084	0.089		181.5	0.00175	8	3	1
	Polyadenylate-binding protein 4 OS=Homo										
	sapiens GN=PABPC4 PE=1 SV=1 -										
Q13310	[PABP4_HUMAN]	2	4	0.001					4	1	1
	Prelamin-A/C OS=Homo sapiens GN=LMNA										
P02545	PE=1 SV=1 - [LMNA_HUMAN]	23	23	0.165	0.004	0.014	8.4	0.007	21	6	3

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	Probable ATP-dependent RNA helicase DDX5										
	OS=Homo sapiens GN=DDX5 PE=1 SV=1 -										
P17844	[DDX5_HUMAN]	4	8	0.001	0.001		0	0	7	5	1
	Prohibitin OS=Homo sapiens GN=PHB PE=1										
P35232	SV=1 - [PHB_HUMAN]	4	4	0.275	0.273	0.001	3.5	0.04	2	4	2
	Protein disulfide-isomerase A3 OS=Homo										
	sapiens GN=PDIA3 PE=1 SV=4 -										
P30101	[PDIA3_HUMAN]	3	3		0.001	0.001	2880	0.00011	1	2	3
Q6ZRV	Protein FAM83H OS=Homo sapiens										
2	GN=FAM83H PE=1 SV=3 - [FA83H_HUMAN]	3	3	0.001	0.001	0.001	0.0	0	1	3	1
	Putative Ras-related protein Rab-1C OS=Homo										
	sapiens GN=RAB1C PE=5 SV=2 -										
Q92928	[RAB1C_HUMAN]	2	3		0.001				2	3	1
	Pyruvate kinase isozymes M1/M2 OS=Homo										
	sapiens GN=PKM PE=1 SV=4 -										
P14618	[KPYM_HUMAN]	11	11	0.153	0.126	0.177	23.4	0.001	9	8	7
	Ras-related protein Rab-14 OS=Homo sapiens										
P61106	GN=RAB14 PE=1 SV=4 - [RAB14_HUMAN]	1	2				0.0	0	1	1	2
Q9Y26	RuvB-like 1 OS=Homo sapiens GN=RUVBL1										
5	PE=1 SV=1 - [RUVB1_HUMAN]	6	6		0.001	0.001	0	0	1	4	4
Q9Y23	RuvB-like 2 OS=Homo sapiens GN=RUVBL2										
0	PE=1 SV=3 - [RUVB2_HUMAN]	16	16	0.001	0.001	0.001	0.0	0	5	15	12
	Serine/threonine-protein phosphatase PP1-alpha										
	catalytic subunit OS=Homo sapiens										
P62136	GN=PPP1CA PE=1 SV=1 - [PP1A_HUMAN]	2	2		0.001	0.001	0	0	1	1	1
	Tax1-binding protein 3 OS=Homo sapiens										
O14907	GN=TAX1BP3 PE=1 SV=2 -	1	1	0.001	0.001	0.001	0.0	0	1	1	1

		Unique	D (1)	R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	[TX1B3_HUMAN]										
	T-complex protein 1 subunit delta OS=Homo										
	sapiens GN=CCT4 PE=1 SV=4 -										
P50991	[TCPD_HUMAN]	1	1			0.204			1	1	1
	T-complex protein 1 subunit gamma OS=Homo										
	sapiens GN=CCT3 PE=1 SV=4 -										
P49368	[TCPG_HUMAN]	4	4	0.001					2	2	1
	T-complex protein 1 subunit zeta OS=Homo										
	sapiens GN=CCT6A PE=1 SV=3 -										
P40227	[TCPZ_HUMAN]	2	2	0.146	0.001	0.140	8.5	0.007	1	2	1
	Tubulin alpha-1B chain OS=Homo sapiens										
P68363	GN=TUBA1B PE=1 SV=1 - [TBA1B_HUMAN]	3	10		0.246	0.272	18.59	0.0171	5	7	6
	Tubulin alpha-4A chain OS=Homo sapiens										
	GN=TUBA4A PE=1 SV=1 -										
P68366	[TBA4A_HUMAN]	2	9		0.240	0.220	26.72	0.01191	3	8	5
	Tubulin beta chain OS=Homo sapiens										
P07437	GN=TUBB PE=1 SV=2 - [TBB5_HUMAN]	2	12		0.226	0.196	19.17	0.01659	5	11	9
	Tubulin beta-2A chain OS=Homo sapiens										
Q13885	GN=TUBB2A PE=1 SV=1 - [TBB2A_HUMAN]	1	11	0.135					5	8	8
	Tubulin beta-4B chain OS=Homo sapiens										
P68371	GN=TUBB4B PE=1 SV=1 - [TBB4B_HUMAN]	3	13		0.127	0.013	7.559	0.04187	4	10	9
	Ubiquitin-conjugating enzyme E2 N OS=Homo										
	sapiens GN=UBE2N PE=1 SV=1 -										
P61088	[UBE2N_HUMAN]	1	1				0.0	0	1	1	1
	Vimentin OS=Homo sapiens GN=VIM PE=1										
P08670	SV=4 - [VIME_HUMAN]	17	20	0.267	0.338	0.291	9.7	0.005	8	16	12
P21796	Voltage-dependent anion-selective channel	4	5	0.421	0.404	0.330	4.1	0.03	3	4	3

Acc#	Protein	Unique peptides	Peptides	R1 H/L	R2 H/L	R3 H/L	tstat	pval	R1 peptides	R2 peptides	R3 peptides
	protein 1 OS=Homo sapiens GN=VDAC1 PE=1 SV=2 - [VDAC1_HUMAN]							F	P • P • • • • • •		F-F
8.6 Candidate novel interacting proteins of the phosphomimetic mutant of β-catenin at tyrosine-654 in HT29.

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	14-3-3 protein beta/alpha OS=Homo sapiens										
P31946	GN=YWHAB PE=1 SV=3 - [1433B_HUMAN]	2	7	0.220	0.239	0.285	13.2	0.003	4	5	6
	14-3-3 protein eta OS=Homo sapiens										
Q04917	GN=YWHAH PE=1 SV=4 - [1433F_HUMAN]	1	5		0.308				3	4	3
	182 kDa tankyrase-1-binding protein OS=Homo										
Q9C0C	sapiens GN=TNKS1BP1 PE=1 SV=4 -							2.88E-			
2	[TB182_HUMAN]	4	4	0.003	0.004	0.002	1317.1	07	3	1	2
	40S ribosomal protein S11 OS=Homo sapiens										
P62280	GN=RPS11 PE=1 SV=3 - [RS11_HUMAN]	7	7	0.001	0.219	0.179	5.5	0.02	3	4	7
	40S ribosomal protein S13 OS=Homo sapiens										
P62277	GN=RPS13 PE=1 SV=2 - [RS13_HUMAN]	4	4	0.139	0.211	0.205	13.7	0.003	3	3	3
	40S ribosomal protein S14 OS=Homo sapiens										
P62263	GN=RPS14 PE=1 SV=3 - [RS14_HUMAN]	3	3	0.079	0.131	0.158	16.4	0.002	1	3	3
	40S ribosomal protein S15a OS=Homo sapiens										
P62244	GN=RPS15A PE=1 SV=2 - [RS15A_HUMAN]	5	5	0.151	0.141	0.260	8.3	0.007	3	4	5
	40S ribosomal protein S16 OS=Homo sapiens										
P62249	GN=RPS16 PE=1 SV=2 - [RS16_HUMAN]	4	4	0.098	0.173	0.201	11.2	0.004	3	4	2
	40S ribosomal protein S18 OS=Homo sapiens										
P62269	GN=RPS18 PE=1 SV=3 - [RS18_HUMAN]	5	5	0.170	0.234	0.293	7.6	0.009	5	5	5
	40S ribosomal protein S19 OS=Homo sapiens										
P39019	GN=RPS19 PE=1 SV=2 - [RS19_HUMAN]	8	8	0.163	0.265	0.266	7.9	0.008	4	6	7
	40S ribosomal protein S2 OS=Homo sapiens										
P15880	GN=RPS2 PE=1 SV=2 - [RS2_HUMAN]	8	8	0.082	0.151	0.145	16.9	0.002	7	6	6

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	40S ribosomal protein S20 OS=Homo sapiens										
P60866	GN=RPS20 PE=1 SV=1 - [RS20_HUMAN]	2	2	0.159	0.269	0.281	6.8	0.01	1	2	1
	40S ribosomal protein S23 OS=Homo sapiens										
P62266	GN=RPS23 PE=1 SV=3 - [RS23_HUMAN]	1	1	0.114	0.213	0.212	9.8	0.005	1	1	1
	40S ribosomal protein S24 OS=Homo sapiens										
P62847	GN=RPS24 PE=1 SV=1 - [RS24_HUMAN]	1	1	0.112		0.175	11.3	0.03	1	1	1
	40S ribosomal protein S25 OS=Homo sapiens										
P62851	GN=RPS25 PE=1 SV=1 - [RS25_HUMAN]	5	5	0.178	0.248	0.242	12.5	0.003	3	4	4
	40S ribosomal protein S27 OS=Homo sapiens										
P42677	GN=RPS27 PE=1 SV=3 - [RS27_HUMAN]	1	3				0.0	0	2	2	3
	40S ribosomal protein S27-like OS=Homo										
Q71UM	sapiens GN=RPS27L PE=1 SV=3 -										
5	[RS27L_HUMAN]	1	3		0.093	0.180	8.3	0.04	2	3	3
	40S ribosomal protein S3 OS=Homo sapiens										
P23396	GN=RPS3 PE=1 SV=2 - [RS3_HUMAN]	14	14	0.197	0.298	0.315	6.2	0.01	13	11	12
	40S ribosomal protein S30 OS=Homo sapiens										
P62861	GN=FAU PE=1 SV=1 - [RS30_HUMAN]	1	1	0.142	0.177	0.160	34.0	0.0004	1	1	1
	40S ribosomal protein S3a OS=Homo sapiens										
P61247	GN=RPS3A PE=1 SV=2 - [RS3A_HUMAN]	8	8	0.124	0.217	0.178	12.2	0.003	5	5	7
	40S ribosomal protein S4, X isoform OS=Homo										
	sapiens GN=RPS4X PE=1 SV=2 -										
P62701	[RS4X_HUMAN]	7	7	0.121	0.211	0.197	11.6	0.004	6	7	4
	40S ribosomal protein S5 OS=Homo sapiens										
P46782	GN=RPS5 PE=1 SV=4 - [RS5_HUMAN]	4	4	0.225	0.253	0.306	10.0	0.005	3	3	2
	40S ribosomal protein S6 OS=Homo sapiens										
P62753	GN=RPS6 PE=1 SV=1 - [RS6_HUMAN]	5	5	0.112	0.157	0.160	23.1	0.0009	4	4	5
P62081	40S ribosomal protein S7 OS=Homo sapiens	2	2	0.144	0.207	0.186	17.2	0.002	1	2	2

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	GN=RPS7 PE=1 SV=1 - [RS7_HUMAN]										
	40S ribosomal protein S8 OS=Homo sapiens										
P62241	GN=RPS8 PE=1 SV=2 - [RS8_HUMAN]	5	5	0.104	0.225	0.186	9.2	0.006	3	3	4
	40S ribosomal protein S9 OS=Homo sapiens										
P46781	GN=RPS9 PE=1 SV=3 - [RS9_HUMAN]	7	7	0.107	0.199	0.172	12.4	0.003	6	6	6
	40S ribosomal protein SA OS=Homo sapiens										
P08865	GN=RPSA PE=1 SV=4 - [RSSA_HUMAN]	4	4	0.011	0.252	0.154	5.2	0.02	4	2	2
	60S acidic ribosomal protein P0 OS=Homo										
	sapiens GN=RPLP0 PE=1 SV=1 -										
P05388	[RLA0_HUMAN]	5	5	0.166	0.287	0.227	7.9	0.008	4	5	2
	60S ribosomal protein L10 OS=Homo sapiens										
P27635	GN=RPL10 PE=1 SV=4 - [RL10_HUMAN]	4	4	0.012	0.159	0.174	7.4	0.009	4	4	3
	60S ribosomal protein L10a OS=Homo sapiens										
P62906	GN=RPL10A PE=1 SV=2 - [RL10A_HUMAN]	3	3		0.240	0.218	24.2	0.01	2	2	2
	60S ribosomal protein L11 OS=Homo sapiens										
P62913	GN=RPL11 PE=1 SV=2 - [RL11_HUMAN]	4	4	0.115	0.220	0.204	9.7	0.005	4	3	3
	60S ribosomal protein L12 OS=Homo sapiens										
P30050	GN=RPL12 PE=1 SV=1 - [RL12_HUMAN]	4	4		0.261	0.205	9.5	0.03	1	3	4
	60S ribosomal protein L13 OS=Homo sapiens								_		
P26373	GN=RPL13 PE=1 SV=4 - [RL13_HUMAN]	6	6	0.094	0.124	0.142	27.3	0.0007	5	4	4
	60S ribosomal protein L13a OS=Homo sapiens										
P40429	GN=RPL13A PE=1 SV=2 - [RL13A_HUMAN]	4	4	0.137	0.224	0.209	11.5	0.004	1	3	3
	60S ribosomal protein L14 OS=Homo sapiens								_		
P50914	GN=RPL14 PE=1 SV=4 - [RL14_HUMAN]	6	6	0.002	0.138	0.179	7.3	0.009	3	4	6
	60S ribosomal protein L15 OS=Homo sapiens										
P61313	GN=RPL15 PE=1 SV=2 - [RL15_HUMAN]	4	4	0.009	0.159	0.163	7.7	0.008	4	4	4

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	60S ribosomal protein L18 OS=Homo sapiens										
Q07020	GN=RPL18 PE=1 SV=2 - [RL18_HUMAN]	5	5	0.113	0.014	0.165	9.1	0.006	4	3	5
	60S ribosomal protein L18a OS=Homo sapiens										
Q02543	GN=RPL18A PE=1 SV=2 - [RL18A_HUMAN]	2	2	0.001	0.162	0.204	6.1	0.01	1	2	2
	60S ribosomal protein L19 OS=Homo sapiens										
P84098	GN=RPL19 PE=1 SV=1 - [RL19_HUMAN]	3	3	0.115	0.184	0.136	17.5	0.002	1	2	2
	60S ribosomal protein L22 OS=Homo sapiens										
P35268	GN=RPL22 PE=1 SV=2 - [RL22_HUMAN]	3	3		0.233	0.204	19.3	0.02	2	2	3
	60S ribosomal protein L23 OS=Homo sapiens										
P62829	GN=RPL23 PE=1 SV=1 - [RL23_HUMAN]	4	4	0.089	0.197	0.121	11.4	0.004	4	2	3
	60S ribosomal protein L23a OS=Homo sapiens										
P62750	GN=RPL23A PE=1 SV=1 - [RL23A_HUMAN]	4	4	0.122	0.195	0.196	13.5	0.003	3	3	4
	60S ribosomal protein L24 OS=Homo sapiens										
P83731	GN=RPL24 PE=1 SV=1 - [RL24_HUMAN]	4	4	0.103	0.174	0.181	13.9	0.003	4	3	4
	60S ribosomal protein L26 OS=Homo sapiens										
P61254	GN=RPL26 PE=1 SV=1 - [RL26_HUMAN]	4	4	0.108	0.202	0.191	11.2	0.004	4	2	4
	60S ribosomal protein L27 OS=Homo sapiens										
P61353	GN=RPL27 PE=1 SV=2 - [RL27_HUMAN]	1	1	0.106	0.255	0.001	5.1	0.02	1	1	1
	60S ribosomal protein L27a OS=Homo sapiens										
P46776	GN=RPL27A PE=1 SV=2 - [RL27A_HUMAN]	3	3	0.107	0.155	0.178	16.9	0.002	3	2	3
	60S ribosomal protein L28 OS=Homo sapiens										
P46779	GN=RPL28 PE=1 SV=3 - [RL28_HUMAN]	2	2	0.107	0.179	0.216	10.4	0.005	1	2	2
	60S ribosomal protein L30 OS=Homo sapiens										
P62888	GN=RPL30 PE=1 SV=2 - [RL30_HUMAN]	4	5		0.192	0.191	1623.3	0.0002	2	3	4
	60S ribosomal protein L34 OS=Homo sapiens										
P49207	GN=RPL34 PE=1 SV=3 - [RL34_HUMAN]	2	2	0.095	0.123	0.181	14.5	0.002	1	2	1
P18077	60S ribosomal protein L35a OS=Homo sapiens	4	4	0.103	0.193	0.186	11.8	0.004	3	3	3

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	GN=RPL35A PE=1 SV=2 - [RL35A_HUMAN]										
Q9Y3U	60S ribosomal protein L36 OS=Homo sapiens										
8	GN=RPL36 PE=1 SV=3 - [RL36_HUMAN]	3	3	0.111	0.011	0.179	8.2	0.007	3	3	3
	60S ribosomal protein L36a OS=Homo sapiens										
P83881	GN=RPL36A PE=1 SV=2 - [RL36A_HUMAN]	1	1	0.059	0.154	0.001	9.6	0.005	1	1	1
	60S ribosomal protein L37a OS=Homo sapiens										
P61513	GN=RPL37A PE=1 SV=2 - [RL37A_HUMAN]	1	1			0.205			1	1	1
	60S ribosomal protein L4 OS=Homo sapiens										
P36578	GN=RPL4 PE=1 SV=5 - [RL4_HUMAN]	7	7	0.066	0.097	0.124	24.2	0.0009	5	2	4
	60S ribosomal protein L5 OS=Homo sapiens										
P46777	GN=RPL5 PE=1 SV=3 - [RL5_HUMAN]	3	3	0.113	0.180	0.128	17.5	0.002	1	2	2
	60S ribosomal protein L6 OS=Homo sapiens										
Q02878	GN=RPL6 PE=1 SV=3 - [RL6_HUMAN]	5	5	0.010	0.129	0.150	9.2	0.006	3	2	4
	60S ribosomal protein L7 OS=Homo sapiens										
P18124	GN=RPL7 PE=1 SV=1 - [RL7_HUMAN]	7	7	0.167	0.234	0.253	10.9	0.004	5	5	6
	60S ribosomal protein L7a OS=Homo sapiens										
P62424	GN=RPL7A PE=1 SV=2 - [RL7A_HUMAN]	6	6	0.145	0.206	0.192	17.4	0.002	2	4	5
	60S ribosomal protein L8 OS=Homo sapiens										
P62917	GN=RPL8 PE=1 SV=2 - [RL8_HUMAN]	2	2				0.0	0	2	2	2
	78 kDa glucose-regulated protein OS=Homo										
	sapiens GN=HSPA5 PE=1 SV=2 -										
P11021	[GRP78_HUMAN]	7	9	0.137	0.285	0.224	6.6	0.01	7	7	4
	Actin, cytoplasmic 1 OS=Homo sapiens										
P60709	GN=ACTB PE=1 SV=1 - [ACTB_HUMAN]	10	10	0.184	0.327	0.241	6.0	0.01	7	8	10
	Actin-related protein 2 OS=Homo sapiens										
P61160	GN=ACTR2 PE=1 SV=1 - [ARP2_HUMAN]	2	2	0.091	0.205	0.001	6.8	0.01	1	2	1

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	Actin-related protein 2/3 complex subunit 4										
	OS=Homo sapiens GN=ARPC4 PE=1 SV=3 -										
P59998	[ARPC4_HUMAN]	2	2	0.001	0.015	0.238	5.4	0.02	2	2	2
	Activated RNA polymerase II transcriptional										
	coactivator p15 OS=Homo sapiens GN=SUB1										
P53999	PE=1 SV=3 - [TCP4_HUMAN]	2	2	0.131	0.306	0.201	5.7	0.01	1	2	1
	ADP-ribosylation factor 4 OS=Homo sapiens										
P18085	GN=ARF4 PE=1 SV=3 - [ARF4_HUMAN]	3	4	0.015	0.355	0.158	3.3	0.04	3	3	4
	Alcohol dehydrogenase class-3 OS=Homo										
	sapiens GN=ADH5 PE=1 SV=4 -										
P11766	[ADHX_HUMAN]	1	1			0.160			1	1	1
	Alpha-2-HS-glycoprotein OS=Homo sapiens							1.03E-			
P02765	GN=AHSG PE=1 SV=1 - [FETUA_HUMAN]	2	2	0.001	0.001	0.002	2208.1	07	1	2	2
	Annexin A2 OS=Homo sapiens GN=ANXA2										
P07355	PE=1 SV=2 - [ANXA2_HUMAN]	16	16	0.188	0.330	0.276	5.7	0.01	9	14	7
	Annexin A4 OS=Homo sapiens GN=ANXA4							2.30E-			
P09525	PE=1 SV=4 - [ANXA4_HUMAN]	5	5	0.001	0.001	0.004	466.3	06	3	2	2
	Aspartate aminotransferase, mitochondrial										
	OS=Homo sapiens GN=GOT2 PE=1 SV=3 -										
P00505	[AATM_HUMAN]	1	1		0.001	0.001	0.0	0	1	1	1
	ATPase family AAA domain-containing protein										
Q9NVI	3A OS=Homo sapiens GN=ATAD3A PE=1										
7	SV=2 - [ATD3A_HUMAN]	2	2	0.001		0.002	1419.3	0.0002	2	1	1
	ATP-binding cassette sub-family E member 1										
	OS=Homo sapiens GN=ABCE1 PE=1 SV=1 -						_				
P61221	[ABCE1_HUMAN]	4	4	0.001	0.212	0.199	5.3	0.02	4	2	1
Q9UG6	ATP-binding cassette sub-family F member 2	2	2	0.127		0.115	66.3	0.005	1	1	1

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
3	OS=Homo sapiens GN=ABCF2 PE=1 SV=2 -										
	[ABCF2_HUMAN]										
	ATP-dependent RNA helicase DDX3X										
	OS=Homo sapiens GN=DDX3X PE=1 SV=3 -										
O00571	[DDX3X_HUMAN]	7	8	0.007	0.001	0.139	10.0	0.005	6	5	3
	BAG family molecular chaperone regulator 2										
	OS=Homo sapiens GN=BAG2 PE=1 SV=1 -										
095816	[BAG2_HUMAN]	1	1	0.001		0.001	0.0	0	1	1	1
	Barrier-to-autointegration factor OS=Homo										
	sapiens GN=BANF1 PE=1 SV=1 -										
075531	[BAF_HUMAN]	1	1	0.189	0.244		10.1	0.03	1	1	1
	C-1-tetrahydrofolate synthase, cytoplasmic										
	OS=Homo sapiens GN=MTHFD1 PE=1 SV=3 -										
P11586	[C1TC_HUMAN]	7	7	0.001	0.202	0.002	6.4	0.01	7	4	5
	CAD protein OS=Homo sapiens GN=CAD PE=1							4.37E-			
P27708	SV=3 - [PYR1_HUMAN]	15	15	0.001	0.002	0.006	338.4	06	13	5	1
Q9HB7	Calcyclin-binding protein OS=Homo sapiens										
1	GN=CACYBP PE=1 SV=2 - [CYBP_HUMAN]	1	1	0.198	0.396	0.373	2.8	0.05	1	1	1
	Catenin alpha-1 OS=Homo sapiens										
	GN=CTNNA1 PE=1 SV=1 -							1.04E-			
P35221	[CTNA1_HUMAN]	16	16	0.001	0.001	0.002	2197.2	07	12	9	4
	Catenin beta-1 OS=Homo sapiens GN=CTNNB1										
P35222	PE=1 SV=1 - [CTNB1_HUMAN]	28	34	0.001	0.001	0.001	0.0	0	31	33	31
	Catenin delta-1 OS=Homo sapiens										
	GN=CTNND1 PE=1 SV=1 -							5.52E-			
O60716	[CTND1_HUMAN]	1	1	0.001	0.001	0.003	951.7	07	1	1	1
P07339	Cathepsin D OS=Homo sapiens GN=CTSD	2	3			0.194			2	1	2

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	PE=1 SV=1 - [CATD_HUMAN]										
	Cell division control protein 42 homolog										
	OS=Homo sapiens GN=CDC42 PE=1 SV=2 -										
P60953	[CDC42_HUMAN]	2	3		0.001				1	1	2
	Cleavage stimulation factor subunit 1 OS=Homo										
	sapiens GN=CSTF1 PE=1 SV=1 -										
Q05048	[CSTF1_HUMAN]	2	2	0.001	0.001	0.001	0.0	0	1	1	2
	Coatomer subunit beta' OS=Homo sapiens										
P35606	GN=COPB2 PE=1 SV=2 - [COPB2_HUMAN]	1	2	0.001	0.399	0.002	2.8	0.05	1	2	1
	Coiled-coil-helix-coiled-coil-helix domain-										
	containing protein 3, mitochondrial OS=Homo										
Q9NX6	sapiens GN=CHCHD3 PE=1 SV=1 -										
3	[CHCH3_HUMAN]	4	4				0.0	0	1	2	3
	Cysteine and glycine-rich protein 1 OS=Homo										
	sapiens GN=CSRP1 PE=1 SV=3 -										
P21291	[CSRP1_HUMAN]	3	3			0.120			2	2	3
	Cytochrome c oxidase subunit 2 OS=Homo										
	sapiens GN=MT-CO2 PE=1 SV=1 -										
P00403	[COX2_HUMAN]	1	1		0.190	0.184	106.7	0.003	1	1	1
	DDB1- and CUL4-associated factor 7 OS=Homo										
	sapiens GN=DCAF7 PE=1 SV=1 -										
P61962	[DCAF7_HUMAN]	1	1				0.0	0	1	1	1
	DNA replication licensing factor MCM5										
	OS=Homo sapiens GN=MCM5 PE=1 SV=5 -										
P33992	[MCM5_HUMAN]	3	3		0.001	0.080	11.6	0.03	1	1	2
	DNA replication licensing factor MCM7						10177.	4.83E-			
P33993	OS=Homo sapiens GN=MCM7 PE=1 SV=4 -	7	7	0.001	0.001	0.001	1	09	3	3	3

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	[MCM7_HUMAN]										
	Double-stranded RNA-binding protein Staufen										
	homolog 1 OS=Homo sapiens GN=STAU1 PE=1							3.09E-			
095793	SV=2 - [STAU1_HUMAN]	4	4	0.001	0.001	0.005	402.2	06	3	2	2
	E3 ubiquitin/ISG15 ligase TRIM25 OS=Homo										
	sapiens GN=TRIM25 PE=1 SV=2 -										
Q14258	[TRI25_HUMAN]	4	4	0.001	0.001	0.119	11.6	0.004	3	2	1
	ELAV-like protein 1 OS=Homo sapiens										
Q15717	GN=ELAVL1 PE=1 SV=2 - [ELAV1_HUMAN]	2	2		0.255				1	1	1
	Elongation factor 1-alpha 1 OS=Homo sapiens										
P68104	GN=EEF1A1 PE=1 SV=1 - [EF1A1_HUMAN]	7	7	0.141	0.233	0.206	11.3	0.004	4	4	6
	Elongation factor 2 OS=Homo sapiens										
P13639	GN=EEF2 PE=1 SV=4 - [EF2_HUMAN]	12	12	0.176	0.344	0.212	5.0	0.02	9	9	5
	Elongation factor Tu, mitochondrial OS=Homo										
	sapiens GN=TUFM PE=1 SV=2 -										
P49411	[EFTU_HUMAN]	4	4	0.008	0.158	0.136	8.5	0.007	3	2	2
	Emerin OS=Homo sapiens GN=EMD PE=1						10011.	3.18E-			
P50402	SV=1 - [EMD_HUMAN]	2	2	0.001		0.001	8	05	1	1	1
	Endoplasmin OS=Homo sapiens GN=HSP90B1										
P14625	PE=1 SV=1 - [ENPL_HUMAN]	5	7	0.185	0.345	0.208	5.1	0.02	6	3	3
	Eukaryotic initiation factor 4A-I OS=Homo										
	sapiens GN=EIF4A1 PE=1 SV=1 -										
P60842	[IF4A1_HUMAN]	4	4	0.116	0.232	0.211	8.8	0.006	4	3	2
	Eukaryotic translation initiation factor 2 subunit										
	1 OS=Homo sapiens GN=EIF2S1 PE=1 SV=3 -										
P05198	[IF2A_HUMAN]	5	5	0.127	0.384	0.312	2.9	0.05	3	3	1
P20042	Eukaryotic translation initiation factor 2 subunit	6	6	0.263	0.404	0.389	3.3	0.04	5	3	5

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	2 OS=Homo sapiens GN=EIF2S2 PE=1 SV=2 -										
	[IF2B_HUMAN]										
	Eukaryotic translation initiation factor 3 subunit										
	D OS=Homo sapiens GN=EIF3D PE=1 SV=1 -							7.58E-			
015371	[EIF3D_HUMAN]	1	1	0.001	0.001	0.002	2568.6	08	1	1	1
	Ezrin OS=Homo sapiens GN=EZR PE=1 SV=4 -										
P15311	[EZRI_HUMAN]	3	6	0.011					6	1	2
	F-actin-capping protein subunit beta OS=Homo										
	sapiens GN=CAPZB PE=1 SV=4 -										
P47756	[CAPZB_HUMAN]	4	4	0.082	0.014	0.143	11.2	0.004	1	4	1
	Fatty acid synthase OS=Homo sapiens							1.23E-			
P49327	GN=FASN PE=1 SV=3 - [FAS_HUMAN]	21	22	0.001	0.001	0.002	2012.6	07	20	5	2
	Galectin-4 OS=Homo sapiens GN=LGALS4							7.47E-			
P56470	PE=1 SV=1 - [LEG4_HUMAN]	2	2		0.001	0.001	4261.2	05	1	2	1
	Glutathione S-transferase theta-1 OS=Homo										
	sapiens GN=GSTT1 PE=1 SV=4 -										
P30711	[GSTT1_HUMAN]	1	1	0.001	0.001	0.001	0.0	0	1	1	1
	Glyceraldehyde-3-phosphate dehydrogenase										
	OS=Homo sapiens GN=GAPDH PE=1 SV=3 -										
P04406	[G3P_HUMAN]	9	10	0.108	0.170	0.142	20.1	0.001	9	9	7
	Glyceraldehyde-3-phosphate dehydrogenase,										
	testis-specific OS=Homo sapiens GN=GAPDHS										
014556	PE=1 SV=2 - [G3PT_HUMAN]	2	3	0.001					2	3	1
	Glycogen phosphorylase, brain form OS=Homo										
	sapiens GN=PYGB PE=1 SV=5 -							5.23E-			
P11216	[PYGB_HUMAN]	11	11	0.001	0.006	0.002	309.1	06	7	9	6
P62826	GTP-binding nuclear protein Ran OS=Homo	5	5	0.227	0.433	0.326	2.9	0.05	3	5	4

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	sapiens GN=RAN PE=1 SV=3 -										
	[RAN_HUMAN]										
	Guanine nucleotide-binding protein										
	G(I)/G(S)/G(T) subunit beta-2 OS=Homo										
	sapiens GN=GNB2 PE=1 SV=3 -										
P62879	[GBB2_HUMAN]	4	4	0.044	0.023	0.009	46.3	0.0002	2	3	2
	Guanine nucleotide-binding protein subunit beta-										
	2-like 1 OS=Homo sapiens GN=GNB2L1 PE=1										
P63244	SV=3 - [GBLP_HUMAN]	12	12	0.096	0.165	0.148	17.6	0.002	10	10	7
	Heat shock 70 kDa protein 1A/1B OS=Homo										
	sapiens GN=HSPA1A PE=1 SV=5 -										
P08107	[HSP71_HUMAN]	7	9	0.084	0.157	0.128	17.9	0.002	8	6	4
	Heat shock 70 kDa protein 4L OS=Homo sapiens										
095757	GN=HSPA4L PE=1 SV=3 - [HS74L_HUMAN]	1	3				0.0	0	2	2	1
	Heat shock cognate 71 kDa protein OS=Homo										
	sapiens GN=HSPA8 PE=1 SV=1 -										
P11142	[HSP7C_HUMAN]	11	14	0.189	0.348	0.265	5.1	0.02	11	12	5
	Heat shock protein 75 kDa, mitochondrial										
	OS=Homo sapiens GN=TRAP1 PE=1 SV=3 -										
Q12931	[TRAP1_HUMAN]	1	2		0.001				2	2	1
	Heat shock protein beta-1 OS=Homo sapiens										
P04792	GN=HSPB1 PE=1 SV=2 - [HSPB1_HUMAN]	4	4	0.234	0.399	0.353	3.5	0.04	3	4	3
	Heat shock protein HSP 90-beta OS=Homo										
	sapiens GN=HSP90AB1 PE=1 SV=4 -										
P08238	[HS90B_HUMAN]	7	17	0.010	0.244	0.014	5.3	0.02	14	15	7
	Heterogeneous nuclear ribonucleoprotein A1										
P09651	OS=Homo sapiens GN=HNRNPA1 PE=1 SV=5	3	3	0.001	0.294	0.002	4.1	0.03	2	1	1

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	- [ROA1_HUMAN]										
	Heterogeneous nuclear ribonucleoprotein H										
	OS=Homo sapiens GN=HNRNPH1 PE=1 SV=4							5.30E-			
P31943	- [HNRH1_HUMAN]	4	5	0.001	0.001	0.001	3072.5	08	2	3	3
	Heterogeneous nuclear ribonucleoprotein M										
	OS=Homo sapiens GN=HNRNPM PE=1 SV=3 -										
P52272	[HNRPM_HUMAN]	10	10	0.001		0.062	15.3	0.02	7	4	4
	Heterogeneous nuclear ribonucleoprotein Q										
	OS=Homo sapiens GN=SYNCRIP PE=1 SV=2 -										
O60506	[HNRPQ_HUMAN]	8	8	0.148	0.327	0.005	3.6	0.03	6	3	2
	Heterogeneous nuclear ribonucleoproteins A2/B1										
	OS=Homo sapiens GN=HNRNPA2B1 PE=1							7.30E-			
P22626	SV=2 - [ROA2_HUMAN]	6	6	0.001	0.001	0.019	82.8	05	2	3	4
	High mobility group protein B3 OS=Homo										
	sapiens GN=HMGB3 PE=1 SV=4 -										
015347	[HMGB3_HUMAN]	3	3	0.009	0.195	0.163	6.6	0.01	2	1	2
	High mobility group protein HMG-I/HMG-Y										
	OS=Homo sapiens GN=HMGA1 PE=1 SV=3 -										
P17096	[HMGA1_HUMAN]	2	2	0.001	0.046	0.002	32.1	0.0005	1	1	2
	Histone H1.2 OS=Homo sapiens										
P16403	GN=HIST1H1C PE=1 SV=2 - [H12_HUMAN]	4	4		0.001	0.102	8.9	0.04	1	2	4
	Histone H1.5 OS=Homo sapiens										
P16401	GN=HIST1H1B PE=1 SV=3 - [H15_HUMAN]	2	2	0.069	0.104	0.074	38.0	0.0003	2	2	2
	Histone H2A type 1-H OS=Homo sapiens										
Q96KK	GN=HIST1H2AH PE=1 SV=3 -										
5	[H2A1H_HUMAN]	2	3		0.253				2	2	1
O60814	Histone H2B type 1-K OS=Homo sapiens	5	5	0.198	0.277	0.370	4.4	0.02	4	3	3

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	GN=HIST1H2BK PE=1 SV=3 -										
	[H2B1K_HUMAN]										
	Histone H3.1 OS=Homo sapiens										
P68431	GN=HIST1H3A PE=1 SV=2 - [H31_HUMAN]	2	2	0.185	0.278	0.341	5.1	0.02	2	2	2
	Histone H4 OS=Homo sapiens GN=HIST1H4A										
P62805	PE=1 SV=2 - [H4_HUMAN]	5	5	0.210	0.259	0.357	5.2	0.02	4	4	4
	Importin subunit beta-1 OS=Homo sapiens										
Q14974	GN=KPNB1 PE=1 SV=2 - [IMB1_HUMAN]	2	2	0.238					1	2	1
	Inorganic pyrophosphatase OS=Homo sapiens										
Q15181	GN=PPA1 PE=1 SV=2 - [IPYR_HUMAN]	2	2	0.001					1	1	1
	Inosine-5'-monophosphate dehydrogenase 2										
	OS=Homo sapiens GN=IMPDH2 PE=1 SV=2 -										
P12268	[IMDH2_HUMAN]	5	5			0.001			2	1	4
	Insulin-like growth factor 2 mRNA-binding										
Q9Y6M	protein 2 OS=Homo sapiens GN=IGF2BP2 PE=1										
1	SV=2 - [IF2B2_HUMAN]	1	2	0.329	0.355	0.346	20.8	0.001	1	2	1
	Interferon-induced, double-stranded RNA-										
	activated protein kinase OS=Homo sapiens						14815	2.15E-			
P19525	GN=EIF2AK2 PE=1 SV=2 - [E2AK2_HUMAN]	1	1	0.001		0.001	9.1	06	1	1	1
	Junction plakoglobin OS=Homo sapiens							6.21E-			
P14923	GN=JUP PE=1 SV=3 - [PLAK_HUMAN]	2	8	0.001	0.001	0.003	897.4	07	8	7	8
Q9NSK	Kinesin light chain 4 OS=Homo sapiens							1.32E-			
0	GN=KLC4 PE=1 SV=3 - [KLC4_HUMAN]	4	4	0.002	0.001	0.004	614.9	06	2	2	1
	Lamin-B1 OS=Homo sapiens GN=LMNB1										
P20700	PE=1 SV=2 - [LMNB1_HUMAN]	4	5	0.094	0.015	0.296	4.4	0.02	3	4	2
	Leukocyte elastase inhibitor OS=Homo sapiens										
P30740	GN=SERPINB1 PE=1 SV=1 - [ILEU_HUMAN]	2	2	0.001		0.001	0.0	0	2	1	1

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	LIM and SH3 domain protein 1 OS=Homo										
	sapiens GN=LASP1 PE=1 SV=2 -										
Q14847	[LASP1_HUMAN]	6	6	0.001	0.152	0.092	9.5	0.005	4	4	5
Q86W9	Liprin-beta-1 OS=Homo sapiens GN=PPFIBP1										
2	PE=1 SV=2 - [LIPB1_HUMAN]	4	4	0.001	0.001	0.155	8.7	0.006	1	2	4
	L-lactate dehydrogenase A chain OS=Homo										
	sapiens GN=LDHA PE=1 SV=2 -										
P00338	[LDHA_HUMAN]	8	10	0.165	0.270	0.189	9.2	0.006	7	8	6
	L-lactate dehydrogenase B chain OS=Homo										
	sapiens GN=LDHB PE=1 SV=2 -										
P07195	[LDHB_HUMAN]	7	9	0.160	0.263	0.154	8.7	0.006	6	7	8
	Lysosomal protective protein OS=Homo sapiens							1.61E-			
P10619	GN=CTSA PE=1 SV=2 - [PPGB_HUMAN]	3	3	0.006	0.012	0.016	176.0	05	2	2	2
	Mitochondrial inner membrane protein										
	OS=Homo sapiens GN=IMMT PE=1 SV=1 -										
Q16891	[IMMT_HUMAN]	1	1	0.001		0.004	330.7	0.001	1	1	1
	Myosin light polypeptide 6 OS=Homo sapiens										
P60660	GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN]	4	4	0.001	0.118	0.166	8.3	0.007	1	4	3
	Myosin regulatory light chain 12A OS=Homo										
	sapiens GN=MYL12A PE=1 SV=2 -										
P19105	[ML12A_HUMAN]	5	5	0.009	0.135	0.169	8.1	0.007	4	5	4
	Nascent polypeptide-associated complex subunit										
	alpha OS=Homo sapiens GN=NACA PE=1										
Q13765	SV=1 - [NACA_HUMAN]	2	2	0.154	0.350	0.211	4.5	0.02	2	1	2
	Neutral alpha-glucosidase AB OS=Homo sapiens										
	GN=GANAB PE=1 SV=3 -							1.19E-			
Q14697	[GANAB_HUMAN]	7	7	0.001	0.001	0.002	2054.0	07	4	5	3

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	Nuclear receptor subfamily 2 group C member 2										
	OS=Homo sapiens GN=NR2C2 PE=1 SV=1 -										
P49116	[NR2C2_HUMAN]	1	1				0.0	0	1	1	1
Q9NZP	Olfactory receptor 5AC2 OS=Homo sapiens										
5	GN=OR5AC2 PE=2 SV=2 - [O5AC2_HUMAN]	1	1				0.0	0	1	1	1
	PDZ and LIM domain protein 4 OS=Homo										
	sapiens GN=PDLIM4 PE=1 SV=2 -						10015.	4.98E-			
P50479	[PDLI4_HUMAN]	2	2	0.001	0.001	0.001	5	09	2	2	1
	PDZ and LIM domain protein 7 OS=Homo										
Q9NR1	sapiens GN=PDLIM7 PE=1 SV=1 -										
2	[PDLI7_HUMAN]	4	4	0.162	0.203	0.015	6.5	0.01	2	1	4
	Peptidyl-prolyl cis-trans isomerase A OS=Homo										
	sapiens GN=PPIA PE=1 SV=2 -										
P62937	[PPIA_HUMAN]	8	8	0.134	0.239	0.162	10.3	0.005	6	5	5
	Peptidyl-prolyl cis-trans isomerase B OS=Homo										
	sapiens GN=PPIB PE=1 SV=2 -										
P23284	[PPIB_HUMAN]	6	6	0.162	0.001	0.281	4.3	0.02	2	6	3
	Peroxiredoxin-1 OS=Homo sapiens GN=PRDX1										
Q06830	PE=1 SV=1 - [PRDX1_HUMAN]	7	8	0.265	0.376	0.411	3.4	0.04	7	8	6
	Peroxiredoxin-2 OS=Homo sapiens GN=PRDX2										
P32119	PE=1 SV=5 - [PRDX2_HUMAN]	3	4		0.525				2	3	2
Q9Y44	Plakophilin-3 OS=Homo sapiens GN=PKP3							1.17E-			
6	PE=1 SV=1 - [PKP3_HUMAN]	5	5	0.008	0.014	0.015	207.1	05	4	2	4
	Plectin OS=Homo sapiens GN=PLEC PE=1										
Q15149	SV=3 - [PLEC_HUMAN]	91	94	0.112	0.121		85.5	0.004	88	42	5
	Poly [ADP-ribose] polymerase 1 OS=Homo										
P09874	sapiens GN=PARP1 PE=1 SV=4 -	8	8	0.099	0.199	0.182	11.0	0.004	3	5	7

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	[PARP1_HUMAN]										
	Poly(rC)-binding protein 1 OS=Homo sapiens										
Q15365	GN=PCBP1 PE=1 SV=2 - [PCBP1_HUMAN]	5	6	0.013	0.241	0.093	5.8	0.01	3	4	5
	Polyadenylate-binding protein 1 OS=Homo										
	sapiens GN=PABPC1 PE=1 SV=2 -										
P11940	[PABP1_HUMAN]	7	10	0.095	0.171	0.113	16.3	0.002	8	8	5
	Polyadenylate-binding protein 4 OS=Homo										
	sapiens GN=PABPC4 PE=1 SV=1 -										
Q13310	[PABP4_HUMAN]	1	4	0.001		0.002	1746.7	0.0002	4	3	2
	Polypyrimidine tract-binding protein 1										
	OS=Homo sapiens GN=PTBP1 PE=1 SV=1 -		-							_	_
P26599	[PTBP1_HUMAN]	3	3		0.001	0.002	1179.8	0.0003	1	3	2
	Prelamin-A/C OS=Homo sapiens GN=LMNA										
P02545	PE=1 SV=1 - [LMNA_HUMAN]	19	20	0.095	0.174	0.177	13.1	0.003	17	14	10
	Probable ATP-dependent RNA helicase DDX17										
	OS=Homo sapiens GN=DDX17 PE=1 SV=2 -		_							_	
Q92841	[DDX17_HUMAN]	4	8	0.001					6	5	4
	Probable ATP-dependent RNA helicase DDX5										
	OS=Homo sapiens GN=DDX5 PE=1 SV=1 -							1.12E-			
P17844	[DDX5_HUMAN]	6	10	0.001	0.008	0.002	211.5	05	7	8	7
	Programmed cell death 6-interacting protein										
Q8WU	OS=Homo sapiens GN=PDCD6IP PE=1 SV=1 -							4.24E-			
M4	[PDC6I_HUMAN]	4	4	0.001	0.001	0.002	1086.3	07	3	1	3
	Prohibitin OS=Homo sapiens GN=PHB PE=1										
P35232	SV=1 - [PHB_HUMAN]	8	8	0.122	0.272	0.244	6.2	0.01	5	3	5
	Prohibitin-2 OS=Homo sapiens GN=PHB2 PE=1										
Q99623	SV=2 - [PHB2_HUMAN]	3	3	0.163	0.283	0.305	5.6	0.01	3	2	2

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	Protein disulfide-isomerase A6 OS=Homo										
	sapiens GN=PDIA6 PE=1 SV=1 -										
Q15084	[PDIA6_HUMAN]	5	5	0.209	0.376	0.101	3.4	0.04	3	3	2
Q8WV	Protein POF1B OS=Homo sapiens GN=POF1B							7.40E-			
V4	PE=1 SV=3 - [POF1B_HUMAN]	3	3	0.001	0.001	0.001	8218.5	09	1	3	2
	Protein S100-A6 OS=Homo sapiens										
P06703	GN=S100A6 PE=1 SV=1 - [S10A6_HUMAN]	1	1	0.001		0.006	216.8	0.001	1	1	1
	Protein TFG OS=Homo sapiens GN=TFG PE=1										
Q92734	SV=2 - [TFG_HUMAN]	3	3	0.038	0.001	0.015	44.0	0.0003	2	2	1
	Protein transport protein Sec23A OS=Homo										
	sapiens GN=SEC23A PE=1 SV=2 -										
Q15436	[SC23A_HUMAN]	1	2	0.002					1	1	1
	Protein transport protein Sec23B OS=Homo										
	sapiens GN=SEC23B PE=1 SV=2 -							2.60E-			
Q15437	[SC23B_HUMAN]	1	2	0.001	0.001	0.005	438.8	06	1	2	2
	Protein-glutamine gamma-glutamyltransferase 2										
	OS=Homo sapiens GN=TGM2 PE=1 SV=2 -										
P21980	[TGM2_HUMAN]	5	5		0.179				2	4	1
	Pyruvate kinase isozymes M1/M2 OS=Homo										
	sapiens GN=PKM PE=1 SV=4 -										
P14618	[KPYM_HUMAN]	14	14	0.174	0.263	0.204	10.9	0.004	12	11	6
	Ras-related C3 botulinum toxin substrate 1										
	OS=Homo sapiens GN=RAC1 PE=1 SV=1 -										
P63000	[RAC1_HUMAN]	3	4	0.292	0.424	0.327	3.9	0.03	2	3	3
	Ras-related protein Rab-10 OS=Homo sapiens										
P61026	GN=RAB10 PE=1 SV=1 - [RAB10_HUMAN]	1	2				0.0	0	2	2	2
P61106	Ras-related protein Rab-14 OS=Homo sapiens	1	2				0.0	0	2	1	1

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	GN=RAB14 PE=1 SV=4 - [RAB14_HUMAN]										
	Ras-related protein Rab-5C OS=Homo sapiens										
P51148	GN=RAB5C PE=1 SV=2 - [RAB5C_HUMAN]	2	2			0.316			1	1	1
	Ras-related protein Rap-1b OS=Homo sapiens										
P61224	GN=RAP1B PE=1 SV=1 - [RAP1B_HUMAN]	2	2	0.326	0.333	0.377	9.8	0.005	1	2	2
	Rho GDP-dissociation inhibitor 1 OS=Homo										
	sapiens GN=ARHGDIA PE=1 SV=3 -										
P52565	[GDIR1_HUMAN]	1	1	0.182	0.321	0.295	5.5	0.02	1	1	1
	Ribonuclease inhibitor OS=Homo sapiens										
P13489	GN=RNH1 PE=1 SV=2 - [RINI_HUMAN]	6	6	0.095	0.135	0.004	10.9	0.004	4	3	5
Q96PK	RNA-binding protein 14 OS=Homo sapiens										
6	GN=RBM14 PE=1 SV=2 - [RBM14_HUMAN]	2	2	0.001		0.006	194.4	0.002	1	1	1
	RNA-binding protein EWS OS=Homo sapiens										
Q01844	GN=EWSR1 PE=1 SV=1 - [EWS_HUMAN]	1	1	0.001	0.001		0.0	0	1	1	1
	RNA-binding protein FUS OS=Homo sapiens										
P35637	GN=FUS PE=1 SV=1 - [FUS_HUMAN]	3	3		0.139	0.001	6.3	0.05	3	2	2
Q9Y26	RuvB-like 1 OS=Homo sapiens GN=RUVBL1										
5	PE=1 SV=1 - [RUVB1_HUMAN]	8	8	0.044	0.001	0.001	33.5	0.0004	4	5	5
Q9Y23	RuvB-like 2 OS=Homo sapiens GN=RUVBL2							5.32E-			
0	PE=1 SV=3 - [RUVB2_HUMAN]	12	12	0.001	0.001	0.006	306.5	06	9	8	9
	Serine/arginine-rich splicing factor 1 OS=Homo										
	sapiens GN=SRSF1 PE=1 SV=2 -										
Q07955	[SRSF1_HUMAN]	2	2				0.0	0	1	1	2
	Serine/threonine-protein kinase TBK1 OS=Homo										
Q9UH	sapiens GN=TBK1 PE=1 SV=1 -										
D2	[TBK1_HUMAN]	6	6	0.003	0.001	0.026	62.1	0.0001	5	1	2
P62136	Serine/threonine-protein phosphatase PP1-alpha	3	3	0.001	0.001	0.001	0.0	0	1	1	1

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	catalytic subunit OS=Homo sapiens										
	GN=PPP1CA PE=1 SV=1 - [PP1A_HUMAN]										
	Sorbitol dehydrogenase OS=Homo sapiens	_									
Q00796	GN=SORD PE=1 SV=4 - [DHSO_HUMAN]	3	3				0.0	0	1	1	1
	Src substrate cortactin OS=Homo sapiens							1.96E-			
Q14247	GN=CTTN PE=1 SV=2 - [SRC8_HUMAN]	6	6	0.001	0.001	0.002	1597.6	07	5	2	2
	Stress-70 protein, mitochondrial OS=Homo										
	sapiens GN=HSPA9 PE=1 SV=2 -										
P38646	[GRP75_HUMAN]	4	4	0.164	0.278	0.322	5.2	0.02	4	3	2
	Tax1-binding protein 3 OS=Homo sapiens										
	GN=TAX1BP3 PE=1 SV=2 -							3.65E-			
014907	[TX1B3_HUMAN]	1	1	0.021	0.033	0.021	117.1	05	1	1	1
	T-complex protein 1 subunit gamma OS=Homo										
	sapiens GN=CCT3 PE=1 SV=4 -										
P49368	[TCPG_HUMAN]	5	5	0.142	0.017	0.022	10.7	0.004	3	3	2
	ThreoninetRNA ligase, cytoplasmic OS=Homo										
	sapiens GN=TARS PE=1 SV=3 -							9.74E-			
P26639	[SYTC_HUMAN]	4	4	0.001	0.001	0.002	2265.8	08	2	2	2
	TNF receptor-associated factor 6 OS=Homo										
Q9Y4K	sapiens GN=TRAF6 PE=1 SV=1 -										
3	[TRAF6_HUMAN]	1	1	0.001		0.002	1780.1	0.0002	1	1	1
	Transcription intermediary factor 1-beta										
	OS=Homo sapiens GN=TRIM28 PE=1 SV=5 -							6.93E-			
Q13263	[TIF1B_HUMAN]	4	4	0.001	0.001	0.007	268.6	06	2	2	1
	Transgelin-2 OS=Homo sapiens GN=TAGLN2										
P37802	PE=1 SV=3 - [TAGL2_HUMAN]	2	2		0.288				1	2	1
P29401	Transketolase OS=Homo sapiens GN=TKT	3	3	0.001	0.117	0.003	12.0	0.003	2	3	2

		Unique	D (1)	R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	PE=I SV=3 - [TKT_HUMAN]										
	Translocon-associated protein subunit gamma										
Q9UNL	OS=Homo sapiens GN=SSR3 PE=1 SV=1 -			0.001	0.001			0.01			
2	[SSRG_HUMAN]	1	1	0.001	0.001	0.211	6.1	0.01	1	1	1
	Tripartite motif-containing protein 29 OS=Homo										
014104	sapiens GN=TRIM29 PE=1 SV=2 -	-	-	0.001	0.001	0.1.00	0.4	0.007	-		
Q14134	[TRI29_HUMAN]	1	1	0.001	0.001	0.160	8.4	0.007	5	4	2
	tRNA-splicing ligase RtcB homolog OS=Homo						10054	2 0 2 E			
0.01/010	sapiens GN=C22orf28 PE=1 SV=1 -		2	0.001		0.001	10854.	2.93E-			
Q9Y310	[RTCB_HUMAN]	2	2	0.001		0.001	1	05	2	1	1
Q9BQE	Tubulin alpha-IC chain OS=Homo sapiens		11	0.102	0.017	0.176		0.01	0	_	-
3	GN=IUBAIC PE=I SV=I - [IBAIC_HUMAN]	4	11	0.193	0.017	0.176	6.6	0.01	8	5	/
D07427	Tubulin beta chain OS=Homo sapiens	2	14	0.100	0.020		()	0.01	0	11	10
P0/43/	GN=IUBB PE=I SV=2 - [IBB5_HUMAN]	3	14	0.109	0.238		6.2	0.01	9	11	10
DC0271	Tubulin beta-4B chain OS=Homo sapiens	4	15		0 172	0.125	10.1	0.02	6	10	11
P683/1	GN=TUBB4B PE=T SV=T - [TBB4B_HUMAN]	4	15		0.172	0.135	19.1	0.02	0	12	11
Q9BUF	I ubulin beta-6 chain US=Homo sapiens	1	7		0.045	0.157	6.0	0.05		_	-
3	GN=IUBB6 PE=I SV=I - [IBB6_HUMAN]	1	/		0.245	0.157	6.8	0.05	4	5	5
	Ubiquitin-conjugating enzyme E2 N OS=Homo										
DC1000	sapiens GN=UBE2N PE=1 SV=1 -	1	1	0.120	0.000	0.000	7.0	0.01	1	1	1
P61088	[UBE2N_HUMAN]	1	1	0.120	0.209	0.268	7.0	0.01	1	1	1
000150	Unconventional myosin-Ic OS=Homo sapiens			0.001	0.001	0.005	222.4	4.50E-	_	2	2
000159	GN=MYOIC PE=I SV=4 - [MYOIC_HUMAN]	6	6	0.001	0.001	0.005	333.4	06	5	3	2
	Vesicle-associated membrane protein-associated										
005000	protein B/C OS=Homo sapiens GN=VAPB PE=1	_		0.00 1	0.001		0 -	0.02			
095292	SV=3 - [VAPB_HUMAN]	2	2	0.094	0.001		9.7	0.03	1	1	1
P08670	Vimentin OS=Homo sapiens GN=VIM PE=1	14	17	0.138	0.260	0.252	7.2	0.009	14	10	12

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	SV=4 - [VIME_HUMAN]										
	Voltage-dependent anion-selective channel										
	protein 1 OS=Homo sapiens GN=VDAC1 PE=1										
P21796	SV=2 - [VDAC1_HUMAN]	4	5	0.148	0.293	0.273	5.8	0.01	4	3	4
	Voltage-dependent anion-selective channel										
	protein 2 OS=Homo sapiens GN=VDAC2 PE=1										
P45880	SV=2 - [VDAC2_HUMAN]	5	5	0.015	0.178	0.002	7.7	0.008	3	2	2
	Voltage-dependent anion-selective channel										
Q9Y27	protein 3 OS=Homo sapiens GN=VDAC3 PE=1										
7	SV=1 - [VDAC3_HUMAN]	3	4		0.254	0.197	9.8	0.03	2	3	4
	X-ray repair cross-complementing protein 5										
	OS=Homo sapiens GN=XRCC5 PE=1 SV=3 -										
P13010	[XRCC5_HUMAN]	5	5	0.109	0.001	0.167	8.4	0.007	3	4	3
	X-ray repair cross-complementing protein 6										
	OS=Homo sapiens GN=XRCC6 PE=1 SV=2 -										
P12956	[XRCC6_HUMAN]	6	6	0.143	0.305	0.237	5.8	0.01	6	3	4
	Zinc finger CCCH-type antiviral protein 1										
Q7Z2W	OS=Homo sapiens GN=ZC3HAV1 PE=1 SV=3 -						11418.	3.84E-			
4	[ZCCHV_HUMAN]	3	3	0.001	0.001	0.001	0	09	3	1	1

8.7 Candidate novel interacting proteins of the non-phosphorylatable mutant of β-catenin at tyrosine-654 in HT29.

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	14-3-3 protein gamma OS=Homo sapiens										
P61981	GN=YWHAG PE=1 SV=2 - [1433G_HUMAN]	2	4		0.513				2	4	3
	40S ribosomal protein S28 OS=Homo sapiens										
P62857	GN=RPS28 PE=1 SV=1 - [RS28_HUMAN]	1	1				0.0	0	1	1	1
	Actin, cytoplasmic 2 OS=Homo sapiens										
P63261	GN=ACTG1 PE=1 SV=1 - [ACTG_HUMAN]	1	10	0.356					8	8	9
	Actin, gamma-enteric smooth muscle OS=Homo										
	sapiens GN=ACTG2 PE=1 SV=1 -										
P63267	[ACTH_HUMAN]	1	7				0.0	0	6	5	7
	ADP-ribosylation factor 3 OS=Homo sapiens							0.01630			
P61204	GN=ARF3 PE=1 SV=2 - [ARF3_HUMAN]	1	2		0.440	0.433	19.51	07	1	2	2
	ADP-ribosylation factor 4 OS=Homo sapiens										
P18085	GN=ARF4 PE=1 SV=3 - [ARF4_HUMAN]	1	2				0.0	0	1	2	1
	Apolipoprotein B-100 OS=Homo sapiens							6.331E-			
P04114	GN=APOB PE=1 SV=2 - [APOB_HUMAN]	3	3	0.001	0.001	0.006	281.0	06	2	1	1
	BAG family molecular chaperone regulator 2										
	OS=Homo sapiens GN=BAG2 PE=1 SV=1 -										
095816	[BAG2_HUMAN]	1	1	0.001	0.001		0	0	1	1	1
	Catenin alpha-1 OS=Homo sapiens										
	GN=CTNNA1 PE=1 SV=1 -							0.00117			
P35221	[CTNA1_HUMAN]	13	13	0.019	0.002	0.077	20.6	31	11	4	9
	Catenin beta-1 OS=Homo sapiens GN=CTNNB1										
P35222	PE=1 SV=1 - [CTNB1_HUMAN]	25	31	0.001	0.001	0.001	0.0	0	29	26	28

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	Dr1-associated corepressor OS=Homo sapiens							0.00166			
Q14919	GN=DRAP1 PE=1 SV=3 - [NC2A_HUMAN]	1	1	0.259	0.256		190.94	71	1	1	1
	Electron transfer flavoprotein subunit alpha,										
	mitochondrial OS=Homo sapiens GN=ETFA							0.01304			
P13804	PE=1 SV=1 - [ETFA_HUMAN]	1	1	0.245	0.275	0.359	6.1	81	1	1	1
	Epiplakin OS=Homo sapiens GN=EPPK1 PE=1							7.339E-			
P58107	SV=2 - [EPIPL_HUMAN]	38	41	0.001	0.001	0.007	261.0	06	35	34	1
	Exportin-2 OS=Homo sapiens GN=CSE1L PE=1										
P55060	SV=3 - [XPO2_HUMAN]	1	2	0.429					2	1	1
	Fatty acid synthase OS=Homo sapiens							0.01065			
P49327	GN=FASN PE=1 SV=3 - [FAS_HUMAN]	49	50	0.355	0.367	0.289	6.7	36	44	43	4
	Galectin-4 OS=Homo sapiens GN=LGALS4							1.122E-			
P56470	PE=1 SV=1 - [LEG4_HUMAN]	3	3	0.002	0.002	0.002	6675.2	08	1	2	2
	Glutathione S-transferase theta-1 OS=Homo										
	sapiens GN=GSTT1 PE=1 SV=4 -										
P30711	[GSTT1_HUMAN]	1	1	0.001	0.001	0.001	0.0	0	1	1	1
	Glyceraldehyde-3-phosphate dehydrogenase,										
	testis-specific OS=Homo sapiens GN=GAPDHS										
014556	PE=1 SV=2 - [G3PT_HUMAN]	1	2		0.001				1	2	1
	Glycogen phosphorylase, brain form OS=Homo										
	sapiens GN=PYGB PE=1 SV=5 -							0.00622			
P11216	[PYGB_HUMAN]	13	13	0.063	0.003	0.166	8.9	29	11	4	7
	Heat shock 70 kDa protein 1A/1B OS=Homo										
	sapiens GN=HSPA1A PE=1 SV=5 -							0.00430			
P08107	[HSP71_HUMAN]	5	7	0.192	0.213	0.277	10.7	67	7	7	6
	Heat shock protein HSP 90-beta OS=Homo							0.05495			
P08238	sapiens GN=HSP90AB1 PE=1 SV=4 -	6	16	0.345	0.335	0.467	2.8	89	16	9	14

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	[HS90B_HUMAN]										
	Hemoglobin subunit delta OS=Homo sapiens										
P02042	GN=HBD PE=1 SV=2 - [HBD_HUMAN]	1	1	0.001	0.001	0.001	0.0	0	1	1	1
	Heterogeneous nuclear ribonucleoprotein D0										
	OS=Homo sapiens GN=HNRNPD PE=1 SV=1 -										
Q14103	[HNRPD_HUMAN]	2	2		0.483				1	2	1
	Kinesin-like protein KIF23 OS=Homo sapiens							0.01069			
Q02241	GN=KIF23 PE=1 SV=3 - [KIF23_HUMAN]	6	6	0.237	0.345	0.285	6.7	46	4	3	4
	Lysosomal protective protein OS=Homo sapiens										
P10619	GN=CTSA PE=1 SV=2 - [PPGB_HUMAN]	3	3	0.001	0.001		0	0	2	2	1
	Malate dehydrogenase, mitochondrial OS=Homo										
	sapiens GN=MDH2 PE=1 SV=3 -										
P40926	[MDHM_HUMAN]	3	3			0.006			2	1	2
	Myosin-14 OS=Homo sapiens GN=MYH14							2.917E-			
Q7Z406	PE=1 SV=2 - [MYH14_HUMAN]	31	39	0.002	0.002		10911	05	30	30	1
	Nascent polypeptide-associated complex subunit										
	alpha OS=Homo sapiens GN=NACA PE=1	_	_					0.02975		_	
Q13765	SV=1 - [NACA_HUMAN]	3	3	0.091	0.284	0.311	3.9	48	1	3	2
	Neutral alpha-glucosidase AB OS=Homo sapiens										
	GN=GANAB PE=1 SV=3 -							0.01384			
Q14697	[GANAB_HUMAN]	6	6	0.335	0.405	0.388	5.9	4	6	4	4
	Peptidyl-prolyl cis-trans isomerase B OS=Homo										
	sapiens GN=PPIB PE=1 SV=2 -							0.00803			
P23284	[PPIB_HUMAN]	5	5	0.157	0.174		39.611	41	2	3	2
Q9Y44	Plakophilin-3 OS=Homo sapiens GN=PKP3							0.05478			
6	PE=1 SV=1 - [PKP3_HUMAN]	11	11	0.323	0.287	0.458	2.8	06	11	2	7
Q15149	Plectin OS=Homo sapiens GN=PLEC PE=1	157	160	0.341	0.371	0.462	3.0	0.04789	144	139	18

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	SV=3 - [PLEC_HUMAN]							26			
015195	Prostaglandin E synthase 3 OS=Homo sapiens	1	1				0.0	0	1	1	1
Q15185	GN=PIGES3 PE=I SV=I - [IEBP_HUMAN]	1	1				0.0	0	1	1	1
	Proteasome inhibitor PI31 subunit OS=Homo										
002530	Sapicily ON = FSWITTFE=1.5V=2 =	1	1				0.0	0	1	1	1
Q92330	Protoin Dr1 OS-Homo sonions GN-DB1 DE-1	1	1				0.0	0.00600	1	1	1
001658	SV-1 - $[NC2B HUMAN]$	1	1	0.227	0.274	0.315	9.0	0.00009	1	1	1
08WV	Protein POF1B OS=Homo saniens GN=POF1B	1	1	0.227	0.274	0.515	7.0	1 916E-	1	1	1
V4	PE=1 SV=3 - [POF1B HUMAN]	5	5	0.001	0.003	0.005	510.8	06	5	2	2
	RelA-associated inhibitor OS=Homo sapiens										
Q8WU	GN=PPP1R13L PE=1 SV=4 -							0.00057			
F5	[IASPP_HUMAN]	3	3	0.021		0.020	554.62	39	3	1	2
	Ribonuclease inhibitor OS=Homo sapiens										
P13489	GN=RNH1 PE=1 SV=2 - [RINI_HUMAN]	3	3		0.423				2	2	1
001044	RNA-binding protein EWS OS=Homo sapiens					0 5 4 0					
Q01844	GN=EWSRI PE=I SV=I - [EWS_HUMAN]	1	1			0.543			1	1	1
Q9Y23	RuvB-like 2 OS=Homo sapiens GN=RUVBL2							7.558E-			
0	PE=1 SV=3 - [RUVB2_HUMAN]	14	14	0.001	0.002	0.003	813.3	07	10	12	13
	Serine-threonine kinase receptor-associated										
Q9Y3F	protein OS=Homo sapiens GN=STRAP PE=1										
4	SV=1 - [STRAP_HUMAN]	1	1			0.430			1	1	1
	Sorbitol dehydrogenase OS=Homo sapiens										
Q00796	GN=SORD PE=1 SV=4 - [DHSO_HUMAN]	2	2		0.020				2	2	2
	Splicing factor U2AF 26 kDa subunit OS=Homo										
Q8WU	sapiens GN=U2AF1L4 PE=1 SV=2 -							0.00146			
68	[U2AF4_HUMAN]	1	1	0.006	0.001		217.17	57	1	1	1

		Unique		R1	R2	R3			R1	R2	R3
Acc #	Protein	peptides	Peptides	H/L	H/L	H/L	tstat	pval	peptides	peptides	peptides
	Src substrate cortactin OS=Homo sapiens							0.02158			
Q14247	GN=CTTN PE=1 SV=2 - [SRC8_HUMAN]	8	9	0.174	0.225	0.354	4.7	45	7	2	6
Q8WX	Stonin-2 OS=Homo sapiens GN=STON2 PE=1										
E9	SV=1 - [STON2_HUMAN]	1	1		0.001	0.001	0	0	1	1	1
	Stress-70 protein, mitochondrial OS=Homo										
	sapiens GN=HSPA9 PE=1 SV=2 -							0.04256			
P38646	[GRP75_HUMAN]	8	8	0.244	0.384	0.398	3.2	33	5	3	5
	Transaldolase OS=Homo sapiens GN=TALDO1										
P37837	PE=1 SV=2 - [TALDO_HUMAN]	1	1			0.260			1	1	1
	Transketolase OS=Homo sapiens GN=TKT							0.00664			
P29401	PE=1 SV=3 - [TKT_HUMAN]	4	4	0.267	0.302	0.345	8.6	06	3	2	2

8.8 Candidate novel interacting proteins of β-catenin that may be effect by phosphorylation.

*PM denotes phosphomimetic and NP denotes non-phosphorylatable

**White denotes absence of that protein in the dataset

***Grey denotes presence of that protein in the dataset

Acc #	Protein	NP	Wildtype	PM
P62857	40S ribosomal protein S28 OS=Homo sapiens GN=RPS28 PE=1 SV=1 - [RS28_HUMAN]			
P63267	Actin, gamma-enteric smooth muscle OS=Homo sapiens GN=ACTG2 PE=1 SV=1 - [ACTH_HUMAN]			
P61204	ADP-ribosylation factor 3 OS=Homo sapiens GN=ARF3 PE=1 SV=2 - [ARF3_HUMAN]			
P04114	Apolipoprotein B-100 OS=Homo sapiens GN=APOB PE=1 SV=2 - [APOB_HUMAN]			
P13804	Electron transfer flavoprotein subunit alpha, mitochondrial OS=Homo sapiens GN=ETFA PE=1 SV=1 - [ETFA_HUMAN]			
P58107	Epiplakin OS=Homo sapiens GN=EPPK1 PE=1 SV=2 - [EPIPL_HUMAN]			
P55060	Exportin-2 OS=Homo sapiens GN=CSE1L PE=1 SV=3 - [XPO2_HUMAN]			
P02042	Hemoglobin subunit delta OS=Homo sapiens GN=HBD PE=1 SV=2 - [HBD_HUMAN]			
Q02241	Kinesin-like protein KIF23 OS=Homo sapiens GN=KIF23 PE=1 SV=3 - [KIF23_HUMAN]			
P40926	Malate dehydrogenase, mitochondrial OS=Homo sapiens GN=MDH2 PE=1 SV=3 - [MDHM_HUMAN]			
Q7Z406	Myosin-14 OS=Homo sapiens GN=MYH14 PE=1 SV=2 - [MYH14_HUMAN]			
Q15185	Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN]			
Q92530	Proteasome inhibitor PI31 subunit OS=Homo sapiens GN=PSMF1 PE=1 SV=2 - [PSMF1_HUMAN]			

Acc #	Protein	NP	Wildtype	PM
Q01658	Protein Dr1 OS=Homo sapiens GN=DR1 PE=1 SV=1 - [NC2B_HUMAN]			
Q8WUF5	RelA-associated inhibitor OS=Homo sapiens GN=PPP1R13L PE=1 SV=4 - [IASPP_HUMAN]			
Q9Y3F4	Serine-threonine kinase receptor-associated protein OS=Homo sapiens GN=STRAP PE=1 SV=1 - [STRAP_HUMAN]			
Q8WU68	Splicing factor U2AF 26 kDa subunit OS=Homo sapiens GN=U2AF1L4 PE=1 SV=2 - [U2AF4_HUMAN]			
Q8WXE9	Stonin-2 OS=Homo sapiens GN=STON2 PE=1 SV=1 - [STON2_HUMAN]			
P37837	Transaldolase OS=Homo sapiens GN=TALDO1 PE=1 SV=2 - [TALDO_HUMAN]			
P62258	14-3-3 protein epsilon OS=Homo sapiens GN=YWHAE PE=1 SV=1 - [1433E_HUMAN]			
P27348	14-3-3 protein theta OS=Homo sapiens GN=YWHAQ PE=1 SV=1 - [1433T_HUMAN]			
P63104	14-3-3 protein zeta/delta OS=Homo sapiens GN=YWHAZ PE=1 SV=1 - [1433Z_HUMAN]			
P62899	60S ribosomal protein L31 OS=Homo sapiens GN=RPL31 PE=1 SV=1 - [RL31_HUMAN]			
P23526	Adenosylhomocysteinase OS=Homo sapiens GN=AHCY PE=1 SV=4 - [SAHH_HUMAN]			
P06733	Alpha-enolase OS=Homo sapiens GN=ENO1 PE=1 SV=2 - [ENOA_HUMAN]			
P08758	Annexin A5 OS=Homo sapiens GN=ANXA5 PE=1 SV=2 - [ANXA5_HUMAN]			
P25705	ATP synthase subunit alpha, mitochondrial OS=Homo sapiens GN=ATP5A1 PE=1 SV=1 - [ATPA_HUMAN]			
Q00610	Clathrin heavy chain 1 OS=Homo sapiens GN=CLTC PE=1 SV=5 - [CLH1_HUMAN]			
P60981	Destrin OS=Homo sapiens GN=DSTN PE=1 SV=3 - [DEST_HUMAN]			
P41091	Eukaryotic translation initiation factor 2 subunit 3 OS=Homo sapiens GN=EIF2S3 PE=1 SV=3 - [IF2G_HUMAN]			
P47755	F-actin-capping protein subunit alpha-2 OS=Homo sapiens GN=CAPZA2 PE=1 SV=3 - [CAZA2_HUMAN]			

Acc #	Protein	NP	Wildtype	PM
P07900	Heat shock protein HSP 90-alpha OS=Homo sapiens GN=HSP90AA1 PE=1 SV=5 - [HS90A_HUMAN]			
P0C0S5	Histone H2A.Z OS=Homo sapiens GN=H2AFZ PE=1 SV=2 - [H2AZ_HUMAN]			
Q86U44	N6-adenosine-methyltransferase 70 kDa subunit OS=Homo sapiens GN=METTL3 PE=1 SV=2 - [MTA70_HUMAN]			
P30101	Protein disulfide-isomerase A3 OS=Homo sapiens GN=PDIA3 PE=1 SV=4 - [PDIA3_HUMAN]			
Q6ZRV2	Protein FAM83H OS=Homo sapiens GN=FAM83H PE=1 SV=3 - [FA83H_HUMAN]			
Q92928	Putative Ras-related protein Rab-1C OS=Homo sapiens GN=RAB1C PE=5 SV=2 - [RAB1C_HUMAN]			
P50991	T-complex protein 1 subunit delta OS=Homo sapiens GN=CCT4 PE=1 SV=4 - [TCPD_HUMAN]			
P40227	T-complex protein 1 subunit zeta OS=Homo sapiens GN=CCT6A PE=1 SV=3 - [TCPZ_HUMAN]			
P68363	Tubulin alpha-1B chain OS=Homo sapiens GN=TUBA1B PE=1 SV=1 - [TBA1B_HUMAN]			
P68366	Tubulin alpha-4A chain OS=Homo sapiens GN=TUBA4A PE=1 SV=1 - [TBA4A_HUMAN]			
Q13885	Tubulin beta-2A chain OS=Homo sapiens GN=TUBB2A PE=1 SV=1 - [TBB2A_HUMAN]			
P61981	14-3-3 protein gamma OS=Homo sapiens GN=YWHAG PE=1 SV=2 - [1433G_HUMAN]			
P63261	Actin, cytoplasmic 2 OS=Homo sapiens GN=ACTG1 PE=1 SV=1 - [ACTG_HUMAN]			
Q14919	Dr1-associated corepressor OS=Homo sapiens GN=DRAP1 PE=1 SV=3 - [NC2A_HUMAN]			
Q14103	Heterogeneous nuclear ribonucleoprotein D0 OS=Homo sapiens GN=HNRNPD PE=1 SV=1 - [HNRPD_HUMAN]			
P31946	14-3-3 protein beta/alpha OS=Homo sapiens GN=YWHAB PE=1 SV=3 - [1433B_HUMAN]			
Q04917	14-3-3 protein eta OS=Homo sapiens GN=YWHAH PE=1 SV=4 - [1433F_HUMAN]			
P60866	40S ribosomal protein S20 OS=Homo sapiens GN=RPS20 PE=1 SV=1 - [RS20_HUMAN]			
P62266	40S ribosomal protein S23 OS=Homo sapiens GN=RPS23 PE=1 SV=3 - [RS23_HUMAN]			
P62847	40S ribosomal protein S24 OS=Homo sapiens GN=RPS24 PE=1 SV=1 - [RS24_HUMAN]			

Acc #	Protein	NP	Wildtype	PM
Q71UM5	40S ribosomal protein S27-like OS=Homo sapiens GN=RPS27L PE=1 SV=3 - [RS27L_HUMAN]			
P62861	40S ribosomal protein S30 OS=Homo sapiens GN=FAU PE=1 SV=1 - [RS30_HUMAN]			
P46782	40S ribosomal protein S5 OS=Homo sapiens GN=RPS5 PE=1 SV=4 - [RS5_HUMAN]			
P62081	40S ribosomal protein S7 OS=Homo sapiens GN=RPS7 PE=1 SV=1 - [RS7_HUMAN]			
P08865	40S ribosomal protein SA OS=Homo sapiens GN=RPSA PE=1 SV=4 - [RSSA_HUMAN]			
P27635	60S ribosomal protein L10 OS=Homo sapiens GN=RPL10 PE=1 SV=4 - [RL10_HUMAN]			
P62906	60S ribosomal protein L10a OS=Homo sapiens GN=RPL10A PE=1 SV=2 - [RL10A_HUMAN]			
P30050	60S ribosomal protein L12 OS=Homo sapiens GN=RPL12 PE=1 SV=1 - [RL12_HUMAN]			
P61513	60S ribosomal protein L15 OS=Homo sapiens GN=RPL15 PE=1 SV=2 - [RL15_HUMAN]			
Q02543	60S ribosomal protein L18a OS=Homo sapiens GN=RPL18A PE=1 SV=2 - [RL18A_HUMAN]			
P62829	60S ribosomal protein L23 OS=Homo sapiens GN=RPL23 PE=1 SV=1 - [RL23_HUMAN]			
P61254	60S ribosomal protein L26 OS=Homo sapiens GN=RPL26 PE=1 SV=1 - [RL26_HUMAN]			
P49207	60S ribosomal protein L34 OS=Homo sapiens GN=RPL34 PE=1 SV=3 - [RL34_HUMAN]			
P83881	60S ribosomal protein L36a OS=Homo sapiens GN=RPL36A PE=1 SV=2 - [RL36A_HUMAN]			
P36578	60S ribosomal protein L4 OS=Homo sapiens GN=RPL4 PE=1 SV=5 - [RL4_HUMAN]			
P62424	60S ribosomal protein L7a OS=Homo sapiens GN=RPL7A PE=1 SV=2 - [RL7A_HUMAN]			
P62917	60S ribosomal protein L8 OS=Homo sapiens GN=RPL8 PE=1 SV=2 - [RL8_HUMAN]			
P11021	78 kDa glucose-regulated protein OS=Homo sapiens GN=HSPA5 PE=1 SV=2 - [GRP78_HUMAN]			
P60709	Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN]			
P61160	Actin-related protein 2 OS=Homo sapiens GN=ACTR2 PE=1 SV=1 - [ARP2_HUMAN]			
P59998	Actin-related protein 2/3 complex subunit 4 OS=Homo sapiens GN=ARPC4 PE=1 SV=3 -			

Acc #	Protein	NP	Wildtype	PM
	[ARPC4_HUMAN]			
P11766	Alcohol dehydrogenase class-3 OS=Homo sapiens GN=ADH5 PE=1 SV=4 - [ADHX_HUMAN]			
	Aspartate aminotransferase, mitochondrial OS=Homo sapiens GN=GOT2 PE=1 SV=3 -			
P00505	[AATM_HUMAN]			
000000	ATPase family AAA domain-containing protein 3A OS=Homo sapiens GN=ATAD3A PE=1 SV=2 -			
Q9NVI7	[ATD3A_HUMAN]			
Delaga	ATP-binding cassette sub-family E member 1 OS=Homo sapiens GN=ABCE1 PE=1 SV=1 -			
P61221	[ABCE1_HUMAN]			
Q9UG63	ATP-binding cassette sub-family F member 2 OS=Homo sapiens GN=ABCF2 PE=1 SV=2 - [ABCF2_HUMAN]			
	ATP-dependent RNA helicase DDX3X OS=Homo sapiens GN=DDX3X PE=1 SV=3 -			
O00571	[DDX3X_HUMAN]			
075531	Barrier-to-autointegration factor OS=Homo sapiens GN=BANF1 PE=1 SV=1 - [BAF_HUMAN]			
	C-1-tetrahydrofolate synthase, cytoplasmic OS=Homo sapiens GN=MTHFD1 PE=1 SV=3 -			
P11586	[C1TC_HUMAN]			
O60716	Catenin delta-1 OS=Homo sapiens GN=CTNND1 PE=1 SV=1 - [CTND1_HUMAN]			
P07339	Cathepsin D OS=Homo sapiens GN=CTSD PE=1 SV=1 - [CATD_HUMAN]			
	Cell division control protein 42 homolog OS=Homo sapiens GN=CDC42 PE=1 SV=2 -			
P60953	[CDC42_HUMAN]			
Q05048	Cleavage stimulation factor subunit 1 OS=Homo sapiens GN=CSTF1 PE=1 SV=1 - [CSTF1_HUMAN]			
P35606	Coatomer subunit beta' OS=Homo sapiens GN=COPB2 PE=1 SV=2 - [COPB2_HUMAN]			
	Coiled-coil-helix-coiled-coil-helix domain-containing protein 3, mitochondrial OS=Homo sapiens			
Q9NX63	GN=CHCHD3 PE=1 SV=1 - [CHCH3_HUMAN]			
P21291	Cysteine and glycine-rich protein 1 OS=Homo sapiens GN=CSRP1 PE=1 SV=3 - [CSRP1_HUMAN]			
P00403	Cytochrome c oxidase subunit 2 OS=Homo sapiens GN=MT-CO2 PE=1 SV=1 - [COX2_HUMAN]			

Acc #	Protein	NP	Wildtype	PM
P61962	DDB1- and CUL4-associated factor 7 OS=Homo sapiens GN=DCAF7 PE=1 SV=1 - [DCAF7_HUMAN]			
P33992	DNA replication licensing factor MCM5 OS=Homo sapiens GN=MCM5 PE=1 SV=5 - [MCM5_HUMAN]			
P33993	DNA replication licensing factor MCM7 OS=Homo sapiens GN=MCM7 PE=1 SV=4 - [MCM7_HUMAN]			
O95793	Double-stranded RNA-binding protein Staufen homolog 1 OS=Homo sapiens GN=STAU1 PE=1 SV=2 - [STAU1_HUMAN]			
Q14258	E3 ubiquitin/ISG15 ligase TRIM25 OS=Homo sapiens GN=TRIM25 PE=1 SV=2 - [TRI25_HUMAN]			
Q15717	ELAV-like protein 1 OS=Homo sapiens GN=ELAVL1 PE=1 SV=2 - [ELAV1_HUMAN]			
P13639	Elongation factor 2 OS=Homo sapiens GN=EEF2 PE=1 SV=4 - [EF2_HUMAN]			
P49411	Elongation factor Tu, mitochondrial OS=Homo sapiens GN=TUFM PE=1 SV=2 - [EFTU_HUMAN]			
P50402	Emerin OS=Homo sapiens GN=EMD PE=1 SV=1 - [EMD_HUMAN]			
P14625	Endoplasmin OS=Homo sapiens GN=HSP90B1 PE=1 SV=1 - [ENPL_HUMAN]			
P05198	Eukaryotic translation initiation factor 2 subunit 1 OS=Homo sapiens GN=EIF2S1 PE=1 SV=3 - [IF2A_HUMAN]			
P20042	Eukaryotic translation initiation factor 2 subunit 2 OS=Homo sapiens GN=EIF2S2 PE=1 SV=2 - [IF2B_HUMAN]			
015371	Eukaryotic translation initiation factor 3 subunit D OS=Homo sapiens GN=EIF3D PE=1 SV=1 - [EIF3D_HUMAN]			
P15311	Ezrin OS=Homo sapiens GN=EZR PE=1 SV=4 - [EZRI_HUMAN]			
O95757	Heat shock 70 kDa protein 4L OS=Homo sapiens GN=HSPA4L PE=1 SV=3 - [HS74L_HUMAN]			
P11142	Heat shock cognate 71 kDa protein OS=Homo sapiens GN=HSPA8 PE=1 SV=1 - [HSP7C_HUMAN]			
Q12931	Heat shock protein 75 kDa, mitochondrial OS=Homo sapiens GN=TRAP1 PE=1 SV=3 - [TRAP1_HUMAN]			

Acc #	Protein	NP	Wildtype	PM
	Heterogeneous nuclear ribonucleoprotein A1 OS=Homo sapiens GN=HNRNPA1 PE=1 SV=5 -			
P09651	[ROA1_HUMAN]			
	Heterogeneous nuclear ribonucleoprotein H OS=Homo sapiens GN=HNRNPH1 PE=1 SV=4 -			
P31943	[HNRH1_HUMAN]			
	Heterogeneous nuclear ribonucleoprotein Q OS=Homo sapiens GN=SYNCRIP PE=1 SV=2 -			
O60506	[HNRPQ_HUMAN]			
	High mobility group protein HMG-I/HMG-Y OS=Homo sapiens GN=HMGA1 PE=1 SV=3 -			
P17096	[HMGA1_HUMAN]			
P68431	Histone H3.1 OS=Homo sapiens GN=HIST1H3A PE=1 SV=2 - [H31_HUMAN]			
P62805	Histone H4 OS=Homo sapiens GN=HIST1H4A PE=1 SV=2 - [H4_HUMAN]			
Q14974	Importin subunit beta-1 OS=Homo sapiens GN=KPNB1 PE=1 SV=2 - [IMB1_HUMAN]			
Q15181	Inorganic pyrophosphatase OS=Homo sapiens GN=PPA1 PE=1 SV=2 - [IPYR_HUMAN]			
	Insulin-like growth factor 2 mRNA-binding protein 2 OS=Homo sapiens GN=IGF2BP2 PE=1 SV=2 -			
Q9Y6M1	[IF2B2_HUMAN]			
	Interferon-induced, double-stranded RNA-activated protein kinase OS=Homo sapiens GN=EIF2AK2			
P19525	PE=1 SV=2 - [E2AK2_HUMAN]			
Q9NSK0	Kinesin light chain 4 OS=Homo sapiens GN=KLC4 PE=1 SV=3 - [KLC4_HUMAN]			
P20700	Lamin-B1 OS=Homo sapiens GN=LMNB1 PE=1 SV=2 - [LMNB1_HUMAN]			
P30740	Leukocyte elastase inhibitor OS=Homo sapiens GN=SERPINB1 PE=1 SV=1 - [ILEU_HUMAN]			
Q86W92	Liprin-beta-1 OS=Homo sapiens GN=PPFIBP1 PE=1 SV=2 - [LIPB1_HUMAN]			
Q16891	Mitochondrial inner membrane protein OS=Homo sapiens GN=IMMT PE=1 SV=1 - [IMMT_HUMAN]			
Q9NZP5	Olfactory receptor 5AC2 OS=Homo sapiens GN=OR5AC2 PE=2 SV=2 - [O5AC2_HUMAN]			
P50479	PDZ and LIM domain protein 4 OS=Homo sapiens GN=PDLIM4 PE=1 SV=2 - [PDLI4_HUMAN]			
P32119	Peroxiredoxin-2 OS=Homo sapiens GN=PRDX2 PE=1 SV=5 - [PRDX2_HUMAN]			

Acc #	Protein	NP	Wildtype	PM
Q15365	Poly(rC)-binding protein 1 OS=Homo sapiens GN=PCBP1 PE=1 SV=2 - [PCBP1_HUMAN]			
P26599	Polypyrimidine tract-binding protein 1 OS=Homo sapiens GN=PTBP1 PE=1 SV=1 - [PTBP1_HUMAN]			
Q92841	Probable ATP-dependent RNA helicase DDX17 OS=Homo sapiens GN=DDX17 PE=1 SV=2 - [DDX17_HUMAN]			
Q8WUM4	Programmed cell death 6-interacting protein OS=Homo sapiens GN=PDCD6IP PE=1 SV=1 - [PDC6I_HUMAN]			
Q99623	Prohibitin-2 OS=Homo sapiens GN=PHB2 PE=1 SV=2 - [PHB2_HUMAN]			
Q15084	Protein disulfide-isomerase A6 OS=Homo sapiens GN=PDIA6 PE=1 SV=1 - [PDIA6_HUMAN]			
P06703	Protein S100-A6 OS=Homo sapiens GN=S100A6 PE=1 SV=1 - [S10A6_HUMAN]			
Q92734	Protein TFG OS=Homo sapiens GN=TFG PE=1 SV=2 - [TFG_HUMAN]			
Q15436	Protein transport protein Sec23A OS=Homo sapiens GN=SEC23A PE=1 SV=2 - [SC23A_HUMAN]			
Q15437	Protein transport protein Sec23B OS=Homo sapiens GN=SEC23B PE=1 SV=2 - [SC23B_HUMAN]			
P21980	Protein-glutamine gamma-glutamyltransferase 2 OS=Homo sapiens GN=TGM2 PE=1 SV=2 - [TGM2_HUMAN]			
P63000	Ras-related C3 botulinum toxin substrate 1 OS=Homo sapiens GN=RAC1 PE=1 SV=1 - [RAC1_HUMAN]			
P61026	Ras-related protein Rab-10 OS=Homo sapiens GN=RAB10 PE=1 SV=1 - [RAB10_HUMAN]			
P51148	Ras-related protein Rab-5C OS=Homo sapiens GN=RAB5C PE=1 SV=2 - [RAB5C_HUMAN]			
P61224	Ras-related protein Rap-1b OS=Homo sapiens GN=RAP1B PE=1 SV=1 - [RAP1B_HUMAN]			
P52565	Rho GDP-dissociation inhibitor 1 OS=Homo sapiens GN=ARHGDIA PE=1 SV=3 - [GDIR1_HUMAN]			
Q96PK6	RNA-binding protein 14 OS=Homo sapiens GN=RBM14 PE=1 SV=2 - [RBM14_HUMAN]			
P35637	RNA-binding protein FUS OS=Homo sapiens GN=FUS PE=1 SV=1 - [FUS_HUMAN]			
Q07955	Serine/arginine-rich splicing factor 1 OS=Homo sapiens GN=SRSF1 PE=1 SV=2 - [SRSF1_HUMAN]			

Acc #	Protein	NP	Wildtype	PM
Q9UHD2	Serine/threonine-protein kinase TBK1 OS=Homo sapiens GN=TBK1 PE=1 SV=1 - [TBK1_HUMAN]			
P26639	ThreoninetRNA ligase, cytoplasmic OS=Homo sapiens GN=TARS PE=1 SV=3 - [SYTC_HUMAN]			
Q9Y4K3	TNF receptor-associated factor 6 OS=Homo sapiens GN=TRAF6 PE=1 SV=1 - [TRAF6_HUMAN]			
Q13263	Transcription intermediary factor 1-beta OS=Homo sapiens GN=TRIM28 PE=1 SV=5 - [TIF1B_HUMAN]			
P37802	Transgelin-2 OS=Homo sapiens GN=TAGLN2 PE=1 SV=3 - [TAGL2_HUMAN]			
Q9UNL2	Translocon-associated protein subunit gamma OS=Homo sapiens GN=SSR3 PE=1 SV=1 - [SSRG_HUMAN]			
Q14134	Tripartite motif-containing protein 29 OS=Homo sapiens GN=TRIM29 PE=1 SV=2 - [TRI29_HUMAN]			
Q9Y3I0	tRNA-splicing ligase RtcB homolog OS=Homo sapiens GN=C22orf28 PE=1 SV=1 - [RTCB_HUMAN]			
Q9BQE3	Tubulin alpha-1C chain OS=Homo sapiens GN=TUBA1C PE=1 SV=1 - [TBA1C_HUMAN]			
Q9BUF5	Tubulin beta-6 chain OS=Homo sapiens GN=TUBB6 PE=1 SV=1 - [TBB6_HUMAN]			
O00159	Unconventional myosin-Ic OS=Homo sapiens GN=MYO1C PE=1 SV=4 - [MYO1C_HUMAN]			
O95292	Vesicle-associated membrane protein-associated protein B/C OS=Homo sapiens GN=VAPB PE=1 SV=3 - [VAPB_HUMAN]			
P45880	Voltage-dependent anion-selective channel protein 2 OS=Homo sapiens GN=VDAC2 PE=1 SV=2 - [VDAC2_HUMAN]			
Q9Y277	Voltage-dependent anion-selective channel protein 3 OS=Homo sapiens GN=VDAC3 PE=1 SV=1 - [VDAC3_HUMAN]			
P13010	X-ray repair cross-complementing protein 5 OS=Homo sapiens GN=XRCC5 PE=1 SV=3 - [XRCC5_HUMAN]			
P12956	X-ray repair cross-complementing protein 6 OS=Homo sapiens GN=XRCC6 PE=1 SV=2 - [XRCC6_HUMAN]			
Q7Z2W4	Zinc finger CCCH-type antiviral protein 1 OS=Homo sapiens GN=ZC3HAV1 PE=1 SV=3 - [ZCCHV_HUMAN]			

Acc #	Protein	NP	Wildtype	PM
P18085	ADP-ribosylation factor 4 OS=Homo sapiens GN=ARF4 PE=1 SV=3 - [ARF4_HUMAN]			
O95816	BAG family molecular chaperone regulator 2 OS=Homo sapiens GN=BAG2 PE=1 SV=1 - [BAG2_HUMAN]			
P35221	Catenin alpha-1 OS=Homo sapiens GN=CTNNA1 PE=1 SV=1 - [CTNA1_HUMAN]			
P30711	Glutathione S-transferase theta-1 OS=Homo sapiens GN=GSTT1 PE=1 SV=4 - [GSTT1_HUMAN]			
P11216	Glycogen phosphorylase, brain form OS=Homo sapiens GN=PYGB PE=1 SV=5 - [PYGB_HUMAN]			
Q13765	Nascent polypeptide-associated complex subunit alpha OS=Homo sapiens GN=NACA PE=1 SV=1 - [NACA_HUMAN]			
Q14697	Neutral alpha-glucosidase AB OS=Homo sapiens GN=GANAB PE=1 SV=3 - [GANAB_HUMAN]			
Q9Y446	Plakophilin-3 OS=Homo sapiens GN=PKP3 PE=1 SV=1 - [PKP3_HUMAN]			
Q8WVV4	Protein POF1B OS=Homo sapiens GN=POF1B PE=1 SV=3 - [POF1B_HUMAN]			
P13489	Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN]			
Q01844	RNA-binding protein EWS OS=Homo sapiens GN=EWSR1 PE=1 SV=1 - [EWS_HUMAN]			
Q00796	Sorbitol dehydrogenase OS=Homo sapiens GN=SORD PE=1 SV=4 - [DHSO_HUMAN]			
Q14247	Src substrate cortactin OS=Homo sapiens GN=CTTN PE=1 SV=2 - [SRC8_HUMAN]			
P38646	Stress-70 protein, mitochondrial OS=Homo sapiens GN=HSPA9 PE=1 SV=2 - [GRP75_HUMAN]			
P29401	Transketolase OS=Homo sapiens GN=TKT PE=1 SV=3 - [TKT_HUMAN]			
Q9C0C2	182 kDa tankyrase-1-binding protein OS=Homo sapiens GN=TNKS1BP1 PE=1 SV=4 - [TB182_HUMAN]			
P62280	40S ribosomal protein S11 OS=Homo sapiens GN=RPS11 PE=1 SV=3 - [RS11_HUMAN]			
P62277	40S ribosomal protein S13 OS=Homo sapiens GN=RPS13 PE=1 SV=2 - [RS13_HUMAN]			
P62263	40S ribosomal protein S14 OS=Homo sapiens GN=RPS14 PE=1 SV=3 - [RS14_HUMAN]			
Acc #	Protein	NP	Wildtype	PM
--------	---	----	----------	----
P62244	40S ribosomal protein S15a OS=Homo sapiens GN=RPS15A PE=1 SV=2 - [RS15A_HUMAN]			
P62249	40S ribosomal protein S16 OS=Homo sapiens GN=RPS16 PE=1 SV=2 - [RS16_HUMAN]			
P62269	40S ribosomal protein S18 OS=Homo sapiens GN=RPS18 PE=1 SV=3 - [RS18_HUMAN]			
P39019	40S ribosomal protein S19 OS=Homo sapiens GN=RPS19 PE=1 SV=2 - [RS19_HUMAN]			
P15880	40S ribosomal protein S2 OS=Homo sapiens GN=RPS2 PE=1 SV=2 - [RS2_HUMAN]			
P62851	40S ribosomal protein S25 OS=Homo sapiens GN=RPS25 PE=1 SV=1 - [RS25_HUMAN]			
P42677	40S ribosomal protein S27 OS=Homo sapiens GN=RPS27 PE=1 SV=3 - [RS27_HUMAN]			
P23396	40S ribosomal protein S3 OS=Homo sapiens GN=RPS3 PE=1 SV=2 - [RS3_HUMAN]			
P61247	40S ribosomal protein S3a OS=Homo sapiens GN=RPS3A PE=1 SV=2 - [RS3A_HUMAN]			
P62701	40S ribosomal protein S4, X isoform OS=Homo sapiens GN=RPS4X PE=1 SV=2 - [RS4X_HUMAN]			
P62753	40S ribosomal protein S6 OS=Homo sapiens GN=RPS6 PE=1 SV=1 - [RS6_HUMAN]			
P62241	40S ribosomal protein S8 OS=Homo sapiens GN=RPS8 PE=1 SV=2 - [RS8_HUMAN]			
P46781	40S ribosomal protein S9 OS=Homo sapiens GN=RPS9 PE=1 SV=3 - [RS9_HUMAN]			
P05388	60S acidic ribosomal protein P0 OS=Homo sapiens GN=RPLP0 PE=1 SV=1 - [RLA0_HUMAN]			
P62913	60S ribosomal protein L11 OS=Homo sapiens GN=RPL11 PE=1 SV=2 - [RL11_HUMAN]			
P26373	60S ribosomal protein L13 OS=Homo sapiens GN=RPL13 PE=1 SV=4 - [RL13_HUMAN]			
P40429	60S ribosomal protein L13a OS=Homo sapiens GN=RPL13A PE=1 SV=2 - [RL13A_HUMAN]			
P50914	60S ribosomal protein L14 OS=Homo sapiens GN=RPL14 PE=1 SV=4 - [RL14_HUMAN]			
P61313	60S ribosomal protein L15 OS=Homo sapiens GN=RPL15 PE=1 SV=2 - [RL15_HUMAN]			
Q07020	60S ribosomal protein L18 OS=Homo sapiens GN=RPL18 PE=1 SV=2 - [RL18_HUMAN]			
P84098	60S ribosomal protein L19 OS=Homo sapiens GN=RPL19 PE=1 SV=1 - [RL19_HUMAN]			

Acc #	Protein	NP	Wildtype	PM
P35268	60S ribosomal protein L22 OS=Homo sapiens GN=RPL22 PE=1 SV=2 - [RL22_HUMAN]			
P62750	60S ribosomal protein L23a OS=Homo sapiens GN=RPL23A PE=1 SV=1 - [RL23A_HUMAN]			
P83731	60S ribosomal protein L24 OS=Homo sapiens GN=RPL24 PE=1 SV=1 - [RL24_HUMAN]			
P61353	60S ribosomal protein L27 OS=Homo sapiens GN=RPL27 PE=1 SV=2 - [RL27_HUMAN]			
P46776	60S ribosomal protein L27a OS=Homo sapiens GN=RPL27A PE=1 SV=2 - [RL27A_HUMAN]			
P46779	60S ribosomal protein L28 OS=Homo sapiens GN=RPL28 PE=1 SV=3 - [RL28_HUMAN]			
P62888	60S ribosomal protein L30 OS=Homo sapiens GN=RPL30 PE=1 SV=2 - [RL30_HUMAN]			
P18077	60S ribosomal protein L35a OS=Homo sapiens GN=RPL35A PE=1 SV=2 - [RL35A_HUMAN]			
Q9Y3U8	60S ribosomal protein L36 OS=Homo sapiens GN=RPL36 PE=1 SV=3 - [RL36_HUMAN]			
P46777	60S ribosomal protein L5 OS=Homo sapiens GN=RPL5 PE=1 SV=3 - [RL5_HUMAN]			
Q02878	60S ribosomal protein L6 OS=Homo sapiens GN=RPL6 PE=1 SV=3 - [RL6_HUMAN]			
P18124	60S ribosomal protein L7 OS=Homo sapiens GN=RPL7 PE=1 SV=1 - [RL7_HUMAN]			
P53999	Activated RNA polymerase II transcriptional coactivator p15 OS=Homo sapiens GN=SUB1 PE=1 SV=3 - [TCP4_HUMAN]			
P02765	Alpha-2-HS-glycoprotein OS=Homo sapiens GN=AHSG PE=1 SV=1 - [FETUA_HUMAN]			
P07355	Annexin A2 OS=Homo sapiens GN=ANXA2 PE=1 SV=2 - [ANXA2_HUMAN]			
P09525	Annexin A4 OS=Homo sapiens GN=ANXA4 PE=1 SV=4 - [ANXA4_HUMAN]			
P27708	CAD protein OS=Homo sapiens GN=CAD PE=1 SV=3 - [PYR1_HUMAN]			
Q9HB71	Calcyclin-binding protein OS=Homo sapiens GN=CACYBP PE=1 SV=2 - [CYBP_HUMAN]			
P68104	Elongation factor 1-alpha 1 OS=Homo sapiens GN=EEF1A1 PE=1 SV=1 - [EF1A1_HUMAN]			
P60842	Eukaryotic initiation factor 4A-I OS=Homo sapiens GN=EIF4A1 PE=1 SV=1 - [IF4A1_HUMAN]			

Acc #	Protein	NP	Wildtype	РМ
P47756	F-actin-capping protein subunit beta OS=Homo sapiens GN=CAPZB PE=1 SV=4 - [CAPZB_HUMAN]			
P04406	Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN]			
P62826	GTP-binding nuclear protein Ran OS=Homo sapiens GN=RAN PE=1 SV=3 - [RAN_HUMAN]			
P62879	Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2 OS=Homo sapiens GN=GNB2 PE=1 SV=3 - [GBB2_HUMAN]			
P63244	Guanine nucleotide-binding protein subunit beta-2-like 1 OS=Homo sapiens GN=GNB2L1 PE=1 SV=3 - [GBLP_HUMAN]			
P04792	Heat shock protein beta-1 OS=Homo sapiens GN=HSPB1 PE=1 SV=2 - [HSPB1_HUMAN]			
P52272	Heterogeneous nuclear ribonucleoprotein M OS=Homo sapiens GN=HNRNPM PE=1 SV=3 - [HNRPM_HUMAN]			
P22626	Heterogeneous nuclear ribonucleoproteins A2/B1 OS=Homo sapiens GN=HNRNPA2B1 PE=1 SV=2 - [ROA2_HUMAN]			
015347	High mobility group protein B3 OS=Homo sapiens GN=HMGB3 PE=1 SV=4 - [HMGB3_HUMAN]			
P16403	Histone H1.2 OS=Homo sapiens GN=HIST1H1C PE=1 SV=2 - [H12_HUMAN]			
P16401	Histone H1.5 OS=Homo sapiens GN=HIST1H1B PE=1 SV=3 - [H15_HUMAN]			
Q96KK5	Histone H2A type 1-H OS=Homo sapiens GN=HIST1H2AH PE=1 SV=3 - [H2A1H_HUMAN]			
O60814	Histone H2B type 1-K OS=Homo sapiens GN=HIST1H2BK PE=1 SV=3 - [H2B1K_HUMAN]			
P12268	Inosine-5'-monophosphate dehydrogenase 2 OS=Homo sapiens GN=IMPDH2 PE=1 SV=2 - [IMDH2_HUMAN]			
P14923	Junction plakoglobin OS=Homo sapiens GN=JUP PE=1 SV=3 - [PLAK_HUMAN]			
Q14847	LIM and SH3 domain protein 1 OS=Homo sapiens GN=LASP1 PE=1 SV=2 - [LASP1_HUMAN]			
P00338	L-lactate dehydrogenase A chain OS=Homo sapiens GN=LDHA PE=1 SV=2 - [LDHA_HUMAN]			
P07195	L-lactate dehydrogenase B chain OS=Homo sapiens GN=LDHB PE=1 SV=2 - [LDHB_HUMAN]			

Acc #	Protein	NP	Wildtype	PM
P60660	Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN]			
P19105	Myosin regulatory light chain 12A OS=Homo sapiens GN=MYL12A PE=1 SV=2 - [ML12A_HUMAN]			
P49116	Nuclear receptor subfamily 2 group C member 2 OS=Homo sapiens GN=NR2C2 PE=1 SV=1 - [NR2C2_HUMAN]			
Q9NR12	PDZ and LIM domain protein 7 OS=Homo sapiens GN=PDLIM7 PE=1 SV=1 - [PDLI7_HUMAN]			
P62937	Peptidyl-prolyl cis-trans isomerase A OS=Homo sapiens GN=PPIA PE=1 SV=2 - [PPIA_HUMAN]			
Q06830	Peroxiredoxin-1 OS=Homo sapiens GN=PRDX1 PE=1 SV=1 - [PRDX1_HUMAN]			
P09874	Poly [ADP-ribose] polymerase 1 OS=Homo sapiens GN=PARP1 PE=1 SV=4 - [PARP1_HUMAN]			
P11940	Polyadenylate-binding protein 1 OS=Homo sapiens GN=PABPC1 PE=1 SV=2 - [PABP1_HUMAN]			
Q13310	Polyadenylate-binding protein 4 OS=Homo sapiens GN=PABPC4 PE=1 SV=1 - [PABP4_HUMAN]			
P02545	Prelamin-A/C OS=Homo sapiens GN=LMNA PE=1 SV=1 - [LMNA_HUMAN]			
P17844	Probable ATP-dependent RNA helicase DDX5 OS=Homo sapiens GN=DDX5 PE=1 SV=1 - [DDX5_HUMAN]			
P35232	Prohibitin OS=Homo sapiens GN=PHB PE=1 SV=1 - [PHB_HUMAN]			
P14618	Pyruvate kinase isozymes M1/M2 OS=Homo sapiens GN=PKM PE=1 SV=4 - [KPYM_HUMAN]			
P61106	Ras-related protein Rab-14 OS=Homo sapiens GN=RAB14 PE=1 SV=4 - [RAB14_HUMAN]			
Q9Y265	RuvB-like 1 OS=Homo sapiens GN=RUVBL1 PE=1 SV=1 - [RUVB1_HUMAN]			
P62136	Serine/threonine-protein phosphatase PP1-alpha catalytic subunit OS=Homo sapiens GN=PPP1CA PE=1 SV=1 - [PP1A_HUMAN]			
O14907	Tax1-binding protein 3 OS=Homo sapiens GN=TAX1BP3 PE=1 SV=2 - [TX1B3_HUMAN]			
P49368	T-complex protein 1 subunit gamma OS=Homo sapiens GN=CCT3 PE=1 SV=4 - [TCPG_HUMAN]			
P07437	Tubulin beta chain OS=Homo sapiens GN=TUBB PE=1 SV=2 - [TBB5_HUMAN]			

Acc #	Protein	NP	Wildtype	PM
P68371	Tubulin beta-4B chain OS=Homo sapiens GN=TUBB4B PE=1 SV=1 - [TBB4B_HUMAN]			
P61088	Ubiquitin-conjugating enzyme E2 N OS=Homo sapiens GN=UBE2N PE=1 SV=1 - [UBE2N_HUMAN]			
P08670	Vimentin OS=Homo sapiens GN=VIM PE=1 SV=4 - [VIME_HUMAN]			
P21796	Voltage-dependent anion-selective channel protein 1 OS=Homo sapiens GN=VDAC1 PE=1 SV=2 - [VDAC1_HUMAN]			
P35222	Catenin beta-1 OS=Homo sapiens GN=CTNNB1 PE=1 SV=1 - [CTNB1_HUMAN]			
P49327	Fatty acid synthase OS=Homo sapiens GN=FASN PE=1 SV=3 - [FAS_HUMAN]			
P56470	Galectin-4 OS=Homo sapiens GN=LGALS4 PE=1 SV=1 - [LEG4_HUMAN]			
O14556	Glyceraldehyde-3-phosphate dehydrogenase, testis-specific OS=Homo sapiens GN=GAPDHS PE=1 SV=2 - [G3PT_HUMAN]			
P08107	Heat shock 70 kDa protein 1A/1B OS=Homo sapiens GN=HSPA1A PE=1 SV=5 - [HSP71_HUMAN]			
P08238	Heat shock protein HSP 90-beta OS=Homo sapiens GN=HSP90AB1 PE=1 SV=4 - [HS90B_HUMAN]			
P10619	Lysosomal protective protein OS=Homo sapiens GN=CTSA PE=1 SV=2 - [PPGB_HUMAN]			
P23284	Peptidyl-prolyl cis-trans isomerase B OS=Homo sapiens GN=PPIB PE=1 SV=2 - [PPIB_HUMAN]			
Q15149	Plectin OS=Homo sapiens GN=PLEC PE=1 SV=3 - [PLEC_HUMAN]			
Q9Y230	RuvB-like 2 OS=Homo sapiens GN=RUVBL2 PE=1 SV=3 - [RUVB2_HUMAN]			