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Abstract

In this thesis we consider an impenetrable cylindrical scatterer surrounded by a het-

erogeneous dielectric coating. We present a numerical scheme for reconstructing the

refractive index of the heterogeneous medium using far field data. The numerical

scheme is based only on the mild assumption that the inhomogeneous medium is

contained inside a circular cylinder, and does not require axis-symmetry or other

similar restrictions. Moreover, we only require the boundary of the scatterer to be

piecewise smooth. We reformulate this inverse problem as a nonlinear equation,

which we then solve using a regularised Newton-type solver. The key innovation is

performing nonlinear function evaluations, which involve solving a forward scattering

problem, using an efficient coupled finite-element/boundary element method (FEM-

BEM) for the heterogeneous Helmholtz equation, which ensures that the important

radiation condition is incorporated exactly. We derive an analytic representation

for the Fréchet derivative for the heterogeneous dielectric coated scatterer, which we

efficiently compute using a novel extension of the coupled FEM-BEM scheme. The

scheme is then demonstrated by reconstructing challenging continuous and discon-

tinous media from noisy far field data.
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Chapter 1

Introduction

The field of inverse scattering theory for acoustic and electromagnetic waves orig-

inated during World War II, with the invention of radar and sonar [20]. However,

the field did not make any significant progress until the 1980’s [15], making inverse

scattering theory relatively underdeveloped despite its age [23]. The field has grown

immensely in the last thirty years and today is one of the most active and important

areas of research in mathematics [19], with diverse applications in disciplines such

as medical imaging, materials science, nondestructive testing, radar, remote sensing

and seismic explorations [86].

Inverse scattering theory is a vast field (see [23, 18, 57, 69, 70, 74, 79, 80, 82, 87]

and references therein for an overview of the subject), whose main focus is to solve

two problems: the inverse obstacle problem, and the inverse medium problem.

For both problems, an unknown obstacle is illuminated by an acoustic or electro-

magnetic wave and induces a scattered field. Using knowledge of the scattered field

at some distance away from the obstacle, both problems seek to determine infor-

mation about the obstacle. In the case of the inverse obstacle problem, the aim is

to determine the shape of the obstacle. In the case of the inverse medium problem,

the aim is to determine the material properties of the obstacle. In this thesis, we
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present a novel numerical scheme to solve a particular inverse medium problem.

We begin in Section 1.1 by introducing our problem of interest. In Section 1.2 we

give a brief review of the literature related to our problem. In Section 1.3 we give

an outline of the thesis, highlighting which parts constitute our main contributions

to the field.

1.1 Background

Our problem of interest is a two dimensional inverse medium problem, which arises

in the acoustic and electromagnetic imaging of anisotropic media. In this section

we explain how the problem arises in both acoustic and electromagnetic settings,

before giving the formal statement of the problem.

Let P be an infinite impenetrable prism in R3 running parallel to the z-axis, sur-

rounded by a heterogeneous dielectric medium. We assume the the refractive index

of the dielectric medium is constant outside the infinite unit cylinder C, so that

the heterogeneity of the medium is contained within Λ := C \ P̄ . Furthermore, we

denote the two-dimensional cross section of P and Λ as D and Ω respectively (see

Figure 1.1).

Figure 1.1: An infinite prism P with “dielectric coating” Λ running parallel to the
z-axis, in the case where the cross-section D is a square.
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The Acoustic Case

Suppose R3 \ P̄ contains an inviscid fluid. When the scatterer P is illuminated

by an incident wave uinc, the boundary ∂P of P together with the heterogeneous

media within Λ induce a scattered field us in R3 \ C, and an induced field ui in Λ.

The fields us and ui must satisfy the homogeneous and heterogeneous Helmholtz

equations respectively.

We start by considering the propagation of acoustic waves in R3\P̄ . Let v′ = v′(x, t)

be the velocity field, p′ = p′(x, t) be the the pressure, ρ′ = ρ′(x, t) be the density,

and S ′ = S ′(x, t) be the entropy of the fluid at point x and time t, where x ∈ R3\P̄ .

For such a fluid, the conservation of momentum law is expressed as

∂v′

∂t
+ v′ · ∇v′ + 1

ρ′
∇p′ = 0. (1.1)

Here gravity and other external forces are ignored. The conservation of mass law is

expressed as

∂ρ′

∂t
+∇ · ρv′ = 0. (1.2)

Assuming the system is in local thermodynamic equilibrium, the state equation

p′ = f(ρ′, S ′) (1.3)

will also hold, where the function f depends on the nature of the fluid. Following [23],

we assume (v, p, ρ, S) is a small perturbation of the static state (v0, p0, ρ0, S0), where

v0 = 0 and p0, ρ0, S0 are constant. That is,

v′ = v, p′ = p0 + p, ρ′ = ρ0 + ρ, S ′ = S0 + S, (1.4)

where v is a small acoustic wave perturbation, ρ is a small perturbation in the
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density, p is a small perturbation in the in the pressure and S is a small perturbation

in the entropy. Substituting (1.4) into (1.1)–(1.2) yields:

∂v

∂t
+ v · ∇v +

1

ρ0 + ρ
∇(p0 + p) = 0, (1.5)

∂(ρ0 + ρ)

∂t
+∇ · ((ρ0 + ρ)v) = 0. (1.6)

Expanding p in a Taylor series in ρ gives an expansion of the form:

p =

(
∂p

∂ρ

) ∣∣∣∣∣
ρ=0

+
1

2

(
∂2p

∂ρ2

) ∣∣∣∣∣
ρ=0

ρ2 + . . . (1.7)

Substituting (1.7) into (1.5)–(1.6) and truncating to first order gives the following

linear acoustic equations:

∂v

∂t
+

1

ρ0

∇p = 0, (1.8)

∂ρ

∂t
+ ρ0(∇ · v) = 0, (1.9)

∂p

∂t
= c2∂ρ

∂t
, (1.10)

where the speed of sound c in the medium satisfies

c2 =
∂f

∂ρ
(ρ0, S0).

To derive the wave equation we begin by taking the curl of (1.8):

∇×
(
∂v

∂t
+

1

ρ0

∇p
)

= 0. (1.11)

Noting the identity ∇×∇p = 0, we deduce from (1.11) that

∂

∂t
(∇× v) = 0.

That is, ∇× v is constant in time. Assuming the velocity field is irrational initially,
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this implies ∇× v = 0 and hence

v = ∇U , (1.12)

for some velocity potential U . Therefore (1.9) becomes

∂ρ

∂t
+ ρ0(∇ · ∇U ) = 0.

That is,

∂ρ

∂t
+ ρ04U = 0,

and hence

ρ04U +
1

c2

∂p

∂t
= 0 (1.13)

by (1.10). Now substituting (1.12) into (1.8) yields

∂

∂t
(∇U ) +

1

ρ0

∇p = 0,

which implies

p = −ρ0
∂U

∂t
+K(t),

for some K(t). Assuming K(t) is constant, (1.13) becomes

ρ04U − ρ0

c2

∂2U

∂t2
= 0,

which simplifies to the wave equation in terms of the velocity potential:

1

c2

∂2U

∂t2
−4U = 0. (1.14)
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For time-harmonic waves, we express U as

U (x, t) = U(x)e−iωt,

where ω is the angular frequency of the wave and the spatial component U is inde-

pendent of the time variable t. Substituting back into the wave equation (1.14), the

spatial component U satisfies the 3D Helmholtz equation:

4U(x) + k2(x)U(x) = 0 for x ∈ R3 \ P̄ , (1.15)

where k(x) = ω
c

is the wavenumber.

In our problem of interest, we are going to assume independency of U in the z-

direction so that

U(x, y, z) = us(x, y), (1.16)

Substituting (1.16) into (1.15) implies us satisfies the 2D Helmholtz equation

4us(x) + k2(x)us(x) = 0 for x ∈ R2 \ D̄, (1.17)

where recall D is the cross section of P . In this thesis, it is convenient to write the

effective wavenumber k(x) as n(x)k where k is a constant and and n(x) is the spatial

dependent refractive index. Our assumption that k is constant is a reasonable and

common assumption to make as both absorbing and dissipative media satisfy this

assumption. It follows

4us(x) + k2n(x)us(x) = 0 for x ∈ R2 \ D̄. (1.18)

Note that in the above equation the heterogeneity is contained within the cross-

section B of the cylinder C, where B = {(x, y) ∈ R2 : x2 +y2 < 1} denotes the open

13
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unit disk. We therefore normalize the refractive index function so that

n(x) = 1 for x ∈ R2 \B.

It follows that for x ∈ R2 \B, us satisfies the homogeneous 2D Helmholtz equation

4us(x) + k2us(x) = 0.

Thus when P is illuminated by an incident plane wave uinc, the behaviour of the

total field

u(x) =

 ui(x), x ∈ Ω,

uinc(x) + us(x), x ∈ R2 \B,
(1.19)

is governed by the heterogeneous Helmholtz equation (1.18), where we assume n(x)

to be bounded and piecewise-continuous in the cross section Ω of Λ.

In addition to equation (1.18), u will also satisfy a boundary condition on the bound-

ary ∂D of D. If P is a sound-soft obstacle, then the pressure of the total wave will

vanish on the boundary i.e. u will satisfy a Dirichlet boundary condition

u = 0 on ∂D. (1.20)

If P is a sound-hard obstacle, then the normal velocity of the acoustic wave will

vanish on the boundary i.e. u will satisfy a Neumann boundary condition

∂u

∂n
= 0 on ∂D, (1.21)

where n is the unit outward normal to ∂D. A third possibility is that the normal

velocity on the boundary is proportional to the excess pressure on the boundary. In

14
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that case, u will satisfy a Robin boundary condition on ∂D:

∂u

∂n
+ iku = 0 (1.22)

To ensure uniqueness of the solution, we also require that the scattered component

us satisfies the Sommerfeld radiation condition:

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0, r = |x|, (1.23)

uniformly for all x. The forward scattering problem in the acoustic case is to compute

the total field (1.19) that satisfies the Helmholtz Equation (1.18), the Sommerfeld

radiation condition and a given boundary condition, from knowledge of the refractive

index n(x). Note that we require the total field and its normal derivative to be

continuous across the boundary ∂B of B, to ensure continuity of of the pressure and

of the normal velocity across the interface.

The Electromagnetic Case

We now show how the same forward scattering problem arises in the setting of

electromagnetic waves.

Suppose Γ represents a homogeneous dielectric medium. The behaviour of electric

and magnetic fields in Γ are governed by Maxwell’s equations:

∇×E = −∂B
∂t

, (1.24)

∇ ·B = 0, (1.25)

∇×H =
∂D

∂t
, (1.26)

∇ ·D = 0, (1.27)

where E is the electric intensity, B is the magnetic flux density, H is the magnetic

15
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intensity and D is the electric flux density.

The complex form of the electric intensity E, is related to the instantaneous form

of the electric intensity E, by:

E(x, t) = Re(E(x)eiωt). (1.28)

The other instantaneous quantities B, H and D are related in a similar way to

their corresponding complex quantities B,H ,D. These relations can be used to

derive the complex form of Maxwell’s equations. For instance, substituting (1.28)

into (1.24), we have

∇× [Re(Eeiωt)] = − ∂

∂t
[Re(Beiωt)], (1.29)

which means

Re(∇×Eeiωt) = −Re(iωBeiωt). (1.30)

Since this holds for all t, we get:

∇×E = −iωB. (1.31)

Similarly, it is straightforward to derive

∇×H = iωD, (1.32)

as well as ∇ ·D = 0 and ∇ ·B = 0. These variables are related to each other via

the equations [51, Page 18]:

D = ε̂E, (1.33)

B = µ̂H , (1.34)
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where ε̂ is called the electric permittivity of the medium and µ̂ is called the magnetic

permeability of the medium. These are constants which specify the characteristics of

the media. Substituting (1.34) into (1.31) and (1.33) into (1.32), we get the reduced

Maxwell equations:

∇×E = −iωµ̂H , (1.35)

∇×H = iωε̂E. (1.36)

Taking the curl of (1.35) on both sides, we have

∇×∇×E = −iωµ̂∇×H . (1.37)

Substituting (1.36) into (1.37), we get

∇×∇×E = ω2ε̂µ̂E. (1.38)

Defining the wavenumber k =
√
ω2ε̂µ̂, (1.38) becomes:

∇×∇×E − k2E = 0. (1.39)

Applying the same series of steps to (1.36), we obtain

∇×∇×H − k2H = 0. (1.40)

Furthermore, we have

∇ ·E = 0 and ∇ ·H = 0, (1.41)

by taking the divergence of (1.39) and (1.40). Using the identity

4A = ∇(∇ ·A)−∇×∇×A (1.42)

17



1.1. BACKGROUND

which holds for any arbritrary vector A, we can write (1.39) and (1.40) as

4E + k2E = 0 and 4H + k2H = 0. (1.43)

It follows that equations (1.41) and (1.43) combined are the equivelant of equa-

tions (1.39) and (1.40). So consider the system of equations:

4H + k2H = 0, (1.44)

∇ ·H = 0. (1.45)

Since the divergence of H is zero, H must be the curl of some other vector,

i.e. H = ∇×A, (1.46)

where A is the magnetic vector potential. Substituting the above into (1.35), we

obtain

∇× (E + iωµ̂A) = 0. (1.47)

Since the curl of (E + iωµ̂A) is zero, it must be the gradient of some scalar,

i.e. E + iωµ̂A = −∇Φa, (1.48)

where Φa is an arbitrary electric scalar potential. Substituting (1.46) and (1.48)

into (1.36) gives

∇×∇×A = iωε̂(−∇Φa − iωµ̂A) (1.49)

= −iωε̂∇Φa + k2A. (1.50)

i.e ∇×∇×A− k2A = −iωε̂∇Φa. (1.51)

18
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Next, we apply the same series of steps to the system

4E + k2E = 0, (1.52)

∇ ·E = 0. (1.53)

Since the divergence of E is zero, E must be the curl of some other vector,

i.e. E = −∇× F , (1.54)

where F is the electric vector potential. Using a similar method to before, we obtain

∇×∇× F − k2F = −iωε̂∇Φf , (1.55)

where Φf is a magnetic vector potential. But note that the scalar fields Φa and Φf

were arbitrarily chosen. If we pick our scalars such that

∇ ·A = −iωε̂Φa, (1.56)

∇ · F = −iωµ̂Φf , (1.57)

then equations (1.51) and (1.55) reduce to

4A + k2A = 0, (1.58)

4F + k2F = 0. (1.59)

Now, note from (1.35)–(1.36),

E =
1

iωε̂
∇×H , (1.60)

H = − 1

iωµ̂
∇×E. (1.61)
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We then have

E =
1

iωε̂
∇×∇×A, (1.62)

H = − 1

iωµ̂
∇×∇× F , (1.63)

using (1.46) and (1.54). Notice that these are valid solutions of Maxwell’s equations,

along with equations (1.46) and (1.54). In general, a solution to Maxwells equations

is a linear combination of both types of solutions. That is [51, page 99],

E = −∇× F +
1

iωε̂
∇×∇×A, (1.64)

H = ∇×A− 1

iωµ̂
∇×∇× F . (1.65)

Now suppose we choose A and F to be of the form:

A = cψa,

F = cψf ,

where c is a constant vector. Then A and F will satisfy the vector Helmholtz equa-

tions (1.58)–(1.59) if and only if ψa and ψf satisfy the scalar Helmholtz equations.

That is,

4ψa + k2ψa = 0, (1.66)

4ψf + k2ψf = 0. (1.67)

Now recall that Γ represents any arbitrary homogeneous medium. It therefore fol-

lows that much like the acoustic case, electromagnetic waves satisfy the homogeneous

Helmholtz equation in R3 \C. Within the dielectric coating Λ however, they will of

course satisfy the inhomogeneous Helmholtz equation instead, due to the presence

of a varying refractive index.
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Also, the same boundary conditions mentioned in the acoustic case reappear in the

electromagnetic setting. Following [51, page 130], we consider two main types of

electromagnetic waves: waves that are transverse magnetic to z (TM waves), and

waves that are transverse electric to z (TE waves).

TM waves arise in the special case where c = (0, 0, 1) and ψf = 0. In that case, the

components of E become:

Ex =
1

iωε

∂2ψa

∂x∂z
, (1.68)

Ey =
1

iωε

∂2ψa

∂y∂z
, (1.69)

Ez =
1

iωε

(
∂2

∂z2
+ k2

)
ψa. (1.70)

Assuming ψa is independent of z, we get E = (0, 0, k
2

iωε
ψa). Enforcing the boundary

condition n×E = 0 where n = (n1, n2, n3) is the outward pointing unit normal on

∂P , we get

k2

iωε
(n2ψ

a, n1ψ
a, 0) = 0,

which implies

ψa = 0

on the boundary ∂P of P . That is, TM waves lead to a Dirichlet boundary condition.

It can be similarly shown that TE waves lead to a Neumann boundary condition

(see Section 9.1).

To ensure uniqueness of the solutions, we require the scattered components Es and

Hs of E and H to satisfy the Silver-Müller radiation conditions [23, p. 3]

lim
r→∞

(Hs × x− rEs) = 0,

lim
r→∞

(Es × x + rHs) = 0,
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which are equivalent [23, Theorem 6.8] to the Sommerfeld radiation condition for

the Cartesian components:

lim
r→∞

√
r

(
∂Es

∂r
− ikEs

)
= 0,

lim
r→∞

√
r

(
∂Hs

∂r
− ikHs

)
= 0,

with r = |x|.

Statement of the Problem

We see that in both the acoustic and electromagnetic setting, the same 2D boundary

value problem arises. Given knowledge of the incident field uinc and the refractive

index n(x) in Ω, we seek to find the total field

u(x) =

 ui(x), x ∈ Ω,

uinc(x) + us(x), x ∈ R2 \B
(1.71)

which satisfies

4u(x) + k2n(x)u(x) = 0 for x ∈ R2\D̄, (1.72)

the Sommerfeld radiation condition

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0, r = |x|, (1.73)

and a boundary condition of the form

Bu(x) = f(x) on ∂D, (1.74)
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where Bu(x) = f(x) can represent a Dirichlet, Neumann or Robin boundary con-

dition. In particular, we seek to compute the far field of the scattered wave

u∞(x̂) = lim
|x|→∞

√
|x|e−ik|x|us(x) (1.75)

for fixed k, where x̂ = x/|x|.

We refer to this problem as the forward medium problem. In this thesis, we solve the

inverse of this problem i.e. determining the refractive index n(x) from knowledge of

u∞. We have referred to this problem in the thesis as the Inverse Coated Problem,

in the case where the obstacle D is situated in the middle of Ω. Solving this problem

poses several major challenges, as the problem is nonlinear and improperly posed;

small perturbations of the far field pattern lead to large errors in the reconstruction

of n(x). Moreover, our method of solution for the inverse problem requires solving

the forward problem, which in itself is quite hard and requires innovation.

1.2 Review of the Literature

In the literature, the problem of determining the refractive index n from knowledge

of the far field is referred to as the inverse medium problem. Approaches to solving

the inverse medium problem fall under three categories: decomposition methods,

sampling methods and nonlinear optimization techniques. As far as we are aware,

the Inverse Coated Problem has yet to be considered in the literature; these three

methods of solution have instead been applied to the instances of the inverse medium

problem where the obstacle D is absent.

There are two versions of the decomposition method. In the first version [28], the

inverse medium problem is reformulated as solving a series of boundary integrals

equations relating the far field to spherical harmonics. In the second version [26, 29]

these integral equations are modified to avoid transmission eigenvalues. These two
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versions have been compared numerically in [24], and further modifications of the

decomposition method have been discussed in [21, 27, 25].

Sampling methods [16, 17, 59] require less a priori information than the other two

methods, and reduce the nonlinear problem to a series of linear problems. However

their numerical implementation requires more data than the other techniques and

can only provide a rough estimate of the material properties of the medium.

The third method is based on noting [23] that

u∞(x̂) = − k
2

4π

∫
R2\D̄

e−ikx̂·ym(y)u(y) dy, x̂ =
x

|x|
, (1.76)

where m = 1− n.

Then the inverse problem is reformulated as a nonlinear optimization problem in

which we seek to solve the Lippmann-Schwinger volume integral equations while

ensuring the constraint (1.76) is satisfied (we discuss these equations thoroughly

in Section 6.2.1). This approach has been utilised in solving the inverse medium

problem for both the acoustic and electromagnetic case [10, 63, 64, 2]. However

the manner in which this approach is implemented varies in the literature. For

instance, (1.76) is at times replaced be a near-field condition, and the optimization

scheme has been numerically solved using different methods, including successive

over-relaxation, sinc basis methods, steepest descent and Newton’s method.

Our approach for solving the inverse medium problem in this thesis is the third

method. However, our approach is novel in that instead of solving the Lippmann-

Schwinger equations, we solve the forward problem (1.72)–(1.74) while ensuring the

constraint (1.76) is satisfied. We then solve the optimization scheme using a iterative

Newton-type solver. In [7], we solved the Inverse Coated Problem in the special case

where the obstacle D was absent. Unlike other articles in the literature, in [7] we

did not assume any radial symmetry regarding the refractive index n. In Chapter

5 we revisit this problem and improve on the results already published in [7]. We
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then solve the Inverse Coated Problem in its full generality in Chapter 6, which has

yet to be considered in the literature.

Our choice of solution method for the inverse problem requires us to solve repeated it-

erations of the forward problem. Two common approaches for solving such boundary

value problems are finite element methods (FEMs) and boundary element methods

(BEMs).

FEMs can solve PDEs over complex geometries, and are suitable for both homoge-

neous and heterogeneous problems. However FEMs cannot be applied when solving

(1.72)–(1.74) because they are only applicable to problems over bounded regions.

An adaptation of the FEM is the expanding grids technique [42, 65], in which the

unbounded domain is approximated by a large bounded domain, and the Sommer-

feld radiation condition (1.73) is replaced by an appropriate boundary condition on

the outer boundary. But because the FEM depends on using a fixed number of ele-

ments per wavelength in the FEM mesh [31, 72, 73], the expanding grids technique

leads to solving a large linear system. Furthermore, this approach does not provide

a direct approximation to the far field pattern of the scattered wave [60].

BEMs reformulate PDEs in terms of boundary integral equations, making discretiza-

tion only necessary over the boundary. They are an efficient technique for solving

homogeneous PDEs over unbounded regions and are particularly advantageous be-

cause they ensure the radiation condition (1.73) is satisfied exactly. However, BEMs

cannot be solely used to solve the forward media problem (1.72)–(1.74) because

they are not applicable to heterogeneous problems. Moreover, applying BEMs to

problems with non-smooth boundaries requires innovation [66, 44, 54, 83], because

standard BEMs require the boundary to be smooth.

In this thesis, we solve the forward problem (1.72)–(1.74) using the coupled FEM-

BEM technique, which takes advantage of and facilitates the strengths of both ap-

proaches, while avoiding the disadvantages associated with each technique. We
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apply a transmission boundary condition on ∂Ω in a manner which splits the for-

ward problem into two sub-problems: an exterior problem in R2 \B and an interior

problem in Ω. This allows us to apply a BEM in R2 \ B while applying a FEM in

Ω. In this way, the radiation condition (1.73) is satisfied exactly, while the hetero-

geneous refractive index n(x) in Ω and the non-smooth boundary ∂D are handled

appropriately.

In [7], we solved the forward problem in each iteration of Newton’s method using

this method. As far as we are aware, we were the first in the literature to apply

this approach to the forward problem. Since then, another article [39] has appeared

in the literature which also solves the forward problem using the coupled FEM-

BEM technique. The focus in [39] is rapid solution of the forward problem which

they achieve using a high order FEM. We note that their high order FEM would

also be applicable here using a similar approach to the one described in this thesis.

Implementing a higher order FEM in our forward solver like in [39] would be a good

idea for further research.

1.3 Thesis Outline

In this thesis, we reformulate the Inverse Coated Problem as a nonlinear operator

equation, which we then solve using a regularized Newton-type solver. This solver

requires solution of one or more forward problems in each iteration.

In Chapter 2 we discuss the preliminaries and background knowledge necessary for

the comprehension of later chapters of the thesis. We begin with a summary of

relevant results on function spaces, and then outline the relevant theory on inverse

problems. In particular, because the inverse problem is ill-posed and requires regu-

larization, we describe the regularization technique that we employ. We also include

a summary of the basic notational and variable definitions used throughout the

thesis, which can be readily referred to for the reader’s convenience.
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In Chapter 3 we describe solution of the forward medium problem, using the coupled

FEM-BEM technique. We begin Chapter 3 by motivating the coupled FEM-BEM

technique, before detailing how to apply the coupled FEM-BEM technique to solve

the forward problem. Although the coupled FEM-BEM technique was first described

in [60], we believe we are the first to implement it. Note that the results in [60] are

not for the FEM-BEM technique; they use the Mie-series for the exterior rather than

the BEM by considering the special case where D is a circle. Also note that [39]

does indeed have an implementation of the coupled FEM-BEM technique. But this

was written independently at the same time as our paper [7], which [39] itself cites.

The iterative solver also requires computing a Fréchet derivative in each iteration.

We will see in Chapters 5 and 6 of the thesis that computing this Fréchet derivative

involves solving a particular inhomogeneous boundary value problem. In Chapter 4

we develop a novel extension of the coupled FEM-BEM scheme for this inhomoge-

neous boundary value problem and numerically demonstrate its effectiveness.

In Chapter 5 we consider a special case of the Inverse Coated Problem where the

impenetrable scattererD is absent i.e. Ω is the open unit disk. Similar problems have

been considered in the literature with symmetry assumptions on the refractive index

that simplify the problem considerably. Here we do not assume the refractive n(x) in

Ω to possess any form of symmetry. In a preliminary work [7] we numerically solved

this problem computing the Fréchet derivative using the method of finite-differences.

In Chapter 5 we present an improved approach that computes the Fréchet derivative

as the solution of an inhomogeneous boundary value problem using the method in

Chapter 4. Computing the Fréchet derivative in this way drastically reduces the

CPU time which in turn leads to far better numerical results compared to those

accomplished in [7]. A full comparison of these results in provided in Chapter 5.

In Chapter 6 we consider the case where D 6= ∅. This is more difficult than the

case where D = ∅ for several reasons. Firstly, there are no results in the literature

that give an analytic expression for the Fréchet derivative for a medium exterior to
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an impenetrable scatterer. In Chapter 6 we establish an analytic expression for the

Fréchet derivative as the solution of an inhomogeneous boundary value problem,

analogous to the result when D = ∅. Secondly, the refractive index must be ap-

proximated in an annular region (possibly with Lipschitz boundary) and there is no

natural approximation space analogous to the Logan-Shepp polynomials employed

in Chapter 5. We obtain a suitable approximation space by introducing a bijective

mapping from the annular region to a suitable reference domain on which a high

order orthogonal basis is available. As in Chapter 5 we solve the inhomogeneous

boundary value problem using the novel coupled FEM-BEM scheme we described in

Chapter 6. Numerical results demonstrate the capability of this approach for recon-

structing various challenging heterogeneous media surrounding cylinders of circular

or square cross section.
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Chapter 2

Preliminaries

In this chapter, we first give a summary in Section 2.1 of the results from the theory

of function spaces used throughout this thesis. Then in Section 2.2 we outline

the relevant theory of inverse problems used in Chapters 5–6. In Section 2.3 we

construct the Angular-Legendre polynomials, which will be use in Chapter 6. We

then conclude the chapter by tabulating the basic notational and variable definitions

used throughout the thesis, for the reader’s convenience.

2.1 Function Spaces

Throughout this section we suppose (S, dµ) is a measure space for some domain (i.e.

open, bounded and connected) S ⊂ R2.

Spaces of Continuous Functions

The space of all continuous functions on S is denoted as C(S); it is a vector space

under the usual addition and scalar multiplication operations for functions. C(S̄)

denotes the space of continuous functions on the closure S̄ of S. For j ∈ Z+, Cj(S)
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represents the set of all functions on S which are j-times continuously differen-

tiable. Similarly Cj(S̄) is the set of all functions on the closure S̄ which are j-times

continuously differentiable. We define

C∞(S) = {v ∈ C(S) : v ∈ Cj(S) for all j ∈ Z+}.

That is, C∞(S) is the space of infinitely differentiable functions on S. For a function

f on S, the support of f is defined as

supp(f) = {x ∈ S : f(x) 6= 0}.

We then define C∞c (S) to be the space of all infinitely differentiable functions with

compact support in S.

Lp Spaces

Given 1 ≤ p <∞, the space Lp(S) is defined as

Lp(S) = {f : S → R measurable | ‖f‖p<∞} ,

where

‖f‖p=
(∫∫

S

|f |p dµ
) 1

p

.

The function f : S → R is called p-locally integrable if

∫∫
K

|f |p dµ <∞,

for all compact K ⊂ S. The set of all such functions is denoted as Lploc(S):

Lploc(S) =

{
f : S → R measurable

∣∣∣∣ ∫∫
K

|f |p dµ <∞ for all compact K ⊂ S

}
.

30



2.1. FUNCTION SPACES

Clearly Lp(S) is contained in Lploc(S).

Theorem 2.1.1. Lp(S) is a subspace of L1
loc(S) for all p ≥ 1, where S is an open

subset of R2.

Weak Derivatives

A two-dimensional multi-index is an ordered pair α = (α1, α2) of non-negative in-

tegers. We define |α|= α1 + α2 and denote the α-th order partial derivative of a

function f as

∂αf(x) =
∂|α|f(x)

∂xα1
1 ∂x

α2
2

where x = (x1, x2).

Note that in the special case where α = (0, 0), we have ∂αf = f . We say the

function f ∈ L1
loc(S) has α-th weak derivative f ′ ∈ L1

loc(S) if

∫∫
S

f ′∂αφ dµ = (−1)|α|
∫∫

S

fφ dµ

for all φ ∈ C∞c (S). In this case we denote the weak derivative of f as f ′ := Dαf .

Sobolev Spaces of Natural Order

Suppose m ∈ N, 1 ≤ p ≤ ∞ and S is an open set in R2. The Sobolev space Wm,p

is defined as

Wm,p(S) = {f ∈ Lp(S) : Dαf ∈ Lp(S) for all |α|≤ m} ,

and is equipped with the following norm:

‖f‖Wm,p(S)=

∑
|α|≤m

‖Dαf‖pp

 1
p

.
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In the special case where p = 2, the Sobolev space Wm,p is a Hilbert space, and we

write Wm,2(S) = Hm(S). That is,

Hm(S) =
{
f ∈ L2(S) : Dαf ∈ L2(S) for all |α|≤ m

}
,

and

‖f‖Hm(S)=

∑
|α|≤m

‖Dαf‖2
2

 1
2

. (2.1)

The local Sobolev space (when p = 2) is defined as

Hm
loc(S) =

{
f ∈ L2

loc(S) : Dαf ∈ L2
loc(S) for all |α|≤ m

}
.

Sobolev Spaces of Fractional Order

When m is a positive fraction, the Sobolev space is defined as

Hm(S) =
{
f ∈ Hbmc(S) :Dαf ∈ L2(S),∫

Ω×Ω

|f(x)− f(y)|2

|x− y|2+2m−2bmc dµ(x)dµ(y) <∞ for |α|≤ bmc
}
.

The Sobolev space H−m(S) is defined to be the dual space of Hm(S).

Trace Theorems

The following theorem is based on theorem 7.3.11 from [5, p. 298].

Theorem 2.1.2. Assume S is a bounded open set with Lipschitz boundary1 Γ. Then

1That is, Γ is locally the graph of a Lipschitz continuous function. Examples include smooth
boundaries and polygonal boundaries.
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there exist unique bounded linear and surjective mappings

γ0 : H1(S)→ H
1
2 (Γ)

γ1 : H1(S)→ H−
1
2 (Γ)

such that γ0v = v|Γ and γ1v = ∂v
∂n |Γ when v ∈ H1(S) ∩ C1(S̄).

Weak solution

The following definition follows from [5, p. 353].

Definition 2.1.3. Assume S is a bounded open set with Lipschitz boundary Γ. Then

for f ∈ L2(S), g ∈ L2(Γ), we define u to be a weak solution to the boundary value

problem

4u+ k2u = f,

∂u

∂n
+ iku = g,

if u ∈ H1(S) and

∫∫
S

∇v(x)·∇u(x)−k2v(x)u(x) dx =

∫
Γ

v(x)(g(x)−iku(x)) ds(x)−
∫∫

S

v(x)f(x) dx

for all v ∈ H1(S).

2.2 Inverse Problem Theory

In Chapter 3 we describe a numerical method to solve the forward media problem.

That is computing the far field u∞ of the scattered wave us, given knowledge of the

shape of D and the refractive index of medium i.e. n(x).

There we assume the medium is homogeneous outside the unit disk B, so that the
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heterogeneity of the medium is contained within Ω := B \ D̄. This lets us describe

the refractive index by the function m(x) := 1−n(x), which is advantageous because

m has compact support.

Thus the forward problem is equivalent to computing F(m), where the operator

F : L2(Ω) → L2(S1) maps m to the corresponding far field u∞ of the induced

scattered wave us. That is,

[F(m)](x̂) = lim
|x|→∞

√
|x|e−ik|x|us(x), x̂ = x/|x|.

Figure 2.1: The incident wave uinc interacts with the coated scatter D resulting in
the scattered wave us. The operator F maps the refractive index m in Ω to the far
field u∞ of us.

In Chapters 5–6, we solve the corresponding inverse problem. That is, computing

m(x) given the far field of the induced scattered wave. In both cases, the inverse

problem equates to solving an equation of the form
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F(m) = f∞ (2.2)

for m, where f∞ represents given far field data. Due to the differing nature of the

two inverse problems, we use the notation Fd for the operator in Chapter 5, and Fc

for the operator in Chapter 6. For the sake of generality, we describe the operator

theory necessary to solve both inverse problems in terms of the operator F in this

chapter.

Note from [23, p. 277], the far field pattern can be expressed as

F(m) = − k
2

4π

∫∫
R2\D̄

e−ikx·ym(y)u(y)dy,

which shows F is completely continuous.

This can also be used to show F is nonlinear. To see why, let un denote the solution

to 4u + k2nu = 0, so that un is a function of n. Then note u1 = H
(1)
0 (kr) is a

solution when n = 1, where H
(1)
0 denotes the Hankel function of the first kind and

order 0. If u was a linear function of n, then 2u1 should be a solution for n = 4,

which is not the case. We therefore deduce u is a nonlinear function of n, and

consequently a nonlinear function of m.

Thus equation (2.2) is ill-posed by [23, Thm 4.2] and nonlinear. That is, the refrac-

tive index m in (2.2) does not depend continuously on the far field data f∞. Figure

2.2 illustrates a refractive index that does not continuously depend on far field data.

This is problematic because in practical applications the far field f∞ is not known

exactly, but includes noise. We label our data f δ∞ (which may be a perturbation of

the exact data) and assume there exists δ > 0 such that

‖f∞ − f δ∞‖L2(S1)≤ δ. (2.3)
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We then seek an approximate solution to (2.2) for a perturbed right hand side f δ∞

with a known error level given by (2.3). For a perturbed right hand side, we cannot

expect f δ∞ ∈ {F(m) : m ∈ L2(Ω)}. That is, we cannot expect f δ∞ to lie in the range

of F . Using the data f δ∞, we then want to construct an approximation mδ close

to the exact solution m of of the unperturbed equation (2.2). Due to the ill-posed

nature of the problem however, we cannot expect the error ‖m−mδ‖L2(Ω) between

the true solution m and the approximate solution mδ to be small. Hence we require

a regularization strategy to obtain a stabilized solution.

Figure 2.2: Visual example demonstrating the ill-posedness of (2.2). Visually the
far field of f∞ and f δ∞ on the left are barely distinguishable, whereas the plot of m
(center) and mδ (right) are clearly quite distinct.

A common approach to solving ill-posed nonlinear equations is the Levenburg-

Marquardt scheme [58, 45, 50]. This is a regularized Newton-type solver, where

the regularization is done according to Tikhonov’s method (see Section 2.2.2), and

the regularization parameter is chosen according to Morozov’s discrepancy principle

(see Section 2.2.3).

The Levenburg-Marquardt scheme is computationally practical because it provides

a systematic way to choose the regularization parameter. For this reason, we equip

the Levenburg-Marquardt scheme with our efficient forward solver to solve equations

of the form (2.2) in Chapters 5–6.
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2.2.1 Linearization

Given an approximate solution mδ to the exact solution m of of the unperturbed

equation (2.2), we seek an improved approximation mδ + q by solving the linearized

equation

F(mδ) + F ′(mδ)q = f δ∞ (2.4)

for q, where the Fréchet derivative F ′(mδ) of F at mδ in the direction of d is defined

by

F ′(mδ)d = lim
h→0

F(mδ + hd)−F(mδ)

h
,

and d is a function having compact support Ω. In Chapters 5–6, we discretize (2.4)

to obtain a linear system of the form

Fmδ + F ′mqδ = fδ.

Note by [23, Thm 4.21] that F ′m : RN → RN is compact and equation (2.4) inherits

the ill-posedness of equation (2.2); thus the discretized equation

F ′mqδ = fδ − Fmδ (2.5)

is also ill-posed, and must be approached using a suitable regularisation strategy.
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2.2.2 Tikhonov Regularization

A family of bounded linear operators {Rα}α>0, with the property of pointwise con-

vergence

lim
α→0

RαF
′
mqδ = qδ

for all qδ ∈ RN is called a regularization strategy for the operator F ′m. Moreover,

the parameter α is called the regularization parameter.

Tikhonov regularization is one type of regularization strategy, which is based on the

following result [58, p. 38]:

Theorem 2.2.1. Suppose F ′m is injective. Then for α > 0, the operator αI +

(F ′m)TF ′m is bounded and invertible, where I is the identity matrix and (F ′m)T denotes

the transpose of (F ′m). The operators

Rα :=
[
αI + (F ′m)TF ′m

]−1
(F ′m)T

form a regularization strategy, called the Tikhonov regularization method. Rα

(
fδ − Fmδ

)
is defined as the unique solution qα,δ of the equation

αqα,δ + (F ′m)TF ′mqα,δ = (F ′m)T
(
fδ − Fmδ

)
. (2.6)

It follows from the above result that the regularized solution to (2.5) is given by

qα,δ =
[
αI + (F ′m)TF ′m

]−1
(F ′m)T

(
fδ − Fmδ

)
. (2.7)
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2.2.3 Morozov Discrepancy Principle

The Morozov Discrepancy Principle is a guide in selecting the regularization param-

eter α. The logic behind the principle is that knowing the magnitude of the error

in the far field is bounded by δ, we require qα,δ to be such that the error produced

is at most δ. That is, ∥∥fδ − F ′mqα,δ − Fm
∥∥ ≤ δ. (2.8)

From our earlier assumption, we know that

∥∥fδ − Fm
∥∥ ≤ δ.

It follows that we can achieve the bound in (2.8) by solving [50]

∥∥fδ − F ′mqα,δ − Fm
∥∥ = ρ

∥∥fδ − Fm
∥∥

for some 0 < ρ < 1. Squaring both sides and bringing all terms to one side leads to

ϕ(α) = 0 where

ϕ(α) = ‖fδ − F ′mqα,δ − Fm‖2−ρ2‖fδ − Fm‖2, (2.9)

which we solve using Newton’s method. Note this solution will be unique provided

‖fδ − f‖≤ δ ≤ ‖f‖ (see [58, page 48]).

To compute ϕ′(α) for given α, we differentiate both sides of (2.6) with respect to α

to get

qα,δ + αJα + (F ′m)TF ′mJα = 0,
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where Jα denotes the Jacobian of qα,δ i.e. Jα = dqα,δ

dα
. Therefore,

Jα = −
[
αI + (F ′m)TF ′m

]−1
qα,δ. (2.10)

Now note qα,δ is the only term in ϕ(α) that depends on α. Therefore, differentiating

the expression in (2.9) using the chain rule, we get

ϕ′(α) = −2
(
fδ − F ′mqα,δ − Fm

)
· (F ′mJα) ,

where Jα is given by (2.10). Then given an estimate αt, we compute an improved

estimate αt+1 by using Newton’s formula

αt+1 = αt −
ϕ(αt)

ϕ′(αt)
. (2.11)

From before, equation ϕ(α) = 0 will have a unique solution α∗ provided ‖fδ−f‖≤ δ ≤

‖f‖. The following result [5, Theorem 5.4.1] describes the convergence of Newton’s

method (2.11) in solving ϕ(α) = 0.

Theorem 2.2.2. Suppose

|ϕ′(α)− ϕ′(β)|≤ K|α− β|

for all α, β in some neighbourhood of α∗, and K > 0 is a constant. Then there exists

an ε > 0 such that |α0 − α∗|≤ ε implies sequence {αt} converges to α∗, where α0 is

the initial guess in Newton’s method. We also have

|αt − α∗|≤
(Mε)2t

M

for some constant M satisfying Mε < 1.

With regards to equation (2.2), the iterated solution from the Levenburg-Marquardt
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scheme will converge to the true solution provided (2.2) has a unique solution and

‖F(χ)−F(ψ)−F ′χ(χ− ψ)‖≤ c‖χ− ψ‖‖F(χ)−F(ψ)‖

for some c > 0, and all χ, ψ in some neighbourhood of m. Thus the existence and

uniqueness of the iterated solution depends on the existence and uniqueness of the

solution to (2.2).

2.3 Angular Legendre Functions

Let Ls denote the Legendre polynomial of degree s

Ls(r) =
1

2ss!

ds

drs
[(r2 − 1)s],

satisfying the recurrence relation [1]

(s+ 1)Ls+1(r) = (2s+ 1)rLs(r)− sLs−1(r).

Now using the fact [1] that the Legendre polynomials are orthogonal on [−1, 1]:

2s1 + 1

2

∫ 1

−1

Ls1(r)Ls2(r) dr = δs1,s2 , s1, s2 ∈ N,

and the complex exponential functions are orthogonal on [0, 2π]:

1

2π

∫ 2π

0

eit1θeit2θ dθ = δt1,t2 , t1, t2 ∈ Z,

we deduce

2s1 + 1

4π

∫ 2π

0

∫ 1

−1

Ls1(r)e
t1θLs2(r)e

it2θ drdθ = δs1,s2δt1,t2 .
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Therefore, the functions

As,t(r, θ) = Ls(r)e
itθ, s ∈ N, t ∈ Z, (2.12)

are orthogonal on R = [−1, 1]× [0, 2π]. We refer to the functions given in (2.12) as

the Angular Legendre functions.

2.4 Notational and Variable Definitions

In this thesis, the surface integral of a function f along a closed piecewise-smooth

curve C ⊂ R2 is defined as

∫
C

f(x)ds(x) =

∫ b

a

f(q(t))
√

[q′1(t)]2 + [q′2(t)]2 dt,

where q : [a, b)→ C; t 7→ (q1(t), q2(t)) is a bijective parametrization of the curve C.

We then define the L2 inner product on C as follows:

〈φ, ψ〉L2(C) =

∫
C

φ(x)ψ(x)ds(x).

The following table gives a summary of the basic notational and variable definitions

used throughout the thesis, for the reader’s convenience.
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2.4. NOTATIONAL AND VARIABLE DEFINITIONS

B Open unit disk {(x, y) ∈ R2 : x2 + y2 < 1}
∂B Unit circle {(x, y) ∈ R2 : x2 + y2 = 1}
D An impenetrable scatter with piecewise smooth boundary
∂D The boundary of D
Ω The open region B \ D̄
Ωc The region R2 \B
∂Ω Unit circle {(x, y) ∈ R2 : x2 + y2 = 1}
k Wavenumber
ω Radial frequency

d̂ Wave direction
u Total field
ui Induced field
uinc Incident field
us Scattered field
uint Interior solution in Ω
uext Interior solution in Ωc

Φ Green’s function for the 2D Helmholtz equation

H
(1)
m Hankel’s function of the first kind; degree m

Jm Bessel’s function of the first kind; degree m
x,y Domain points
s Boundary point
Gi Interior solution operator
Ge Exterior solution operator
Gp Particular solution operator for the interior problem
γ Trace operator
q Invertible map which parametrizes ∂Ω
FEM Finite element method
BEM Boundary element method
h Mesh size in the FEM
n Unit outward normal
n Refractive index function defined on R2 \ D̄, which has compact support Ω
m This function is defined as m = 1− n
B Boundary condition operator
R Robin boundary condition operator; Rv = ∂v

∂n
+ ikv

R
(N)
j Special quadrature formulation

u∞ Far field
x̂ Defined to be x

|x|
Fc Operator which maps m to the resulting far field in the case where D = ∅
Fc Operator which maps m to the resulting far field in the case where D 6= ∅
α Regularisation parameter
Pl,j Logan-Shepp polynomial
As,t Angular-Legendre function
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Chapter 3

Coupled FEM-BEM Technique

Consider an impenetrable scatterer D ⊂ R2 with piecewise-smooth boundary ∂D,

surrounded by a heterogeneous dielectric medium. We assume the refractive index

n(x) is constant outside the open unit disk B centred at the origin, so that the the

heterogeneity of the medium is contained within the open set Ω := B\D̄ (see Figure

3.1). Note however that we have adopted the unusual notation of taking ∂Ω to only

be the outer boundary of Ω i.e. ∂Ω = ∂B. We normalize so that

n(x) = 1 for x ∈ R2 \B,

and assume n(x) is bounded and piecewise-continuous in Ω.

Consider an incident plane wave uinc(x) = eikx·d̂, where k is the wavenumber and the

unit vector d̂ denotes the wave-direction. When illuminated by uinc, the boundary

∂D together with the heterogeneous media within Ω induce a scattered field us in

R2 \B, and an induced field ui in Ω. The total field u is then

u(x) =

 ui(x), x ∈ Ω,

uinc(x) + us(x), x ∈ R2 \B.
(3.1)

where ui contains a scattered and incident component.
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Figure 3.1: A impenetrable scatterer D with piecewise-smooth outer boundary ∂D,
surrounded by a dielectric coating Ω. Note that the closed region D̄ together with
Ω make up the open unit disk B, so that the boundary ∂B of B is the unit circle
{(x, y) ∈ R2 : x2 + y2 = 1}. Moreover, ∂B = ∂Ω.

In this chapter we describe a numerical method to solve the forward media problem of

computing the total field u, given knowledge of the boundary ∂D and the refractive

index n. In Chapter 6, we will solve the corresponding inverse problem.

Definition 3.0.1 (Forward Media Problem). Find the total field u ∈ C2(R2\D̄) ∩

C(R2 \D) that satisfies the Helmholtz equation

4u(x) + k2n(x)u(x) = 0 for x ∈ R2\D̄, (3.2)

the Sommerfeld radiation condition

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0, r = |x| (3.3)
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uniformly with respect to the direction x, and a boundary condition of the form

Bu(x) = f(x) on ∂D, (3.4)

where the operator B and the function f depend on the incident wave and the ma-

terial properties of the scatterer D.

The theory presented in this chapter is applicable to the cases where the boundary

condition is either a Dirichlet, Neumann or Robin boundary condition.

3.1 Motivation

Two common approaches for solving PDEs are finite element methods (FEMs) and

boundary element methods (BEMs).

FEMs can solve PDEs over complex geometries, and are suitable for both homo-

geneous and heterogeneous problems. FEMs are only applicable to problems over

bounded regions and consequently cannot be applied when solving the forward media

problem (3.2)–(3.4), which has an unbounded domain. An adaptation of the FEM

is the expanding grid technique [42, 65], in which the unbounded domain R2 \ D̄

is approximated by a large bounded domain, and the Sommerfeld radiation condi-

tion (3.3) is replaced by an appropriate boundary condition on the outer boundary.

This approach requires solving a large linear system, because the accuracy of the

FEM depends on using a fixed number of elements per wavelength in the FEM

mesh [31, 72, 73]. Moreover, this technique does not provide a direct approxima-

tion to the far field pattern of the scattered wave [60], which is useful in several

applications.

BEMs reformulate PDEs in terms of boundary integral equations, making discretiza-

tion only necessary over the boundary. This reformulation reduces the dimension

of the problem by one, which means solving a smaller linear system compared to
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3.2. COUPLED FEM-BEM TECHNIQUE

the FEM, making BEMs an efficient technique for solving homogeneous PDEs over

unbounded regions. In the case of scattering problems, BEMs are particularly desir-

able because they ensure the radiation condition (3.3) is satisfied exactly. However,

BEMs are not applicable to heterogeneous problems and therefore cannot be solely

used to solve the forward media problem (3.2)–(3.4). Moreover, standard BEMs

require the boundary to be smooth; their application to problems with non-smooth

boundaries requires adaptation [66, 44, 54, 83].

In this chapter, we solve the forward media problem using the coupled FEM-BEM

technique, which takes advantage of and facilitates the strengths of both approaches,

while avoiding the disadvantages associated with each technique. We introduce a

smooth artificial transmission boundary ∂Ω which splits R2\D̄ into two sub-regions:

1. Interior Region: The region Ω, which contains the heterogeneity of the

medium, where n(x) is some bounded piecewise-continuous function.

2. Exterior Region: The region Ωc := R2\B exterior to the artificial boundary,

where n(x) = 1.

We then apply a transmission boundary condition on ∂Ω through which the original

forward problem can be split into two sub-problems: an exterior problem in Ωc and

an interior problem in Ω. We then apply a BEM in Ωc and a FEM in Ω. In this way,

the radiation condition (3.3) is satisfied exactly, while the heterogeneous refractive

index n(x) in Ω and the non-smooth boundary ∂D are handled appropriately.

3.2 Coupled FEM-BEM Technique

In the coupled FEM-BEM technique we seek a solution of the form

u(x) =

 uint(x), x ∈ Ω,

uext(x), x ∈ Ωc,
(3.5)
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3.2. COUPLED FEM-BEM TECHNIQUE

for uint ∈ H1(Ω) and uext ∈ W(Ωc), where

W(Ωc) =

{
v ∈ H1

loc(Ω
c) :

∂v

∂r
− ikv = o

(
1√
r

)}
.

Standard regularity results (see [41, Chapter 8]) imply that a solution of the form

(3.5) is the unique solution to the forward media problem, provided u and its normal

derivative are continuous across ∂Ω.

The aim behind seeking a solution of the form (3.5) is to split the forward media

problem into an interior boundary value problem in Ω and an exterior boundary

value problem in Ωc, which can readily be solved using a FEM and BEM respectively.

To formulate these two boundary value problems, we require a suitable boundary

condition on ∂Ω. This boundary condition should ensure continuity of u and its

normal derivative across ∂Ω.

To derive such a boundary condition, we follow [60, 61] and suppose

[R(us)](x) =
∂us

∂n
(x) + ikus(x), x ∈ ∂Ω,

is known, where n represents the unit outward pointing normal vector on ∂Ω. That

is, R(us) = µ for some known µ. Then we enforce a Robin boundary condition

on ∂Ω to formulate the aforementioned interior and exterior BVPs. To do this we

introduce operators Gi and Ge below (see [60]), noting that since uint ∈ H1(Ω),

Sobolev’s trace theorem [5] implies µ ∈ H− 1
2 (∂Ω).

Definition 3.2.1. The operator Gi : H−
1
2 (∂Ω)→ H1(Ω) is defined by the following

BVP. Given λ ∈ H− 1
2 (∂Ω), Giλ is defined to be the weak solution v ∈ H1(Ω) of:

4v(x) + k2n(x)v(x) = 0, x ∈ Ω, (3.6)

Bv(x) = f(x), x ∈ ∂D, (3.7)

[R(v)](x) = λ(x), x ∈ ∂Ω. (3.8)
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Remark. We will numerically compute Giλ using the finite element method (see

Section 3.3.2 for more details). Existence and uniqueness results for such an ap-

proach are well known (see [6, 85]).

Definition 3.2.2. The operator Ge : H−
1
2 (∂Ω)→W(Ωc) is defined by the following

BVP. Given λ ∈ H− 1
2 (∂Ω), Geλ is defined as the weak solution v ∈ W(Ωc) of:

4v(x) + k2v(x) = 0, x ∈ Ωc, (3.9)

lim
r→∞

r

(
∂v

∂r
− ikv

)
= 0, (3.10)

[R(v)](x) = λ(x), x ∈ ∂Ω. (3.11)

In (3.9), we have used n(x) = 1 in R2 \B. Equipped with the operators Ge and Gi,

we now state the following result proved in [60].

Proposition 3.2.3. The solution to the forward problem (3.2)–(3.4) is given by

u =

 Gi

[
µ+R(uinc)

]
, in Ω,

Geµ+ uinc, in Ωc,
(3.12)

provided

γ(Ge −Gi)µ = γGi

[
R(uinc)

]
− γuinc on ∂Ω, (3.13)

where

γ : H1(R2 \ (D̄ ∪ ∂Ω))→ H
1
2 (∂Ω), γv = v|∂Ω

is the trace operator.

Proof. By definition of Gi, the function u defined in (3.12) automatically satisfies

boundary condition (3.4), and also satisfies Helmholtz equation (3.2) when x ∈ Ω.

By definition of Ge, the solution also satisfies radiation condition (3.3). When
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x ∈ Ωc,

4u(x) + k2n(x)u(x) = 4u(x) + k2u(x) since n(x) = 1 for x ∈ Ωc

= [4Geµ](x) + k2[Geµ](x) +4uinc(x) + k2uinc(x)

= [4Geµ](x) + k2[Geµ](x)

= 0 by definition of Ge.

Thus all that remains to show is that u and ∂u
∂n are continuous across ∂Ω. Note

from the definition of Gi that

R(u) = R
(
Gi

[
µ+R

(
uinc
)])

= µ+R
(
uinc
)
.

From the definition of Ge we have

R (Geµ) = µ.

In that case, it follows

R(u) = R(Geµ+ uinc)

= R(Geµ) +R(uinc)

= µ+R(uinc),

which implies R(u) is continuous across ∂Ω. Noting that (3.13) ensures continuity

of u across ∂Ω, we deduce ∂u
∂n must also be continuous across ∂Ω by definition of

R.

We will solve the forward problem by computing the unknown µ, and then evaluating

the solution using (3.12). We do this by solving (3.13) using a Galerkin scheme.
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3.3 Galerkin Scheme

We assume the smooth boundary ∂Ω can parametrized via an invertible map

q : [0, 2π)→ ∂Ω; θ 7→ (q1(θ), q2(θ)), (3.14)

where q1(θ) and q2(θ) are 2π-periodic continuously differentiable functions. This is

advantageous because then µ ◦ q is a function on [0, 2π), and as a result can be

approximated with high-order accuracy using the finite-dimensional space spanned

by {eijθ : j = −N, . . . , N − 1}. Hence, we seek an approximate solution to (3.13) of

the form

µ(q(θ)) =
N−1∑
j=−N

aje
ijθ, θ ∈ [0, 2π),

where the spectral coefficients aj need to be determined for j = −N, ..., N − 1. We

define L = γ(Ge − Gi) and g = γGi

[
R(uinc)

]
− uinc, to rewrite (3.13) as Lµ = g.

The Galerkin scheme requires

〈Lµ, zm〉L2(∂Ω) = 〈g, zm〉L2(∂Ω)

for m = −N, ..., N − 1, where zm(x) = eimq−1(x) and

〈ϕ, ψ〉L2(∂Ω) =

∫
∂Ω

ϕ(x)ψ(x) ds(x).

Therefore, we require

N−1∑
j=−N

aj〈Lzj, zm〉L2(∂Ω) = 〈g, zm〉L2(∂Ω) (3.15)

for m = −N, ..., N−1. We approximate the inner products in (3.15) using the rectan-

gle rule quadrature approximation which converges exponentially on ∂Ω (see [67, 68])

as N increases; the error is of order O(e−Nσ) where σ denotes half the width of the

51



3.3. GALERKIN SCHEME

parallel strip in the complex plane into which the integrand can be analytically

extended. Applying this quadrature rule, we get

〈ϕ, ψ〉L2(∂Ω) ≈
2N−1∑
s=0

π

N
ϕ(q(θs))ψ(q(θs))J(θs) (3.16)

with

θs =
πs

N
for s = 0, ..., 2N − 1 (3.17)

and Jacobian J(θs) =
√

[q′1(θs)]2 + [q′2(θs)]2. We thus get

〈Lzj, zm〉L2(∂Ω) ≈
2N−1∑
s=0

π

N
zm(q(θs))J(θs)[Lzj](q(θs)).

Therefore the discrete version of (3.15) becomes

N−1∑
j=−N

aj

{
2N−1∑
s=0

π

N
zm(q(θs))J(θs)[Lzj](q(θs))

}
=

2N−1∑
s=0

π

N
zm(q(θs))J(θs)g(q(θs))

for m = −N, ..., N − 1. We write this system as a matrix equation

Ax = b, (3.18)

where

Aj,m =
2N−1∑
s=0

π

N
zj−N(q(θs))J(θs)[Lzm−N ](q(θs)),

bj =
2N−1∑
s=0

π

N
zj−N(q(θs))J(θs)g(q(θs)), j = 0, 1, . . . , 2N − 1,

and x = (a1−N , a2−N , . . . , aN−1, aN)T is a column vector containing the unknown

coefficients.

Noting that L = γ(Ge − Gi), we see that the main task in assembling matrix A in
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(3.18) is evaluating [Gezm](q(θs)) and [Gizm](q(θs)) for m = −N, . . . , N−1. Likewise

assembling b requires evaluating
[
GiR(uinc)

]
(q(θs)) because g = γGi

[
R(uinc)

]
−

γuinc. All other calculations involved are relatively straightforward. We remark it

is improves efficiency to store the values of Gezm and Gizm for each zm involved in

assembling (3.18); the advantage of doing this is explained in Section 3.3.3. We now

explain how to evaluate [Geλ](q(θs)) and [Giλ](q(θs)) for arbitrary λ.

3.3.1 Evaluating the exterior field

Evaluating the exterior field Geλ equates to finding the radiating solution v to the

Helmholtz equation in Ωc, satisfying the Robin condition R(v) = λ on ∂Ω. We

solve this problem using the Nyström method outlined in [23], which converges with

order O(1/nq) for boundaries of class Cq+2 (see [66]). We begin by using a direct

formulation [61, Page 529] for v of the form

v(x) =

∫
∂Ω

{
∂Φ(x,y)

∂n(y)
v(y)− Φ(x,y)

∂v(y)

∂n(y)

}
ds(y), (3.19)

for x ∈ Ωc, where

Φ(x,y) =
i

4
H

(1)
0 (k|x− y|) (3.20)

is the Green’s function for the 2D Helmholtz equation and H
(1)
0 is Hankel’s function

of the first kind. Using the boundary condition (3.11),

∂v(y)

∂n(y)
= λ(y)− ikv(y) for y ∈ ∂Ω,

equation (3.19) becomes:

v(x) =

∫
∂Ω

{
∂Φ(x,y)

∂n(y)
v(y) + ikΦ(x,y)v(y)− Φ(x,y)λ(y)

}
ds(y), x ∈ Ωc.

(3.21)
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Applying the jump relations in [23, Page 39] which describe the limiting behaviour

of surface potentials as the boundary is approached, we take the limiting value of

both sides as x→ ∂Ω to obtain

v(x) =
1

2
v(x)+

∫
∂Ω

{
∂Φ(x,y)

∂n(y)
v(y) + ikΦ(x,y)v(y)− Φ(x,y)λ(y)

}
ds(y), x ∈ ∂Ω.

Thus

−1

2
v(x) +

∫
∂Ω

{
∂Φ(x,y)

∂n(y)
+ ikΦ(x,y)

}
v(y) ds(y) =

∫
∂Ω

Φ(x,y)λ(y) ds(y).

Applying the parametrization (3.14) of ∂Ω, we get

−1

2
v(q(θ)) +

∫ 2π

0

{L(θ, s) + ikM(θ, s)}v(q(s)) ds

=

∫ 2π

0

M(θ, s)λ(q(s)) ds for θ ∈ [0, 2π], (3.22)

where

L(θ, s) =
∂Φ(q(θ), q(s))

∂n(q(s))
J(s),

M(θ, s) = Φ(q(θ), q(s))J(s).

The kernels L(θ, s) and M(θ, s) have a logarithmic singularity at θ = s. This

means the integrals appearing in (3.22) are singular, and hence cannot be evaluated

accurately using standard quadrature rules. Thus we apply the following result [23,

p.68]:

Theorem 3.3.1. The kernels L(θ, s) and M(θ, s) can be split as:

L(θ, s) = L1(θ, s) ln

(
4 sin2 θ − s

2

)
+ L2(θ, s),

M(θ, s) = M1(θ, s) ln

(
4 sin2 θ − s

2

)
+M2(θ, s),
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where

L1(θ, s) =
k

2π
{q′2(s)[q1(θ)− q1(s)]− q′1(θ)[q2(θ)− q2(s)]} J1(kr(θ, s))

r(θ, s)
,

L2(θ, s) = L(θ, s)− L1(θ, s) ln

(
4 sin2 θ − s

2

)
,

M1(θ, s) = − 1

2π
J(s)J0(kr(θ, s)),

M2(θ, s) = M(θ, s)−M1(θ, s) ln

(
4 sin2 θ − s

2

)
,

r(t, s) =
{

[q1(θ)− q1(s)]2 + [q2(θ)− q2(s)]2
} 1

2 ,

and J0, J1 represent Bessel functions of the first kind of order zero and one respec-

tively. Furthermore the kernels L1(θ, s) and M1(θ, s) can be continuously extended

for s = θ. Limiting values of kernels L2(θ, s) and M2(θ, s) at the point θ = s are

given by the expressions:

L2(θ, θ) =
q′1(θ)q′′2(θ)− q′2(θ)q′′1(θ)

2πJ(θ)
,

M2(θ, θ) =

{
i

2
− C

π
− 1

π
ln

(
kJ(θ)

2

)}
J(θ)

for 0 ≤ θ ≤ 2π, where C denotes Euler’s constant.

Remark. Note the expressions for L2 and M2 are exact expressions i.e. they are

not approximations.

By defining

K1(θ, s) = L1(θ, s) + ikM1(θ, s),

K2(θ, s) = L2(θ, s) + ikM2(θ, s),

equation (3.22) becomes

−1

2
ṽ(θ) +

∫ 2π

0

K(θ, s)ṽ(s) ds =

∫ 2π

0

M(θ, s)λ̃(s) ds for θ ∈ [0, 2π], (3.23)
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where ṽ = v ◦ q, λ̃ = λ ◦ q and

K(θ, s) = K1(θ, s) ln

(
4 sin2 θ − s

2

)
+K2(θ, s).

In the Nyström method we approximate the above integrals by using appropriate

quadrature formulas. The first formula (see [23, p.78]) is given by the following

lemma, which like before converges exponentially [67, 68] with the error term being

of order O(e−Nσ).

Lemma 3.3.2. Given the quadrature points (3.17), define

R
(N)
j (θ) = −2π

N

N−1∑
m=1

1

m
cos m(θ − θj)−

π

N2
cosN(θ − θj), for j = 0, ..., 2N − 1.

Then for an analytic function h, we have the approximation

∫ 2π

0

h(s) ln

(
4 sin2 θ − s

2

)
ds ≈

2N−1∑
j=0

R
(N)
j (θ)h(θj), 0 ≤ θ ≤ 2π.

This result can be directly used to approximate the singular integrals

∫ 2π

0

K1(θ, s) ln

(
4 sin2 θ − s

2

)
ṽ(s) ds,∫ 2π

0

M1(θ, s) ln

(
4 sin2 θ − s

2

)
λ̃(s) ds,

respectively. For the smooth integrals, we apply the rectangle rule quadrature for-

mula. That is,

∫ 2π

0

K2(θ, s)ṽ(s)ds ≈
2N−1∑
j=0

π

N
K2(θ, θj)ṽ(θj),

∫ 2π

0

M2(θ, s)ṽ(s)ds ≈
2N−1∑
j=0

π

N
M2(θ, θj)ṽ(θj).
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Using the above approximations, (3.23) becomes

−1

2
ṽ(θ) +

2N−1∑
j=0

{
R

(N)
j (θ)K1(θ, θj) +

π

N
K2(θ, θj)

}
ṽ(θj)

=
2N−1∑
j=0

{
R

(N)
j (θ)M1(θ, θj) +

π

N
M2(θ, θj)

}
λ̃(θj).

Requiring equality to hold for t at the quadrature points (3.17), we get

−1

2
Vi +

1

2

2N−1∑
j=0

[
R

(N)
j (θi)K1(θi, θj) +

π

n
K2(θi, θj)

]
Vj

=
2N−1∑
j=0

[
R

(N)
j (θi)M1(θi, θj) +

π

n
M2(θi, θj)

]
Λj

for i = 0, . . . , 2N − 1, where Vj = v(q(θj)) and Λj = µ(q(θj)).

This discretized series of equations represents a linear system

(I −K)v = Λ, (3.24)

where I is the identity matrix, vi = Vi,

Λi = −2
2N−1∑
j=0

[
R

(N)
j (θi)M1(θi, θj) +

π

N
M2(θi, θj)

]
Λj,

and

Ki,j = R
(N)
j (θi)K1(θi, θj) +

π

N
K2(θi, θj).

Due to the high order convergence of the Nyström method, N will be small in

numerical computations. This enables us to use Gaussian elimination to solve matrix

equation (3.24) for v, which is precisely a column vector such that

vs = [Geλ](q(θs)).
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3.3.2 Evaluating the interior field

We evaluate the interior field [Giλ](q(θs)) using the FEM technique [55]. We start

by multiplying (3.6) by a test function w ∈ H1(Ω) to obtain

w(x)
(
4v(x) + k2n(x)v(x)

)
= 0, x ∈ Ω,

and then integrate over Ω to get

∫∫
Ω

w(x)
(
4v(x) + k2n(x)v(x)

)
dx = 0.

Splitting the above integral and applying Green’s first identity [5, p.325] yields

∫∫
Ω

∇v(x) · ∇w(x) dx− k2

∫∫
Ω

n(x)w(x)v(x) dx =

∫
∂Ω∪∂D

w(x)
∂v

∂n
(x) dS,

where n is the outward-pointing unit normal. Now recall that v = Giλ satisfies the

Robin boundary condition

∂v

∂n
+ ikv = λ

on ∂Ω. Thus

∫
∂Ω∪∂D

w(x)
∂v

∂n
(x) ds =

∫
∂D

w(x)
∂v

∂n
(x) ds+

∫
∂Ω

w(x)
∂v

∂n
(x) ds

=

∫
∂D

w(x)
∂v

∂n
(x) ds+

∫
∂Ω

w(x)(λ(x)− ikv(x)) ds.

It follows that the weak form of (3.6)–(3.8) is to solve

∫∫
Ω

∇v(x) · ∇w(x) dx− k2

∫∫
Ω

n(x)v(x)w(x) dx

+ ik

∫
∂Ω

v(x)w(x) ds =

∫
∂D

w(x)
∂v

∂n
ds+

∫
∂Ω

w(x)λ(x) ds (3.25)
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for all w ∈ H1(Ω). In the finite element method, we seek an approximate solution

vh to (3.25) in a finite-dimensional subspace Wh ⊂ H1(Ω). To construct Wh, let

∂Ωh and ∂Dh be polygonal approximations to ∂Ω and ∂D respectively, where ∂Ωh

includes vertices

{q(θs) | s = 0, ..., 2N − 1}.

Let Ωh denote the polygonal domain bounded by ∂Ωh and ∂Dh, and let τh be the

regular triangulation of Ωh with triangles of diameter1 h, where the vertices of τh

are given by

x1,x1,x2, ...,xl−1,xl.

For each i = 1, 2, ..., l we define a piecewise linear function φi to equal 1 at the vertex

xi and to vanish at every other vertex, and then take

Wh = span{φ1, φ2, . . . , φl}.

Thus we require (3.25) to hold for all w ∈ span{φ1, φ2, . . . , φl}. That is, we require

∫∫
Ωh

∇v(x) · ∇φj(x) dx− k2

∫∫
Ωh

n(x)v(x)φj(x) dx

+ ik

∫
∂Ωh

v(x)φj(x) ds =

∫
∂Dh

φj(x)
∂v

∂n
ds+

∫
∂Ωh

φj(x)λ(x) ds (3.26)

to hold for j = 1, 2, ..., l. We then seek an approximate solution vh to (3.26) of the

form

vh(x) =
l∑

i=1

viφi(x), (3.27)

1Here the diameter of a triangle is defined to be the length of its longest side [55]. In practice,
the diameter h of the triangles in the triangulation τh can be chosen to be either uniform, or to
vary adaptively to account for the geometrical shape of the boundary ∂D. For example, the results
we give in Section 3.4 use a uniform mesh when ∂D is a circle, but employ mesh refinement around
the corners of ∂D, when D is a square.
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where the coefficients vi ≈ v(xi) are unknown. Substituting (3.27) into (3.26), we

get:

l∑
i=1

vi

(∫∫
Ωh

∇φi(x) · ∇φj(x) dx− k2

∫∫
Ωh

n(x)φi(x)φj(x) dx + ik

∫
∂Ωh

φi(x)φj(x) ds

)

=

∫
∂Ωh

φj(x)λ(x) ds+
l∑

i=1

vi

∫
∂Dh

φj(x)
∂φi
∂n

(x) ds.

We write this algebraic equation in the form of a matrix equation

(B − k2C + ikD)v = d, (3.28)

where

Bj,i =

∫∫
Ωh

∇φi(x) · ∇φj(x) dx, (3.29)

Cj,i =

∫∫
Ωh

n(x)φi(x)φj(x) dx, (3.30)

Dj,i =

∫
∂Ωh

φj(x)φi(x) ds, (3.31)

d =

∫
∂Ωh

φj(x)λ(x) ds+
l∑

i=1

vi

∫
∂Dh

φj(x)
∂φi
∂n

(x) ds. (3.32)

The column vector d is mostly zero; the only entries that are non-zero are entries

which correspond to a vertex xj such that xj ∈ ∂Ωh ∪ ∂Dh. In that case, there are

two possibilities:

1. If xj ∈ ∂D, then we modify the j-th row of B− k2C + ikD and the j-th entry

of d appropriately to account for the boundary condition (3.4) on ∂D.

2. If xj ∈ ∂Ωh, then

d(j) =

∫
∂Ωh

φj(x)λ(x) ds. (3.33)
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To calculate this integral numerically, we approximate λ by

λ(x) =
l∑

i=0

λiφi(x),

where λi = λ(xi). Then

d(j) =
l∑

i=0

λi

∫
∂Ωh

φj(x)φi(x) ds. (3.34)

This is known in closed form.

3.3.3 Constructing the Solution to the Forward Problem

We solve the Galerkin system (3.18) for the coefficients contained in x, to obtain

the value of

µ(q(θ)) =
N−1∑
j=−N

ajzj(q(θ)), θ ∈ [0, 2π),

on the transmission boundary ∂Ω. Recall from (3.12), that the solution to the

forward problem is given by

u =

 Gi

[
µ+R(uinc)

]
, in Ω,

Geµ+ uinc, in Ωc.
(3.35)

That is, the solution in the interior is given by Gi

[
R(uinc)

]
, while the solution in

the exterior is given by Geµ+ uinc. We can evaluate the expression u(x) for x ∈ Ωc

using the Nyström method from Section 3.3.1, and the expression for u in Ω using

the Finite Element method outlined in Section 3.3.2.

Note that the far field of us given by [23, page 75]

u∞(x̂) =
e
πi
4

√
8πk

∫
∂Ω

{
∂e−ikx̂·y

∂n(y)
us(y) + ike−ikx̂·yus(y)− e−ikx̂·yµ(y)

}
ds(y),

(3.36)
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where x̂ = x
|x| (see Section 9.4 of the appendix for the derivation). We numerically

evaluate this integral using a rectangle method approximation, in which we reuse

the same quadrature points from the Nyström scheme. Thus by exploiting the

calculations which were done while assembling the matrix equation (3.18), we can

compute the far field without having to perform many additional computations.

The same applies to the exterior field us itself, which we expressed as a boundary

integral in Section 3.3.1.

To see how this can be done, note for instance that

Geµ(q(θ)) = Ge

(
N−1∑
j=−N

ajzj(q(θ))

)

=
N∑

j=−N+1

aj[Gezj](q(θ)).

The values of Gezm−N(q(θs)) at the points (3.17) for m = 0, ..., 2N−1, while assem-

bling (3.18) are given by Gezj(q(θ(s)) for j = −N, ..., N − 1. Hence Geµ is simply

given by a linear combination of values already computed. The same is true for

Giµ; and hence evaluating Gi

[
R(uinc) + µ

]
= Gi

[
R(uinc)

]
+ Giµ depends on com-

puting Gi

[
R(uinc)

]
. However, Gi

[
R(uinc)

]
was already computed while assembling

the vector b in (3.18).

3.4 Numerical Results

In this section, we demonstrate the proficiency of the coupled FEM-BEM technique

in solving the forward problem. We first show the efficiency of the Nyström method

and the effectiveness of the FEM in solving BVPs associated with operators Ge

and Gi respectively. We then validate our numerical implementation of the coupled

FEM-BEM method, by considering instances of the forward scattering problem for

which the true solution is known. The first test problem we consider is the case
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where ∂D is a circle, in which case the true solution is known exactly. After that

we consider the case where ∂D is a square which is a problem of great interest in

its own right (see [66, 44, 54, 83] and references therein). In Section 3.4.4 we give

excellent results for this particular forward problem using the coupled FEM-BEM

technique.

3.4.1 Efficiency of the Nyström Method

In the special case where Ω is a circle and λ = −R(uinc), there exists a series

representation (called the Mie-series solution) to the BVP which defines Geλ. Taking

the incident wave-direction to be d̂ = (1, 0), the Mie-series solution is given by

Geλ(r, θ) = −
∞∑

m=−∞

imJ|m|(ka)

H
(1)
|m|(ka)

H
(1)
|m|(kr)(cos mθ + i sin mθ),

where a is the radius of D, J|m| and H
(1)
|m| represent Bessel’s and Hankel’s function

of the first kind of degree |m| respectively.

In Table 3.1, we measure the maximum absolute difference between the far field

corresponding to our approximate solution and the Mie-series solution, over 1000

equally spaced points around the unit circle. The results contained therein illustrate

the exponential convergence achieved by the Nyström method.

N Error
3 1.241e-1
4 9.881e-3
5 3.956e-4
6 1.005e-5
7 2.311e-7
8 7.152e-9
9 4.835e-10

N Error
7 1.320e-3
8 2.054e-4
9 2.476e-5
10 2.364e-6
11 1.833e-7
12 1.184e-8
13 7.624e-10

N Error
15 5.755e-5
16 1.111e-5
17 1.824e-6
18 2.582e-7
19 3.185e-8
20 3.453e-9
21 3.767e-10

Table 3.1: Error between the exact far field of Geλ and the approximate far field
obtained using the Nyström scheme when λ = −R(uinc), for varying values of N .
The three wavenumbers considered are k = π

2
(left), k = π (center) and k = 2π

(right).

63



3.4. NUMERICAL RESULTS

3.4.2 Accuracy of the FEM

To demonstrate accuracy for the FEM, we make use of the following result.

Proposition 3.4.1. Suppose Ω is the annulus centered at the origin with outer

radius 1. Then the function v(x, y) = sin a(x + y) solves (3.6)–(3.8) in the special

case where n(x) = 1, λ(x) = a(x + y) cos a(x + y) + ik sin a(x + y) for x ∈ Ω and

(3.7) is the Dirichlet boundary condition v(x, y) = sin a(x + y) for (x, y) ∈ ∂D,

provided k =
√

2a.

Thus in the special case above, the exact value of Giλ is known. In Table 3.2, we

demonstrate the accuracy of the FEM by measuring the L2-norm error between

the true value of Giλ given in Proposition 3.4.1, and the approximate value result-

ing from the FEM. We note that we generate the FEM mesh using the DistMesh

package [81].

h Error
0.1 4.3081e-3
0.05 9.4984e-4
0.025 2.3210e-4
0.0125 5.4802e-5
0.00625 1.3611e-5
0.003125 3.3684e-6

h Error
0.1 1.8315e-2
0.05 3.8982e-3
0.025 9.6915e-4
0.0125 2.2916e-4
0.00625 5.7215e-5
0.003125 1.4149e-5

h Error
0.1 7.3493e-2
0.05 1.6016e-2
0.025 4.0376e-3
0.0125 9.5619e-4
0.00625 2.3911e-4
0.003125 5.9057e-5

Table 3.2: Error between the exact value of Giλ and our approximate solution at
the FEM mesh points using the FEM for k = π

2
(left), k = π (center) and k = 2π

(right). In each table we have fixed the radius of D to be 0.6. The values for N are
9, 13 and 21 respectively.

3.4.3 Validation of the Coupled FEM-BEM Scheme

To validate our implementation of the coupled FEM-BEM technique, we now con-

sider a test problem for which the Mie-series solution to the forward problem is

known. We present tables for k = π
2
, k = π, 2π. Using Table 3.1 as a guide, we fix a

suitable value for N to highlight the effect of refining the mesh-size h in Table 3.3.

We then fix a value for h, to analyze the effect of varying N in Table 3.4.
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We take the wave-direction to be d̂ = (1, 0), n(x) = 1 for x ∈ Ω and D to be the

circle centered at the origin, with radius 0.6. We further assume that the boundary

condition on ∂D is the Dirichlet condition u = 0. The error tables are produced by

considering 1000 equally spaced points around the unit circle, and then measuring

the maximum absolute difference between the far field corresponding to the coupled

FEM-BEM solution and the Mie-series solution.

h Error
0.1 2.4961e-3
0.05 4.3498e-4
0.025 1.1706e-4
0.0125 3.0294e-5
0.00625 6.9530e-6
0.003125 1.7447e-6

h Error
0.1 1.1349e-2
0.05 2.2603e-3
0.025 6.5902e-4
0.0125 1.3218e-4
0.00625 4.4789e-5
0.003125 8.0216e-6

h Error
0.1 4.9056e-2
0.05 1.0796e-2
0.025 2.5665e-3
0.0125 7.1020e-4
0.00625 1.7201e-4
0.003125 3.9412e-5

Table 3.3: Maximum error in the far field between the true and numerical solution for
k = π

2
(left), k = π (center) and k = 2π (right). We have fixed N = 9 (left), N = 13

(center) and N = 21 (right). These values show that the order of convergence of
the FEM is preserved in the FEM-BEM technique.

N Error
3 2.0805e-2
4 6.1758e-4
5 1.0276e-5
6 1.6607e-6
7 1.7783e-6
8 1.6914e-6
9 1.7447e-6

N Error
7 2.2143e-5
8 8.4286e-6
9 8.2247e-6
10 8.0123e-6
11 1.0008e-5
12 1.0449e-5
13 8.0216e-6

N Error
15 3.7221e-5
16 3.6226e-5
17 3.6111e-5
18 3.8888e-5
19 3.6711e-5
20 3.7460e-5
21 3.9411e-5

Table 3.4: Maximum error in the far field between the true and numerical solution
for k = π

2
(left), k = π (center) and k = 2π (right). We have fixed h = 0.003125 for

all three tables. These values show that increasing N does not necessarily reduce
the error between the true and numerical solution. This is because the Nyström
scheme converges much more rapidly than the FEM. Consequently, the error result-
ing from the Nyström scheme becomes dominated by the error from the FEM, once
N surpasses a certain threshold.

3.4.4 Scattering by a Square

In this section, we consider the forward problem in the case where D is a square of

side length 1. We first verify in Table 3.5 that the FEM effectively solves the BVP
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defined by Gi over Ω, which now possesses a non-smooth boundary.

We then provide error tables for the coupled FEM-BEM technique as a whole.

Unlike Section 3.4.3 however, the true solution to the forward problem is unknown.

However, a very accurate numerical solution to this forward problem can be obtained

using the MPSpack toolbox in Matlab [9], which we shall henceforth refer to as the

“MPS-solution”.

In Table 3.6, we fix a suitable value for N to highlight the effect of refining the

mesh-size h. In Table 3.7, we fix an appropriate value for h, to show the effect of

varying N . In both cases, the results are qualitatively similar to those observed in

the previous section.

h Error
0.1 1.5549e-2
0.05 3.1623e-3
0.025 8.7988e-4
0.0125 2.1958e-4
0.00625 5.3455e-5
0.003125 1.3272e-6

h Error
0.1 7.1651e-2
0.05 1.6530e-2
0.025 3.6472e-3
0.0125 4.3282e-4
0.00625 2.3226e-4
0.003125 5.8020e-5

h Error
0.1 2.3100e-1
0.05 5.8019e-2
0.025 1.4842e-2
0.0125 3.4115e-3
0.00625 8.7846e-4
0.003125 2.3111e-4

Table 3.5: Error between the exact value of Giλ and our approximate solution using
the FEM for k = π

2
(left), k = π (center) and k = 2π (right). In each table we

have fixed the side-length of D to be 0.5. To account for the non-smoothness of
the boundary ∂D, we have employed mesh-refinement at the corners the square;
the distribution of the mesh size h is given according to the formula h(x, y) =
min{h1(x, y), h2(x, y), h3(x, y), h4(x, y)}, where h1(x, y) = 0.5 + ‖(x, y)− (0.5, 0.5)‖,
h2(x, y) = 0.5 + ‖(x, y) − (−0.5, 0.5)‖, h3(x, y) = 0.5 + ‖(x, y) − (0.5,−0.5)‖ and
h4(x, y) = 0.5 + ‖(x, y)− (−0.5,−0.5)‖.

h Error
0.1 1.6697e-2
0.05 6.1004e-3
0.025 2.2291e-3
0.0125 8.3334e-4
0.00625 3.0910e-5
0.003125 1.0518e-4

h Error
0.1 3.4810e-2
0.05 1.2242e-2
0.025 4.5037e-3
0.0125 1.7312e-3
0.00625 6.6305e-4
0.003125 2.5633e-4

h Error
0.1 1.0538e-1
0.05 3.0250e-2
0.025 9.4937e-3
0.0125 3.3268e-3
0.00625 1.2482e-3
0.003125 4.7774e-4

Table 3.6: Maximum error in the far field between the MPS-solution and FEM-BEM
solution for k = π

2
(left), k = π (center) and k = 2π (right). We have fixed N = 9

(left), N = 13 (center) and N = 21 (right).
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N Error
3 2.582oe-2
4 1.0889e-2
5 1.8398e-3
6 1.3033e-3
7 2.9459e-4
8 3.3404e-4
9 1.0518e-4

N Error
7 1.3826e-3
8 6.7072e-4
9 2.6819e-4
10 1.9145e-4
11 2.7829e-4
12 2.7263e-4
13 2.5633e-4

N Error
15 4.7849e-4
16 4.8089e-4
17 4.7643e-4
18 4.7545e-4
19 4.7845e-4
20 4.7904e-4
21 4.7774e-4

Table 3.7: Maximum error in the far field between the MPS-solution and FEM-
BEM solution for k = π

2
(left), k = π (center) and k = 2π (right). We have fixed

h = 0.003125 for all three tables.

Figure 3.2: Visualization of the mesh-refinement given in Table 3.5. Here h = 0.025.
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3.4.5 Discussion

It is clear from the results of the previous section that our implementation of the

coupled FEM-BEM technique is highly effective in accurately solving the forward

problem. We believe our coupled FEM-BEM scheme can be significantly improved

by implementing a higher order FEM, much like [39]. This is because when we

compare Table 3.1 and Table 3.2, we immediately notice that the Nyström method

has much faster convergence than the FEM. Consequently, when we combine both

methods in the coupled FEM-BEM technique, the error from the Nyström scheme

eventually becomes dominated by the error from the FEM, as evidenced in Table 3.4

and Table 3.7. Therefore incorportating a higher order FEM would produce better

results, which is verified in [39].

Knowing how to choose the parameters from the previous section depends on the

level of accuracy required. As an example, suppose we wanted to achieve an error

of approximately 10−6 when k = π
2
. Then noting that the results in Tables 3.3 and

3.6 are qualitatively similar to the results in Table 3.2, we choose h and N so that

a balanced error of 10−6 occurs in the FEM and Nyström method respectively.

Table 3.2 suggests to achieve an error of 10−6, we must take h = 0.003125. From

Table 3.1, N = 7 seems sufficient to achieve an error of 10−6 in the Nyström scheme.

The fact that this particular choice of parameters works is then verified in Table 3.4.

We mentioned in Section 3.1 that the accuracy of the FEM depends on using a fixed

number of elements per wavelength in the FEM mesh. This explains the visible

trends in Tables 3.2, 3.3 3.5 and 3.6 of the error becoming larger for fixed h as k

increases.
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Chapter 4

Coupled FEM-BEM Technique for

Inhomogeneous Problems

4.1 The Inhomogeneous Problem

In the previous chapter, we applied a coupled FEM-BEM technique to the for-

ward problem. In Chapters 5–6 we will describe a numerical method to solve the

corresponding inverse problem, which will involve solving heterogeneous BVPs char-

acterized by an inhomogeneous Helmholtz equation. In this chapter we explain how

to numerically solve forward inhomogeneous BVPs, which take the following form:

Definition 4.1.1 (Inhomogeneous Problem). Suppose g ∈ C(R2 \D) has compact

support contained in Ω and n(x) = 1 for x ∈ R2 \ B. Find the solution u ∈

C2(R2 \ D̄) ∩ C(R2 \D) to

4u(x) + k2n(x)u(x) = g(x) for x ∈ R2 \ D̄, (4.1)
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satisfying the Sommerfeld radiation condition

lim
r→∞

√
r

(
∂u

∂r
− iku

)
= 0, r = |x|,

uniformly with respect to the direction x
|x| , and a boundary condition

Bu(x) = f(x), x ∈ ∂D, (4.2)

where the operator B and the function f depend on the material properties of the

scatterer D.

This inhomogeneous problem is a challenging generalization of the forward problem

from the previous chapter; the primary difference being we now assume g 6= 0.

As a result, all the challenges discussed in Section 3.1 associated with the forward

problem still remain. In particular, the nature of the problem dictates that standard

approaches commonly used for solving BVPs cannot be utilized.

The FEM, for example, cannot be applied because the problem is defined over

an unbounded region. Moreover, adaptations of the FEM (such as the expanding

grids technique) are not ideal, because they do not ensure the Sommerfeld radiation

condition is satisfied exactly.

BEM techniques are not applicable either. This is because we do not assume the

refractive index function n(x) in (4.1) to be constant, and BEMs are only applicable

to homogeneous problems.

The main challenge, however, which was previously absent, is our new assumption

that the right hand side of (4.1) is non-zero. This prohibits us from applying the

coupled FEM-BEM technique from the previous chapter. Instead we develop a

novel extension of the coupled FEM-BEM technique, in which the function g(x)

appearing in (4.1) is suitably accounted for. We formulate this new coupled FEM-

BEM technique in the following section.
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4.2 Formulation

We begin by seeking a solution of the form

u(x) =

 uint(x), x ∈ Ω,

uext(x), x ∈ Ωc,

for uint ∈ H1(Ω) and uext ∈ W(Ωc), such that u and ∂u
∂n are continuous across ∂Ω.

As in Chapter 3 we suppose the quantity µ = R(u) is known, where

[R(u)](x) =
∂u

∂n
(x) + iku(x), x ∈ ∂Ω,

and n represents the outward pointing unit normal on ∂Ω. Then returning to the

notation from Chapter 3, it is clear that

uext = Geµ.

Now the interior field uint must satisfy the inhomogeneous Helmholtz equation (4.1),

the boundary condition (4.2) on ∂D, and the boundary condition R(uint) = µ on

∂Ω. Recall from Chapter 3 that Giµ satisfies both these boundary conditions, as

well as the Helmholtz equation

4u(x) + k2n(x)u(x) = 0, x ∈ Ω. (4.3)

Hence we can write

uint = Giµ+Gpg,

where Gpg is given by the following definition.

Definition 4.2.1. Given a function g having compact support Ω, Gpg is defined to
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be the weak solution v to the BVP

4v(x) + k2n(x)v(x) = g(x), x ∈ Ω, (4.4)

v(x) = 0, x ∈ ∂D, (4.5)

[R(v)](x) = 0, x ∈ ∂Ω. (4.6)

Equipped with this definition, we establish the following result.

Proposition 4.2.2. The solution to the inhomogeneous problem given in Definition

4.1.1 is

u =

 Giµ+Gpg, x ∈ Ω,

Geµ, x ∈ R2 \B,
(4.7)

provided

γGiµ+ γGpg = γGeµ on ∂Ω. (4.8)

Proof. The function u defined in (4.7) satisfies (4.1)–(4.2) by definition of the oper-

ators Ge, Gi and Gp. Thus all that remains to show is that u and ∂u
∂n are continuous

across ∂Ω. Note from the definitions of Gi and Gp that

R(u) = R (Giµ+Gpg)

= R(Giµ) +R(Gpg)

= µ+ 0

= µ.

From the definition of Ge we have

R(Geµ) = µ.
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In that case it follows

R(u) = R(Geµ)

= µ,

which implies R(u) is continuous across ∂Ω. Noting that (4.8) ensures continuity of

u across ∂Ω, we deduce ∂u
∂n must also be continuous across ∂Ω.

Notice (4.8) can be rewritten as

γ(Ge −Gi)µ = γGpg on ∂Ω, (4.9)

which is similar to the operator equation (3.13) we had in Chapter 3. The primary

difference is that we need to compute Gpg, which we now explain.

4.3 Evaluating the induced field

To compute the induced field v = Gpg for a given function g defined on Ω, we use

the FEM. We begin by multiplying (4.4) through by a test function w ∈ H1(Ω) and

integrate over Ω, which yields

∫∫
Ω

w(x)4v(x) dx + k2

∫∫
Ω

n(x)w(x)v(x) dx =

∫∫
Ω

w(x)g(x) dx.

Applying Green’s first identity [5, p.325] to the first integral on the left then gives

∫∫
Ω

∇v(x) · ∇w(x) dx− k2

∫∫
Ω

n(x)w(x)v(x) dx

=

∫
∂Ω∪∂D

w(x)
∂v

∂n
(x) dS −

∫∫
Ω

w(x)g(x) dx.
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Now recall that v satisfies the Robin boundary condition [R(v)](x) = 0 for x ∈ ∂Ω,

and hence

∂v

∂n
(x) = −ikv(x)

for x ∈ ∂Ω. Thus

∫
∂Ω∪∂D

w(x)
∂v

∂n
(x) ds =

∫
∂D

w(x)
∂v

∂n
(x) ds+

∫
∂Ω

w(x)
∂v

∂n
(x) ds

=

∫
∂D

w(x)
∂v

∂n
(x) ds− ik

∫
∂Ω

w(x)v(x) ds.

It follows that the weak form of (4.4)–(4.6) is to solve

∫∫
Ω

∇v(x) · ∇w(x) dx− k2

∫∫
Ω

n(x)v(x)w(x) dx + ik

∫
∂Ω

v(x)w(x) ds

=

∫
∂D

w(x)
∂v

∂n
(x) ds−

∫∫
Ω

w(x)g(x) dx (4.10)

for w ∈ H1(Ω). We then seek an approximate solution vh to (4.10) by projecting

v onto the finite-dimensional subspace Wh ⊂ H1(Ω), defined in Section 3.3.2. We

thus require

∫∫
Ωh

∇v(x) · ∇φj(x) dx− k2

∫∫
Ωh

n(x)v(x)φj(x) dx + ik

∫
∂Ωh

v(x)φj(x) ds

=

∫
∂Dh

φj(x)
∂v

∂n
ds−

∫∫
Ωh

φj(x)g(x) dx (4.11)

to hold for j = 0, 1, ..., l. We then seek an approximate solution vh to (3.26) of the

form

vh(x) =
l∑

i=0

viφi(x), (4.12)
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where the coefficients vi ≈ v(xi) are unknown. Substituting (4.12) into (4.11), we

get:

l∑
i=0

vi

(∫∫
Ωh

∇φi(x) · ∇φj(x) dx− k2

∫∫
Ωh

n(x)φi(x)φj(x) dx + ik

∫
∂Ωh

φi(x)φj(x) ds

)
=

∫
∂Dh

φj(x)
∂v

∂n
(x) ds−

∫∫
Ωh

φj(x)g(x) dx.

We write this integral equation in the form of a matrix equation

(B − k2C + ikD)v = g, (4.13)

where B, C and D are given by (3.29)–(3.31), and

gj =

∫∫
Ωh

φj(x)g(x) dx, j = 0, 1, . . . , l.

Equation (4.13) is then solved using Gaussian elimination for the unknown vector

v containing the basis coefficients (vi)0≤i≤l of v. Before doing so however, we must

account for the Dirichlet boundary condition on ∂D. We do this by identifying

which nodes lie on ∂D; the rows of B − k2C + ikD corresponding to such nodes

are replaced with corresponding rows of the identity matrix, while replacing the

corresponding entries of g with 0.

4.4 Numerical Results

First we demonstrate the accuracy of the FEM in computing Gpg, by considering

a special instance of the BVP (4.4)–(4.6) for which the true solution is known. We

then give error tables which show the accuracy of the coupled FEM-BEM scheme

as a whole in solving the inhomogeneous problem. While doing so, we will show the

effect of refining the mesh-size and increasing the number of Nyström points, as in

Section 3.4.3.
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Accuracy of the FEM in computing Gpg

First we derive a special instance of the BVP (4.4)–(4.6) for which the true solution

is known.

Proposition 4.4.1. Let D be the circle centered at the origin with radius R < 1

and let

g(x) = k2(n(x)− 1)v1(x) + k2n(x)v2(x), (4.14)

where

v1(x) =
∞∑
p=0

[
apJp(kr) +H(1)

p (kr)
]
eipθ, (4.15)

v2(x) =
∞∑
p=1

[
cpr

p + r−p
]
eipθ, (4.16)

and n is an arbitrary function in Ω. Then

v(r, θ) = v1(r, θ) + v2(r, θ)

is the solution to (4.4)–(4.6) when

ap =
(p− ik)

[
1 +H

(1)
p (k)

]
− kH(1)

p−1(k) + (p+ ik)
[
R−pH

(1)
p−1(Rk) +R−2p

]
(ik − p)Jp(k) + kJp−1(k)− (p+ ik)R−pJp(Rk)

,

cp = −R−pH(1)
p−1(Rk)−R−2p − apR−pJp(Rk),

where Jp represents Bessel’s function of the first kind of degree p, H
(1)
p represents

Hankel’s function of the first kind of degree p, and (r, θ) denote the polar coordinates

of x.
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Proof. Let

v1(x) =
∞∑
p=0

[
apJp(kr) + bpH

(1)
p (kr)

]
eipθ, (4.17)

where al and bl are arbitrary constants. Then noting that v1(x) satisfies the Helmholtz

equation

4v1(x) + k2v1(x) = 0

for x ∈ Ω, we deduce v1 also solves

4v1 + k2n(x)v1(x) = k2(n(x)− 1)v1(x),

for any function n. Now let

v2(x) = c0 + d0 log r +
∞∑
p=1

[
cpr

p + dpr
−p] eipθ, x ∈ Ω,

so that 4v = 0, where cp and dp denote arbitrary constants. Then

4v1 + k2n(x)v1(x) +4v2(x) = k2(n(x)− 1)v1(x).

That is,

4v1 + k2n(x)v1(x) +4v2(x) + k2n(x)v2(x) = k2(n(x)− 1)v1(x) + k2n(x)v2(x).

Hence, the equation

4v + k2n(x)v(x) = k2(c0 + d0 log r)n(x)

+ k2

∞∑
p=0

[
ap(n(x)− 1)Jp(kr) + bp(n(x)− 1)H(1)

p (kr) + cpn(x)rp + dpn(x)r−p
]
eipθ
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has solution

v(x) = v1(x) + v2(x)

= a0J0(kr) + b0H
(1)
0 (kr) + c0 + d0 log r +

∞∑
p=1

[
apJp(kr) + bpH

(1)
p (kr) + cpr

p + dpr
−p] eipθ.

Now we require [R(v)](x) = 0 on ∂Ω and v(x) = 0 on ∂D. Noting that

∂v

∂r
= ka0J

′
0(kr) + kb0{H(1)

0 }′(kr) +
d0

r
+
∞∑
p=1

[
kapJ

′
p(kr) + kbp{H(1)

p }′(kr) + pcpr
p−1 − pdpr−p−1

]
eipθ,

and using

J ′p(kr) = Jp−1(kr)− p

kr
Jp(kr),

{H(1)
p }′(kr) = H

(1)
p−1(kr)− p

kr
H(1)
p (kr),

we get

R(u) = a0 [kJ−1(kr) + ikJ0(kr)] + b0

[
kH

(1)
−1 (kr) + ikH

(1)
0 (kr)

]
+ c0 + d0

(
1

r
+ log r

)
+
∞∑
p=0

{
ap

[
kJp−1(kr)− p

r
Jp(kr) + ikJp(kr)

]
+ bp

[
kH

(1)
p−1(kr)− p

r
H(1)
p (kr) + ikH(1)

p (kr)
]

+ cp
[
prp−1 + ikrp

]
+ dp

[
−pr−p−1 + ikr−p

]}
eipθ.

Thus the two boundary conditions will be satisfied provided

ap [kJp−1(k)− pJp(k) + ikJp(k)] +bp

[
kH

(1)
p−1(k)− pH(1)

p (k) + ikH(1)
p (k)

]
+ cp [p+ ik] + dp [−p+ ik] = 0 (4.18)

and

apJp(Rpk) + bpH
(1)
p−1(Rk) + cpR

p + dpR
−p = 0, (4.19)

78



4.4. NUMERICAL RESULTS

while taking a0 = b0 = c0 = d0 = 0. Now let bp = dp = 1. Then rearranging (4.19)

gives

cp = −R−pH(1)
p−1(Rk)−R−2p − apR−pJp(Rk).

Substituting this back into (4.18) and simplifying, we get

ap =
(p− ik)

[
1 +H

(1)
p (k)

]
− kH(1)

p−1(k) + (p+ ik)
[
R−pH

(1)
p−1(Rk) +R−2p

]
(ik − p)Jp(k) + kJp−1(k)− (p+ ik)R−pJp(Rk)

.

To demonstrate the accuracy of the FEM in solving inhomogeneous BVPs of the

form (4.4)–(4.6), we use the FEM to compute Gpg in the special case where D is the

circle centered at the origin with radius 0.6, and g is given by (4.14). Then we give

the L2-error in Table 4.1 between this approximate solution and the true solution

derived in Proposition 4.4.1. We compute the L2 error using a Gauss-rectangle rule

taking the quadrature points to be the FEM mesh points.

h Error
0.1 5.2222e-3
0.05 1.4589e-3
0.025 3.8205e-4
0.0125 9.7206e-5
0.00625 2.5899e-5
0.003125 7.0668e-6

h Error
0.1 3.4811e-2
0.05 9.2527e-3
0.025 2.4901e-3
0.0125 7.0136e-4
0.00625 1.8948e-4
0.003125 4.5109e-5

h Error
0.1 8.8205e-2
0.05 2.3561e-2
0.025 6.1429e-3
0.0125 1.6910e-4
0.00625 4.3873e-4
0.003125 1.1055e-4

Table 4.1: L2 error between the exact value of Gpg and our approximate solution at
the FEM mesh points using the FEM for k = π

2
(left), k = π (center) and k = 2π

(right), where g is given by (4.14). In each table we have fixed the radius of D to
be 0.6.

Next we show the accuracy of the coupled FEM-BEM technique in solving Inhomo-

geneous problems of the form given in Definition 4.1.1. To do so, we make use of

the following result (taken from [35]) in order to design a suitable test problem.
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Lemma 4.4.2. The radiating wave functions

em(r, θ) = H
(1)
|m|(kr)e

imθ, m = 0, 1, 2, . . . ,∞,

satisfy the homogeneous Helmholtz equation

4u(x) + k2u(x) = 0, x ∈ R2 \ D̄,

and the Sommerfeld radiation condition. The far field of em is given by [35]

e∞m (θ) =

√
1

πk
(−1)m(1− i)eimθ.

For a proof of this lemma, we refer the reader to Section 9.5 of the Appendix. It

follows that if we define

u(r, θ) = H
(1)
1 (kr)eiθ,

then

4u(x) + k2u(x) = 0

for x ∈ R2 \ D̄. Therefore,

4u(x) + k2u(x) + n(x)k2u(x)− n(x)k2u(x) = 0,

and hence

4u(x) + n(x)k2u(x) = (n(x)− 1)k2u(x), x ∈ R2 \ D̄.

That is, u is the solution to the inhomogeneous problem given in Definition 4.1.1 for

some arbitrary function n(x) having compact support Ω, in the special case where
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D is the circle centered at the origin with radius R, with boundary condition (4.2)

u(R, θ) = H
(1)
1 (Rk)eiθ,

and right hand side

g(x) = (n(x)− 1)k2u(x).

In that case, the far field corresponding to u is given by

u∞(θ) =

√
1

πk
(i− 1)eiθ.

In Tables 4.2–4.3, we solve the inhomogeneous problem for the above special case

using the coupled FEM-BEM technique, and then measure the L2 error in the far

field as in Section 3.4.3. In Table 4.2 we fix values for the number of points N used

in the Nyström scheme to highlight the effect of refining the mesh-size h. In Table

4.3 we fix values for h to analyze the effect of varying N . We use the same values

for N and h from Chapter 3, because the numerical schemes we describe later in the

thesis will require the forward medium problem and the inhomogeneous problem to

be solved conjointly. For both tables, we take R = 0.6 and the function n(x) to be

n(x) =


|x| if x ∈ Ω,

1 if x ∈ R2 \B.

We have also provided a visual comparison between the true solution and the coupled

FEM-BEM solution when k = π, N = 13, h = 0.003125 in Figure 4.1. Note the

solution has a distinct spiral pattern, which is due to the radial H
(1)
1 (πr) component

of the solution.
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h Error
0.1 2.1822e-3
0.05 5.0109e-4
0.025 1.3904e-4
0.0125 3.2580e-5
0.00625 7.9003e-6
0.003125 1.9129e-6

h Error
0.1 1.3529e-2
0.05 2.4394e-3
0.025 6.8038e-4
0.0125 1.5435e-4
0.00625 4.7100e-5
0.003125 8.3927e-6

h Error
0.1 5.1349e-2
0.05 1.2526e-2
0.025 2.7014e-3
0.0125 7.2999e-4
0.00625 1.9145e-4
0.003125 3.8306e-5

Table 4.2: Maximum error in the far field between the true and numerical solution
for k = π

2
(left), k = π (center) and k = 2π (right). We have fixed N = 9 (left),

N = 13 (center) and N = 21 (right).

N Error
3 5.3793e-2
4 1.8240e-3
5 3.3598e-5
6 3.6739e-6
7 3.7458e-6
8 3.6189e-6
9 1.9129e-6

N Error
7 2.4852e-5
8 9.1569e-6
9 9.2867e-6
10 8.3793e-6
11 2.6298e-5
12 2.3589e-5
13 8.3927e-6

N Error
15 3.8530e-5
16 3.6309e-5
17 3.8106e-5
18 3.7234e-5
19 3.6356e-5
20 3.7610e-5
21 3.8306e-5

Table 4.3: Maximum error in the far field between the true and numerical solution
for k = π

2
(left), k = π (center) and k = 2π (right). We have fixed h = 0.003125 for

all three tables.

Figure 4.1: True solution u(r, θ) = H
(1)
1 (πr)eiθ to the inhomogeneous problem on

the left, coupled FEM-BEM solution on the right. Here k = π, h = 0.003125,
N = 13, and the far field error is 8.4 × 10−6. Note that the method of Surface
Integral Equations cannot compute the exterior field close to the boundary because
the integrand in (3.21) becomes singular. This corresponds to the white annulus
region in the figure on the right, in which the exterior field has not been computed.
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4.4.1 Discussion

We deduce from the results of the previous section that our implementation of the

coupled FEM-BEM technique is highly effective in accurately solving the inhomo-

geneous problem. We note that the results in Table 4.1 are qualitatively similar to

those of Table 3.2, and the convergence in both these tables is significantly slower

than that of Table 3.1. It follows that when we solve the inhomogeneous problem

using our coupled FEM-BEM technique, the error from the Nyström scheme will

eventually become dominated by the error from the FEM. For this reason, we believe

we can solve the inhomogeneous problem more efficiently by incorporating a higher

order FEM into our numerical method.

Knowing how to choose the parameters h and N in our numerical method depends

on the level of accuracy required. To achieve an error of 10−6 when k = π
2

for

example, we must choose h and N so that a balanced error of 10−6 occurs in the

computation of operators Ge, Gi and Gp.

Tables 3.2 and 4.1 suggest that to achieve an error of 10−6, we must take h =

0.003125. From Table 3.1, N = 7 seems sufficient to achieve an error of 10−6 in the

Nyström scheme. The fact that this particular choice of parameters works is then

verified in Table 4.3.

We mentioned in the previous chapter that the accuracy of the FEM depends on

using a fixed number of elements per wavelength in the FEM mesh. This explains

the visible trends in Tables 4.1 and 4.2 of the error becoming larger for fixed h as k

increases.
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Chapter 5

Inverse Medium Problem for

Non-Stratified Media

In this chapter we solve the inverse of the forward problem discussed in Chapter 3,

in the special case where the obstacle D within Ω is absent.

We therefore take D = ∅ so that Ω = B and consider the interaction of an incident

plane wave

uinc(x) = eikx·d̂ (5.1)

with the two dimensional heterogeneous medium described in Chapter 3 with re-

fractive index n(x) for x ∈ R2, where k denotes the incident wavenumber, and the

unit vector d̂ is the plane wave direction.

Recall from Chapter 3 that we make the mild assumption that the heterogeneity of

the medium is contained in the unit disk B centered at the origin. Outside the unit

disk the refractive index is constant, and we normalize so that

n(x) = 1, x ∈ R2 \B.

Furthermore, we continue to describe the refractive index using the function m(x) :=
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1 − n(x), because it will be convenient to work with functions having compact

support.

Following the notation of Chapter 3, interaction of the incident field uinc with the

scatterer produces an induced field ui in B and a scattered field us in R2 \B. Note

here it is the heterogeneous medium inside B we refer to as the scatterer, because

D = ∅ and thus the heterogeneity is the sole cause of the scattered wave us. By

Definition 3.0.1, the scattered field satisfies the homogeneous Helmholtz equation

4us(x) + k2us(x) = 0, x ∈ R2 \B, (5.2)

and the Sommerfeld radiation condition [23, Equation (3.85)]

lim
|x|→∞

√
|x|
(
∂us

∂x
(x)− ikus(x)

)
= 0 (5.3)

uniformly with respect to the direction x̂, while ui satisfies the heterogeneous

Helmholtz equation

4ui(x) + k2n(x)ui(x) = 0, x ∈ B. (5.4)

For a given incident direction d̂ and refractive index m(x), the forward problem we

discussed in Chapter 3 is to compute the corresponding far field u∞(x̂,m). To solve

the corresponding inverse problem, we must compute the refractive index m given

far field data f∞. This equates to solving the ill-posed and nonlinear equation

Fd(m) = f∞, (5.5)

we discussed in Chapter 2, where the operator Fd : m 7→ u∞(x̂,m) maps the

function m(x) to the corresponding far field u∞(x̂,m). Note the operator Fd is

simply denoted as F in [23, Chapter 10]; we have used the subscript d to emphasise
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the dielectric nature of the scatter for which the operator is defined.

The extensive literature on inverse scattering problems (see [23] and references

therein) is predominantly focused on the problem of reconstructing the shape (or

impedance) of impenetrable scatterers. The theory for the inverse medium problem

is comparatively undeveloped, and uniqueness results do not sharply specify the

type or quantity of data required [23, Section 10.2]. However, Newton-type meth-

ods have been successfully applied to the inverse medium problem. In particular,

for square (or cubic) domains the quasi-Newton method was applied to compute

the tensor product Fourier coefficients of the refractive index [46, 47, 48]. For three

dimensional spherical domains, the refractive index was represented using a tensor

product of the spherical harmonics and splines [52, 53]. In the latter case, the scat-

tering problem was reformulated using the Lippmann–Schwinger volume integral

equations, and the resulting nonlinear problem was solved using the Levenburg–

Marquardt iteration.

The above articles assumed the refractive index m(x) to be radially symmetric; thus

being applicable only to stratified media. We solved the inverse problem, (5.5), for

both stratified and non-stratified media in [7], using the iterative solver described

in Chapter 2, equipped with the coupled FEM-BEM technique (see Chapter 3) as

the forward solver.

To forgo assumptions regarding the symmetry of m, we used the Logan–Shepp poly-

nomials [71] as a basis for the high order approximation of the function m inside B.

These polynomials are essentially functions of a single variable in a rotated frame of

reference, and therefore don’t require m to possess any axis symmetry (unlike tra-

ditional basis options such as Fourier series). Although there are several other basis

options available, Logan-Shepp polynomials along with Zernike polynomials are the

most accurate in approximating non axis-symmetric functions [11]. We favoured the

use of Logan-Shepp polynomials as these were recently used to successfully compute

high order approximations on the disk for various elliptic PDE problems [4]. The-
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oretically, these functions span the space of finite dimensional polynomials in two

variables, yet we show in Section 5.3 they can efficiently approximate much more

challenging functions.

In [7], we computed the Fréchet derivative using the method of finite-differences.

In this chapter we vastly improve upon our approach in [7] by using the novel cou-

pled FEM-BEM technique for the inhomogeneous Helmholtz equation discussed in

Chapter 3 instead, to numerically compute the Fréchet derivative. This approach

drastically reduces computation time, and allows us to use higher order approxima-

tions to obtain improved reconstructions.

5.1 Logan-Shepp Polynomials

As explained in Chapter 2, given an approximate solution m to (5.5), we seek an

improved approximation m+ q by solving the linearized equation

Fd(m) + F ′d(m)q = f∞, (5.6)

where F ′d denotes the Fréchet derivative of Fd at m. Equation (5.6) is discretized

using an ansatz space with basis

PN := {Pl,j : l ≤ j, j = 0, 1, 2, . . . , N},

and collocation at S points

x̂s =

(
cos

2πs

S
, sin

2πs

S

)
, s = 0, 1, . . . , S − 1,

where

Pl,j(x1, x2) =
1√
π
Uj

(
x1 cos

lπ

j + 1
+ x2 sin

lπ

j + 1

)
, (x1, x2) ∈ B,
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denote the Logan-Shepp Polynomials, and Uj is the j-th degree Chebyshev polyno-

mial of the second kind [1, Chapter 22]. The Logan–Shepp polynomials are orthog-

onal on the disk B, and are used to approximate functions with high order accuracy

(see Table 5.1). We show through numerical simulations in Section 5.3 that N = 15

is sufficient to reconstruct the key features of the refractive index for a range of

smooth and non-smooth heterogeneous media.

Our discrete approximations to q and m are thus

qN(x) =
N∑
j=0

j∑
l=0

ql,jPl,j(x) and mN(x) =
N∑
j=0

j∑
l=0

ml,jPl,j(x), (5.7)

where (ql,j)0≤l≤j≤N and (ml,j)0≤l≤j≤N represent the spectral coefficients of qN and

mN with respect to PN respectively.

5.2 Reformulating the Inverse Problem as a Dis-

crete Nonlinear Equation

Following Section 2.2.1, we solve the discretized equations

[Fd(mN)](x̂s) + [F ′d(mN)qN ](x̂s) = f∞(x̂s), s = 0, 1, . . . , S − 1,

by reformulating them as a linear system

Fm + F ′mq = f , (5.8)

where m = (m0,1,m1,1, . . . ,mN−1,N ,mN,N)T , q = (q0,1, q1,1, . . . , qN−1,N , qN,N)T and

f = (f 0,f 1, . . . ,fS−1)T . We solve the ill-posed equation (5.8) using the Levenburg-
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Marquardt scheme (see Chapter 2) which yields the regularized solution

q =
[
αI + (F ′m)T (F ′m)

]−1
(F ′m)T [f − Fm] ,

where I is the identity matrix and the regularization parameter α is chosen according

to the Morozov discrepancy principle.

To compute Fm, we use the coupled FEM-BEM scheme from Chapter 2. To compute

the Fréchet derivative, we use the following result [23, p. 333]:

Theorem 5.2.1. The operator Fd is Fréchet differentiable. The derivative is given

by

(Fd)′m q = ω∞,

where ω∞ is the far field pattern of the radiating solution ω ∈ H2
loc(R2) to

4ω + k2nω = k2uq in R2, (5.9)

u ∈ C(R2) is the unique solution to (5.2)–(5.4), and q has compact support B.

We compute the Fréchet derivative by solving the inhomogeneous Helmholtz equa-

tion (5.9) using the coupled FEM-BEM scheme in Chapter 4.

5.3 Numerical Results

In this section we present reconstructions for various challenging media that we used

in [7]. We consider the following test problems:

• Bowl: The heterogeneous region is the off-centre disk of radius 1/2 centered
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at c = (0.3, 0.3). The continuous refractive index function is

m(x) =

 2− 4|x− c|2, for |x− c|< 1/2,

1, otherwise.

• Ellipse: The heterogeneous region is contained inside an ellipse. The discon-

tinuous refractive index function is

m(x) =

 1.21, for
x2

1

42
+
x2

2

52
≤ 1

102
,

1, otherwise.

• Three disks: The heterogeneous region comprises three disks of radius 1/4

and centres c1 = (0.4, 0), c2 = (−0.2, 0.346) and c3 = (0.2,−0.346). The

discontinuous refractive index function is

m(x) =



1.21, for |x− c1|< 1/4,

1.21, for |x− c2|< 1/4,

1.44, for |x− c3|< 1/4,

1, otherwise.

For the bowl problem, we compute the far field using the coupled FEM-BEM tech-

nique from Chapter 3. To avoid the so called inverse crime of using data generated

from the forward solver for the inversion, we add Gaussian noise to generate the

reference data. That is, for s = 0, 1, . . . , S − 1, we add noise xs + ysi to the sim-

ulated data f s where xs, ys for s = 0, 1, . . . , S − 1, are independent samples of the

Gaussian distribution with zero mean and variance σ2. We visualise the computed

far field against the reference far field in Figure 5.1.

For the discontinuous ellipse and three-disks problem, we generate the reference far

field using solvers independent of our coupled FEM-BEM code. In particular, the

reference data for the three-disks problem is generated using a multiple scattering
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Figure 5.1: Plot of the real part of the far field computed by the forward solver
(blue) and the reference data generated by adding Gaussian noise (red), for the
‘bowl’ test problem. In the figure on the left, σ = 1× 10−2 and the mean signal to
noise ratio is 1 : 0.1278. In the figure on the right, σ = 5×10−2 and the mean signal
to noise ratio is 1 : 0.4447.

version of the Mie series. For the discontinuous ellipse problem, the reference data

is generated using a surface integral equation formulation [8] that we solve using a

high order Nyström scheme [23, Section 3.5].

In Table 5.1 we demonstrate the small number of degrees of freedom required to

approximate the refractive indexes of our test media using the Logan–Shepp poly-

nomials. In particular, we tabulate the relative L2 error in the discrete orthogonal

projection of the refractive index. In practice, the L2 norm is approximated using a

Gauss-rectangle rule with more than 20 000 points in the disk.

Motivated by the results in Table 5.1, we apply our algorithm to reconstruct the

three test media from far field data, using polynomials of degree N = 15 in the

Logan–Shepp expansion. We tabulate the relative L2 errors of the reconstructed

refractive index m(x) for each test problem in Table 5.2. There we also recall our

previous results for these test problems published in [7]. Comparing the two sets of

results side by side, we notice a significant improvement of the results we achieved

in [7], which is due to our implementation of the coupled FEM-BEM technique in

computing the Fréchet derivative.
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error error error
degree N d.o.f

bowl ellipse three disks
5 21 6.6% 4.3% 9.1%
10 66 2.5% 3.3% 5.5%
15 136 1.4% 2.6% 5.3%

Table 5.1: Relative L2 error of the discrete orthogonal projection of the refractive
index against number of degrees of freedom (d.o.f.) i.e. the number of Logan-Shepp

polynomials which form the orthogonal basis (d.o.f is given by (N+1)(N+2)
2

). Note
the convergence for the ellipse and three-disks problems are slower than the bowl,
and this is because the refractive indexes for these two media are discontinuous.

We also visualize the reconstructions for each test problem in Figures 5.2–5.5. For

each test problem we get excellent reconstructions of the key features of the me-

dia, including the sizes, locations and refractive-index values of all present inhomo-

geneities.

error error
medium noise σ

k = π k = 2π
bowl 1× 10−2 8.1% 15%

5× 10−2 16% 24%
ellipse 0 9.4% 8.9%

three disks 0 18% 13%

error error
medium noise σ

k = π k = 2π
bowl 1× 10−2 7.3% 9.0%

5× 10−2 10% 8.2%
ellipse 0 5.7% 5.9%

three disks 0 16% 12%

Table 5.2: Relative L2 error of the reconstructed refractive index m(x) in the unit
disk using Logan-Shepp Polynomials of degree 15. Results on the left are those
published in [7], in which we computed the Fréchet derivative using the method of
finite-differences. On average, the CPU times for those results were 3.2 hours (when
k = π) and 12.3 hours (when k = 2π), using Matlab with the parallel computing
toolbox, running on a desktop machine with a quad-core 2.8 GHz Intel Core i7
processor. The results on the right were generated using the methods discussed in
this chapter i.e. computing the Fréchet derivative using the coupled FEM-BEM
technique as explained in Chapter 3. On average, the CPU time was 5 minutes
(when k = π) and 10 minutes (when k = 2π).
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Figure 5.2: Reconstruction of the refractive index m(x) in the unit disk for the bowl
test problem (k = π) with noise parameter σ = 1× 10−2 using 6 incident directions.
Relative L2 error is 7.28%.
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Figure 5.3: Reconstruction of the refractive index m(x) in the unit disk for the
bowl test problem (k = 2π) with noise parameter σ = 5 × 10−2 using 6 incident
directions. Relative L2 error is 8.23%.
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Figure 5.4: Reconstruction of the refractive index m(x) in the unit disk for the
discontinuous ellipse test problem (k = 2π) using 4 incident directions. Relative L2

error is 5.97%.
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Figure 5.5: Reconstruction of the refractive index m(x) in the unit disk for the
three-disks test problem (k = 2π) using 6 incident directions. Relative L2 error is
12.23%.
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5.3.1 Discussion

Figures 5.2–5.5 illustrate visually the quality of reconstructions which correspond

to the relative errors of Table 5.2. We see that a relative L2 error of less than

10% translates to an accurate reconstruction, in the sense that the location and

magnitude of the heterogeneities are reconstructed almost exactly. When the relative

L2 error goes slightly above 10% (see Figure 5.5), the reconstruction is noticeably

poorer. Even though the locations of the heterogeneities have been recognised, their

magnitude is not clearly reconstructed like in Figures 5.2–5.4.

We notice in the reconstructions of Figures 5.2 and 5.3 that there are patches hav-

ing unexpected colours which appear in the part of the medium which should be

homogeneous. We also notice such patches appearing in the outer edges of the re-

construction in Figure 5.4. Also in Figure 5.4, there is some alternation of colour

in the center of the reconstructed image. Further unexpected patches are evident

in Figure 5.5. We hypothesize this is due to a form of Gibbs’ phenomenon, as we

are approximating the refractive index functions using a spectral basis. We suspect

that although higher order modes may achieve a higher overall quality of recon-

struction, they will increasingly induce odd irregularities occurring throughout the

reconstruction.

There is a noticeable difference in the error of the ‘three disks’ problem compared to

the other test problems. We hypothesize that perhaps more iterations are required

in Newton’s method for the ‘three disks’ problem to achieve the same reconstruction

quality as the other test problems.

Perhaps the most interesting result from the previous section is the noticeable dif-

ference of errors in Table 5.2 between the results published in [7], and the results

achieved in this chapter. Both approaches utilized the coupled FEM-BEM tech-

nique, but we improved on the method of finite-differences in [7] by computing the

Fréchet derivative using its analytic expression and our novel FEM-BEM scheme
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from Chapter 4. Thus by improving the forward solver, we were able to achieve

higher quality reconstructions. For this reason, it might be possible to improve

our results once more by incorporating a higher order FEM, although this is just

speculation which requires further research.

We note that a relative L2 error of approximately 1% corresponds roughly to an

error in the far field error of magnitude 10−4. Therefore it is sufficient to choose the

parameters N and h for the forward solver so that the far field error is at most 10−4.

Increasing N or refining h any further won’t yield better reconstructions, because

at best the relative error of the reconstruction is that of the projection (which is at

least 1.4% from Table 5.1 for N = 15). Doing so will only make computations more

numerically costly unnecessarily.
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Chapter 6

Inverse Coated Problem

In this chapter we numerically solve the inverse of the forward problem from Chapter

3 and for the sake of consistency, we use the same notation as before. This equates

to solving the ill-posed and nonlinear equation

Fc(m) = f∞, (6.1)

where the operator

Fc : m 7→ u∞(x̂,m)

maps the function m(x) to the corresponding far field u∞(x̂,m) of the solution to

to the forward problem. Note that Fc is analogous to the operator F studied in

[23, Chapter 10]; we have utilized the subscript c because in this context D is a

‘coated’ scatterer. We solve (6.1) using our modified Newton-type solver described

in Chapter 2. This requires solving the following three sub-problems, which we

discuss in this chapter:

• Finding a suitable ansatz AN to approximate m on Ω.

• Deriving an analytic representation for the Fréchet derivative F ′c(m).

• Evaluating the discrete Fréchet derivative F ′c(mN)qN for qN ∈ AN .
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Each problem is challenging in its own right, and constitutes an entirely new con-

tribution in the literature.

6.1 Approximation Theory

We assume Ω can be mapped bijectively into the rectangular reference domain R =

[−1, 1]× [0, 2π]. Note this assumption holds in our particular case of interest, where

D is simply connected. This assumption then enables us to approximate functions

on Ω using the “Angular Legendre” orthogonal functions on R from Chapter 2.

Suppose T is a bijective mapping from Ω into R. Then any point x ∈ Ω can be

written as

x = T−1 (u, v)

for some (u, v) ∈ R. We can therefore write any m defined on Ω as

m(x) = m̂(u, v), x ∈ Ω, (u, v) = Tx,

for m̂ = m ◦ T−1 on R. Thus we can approximate the function m(x) on Ω by

approximating the function m̂(u, v) on R, using the Angular Legendre functions.

Our approximation to m is given by

m̂N(u, v) =

N1∑
s=0

N2∑
t=−N2

as,tLs(u)eitv, (6.2)

where N = (N1 + 1)(2N2 + 1) and

as,t =
2s+ 1

4π

∫ 2π

0

∫ 1

−1

m̂(u, v)Ls(u)eitv dudv. (6.3)

In practice this integral is then approximated using Gaussian Quadrature (see Ap-
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pendix 9.7). We explicitly define T for when ∂D is a circle and square respectively

below:

∂D is a circle

Let ∂D be a circle centered at the origin with radius r0 < 1. Then a bijective

mapping from the annulus Ω to R is given by

Tr0 : (r, θ) 7→
(

2

1− r0

(r − r0)− 1, θ

)
.

Moreover, the inverse is given by

T−1
r0

(r, θ) =

(
1− r0

2
(r + 1) + r0, θ

)
.

∂D is a square

Let D be a square with side length 2l, where l < 1√
2
. Then a bijection Tsq from Ω

to R is given by

Tsq = Tr0 ◦ T ∗,

where

T ∗(r, θ) =

(
r0

1− rmin
(r − 1) + 1, θ

)
, rmin(θ) ≤ r ≤ rmax(θ) = 1,
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maps Ω to the annulus {x2 + y2 = r2 | r0 ≤ r ≤ 1}. Here

rmin(θ) =



l csc θ, for π
4
< θ ≤ 3π

4
,

−l sec θ, for 3π
4
< θ ≤ π, −π < θ ≤ −3π

4
,

−l csc θ, for − 3π
4
< θ ≤ −π

4
,

l sec θ, for − π
4
< θ ≤ π

4
.

Figure 6.1: Visualization of the mapping Tsq = Tr0 ◦ T ∗.

In Figure 6.1 we visualise the mapping Tsq in the general case, while in Figure 6.2

we visualise m̂ when m(z) = |z|.

Figure 6.2: Visualization of the distance function m(z) = |z| in Ω for square with
sides of length 2l = 0.4 (left), under the transformation T ∗ with r0 = 0.3 (middle),
and under the transformation Tsq = Tr0 ◦ T ∗ (right).
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6.2 An analytic representation for the Fréchet deriva-

tive

In this section we derive an analytic representation for the Fréchet derivative F ′c(m)

by establishing the Lippmann-Schwinger equation for the forward problem.

We extend the results in [23, Chapter 10] which are formulated over the unit disk B

which is a C2 domain, to the region Ω which is a Lipschitz domain. Although simi-

lar, our derivation requires more general formulations of the results utilized in [23,

Chapter 10], particularly Green’s identities and Green’s representation formula. In

Section 9.8 of the Appendix, we state the weaker forms (see [5, p.325], [34, p.102])

of Green’s identities and then derive Green’s Representation formula for Lipschitz

domains, in the setting of Sobolev spaces.

6.2.1 The Lippmann-Schwinger Equation

Lemma 6.2.1. If u ∈ H2
loc(R2 \ D̄) is a solution of (3.2)–(3.4), then u is a solution

of the Lippmann-Schwinger equation

u = uinc − k2

∫∫
R2\D̄

Φ(x,y)m(y)u(y) dy. (6.4)

Conversely, if u ∈ C(R2 \ D̄) is a solution of the Lippmann-Schwinger equation,

then u ∈ H2
loc(R2 \ D̄) and u is a solution of (3.2)–(3.4).

Proof. Suppose u ∈ H2
loc(R2 \ D̄) is a solution of (3.2)–(3.4), and that x ∈ R2 \ D̄ is

an arbitrary point. Furthermore, let B′ be an open ball (with outward unit normal

n) such that B′ contains Ω and x ∈ B′. Then applying Green’s representation
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formula (Theorem 9.8.3) in B′, we get

u(x) =

∫
∂B′∪∂D

{
∂u

∂n
Φ(x,y)− u(y)

∂Φ

∂n
(y)

}
ds(y)

−
∫∫

B′\D̄

{
4u(y) + k2u(y)

}
Φ(x,y) dy,

From (3.2),

4u(y) + k2u(y) = k2m(y)u(y), y ∈ B′ \ D̄.

Therefore,

u(x) =

∫
∂B′∪∂D

{
∂u

∂n
Φ(x,y)− u(y)

∂Φ

∂n
(y)

}
ds(y)

− k2

∫∫
B′\D̄

Φ(x,y)m(y)u(y) dy.

On the other hand, applying Green’s representation formula to uinc gives

uinc(x) =

∫
∂B′∪∂D

{
∂uinc

∂n
(y)Φ(x,y)− uinc(y)

∂Φ

∂n
(y)

}
ds(y).

By defining us(x) = ui(x)−uinc(x) for x ∈ Ω, it follows from Green’s second identity

and (3.3) that

∫
∂B′∪∂D

{
∂us

∂n
(y)Φ(x,y)− us(y)

∂Φ

∂n
(y)

}
ds(y) = 0.

That is,

u = uinc − k2

∫∫
B′\D̄

Φ(x,y)m(y)u(y)dy

= uinc − k2

∫∫
R2\D̄

Φ(x,y)m(y)u(y)dy,

since the function m(y) has compact support Ω ⊂ B′ \ D̄.
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To prove the second part of the statement, suppose u ∈ C(R2 \ D̄) satisfies the

Lippmann-Schwinger equation. If we define

us(x) := −k2

∫∫
R2\D̄

Φ(x,y)m(y)u(y) dy

for x ∈ R2 \ D̄, then us will satisfy the Sommerfeld radiation condition (3.3). The

remaining results follow from Theorems 8.1 and 8.2 of [23].

We are now in a position to derive an analytic representation for the Fréchet deriva-

tive F ′c(m).

Theorem 6.2.2. The operator F ′c defined in (6.1) is Fréchet differentiable. The

derivative is given by

(Fc)
′
m q = v∞,

where v∞ is the far field pattern of the radiating solution v ∈ H2
loc(R2 \ D̄) to

4v + k2nv = k2vq in R2 \ D̄,

v = 0 on ∂D,

u is the unique solution to (6.4), and q has compact support Ω.

Proof. Suppose u is the unique solution to (6.4). Then by Lemma 6.2.1, u is the

radiating solution to

4ṽ + k2nṽ = 0 in R2 \ D̄, (6.5)

ṽ = 0 on ∂D. (6.6)
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From [23, p. 277], the far field pattern of u is given by

Fc(m) = − k
2

4π

∫∫
R2\D̄

e−ikx·ym(y)u(y)dy.

It follows that

Fc(m+ hq) = − k
2

4π

∫∫
R2\D̄

e−ikx·y[m+ hq]w(y)dy,

where w is the radiating solution to

4w + k2(1− [m+ hq])w = 0 in R2 \ D̄, (6.7)

w = 0 on ∂D. (6.8)

Therefore,

Fc(m+ hq)−Fc(m) = − k
2

4π

∫∫
R2\D̄

e−ikx·y {[m(y) + hq(y)]w(y)−m(y)u(y)} dy

= − k
2

4π

∫∫
R2\D̄

e−ikx·ym(y)[w(y)− u(y)] dy − hk2

4π

∫∫
R2\D̄

e−ikx·yq(y)w(y) dy.

Then

F ′c(m)q = lim
h→0

Fc(m+ hq)−Fc(m)

h

= lim
h→0

{
− k2

4πh

∫∫
R2\D̄

e−ikx·ym(y)[w(y)− u(y)] dy − k2

4π

∫∫
R2\D̄

e−ikx·yq(y)w(y) dy

}
= − k

2

4π

∫∫
R2\D̄

e−ikx·ym(y) lim
h→0

{
w(y)− u(y)

h

}
dy − k2

4π

∫∫
R2\D̄

e−ikx·yq(y)
{

lim
h→0

w(y)
}
dy

= − k
2

4π

∫∫
R2\D̄

e−ikx·y[m(y)v(y) + q(y)u(y)] dy,

where v := u′mq is the Fréchet derivative of u with respect to m (in the direction of
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q). Thus by Lemma 6.2.1, F ′c(m)q is the far field pattern of v, where

v + k2

∫∫
R2\D̄

Φ(x,y)[m(y)v(y) + q(y)u(y)] dy = 0.

It follows from Theorem 8.1 of [23] that

4v + k2v = k2[m(y)v(y) + q(y)u(y)]

and thus 4v + k2nv = k2uq.

It follows that computing the Fréchet derivative requires finding the radiating solu-

tion to a boundary value problem (BVP) of the form

4v(x) + k2m(x)v(x) = g(x), x ∈ Ω, (6.9)

4v(x) + k2v(x) = 0, x ∈ R2 \B.

We compute the solution of the inhomogeneous Helmholtz equation (6.9) using the

coupled FEM-BEM scheme in Chapter 4.

6.3 Numerics

In this section, we consider three different media:

• Bowl: The heterogeneous region is the off-centre disk of radius 1/2 centered

at c = (0.3, 0.3). The continuous refractive index function is

m(x) =

 2− 4|x− c|2, for |x− c|< 1/2,

1, otherwise.

This is the same ‘bowl’ test problem used in Section 5.3, with the exception

that D 6= ∅. In particular, we consider the cases where D is the circle of

107



6.3. NUMERICS

diameter 0.4 and D is the square of side length 0.4.

• Three disks: When D is the circle of diameter 0.4, we also consider another

“three disks” problem, similar to that considered in Section 5.3. Here the

heterogeneous region comprises three disks of radius 0.15, 0.175, 0.125, and

centres c1 = (0.65, 0), c2 = (−0.424, 0.424), c3 = (0,−0.5) respectively. That

is, the discontinuous refractive index function is

m(x) =



1.44, for |x− c1|< 0.15,

1.21, for |x− c2|< 0.175,

1.625, for |x− c3|< 0.125,

1, otherwise.

• Periodic: For the third test problem, we take D to be the square of side length

0.4 and set m(x) to be the periodic function m(r, θ) = 1.5 + 0.5 sin(2θ). From

this point forward, we refer to this test problem as the ‘periodic’ problem.

We begin by demonstrating the accuracy of the Angular Legendre Polynomials in

approximating the refractive indexes of the above test media in Table 6.1. There we

tabulate the relative L2 error in the discrete orthogonal projection of each refractive

index, by approximating the L2 norm using a Gauss-rectangle rule with more than

20 000 points in Ω. We observe that although the Angular Legendre polynomials

require more degrees of freedom than the Logan-Shepp polynomials from Chapter

5, they’re still able to produce highly accurate approximations of our test functions.

Next we provide reconstructions for each test problem. For the bowl and periodic

test problems, we generate the far field using the coupled FEM-BEM technique

from Chapter 3. Much like Chapter 5, we avoid the so called inverse crime when

generating the reference data by adding Gaussian noise to the far field produced from

the forward solver for the inversion. We visualise the computed far field against the

reference far field in Figures 6.3-6.5 for the bowl and periodic test problems.
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Figure 6.3: Plot of the real part of the far field computed by the forward solver
(blue) and the reference data generated by adding Gaussian noise (red), for the
‘bowl’ test problem when D is the circle of diameter 0.4. In the figure on the left,
σ = 1 × 10−3 and the mean signal to noise ratio is 1 : 0.0031. In the figure on the
right, σ = 1× 10−2 and the mean signal to noise ratio is 1 : 0.0214.

Figure 6.4: Plot of the real part of the far field computed by the forward solver
(blue) and the reference data generated by adding Gaussian noise (red), for the
‘bowl’ test problem when D is the square of side length 0.4. In the figure on the
left, σ = 1× 10−3 and the mean signal to noise ratio is 1 : 0.0035. In the figure on
the right, σ = 1× 10−2 and the mean signal to noise ratio is 1 : 0.0418.
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Figure 6.5: Plot of the real part of the far field computed by the forward solver (blue)
and the reference data generated by adding Gaussian noise (red), for the ‘periodic’
test problem. Here σ = 1× 10−3 and the mean signal to noise ratio is 1 : 0.0043.

For the three-disks problem, the reference data is generated using a multiple scat-

tering version of the Mie series. Visualizations of our reconstructions for each test

problem are provided in Figures 6.6 - 6.9, and we provide additional results in Table

6.2. Similarly to Chapter 5, we see that we achieve excellent reconstructions for

each test problem.
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Figure 6.6: Reconstruction of the refractive index m(x) for the bowl test problem
(k = π) with noise parameter σ = 1× 10−3 using degree 7 and 4 incident directions.
Relative L2 error is 7.71%.
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Figure 6.7: Reconstruction of the refractive index m(x) for the three-disks problem
(k = 2π) using degree 10 and 6 incident directions. Relative L2 error is 17.03%.
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Figure 6.8: Reconstruction of the refractive index m(x) for the bowl test problem
(k = π) with noise parameter σ = 1× 10−3 using degree 9 and 4 incident directions.
Relative L2 error is 4.42%.
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Figure 6.9: Reconstruction of the refractive index m(x) for the periodic problem
(k = 2π) with noise parameter σ = 1×10−3 using degree 7 and 8 incident directions.
Relative L2 error is 6.26%.
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degree N d.o.f bowl (circle) bowl (square) three disks

5 66 5.31% 5.80% 16.3%
10 231 1.83% 1.95% 12.5%
15 496 1.00% 1.11% 11.4%
20 861 0.70% 0.76% 9.10%
25 1326 0.51% 0.57% 8.38%
30 1891 0.38% 0.42% 7.36%
35 2556 0.31% 0.35% 6.47%
40 3321 0.26% 0.28% 6.40%
45 4186 0.21% 0.23% 5.61%
50 5151 0.18% 0.20% 5.12%

Table 6.1: Relative L2 error of the discrete orthogonal projection of the refractive
index against number of degrees of freedom (d.o.f.), for each test problem. We
exclude the error values for the periodic problem, because in that case the discrete
orthogonal projection matches the refractive index almost exactly (the relative L2

error is already 2.38e-15 when N = 5).

error error
medium noise σ

k = π k = 2π
bowl (∂D is a circle) 1× 10−3 7.71% 6.12%

1× 10−2 8.54% 5.84%
bowl (∂D is a square) 1× 10−3 4.42% 4.40%

1× 10−2 6.13% 5.79%
three disks 0 17.77% 17.03%

periodic 1× 10−3 7.53% 6.26%

Table 6.2: Relative L2 error of the reconstructed refractive index m(x) in Ω using
Angular Legendre polynomials of degree 7–10.

6.3.1 Discussion

We observe that similarly to the figures in Chapter 5, we achieve excellent recon-

structions for all test problems, including the new ‘periodic’ test problem in Figure

6.9.

Figures 6.6–6.9 illustrate visually the quality of reconstructions which corresponds

to the relative errors of Table 6.2. We observe that a relative L2 error of less than

10% corresponds to an accurate reconstruction, in that the magnitude and location

of the heterogeneities are reconstructed almost precisely. When the relative L2

error increases to more than 10% (see Figure 6.7), the quality of the reconstruction
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becomes noticeably less accurate. Although the positions of the heterogeneities have

been recognized, their magnitude is not clearly reconstructed like in Figures 6.6, 6.8

and 6.9.

We note that there are patches having unexpected colours which appear in the

reconstructions of Figures 6.6 and 6.8, in the parts of the medium which should be

homogeneous. We also observe a similar peculiarity in Figure 6.7. Now because we

are approximating the refractive index using a spectral basis, we hypothesize that

this is due to a form of Gibbs’ phenomenon. We suspect that although higher order

modes may achieve a higher overall quality of reconstruction, they will increasingly

induce odd irregularities occurring throughout the reconstruction. We observe that

such irregularities are not visible in Figure 6.9, which we hypothesize is due to the

fact that the orthogonal projection matches the refractive index almost exactly in

that case.

In Table 5.2 we notice a significant difference in the error for the ‘three disks’ problem

compared to the other test problems. We speculate that perhaps more iterations

are required in Newton’s method for the ‘three disks’ problem in order to obtain the

same quality of reconstruction as the other test problems.

Although the quality of reconstructions in Chapters 5 and 6 are roughly the same,

the figures from Chapter 6 differ in that they were generated using much higher

degrees of freedom in the ansatz. This is because the Angular Legendre functions

are not as effective as the Logan-Shepp polynomials in approximating the various

refractive index functions, in the sense that much higher degrees of freedom are

required to approximate the refractive index function to the same level of accuracy.

Note that an error in the far field of magnitude 10−4 corresponds roughly to a relative

L2 error of 1% in the reconstruction. It therefore suffices to select the parameters h

and N in the forward solver so that the far field error is at most 10−4 for the ‘bowl’

and ‘three disks’ problems. Refining h or increasing N any further will not produce
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better reconstructions, because at best the relative error of the reconstruction is

that of the projection (which is at least 1.83% from Table 6.1 for N = 10). Doing

so will unnecessarily make computations more costly.
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Chapter 7

Discussion

After successfully solving the inverse problems of Chapters 5–6, we understand there

are numerous factors which determine the quality of our reconstructions, including:

• The quality of the forward solver.

• The convergence rate of the Levenburg-Marquardt scheme.

• The ability of the ansatz space to accurately approximating the refractive

index function.

• The starting solution being sufficiently close to the true solution in the non-

linear solver.

None of the above factors are solely sufficient to ensuring our numerical method will

work, but they are all necessary conditions. Whether improvements in the above

areas would improve the quality of reconstructions is a topic for further research,

but we hypothesize in the affirmative. Below we discuss some of the above factors.
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Quality of the forward solver

Recall from our discussion in Section 5.3.1 that we were able to drastically improve

our results in Chapter 5 from those published in [7]. Both approaches utilized the

coupled FEM-BEM technique, but we improved on the method of finite-differences

in [7] by computing the Fréchet derivative using its analytic representation. Thus

by improving the quality of the forward solver, we were able to improve the quality

of reconstructions. For this reason we hypothesize that improving the quality of

the forward solver will improve the quality of reconstructions. One possible way of

achieving this might be to incoporate a higher order FEM in the forward solver,

following [39]. Whether this would improve our numerical method however remains

a topic for further research.

Choice of ansatz space

We hypothesize that improving our choice of ansatz will improve the quality of

reconstructions. That is, choosing an ansatz which produces a smaller error in

approximating the refractive index function, or approximates the refractive index

more accurately with fewer degrees of freedom. There are two pieces of evidence to

support this:

1. For both inverse problems, the reconstructions for the ‘three disks’ problems

is noticeably poorer compared to the other test problems. Using Tables 5.1

and 6.1, we speculate the reason for this is that the error of the ansatz in

approximating the refractive index function for the ‘three disks’ problem is

significantly higher than the other test problems. This suggest an ansatz

which produces a smaller error in the approximation of the refractive index

function might yield better reconstructions.

2. There is a noticeable decline in the quality of reconstructions for ‘three disks’
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problems from Chapter 5 to Chapter 6. We believe this can be explained by

comparing the degrees of freedom listed in Table 6.1 compared to Table 5.1.

We notice that the degrees of freedom required to approximate the refractive

index function to a certain level of accuracy for that problem are substantially

higher in Table 6.1 compared to Table 5.1. This suggests an ansatz which ap-

proximates the refractive index more accurately with fewer degrees of freedom

might yield better reconstructions.

From the outset, we do not expect to achieve a comparatively high quality recon-

struction for the ‘three disks’ problem because we are approximating a discontinuous

function using a spectral basis. However, the above points suggest that improving

the ansatz could possibly improve the quality of reconstructions for this test prob-

lem. This remains a topic for further research.

The test problems in this thesis that have a discontinuous refractive index are very

challenging. However we have selected them as test problems due to the availability

of independent forward solvers for computing the far field data, that are not based

on the coupled FEM-BEM technique.

Starting solution in the nonlinear solver

When choosing the parameters for the nonlinear solver, the standard choice is to

take the starting solution to be m(x) = 1. If some data on the solution were

available, to provide an initial guess, then we would expect better reconstructions.

One way to obtain such data would be to first seek a numerical solution to the

inverse problem at a lower wavenumber. In this way, a rough idea of the medium

(and hence a better starting solution) can be determined relatively quickly, because

the the CPU to compute each forward iteration will decrease rather significantly

when the wavenumber lowers.

One final point to consider is the number of incident directions used in the nonlinear
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solver. Currently it is unknown how many incident directions will yield the best

reconstruction, and this therefore requires further research.
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Chapter 8

Conclusion

Kirsch and Monk were the first to formulate the coupled FEM-BEM technique for the

forward problem in [60, 61], developing the necessary theory behind the technique.

In their numerical results they used a Mie-series formulation to compute the exterior

field, and therefore did not present results for the FEM-BEM technique itself. We

were therefore the first to implement this technique and to provide full numerical

results (the article [39] appeared at the same time).

Next we developed a novel extension of the FEM-BEM technique to solve the in-

homogeneous problem. Kirsch and Monk had not considered the inhomogeneous

problem, making this particular contribution of the thesis completely original. Not

only did we develop the theory necessary to solve the inhomogeneous problem, but

we also implemented our novel FEM-BEM scheme successfully and presented a full

range of numerical results. Our next contribution [7] to the literature was that we de-

veloped a numerical method to solve the inverse medium problem for non-stratified

media. Up until [7], the inverse medium problem had been solved with the assump-

tion that the refractive index was radially symmetric [46, 47, 48, 52, 53]. We were

the first to solve this inverse problem while forgoing this assumption. Moreover, we

were the first to apply the FEM-BEM technique to the inverse problem.
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In [7] we computed the Fréchet derivative using the method of finite differences. We

improved greatly on this approach in this thesis by computing the Fréchet derivative

using its analytic expression, which is another one of our contributions to the field.

We note that we’re also the first to compute the Fréchet derivative using the FEM-

BEM technique.

Thus far in the literature, the inverse medium problem has only been considered in

the special case where the scatter D is absent. We were the first to solve the inverse

problem in the case where the scatterer D is present. We expanded on the theory

in [23, Chapter 10] and solved this inverse coated problem in full, providing results

for various challenging test problems.

We conclude by listing some possible areas for further research, which follow on from

the contents of this thesis:

• One possible area for further research would be to incorporate a higher order

FEM in in our forward solver, following [39]. By incorporating higher degree

polynomials in the FEM, we hypothesize that our current h2 like convergence

in the forward scheme could improve to hp for p ≥ 2 depending on the order

of elements. Another advantage is that we would achieve the same level of

accuracy in each forward iteration using a smaller FEM stiffness matrix. But

we also note that this smaller stiffness matrix will be more numerically expen-

sive to set up. More research is required to determine whether incorporating

a higher order FEM will yield better reconstructions of the refractive index.

• Following on from our discussion in Chapter 7, we hypothesize that we can

improve the quality of our reconstructions by deriving ansatz spaces which can

approximate functions in B and Ω using fewer degrees of freedom. Using fewer

degrees of freedom in the nonlinear solver will result in a smaller Jacobian,

which in turn will reduce CPU time. It is a topic for further research whether

improving the accuracy of the ansatz in this way will improve the accuracy of
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the inverse solver.

• In this thesis, we consider the illumination of an infinite cyclinder in such a

way to ensure the scattering problem reduces to 2 dimensions. One natural

extension would be to look at the same problem but within a general three

dimensional setting. We hypothesize that we can solve the inverse problem for

the three dimensional case using a similar approach to the method we used to

solve the two dimensional case. The analogue of the two dimensional Nyström

scheme discussed in this thesis has already been established in the three di-

mensional setting [36, 37, 38]. The FEM for three dimensional problems has

also been well documented in the literature. In the three dimensional case,

we expect that the problem of approximating the refractive index function on

the unit disk will be replaced by approximating the refractive index function

on the unit sphere. A three-dimensional analogue of the Logan-Shepp poly-

nomials that might be suitable has been done in [4]. Therefore we believe we

can extend the techniques of this thesis to readily solve the same problem in

a three-dimensional setting.

• Two other possible areas for further research would be to consider scattering by

cylindrical or spherical waves, and the case of the heterogeneous coating pos-

sessing a complex refractive index n(x) = nr(x)+inr(x), where the imaginary

part, ni, represents the potential for wave energy absorption by the material.

We note that our current algorithm is suitable for both test problems. In par-

ticular, we hypothesize that the main adjustment necessary to our algorithm

to solve the second problem would be to include the possibility of complex

coefficients when expanding the refractive index function using the spectral

basis.

124



Chapter 9

Appendix

9.1 Neumann Boundary Condition for TE Waves

In this section, we show how a Neumann boundary condition arises in the scattering

of TE waves. Following [51, page 130], TE waves arise in the special case where

c = (0, 0, 1) and ψa = 0. In that case, we have E = −∇×F by (1.64) and therefore

the boundary condition n×E = 0 becomes

n× (∇× F ) = 0, (9.1)

where n = (n1, n2, 0). Noting F = (0, 0, ψf ), we get

∇× F =

(
∂ψf

∂y
,−∂ψ

f

∂x
, 0

)
.

It follows from (9.1) that

(
−n3

∂ψf

∂x
, n3

∂ψf

∂y
,−n1

∂ψf

∂x
− n2

∂ψf

∂y

)
= 0
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and therefore

n1
∂ψf

∂x
+ n2

∂ψf

∂y
= 0.

This is equivalent to the Neumann boundary condition

n · ∇ψf =
∂ψf

∂n
= 0.
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9.2 The Tikhonov Regularization Theorem

In this section we prove Theorem 2.2.1, following [23]. We begin by stating the

following theorem [23, Theorem 4.7]:

Theorem 9.2.1. Let {µn} denote the sequence of non-zero singular values of F ′m

ordered such that

µ1 ≥ µ2 ≥ µ3 ≥ . . .

and repeated according to their multiplicity. Then there exist orthonormal sequences

{qn}, {fn} in RN such that

F ′mqn = µnfn, (F ′m)Tfn = µnqn

for all n ∈ N. For each qδ ∈ RN , we have the singular value decomposition

qδ =
∞∑
n=1

(qδ · qδn)qδn +Qqδ,

with the orthogonal projection operator Q : RN → Null(F ′m) and

F ′mq
δ =

∞∑
n=1

µn(qδ · qδn)fn.

Remark. Each system (µn, q
δ
n,fn)n∈N with the above properties is called a singular

system of F ′m.

We also have the following result [23, Theorem 4.9]:

Theorem 9.2.2. Suppose (µn, q
δ
n,fn)n∈N is a singular system of F ′m : RN → RN ,

and let s : (0,∞) × (0, ‖F ′m‖] → R be a bounded function such that for all α > 0

there exists a positive constant c(α) with

|s(α, µ)|≤ c(α)µ, 0 < µ < ‖F ′m‖ (9.2)
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and

lim
α→0

s(α, µ) = 1, 0 < µ < ‖F ′m‖. (9.3)

Then the bounded linear operators Rα : RN → RN , α > 0 defined by

Rαf :=
∞∑
n=1

1

µn
s(α, µn)(f · fn)qδn, f ∈ RN (9.4)

describe a regularization scheme.

We are now in a position to prove Theorem 2.2.1. We begin by noting

α‖qδ‖2≤ (αqδ + (F ′m)TF ′mq
δ) · qδ

and therefore deduce the operator αI + (F ′m)TF ′m is injective for α > 0. Now let

(µn, q
δ
n,fn)n∈N be a singular system for F ′m. Then the operator T : RN → RN

defined by

Tqδ :=
∞∑
n=1

1

α + µ2
n

(qδ · qδn)qδn +
1

α
Q(qδ) (9.5)

is bounded and satisfies

(αI + (F ′m)TF ′m)T = T (αI + (F ′m)TF ′m) = I.

That is, T = (αI + (F ′m)TF ′m)−1. Now since F ′m is injective,

αqα,δ + (F ′m)TF ′mq
α,δ = (F ′m)T (f δ − Fmδ)

will have a unique solution qα,δ. We deduce from (9.5) and

(F ′m)T (f δ − Fmδ) · qδn = µn(f δ − Fmδ) · fn

that

qα,δ =
∞∑
n=1

µn
α + µ2

n

[(f δ − Fmδ) · fn]qδn.
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Hence Rα can be written in the form (9.4) by taking

s(α, µ) =
µ2

α + µ2
.

This bounded function satisfies (9.2)–(9.3) when c(α) = 1
2
√
α

due to the arithmetic-

geometric mean inequality
√
αµ ≤ α+µ2

2
. It therefore follows that Rα is a regular-

ization strategy.
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9.3 Finite Element Calculations

This section contains three important results which are needed to compute (3.29),

(3.30) and (3.31) respectively.

Proposition 9.3.1. Consider a triangle T ′ with vertices xa = (xa, ya), xb = (xb, yb),

and xc = (xc, yc). Then:

∫∫
T ′

∇φa · ∇φa dxdy =
J

2K2

[
(yc − yb)2 + (xb − xc)2

]
,

∫∫
T ′

∇φa · ∇φb dxdy =
J

2K2
[(yc − yb)(ya − yc) + (xb − xc)(xc − xa)] ,

where

J = |(xb − xa)(yc − ya)− (xc − xa)(yb − ya)|, (9.6)

and K = (yb − ya)(xc − xa)− (xb − xa)(yc − ya). (9.7)

Proof. Given a triangle T ′ on the x-y plane with vertices xa,xb and xc, we map

triangle T ′ to the reference triangle S on the u-v plane, with vertices a = (0, 0), b =

(1, 0) and c = (0, 1). The following equations map S to T ′:

x = (xb − xa)u+ (xc − xa)v + xa, (9.8)

and y = (yb − ya)u+ (yc − ya)v + ya. (9.9)

Under this affine transformation, point a corresponds to xa, point b corresponds to
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xb, and point c corresponds to xc. The Jacobian of this transformation is

J =

∣∣∣∣∣∣∣det

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣det

xb − xa xc − xa

yb − ya yc − ya


∣∣∣∣∣∣∣

= |(xb − xa)(yc − ya)− (xc − xa)(yb − ya)|.

Multiplying (9.8) by (yc − ya) and (9.9) by (xc − xa), we get:

x(yc − ya) = (xb − xa)(yc − ya)u+ (xc − xa)(yc − ya)v + xa(yc − ya), (9.10)

and y(xc − xa) = (yb − ya)(xc − xa)u+ (yc − ya)(xc − xa)v + ya(xc − xa). (9.11)

Subtracting (9.10) from (9.11), we get

y(xc − xa)− x(yc − ya) = u [(yb − ya)(xc − xa)− (xb − xa)(yc − ya)]

+ [ya(xc − xa)− xa(yc − ya)] .
(9.12)

Therefore, u = 1
K

[y(xc − xa) − x(yc − ya) − ya(xc − xa) + xa(yc − ya)] where K is

given by (9.7). It follows that

∂u

∂x
=
ya − yc
K

and
∂u

∂y
=
xc − xa
K

.

Multiplying (9.8) by (yb − ya) and (9.9) by (xb − xa), we get:

x(yb − ya) = (xb − xa)(yb − ya)u+ (xc − xa)(yb − ya)v + xa(yb − ya), (9.13)

and y(xb − xa) = (yb − ya)(xb − xa)u+ (yc − ya)(xb − xa)v + ya(xb − xa). (9.14)
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Subtracting (9.14) from (9.13), we get

x(yb − ya)− y(xb − xa) = Kv + [xa(yb − ya)− ya(xb − xa)] . (9.15)

Therefore, v = 1
K

[x(yb − ya)− y(xb − xa)− xa(yb − ya) + ya(xb − xa)]. It follows

∂v

∂x
=
yb − ya
K

and
∂v

∂y
=
xa − xb
K

.

Suppose we define roof functions φ̂i on the u-v plane for i = a, b, c. These correspond

to our original roof functions on the x-y plane and they are defined in a similar way:

the function φ̂i takes the value of 1 at the point i, and vanishes at the other two

points. More explicitly, we have:

φ̂a(u, v) = 1− u− v, (9.16)

φ̂b(u, v) = u, (9.17)

and φ̂c(u, v) = v. (9.18)

We will now evaluate the differential expressions needed to establish our desired

integral formulas:

∂

∂x
(φa(x, y)) =

∂

∂u

(
φ̂a(u, v)

) ∂u
∂x

+
∂

∂v

(
φ̂a(u, v)

) ∂v
∂x

=
yc − yb
K

,

∂

∂y
(φa(x, y)) =

∂

∂u

(
φ̂a(u, v)

) ∂u
∂y

+
∂

∂v

(
φ̂a(u, v)

) ∂v
∂y

=
xb − xc
K

.

Applying the same steps as above, the remaining expressions are found:

∂

∂x
(φb(x, y)) =

ya − yc
K

,
∂

∂y
(φb(x, y)) =

xc − xa
K

,

∂

∂x
(φc(x, y)) =

yb − ya
K

,
∂

∂y
(φc(x, y)) =

xa − xb
K

.
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Then,

∫∫
T ′

∇φa · ∇φa dxdy =

∫ 1

0

∫ 1−u

0

J

(
(yc − yb)2

K2
+

(xb − xc)2

K2

)
dvdu

=
J

K2

[
(yc − yb)2 + (xb − xc)2

] ∫ 1

0

∫ 1−u

0

dvdu

=
J

2K2

[
(yc − yb)2 + (xb − xc)2

]
.∫∫

T ′

∇φa · ∇φb dxdy =

∫ 1

0

∫ 1−u

0

J

(
(yc − yb)(ya − yc)

K2
+

(xb − xc)(xc − xa)
K2

)
dvdu

=
J

K2
[(yc − yb)(ya − yc) + (xb − xc)(xc − xa)]

∫ 1

0

∫ 1−u

0

dvdu

=
J

2K2
[(yc − yb)(ya − yc) + (xb − xc)(xc − xa)] .

Using the above result we can assemble the matrix B defined by (3.29). We assemble

the matrix C defined by (3.30) by applying the following result:

Proposition 9.3.2. Consider the triangle T ′ from the previous proposition. Then:

∫∫
T ′

φa(x, y)φa(x, y) dxdy =
J

12
,

∫∫
T ′

φa(x, y)φb(x, y) dxdy =
J

24
.

The proof is similar to the previous proof; we exclude it here for the sake of brevity.

To assemble the matrix defined by (3.31), we apply the following.

Proposition 9.3.3. Consider the line l joining xr = (r1, r2) and xs = (s1, s2).
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Then

∫
l

φr(x, y)φs(x, y) =
1

6

√
(r1 − s1)2 + (r2 − s2)2 (9.19)∫

l

φr(x, y)φr(x, y) =
1

3

√
(r1 − s1)2 + (r2 − s2)2 (9.20)

Proof. Using the parametrization

g : [0, 1]→ l; t→ [r1t+ (1− t)s1, r2t+ (1− t)s2],

we have φr(x, y) = t and φs(x, y) = 1− t. Therefore

∫
l

φr(x, y)φs(x, y) =

∫ 1

0

t(1− t)
√

(r1 − s1)2 + (r2 − s2)2 dt

=
√

(r1 − s1)2 + (r2 − s2)2

∫ 1

0

t− t2 dt

=
1

6

√
(r1 − s1)2 + (r2 − s2)2.

Similarly,

∫
l

φr(x, y)φr(x, y) =

∫ 1

0

t2
√

(r1 − s1)2 + (r2 − s2)2 dt

=
1

3

√
(r1 − s1)2 + (r2 − s2)2.
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9.4 Derivation of the Integral Representation of

the Far Field

In this section we derive the far field integral representation given in (3.36). We

begin by stating the following definition.

Definition 9.4.1. Every radiating solution to the two-dimensional Helmhotlz equa-

tion has the asymptotic behaviour of an outgoing spherical wave

u(x) =
eik|x|√
|x|

{
u∞(x̂) +O

(
1

|x|

)}
, x→∞, (9.21)

uniformly in all directions x̂ = x
|x| . The far field of u is then defined to be u∞.

We now prove the following result.

Proposition 9.4.2. The far field in the two-dimensional case has the integral rep-

resentation

u∞(x̂) =
e
πi
4

√
8πk

∫
∂Ω

{
∂e−ikx̂·y

∂n(y)
us(y) + ike−ikx̂·yus(y)− e−ikx̂·yµ(y)

}
ds(y).

(9.22)

Proof. Noting

|x− y| =
√
|x|2−2x · y + |y|2 (9.23)

= |x|−x̂ · y +O
(

1

|x|

)
, x̂ =

x

|x|
, (9.24)

we get

eik|x−y| = eik|x|
{
e−ikx̂·y +O

(
1

|x|

)}
. (9.25)
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Now because the Hankel function of the first kind, H
(1)
0 , has asymptotic behaviour [23]

H
(1)
0 (t) =

√
2

πt
ei(t−

π
4

)

{
1 +O

(
1

t

)}
, t→∞, (9.26)

we deduce

H
(1)
0 (k|x− y|) = e−

πi
4

√
2

πk|x|
eik|x|

{
e−ikx̂·y +O

(
1

|x|

)}
= e−

πi
4

√
2

πk

eik|x|√
|x|

{
e−ikx̂·y +O

(
1

|x|

)}

using (9.25). It follows that the fundamental solution of the 2D Helmholtz equation

Φ(x,y) =
i

4
H

(1)
0 (k|x− y|)

satisfies

Φ(x,y) =
i

4
· e−

πi
4

√
2

πk

eik|x|√
|x|

{
e−ikx̂·y +O

(
1

|x|

)}
.

That is,

Φ(x,y) = e
πi
4

√
1

8πk

eik|x|√
|x|

{
e−ikx̂·y +O

(
1

|x|

)}
, (9.27)

and hence

∂Φ(x,y)

∂n(y)
= e

πi
4

√
1

8πk

eik|x|√
|x|

{
∂e−ikx̂·y

∂n(y)
+O

(
1

|x|

)}
. (9.28)

Substituting (9.27)–(9.28) into Green’s formula

us(x) =

∫
∂Ω

{
∂Φ(x,y)

∂n(y)
us(y)− ∂us

∂n(y)
Φ(x,y)

}
ds(y),

yields

u∞(x̂) =
e
π
4

√
8πk

∫
∂Ω

{
∂e−ikx̂·y

∂n(y)
us(y)− ∂us

∂n(y)
e−ikx̂·y

}
ds(y). (9.29)

Recall from Chapter 3 that ∂us

∂n+ikus = µ and therefore ∂us

∂n = µ−ikus. Substituting
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this into the above equation yields (9.22).
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9.5 Radiating Wave Functions

In this section, we prove the following lemma from Chapter 4 regarding the radiating

wave functions:

Lemma 9.5.1. The radiating wave functions

em(r, θ) = H
(1)
|m|(kr)e

imθ

satisfy the homogeneous Helmholtz equation

4u(x) + k2u(x) = 0, x ∈ R2 \ D̄,

and the Sommerfeld radiation condition. The far field of em is given by

e∞m (θ) =

√
1

πk
(−1)m(1− i)eimθ.

Proof. From [23], the Hankel functions of the first kind have asymptotic behaviour

H
(1)
|m|(t) =

√
2

πt
ei(t−

|m|π
2
−π

4 )
{

1 +O
(

1

t

)}
, t→∞, (9.30)

H
(1)′

|m| (t) =

√
2

πt
ei(t−

|m|π
2

+π
4 )
{

1 +O
(

1

t

)}
, t→∞. (9.31)

It is then obvious from (9.30)–(9.31) that the radiating wave functions satisfy the

Sommerfeld radiation condition.

To see why they satisfy the homogeneous Helmholtz equation, first note that the

Laplacian operator in polar coordinates is given by

4u(r, θ) =
1

r

∂u

∂r
+
∂2u

∂r2
+

1

r2

∂2u

∂θ2
.
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It follows that

4em + k2em =
k

r
H

(1)′

|m| (kr)e
imθ + k2H

(1)′′

|m| (kr)eimθ − m2

r2
H

(1)
|m|(kr)e

imθ + k2H
(1)
|m|(kr)e

imθ

= k2H
(1)′′

|m| (kr)eimθ +
k

r
H

(1)′

|m| (kr)e
imθ +H

(1)
|m|(kr)e

imθ

[
k2 − m2

r2

]
=
eimθ

r2

(
k2r2H

(1)′′

|m| (kr)eimθ + krH
(1)′

|m| (kr)e
imθ +H

(1)
|m|(kr)e

imθ
[
k2r2 −m2

])
= 0,

because H
(1)
|m|(kr) is a fundamental solution of Bessel’s equation of order m. That is,

k2r2H
(1)′′

|m| (kr)eimθ + krH
(1)′

|m| (kr)e
imθ +H

(1)
|m|(kr)e

imθ
[
k2r2 −m2

]
= 0.

Now the far field e∞m (θ) is obtained by taking the limit of em(r, θ) as r → ∞ (for

this reason, the expression for e∞m (θ) is independent of r). From (9.30), we have

H
(1)
|m|(k|x|) =

√
2

πk|x|
ei(k|x|−

|m|π
2
−π

4 )
{

1 +O
(

1

t

)}
=

√
1

πk
(−1)m(1− i) e

ik|x|√
|x|

{
1 +O

(
1

t

)}

since
√

2e−
π
4
i = 1− i and e

−i|m|π
2 = (−1)m. It therefore follows

H
(1)
|m|(kr)e

imθ =

√
1

πk
(−1)m(1− i)eimθ e

ik|x|√
|x|

{
1 +O

(
1

t

)}

and therefore the far field of em(r, θ) is given by

e∞m (θ) =

√
1

πk
(−1)m(1− i)eimθ.
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9.6 Orthogonal Polynomials

In this section, we first briefly discuss some properties of Chebyshev polynomials,

and then prove that the Logan-Shepp polynomials are orthogonal over the unit disk.

9.6.1 Chebyshev polynomials

Chebyshev polynomials of the second kind {Un}n∈N0 are fundamental solutions of

the Chebyshev differential equation of the second kind,

(1− x2)
dy

dx
− 3x

dy

dx
+ n(n+ 2)y = 0.

They are defined by the following recurrence relation:

U0(x) = 1,

U1(x) = 2x,

Un(x) = 2xUn−1(x)− Un−2(x).

This recurrence relation combined with the identity [33, Section 1.4.3]

sin(n+ 2)θ

sin θ
= 2 cos θ

sin(n+ 1)θ

sin θ
− sinnθ

sin θ
(n ≥ 0)

implies

Un(cos θ) =
sin(n+ 1)θ

sin θ
.

The Chebyshev polynomials of the second kind are orthogonal on the interval [−1, 1]

with respect to the weight function
√

1− x2:

2

π

∫ 1

−1

Un(x)Um(x)
√

1− x2 dx = δn,m.
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9.6.2 Logan-Shepp polynomials

In this section, we prove the Logan-Shepp polynomials

Pl,j =
1√
π
Uj

(
x1 cos

lπ

j + 1
+ x2 sin

lπ

j + 1

)

are orthogonal over the unit disk, following [33]. We begin by defining a couple of

polynomial spaces. Let

Π2
j := span{xj11 x

j2
2 : j1 + j2 ≤ j, j1, j2 ∈ N0}

denote the space of polynomials in two variables of total degree j. We then define

V 2
j := span{p ∈ Π2

j :

∫∫
B

p(x)q(x) dx = 0, for all q ∈ Π2
j−1}

to be the space of all polynomials of degree j orthogonal to polynomials of lower de-

gree. To prove the orthogonality of the Logan-Shepp polynomials, we first establish

Pl,j ∈ V 2
j .

To do so, note one of the features of Chebyshev polynomials are their relation to the

Radon transform. Let L (θ, t) = {(x1, x2) : x1 cos θ + x2 sin θ = t} for −1 ≤ t ≤ 1

and I(θ, t) = L (θ, t) ∩ B. Then the Radon projection Rθ(f ; t) of a function f in

the direction θ with parameter t ∈ [−1, 1] is defined by

Rθ(f ; t) :=

∫
I(θ,t)

f(x) dL (9.32)

=

∫ √1−t2

−
√

1−t2
f(t cos θ − s sin θ, t sin θ + s cos θ) ds, (9.33)

where dL denotes the Lebesgue measure on I(θ, t).

Now for θ ∈ [0, π] and g : R → R, we define gθ(x1, x2) := g(x1 cos θ + x2 sin θ).

Applying the change of variables t = x1 cosφ+ x2 sinφ and s = −x1 sinφ+ x2 cosφ
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produces a rotation and implies

1

π

∫∫
B

f(x)gθ(x) dx =
1

π

∫ 1

−1

Rθ(f ; t)g(t) dt. (9.34)

Applying a second change of variable in (9.33) gives

Rθ(f ; t) =
√

1− t2
∫ 1

−1

f(t cos θ − s
√

1− t2 sin θ, t sin θ + s
√

1− t2 cos θ) ds.

Note that if f is a polynomial of degree n, then the integrand above will also be

a polynomial of the same degree in t. It follows Q(t) := Rθ(f ;t)√
1−t2 is a polynomial of

degree n for all θ. Moreover, we must have Q(1) = 2f(cos θ, sin θ). It therefore

follows from (9.34) that ∫∫
B

f(x)Pl,j(x) dx = 0

for all f ∈ Π2
n whenever n < j, due to the orthogonality of the Chebyshev polyno-

mials. Now that we have established Pl,j ∈ V 2
j , we can prove the orthogonality of

the Logan-Shepp polynomials.

Note that (9.34) implies

∫ 1

−1

Rθ(Pl,j; t)√
1− t2

Un(t)
√

1− t2 dt =

∫∫
B

Pl,j(x)(Un)θ(x) dx = 0, n = 0, 1, . . . , j − 1,

because Pl,j ∈ V 2
j . It follows that the polynomial Q(t) =

Rθ(Pl,j ;t)√
1−t2 is orthogonal to

Un for 0 ≤ n ≤ j−1 and is therefore a multiple of Uj, as it is a polynomial of degree

j i.e. Q(t) = cUj(t) for some constant c. Taking t = 1 and noting Uj(1) = j + 1, we

get

c =
Pl,j(cos θ, sin θ)

j + 1
=

2Uj(cos[θ − lπ
j+1

])

j + 1
.

Using the fact that

Uj

(
cos

(n− l)π
j + 1

)
=

sin(n− l)π
sin (n−l)π

j+1

= 0
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when n 6= l, we therefore conclude that

∫∫
B

Pn,j(x)Pl,j(x) dx =
1

π

∫∫
B

Pl,j(x)(Uj)θ(x) dx where θ =
nπ

j + 1

=
1

π

∫ 1

−1

Rθ(Pl,j; t)Uj(t) dt using (9.34)

=
2

π2

Uj

(
cos (n−l)π

j+1

)
j + 1

∫ 1

−1

[Uj(t)]
2
√

1− t2 dt

= δl,n

since Rθ(pl,j; t) = c
√

1− t2Uj(t).
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9.7 Gaussian Quadrature

To approximate the integral (6.3), apply a Q-point Gaussian quadrature rule for the

radial integral and a 2Q-point rectangular quadrature rule for the angular integral:

as,t ≈
2s+ 1

4π

2Q−1∑
j=0

Q∑
i=1

ωiLse
itθj(Si), (9.35)

where θj = πj
Q+1

, Si is the ith root of the Qth order Legendre polynomial, and

ωi =
2π

(Q+ 1)(1− Si)2(L′Q(Si))2

represents the quadrature weighting, where

L′Q(Si) =
Q

S2
i − 1

(SiLQ(Si)− LQ−1(Si)) .

144



9.8. GREEN’S THEOREMS

9.8 Green’s Theorems

9.8.1 Green’s Identities

Consider a Lipschitz domain X with boundary ∂X, and let n be the outward point-

ing unit normal on ∂X.

Theorem 9.8.1 (Green’s First Identity). If v ∈ H1(X) and w ∈ H2(X), then

∫∫
X

v(x)4w(x) dx +

∫∫
X

∇v(x) · ∇w(x) dx = −
∫
∂X

v(x)
∂w

∂n
(x) ds(x).

Theorem 9.8.2 (Green’s Second Identity). If v, w ∈ H1(X), then

∫∫
X

v(x)4w(x)− w(x)4v(x) dx =

∫
∂X

v(x)
∂w

∂n
(x)− w(x)

∂v

∂n
(x) ds(x).

9.8.2 Green’s Representation Formula

Using the above identities, we now derive Green’s representation formula.

Theorem 9.8.3. For u ∈ H2(Ω) and x ∈ Ω, we have

u(x) =

∫
∂D∪∂Ω

{
∂u

∂n
(y)Φ(x,y)− u(y)

∂Φ

∂n
(y)

}
ds(y)−

∫∫
Ω

{
4u(y) + k2u(y)

}
Φ(x,y) dy.

Proof. Suppose x ∈ Ω is an arbitrary point, and consider the circle

∂B(x, ε) :=
{
y ∈ R2 : ‖y − x‖= ε

}
,

where ε to chosen to be small enough to ensure B(x, ε) ⊂ Ω.

Now because Ω\B(x, ε) is a Lipschitz domain, it follows from Green’s second identity
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Figure 9.1: Visualization of the region Ω \B(x, ε).

that

∫
Γε

Φ(x,y)
∂u

∂n
(y)− u(y)

∂Φ

∂n
(y) ds(y) =

∫∫
Ω\B(x,ε)

Φ(x,y)4u(y)− u(y)4yΦ(x,y) dy

for u,Φ ∈ H1(Ω), where Γε := ∂Ω ∪ ∂D ∪ ∂B(x, ε) is the boundary of Ω \ B(x, ε).

Taking Φ(x,y) = i
4
H

(1)
0 (k‖x− y‖), the above equation simplifies to

∫
Γε

∂u

∂n
(y)Φ(x,y)− u(y)

∂Φ

∂n
(y) ds(y) =

∫∫
Ω\B(x,ε)

{
4u(y) + k2u(y)

}
Φ(x,y) dy,

since Φ(x,y) is the fundamental solution to the Helmholtz equation in R2. It there-

fore follows that

∫
∂D∪∂Ω

∂u

∂n
(y)Φ(x,y)− u(y)

∂Φ

∂n
(y) ds(y) =

∫∫
Ω\B(x,ε)

{
4u(y) + k2u(y)

}
Φ(x,y) dy

−
∫
∂B(x,ε)

∂u

∂n
(y)Φ(x,y)− u(y)

∂Φ

∂n
(y) ds(y).

Taking the limit of both sides as ε→ 0, we get

∫
∂D∪∂Ω

∂u

∂n
(y)Φ(x,y)− u(y)

∂Φ

∂n
(y) ds(y) =

∫∫
Ω

{
4u(y) + k2u(y)

}
Φ(x,y) dy

− lim
ε→0

(I1 − I2),
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where

I1 =

∫
∂B(x,ε)

∂u

∂n
(y)Φ(x,y) ds(y) and I2 =

∫
∂B(x,ε)

u(y)
∂Φ

∂n
(y) ds(y).

To find the limit of I1, first note that

∣∣∣∣∫
∂B(x,ε)

∂u

∂n
(y)Φ(x,y) ds(y)

∣∣∣∣ ≤ ∫
∂B(x,ε)

∣∣∣∣ ∂u∂n(y)Φ(x,y)

∣∣∣∣ ds(y)

=

∣∣∣∣ i4H(1)
0 (kε)

∣∣∣∣ ∫
∂B(x,ε)

∣∣∣∣ ∂u∂n(y)

∣∣∣∣ ds(y)

≤ πε

2

∣∣∣H(1)
0 (kε)

∣∣∣ sup
y∈∂B(x,ε)

∣∣∣∣ ∂u∂n(y)

∣∣∣∣
≤ πε

2

∣∣∣H(1)
0 (kε)

∣∣∣ sup
y∈∂B(x,ε)

|∇u|

Now because |∇u| is continuous in B(x, ε) and

lim
ε→0

πε

2

∣∣∣H(1)
0 (kε)

∣∣∣ = lim
ε→0

ε log(kε) since H
(1)
0 (z) ∼ 2i

π
log z as z → 0

= 0 by l’Hopital’s rule,

we can deduce

lim
ε→0

I1 = lim
ε→0

∫
∂B(x,ε)

∂u

∂n
(y)Φ(x,y) ds(y) = 0.

To calculate the limit of I2, we write

∫
∂B(x,ε)

u(y)
∂Φ

∂n
(y) ds(y) =

∫
∂B(x,ε)

[u(x) + u(y)− u(x)]
∂Φ

∂n
(y) ds(y)

= u(x)

∫
∂B(x,ε)

∂Φ

∂n
(y) ds(y) +

∫
∂B(x,ε)

[u(y)− u(x)]
∂Φ

∂n
(y) ds(y).
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Now, note that

lim
ε→0

u(x)

∫
∂B(x,ε)

∂Φ

∂n
(y) ds(y) = lim

ε→0

(
u(x)

∫
∂B(x,ε)

−ik
4
H

(1)
1 (k‖x− y‖) ds(y)

)
= − lim

ε→0

(
u(x)× ik

4
H

(1)
1 (kε)× 2πε

)
= −u(x) lim

ε→0

ikπε

2
H

(1)
1 (kε)

= −u(x)

(
ikπε

2
× −2i

πkε

)
since H

(1)
1 (z) ∼ −2i

πz
as z → 0

= −u(x).

Also, note that

∣∣∣∣∫
∂B(x,ε)

[u(y)− u(x)]
∂Φ

∂n
(y) ds(y)

∣∣∣∣ ≤ 2πε sup
y∈∂B(x,ε)

{
k

4
|u(y)− u(x)|·|H(1)

1 (kε)|
}

=
kπε

2
|H(1)

1 (kε)| sup
y∈∂B(x,ε)

{|u(y)− u(x)|} → 0

as ε → 0, since H
(1)
1 (kε) ∼ −2i

kπε
. Therefore I2 → −u(x) as ε → 0, from which the

desired result clearly follows.
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