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Abstract

The construction of the tangent bundle of a manifold lies at the very foundations of
differential geometry. There are various approaches to characterise the tangent bun-
dle, and two such approaches are through Synthetic Differential Geometry (SDG)
and Tangent Structures (in the sense of Cockett-Cruttwell).

Here, we shall give a different perspective, that Tangent Structure can be viewed
as a model of an appropriate theory. This theory arises as a certain full subcategory
Weil1 of the category Weil of all Weil algebras. The connection between Weil
algebras and SDG is well established, but their connection to Tangent Structure is
not evident.

In this thesis, we shall exhibit Weil1 as the universal tangent structure and
in fact the axioms of tangent structure actually form a presentation for Weil1.
We shall then continue by describing how this perspective allows us to extend this
theory in a canonical manner.
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Ramón Abud Alcalá: We seriously need to have interventions for your chilli

and avocado addictions.
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Chapter 1

Introduction

1.1 Tangent bundles

A fundamental notion in differential geometry is that of the tangent bundle; given a
smooth manifold M , we can construct the manifold TM , which to each point x ∈M
attaches the vector space TxM of all tangents to M at x. TM comes equipped with
a projection pM : TM → M sending a tangent vector at a point x ∈ M to the
underlying point x (for more details, see [26]).

Then, for a suitably differentiable map f : M → N , differentiation induces a
map Tf : TM → TN in such a way that the diagram

TM TN

M N

Tf

pM pN

f

commutes. This then makes T into an endofunctor on the category Man of
(smooth) manifolds. The projections pM : TM → M then become the compo-
nents of a natural transformation p : T ⇒ 1Man. We may equivalently say that T
is a copointed endofunctor.

Now, just a copointed endofunctor alone is not enough to describe the tangent
structure of differentiation; indeed, most copointed endofunctors have nothing to
do with this. There are various types of extra structure for which we may ask.

The exact conditions for which we may ask will depend on the exact structure
we desire of the tangent bundles. For instance, there will be different conditions for
real vector spaces as compared with complex vector spaces. Rosický [29] gave a set
of conditions that gave the tangent bundles the structure of abelian groups.

However, we will be mainly interested in the conditions given in Cockett-Cruttwell
[8] (which we shall detail in Chapter 3), in which the bundles have the structure of
commutative monoids. Here, a technical definition is given, and this will be what
we mean when we say Tangent Structure (in fact, we will soon refer to this as a
“Tangent Structure corresponding to Weil1”, for reasons that will become apparent
later).

Related work on the ideas of tangent structure may be seen in [5], [6], [7] and
[10].

This is but one approach to characterising tangent structure. Another (richer,
and more developed) approach is that of synthetic differential geometry.

1



1.2. Synthetic differential geometry and Weil algebras

1.2 Synthetic differential geometry and Weil al-

gebras

Synthetic differential geometry (SDG) constructs the tangent bundle through the
use of infinitesimal objects. We begin with the geometric line R with two chosen
points 0 and 1, and then equip R with the structure of a commutative ring. We then
define the infinitesimal object D = {x ∈ R | x2 = 0}, and impose the fundamental
axiom:

Axiom For any g : D → R, there exists a unique b ∈ R such that

∀d ∈ D, g(d) = g(0) + d · b .

Intuitively, this says the function g is part of the straight line l through (0, g(0))
with slope b. This then implies the “local linearity” of (smooth) maps between
smooth spaces.

There are further infinitesimal objects and axioms, of course, but ultimately,
the main focus is on this object D. In particular, for any (appropriate) space X,
the tangent space may then be defined as the internal hom or function space [D,X]
(working in an appropriate categoryM; in particular, it is a topos). The projection
pX : [D,X] → X is then the evaluation at 0; explicitly, it sends a map g : D → X
to g(0). The tangent functor then is the representable [D,−] : M→M.

For a certain class of finite dimensional nilpotent algebras, namely the Weil
algebras (which we will describe in more detail in Chapter 2), we can define the
category Weil of such algebras (and appropriate maps).

We then have a functor Spec : Weilop →M, and this in turn induces a functor
Weil → End (M) (where End(M) is the endofunctor category on M) sending
A ∈Weil to the functor

[Spec (A) ,−] : M→M .

In particular, there is a Weil algebra W = k[x]/x2 with Spec(W ) = D. Then
[Spec (W ) ,−] gives tangent structure. For more details on SDG, see [15], [16], [20]
or [25].

So, the Weil algebras, in particular the fundamental Weil algebra W = k[x]/x2,
play a key role in the constructions used in SDG. However, they do not appear
explicitly in the definition of Tangent Structures. One of the main goals of this
thesis, then, is to detail a connection between Weil algebras and Tangent Structure.
In order to do so, we shall first digress with a discussion on the general framework
of sketches and theories.

1.3 Sketches and theories

Algebraic structures such as groups or rings are typically defined through their
operations Xn → X and equations. A key insight of Lawvere [22] was that for
each such type of structure, there is an associated category T with finite products,
such that a particular instance of that structure is then a finite-product-preserving
(f.p.p.) functor from T into Set.

2



1.4. Coalgebras and Weil algebras

T is then called a (Lawvere) theory and the f.p.p. functor a model of the theory.
These models can also be taken in categories other than Set.

For example, there is a category TGrp for the theory of groups, for which the
category of f.p.p. functors from TGrp to Set is equivalent to the category Grp of
groups. We may also just as easily take an arbitrary category C and refer to f.p.p.
functors F : TGrp → C as groups internal to C.

The description of the original structure using operations and equations is a sort
of presentation for the theory; we may call this a sketch of the theory (following
Ehresmann [11], who introduced sketches in a more general context).

These are just the Lawvere theories, but there are other variants:

• Finite limit (or essentially algebraic) theories (Gabriel-Ulmer, [27]):

Instead of asking for T to have finite products, one instead asks that it has
all finite limits. A model of T is then a functor from T preserving all finite
limits.

• PROPs - symmetric monoidal theories (Mac Lane, [23])

Instead of asking T to have finite products, one instead asks that it is a
symmetric monoidal category generated by one object. A model (or algebra)
of T is then a symmetric monoidal functor from T.

• Grothendieck topos - “geometric theories” (for more details, see [24]):

Instead of asking T to have finite products, one instead asks that it has a
geometric embedding

T ↪→ PSh(C).

A model of T is then a functor preserving colimits and finite limits, i.e. it is
a geometric morphism (or equivalently again, it is a functor with a left exact
left adjoint).

In fact, Dolan [14] has studied algebro-geometric theories. Models of these the-
ories are functors preserving both the symmetric monoidal structure in geometric
approaches and colimits. He compares these geometric approaches to their algebraic
counterparts (symmetric monoidal structure and algebraic limits) in the context of
their underlying theories. For more details on theories, see [2].

The type of theory described in this thesis involves monoidal categories (of Weil
algebras) and certain limits (discussed in more detail from Chapter 3 onwards).

1.4 Coalgebras and Weil algebras

Let Coalg be the category of cocommutative, coassociative, and counital coalgebras
over a given field k. Now, Coalg is cocomplete, Cartesian closed, and has products
given by ⊗. For more details, see [1], [12] or [13]. Coalg is an example of the
type of theory described by Dolan. It is possible then to consider cocontinuous
strong monoidal functors from Coalg to C (some cocomplete monoidal category)
as models of Coalg in C.

Alternatively, we may also restrict to various subcategories of Coalg, and then
consider strong monoidal functors that preserve suitable classes of colimits. In

3



1.5. This thesis

particular, Weilop can be seen as a full subcategory of Coalg;

Weilop ↪→ Algopfd ' Coalgfd ↪→ Coalg ,

where Algfd is the category of finite dimensional commutative, associative, and
unital algebras.

Then, in place of models of Weilop in C, we may equivalently consider models
of Weil in Cop (as a functor F : Weil → Cop), but now using limits rather than
colimits. However, we shall in fact consider subcategories of Weil, and discuss in
depth a few such candidates.

1.5 This thesis

We begin our discussion in Chapter 2, where we introduce the notion of Weil al-
gebras in Section 2.1 and establish several important facts we will require for this
thesis. In Section 2.2, we introduce the notion of graphs and detail some of their
properties we will also require in later discussion.

Chapter 3 is then exclusively concerned with a full subcategory Weil1, built up
as tensors of product powers W n of the Weil algebra W . This is a natural starting
point for discussing Tangent Structure and differential geometry, as this captures
the most fundamental aspects and structure of the tangent bundle construction.

We then show in Section 3.3 that the objects of Weil1 can be parametrised by
(certain) graphs in a canonical manner. We take this idea further in Section 3.4
by showing that for k = 2 (Definition 3.4.1), we can view morphisms in Weil1 as
morphisms in a particular Kleisli category Gphχ (Proposition 3.4.13) for a monad
χ : Gph→ Gph (Proposition 3.4.12.

We will use this perspective in Section 3.5 to then show that each morphism
f : A → B of Weil1 is canonically constructible (Definition 3.5.1) from a set
{εW ,+, ηW , l, c} of maps using certain operations. This set of maps and the op-
erations canonically correspond to natural transformations which are required in
Tangent Structures.

This will allow us to prove the main result of Chapter 3, namely Theorem 3.6.17.
Explicitly, Theorem 3.6.17 states that a Tangent Structure on a category M (in
the sense of [8]) amounts to the same thing as a strong monoidal functor

F : Weil1 → End(M)

preserving certain limits. This can be seen as a universal property of Weil1 amongst
Tangent Structures. This is precisely the “missing link” between the Tangent Struc-
tures of [8] and Weil algebras as described at the end of Section 1.2.

Chapter 4 is then more exploratory in nature. We introduce the category Weil∞,
with objects all those of the form

k[x1, . . . , xn]/{some collection I of monomials in the xi’s} ,

and show in Section 4.1 that each such object can be parametrised by down-sets of
Nr (Definition 4.1.12); moreover, this can be done in a manner consistent with the
graph parameterisation of Weil1. This then allows us to characterise each object of
Weil∞ as a canonical limit of tensors of Wns through Theorem 4.1.16, and yields a

4



1.5. This thesis

potential meaning for a “Tangent Structure corresponding to Weil∞” via Definition
4.1.18.

This is useful if our set of scalars k takes the form N or Z. However, we can
obtain a far richer result by imposing a mild condition on k, namely that k contains
the positive rationals Q>0. Consider the fork

k[x]/x3 s // k[y, z]/y2, z2

id
//

c // k[y, z]/y2, z2

where s(x) = y+ z and c interchanges the generators y and z. For k = N or Z, this
is cannot be an equaliser due to the absence of 1

2
in k. However, it will indeed be

an equaliser if k contains 1
2
. We discuss this in far more detail in Section 4.2.

As such, by imposing this mild condition on k, we can then express each Wm as
an appropriate equaliser (4.2.1). We then use this fact to show that each object of
Weil∞ can be canonically expressed as a limit of mW ’s in Theorem 4.2.10. This
in turn allows us to show that the obvious inclusion functor

J : Weil1 ↪→Weil∞

is in fact codense (Proposition 4.3.2).
This culminates in Theorem 4.3.13, which states that a functor F∞ : Weil∞ → G

(in the sense of Definition 4.3.1) is precisely a right Kan extension of the analogous
functor F : Weil1 → G.

We conclude our discussion in Chapter 5 with a discussion on viable candidates
other than Weil∞ for notions of Tangent Structure, as well as possibilities for future
work. In particular, we discuss a generalised notion of the addition of tangents in
5.1.1, and although this is no longer an internal commutative monoid, the resulting
structure is described in Section 5.2.

5



Chapter 2

Weil algebras and graphs

2.1 Weil algebras

All the algebras discussed in this document will be associative, commutative and
unital. Let Alg be the category of such algebras as its objects, and with structure-
preserving morphisms as the maps.

Further, except for Section 2.1.2, all algebras in this section will be defined over
some given field k.

We begin by recalling some definitions for algebras.

Definition 2.1.1. Let A be a given k-algebra. An augmentation for A is an algebra
map εA : A → k. Explicitly, this means that it preserves multiplication and the
diagram

k
η //

id ��

A

ε
��
k

commutes. An algebra equipped with an augmentation is then an augmented alge-
bra.

Given augmented algebras B and C, an augmented algebra homomorphism
f : B → C is an algebra homomorphism that is compatible with the augmentations,
i.e. the diagram

B
f //

εB ��

C

εC
��
k

commutes.

Definition 2.1.2. Given an augmented algebra A, the augmentation ideal of A is
the kernel ker(εA) of the augmentation.

We can now define a Weil algebra.

Definition 2.1.3. A Weil algebra B is an augmented algebra with a finite dimen-
sional underlying k-vector space, for which all elements of the augmentation ideal
are nilpotent (i.e. ker(εB) is a nil ideal).

Equivalently, we can say that a Weil algebra is simply a finite dimensional local
algebra with residue field k.

6



2.1. Weil algebras

Remark The equivalence arises from the fact that the augmentation ideal ker(εB)
(for augmentation ε : B → k) is the unique maximal ideal of B.

Definition 2.1.4. Let R be a ring, and let I be an ideal for this ring.
I is said to be a nil ideal if for each x ∈ I, there exists a natural number nx ∈ N

such that xnx = 0. Further, I is said to be a nilpotent ideal if there exists a natural
number n ∈ N such that xn = 0 for all x ∈ I.

Corollary 2.1.5. For a Weil algebra B, the augmentation ideal ker(εB) being a nil
ideal is equivalent to it being a nilpotent ideal.

Proof. This is an immediate result of B having a finite dimensional underlying
k-vector space. �

Proposition 2.1.6. Let B and C be Weil algebras, and f : B → C an algebra
morphism. Then, f is an augmented algebra homomorphism.

Proof. Since f is an algebra morphism, then f must send nilpotent elements to
nilpotent elements. As such, f restricts to the augmentation ideals.

Further, this map f : ker(εB) → ker(εC) then extends to f : B/ ker(εB) →
C/ ker(εC).

Noting that the augmentations commute with the units and that B/ ker(εB) ∼=
C/ ker(εC) ∼= k, it is then easy to check that f is the identity on k. �

A morphism between Weil algebras B and C is thus simply an (augmented)
algebra homomorphism.

From here onwards, we shall simply refer to these augmented algebra homomor-
phisms as maps.

Definition 2.1.7. Let Weil be the category with objects the Weil algebras and
morphisms the maps described above.

Remark The category Weil is a full subcategory of AugAlg (= Alg/k, the cat-
egory of augmented algebras).

It is convenient to give a Weil algebra B by a presentation

B = k[b1, . . . , bm]/QB,

where we quotient the free algebra k [b1, . . . , bm] by the list of terms in QB.

Remark This is always possible. Given a Weil algebra B, we can take a (finite)
basis {b0 = 1, b1 . . . , br} for the underlying vector space, then form the free algebra
k[b1, . . . , br] (recall that b0 = 1). Then, there is a unique surjective map

! : k[b1, . . . , br]� B .

A presentation for B is then given by B = k[b1, . . . , br]/ ker(!).

Example 2.1.8. a

• k[x]/x2 is the Weil algebra with {1, x} as a basis for the underlying vector
space and equipped with the obvious multiplication, but with x2 identified with
0.

7



2.1. Weil algebras

• k[x]/x3 is the Weil algebra with {1, x, x2} as a basis for the underlying vector
space and equipped with the obvious multiplication, but with x3 identified with
0.

• k[x, y]/x2, y2 is the Weil algebra with {1, x, y, xy} as a basis for the underlying
vector space and equipped with the obvious multiplication, but with x2 and y2

each identified with 0.

We will also note the following:

• We shall always use presentations for which the augmentation εB : B → k
sends each generator bi to 0.

• Recall that for a linear map h : X → Y between vector spaces, it suffices to
define how h acts on basis elements of V . Analogously, for an augmented alge-
bra homomorphism f : B → C, it suffices to define how f acts on generators
(then check that it is suitably compatible with the relations).

• For Weil algebras A = k[a1, . . . , am]/QA and B = k[b1, . . . , bn]/QB and a map
f : A→ B, f(ai) is a polynomial in the generators b1, . . . , bn with no constant
term.

We shall now detail some properties of Weil.

2.1.1 Properties of Weil

We begin with the following facts:

• The category Alg has all limits and colimits. This is true since Alg is a
category of models of a Lawvere theory, and is thus complete and cocomplete.

• Coproducts in Alg are given by ⊗. This result appears in many texts and is
a well known result. For instance, see Proposition 6.1 of [19].

It is routine to show that these facts are also true for Alg/k = AugAlg.

Proposition 2.1.9. The category Weil has all finite products.

Proof. Since k is a zero object, it is the nullary product. For arbitrary Weil algebras
A and B, begin by taking the pullback

A×k B //

��

B

εB
��

A εA
// k

(or equivalently, the product) in AugAlg. Since both A and B are finite dimen-
sional and have nilpotent augmentation ideals, then the same is true of A ×k B.
Thus it is also a Weil algebra.
∴Weil has all finite products. �

Definition 2.1.10. Let NilAugAlg be the full subcategory of AugAlg containing
all augmented algebras whose augmentation ideals are nilpotent.

8



2.1. Weil algebras

Proposition 2.1.11. The category NilAugAlg has all finite limits.

Proof. Let A be a finite category and consider an arbitrary diagram

R : A → NilAugAlg .

Since AugAlg has all limits, we can form a limiting cone

A NilAugAlg AugAlg
R

∆X

γ

But since A is finite, the (finite) set {γa | a ∈ A} is jointly monic and each
Ra is nilpotent, then the augmentation ideal of X is necessarily nilpotent, and so
X ∈ NilAugAlg.

Therefore NilAugAlg has all finite limits. �

Proposition 2.1.12. The set {Wn | n ∈ N}, where Wn = k[x]/xn+1 for all n ∈ N,
forms a strong generator for NilAugAlg.

Proof. We want to show that the set of functors

NilAugAlg(Wn, ) : NilAugAlg→ Set

for all n ∈ N jointly reflect isomorphisms.
Let f : A→ B be an arbitrary map of NilAugAlg for which

NilAugAlg(Wn, f) : NilAugAlg(Wn, A)→ NilAugAlg(Wn, B)

is an isomorphism for all n ∈ N.
Let α be an element of A with f(α) = 0. In particular, α is an element of the

augmentation ideal ker(εA). Since this is nilpotent, then we can define

r = max{s ∈ N | αs 6= 0} .

Note also that αr+1 = 0. As such, we may define a map g : Wr → A given as
g(x) = α. Further, let z : Wr → A be the zero map (i.e. z(x) = 0).

Now, we have g, z ∈ NilAugAlg(Wr, A). Moreover, we clearly have f ◦g = f ◦z.
But since NilAugAlg(Wr, f) is an isomorphism, then we must have g = z, i.e.
α = 0.

Therefore ker(f) = {0}.
Now, let β be an arbitrary element of ker(εB). Since ker(εB) is nilpotent, then

we can define
ρ = max{σ ∈ N | βσ 6= 0} .

Note also that βρ+1 = 0. As such, we may define a map γ : Wρ → B given as
γ(x) = β.

But now we have γ ∈ NilAugAlg(Wρ, B), and since NilAugAlg(Wρ, f) is an
isomorphism, then there is a unique map h : Wρ → A such that

Wρ
h //

γ
  

A

f
��
B

9



2.1. Weil algebras

commutes. This shows that f is surjective on elements. But this means that f is
an isomorphism in Vect.

Thus f is an isomorphism in NilAugAlg. Since NilAugAlg has all equalisers,
then the set {Wn | n ∈ N} forms a strong generator for NilAugAlg. �

In particular, since eachWn ∈Weil, this then says that the inclusion I : Weil ↪→
NilAugAlg preserves and reflects any existing (finite) limits.

Proposition 2.1.13. For an arbitrary object A ∈Weil, the functor A⊗ : Weil→
Weil preserves finite connected limits.

Proof. Consider the diagram

Weil Weil

NilAugAlg NilAugAlg

AugAlg AugAlg .

A⊗

A⊗

A⊗

The inclusions all preserve and reflect (finite) limits, and A ⊗ : AugAlg →
AugAlg preserves connected limits. �

Proposition 2.1.14. The category Weil has all finite coproducts, and moreover,
coproduct is given by ⊗.

Proof. (Finite) coproducts in AugAlg are given by ⊗, and since Weil is a full
subcategory of AugAlg, it remains only to show that Weil is closed under (finite)
⊗.

Further, as k is a zero object, then it is the nullary coproduct. Now, since Weil
algebras are finite dimensional, then any finite coproduct of them must also be finite
dimensional. The nilpotency of the augmentation ideal is immediate. �

Lemma 2.1.15. Let A and B be Weil algebras with presentations

A = k[a1, . . . , am]/QA

B = k[b1, . . . , bn]/QB.

Then:

• The product A×B has presentation

A×B = k[a1, . . . , am, b1, . . . , bn]/QA ∪QB ∪ {aibj|∀i, j} ;

• The coproduct A⊗B has presentation

A⊗B = k[a1, . . . , am, b1, . . . , bn]/QA ∪QB .

Proof. The proof is immediate. �

10



2.1. Weil algebras

Finally, let us define W to be the Weil algebra k[x]/x2 (we will use this notation
for this chapter as well as Chapter 3). Then, the nth power and copower of W ,
denoted W n and nW respectively, have presentations

W n = k[x1, . . . , xn]/{xixj| ∀i 6 j}
nW = k[x1, . . . , xn]/{xi2| ∀i} .

Definition 2.1.16. For Weil algebras A, B and C, a foundational pullback in
Weil is any pullback of the form

A⊗ (B × C)
A⊗πB //

A⊗πC
��

A⊗B
A⊗εB
��

A⊗ C
A⊗εC

// A ,

where πB and πC are the product projections.

Remark Foundational pullbacks are indeed pullbacks by a direct application of
Proposition 2.1.13 to Proposition 2.1.9, with products regarded as pullbacks over
the zero object k.

The operations of × and ⊗, their common unit as well as the foundational
pullbacks play a pivotal role in discussing tangent structure (as we shall see in
Chapter 3). We are thus interested in categories of the form (W ,×,⊗, I) with the
properties described.

Clearly, Weil itself is a candidate for such a category. However, we may wish
to restrict the permissible Weil algebras in the discussion by restricting to (full)
subcategories of Weil. In particular, we will define the subcategories Weil1 and
k-Weil∞ (which we will describe in subsequent chapters) and discuss why they
might be more appropriate than Weil itself. We will also discuss some other viable
candidates in Section 5.1.

2.1.2 If k is not a field

The facts established in Section 2.1.1 assume k is a field. However, we are more
interested in k = N, Z and 2 (which we define in Definition 3.4.1). The notion
of Weil algebras in this slightly higher level of generality then becomes somewhat
delicate.

In general, for a given arbitrary (commutative) ring R, an R-module (underlying
some given R-algebra) does not have a notion of dimension. One could of course ask
for the R-module to be free, but then quotients and sub-algebras are not necessarily
also free, and this can affect the existence of limits and colimits.

However, we avoid these issues by restricting to subcategories of Weil (in par-
ticular Weil1 and Weil∞) that always consist of objects having a presentation of
the form

k[x1, . . . , xn]/{some collection I of monomials in the xi’s} ,

with some xrii ∈ I for each i = 1, . . . , n; and we will still refer to these as Weil
algebras. In particular, such Weil algebras all have finitely generated and free
underlying k-modules.

11



2.2. Graphs

Restricting to these subcategories in the case of these more general k, Proposi-
tion 2.1.13 still holds using the same arguments.

These more general k are needed in order to make our comparison with the
definitions of [29] and [8]. For example, if we take k = Z (as a ring), then we will
ultimately return the abelian group bundles of [29]. Of particular interest to us in
this discussion, however, are the cases where k is N (as a rig, for the commutative
monoid bundles of [8]) and 2 (again, we shall define this in Definition 3.4.1, and it
will provide a convenient tool for our calculations).

2.2 Graphs

Here, we define some basic concepts relating to graphs that we will need to use.
These are all, for the most part, standard definitions that can be found in any
introductory graph theory textbook (for example, see [3]). The notation, however,
seems to vary depending on the text.

Definition 2.2.1. A graph G is a pair of sets (V,E), with V a finite set of “ver-
tices” of G, and E a set of unordered pairs of distinct vertices, called the “edges”
of G.

Example 2.2.2. G =
(
{1, 2, 3, 4, 5, 6}, {(1, 2), (1, 3), (1, 6), (2, 3), (4, 5)}

)
is the graph

1

2 3

4

56

Remark In more formal graph theory terms, we are actually describing simple
(undirected edges, no loops and at most one edge between any pair of vertices)
finite graphs.

Definition 2.2.3. For graphs G = (V,E) and G′ = (V ′, E ′), a graph homomor-
phism h : G→ G′ is a function h : V → V ′ such that for distinct u, v ∈ V ,

(u, v) ∈ E ⇒ (h (u) , h (v)) ∈ E ′ or h(u) = h(v).

Definition 2.2.4. Let Gph be the category of graphs and graph homomorphisms.

Definition 2.2.5. For a non-empty graph G = (V,E), we will say G is connected
if for any two distinct vertices u and v, there exist vertices v1, . . . , vs ∈ V with
(vi, vi+1) ∈ E for each i, and v1 = u, vs = v.

Definition 2.2.6. Given a graph G = (V,E), the complement of G is the graph
Gc = (V,Ec), where for any two distinct u, v ∈ V ,

(u, v) ∈ E ⇔ (u, v) /∈ Ec.

12



2.2. Graphs

We now define two important binary operations on graphs. Let graphs G1 =
(V1, E1) and G2 = (V2, E2) be given.

Definition 2.2.7. The disjoint union of G1 and G2, denoted as G1 ⊗ G2, is the
graph

G1 ⊗G2 = (V1 t V2, E1 t E2) ;

where t denotes disjoint union of sets.

Or, put simply, it is the graph given by simply placing G1 adjacent to G2 without
adding or removing any edges.

Definition 2.2.8. The graph join of G1 and G2, denoted G1 ×G2, is the graph

G1 ×G2 = (V1 t V2, Ẽ)

where Ẽ = E1 t E2 t (V1 × V2).

Or, put simply, it is the graph given by taking G1⊗G2, then adding in an edge
from each vertex in G1 to each vertex in G2. Equivalently, it can be defined as

G1 ×G2 = (Gc
1 ⊗Gc

2)c

Remark The notation G1×G2 is in no way intended to suggest the product of G1

and G2 in the category Gph of graphs.

Remark The use of ⊗ and × to denote the operations of disjoint union and graph
join respectively do not coincide with the notation used in graph theory. Graph
union is often denoted as G1 ∪G2 or G1 + G2. Further, the graph join, sometimes
called “graph sum”, is denoted G1∨G2, (to add to the confusion, some texts denote
this as G1 + G2; moreover the meaning of “graph sum” can also vary depending
on the literature). However, the notation {⊗,×} was chosen in place of {∪,∨} for
consistency with the notation for Weil algebras, as we shall see in Section 3.3.

Definition 2.2.9. A graph G is said to be complete if every pair (u, v) of distinct
vertices has an edge joining them (i.e. (u, v) ∈ E for all u 6= v).

Equivalently, G is the graph join of an appropriate number of instances of the
single point graph.

Definition 2.2.10. A graph G is said to be discrete if the edge set E is empty.
Equivalently, G is the disjoint union of an appropriate number of instances of

the single point graph.
Equivalently again, G is discrete iff its complement Gc is complete.

Remark In graph theory literature, sometimes discrete graphs are also called
“edgeless graphs” or “null graphs”.

Definition 2.2.11. We will give an iterative definition of cograph (complement-
reducible graph) as follows:

• The empty graph (empty vertex set) and one point graph are cographs.

• If G1 and G2 are cographs, so are G1 ×G2 and G1 ⊗G2.

13



2.2. Graphs

Remark Cographs are not in any way a dual notion to graphs. The prefix “co-”
is an abbreviation of “complement reducible”.

In fact, cographs have been studied extensively by graph theorists, and there
are various equivalent characterisations of them (for instance, see [9]).

Remark For example, given a graph G, the following are equivalent:

1) G is a cograph;

2) G does not contain the graph P4

1 2 3 4

(the path graph with four vertices) as a full subgraph.

.
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Chapter 3

The category Weil1
3.1 Tangent Structure

We begin with a formal definition of Tangent Structure. Tangent Structure was
defined by Rosický [29] using (internal) bundles of abelian groups, but we will be
following the definition of Cockett-Cruttwell [8] using (internal) bundles of commu-
tative monoids. More explicitly, it requires that the tangent bundle TM sitting over
a smooth manifold (or more generally, an object of the categoryM in question) M
is a commutative monoid. We refer to this as an additive bundle.

3.1.1 Internal commutative monoid

Often, commutative monoids are considered in categories with all finite products,
but we shall not be assuming this. For the definition below, we will only assume
that C has finite powers of the object C in question (in particular, C has a terminal
object t). We then have the obvious associativity isomorphism

α : C × (C × C)→ (C × C)× C

and isomorphisms given by the projections π : t× C → C and π′ : C × t→ C.

Definition 3.1.1. Given a category C, a commutative monoid in C consists of

• An object C such that finite powers of C exist;

• A pair of maps η : t→ C and µ : C×C → C such that the following diagrams
commute

C × (C × C) α //

1×µ

��

(C × C)× C µ×1 // C × C

µ

��

t× C η×1 //

∼=
##

C × C

µ

��

C × t1×ηoo

∼=
{{

C × C µ
// C C

and µ agrees with the symmetry map

sym : C × C → C × C ,

so that the diagram

C × C sym //

µ

$$

C × C

µ

��
C

also commutes.
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3.1. Tangent Structure

3.1.2 Additive bundles

Definition 3.1.2. If A is an object in a category M, then an additive bundle over
A is a commutative monoid in the slice category M/A. Explicitly, this consists of

• a map p : X → A such that pullback powers of p exist, the nth pullback power
denoted by X(n) and projections πi : X

(n) → X for i ∈ {1, ..., n};

• maps +: X(2) → X and η : A→ X with p ◦+ = p ◦ π1 = p ◦ π2 and p ◦ η = id
which are associative, commutative, and unital.

Remark We will note here that the notation used in [8] for the nth pullback power
is Xn.

Definition 3.1.3. Suppose p : X → A and q : Y → B are additive bundles. An
additive bundle morphism is a pair of maps f : X → Y and g : A → B such that
the following diagrams commute.

X
f //

p

��

Y

q

��

X(2) f×f //

+

��

Y (2)

+

��

A
g //

η

��

B

η′

��
A g

// B X
f

// Y X
f

// Y

3.1.3 Tangent Structure (in the sense of Cockett and Crut-
twell [8])

Definition 3.1.4. Given a category M, a Tangent Structure T = (T, p, η,+, l, c)
on M consists of

• (tangent functor) a functor T : M → M and a natural transformation
p : T → 1M such that pullback powers T (m) of p exist and the composites T n

of T preserve these pullbacks for all n ∈ N;

• (tangent bundle) natural transformations +: T (2) ⇒ T and η : 1M ⇒ T
making p : T → 1M into an additive bundle;

• (vertical lift) a natural transformation l : T ⇒ T 2 such that

(l, η) : (p,+, η)→ (Tp, T+, T η)

is an additive bundle morphism;

• (canonical flip) a natural transformation c : T 2 → T 2 such that

(c, idT ) :
(
Tp, T+, T η

)
→
(
pT,+T, ηT

)
is an additive bundle morphism;

where the natural transformations l and c satisfy
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3.2. Tangent Structure and Weil algebras

• (coherence of l and c) c2 = id, c ◦ l = l, and the following diagrams
commute

T l //

l
��

T 2

T l
��

T 3 Tc //

cT
��

T 3 cT // T 3

Tc
��

T 2 lT //

c
��

T 3 Tc // T 3

cT
��

T 2
lT
// T 3 T 3

Tc
// T 3

cT
// T 3 T 2

T l
// T 3 ;

• (universality of vertical lift) the following is an equaliser diagram

T (2) (T+)◦(l×T ηT ) // T 2

η◦p◦Tp
//

Tp // T ,

where (T+) ◦ (l ×T ηT ) is the composite

T
l // T 2

T (2)

π1

>>

π2

  

// TT (2)

π1

OO

π2

��

T+ // T 2

T
ηT

// T 2 ;

the dotted arrow induced by the universal property of TT (2) as a pullback.

We may then refer to the pair (M,T) as a tangent category.

3.2 Tangent Structure and Weil algebras

The tangent functor T of Definition 3.1.4 is closely related to the Weil algebra
W = N[x]/x2. In synthetic differential geometry (i.e. in the sense of [15]), T is the
representable functor ( )D, where D = Spec(W ) (although here, k would be taken
to be R).

Here, we will begin to describe a different relationship between Weil and Tan-
gent Structure. Regard coproduct ⊗ as a monoidal operation on Weil (with unit
k). For now, we shall take k to be an arbitrary field.

Proposition 3.2.1. The (endo)functor

W ⊗ : Weil→Weil

can be used to define a Tangent Structure on Weil.

Proof. With T = W ⊗ , we first give the natural transformations required in order
to have a tangent structure on Weil. The names for the morphisms used below will
be deliberately chosen to coincide with those of Tangent Structure.

17



3.2. Tangent Structure and Weil algebras

Natural transformation Explanation
Projection εW ⊗ : T ⇒ 1Weil εW : W → k is the augmentation for W
Addition +⊗ : T (2) ⇒ T T (2) is the functor W 2 ⊗ ,

+: W 2 → W ; x1, x2 7→ x
Unit ηW ⊗ : 1Weil ⇒ T ηW : k → W is the (multiplicative) unit for W

Vertical lift l ⊗ : T ⇒ T 2 T 2 = T ◦ T is the functor 2W ⊗
l : W → 2W ; x 7→ x1x2

Canonical flip c⊗ : T 2 ⇒ T 2 c : 2W → 2W ; xi 7→ x3−i, for i = 1, 2

With these choices of natural transformations as well as the facts established in
Section 2.1.1 (so that (W ⊗ )n = (nW ⊗ ) preserves the required pullbacks), it
is a very routine exercise to verify that this does in fact define a Tangent Structure
on Weil.

We will also note that the diagram

W 2 (W⊗+)◦(l×W (ηW⊗W )) // 2W
ηW ◦(εW⊗εW )

//
W⊗εW //W

is an equaliser in Weil (the universality of vertical lift equaliser in Definition 3.1.4).
Note that the map (W ⊗ +) ◦ (l ×W (ηW ⊗W )), which we will denote as v, is

given as

k[x1, x2]/x2
1, x

2
2, x1x2 → k[y1, y2]/y2

1, y
2
2

x1 7→ y1y2

x2 7→ y2 .

The map W ⊗ εW : k[y1, y2]/y2
1, y

2
2 → k[z]/z2 sends y1 to z and y2 to 0, and

ηW ◦ (εW ⊗ εW ) : k[y1, y2]/y2
1, y

2
2 → k[z]/z2 sends both y1 and y2 to 0. �

This Tangent Structure on Weil arises from the object W , its (finite product)
powers W n and tensors of these. With this in mind, it makes sense to give the
following definition:

Definition 3.2.2. Let k-Weil1 be the category consisting of:

• Objects: For each n ∈ N,

W n = k[x1, . . . , xn]/ {xixj | ∀ 1 ≤ i ≤ j ≤ n}

is an object of k-Weil1. Further, if A and B are objects of k-Weil1, then so
is A⊗B.

• Morphisms: All algebra homomorphisms compatible with units and augmen-
tations.

Remark This definition is valid for k = N, Z or 2 as well.

Recall that as a consequence of Lemma 2.1.15, the (finite product) power W n

would have presentation

k[x1, . . . , xn]/{xixj|∀i ≤ j} ,
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3.3. Graphs and Weil algebras

and that the presentation for a tensor A ⊗ B took a particular form. As such, a

tensor
m
⊗
i=1

W ni of powers of W would have a certain presentation that we will not

try to describe explicitly right now (we shall see this in Section 3.3).
In general, however, such objects will have a presentation

k[x1, . . . , xn]/{xixj|∀xi ∼ xj}

for some symmetric, reflexive relation ∼ (although not all symmetric, reflexive
relations will yield an object of k-Weil1). Since we will always require x2

i = 0 in
these presentations, there is no loss of information if we omit the corresponding
relation xi ∼ xi and take ∼ to merely be symmetric (and in fact, anti-reflexive).

However, such symmetric relations can be thought of as graphs (as defined in
Section 2.2).

Remark We treat such relations as anti-reflexive so that the corresponding graph
will not have loops.

3.3 Graphs and Weil algebras

We first define a functor from the category Gph of graphs to Weil as:

Definition 3.3.1. The functor

κ : Gph→Weil

is defined as follows:

• On objects: For a graph G = (V,E), κ(G) is the Weil algebra k[v1, . . . , vm]/QE,
where V = {v1, . . . , vm}, v2

i ∈ QE for all i and for i 6= j, vivj ∈ QE ⇔
(vi, vj) ∈ E.

• On morphisms: For a graph homomorphism h : G → G′, κh : κ(G) → κ(G′)
is given as

(κh)(vi) = h(vi) for all i ;

where we use the underlying function h : V → V ′ on the vertex sets.

Remark We shall leave as an exercise to the reader to verify that κh is indeed a
valid morphism of Weil algebras, and that this definition of κ is functorial, i.e. that
it preserves identities and composition.

Conversely, we have the following:

Definition 3.3.2. Given a Weil algebra X with a (specified) presentation of the
form

X = k[x1, . . . , xn]/{xixj | ∀ x1 ∼ xj} ,

let ΓX denote the graph induced by ∼; namely the graph with vertices the generators
x1, . . . , xn and an edge between xi and xj (for i 6= j) whenever xi ∼ xj.
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3.3. Graphs and Weil algebras

Remark There does not appear to be any clear way to define Γ as a functor from
Weil (or any subcategory of Weil) to Gph. For instance, there is no canonical
way to define Γl, for the map l : W → 2W as described in Section 3.2.

Remark With this convention, for a Weil algebra X with presentation as described
above, it is easy to see that κ(ΓX) = X, and for a graph G, we have Γκ(G) = G.

For example, we have

Weil algebra Presentation Graph

k k[ ]

W k[x]/x2 1

2W k[x1, x2]/x2
1, x

2
2

1 2

W 2 k[x1, x2]/x2
1, x

2
2, x1x2

1 2

3W k[x1, x2, x3]/x2
1, x

2
2, x

2
3

1

2 3

W 2 ⊗W k[x1, x2, x3]/x2
1, x

2
2, x

2
3, x1x2

1

2 3

W × 2W k[x1, x2, x3]/x2
1, x

2
2, x

2
3, x1x2, x1x3

1

2 3

W 3 k[x1, x2, x3]/x2
1, x

2
2, x

2
3, x1x2, x1x3, x2x3

1

2 3

Remark The object W × 2W is not contained in the category k-Weil1, but we
shall include it in the table anyway. Note that this is the path graph P3 of length
three.

Proposition 3.3.3. For graphs G and G′, we have:

1) κ(G)⊗ κ(G) = κ(G⊗G′);

1) κ(G)× κ(G) = κ(G×G′).

Proof. This is a direct consequence of Lemma 2.1.15 and Definitions 2.2.7 and
2.2.8. �

To require precisely those Weil algebras given as the closure of {W n}n∈N under
⊗ is thus to ask for those that correspond to disjoint unions of complete graphs.
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3.3. Graphs and Weil algebras

Definition 3.3.4. A graph G is said to be piecewise complete (or a ‘p.c. graph’)
if it can be expressed as a disjoint union of complete graphs.

Remark The p.c. graphs are a subset of the cographs (as defined in Definition
2.2.11).

Remark Although we are interested in p.c. graphs in this chapter, we shall often
speak in greater generality by discussing cographs.

As an aside, we also have the following:

Proposition 3.3.5. For a graph G = (V,E), the following are equivalent:

1) G is a p.c. graph.

2) G does not contain the path graph P3 as a full subgraph.

Proof. Let G = (V,E) be a given graph.

• 1)⇒ 2): Suppose G is a p.c. graph. Let a, b, c ∈ V be three distinct vertices
of G with (a, b), (b, c) ∈ E.

Since G is a disjoint union of complete graphs, then a, b and c must all belong
to the same complete component of G, and so (a, c) ∈ E. Hence G cannot
contain P3 as a full subgraph.

• 2) ⇒ 1): Suppose G does not contain the path graph P3 as a full subgraph.
Without loss of generality, let G be connected. We wish to show that G is
complete.

Let a and b be two distinct vertices of G. Since G is connected, there exist
distinct vertices v1, . . . , vs ∈ V with (vi, vi+1) ∈ E for each i, with v1 = a and
vs = b (Definition 2.2.5).

Now, since we have (v1, v2) and (v2, v3) ∈ E, and P3 is not a full subgraph,
then this says we must also have (v1, v3) ∈ E. Repeating this argument
iteratively, we then conclude that (a, b) ∈ E, and so G is complete.

Thus G is a p.c. graph.

�

Now that we have a description for the objects of our subcategory k-Weil1, we
may now revisit the idea mentioned in Section 2.1.2; namely that k need not be a
field. k being a field resulted in Weil algebras having underlying (finite dimensional)
k-vector spaces.

Of course, different choices of k would lead to different structures for the tangent
bundles; namely the structure of k-modules. For instance, as we noted in 2.1.2, the
bundles of abelian groups in [29] would require k to be Z, whereas the bundles of
commutative monoids in [8] would require k to be N (so that the Weil algebras have
finitely generated and free underlying Z-modules and N-modules respectively).

We now introduce a way to describe the morphisms.
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3.4. Maps and graphs

3.4 Maps and graphs

Recall from Section 3.2 that there was a canonical Tangent Structure on Weil with
tangent functor W ⊗ . The natural transformations of this tangent structure
arose from the maps {εW ,+, η, l, c} of Weil (in particular, these maps also exist in
k-Weil1). These maps, along with W , will play a crucial role in our discussion.

For the remainder of this chapter, we shall predominantly focus our attention
to the subcategory k-Weil1.

It is convenient for now to take k to be 2:

Definition 3.4.1. Let 2 be the rig {0, 1}, with the usual multiplication, and addition
given by max; in particular 1 + 1 = 1.

We shall begin by showing that using the maps {εW ,+, η, l, c}, composition, ⊗
and the universal property of foundational pullbacks (as given in Definition 2.1.16),
we can construct (in some appropriate sense) any map of 2-Weil1.

Remark We will not need the universal property of ⊗ (the coproduct), but rather
we shall consider 2-Weil1 as a monoidal category with respect to ⊗ (with k as the
unit).

We will need some extra constructions relating to graphs before we begin. Let
G = (V,E) be a given graph.

Definition 3.4.2. A clique U of G is a (possibly empty) subset of V for which
any two distinct vertices in U have an edge between them (or equivalently, the full
subgraph of G induced by U is complete).

Definition 3.4.3. Conversely, an independent set U of G is a (possibly empty)
subset of V for which no two distinct vertices in U have an edge between them (or
equivalently, the full subgraph of G induced by U is discrete).

Remark A subset U ⊂ V is an independent set of G iff it is a clique of Gc.

We can actually use these notions of cliques and independent sets to form new
graphs from existing ones.

Definition 3.4.4. Given a graph G = (V,E), define Ind(G) to be the graph given
by:

• Vertices: the independent sets of G;

• Edges: given any two distinct independent sets U1 and U2 of G, there is an
edge between them in Ind(G) whenever there exist x ∈ U1 and y ∈ U2 such that
either there is an edge between x and y in G or x = y (so that U1 ∩ U2 6= φ).

Definition 3.4.5. Given a graph G = (V,E), define Cl(G) to be the graph given
by:

• Vertices: the cliques of G;

• Edges: given any two distinct cliques U1 and U2 of G, there is an edge between
them in Cl(G) whenever their union U1 ∪ U2 is also a clique of G (note that
there is no requirement for U1 and U2 to be disjoint).

22



3.4. Maps and graphs

Remark In defining the graph Cl(G), there is often the additional requirement
that cliques U1 and U2 are disjoint for there to be an edge between them. If that
were the case, then we would have

Ind(G) = (Cl(Gc))c

Remark As defined here, Cl : Gph → Gph is functorial and moreover can be
made into a monad. We shall not be needing this fact, so we shall not prove it.

Definition 3.4.6. Given a graph G = (V,E), define Ind+(G) to be the full subgraph
of Ind(G) where the vertices are the non-empty independent sets of G.

3.4.1 Expressing maps using graphs

Recall that to define a map between (Weil) algebras, it suffices to define how the
map acts on each of the generators. So, let a map f : A→ B in 2-Weil1 be given,
where A and B have presentations

A = 2[a1, ..., am]/QA and B = 2[b1, ..., bn]/QB.

Then, for each generator ai of A, we can express f(ai) (uniquely) as a sum

f(ai) =
∑
b∈B

α
(i)
b b ;

the sum being across all non-zero monomials b of B in the generators {b1, . . . , bn},
and α

(i)
b ∈ 2 is a constant (taking value 0 or 1).

In fact, since we are using a presentation for which εA(ai) = 0 for all i, the sum
can in fact skip the trivial monomial (i.e. the constant).

We may also try to express f pictorially.

Example 3.4.7. Consider the map f : W → 3W given by x 7→ y1y2 + y1y3. We
can represent this pictorially as

1

2 3

where each term of f(x) is represented by circling the vertices that generate the term
(so the term y1y2 is represented by the ellipse encompassing the vertices 1 and 2).
Note in particular that {1, 2} and {1, 3} are independent sets of Γ3W .

We also note that we label the vertices 1, 2 and 3 instead of y1, y2 and y3 for
convenience.

This suggests that we can express the map f using the language of graphs.
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3.4.2 Expressing maps using cliques and independent sets

For this subsection, we shall not necessarily restrict the discussion to the p.c. graphs,
but rather implicitly refer to all graphs.

Proposition 3.4.8. For the Weil algebra B = 2[b1, ..., bn]/QB with corresponding
(p.c.) graph ΓB, the set of non-zero monomials b of B in the generators {b1, . . . , bn}
are (canonically) in bijection with the independent sets of ΓB.

Proof. Since each generator bi of B squares to zero, then each non-zero monomial
b can be expressed (uniquely) as ∏

i∈I

bi ;

for some appropriate subset I ⊆ {b1, . . . , bn}. Since b 6= 0, then for distinct bi, bj ∈ I,
we must have bibj 6= 0, i.e. bibj /∈ QB. This equivalently means there is no edge
between the vertices bi and bj in ΓB. I is thus a (possibly empty) independent set
of ΓB.

The reverse direction for the bijection is then obvious. �

Remark Using Proposition 3.4.8, we can equivalently say that to give a non-
constant monomial b is to give a vertex of Ind+(ΓB).

As such, we may now express f(ai) (uniquely) as

f(ai) =
∑

U∈Ind+(ΓB)

α
(i)
U bU

over the non-empty independent sets U of ΓB

Notation For a graph G, let a circle U of G simply mean an independent set of
G, but regarded pictorially as some shape encompassing the relevant vertices.

We may use this idea to express f : A → B pictorially. Start by taking the
generator a1. Then take the graph ΓB for B, and for each U with α1

U = 1, we add
onto ΓB a circle corresponding to U , and we do this for all U with α1

U = 1. Then
repeat this process for each generator ai, but (say) using a different colour for each
different generator.

Example 3.4.9. The map f : 2W → 3W given by x1 7→ y1y2 + y2y3 and x2 7→
y1 + y1y3 may be represented as

1

2 3

where f(x1) is represented in red and f(x2) is represented in blue.

24



3.4. Maps and graphs

Notation For a map f : A→ B, let {U}f denote the graph ΓB together with a set
{(U, i) | αiU = 1}, all of this regarded pictorially as a set of coloured circles on ΓB.

Remark For a map f : W → B, we will simply refer to a circle (U, i) of {U}f as
U (i.e. we omit the index i).

So, to any map f we can associate a graph with coloured circles. However, not
all sets of circles on the graph ΓB are permissible.

In order to investigate this idea further, we begin with the following:

Proposition 3.4.10. Consider maps of the form f : W → B. To give such an f
is to give a clique of Ind+(ΓB).

Proof. Let x be the generator of W . Recall from Proposition 3.4.8 that each sum-
mand (monomial) of f(x) is a (non-empty) independent set of ΓB, i.e. a vertex of
Ind+(ΓB). We may thus regard f(x) as some subset Xf of the vertices of Ind+(ΓB).

Let distinct U1, U2 ∈ Xf be given (i.e. two distinct monomials of f(x)). Then,
since x2 = 0, either

1) U1 ∩ U2 6= φ (so that they have a common vertex which becomes squared in
the product bU1bU2), or

2) there exists bi ∈ U1 and bj ∈ U2 (with i 6= j) such that (bjbj′) is an edge of
ΓB.

In either case, each of the above conditions is equivalent to the independent
sets U1 and U2 having an edge joining them in Ind+(ΓB). Xf is thus a clique of
Ind+(ΓB). In particular, f(x) corresponds to a vertex of Cl(Ind+(ΓB)).

Conversely, given a clique Y of Ind+(ΓB), there is the obvious polynomial
pY (b1, . . . , bn) corresponding to Y , and it is routine to check that fY (x) = pX(b1, . . . , bn)
defines a valid morphism fY : W → B. �

Notation For convenience, we shall let χ( ) denote Cl(Ind+( )).

We can take this one step further:

Proposition 3.4.11. To give a map f : A→ B is to give a graph homomorphism
f̃ : ΓA → χ(ΓB).

Proof. We know from Proposition 3.4.10 that each f(ai) corresponds to a vertex of
χ(ΓB).

This gives us a function from the set {a1, . . . , am} of vertices of ΓA to the set of
vertices of χ(ΓB). We now verify that this function yields a valid graph homomor-
phism.

Suppose ai and aj are two distinct vertices of ΓA with an edge joining them.

(ai, aj) is an edge of ΓA

⇒ aiaj = 0 in A

⇒ f(ai)f(aj) = 0 in B .

This tells us that if bi and bj are each a monomial from f(ai) and f(aj) respec-
tively, then bibj = 0. Using the same idea as the proof for Proposition 3.4.10, this
says that there is an edge joining bi and bj in Ind+(ΓB).

25



3.4. Maps and graphs

This is true for all such pairs of monomials, and so f(ai) and f(aj), viewed as
cliques in Ind+(ΓB), together (i.e. taking the union of the two cliques) give a clique.
As such, when viewed as vertices of χ(ΓB), there is an edge joining f(ai) and f(aj).

Thus f : A→ B yields a unique graph homomorphism f̃ : ΓA → χ(ΓB).
The reverse direction is then obvious. �

These ideas actually allow us to prove an interesting fact about χ.

Proposition 3.4.12. χ defines an endofunctor on the category Gph, and moreover,
χ is canonically a monad.

Proof. We first exhibit χ as an endofunctor. It is already well-defined on objects.
Let G = (V,E) and G′ = (V ′, E ′) be arbitrary graphs and h : G→ G′ some chosen
graph homomorphism.

Define χ(h) : χ(G)→ χ(G′) as follows:

• For a vertex v ∈ V , regarded as the singleton clique of the singleton inde-
pendent set (so that it is a vertex of χ(G)), define (χh)(v) = h(v) (where
h(v) ∈ V ′ is regarded as a vertex of χ(G′) in the same way).

• For a non-empty independent set U of G (hence a vertex of Ind+(G), and thus
a singleton clique) viewed as a vertex of χ(G), define (χh)(U) as
∪
v∈U

h(v) ; if the function h restricted to domain U is injective,

and this defines an independent set of G′

The empty clique ; otherwise

;

if ∪
v∈U

h(v) does indeed define an independent set of G′, we again regard it as

a singleton clique of Ind+(G′), hence a vertex in χ(G′).

• For a clique C of Ind+(G), define χ(C) as the clique of Ind+(G′) consisting of
all (χh)(U) not the empty clique, for all (non-empty) independent sets U ∈ C.

We leave as an exercise to the reader to show that this will preserve identities and
composition, so that χ is functorial.

To show χ is a monad, we first give the unit η : 1Gph ⇒ χ by its components;
ηG : G → χ(G) sends each vertex v ∈ V to the singleton clique of the singleton
independent set {{v}}.

Using Proposition 3.4.11, it is easy to see that each ηG : G→ χ(G) corresponds
to the identity idκ(G) : κ(G)→ κ(G).

The multiplication µ : χ2 ⇒ χ has components µG : χ2(G) → χ(G) given as
follows: Recall that

• Vertices of G correspond to generators of κ(G) (Definition 3.3.1);

• Non-empty independent sets U of G correspond to non-constant, non-zero
monomials of κ(G) (Proposition 3.4.8), and an edge in Ind+(G) is equivalent
to the corresponding monomials multiply to zero;

• Cliques of such independent sets are polynomials squaring to zero (Proposition
3.4.10), and an edge in χ(G) means that the product of the two corresponding
polynomials yields zero.
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Using Definitions 3.4.5 and 3.4.6, we can then see that

• A non-empty independent set of such a clique (i.e. a vertex of Ind+ (χ (G)))
then corresponds to a set X of polynomials for which the product of all poly-
nomials in this set X is not zero, or X contains only the zero polynomial itself
(taking the empty clique as a singleton). An edge between X and Y in this
graph corresponds to there being polynomials p ∈ X and q ∈ Y such that
pq = 0 in κ(G);

• A (possibly empty) clique of such an independent set (i.e. a vertex of χ2(G))
is a family % of such sets of polynomials such that for any two distinct sets
X and Y of this family, there are polynomials p ∈ X and q ∈ Y such that
pq = 0 in κ(G), and an edge between vertices % and σ says that the union of
the two families is also such a family.

Then, to give µG : χ2(G) → χ(G) is to associate each family of sets of polyno-
mials to a polynomial squaring to zero. Let % be one such family. Let X ∈ %, and
suppose X = {p1, . . . , pr}, where each pi is a polynomial of κ(G) squaring to zero.

With this notation, we define µG(%) to be the polynomial

∑
X∈%

(∏
pi∈X

pi

)
.

Explicitly, for each set X ∈ %, multiply together all the polynomials in this set
(recall that unless X contains only the zero polynomial, then this product is non-
zero). Then add up all such resultant polynomials across all X ∈ %.

Now, each polynomial pi squares to zero, so each product∏
pi∈X

pi

squares to zero. Since % is a clique of Ind+ χ(G), then any two sets X, Y ∈ %
therefore are joined by an edge. As such, there exists p ∈ X and q ∈ Y with pq = 0
in κ(G). As such, the product (∏

pi∈X

pi

)∏
qj∈Y

qj


must be zero. This is true for all pairs X, Y ∈ %.

Thus, the polynomial µG(%) squares to zero (hence is a vertex of χ(G)).
Finally, suppose σ is another vertex such that (%, σ) is an edge of χ2(G). This

means that %∪σ is another family. As such, µG(%∪σ) is well defined and moreover
squares to zero. In particular, this means that µG(%)µG(σ) = 0 in κ(G).

Therefore there must be an edge between µG(%) and µG(σ).
We shall leave verifying the axioms of the monad as an exercise for the reader.

�

Since χ is a monad, we can then consider the Kleisli category Gphχ. Moreover,
we can then define Gph′χ as the full subcategory whose objects are precisely the
p.c. graphs.
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Proposition 3.4.13. There exists an equivalence of categories

F : Gph′χ → 2-Weil1 .

Proof. The functor F is defined as:

• On objects: F (G) = κ(G)

• On morphisms: A map h : G 9 G′ of Gph′χ is a graph homomorphism

h′ : G → χ(G′), and this corresponds to a unique map h̃ : κ(G) → κ(G′)
of 2-Weil1 (Proposition 3.4.11). Thus, take F (h) = h̃.

Using Proposition 3.4.11, F is clearly full and faithful. Finally, from Definition
3.3.1, Definition 3.3.2, and the fact that X = κ(ΓX) for all X ∈ 2-Weil1, we can
see that F is essentially surjective. �

3.5 Construction of maps

We shall show in this section that using the set {εW ,+, ηW , l, c} (as defined in
Section 3.2), composition, ⊗ and the universal property of foundational pullbacks
(as given in Definition 2.1.16) of 2-Weil1, we are able to “construct” (in some
appropriate sense) any map f : A → B of 2-Weil1. We begin by expressing the
maps {εW ,+, ηW , l, c} in the form {U}f in Table 3.1 below:
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Map Action on Generators Graph

εW : W → 2 x1 7→ 0 (k corresponds to the empty graph)

idW : W → W x 7→ x
1

+: W 2 → W x1 7→ x, x2 7→ x

1

ηW : 2→ W (2 has no generators) 1

l : W → 2W x 7→ x1x2

1 2

c : 2W → 2W x1 7→ x2, x2 7→ x1

1 2

Table 3.1:

Pictorially, given {U}f for some map f : A→ B, we can naively interpret ‘post-
composition’ with the above maps as follows:

• εW corresponds to deleting a particular vertex in ΓB as well as any circles
that go through that vertex.

• + corresponds to taking two vertices in ΓB joined by an edge and collapsing
them to a single vertex. Circles that had contained either vertex (but not
both) now contain the collapsed vertex instead.

• ηW corresponds to adding a new vertex to ΓB, but has no effect on any of the
existing circles.

• l corresponds to taking a single vertex of ΓB and splitting it into two vertices
without an edge joining them, and any circle U that contained the original
vertex now contain both of the new vertices.

• c corresponds to switching labels of (unjoined) vertices, and does nothing to
the circles themselves.
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These ideas will become clearer in subsequent discussion. We shall now precisely
define what it means to say that a map f : A→ B is “constructible”.

Definition 3.5.1. Let Ξ be a set of maps in 2-Weil1 given iteratively as follows:

• The maps εW ,+, ηW , l, c are contained in Ξ.

• Ξ contains all identities.

• For all n ∈ N, each projection πi : W
n → W is contained in Ξ.

• If f : X → Y and g : Y → Z are both in Ξ, then their composite g◦f : X → Z
is also in Ξ. Equivalently, Ξ is closed under composition.

• If f : X → Y and g : A→ B are both in Ξ, then their tensor f ⊗ g : X ⊗A→
Y ⊗B is also in Ξ. Equivalently, Ξ is closed under tensor.

• For a foundational pullback
A //

��

B

��
C // D

in 2-Weil1, and for an arbitrary commuting square

X
f //

g
��

B

��
C // D

with X ∈ 2-Weil1 and f, g ∈ Ξ, then the uniquely induced map h : X → A is
also in Ξ. Morphisms in Ξ will be called constructible.

Lemma 3.5.2. For any Weil algebra A ∈ 2-Weil1, the unit ηA and augmentation
εA are both constructible.

Proof. The lemma is true by definition for A = W . We then simply note that
εWn = εW ◦ πi (for any i) and ηWn (induced using ηW and product diagrams
regarded as foundational pullbacks) are both constructible, and for X, Y ∈ 2-Weil1
with ηX , ηY , εX , εY constructible, then ηX⊗Y = ηX ⊗ ηY , εX⊗Y = εX ⊗ εY are also
constructible. �

Corollary 3.5.3. Any zero map z : A→ B is constructible, for all A,B ∈ 2-Weil1.

Proof. For given A,B ∈ 2-Weil1, the zero map z : A→ B is the composite

A
εA // 2

ηB // B .

�

Lemma 3.5.4. The only (non-trivial) products in 2-Weil1 are the product powers
W n.

Proof. For arbitrary X, Y ∈ 2-Weil1, the graph ΓX×Y for their product would
need to be connected. The only connected p.c. graphs are the complete ones, and
so X × Y = W n for some n. �
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Lemma 3.5.5. For arbitrary 0 < n′ < n in N, all projections

π′ : W n → W n′

are constructible.

Proof. Let π′ : W n → W n′ be a given projection. Without loss of generality, suppose
π′ preserves the first n′ generators of W n. Since each product can be regarded
as a foundational pullback (Definition 2.1.16), π′ is then constructed as idWn′ ×
εWn−n′ . �

Corollary 3.5.6. Let

A⊗Wm+n A⊗π1 //

A⊗π2
��

A⊗Wm

A⊗εWm

��
A⊗W n

A⊗εWn

// A

be an arbitrary foundational pullback (recall from Lemma 3.5.4 that the only products
in 2-Weil1 are product powers).

Then, each of the four maps in this pullback diagram are constructible.

Proof. This is an immediate consequence of Definition 3.5.1, Lemma 3.5.2 and
Lemma 3.5.5. �

Clearly, any map that is constructible by definition must live in 2-Weil1. We
will now sequentially build up in a different manner the maps of Ξ and show that
in fact all maps f : A→ B of 2-Weil1 are constructible.

3.5.1 Maps W → nW with one circle

Lemma 3.5.7. Any map f : W → nW with precisely one circle is constructible.

Let us begin with an example.

Example 3.5.8. The map f : W → 5W given by x 7→ x1x3x4 may be represented
as

1 3 4

2 5

Define a map f̃ as the composite

W
l // 2W

W⊗l // 3W

x 7−→ x1x2 7−→ x1x2x3 .

Clearly f̃ is constructible.
Then {U}f̃ is
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1

2

3

i.e. the single circle includes all 3 vertices.
Now define a map g as the map

W ⊗ ηW ⊗W ⊗W ⊗ ηW : 3W → 5W

x1 7→ y1

x2 7→ y3

x3 7→ y4 .

Clearly, g is constructible.
Then the composite g◦ f̃ is precisely the original map f . Thus f is constructible.

We generalise this idea to prove Lemma 3.5.7.

Proof. Let f : W → nW with precisely one circle U be given. Let r = |U |. Define
f̃ as the composite

W
l // 2W

W⊗l // . . .
(r−1)W⊗l // rW

Clearly, f̃ is constructible.
In an analogous manner to Example 3.5.8, define a constructible map g : rW →

nW with g ◦ f̃ = f . Thus f is constructible. �

3.5.2 Arbitrary maps W → nW

Lemma 3.5.9. All maps f : W → nW are constructible.

Proof. If there are no circles in {U}f (i.e. x 7→ 0), then the f is given by (say) the
composite

W
ε // k

η //W
W⊗η // . . .

(n−1)W⊗η // nW

i.e. the zero map, hence f is constructible (alternatively, we may simply apply
Corollary 3.5.3 directly).

If f has one circle, we apply Lemma 3.5.7.
If f has more than one circle, then we prove this by induction. Let S(m) be the

statement “All maps f : W → nW with m circles or fewer are constructible, for all
n ∈ N”.

We know S(1) is true. Suppose that S(r) is true for some r ∈ N.
Let a map f : W → nW with precisely r + 1 circles be given. Explicitly, this

means that f(x) is a polynomial in the generators of nW (which we shall call
y1, . . . , yn) with precisely r + 1 monomial summands.

Recall that for f to be a valid map, since the codomain is nW (or equivalently,
the corresponding graph ΓnW is discrete), then any two distinct summands of f(x)
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must have (at least) one generator yi in common. Let t and t′ be distinct summands,
and without loss of generality, suppose yn is a common generator.

Now define a map
f ′ : W → (n− 1)W ⊗W 2

where W 2 = 2[yn, ỹn]/y2
n, ỹn

2, ynỹn, with f ′(x) having the same expression as f(x),
except that the yn in term t′ is replaced with ỹn. It is a routine task to check that
this is a valid map. Furthermore, the composite

W
f ′ // (n− 1)W ⊗W 2 (n−1)W⊗+ // nW

will return the original map f . Clearly, the map (n− 1)W ⊗+ is constructible, so
it suffices to show that f ′ is constructible.

But the codomain of f ′, (n− 1)W ⊗W 2, is the pullback

(n− 1)W ⊗W 2(n−1)W⊗π1//

(n−1)W⊗π2
��

nW

(n−1)W⊗εW
��

nW
(n−1)W⊗εW

// (n− 1)W ,

and moreover, this is a foundational pullback.
Thus, to prove that f ′ is constructible, it suffices to prove that each of the

composites (
(n− 1)W ⊗ πi

)
◦ f ′ : W → nW ; i ∈ {1, 2}

is constructible. But each of these composites has a number of circles strictly less
than r + 1. Since we assumed that S(r) was true, then both these composites are
constructible, hence f is constructible.

Thus S(r + 1) is true.
As such, all maps f : W → nW are constructible. �

We can actually prove Lemma 3.5.9 more directly. Suppose we have an arbitrary
map f : W → nW with {Uf} given. For each i ∈ {1, . . . , n}, let mi be the number of
circles containing vertex i (or equivalently, the number of terms of f(x) containing
the generator yi). Then, in a similar manner as before, we can define a map

f ′ : W → Wm1 ⊗ · · · ⊗Wmn

in such a way that (+m1 ⊗ · · · ⊗+mn) ◦ f ′ = f . Here, since + is an associative and
commutative operation, then +m : Wm → W is well defined, and +0 is the nullary
sum ηW .

Clearly, the map +m1 ⊗ · · · ⊗+mn is constructible. Further, by iteratively using
foundational pullbacks, it is relatively easy to show that Wm1⊗· · ·⊗Wmn is a limit
of an appropriate diagram of nW ’s.

As such, f decomposes immediately into a set of maps {fj : W → nW}, each of
the type described in Section 3.5.1 (or a zero map), all of which are constructible
(by Lemma 3.5.7), and so f is constructible.

Remark We explore the idea that Wm1 ⊗ · · · ⊗Wmn is a limit of a diagram of
tensor powers of W ’s in more detail in Chapter 4.
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3.5.3 Projection maps A→ W

Given an arbitrary object A = 2[a1, . . . , an]/QA in 2-Weil1, we wish now to consider
maps of the form f : A→ W with ai 7→ x for some fixed i and aj 7→ 0 ∀ j 6= i.

Lemma 3.5.10. Let an arbitrary object A = 2[a1, . . . , an]/QA of 2-Weil1 be given.
Then any map f : A→ W given as f(ai) = x for some fixed i and f(aj) = 0 for all
j 6= i is constructible.

Proof. Since A ∈ 2-Weil1, then ΓA is a p.c. graph, or more generally, a cograph.
We then show that f is constructible recursively as follows:

1) If ΓA = {•} (the one point graph), then f is the identity and is thus con-
structible.

2) If ΓA = G⊗H with ai ∈ H, then f is the composite

A = κ(G)⊗ κ(H)
εκ(G)⊗κ(H)

// κ(H)
f ′ //W ;

for a unique map f ′, and it thus suffices to show that f ′ is constructible.

3) If ΓA = G×H with ai ∈ H, then f is the composite

A = κ(G)× κ(H)
πκ(H) // κ(H)

f ′ //W ;

for a unique map f ′, and it thus suffices to show that f ′ is constructible.
Noting Definition 2.2.11, the result becomes immediate.

�

3.5.4 Maps A→ nW with no intersecting circles

Lemma 3.5.11. Every map f : A → nW with no intersecting circles is con-
structible.

Proof. Let A be the full subcategory of 2-Weil1 consisting of all objects A with
the property that any map A→ nW with no intersecting circles is constructible.

By Lemma 3.5.2, we have 2 ∈ A (since 2 is a zero object, the only map to any
A is the unit ηA), and by Lemma 3.5.9, we have W ∈ A.

For arbitrary m,n ∈ N with m ≥ 2, let an arbitrary map f : Wm → nW with
no intersecting circles be given. If f is the zero map, then by Corollary 3.5.3, it
is constructible. Suppose then that a is a generator of Wm for which f(a) 6= 0.
Let a′ be any other generator of Wm. Now, since aa′ = 0 by construction, then
f(aa′) = f(a)f(a′) = 0.

But since the codomain of f is nW and f has no intersecting circles, then
we must have f(a′) = 0. This is true for all generators of Wm (other than a).
But this means that f factors through the appropriate projection π : Wm → W
preserving a (the other map being one of the form described in Section 3.5.1), thus
f is constructible. Thus Wm ∈ A for all m ∈ N.

Now suppose that A1 and A2 are arbitrary objects of A. Let an arbitrary
map f : A1 ⊗ A2 → nW with no intersecting circles be given. Then, with some
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appropriate post-composition with c’s, we can write f = f1⊗ f2, for an appropriate
pair f1 : A1 → rW and f2 : A2 → (n−r)W neither of which have intersecting circles.
Thus f is constructible. Thus we have A1 ⊗ A2 ∈ A.

Now, since A is a full subcategory of 2-Weil1 containing Wm ∀ m ∈ N and is
closed under ⊗, then A is just 2-Weil1 itself. Thus any map A → nW with no
intersecting circles is constructible. �

3.5.5 Arbitrary maps A→ nW

Lemma 3.5.12. Every map f : A→ nW is constructible.

Proof. Let an arbitrary map f : A → nW be given. Using an analogous idea to
that described in Section 3.5.2, we can construct a map

f ′ : A→ Wm1 ⊗ · · · ⊗Wmn

as follows:

1) For each generator ai of A, take the polynomial f(ai) in the generators
z1, . . . , zn of nW

2) Let mj be the total number of terms across all the polynomials f(a1) contain-
ing zj for j = 1, . . . , n

3) Define the map f ′ : A → Wm1 ⊗ · · · ⊗Wmn By specifying each f ′(ai) to be
f(ai), but in such a way that each generator of Wm1 ⊗ · · · ⊗ Wmn is used
exactly once (in a similar fashion to the proof for Lemma 3.5.9)

Example 3.5.13. Consider the map f : 2W → 3W given as

x1 7→ y1y2 + y1y3

x2 7→ y2y3 .

Noting that each generator yi appears in exactly two monomials, then we have
the map f ′ : 2W → W 2 ⊗W 2 ⊗W 2 given as

x1 7→ y1y2 + y′1y3

x2 7→ y′2y
′
3

Then f is the composite

A
f ′ //Wm1 ⊗ · · · ⊗Wmn

+m1⊗···⊗+mn// nW ,

and so it suffices to show f ′ is constructible. But now, for each projection

π = πi1 ⊗ · · · ⊗ πin : Wm1 ⊗ · · · ⊗Wmn → nW,

the composite π ◦ f ′ : A→ nW has no intersecting circles, and is thus constructible
using Lemma 3.5.11, and we use a series of foundational pullbacks to recover f ′. �
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3.5.6 Arbitrary maps A→ B

Recall that each p.c. graph is also a cograph. We begin with the following lemma:

Lemma 3.5.14. Let G be a cograph with at least one edge (and hence at least
two vertices). Then G can be expressed as (G1 × G2) ⊗ H, where G1 and G2 are
non-empty cographs (H may be empty).

Proof. Let e be a chosen edge of G. Let G′ be the connected component of G
containing the edge e. Clearly, we can express G as a disjoint union G′ ⊗H (with
H possibly empty).

Now, since G′ contains an edge, it cannot be the one point graph. Since it is
connected, it cannot be expressed (non-trivially) as G1⊗G2. Since it is a cograph,
then by Definition 2.2.11, it can be expressed non-trivially as G1 ×G2. �

We now have the following:

Theorem 3.5.15. Every map f : A→ B in 2-Weil1 is constructible.

Proof. Consider the Weil algebra B. If ΓB has any edges then, using Lemma 3.5.14,
it can be expressed (non-trivially) as (G1 × G2) ⊗ H (with H possibly being the
empty graph). Correspondingly, B = (κ(G1)× κ(G2)) ⊗ κ(H) and we thus have
the foundational pullback

B
π1⊗κ(H) //

π2⊗κ(H)

��

κ(G1)⊗ κ(H)

ε1⊗k[H]

��
κ(G2)⊗ κ(H)

ε2⊗κ(H)
// κ(H)

and so f : A→ B is uniquely induced by the pair (πi⊗κ(H))◦ f ; i = 1, 2. As such,
it suffices to show that each of these is constructible.

Note now that the graphs Gi ⊗ H for the codomains each have strictly fewer
edges than ΓB. As such, we repeat this process until the codomains are all of the
form nW , then directly apply Lemma 3.5.12. �

3.5.7 Obtaining coefficients beyond 2

We gave Theorem 3.5.15, which said that every map f : A → B is constructible.
However, this was for the case of 2-Weil1, and so we limit the permissible maps by
restricting the coefficients to being either 0 or 1.

Consider k-Weil1 for an arbitrary rig k.

Definition 3.5.16. For each t ∈ k, let at : W → W to be the map given as at(x) =
tx. Note that a0 is the zero map and a1 is the identity idW .

Now, define Ξk in the same way as Definition 3.5.1, with the added condition
that at is contained in Ξk for all t ∈ k. Define the notion of a k-constructible
morphism in the same way.

Proposition 3.5.17. Every map g : A→ B of k-Weil1 is k-constructible.
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Proof. (Sketch) Consider first (the analogue of) Lemma 3.5.7. Suppose we had
a map f : W → nW with f(x) given by a single monomial (with some arbitrary
coefficient r ∈ k). Let f ′ : W → nW be the map with f ′(x) being the same
monomial, but with coefficient one. Clearly, f ′ is k-constructible.

Then, the composite

W
ar //W

f ′ //W ,

yields f , and so f is k-constructible.
From there, the proofs for (the analogues of) Lemma 3.5.9 through to Lemma

3.5.12 as well as Theorem 3.5.15 are identical. �

Recall, however, that we are ultimately interested in N-Weil1. We begin with
the following:

Proposition 3.5.18. Let ψ† : N→ 2 be the rig morphism

ψ†(n) =

{
0 ; n = 0
1 ; otherwise

.

The canonical functor

ψ : N-Weil1 → 2-Weil1

induced by the rig morphism above is bijective on objects and full.
Here, ψ sends each object N[x1, . . . , xr]/Q of N -Weil1 to its counterpart 2[x1, . . . , xr]/Q

in 2-Weil1. There is analogous action of ψ on morphisms.

Proof. Bijectivity on objects follows immediately from the fact that Definition 3.2.2
defines the objects of k-Weil1 independently from the choice of k.

For any morphism f : A→ B of 2-Weil1, there is a corresponding map g : A→
B in N-Weil1 given by the same action on generators as f . Clearly, we then have
ψg = f . �

Let us now work with N -Weil1. Let Ξ be defined as in Definition 3.5.1 (i.e. we
do not explicitly include in Ξ the maps ĝt for all t ∈ N). We first have the following:

Lemma 3.5.19. For each t ∈ N, the map at is constructible.

Proof. First we note again that a0 is the zero map and a1 is the identity, and thus
both are constructible.

We shall show that all at’s are constructible by induction. Let S(t) be the
statement “at is constructible”. We have established that S(0) and S(1) are true.
Suppose S(r) is true.

We then have

W ar

!!

idW

!!

h

!!
W 2 π1 //

π2
��

W

εW
��

W εW
// k ,
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so the map h is constructible. Then, the map ar+1 is clearly the composite

W
h //W 2 + //W ,

so that ar+1 is also constructible, so that S(r + 1) is true. �

Remark We may try to give a similar construction in 2-Weil1, but note that for
all t > 0, we will have at = idW , since 1 + 1 = 1 in 2.

With these “coefficient maps” at being constructible along with Theorem 3.5.15,
we now have the following:

Proposition 3.5.20. Every map g : A→ B of N -Weil1 is constructible.

Proof. This is a direct consequence of Proposition 3.5.17 and Lemma 3.5.19. �

Remark For the case of (the rig) k = Z, note that the axiomatisation of [29]
requires a natural transformation

− : G→ G

that gives additive inverses. As such, there is the counterpart map

− : W → W

x 7→ −x

in Z-Weil1, and so we would include this map in the first point of Definition 3.5.1
and would again be able to conclude that all maps of Z-Weil1 were constructible.
This is in direct analogy to Z requiring the operation − to be generated as a rig.

More broadly, we may use a similar process for an arbitrary rig k; namely that
the first point of Definition 3.5.1 would need to include sufficient maps to generate
k as a rig so that k-Weil1 is constructible (although this is beyond the scope of this
thesis).

3.5.8 Instructions for assembly

In Sections 3.5.2 and 3.5.5, there was an element of choice involved; namely given
a map f : A → nW , the corresponding map f ′ : A → Wm1 ⊗ · · · ⊗Wmn required
a choice as to which circle would correspond to which projection. Ultimately, this
choice is inconsequential as different choices are (up to isomorphism) equivalent.

However, for the purposes of what we wish to do, we will assume that for each
f : A → nW , there is some pre-determined choice that has already been made
regarding the corresponding map f ′.

This then implicitly equips each map f : A→ B of 2-Weil1 (or N-Weil1) with
a set of instructions for its construction.
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3.5.9 The map Ω

We will now describe the construction of a certain map Ω, a map in N -Weil1,
which we shall require in order to prove Proposition 3.6.14 later.

Let s ∈ N be given. For an arbitrary map g : B → sW , recall that g decomposes
(in the sense of Section 3.5.5) as

W β1 ⊗ · · · ⊗W βs

+β
��

B g
//

g′
77

sW .

By Section 3.5.8, the particular decomposition is fixed (i.e. g′ is uniquely determined
by g).

One way we can view this decomposition involves the slice category N-Weil1/sW ;
the pair (g,+β) (again, g′ is uniquely determined by g) can be seen as an object of
the arrow category (N-Weil1/sW )2. We shall now extend this to a functor

τ : N-Weil1/sW → (N-Weil1/sW )2

whose composite with the domain functor d : (N-Weil1/sW )2 → N-Weil1/sW is
the identity.

This amounts to giving, for each arrow

A

h !!

f // B

g
��

sW

of N-Weil1/sW , a morphism

Ω: W β1 ⊗ · · · ⊗W βs → W δ1 ⊗ · · · ⊗W δs ,

such that the diagram

A
f //

h′
��

B

g′

��
W δ1 ⊗ · · · ⊗W δs

Ω
//

+δ ''

W β1 ⊗ · · · ⊗W βs

+βww
sW

commutes, and satisfying the evident functoriality conditions.

Remark We are, of course, taking h : A→ sW to decompose as

W δ1 ⊗ · · · ⊗W δs

+δ
��

A
h

//

h′
77

sW .
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It now remains to specify Ω.
Since W β1 ⊗ · · · ⊗W βs is a limit (as discussed in Section 3.5.2), then it suffices

to define each map Ω(r1,...,rs) as below

W δ1 ⊗ · · · ⊗W δs

Ω(r1,...,rs)

**

Ω
��

W β1 ⊗ · · · ⊗W βs
(r1,...,rs)=πr1⊗···⊗πrs

// sW ,

where the Ω(r1,...,rs) are suitably compatible.
But to give Ω(r1,...,rs), it suffices to say where each generator of W δ1 ⊗ · · · ⊗W δs

is sent. Let y1 be a generator of W δ1 (without loss of generality, let α1 ≥ 1). We
shall refer to the generators of sW as z1, . . . , zs. Observe that +β(y1) = z1.

Recall from Section 3.5.8 the construction of h′ : A→ W δ1⊗· · ·⊗W δs . There is
a unique circle (U1, a) for some generator a of A with y1 ∈ U1 (and correspondingly,
a unique circle (U1, a) of h as well with z1 ∈ U1). Recall also that h = g ◦ f . Let

h(a) = U1 + U2 + . . . ,

where each Ui is a monomial in the generators z1, . . . , zs. Similarly, let

f(a) = V1 + V2 + . . . ,

where each Vi is a monomial in the generators {bj} of B.
Then (ignoring coefficients), since g preserves addition and multiplication, we

can express (g ◦ f)(a) as

(g ◦ f)(a) = g(f(a))

= g(V1 + V2 + . . . )

= g(V1) + g(V2) + . . .

=

 ∏
bj∈V1

g(bj)

+

 ∏
bj∈V2

g(bj)

+ . . . .

But this needs to be equal to h(a). In particular, U1 must be somewhere in the
expression for (g ◦ f)(a). Without loss of generality, suppose U1 is contained in the
first term ∏

bj∈V1

g(bj).

Now, for each bj ∈ V1, we must be able to choose precisely one circle Qj in such
a way that ⋃

bj∈V1

Qj = U1

with the Qj’s pairwise distinct. This is because for each bj ∈ V1, g(bj) is a polyno-
mial in the generators z1, . . . , zn. Then, if the product of these polynomials (which
in turn is another polynomial) is to contain a particular monomial (namely U1),
then this monomial must have arisen as the product of one monomial from each of
the factor polynomials.
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Moreover, since z1 ∈ U1, then we also have z1 ∈ Qj for a unique j. Take j = 1
so that Q1 is one of the terms of the polynomial g(b1).

⇒ Q1 is a circle of g corresponding to b1

⇒ In g′ : B → W β1 ⊗ · · · ⊗W βn , ∃! generator v of W β1 corresponding to the circle Q1

⇒ Define Ω(r1,...,rs)(y1) =

{
z1 ; (r1, . . . , rs) preserves v (in particular, r1 preserves v)
0 ; otherwise

and repeat for all generators of W β1 ⊗ · · · ⊗W βn .
In particular, note that since Ω can only assign a generator from any W δi to a

generator of the corresponding W βi , then we have Ω = Ω1⊗· · ·⊗Ωs, for appropriate
maps Ωi : W

δi → W βi .

Remark We shall note here that in full formality, we should use the label Ωf,g (or
something to this effect), but we shall not be doing this.

3.6 Linking back to Tangent Structure

We defined the category k-Weil1 in Definition 3.2.2, and in Section 3.5 we defined
the notion of a constructible morphism (Definition 3.5.1) and showed that any map
of 2-Weil1 was constructible (Theorem 3.5.15). We then said in Proposition 3.5.20
that in fact any map of N-Weil1 was constructible, and moreover in Section 3.5.8
we noted that each map g : A → B was equipped with a set of instructions for its
construction.

We shall conclude this chapter by linking these ideas about Weil algebras back
to Tangent Structures in an explicit manner.

3.6.1 Preliminaries

Suppose that a category M is equipped with a Tangent Structure T (in the sense
of Definition 3.1.4). Regard End(M) as a monoidal category with respect to com-
position ◦ with unit the identity functor 1M.

We will be constructing a (strong monoidal) functor

F : N-Weil1 → End(M)

with certain properties soon, but we will need to establish some facts before doing
so.

Notation To avoid confusion, when we want to regard composition as a monoidal
operation in End(M), we will use concatenation if the meaning is clear (otherwise
we will explicitly use ⊗), and save ◦ for actual composition. For example, if we have
natural transformations α : R ⇒ S and β : S → U in End(M), then β ◦ α denotes
the composite

R
α +3 S

β +3 U ;

whereas βα denotes the natural transformation

SR
βα +3 US .
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We begin by specifying the action of our proposed functor on objects.

Definition 3.6.1. Let

F0 : ob(N-Weil1)→ ob(End(M))

be the function given as F0(N) = 1M, F0(Wm) = T (m) for all m ∈ N, and then
recursively, if A,B ∈ N-Weil1 with F0(A) = R, F0(B) = S, then F0(A⊗B) = R◦S.

Proposition 3.6.2. For any foundational pullback

A⊗ (B × C)
A⊗πB //

A⊗πC
��

A⊗B
A⊗εB
��

A⊗ C
A⊗εC

// A

in N-Weil1 (recall from Lemma 3.5.4 that the only products in N -Weil1 are the
powers W n of W ), we have a corresponding pullback

F0(A⊗ (B × C)) //

��

F0(A⊗B)

��
F0(A⊗ C) // F0(A)

in End(M), which we may also equivalently express as

F0(A)F0(B × C) //

��

F0(A)F0(B)

��
F0(A)F0(C) // F0(A) .

We shall also refer to these as foundational pullbacks (in End(M)).

Proof. The square in End(M) being a pullback is a direct consequence of the axioms
of T. �

Now that we have given some treatment of the action of our proposed functor on
objects, we turn our attention to the morphisms. We begin by defining a collection
Ψ of pairs of morphisms, one of which comes from N-Weil1 and the other from
End(M).

We will then show that this collection Ψ will give the action of our proposed
functor on morphisms. Namely, we will show that these pairings both “preserve”
composition and that each morphism f : A→ B of N-Weil1 is paired with a natural
transformation.

Definition 3.6.3. Let Ψ be a collection of pairs (f, f̃), where f : X → Y is a

morphism in N-Weil1 and f̃ : F0(X) ⇒ F0(Y ) is a morphism in End(M) (i.e. a
natural transformation), given as follows:

We begin with the following pairs:

• Each element of {εW , ηW ,+, l, c} is paired with its obvious counterpart {p,+, η, l, c}.
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• For each object A ∈ N-Weil1, the pair (idA, idF0(A)).

• For each i, n ∈ N with n ≥ 2 and 1 ≤ i ≤ n, the projections πi : W
n → W

and π̃i : T
(n) ⇒ T form a pair.

This gives us a starting point for Ψ. Recall from Section 3.5.8 that any map
h : A → B of N-Weil1 is equipped with a (finite) sequential set of instructions for
its construction. We then iteratively add to Ψ as follows:

Let f, g and h be maps in N-Weil1, and suppose we already have pairs

(f, f̃), (g, g̃) ∈ Ψ .

• If the final step of the instructions of h was to obtain h as the composite
g ◦ f , then we add to Ψ the pair (h, g̃ ◦ f̃). That is, we close Ψ under certain
compositions.

• If the final step of the instructions of h was to obtain h as the tensor g ⊗ f ,
then we add to Ψ the pair (h, g̃f̃). That is, we close Ψ under certain tensors.

• If the final step of the instructions of h was to (uniquely) induce h using f
and g as

A
h

  

f

!!

g

  

B //

��

B1

��
B2

// C ;

where the pullback square is a foundational one, then consider the diagram

F0(A) f̃

%%

g̃

##

F0(B) //

��

F0(B1)

��
F0(B2) // F0(C)

in End(M) (where we use the foundational pullback in End(M) corresponding
to the one above).

If the exterior commutes, then by the universal property of the pullback, a
unique map h̃ : F0(A) ⇒ F0(B) will be induced. In that case, add to Ψ the

pair (h, h̃).

If the exterior does not commute, then we will say that “h does not have a
pairing in Ψ”.

Notation When describing pairs in Ψ, if f is a map in N-Weil1, we will use
f̃ to denote the corresponding natural transformation in End(M), i.e. we have

(f, f̃) ∈ Ψ.
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Definition 3.6.4. Let Φ be the collection of all maps h : A→ B in N-Weil1 which
do not have a pairing in Ψ.

Clearly, Ψ and Φ are mutually exclusive and exhaustive collections, in the sense
that any map f : A → B of N-Weil1 is either paired with some natural transfor-
mation f̃ : F0A ⇒ F0B (and hence in Ψ) or not well defined (and hence in Φ, but
clearly not both).

For now, let us focus on Ψ.

Lemma 3.6.5. For arbitrary 0 < n′ < n in N, any projection

π′ : W n → W n′

is paired with a (canonical) natural transformation π̃′ : T (n) ⇒ T (n′).

Proof. Using the fact that T (n) is an n-fold pullback of p, π̃′ is given in the obvious
manner. �

Proposition 3.6.6. For a foundational pullback

A⊗ (B × C)
A⊗πB //

A⊗πC
��

A⊗B
A⊗εB
��

A⊗ C
A⊗εC

// A

in N-Weil1, and the corresponding pullback

F0(A)F0(B × C) //

��

F0(A)F0(B)

��
F0(A)F0(C) // F0(A)

in End(M) ( Proposition 3.6.2), each map of the first pullback is paired with its
counterpart in the second pullback.

Proof. The proof becomes immediate once the maps in the second pullback are
labelled:

F0(A)F0(B × C)
F0(A)π̃B //

F0(A)π̃C
��

F0(A)F0(B)

F0(A)ε̃B
��

F0(A)F0(C)
F0(A)ε̃C

// F0(A) .

�

Lemma 3.6.7. For any Weil algebra A in N-Weil1 the unit ηA and augmenta-
tion εA are paired with (canonical) natural transformations η̃A : 1M ⇒ F0A and
ε̃A : F0A⇒ 1M.

Proof. The statement is clearly true if A is W or N.
We then simply note that if A = W n, then η̃Wn is canonically induced using the

fact that T (n) is an n−fold pullback of the natural transformation p : T ⇒ 1M and
the natural transformation η : 1M ⇒ T .
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ε̃Wn on the other hand is simply induced as the composite p ◦ πi, for an appro-
priate projection πi of the pullback T (n) based on the instructions for εWn : A→ N
(although each projection πj would yield the same result).

Finally, if X and Y are objects of N-Weil1 with (ηX , η̃X), (εX , ε̃X), (ηY , η̃Y ),
(εY , ε̃Y ) ∈ Ψ, then we have

η̃X⊗Y = η̃X η̃Y

ε̃X⊗Y = ε̃X ε̃Y

�

Corollary 3.6.8. Any zero map z : A→ B of N-Weil1 is paired with a (canonical)
natural transformation z̃ : F0A⇒ F0B.

Proof. Since z is constructed as the composite ηB ◦ εA, then z̃ is the composite
η̃B ◦ ε̃A. �

Lemma 3.6.9. Each coefficient map at is paired with some (canonical) natural
transformation ãt in Ψ.

Proof. We know that ã0 is the composite

T
p +3 1M

η +3 T

(since this was how a0 was constructed) and ã1 is the identity idT (since a1 was the
identity).

Since each at is then constructed recursively as

W

W //

at−1

==

idW !!

W 2

π1

OO

π2
��

+ //W

W ,

then each ãt is constructed recursively in the same way. �

We will now sequentially show that the pairings of Ψ “preserve” (arbitrary)

composition, i.e. if we have arbitrary pairings (f, f̃), (g, g̃), (h, h̃) ∈ Ψ such that

h = g ◦ f in N-Weil1, then we have h̃ = g̃ ◦ f̃ in End(M).
Explicitly, suppose we have

A
f //

h=g◦f

77B
g // C

in N-Weil1. We wish to show that

F0A
f̃ //

h̃

44F0B
g̃ // F0C

commutes in End(M), for all (f, f̃), (g, g̃), (h = g ◦ f, h̃) ∈ Ψ.
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3.6. Linking back to Tangent Structure

3.6.2 If A = qW , B = mW , C = nW , and f, g have no inter-
secting circles

As with Section 3.5, we shall begin with the most basic case for “preservation” of
composition by the pairings in Ψ, and then sequentially build our way up to the
general case.

Proposition 3.6.10. For all f : qW → rW and g : rW → sW , with neither having
intersecting circles, the diagram

T q
f̃ //

h̃

66T r
g̃ // T s

commutes in End(M).

Proof. First, since f and g have no intersecting circles, then h also has no inter-
secting circles.

Since f has domain qW and has no intersecting circles, it can (modulo some
appropriate post-composition with c′s) be expressed in the form

f = f1 ⊗ · · · ⊗ fq ⊗ ηq′W : W ⊗ · · · ⊗W ⊗ k → ξ1W ⊗ · · · ⊗ ξqW ⊗ q′W

(and f is constructed as such); where each fi has a single circle and is either given
as εW if ξi = 0, or constructed as the composite

W
ĝai //W

l // . . .
(ξi−1)W⊗l // ξiW

(as described in Section 3.5.1), for an appropriate coefficient map ĝai .
Note that we also have (

q∑
i=1

ξi

)
+ q′ = m .

An analogous fact is true for g and h. The natural transformations f̃ , g̃ and h̃
are then constructed in a corresponding manner.

Now, it can be shown that for all c, d ∈ N, the diagram

T
ãc //

ãcd
��

T
l // T 2

ãdT
��

T
l

// T 2

commutes in End(M) (recall that each natural transformation ãt is paired with the
coefficient map at in Ψ). Together with the fact that the diagram

T
l //

l
��

T 2

lT
��

T 2
T l
// T 3

commutes in End(M) (an axiom of T), then we have g̃ ◦ f̃ = h̃. �

46



3.6. Linking back to Tangent Structure

3.6.3 Making A arbitrary

Proposition 3.6.11. For all f : A → rW and g : rW → sW , with neither having
intersecting circles, the diagram

F0A
f̃ //

h̃

66T r
g̃ // T s

commutes in End(M).

Proof. First, we note that if f and g do not have intersecting circles, then neither
does h.

Consider f : A → rW . We know from Section 3.5.4 that since f has no inter-
secting circles, it must factor through some particular projection π : A→ qW of A
(as the final step in its construction), and the same is true for h.

Correspondingly, α and γ both factor through the corresponding projection
π : F0A→ T q.

As such, it suffices to assume A = qW , and so F0A = T q. Then, we can apply
Proposition 3.6.10 directly. �

3.6.4 Making f arbitrary

Proposition 3.6.12. For all arbitrary f : A → rW , and g : rW → sWwith no
intersecting circles, the diagram

F0A
f̃ //

h̃

66T r
g̃ // T s

commutes in End(M).

Proof. Let {y1, . . . , yr} denote the generators of rW and {z1 . . . , zs} denote the
generators of sW .

By the same argument as used in the proof for Proposition 3.6.10, then modulo
appropriate post-composition with c’s, we can express g as

g = g1 ⊗ · · · ⊗ gr ⊗ ηr′W : W ⊗ · · · ⊗W ⊗ k → ν1W ⊗ · · · ⊗ νqW ⊗ r′W

(and g is constructed as such); where each gi : W → νiW has a single circle.
Without loss of generality, we shall assume that r′ = 0 and νi > 0 for all i. This

amounts to asking that no generator yi of rW is sent by g to zero, and that each
generator zj of sW belongs to exactly one of the r circles of {U}g.

This then defines a surjective function

ψ : {z1, . . . , zn} → {y1, . . . , ym} .

Without loss of generality, suppose that ψ(z1) = y1.
Suppose the maps h and f factorise as the composites

W δ1 ⊗ · · · ⊗W δs

+δ
��

W ϑ1 ⊗ · · · ⊗W ϑr

+ϑ
��

A
h

//

h′
77

sW A
f

//

f ′
77

rW .
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3.6. Linking back to Tangent Structure

(and are constructed as such, recall Lemma 3.5.12).

Note that correspondingly, f̃ and h̃ are given as composites

T (δ1) ⊗ · · · ⊗ T (δs)

+̃δ
��

T (ϑ1) ⊗ · · · ⊗ T (ϑr)

+̃ϑ
��

F0A
h̃

//

h̃′
77

T s F0A
f̃

//

f̃ ′
77

T r ,

noting that since +: T (2) ⇒ T is an associative, commutative and unital map, then
there is a well defined map

+(δi) : T (δi) ⇒ T

for each i, and finally, we define

+̃δ : = +(δ1) ⊗ · · · ⊗+(δs)

in End(M). The map +̃ϑ is defined in an analogous manner.
Firstly, this means that the map h has precisely δ1 circles (say U1, . . . , Uδ1)

containing the generator z1. But given what we’ve established about g, and noting
that h = g ◦ f , then the z1 term in each of these Ui must arise as a result of the
generator y1 (since ψ(z1) = y1). More explicitly, to each circle Ui of h containing z1

we can associate a unique circle of f containing y1.
Conversely, for each circle Vj of f containing y1, we have g(Vj) 6= 0 (moreover,

g(Vj) is a single circle) and z1 ∈ g(Vj). Therefore the number of circles of f
containing y1 (namely ϑ1) is the same as the number of circles of h containing z1

(namely α1). Thus, if ψ(zi) = yj, then δi = ϑj.
We then define a map

Λ: W ϑ1 ⊗ · · · ⊗W ϑr → W δ1 ⊗ · · · ⊗W δs

induced using

rW
g // sW

W ϑ1 ⊗ · · · ⊗W ϑr

t

77

∃! Λ
//W δ1 ⊗ · · · ⊗W δs ,

a

77 (3.1)

where, for each fixed projection a = (a1, . . . , as), t is determined as follows:

• Consider a ◦h′ : A→ sW . If this is the zero map, then t is also the zero map.

• If not, this means that there is at least one circle U of h (and hence h′) with
each of its generators preserved by a. Moreover, if h has multiple circles, then
they must be disjoint and each corresponds to a different generator of A (see
Section 3.5.5).

Without loss of generality, assume there is only one such circle U . Regard U
as a subset of {z1, . . . , zs}. Then we know ψ(U) (the image of U under ψ) is
the unique circle of f corresponding to U . Choose t (in the unique way) so
that this circle ψ(U) of f is preserved, but sends any yj /∈ ψ(U) to 0.
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3.6. Linking back to Tangent Structure

We shall also note that there is a corresponding natural transformation t̃ (i.e.(
t, t̃
)
∈ Ψ). We shall not prove this in full. Instead simply note that for the second

point above, t is constructed (modulo some appropriate post-composition with c’s)
as a tensor t1 ⊗ · · · ⊗ tr, where each ti is of the form

ti : W
ϑi → ρiW

(and ρ1 + · · · + ρr = r). Each ti has at most one circle, and so factors through an
appropriate projection πj : W ϑi → W .

Now, it is fairly routine (albeit tedious) to show that Λ is paired with some

unique natural transformation Λ̃ in Ψ (i.e. that it exists). It can also be shown that
the diagram

W ϑ1 ⊗ · · · ⊗W ϑr Λ //

+ϑ
��

W δ1 ⊗ · · · ⊗W δs

+δ
��

rW g
// sW

commutes in N-Weil1 (and that the corresponding diagram commutes in End(M)).
We now have the following diagram

T r

g̃

��

T (ϑ1) ⊗ · · · ⊗ T (ϑr)

+̃ϑ

OO

Λ̃
��

F0A
h̃′ //

f̃

44

f̃ ′
55

h̃

22T (δ1) ⊗ · · · ⊗ T (δs)
+̃δ // T n ,

and to show the exterior commutes, it suffices to show that

T (ϑ1) ⊗ · · · ⊗ T (ϑr)

Λ̃
��

FA

f̃ ′
77

h̃′
// T (δ1) ⊗ · · · ⊗ T (δs)

commutes.
Since T (δ1) ⊗ · · · ⊗ T (δs) is a limit with projections (b1, . . . , bs) = πb1 ⊗ · · · ⊗ πbs ,

and since Λ (and hence Λ̃) was given using (3.1), then it suffices to show that

b ◦ Λ̃ ◦ f̃ ′ = b ◦ h̃′

for all projections b = (b1, . . . , bs).
Consider the diagram

F0A

b̃◦h′

,,

t̃◦f ′

))
h̃′

��

f̃ ′ // T (ϑ1) ⊗ · · · ⊗ T (ϑr)

Λ̃
��

t̃

uu
T r

g̃

))

T (δ1) ⊗ · · · ⊗ T (δs)

a
��

T (δ1) ⊗ · · · ⊗ T (δs)

b

// T s
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3.6. Linking back to Tangent Structure

(again, we leave as an exercise to the reader to verify that all the necessary pairs in
Ψ exist and are well defined).

To show the commutativity of the exterior, we first note that the lower left
triangle and right square commute by construction, and further that it is routine
to check that the top triangle commutes. So all that remains is to verify the
commutativity of the innermost triangle.

But since t ◦ f ′ by definition has no intersecting circles, then we can apply
Proposition 3.6.11 directly. �

3.6.5 Making B arbitrary

Proposition 3.6.13. For all arbitrary f : A→ B, and g : B → sW with no inter-
secting circles, the diagram

F0A
f̃ //

h̃

55F0B
g̃ // T s

commutes in End(M).

Proof. Using Lemma 3.5.14 and the results from Section 3.3, we can see that if the
graph ΓB contains any edges, then B is part of a (foundational) pullback

B = B′ ⊗ (B1 ×B2)
B′⊗π1//

B′⊗π2
��

B′ ⊗B1

B′⊗εB1
��

B′ ⊗B2
B′⊗εB2

// B′ .

Further, recall the proof of Lemma 3.5.11. Since g : B → sW has no intersecting
circles, then if ΓB has any edges, we know that g must then factorise through one
of B’s (foundational) projections, say as

B
B′⊗π1 // B′ ⊗B1

γ // sW

(and moreover, this would be in the instructions for its construction). The same is
thus true of g̃. We shall simply denote the projection as π1 for convenience.

We now have
F0B

′F0B1

γ̃
��

F0A
f̃ //

h̃

44F0B
g̃ //

π̃1
99

T s ,

and note that the map π̃1 : F0B → F0B
′F0B1 is part of a foundational pullback in

End(M) (Proposition 3.6.2).

As such, this tells us that π̃1 ◦ f̃ = π̃1 ◦ f (Definition 3.6.3). It thus suffices to
show the commutativity of

F0B
′F0B1

γ̃
��

F0A

π̃1◦f
99

h̃

// sW .
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3.6. Linking back to Tangent Structure

But we know that since g has no intersecting circles, then neither does γ, and
we can thus repeat this iteratively until there are no more edges in B, i.e. we have
B = rW and apply Proposition 3.6.12 directly. �

3.6.6 Making g arbitrary

Proposition 3.6.14. For all arbitrary f : A→ B and g : B → sW , the diagram

F0A
f̃ //

h̃

55F0B
g̃ // T s

commutes in End(M).

Proof. Recall from the proof of Lemma 3.5.12 that g factorises as the composite

W β1 ⊗ · · · ⊗W βn

+β
��

B g
//

g′
77

sW

(and is constructed as such). Thus, g̃ is constructed as the corresponding composite

T (β1) ⊗ · · · ⊗ T (βn)

+β
��

F0B g̃
//

g̃′
66

T n

Recall that we also said h̃ was constructed as the composite

T (δ1) ⊗ · · · ⊗ T (δs)

+δ
��

F0A
h̃

//

h̃′
77

T s .

We now have the following diagram

F0B

g̃′
�� g̃

��

T (β1) ⊗ · · · ⊗ T (βn)

+β

))
F0A

h̃′ //

g̃′◦f
55

f̃

33

h̃

22T (δ1) ⊗ · · · ⊗ T (δs)
+δ // T s ;

(3.2)

for which we wish to show the commutativity of the exterior.
We already know the bottom triangle as well as top right triangle commute by

construction. We begin with the innermost square

F0A
g̃′◦f //

h̃′
��

T (β1) ⊗ · · · ⊗ T (βn)

+β

��
T (δ1) ⊗ · · · ⊗ T (δs)

Ω̃

55

+δ
// FB ,

(3.3)
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3.6. Linking back to Tangent Structure

and introduce the map Ω̃ (constructed in a similar manner as Ω, as described in
3.5.9). Recall that

Ω: W δ1 ⊗ · · · ⊗W δs → W β1 ⊗ · · · ⊗W βn

assigned each generator of the domain to a particular generator in the codomain,
and moreover we have Ω = Ω1 ⊗ · · · ⊗ Ωs for Ωi : W

δi → W βi .
First, it now becomes rather routine to show that

+δ = +β ◦ Ω̃

(i.e. the lower triangle in (3.3)). To show g̃′ ◦ f = Ω̃ ◦ h̃′ in End(M), note first that
g′ ◦ f = Ω ◦ h′ in N-Weil1 by design. So equivalently, we can show that

F0A
h̃′ //

Ω̃◦h′

22T (δ1) ⊗ · · · ⊗ T (δs) Ω̃ // T (β1) ⊗ · · · ⊗ T (βs)

commutes. But recall that T (β1) ⊗ · · · ⊗ T (βn) is a limit (constructed as iterations
of foundational pullbacks in End(M)) with projections r = (r1, . . . , rs). As such, it
suffices to show the commutativity of

F0A
h̃′ //

˜r◦Ω◦h′

33T (δ1) ⊗ · · · ⊗ T (δs) r◦Ω̃ // T s

for each r.
But noting that Ω = Ω1⊗ · · · ⊗Ωs and r = πr1 ⊗ · · · ⊗ πrs , and noting the form

of each πri ◦Ωi : T
(α1) ⊗ · · · ⊗ T (αn) → T from 3.5.9, then the commutativity of the

upper triangle in (3.3) above is immediate.
Hence, all that remains is to show the commutativity of the upper left triangle

of (3.2), namely the commutativity of

F0B

g̃′
��

F0A

f̃

44

g̃′◦f
// T (β1) ⊗ · · · ⊗ T (βs) .

Again, since T (β1) ⊗ · · · ⊗ T (βn) is a limit, it suffices to show the commutativity
of

F0B

r◦g̃′=r̃◦g′
��

F0A

f̃
77

r̃◦g′◦f
// T s

for each projection r.
Finally, note that by definition, each map

r ◦ g′ : B → nW

has no intersecting circles, so we may apply Proposition 3.6.13 directly. �
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3.6.7 Making C arbitrary

Proposition 3.6.15. For all arbitrary f : A→ B and g : B → C, the diagram

F0A
f̃ //

h̃

44F0B
g̃ // F0C

commutes in End(M).

Proof. Using the same argument as in the proof of Proposition 3.6.13, if the graph
ΓC contains any edges, then C is part of a (foundational) pullback

C = C ′ ⊗ (C1 × C2)
C′⊗π1 //

C′⊗π2
��

C ′ ⊗ C1

C′⊗εC1
��

C ′ ⊗ C2
C′⊗εC2

// C ′ .

Correspondingly, F0C is part of the pullback

F0C
π1 //

π2
��

F0C
′F0C1

��
F0C

′F0C2
// F0C

′ .

We now have

F0C1

F0A
f̃ //

h̃

44F0B
g̃ // F0C

π1
;;

π2 ##
F0C2

in End(M), and using the fact that πi ◦ g̃ = π̃i ◦ g for i = 1, 2 (and a corresponding
fact for h), it suffices to show the commutativity of

F0A
f̃ //

π̃i◦h

44F0B
π̃i◦g // F0Ci

for each i. Using this argument iteratively, it suffices to assume the graph ΓC has
no edges, i.e. C = sW and apply Proposition 3.6.14 directly. �

We have now shown that the pairings of the collection Ψ “preserve” arbitrary
compositions. We now need to consider the collection Φ (Definition 3.6.4).
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3.6.8 The Problem with Pullbacks

As we mentioned in Definition 3.6.3, we may have maps f, g, h ∈ N-Weil1 for which
the final step of the instructions for h is to uniquely induce it using f and g as

A
h

  

f

  

g

  

B //

��

B1

��
B2

// C ,

but the exterior of

F0A f̃

$$

g̃

""

F0B //

��

F0B1

��
F0B2

// F0C

does not commute, and so we cannot induce h̃ : F0A → F0B using the universal
property of the relevant pullback, and said that h̃ is “not well defined”. We then
defined Φ to be the set of such “undefined” maps (Definition 3.6.4). We will now
show that this set Φ is in fact empty.

Proposition 3.6.16. The collection Φ is empty.

Proof. Suppose that Φ is non-empty. Then for each f ∈ Φ (with f : A → B a
map in N-Weil1), let n(f) be the number of vertices in the graph ΓB. Finally, let
N(Φ) = {n(f) | f ∈ Φ}.

Since N(Φ) is a non-empty subset of N, then by the well ordering principle, it
has a least element n. Choose a map h : A→ B corresponding to this least element
n. Now, consider the cograph ΓB. If ΓB is discrete (so that B = nW ), then we

construct h̃ directly using the ideas of Section 3.5.12. As such, let B have at least
one edge.

We then have the diagram

A
h

''

g=π2◦h
''

f=π1◦h

''
B = (B1 ×B2)⊗ C π1

//

π2

��

B1 ⊗ C
ε⊗C
��

B2 ⊗ C ε2⊗C
// C

and noting that since ΓB has at least one edge, then ΓB1⊗C and ΓB2⊗C each have

strictly fewer vertices in their respective cographs than ΓB. Thus, f̃ and g̃ are both
well defined.
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We wish to show the commutativity of

F0A
f̃ //

g̃
��

F0B1 ⊗ F0C

��
F0B2 ⊗ C // F0C

so that h̃ can be induced using the foundational pullback in End(M).
Let ψ = (ε1 ⊗ C) ◦ f : A→ C in N-Weil1, i.e. the composite

A

ψ ##

f // B1 ⊗ C
ε1⊗C
��
C .

Since ΓC has strictly fewer vertices than ΓB, then ψ̃ is also well defined. But by
Proposition 3.6.15, each of the triangles in the diagram

F0A

ψ̃ ((

f̃ //

g̃
��

F0B1 ⊗ F0C

��
F0B2 ⊗ C // F0C

commute in End(M), and thus the exterior commutes.

Therefore h̃ is well defined. Thus the original assumption is incorrect, i.e. Φ is
an empty set. �

What we have shown then is that F0 and the pairings of Ψ together define a
functor.

3.6.9 The Functor F and the universality of Weil1

We now have the following:

Theorem 3.6.17. Suppose we have a given category M. Regard End(M) as a
monoidal category with respect to composition and N-Weil1 as monoidal with respect
to coproduct.

Then to give a Tangent Structure T to M is equivalent (up to isomorphism) to
giving a strong monoidal functor F : N-Weil1 → End(M) satisfying the following
conditions:

1) Given a product A = A1 × A2 in N-Weil1, regarded as a pullback of the
augmentations, and an arbitrary Weil algebra B ∈ N-Weil1, then F preserves
the pullback

B ⊗ A B⊗π1 //

B⊗π2
��

B ⊗ A1

B⊗ε1
��

B ⊗ A2 B⊗ε2
// B

i.e. it preserves all “foundational pullbacks” of N-Weil1 (as defined in Defi-
nition 2.1.16).
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2) The equaliser

W 2 v // 2W
W⊗εW //

ηW ◦(εW⊗εW )
//W

as given in Section 3.2 is preserved.

Proof. Given such a functor F , the corresponding Tangent Structure is given as

T = (FW,FεW , FηW , F+, F l, F c) ,

and it can be readily verified that this satisfies all the necessary conditions to be a
Tangent Structure.

Conversely, suppose we have a Tangent Structure T. Then F0 : ob(N-Weil1)→
ob(End(M)) and Ψ give us our assignations for objects and morphisms, and Propo-
sitions 3.6.15 and 3.6.16 together give functoriality.

Moreover, F0 actually makes F monoidal (see Definition 3.6.1). F being strong
monoidal as well as the preservation of foundational pullbacks is then a direct
consequence of the fact that we are using composition as the monoidal structure of
End(M) together with Proposition 3.6.2.

Finally, preservation of the equaliser

W 2 v // 2W
W⊗εW //

ηW ◦(εW⊗εW )
//W

is trivial, since it is a condition of T that the corresponding fork in End(M) is also
an equaliser. �

We have thus shown that to equip a category M with a Tangent Structure T
is equivalent to giving (up to a suitable isomorphism) a strong monoidal functor
F : N-Weil1 → End(M) satisfying some extra properties.

As such, N-Weil1 becomes an initial Tangent Structure in the sense that it
characterises any Tangent Structure T via this functor F .

We also note that this functor F only required that End(M) was a monoidal
category (with respect to composition and with unit 1M) and that certain pullbacks
were preserved. As a result, we make the following generalisation.

Definition 3.6.18. Let (G,�, I) be a monoidal category. Regard the category N-
Weil1 as monoidal with respect to coproduct and having unit N. A Tangent Struc-
ture G internal to G is a strong monoidal functor

F : (N-Weil1,⊗,N)→ (G,�, I)

satisfying the following conditions:
1) F preserves foundational pullbacks
2) The equaliser

W 2 v // 2W
W⊗εW //

ηW ◦(εW⊗εW )
//W

is preserved
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Corollary 3.6.19. A Tangent Structure on M (in the sense of Theorem 3.6.17)
is the same as a Tangent Structure internal to End(M) (in the sense of Definition
3.6.18).

In fact, Definition 3.6.18 actually gives a universal property of the category N-
Weil1 in relation to Tangent Structures. One way we might express this is that
Tangent Structures are simply models of N-Weil1 (regarded as a theory).

Remark In the spirit of Definition 3.6.18 and Corollary 3.6.19, we will refer to
T = F (W ) as a tangent object rather than a tangent functor.
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Chapter 4

The category Weil∞

In the previous chapter, we demonstrated that Tangent Structure was somehow
“encoded” within the category N-Weil1 (or more broadly, just Weil1) in some
appropriate sense. It is only natural then that we may extend the world of Tangent
Structure by extending our category of Weil algebras. Of course, there are many
choices available when considering which Weil algebras to include.

One could try to work with Weil in its full entirety, and use the approach
described in Section 1.4 in the introduction. This would certainly not be unreason-
able, since functors are discussed in differential geometry without any restrictions
imposed on the permissible Weil algebras (see Section 35 of [18], or [31] for more
general discussions, or see [15] for discussion in the context of SDG). This is, how-
ever, beyond the scope of this thesis.

In place of Weil, we will begin this chapter by introducing a (sub)category
Weil∞ (more specifically, k-Weil∞). The nature of our discussion here will be far
more exploratory than that of Chapter 3. We shall first describe, for k = 2, N, Z
or an arbitrary field, a canonical way to equip each object X of k-Weil∞ with a
diagram ΥX : BopX → k-Weil∞ (Definition 4.1.14) for which X is the limit (Theorem
4.1.16). This observation then yields one possible way to define what we may call a
“Tangent Structure corresponding to k-Weil∞ ” through Definition 4.1.18; namely,
as a strong monoidal functor preserving the limits in question.

However, we note that under a mild condition on k (namely that it contains
the positive rationals Q>0), we can equip each object X of k-Weil∞ with a di-
agram Υ′X : B′opX → k-Weil∞ (Definition 4.2.9) which factors through k-Weil1.
Once again, X will be the limit of this diagram (Theorem 4.2.10). This will ul-
timately allow us to show (in Theorem 4.3.13) that a strong monoidal functor
F∞ : k-Weil∞ → G which preserves these limits (as in Definition 4.3.1) is a monoidal
right Kan extension of F : Weil1 → G (in the sense of Definition 3.6.18.

Before we begin Section 4.1, we will also note that the “universality of vertical
lift” equaliser (see Section 3.2) will be dropped from this chapter’s discussion. The
rationale here is that the counterpart equaliser in Weil is not strictly necessary
to the process we will be describing. However, it is common practice in tangent
category theory to require extra limits as necessary, and so one could easily ask that
a functor F∞ : k-Weil∞ → G also preserve this equaliser (as well as other limits, as
appropriate).
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4.1. Characterising k-Weil∞

4.1 Characterising k-Weil∞

We begin with an explicit definition of k-Weil∞:

Definition 4.1.1. k-Weil∞ is the full subcategory of AugAlg whose objects are
all those algebras equipped with a chosen presentation

k[x1, . . . , xn]/{some collection I of monomials in the xi’s}

in such a way that the resulting algebra is a Weil algebra, namely that for each
i = 1, . . . , n, we have xri ∈ I for some ri ∈ N>1 and, as usual, with ε(xi) = 0 for
all i.

We will also need the following:

Definition 4.1.2. For each n ∈ N, let Wn be the Weil algebra

k[x]/xn+1

Definition 4.1.3. For each m,n ∈ N, let Wm,n be the Weil algebra

k[x1, . . . , xm]/{all monomials of degree n+ 1}

Remark Note that W1,n = Wn, W = k[x]/x2 = W1, Wm,1 = (W1)m and W0,n =
Wm,0 = k.

Remark We shall still opt to use the notation W instead of W1 for the Weil algebra
k[x]/x2.

We now introduce a canonical way to exhibit each object of k-Weil∞ as a limit
of a diagram involving tensors of Wn’s.

4.1.1 Partially ordered sets and inclusions

For the moment, let us work just with (partially ordered) sets. Consider the com-
mutative monoid (not the rig) N under addition together with its total order. For
any positive integer r, Nr is a monoid in the obvious manner, and we shall equip it
with the product partial order ≤, namely

(a1, . . . , ar) ≤ (b1, . . . , br)⇔ ai ≤ bi ∀i

Definition 4.1.4. A subset S ⊂ Nr is a down-set if it is finite, down-closed and
non-empty.

Definition 4.1.5. A down-set S ⊂ Nr is prismatic if

S = S1 × · · · × Sr

(the product being taken in Set), where each Si is a down-set of N (i.e. each Si is
of the form {0, 1, . . . , ni})
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4.1. Characterising k-Weil∞

Remark To say a down-set S ⊂ Nr is prismatic is to say that

S = {x ∈ Nr | x ≤ y}

for some y ∈ Nr. Such a down-set is often called a principal down-set of Nr in
order theory, and would refer to y as the principal element of this down-set. This
is named in analogy with the principal ideal for a ring.

Lemma 4.1.6. Any down-set S ⊂ Nr can be expressed as a union
m
∪
i=1

Ri; where

each Ri is a prismatic down-set.

Proof. Since S ⊂ Nr, then it is also a partially ordered set. Since S is finite and non-
empty, then we can form the (non-empty) set {x1, . . . , xm} of maximal elements of
S. Finally, for each i, let Ri ⊂ Nr be the prismatic down-set with xi as its principal
element.

Alternatively, we may (for each r) first take the poset Nr regarded as a category
enriched in 2 = {0→ 1}. The down-set S then can be regarded as a functor

S : (Nr)op → 2

where s ∈ S ⇔ S(s) = 1. As such, S is a presheaf, and all presheafs are colimits
of representables. �

Given S =
m
∪
i=1

Ri as above, let Qi,j = Ri ∩Rj whenever 1 ≤ i < j ≤ m. Clearly,

since Ri and Rj are both prismatic, then so is Qi,j.

Consider now the diagram

Q1,2 Q1,3 ... Qm−1,m

R1 R2 R3
... Rm−1 Rm

in Set (say). It can be readily shown that the colimit of this diagram is precisely
S (with the obvious subset inclusions from the Ri’s into S).

Notation For a given S, we shall say that the Ri’s form the first layer and the
Qi,j’s form the second layer of the diagram for which S is the colimit.

We now have the following:

Definition 4.1.7. For each r ∈ N, let N(r) be the poset consisting of all down-sets
of Nr, ordered by inclusion.

Remark N(r) is not the poset Nr itself.
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4.1. Characterising k-Weil∞

4.1.2 The objects of k-Weil∞

Definition 4.1.8. Let S ⊂ Nr be a given down-set. Let κ(S) denote the (finitely
generated and free) k-module with (finite) generating set S. Further, define multi-
plication on basis elements u, v ∈ κ(S) as

µ(u⊗ v) = u+ v

(using the addition of Nr) if u+v ∈ S, 0 otherwise, and extend linearly. This turns
κ(S) into an algebra. Finally, equip κ(S) with an augmentation εS : κ(S)→ k that
sends the unit of Nr to 1 and all other elements of S to 0.

Defined this way, κ(S) is then a Weil algebra of the form described in Definition
4.1.1.

Example 4.1.9. Let r = 2, and let S be the down-set {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1)}.
We first regard each (a, b) as an element xayb. Then κ(S) has {1, x, x2, y, xy} as
the generating set for its underlying k-module. The multiplication is then obvious;
noting that y2 = 0, x2y = 0 and x3 = 0.

The augmentation is the map sending each of x, x2, y, xy to zero. Finally, we
extend the multiplication and augmentation linearly.

Quite clearly, we also have the following:

Corollary 4.1.10. For a down-set S = {0, 1, . . . , n} ⊂ N, κ(S) is precisely Wn.

Corollary 4.1.11. For given down-sets S1 ∈ N(r) and S2 ∈ N(s), if S = S1×S2 (the
product being taken in Set), then (with some abuse of notation) we have S ∈ N(r+s),
and further κ(S) = κ(S1)⊗ κ(S2).

In particular, if S is a prismatic down-set (in the sense of Definition 4.1.5),
then κ(S) is an appropriate tensor of Wn’s.

Definition 4.1.12. For fixed r ∈ N, let

κ : N op
(r) → k-Weil∞

be the functor given as:

• On objects: κ(S) as given in Definition 4.1.8.

• On morphisms: For a subset inclusion i : S ↪→ S ′ in N(r), define κ(i) to be
the obvious quotient map q : κ(S ′)→ κ(S).

Remark The choice to use κ to denote this functor was deliberate. A graph
G = (V,E) with

V = {v1, . . . , vn}

can be seen as a down-setG ∈ N(n), where e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en =
(0, . . . , 0, 1) ∈ G, and for i 6= j, we have (ei + ej) ∈ G′ ⇔ (vi, vj) /∈ E.

Then, κ(G) (in the sense of Definition 3.3.1) is the same Weil algebra as κ(G)
(in the sense of Definition 4.1.12).

61



4.1. Characterising k-Weil∞

Definition 4.1.13. For a Weil algebra X ∈ k-Weil∞ with presentation

k[x1, . . . , xr]/{some collection I of monomials in the xi’s} ,

let SX be the canonical down-set generated by the non-zero monomials of X. Ex-
plicitly, xt11 x

t2
2 . . . x

tr
r 6= 0 if and only if (t1, . . . , tr) ∈ SX .

Definition 4.1.14. Let X ∈ k-Weil∞ be given. Recall also from Section 4.1.1 that
the down-set SX ∈ N(r) ( Definition 4.1.13) has a canonical diagram of Ri’s and
Qi,j’s.

Let BX denote the category for this diagram (in full formality, this is a functor
D : BX → N(r)), and let ΥX : BopX → k-Weil∞ be the composite

BopX
Dop // N op

(r)
κ // k-Weil∞ .

Notation Recall from Section 4.1.1 that the objects of BX are either a maximal
element Ri of SX (forming the first layer) or an intersection Qi,j of Ri and Rj

(forming the second layer). We shall also refer to the ΥX(Ri)’s as the first layer
and the ΥX(Qi.j)’s as the second layer of the diagram defined by ΥX .

Example 4.1.15. If we take X to be k[x, y]/x3, x2y, y2, then we have

SX = {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1)}

(as we had in Example 4.1.9). The diagram BX is then

{(0, 0), (1, 0)}

{(0, 0), (1, 0), (0, 1), (1, 1)} {(0, 0), (1, 0), (2, 0)} ,

and ΥX : BopX → k-Weil∞ picks out the diagram

k[x, y]/x2, y2 k[x]/x3

k[x]/x2 .

Theorem 4.1.16. For each X ∈ k-Weil∞, we have

lim (ΥX : BopX → k-Weil∞) ∼= X .

Proof. (Sketch) Since colim
(
H : BS → N(r)

)
= S and {Wn | n ∈ N} forms a strong

generator for k-Weil∞, it is an almost trivial exercise to show that the obvious cone

BopS k-Weil∞ΥX

∆X

is a limiting one. �
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4.2. Weil∞ and the combinatorics of W1

Remark Let 0r be the down-set {(0, . . . , 0)} ⊂ Nr, for each positive integer r.
Then κ(0r) = k for all r ∈ N. We may also choose to think of κ(0r) as k ⊗ · · · ⊗ k,
which is of course isomorphic to k.

Corollary 4.1.17. Let an arbitrary Weil algebra A ∈ k-Weil∞ be given. The
functor

A⊗ : k-Weil∞ → k-Weil∞

preserves the limits described in Theorem 4.1.16.

Proof. Noting that k-Weil∞ is closed under ⊗, this is simply an application of
Proposition 2.1.13, restricting to the category k-Weil∞. �

We may then try to define a Tangent Structure corresponding to k-Weil∞ as
follows:

Definition 4.1.18. For a monoidal category (G,�, I), a Tangent Structure corre-
sponding to k-Weil∞ on G consists of a strong monoidal functor

F : k-Weil∞ → G

which preserves each object as its canonical limit, in the sense of Theorem 4.1.16.

This is somewhat unwieldy. Indeed, the category Weil1 (regardless of the set
of coefficients) has its objects generated as limits of tensors of k[x]/x2. It is then
understandable that to characterise k-Weil∞ we would need to introduce the set
{Wn | ∀n ∈ N}.

However, we shall show that under some mild conditions on k, we can express
each object of k-Weil∞ as a limit of a diagram involving nW ’s. We shall then
see in Section 4.3 that this allows us to prove some useful properties relating to
the perspective that Tangent Structures are given as strong monoidal functors from
categories of Weil algebras to an arbitrary monoidal category G.

4.2 Weil∞ and the combinatorics of W1

We begin with the following:

Definition 4.2.1. Let sn : Wn → W ⊗ · · · ⊗W︸ ︷︷ ︸
n copies

be given as sn(x) = y1 + · · · + yn,

where each yi is the generator for the appropriate instance of W in the codomain.

We leave as an exercise to the reader the verification that this is a valid map.

Notation Whilst we will not explicitly be considering maps using coloured circles
as we did in Section 3.4, we will continue to refer to non-trivial monomials of a Weil
algebra as circles. We will say that two circles intersect if they have a generator
in common (even if they are of a different order). For example, xy2 and yz are
intersecting circles of the Weil algebra k[x, y, z]/x3, y3, z3.
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4.2. Weil∞ and the combinatorics of W1

Proposition 4.2.2. Let f : Wn → mW be an arbitrary map with no intersecting
circles. Then f factors through sn. Explicitly, there exists a map f ′ : nW → mW
such that the diagram

Wn
s //

f ""

nW

f ′

��
mW

commutes.

Proof. Since f has no intersecting circles, then f(x) (where x is the generator of
Wn) is a polynomial in the generators {z1, . . . , zm} of mW with at most n monomial
terms, since f(x)n+1 = f (xn+1) = 0.

Further, since z2
i = 0 for all i, any monomial in the zi’s also squares to zero.

Then, there is clearly a map f ′ : nW → mW for which each generator {y1, . . . , yn}
of nW picks out a different circle of f (or is sent to zero if there are fewer than n
monomial terms in the polynomial f(x)). Note that f ′ will not be unique.

Then clearly we have f = f ′ ◦ s. �

Proposition 4.2.3. Let X be an arbitrary object of k-Weil∞ and f : X → mW
be an arbitrary map with no intersecting circles. Then f factors through one of its

projections π : X →
n
⊗
i=1

Wri (of the kind described in Theorem 4.1.16). Explicitly,

there exists a projection π : X →
n
⊗
i=1

Wri and a map f ′ :
n
⊗
i=1

Wri → mW such that

the diagram

Wn
π //

f
""

n
⊗
i=1

Wri

f ′

��
mW

commutes.

Proof. Let X have presentation

k[x1, . . . , xn]/{some list of monomials}

and, for each i ∈ {1, . . . , n}, let fi denote the polynomial in the generators {z1, . . . , zm}
given by f(xi).

Then, let νi = max{r ∈ N | (fi)
r 6= 0} (if fi = 0, take νi = 0). Since f has no

intersecting circles, then νi is also precisely the number of monomial terms in fi.

Now, let Y =
n
⊗
i=1

Wνi , and let {x1, . . . , xn} be its generators. Again, using

a similar idea to that in the proof of Proposition 4.2.2, we can construct a map
g′ : Y → mW such that g′(xi) = fi for each i.

In particular, we have

x̃ =
n∏
i=1

xνii 6= 0

in Y , but this is also true in X. Because x̃ is a non-zero monomial of X, then from

Section 4.1.2, there is some projection π : X →
n
⊗
i=1

Wri for which π(x̃) 6= 0 (this

implies that ni ≥ νi for all i).
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4.2. Weil∞ and the combinatorics of W1

Then there is a (unique) quotient map q :
n
⊗
i=1

Wri →
n
⊗
i=1

Wνi = Y (possibly the

identity) so that the diagram

X

π

��
f

((n
⊗
i=1

Wri q
// Y

g′
//mW

commutes. Define f ′ to be the composite g′ ◦ q. �

We will need Propositions 4.2.2 and 4.2.3 later in Section 4.3.

4.2.1 Wm as an equaliser

Let F be an arbitrary field of characteristic zero. For the remainder of this chapter,
we shall take k = F, i.e. we shall be working with F-Weil∞.

Noting that the image of sm is simply the symmetric polynomials in the gener-
ators y1, . . . , ym, where no single generator has degree greater than 1, we then have
the following:

Lemma 4.2.4. The diagram

Wm mW mW
sm ...

m! permutations

is a joint equaliser diagram in F-Weil∞ (although this is also true in AugAlg) for
all m ∈ N.

Proof. Let x be the generator of Wm and y1, . . . , ym be the generators of mW . Since
y2
i = 0 for all i and sm(x) = y1 + · · · + ym = e1(y1, . . . , ym) (the first elementary

symmetric polynomial), it is routine to show that sm(xj) = j!ej(y1, . . . , ym) (the jth

elementary symmetric polynomial).
Since we are working with a field F of characteristic zero, j! ∈ F is invertible, so

that

sm

(
1

j!
xj
)

= ej(y1, . . . , ym) .

The remainder of the proof then follows directly from the fundamental theorem
of symmetric polynomials. �

Remark Each of the permutation maps (we shall later refer to these as σ’s) can
be constructed from iterations of the map c : 2W → 2W (as given in Section 3.2)
tensored with identity maps.

In particular, we have expressed each Wm as a (particular) limit of a diagram
built up using W ’s and c’s.

Although we took k to be a field of characteristic zero, it would have sufficed to
take k to be a rig containing the non-negative rationals Q≥0. This is because the
proof of Lemma 4.2.4 required j! to be invertible.
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4.2. Weil∞ and the combinatorics of W1

To make the argument explicit, consider the fork

W2
s2 // 2W

id
//

c // 2W

(for the map c as defined in Section 3.2). Certainly, it is easy to verify that c◦s2 = s2.
However, if k is (say) N, Z or the two element field, then this is not an equaliser
diagram, since we have the fork

W
l // 2W

id
//

c // 2W

(for the map l as defined in Section 3.2), but l cannot factor through s2 (this is a
routine exercise).

The equaliser of c and id is not s2 due to the absence of 1
2

(by which we mean
an element of the rig k for which 1

2
+ 1

2
= 1) in N, Z or (say) the two element field

(in fact, there is no equaliser in k-Weil∞, but we shall not prove this).
Consider s2(x2) = (y1 + y2)2 = 2y1y2 = 2e2(y1, y2). If 1

2
is not an element of k,

then there is no way to recover e2 itself (i.e. with a coefficient of one), and so y1y2

is not in the image of s2 (so that l cannot factor through s2).

Remark This is not an issue if k = 2 (see Definition 3.4.1), since 1 is also 1
2

(recall
1 + 1 = 1). In this case, s2 is indeed the equaliser of c and id.

4.2.2
n
⊗
i=1

Wmi
as an equaliser

Consider the map

n
⊗
i=1

smi :
n
⊗
i=1

Wmi →
n
⊗
i=1

miW =

(
n∑
i=1

mi

)
W

for some arbitrary values m1, . . . ,mn ∈ N>0. Let this map be denoted s.
It is easy to see that for an element (a polynomial) p in the image of this map

s, p is symmetric in the generators of m1W . Separately, it is symmetric in the
generators of m2W , and in fact this is true for all miW .

Lemma 4.2.5. The diagram

n
⊗
i=1

Wmi

n
⊗
i=1

miW
n
⊗
i=1

miW
s ...

σ1⊗···⊗σn

is an equaliser diagram (in F-Weil∞, or indeed AugAlg), where we include all
m1! . . .mn! maps of the form

σ1 ⊗ · · · ⊗ σn :
n
⊗
i=1

miW →
n
⊗
i=1

miW .

Proof. Let x1, . . . , xn be the generators for the domain
n
⊗
i=1

Wmi of s, and for each

i ∈ {1, . . . , n}, let yi,1, . . . , yi,mi be the generators for miW in the codomain
n
⊗
i=1

miW .
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4.2. Weil∞ and the combinatorics of W1

Now, we clearly have s(xi) = e1(yi,1, . . . , yi,mi) for all i. Further, we also have
s(xji ) = j!ej(yi,1, . . . , yi,mi), so that

s

(
1

j!
xj
)

= ej(yi,1, . . . , yi,mi) .

Again, the remainder of the proof then follows directly from the fundamental
theorem of symmetric polynomials. �

Each Weil algebra of the form
n
⊗
i=1

Wmi can now be expressed canonically as a

limit of a diagram built up using mW ’s and c’s. Again, we stress that this process
requires that k contains the positive rationals (so that the scalar (j!)−1 6= 0 is well
defined for each j ∈ N).

4.2.3 Objects of F-Weil∞ as limits of mW ’s

In Theorem 4.1.16, we said that each object of k-Weil∞ was canonically a limit of

a diagram involving
n
⊗
i=1

Wmi ’s, and in Lemma 4.2.5 (with k = F), we said that any

n
⊗
i=1

Wmi was the equaliser of a particular set of permutation maps between mW ’s.

This suggests that we may be able to characterise each object of F-Weil∞ as
the limit of some diagram involving mW ’s. For 0 ≤ m′ ≤ m, let ε : Wm → Wm′ be
given as ε(x) = x. Further, let ε′ : mW → m′W be given as

id⊗ · · · ⊗ id︸ ︷︷ ︸
m′ copies

⊗ εW ⊗ · · · ⊗ εW︸ ︷︷ ︸
(m−m′) copies

: mW → m′W ;

i.e. it preserves the first m′ instances of W and discards the rest.

Proposition 4.2.6. For the maps ε and ε′ as described above, the diagram

Wm mW

Wm′ m′W

sm

ε ε′

sm′

commutes. There is an analogous diagram for maps of the form

ε :
n
⊗
i=1

Wmi →
n
⊗
i=1

Wm′i
.

Proof. Obvious. �

We wish to exhibit each object of F-Weil∞ as the limit of a (canonical) diagram
involving mW ′s (in particular, a diagram in F-Weil1). We shall begin with an
example to illustrate this process.

Remark Recall that nP r denotes the number of r-permutations of n, and is given
by the formula

nP r =
n!

(n− r)!
.
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Example 4.2.7. Let X be the Weil algebra k[x, y]/x5, y6, x3y4. Using the ideas
discussed in 4.1.2, it is routine to show that X, together with its canonical diagram,
is the pullback

X //

��

W4W3

��
W2W5

//W2W3 .

We then add to this pullback square the equalisers described in Lemma 4.2.5, as
well as appropriate ε′ maps as described in Proposition 4.2.6:

X W4W3

W2W5 W2W3 4W3W 4W3W

2W5W 2W3W

2W5W 2W3W

y s4s3

s2s5

s2s3
ε′1

...

4!3! permutations

1ε′

2!5! permutations . . .
2!3! permutations

. . .

Since all the squares commute, then X is clearly the limit of the diagram

4W3W 4W3W

2W5W 2W3W

2W5W 2W3W .

ε′1

...

4!3! permutations

1ε′

2!5! permutations . . .
2!3! permutations

. . .

But since the identity map is among the permutations, we may equivalently take
the limit of

4W3W 4W3W

2W5W 2W3W

2W5W 2W3W .

...

4!3! permutations

ε′1

2!5! permutations . . .
2!3! permutations

. . .
1ε′

From here, it is easy to see that we may equivalently take the limit of

2W5W 4W3W

2W3W ;
2!5P 3 maps

. . .

3! 4P 2 maps

. . .

where the 2!5P 3 maps all permute between the generators of the 2W component, and
preserve 3 of the 5 generators of 5W (possibly permuting them) and send the other
2 to zero (a similar statement holds for the 3!4P 2 maps).
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4.2. Weil∞ and the combinatorics of W1

This argument in fact applies to all objects of F-Weil∞. We shall now formalise
this. For a given Weil algebra X ∈ F-Weil∞, we begin by defining a category B′X
as follows:

Definition 4.2.8. Let X ∈ F-Weil∞ be given. Recall from Definition 4.1.14 the
category BX as well as the functor ΥX . Let B′X be the category with:

• Objects: The same as those of BX

• Morphisms: Suppose we had a non-identity morphism f : b→ c in BX (i.e. b
was in the second layer and c was in the first layer of BX) with

ΥXf :
r
⊗
i=1

Wci →
r
⊗
i=1

Wbi

(recall ΥX is contravariant and that SX ∈ N(r)). Note also that bi ≤ ci for all
i.

Then we define a morphism from b to c in B′X to be an ordered r-tuple of
injective functions

{hi : bi� ci}i=1,...,r .

In particular, note that

|B′X(b, c)| =
r∏
i=1

ciP bi .

Remark We do not need to define composition for the category B′X since (as with
BX) the only non-identity morphisms must have an object of the second layer as
its domain and an object of the first layer as its codomain.

We shall now define a functor Υ′X : B′ opX → F-Weil∞ which will serve a similar
purpose to ΥX (we shall explain this in more detail in a moment).

Definition 4.2.9. Let a Weil algebra X ∈ F-Weil∞ be given. The functor

Υ′X : B′ opX → F-Weil∞

is given as follows:

• On objects: For an arbitrary object b ∈ B′X , if ΥXb =
r
⊗
i=1

Wbi, then we define

Υ′Xb =
r
⊗
i=1

biW .

• On morphisms: For a non-identity morphism f : b → c of B′ opX (recall that
this is an r-tuple (hi : bi � ci)i=1,...,r of injective functions), define the map

Υ′Xf :
r
⊗
i=1

ciW →
r
⊗
i=1

biW to be the map ĥ1 ⊗ · · · ⊗ ĥr, where ĥi : ciW → biW

is the map sending the jth generator of ciW to:{
the h−1(j)th generator of biW ; if j is in the image of hi : bi� ci
0 ; otherwise.
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4.3. Tangent Structure corresponding to Weil∞

Remark Such a diagram Υ′X : B′ opX → F-Weil∞ factors through F-Weil1.

Theorem 4.2.10. lim(Υ′X : B′ opX → F-Weil∞) = X.

Proof. Since BX is a connected category, then clearly so is B′X , so we are forming
a connected limit. Using Lemma 4.2.5, Proposition 4.2.6 and Theorem 4.1.16, the
proof becomes immediate. �

Remark For X ∈ F-Weil∞, the diagram Υ′X of Definition 4.2.9 and the fact that
X is the limit of this diagram is the analogue of what happens when considering the
infinitesimal objects of SDG, for instance see [21]. The diagrams in Fig. 1 and Fig.
2 are precisely the sort of diagram we describe here, but with the arrows reversed.

Remark The canonical diagrams for each X ∈ F-Weil∞ can actually be simplified;
for instance, the diagram

W3 3W 3W
s3

1

1c

c1

is an equaliser diagram, and we can recover the other three permutations from this.

The purpose of this combinatorial approach is actually rather simple. Whereas
in Theorem 4.1.16, we characterised each object X of F-Weil∞ using Wn’s, this
process allows us to characterise X using only the object W , albeit through more
elaborate diagrams. However, this deceptively simple observation yields a powerful
result, which we shall describe in the remainder of this chapter.

4.3 Tangent Structure corresponding to Weil∞

Using the perspective given by Theorem 4.1.16, we have already given one pos-
sible way to define Tangent Structure corresponding to Weil∞, namely through
Definition 4.1.18.

This is useful if our set of scalars k does not contain the (positive) rationals,
such as N, Z or finite fields. However, if we instead use the perspective offered
by Theorem 4.2.10, there is still far more to say. As such, we shall not discuss
Definition 4.1.18 any further beyond this point.

Taking k = F (or more generally, some appropriate structure containing the pos-
itive rationals, such as the rigs Q≥0 and 2), then we may instead use the perspective
of Theorem 4.2.10 to give a different definition of Tangent Structure corresponding
to F-Weil∞ as follows:

Definition 4.3.1. For a monoidal category (G,�, I), a Tangent Structure corre-
sponding to to F-Weil∞ on G consists of a strong monoidal functor

F∞ : F-Weil∞ → G

which preserves each object as its canonical limit, in the sense of Theorem 4.2.10.

Let J : F-Weil1 ↪→ F-Weil∞ be the obvious subcategory inclusion functor. We
have the following:
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4.3. Tangent Structure corresponding to Weil∞

Proposition 4.3.2. The inclusion functor J : F-Weil1 ↪→ F-Weil∞ is codense.

Proof. We need to show that for arbitrary X ∈ F-Weil∞, we have

lim
(

(X ↓ J) F-Weil1 F-Weil∞
π J

)
∼= X ,

where π is the forgetful functor sending an object X
f // A of (X ↓ J) to A.

More specifically, we shall show that the obvious cone

(X ↓ J) F-Weil1 F-Weil∞π

∆X

α

J

is in fact a limiting cone. We also note here that this is trivial for X ∈ F-Weil1.
Let an arbitrary cone

(X ↓ J) F-Weil1 F-Weil∞π

∆A

γ

J

be given. We first construct a (unique) map h : A→ X as follows:
Recall from Theorem 4.2.10 that X is the limit of a canonical diagram in

F-Weil1. For each projection πi : X → niW of this diagram, we have the cor-
responding component γπi : A→ niW of the natural transformation γ, and we use
these to construct the unique map h : A → X. It now remains to show that for
arbitrary f : X → B (with B ∈ F-Weil1), the diagram

A h //

γf   

X

f
��
B

commutes.
We first note the following:

1) Since B is a limit of an appropriate diagram of mW ’s, then to show that the

maps A
γf
//

f◦h // B are equal, it suffices to show their composites with any given

projection π : B → mW are equal.

2) For any commuting diagram

X

g1
��

g2

!!
C g

// D ,

(i.e. g2 = g ◦ g1) with C, D ∈ F-Weil1, the diagram

A

γg1
��

γg2

  
C g

// D

commutes.
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4.3. Tangent Structure corresponding to Weil∞

Using 1), we know that to show that f◦h = γf , it suffices to show π◦f◦h = π◦γf ,
for an arbitrary projection π : B → mW of B. From 2), we have π ◦ γf = γπ◦f .

Equivalently, it suffices to assume B = mW and show that the diagram

A
h //

γf ""

X

f
��

mW

commutes.
Now we can use the approach described in Section 3.5.5 to canonically express

f as a composite

X W r1 ⊗ · · · ⊗W rm

mW ,

f

f ′

+r1⊗···⊗+rm

and again using the arguments of Section 3.5.5 as well as those immediately above,
it suffices to assume that f has no intersecting circles.

Now, by Proposition 4.2.3, such a map f factors through a projection

π : X →
n
⊗
i=1

Wri

(of the kind described in Theorem 4.1.16). So we now have

A X

n
⊗
i=1

Wri

mW

h

γf

π

f ′

But note now that since f has no intersecting circles, then neither does f ′, and
so the map f ′ is of the form f1⊗· · ·⊗fn (up to some appropriate composition with
c’s), where each

fi : Wri → miW ; with
n∑
i=1

mi = m,

has no intersecting circles.
By Proposition 4.2.2, since each fi : Wri → miW has no intersecting circles,

then each of them factors through sri : Wri → riW , i.e. for each i, there exists a
map f ′i such that

Wri

riW miW

sri
fi

f ′i

commutes. Let s⊗ = sr1 ⊗ · · · ⊗ srn and f ′⊗ = f ′1 ⊗ · · · ⊗ f ′n for convenience.
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4.3. Tangent Structure corresponding to Weil∞

We now have the diagram

A

X
n
⊗
i=1

Wri

n
⊗
i=1

riW
n
⊗
i=1

miW = mW ,

h
γf

γs⊗◦π

π s⊗ f ′⊗

for which the right triangle commutes by definition.

But now recall from Section 4.2.3 that the map s⊗ ◦π : X →
n
⊗
i=1

riW is precisely

one of the projections in the canonical diagram (Theorem 4.2.10) in F-Weil1 for
which the limit (in F-Weil∞) is X. It is precisely this diagram that was used to
define h, thus the left triangle also commutes. �

We then have:

Proposition 4.3.3. Let F∞ : F-Weil∞ → G be a strong monoidal functor which
preserves the limits described in Theorem 4.2.10. Further, let F be the composite
F∞ ◦ J (it is a routine exercise to then show that F is a strong monoidal functor of
the type described in Definition 3.6.18, except with N replaced with F).

For all X ∈ F-Weil∞, we have

lim
(

(X ↓ J) F-Weil1 Gπ F
)
∼= F∞X .

Proof. The proof is similar to that of Proposition 4.3.2. �

Thus, such a functor F∞ will automatically be the right Kan extension of F
along the (codense) inclusion J .

It is then only natural to ask the converse. Suppose we have a functor

F : F-Weil1 → G

defining Tangent Structure internal to G as in Definition 3.6.18 (except with N
replaced with F). Let H : F-Weil∞ → G be the pointwise right Kan extension of F
along the inclusion J . Then H will preserve the limits in question. Now it is only
a matter of whether H is strong monoidal.

Remark To be able to take such a pointwise right Kan extension, we of course
have to assume the existence of certain limits in the codomain category G, and as
such we shall make that assumption.

We begin by showing that H is necessarily monoidal.

4.3.1 H as a monoidal functor

We begin with the following (folklore) result:

Proposition 4.3.4. Let B be a category with finite coproducts, thus making B a
cocartesian monoidal category. Let D be an arbitrary monoidal category.

Then, giving a monoidal functor G : B → D is equivalent to giving an ordinary
functor G′ : B → Mon(D).
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4.3. Tangent Structure corresponding to Weil∞

Proof. (Sketch) Let a monoidal functor G : B → D be given. For an object B ∈ B,
there is the unique monoid

B +B
µ // B 0

ηoo ,

and since G is monoidal, then this gives a monoid in D, and thus determines G′(B).
Conversely, let an ordinary functor G′ : B → Mon(D) be given, and let G : B →

D be its composite with the forgetful functor Mon(D)→ D. Define G0 : I → G0 to
be the unit of G′0. Define G2 : GB ⊗GB′ → G(B +B′) to be the composite

GB ⊗GB′ Gi⊗Gi′ // G(B +B′)⊗G(B +B′)
µ // G(B +B′) ,

where 0 is the initial object of B, the following

B
i // B +B′ B′

i′oo

is a coproduct diagram in B and µ is the multiplication for G′(B +B′). �

Proposition 4.3.5. Let B and C be categories with finite coproducts, J : B → C
be a functor preserving these coproducts. Let D be a monoidal category and let
F : B → D be a monoidal functor.

Then RanJ F : C → D (the pointwise right Kan extension, if it exists) is a
monoidal functor.

Proof. (Sketch) Suppose RanJ F : C → D exists. The forgetful functor U : Mon(D)→
D creates limits. Form F ′ : B → Mon(D) as described in Proposition 4.3.4.

The limits needed for RanJ F
′ are created by U , so that U◦RanJ F

′ = RanJ(UF ′) =
RanJ F . In particular, this means that RanJ F

′ exists. Since U ◦RanJ F
′ = RanJ F ,

then RanJ F has a lifting through U , and thus is monoidal. �

Similarly, the natural isomorphism

RanJF ◦ J ∼= F

is monoidal.
Recall now that tensor is actually coproduct in F-Weil∞ (Proposition 2.1.14),

and as F is the zero object, F-Weil∞ then has all finite coproducts. Since F : F-Weil1 →
G is a (strong) monoidal functor, H is a monoidal functor. Before we discuss whether
or not H is strong monoidal, we will first establish a few facts.

4.3.2 H, ⊗, and the preservation of limits

We said in Section 4.3.1 that H (the pointwise right Kan extension of F along J)
is a monoidal functor. As such, there is the structure map

I → H(F) .

Since J is a codense inclusion, F : F-Weil1 → G is strong monoidal and F ∈
F-Weil1, then this structure map I → H(F) is an isomorphism.

For arbitrary X, Y ∈ F-Weil∞, consider the structure map

H(X)⊗H(Y )→ H(X ⊗ Y ) .

We wish to show this is an isomorphism.
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4.3. Tangent Structure corresponding to Weil∞

Remark If X and Y are both objects of F-Weil1, then because F is again strong
monoidal, this is trivial.

Recall Definitions 4.2.8 and 4.2.9, as well as Theorem 4.2.10. Suppose the lim-
iting cones for X and Y are

B′X
op F-Weil∞ B′Y

op F-Weil∞
Υ′X

∆X

ρ

Υ′Y

∆Y

σ

respectively.
Further, suppose X and Y have presentations

F[x1, . . . , xm]/QX and F[y1, . . . , yn]/QY

respectively, so that X ⊗ Y has presentation

F[x1, . . . , xm, yi, . . . , yn]/QX ∪QY

(Lemma 2.1.15). We shall use this convention for the remainder of this subsection.
Recall from Definition 4.1.13 that X, Y and X⊗Y have canonical corresponding

down-sets SX , SY and SX⊗Y respectively. With some abuse of notation, we have

SX⊗Y = SX × SY

(the product being taken in Set).
Consider the down-set SX . Suppose SX had α maximal elements (i.e. B′X had α

maximal elements in its first layer). Since we take all distinct pairwise intersections
of these maximal elements when forming the second layer of B′X (see Section 4.1.1
for more details), there are αC2 such intersections, and so B′X has α + αC2 objects
(recall that B′X was defined to have the same objects as BX).

Notation For the current discussion, we shall refer to a general maximal element
of SX as mX (elements of the “first layer”). The intersection of two distinct such
maximal elements mX and m′X (elements of the “second layer”) will be denoted
mX ∩m′X .

Similarly, suppose that SY has β maximal elements, so that B′Y has β + βC2

objects.
Now consider SX⊗Y . Clearly, a maximal element m (we shan’t use mX⊗Y for

the sake of simplicity) of SX⊗Y is simply (again, with some abuse of notation) a pair
(mX ,mY ), where mX is a maximal element of SX and mY is a maximal element
of SY . As such, we conclude that B′X⊗Y has αβ + αβC2 objects (where αβ is the
number of maximal elements of SX⊗Y ).

Consider one of the αβC2 objects (i.e. a non-maximal element) of B′X⊗Y . This
must be of the form m∩m′ (for maximal elements m and m′). For m = (mX ,mY )
and m′ = (m′X ,m

′
Y ), we clearly have

m ∩m′ = (mX ∩m′X ,mY ∩m′Y ) .
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4.3. Tangent Structure corresponding to Weil∞

Lemma 4.3.6. Let distinct maximal elements m = (mX ,mY ) and m′ = (m′X ,m
′
Y )

of B′X⊗Y be given. There is a canonical bijection

B′X⊗Y (m ∩m′,m) ∼= (B′X × B′Y )((mX ∩m′X ,mY ∩m′Y ), (mX ,mY )) .

Proof. (Sketch) By definition of the product of categories, we have

(B′X × B′Y )((mX ∩m′X ,mY ∩m′Y ), (mX ,mY ))
∼= B′X(mX ∩m′X ,mX)× B′Y (mY ∩m′Y ,mY ) .

Then, a morphism f : mX ∩m′X → mX in B′X consists of an ordered m-tuple
{hi}i=1,...,m of injective functions (recall that the presentation of X had m genera-
tors, as well as Definition 4.2.8).

Similarly, a morphism f ′ : mY ∩m′Y →mY in B′Y consists of an ordered n-tuple
{h′i}i=1,...,n of injective functions.

Finally, we shall note that a morphism g : m ∩m′ → m in BX⊗Y is an ordered
(m+ n)-tuple of injective functions. �

We shall now need a functor which we shall call G which we shall later show is
final.

Definition 4.3.7. Let G : B′X⊗Y → B′X × B′Y be given as follows:

• On objects: Define G(m) = (mX ,mY ) and G(m ∩m′) = (mX ∩m′X ,mY ∩
m′Y ).

• On morphisms: Use the bijection of Lemma 4.3.6 to define G on morphisms.

Lemma 4.3.8. The functor G : B′X⊗Y → B′X × B′Y above is surjective on objects
(but not necessarily injective).

Proof. Let (c, d) be an arbitrary object of B′X × B′Y .

Case 1: Suppose c and d are both maximal elements mX ∈ B′X and mY ∈ B′Y . Then
clearly we have the maximal object m = (mX ,mY ) of B′X⊗Y with G(m) =
(c, d).

Case 2: Suppose c is a maximal element mX ∈ B′X , and d is an intersection mY ∩m′Y ∈
B′Y . Then we can take m = (mX ,mY ) and m′ = (mX ,m

′
Y ), and we clearly

have G(m ∩m′) = (c, d).

A similar argument applies if c is an intersection and d is a maximal element.

Case 3: A similar argument works if both c and d are intersections.

�

Proposition 4.3.9. The functor G : B′X⊗Y → B′X × B′Y above is final.

Proof. Let (c, d) ∈ B′X × B′Y be given. We need to show that the comma category
(c, d)/G is non-empty and connected for each choice of (c, d).

Being non-empty is a direct consequence of Lemma 4.3.8. Being connected is a
direct consequence of Lemma 4.3.6. �
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4.3. Tangent Structure corresponding to Weil∞

We shall also note that the composite

B′ opX⊗Y
Gop // B′ opX × B′

op
Y

Υ′X×Υ′Y // F-Weil∞ × F-Weil∞
⊗ // F-Weil∞

is precisely Υ′X⊗Y : B′ opX⊗Y → F-Weil∞ (a routine calculation).

Proposition 4.3.10. For all m ∈ N, the functor Tm ⊗ H( ) : F-Weil∞ → G
preserves the limits of Theorem 4.2.10. Explicitly, for all X ∈ F-Weil∞, we have

lim

(
B′ opX

Υ′X // F-Weil∞
H // G Tm⊗ // G

)
∼= Tm ⊗H(X) .

Proof. First, since mW ∈ F-Weil1 and F (mW ) = Tm, we have

Tm ⊗H( ) ∼= H(mW ⊗ ) : F-Weil∞ → G .

It thus suffices to show that H(mW ⊗ ) preserves the required limits.
The canonical diagram of mW ⊗X (i.e. Υ′mW⊗X) can be expressed as

B′ opX
Υ′X // F-Weil∞

mW⊗ // F-Weil∞ .

As such, we have

lim

(
B′ opX

Υ′X // F-Weil∞
mW⊗ // F-Weil∞

H // G
)
∼= H(mW ⊗X) .

�

Remark The same is true of ⊗ Tm : G → G.

Proposition 4.3.11. For X and Y as before, we have

lim

(
B′ opY

Υ′Y // F-Weil∞
X⊗ // F-Weil∞

H // G
)
∼= H (X ⊗ Y ) .

Proof. Since

lim

(
B′ opY

Υ′Y // F-Weil∞
X⊗ // F-Weil∞

)
∼= X ⊗ Y

(using Proposition 2.1.13), we have the obvious cone

B′ opY F-Weil∞ F-Weil∞ G .
Υ′Y

∆H(X⊗Y )

X⊗ H

Hα

(where α is the limiting cone in F-Weil∞).
We wish to show Hα is a limiting cone. Suppose we have an arbitrary cone

B′ opY F-Weil∞ F-Weil∞ G .
Υ′Y

∆A

X⊗ H

γ
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4.3. Tangent Structure corresponding to Weil∞

Now, we know that

H(X ⊗ Y )

= lim

(
B′ opX⊗Y

Υ′X⊗Y // F-Weil∞
H // G

)
= lim

(
B′ opX × B′

op
Y

Υ′X×Υ′Y // F-Weil∞ ⊗ F-Weil∞
⊗ // F-Weil∞

H // G
)

(using Proposition 4.3.9).
As such, we have a limiting cone

B′ opX × B′
op
Y F-Weil∞ × F-Weil∞ F-Weil∞ G .

Υ′X×Υ′Y

∆H(X⊗Y )

⊗ H

Hβ

(where β is the limiting cone in F-Weil∞).
Finally, we know that for each object d ∈ B′ opY , we have Υ′Y d = rW for some

r ∈ N, and by Proposition 4.3.10, we have (for each d) a limiting cone

B′ opX F-Weil∞ F-Weil∞ G .
Υ′X

∆H(X⊗Υ′Y d)

⊗Υ′Y d H

Hδ

(where δ is the limiting cone in F-Weil∞)
We first construct a unique map h : A→ H(X ⊗ Y ) as follows: For each object

(c, d) ∈ B′ opX × B′
op
Y , define ι(c,d) as the composite

A
γd // H(X ⊗Υ′Y d)

Hδc // HΥ′Xc⊗HΥ′Y d .

These ι(c,d)’s induce a cone

B′ opX × B′
op
Y F-Weil∞ × F-Weil∞ F-Weil∞ G .

Υ′X×Υ′Y

∆A

⊗ H

ι

(We note that this is a valid cone since for every morphism (f, g) : (c, d)→ (c′, d′)
of B′ opX × B′

op
Y , we can form the commuting diagram

A

H(X ⊗Υ′Y d) H(X ⊗Υ′Y d
′)

HΥ′Xc⊗HΥ′Y d HΥ′Xc⊗HΥ′Y d
′

HΥ′Xc
′ ⊗HΥ′Y d HΥ′Xc

′ ⊗HΥ′Y d
′ ,

γd
γd′

H(1⊗Υ′Y g)

Hδc
Hδc′

Hδ′c
Hδ′

c′

HΥ′Xf⊗1

1⊗HΥ′Y g

HΥ′Xf⊗HΥ′Y g

HΥ′Xf⊗1

1⊗HΥ′Y g
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4.3. Tangent Structure corresponding to Weil∞

noting that Υ′Xc and Υ′Y d are objects of F-Weil1 so that H(Υ′Xc⊗Υ′Y d) ∼= HΥ′Xc⊗
HΥ′Y d, which shows the naturality of ι).

Then using the limiting cone β, we construct h : A→ H(X ⊗ Y ). In particular,
for each (c, d) ∈ B′ opX × B′

op
Y , the diagram

A
h //

ι(c,d) &&

H(X ⊗ Y )

Hβ(c,d)
��

HΥ′Xc⊗HΥ′Y d

commutes.
It now remains to show that for each d ∈ B′ opY , the diagram

A h //

γd %%

H(X ⊗ Y )

Hαd
��

H(X ⊗Υ′Y d)

commutes.
But remember that Hδ gave a limiting cone. As such, it suffices to show that

the diagram

A h //

γd
��

H(X ⊗ Y )
Hαd // H(X ⊗Υ′Y d)

Hδc
��

H(X ⊗Υ′Y d)
Hδc

// HΥ′Xc⊗HΥ′Y d

commutes for each c ∈ B′X
op. Recall also that the limiting cones for X and Y are

ρ and σ respectively. As such, we have

X ⊗ Y αd // X ⊗Υ′Y d = X ⊗ Y X⊗σd // X ⊗Υ′Y d

X ⊗Υ′Y d
δc // Υ′Xc⊗Υ′Y d = X ⊗Υ′Y d

σc⊗Υ′Y d// Υ′Xc⊗Υ′Y d ,

and so Hδc ◦Hαd = H(σc⊗ ρd). But we also have β(c,d) = σc⊗ ρd. Finally, we have
ι(c,d) = Hδc ◦ γd by definition. We thus have

A
h //

γd
��

ι(c,d) ++

H(X ⊗ Y )
Hβ(c,d)

((

Hαd // H(X ⊗Υ′Y d)

Hδc
��

H(X ⊗Υ′Y d)
Hδc

// HΥ′Xc⊗HΥ′Y d

�

We saw in 4.3.1 that H was automatically monoidal. However, there seems to
be no reason why H should automatically be strong monoidal. Equipped with these
facts, however, we are able to instead give a condition on H equivalent to it being
strong monoidal.
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4.3. Tangent Structure corresponding to Weil∞

4.3.3 An equivalence to H being strong monoidal

For a monoidal functor N : (A,⊗, I)→ (B,⊗, I ′) to be strong monoidal, we require
the structure maps NA,A′ : NA ⊗ NA′ → N(A ⊗ A′) and N0 : I ′ → NI to be
isomorphisms. Here we give an equivalent condition to this requirement. We have
the following:

Theorem 4.3.12. Let H be the pointwise right Kan extension of F along J (in the
context of the above discussion). The following are equivalent:

1) H is strong monoidal.

2) For each X ∈ F-Weil∞, the composite

F-Weil∞
H // G H(X)⊗ // G

preserves the limits of Theorem 4.2.10 for all Y ∈ F-Weil∞.

Proof. 1)⇒ 2) is routine: if H(X ⊗ Y ) ∼= H(X)⊗H(Y ), then we have a 2-cell

F-Weil∞ F-Weil∞

G G

X⊗

H H

H(X)⊗

∼=

and note that the top branch preserves Y as the limit of Υ′Y : B′ opY → F-Weil∞ (by
Proposition 4.3.11).

2) ⇒ 1) requires more work. As observed above, the unit map I → HF is
invertible.

To show that H(X ⊗ Y ) ∼= H(X)⊗H(Y ), we have the following:

H(X ⊗ Y ) ∼= lim

(
B′ opX⊗Y

Υ′X⊗Y // F-Weil∞
H // G

)
∼= lim

(
B′ opX × B′

op
Y

Υ′X×Υ′Y// F-Weil∞ × F-Weil∞
⊗ // F-Weil∞

H // G
)

∼= limc,dHΥ′Xc⊗HΥ′Y d (since Υ′Xc,Υ
′
Y d ∈ F-Weil1)

∼= limclimdHΥ′Xc⊗HΥ′Y d
∼= limd ((limcHΥ′Xc)⊗HΥ′Y d) (using Proposition 4.3.10)
∼= limd (HX ⊗HΥ′Y d)
∼= HX ⊗ (limdHΥ′Y d) (using 2) )
∼= HX ⊗HY

(these limits above being calculated in G) �

Remark This tells us that H is strong monoidal as long as HX ⊗ preserves cer-
tain limits. It is analogous to the requirement in the definition of Tangent Structure
(as given in Definition 3.1.4) that T preserve the pullbacks T (m).

With Theorem 4.3.12 in mind, we shall now resume our discussion of the strong
monoidal functor F∞ : F-Weil∞ → G. We have already noted that F∞ is the right
Kan extension of F . We will now show that it is in fact a monoidal right Kan
extension.
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4.3. Tangent Structure corresponding to Weil∞

4.3.4 F∞ as a monoidal right Kan extension

Theorem 4.3.13. F∞ is a monoidal right Kan extension of F along J .

Proof. We have F : F-Weil1 → G and F∞ : F-Weil∞ → G as previously discussed,
and a natural isomorphism

F-Weil1

F-Weil∞ G
J

F

∼=

F∞

(we will not need this to necessarily be the identity natural isomorphism). Let
a monoidal functor G : F-Weil∞ → G and a monoidal natural transformation
β : GJ ⇒ F be given. Explicitly, we have

F-Weil1

F-Weil∞ G ,
J

F

β

G

and moreover, the diagrams

I G(X ⊗ Y ) F (X ⊗ Y )

Gk Fk G(X)⊗G(Y ) F (X)⊗ F (Y )

∼=

βX⊗Y

∼=

βk βX⊗βY

commute for all X, Y ∈ F-Weil1 (where I is the unit of G).
Since F∞ is the right Kan extension of F , we have a uniquely induced natural

transformation α : G⇒ F∞ such that the composite

F-Weil1

F-Weil∞ G
J

F

∼=

G

F∞

α

is equal to β.
We need only show that α is monoidal, i.e. that the diagrams

I G(U ⊗ V ) F∞(U ⊗ V )

Gk F∞k G(U)⊗G(V ) F∞(U)⊗ F∞(V )

∼=

αU⊗V

∼=

αk αU⊗αV

commute for all U, V ∈ F-Weil∞.
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4.3. Tangent Structure corresponding to Weil∞

The first diagram is immediate, since all the interior triangles of

I

Gk Fk F∞k

∼=∼=
βk

αk

∼=

commute.
As for the second diagram, recall from Theorem 4.2.10 that both U and V

are limits of canonical diagrams with projections of the form πU : U → mW and
πV : V → nW , and these limits are preserved by F∞. The same is true of U ⊗ V ,
and moreover, from the description in Section 4.1.2, each projection of U ⊗ V (into
some rW ) is a tensor of a projection of U and one of V (i.e. πU⊗V = πU ⊗ πV ).

Thus, to show the commutativity of the second diagram, it suffices to show the
commutativity of

G(U ⊗ V ) F∞(U ⊗ V ) F∞(U)⊗ F∞(V )

G(U)⊗G(V ) F∞(U)⊗ F∞(V ) F∞(mW )⊗ F∞(nW )

αU⊗V ∼=

ππ

αU⊗αV ππ

for some arbitrary projection πU ⊗ πV : U ⊗ V → mW ⊗ nW (denoted ππ).
We simply fill in the interior as follows:

G(U ⊗ V )

G(U)⊗G(V ) G(mW ⊗ nW ) F∞(U ⊗ V )

F (mW ⊗ nW ) F∞(mW ⊗ nW )

G(mW )⊗G(nW ) F (mW )⊗ F (nW ) F∞(U)⊗ F∞(V )

F∞(U)⊗ F∞(V ) F∞(mW )⊗ F∞(nW )

ππ
α

G(π)G(π)

αα

β
α

F∞(ππ)

∼=

∼=

∼=

αα

ββ

F∞(π)F∞(π)

F∞(π)F∞(π)

∼=

(note we have omitted, for convenience, the labels for structure maps such as

G(U ⊗ V )→ G(U)⊗G(V ) ,

as well as the subscripts identifying the components of the natural transformations
α and β). �

We also note the following:

Proposition 4.3.14. The limits for each object X ∈ F-Weil∞ as described in
Theorem 4.2.10 do not give a codensity representation.
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4.3. Tangent Structure corresponding to Weil∞

Proof. We simply need to show that for the inclusion J : F-Weil1 ↪→ F-Weil∞, the
functor

F-Weil∞ → [F-Weil1,Set]op

X F-Weil∞ [X, J( )]

Y F-Weil∞ [Y, J( )]

f F-Weil∞[f,J( )]7→

does not preserve the limits described in Theorem 4.2.10.
We know that the equaliser

W2
s2 // 2W

c //

1
// 2W

is one such limit. It suffices to show that the diagram

F-Weil∞[2W, 5W ]
F-Weil∞[c,5W ]//

1
// F-Weil∞[2W, 5W ]

F-Weil∞[s2,5W ]// F-Weil∞[W2, 5W ]

is not a coequaliser in Set.
Consider the map

h : W2 → 5W

x 7→ y1y2 + y2y3 + y3y4 + y4y5 + y1y5 .

It is rather routine to see that this map does not factor through s2.
As such, the function F-Weil∞[s2, 5W ] is not surjective, so the diagram above

cannot be a coequaliser. �
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Chapter 5

Concluding Remarks

5.1 Other candidates for defining Tangent Struc-

tures

In Chapter 3, we exhibited the universal property of the category Weil1 with regards
to Tangent Structure; to give a Tangent Structure (in the sense of [8]) is to give a
strong monoidal functor

F : N-Weil1 → End(M)

preserving certain limits (Theorem 3.6.17). Moreover, we said, in the form of Def-
inition 3.6.18, that we may more generally take an arbitrary monoidal category G
instead of End(M).

In Chapter 4 we defined the category Weil∞ and described a process for ex-
pressing each of its objects canonically as a limit of Wn’s. We then showed that
if k were a field F of characteristic zero, then each object of F-Weil∞ can in fact
be expressed as a limit of nW ’s once again, and had a corresponding statement
regarding right Kan extensions of F along an inclusion J : F-Weil1 ↪→ F-Weil∞.

It certainly makes sense then to try to define a Tangent Structure corresponding
to W , where W is any full subcategory of F-Weil∞ containing F-Weil1 as a full
subcategory, i.e.

F-Weil1 ↪→W ↪→ F-Weil∞ ,

as well as being closed under ⊗, and this would simply amount to a right Kan
extension of F along JW : F-Weil1 ↪→ W that is strong monoidal (an analogue of
Theorem 4.3.12 would need to hold).

Of course, some choices for W are more appropriate than others. We will soon
describe some arguably more viable candidates. However, before we haphazardly
introduce higher dimensional candidates forW (in the sense that they involve Wn’s
for n ≥ 2), we need to discuss a rather important idea: the addition of tangents.

5.1.1 Addition of tangents

Recall from Definition 3.1.4 the natural transformation

+: T (2) ⇒ T .

The purpose of this natural transformation is that it allows the addition of tangent
vectors. We thus would like an analogue of this addition in higher dimensions.

84



5.1. Other candidates for defining Tangent Structures

Remark If the object W = k[x]/x2 corresponds to giving tangent vectors (straight
lines) to each point in a manifold M (in the form of TM), then (say) the object
W2 = k[x]/x3 may correspond to giving tangent parabolas (with some measure of
an appropriate notion of concavity, perhaps) to each point of M , and we obviously
would like a notion of addition for these tangent parabolas.

Consider W2. Naively, we may try to use the product

W2 ×W2 = k[x, y]/x3, y3, xy

and try to define a map

+2 : W2 ×W2 → W2

x 7→ z

y 7→ z ,

but since xy = 0 and z2 6= 0, this is not a valid map.
Recall from Definition 4.1.3 that W2,2 is the Weil algebra

k[x, y]/x3, x2y, xy2, y3 .

We now have a (valid) map

+2 : W2,2 → W2

x 7→ z

y 7→ z .

Just as Weil1 contained Wm,1 for all m ∈ N, it is only natural that ifW contains
some Wn, then it should contain all Wm,n.

Moreover, ifW contains a particular Wn (for n > 1), then it should also contain
all Wn′ for which n′ < n (as well as all the corresponding Wm,n′ ’s). Intuitively, this
simply says that if it is possible to take the nth derivative, then it should also be
possible to take any lower derivative.

We also have the following

Proposition 5.1.1. The Weil algebra Wm,n is the limit of the diagram

Wn ⊗ (m− 1)W0

��

Wn−1 ⊗W1 ⊗ (m− 2)W0 . . .

ss

W0 ⊗Wa ⊗Wn−a ⊗ (m− 3)W0

rr ��

. . .

Wn−1 ⊗ (m− 1)W0 . . . W0 ⊗Wa−1 ⊗Wn−b ⊗ (m− 3)W W0 ⊗Wa ⊗Wn−b−1 ⊗ (m− 3)W0 . . .

where there are always m factors in each tensor, and the subscripts of each object
in the top row sum to n, the subscripts for each object in the bottom row sum to
n− 1, and all possible objects of this form are used.

Proof. These are precisely the diagrams of Theorem 4.2.10. �

Remark Since Wm,n is no longer the m-fold product of Wn for n > 1, then the
maps +n : W2,n → Wn do not define internal commutative monoids in the sense of
Section 3.1.1. We will give an alternative to this in Section 5.2.
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5.1. Other candidates for defining Tangent Structures

5.1.2 The category Weilcog

For the remainder of this chapter, we shall prefer to omit k as a prefix for our
categories of Weil algebras when we wish deliberately to leave k unspecified. We
note that we will always be referring to full subcategories of Weil∞. Further, we
shall discuss, where appropriate, the values k may take for the different cases we
define.

In Chapter 3, we defined the category Weil1 to have, as its objects, precisely
those Weil algebras corresponding to p.c. graphs (piecewise complete graphs), but
quickly noted that these form a (proper) subset of the cographs.

Recall from Definition 2.2.11 that the set of cographs was given as the closure of
the one point graph under finite graph joins and disjoint unions (Definition 2.2.11).
Recall also that in Section 3.3, we said that

κ(GA)× κ(GB) = κ(GA ×GB)

κ(GA)⊗ κ(GB) = κ(GA ⊗GB) .

As such, one natural extension of Weil1 is to take the all the cographs and form
a (sub)category we shall call Weilcog. As such, to say that the objects of Weilcog
are precisely those Weil algebras corresponding to cographs is equivalent to saying
that its objects are given as the closure of W under (finite iterations of) × and ⊗.

Moreover, each object is either of the form nW or part of a foundational pullback
(Definition 2.1.16). This comes from Lemma 3.5.14.

5.1.3 The category WEIL1

We may continue to stay with W and not involve any higher Wn’s. Recall from
4.1.2 that each object X of Weil∞ corresponded to some down-set SX ⊂ Nr.

Definition 5.1.2. Let WEIL1 be the full subcategory of Weil∞ whose objects are
given by all down-sets of the form S ⊂ {0, 1}r (in the sense of 4.1.2).

Remark The capitalisation is not in any way intended to suggest this is a large
category. This will still be a full subcategory of Weil∞.

Since WEIL1 is a full subcategory of Weil∞, then each object X ∈ WEIL1

comes equipped with its canonical diagram (in the sense of Theorem 4.2.10). More-
over, it is easy to see that both Weil1 and Weilcog are full subcategories of WEIL1.
They are proper subcategories, since WEIL1 contains such Weil algebras as

k[x, y, z]/x2, y2, z2, xyz .

Further, WEIL1 is the largest (full) subcategory of Weil∞ with the condition
that for any object X ∈WEIL1, each generator xi of X will always square to zero.
A Tangent Structure corresponding to WEIL1 is then (in some sense) the largest
Tangent Structure possible without involving the second (or higher) derivative(s).

Moreover, the idea of the right Kan extension of F : Weil1 → G along the
inclusion Weil1 ↪→ WEIL1 does not require fractions as discussed in Section 4.2
(explicitly, we do not require 1

n
to form the equaliser for Wn). As such, this idea is

valid when k is N, Z or an arbitrary field. The same is true for Weilcog.
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5.1. Other candidates for defining Tangent Structures

Remark Recall in Section 3.5 that (ignoring coefficients), any map of Weil1 can
be constructed using {ε,+, η, c, l} as well as the limit diagram for each object. This
is still true for WEIL1. We simply need to note that each object X ∈WEIL1 is
the limit of a diagram involving only mW ’s and apply Proposition 4.2.3.

Remark In the same way that Weil1 corresponded to the p.c. graphs and Weilcog
corresponded to the cographs, we may also say that the objects of WEIL1 corre-
spond to hypergraphs (for which the definition can be found in numerous texts, for
instance see [4]).

Remark We may also define WeilGph in the obvious manner. We would then have

Weil1 ↪→Weilcog ↪→WeilGph ↪→WEIL1 .

5.1.4 The category Weil2

The next natural progression past WEIL1 is to include W2 (as well as all Wm,2 as
discussed in Section 5.1.1). One possibility is to take a “minimalistic” approach as
we did with Weil1.

Definition 5.1.3. Let Weil2 be the full subcategory of Weil∞ with objects Wm,1,
Wm′,2 for all m,m′ ∈ N, as well as all (finite) tensors of these objects.

Further, we have an analogy to Section 3.5. Of course, with the introduction of
the Wm,2’s, the set {ε,+, η, c, l} is no longer sufficient. We introduce the following
(extended) set of generating maps:

• ε1 : W1 → W0 and ε2 : W2 → W1; ε1 is the augmentation for W as in Weil1,
and we have

ε2 : k[x]/x3 → k[x]/x2

x 7→ x .

• η1 : W0 → W1, η2 : W1 → W2; η1 is the unit for W as in Weil1, and we have

η2 : k[x]/x2 → k[x]/x3

x 7→ x2 .

• +1 : W2,1 → W1 and +2 : W2,2 → W2; +1 is + from Weil1, +2 as given in
5.1.1.

• lm,n : Wm → Wm ⊗Wn, for (m,n) ∈ {(1, 2), (2, 2)}, given as x 7→ x⊗ y

• cm,n : Wm⊗Wn → Wn⊗Wm, for m,n ∈ {1, 2} the obvious symmetry isomor-
phisms.

• s2 : W2 → W1 ⊗W1 as given in Definition 4.2.1.

Remark The unit of W2 is given as η2 ◦ η1, the augmentation is given as ε1 ◦ ε2.
l : W1 → W1 ⊗W1 as given in Section 3.2 is the composite

W1

l1,2 //W1 ⊗W2
1⊗ε2 //W1 ⊗W1
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5.2. In place of internal commutative monoids

Each map of Weil2 is then constructible (in an appropriate sense analogous to
Definition 3.5.1). However, we shall omit the proof.

We may also define Weilcog,2, WeilGph,2 and WEIL2 in an analogous manner
to Weilcog and WEIL1. For these categories involving W2, k need not be a field F of
characteristic zero either. All that would be required is that k were a rig containing
the fraction 1

2
. One example of such a k is the set of non-negative binary fractions

(i.e. the rational numbers that can be expressed in the form m
2n

, for m,n ∈ N).
Moreover, we can use these ideas to define Weiln, Weilcog,n, WeilGph,n and

WEILn. In these cases, then k would need to be a rig containing the fractions
{1

2
, 1

3
, . . . , 1

n
} in order express the a Tangent Structure corresponding to W as a

strong monoidal right Kan extension of F : Weil1 → G.

5.2 In place of internal commutative monoids

Recall the map +n : W2,n → Wn discussed towards the end of Section 5.1.1. The
domain W2,n of this map is not the product Wn ×Wn, but rather a limit of the
form described in Proposition 5.1.1. As such, it +n does not define a commutative
monoid in the sense of Section 3.1.1.

However, we still wish to think of +n a an “operation on Wn”, and we shall see
that there is a sense in which it is commutative, associative, and unital. We shall
give a perspective here that does precisely this.

Definition 5.2.1. Let Polf (defined in an almost identical manner to [30], although
this also appears in earlier texts) be the category given as

• Objects: Finite sets

• Morphisms: A morphism f : A9 B is a diagram

C
f2 //

f1

��

D
f3

!!
A B ;

where C and D are finite sets, f1, f2, f3 are functions and moreover f2 is
surjective. Such morphisms represent polynomial functions (with coefficients
in N). We give an example below.

• Composition is simply given as composition of the corresponding polynomial
functions. Identities id : A9 A are given as

A
id //

id

��

A
id

!!
A A .

Remark We note that our definition differs to that of [30] since we have the ad-
ditional requirement that f2 is surjective. However, this simply says that the cor-
responding polynomial function does not have (non-zero) constant terms. Clearly,
this property is preserved by composition.

88



5.2. In place of internal commutative monoids

Example 5.2.2. Consider the polynomial function

(x, y, z) 7→ (x2 + xy + z, x+ y + z3) .

We first express the polynomial as

(x, y, z) 7→ (xx+ xy + z, x+ y + zzz) .

We then label the terms

( x︸︷︷︸
1

x︸︷︷︸
2

+ x︸︷︷︸
3

y︸︷︷︸
4

+ z︸︷︷︸
5

, x︸︷︷︸
6

+ y︸︷︷︸
7

+ z︸︷︷︸
8

z︸︷︷︸
9

z︸︷︷︸
10

) ,

the summands
( xx︸︷︷︸

a

+ xy︸︷︷︸
b

+ z︸︷︷︸
c

, x︸︷︷︸
d

+ y︸︷︷︸
e

+ zzz︸︷︷︸
f

) ,

and the components
(xx+ xy + z︸ ︷︷ ︸

α

, x+ y + zzz︸ ︷︷ ︸
β

) .

of the right hand term of the polynomial function as shown above.
Then the polynomial function can be expressed as

{1, . . . , 10}
f1

xx

f2 // {a, . . . , f}
f3

&&
{x, y, z} {α, β} ,

where f1, f2, f3 are the obvious functions.

Now, let ω be the poset N regarded as a category.

Definition 5.2.3. The functor Φ: Polf
op → [ωop,Weil∞] is given as follows:

• On objects: Φ(m) = Wm,−

• On morphisms: For g : m9 n ∈ Polf given as

(x1, . . . , xm) 7→
(
p1(x1, . . . , xm), . . . , pn(x1, . . . , xm)

)
,

the natural transformation Φ(g) : Wn,− ⇒ Wm,− has as its component at r ∈ N

Φ(g)r : Wn,r → Wm,r

ui 7→ pi(v1, . . . , vm)

(it is routine to verify that this not only defines a valid morphism for each r,
but that this is also natural).

Definition 5.2.4. For F and G ∈ [ωop,Weil∞], define (F ∗ G) ∈ [ωop, k-Weil∞]
as the functor given as

(F ∗G)(n) = lim
u+v≤j
j≤n

F (u)⊗G(v) .
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5.2. In place of internal commutative monoids

Explicitly, (F ∗G)(n) is the limit of the diagram

F (0)⊗G(n)

��

F (1)⊗G(n− 1)

uu ��

. . . F (n)⊗G(0)

��
F (0)⊗G(n− 1)

��

F (1)⊗G(n− 2)

tt ��

. . . F (n− 1)⊗G(0)

��. . . . . . . . . . . .

However, note that in the diagram above, all squares commute, and so it suffices
to instead take the limit of the diagram (omitting ⊗ as usual)

F (0)G(n)

��

F (1)G(n− 1)

vv ��

. . . F (n)G(0)

��
F (0)G(n− 1) F (1)G(n− 2) . . . F (n− 1)G(0)

This operation is clearly symmetric and associative (since ⊗ is symmetric and
associative also). Further, the unit of this operation is the constant functor K at
k. Thus [ωop,Weil∞] is in fact a symmetric monoidal category.

Proposition 5.2.5. For m,n ∈ N, (Wm,− ∗Wn,−) ∼= Wm+n,− in [ωop,Weil∞].

Proof. It suffices to show (Wm,− ∗Wn,−)(r) ∼= Wm+n,r ∀ r ∈ N. The proof is trivial
if m or n are 0.

Let r ∈ N be given. Suppose further that m = 1. Then (W1,− ∗Wn,−)(r) is the
limit of the diagram

WrWn,0

��

Wr−1Wn,1

ww ��

. . . W0Wn,r

��
Wr−1Wn,0 Wr−2Wn,1 . . . W0Wn,r−1 .

But recall that the Weil algebra Wm,n is the limit of a particular diagram (Propo-
sition 5.1.1) and that for any Weil algebra A, the functor A⊗ preserves this limit
(Corollary 4.1.17). Then the diagram above is the same as that for Wn+1,r. �

Now, Polf is monoidal under + (disjoint union), and [ωop,Weil∞] is monoidal
under ∗. Φ is thus strong monoidal with respect to these structures.

Finally, we have the following monoid in Polf :

• η : 0 9 1 given as

0
id

��

id // 0
!

��
0 1

corresponding to the polynomial function ( ) 7→ (0).

• µ : 2 9 1 given as

2
id

��

id // 2
!

��
2 1

corresponding to the polynomial function (x, y) 7→ x+ y.

Then, Φ(η)r : k → Wr is the unit of Wr, Φ(µ)r : W2,r → Wr is the map +r.
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5.3. Objects outside of Weil∞ as limits of nW1’s

5.3 Objects outside of Weil∞ as limits of nW1’s

We saw in Section 4.2 that objects of Weil∞ could be described through the com-
binatorics of mW ’s. A similar approach may yield objects beyond those in Weil∞.

Consider the Weil algebra X = k[x, y]/3x2 = y3, xy (we use 3x2 = y3 rather
than x2 = y3 for convenience, in that the calculations are slightly nicer). For k
taking the form 2, N, Z or a field at least, it is rather straightforward to show that
X is not contained in Weil∞ in that there cannot exist an isomorphism in Weil
between X and any object of Weil∞.

Proposition 5.3.1. For k = 2, N, Z or a field, the Weil algebra X = k[x, y]/3x2 =
y3, xy is not isomorphic to any object of Weil∞.

Proof. We note first that as a k-module, X is (freely) generated by the elements
{1, x, x2, y, y2}, and is thus five dimensional.

The only five dimensional Weil algebras in k-Weil∞ are:

• W4 = k[x]/x5,

• W3 ×W1 = k[x, y]/x4, y2, xy,

• W2 ×W2 = k[x, y]/x3, y3, xy,

• k[x, y]/x3, x2y, y3,

• W2 ×W1 ×W1 = k[x, y, z]/x3, y2, z2, xy, yx, xz,

• (W1 ⊗W1)×W1 = k[x, y, z]/x2, y2, z2, xz, yz,

• (W1)4 = k[w, x, y, z]/{all degree two monomials}

(we can see this by considering the down-sets of Definition 4.1.4).
We shall demonstrate the case for W4 only, however the approach will be similar

for the others.
Let W4 = k[u]/u5, and consider an arbitrary map

f : W4 → X

u 7→ αx+ βx2 + γy + δy2 .

We then have

f(u2) = α2x2 + γ2y2

f(u3) = γ3y3 = 3γ3x2

f(u4) = 0 .

But u4 6= 0, and so this map f is not injective on elements. As such, it cannot be
an isomorphism. �

Taking k to be once again a field F of characteristic zero, we shall exhibit X as
a limit of nW ’s. There is an injective map

g : X → 6W

x 7→ z1z2z3 + z4z5z6

y 7→ z1z4 + z2z5 + z3z6 .
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We may then try to use a combinatorial approach to describe this map and
ultimately characterise the Weil algebra in question.

Consider the following diagram

5W 5W 7W

4W 6W 6W

4W 3W 2W ;

λ3 λ4
γ1

γ2

φ1

φ2

id

gr,s...

0

hr,s,t

...
0

ρ1,2,3,4

ρ′1,2,3,4

ρ1,2,3,5

ρ′1,2,3,5

λ1

λ2

where:

• φ1 is given by the permutation (123)(456), φ2 is given by the permutation
(14)(25)(36)

• gr,s : 6W → 2W is given as

zr 7→ a1

zs 7→ a2

zi 7→ 0 otherwise,

for all (r, s) ∈ N2 with 0 < r < s < 7, except for (1, 4), (2, 5) and (3, 6)

• hr,s,t : 6W → 3W is given as

zr 7→ a1

zs 7→ a2

zt 7→ a3

zi 7→ 0 otherwise,

for (r, s, t) ∈ {(1, 2, 6), (1, 3, 5), (1, 5, 6), (2, 3, 4), (2, 4, 6), (3, 4, 5)}.

• 0: 6W → nW is the zero map

• ρ1,2,3,4 : 6W → 4W is given as

z1 7→ a1

z2 7→ a2

z3 7→ a3

z4 7→ a4

z5, z6 7→ 0 ,

• ρ′1,2,3,4 : 6W → 4W is given as

z1 7→ a1

z2 7→ a3

z3 7→ a2

z4 7→ a4

z5, z6 7→ 0
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• ρ1,2,3,5 : 6W → 4W is given as

z1 7→ a1

z2 7→ a2

z3 7→ a3

z5 7→ a4

z4, z6 7→ 0 ,

• ρ′1,2,3,5 : 6W → 4W is given as

z1 7→ a3

z2 7→ a2

z3 7→ a1

z5 7→ a4

z4, z6 7→ 0

• λ1 : 6W → 5W is given as

z1 7→ a1

z2 7→ a2

z3 7→ a3a4

z4 7→ a2a5

z5 7→ 0

z6 7→ 0 ,

• λ2 : 6W → 5W is given as

z1 7→ a1a2

z2 7→ a3

z3 7→ a4

z4 7→ a5

z5 7→ 0

z6 7→ 0

• λ3 : 6W → 5W is given as

z1 7→ a1

z2 7→ a2

z3 7→ 0

z4 7→ a2a4

z5 7→ 0

z6 7→ a3a5 ,
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• λ4 : 6W → 5W is given as

z1 7→ a1a2

z2 7→ a3

z3 7→ 0

z4 7→ a4

z5 7→ 0

z6 7→ a5

• γ1 : 6W → 7W is given as

z1 7→ a1a2

z2 7→ a3a4

z3 7→ a5

z4 7→ a6

z5 7→ a7

z6 7→ 0 ,

• γ2 : 6W → 7W is given as

z1 7→ a1

z2 7→ a3a4

z3 7→ a2a5

z4 7→ a2a6

z5 7→ a7

z6 7→ 0 .

Although this looks rather complicated, the limit (joint equaliser) of this diagram
is constructed in Vect, and is precisely k[x, y]/3x2 = y3, xy.

Now, the fact that g is an injective map also exhibits X as a subalgebra of 6W .
So one possibility then is to exhibit arbitrary Weil algebras (i.e. those outside of
F-Weil∞) as subalgebras of an appropriate nW .

In particular, there is what one might call the Laplacian Weil algebra (as seen
in [17], say)

L = k[x, y]/x2 = y2, xy ,

and we have an injective map f : L→ 4W given as

x 7→ z1z2 + z3z4

y 7→ z1z3 + z2z4

One proposed approach to dealing with Weil algebras outside of Weil∞ (for
general k) is to try to express such a Weil algebra X as a subalgebra of some nW ,
and then use the injective map X ↪→ nW (if it exists) to express X as some joint
equaliser.

That being said, this is no easy task. In fact Poonen [28], taking k to be an
algebraically closed field, actually classifies the Weil algebras by dimension (up to
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six) and shows that the set of isomorphism classes of dimension seven or greater is
infinite. Without the assumption of k being algebraically closed, we would expect
even more isomorphism classes.

Example 5.3.2. Suppose k = C. The map

f : C[x, y]/x2 = y2, xy → C[u, v]/u2, v2

x 7→ u+ v

y 7→ i(u− v)

is an isomorphism. It is rather simple to check first that this is a valid map. To
see it is an isomorphism, note that f(x2) = f(y2) = 2uv, and moreover, note
that {1, u + v, i(u − v), 2uv} forms a basis for the complex vector space underlying
k[u, v]/u2, v2, and so f defines an isomorphism in Vect, and thus is an isomorphism
in Weil.

Remark It is also routine to show that no isomorphism can exist between these
two objects in the absence of i (e.g. if k were N, Z or R).
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