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Summary 

 

Brain decoding methods have transformed the field of Cognitive Neuroscience in the last 

two decades. As this field has matured, researchers are now asking challenging 

questions about the interpretation of decoding methods, such as whether the information 

decoded from neuroimaging data is used by the brain for behaviour. The focus of this 

thesis is to address the challenge of linking information measured with decoding 

methods to human behaviour. 

 

In the first empirical chapter, using magneto-encephalography (MEG), I describe a broad 

set of options for conducting time series decoding studies and test the effects that 

different options in the decoding analysis pipeline can have on the experimental results. 

The results show that decisions made at all stages of the analysis can significantly affect 

the results and interpretation of decoding studies. 

 

In the second empirical chapter, I explore the distance to bound model as a method for 

linking brain decoding with behaviour. Using MEG decoding, I tested whether this model 

can account for behavioural changes in reaction time for categorising degraded objects 

by animacy. I found that the distance to bound model successfully predicted reaction 

time, accuracy, and decision time parameters derived from a prominent model of 

decision making. These findings provide evidence for a systematic relationship between 

decoded brain representations and perceptual decision-making behaviour. 

 

In the third empirical chapter, I examine the distinction between decodable information, 

and information that can be used in behaviour. Using a searchlight approach on 
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functional Magnetic Resonance Imaging (fMRI) data, I first investigated where decodable 

information existed in the brain. Secondly, I assessed where in the brain the decoded 

information was suitable for “read out” by the brain for behaviour. I found that behaviour 

can only be predicted from a subset of the locations that had decodable information. 

These results highlight the distinction between decodable information, and information 

that is relevant for behaviour in the brain. 

 

In conclusion, this thesis advances current knowledge on brain decoding methods and 

on approaches to relating brain representations to behaviour, which is a fundamental 

challenge in cognitive neuroscience. The results show that decodable information has to 

be interpreted with caution, and emphasize that continuing to develop methods for linking 

neuroimaging to behaviour is critical for advancing our understanding of the brain. 
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Chapter 1 

 

Introduction 

 

In the last two decades, decoding methods have significantly influenced and transformed 

the field of Cognitive Neuroscience. The application of machine learning algorithms to 

neuroimaging data allows neuroscientists to “decode” information in the human brain 

(Carlson, Schrater, & He, 2003; Cox & Savoy, 2003; Haxby et al., 2001; Haynes, 2015; 

Haynes & Rees, 2006; Kamitani & Tong, 2005; Kriegeskorte, Goebel, & Bandettini, 2006; 

Norman, Polyn, Detre, & Haxby, 2006; Tong & Pratte, 2012). Together with increasing 

computational power, the development and improvement of neuroimaging recording 

methods and decoding algorithms have made brain decoding highly accessible to 

scientists. However, a current challenge is to link brain decoding methods to behaviour 

(de-Wit, Alexander, Ekroll, & Wagemans, 2016; Ritchie, Kaplan, & Klein, in press). This 

thesis aims to address this challenge by exploring methods that go beyond brain 

decoding. The first part of the thesis focuses on developing decoding methods for 

magneto-encephalography (MEG), as they are not as well established as those for 

functional Magnetic Resonance Imaging (fMRI). The second part focuses on linking fMRI 

and MEG decoding methods to behaviour. 

 

The brain decoding approach is part of a larger set of analysis tools, known as 

MultiVariate Pattern Analysis (MVPA) methods. Rather than considering one variable at 

a time as in traditional neuroimaging analyses, these methods are applied to patterns of 
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activation measured using neuroimaging techniques. Within this framework, decoding 

refers to the use of machine learning classifiers (see Bishop, 2006) to predict a variable 

(e.g., what image the participant was looking at) from neuroimaging data, such as 

functional Magnetic Resonance Imaging (fMRI), electro-encephalography (EEG), or 

magneto-encephalography (MEG). If the classifier’s predictions are better than would be 

expected by chance, this means that the neuroimaging data contains information about 

this variable. The ability to decode information from neuroimaging data allows us to non-

invasively study information processing in the brain, which improves our understanding 

of the brain (Carlson et al., 2003; Cox & Savoy, 2003; Haxby et al., 2001; Haynes, 2015; 

Haynes & Rees, 2006; Kriegeskorte et al., 2006; Norman et al., 2006; O’Toole et al., 

2007; Tong & Pratte, 2012). Decoding information from the brain also has direct practical 

applications, such as in Brain-Computer Interfaces (BCI), which enable paralysed 

patients to communicate and operate prosthetics (Hatsopoulos & Donoghue, 2009). 

However, the goals for these applications are to optimally predict information from the 

brain. This differs from the goal of decoding in Cognitive Neuroscience, which is to make 

inferences about the informational content in the brain (Friston et al., 2008; Hebart, 

Görgen, & Haynes, 2015). The focus of this thesis is on brain decoding methods for 

Cognitive Neuroscience. 

 

In the field of Cognitive Neuroscience, pattern-based methods were first applied to the 

domain of visual object recognition (Edelman, Grill-Spector, Kushnir, & Malach, 1998). 

MVPA approaches have since significantly influenced the field of object recognition 

(Grill-Spector & Weiner, 2014; Haynes, 2015; Kriegeskorte & Kievit, 2013). The 

sensitivity of the decoding approach revealed differential brain responses at the single 

object level (Carlson et al., 2003; Cox & Savoy, 2003; Edelman et al., 1998; Haxby et 
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al., 2001; Haynes, 2015; Kriegeskorte, Mur, Ruff, et al., 2008; Tong & Pratte, 2012). This 

allowed testing predictions about the structure of object representations (Kriegeskorte, 

Mur, Ruff, et al., 2008; Kriegeskorte, Mur, & Bandettini, 2008; Mur et al., 2013), for 

example whether they are organized into object categories (e.g., animals, tools, or 

plants). However, an important question is whether these decoded representations 

reflect the information that is used by the brain in behaviour. For example, when we 

categorize an object as an animal, is the brain reading out the category from the same 

representation that we decode from the neuroimaging data? Answering this question is 

not possible by decoding the representations alone. In fact, a fundamental challenge in 

cognitive neuroscience research is to devise ways to address this question (de-Wit et 

al., 2016; DiCarlo, Zoccolan, & Rust, 2012; Williams, Dang, & Kanwisher, 2007). This 

thesis aims to contribute to this effort by exploring methods for decoding brain 

representations and linking them to behaviour. 

 

The main contributions of this thesis will be on brain decoding methods for Cognitive 

Neuroscience, and methods for linking brain decoding results to behaviour. For the 

purposes of the thesis, the methods are applied to the domain of visual object recognition 

and categorization. The reported visual object categorization effects are large, well-

described, and replicated multiple times. Moreover, monkey neurophysiology has 

extensively studied object representations and read-out in primates (Baizer, Ungerleider, 

& Desimone, 1991; Desimone, Schein, Moran, & Ungerleider, 1985; Felleman & Van 

Essen, 1991; Freedman, Riesenhuber, Poggio, & Miller, 2001, 2003, Gross, 1973, 1994; 

Hung, Kreiman, Poggio, & DiCarlo, 2005; Ungerleider, 1982), which can inform human 

neuroimaging studies about where to look, and what to look for. These aspects make 

object recognition an excellent platform for exploring how to improve neuroimaging 
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methods. Thus, while yielding insights into the neural representations of visual objects 

in the brain, the results presented in this thesis mainly address methods for linking brain 

and behaviour. 

 

The empirical work of this thesis is organized in three chapters. In chapter two of the 

thesis, I will focus on the development of MEG decoding methods, as these are currently 

not well established nor described in the literature. While MEG decoding toolboxes now 

exist, they are still under active development, and require backgrounds in machine 

learning and programming. Introducing guidance and establishing protocols is therefore 

a vital undertaking to ensure a solid foundation for the nascent field of MEG decoding. 

The chapter presents findings on comparing different parameters in the preprocessing 

and analysis phases of decoding, which show how they can affect the results and 

interpretation of decoding studies. Chapters three and four focus on linking these 

decoding methods to behaviour using the recently proposed distance to bound approach 

(Ritchie & Carlson, 2016). In chapter three I use MEG decoding to investigate whether a 

behavioural manipulation that affects reaction times is accompanied by a similar change 

in distance to bound. In chapter four, I apply the distance to bound approach to fMRI to 

quantify the dissociation between decodable information and information that can be 

used by the brain in behaviour. In chapter five, I discuss how the findings from these 

chapters contribute to the decoding literature in Cognitive Neuroscience, and how they 

contribute to the challenge of linking decoding methods to behaviour. 

 

In this introductory chapter, I will review the literature, starting with a background section 

on recent advances in visual object recognition and categorization (section 1). Next, I 

describe the multivariate pattern analysis approach and its application to neuroimaging 
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data (section 2). I then review limitations of this approach and discuss how it is 

challenging to answer the important question of how this information is used by the brain 

in behaviour (section 3). Finally, I describe a recent approach that links brain decoders 

to behaviour by modelling the read-out of information (section 4). I conclude the first 

chapter with an outline of the rest of the thesis (section 5). 

 

1 Visual object recognition and categorization 

 

Humans effortlessly recognize and categorize objects that vary wildly in, for example, 

size, viewpoint, or lightning (Biederman, 1987; DiCarlo et al., 2012; Logothetis & 

Sheinberg, 1996; Mahon & Caramazza, 2011; Potter, 1976; Thorpe, Fize, & Marlot, 

1996; Ungerleider, 1982). For everyday objects, such as cars, cats, or coffee mugs, the 

information that falls on the retina is very different when the objects are viewed from 

another angle, close up or from a distance, in the dark, or partly obstructed. Still, we don’t 

have any problem recognizing cars as cars, and cats as cats, and subsequently 

accessing semantic information about these categories, for example, that a cat is an 

animal, apples are edible, and cars are vehicles. The human brain takes about a third of 

a second to recognize these objects (Grill-Spector & Kanwisher, 2005; Thorpe et al., 

1996), which is remarkable for such a difficult problem.  

 

To date, no artificial systems have been created that exactly mimic human performance, 

but recent developments in artificial deep neural networks have been a giant leap 

towards creating systems that can perform object recognition and categorization with 

high accuracies (Cadieu et al., 2014; Krizhevsky, Sutskever, & Hinton, 2012; Sermanet 

et al., 2013; Simonyan & Zisserman, 2014). However, their workings are in many aspects 
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different from those in the brain (Cichy, Khosla, Pantazis, Torralba, & Oliva, 2016; 

Khaligh-Razavi & Kriegeskorte, 2014; Nguyen, Yosinski, & Clune, 2015), and deep 

neural networks can therefore only provide limited insights into human object recognition 

(cf. VanRullen, 2017). After decades of research into the computational underpinnings 

of vision since Marr (1982), the mechanisms and implementation of the brain’s efficient 

solution for the challenges of visual object recognition are not well understood (DiCarlo 

& Cox, 2007; Grill-Spector & Weiner, 2014) and understanding how the brain solves the 

challenges in visual object recognition remains a major goal in Cognitive Neuroscience. 

 

To recognize an object, the brain must perform a series of transformations to the image 

that falls onto our retina (DiCarlo et al., 2012; Grill-Spector & Malach, 2004; Grill-Spector 

& Weiner, 2014). These involve detecting the edges of an object, segmenting it from the 

background, and transforming it into abstract representations that are read out when 

making a perceptual decision about the object or category membership. Behavioural and 

neuropsychological research has provided a large and important body of knowledge on 

visual objects (Caramazza & Mahon, 2003, 2006; Caramazza & Shelton, 1998; 

Logothetis & Sheinberg, 1996). For example, studies on categorization have explored at 

what level of abstraction (e.g., superordinate ‘animal’, basic ‘bird’, and sub-ordinate 

‘pelican’) objects are identified (Grill-Spector & Kanwisher, 2005; Mack & Palmeri, 2010, 

2011) and the timing of those stages (Fabre-Thorpe, Richard, & Thorpe, 1998; Kirchner 

& Thorpe, 2006; Mack & Palmeri, 2011; Thorpe et al., 1996). As the focus of this thesis 

is on MVPA methods for neuroimaging, a complete review of the literature on object 

recognition is outside the current scope. In the next sections, I will thus focus on the 

recent advances on MVPA approaches to neuroimaging data and their applications to 

understanding the structure of object representations. 
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1.1 Neural mechanisms of object recognition 

 

The neural underpinnings of how the brain solves the challenges of object recognition 

have been extensively studied, but are still not well understood. Evidence has put 

forward the Inferior Temporal (IT) Cortex in macaques and the human homologue 

Ventral Temporal Cortex (VTC) as a critical structure for object recognition. VTC and IT 

respond differently to different object categories (Freedman et al., 2003; Grill-Spector & 

Weiner, 2014; Gross, Rocha-Miranda, & Bender, 1972; Haxby et al., 2001; Hung et al., 

2005; Konkle & Caramazza, 2013; Kriegeskorte, Mur, Ruff, et al., 2008; Meyers, 

Freedman, Kreiman, Miller, & Poggio, 2008; Zhang et al., 2011), and lesions to these 

areas result in impaired object processing (Farah, 1990; Konen, Behrmann, Nishimura, 

& Kastner, 2011). A dominant view of the functioning of the visual object recognition 

system is that it involves a hierarchy of transformations in the ventral visual stream, 

embedded in areas between V1 and the VTC (Figure 1). Moving up the hierarchy, areas 

represent more complex features; from simple visual features to invariant and categorical 

representations (DiCarlo & Cox, 2007; Hubel & Wiesel, 1962, 1965, Riesenhuber & 

Poggio, 1999, 2000). The final stage is thought to be a representation that is suitably 

formatted for read-out by other areas of the brain (DiCarlo & Cox, 2007; Grill-Spector & 

Weiner, 2014). However, we currently do not know the exact nature of these 

representations, or how they are used by the brain. 
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Figure 1. Topological organization of the visual system in the human brain. A. 
Areas projected onto a surface image of the brain. B. The same areas in volume space. 

Figure adapted from Wang, Mruczek, Arcaro, & Kastner, (2015). 
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A major advance in visual object research was the application of classifiers to fMRI 

patterns of activity. MVPA was first applied to visual object recognition studies around 

2000 (Carlson et al., 2003; Cox & Savoy, 2003; Edelman et al., 1998; Haxby et al., 2001), 

showing its potential to distinguish single object exemplars from each other on an almost 

trial-by-trial basis from patterns of activity in fMRI. The VTC has been a major focus of 

MVPA studies to date (Carlson, Simmons, Kriegeskorte, & Slevc, 2013; Cox & Savoy, 

2003; Grill-Spector & Weiner, 2014; Haxby et al., 2001; Konkle & Caramazza, 2013; 

Konkle & Oliva, 2012; op de Beeck, Haushofer, & Kanwisher, 2008; Sha et al., 2015). In 

addition, MVPA studies have explored the representations in the functionally defined 

object-selective Lateral Occipital Complex (LOC), and neighbouring specialized areas 

such as the Fusiform Face Area (FFA) have been studied extensively (Downing & 

Peelen, 2016; op de Beeck, Torfs, & Wagemans, 2008; Peelen, Wiggett, & Downing, 

2006). For example, MVPA studies were the first to show that the FFA, an area thought 

to be a specified module for face processing (Kanwisher, McDermott, & Chun, 1997) 

contained patterns with more fine grained information about other objects as well 

(Downing, Chan, Peelen, Dodds, & Kanwisher, 2006; Haxby et al., 2001).  

 

1.2 The animate – inanimate distinction 

 

The major categorical organization principle is thought to be object animacy (Caramazza 

& Mahon, 2003; Caramazza & Shelton, 1998). Recordings from a set of macaque 

neurons in IT showed that responses to animate objects were more similar to other 

animate objects than to inanimate object responses (Hung et al., 2005; Kiani, Esteky, 

Mirpour, & Tanaka, 2007). In human neuroimaging, animate objects evoke higher 

activations in the lateral VTC, and inanimate objects in the medial VTC (Chao, Haxby, & 
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Martin, 1999; Downing et al., 2006; Mahon et al., 2007). Similar conclusions were drawn 

from MVPA studies, where brain responses to animals were more similar to each other 

than to inanimate objects and animacy was found to be a highly decodable category 

(Carlson, Tovar, Alink, & Kriegeskorte, 2013; Cichy, Pantazis, & Oliva, 2014; 

Kriegeskorte, Mur, Ruff, et al., 2008; Proklova, Kaiser, & Peelen, 2016). Figure 2 

visualizes the similarity between brain responses and shows how animacy is the major 

organizational principle. Rather than a pure animacy dichotomy, animacy has been 

suggested to be organized along a continuous dimension, from more typical animals 

(e.g., mammals or birds) to less typical, such as bugs or fish (Connolly et al., 2012; 

Iordan, Greene, Beck, & Fei-Fei, 2016; Konkle & Caramazza, 2013; Sha et al., 2015). 

 

 

Figure 2. Reconstructed object space from human and macaque IT recordings.  
Multidimensional Scaling (MDS, see e.g., (Torgerson, 1958)) was used to visualize 

relative similarities in IT response patterns between different objects. Items close to each 
other in this space evoke similar brain responses. In this reconstruction, faces cluster 

together in the bottom left corner, showing that they evoke similar IT responses. In 
addition, animate objects and inanimate objects are on opposite sides in this space, 

showing animacy as a major categorical division in human and primate IT. These high 
level categorical organizations look strikingly similar between the human and monkey 

reconstructions. Figure from Kriegeskorte, Mur, Ruff, et al., (2008). 
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1.3 Outstanding questions on the neural representation of objects 

 

The focus of visual object neuroimaging research to date has been on the organization 

of the structure of object representations in space and time. Divisions such as animacy 

(Caramazza & Shelton, 1998; Kriegeskorte, Mur, Ruff, et al., 2008; Mahon & Caramazza, 

2011; Martin, 2007; Spelke, Phillips, & Woodward, 1995), and object size (Konkle & 

Caramazza, 2013; Konkle & Oliva, 2012) are well described. The underlying assumption 

is that these structures are read out by the brain in behaviour (DiCarlo & Cox, 2007; 

Ritchie, Kaplan, et al., in press). Yet, the relationship between reconstructed neural 

representations and behaviour is not well described and is likely more complex than 

currently assumed. For example, different tasks often have no or relatively small effects 

on the neural representational structures as measured with current neuroimaging 

methods, but produce completely different behaviour (Harel, Kravitz, & Baker, 2014; 

Ritchie, Tovar, & Carlson, 2015). In addition, some regions of the brain can have 

decodable information that is not related to behavioural read-out at all (Williams et al., 

2007). A major criticism of MVPA, neuroimaging, and the field of cognitive neuroscience 

in general is the lack of addressing the relationship between brain and behaviour 

(Coltheart, 2006; de-Wit et al., 2016; Krakauer, Ghazanfar, Gomez-Marin, MacIver, & 

Poeppel, 2017; Poldrack, 2006, 2010). This criticism is a main focus of the thesis and is 

expanded on in section 3 of this chapter. I will first describe the MVPA methods in more 

detail. 
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2 Multivariate Pattern Analysis (MVPA) 

 

MVPA methods have become standard practice in analysing fMRI data (Cox & Savoy, 

2003; Haxby et al., 2001; Haynes, 2015; Norman et al., 2006). The defining commonality 

of these methods is that they consider the systematic relationship between multiple 

variables (e.g., voxels in fMRI or channels in MEG). Rather than the univariate approach 

of treating each voxel as independent and looking for differences in average activation 

(Friston, Holmes, et al., 1994; Friston, Worsley, Frackowiak, Mazziotta, & Evans, 1994; 

Worsley, Evans, Marrett, & Neelin, 1992), MVPA methods are used to find differences 

in patterns of activation in a set of voxels to answer questions about the presence of 

information (Kriegeskorte & Bandettini, 2007; Kriegeskorte et al., 2006). A popular MVPA 

approach is to train machine learning classifiers, such as the Support Vector Machine 

(SVM) to predict the stimulus (or condition) from the data.  

 

2.1 The general MVPA decoding approach 

 

The MVPA approach is illustrated in Figure 3. Patterns of activity are represented as 

points in a multidimensional space. For simplicity, this is illustrated as two-dimensional 

space (visualization becomes harder in three or more dimensions, see Section 4.1), but 

there are as many dimensions as there are features (i.e., fMRI voxels) in the data, and 

in practice this means dealing with hundreds of dimensions. The data is split up in sets 

for cross-validation and a classifier is trained to predict the class (e.g., cats vs dogs) of 

an observation on all-but-one set. The trained classifier is used to predict the class of the 

items in the left out set. A performance measure is then computed on the predictions, for 

example the percent of correctly classified items.  
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Figure 3. Classification of fMRI patterns of activity. A,B. Activations in response to 

cat and dog stimuli in 8 voxels are represented as vectors. Points in two-dimensional 

space represent the activation for two voxels to multiple presentations of cat (red) or dog 
(green) stimuli. C. If the response patterns to the two classes are different within one 

voxel, they will be visible when analysing the activity in only that voxel (a univariate 
approach). D. When the distributions overlap, the relation between voxels has to be 

taken into account to discriminate the classes. E. Here, a linear decision boundary can 
be used to discriminate between cat and dog responses. F. Here, a linear classifier would 

not be successful as the classes are not linearly separable. G. The classification 
approach can be seen as a projection onto a one-dimensional decision axis. H. Cross-

validation involves training the classifier on part of the data (the training set) and testing 
its discrimination performance on new data (the test set). The classifier’s performance 

can be measured as percent correctly classified items in the test set. Figure adapted 

from Haynes, (2015). 
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If the classifier is correct more often than expected by chance, then we can conclude 

that the signal contains information about these classes, for example the cat responses 

versus dog responses in Figure 3. The decoding process can then be repeated, for 

example by performing the decoding on multiple masks of voxels that belong to different 

brain regions of interest (ROIs; e.g., IT or V1). This allows making inferences on the 

availability of information per region. Alternatively, a searchlight (Haynes & Rees, 2006; 

Kriegeskorte et al., 2006; Woolgar, Jackson, & Duncan, 2016) can be used. This involves 

repeating the decoding at different spatial locations in the brain. At each voxel, a local 

sphere of neighbouring voxels is extracted and serves as input to the decoding process. 

The resulting decoding accuracy is then stored at the centre voxel of this sphere, and 

the process is repeated for all voxels in the brain. This allows mapping the availability of 

information without the need for a-priori ROI definitions. 

 

Decoding analyses can reveal whether information between conditions is present in the 

patterns of brain activity. However, we often want to study the underlying 

representational structure of the information, to compare the geometry and 

transformations of these representations to computational models (Kriegeskorte & Kievit, 

2013). Internal object representations have been described and visualized in terms of 

similarities between their neural or behavioural responses (Edelman, 1998; Edelman & 

Duvdevani-Bar, 1997; Edelman et al., 1998; op de Beeck, Torfs, et al., 2008; op de 

Beeck, Wagemans, & Vogels, 2001). Expressing internal representations as similarities 

inspired the development of Representational Similarity Analysis (RSA) (Kriegeskorte & 

Kievit, 2013; Kriegeskorte, Mur, & Bandettini, 2008; Mur, Bandettini, & Kriegeskorte, 

2009). This technique has facilitated testing models of the high level categorical 

organization of human IT (Carlson, Simmons, et al., 2013; Connolly et al., 2012; Haxby, 
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Connolly, & Guntupalli, 2014; Kriegeskorte, Mur, Ruff, et al., 2008; Mur et al., 2013; Sha 

et al., 2015). Moreover, RSA has been used to compare the representational structure 

of information between species and modalities (Cichy et al., 2014; Cichy, Pantazis, & 

Oliva, 2016; Kriegeskorte, Mur, & Bandettini, 2008; Mur et al., 2013). For example, 

similar categorical structures with animacy as the major organizational principle were 

found in the organization of IT in both humans and macaques (Kriegeskorte, Mur, Ruff, 

et al., 2008). 

 

2.2. Decoding in fMRI and MEG 

 

The vast majority of MVPA studies use fMRI, which has therefore been the focus of the 

development of MVPA methods. This has resulted in a large body of reviews and tutorials 

(Cox & Savoy, 2003; Formisano, De Martino, & Valente, 2008; Haxby et al., 2014; 

Haynes, 2015; Haynes & Rees, 2006; Mur et al., 2009; Norman et al., 2006; Pereira, 

Mitchell, & Botvinick, 2009; Schwarzkopf & Rees, 2011; Tong & Pratte, 2012). In 

addition, several toolboxes have been developed for performing MVPA on fMRI (Hanke 

et al., 2009, 2009; Hebart et al., 2015; Oosterhof, Connolly, & Haxby, 2016) making the 

methods increasingly more available to researchers. The popularity of fMRI is due to it 

having the highest spatial resolution of non-invasive methods. The most common 3-

Tesla scanners record the hemodynamic response in 1-2mm3 voxels. However, the 

hemodynamic response is a slow process, and fMRI only samples the signal roughly 

once every second. Therefore, fMRI has a very low temporal resolution. In contrast, the 

speed of processing in the brain is in the order of milliseconds, for example the time it 

takes for visual information to arrive in V1 is around 60 to 70 milliseconds (Nowak & 

Bullier, 1997; Thorpe et al., 1996). Because of this, fMRI is less suited for studying 



Chapter 1 

 16 

temporal dynamics. Instead, the same approaches can be applied to MEG (or EEG), 

which is generally sampled at 1000Hz, and therefore allow millisecond by millisecond 

analysis of brain processes. 

 

Recently, applying MVPA methods on MEG data has become increasingly popular. Most 

applications to date of decoding in MEG have been in the visual domain (Contini, Wardle, 

& Carlson, in press). For example, examining the time course of emerging object and 

category representations (Barragan-Jason, Cauchoix, & Barbeau, 2015; Carlson, 

Hogendoorn, Kanai, Mesik, & Turret, 2011; Carlson, Simmons, et al., 2013; Cauchoix, 

Crouzet, Fize, & Serre, 2016; Isik, Meyers, Leibo, & Poggio, 2014; Kaiser, Azzalini, & 

Peelen, 2016; Simanova, van Gerven, Oostenveld, & Hagoort, 2010), orientation 

decoding (Cichy, Ramirez, & Pantazis, 2015; Ramkumar, Jas, Pannasch, Hari, & 

Parkkonen, 2013; Wardle, Kriegeskorte, Grootswagers, Khaligh-Razavi, & Carlson, 

2016), and visual scenes (Cichy, Khosla, Pantazis, & Oliva, in press; Kaiser, Oosterhof, 

& Peelen, 2016). MEG decoding has also been combined with fMRI to compare the 

decodable information between the two, and to get a full picture of the temporal and 

spatial dynamics of objects in the brain (Cichy et al., 2014; Cichy, Pantazis, et al., 2016; 

Kaiser, Azzalini, et al., 2016). Furthermore, it allows comparing classifier performance 

over time (King & Dehaene, 2014b), which has been used in the domain of object 

decoding to show that emerging object representations are not static, but highly dynamic 

(Carlson, Tovar, et al., 2013; Cichy et al., 2014; Contini et al., in press; Isik et al., 2014; 

Kaiser, Azzalini, et al., 2016; Kaiser, Oosterhof, et al., 2016). Taken together, the limited 

number of MEG decoding studies have already produced exciting results, and show a 

rich potential for its use in future cognitive neuroscience research. Yet, MEG decoding 

methods are not as extensively documented as those for fMRI. In contrast to fMRI, there 
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are currently no reviews or tutorials that introduce the techniques and considerations that 

play a role in time-series decoding. To address this gap, chapter two of this thesis 

compares the effects of different analysis options for time-series decoding and is 

intended to serve as a guideline to inform future time-series decoding studies. 

 

3 Interpreting MVPA results 

 

MVPA encompasses a set of extremely powerful and sensitive tools for neuroimaging 

data analysis. However, as Cox and Savoy noted in one of the first MVPA decoding 

studies, the observation that information can be extracted from the neuroimaging data 

does not imply that the brain is using this information (Cox & Savoy, 2003). While this is 

true for any correlational analysis, it is not always made explicit in interpreting MVPA 

studies. Finding decodable information is often communicated as being equivalent to 

identifying the underlying neural code or representations, even though neuroimaging 

researchers are in general aware of the limits of the correlational analysis (de-Wit et al., 

2016). de-Wit et al argue for a shift in perspective, and to focus on searching for 

decodable information that can be shown to be read-out by the brain. Next, I will discuss 

three examples that argue for more caution in interpreting decodable information; First, 

we don’t have a complete description of whether classifiers are able to decode 

information that is organized at a smaller resolution than we measure with fMRI and 

MEG (3.1). Secondly, it is not trivial to determine and disentangle the sources of 

decodable information that are confounds from those that contribute to the organization 

of information in the brain (3.2). Third, finding decodable information in neuroimaging 

data does not imply that this information is available to the brain as well (3.3). Finally, I 
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review proposed methods that address these issues by working towards linking decoded 

information to behaviour (3.4). 

 

3.1 An example from orientation decoding 

 

Early applications of MVPA demonstrated that the orientation of a stimulus can be 

decoded from V1 (Haynes & Rees, 2005; Kamitani & Tong, 2005). This was surprising, 

considering that V1 neurons are organized by their preferred orientations in columns at 

a much smaller scale than the resolution of standard fMRI data (Boynton, 2005; De 

Martino et al., in press; Hubel & Wiesel, 1974; Hubel, Wiesel, & Stryker, 1978; Yacoub, 

Harel, & Uğurbil, 2008). The authors argued their results were due to hyperacuity: the 

classifiers were picking up variability in orientation preference at the single voxel level 

(Kamitani & Tong, 2005). The hyperacuity account assumes that because voxels 

randomly sample the orientation-selective neurons, each voxel will have a small bias in 

the proportions of orientation selective neurons. This sparked a debate about the source 

of orientation decoding, centred around whether large scale, systematic cortical 

orientation biases were contributing to the decoding (Freeman, Brouwer, Heeger, & 

Merriam, 2011; Freeman, Heeger, & Merriam, 2013; Mannion, McDonald, & Clifford, 

2009), an alternative explanation to the hyperacuity account. To date, after decades of 

successful orientation decoding, it is still debated whether small scale biases contribute 

to the decoding (Alink, Krugliak, Walther, & Kriegeskorte, 2013; Carlson & Wardle, 2015; 

op de Beeck, 2010; Pratte, Sy, Swisher, & Tong, 2016; Wardle, Ritchie, Seymour, & 

Carlson, 2017). This debate illustrates that the underlying source of the decodable 

information is not always known (Carlson & Wardle, 2015; Naselaris & Kay, 2015; Tong 

& Pratte, 2012).  
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3.2 Interpreting category decoding 

 

It is not trivial to make inferences on the source of information that is used for decoding, 

and it is equally hard to control for it. Consider the source of decodable category 

information, as described in Section 1.1. In MEG decoding of categories and exemplars, 

onsets for category and exemplar decoding are reported very early in the time series. 

For example, several studies have found onsets of decodable exemplar information and 

category information starting around 60-70ms (Carlson, Tovar, et al., 2013; Cauchoix et 

al., 2016; Cichy et al., 2014). Even though the peak decoding time points in these studies 

were much later, the onset of decoding indicates the earliest availability of any 

information in the signal. These early results suggest that they are based on low level 

visual responses, as information does not reach IT until around 100ms (Thorpe et al., 

1996). Moreover, object categories are known to co-vary with visual features (Bar, 2003; 

Gaspar & Rousselet, 2009; Honey, Kirchner, & VanRullen, 2008; Long, Konkle, Cohen, 

& Alvarez, 2016; Vanrullen, 2011). Such features are also represented in neural patterns 

at higher level areas of processing (Andrews, Watson, Rice, & Hartley, 2015; Proklova 

et al., 2016; Rice, Watson, Hartley, & Andrews, 2014) and classifiers can exploit these 

features (Vanrullen, 2011). If a classifier can successfully use the low-level responses to 

extract category information, the brain might be doing the same (Crouzet & Thorpe, 

2011). It is therefore not trivial to separate true category decoding effects from 

confounding or covarying features (Carlson & Wardle, 2015; Grill-Spector & Weiner, 

2014; Kaiser, Azzalini, et al., 2016; Mahon & Caramazza, 2011; op de Beeck, Haushofer, 

et al., 2008; Proklova et al., 2016; Tong & Pratte, 2012; Wardle & Ritchie, 2014). 
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3.3 Are decoding studies measuring brain processes? 

 

The ambiguity about the source of information (as mentioned in the previous sections) 

means that the interpretation of decoding studies in terms of internal representations is 

not straightforward. If there are confounds in the design or stimuli that could be picked 

up by the classifier, it must be shown that MVPA is extracting the condition of interest 

and not those confounds (Ramsey et al., 2010; Ritchie, Bracci, & op de Beeck, in press; 

Todd, Nystrom, & Cohen, 2013; Woolgar, Golland, & Bode, 2014). And even with all 

possible confounds controlled for, if one brain area shows significant decoding, but 

another area does not, does this mean information is only represented in the former? 

Could it be possible that the information that is measured with MVPA is a by-product of 

a different underlying brain process? Might the brain use a completely different decoding 

mechanism? 

 

These questions speak to a general criticism and limitation of decoding studies: An 

implicit assumption in MVPA studies is that if information can be decoded from a brain 

region, then this information is explicitly represented in this region and used by the brain 

in behaviour (Haynes & Rees, 2006; King & Dehaene, 2014a; Kriegeskorte & Kievit, 

2013; Misaki, Kim, Bandettini, & Kriegeskorte, 2010). For example, in one of the early 

decoding studies, Haynes and Rees, (2006) state that individual introspective mental 

events can be recovered from brain activity when the underlying neural representations 

are decodable, suggesting that finding a decodable signal implies recovering an internal 

mental state. However, decodability alone is not enough evidence to make claims about 

representations in the brain and their use in behaviour (Cox & Savoy, 2003; de-Wit et 

al., 2016; Forstmann & Wagenmakers, 2015; Klein, 2010; Krakauer et al., 2017; 
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Poldrack, 2006; Ritchie, Kaplan, et al., in press). For instance, in one of the first reviews 

of the decoding literature, Cox and Savoy (2003) argue that decoding information does 

not imply that this information is used by the brain, and that experimenters must apply 

caution with interpreting the nature of the decodable signal. In a recent thought-

provoking article, de-Wit et al., (2016) argue that in order to measure information in the 

brain, one must show that the information is available to the brain, rather than available 

to the experimenter, by showing that the brain uses the information (de-Wit et al., 2016). 

 

3.4 Linking decoded representations to behaviour 

 

To address the problems described above, several studies have gone beyond the 

decoding of information in order to find information that relates to behaviour. An 

advantage of using classifiers for decoding is that their performance can be compared 

with behaviour (Naselaris, Kay, Nishimoto, & Gallant, 2011). If human performance on 

the same stimuli can be predicted from the classifier performance, there is evidence for 

a relation between the decoding and behaviour (Raizada, Tsao, Liu, & Kuhl, 2010; van 

Bergen, Ji Ma, Pratte, & Jehee, 2015; Walther, Caddigan, Fei-Fei, & Beck, 2009; 

Williams et al., 2007). For example, Williams et al., (2007) showed that classifier 

performance in LOC was predictive of task performance and that performance in early 

visual cortex was not, suggesting that the information in LOC was related to behaviour. 

Philiastides & Sajda, (2006) varied stimulus coherence in a signal detection task and 

found that classifier performance matched human psychometric functions. Another 

approach to linking decoded neural spaces to behaviour is using RSA, where a neural 

representational dissimilarity matrix (RDM) can be compared to a behavioural 

dissimilarity matrix. For example by directly comparing them to RDMs of human similarity 
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ratings (Bracci & op de Beeck, 2016; Mur et al., 2013; Redcay & Carlson, 2015; Wardle 

et al., 2016), or RDMs that reflect human performance (Cohen, Alvarez, Nakayama, & 

Konkle, 2016; Proklova et al., 2016). A recently proposed method to link neural decoders 

to behaviour is the distance to bound approach (Carlson, Ritchie, Kriegeskorte, 

Durvasula, & Ma, 2014; Ritchie & Carlson, 2016; Ritchie et al., 2015), which treats linear 

neural decoding classifiers as an observer under signal detection theory (Green & Swets, 

1966) to predict behaviour. Chapters 3 and 4 of thesis build upon the neural distance to 

bound approach, which is described in detail in the next section. 

 

4 The neural distance to bound approach 

 

The classifiers used in brain decoding studies show whether information about the 

experimental condition is discriminable in the multidimensional patterns of activation. 

However, as described in the previous section, they do not show directly what this 

information is, or whether this information is being used by the observer (de-Wit et al., 

2016; Ritchie, Kaplan, et al., in press; Williams et al., 2007). One aim of this thesis is to 

address this difficulty by studying the recently proposed neural distance to bound 

approach (Ritchie & Carlson, 2016). In summary, this approach entails computing the 

difficulty of individual exemplars for the classifier that was used to decode the brain 

activation patterns. These difficulties are then compared to a behavioural measure of 

human difficulty (e.g., reaction times) for the same exemplars on the same classification 

task. If the behavioural difficulty can be predicted from the classifier difficulty, this shows 

that the brain could be using the same information as the classifier. 
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Linear classifier models are a popular choice in decoding studies partly because of their 

biological plausibility. They can be viewed as a single neuron that reads out information 

from the input patterns (DiCarlo & Cox, 2007; Misaki et al., 2010). In addition, the 

classifier uses a decision boundary to separate the multidimensional space into two 

categories. This attribute closely matches with models of human decision processes 

under signal detection theory (Ashby, 2000; Ashby & Maddox, 1994; Green & Swets, 

1966). Building on this observation, Ritchie & Carlson, (2016) propose that evidence for 

the classifier’s decision can serve as evidence in models of observer decision behaviour. 

If the brain is using the same neural activation space for a decision, then the evidence 

for the neural decoder will predict observer categorization difficulty (Carlson et al., 2014; 

Ritchie & Carlson, 2016). The current section explains this approach in more detail, 

starting with a measure of evidence for neural decoders (4.1). I then describe how 

evidence plays a major role in current models of human decision behaviour and how the 

distance to bound approach links these two concepts (4.2). Finally, the two studies that 

implemented the approach to date are summarized (4.3) and I discuss the outstanding 

questions of this approach that this thesis aims to address (4.4). 

 

4.1 A neural hyperplane for classification 

 

The machine learning classifiers used in MVPA are relatively simple linear models. 

Whether one uses support vector machines (SVM), linear discriminant analysis (LDA), 

or Gaussian naïve Bayes (GNB), they all tend to perform similarly (Misaki et al., 2010; 

Pereira et al., 2009). One thing these classifiers have in common is that they all compute 

a decision function of the form predicted(x) = Class0 if w x + c < 0 else Class1. That is, 

during the training phase, classifiers maximize separation of two classes by computing 
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a weight vector w and a constant c. One weight is assigned to each feature. Then, 

predictions are made by multiplying feature values with the weight vector, and testing 

whether the resulting value is larger or smaller than zero. Note that w x + c = 0 is a 

decision hyperplane in multidimensional feature space (Figure 4): items on one side of 

this hyperplane are predicted as one class, and vice versa. Some items lie closer in 

multidimensional space to this hyperplane than others (Figure 4). Their decision values 

are smaller (closer to zero), while others are further away and have larger decision 

values. For prediction, only the sign of the decision value matters, positive for Class1 

and negative for the other. However, the decision values also reflect a measure of 

confidence for the classifier. To illustrate, if we gather a new set of data for all our items 

and predict their classes, the items will likely shift due to noise in the measurement. Items 

with small decision values (close to the hyperplane), could then end up being predicted 

incorrectly as the other class. Items further from the hyperplane have a higher chance to 

be correctly predicted in repeats than those closer to the hyperplane. Thus, using this 

distance property, for every item in our stimulus set, we can obtain a confidence score 

of the item belonging to class X or Y. Next, I will discuss how this score can be directly 

linked to models of (human) decision making. 
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Figure 4. Three-dimensional space with a separating hyperplane. Simulated data. 
Points in this space represent for example measured activation in three fMRI voxels or 

three MEG channels. The grey plane represents a hyperplane that separates the three-
dimensional space into two. In a decoding setting, items on one side of the hyperplane 

would be classified as blue circles, and items on the other side as red squares. Here, 
some items would be misclassified. For each item, a distance to the hyperplane can be 

computed. 

 

4.2 Evidence accumulation with distance to the hyperplane 

 

The decision hyperplane used in classification can be thought of as a decision boundary 

in classic signal detection theory (Green & Swets, 1966). Signal detection theory 

specifies the relation between the stimulus and behaviour. The input for a decision is 

sampled from distributions on an evidence dimension, where the ratio between evidence 

determines the response, leading to a decision boundary on the evidence dimension 

(Figure 5A). The closer an item is to the boundary, the less evidence there is for the 

response. The amount of available evidence has a major influence on human observer 
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decision behaviour. Decision making models parameterize human decision making 

behaviour. The most popular models are evidence accumulation models. These models 

in general represent each choice as a separate accumulator that gathers evidence over 

time (e.g., Brown & Heathcote, 2008; Gold & Shadlen, 2007; Smith & Ratcliff, 2004; 

Stone, 1960). Once one accumulator’s evidence reaches a certain threshold, the 

decision is made. The choice accumulators can vary in, for example, their starting 

position, accumulation speed, decision threshold. By varying these parameters, 

evidence accumulation models have been shown to be able to predict behaviour for a 

variety of tasks. For instance, a response bias to one choice can be accounted for by 

any combination of lower decision threshold, higher starting position or faster drift rates. 

 

Consider a trivial instantiation of an accumulator model for a binary categorization task. 

The accumulators for both choices start at the same point (e.g., we assume no priors or 

variation in starting points), and their thresholds are the same too (e.g., no bias). The 

only difference in parameters that can account for differences between the two choices 

is drift rate (the speed of evidence accumulation). At each iteration of the model, the 

accumulators receive another unit of evidence. If one accumulator reaches a threshold, 

then the response for that accumulator ‘wins’ (i.e., the decision is made). Thus, the 

accumulation speed depends purely on the strength of the evidence, and determines the 

time of the decision. The decision time is behaviourally measured as reaction time. Now 

assume that our neural multidimensional space (e.g., fMRI voxel activations) is an 

accurate representation of the brain’s internal space that the observer uses as input for 

a categorization decision. Our classifier’s hyperplane in this space can then be used as 

the decision boundary for categorization, and the classifier’s confidence for a decision 

(i.e., distance to the hyperplane) serves as evidence for the observer’s decision. This 
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then manifests in accumulation rates, and reaction times for the decision (Figure 5). 

Thus, if the brain uses the neural multidimensional space for a decision, then the 

distance to the classifier boundary in this space negatively correlates with reaction times 

for this decision (Carlson et al., 2014; Ritchie & Carlson, 2016). 

 

 

 

Figure 5. Distance to classifier boundary approach. A. In signal detection theory, the 

distance from a decision boundary defines evidence for a decision. B. A similar decision 
boundary can be obtained from a neural decoding classifier. C. The prediction of the 

distance to bound approach is that RT decreases as a function of distance to the 

classifier boundary. D. Illustration of how the distance to boundary can be used as 
accumulation rate in an evidence accumulation model. E. Using the neural distance to 

boundary as drift rate in an evidence accumulation model predicts a positive correlation 
between accumulation time and RT. Figure from Ritchie & Carlson, (2016). 
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4.3 Predicting observer reaction times from neural decoders 

 

The hypothesis that distance to a classifier hyperplane predicts RT was tested on 

representational structures obtained from Regions of Interest (ROIs) of IT and early 

visual cortex (Carlson et al., 2014). Observer RTs for object animacy were correlated to 

distances to an animacy classifier boundary on the fMRI ROIs. Their findings showed 

that the IT ROI had a strong correlation between distance to the boundary and reaction 

time. Correlations for the early visual cortex were also present but much lower and less 

reliable. This was taken as evidence to support the involvement of IT in categorization 

tasks. Importantly, the fMRI data were independent from the RT data, and subjects in 

the MRI scanner did not have an object-related task, thus the correlations could not be 

explained by, for example, subject-specific differences in attention. In a follow-up study, 

the time course of these correlations was explored using MEG decoding (Ritchie et al., 

2015), and the same negative relationship between neural distance from the boundary 

and RT was observed. Moreover, the correlations did not change when subjects were 

actively performing an animacy task, compared to an orthogonal task in the scanner 

(Ritchie et al., 2015). These results showed that the distance to bound approach is a 

step towards linking brain spaces directly to behaviour, addressing a fundamental 

problem in cognitive neuroscience (de-Wit et al., 2016; Forstmann & Wagenmakers, 

2015; Klein, 2010, 2016; Poldrack, 2006; Ritchie, Kaplan, et al., in press). However, 

there are a number of outstanding questions that need to be addressed in order to fully 

assess the potential of the distance to bound approach. 
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4.4 Outstanding questions 

 

Previous distance to bound research found correlations with representational distance 

obtained from fMRI ROIs (Carlson et al., 2014). These results showed that correlations 

between distance to the classifier boundary and reaction time in early visual cortex were 

smaller than the correlations in IT, which was taken as evidence for IT’s involvement in 

categorical decision making. However, some non-zero correlations were found in Early 

Visual Cortex (EVC). Because the ROIs were relatively large and included multiple visual 

areas, it is possible that only some parts had correlations with reaction time. A more 

spatially fine-grained analysis could reveal the full organization of the distinction between 

decodable category information, and where this information can be read-out in 

behaviour. Chapter four explores this by combining the distance to bound approach with 

an fMRI searchlight analysis to localize and quantify the distinction between decodable 

information and information that can be read-out in behaviour. 

 

Previous studies have found correlations between distance to boundary and reaction 

time in both fMRI and MEG, regardless of whether participants were actively categorizing 

the stimuli, or performing an orthogonal task in the scanner (Carlson et al., 2014; Ritchie 

et al., 2015). While this is evidence that the brain can use the decodable category 

information, more evidence would come from showing a systematic relationship. For 

example, showing that manipulating one variable (e.g., reaction time) predicts a change 

in the other (e.g., distance to boundary) would provide strong evidence in favour of a 

systematic relationship between distance to boundary and reaction time (cf. Klein, 2016). 

This systematic relationship was explored in chapter three: The categorization task was 



Chapter 1 

 30 

made more difficult, and we tested whether this manipulation of categorization reaction 

times resulted in a corresponding reduction in distance to boundary. 

 

A general limitation of both studies using the neural distance to bound approach	to date 

is that they used the same stimuli (Carlson et al., 2014; Ritchie et al., 2015). This stimulus 

set has been used numerous times in visual object research to date (e.g., Carlson, Tovar, 

et al., 2013; Cichy et al., 2014; Kiani et al., 2007; Kriegeskorte, Mur, Ruff, et al., 2008). 

Because animacy has been reliably shown as a categorical organization of these stimuli 

(see Figure 2), it is a good platform for testing novel methods, such as the distance to 

bound approach. However, it is therefore not known whether the distance to bound 

approach generalizes to other stimuli and other tasks. For instance, the stimuli that were 

used included human faces (Carlson et al., 2014; Ritchie et al., 2015), which have 

generally fast RTs (Crouzet, Kirchner, & Thorpe, 2010). The same stimulus set was used 

in other studies which showed that the faces in this specific set were also highly 

decodable (Carlson, Tovar, et al., 2013; Cichy et al., 2014; Cichy, Pantazis, et al., 2016; 

Kriegeskorte, Mur, Ruff, et al., 2008). Thus, face stimuli could drive the correlation with 

RT. This raises the question of whether a correlation between distance and reaction time 

is also possible in data that does not contain human face stimuli, which I investigate in 

chapter three of this thesis.  

 

Another observation in the distance to bound studies to date was that the animate 

exemplars were driving the correlations with RT (Carlson et al., 2014; Ritchie et al., 

2015). When restricting the correlation to inanimate exemplars, little to no correlations 

were found. The lack of correlations for inanimate exemplars was argued to be caused 

by the negatively defined category, i.e., inanimate is defined as ‘not animate’ (Carlson et 
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al., 2014). This would predict that such an asymmetry does not emerge when using two 

positively defined categories (e.g., categorizing humans vs animals), a prediction tested 

in chapter four of this thesis. However, as stated earlier, if human faces are the source 

of these correlations, then this could explain why correlations are limited to animate 

stimuli. Taken together, the generalizability of the distance to bound approach, and 

whether it solely depends on human face stimuli are critical questions that require further 

investigation. Therefore, in chapters 3 and 4 of this thesis, I examine specific predictions 

of the distance to bound approach and test its robustness and generalizability to other 

stimuli and tasks. 

 

5 Overview of thesis 

 

In chapter two, I explore methods for decoding brain representations from time-series 

neuroimaging data (e.g., MEG). Although the MEG and fMRI decoding approaches are 

conceptually similar, there are important distinctions, and there are no existing standards 

for decoding time-varying brain activity. Therefore, I first describe a broad set of options 

for conducting time series decoding studies. Secondly, using MEG data, I tested the 

effects that different options in the decoding analysis pipeline can have on the 

experimental results. The results showed how decisions made at all stages of the 

analysis can significantly affect the results and interpretation of decoding studies. 

 

In the third chapter of the thesis, I build on the distance to bound approach by testing 

specific predictions of the approach. Using MEG decoding, I tested whether the neural 

distance to bound approach could account for increased difficulty in categorizing visually 

degraded stimuli. Secondly, I tested whether, in addition to reaction times, distance to 
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bound predicts drift rates as estimated by an accumulator model of decision making. The 

results showed that distance to the classifier boundary successfully predicted reaction 

time, accuracy, and drift rates for categorizing the degraded visual objects. 

 

In chapter four, I further examine the relationship between decodable information and 

behaviour by creating spatially unbiased maps of where the neural readout model could 

be used to predict behaviour. Using a searchlight approach on fMRI data, I first test for 

decodable object category information in local voxel clusters, and second, assessed 

whether this information can also be used to predict categorization reaction times. The 

results show that decodable information exists along the entire ventral and dorsal visual 

streams, but that behaviour can only be predicted from a subset of those locations, 

mostly in the anterior ventral visual stream. These results show a distinction between 

decodable information, and information that is more likely to be used by the brain 

behaviour. 

 

In chapter five, I summarize all findings and discuss how they contribute to the current 

knowledge on brain decoding methods, and to relating brain representations to 

behaviour. I will describe limitations of the approaches taken in this thesis, discuss 

outstanding questions, challenges, and give future directions to the field before drawing 

general conclusions based on this work. 
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Abstract 

 

Multivariate pattern analysis (MVPA) or brain decoding methods have become 

standard practice in analysing fMRI data. Although decoding methods have been 

extensively applied in Brain Computing Interfaces (BCI), these methods have only 

recently been applied to time-series neuroimaging data such as MEG and EEG to 

address experimental questions in Cognitive Neuroscience. In a tutorial-style review, 

we describe a broad set of options to inform future time-series decoding studies from a 

Cognitive Neuroscience perspective. Using example MEG data, we illustrate the 

effects that different options in the decoding analysis pipeline can have on 

experimental results where the aim is to 'decode' different perceptual stimuli or 

cognitive states over time from dynamic brain activation patterns. We show that 

decisions made at both preprocessing (e.g., dimensionality reduction, subsampling, 

trial averaging) and decoding (e.g., classifier selection, cross-validation design) stages 

of the analysis can significantly affect the results. In addition to standard decoding, we 

describe extensions to MVPA for time-varying neuroimaging data including 

representational similarity analysis, temporal generalisation, and the interpretation of 

classifier weight maps. Finally, we outline important caveats in the design and 

interpretation of time-series decoding experiments. 
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1 Introduction 

 

The application of 'brain decoding' methods to the analysis of fMRI data has been 

highly influential over the past 15 years in the field of Cognitive Neuroscience (Carlson, 

Schrater, & He, 2003; Cox & Savoy, 2003; Edelman, Grill-Spector, Kushnir, & Malach, 

1998; Haxby et al., 2001; Kamitani & Tong, 2005). In addition to their increased 

sensitivity, the introduction of fMRI decoding methods offered the possibility to address 

questions about information processing in the human brain, which have complemented 

traditional univariate analysis techniques. Although decoding methods for time-series 

neuroimaging data such as MEG/EEG have been extensively applied in Brain 

Computing Interfaces (BCI; (Curran & Stokes, 2003; Farwell & Donchin, 1988; Kübler, 

Kotchoubey, Kaiser, Wolpaw, & Birbaumer, 2001; K.-R. Müller et al., 2008; Vidal, 1973; 

Wolpaw, Birbaumer, McFarland, Pfurtscheller, & Vaughan, 2002), they have only 

recently been applied in Cognitive Neuroscience (Carlson, Hogendoorn, Kanai, Mesik, 

& Turret, 2011; Duncan et al., 2010; Schaefer, Farquhar, Blokland, Sadakata, & 

Desain, 2010). 

 

The goal of this article is to provide a tutorial-style guide to the analysis of time-series 

neuroimaging data for Cognitive Neuroscience experiments. Although introductions to 

BCI exist (Blankertz, Lemm, Treder, Haufe, & Müller, 2011; Lemm, Blankertz, 

Dickhaus, & Müller, 2011), the aims of time-series decoding for Cognitive 

Neuroscience are distinct from those that drive the application of these methods in BCI, 

thus requiring a targeted introduction. While there are many reviews and tutorials for 

fMRI decoding (Cox & Savoy, 2003; Formisano, De Martino, & Valente, 2008; Haynes, 

2015; Haynes & Rees, 2006; Mur, Bandettini, & Kriegeskorte, 2009; Norman, Polyn, 
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Detre, & Haxby, 2006; Pereira, Mitchell, & Botvinick, 2009; Schwarzkopf & Rees, 

2011), there are no existing tutorial introductions to decoding time-varying brain 

activity. Although the approaches are conceptually similar, there are important 

distinctions that stem from fundamental differences in the nature of the neuroimaging 

data between fMRI and MEG/EEG. In this paper, we provide a tutorial introduction 

using an example MEG data set. Although there are many possible analyses targeting 

time-series data (e.g., oscillatory (Jafarpour, Horner, Fuentemilla, Penny, & Duzel, 

2013), or induced responses), we restrict the scope of this article to decoding 

information from evoked responses, with statistical inference at the group level on 

single time points or small time windows. As with most neuroimaging analysis 

techniques, the number of possible permutations for a given set of analysis decisions is 

very large, and the particular choice of analysis pipeline is guided by the experimental 

question at hand. Here we aim to provide a broad demonstration of how the analysis 

may be approached, rather than prescribing a particular analysis pipeline. 

 

Early studies using time-resolved decoding methods have revealed significant potential 

for experimental investigation using this approach with MEG/EEG (see Section 1.1). 

However, compared to the popularity of decoding methods in fMRI, to date only a small 

number of studies have applied multivariate pattern analysis techniques to EEG or 

MEG. Accordingly, the aims of this article are to (a) Introduce the critical differences 

between decoding time-series (e.g., MEG/EEG) versus spatial (e.g., fMRI) 

neuroimaging data; (b) Illustrate the time-series decoding approach using a practical 

tutorial with example MEG data; (c) Demonstrate the effect that selecting different 

analysis parameters has on the results, and (d) Outline important caveats in the 

interpretation of time-series decoding studies. In sum, this article will provide a broad 
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overview of available methods to inform future time-resolved decoding studies. This 

tutorial is presented in the context of MEG, however; the methods and analysis 

principles generalize to other time-varying brain recording techniques (e.g., ECoG, 

EEG, electrophysiological recordings.). As this review is targeted at providing a broad 

overview to a general audience, we avoid formal mathematical definitions and 

implementation details of the methods, and instead focus on the rationale behind the 

decoding approach as applied to time-series data.  

 

1.1 Multivariate pattern analysis (MVPA) for MEG/EEG 

 

The term 'multivariate pattern analysis' (or MVPA) encompasses a diverse set of 

methods for analysing neuroimaging data. The common element that unites these 

approaches is that they take into account the relationships between multiple variables, 

(e.g., voxels in fMRI, or channels in MEG/EEG), instead of treating them as 

independent and measuring relative activation strengths. The term ‘decoding’ refers to 

the prediction of a model from the data (‘encoding’ approaches do the reverse, 

predicting the data from the model, reviewed in (Naselaris, Kay, Nishimoto, & Gallant, 

2011), see also e.g., (Ding & Simon, 2012) for an example of encoding models for 

MEG). The most common application of decoding in Cognitive Neuroscience is the use 

of machine learning classifiers (e.g., correlation classifiers (Haxby et al., 2001), or 

discriminant classifiers (Carlson et al., 2003; Cox & Savoy, 2003)) to identify patterns in 

neuroimaging data which correspond to the experimental task or stimulus. The most 

popular applications of MVPA are decoding (for recent reviews on fMRI decoding, see 

e.g., (Haynes, 2015; Pereira et al., 2009), and more recently, Representational 

Similarity Analysis (RSA: (Kriegeskorte & Kievit, 2013)). Within the broad category of 
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MVPA analyses, the central focus of this article is on decoding methods applied to 

evoked responses, and the increasingly popular RSA framework (Section 5.2). 

 

The decoding approach is illustrated in Figure 1 for a simple experimental design in 

which the subject viewed pictures of blue circles or red squares while their brain activity 

was recorded. The goal of the decoding analysis is to test whether we can predict if the 

subject was viewing a blue circle or red square, based on their patterns of brain 

activation. If the experimental stimuli can be successfully 'decoded' from the subject's 

patterns of brain activation, we can conclude that some information relevant to the 

experimental manipulation exists in the neuroimaging data. First, brain activation 

patterns in response to the different stimuli (or experimental conditions) are recorded 

using standard neuroimaging (e.g., MEG, fMRI, etc.) techniques (Figure 1A). The 

activation levels of the variables (e.g., voxels in fMRI, channels in MEG/EEG) in 

different experimental conditions are represented as complex patterns in high-

dimensional space (each voxel, channel, or principal component is one dimension). For 

simplicity, in Figure 1B, these patterns are shown in two-dimensional space. Each point 

in the plot represents an experimental observation corresponding to the simultaneous 

activation level in two example voxels/channels in response to one of the experimental 

conditions (blue circles or red squares).  

 

The first step in a decoding analysis involves training a classifier to associate brain 

activation patterns with the experimental conditions using a subset of the data (Figure 

1C). In effect, during training the classifier finds the decision boundary in higher-

dimensional space that best separates the patterns of brain activation corresponding to 

the two experimental categories into two distinct groups. As neuroimaging data is 
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inherently noisy, this separation is not necessarily perfect (note the red square on the 

wrong side of the decision boundary in Figure 1C). Next, the trained classifier is used 

to predict the condition labels for new data that was not used for training the classifier 

(Figure 1D). The classifier predicts whether the new (unlabelled) data is more similar to 

the pattern of activation evoked by viewing a blue circle or a red square. If the classifier 

performs higher than that expected by chance (in this case 50% is the guessing rate as 

there are two stimuli), it provides evidence that the classifier can successfully 

generalize the learned associations to labelling new brain response patterns. 

Consequently, it is assumed that the patterns of brain activation contain information 

that distinguishes between the experimental conditions (i.e., the conditions blue 

circle/red square can be “decoded” from the neuroimaging data). Decoding accuracy 

can then be compared across brain regions (in fMRI), or time points (in MEG/EEG), in 

order to probe the location or time-course of information processing in the brain. This is 

achieved by repeating the classification multiple times for different data, that is, 

different time points in MEG/EEG (Figure 1E) for examining the time-course, or 

different brain regions in fMRI (Figure 1F) for examining the spatial distribution of 

information in the brain. Thus the main practical differences between decoding from 

MEG/EEG versus fMRI data lie in the methods used to obtain the patterns of 

information (Figure 1A, 1B), and the nature of the conclusions drawn from successful 

decoding performance (Figure 1E, 1F). 
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Figure 1. The general decoding approach. A. Brain responses to stimuli (e.g. blue 

circles and red squares) are recorded with standard neuroimaging techniques. B. 
Patterns of activation evoked by the two stimulus conditions (red square and blue 

circle) are represented in multiple dimensions (channels in EEG/MEG, or voxels in 

fMRI); here only two dimensions are illustrated for simplicity. C. A classifier is trained 
on a subset of the neuroimaging data, with the aim of distinguishing a reliable 

difference in the complex brain activation patterns associated with each stimulus class. 
D. The performance of the classifier in distinguishing between the stimulus classes is 

evaluated by testing its predictions on independent neuroimaging data (not used in 
training) to obtain a measure of decoding accuracy. E,F. Steps B-D may then be 

repeated for different time points (when using EEG/MEG) to study the temporal 
evolution of the decodable signal, or repeated for different brain areas (in fMRI) to 

examine the spatial location of the decodable information. 

 

Decoding time-series neuroimaging data is becoming increasingly popular. To date, 

most studies have applied the methods to understanding the temporal dynamics of the 

processing of visual stimuli and object categories. For example, time resolved 

decoding has been used to study the emergence of object representations at the 

category and exemplar level using MEG (Carlson, Tovar, Alink, & Kriegeskorte, 2013), 

EEG (Cauchoix, Barragan-Jason, Serre, & Barbeau, 2014), and neuronal recordings 

(Hung, Kreiman, Poggio, & DiCarlo, 2005; Meyers, Freedman, Kreiman, Miller, & 

Poggio, 2008; Zhang et al., 2011); how invariant object representations emerge over 

time (Carlson et al., 2011; Isik, Meyers, Leibo, & Poggio, 2014; Kaiser, Azzalini, & 

Peelen, 2016); and how objects are represented in other (e.g., written, or auditory) 

modalities (Chan, Halgren, Marinkovic, & Cash, 2010; Murphy et al., 2011; Simanova, 

van Gerven, Oostenveld, & Hagoort, 2014, 2010). Other studies have also used this 

approach to decode the orientation and spatial frequency of gratings from MEG (Cichy, 

Ramirez, & Pantazis, 2015; Ramkumar, Jas, Pannasch, Hari, & Parkkonen, 2013; 

Wardle, Kriegeskorte, Grootswagers, Khaligh-Razavi, & Carlson, 2016), and to study 
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decision making (Bode et al., 2012; Stokes et al., 2013), illusions (Hogendoorn, 

Verstraten, & Cavanagh, 2015), or working memory (van Gerven et al., 2013; Wolff, 

Ding, Myers, & Stokes, 2015). Notably, classifiers have been extensively applied to 

EEG (Guimaraes, Wong, Uy, Grosenick, & Suppes, 2007) for a different goal, as the 

low cost and portability of EEG is ideal for the development of brain computer 

interfaces (BCI). These applications use classifiers to predict brain states in order to 

operate computers or robots (Allison, Wolpaw, & Wolpaw, 2007; Hill et al., 2006; K. 

Müller, Anderson, & Birch, 2003; K.-R. Müller et al., 2008; Vidal, 1973, p. 2008). 

However, the goal of BCI is to achieve the maximum possible usability, i.e., optimal 

prediction accuracy, robust real-time classification, and generalizability. The 

performance measures of BCI systems are therefore often compared across studies 

(and in competitions; see e.g., (Tangermann et al., 2012)). This contrasts with 

decoding in neuroscience, where the goal is to understand brain processing by 

statistical inference on the availability of information (Hebart, Görgen, & Haynes, 2015), 

and accuracy differences between studies are generally not taken as meaningful. 

 

Although the field is relatively new, there have already been several methodological 

extensions to standard decoding analysis applied to time-series neuroimaging data 

(Section 5). Following its application in fMRI, representational similarity analysis 

(Kriegeskorte & Kievit, 2013) has been used with MEG data to correlate the temporal 

structure of brain representations with behaviour (Redcay & Carlson, 2015; Wardle et 

al., 2016). RSA has also been used to link neuroimaging data from different modalities. 

For example, for object representations, the representational structure which appears 

early in the MEG data corresponds to representations in primary visual cortex 

measured with fMRI, whereas later stages instead reflect the representation in inferior 
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temporal cortex (Cichy, Pantazis, & Oliva, 2014, 2016). A strength of time-series 

decoding is that the dynamic evolution of brain representations can be examined. One 

example of this is the temporal generalization approach (Section 5.1), which has been 

used in MEG to reveal that local and global responses to auditory novelty exhibit 

markedly different patterns of temporal generalisation (King, Gramfort, Schurger, 

Naccache, & Dehaene, 2014). Furthermore, insights into the spatiotemporal dynamics 

can also be gained by combining source reconstruction methods with the decoding 

approach (Sudre et al., 2012; van de Nieuwenhuijzen et al., 2013), or by comparing the 

interaction between subsets of sensors (e.g., (Goddard, Carlson, Dermody, & Woolgar, 

2016)). Thus although relatively few time-series neuroimaging studies to date have 

applied decoding methods, these have already provided valuable insights, illustrating 

the rich potential for future applications.  

 

Recently, several toolboxes have been developed that implement the methods 

described in the rest of this paper; The PyMVPA toolbox (Hanke, Halchenko, 

Sederberg, Hanson, et al., 2009); www.pymvpa.org) handles both fMRI and M/EEG 

data using the open-source Python language (Hanke, Halchenko, Sederberg, Olivetti, 

et al., 2009); MNE (Gramfort et al., 2013, 2014); http://martinos.org/mne) is a Python 

toolbox (and can be accessed in Matlab) designed for M/EEG analyses; the Neural 

Decoding Toolbox (Meyers, 2013); www.readout.info) is a Matlab toolbox created 

specifically for time-varying input; and the Matlab toolbox CoSMoMVPA (Oosterhof, 

Connolly, & Haxby, 2016); www.cosmomvpa.org) handles both fMRI and M/EEG, and 

was inspired by (and interfaces with) pyMVPA. 
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Figure 2. An illustration of how multivariate analysis can result in increased 

sensitivity compared to univariate analysis. A. Example average event-related 
potentials (ERPs) in response to two stimuli (class A and class B) are shown in two 

channels (left and right panels). The responses to the two classes in the individual 

channels overlap substantially, and potentially non-significant in a univariate analysis. 
B. The same responses represented as points in two-dimensional space, showing the 

activation in the two channels at one time point (i.e., location of the vertical grey bar in 
the ERP plots). When combining the information from both channels as in a decoding 

analysis, it is possible to define a boundary (dashed line) separating the two classes 
(distributions plotted orthogonal to the dashed line). 

 

Decoding and other variants of MVPA are an alternative and complementary approach 

to univariate MEG/EEG analysis. This article will not cover univariate methods for MEG 

and EEG (which are well-established, see e.g., (Cohen, 2014; Luck, 2005)), and as 

always, the choice of analysis method must be guided by the experimental question. 

One of the central differences between univariate and multivariate methods is that the 

classifiers used in decoding approaches can use information that would not be 

detected when comparing the averaged signals in a univariate analysis (see Figure 2 

for an illustration). This can lead to increased sensitivity for detecting differences 

between conditions (and on a single-trial basis). For example, decoding analysis can 

result in earlier detection of differences in the signals (Cauchoix, Arslan, Fize, & Serre, 

2012; Cauchoix et al., 2014), and the differences found by classifiers can differ from 

those found in components (Ritchie, Tovar, & Carlson, 2015). Beyond sensitivity, the 

central distinction between univariate and MVPA analyses are the conceptual 

differences (activation-based versus information-based) in the experimental questions 

each approach is suited to addressing. We anticipate that time-series decoding 

approaches will continue to evolve alongside univariate methods, as has occurred with 

the adoption of decoding in fMRI, where both methods are used fruitfully.  
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Figure 3. A schematic overview of a typical analysis pipeline. Refer to the relevant 
sections in the article for further details (numbers in the figure indicate section 

numbers). This overview illustrates a general pipeline for decoding studies. The 
practical differences between decoding with MEG/EEG data versus fMRI data arise in 

both the preprocessing and analysis stages. 
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The main aim of this article is to describe a typical analysis pipeline for decoding time-

series data in a tutorial format. The article is organized as follows; we begin by 

describing the experiment and the data-recording procedures used to obtain the 

example MEG data (Section 2). Next, we illustrate how the recordings are 

preprocessed using a combination of PCA, subsampling and averaging (Section 3). 

This is followed by the decoding analysis (Section 4). For all analysis stages we 

provide comparisons of how different choices made at each stage may affect the 

results. Following the decoding tutorial, in Section 5 we describe three extensions to 

the method: (1) temporal generalization (King & Dehaene, 2014), (2) representational 

similarity analysis (Kriegeskorte, Mur, & Bandettini, 2008), and (3) classifier weights 

projection (Haufe et al., 2014). Finally, we outline important caveats and limitations of 

the decoding approach in Section 6. See Figure 3 for an overview of the analysis 

pipeline and the structure of the paper, including the relevant section numbers. 

 

2 Description of experiment 

 

In this tutorial, we use MEG data to illustrate the effect that different choices made at 

several analysis stages have on the decoding results. Object animacy has been shown 

to be a reliably decoded categorical distinction in studies using both fMRI (Downing, 

Chan, Peelen, Dodds, & Kanwisher, 2006; Kriegeskorte, Mur, Ruff, et al., 2008; 

Proklova, Kaiser, & Peelen, 2016; Sha et al., 2015) and MEG data (e.g., Carlson et al., 

2013; Cichy et al., 2014). Here we use this robust paradigm as a basis for comparing 

the consequences of different analysis decisions in a decoding pipeline. 
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Figure 4. Illustration of the experimental design. A. The stimuli consisted of 24 

animate and 24 inanimate visual objects, converted to grey-scale and overlayed on a 

phase-scrambled natural image background. B. Stimuli were presented in random 
order for 66ms followed by a random ISI between 1000 and 1200ms. Participants 

categorized the animacy of the stimulus during the ISI with a button press. 
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Twenty healthy volunteers (4 males) participated in the study with a mean age of 29.3 

years (ranging between 24 and 35). Informed consent in writing was obtained from 

each participant prior to the experiment, and the study was conducted with the 

approval of the Macquarie University Human Research Ethics Committee. The stimuli 

were images of 48 visual object exemplars (24 animate and 24 inanimate) segmented 

and displayed on a phase-scrambled background (See Figure 4) 1 . Stimulus 

presentation was controlled by custom-written MATLAB (Natick, MA) scripts using 

functions from Psychtoolbox (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997). The 

images were shown briefly for 66ms (at 9 degrees visual angle) followed by a fixation 

cross with a random inter-stimulus interval (ISI) between 1000 and 1200ms. 

Participants were instructed to categorize the stimulus as 'animate' or 'inanimate' as 

fast and accurate as possible, using a button press. The response button mapping 

alternated between 7-minute blocks, to avoid confounding the response with stimulus 

category (see Section 6.1). This resulted in 32 trials per exemplar, 768 trials per 

category (animate/inanimate), and 1536 trials total per participant. All trials were 

included in the analysis, regardless of response, eye blinks or other movement 

artefacts. 

  

																																								 																					
1 The main study consisted of two conditions, stimuli in a clear or degraded state, 

however for the purpose of this article we only use the data for stimuli in the clear state 
(normal photographs of objects). 
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2.1 Data Collection 

 

The MEG signal was continuously sampled at 1000Hz from 160 axial gradiometers2 

using a whole-head MEG system (Model PQ1160R-N2, KIT, Kanazawa, Japan) inside 

a magnetically shielded room (Fujihara Co. Ltd., Tokyo, Japan) while participants lay in 

a supine position. Recordings were filtered online with a high-pass filter of 0.03Hz and 

a low-pass filter of 200Hz. The recordings were imported into MATLAB using the 

Yokogawa MEG Reader Toolbox for MATLAB (YOKOGAWA Electric Corporation, 

2011). The first step in the pipeline was to slice the data into epochs (i.e., trials), time-

locked to a specific event. We extracted -100ms to 600ms of MEG data relative to the 

stimulus onset. The first 100ms of signal taken prior to trial onset serves as a sanity 

check for decoding accuracy (see Section 4.2). 

 
2.2 Analysis Summary  

 

The effect of different choices on the decoding results will be described by 

systematically varying one parameter relative to a set of fixed parameters. Three 

caveats of this approach are that (1) as these parameters are not independent, 

interactions between analysis decisions are likely, (2), the effects of these analysis 

decisions will vary between data sets, and (3), drawing conclusions on differences in 

decoding performances is only valid when the noise level is the same in all cases. 

Consequently, the following results should be interpreted as illustrative, rather than 

provide prescriptive analysis guidelines. All analysis code for the examples was written 

																																								 																					
2 Other MEG systems also include magnetometers, and there are possible differences 

in decodability from gradiometers and magnetometers (Kaiser, Azzalini, & Peelen, 
2016). 
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in Matlab (Natick, MA), using only standard functions unless otherwise specified. In 

order to illustrate the effects of different parameters on the results, they are 

consistently shown at the final stage plotted as a function of classifier accuracy over 

time. The default methods and fixed parameters are listed here for reference, and 

unless otherwise specified, the results in Figures 6-10 are obtained using this default 

pipeline: 

• Preprocessing (Section 3) 

o Subsampling 200Hz  

o Averaging 4 trials 

o PCA retaining 99% of the variance 

• Decoding (Section 4) 

o Naïve Bayes classifier 

o Leave-one-exemplar-out cross-validation 

The results are reported as time-varying decoding accuracy, i.e., higher accuracies 

reflect better decoding (prediction) of stimulus animacy from the MEG data. To assess 

whether accuracy was higher than chance, a Wilcoxon signed-rank test on the grand 

mean of decoding performance (N=20) was performed at each time point. The resulting 

p-values were corrected for multiple comparisons by controlling the false discovery rate 

(FDR, (Benjamini & Hochberg, 1995)). Note that these statistics were chosen for their 

simplicity and ease of use, we discuss commonly used options for assessing classifier 

performance and statistics in Section 4.3. 
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Figure 5. Decoding animacy from MEG data using the default analysis pipeline. 

Classifier accuracy (percent correct averaged across subjects) is shown as a function 
of time relative to stimulus onset at 0ms. The dashed line marks chance classification 

accuracy at 50%. The shaded area is the standard error across subjects. Discs above 
the x-axis indicate the time points where decoding performance is significantly higher 

than chance. 
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Figure 5 shows the result of this default pipeline. As expected, before stimulus onset (-

100 to 0ms), decoding performance is at chance (50%), confirming that there is no 

animacy information present in the signal. Then, approximately 80ms after stimulus 

presentation, the classifier's performance rises significantly above chance for almost 

the entire time window (to 600ms). Thus, at these time points, we are able to 

successfully decode from the MEG activation patterns whether the presented stimulus 

in a given trial was animate (e.g., parrot, dog, horse, etc.), or inanimate (e.g., banana, 

chair, tree, etc.). This indicates that the MEG signal contains information related to the 

animacy of the stimulus. The next sections will describe this pipeline in detail while 

comparing the effect of different analysis decisions.  

 

3 Preprocessing  

 

Neuroimaging data is often noisy. The signals in imaging data are weak compared to, 

for example, environmental noise, baseline activity levels, or fluctuations caused by 

eye blinks or other movements. Therefore, a set of standard procedures is used to 

increase the signal-to-noise ratio. Furthermore, neuroimaging data are high-

dimensional, and it is common practice to restrict the analysis to fewer dimensions. In 

MEG decoding, the dimensions of the data are generally reduced in the number of 

features (i.e., channels) that are input to the classifier. In addition, temporal smoothing 

is commonly applied. There are multiple ways to achieve these preprocessing steps, 

the most common are described in this section.  
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3.1 Data transformation and dimensionality reduction 

 

A standard step in preprocessing is to reduce the dimensionality of the data. Some 

classifiers require more training samples than features; and others might overfit to 

noise in the data if provided with too many features (Bishop, 2006; De Martino et al., 

2008; Misaki, Kim, Bandettini, & Kriegeskorte, 2010), or require longer computation 

time. Raw MEG recordings consist of many channels, typically 160 or more, and there 

is considerable redundant information, e.g., in adjacent channels.  It is therefore 

common practice to reduce the dimensionality of the data by feature selection prior to 

decoding, which can be accomplished in multiple ways. One approach is to select the 

channels that are most informative (De Martino et al., 2008; Hanke, Halchenko, 

Sederberg, Hanson, et al., 2009). (Isik et al., 2014) for example, by using an ANOVA 

significance test to select the MEG channels that contain significant stimulus-specific 

information. 

 

Alternatively, one can use unsupervised, data-driven approaches such as Principal 

Component Analysis (PCA), which transforms the data into linearly uncorrelated 

components with the same number of feature dimensions, ordered by the amount of 

variance explained by each component (For a detailed introduction to PCA, see 

(Jackson, 1991)). The use of PCA for MEG has a number of advantages: First, 

retaining only the components that account for most of the variance substantially 

reduces the dimensionality of the data. In the example data (160 channels), on 

average 48.16 (SD=7.05, range: 26 - 79) components accounted for 99% of the 

variance in the data. Secondly, PCA can separate out noise and artefacts such as eye 

blinks (see section 3.2) into their own components. These components can then be 
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suppressed by the classifier because they do not contain class-specific information. 

Third, as the resulting PCA components are uncorrelated, it allows for using simpler 

(i.e., faster) classifiers that assume no feature covariance (e.g., Naïve Bayes, see 

Section 4.1). 

 

 

Figure 6. The effect of dimensionality reduction methods on decoding 

performance. The effect of channel selection using ANOVA (yellow line) is marginally 
better than using the raw data (blue line). Using PCA (red line) yields the largest gain in 

performance. The shaded area is the standard error across subjects. Discs above the 
x-axis indicate the time points where decoding performance is significantly higher than 

chance. 
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Figure 6 illustrates the effect of the described dimensionality reduction methods on 

decoding performance for the example data. For this data set and classifier, PCA 

yields much better performance compared to using the raw channels (Isik et al., 2014). 

Note that these differences are classifier dependent (as shown in Section 4.1). Here, 

the PCA transformation was computed on the training data, and applied on the test 

data, separately for each time point, and separately for each training fold. Alternatively, 

one could compute one transformation for the whole time-series, and/or do this on all 

data before the cross-validation process. However, this is only viable if the goal of the 

analysis is statistical inference (Hebart et al., 2015), as it could result in more optimistic 

decoding accuracies that would not generalize to new data3. 

 

An alternative method is to transform the sensor-level data into activations in virtual 

source space. Instead of decoding channel-level activations, source reconstruction 

(e.g., beamformer (Van Veen, Van Drongelen, Yuchtman, & Suzuki, 1997), or 

minimum norm estimate (Hämäläinen & Ilmoniemi, 1994)) can be applied during 

preprocessing. Classification is then performed in source space rather than channel 

space (Sandberg et al., 2013; Sudre et al., 2012; van de Nieuwenhuijzen et al., 2013). 

Using source space for decoding has the potential to improve classification accuracies 

(Sandberg et al., 2013; van de Nieuwenhuijzen et al., 2013), as source reconstruction 

algorithms can ignore channel-level noise. Inferences about the spatial origin of the 

decoded discrimination can be made by restricting the classifier to considering signals 

from pre-determined regions of interest (Sudre et al., 2012), or by using the complete 

																																								 																					
3  Note that when comparing PCA performed inside the cross-validation loop on 
separate time points with PCA performed before the cross-validation on all time points, 

we did not find any difference in classifier accuracy (data not shown), but this may not 
hold for different data sets. 
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source space reconstruction and projecting the classifier weights (see Section 5.3) into 

source space (van de Nieuwenhuijzen et al., 2013). The second approach relies on 

interpreting classifier weights, and therefore, the reliability of the sources depends not 

only on the reconstruction quality, but also on decoding performance (see Section 5.3). 

Source reconstruction methods are still developing, and reconstruction accuracies are 

likely to improve in the future, making source space decoding an attractive option. 

However, as source space decoding has not been widely used to date, we will not 

cover it in the rest of this tutorial. 

 

3.2 Improving signal to noise 

 

MEG data is generally sampled at high frequencies (e.g., 1000Hz), and a common 

strategy to improve signal-to-noise (the strength of the signal compared to the strength 

of the background noise) is by collapsing data over time. The two main approaches are 

to classify on more than one time point using a sliding window (e.g., Ramkumar et al., 

2013), or down-sample the data to lower frequencies (see Figure 7). The difference 

between the methods is that when using a sliding window, the classifier has access to 

all time points in the window (the number of features is increased), while in 

subsampling, it receives the average (the number of features at each time point stays 

the same). For the example data, subsampling has a small effect on decoding 

performance, but also benefits the analysis by reducing the computation time for the 

decoding analysis as there are fewer time points to classify. The sliding window 

approach also improves performance, but the benefit is marginal especially considering 

that the computation time increases significantly with larger sliding windows as the 

classifier is still trained and tested at each time point. The optimal parameters will  
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Figure 7. The effect of (A) subsampling and (B) sliding window approaches to 

improving signal-to-noise on classifier accuracy. The shaded area is the standard 
error across subjects. Discs above the x-axis indicate the time points where decoding 

performance is significantly higher than chance. 
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depend on the particular data set and desired temporal resolution. An important caveat 

for both approaches is that estimates of both decoding onset and the time of peak 

decoding are affected by the choice of subsampling or sliding window. When using a 

sliding time window, the last time bin in the window should be used for determining the 

onset (as in Figure 7), to avoid shifting the onset forward in time. It is recommended to 

apply a low-pass filter before resampling (e.g., subsampling using the decimate 

function in MATLAB) as subsampling can cause aliasing. Low-pass filtering, however, 

can cause an artefact whereby significant decoding emerges even when no signal 

exists in the original data (Vanrullen, 2011). For the example data, we subsampled by 

a factor of 5 to obtain a sampling rate of 200Hz. 

 

Another source of noise originates from artefacts. Eye blinks, eye movements, 

heartbeats, and muscle movement can cause significant artefacts. Typically, in 

classical M/EEG analyses trials containing such artefacts are manually inspected and 

excluded from the analysis, or independent component analysis is used to separate out 

these artefacts into their own components, which are then removed manually or 

automatically (Mognon, Jovicich, Bruzzone, & Buiatti, 2011). Experiments can also be 

designed in a way to reduce the number of artefacts, for example by instructing 

participants to blink in response to a particular stimulus that is not part of the analysis 

(Cichy et al., 2014). We did not perform any artefact rejection on our data, and found 

classification performance to be well above chance, but this can vary across data sets. 

As classifiers have the capacity to learn to ignore bad channels or supress noise during 

training, artefact correction is likely less critical in decoding analyses. However, note 

that if artefacts are confounded with a condition (e.g., if more eye movements occurred 

in one condition than the other due to some property of the stimulus), this would make 
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the artefacts a potential source of discrimination information for the classifier. If this is 

the case, it would not be possible to determine whether the classifier was decoding the 

experimental condition, or the correlated difference in artefacts (see also Section 6.1). 

 

 

Figure 8. The effect of averaging trials on decoding performance. The shaded 

area is the standard error across subjects. Discs above the x-axis indicate the time 
points where decoding performance is significantly higher than chance. 

 

Increased signal-to-noise can also be achieved by averaging trials belonging to the 

same exemplar before decoding (Isik et al., 2014). Averaging increases general 

decoding performance and makes signatures (e.g., onsets, maxima or minima) more 

pronounced. This effect is shown in Figure 8, where different numbers of trials 

(belonging to the same exemplar) are averaged. Interestingly, the first onset of 
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decoding is similar regardless of the number of trials that are averaged. The greatest 

increase in performance (in our example data) is observed when averaging 4 trials. 

Averaging more trials does not increase decoding performance by the same factor, 

suggesting that here 4 trials is a good trade-off between signal-to-noise, and trials per 

exemplar. The trade-off to consider when selecting the number of trials to average is 

that reducing the trials per exemplar (e.g., averaging 32 trials here produces only one 

trial per exemplar) typically increases the variance in (within-subject) classifier 

performance. Alternatively, when not enough trials are available, the trials used for 

training the classifier could be sampled with replacement (bootstrapped). The optimal 

number of trials to average will differ for different data (e.g., in (Isik et al., 2014), 

averaging 10 trials was used). Note that trial averaging does not affect model testing 

(e.g., RSA, Section 5.2), as relative decoding performance is scaled similarly between 

exemplars or time points. 

 

4 Decoding 

 

Decoding analysis is performed on the preprocessed data. To summarize, in 

preprocessing the raw MEG signal is sliced into epochs from -100 to 600ms relative to 

stimulus onset, then down-sampled to 200Hz. Groups of 4 single trials are averaged to 

boost signal-to-noise, resulting in 8 pseudo-trials for each object exemplar. These 

preprocessed pseudo-trials are the input to the classifier in the decoding analysis. 

 

In order to decode the class information (animacy) from the MEG data, a pattern 

classifier (see Section 4.1) is trained to distinguish between two classes of stimuli 

(animate and inanimate objects). The classifier’s ability to generalize this distinction to 
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new data is assessed using cross-validation (see Section 4.2). If the classifier’s 

performance after cross-validation is significantly above chance, this indicates that the 

MEG patterns contain class-specific information, and we conclude that the class can 

be decoded from the MEG data. In time-resolved MEG decoding studies, this process 

is repeated on all time points in the data. Then, for example, one can examine when 

the peak in decoding performance occurs, i.e., at what time point the information in the 

signal allows for the best class distinction. Another feature often used is the onset of 

significant decoding performance, to determine the earliest time that class-specific 

information becomes available. These signatures can then be compared across 

experimental conditions. 

 

4.1 Classifiers 

 

There are numerous types of classifiers, which originate from the machine learning 

literature. Classifier choice has the potential to influence experimental results, as 

different classifiers make different assumptions about the data. In addition, the goal of 

classification in machine learning is high predication accuracy, which drives the 

development of increasingly sophisticated classifier algorithms. In contrast, prediction 

is not the main goal of decoding in neuroscience, and classifier choice instead favours 

simplicity and ease of interpretation over optimizing prediction accuracies. Therefore, 

for brain decoding studies, linear classifiers are generally preferred, as they are simpler 

in nature, making interpretation less complex (Misaki et al., 2010; K. Müller et al., 2003; 

Schwarzkopf & Rees, 2011). The default classifiers used in fMRI decoding are typically 

linear support-vector machines (SVM), or, to a lesser extent, correlation classifiers. 

However, fMRI data typically has many features/dimensions. SVM is generally better 
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than other classifiers when dealing with many features and is therefore a popular 

choice. In comparison to fMRI data, time-series data often has fewer features (e.g., our 

example MEG data set uses only ~50 components following PCA). Consequently, it is 

possible that there are differences in the suitability of different classifiers for fMRI 

versus time-series decoding analysis. Here we compare the performance of SVM, 

correlation classifiers, and two common alternatives (Linear Discriminant Analysis 

(LDA) and Gaussian Naïve Bayes (GNB)) on the example MEG data (Figure 9), using 

their built-in Matlab implementations (and default parameters). Notably, LDA, GNB and 

SVM have the best overall performance. Taking the complexity of the classifier into 

account, which affects the computational requirements and given that classification is 

generally repeated many times (e.g., on multiple time points), this argues in favour of 

the discriminant classifiers (GNB and LDA), which are faster to train than SVM. 

Interestingly, despite their relative popularity in fMRI, the correlation classifiers did not 

perform as well on our data. However, (Isik et al., 2014) reported correlation classifier 

performance for their MEG data on par with other classifiers. This difference could be 

due to many factors, for example, different choices in the preprocessing pipeline or 

experimental design. To illustrate that classifier performance depends on 

preprocessing, we tested the same classifiers using different preprocessing decisions. 

For example, Figure 9B shows that not performing PCA has a large effect on GNB 

performance, but a smaller effect on the performance of LDA and SVM. These 

dependencies highlight the difficulty in attempting to make universal recommendations 

for decoding analyses. Furthermore, each classifier has a number of parameters that 

may be optimised, however, most neuroscience studies use standard classifier 

implementations. 
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Figure 9. Comparison of classification accuracy as a function of classifier type. 
A. Using the standard decoding pipeline. B. Using the standard pipeline without 

performing PCA. The shaded area is the standard error across subjects. Discs above 
the x-axis indicate the time points where decoding performance is significantly higher 

than chance. 
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4.2 Cross-validation 

 

An essential step in decoding analysis is cross-validation: this provides an evaluation 

of classifier generalization performance. In standard k-fold cross-validation, the data is 

divided into k subsets (i.e., folds), where each subset contains a balanced amount of 

trials from each class (e.g., animate and inanimate exemplars in our example 

experiment). The classifier is trained using all-but-one subsets (the training set). Next, 

the trained classifier is used to predict the class of the trials from the remaining subset 

(the test set). This process is repeated for all subsets, and the average classifier 

performance across all folds is reported. This method makes maximal use of the 

available data, as all trials are used for testing the classifier. Note that in fMRI decoding 

the sets are often based on experimental runs (leave-one-run-out cross validation), as 

the trials within each run are not independent (e.g., due to the slow hemodynamic 

response). In MEG decoding, individual trials are generally assumed to be independent 

(Oosterhof et al., 2016), and trials are randomly assigned to train and test sets. The 

theoretical optimal performance is obtained by leave-one-trial-out cross-validation, 

where the classifier is trained on all-but-one trial. It is however computationally more 

intensive, especially with many trials (which is typically the case in MEG). 

 

As with other analysis decisions, the most appropriate implementation of cross-

validation is guided by the experimental design. Standard k-fold cross-validation 

assigns individual trials to training and testing sets. Depending on the research 

question, this may produce a confound in the class distinction that the classifier learns 

from the training data. For example, for decoding animacy, standard cross-validation 

would entail that trials belonging to the same exemplar (e.g., ‘car’) are assigned to both 
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training and test sets. Consequently, it may be possible for the classifier to learn to 

distinguish the classes based on the activation patterns evoked by visual properties of 

specific exemplars. This makes it unclear whether the classification boundary is based 

on animacy or visual features. To avoid this, when decoding categories composed of 

many exemplars; we recommend leave-one-exemplar-out cross-validation (see 

Carlson et al., 2013), where all trials belonging to one exemplar (e.g., car) are assigned 

to the test set and the classifier is trained on the data from the other exemplars (e.g., 

‘dog’ and ‘chair’). This is repeated for all exemplars (i.e., every exemplar is assigned to 

the test set once).  

 

Figure 10. Classification accuracy as a function of cross-validation method. The 

shaded area is the standard error across subjects. Discs above the x-axis indicate the 
time points where decoding performance is significantly higher than chance. 
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Figure 10 shows decoding accuracy for different forms of cross validation, including an 

invalid analysis without cross validation. Note that without cross validation, classifier 

performance is above chance prior to stimulus onset. This nonsensical result arises 

from the test data being used to train the classifier, violating the constraint of 

independence. Time-resolved decoding methods have a convenient built-in check for 

this: above chance decoding performance before stimulus onset suggests an error 

exists in either the preprocessing or cross validation stages. In our data, 10-fold and 

leave-one-trial-out cross validation yielded very similar results, suggesting that the 

optimal split is data-specific. Further, by comparing performance between traditional 

cross validation (e.g., k-fold) and leave-one-exemplar-out, it is possible to estimate to 

what degree classifier performance is driven by individual stimulus properties (e.g., 

low-level visual properties of the exemplar images). The difference between k-fold and 

leave-one-exemplar-out cross validation is observed early in the time-series (consistent 

with the timing of early visual feature processing), and is reduced later in the time 

course (Figure 10). Taken together, a valid form of cross-validation with independent 

training and test data is essential. Although there are several ways of splitting up the 

data into training and test sets, the particular version of cross-validation implemented 

must be compatible with the research question. 

 

4.3 Evaluation of classifier performance and group-level statistical testing 

 

Statistical evaluation of decoding analyses is a complex issue, and there is not yet 

consensus on the optimal approach (Allefeld, Görgen, & Haynes, 2016; Nichols & 

Holmes, 2002; Noirhomme et al., 2014; Schreiber & Krekelberg, 2013; Stelzer, Chen, 

& Turner, 2013). The statistical approach used in our example analysis is common in 
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the literature (e.g., (Carlson, Tovar, et al., 2013; Ritchie et al., 2015)) and was chosen 

for its simplicity; however, there are several alternative methods that are also valid. For 

example, we report classifier performance as accuracy (percent correct). Accuracy is a 

less appropriate measure when dealing with unbalanced data (more trials exist for one 

class than for the other), as a trained classifier could exploit the uneven distribution and 

achieve high accuracy simply by predicting the more frequent class. For unbalanced 

data, a measure of performance that is unaffected by class bias such as D-prime is 

more appropriate. Alternatively, ‘balanced accuracy’ includes the mean of the 

accuracies for each class and thus is also unaffected by any class imbalance in the 

data. 

 

Several options exist for assessing whether classifier performance is significantly 

above chance. The non-parametric Wilcoxon signed-rank test (Wilcoxon, 1945) was 

used in our example (Carlson, Tovar, et al., 2013; Ritchie et al., 2015)), as it makes 

minimal assumptions about the distribution of the data. Alternatively, the Student's t-

test is also commonly used (but see (Allefeld et al., 2016). Another popular alternative 

is the permutation test, which entails repeatedly shuffling the data and recomputing 

classifier performance on the shuffled data to obtain a null-distribution, which is then 

compared against observed classifier performance on the original set to assess 

statistical significance (see e.g., (Cichy et al., 2014; Isik et al., 2014; Kaiser et al., 

2016). Permutation tests are especially useful when no assumptions about the null-

distribution can be made (e.g., in the case of biased classifiers or unbalanced data), 

but they take much longer to run (e.g., repeating the analysis ~10,000 times). 
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Importantly, as is the case in fMRI analyses, time-series neuroimaging analyses also 

require addressing the problem of multiple comparisons (Bennett, Baird, Miller, & 

Wolford, 2011; Bennett, Wolford, & Miller, 2009; Nichols, 2012; Pantazis, Nichols, 

Baillet, & Leahy, 2005) as typically multiple tests are conducted across different time 

points. The FDR adjustment used in our example analysis is straightforward, but a 

limitation is that it does not incorporate the relation between time points (Chumbley & 

Friston, 2009). Alternatively, cluster-based multiple-comparison correction involves 

testing whether clusters of time points show above-chance decoding and therefore can 

result in increased sensitivity to smaller, but more sustained effects (Mensen & 

Khatami, 2013; Nichols, 2012; Oosterhof et al., 2016; Smith & Nichols, 2009). 

 

5 Additional analyses 

 

In the sections above, we illustrated the standard approach to decoding time-series 

neuroimaging data. Here we outline three extensions for decoding analysis. The first is 

temporal cross-decoding (Section 5.1), which tests the degree to which activation 

patterns in response to the experimental conditions are sustained or evolve over time. 

The second is the RSA framework (Section 5.2), which facilitates the testing of models 

of the structure of decodable information over time. Finally, we outline a method that 

involves projection of the classifier weights in order to determine the spatial source of 

the signal driving the classifier in sensor-space (Section 5.3).  
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Figure 11. Temporal generalization A. Temporal generalization of decoding 
performance. A classifier is trained at one time point, and tested at a different time 

point. This is repeated for all pairs of time points. The figure shows the generalization 
accuracy averaged over subjects. B. Map of time point pairs where the generalization 

was significantly different (red area) from chance (Wilcoxon signed rank test, controlled 

for multiple comparisons using FDR). 
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5.1 The temporal generalization method 

 

An advantage of time-series decoding is that it has the potential to reveal the temporal 

evolution of brain activation patterns, rather than providing a single, static estimate of 

decodability for a stimulus or task. One method is to train a classifier on a particular 

time point, and then test its decoding performance on different time points. This form of 

cross-decoding reveals to what degree the activation patterns for a particular stimulus 

or task evolve. Classifiers effectively carve up multidimensional space in order to 

distinguish between the experimental conditions, thus when a classifier which is trained 

on one time point can successfully predict class-labels for data at other time points, it 

suggests that the structure of the multidimensional space is similar across time. 

Conversely, if cross-decoding is unsuccessful across two time points, it suggests that 

the multidimensional space has changed sufficiently for the boundary between classes 

determined at one time point to be no longer meaningful by the second time point. 

Beyond temporal characterisation of the decoding results, this method has the potential 

utility to test cognitive models which make theoretical predictions about the 

generalizability of representations (see also Figure 4 in (King & Dehaene, 2014). For 

example, the temporal generalization of classifiers can be tested between two 

completely separate datasets. (Isik et al., 2014) tested the temporal generalization 

performance of a classifier that was trained on stimuli that were presented foveally, and 

then tested on peripherally presented stimuli. Similarly, (Kaiser et al., 2016) used this 

method to distinguish category-specific responses from shape-specific responses. 

 

Figure 11A shows cross-validated temporal cross-decoding performed on the example 

MEG data. The diagonal in this figure is analogous to the standard one-dimensional 
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time-series decoding plot (e.g., Figures 5-10). Significant points (shown in Figure 11B) 

off the diagonal indicate that the classifier, when trained on data from time point A, can 

generalize to data from time point B. The generalization accuracy normally drops off 

systematically away from the diagonal. In this case, classifier performance generalizes 

well for neighbouring time points (red region on the diagonal) as expected, and 

additionally, to some extent between 150-200 and 300-500ms, indicating that the MEG 

activation patterns are similar in these windows. 

 

5.2 Representational Similarity Analysis (RSA) 

 

Standard decoding analysis reveals whether class-specific information is present in the 

neuroimaging signal. Approaches such as cross-decoding (e.g., temporal 

generalisation) can begin to probe the underlying representational structure of the 

information in the brain activation patterns used by the classifier. RSA takes this 

concept further, and provides a framework for testing hypotheses about the structure of 

this information (Kriegeskorte, Mur, & Bandettini, 2008). RSA is based on the 

assumption that stimuli with more similar neural representations are more difficult to 

decode. Conversely, stimuli with more distinct representations are expected to be 

easier to decode. Thus the central idea is that representational similarity can be 

indexed by the degree of decodability. By comparing the decodability of all possible 

pair-wise combinations of stimuli, a representational dissimilarity matrix (RDM) is 

calculated. That is, for each pair of stimuli, the distance between their activation 

patterns is computed using one of several distance metrics (e.g., correlation between 

the activation patterns, or difference in classifier performance (Walther et al., 2016).  
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An example RDM is shown in Figure 12A, in which each cell in the matrix corresponds 

to the dissimilarity of two of the object stimuli in the MEG animacy experiment. For data 

with high temporal resolution such as MEG, a series of RDMs can be created for each 

time point, and used to investigate the temporal dynamics of representations over time. 

The time-varying RDMs in Figure 12A are constructed by decoding all pairwise stimuli 

using the same pipeline (using 2-fold cross-validation, as leave-one-exemplar out is not 

possible when decoding between 2 exemplars), thus one square in the RDM 

represents the decoding accuracy for classifying between one pair. Following 

calculation of the RDM (either time-varying or static) from the empirical data, the 

empirical RDM can be compared to model RDMs that make specific predictions about 

the relative decodability of the stimulus pairs. In RSA studies to date, model RDMs 

have been constructed from predictions based on a wide range of sources: including 

behavioural results, computational models, stimulus properties, or neuroimaging data 

from a complementary imaging method such as fMRI (e.g., (Carlson, Simmons, 

Kriegeskorte, & Slevc, 2013; Cichy et al., 2014, 2016; Kriegeskorte, Mur, Ruff, et al., 

2008; Redcay & Carlson, 2015; Wardle et al., 2016).  
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Figure 12. Model evaluation within the RSA framework. A. The empirical MEG 

RDMs averaged across subjects. One cell in the matrix represents the dissimilarity 
between the MEG activation patterns for one pair of object exemplars. RDMs are 

shown for four time points: -50ms, 100ms, 250ms, and 400ms. B. Three model RDMs, 

which predict the representational similarity of the brain activation patterns for all object 
pairs based on different stimulus properties: an Animacy model (Animate vs. Inanimate 

objects), a Natural model (Natural vs. Artificial objects), and a Silhouette model (based 
on the visual similarity of the objects' silhouettes). C. RSA model evaluation. At each 

time point, the empirical RDMs for each subject are correlated with the three candidate 
model RDMs in B. The strength of the average correlations shows how well the 

candidate models fit the data. Shaded areas represent the standard error over 
subjects, and the marks above the x-axis indicate time points where the mean 

correlation was significantly higher than zero (Wilcoxon signed-rank test, controlled for 
multiple comparisons using FDR). The grey dotted line represents the lower bound of 

the ‘noise ceiling’ at each time point, which is the theoretical lower bound of the 

maximum correlation of any model with the reference RDMs at each time point, given 
the noise in the data (Nili et al., 2014). 

 

Figure 12 shows the results of RSA model evaluation for the example MEG data. For 

each time point, the empirical RDMs (Figure 12A) are correlated with three theoretical 

models (Figure 12B); a model of stimulus animacy, a model that distinguishes artificial 

versus natural stimuli, and a control model based on the visual similarity of the 

exemplar’s silhouettes (which correlates well with early stimulus discriminability, see 

e.g., (Carlson et al., 2011; Redcay & Carlson, 2015). Each of these models predicts the 

relative (dis)similarity of the MEG activation patterns for each exemplar pair based on 

their specific stimulus features. The extent of the correlation between the model and 

empirical MEG RDMs is interpreted as reflecting the degree to which the 

'representational structure' characterised by each model exists in the brain activation 

patterns.  The results in Figure 12C are plotted as the correlation between the three 

model RDMs with the MEG RDM over time. The Animacy model (blue line) has a 
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better fit to the MEG data than the Natural model (orange line), and both models have 

a better fit than the Silhouette model (yellow line) later in the time series. The 

Silhouette model has the best fit early in the time series, which is expected as it 

represents early visual features. This suggests that animacy is a relatively good 

predictor of the similarity of the MEG activation patterns for the exemplar pairs: object 

pairs from the same category (e.g., both animate) are more difficult to decode than 

object pairs from different categories (e.g., one animate and one inanimate). Within the 

RSA framework, this is interpreted as evidence that animacy is a key organising 

principle in the representational structure of the object exemplars. 

 

Despite its strengths, a current limitation of the RSA approach is that valid statistical 

comparison of different candidate models is difficult (Kriegeskorte & Kievit, 2013; 

Thirion, Pedregosa, Eickenberg, & Varoquaux, 2015). A recent development proposes 

evaluating model performance by comparing it to the highest possible performance 

given the noise in the data, called the 'noise ceiling' (Nili et al., 2014). When applied to 

MEG data, the performance of various models relative to the noise ceiling (computed 

from the empirical data as described in (Nili et al., 2014) can be evaluated over time, 

as shown in Figure 12C. Despite the present limitations in directly comparing different 

models, RSA is a useful tool for investigating the structure of the decodable signal in 

neuroimaging data, which will undoubtedly continue to evolve in its sophistication and 

utility. For a more detailed introduction, see (Kriegeskorte & Kievit, 2013; Kriegeskorte, 

Mur, & Bandettini, 2008; Nili et al., 2014)). 
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5.3 Weight projection 

 

Following successful classification of experimental conditions, it is sometimes of 

interest to examine the extent to which different voxels (fMRI) or sensors (MEG/EEG) 

drive classifier performance. During standard classification analysis, each feature (e.g., 

MEG sensors) is assigned a weight corresponding to the degree to which its output is 

used by the classifier to maximize class separation. Therefore, it is tempting to use the 

raw weight as an index of the degree to which sensors contained class-specific 

information. However, this is not straightforward, as higher raw weights do not directly 

imply more class-specific information than lower weights. Similarly, a non-zero weight 

does not imply that there is class-specific information in a sensor (for a full explanation, 

proof, and example scenarios,(Haufe et al., 2014). This is because sensors may be 

assigned a non-zero weight not only because they contain class-specific information, 

but also when their output is useful to the classifier in suppressing noise or distractor 

signals (e.g., eyeblinks or heartbeats). An elegant solution to this issue was recently 

introduced by (Haufe et al., 2014) and has been applied to MEG decoding (Wardle et 

al., 2016). This consists of transforming the classifier weights back into activation 

patterns. Following this transformation, the reconstructed patterns are interpretable 

(i.e., non-zero values imply class-specific information) and can be projected onto the 

sensors. It is import to note however, that the reliability of the patterns depends on the 

quality of the weights. That is, if decoding performance is low, weights are likely sub-

optimal, and reconstructed activation patterns have to be interpreted with caution 

(Haufe et al., 2014). 
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Figure 13. Classifier weights projected onto MEG sensor space. The 

corresponding time points are shown beneath the scalp topographies. Darker colours 

indicate channels that contribute to animacy decoding. A. Uncorrected (raw) weights 
projections cannot be interpreted directly, as classifiers can assign non-zero weights to 

channels that contain no class-specific information. B. The activation patterns 
computed from transformed weights (following the method of (Haufe et al., 2014)) can 

be interpreted. 

 

Here we summarize this transformation for MEG data, and plot the results in Figure 13. 

First, the classifier weights (we used LDA instead of GNB in this example as this 

method only applies to classifiers that consider the feature covariance) are transformed  

into activation patterns by multiplying them with the covariance in the data: A = 

cov(X)*w; where X is the NxM matrix of MEG data with N trials and M features 

(channels), and w is a classifier weight vector of length M. A is the resulting vector of 

length M containing the reconstructed activation patterns (i.e., the transformed 

classifier weights). For display purposes, the reconstructed activation patterns can be 

projected onto the scalp location of the channels.  Figure 13B shows the result for the 

example MEG data at four time points (using the FieldTrip toolbox for MATLAB: 
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(Oostenveld, Fries, Maris, & Schoffelen, 2010); here the results are scaled by the 

inverse of the source covariance (A*cov(X*w)-1) to allow for comparison across time 

points. Note that this method cannot be directly used if multiple time points are used for 

classification (e.g., the sliding window approach described in Section 3.2). The 

uncorrected (raw) weight projections are shown for comparison in Figure 13A. We can 

now observe that for the activation patterns in Figure 13B, the information source is 

located approximately around the occipital lobes (back sensors) at 100ms, and later 

around the temporal lobes (side sensors) at 300ms, as expected from the visual 

processing hierarchy. Notably, this pattern is not as easily identifiable in the raw weight 

topographies shown in Figure 13A. For an in-depth explanation (with examples) of the 

weights interpretation problem and its solution, see (Haufe et al., 2014). 

 

6 General discussion 

 

Time-series decoding methods provide a valuable tool for investigating the temporal 

dynamics and organization of information processing in the human brain. In the 

previous sections we outlined an example decoding analysis pipeline for time-series 

neuroimaging data, illustrated effects of different methods and parameters (and their 

interactions), and introduced extensions of the method such as temporal generalisation 

(5.1), RSA (5.2), and weights projection (5.3). In the final section, we discuss some 

important aspects to consider when performing these analyses and interpreting the 

results. One of the central issues concerns the interpretation of classifier accuracy. 

Classifiers are extremely sensitive and will exploit all possible information in the data. 

This means that careful experimental design and interpretation of the results is 

required in order to draw meaningful conclusions from decoding studies (see e.g., 
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(Carlson & Wardle, 2015; de-Wit, Alexander, Ekroll, & Wagemans, 2016; Naselaris & 

Kay, 2015). The next section outlines a number of such pitfalls to avoid in the 

implementation of time-series decoding methods. 

 

6.1 Common pitfalls 

 

The first caveat applies to all studies using classifiers and is well-described in the 

literature (Kriegeskorte, Lindquist, Nichols, Poldrack, & Vul, 2010; Kriegeskorte, 

Simmons, Bellgowan, & Baker, 2009; Pereira et al., 2009). It is important that the 

classifier has no access to class-specific information about the data contained in the 

test set, as this will artificially inflate classifier performance. This analysis confound is 

referred to as 'double dipping', and was demonstrated in the analysis without cross-

validation in Figure 10 (Section 4.2). One advantage of time-series decoding is that in 

most cases, data obtained before stimulus onset serves as a first check. If classifier 

accuracy is above chance before stimulus onset, it indicates possible contamination 

from double dipping. 
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Figure 14. Demonstration of how the strength of peak decoding affects decoding 

onsets using stimulated data. A. Three data sets were simulated to have the same 
onset and peak decoding latencies, but different peak strengths. B. Gaussian noise 

was added to the underlying signals in each set (500 trials per set, σ=1) and significant 

decoding (above zero) was assessed across the time-course (signed-rank test, FDR 
corrected). Coloured discs above the x-axis indicate time points with significant 

decoding. 

 

A second caveat specific to time-series decoding is that caution is required when 

interpreting (differences in) onsets of significant decoding. The time at which decoding 

is first significant for an experimental condition is determined by the underlying strength 

of the signal. For example, when the strength of peak decoding differs between two 

conditions (e.g., one is much easier to decode than the other), this will also affect the 

relative onset of decoding. This is illustrated in Figure 14. Three simulated data sets 
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were constructed to have the same decoding onset (50ms) and peak latency of 

decoding (100ms), but different signal strengths (see Figure 14A). To evaluate how 

signal strength influences decoding onset, Gaussian noise was added to each data set 

and significance testing was conducted to find the onset of decoding (signed-rank test 

across time points, FDR corrected). The outcome of the simulation is plotted in Figure 

14B. Note that even though these simulated data sets were constructed to have an 

identical 'true' onset of decoding, the onset of significant decoding is earlier for the set 

with a strong signal and much later for the set with the weak signal. This underscores 

the ambiguity in interpreting onset differences: it cannot be assumed that an earlier 

decoding onset reflects a true onset difference in the availability of decodable 

information between conditions. (Isik et al., 2014) addresses this issue by using less 

data for the condition that had higher peak decoding, and by equalizing the peaks 

across conditions before determining decoding onset.  

 

Third, as noted earlier, filtering the signal can smear out information over time. An 

extreme example (using a step function) is illustrated in Figure 15, using simulated 

data with a signal occurring at 50ms. To demonstrate the effect of filtering, Gaussian 

noise was added to the signal, and low-pass filters were applied with different cut-off 

frequencies using the ft_preproc_lowpassfilter function (using the default Butterworth 

4th order two-pass IIR filter) from the FieldTrip toolbox (Oostenveld et al., 2010). The 

result of lowering the cut-off frequency is increased signal distortion. Applying a 30Hz 

low-pass filter resulted in a signal that was significantly different from zero 40ms earlier 

in the time-series, compared to the simulated 'true' onset at 50ms. However, the effect 

is substantially reduced by applying much higher filter cut-offs, e.g., 200Hz. Therefore, 
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interpretations based on the timing of decoding signatures relative to the stimulus 

should be avoided when using filters with a low cut-off frequency (Vanrullen, 2011). 

 

Figure 15. The effect of low-pass filtering on decoding onset. In this example, a 
signal with onset at 50ms was simulated with added Gaussian noise (500 trials, σ=1). 

The signal was then low-pass filtered using different cut-off frequencies. Time points 

where the trial average differed significantly from zero (signed-rank test, FDR 
corrected) are indicated by the coloured discs above the x-axis. 

 

Finally, decoding studies require careful experimental design to avoid confounds in the 

classifier analysis. The considerations vital to designing decoding studies are not 

necessarily the same as that for univariate analysis. Accordingly, care must be taken 

when re-analysing data not originally intended for a decoding analysis. The high 

sensitivity of classifiers means that if there are any differences between classes other 

than the intended manipulations, it is likely that the classifier will exploit this 



Chapter 2 

 108 

information, making it easy to introduce experimental confounds. An example is the 

effect of the subject's behavioural responses. In our example MEG experiment, the 

response buttons (to respond 'animate' and 'inanimate') were switched every block. If 

response mapping were uniform across blocks, response would be confounded with 

stimulus category, as a left button response would always correspond to 'animate', and 

right for 'inanimate'. The physical pressing of the button would generate corresponding 

brain signals, for example in motor areas, and this would provide a signal in the whole-

brain MEG data that would correlate perfectly with the class conditions. In this case, it 

would be unclear whether the classifier decoded the intended experimental 

manipulation of 'animacy' or simply the subject's motor responses. Alternatively, a 

classifier may distinguish between two conditions or categories of stimuli based on a 

confounding factor that co-varies with class membership (e.g., differential attention to 

two conditions, leading to greater overall signal for one class) rather than the 

manipulation (e.g., difference in visual features or task difficulty) intended by the 

experimental design.  

 

Further, even with carefully controlled designs, the interpretation of decoding studies 

must be executed with caution. Decoding studies may conclude that condition A is 

decodable from condition B; however, the source of decodable information usually 

remains elusive (Carlson & Wardle, 2015; Naselaris & Kay, 2015). One notable 

example of this is the current debate surrounding the source of orientation decoding in 

fMRI (e.g., (Alink, Krugliak, Walther, & Kriegeskorte, 2013; Carlson, 2014; Carlson & 

Wardle, 2015; Clifford & Mannion, 2015; Freeman, Ziemba, Heeger, Simoncelli, & 

Movshon, 2013; Freeman, Brouwer, Heeger, & Merriam, 2011; Kamitani & Tong, 2005; 

Mannion, McDonald, & Clifford, 2009; Pratte, Sy, Swisher, & Tong, 2016). Despite a 
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decade of orientation decoding in early visual cortex with fMRI, it is still debated 

whether any information at the sub-voxel level (e.g., within-voxel biases in orientation-

specific columnar responses) contributes to the decodable signal (op de Beeck, 2010). 

The interpretation of the source of decodable signals in neuroimaging remains one of 

the central challenges facing the application of MVPA techniques to advancing our 

understanding of information processing in the human brain (de-Wit et al., 2016). 

 

Acknowledgements 

 

This research was supported by an Australian Research Council (ARC) Future 

Fellowship (FT120100816) and ARC Discovery project (DP160101300) awarded to 

T.A.C. S.G.W. is supported by an Australian NHMRC Early Career Fellowship 

(APP1072245). The authors declare no competing financial interests. 

  



Chapter 2 

 110 

References 

 

Alink, A., Krugliak, A., Walther, A., & Kriegeskorte, N. (2013). fMRI orientation 

decoding in V1 does not require global maps or globally coherent orientation 

stimuli. Frontiers in Psychology, 4, 493. 

https://doi.org/10.3389/fpsyg.2013.00493 

Allefeld, C., Görgen, K., & Haynes, J.-D. (2016). Valid population inference for 

information-based imaging: From the second-level t-test to prevalence 

inference. NeuroImage, 141, 378–392. 

https://doi.org/10.1016/j.neuroimage.2016.07.040 

Allison, B. Z., Wolpaw, E. W., & Wolpaw, J. R. (2007). Brain–computer interface 

systems: progress and prospects. Expert Review of Medical Devices, 4(4), 

463–474. https://doi.org/10.1586/17434440.4.4.463 

Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical 

and Powerful Approach to Multiple Testing. Journal of the Royal Statistical 

Society. Series B (Methodological), 57(1), 289–300. 

Bennett, C. M., Baird, A., Miller, M. B., & Wolford, G. L. (2011). Neural Correlates of 

Interspecies Perspective Taking in the Post-Mortem Atlantic Salmon: An 

Argument For Proper Multiple Comparisons Correction. Journal of 

Serendipitous and Unexpected Results, 1, 1–5. 

Bennett, C. M., Wolford, G. L., & Miller, M. B. (2009). The principled control of false 

positives in neuroimaging. Social Cognitive and Affective Neuroscience, 4(4), 

417–422. https://doi.org/10.1093/scan/nsp053 

Bishop, C. M. (2006). Pattern recognition and machine learning (Vol. 4). springer New 

York. 



Decoding dynamic brain patterns from evoked responses 

 111 

Blankertz, B., Lemm, S., Treder, M., Haufe, S., & Müller, K.-R. (2011). Single-trial 

analysis and classification of ERP components — A tutorial. NeuroImage, 

56(2), 814–825. https://doi.org/10.1016/j.neuroimage.2010.06.048 

Bode, S., Sewell, D. K., Lilburn, S., Forte, J. D., Smith, P. L., & Stahl, J. (2012). 

Predicting Perceptual Decision Biases from Early Brain Activity. Journal of 

Neuroscience, 32(36), 12488–12498. 

https://doi.org/10.1523/JNEUROSCI.1708-12.2012 

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436. 

Carlson, T. A. (2014). Orientation Decoding in Human Visual Cortex: New Insights from 

an Unbiased Perspective. The Journal of Neuroscience, 34(24), 8373–8383. 

https://doi.org/10.1523/JNEUROSCI.0548-14.2014 

Carlson, T. A., Hogendoorn, H., Kanai, R., Mesik, J., & Turret, J. (2011). High temporal 

resolution decoding of object position and category. Journal of Vision, 11(10), 9. 

https://doi.org/10.1167/11.10.9 

Carlson, T. A., Schrater, P., & He, S. (2003). Patterns of Activity in the Categorical 

Representations of Objects. Journal of Cognitive Neuroscience, 15(5), 704–

717. https://doi.org/10.1162/jocn.2003.15.5.704 

Carlson, T. A., Simmons, R. A., Kriegeskorte, N., & Slevc, L. R. (2013). The 

Emergence of Semantic Meaning in the Ventral Temporal Pathway. Journal of 

Cognitive Neuroscience, 26(1), 120–131. https://doi.org/10.1162/jocn_a_00458 

Carlson, T. A., Tovar, D. A., Alink, A., & Kriegeskorte, N. (2013). Representational 

dynamics of object vision: The first 1000 ms. Journal of Vision, 13(10), 1. 

https://doi.org/10.1167/13.10.1 

Carlson, T. A., & Wardle, S. G. (2015). Sensible decoding. NeuroImage, 110, 217–218. 

https://doi.org/10.1016/j.neuroimage.2015.02.009 



Chapter 2 

 112 

Cauchoix, M., Arslan, A. B., Fize, D., & Serre, T. (2012). The Neural Dynamics of 

Visual Processing in Monkey Extrastriate Cortex: A Comparison between 

Univariate and Multivariate Techniques. In G. Langs, I. Rish, M. Grosse-

Wentrup, & B. Murphy (Eds.), Machine Learning and Interpretation in 

Neuroimaging (pp. 164–171). Springer Berlin Heidelberg. 

https://doi.org/10.1007/978-3-642-34713-9_21 

Cauchoix, M., Barragan-Jason, G., Serre, T., & Barbeau, E. J. (2014). The Neural 

Dynamics of Face Detection in the Wild Revealed by MVPA. The Journal of 

Neuroscience, 34(3), 846–854. https://doi.org/10.1523/JNEUROSCI.3030-

13.2014 

Chan, A. M., Halgren, E., Marinkovic, K., & Cash, S. S. (2010). Decoding word and 

category-specific spatiotemporal representations from MEG and EEG. 

NeuroImage, 54(4), 3028–3039. 

https://doi.org/10.1016/j.neuroimage.2010.10.073 

Chumbley, J. R., & Friston, K. J. (2009). False discovery rate revisited: FDR and 

topological inference using Gaussian random fields. NeuroImage, 44(1), 62–70. 

https://doi.org/10.1016/j.neuroimage.2008.05.021 

Cichy, R. M., Pantazis, D., & Oliva, A. (2014). Resolving human object recognition in 

space and time. Nature Neuroscience, 17(3), 455–462. 

https://doi.org/10.1038/nn.3635 

Cichy, R. M., Pantazis, D., & Oliva, A. (2016). Similarity-Based Fusion of MEG and 

fMRI Reveals Spatio-Temporal Dynamics in Human Cortex During Visual 

Object Recognition. Cerebral Cortex (New York, N.Y.: 1991), 26(8), 3563–

3579. https://doi.org/10.1093/cercor/bhw135 



Decoding dynamic brain patterns from evoked responses 

 113 

Cichy, R. M., Ramirez, F. M., & Pantazis, D. (2015). Can visual information encoded in 

cortical columns be decoded from magnetoencephalography data in humans? 

NeuroImage, 121, 193–204. https://doi.org/10.1016/j.neuroimage.2015.07.011 

Clifford, C. W. G., & Mannion, D. J. (2015). Orientation decoding: Sense in spirals? 

NeuroImage, 110, 219–222. https://doi.org/10.1016/j.neuroimage.2014.12.055 

Cohen, M. X. (2014). Analyzing neural time series data: theory and practice. MIT 

Press. 

Cox, D. D., & Savoy, R. L. (2003). Functional magnetic resonance imaging (fMRI) 

“brain reading”: detecting and classifying distributed patterns of fMRI activity in 

human visual cortex. NeuroImage, 19(2), 261–270. 

https://doi.org/10.1016/S1053-8119(03)00049-1 

Curran, E. A., & Stokes, M. J. (2003). Learning to control brain activity: A review of the 

production and control of EEG components for driving brain–computer interface 

(BCI) systems. Brain and Cognition, 51(3), 326–336. 

https://doi.org/10.1016/S0278-2626(03)00036-8 

De Martino, F., Valente, G., Staeren, N., Ashburner, J., Goebel, R., & Formisano, E. 

(2008). Combining multivariate voxel selection and support vector machines for 

mapping and classification of fMRI spatial patterns. NeuroImage, 43(1), 44–58. 

https://doi.org/10.1016/j.neuroimage.2008.06.037 

de-Wit, L., Alexander, D., Ekroll, V., & Wagemans, J. (2016). Is neuroimaging 

measuring information in the brain? Psychonomic Bulletin & Review, 23(5), 

1415–1428. https://doi.org/10.3758/s13423-016-1002-0 

Ding, N., & Simon, J. Z. (2012). Neural coding of continuous speech in auditory cortex 

during monaural and dichotic listening. Journal of Neurophysiology, 107(1), 78–

89. https://doi.org/10.1152/jn.00297.2011 



Chapter 2 

 114 

Downing, P. E., Chan, A. W.-Y., Peelen, M. V., Dodds, C. M., & Kanwisher, N. (2006). 

Domain Specificity in Visual Cortex. Cerebral Cortex, 16(10), 1453–1461. 

https://doi.org/10.1093/cercor/bhj086 

Duncan, K. K., Hadjipapas, A., Li, S., Kourtzi, Z., Bagshaw, A., & Barnes, G. (2010). 

Identifying spatially overlapping local cortical networks with MEG. Human Brain 

Mapping, 31(7), 1003–1016. https://doi.org/10.1002/hbm.20912 

Edelman, S., Grill-Spector, K., Kushnir, T., & Malach, R. (1998). Toward direct 

visualization of the internal shape representation space by fMRI. 

Psychobiology, 26(4), 309–321. https://doi.org/10.3758/BF03330618 

Farwell, L. A., & Donchin, E. (1988). Talking off the top of your head: toward a mental 

prosthesis utilizing event-related brain potentials. Electroencephalography and 

Clinical Neurophysiology, 70(6), 510–523. https://doi.org/10.1016/0013-

4694(88)90149-6 

Formisano, E., De Martino, F., & Valente, G. (2008). Multivariate analysis of fMRI time 

series: classification and regression of brain responses using machine learning. 

Magnetic Resonance Imaging, 26(7), 921–934. 

https://doi.org/10.1016/j.mri.2008.01.052 

Freeman, J., Brouwer, G. J., Heeger, D. J., & Merriam, E. P. (2011). Orientation 

Decoding Depends on Maps, Not Columns. The Journal of Neuroscience, 

31(13), 4792–4804. https://doi.org/10.1523/JNEUROSCI.5160-10.2011 

Freeman, J., Ziemba, C. M., Heeger, D. J., Simoncelli, E. P., & Movshon, J. A. (2013). 

A functional and perceptual signature of the second visual area in primates. 

Nature Neuroscience, 16(7), 974–981. https://doi.org/10.1038/nn.3402 



Decoding dynamic brain patterns from evoked responses 

 115 

Goddard, E., Carlson, T. A., Dermody, N., & Woolgar, A. (2016). Representational 

dynamics of object recognition: Feedforward and feedback information flows. 

NeuroImage, 128, 385–397. https://doi.org/10.1016/j.neuroimage.2016.01.006 

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., 

… Hämäläinen, M. (2013). MEG and EEG data analysis with MNE-Python. 

Brain Imaging Methods, 7, 267. https://doi.org/10.3389/fnins.2013.00267 

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., 

… Hämäläinen, M. S. (2014). MNE software for processing MEG and EEG 

data. NeuroImage, 86, 446–460. 

https://doi.org/10.1016/j.neuroimage.2013.10.027 

Guimaraes, M. P., Wong, D. K., Uy, E. T., Grosenick, L., & Suppes, P. (2007). Single-

Trial Classification of MEG Recordings. IEEE Transactions on Biomedical 

Engineering, 54(3), 436–443. https://doi.org/10.1109/TBME.2006.888824 

Hämäläinen, M. S., & Ilmoniemi, R. J. (1994). Interpreting magnetic fields of the brain: 

minimum norm estimates. Medical & Biological Engineering & Computing, 

32(1), 35–42. https://doi.org/10.1007/BF02512476 

Hanke, M., Halchenko, Y. O., Sederberg, P. B., Hanson, S. J., Haxby, J. V., & 

Pollmann, S. (2009). PyMVPA: a Python Toolbox for Multivariate Pattern 

Analysis of fMRI Data. Neuroinformatics, 7(1), 37–53. 

https://doi.org/10.1007/s12021-008-9041-y 

Hanke, M., Halchenko, Y. O., Sederberg, P. B., Olivetti, E., Fründ, I., Rieger, J. W., … 

Pollmann, S. (2009). PyMVPA: a unifying approach to the analysis of  

neuroscientific data. Frontiers in Neuroinformatics, 3, 3. 

https://doi.org/10.3389/neuro.11.003.2009 



Chapter 2 

 116 

Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J.-D., Blankertz, B., & 

Bießmann, F. (2014). On the interpretation of weight vectors of linear models in 

multivariate neuroimaging. NeuroImage, 87, 96–110. 

https://doi.org/10.1016/j.neuroimage.2013.10.067 

Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. 

(2001). Distributed and Overlapping Representations of Faces and Objects in 

Ventral Temporal Cortex. Science, 293(5539), 2425–2430. 

https://doi.org/10.1126/science.1063736 

Haynes, J.-D. (2015). A Primer on Pattern-Based Approaches to fMRI: Principles, 

Pitfalls, and Perspectives. Neuron, 87(2), 257–270. 

https://doi.org/10.1016/j.neuron.2015.05.025 

Haynes, J.-D., & Rees, G. (2006). Decoding mental states from brain activity in 

humans. Nature Reviews Neuroscience, 7(7), 523–534. 

https://doi.org/10.1038/nrn1931 

Hebart, M. N., Görgen, K., & Haynes, J.-D. (2015). The Decoding Toolbox (TDT): a 

versatile software package for multivariate analyses of functional imaging data. 

Frontiers in Neuroinformatics, 8, 88. https://doi.org/10.3389/fninf.2014.00088 

Hill, N. J., Lal, T. N., Schröder, M., Hinterberger, T., Widman, G., Elger, C. E., … 

Birbaumer, N. (2006). Classifying Event-Related Desynchronization in EEG, 

ECoG and MEG Signals. In K. Franke, K.-R. Müller, B. Nickolay, & R. Schäfer 

(Eds.), Pattern Recognition (pp. 404–413). Springer Berlin Heidelberg. 

Retrieved from http://link.springer.com/chapter/10.1007/11861898_41 

Hogendoorn, H., Verstraten, F. A. J., & Cavanagh, P. (2015). Strikingly rapid neural 

basis of motion-induced position shifts revealed by high temporal-resolution 



Decoding dynamic brain patterns from evoked responses 

 117 

EEG pattern classification. Vision Research, 113, Part A, 1–10. 

https://doi.org/10.1016/j.visres.2015.05.005 

Hung, C. P., Kreiman, G., Poggio, T., & DiCarlo, J. J. (2005). Fast Readout of Object 

Identity from Macaque Inferior Temporal Cortex. Science, 310(5749), 863–866. 

https://doi.org/10.1126/science.1117593 

Isik, L., Meyers, E. M., Leibo, J. Z., & Poggio, T. (2014). The dynamics of invariant 

object recognition in the human visual system. Journal of Neurophysiology, 

111(1), 91–102. https://doi.org/10.1152/jn.00394.2013 

Jackson, J. E. (1991). A user’s guide to principal components (Vol. 587). John Wiley & 

Sons. 

Jafarpour, A., Horner, A. J., Fuentemilla, L., Penny, W. D., & Duzel, E. (2013). 

Decoding oscillatory representations and mechanisms in memory. 

Neuropsychologia, 51(4), 772–780. 

https://doi.org/10.1016/j.neuropsychologia.2012.04.002 

Kaiser, D., Azzalini, D. C., & Peelen, M. V. (2016). Shape-independent object category 

responses revealed by MEG and fMRI decoding. Journal of Neurophysiology, 

115(4), 2246–2250. https://doi.org/10.1152/jn.01074.2015 

Kamitani, Y., & Tong, F. (2005). Decoding the visual and subjective contents of the 

human brain. Nature Neuroscience, 8(5), 679–685. 

https://doi.org/10.1038/nn1444 

King, J.-R., & Dehaene, S. (2014). Characterizing the dynamics of mental 

representations: the temporal generalization method. Trends in Cognitive 

Sciences, 18(4), 203–210. https://doi.org/10.1016/j.tics.2014.01.002 



Chapter 2 

 118 

King, J.-R., Gramfort, A., Schurger, A., Naccache, L., & Dehaene, S. (2014). Two 

Distinct Dynamic Modes Subtend the Detection of Unexpected Sounds. PLoS 

ONE, 9(1), e85791. https://doi.org/10.1371/journal.pone.0085791 

Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., Broussard, C., & others. 

(2007). What’s new in Psychtoolbox-3. Perception, 36(14), 1. 

Kriegeskorte, N., & Kievit, R. A. (2013). Representational geometry: integrating 

cognition, computation, and the brain. Trends in Cognitive Sciences, 17(8), 

401–412. https://doi.org/10.1016/j.tics.2013.06.007 

Kriegeskorte, N., Lindquist, M. A., Nichols, T. E., Poldrack, R. A., & Vul, E. (2010). 

Everything you never wanted to know about circular analysis, but were afraid to 

ask. Journal of Cerebral Blood Flow & Metabolism, 30(9), 1551–1557. 

https://doi.org/10.1038/jcbfm.2010.86 

Kriegeskorte, N., Mur, M., & Bandettini, P. (2008). Representational Similarity Analysis 

- Connecting the Branches of Systems Neuroscience. Frontiers in Systems 

Neuroscience, 2, 4. https://doi.org/10.3389/neuro.06.004.2008 

Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., … Bandettini, 

P. A. (2008). Matching Categorical Object Representations in Inferior Temporal 

Cortex of Man and Monkey. Neuron, 60(6), 1126–1141. 

https://doi.org/10.1016/j.neuron.2008.10.043 

Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S. F., & Baker, C. I. (2009). Circular 

analysis in systems neuroscience: the dangers of double dipping. Nature 

Neuroscience, 12(5), 535–540. https://doi.org/10.1038/nn.2303 

Kübler, A., Kotchoubey, B., Kaiser, J., Wolpaw, J. R., & Birbaumer, N. (2001). Brain–

computer communication: Unlocking the locked in. Psychological Bulletin, 

127(3), 358–375. https://doi.org/10.1037/0033-2909.127.3.358 



Decoding dynamic brain patterns from evoked responses 

 119 

Lemm, S., Blankertz, B., Dickhaus, T., & Müller, K.-R. (2011). Introduction to machine 

learning for brain imaging. NeuroImage, 56(2), 387–399. 

https://doi.org/10.1016/j.neuroimage.2010.11.004 

Luck, S. J. (2005). An Introduction to the Event-Related Potential Technique. MIT 

press. 

Mannion, D. J., McDonald, J. S., & Clifford, C. W. G. (2009). Discrimination of the local 

orientation structure of spiral Glass patterns early in human visual cortex. 

NeuroImage, 46(2), 511–515. https://doi.org/10.1016/j.neuroimage.2009.01.052 

Mensen, A., & Khatami, R. (2013). Advanced EEG analysis using threshold-free 

cluster-enhancement and non-parametric statistics. NeuroImage, 67, 111–118. 

https://doi.org/10.1016/j.neuroimage.2012.10.027 

Meyers, E. M. (2013). The neural decoding toolbox. Frontiers in Neuroinformatics, 7. 

https://doi.org/10.3389/fninf.2013.00008 

Meyers, E. M., Freedman, D. J., Kreiman, G., Miller, E. K., & Poggio, T. (2008). 

Dynamic Population Coding of Category Information in Inferior Temporal and 

Prefrontal Cortex. Journal of Neurophysiology, 100(3), 1407–1419. 

https://doi.org/10.1152/jn.90248.2008 

Misaki, M., Kim, Y., Bandettini, P. A., & Kriegeskorte, N. (2010). Comparison of 

multivariate classifiers and response normalizations for pattern-information 

fMRI. NeuroImage, 53(1), 103–118. 

https://doi.org/10.1016/j.neuroimage.2010.05.051 

Mognon, A., Jovicich, J., Bruzzone, L., & Buiatti, M. (2011). ADJUST: An automatic 

EEG artifact detector based on the joint use of spatial and temporal features. 

Psychophysiology, 48(2), 229–240. https://doi.org/10.1111/j.1469-

8986.2010.01061.x 



Chapter 2 

 120 

Müller, K., Anderson, C. W., & Birch, G. E. (2003). Linear and nonlinear methods for 

brain-computer interfaces. IEEE Transactions on Neural Systems and 

Rehabilitation Engineering, 11(2), 165–169. 

https://doi.org/10.1109/TNSRE.2003.814484 

Müller, K.-R., Tangermann, M., Dornhege, G., Krauledat, M., Curio, G., & Blankertz, B. 

(2008). Machine learning for real-time single-trial EEG-analysis: From brain–

computer interfacing to mental state monitoring. Journal of Neuroscience 

Methods, 167(1), 82–90. https://doi.org/10.1016/j.jneumeth.2007.09.022 

Mur, M., Bandettini, P. A., & Kriegeskorte, N. (2009). Revealing representational 

content with pattern-information fMRI—an introductory guide. Social Cognitive 

and Affective Neuroscience, 4(1), 101–109. 

https://doi.org/10.1093/scan/nsn044 

Murphy, B., Poesio, M., Bovolo, F., Bruzzone, L., Dalponte, M., & Lakany, H. (2011). 

EEG decoding of semantic category reveals distributed representations for 

single concepts. Brain and Language, 117(1), 12–22. 

https://doi.org/10.1016/j.bandl.2010.09.013 

Naselaris, T., & Kay, K. N. (2015). Resolving Ambiguities of MVPA Using Explicit 

Models of Representation. Trends in Cognitive Sciences, 19(10), 551–554. 

https://doi.org/10.1016/j.tics.2015.07.005 

Naselaris, T., Kay, K. N., Nishimoto, S., & Gallant, J. L. (2011). Encoding and decoding 

in fMRI. NeuroImage, 56(2), 400–410. 

https://doi.org/10.1016/j.neuroimage.2010.07.073 

Nichols, T. E. (2012). Multiple testing corrections, nonparametric methods, and random 

field theory. NeuroImage, 62(2), 811–815. 

https://doi.org/10.1016/j.neuroimage.2012.04.014 



Decoding dynamic brain patterns from evoked responses 

 121 

Nichols, T. E., & Holmes, A. P. (2002). Nonparametric permutation tests for functional 

neuroimaging: A primer with examples. Human Brain Mapping, 15(1), 1–25. 

https://doi.org/10.1002/hbm.1058 

Nili, H., Wingfield, C., Walther, A., Su, L., Marslen-Wilson, W., & Kriegeskorte, N. 

(2014). A Toolbox for Representational Similarity Analysis. PLoS Comput Biol, 

10(4), e1003553. https://doi.org/10.1371/journal.pcbi.1003553 

Noirhomme, Q., Lesenfants, D., Gomez, F., Soddu, A., Schrouff, J., Garraux, G., … 

Laureys, S. (2014). Biased binomial assessment of cross-validated estimation 

of classification accuracies illustrated in diagnosis predictions. NeuroImage: 

Clinical, 4, 687–694. https://doi.org/10.1016/j.nicl.2014.04.004 

Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Beyond mind-reading: 

multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 10(9), 

424–430. https://doi.org/10.1016/j.tics.2006.07.005 

Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2010). FieldTrip: Open Source 

Software for Advanced Analysis of MEG, EEG, and Invasive 

Electrophysiological Data. Computational Intelligence and Neuroscience, 2011, 

156869. https://doi.org/10.1155/2011/156869 

Oosterhof, N. N., Connolly, A. C., & Haxby, J. V. (2016). CoSMoMVPA: Multi-Modal 

Multivariate Pattern Analysis of Neuroimaging Data in Matlab/GNU Octave. 

Frontiers in Neuroinformatics, 27. https://doi.org/10.3389/fninf.2016.00027 

op de Beeck, H. (2010). Against hyperacuity in brain reading: Spatial smoothing does 

not hurt multivariate fMRI analyses? NeuroImage, 49(3), 1943–1948. 

https://doi.org/10.1016/j.neuroimage.2009.02.047 



Chapter 2 

 122 

Pantazis, D., Nichols, T. E., Baillet, S., & Leahy, R. M. (2005). A comparison of random 

field theory and permutation methods for the statistical analysis of MEG data. 

NeuroImage, 25(2), 383–394. https://doi.org/10.1016/j.neuroimage.2004.09.040 

Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming 

numbers into movies. Spatial Vision, 10(4), 437–442. 

Pereira, F., Mitchell, T., & Botvinick, M. (2009). Machine learning classifiers and fMRI: 

A tutorial overview. NeuroImage, 45(1, Supplement 1), S199–S209. 

https://doi.org/10.1016/j.neuroimage.2008.11.007 

Pratte, M. S., Sy, J. L., Swisher, J. D., & Tong, F. (2016). Radial bias is not necessary 

for orientation decoding. NeuroImage, 127, 23–33. 

https://doi.org/10.1016/j.neuroimage.2015.11.066 

Proklova, D., Kaiser, D., & Peelen, M. V. (2016). Disentangling Representations of 

Object Shape and Object Category in Human Visual Cortex: The Animate–

Inanimate Distinction. Journal of Cognitive Neuroscience, 1–13. 

https://doi.org/10.1162/jocn_a_00924 

Ramkumar, P., Jas, M., Pannasch, S., Hari, R., & Parkkonen, L. (2013). Feature-

Specific Information Processing Precedes Concerted Activation in Human 

Visual Cortex. The Journal of Neuroscience, 33(18), 7691–7699. 

https://doi.org/10.1523/JNEUROSCI.3905-12.2013 

Redcay, E., & Carlson, T. A. (2015). Rapid neural discrimination of communicative 

gestures. Social Cognitive and Affective Neuroscience, 10(4), 545–551. 

https://doi.org/10.1093/scan/nsu089 

Ritchie, J. B., Tovar, D. A., & Carlson, T. A. (2015). Emerging Object Representations 

in the Visual System Predict Reaction Times for Categorization. PLoS Comput 

Biol, 11(6), e1004316. https://doi.org/10.1371/journal.pcbi.1004316 



Decoding dynamic brain patterns from evoked responses 

 123 

Sandberg, K., Bahrami, B., Kanai, R., Barnes, G. R., Overgaard, M., & Rees, G. 

(2013). Early Visual Responses Predict Conscious Face Perception within and 

between Subjects during Binocular Rivalry. Journal of Cognitive Neuroscience, 

25(6), 969–985. https://doi.org/10.1162/jocn_a_00353 

Schaefer, R. S., Farquhar, J., Blokland, Y., Sadakata, M., & Desain, P. (2010). Name 

that tune: Decoding music from the listening brain. NeuroImage, 56(2), 843–

849. https://doi.org/10.1016/j.neuroimage.2010.05.084 

Schreiber, K., & Krekelberg, B. (2013). The Statistical Analysis of Multi-Voxel Patterns 

in Functional Imaging. PLOS ONE, 8(7), e69328. 

https://doi.org/10.1371/journal.pone.0069328 

Schwarzkopf, D. S., & Rees, G. (2011). Pattern classification using functional magnetic 

resonance imaging. Wiley Interdisciplinary Reviews: Cognitive Science, 2(5), 

568–579. https://doi.org/10.1002/wcs.141 

Sha, L., Haxby, J. V., Abdi, H., Guntupalli, J. S., Oosterhof, N. N., Halchenko, Y. O., & 

Connolly, A. C. (2015). The Animacy Continuum in the Human Ventral Vision 

Pathway. Journal of Cognitive Neuroscience, 27(4), 665–678. 

https://doi.org/10.1162/jocn_a_00733 

Simanova, I., van Gerven, M. A. J., Oostenveld, R., & Hagoort, P. (2014). Predicting 

the Semantic Category of Internally Generated Words from Neuromagnetic 

Recordings. Journal of Cognitive Neuroscience, 1–11. 

https://doi.org/10.1162/jocn_a_00690 

Simanova, I., van Gerven, M., Oostenveld, R., & Hagoort, P. (2010). Identifying Object 

Categories from Event-Related EEG: Toward Decoding of Conceptual 

Representations. PLoS ONE, 5(12), e14465. 

https://doi.org/10.1371/journal.pone.0014465 



Chapter 2 

 124 

Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement: Addressing 

problems of smoothing, threshold dependence and localisation in cluster 

inference. NeuroImage, 44(1), 83–98. 

https://doi.org/10.1016/j.neuroimage.2008.03.061 

Stelzer, J., Chen, Y., & Turner, R. (2013). Statistical inference and multiple testing 

correction in classification-based multi-voxel pattern analysis (MVPA): Random 

permutations and cluster size control. NeuroImage, 65, 69–82. 

https://doi.org/10.1016/j.neuroimage.2012.09.063 

Stokes, M. G., Kusunoki, M., Sigala, N., Nili, H., Gaffan, D., & Duncan, J. (2013). 

Dynamic Coding for Cognitive Control in Prefrontal Cortex. Neuron, 78(2), 364–

375. https://doi.org/10.1016/j.neuron.2013.01.039 

Sudre, G., Pomerleau, D., Palatucci, M., Wehbe, L., Fyshe, A., Salmelin, R., & Mitchell, 

T. (2012). Tracking neural coding of perceptual and semantic features of 

concrete nouns. NeuroImage, 62(1), 451–463. 

https://doi.org/10.1016/j.neuroimage.2012.04.048 

Tangermann, M., Müller, K.-R., Aertsen, A., Birbaumer, N., Braun, C., Brunner, C., … 

Blankertz, B. (2012). Review of the BCI competition IV. Neuroprosthetics, 6, 55. 

https://doi.org/10.3389/fnins.2012.00055 

Thirion, B., Pedregosa, F., Eickenberg, M., & Varoquaux, G. (2015). Correlations of 

correlations are not reliable statistics: implications for multivariate pattern 

analysis. In ICML Workshop on Statistics, Machine Learning and Neuroscience 

(Stamlins 2015). Retrieved from https://hal.inria.fr/hal-01187297/ 

van de Nieuwenhuijzen, M. E., Backus, A. R., Bahramisharif, A., Doeller, C. F., Jensen, 

O., & van Gerven, M. A. J. (2013). MEG-based decoding of the spatiotemporal 



Decoding dynamic brain patterns from evoked responses 

 125 

dynamics of visual category perception. NeuroImage, 83, 1063–1073. 

https://doi.org/10.1016/j.neuroimage.2013.07.075 

van Gerven, M. A. J., Maris, E., Sperling, M., Sharan, A., Litt, B., Anderson, C., … 

Jacobs, J. (2013). Decoding the memorization of individual stimuli with direct 

human brain recordings. NeuroImage, 70, 223–232. 

https://doi.org/10.1016/j.neuroimage.2012.12.059 

Van Veen, B. D., Van Drongelen, W., Yuchtman, M., & Suzuki, A. (1997). Localization 

of brain electrical activity via linearly constrained minimum variance spatial 

filtering. IEEE Transactions on Biomedical Engineering, 44(9), 867–880. 

https://doi.org/10.1109/10.623056 

Vanrullen, R. (2011). Four common conceptual fallacies in mapping the time course of 

recognition. Perception Science, 2, 365. 

https://doi.org/10.3389/fpsyg.2011.00365 

Vidal, J. J. (1973). Toward Direct Brain-Computer Communication. Annual Review of 

Biophysics and Bioengineering, 2(1), 157–180. 

https://doi.org/10.1146/annurev.bb.02.060173.001105 

Walther, A., Nili, H., Ejaz, N., Alink, A., Kriegeskorte, N., & Diedrichsen, J. (2016). 

Reliability of dissimilarity measures for multi-voxel pattern analysis. 

NeuroImage, 137, 188–200. https://doi.org/10.1016/j.neuroimage.2015.12.012 

Wardle, S. G., Kriegeskorte, N., Grootswagers, T., Khaligh-Razavi, S.-M., & Carlson, T. 

A. (2016). Perceptual similarity of visual patterns predicts dynamic neural 

activation patterns measured with MEG. NeuroImage, 132, 59–70. 

https://doi.org/10.1016/j.neuroimage.2016.02.019 

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 

1(6), 80–83. 



Chapter 2 

 126 

Wolff, M. J., Ding, J., Myers, N. E., & Stokes, M. G. (2015). Revealing hidden states in 

visual working memory using electroencephalography. Frontiers in Systems 

Neuroscience, 9, 123. https://doi.org/10.3389/fnsys.2015.00123 

Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. 

(2002). Brain–computer interfaces for communication and control. Clinical 

Neurophysiology, 113(6), 767–791. https://doi.org/10.1016/S1388-

2457(02)00057-3 

Zhang, Y., Meyers, E. M., Bichot, N. P., Serre, T., Poggio, T. A., & Desimone, R. 

(2011). Object decoding with attention in inferior temporal cortex. Proceedings 

of the National Academy of Sciences, 108(21), 8850–8855. 

https://doi.org/10.1073/pnas.1100999108 

 



Asymmetric compression of representational space 

 127 

Chapter 3 

 

Asymmetric compression of representational space for 

object animacy categorization under degraded viewing 

conditions 

 

Tijl Grootswagers1,2,3, J. Brendan Ritchie4, Susan G. Wardle1,2, Andrew Heathcote5,6, & 

Thomas A. Carlson2,3 

 

 

1 Department of Cognitive Science, Macquarie University, Australia 

2 ARC Centre of Excellence in Cognition and its Disorders, Australia 

3 School of Psychology, University of Sydney, Australia 

4 KU Leuven, Belgium 

5 University of Tasmania, Australia 

6 University of Newcastle, Australia 

 

 

Note: This chapter is currently under review at the Journal of Cognitive Neuroscience 



Chapter 3 

 128 

Abstract 

 

Animacy is a robust organizing principle amongst object category representations in the 

human brain. Using multivariate pattern analysis methods (MVPA), it has been shown 

that distance to the decision boundary of a classifier trained to discriminate neural 

activation patterns for animate and inanimate objects correlates with observer reaction 

times for the same animacy categorization task (Carlson, Ritchie, Kriegeskorte, 

Durvasula, & Ma, 2014; Ritchie, Tovar, & Carlson, 2015). Using MEG decoding, we 

tested if the same relationship holds when a stimulus manipulation (degradation) 

increases task difficulty, which we predicted would systematically decrease the distance 

of activation patterns from the decision boundary, and increase reaction times. In 

addition, we tested whether distance to the classifier boundary correlates with drift rates 

in the Linear Ballistic Accumulator (Brown & Heathcote, 2008). We found that distance 

to the classifier boundary correlated with reaction time, accuracy, and drift rates in an 

animacy categorization task. Split by animacy, the correlations between brain and 

behaviour were sustained for longer over the time course for animate than for inanimate 

stimuli. Interestingly, when examining the distance to the classifier boundary during the 

peak correlation between brain and behaviour, we found that only degraded versions of 

animate, but not inanimate, objects had systematically shifted towards the classifier 

decision boundary as predicted. Our results support an asymmetry in the representation 

of animate and inanimate object categories in the human brain.  
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1 Introduction 

 

Object recognition is a fast, reliable, and effortless process for humans. Early visual 

areas in the brain respond to simple visual features (e.g., edges, luminance contrast, or 

orientation), and further along the ventral stream sensitivity to objects and object 

categories (e.g., faces, animals, or tools) emerges (Grill-Spector & Weiner, 2014). Using 

multivariate pattern analysis (MVPA), several studies have analysed pattern similarities 

between the neural representation of objects in inferior temporal cortex (ITC) to study its 

representational structure, with both fMRI (Edelman, Grill-Spector, Kushnir, & Malach, 

1998; Haxby, Connolly, & Guntupalli, 2014; Kriegeskorte et al., 2008; Kriegeskorte & 

Kievit, 2013), and MEG (Carlson, Tovar, Alink, & Kriegeskorte, 2013; Cichy, Pantazis, & 

Oliva, 2014, 2016). These studies have provided evidence of a categorical organization 

in ITC, following the observation that objects belonging to the same category tend to 

evoke similar patterns of neural activation (Connolly et al., 2012; Haxby et al., 2001; 

Kriegeskorte et al., 2008; Sha et al., 2015). One robust categorical structure is the 

animate/inanimate distinction in human and primate ITC (Kiani, Esteky, Mirpour, & 

Tanaka, 2007; Kriegeskorte et al., 2008). Animate stimuli (e.g., humans or animals) 

evoke brain activation patterns that are more similar to other animate exemplars than to 

inanimate stimuli (e.g., plants, tools, vehicles) (Carlson et al., 2013; Cichy et al., 2014; 

Downing, Jiang, Shuman, & Kanwisher, 2001; Kiani et al., 2007; Kriegeskorte et al., 

2008). 

 

A current topic of debate is whether categorical information in the brain, as revealed 

using MVPA decoding, is read-out in behaviour (cf. de-Wit, Alexander, Ekroll, & 

Wagemans, 2016; Williams, Dang, & Kanwisher, 2007). For the presence of decodable 
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information in neuroimaging activation patterns related to a stimulus or task does not 

necessarily entail that this information underlies related behaviour. One recent approach 

to linking activation spaces to behaviour (Ritchie & Carlson, 2016) is inspired by 

distance-to-bound models of reaction time (Ashby & Maddox, 1994; Pike, 1973). 

According to distance-to-bound models, evidence close to a decision boundary is more 

ambiguous, reflecting greater difficulty in categorization, while evidence far from the 

decision boundary is less ambiguous with regards to category membership. Assuming 

that response time is a function of stimulus discriminability, and that a classifier decision 

boundary (which is used in MVPA decoding) reflects an observer’s decision boundary, 

then reaction times should negatively correlate with distance from the boundary; for 

example, stimuli that are faster to categorize should be neurally represented as further 

from the classifier decision boundary (Ritchie & Carlson, 2016).  

 

In a previous application of the RT-distance approach to MEG (Ritchie et al., 2015), a 

linear discriminant classifier (LDA) was trained to discriminate the MEG channel 

activation for animate from inanimate stimuli. Next, the distance of each stimulus pattern 

to the classifier boundary in high-dimensional space were rank-order correlated to 

human reaction times for categorizing the same stimuli as animate/inanimate. As 

predicted, the distance to boundary negatively correlated with reaction time. Moreover, 

the correlation over time tracked the MEG decoding time-series (Ritchie et al., 2015). 

Interestingly, when analysing the animate and inanimate stimuli separately, an 

asymmetry was observed: the correlation between distance to boundary and reaction 

time was driven by the animate stimuli (Carlson et al., 2014; Ritchie et al., 2015). 
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A good test of the RT-distance hypothesis is to manipulate task difficulty experimentally, 

and the effects of this behavioural manipulation on representational space. The RT-

distance hypothesis has so far been tested on the differences between objects. For 

example, in Carlson et al, (2014), an ostrich was closer to the animacy decision boundary 

than a human face, and participants were slower to categorize the ostrich as ‘animate’. 

The effect of increasing categorization difficulty of single object images on the distance 

to the classifier boundary in activation space has not yet been tested. According to the 

RT-distance hypothesis, a change in behaviour resulting from manipulating 

categorization task difficulty should be matched by a corresponding shift of the stimulus 

set in representational space. Numerous studies have shown that degrading object 

stimuli reduces categorization performance, such as by scrambling the image phase 

(e.g., Philiastides, Ratcliff, & Sajda, 2006; Philiastides & Sajda, 2006; Wichmann, Braun, 

& Gegenfurtner, 2006), scrambling image amplitude (e.g., Gaspar & Rousselet, 2009), 

reducing luminance contrast (e.g., Macé, Delorme, Richard, & Fabre-Thorpe, 2009; 

Macé, Thorpe, & Fabre-Thorpe, 2005), or blurring the image (e.g., Bruner & Potter, 1964; 

Párraga, Troscianko, & Tolhurst, 2000, 2005; Wyatt & Campbell, 1951). For degraded 

stimuli with longer categorization RTs, the RT-distance hypothesis predicts that these 

stimuli will be located closer to the animacy decision boundary, producing a 

‘compression’ of representational space compared to that for the original versions of the 

stimuli (Fig 1A). This predicts a correlation between the shorter distance to boundary and 

slower accumulation rates (Fig 1B). Note that even in the case of inanimate stimuli where 

there was no correlation (Ritchie et al., 2015), one would still expect a correlation when 

including both clear and degraded versions because of the compression of the general 

representational space (Fig 1B).  

 



Chapter 3 

 132 

 

Figure 1. The predicted effect of degrading stimuli on their location in 

representational space. A. Stimuli of two categories are illustrated as circles (animate 
objects) and squares (inanimate objects) in representational space (only two dimensions 

are plotted here for visualization). The blue shapes represent the stimuli in a clear state, 
and the orange are their degraded counterparts. If distance to a classifier boundary is 

taken as representing evidence for a decision, this predicts that the degraded (orange) 
versions of the stimuli will be located closer to the classifier decision boundary (dashed 

line) that separates the stimulus categories than the clear (blue) versions. B. Stimuli from 
one category (animate objects) and their distance to the classifier boundary versus their 

rate of evidence accumulation for an animacy categorization decision. The RT-distance 

hypothesis predicts that the degraded stimuli, which have moved closer to the decision 
boundary, also have slower evidence accumulation rates (and therefore longer RTs). 

Note that the same prediction holds for the other category (inanimate objects).  

 

The dominant models of reaction time appeal to some form of evidence accumulation 

process (Ashby, 2000; Ratcliff, 1985); That is, evidence for a decision (e.g., animate or 

inanimate) accumulates over time, and the response is made when the amount of 

evidence reaches a certain threshold (Brown & Heathcote, 2008; Gold & Shadlen, 2007; 

Ratcliff & Rouder, 1998). Distance to the classifier boundary can be linked to evidence 

accumulation. Carlson et al., (2014) simulated evidence accumulation with a sequential 
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analysis model, using the distance to the boundary for each object exemplar as a proxy 

for evidence strength. They found that accumulation rate correlated with categorization 

RTs, providing support for the theoretical link between distance to boundary and 

evidence accumulation (Carlson et al., 2014; Ritchie et al., 2015). One way to build upon 

this would be to more closely relate distance to evidence accumulation; beyond 

correlating distance with median RTs, an existing model of evidence accumulation can 

be fit to subjects’ behavioural data, yielding independent model parameter estimates that 

can be correlated with distance to the boundary. As an accumulator model provides a 

more complete characterization of categorization behaviour than average reaction times, 

it may provide a better measure to correlate to representational distances. 

 

The aim of the present study was two-fold. First, using MEG decoding we sought to test 

the prediction that degrading object exemplar would compress the representational 

space, which would correlate with slower animacy RTs compared to un-degraded, or 

clear versions of the same stimuli (Figure 1). Secondly, we aimed to test the RT-distance 

hypothesis in the context of an existing model of RT distributions and choice accuracy, 

the Linear Ballistic Accumulator (LBA; Brown & Heathcote, 2008), in order to evaluate 

whether distance to boundary can be related more directly to evidence-accumulation 

model parameters. 
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2 Methods 

 

2.1 Participants 

 

All participants gave informed consent in writing prior to the experiment. The study was 

conducted with the approval of the Macquarie University Human Research Ethics 

Committee. 100 participants were recruited on Amazons Mechanical Turk (MTurk) to 

determine the level of stimulus degradation needed for equal object recognition 

performance across all stimuli (see Section 2.2). For the second part of the study, 20 

healthy volunteers (4 males; mean age 29.3 years) with normal or corrected-to-normal 

vision participated in the MEG experiment. Participants in both experiments were 

financially compensated for their time. All analysis procedures were performed in Matlab, 

using the statistics and machine learning toolbox. 

 

2.2 Stimuli 

 

We constructed a set of 48 visual object stimuli including 24 animals and 24 inanimate 

objects (natural and man-made) on a phase scrambled natural image background in both 

a clear and a degraded condition. First, high resolution images (> 512 x 512 pixels) of 

various objects were collected via an internet search. We selected images that showed 

prototypical viewpoints of objects. In order to test the RT-distance hypothesis more 

generally, no human or human face images were included in the stimulus set as they are 

generally outliers both behaviourally and in the brain’s response compared to other 

object exemplars (i.e., face stimuli tend to have fast categorization RTs and produce 

pronounced responses in neuroimaging data). It is therefore possible that the inclusion 
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of face stimuli could disproportionately explain any observed correlations between RT 

and neural distance. All exemplar images used in the study are shown in Figure 2A. As 

colour can be a salient cue for image recognition (Biederman & Ju, 1988; Joseph & 

Proffitt, 1996; Ostergaard & Davidoff, 1985; Wurm, Legge, Isenberg, & Luebker, 1993) 

and would make the degrading process (described hereafter) less effective, grey-scaled 

versions of the object images were used in the experiment. A different random noise 

background was created for each exemplar by phase scrambling a natural image of a 

forest scene (see Figure 2B). The object images were overlaid on the noise background, 

producing the stimuli for the clear condition (Figure 2C).  

 
Figure 2. Stimuli and experiment design. A. Stimuli consisted of 24 animate and 24 

inanimate objects. B. Stimuli were placed on a phase scrambled natural image 
background. C. All stimuli in the clear condition. D. In the MEG experiment, participants 

saw clear and degraded stimuli for 66ms in randomized order with a varying inter 
stimulus interval and were asked to report the stimulus animacy with a button press. E. 

To create the degraded condition, stimuli were gradually blurred by simulating defocus 
to a level where they were equally recognizable. F. All stimuli in the degraded condition.  



Chapter 3 

 136 

We created a degraded condition by blurring the same set of images (including their 

background). As different objects require different levels of blur to equate recognition 

performance, we first measured the amount of blur required to impair recognition for 

each image. Our aim was for subjects to be able to perform the task given unlimited 

exposure time (i.e., correctly recognize the object), but to reduce their categorization 

performance under brief presentation duration (i.e., by reducing speed and/or accuracy). 

We simulated defocused blur using an image filter (Figure 3) that convolved the 

amplitude spectrum of the image in the Fourier domain (Figure 3A-B) with a Fourier-

transformed cylinder function (a sombrero function, Figure 3C-D), where increasing the 

radius of the cylinder function results in a greater magnitude (Figure 3E) of defocus blur 

(Sonka, Hlavác, & Boyle, 2008). Images were then gradually degraded by increasing the 

radius in steps of 2 pixels, from a radius of one pixel (no degrading) to 59 (very 

degraded). The sequence of the image coming into focus was presented to the MTurk 

participants. Each participant saw all 48 stimuli from both animate and inanimate 

categories once starting from the most degraded state, while its level of focus was 

gradually increased (in steps of 2 pixel radius). Participants were instructed to press the 

spacebar as soon as they recognized the object in the picture. The stimulus was then 

removed from the screen, and participants entered a name for the stimulus. To check for 

correct recognition, the responses on the naming task were assessed manually for 

validity, to allow for variations in spelling or for synonymous names. For each exemplar, 

the amount of focus needed for 25% of the MTurk participants to correctly recognize (i.e., 

name) the object (see Figure 2F) was used as the blur filter parameters for that exemplar 

in the degraded condition. On average, a radius of 17 pixels (sd=4.68) was used for the 

animate exemplars and 20.5 pixels (sd=10.12) for the inanimate exemplars. 
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Figure 3. Image filter used to blur the experimental stimuli. A. The original image 
and its  amplitude spectrum, which shows the typical energy pattern for natural images 

(high energy at low spatial frequencies (centre), and low energy at high spatial 
frequencies Field, 1987). B. Cylinder functions with radii of 3, 9, and 17 pixels and their 

Fourier transformed versions (sombrero functions), which are used as the image filters. 
C. Convolving the amplitude spectrum of the original image with the sombrero functions 

in the Fourier domain results in images with different levels of defocus blur by removing 

a significant proportion of energy at high spatial frequencies. 
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2.3 MEG Experiment Design 

 

Before the MEG experiment, we confirmed that each participant could recognize all 

exemplars given unlimited presentation time, even in the degraded state, as the intention 

of the design was to decrease categorization speed and accuracy without making the 

stimuli unrecognizable. Stimuli in the degraded state were shown and participants were 

asked to name the object in each picture. If the participant failed to correctly recognize 

the stimulus, it was shown in the clear state, to ensure that all objects were correctly 

recognized. Next, the participant was trained on the task (outside the MEG), as the brief 

presentation duration and fast-pace of the categorization task required practice to 

master. If performance (animacy categorization accuracy) in the first block was lower 

than 80%, the participant was shown all the stimuli again in both states, to identify 

degraded exemplars they were unable to recognize, and then practiced again on a 

second training block. All 20 participants performed above 80% correct after the 

familiarization step.  

 

Following the practice task, participants completed the MEG experiment. On each trial 

within a block, stimuli were projected (at 9x9° visual angle) on a black background for 

66ms, followed by a fixation cross for a random duration between 1000 and 1200ms. 

Participants were asked to categorize the stimulus as animate or inanimate as fast and 

accurate as possible, using a button press (see also Figure 2D). The mapping of the 

response buttons alternated between blocks (Grootswagers, Wardle, & Carlson, 2017; 

Ritchie et al., 2015) and participants received feedback for the first 10 trials of a block 

(red or green cross), to ensure accurate mapping of the buttons. This was included to 

remove a class-specific motor preparation from the average signal and was chosen over 
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a single-trial randomized mapping to allow for fast-paced trials. Within each block, four 

repetitions of each exemplar in both conditions were presented in randomized order. 

Block duration was ~7 minutes. After each block, participant received feedback on 

performance (mean accuracy and number of missed trials). Each participant completed 

eight blocks, resulting in 32 trials per exemplar, 768 trials per category and condition 

(animate/inanimate, clear/degraded), and 3072 trials total per participant. The total time 

in the scanner was about one hour, including breaks between blocks.  

 

2.4 MEG acquisition and preprocessing  

 

Participants were fitted with a cap with 5 marker coils to track head movement during the 

session. The MEG signal was continuously sampled at 1000Hz from 160 axial 

gradiometers using a whole-head MEG system (Model PQ1160R-N2, KIT, Kanazawa, 

Japan) while participants lay in a supine position inside a magnetically shielded room 

(Fujihara Co. Ltd., Tokyo, Japan). Recordings were filtered online between 0.03Hz and 

200Hz. We examined the delay in stimulus onsets (Ramkumar, Jas, Pannasch, Hari, & 

Parkkonen, 2013) by comparing the photodiode responses with the stimulus onset 

triggers (sent by the experiment script), and found a highly consistent delay of 56.26ms, 

for which we conservatively corrected by shifting the onset triggers back by 56ms. 

Recordings were sliced into 700ms epochs (-100 – 600ms post-stimulus onset). The 

trials were downsampled to 200Hz (5ms resolution) and transformed using principal 

component analysis (PCA), where the components that accounted for 99% of the 

variance were retained to reduce the dimensionality of the data (mean 62.25 

components, sd 12.33). Finally, to increase signal to noise, 4 trials of each exemplar 

(with balanced response mappings) were averaged into pseudo-trials (Grootswagers et 
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al., 2017; Isik, Meyers, Leibo, & Poggio, 2014), leaving 8 pseudo-trials per exemplar in 

both conditions. 

 

2.5 Sliding time window decoding 

 

To investigate the decoding performance of animacy over time, sliding window Naïve 

Bayes classifiers were used on the pseudo-trials. To assess the difference in decoding 

performance between the clear and degraded conditions, three separate classifiers were 

used for decoding; one for each condition, and one for both conditions combined. At 

each 5ms interval t, the classifiers were trained and tested on a 25ms window (from t-

25ms to t). The classifier performance was examined using leave-one-exemplar-out 

cross-validation (Carlson et al., 2013). In this method, the classifier is trained on the 

animacy of all-but-one exemplar, and tested on trials of the left out exemplar. This is 

repeated for each exemplar, and the mean decoding accuracy on the left out exemplars 

is used to assess generalization accuracy. Using this cross-validation method, the 

classifier has to generalize the concept of animacy, and cannot benefit from exploiting 

individual stimulus properties because the test exemplar is not in the training set (Carlson 

et al., 2013). We report the subject-averaged classifier accuracy over time, with 

significant above-chance accuracies assessed using a non-parametric Wilcoxon signed 

rank test. The False Discovery Rate (FDR) was used to control for false positives 

resulting from multiple comparisons. 
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2.6 Fitting LBA on individual subject behaviour 

 

One of the aims of this study was to use a more complex model of evidence 

accumulation, and to then correlate distance to boundary with the drift rate parameters 

of the model, as well as RT and accuracy. The Linear Ballistic Accumulator is a 

mathematically tractable yet simple and complete model of evidence accumulation (LBA; 

Brown & Heathcote, 2008). LBA simultaneously takes into account both the full 

distribution of RTs (i.e., the mean, variability and positive skew of the RT distribution, see 

Luce, 1986) and task accuracy. LBA differs from other well-known accumulation models 

(e.g., the diffusion decision model Ratcliff, 1978, or the leaky competitive accumulator, 

Usher & McClelland, 2001) by modelling the response alternatives (here: animate and 

inanimate) with separate independent accumulators that accrue evidence accumulation 

in a linear and ballistic manner. In particular, the LBA model assumes that between-trial 

variability in the amount of evidence required for a decision, and the rate at which it 

accumulates, dominate over any moment to moment variability in evidence during a trial, 

whereas the latter source of noise plays a greater role in alternative models. These 

properties make LBA analytically simple and relatively easy to apply, which is ideal for 

this study, where each stimulus is treated as a separate condition, meaning that there 

are many parameters to estimate, each based on relatively few data points. To simplify 

the fitting procedure, the stimuli for both categories were separated into 6 bins based on 

accuracy. Next, a set of progressively more complex parameterizations were fit stepwise 

using maximum likelihood estimation (Donkin, Brown, & Heathcote, 2011; Rae, 

Heathcote, Donkin, Averell, & Brown, 2014). The most complex model parameterization, 

which was used here for further analysis, included clear/degraded, animate/inanimate, 

and stimulus as factors. Hence, each stimulus in both clear and degraded conditions had 
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a separate drift rate, which is important to note, as the goal was to correlate stimulus-

specific distances with drift rates. To assess the reliability of the model fits, we compared 

the model predictions to the full distributions of accuracy and RT. Figure 4 shows that 

the LBA model provided a very accurate model of the effect of stimulus degradation and 

of differences between animate and inanimate images, both in terms of accuracy (Figure 

4A) and the entire distribution of RTs (Figure 4B), and so provides a useful 

characterization of the participants’ behaviour.  

 

 

 

Figure 4. Fits of the LBA model to (A) accuracy and (B) the distribution of RT, with 

95% confidence intervals. The RT distribution is illustrated by plotting the 90th 
percentile (upper lines, representing the slowest RTs), the median (50th percentile, 

middle lines) and the 10th percentile (lower lines, representing the fastest RTs). 
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2.7 Predicting behaviour from representational distance 

 

Individual exemplars can be represented as points in representational space (i.e., a 

multidimensional feature space). To decode animacy, we applied a discriminant 

classifier (Gaussian Naïve Bayes) to optimize a decision boundary in multidimensional 

space, separating the neural patterns for animate and inanimate exemplars. According 

to the RT-distance hypothesis, the neural representations of the exemplars that are close 

(in multidimensional space) to this boundary are predicted to be more difficult to 

discriminate, as there is less evidence for the decision. This forms a prediction for 

behaviour, where less evidence for a decision would result in slower RTs or lower 

accuracies (Carlson et al., 2014; Ritchie & Carlson, 2016; Ritchie et al., 2015) , and, in 

the case of the LBA decision model, slower drift rates. For the current study, we predicted 

that degraded stimuli would be closer to the decision boundary in representational space, 

and therefore correlate with lower accuracy, slower reaction times, and slower drift rates. 

 

We tested this prediction by repeating the following process at each time window: First, 

all the trials for each exemplar were averaged to create an average representation in 

multidimensional space for each exemplar (one for the exemplar in clear, and one for 

degraded state). In this space, a decision boundary for animacy was fitted (i.e., training 

a Naïve Bayes classifier), and the representational distance to this boundary for each 

exemplar was computed. This resulted in a distance-value for each exemplar in both 

clear and degraded states (24 animate and 24 inanimate exemplars in 2 states = 92 

distance values). Next, the exemplar distances were rank-order correlated (using 

Spearman’s ρ) to the two behavioural measures (median reaction time, mean accuracy) 

and the mean drift rate for the exemplars. 
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Repeating this process over time and subjects resulted in three time-varying correlations 

(two for each behavioural measure, and one for drift rate) for each subject. We then 

report the subject-averaged time-varying correlations, and used a non-parametric 

Wilcoxon signed rank test at each time window to test for significant above-zero 

correlations at the group level. Note that this approach differs from Ritchie et al., (2015), 

where distances and reaction times were averaged over subjects first, and the 

correlations were performed at the group level. False discovery rate (FDR) adjustment 

was used to control for false positives resulting from multiple comparisons. This process 

allowed us to compare the distance to boundary correlations with the three variables. 

We also sought to assess the possibility of modulating effects of animacy, for example 

whether the animate-inanimate asymmetry reported in Carlson et al., (2014) and Ritchie 

et al. (2015) was replicated, and whether it was affected by degrading the stimuli. For 

this, we computed the time-varying correlations separately for animate, and inanimate 

exemplars. 

 

3 Results 

 

3.1 Behavioural results 

 

Overall, subjects performed well on the categorization task (mean accuracy 87.9%, sd 

12.7) with a median RT of 457.5ms (sd 64.6). Figure 5 shows the median RT (Figure 5A) 

and mean accuracy (Figure 5B) separate for category (animate vs. inanimate) and 

stimulus condition (clear vs degraded). Analysis of variance showed that animate 

exemplars were easier to categorize than inanimate exemplars (compare left versus right 
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groups in each plot), with significantly faster median RTs (F(1,19)=32.09, p<.0001) and 

higher accuracies (F(1,19)=6.27, p<.0001). As predicted, degrading the stimuli made the 

animacy categorization task more difficult (compare blue and yellow lines), significantly 

lowering accuracy (F(1,19)=41.81, p<.0001) and increasing median RT (F(1,19)=85.06, 

p<.0001) for both animate and inanimate exemplars. There was no significant interaction 

between animacy and degrading for either median RT (F(1,19)=0.04, p=0.84), or 

accuracy (F(1,19)=0.01, p=0.92). 

 

In order to test whether distance is related to evidence accumulation, we obtained drift 

rates for each exemplar and subject from the LBA fits. The LBA produces a separate 

drift rate parameter for the correct accumulator (i.e., the animate accumulator for animate 

stimuli, and the inanimate accumulator for inanimate stimuli) and the incorrect 

accumulator (i.e., the inanimate accumulator for animate stimuli and vice versa), 

however only the drift rate for the correct response accumulators were included in our 

analysis. The resulting drift rate parameters are summarized in Figure 5C, split by 

animacy and degradation. Degrading the stimuli resulted in significantly slower drift rates 

(F(1,19)=41.20, p<.0001). There was a main effect of animacy on drift rate 

(F(1,19)=4.44, p<0.05), and a significant interaction between animacy and stimulus 

clarity on drift rate (F(1,19)=18.52, p<0.0001), as degrading reduced the drift rate for 

animate exemplars more than inanimate exemplars (see Figure 5C). In sum, we 

confirmed that the degraded exemplars were generally harder to categorize (in terms of 

longer RT, lower accuracy, and slower drift rate), demonstrating our stimulus 

categorization difficulty manipulation (blur) was successful. 



Chapter 3 

 146 

 

Figure 5. Behavioural results. The distributions of (A) the median reaction time, (B) 

accuracy, and (C) drift rate for the correct response accumulator, split up by exemplar 
category (animate/inanimate) and condition (clear/degraded, blue and orange lines). 

Error bars represent +/- SEM. 

 

3.2 MEG Decoding 

 

A prediction of degrading the stimuli is that decoding performance will be lower relative 

to that for clear stimuli. To evaluate the effect of blurring the stimuli on decoding 

performance over time, sliding time window classifiers were trained on predicting 

stimulus animacy at each time point. The results are presented in Figure 6, as mean 

cross-validated decoding accuracy over subjects, separately for clear and degraded 

stimuli. The decoding onset in the clear condition is at 75ms, which is consistent with 

previous findings showing an animacy decoding onset of approximately 60 - 80 ms 

(Carlson et al., 2013; Ritchie et al., 2015). In the degraded condition, decoding onset 

was 170 ms, and decoding performance was significantly lower than in the clear 

condition over the entire time course (black marks above the x-axis). Peak decoding 

performance for degraded objects was also later, 380 ms compared to 345 ms for clear 

stimuli. Initially, decoding performance for the combined data for clear and degraded 
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conditions closely matched that for the degraded condition, but then raised to a level 

closer to the performance in the clear condition. In sum, the neural patterns for blurred 

stimuli were more difficult to decode from the whole-brain MEG activation patterns than 

those for the clear versions of the same stimuli.  

 

 

 

Figure 6. Decoding animacy from the MEG signal. Decoding was performed using 
leave-one-exemplar-out cross-validation with 25ms sliding time window classifiers. At 

each time point t, the graph shows the mean classifier accuracy over subjects at the 

window [t-25ms, t]. Shaded areas show standard error between subjects. Coloured 
marks above the x-axis indicate significant above-chance (50%) decoding. Black marks 

indicate significant (FDR-adjusted p<0.05) differences in classifier accuracy between the 
clear and degraded conditions. The grey bar on the x-axis indicates the time that the 

stimulus was on the screen (0-66ms). 
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3.3 Predicting behaviour from representational distance 

 

To investigate the relationship between decodability and behaviour, we computed the 

time-varying distance to the classifier decision boundary for all the exemplars for each 

subject. These subject-specific distances were then rank-order correlated to the 

subject’s behavioural measures for each exemplar: RT, accuracy, and the drift rate as 

fitted by LBA. Note that for accuracy and drift rate, the RT-distance hypothesis predicts 

a positive correlation (closer to the boundary corresponds to lower accuracy and slower 

drift rate), however a negative correlation is predicted between RT and distance (closer 

to the boundary corresponds to longer reaction times). For ease of comparison the sign 

of the correlation for RT was inverted in Fig 7. 

 

Figure 7A shows the mean time-varying correlations over subjects for drift rate (green 

line), RT (red line), and accuracy (purple line). The peaks of the time-varying correlations 

are shown in the inset bar graphs. Although drift rate appears to have an earlier and 

higher peak correlation than RT and accuracy, this difference was not statistically 

significant. The similarity between these time-varying correlations is likely due to 

correlations among the different behavioural measures (e.g., exemplars with fast RTs 

are likely to have high accuracies). These results further show that accuracy and drift 

rate can be predicted equally well using distance to boundary. While the LBA model has 

been used before to fit non-human primate neural activations (Cassey, Heathcote, & 

Brown, 2014), this is the first time it has been related to neuroimaging data measured 

with MEG. Thus, our results are promising considering that drift rate more closely 

represents the accumulation of evidence for a decision, compared to RT or accuracy. In 
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sum, distance to boundary correlates with the behavioural measures as well as the fitted 

drift rate parameters and these follow similar trajectories.  

 

Figure 7. The correlation between distance to boundary, behavioural variables, 

and drift rate. A. The distance model applied to all the exemplars. B. Results for animate 
exemplars only. C. Results for inanimate exemplars. Three measures (RT, accuracy, 

and the drift rate parameter) were correlated with distance to boundary over time. RT 
refers to inverted normalized RT. Accuracy is the mean accuracy for exemplars, and drift 

rate was estimated by fitting LBA. Shaded areas refer to the standard error over subjects, 
and coloured marks above the x-axis indicate significant above-zero correlations. The 

peak correlations with their standard errors are compared in the inset (bars top left). The 

grey bar on the x-axis indicates the time the stimulus was on the screen (0-66ms).  

 

Having established that distance to boundary predicts RT, accuracy and drift rate for 

animacy categorization, we next investigated the relative contributions of animate and 

inanimate exemplars. In Ritchie et al., (2015), time-varying correlations for the inanimate 

exemplars were not significant. Thus the effect was specific to animate exemplars, and 

the same asymmetry was also reported in Carlson et al., (2014). In this study however, 

due to the degrading of stimuli, we also predicted a correlation for inanimate exemplars 
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(when using both clear and degraded exemplars), as we predicted that the 

representations of degraded inanimate exemplars would still shift towards the classifier 

decision boundary (Figure 1). Figure 7 shows the result of computing the time-varying 

correlation separately for animates (Figure 7B) and inanimates (Figure 7C). Animate 

exemplars reach higher correlations on all behavioural measures, and follow the same 

trends as seen in Figure 7A for the combined stimulus set. In contrast, inanimate 

exemplars have lower correlations overall and were less sustained over time. However, 

significant above-chance correlations between distance and RT, accuracy, and drift rate 

were still present for the inanimate exemplars. In addition, more sustained correlations 

(more significant time points) are present for drift rate and accuracy than for RT, for the 

inanimate exemplars (which is of interest, as previous studies only used RT). 

 

3.4 Comparing the decoding time courses with the time course of predicting 

behaviour 

 

Ritchie et al. (2015) found that the time-varying correlation with behaviour matched the 

time-varying classifier decoding performance. To examine whether this relationship was 

present in the current study, the time-varying correlations with behaviour (RT, accuracy 

and drift rate) were rank-order correlated to the time-varying decoding result. Note that 

while a correlation with behaviour explicitly requires above chance decoding (which 

predicts a correlation between such trajectories), the reverse relationship does not 

necessarily hold. The results are presented in Figure 8, and show significant correlations 

between the results from Figure 7 and the decoding trajectory (Figure 6), rising and 

falling at approximately the same time. When comparing the animate and inanimate 

trajectories separately (Figure 7B-C), only the animate time-varying correlation matches 
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decoding performance. These results are consistent with the findings from Ritchie et al. 

(2015) who also found higher correlations between RT-correlation and decoding 

trajectories for the animate exemplars. In addition, the decoding trajectory also correlates 

significantly with the accuracy results from Figure 7, and is significant for both animate 

and inanimate exemplars. Correlations with the drift rate parameter are also significant, 

but appear lower in magnitude. This is evident when comparing Figures 6 and 7, where 

drift rate has a dual peak structure, which differs from the trajectories for the RT and 

accuracy correlations. 

 

 

 

Figure 8. Similarity (Spearman’s r) between the decoding trajectories (Figure 6), 

and correlation trajectories (Figure 7). The time varying decoding performance (for all 

clear and degraded stimuli combined), and time-varying correlations were rank-order 
correlated. High values indicate similar trajectories (e.g., matching rises, falls, and 

peaks). Asterisks indicate significant correlations (*=p<.01; **=p<.001). 
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3.5 Compression of degraded objects in representational space 

 

The RT-distance hypothesis predicts that the neural patterns for degraded objects (which 

have slower RTs and lower accuracies; see Figure 5) will be closer to the category 

boundary in representational space, as the distance to the boundary represents the 

degree of evidence for category membership (Figure 1). The results above show that 

classifier accuracy is lower for degraded objects, indicating that degraded items are 

harder to separate in representational space (Figure 6). Next, we showed that distance 

to boundary correlates with all three behavioural measures (Figure 7A), and this 

correlation is mostly driven by animate exemplars where it is sustained over time (Figure 

7B), with some significant correlations for inanimates across a more limited portion of 

the time course (Figure 7C). Together, these results seem to favour our prediction based 

on the RT-distance hypothesis: degraded objects (both animate and, to some extent, 

inanimate) are closer to the boundary than their clear counterparts, and this shift in 

representational space correlates with RT, accuracy, and drift rate. 

 

To visually compare our results to the predictions as shown in Figure 1A, we plotted all 

exemplars in both clear and degraded states relative to the decision boundary in 

representational space (at the time of peak correlation between drift rate and distance to 

boundary (210ms), see Figure 7A) at 210ms) in Figure 9. Comparing Figure 1A and 

Figure 9 suggests that the prediction that degraded stimuli are located closer to the 

category boundary than clear stimuli holds only for animate, but not inanimate, 

exemplars. This result is consistent with previous results from Ritchie et al. (2015) and 

Carlson et al., (2014) which showed no clear relationship between distance to boundary 

and reaction time for inanimate stimuli. Although, even if the basic relationship between 
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behaviour and distance to the classifier boundary does not hold for inanimate exemplars, 

it is still surprising that there is also no relationship between degrading inanimate stimuli 

and where they are located relative to the category boundary. This asymmetric 

compression of representational space is however consistent with the interaction 

between animacy and degrading on the fitted drift rates (Figure 5C), which suggests that 

there is little or no effect of degrading on the representation of inanimate exemplars.  

 

The compression of exemplar distances towards the animacy boundary is also predicted 

to match slower drift rates (as shown in Figure 1B). To compare our results to this second 

prediction, we plotted the mean drift rates over subjects against the mean distance to 

boundary over subjects for each exemplar in both states in Figure 10 separately for 

animate (Figure 10A) and inanimate (Figure 10B) exemplars. The result is shown at the 

time of peak correlation between drift rate and distance to boundary (210ms, Figure 7A). 

The exemplars are plotted as a function of their mean distance to boundary (x-axis), and 

mean drift rate (y-axis). The RT-distance hypothesis predicts that exemplars with a 

higher drift rate are located further away from the boundary. Lines in Figure 10 connect 

the two states of each exemplar and are coloured green if this prediction is true for each 

exemplar. This is the case for most of the animate exemplars (Figure 10A), but (not 

surprisingly, considering the asymmetry in Figure 9) for only a few of the inanimate 

exemplars (Figure 10B). 
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Figure 9. Reconstruction of the representational space for animacy decoding. The 

location of exemplars in their clear state are plotted in blue circles, and their degraded 
counterparts in yellow circles. The x-axis represents distance from an object to the 

boundary, and is the mean distance to the boundary over all subjects at 210ms. The 
exemplars are ordered on the y-axis according to the shift in distance between their clear 

and degraded versions, with the largest shift towards the boundary at the bottom of the 
y-axis, and the largest shift away from the boundary at the top. Note that some objects 

(e.g., the degraded starfish) have a negative mean distance, and are thus placed on the 
opposite side of the boundary. Note that degraded animate exemplar representations 

are in general closer to the linear decision boundary than the clear versions, 
demonstrating compression of representational space for animate but not inanimate 

objects. 
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Figure 10. The effect of degrading on the relationship between drift rate and 

distance to boundary for (A) animate and (B) inanimate exemplars. Items were rank-

ordered for mean drift rate over subjects, and mean distance to boundary at the peak 
LBA prediction time (210ms, see Figure 7A). Here, the y-axis represents the decision 

boundary. Blue circles are the exemplars in their clear versions, and yellow circles 
degraded versions. Lines connect the two versions of each exemplar, and are coloured 

green if the RT-distance hypothesis correctly predicts the direction of the relationship 
(i.e., the degraded versions of the objects are closer to the boundary and have a slower 

drift rate), and red if not. The distributions of the exemplars on the variables are shown 

on the axes. 
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4 Discussion 

 

Our aim was to test the RT-distance hypothesis in the context of a specific prediction, 

namely that degrading objects will result in a compression of representational space, and 

that the shift in representational space for degraded objects will match impaired 

categorization behaviour. The results showed that degraded object images produced 

slower RTs, lower accuracies, and slower evidence accumulation rates in an animacy 

categorization task (Figure 5). When examining the distances of individual objects, we 

observed an asymmetric compression: only the degraded animate objects had moved 

closer towards the classifier boundary. Unexpectedly, there was not a corresponding 

consistent shift towards the boundary for degraded inanimate exemplars. In addition, we 

found that distance to boundary correlates with drift rate, which is a measure that is more 

closely related to the decision process than descriptive statistics (mean RT or accuracy). 

 

4.1 Asymmetric effects of stimulus degradation on the neural representation of 

animacy 

 

We found asymmetrical effects for animate and inanimate objects. Correlations between 

distance and behaviour (RT/accuracy/drift rate) in this study were driven by animate 

stimuli. Inanimate stimuli had smaller and less sustained correlations between distance 

and behaviour, and did not show compression towards the classifier boundary in 

representational space for degraded versions of the stimuli. Previous studies also found 

that correlations between distance and RT were almost exclusively driven by animate 

stimuli (Carlson et al., 2014; Ritchie et al., 2015), which is consistent with our results. 

Our study differed in many aspects from earlier studies, for example, by using grey scale 
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stimuli on a controlled background, and excluding human or human face stimuli. Human 

faces/bodies have faster RTs (Crouzet, Kirchner, & Thorpe, 2010) and highly decodable 

neural responses (Carlson et al., 2013; Kriegeskorte et al., 2008) and could therefore 

potentially significantly drive the RT-distance correlations in previous studies. However, 

we have shown these findings are robust when human faces/bodies are omitted (also 

note that correlations were calculated within-subject, rather than on the pooled group 

means as in previous work). Carlson et al. (2014) argue for a conceptual difference 

between the two animacy categories, suggesting that ‘inanimate’ is not an equivalent 

category to animate, for example, because inanimate is negatively defined (i.e., as ‘not 

animate’) and is less restricted than the animate category. Furthermore, a clear 

hierarchical subdivision (e.g., vertebrate - invertebrate) has been reported only within the 

animate category (Kiani et al., 2007). 

 

We observed that degraded versions of animate objects had compressed towards the 

boundary, consistent with the RT-distance hypothesis. The lack of compression for the 

inanimate side of the boundary, and the absence of strong correlations between 

inanimate categorization behaviour and distance to boundary, suggests that even though 

the animate/inanimate distinction is highly decodable, it does not sufficiently capture the 

structure of brain representations linked to responding ‘inanimate’. Future work could 

explore this issue using a different categorization task where both categories are similarly 

constrained (e.g., faces versus tools), or use a different model of the animacy task (e.g., 

model it as an animal detection task, instead of animacy categorization). However, it is 

still possible that responses to other category dichotomies will be based on one category 

versus ‘not’ that category. For example a processing bias for faces means they are easier 

to recognize than tools (cf. Wu, Crouzet, Thorpe, & Fabre-Thorpe, 2015) and an effective 
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face/tool categorization strategy would be to simply try to detect whether or not a stimulus 

is a face. In addition, outside the lab, objects are categorized effectively without having 

to exhaustively test all two-way categorization combinations. Thus, instead of using 

dichotomous categorization, applying a different task to examine the RT-distance 

relationship might yield new insights, for example by using go/no-go tasks (Crouzet et 

al., 2010; Kirchner & Thorpe, 2006; Thorpe, Fize, & Marlot, 1996). 

 

The amount of compression towards the decision boundary was different between 

individual exemplars (Figure 9). Even though the degraded stimuli were equated for 

recognizability in an object-naming task, some showed a larger displacement towards 

the boundary than others (e.g., compare difference between clear and degraded 

versions of the fish and the sheep in Figure 9). The naming task may be more difficult 

than the categorization task, and although they likely rely on the same underlying 

representation (Riesenhuber & Poggio, 2000), different amounts of evidence may be 

required for naming versus categorization. For example, some animals might be equally 

easy to name, but when making an animacy decision, some animals are more typically 

animate than others, which likely makes them easier to categorize than less typical 

animals. Animacy categorization is known to be influenced by typicality (Posner & Keele, 

1968; E. H. Rosch, 1973; E. Rosch & Mervis, 1975). Typical exemplars have also been 

found to be better decodable (Iordan, Greene, Beck, & Fei-Fei, 2016). For example, 

mammals such as the cat, tiger, and squirrel are all far from the boundary and have 

matching fast reaction times and high drift rates. Conversely, the fish and snake are 

closer to the boundary, and are possibly less typically conceived of as 'animate', for 

example, because they move and behave differently than mammals. An extreme 

example is the starfish, which is the animal closest to the boundary in the clear condition, 
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and is on the wrong side of the boundary (i.e., consistently predicted ‘inanimate’ by the 

classifier) in the degraded condition, suggesting that it is hard to categorize it as animate 

(see Figure 9). We found that subjects mostly categorized the starfish as inanimate, and 

that, when asked, some reported that they do not consider it an animate object. Note 

that in order to observe a correlation between distance to the boundary and reaction 

times, distances and reaction times have to systematically differ between exemplars in 

the same category. Our results thus provide some support for the presence of a more 

continuous than dichotomous neural representation of animacy in the brain (cf. Connolly 

et al., 2012; Sha et al., 2015). 

 

Further evidence in support of an animacy asymmetry comes from our observation that 

inanimate stimuli in general needed to be blurred more to equate their recognizability to 

animate exemplars (see section 2). This suggests that animate objects are more 

homogenous than inanimate objects, thus there is greater variance in the 'inanimate' 

than 'animate’ category (which could be caused by the lack of categorical structure in 

inanimates). This is consistent with animate objects in general sharing more features 

than inanimate objects (Garrard, Ralph, Hodges, & Patterson, 2001; McRae, de Sa, & 

Seidenberg, 1997). The blur filter removes details from the stimuli, but object shape is 

preserved. It could be the case that the general shape within the broad category of 

animate objects is more similar, and provides more alternatives (cf. Bracci & op de 

Beeck, 2016). Even though some higher-level animal subdivisions might be visually 

dissimilar (e.g., compare fish with birds), subgroups often share similar shapes. For 

example, outside the laboratory, in order to recognize a blurry zebra (e.g., without 

glasses), likely alternatives that have similar shapes (e.g., horse, deer, moose) need to 

be eliminated. In contrast, viewing a blurry piano provides less alternatives which share 
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the same shape. Together, this supports the notion that inanimate and animate are not 

equivalent categories, which is consistent with patient studies that found selective deficits 

in recognition of animate or inanimate objects (Caramazza & Shelton, 1998). Future 

research could explore whether homogeneity of the category determines the effect of 

degrading stimuli, by using the distance to bound approach with more homogenous 

groups of inanimate objects, such as tools or fruits, or restricting the animate category to 

only domestic animals. 

 

4.2 Drift rate is predicted by distance to boundary 

 

The drift rate parameter from the LBA model directly reflects the speed of evidence 

accumulation, and builds upon previous work that used RT as a proxy for the decision 

process (Carlson et al., 2014; Ritchie et al., 2015). We found that correlations with LBA 

drift rate were on par with those for RT, which was somewhat expected given that RT, 

accuracy and drift rate are highly correlated. However, there were some qualitative 

differences in the trajectories. The correlation between LBA drift rate and distance 

peaked earlier than RT, and had an earlier onset—although this should be interpreted 

with caution as earlier onsets can be caused by stronger signal-to-noise rather than true 

underlying differences (Grootswagers et al., 2017). Moreover, drift rate followed a 

different trajectory than the category decoding trace (as seen in Figure 8), which 

suggests it may capture a different part of the (neural) decision process. It is interesting 

that the drift rate trajectory does have a dual peak structure, which resembles previous 

results of MEG animacy decoding (Carlson et al., 2013; Cichy et al., 2014; Ritchie et al., 

2015), but which was not present in our MEG decoding results. This dual-peak structure 

may suggest that at some point (in the time period between the peaks), distance to 
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boundary is used to a lesser extent for forming the categorization decision. Alternatively, 

the decision could have already been made after the first peak, as categorization 

happens very fast (Crouzet et al., 2010; Kirchner & Thorpe, 2006; Thorpe et al., 1996), 

and the second peak reflects, for example, a feedback process that has the same 

representational structure (i.e., the same distances). Taken together, it is sensible to 

relate distance directly to evidence accumulation using drift rate as it is more closely 

related to decision processes and therefore it may successfully relate to a wider range 

of behaviour than RT alone. Future research could explore this further by using tasks 

that allow more for more variance in RT and accuracy (e.g., incentivizing different speed-

accuracy trade-offs), where drift rate is not as highly correlated with RT as in the current 

study. Moreover, as we showed it is possible to link one decision model with neural 

distance to boundary, this could be tested with other models of decision making, such 

as exemplar-based models of choice (Nosofsky & Stanton, 2005) or their LBA-based 

extension (Donkin & Nosofsky, 2012). More complex models of choice behaviour 

explicitly parameterize noise fluctuations, and they might better describe the inherently 

noisy neuroimaging data, but would require more trials per condition to obtain a good fit. 

Alternatively, different methods of obtaining decision boundaries can be tested. 

However, linear classifiers perform very similarly on MEG data (Grootswagers et al., 

2017) and therefore their decision boundaries will not likely be different. Instead, results 

from non-linear classifiers can be compared with our results, but they generally return 

sub-optimal decoding solutions in MEG (Grootswagers et al., 2017). 
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4.3 The neural dynamics of visual object categorization 

 

We found that significant decoding performance of clear stimuli started around 70ms, 

and peaked at 345 ms, which was later for degraded stimuli (165 ms and 380 ms, 

respectively). Note that differences in decoding onsets have to be interpreted with 

caution, as a later onset can be a result of a lower overall decoding performance 

(Grootswagers et al., 2017; Isik et al., 2014). Still, we observed that the first local 

maximum in the decoding trace for the clear objects was absent in the degraded objects 

(Figure 6). This difference suggests that some information in the early response is 

predictive of animacy in the clear condition. As the timing of the early peak corresponds 

to early to mid-level visual areas (Cichy et al., 2016; Thorpe et al., 1996; VanRullen & 

Thorpe, 2001), the predictive information in the first local maximum in the clear decoding 

condition could reflect low-level visual information that is removed when degrading the 

stimuli (Kirchner & Thorpe, 2006). 

 

We found that the peak correlation between distance and drift rate occurred at 210 ms, 

and the onset of significant correlations with drift rate was at 100 ms. These values did 

not match the onset or peak of decoding, suggesting that the optimal time for read out 

does not necessarily correspond with the time that the information can best decoded 

from the signal. In contrast, Ritchie et al., (2015) found correlations during the whole time 

period of significant decoding. A possible explanation for this difference is that the fast-

paced task and short stimulus duration (66 ms compared to 500 ms in Ritchie et al., 

(2015)) in the current study promoted a faster read out of animacy by exploiting low level 

visual cues (Hong, Yamins, Majaj, & DiCarlo, 2016; Kirchner & Thorpe, 2006; Thorpe et 

al., 1996). This would in addition explain why exemplars such as the banana and 
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helicopter, which have more rounded shapes than other inanimate objects, are closer to 

the boundary (Figure 9). 

 

In this study, all MEG channels were included for training and testing the classifier. A 

limitation of this approach is that the spatial source of the decodable signal is unknown. 

Because participants were performing an animacy task in the scanner, it is possible that 

the source of the decoding is the decision process (e.g., frontal executive areas), rather 

than the representation space in IT. However, as previous research has found no 

difference in decoding performance between active animacy categorization versus a 

distractor task (Ritchie et al., 2015). In addition, the representational structure in the MEG 

response to visual objects has been found to correspond best to fMRI representations in 

the ventral visual stream, showing that the early and late MEG response respectively 

matched the V1 and IT fMRI responses (Cichy et al., 2014, 2016). Taken together, these 

findings show that the most likely sources of information in our study originate from areas 

in the ventral visual stream, rather than decision making areas. 
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4.4 Conclusion 

 

In this study we tested whether representational space is compressed when degrading 

stimuli, and whether this matches behaviour in a dichotomous categorization task. We 

found that degrading stimuli made them harder to categorize, and that this was 

accompanied by a compression of representational space, as predicted by the RT-

distance hypothesis. This compression was only observed for animate stimuli, 

suggesting an asymmetry in in the neural representation of animacy. Moreover, we 

showed that neural distance to boundary can be directly related to a current model of 

evidence accumulation (LBA) as the fitted drift rates from this model correlated with 

distance to the boundary. Connecting linear classifiers to models of the decision 

processes is a step towards relating brain imaging to behaviour, a fundamental and 

complex challenge in cognitive neuroscience (de-Wit et al., 2016; Forstmann & 

Wagenmakers, 2015; Purcell & Palmeri, 2016). 
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Abstract 

 

Using “brain decoding” methods, it has been repeatedly shown that information about a 

stimulus, such as visual object category, can be decoded from brain activation 

patterns. An implicit assumption in these studies is that if information can be decoded, 

then this information is available to the brain for use in behaviour. In the current study, 

we combined the distance to bound approach analysis to investigate where in the brain 

decodable visual object category information exists, and additionally, where it is 

suitable for read out in behaviour, assuming a linear read-out process. We found 

decodable category information along most of the ventral and dorsal visual streams. 

However, in only a subset of locations this information could be used to predict 

observer categorization reaction times, mainly in the anterior Ventral Temporal Cortex 

(VTC). Our results support the important role the VTC potentially plays in object 

categorization. Further, they suggested that mid-level ventral and dorsal areas 

contribute to categorization decisions. By mapping the dissociation between decodable 

information and information that can be used to predict behaviour, we showed that only 

a subset of decodable information is relevant for the brain in behaviour. 
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1 Introduction 

 

Using Multi-Variate Pattern Analysis (MVPA) or “brain decoding” methods, information 

can be decoded from functional Magnetic Resonance Imaging (fMRI) activation 

patterns (Carlson, Schrater, & He, 2003; Cox & Savoy, 2003; Haxby et al., 2001; 

Haynes, 2015; Kamitani & Tong, 2005; Kriegeskorte, Goebel, & Bandettini, 2006; Tong 

& Pratte, 2012). Many MVPA studies have been conducted in the domain of visual 

object recognition, showing that categorical information, such as object animacy, can 

be reliably decoded from fMRI Ventral Temporal Cortex (VTC) patterns of activation 

(Carlson, Tovar, Alink, & Kriegeskorte, 2013; Cichy, Pantazis, & Oliva, 2014, 2016; 

Kiani, Esteky, Mirpour, & Tanaka, 2007; Kriegeskorte et al., 2008; O’Toole, Jiang, Abdi, 

& Haxby, 2005; Sha et al., 2015). An implicit assumption in many brain decoding 

studies is that if information can be decoded, then this information is available to the 

brain to use in behaviour (de-Wit, Alexander, Ekroll, & Wagemans, 2016; Ritchie, 

Kaplan, & Klein, in press). However, this does not have to be the case, as it could be 

that the decoded information is merely a by-product of a different signal that is relevant 

for the brain (de-Wit et al., 2016; Williams, Dang, & Kanwisher, 2007). 

 

A fundamental challenge in cognitive neuroscience is to relate decoded information 

represented in the brain to behaviour (de-Wit et al., 2016). To date, studies have 

approached this issue by correlating classifier performances to behaviour (Naselaris, 

Kay, Nishimoto, & Gallant, 2011; Raizada, Tsao, Liu, & Kuhl, 2010; van Bergen, Ji Ma, 

Pratte, & Jehee, 2015; Walther, Caddigan, Fei-Fei, & Beck, 2009; Williams et al., 

2007), or by comparing the similarity structure of the decoded information to 

behavioural similarity ratings (Bracci & op de Beeck, 2016; Cohen, Dennett, & 
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Kanwisher, 2016; Mur et al., 2013; Proklova, Kaiser, & Peelen, 2016; Redcay & 

Carlson, 2015; Wardle, Kriegeskorte, Grootswagers, Khaligh-Razavi, & Carlson, 2016). 

Another approach to address this issue rests on the similarity between the MVPA 

classifiers and evidence accumulation models of human decision making under signal 

detection theory (Carlson, Ritchie, Kriegeskorte, Durvasula, & Ma, 2014; Ritchie & 

Carlson, 2016; Ritchie, Tovar, & Carlson, 2015). Classifiers in decoding studies fit 

multi-dimensional hyperplanes to separate the neural activation space into two classes 

and use this hyperplane to predict the class of new items. If the brain in a decision-

making task uses a linear read-out process (DiCarlo & Cox, 2007) using the same 

neural activation space, then this decision hyperplane would reflect an observer’s 

decision boundary for that decision. In classic signal detection theory, the closer the 

input is to this decision boundary, the more ambiguous the evidence for the decision 

(Green & Swets, 1966). Thus, if for a decision task (e.g., categorization), the brain 

‘uses’ the same information as the MVPA classifier, then the distance to the classifier 

hyperplane reflects evidence for the decision task. Ambiguous evidence in turn predicts 

longer reaction times (Ashby, 2000; Ashby & Maddox, 1994), which predicts that 

distance to the classifier hyperplane negatively correlates with reaction time. 

 

Here, we examined the relationship between decodable information and behaviour in a 

two-step approach. First, we used MVPA classifiers to show where decodable category 

information exists, using the searchlight method on fMRI data (Haynes et al., 2007; 

Kriegeskorte et al., 2006). Secondly, we asked where the distance of the individual 

stimuli to the classifier’s hyperplane predicts reaction times for those stimuli in the 

same categorization task. This approach yielded decoding and correlation maps of 

areas involved in visual object categorization. We applied this analysis to two fMRI 
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datasets from independent experiments (Cichy et al., 2014, 2016) that had different 

stimulus sets, which allowed for testing the robustness of the results. We tested 

several different categorization contrasts, to assess the generalizability of the neural 

distance to bound approach. Our results show that decodable information exists along 

the entire ventral and dorsal visual streams, but that behaviour can only be predicted 

from a subset of those locations, mainly in the ventral-occipital-temporal cortex. These 

results clearly indicate a distinction between decodable information, and information 

that could be used by the brain for behaviour. 

 

2 Methods 

 

The aim of this study was to correlate distance to a classifier’s hyperplane to reaction 

times (RTs) for categorization. In this section, we first describe the stimuli and fMRI 

data that were obtained from previous experiments (Cichy et al., 2014, 2016). Next, we 

collected categorization reaction times for those stimuli on Amazon’s Mechanical Turk. 

Finally, we describe the two-step searchlight procedure used to create decoding and 

correlation maps of areas involved in visual object categorization. 

 

2.1 Stimuli 

 

We used the stimuli from two experiments that have been published (Cichy et al., 

2014, 2016). Stimuli for experiment 1 consisted of 92 visual objects, segmented on a 

white background (Figure 1A). Stimuli consisted of animate and inanimate objects. The 

animate objects could be further divided into faces, bodies, humans and animals. 

Inanimate objects consisted of natural (e.g., plants or fruits) and man-made items (e.g., 
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tools or houses). The stimulus set for experiment 2 consisted of 118 visual objects on 

natural backgrounds, shown in Figure 1C. A small proportion of the objects (27) were 

animate. The inanimate objects included subcategories such as tools, or food items. In 

both experiments, participants were presented with the visual object stimuli while 

performing an orthogonal task at fixation. Stimuli were displayed at 2.9° (Experiment 1) 

and 4.0° (Experiment 2) visual angle with 500 ms duration. Images were displayed 

(overlaid with a grey fixation cross) for 500 ms in random order. Participants performed 

an orthogonal task while in the scanner: on 25% of the trials no image was displayed, 

and instead, participants responded with a button press to the fixation cross turning 

darker. 

 

2.2 fMRI recordings 

 

The first experiment (for a complete description, see Cichy et al., 2014) had high 

resolution fMRI coverage of the ventral visual stream (Figure 1B) from 16 participants 

with a 2 mm isotropic voxel resolution. The second experiment (for a complete 

description, see Cichy et al., 2016) had whole brain recordings from 15 participants 

with a 3 mm isotropic voxel resolution. In both experiments, at the start of a session, 

structural images were obtained using a standard T1-weighted sequence. fMRI data 

were aligned and coregistered to the T1 structural image, and then normalized to a 

standard MNI template. The data were not smoothed. A general linear models (GLM) 

was used to estimate responses for each stimulus (92 and 118, respectively). 

Movement parameters were included in the GLM as nuisance parameters, and 

stimulus onset and duration were used as regressors and convolved with a 
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hemodynamic response function. The estimated GLM parameter for each stimulus 

were then contrasted against baseline to obtain t-values for each stimulus. 

 

2.3 Reaction time data 

 

We obtained reaction times for the stimuli in multiple different categorization contrasts 

(see Figure 1A&B). For the 92-data, these were animate - inanimate, face - body, and 

human - animal. For the 118-data, we tested animate - inanimate, tool - other, food - 

other, and transport - other. The RTs were collected using Amazons Mechanical Turk 

(MTurk). For each of the categorization contrasts, 50 unique participants performed a 

categorization task using the same stimuli as were used in collecting the fMRI data. 

Participants were instructed to “Categorize the images as fast and accurate as possible 

using the following keys: (z for X, m for Y)”, where X and Y would be replaced with the 

relevant categories (e.g., animate and inanimate) for the contrast. On each trial, an 

image was presented for 500ms, followed by a black screen until the participant’s 

response (Figure 1C). The presentation order of the stimuli was randomized and 

stimuli did not repeat. This resulted in 50 reaction time values per exemplar (one for 

each participant). Each participant’s reaction times were z-scored. Next, we computed 

the median reaction time (across participants) for each exemplar. This resulted in one 

reaction time value per exemplar, which were used in the rest of the study. 
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Figure 1. Illustration of the searchlight approach used in this study including 
stimuli, task, and brain coverage for both datasets. A, B). Stimuli (A) and coverage 
(B) in fMRI study 1. C, D) Stimuli (C) and coverage (D) in fMRI study 2. E. Independent 

reaction times for categorization contrasts were collected on MTurk. On each trial, a 

stimulus was displayed for 250ms, and participants categorized it into two categories 
(here: animate vs inanimate) with a keypress. F. The searchlight analysis procedure 

consisted of two separate analyses to create accuracy maps, and distance-RT-
correlation maps. For each voxel, a local cluster of neighbouring voxels was used to 

train and test a classifier to decode the contrast (e.g., animacy), and its accuracy was 
stored at the centre voxel of the local cluster. At the same local voxel cluster, a 

classifier was trained to obtain a decision hyperplane. The distances of each stimulus 
to this hyperplane were correlated to the independent reaction times obtained on 

MTurk, and this value was stored at the centre voxel. Repeating the procedure over all 
voxels resulted in an accuracy and correlation map. The procedure was repeated for all 

subjects and the results were averaged at the group level and thresholded at pcorrected < 

0.05. Finally, for visualization, the correlation maps were superimposed on the 
accuracy maps. 

 

2.4 Searchlight procedure 

 

For each categorization contrast and subject, we used a searchlight approach (Haynes 

et al., 2007; Kriegeskorte et al., 2006) to create maps of decoding accuracy and of 

correlations between distance to the classifier boundary and categorization reaction 

times. In contrast to pre-defined ROI’s, which are used to test a-priori hypotheses 

about the spatial origin of information in the brain, the searchlight results in a spatially 

unbiased map of decodable information. An overview of the approach is presented in 

Figure 1D. 

 

To create the decoding accuracy maps, we used a standard searchlight decoding 

approach (Kriegeskorte et al., 2006), as implemented in the CoSMoMVPA decoding 
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toolbox (Oosterhof, Connolly, & Haxby, 2016). For each voxel in the three-dimensional 

fMRI voxel space, t-values belonging to a spherical cluster (4 voxel radius) centred 

around this voxel were arranged into a vector for each stimulus. The stimuli vectors 

were then split up into five sets for cross-validation. A support vector machine (SVM) 

classifier was trained on four sets and its prediction accuracy was tested on the left out 

set. This was repeated five times, using each set for testing once. The mean accuracy 

across these repetitions was stored at the centre voxel of the sphere. Repeating the 

process over all voxels resulted in a 3D-map of decoding accuracies. The searchlight 

procedure was conducted for each subject independently, resulting in one accuracy 

map for each subject for each task. 

 

Next, we created maps of correlations between distance to the classifier hyperplane 

and observer categorization behaviour on the same contrast. Vectors of t-values were 

obtained for each stimulus in the same manner as the first searchlight procedure. 

Then, an SVM classifier was trained using all the stimuli, effectively fitting a hyperplane 

that distinguished between vector patterns according to category. We then computed 

the distance of each exemplar to this decision hyperplane, resulting in one distance 

value per exemplar. The distance values were rank-order correlated (Spearman’s r) to 

the median MTurk reaction times collected in the behavioural experiment for the same 

exemplars in the analogous categorization task. To assess the contribution of each 

category independently, the correlations were performed separately for the two sides of 

the categorization (i.e., one correlation for animate and one for inanimate exemplars). 

In an animacy contrast, exemplars from the animate category have been previously 

found to contribute highest to the correlations (Carlson et al., 2014; Ritchie et al., 

2015). For each categorization task this resulted in two correlation maps per subject. 
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2.5 Statistical analysis 

 

The resulting maps of decoding accuracy and correlations were assessed for 

significance at the group level using sign-permutation tests for random-effects 

inference (Maris & Oostenveld, 2007), which were corrected for multiple comparisons 

at the cluster level using threshold-free cluster enhancement (TFCE) (Smith & Nichols, 

2009). First, a permutation distribution was obtained by randomly swapping the sign of 

the decoding-minus-chance or correlation results 10,000 times. The maximal TFCE-

statistic (over all voxels) of these permuted results formed the null-distribution. P 

values were then computed by comparing the observed TFCE values to the null-

distribution, and thresholded at pcorrected < 0.05. 

 

2.6 Relating the results to topographical locations in the visual system 

 

For each of the categorization contrasts, we identified the locations of the significant 

clusters with respect to ROIs of the visual system. The significant clusters in the 

decoding maps and correlation maps were compared to probabilistic topographic maps 

of visual processing areas (Wang, Mruczek, Arcaro, & Kastner, 2015), which represent 

for each voxel the visual area with the highest probability. We computed the overlap 

between the clusters and the ROIs as the number of voxels in each visual ROI that 

were part of the significant cluster. This allows quantifying the difference in size 

between decoding clusters and correlation clusters per visual ROI. 
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2.7 Visualizing the contribution of individual exemplars 

 

For each contrast, we examined the representational space of objects at the local voxel 

sphere that had the highest correlation between distance and RT. To avoid circularity, 

we used a leave-one-subject-out approach to obtain the average distances; for each 

subject, we selected the voxel that had the highest average correlation in the remaining 

subjects. Next, the distances at this voxel for the left out subject were extracted. We 

repeated this over all subjects, and averaged the resulting distances over subjects, 

resulting in one distance estimate per exemplar. We then scattered the stimuli 

according to their distance-percentiles and their median RT-percentiles. This allowed 

us to explore how certain types of stimulus (e.g., mammals, faces, or invertebrates) are 

contributing to the correlations. 

 

3 Results 

 

We created unbiased spatial maps of areas that showed decodable visual object 

category information and of areas where this decodable information correlates with 

reaction time in a categorization task. We first performed a decoding searchlight, which 

yielded a map of significant decoding accuracy in the brain. Then, in another 

searchlight, we applied the neural distance to bound approach to the individual 

subjects, correlating the distance to the classifier’s hyperplane for each subject to a set 

of independent RTs for the same categorization task. We will present the results by 

categorization contrast, starting with animacy. 
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3.1 Object animacy 

 

We applied the two searchlight analyses to show where in the brain decodable 

animacy exists and where the decoded information can be used to predict animacy 

categorization behaviour. Object animacy has been shown before to be a robust 

organizing principle in VTC representations (Caramazza & Shelton, 1998; Grill-Spector 

& Weiner, 2014; Kriegeskorte et al., 2008). The first searchlight showed voxel clusters 

with decodable information along the entire ventral visual stream from the occipital pole 

to anterior ventral temporal cortex (Figure 2). With the second searchlight, we found 

that for a subset of these voxels, the distance to the classifier boundary correlated with 

categorization reaction times for the animate exemplars (Figure 2). Cluster extent and 

peak location are shown in Table 1A. No significant correlations were found for the 

inanimate exemplars. Next, we tested the generalizability of these results with a new 

stimulus set (the 118-object-data), where in addition, we examined both the ventral and 

dorsal visual streams. For this we used the same approach on the 118-object data 

which had full brain coverage. As was the case for the 92-object data, a subset of the 

voxels with decodable information had a significant RT-correlation. In addition, 

significant RT-correlations were found in the dorsal stream (Figure 2). Even though the 

stimuli for the 118-object data consisted largely of inanimate objects, no significant 

correlations were present when performing the correlation using only the inanimates. 

Cluster extent and peak location are shown in Table 2A. This is consistent with 

previous findings (Carlson et al., 2014; Ritchie et al., 2015), who also reported 

correlations mainly driven by animates. Our results build upon these results by showing 

that the effects replicate with a different stimulus set (the 118-object-data). In sum, we 

found that only in a subset of the areas with decodable information, this information 
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correlates to behaviour. This was consistent across stimulus sets. These results 

suggest that not all decodable information is equally relevant for behaviour. 
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Figure 2. Searchlight results for animacy categorization on the 92-object-data. 
Clusters with significant decoding are represented in hot colours. Clusters where (in 
addition to decoding) distance to the classifier’s hyperplane correlates significantly with 

observer reaction times are shown in cool colours. Individual subject results (N=15) 

were averaged and thresholded at pcorrected<0.05. The decoding and correlation results 
are projected onto axial slices standard T1 image in MNI space. The results show that 

animacy decoding extends far into the ventral stream, and correlations with behaviour 
are only present for a subset of these areas. 
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Figure 3. Searchlight results for animacy categorization on the 118-object-data. 
Clusters with significant decoding are represented in hot colours. Clusters where (in 
addition to decoding) distance to the classifier’s hyperplane correlates significantly with 

observer reaction times are shown in cool colours. Individual subject results (N=15) 

were averaged and thresholded at pcorrected<0.05. The decoding and correlation results 
are projected onto axial slices standard T1 image in MNI space. These results replicate 

the results for the 92-object data, showing large clusters containing decodable 
information in the ventral stream, with only a subset of those clusters exhibiting 

significant correlations with RT. In addition, we observed clusters with decodable 
information in the prefrontal areas and in the dorsal stream, and correlations with 

behaviour in the dorsal stream. 

 

3.2 Alternative categorization tasks 

 

We next investigated categorization tasks at a lower tier than animacy. Previous 

studies have shown areas with preferential responses to for example faces 

(Kanwisher, McDermott, & Chun, 1997) and bodies (Downing, Jiang, Shuman, & 

Kanwisher, 2001; Downing & Peelen, 2016). To date, the distance to bound approach 

has only been applied on the top level animacy distinction (Carlson et al., 2014; Ritchie 

et al., 2015). Animacy is a large and robust effect (Carlson et al., 2013; Downing, 

Chan, Peelen, Dodds, & Kanwisher, 2006; Grill-Spector & Weiner, 2014; Kriegeskorte 

et al., 2008), and it is therefore important to show that the approach generalizes to 

categorization at the subordinate level, which could be using information in smaller 

areas in the brain (Downing et al., 2001; Downing & Peelen, 2016; Kanwisher et al., 

1997).  



Chapter 4 

  192 

 

 



Beyond brain decoding 

 193 

Figure 4. Searchlight results for the human-animal categorization contrasts on 
the 92-object-data. Clusters with significant decoding are represented in hot colours. 
Clusters where (in addition to decoding) distance to the classifier’s hyperplane 

correlates significantly with observer reaction times are shown in cool colours. 

Individual subject results (N=15) were averaged and thresholded at pcorrected<0.05. The 
decoding and correlation results are projected onto axial slices standard T1 image in 

MNI space. 

 

We tested two alternative contrasts on the 92-object data: human – animal (Figure 4), 

and face – body (Figure 5), to investigate categorization read-out at the subordinate 

level. We found that a small subset of decodable information had a significant RT-

correlations for one category in both tasks, faces and humans respectively. These 

clusters were much smaller than the decoding clusters, and much smaller than those 

for the animacy contrast (Table 1). For the alternative tasks (food, transport or tool 

versus ‘other’) in the 118-data, we did not find a correlation for the target (food, 

transport or tool) categories, but we found correlations for the ‘other’ category in food – 

other and tool –other, but not in transport – other (Table 2 B-D). Taken together, these 

results show that the distance to bound approach can be used in categorization 

contrasts at other levels than animacy. 
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Figure 5. Searchlight results for the face-body categorization contrasts on the 
92-object-data. Clusters with significant decoding are represented in hot colours. 
Clusters where (in addition to decoding) distance to the classifier’s hyperplane 

correlates significantly with observer reaction times are shown in cool colours. 

Individual subject results (N=15) were averaged and thresholded at pcorrected<0.05. The 
decoding and correlation results are projected onto axial slices standard T1 image in 

MNI space.  
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Contrast Cluster Size Max/Min TFCE X Y Z 

A) decoding 'animate' 

vs 'inanimate' 

1  6997 0.80 3.7190 36 -52 -15 

2 6311 0.77 3.7190 -44 -54 -19 

3 36 0.56 1.7291 -10 -76 -4 

RT-correlation 'animate' 1 3515 -0.38 -3.7190 38 -58 -19 

2 2979 -0.32 -3.7190 -36 -66 -17 

B) decoding 'human' vs 

'animal' 

1 4619 0.69 3.7190 22 -90 -13 

2 3350 0.65 3.5401 -16 -94 7 

3 22 0.60 1.7636 66 -46 -2 

4 17 0.57 1.6912 -12 -58 7 

RT-correlation 'human' 1 208 -0.29 -2.1890 30 -58 -15 

2 72 -0.21 -1.7903 22 -94 -2 

C) decoding 'face' vs 

'body' 

1 6089 0.84 3.7190 44 -78 -10 

2 5633 0.79 3.7190 -42 -76 -10 

3 60 0.61 1.9095 -46 -20 -2 

4 36 0.57 1.7660 50 28 -2 

RT-correlation 'face' 1 795 -0.32 -3.1947 40 -76 -15 

2 308 -0.28 -2.5302 -36 -86 -6 

3 176 -0.25 -2.3824 -36 -60 -17 

Table 1. Cluster details for all contrasts on the 92-data. For all contrasts, all 

clusters larger than 10 voxels are listed. For each cluster, we report its size in voxels, 
its peak value (maximum for decoding or minimum for distance-RT correlation), the 

TFCE statistic for the peak, and the peak’s location in MNI-XYZ coordinates. Animacy 
(A) showed the largest clusters and highest decoding accuracy and RT-correlations. 

The alternative contrasts (B,C) resulted in similar sized decoding clusters, but much 
smaller clusters for the RT-correlations. 
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Contrast Cluster Size Max/Min TFCE X Y Z 

A) decoding 'animate' 

vs 'inanimate' 

1 10056 0.80 3.7190 36 -55 -11 

2 735 0.59 2.2904 45 11 31 

3 20 0.54 1.7495 -27 -22 64 

RT-correlation 'animate' 1 1133 -0.30 -3.5401 -42 -49 -14 

2 1110 -0.34 -3.7190 51 -73 -2 

3 68 -0.27 -2.2203 36 -55 -26 

B) decoding 'tool' vs 

'other' 

1 325 0.58 2.7589 -30 -94 7 

RT-correlation 'other' 1 309 -0.20 -3.4316 -39 -85 4 

C) decoding 'transport' 

vs 'other' 

1 51 0.58 1.8793 -18 -97 -5 

D) decoding 'food' vs 

'other' 

1 908 0.61 3.1214 -33 -55 -17 

2 330 0.62 2.6045 36 -55 -14 

3 47 0.57 2.1084 27 -70 31 

RT-correlation 'other' 1 294 -0.12 -2.4783 -27 -85 -2 

2 23 -0.13 -2.1890 27 -40 -14 

Table 2. Cluster details for all contrasts on the 118-data. For all contrasts, all 
clusters larger than 10 voxels are listed. For each cluster, we report its size in voxels, 

its peak value (maximum for decoding or minimum for distance-RT correlation), the 
TFCE statistic for the peak, and the peak’s location in MNI-XYZ coordinates. Animacy 

(A) showed the largest clusters and highest decoding accuracy and RT-correlations, 
replicating the result on the 92-data. The alternative contrasts (B-D) did not show 

significant correlations for the target category, but only for the ‘other’ category 
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Figure 6. Overlap between our results and visual ROIs. A. Locations of 
topographical ROIs of the visual system. B-D. The percentage overlap between 

significant clusters and the topographical ROIs. Orange bars show the percentage of 
voxels within the ROI that had significant decoding performance. Blue bars show the 

subset of those voxels with a significant correlation between distance to the hyperplane 
and RT. These results show that decoding and RT-correlations increase in overlap 

from early to late areas in the ventral visual stream.  
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3.3 Location of the clusters with respect to the visual system 

 

We asked in which topographical areas the clusters of significant decodable 

information and significant correlation were located. We determined the overlap 

between the decoding clusters and RT-correlation clusters with a probabilistic 

topographic map of visual processing areas (Wang et al., 2015). The results show an 

increase in overlap from early to late visual areas, with most of the overlap in areas VO 

and PHC in the anterior ventral visual stream (Figure 6 A&B). For the two alternative 

tasks on the 92-object data, we observed smaller clusters of RT-correlations (Figure 6 

C&D), with relatively larger contributions from mid-level visual areas such as V3 and 

hV4. 

 

3.4 Visualization of the contribution of individual exemplars to the correlations 

 

To examine if specific exemplars (e.g., human faces) were driving the correlations, we 

visualized the results in representational space between distance to the classifier 

hyperplane and RT. At the voxel with the highest subject-average correlation, we 

averaged the subject-specific distances for each exemplar and displayed the pooled 

distance versus reaction time. We observed that for the 92-object data, human faces 

consistently had the largest distances and fastest RTs, and are the main source of the 

correlations (Figure 7 A, C, & D). When we computed the correlations for these 

contrasts while excluding the human face stimuli, these were not significant anymore. 

Importantly however, for the 118-object data, which did not have human face stimuli, 

frontal views of animal faces had the largest distance and shortest RTs and non-

mammals consistently had shorter distances and longer RTs (Figure 7, B), showing 
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that the correlation between distance and RT is present in data without human faces. 

In sum, these results show that human faces are not required for a correlation between 

distance and reaction time, but when human faces are part of the stimulus set, they are 

the main source of the correlations. 

 

Figure 7. Scatterplots of distance to boundary versus reaction time. At the 

location of peak average correlation, the mean distance to the classifier boundary for 
each exemplar across subjects was computed. The x-axis shows the mean distance 

over subjects in percentiles. For each categorization task, only one side of the 
categorization is shown, as only one category had significant correlations with reaction 

time at the group level. Note that the correlations reported in the bottom left corner of 
the plots were between mean distance and RT, and are therefore higher than the 

subject-averaged correlations that were reported in the main results. Panels A,C & D 
show that when human faces are part of the stimulus set and the categorization task, 

they are consistently located in the bottom right corner, having the largest distances 
and shortest RTs, and are therefore be the main source of the correlations. However, 

in a stimulus set without human faces, such as the 118-object-data, the correlations 

were similar (panel B). 



Beyond brain decoding 

 201 

4 Discussion 

 

We found that only a subset of information that is decodable could be related more 

directly to behaviour using the distance to bound approach, which argues for a 

dissociation between decodable information and information that is relevant for 

behaviour. In addition, we found that the distance to bound approach generalizes to 

new tasks and stimuli. The resulting maps of decoding and correlation with behaviour 

mainly corroborated the view that VTC contains behaviour-relevant object information, 

but also revealed correlations with behaviour in other visual areas, such as earlier in 

ventral stream (V3 & hV4), and in the dorsal stream (IPS). 

 

It is important to note that with the dissociation between decodable information and 

information that is relevant for behaviour, we interpret the positive finding that some 

information can be related to behaviour. Crucially, this statement does not imply that 

the other decodable information is not used in behaviour, as this would be interpreting 

a null result. There are many alternative reasons for the lack of a correlation between 

decodable information and behaviour, which are discussed below. Our results show 

that a subset of decodable information can be directly related to behaviour, which 

challenge the common assumption in decoding studies that treats all decodable 

information as equally relevant for behaviour. 
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4.1 Dissociating between decodable information and information that is used in 

behaviour  

 

Our results showed that only a subset of decodable category information correlates 

with independent observer categorization RTs. This shows a dissociation between 

information that is decodable, and information that relates more directly to behaviour. 

To illustrate, consider the question about what regions of the brain contribute to an 

animacy categorization decision (DiCarlo, Zoccolan, & Rust, 2012; Grill-Spector & 

Weiner, 2014). When only the result of the animacy decoding searchlight would be 

taken into account, this could lead to the conclusion that animacy is represented along 

the entire visual stream. However, when also considering the RT-correlation results, it 

is more evident that animacy is only suitably represented for read-out in some areas 

(Ritchie et al., in press; Williams et al., 2007). Most of these correlations were found in 

the anterior regions of the VTC, which corroborates the view that the VTC contains 

behaviour-relevant object information. Our findings are consistent with the ROI based 

approach taken in (Carlson et al., 2014), where correlations between distance and RT 

were observed in VTC ROIs, and to a much lesser extent in Early Visual Cortex ROIs. 

The searchlight approach taken here yields a localized description of the areas that are 

suitable for category read-out in the brain. Interestingly, areas in the prefrontal cortex 

were found to have decodable category information, but no correlation with RT. These 

areas are often considered to represent task-relevant information (Woolgar, Jackson, & 

Duncan, 2016). However, subjects in the fMRI experiments were performing an 

orthogonal task, which would explain why here prefrontal areas did not contain 

information that is suitable for use in decision making. It is possible that when subjects 

would have been performing an object categorization task in the scanner, these areas 
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would have represented information differently and would have shown correlations with 

RT. 

 

A criticism of neuroimaging studies in general is that they only show information that is 

available to the experimenter, rather than information that is relevant to the brain (de-

Wit et al., 2016; Ritchie et al., in press). The approach taken here illustrates this issue, 

as we showed that for only in a subset of the areas with decodable information, this 

information could be used to predict behaviour. While a correlation with behaviour still 

does not imply that the information is used by the brain, it provides stronger evidence 

for the information being used by the brain for decisions (de-Wit et al., 2016; Klein, 

2016; Ritchie et al., in press; Williams et al., 2007). Here, we have shown how the 

distance to bound approach can be applied in a standard fMRI searchlight decoding 

setting to highlight decodable information that is strongly relatable to behaviour. 

 

4.2 Limitations of the approach 

 

A limitation of the neural distance to bound approach is that a lack of correlation 

between distance and RT does not imply that information is not used by the brain. 

When finding decodable information that does not correlate with RT, this information 

does not have to be irrelevant or epiphenomenal. For example, it could be that the 

representations are relevant for a task other than the binary categorization decision 

that was used here, or that other read-out models provide a better description of the 

process (e.g., non-linear models (Ritchie & Carlson, 2016)). However, testing all 

possible alternative tasks or models would be infeasible. Therefore, the distance to 
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bound approach only allows the positive inference on the level of suitability of decoded 

information in the context of a limited set of tasks, and a limited set of read-out models. 

 

4.3 The distance to bound approach in alternative categorization tasks 

 

Although the 118-data included more inanimate objects, there were no correlations 

between distance and reaction time for the inanimate stimuli. Carlson et al., (2014) 

argued that this effect was caused by animacy being a negatively defined category 

(“not animate”). Here, we tested this hypothesis using alternative categorization 

contrasts, namely human vs animal, and face vs body. These contrasts consisted of 

two positively defined categories, but as with animacy, resulted in a correlation for only 

one of the two (‘human’ and ‘face’, respectively). This goes against the notion of the 

negative definition of inanimate as main reason for a lack of correlation. However, it still 

is possible that observers still treated these tasks as A or NOT A, rather than A or B, 

while choosing ‘A’ based on the simplest category, as perceptual evidence for a face or 

human would be easier to obtain that evidence for body or animal. Thus, while not 

specified as a negative category, they could have been treated as such. It generally 

unlikely that categorization in the brain is treated as a set of binary problems. The 

binary categorization task is therefore possibly an unnatural way of approaching 

categorization, and obtaining a better description of what object categorization function 

is performed by the brain in natural behaviour can help direct neuroimaging research 

(Krakauer, Ghazanfar, Gomez-Marin, MacIver, & Poeppel, 2017). This could be 

investigated further by including different tasks other than binary categorization, and 

assessing whether in those tasks the distance to bound approach provides a more 

complete picture of observer categorization behaviour. 
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4.4 Contribution of mid-level visual areas to categorization 

 

We found that correlations with RT were not restricted to VTC, but were also prominent 

in V3 and hV4 (Figure 6). In the distance to bound framework, these findings suggest 

that representations in these areas are also suitable for read-out. Lower level features 

that are shared within animates and within inanimates could be a cue for read-out. For 

example, V4 is thought of as an intermediate stage of visual processing that 

aggregates lower level visual features into invariant representations (Riesenhuber & 

Poggio, 1999). It has been proposed that a direct pathway from V4 to areas that 

facilitate eye movements (e.g., FEF) accounts for fast saccadic categorization reaction 

times (Crouzet, Kirchner, & Thorpe, 2010; Honey, Kirchner, & VanRullen, 2008). 

Similar pathways to decision making areas would allow the brain to exploit visual 

feature cues in a fast paced animacy categorization task (Hong, Yamins, Majaj, & 

DiCarlo, 2016; Kirchner & Thorpe, 2006; Thorpe, Fize, & Marlot, 1996). An alternative 

possibility is that read out is not happening directly from V4, but its structure of the 

representation is shaped by the low level feature differences in animacy. This structure, 

then ‘feeds’ into more anterior areas where it remains largely preserved. This would 

explain similar correlations between distance to boundary and reaction time in both V4, 

and more anterior areas of the ventral stream. Both of these accounts are consistent 

with recent findings that show differential responses for object categories in mid-level 

visual areas based on visual feature differences, such as in animacy (Proklova et al., 

2016), or object size (Long, Konkle, Cohen, & Alvarez, 2016). The extent to which 

shape information contributes to the read-out process could be further investigated by 

using the approach from this study with a stimulus set that controls for visual features 

(Kaiser, Azzalini, & Peelen, 2016; Proklova et al., 2016). 
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The similarity structures within layers of artificial deep neural networks have been 

shown to match similarity structures in areas in the ventral visual stream well (Cadieu 

et al., 2014; Güçlü & van Gerven, 2014; Khaligh-Razavi & Kriegeskorte, 2014). 

Eberhardt and colleagues used a similar approach as taken here and correlated 

distance to a hyperplane fitted on an artificial deep neural network’s activations. They 

found that the highest correlations were obtained in intermediate layers of the deep 

neural networks (Eberhardt, Cader, & Serre, 2016), which is consistent with the 

argument that intermediate features such as shape play a major role in object 

categorization, and is consistent with our results of correlations between distance and 

reaction times in areas such as V3 and hV4. 

 

4.5 Categorical representations in the dorsal stream 

 

We found that information in parietal areas also correlates with RT. The classical view 

is that the ventral and dorsal visual streams are recruited for different tasks 

(Ungerleider, 1982), with the ventral stream representing object identities (‘what’), and 

the dorsal stream spatial features (‘where’). However, areas in the dorsal stream, such 

as IPS1 and IPS2 have been found to exhibit similar object-selective responses as 

areas in the ventral stream (Konen & Kastner, 2008; Sereno & Maunsell, 1998; Silver & 

Kastner, 2009). Information in the dorsal stream has been argued to be task-

dependent, with only task-relevant information being represented in the dorsal stream 

(Bracci, Daniels, & op de Beeck, 2017). In our study, fMRI participants were performing 

an orthogonal task, making the contribution of possible task or attention to the 

representations minimal. However, it could be that without any visual object task, the 

categorical representations in the absence of a specific task resemble those found in 
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areas V3 and V4 of the ventral visual stream (Konen & Kastner, 2008). These 

representations could then be dynamically adapted to serve different tasks (Bracci et 

al., 2017; Freedman & Assad, 2016; Jeong & Xu, 2016). 

 

4.6 Conclusion 

 

In this study, we combined the distance to bound approach (Ritchie & Carlson, 2016) 

with a searchlight decoding analysis. We found that multiple areas in the ventral and 

dorsal visual streams contained decodable category information that was also suitable 

for read out in behaviour, as distance to classifier boundaries obtained from these 

areas correlated with observer categorization reaction times. These correlations 

support the large role VTC plays in object categorization. However, they also suggest 

that mid-level ventral and dorsal areas contribute to categorization decisions. Our 

results speak to the current debate in Neuroimaging research about whether 

information that we can decode is the same information that is used by the brain in 

behaviour (de-Wit et al., 2016). With our approach, we highlighted that decodable 

information is not always equally relevant for the brain in behaviour. 
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Chapter 5 

 

Discussion 

 

Brain decoding methods have become standard practice in analysing fMRI data and, 

more recently, MEG data. A current debate is whether information that is extracted with 

brain decoding methods is the same information that is relevant for the brain, for 

example, whether it is used in behaviour. The aim of this thesis was to explore methods 

for decoding brain representations and linking them to behaviour. This consisted of first 

empirically assessing options for the novel application of decoding methods to 

neuroimaging data with high-temporal resolution, such as MEG. Secondly, the recently 

proposed neural distance to bound approach was explored as a method for linking brain 

decoding methods to behaviour. 

 

In the previous three chapters, I presented the empirical findings of this thesis. In chapter 

two, we used example MEG data to illustrate a typical MEG decoding analysis and 

compared the effect of different options along the pipeline. The results showed that these 

choices can affect local statistical significance of the results, and would thus potentially 

impact the conclusions. Chapter two focused on developing decoding methods, which 

were built upon in the rest of the thesis. In chapter three, I used MEG decoding in 

combination with the neural distance to bound approach (Ritchie and Carlson, 2016). I 

tested whether this approach follows the prediction of a behavioural manipulation. The 

results showed that the distance to the classifiers hyperplane successfully predicted 
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reaction time, accuracy, and the parameters of a model of the observer decision process. 

The results further showed that the distance to bound approach could only account for 

the effects on animate objects. In chapter four, I further examined the relationship 

between decodable information and behavior by creating spatially unbiased maps of 

where the distance to the classifier hyperplane could be used to predict behavior. Using 

a searchlight approach on fMRI data, classifiers were first trained to decode object 

category information in local voxel clusters. Secondly, the distance to bound approach 

was used to test whether this information can also be used to predict categorization 

reaction times. The results show that decodable information exists along the entire 

ventral and dorsal visual streams, but that behavior can only be predicted from a subset 

of those locations. 

 

The results presented in this thesis support the argument that significant decoding is not 

enough to show the presence of information that is relevant for the brain (de-Wit et al., 

2016; Ritchie et al., in press). The findings in chapter two show that subtle choices in the 

analysis pipeline can affect the strength of decoding, and can for example move the 

onset of significant decoding. While this study mainly focused on developing the MEG 

decoding methods, the findings do emphasise that significant decoding results should 

be interpreted with appropriate caution. Chapter three showed that the onset and peak 

time points of the decoding time series differ from the onsets and peaks of the time-

varying correlations with behaviour. This difference was even greater with the correlation 

to drift rate. This suggests that the time of peak decoding is not necessarily the time that 

best predicts behaviour (cf. Ritchie et al., 2015). Chapter four mapped the dissociation 

between decodable information and information that can be read out in behaviour, and 

showed that not all decodable information is equally suitable for read out (assuming a 
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linear readout model). Taken together, the results in this thesis show that observing 

decodable information does not imply that this information is being used by the brain. 

 

The experiments in chapters three and four used the distance to bound approach as a 

method to test whether information can be used by the brain in behavioural read out. To 

date, this method has been applied in the context of the same stimulus set and one task 

(Carlson, 2014; Ritchie et al., 2015). Therefore, limited conclusions can be drawn about 

the generalizability and robustness of the distance to bound approach. This was 

addressed in in chapters three and four by using novel stimulus sets and alternative 

tasks, in both MEG (chapter three) and fMRI (chapter four). The results presented in 

those chapters showed that the approach can account for the effect of degrading 

(chapter three) and that it generalizes to different tasks (chapter four) and stimuli (chapter 

three and four). In addition, the results showed how distance to the classifier boundary 

can be directly related to evidence accumulation models of observer decision making 

behaviour (chapter three). These results show that the distance to bound approach is a 

useful method to dissociate decodable information from information that is relevant for 

behaviour, and how this dissociation can be mapped out in space and time.  

 

In the current chapter, I will discuss the implications of these findings and how they 

contribute to the current literature. As this thesis made use of relatively novel MEG 

decoding techniques, I will first discuss how the findings in this thesis contribute to the 

development of MEG decoding (section 1). I then move on to the second main focus of 

the thesis, which is how to go beyond decoding with the distance to bound approach, 

and outline how the approach can help with interpreting decoding results (section 2). I 

will then review how my results are in support of the general distance to bound approach 
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(section 3), but also what limitations and questions on the specific workings on the 

distance to bound approach have been raised in my research (section 4). Next, as visual 

object categorization was used as the domain in which to test the distance to bound 

methods, I relate my results to the visual object categorization literature (section 5). 

Finally, I reflect on this thesis in light of two recent articles that present critical views on 

the general approaches taken in Cognitive Neuroscience and present my broad views 

on the future directions of the field (section 6), before bringing everything together with 

a general conclusion (section 7). 

 

1 MEG decoding 

 

MEG decoding is a promising field, and the relatively small number of MEG-decoding 

studies conducted to date have provided many valuable insights (Contini et al., in press; 

Varoquaux and Thirion, 2014). MEG has many advantages over EEG as method for 

studying the temporal dynamics of information with millisecond accuracy, such as fewer 

artefacts, less signal smearing and distortion, and better signal source approximations 

(Baillet, 2017). A wide array of toolboxes implementing MEG preprocessing and 

decoding are now available (Baillet et al., 2011; Delorme and Makeig, 2004; Hanke et 

al., 2009a; Oostenveld et al., 2010; Oosterhof et al., 2016; Tadel et al., 2011; Varoquaux 

and Thirion, 2014). However, these methods are still under active development. 

Problems with current analysis methods continue to arise (e.g., Allefeld et al., 2016; 

Eklund et al., 2016; Haufe et al., 2014; Ritchie et al., in press; Thirion et al., 2015), and 

their solutions need to find their way into the toolboxes and general literature. For 

example, a commonly applied (mostly exploratory) analysis was to project the classifier’s 

weights back onto the channels after a decoding analysis to investigate the source of the 
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decodable signal (see e.g., Carlson et al., 2013; Chan et al., 2010). However, popular 

classifiers such as LDA and SVM take into account the covariance between features. 

Because of this, their weight vectors can therefore not be directly interpreted (Haufe et 

al., 2014). Haufe et al., (2014) present a solution in the form of a transformation from 

weights to activation patterns. The transformation has been incorporated in fMRI 

decoding toolboxes (Hebart et al., 2015), and the issue is described in recent decoding 

reviews (e.g., Haynes, 2015), including chapter two of this thesis for its application to 

time-series studies. This helped with creating a general awareness about such caveats 

and ensured inclusion of the weight transformation method in recent decoding studies 

using fMRI (e.g., Ritter et al., 2014; Wardle et al., 2017) and MEG (e.g., Wardle et al., 

2016). 

 

Taken together, the number of studies that use MEG decoding methods is rapidly 

increasing (Contini et al., in press; Varoquaux and Thirion, 2014). While toolboxes for 

MEG decoding now exist (Gramfort et al., 2013, 2014, Hanke et al., 2009a, 2009b; 

Oosterhof et al., 2016; Tadel et al., 2011), these still require some background in 

machine learning and programming experience (Varoquaux and Thirion, 2014). 

Therefore, it is important to continue efforts on describing, testing, and developing 

decoding methods, as was done in chapter two of this thesis. While the aim of chapter 

two was not to present a definitive guideline to performing decoding analyses, it provides 

a useful guide for researchers who are setting up their own decoding pipelines and 

additionally raises awareness about potential issues and caveats specific to decoding 

analyses. Moreover, continuing to test decoding methods in different scenarios is 

important to detect interactions and possible caveats in for example preprocessing and 

feature selection, and choice of classifier (Chapter two). The research presented in 
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chapter two of this thesis involved substantial experimentation with MEG decoding. In 

the next sections, I will reflect on how this has led to general thoughts on the directions 

of the current MEG decoding literature. I will argue that the pipelines used in univariate 

analysis do not necessarily apply to MEG decoding, and that the aims of MEG decoding 

studies should in general not focus heavily on spatial inferences. 

 

1.1 Revisiting traditional analysis pipelines 

 

Chapter two and three of this thesis used MEG decoding to reveal the temporal dynamics 

of information in a signal with high temporal resolution. A methodological point made by 

these studies is the fact that good decoding performance can be obtained with a 

relatively limited amount of preprocessing and using the simplest classifiers. Compared 

to the traditional MEG component analysis (cf. Luck, 2005), several commonly 

performed steps were skipped. Steps such as eye-blink removal, baseline correction, 

and filtering are part of most preprocessing pipelines. The findings in chapters two and 

three argue against the need for many of these procedures for conducting decoding 

experiments. An argument for not performing standard preprocessing steps is that 

classifiers can handle classic sources of noise in the data. For example, consider a bad 

channel that only contains only noise. In an ERP analysis, including this channel will 

result in a noisier average signal, and it should therefore be excluded from the analysis. 

In a decoding analysis, the classifiers will in their training stage find that the means and 

variances of the conditions are equal in this channel, and thus assign it a zero-weight. 

Therefore, there is no reason to exclude the channel, as resulting decoding performance 

of the classifier is likely to be unaffected. 
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Including a noisy channel can also aid decoding; consider a second channel that 

measured the same noise, but also has a small underlying signal that differentiates the 

conditions (Haufe et al., 2014). This underlying signal can be recovered by subtracting 

the first noisy channel from the second, thus both channels are ‘used’ by the classifier. 

Similarly, other sources of noise in ERP components such as eye-blinks, or noise at 

higher frequencies do not affect decoding performances in the same way, and it is 

therefore not needed to perform all the standard steps. Instead, MEG decoding analyses 

should have their own separate pipelines, aimed and tailored to the classifiers. For 

example, even if some trials contain eye blinks or other noise, a balanced number of 

trials per condition is arguably more important for classification, to avoid biased 

classifiers. Finally, reducing the number of preprocessing steps results in fewer 

combinations of free parameters in the design that can lead to false positives (Carp, 

2012; Poldrack et al., 2017; Simmons et al., 2011; Strother, 2006; Varoquaux et al., 

2016). In sum, despite the established protocols for univariate analyses, MEG decoding 

studies should not by default adhere to these pipelines, and instead develop in a 

separate direction. 

 

1.2 Spatial inferences in decoding studies 

 

A common aspect of ERP analyses is to compute the ERPs at each individual channel, 

to find the location of the differences in signal between conditions. It is often of interest 

to recover the source channel(s) of information in a decoding setting, by examining the 

weights the classifier assigned to each channel. However, as described in chapter two, 

the interpretation of this is not trivial for two reasons. First, the weights are only as good 

as the classifiers performance. If the classifier obtains a low decoding performance, its 
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weights are not likely to reflect the source of the information. Secondly, the weights 

reflect covariance in the data. As such, a high weight does not imply a large difference 

in signal, and the weights need to be transformed before interpreting (Haufe et al., 2014). 

However, after transforming, the resulting pattern differences will be similar to a mass 

univariate GLM (Haufe et al., 2014), and thus do not yield more insights than such an 

analysis. 

 

Because of these difficulties in interpreting classifier weight vectors, the usefulness of 

creating topographical maps in a decoding analysis is debatable. An approach for spatial 

localization that is more viable, is to use a sensor searchlight (e.g., Kaiser et al., 2016a). 

This involves repeating the analysis for one sensor and its direct neighbours. If the local 

group of sensors contain information, it will lead to significant decoding accuracies. 

These are then stored at the centre sensor, to allow comparing decoding accuracies 

across topographical maps. Alternatively, the MEG data can first be warped into a virtual 

source space (Van Veen et al., 1997), and the classification can be performed in regions 

in source space. However, the results would highly depend on the quality of the 

reconstruction at the single trial level. The algorithms for source estimation are still under 

active development, and it is therefore likely that reconstruction accuracies will improve 

in the future (Baillet et al., 2011; Baillet, 2017). In sum, MEG decoding approaches are 

currently limited in the spatial inference that can be made, and should therefore mainly 

focus on temporal dynamics. 

 

With the strength of MEG decoding lying in the temporal dynamics, it can be combined 

with fMRI to yield a full picture of the spatio-temporal aspects of emerging information. 

Cichy et al., (2016, 2014) demonstrated this using representational similarity analysis to 
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show where in time and space the MEG and fMRI signals contained similar structure 

during object recognition (Cichy et al., 2014, 2016). Future research efforts could 

improve on this approach by modelling explicit categorical information in the overlapping 

structures. For example, as was done in Carlson et al., (2014), the shared RDM can be 

used to reconstruct virtual representational dimensions on which an animacy classifier 

can be trained that would yield a measure of whether animacy information is available in 

the shared RDM. This classifier would allow applying the distance to bound method to 

show where and when behavioural readout is possible in the shared fMRI-MEG 

representations. This combination of methods would then provide a complete description 

of the spatio-temporal dynamics of category information read-out by the brain. 

 

2 On interpreting decoding results 

 

The interpretation of decoding studies is not straightforward. As discussed in Chapter 

one of this thesis, a common assumption that is often made in decoding studies is that 

if information is available to the researcher, then it is also available to the brain to use 

(de-Wit et al., 2016; Ritchie et al., in press). Even though most would agree that this 

assumption is false, it is often not discussed or mentioned as a caveat in decoding 

studies. The next section discusses how this important theoretical issue argues for a shift 

in perspective and highlights the need for the development of methods to address the 

link between brain and behaviour. 
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2.1 Decoding does not measure information 

 

By asking what constitutes ‘information’, de-Wit et al., (2016) argue that neuroimaging 

research efforts should shift their focus away from testing the availability of information 

to the experimenter. Instead, information has to be shown to be available to the brain 

(de-Wit et al., 2016). The two types of information are not equal. For example, classifiers 

in a decoding analysis are able to decode category information from early visual areas 

(Williams et al., 2007), even though these areas are not connected to decision making 

areas and are in general not believed to explicitly represent categories (DiCarlo and Cox, 

2007; Grill-Spector and Weiner, 2014; Kravitz et al., 2013). In this case, it is unlikely that 

the category information in early visual areas is used by the brain in making a categorical 

decision (de-Wit et al., 2016; Williams et al., 2007). Therefore, de-Wit et al. argue, it is 

important to be clear about what to define as information in the brain. In neuroimaging 

studies, information should only be called ‘information’ if it can be shown to be available 

to the brain itself, but current MVPA techniques can only show information that is 

available to the experimenter (de-Wit et al., 2016). The term information is currently used 

more broadly in the literature, and also at various locations in this thesis, to refer to 

information that is available to the experimenter. In contrast, de-Wit et al. argue that the 

term 'information' must be used with caution in communicating neuroimaging results to 

avoid provoking claims such as finding ‘the neural representation of objects’. However, 

theoretical shifts like that will have to come slowly and gradually. For example, the field 

is currently shifting away from using similarly misleading terms such as “brain reading”, 

which were commonly used in the earlier fMRI decoding literature (Cox and Savoy, 2003; 

Haynes et al., 2007; Norman et al., 2006). 
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In chapter four, using the distance to bound approach showed the distinction between 

areas with decodable information (with “experimenter as receiver” (de-Wit et al., 2016)), 

and areas where the decodable information also correlated to categorization behaviour 

on an individual exemplar basis. Here, the latter reflects information that is available to 

the brain for read-out in behaviour (with “cortex as receiver” (de-Wit et al., 2016)). Being 

able to model the read-out of information can be taken as evidence for the information 

being available to the brain as receiver (de-Wit et al., 2016; Ritchie et al., in press). The 

information in chapter four is thus defined as object animacy, which we assumed the 

brain reads out, and uses to make the animacy categorization decision. However, it still 

does not answer if and how the information that did not correlate to behaviour is used by 

the brain. Moreover, relating distance to boundary with reaction times constitutes a large 

jump, and critically misses the processes in the brain that transform the information into 

a decision. Therefore, it can still not provide a complete picture of the process. Currently 

however, no definitive methods exist that show how information is used by the brain (as 

also argued in de-Wit et al., 2016) which highlights the need to further develop 

approaches such as the distance to bound approach. 

 

3 On the distance to bound approach 

 

This thesis extensively experimented with using the distance to bound approach as a 

method to relate decoded information to behavioural readout. A limitation of the research 

using this method to date, is it was all conducted on only one stimulus set and 

categorization task (animacy). In the experiments presented in chapters three and four, 

I found that the distance to bound approach generalizes to other sets of stimuli and 

categorization tasks (e.g., faces vs bodies and humans vs animals). The new stimuli 
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included backgrounds, instead of isolated objects, which in general worsens decoding 

accuracies (Coutanche et al., 2016). The backgrounds allowed to better control for 

shape, which could interact with the classifier (and therefore with the correlations). In 

addition, in chapter three, short stimulus durations were used (66ms) compared to the 

relatively long 500ms used in Ritchie et al., (2015). While less exposure to the stimulus 

would affect the dynamics of the MEG signal, the resulting correlations between distance 

and reaction time were strikingly similar suggesting that stimulus duration does not affect 

the dynamic read out. These results show that, at least for animacy categorization, the 

distance to bound approach is robust to different types of stimuli and experimental set-

ups. Most notably, distance correlated with reaction time in the absence of face stimuli 

in chapters three and four. The previously reported correlations (Carlson et al., 2014; 

Ritchie et al., 2015) could have largely been driven by the face stimuli, as faces evoke 

fast reaction times (Crouzet et al., 2010; Crouzet and Thorpe, 2011) and distinct patterns 

of activation (Haxby et al., 2001; Kanwisher et al., 1997; Kriegeskorte et al., 2008). When 

using the same stimulus set in chapter four, this was also observed. Yet, when using 

stimulus sets that did not include human faces, the correlations were similar to those 

previously reported, both in MEG and fMRI. Taken together, this shows that face stimuli 

are not necessary for a correlation between distance and reaction time. 

 

An important result was the observation that distance to the classifier boundary 

correlates with drift rates estimated using LBA. This result shows that the distance to 

bound approach can be related to current evidence accumulation models of decision 

behaviour, which is an important step towards developing a linking approach between 

brain and behaviour. As LBA is a flexible tool to model many different tasks, it allows us 

to go beyond using reaction times as a dependent variable and proxy for decision 



Discussion  

 229 

difficulty, and link neural spaces to more complete models of behaviour (Forstmann and 

Wagenmakers, 2015; Purcell et al., 2010; Purcell and Palmeri, 2016). However, the 

correlation between distance and drift rate was not significantly higher than distance and 

RT. This suggests that, at least for the binary animacy categorization task, enough of the 

difficulty is equally well captured by RT, or that the additional variance captured by drift 

rate is obscured by the noise in the neuroimaging data. It remains to be shown that when 

using other tasks that for example affect accuracy more than RT, drift rate correlations 

would outperform those for RT. Regardless, the correlation with drift rate supports the 

biological plausibility of classifier hyperplanes as linear decision boundaries in neural 

spaces (DiCarlo and Cox, 2007; Ritchie and Carlson, 2016). 

 

An outstanding question is on how to compute the decision boundary. To date, it has 

been fitted to activation patterns, to simulate a decision boundary that the brain could 

use. However, to emulate the whole read out process, accumulation processes must be 

modelled dynamically, with evidence gradually increasing. Previous research has for 

example used the rising strength of ERP components as evidence in an accumulation 

model (Bennett et al., 2015; Philiastides and Sajda, 2006). A threshold should be 

included to supress baseline activity from contributing to evidence accumulation. The 

temporal nature of MEG decoding is optimally suited for this purpose. In addition, MEG 

can be used to establish at what time evidence accumulation would start. Ritchie et al., 

(2015) argued that the read out process would follow the availability of information and 

would therefore match the decoding trace. Contrastingly, the results from chapter three 

showed that the peak correlations occurred before the time point of peak decoding, which 

suggests that much of the read out process occurs before the time point of optimal 

decoding. To investigate this further, future research could more closely test different 
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read out strategies that for example emphasise speed (Rae et al., 2014), and see how 

these relate to decoding performances. 

 

4 Limitations of the distance to bound approach  

 

The findings in this thesis highlight limitations of the distance to bound approach, that 

need to be addressed in order to make the approach a viable option for linking brain 

decoding methods to decision behaviour. This section discusses these limitations in 

more detail. A critical issue with the distance to bound approach is that only positive 

correlations can be interpreted. A lack of a correlation between distance and RT is 

effectively a null-result, and thus cannot be taken to mean that information is not used 

by the brain. In the case of no correlation, it is unclear whether this is due to a lack of 

power in the decoding or RT measurements. It could also be possible that the wrong 

behavioural task is used. Another option is that the choice of stimuli led to category 

decoding performance (in irrelevant brain areas) without RT-correlations because of 

confounding low level visual features. By controlling such confounds with carefully 

selected stimuli (e.g., Bracci and op de Beeck, 2016; Proklova et al., 2016) or using 

cross-decoding approaches (e.g., Kaiser et al., 2016a, 2016b), these explanations can 

be ruled out.  

 

The studies to date, including this thesis, have found correlations for only one side of the 

categorization. The reason for this is still unclear, and a challenge for future research is 

to find a solution for read out of both sides of the categorization that would provide a 

more compelling model of linking brain decoding to categorization decision behaviour. 

Finally, while correlations between distance and RT provide evidence for information 
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being suitably formatted to be used by the brain, the approach is still correlational in its 

nature. In sum, the main limitation of the distance to bound approach is that it is only a 

step towards modelling the brain-behaviour relationship. To properly address the 

question whether decoded information is used by the brain, I argue that a more complete 

solution is needed. 

 

4.1 Evidence from correlations 

 

The distance to bound approach relies on correlations between brain and behaviour to 

obtain evidence for read-out. However, as is the case with all correlational research, a 

positive correlation does of course not imply a causal relationship. An unknown co-

varying factor could be the true source of the relationship. However, as also argued in 

de-Wit et al., (2016), while we still need to focus on finding ways of exploring causation, 

including behavioural correlations in decoding research is a good practice. In contrast, 

Klein (2016) argues that strong evidence for causation can be inferred from finding 

systematic relationships. A currently highly relevant example is the systematic 

relationship between the amount of human-produced greenhouse gasses emitted into 

the atmosphere and the average global temperature, which is accepted as a causal 

relationship in the current scientific consensus (IPCC, 2013). Klein (2016) similarly 

considers the scenario of a highly systematic relationship between a neural variable and 

behaviour, where from a change in the neural variable one can predict the change in 

behaviour. If this relationship is specific and systematic enough, it would then provide 

compelling evidence for a causal relationship (Klein, 2016). 
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Previous research has correlated decoding accuracies to behavioural accuracies, and 

found those correlations only in a subset of areas that had decodable information (e.g., 

Williams et al., 2007), which provides more evidence for one area being involved in the 

read-out. Other approaches have correlated decoded similarities with behavioural 

similarities, such as differences in reaction time (e.g., Mohan and Arun, 2012), or 

perceptual similarity (e.g., Proklova et al., 2016; Wardle et al., 2016). These approaches 

all address the question of relating decoded information to behaviour, and are therefore 

similar to the distance to bound approach. However, the distance to bound approach 

explicitly models the read-out of individual exemplars rather than correlating mean 

performances. Therefore, a correlation between individual exemplar distances and 

reaction times provides even more compelling evidence that a representation is suitable 

for read-out in behaviour (Ritchie et al., in press). Even though it does not imply a causal 

relationship, it is more compelling evidence to be able to show a systematic relationship 

between brain decoding at the exemplar level and behaviour. Even stronger evidence 

for a systematic relationship comes from the findings in chapter three, where 

manipulating one variable (behaviour) resulted in a matching change in the other 

(distance). Therefore, the distance to bound approach is a good first step towards 

revealing a highly systematic relationship which in the framework of Klein (2016) can be 

attributed to causation. Following that, the distance to bound approach therefore has the 

potential to show information in the brain, in the framework of de-Wit et al., (2016). 

However, there is still a long way to go, and some serious limitations and outstanding 

questions have to be considered. In the following sections, these are reviewed in detail. 
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4.2 Explaining asymmetric correlations in categorization 

 

Chapters three and four did not find correlations for inanimate stimuli, consistent with 

previous research. The lack of inanimate correlations was previously argued to be 

caused by inanimate being defined as a negative category (not animate). However, this 

does not explain why in chapter three, no effects of degrading were observed for the 

inanimate stimuli. Moreover, in chapter four, alternative categorization tasks such as 

faces vs bodies and humans vs animals resulted in correlations for only one of the two 

categories (faces and humans, respectively). These findings suggest that the negative 

definition of inanimate is not the reason for a lack of two-sided correlations. An alternative 

explanation is that the two-sided categorization task is not well suited in this setting. It is 

possible that, instead of a true binary categorization, observers simply treat it as an X-

detection task with X being the easiest category to obtain evidence for. Many animals 

share features, such as shape, and therefore evidence for ‘animal’ is easier to obtain 

than for all possible inanimate objects, which do not share specific features (Caramazza 

and Shelton, 1998; Rosch et al., 1976). The same strategy could apply in a face vs body 

task, where faces have only a very specific shape and configuration and thus evidence 

for faces is easier to obtain than that for bodies. For humans and animals this would 

predict that humans are the easier category with similar shapes compared to a larger set 

of possible animal options to consider. The correlations for faces and humans and lack 

of correlations for bodies and animals in chapter four are consisted with this. Taken 

together, in the research to date, correlations have been driven by one side of the 

categorization. The results from using different tasks show that the distance to bound 

approach fails when modelling both sides of the categorization at the same time, even 

when both are defined positive. 
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4.3 Modelling alternative tasks 

 

The lack of correlations for one side of the categorization suggest that binary 

categorization tasks might not be suitable in this context. It is possible that the 

representation is used in different tasks, such as detection (go/no-go, e.g., Macé et al., 

2009; Mack et al., 2008), object naming (e.g., Bruner and Potter, 1964), categorical 

search (Maxfield et al., 2014; Zelinsky et al., 2013), or 2AFC paradigms (e.g., Wu et al., 

2015). An issue with these tasks is that it would often be unclear where to put the neural 

decision boundary, as MVPA classification is inherently binary. To tackle these tasks, 

other classification approaches could be considered, such as one class classification 

(Khan and Madden, 2014; Minter, 1975) for a go/no-go task. To date, the distance to 

bound approach has only been considered in binary categorization tasks, and more 

studies are needed to investigate how it works in other task settings. Moreover, the 

results to date have been shown to be independent of the task performed in the scanner. 

This is surprising, considering that representational spaces and decoding time-courses 

have been found to be significantly affected by the task (Harel et al., 2014) and 

attentional set (Çukur et al., 2013; Kaiser et al., 2016b; Kay et al., 2015; Nastase et al., 

2017). Future research can explore whether such manipulations predict the 

corresponding changes in observer behaviour, using a similar approach as was taken in 

Chapter three of this thesis. 

 

A fruitful avenue to pursue for this goal is to use evidence accumulation models fitted to 

various tasks and predict their drift rates. As shown in chapter three of this thesis, drift 

rate correlates with distance equally well as reaction time. Evidence accumulation 

models have been adapted to other tasks, for example in a go/no-go task, LBA has been 
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shown to fit reaction times well (Brown and Heathcote, 2008; Rae et al., 2014). These 

LBA versions use two accumulators, one for correct and one for incorrect ‘go’ responses 

(Rae et al., 2014). The drift rates of these accumulators could then be correlated to binary 

classifiers that predict go/no-go responses. 

 

4.4 Distance to bound in other domains 

 

Aside from the lack of tests using different tasks, the distance to bound approach has 

also only been tested on categorizing visual object stimuli. In order to fully assess the 

ability of the approach to link brain and behaviour, it would have to be tested on different 

types of stimuli. In chapter four it was shown that the higher object processing areas 

have the strongest correlations between distance and reaction times for an object 

categorization task, which matches the idea of those areas containing the abstract 

categorically structured object representations (Carlson et al., 2014). This reasoning 

predicts that for a different type of stimulus, for example when categorizing the 

orientation of stimuli, the highest correlations would be found in early visual areas. 

Another prediction would be categorizing the direction of movement, which is thought to 

be best represented by areas V5/MT. To fully encompass the suitability of the distance 

to bound approach, it has to be generalizable to these other domains. 
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5 Visual object categorization 

 

This thesis mainly addresses the interpretation of decoding results and moving towards 

linking decoding methods to behaviour. Object categorization was used as a domain to 

test and develop these methods on. Hence, the results also provided insights into visual 

object categorization. 

 

5.1 The animacy distinction 

 

The experiments in chapter three and four used the robust animacy distinction to test the 

distance to bound approach, and to map out the dissociation between decodable 

information and information that relates to behaviour. In these experiments, the 

correlations were always driven by the animate stimuli, which is consistent with results 

from Carlson et al., (2014) and Ritchie et al., (2015). Surprisingly, when experimentally 

manipulating the difficulty of the stimuli in chapter three, animate stimuli moved closer to 

the boundary, but inanimate stimuli did not. These findings support the notion that 

animate and inanimate are not equivalent categories (Caramazza and Mahon, 2003; 

Caramazza and Shelton, 1998). It is possible that when using animacy as top level 

categorization, the inanimate category should be defined at the basic level instead. Thus 

for animates, the categorization should be made against e.g., tools, vehicles, or fruit. 

However, these categories are not as strongly decodable from neuroimaging data 

compared to animacy, and it is therefore not clear whether a good estimate of the 

decision boundary can be made for such comparisons. 
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A somewhat surprising observation using the distance to bound approach is that it does 

not seem to make a difference whether the reaction times were collected using the same 

subjects as the neuroimaging data. In Carlson et al., (2014), a reconstructed neural 

space was used to fit the classifier and obtain the distances, while reaction times were 

collected on Amazon’s Mechanical Turk. In Ritchie et al., (2015), the reaction times were 

collected simultaneously with the neural data. The approaches yielded comparable 

results. More strikingly, Ritchie et al., (2015) found similar correlations regardless of 

whether participants were actively categorizing, or performing a distractor task. The 

results in chapter three of this thesis were also obtained using behavioural and neural 

data from the same participants, while chapter four combined fMRI data with behavioural 

data collected on Mechanical Turk. A correlation between distance to boundary and 

reaction time for animacy categorization was found in all experiments. This shows that 

the animacy distinction in the human brain is very similar between humans, and suggests 

that individual visual experience plays a minor role in shaping the boundary (cf. 

Caramazza and Mahon, 2003; Haxby et al., 2001; Mahon et al., 2007; Rogers et al., 

2005; Tarr and Gauthier, 2000). Moreover, studies have shown distinctive categorical 

responses to spoken words in the ventral visual pathway in congenitally blind participants 

(Bi et al., 2016; Mahon et al., 2009; Peelen et al., 2013, 2014; Ricciardi et al., 2014; 

Wang et al., 2017). If these results have a similar fine-grained underlying organization 

as evoked by visual stimuli, future studies can test whether the distance to bound results 

from chapter four generalize to other modalities, such as spoken words.  
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5.2 The contribution of visual features to categorization 

 

In chapter four, the areas that had a significant correlation between distance and reaction 

time were mapped in the brain. These maps showed correlations in lower level visual 

areas, such as V3 and hV4, in addition to the higher (anterior) areas in VTC. This result 

suggests that these areas can contribute to the animacy read out. A currently debated 

issue is whether mid-level features contribute to the animacy organization in the ventral 

stream (Coggan et al., 2016; Gaspar and Rousselet, 2009; Long et al., 2016; Proklova 

et al., 2016; Ritchie et al., in press). The correlations in earlier visual areas speak to this, 

as they suggest that when making animacy decisions, the brain could use information 

from these areas and could thus rely on exploiting mid-level features. A question that 

remains unanswered is how to show whether the mid-level visual areas are used in read 

out, or whether their apparent organization by animacy is a by-product of animals sharing 

certain features. The results from using the distance to bound approach in chapter four 

cannot be used to distinguish between these two options, and to do so, causal 

approaches might be required. 
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6 Future challenges in Cognitive Neuroscience 

 

As discussed in section 2 of this chapter, the interpretation of decoding results is a 

fundamental issue in Cognitive Neuroscience, and new methods are needed to help the 

interpretability of neuroimaging studies. Another ongoing debate is to what level 

(Cognitive) Neuroscience can lead to an understanding of the brain (Figure 1). Marr 

argued that to understand a cognitive function, it needs to be described at three levels 

(Marr, 1982). The top level is the computational level, which defines the global input-

output function of the process under study. The second level is the algorithmic level, 

which describes how the input-output function is performed. The third and final level is 

the implementation level, which characterizes the underlying hardware that performs the 

algorithms. As neuroscience focuses mainly on the implementation level, it is currently 

debated whether the algorithmic level can be inferred from the implementation. In this 

section, I will discuss the recent article by Krakauer et al., (2017), who argue that 

neuroscience needs to incorporate behavioural studies more to come to an 

understanding of the algorithmic level of cognitive functions. 

 

 



Chapter 5 

 240 

 

Figure 1. Visual object categorization at Marr’s three levels of analysis. At the 
computational level, the input and output relationship is described. The algorithmic (here 

named representation) level describes how these computations are performed, that is, 
the algorithms and types of representations that are used to transform the input into the 

output. Finally, the implementation level describes how the algorithms and 
representations are implemented by the physical properties of the brain. A complete 

understanding of visual object categorization requires a description at all three levels 

(Marr, 1982). Figure from Grill-Spector and Weiner, (2014). 
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6.1 Combining decoding with behaviour 

 

Krakauer and colleagues argue that neuroscience results are not useful in isolation and 

that a more careful study of the behaviour that is to be explained is needed (Krakauer et 

al., 2017). They argue that often, non-ecologically valid behaviours are studied, which 

are not relevant for understanding natural behaviours. More importantly, they argue that 

studying the neural system can only describe the brain at Marr’s implementation level 

(Marr, 1982). According to Krakauer et al., a description at Marr’s algorithmic level is 

needed first, which a detailed analysis of behaviour can provide (Krakauer et al., 2017). 

Currently, the neuronal (implementation) level is the focus of a large body of work, and 

careful specification of the cognitive function under study is rarely included in the studies 

(Krakauer et al., 2017). 

 

Conducting behavioural experiments to guide neuroscience research is important, and 

there is currently limited inter-play between neuroscience and behavioural research. 

Moreover, investigating possible sources of a behavioural effect with neuroimaging can 

be good ways to test specific predictions. For example, in chapter three of this thesis, 

we tested the hypothesis that a shorter neural distance to bound can explain the 

decrease in behavioural performance for noisy stimuli. Here, the experiment was 

designed around explaining a behavioural effect. A more complete investigation could 

first specify the exact cognitive function that is of interest (Krakauer et al., 2017; Marr, 

1982), describing what its inputs and outputs are (the computational level). Then, by 

constructing theories about the underlying algorithms, specific experiments can be 

designed to narrow down the algorithm. Behaviour and neuroimaging studies can 

provide evidence for and against these theories. Note also that current work in 
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neuroscience can shape these theories. For example, as early visual cells preferentially 

respond to specific orientations, algorithms about visual function need to incorporate 

orientation in models of early visual processing. 

 

It is debatable at which of Marr’s levels neuroimaging studies in Cognitive Neuroscience 

are describing function. The human neuroimaging studies using fMRI are recording from 

millions of neurons at the same time, and can therefore not describe the exact underlying 

hardware. In the example of human vision in the ventral temporal cortex, MVPA studies 

are exploring the representational dynamics between visual areas (Figure 1). Thus, 

MVPA is well suited to explore the algorithmic level, for example by mapping the areas 

involved in specific function, such as was done in chapter four of this thesis. However, 

as de-Wit also argued, the focus of this research needs to shift from mapping the 

information to showing how information is communicated within the brain (de-Wit et al., 

2016). High temporal resolution neuroimaging data (e.g., MEG & EEG) has great 

potential to uncover dynamic transfer of information. For example, the temporal 

generalization method can be used to test theories about how information is formed and 

transferred over time (King et al., 2014; King and Dehaene, 2014). A strong focus on the 

development of methods that specifically test the read out and dynamics of information 

in the brain is critical for understanding its workings. 
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7 Conclusions 

 

This thesis demonstrated that relating decoding methods to behaviour is important for 

drawing conclusions about how information is used by the brain. First, I expanded on the 

development of decoding methods, facilitating their application for time-series 

neuroimaging data. Secondly, I have built on the distance to bound approach as a linking 

method for brain decoding and behaviour. By testing specific predictions of this 

approach, I showed a systematic relationship between decoding methods and models 

of behaviour. Finally, I showed how the distance to bound approach can be used to 

distinguish between decodable information and information that is suitable for use in 

behaviour. Taken together, these results highlight that going beyond brain decoding is 

necessary to come to a complete understanding of cognitive function. 

 

Whether neuroimaging can succeed in linking brain and cognition is heavily debated 

(Coltheart, 2006; de-Wit et al., 2016; Jonas and Kording, 2017; Krakauer et al., 2017; 

Poldrack, 2006, 2010). Some of these authors argue for a shift in perspective; rather 

than showing the availability of information, one must show how information is used by 

the brain (de-Wit et al., 2016; Klein, 2016; Naselaris and Kay, 2015; Ritchie et al., in 

press). Developing new ways of linking neuroimaging and behaviour is therefore a 

fundamental challenge for Cognitive Neuroscience. However, modelling the read out in 

behaviour is not sufficient, and methods for showing read out between different brain 

areas are also needed. The behavioural read out problem can be addressed by 

designing specific experiments to test approaches such as distance to bound for linking 

neuroimaging to behaviour. In the case of read out between brain areas, future work can 

develop new paradigms for testing information processing within the brain. 
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In conclusion, this thesis has argued that decodable information has to be interpreted 

with caution, as it does not imply that the information is being used by the brain. In 

addition, it has shown that by conducting a distance to bound analysis, evidence can be 

obtained supporting the use of information (decoded from neuroimaging data) in 

behaviour. Continuing to improve the methods for analysing neuroimaging data is an 

important requirement for the success of Cognitive Neuroscience. Developing new ways 

of investigating the dynamics of information within and between brain areas will be critical 

for a complete understanding of cognitive functions at all levels. 
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