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Summary 

 

In a global environment where mortality continues to decline, it is becoming 

increasingly important to develop mortality models which are able to account for 

global trends and relationships while also producing reasonable forecasts. In recent 

years there has been a growing interest in the co-modelling of multiple populations to 

address this.  One such example is the Poisson common factor model proposed by Li 

(2013) for modelling mortality jointly for both sexes. 

 

This thesis expands on the Poisson common factor model by proposing two 

alternative parameterisations which relax some of the original assumptions. One 

variation allows a different number of sex-specific factors for each sex, providing 

more flexibility in taking into account differing features and trends between females 

and males. The other variation considers a common age effect shared by both sexes, 

potentially improving the parsimony of the model's optimal use of parameters. 

 

The two extended models are then tested using mortality data from six populations. 

Model performance is measured using goodness-of-fit and forecasting accuracy. The 

results indicate that both of the two modifications improve fitting compared to the 

original model, and slightly improve forecasting accuracy in many cases. 
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Chapter 1 

 

Introduction 

 

In a world that is becoming increasingly connected, changes in population 

demographics and trends have the potential to cause a large impact on future 

economic and environmental planning. In particular, the continual improvement in 

life expectancy over the last few decades presents a significant challenge for 

government pension schemes, superannuation funds and other retirement income 

providers. With the additional factor of a rapidly developing longevity risk market, it 

is of utmost importance to develop suitable mortality models for measuring the trends 

and also to examine their projection results for potential use in future planning 

exercises. 

 

There have been many developments in the field of mortality modelling and 

projection in the last two decades. Ever since Lee and Carter (1992) laid the 

foundation for stochastic mortality modelling, much discussion has surrounded model 

selection, modelling procedures and improving mortality forecasts. The Lee-Carter 

model is elegant and straightforward, but it also suffers from various limitations. 

Many extensions, modifications and alternatives to the Lee-Carter model have been 

proposed and tested in the literature – see Cairns et al. (2008) and Cairns et al. (2009) 

for a comprehensive review and comparison of the prevalent mortality models. 

 

A research area that has recently gained much attention is the co-modelling of 

multiple populations. In general, examples of related populations include 

geographically and socioeconomically close countries, female and male populations 
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of the same region, and regional compared to national mortality of the same country. 

It can be argued that these subdivided groups or neighbouring populations are linked 

by certain common driving forces, and mortality models should be developed to 

capture the underlying relationships properly. One of the main criteria of a good 

multi-population mortality model is biological consistency. For instance, it is a 

common feature that females have a higher life expectancy than that of males. A 

model that forecasts the opposite situation would be difficult to justify due to 

inconsistency with historical data. 

 

Early implementations of the Lee-Carter model have treated related populations 

separately (or simply in aggregate). However, studies have found that this practice can 

lead to future projections that are inconsistent with historical data. Carter and Lee 

(1992) and Li and Lee (2005) noted that treating the two sexes as independent when 

applying the Lee-Carter model could result in divergent mortality projections, and 

possibly a mortality crossover – Li (2013) also expressed similar concerns when 

modelling Australian mortality. Without considering related populations jointly, 

mortality forecasts in the long run could become nonsensical and unusable. This 

thesis focuses on the female-male mortality relationship and explores some new ways 

to improve modelling mortality of both sexes together. 

 

In order to produce coherent or non-divergent mortality forecasts, Li and Lee (2005) 

proposed an extension of the Lee-Carter method, known as the augmented common 

factor model. This multi-population model allows for a common population-wide 

factor for the main long-term trend as well as an additional sex-specific factor for 

short-term deviations of each sex from the main trend. The specific time series 

modelling of the additional factors ensures convergence in projected male-female 

death rate ratios at each age in the long term. This helps avoid undesirable effects 

such as a mortality crossover or continual divergence between the sexes. Li (2013) 

presented an improvement on the augmented common factor model by modifying the 

homoscedastic error term assumption, incorporating a Poisson model to cater for the 

total number of deaths rather than the death rate, and generalising the model to 

incorporate multiple sex-specific factors. This Poisson common factor model (PCFM) 

maintains a male-female death rate ratio convergence at each age, serves as a formal 
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model framework for statistical analysis, and provides more flexibility in capturing 

higher order effects in the data. 

 

Nevertheless, there is still room for improvement in the PCFM. Yang et al. (2016) 

extended the PCFM by incorporating the cohort effect in a number of variations, and 

found that the new structures improve model fitting, reduce the optimal number of 

additional factors and maintain coherent mortality forecasts. This thesis, on the other 

hand, seeks to modify the PCFM in a different fashion, as very briefly noted in Li et 

al. (2016). One suggestion arises from the fact that the original PCFM does not allow 

for a different number of male- and female-specific factors. In principle, relaxing this 

limitation should allow the model to capture more different features or trends between 

the sexes, resulting in a more flexible model that is applicable to more situations. 

Another alternative is to impose a common age-to-period sensitivity effect on the sex-

specific factors in the PCFM. This has the potential to improve the parsimony of the 

model, in terms of reducing the number of parameters required. These two 

suggestions work in an opposite way to some extent – one allows for differences in 

the period effects, whereas the other exploits similar age sensitivity patterns (if any) 

between females and males. But the main purpose is the same – to develop more ways 

to adapt the PCFM to data from different populations with diverse features. 

 

In summary, this thesis aims to test the two extensions of the PCFM and determine if 

the alternatives show a performance improvement over the baseline model. Given the 

need to focus on coherent forecasting, this improvement is measured by investigating 

the accuracy of the model fit, as well as forecast accuracy and checking long-term 

forecast trends. 

 

The remainder of this thesis is structured as follows. Chapter 2 presents a literature 

review of mortality modelling and projection. Chapter 3 reviews the PCFM and 

provides details of the two proposed model variations. Chapter 4 applies the models to 

datasets of six populations and analyses the fitting results. Chapter 5 compares the 

models in terms of forecasting performance, and also performs out-of-sample testing. 

Finally, Chapter 6 sets forth concluding remarks and comments on future research. 
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Chapter 2 

 

Literature Review 

 

This chapter provides a brief review of existing mortality models in the literature and 

the precursors to the PCFM. It also highlights the issues facing mortality forecasting 

and the need for joint mortality models. 

 

2.1. Outline 

 

Mortality models used for forecasting can be broadly classified into three categories: 

expectation1, explanation and extrapolation (Booth and Tickle, 2008). Of these three 

categories, extrapolative forecasting methods are the most widely used. Expectation 

models are based on subjective opinions from experts to predict future mortality 

trends. Explanation methods rely on structural or epidemiological models to connect 

mortality rates to causes of death. Extrapolative methods make use of age patterns and 

trends over time found in mortality data, under the assumption that past mortality 

trends will continue in the future. 

 

Of the three approaches, extrapolative models are the most common and widely used. 

Expectation methods suffer from the drawback of requiring subjective input. This 

tends to result in overly pessimistic estimates of mortality decline (Alho and Spencer, 

1990; Lee and Carter, 1992; Lee and Miller, 2001). Explanatory models are difficult 

to use in practice, because the connections between mortality and risk factors are 

                                                 
1The expectation models are also known as judgmental models. 
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constantly changing and hard to quantify. Moreover, it is also required to produce 

forecasts of the risk factors themselves, which may be just as difficult as forecasting 

mortality. Indeed, forecasts with structural models have generally not performed very 

accurately, especially in the long term (Booth, 2006; Booth and Tickle, 2008; Keyfitz, 

1982). In comparison, extrapolative models are relatively straightforward to 

implement, possessing no reliance on theories or hypotheses except that the future 

will reflect past patterns. This is a key strength but also a fundamental weakness. 

Nevertheless, extrapolative approaches have proven to be widely popular in the 

literature (Booth, 2006). The most prominent extrapolative approach is the Lee-Carter 

model; the remainder of this review focuses on this model and the developments that 

lead to the PCFM. 

 

2.2. The Lee-Carter model and extensions 

 

Lee and Carter (1992) introduced an age-period-specific model to forecast mortality. 

The log central death rate is expressed as a function of two age factors and one time 

factor: 

txtxxtx kbam ,,ln   

where xa  represents the base age effect, tk  describes the overall change in mortality 

over time, and xb  is an age-specific sensitivity measure. tx,  is a homoscedastic error 

term. Parameters are estimated via singular value decomposition (SVD). The Lee-

Carter model can be used for forecasting by modelling the time component tk  as a 

time series such as a random walk with drift. 

 

The main advantages of the Lee-Carter model lie in its simplicity and ability to 

produce mortality forecasts without relying on subjective inputs. Due to this, it has 

been a popular choice for academics and practitioners for many years. However, the 

Lee-Carter model is not without drawbacks. For example, the assumption of a 

constant xb  over time is unrealistic when it comes to forecasting mortality. The model 

assumes that the rates of mortality decline across different ages always maintain the 

same ratios to one another over time, but in practice this is not the case (Lee, 2000). 

Another issue is that the estimates of xb  tend to be jagged across different ages, 
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leading to uneven mortality forecasts which should be expected to be smooth (De 

Jong and Tickle, 2006). A final example is that with only one factor, the Lee-Carter 

model cannot incorporate cohort effects – residual analysis for certain populations 

show clear evidence of clustering, violating the assumption of independence (Cairns 

et al., 2008). 

 

Many extensions to the Lee-Carter model have been proposed to improve its 

shortcomings. Lee and Miller (2001) noted that forecasting performance can be 

improved by focusing on goodness-of-fit in the final, jump-off year as opposed to the 

entire dataset. Brouhns et al. (2002) demonstrated a Poisson regression approach to 

estimating parameters, implementing more formal statistical methods such as 

maximum likelihood estimation and making the model more intuitively acceptable. 

Enhanced models with higher-order terms and cohort-specific terms have also been 

considered (Booth et al., 2002; Renshaw and Haberman, 2003, 2006). Others have 

formulated approaches to tackle the Lee-Carter model’s smoothing issues (De Jong 

and Tickle, 2006; Delwarde et al., 2007).  Indeed, many of the base Lee-Carter 

model’s flaws have been examined and improved over the years. However, many of 

these models have remained focused on applying the model to a single population. 

 

2.3. Mortality trends and joint modelling 

 

In the context of globalisation, countries are becoming more closely linked in terms of 

lifestyle, technology and other socio-economic factors. As such, it appears reasonable 

to assume that similarities in mortality patterns will also begin to emerge among 

closely related populations. In order to collate information and patterns across groups 

of populations, various joint mortality models have been proposed. These joint 

models attempt to improve model fit and produce more accurate, coherent forecasts 

compared to implementing separate individual models. 

 

Potential issues regarding separate modelling of individual populations have been 

identified as early as Carter and Lee (1992), where it was demonstrated that 

forecasting US mortality for the two sexes separately results in a long-term 

divergence of mortality rates. Such a large difference between male and female death 
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rates is illogical from a biological perspective. Moreover, the forecasts also indicated 

a mortality crossover – where at certain ages, females were projected to have higher 

mortality than males. This conclusion would be inconsistent with the historical sex 

differential. Similar inconsistency issues also exist for other scenarios – for example, 

comparing countries of vastly different trends, or modelling mortality of an insurance 

portfolio against nationwide mortality to account for longevity basis risk. While 

Carter and Lee (1992) suggested some approaches to model the two sexes, an explicit 

joint model extension of the Lee-Carter model was not proposed until Li and Lee 

(2005). 

 

2.4. The augmented common factor model 

 

Li and Lee (2005) noted that while the Lee-Carter model works well for a single 

population (either one sex or both sexes combined), dealing with each sex separately 

would result in the divergence problem described in Carter and Lee (1992). 

To tackle this issue, Li and Lee (2005) proposed the augmented common factor model. 

It is a multi-population extension of the Lee-Carter model: 

itxitixtxixitx kbKBam ,,,,,,,ln   

where txKB  represents the common factor, and ixa , , ixb , , itk ,  and itx ,,  hold similar 

meanings to the Lee-Carter model for specific population i. The common factor 

describes the main long-term trend in mortality change for the combined population 

as a whole, while the additional population-specific factors represent short-term 

deviations from the main trend. For forecasting, the common factor tK  is modelled as 

a random walk with drift, and the additional factors itk ,  are assumed to be stationary 

AR(1) processes. These assumptions cause the projected ratio of death rates between 

two populations to tend to a constant in the long run, thus allowing for short-term 

discrepancies but avoiding mortality divergence. 

 

While the augmented common factor model manages to deal with the issue of 

divergence, it inherits some of the shortcomings of the original Lee-Carter model. 

Also, incorporating multiple time components can result in increased uncertainty in 

short-term forecasts. Some extensions to the model have been proposed – one 
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example is the product-ratio method (Hyndman et al., 2013), which can be viewed as 

a generalisation of the augmented common factor model. The product-ratio method 

allows for multiple specific factors and incorporates more dynamic time series 

processes. Using this model, Hyndman et al. (2013) focused on a more precise 

definition of “coherent” forecasting, as opposed to simple non-divergence, and 

demonstrated a marked improvement in forecasting accuracy compared to other 

methods. A second extended model is the PCFM (Li, 2013), which applied Poisson 

regression as in Brouhns et al. (2002) to the augmented common factor model, 

resulting in similar benefits. A more detailed review of the PCFM follows in the next 

chapter. 

 

2.5. Other models 

 

There are a number of other multi-population mortality models that have been 

proposed in the literature. Li et al. (2014) provided a comprehensive review of these 

models. Many of these models are designed for modelling a large population with a 

much smaller sub-population in insurance hedging applications. In contrast, this thesis 

focuses on co-modelling females and males within a population, with potential use in 

government policy planning and insurance pricing. As such, the other models are only 

briefly mentioned here. 

 

The Cairns-Blake-Dowd (CBD) model (Cairns et al., 2006) is a single-population 

model that focuses on how old-age mortality changes over time. While it may fit older 

ages better in certain cases compared to the Lee-Carter model, it comes at the cost of a 

poorer fit if it is applied to the whole age range. Nevertheless, the CBD model can be 

considered another starting branch for many extensions and modified models. Joint 

extensions of the CBD model also exist – one such example is detailed in Tan et al. 

(2014). 

 

Some other models reviewed in Li et al. (2014) are based on Lee-Carter but have been 

developed separately to the augmented common factor model. For example, 

Russolillo et al. (2011) incorporated a population effect as a third dimension in their 

joint Lee-Carter extension. Debón et al. (2011) also proposed a joint Lee-Carter 
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extension with an extra factor. These can be loosely described as a group of models 

that incorporate common and specific factors (Li et al., 2014). 

 

2.6. Summary 

 

There have been many developments in mortality modelling and forecasting in the 

past few decades. Most of the mortality models in the literature can be said to belong 

to either the Lee-Carter family or CBD family of models. However, the motivations 

of this thesis lead to a focus on the Lee-Carter branch – specifically, extensions of the 

PCFM for co-modelling male and female populations. The potential usefulness of the 

PCFM has already been demonstrated – examples of applications to demographic and 

insurance problems can be found in Li and Haberman (2015), Li et al. (2016), Parr et 

al. (2016), and Yang et al. (2016). It is hoped that the proposed extensions to the 

PCFM result in a model that is more suitable to a wide variety of applications. 
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Chapter 3 

 

Data and Methods 

 

3.1. Review of the Poisson common factor model 

 

In the PCFM (Li, 2013), the force of mortality itx ,,  at age x in year t for sex i is 

assumed to be constant over an integer age-period interval. As a result, the central 

death rate itxitxm ,,,,   and the number of deaths can be modelled directly as a 

Poisson random variable: 

)(Pn~ ,,,,,, itxitxitx mED  

where itxD ,,  is the number of deaths and itxE ,,  is the corresponding exposure to risk. 

While itxE ,,  is a known quantity, itxm ,,  is an unknown parameter that requires 

estimation. 

 

The Poisson assumption has several advantages. As argued in Li (2013), this 

assumption leads to a rigorous statistical framework for analysing mortality data. Also, 

treating the number of deaths itxD ,,  as a counting random variable is a more natural 

choice compared to modelling the death rate with a homoscedastic error term in 

earlier models such as Lee and Carter (1992) and Li and Lee (2005). This Poisson 

framework is widely used in the literature – see Brouhns et al. (2002) and Cairns et al. 

(2009) for previous applications. When assessing uncertainty in mortality changes, 

however, death counts in population data appear to be over-dispersed for many 

countries, with a higher variance than mean (Cairns et al., 2009). In such cases, the 
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Poisson assumption can readily be modified as over-dispersed Poisson, in which the 

mean   itxitxitx mED ,,,,,,   remains the same while the variance is defined as 

  itxitxitx mED ,,,,,,  Var   instead, with 1 as the dispersion parameter (Renshaw and 

Haberman, 2006). There is no change needed in the computation algorithm and the 

parameter estimates would stay the same, except that the extra dispersion parameter 

has to be calculated separately from the deviance function. 

 

In line with the augmented common factor model in Li and Lee (2005), the log central 

death rate is modelled as: 





n

j
jitjixtxixitx kbKBam

1
,,,,,,,ln  

where ixa ,  represents the overall age effect, txKB  is the common factor for both sexes, 

and jitjix kb ,,,, is the jth additional sex-specific factor for sex i. In more detail, tK  is the 

mortality index of the common factor, and xB  measures the sensitivity of the log 

central death rate to changes in tK  for each age category. Similarly, jitk ,, is the time 

component of the jth sex-specific factor for sex i, with corresponding age sensitivity 

measure jixb ,, . Compared to Li and Lee (2005), the PCFM allows for the 

incorporation of multiple sex-specific factors where necessary, resulting in improved 

modelling results (Li, 2013; Li et al., 2016). 

 

The (conditional) maximum-likelihood parameter estimates of the PCFM are 

calculated via an iterative updating scheme (see Appendix for details). In order to 

ensure model identification, the model is subject to (4n + 2) constraints  
x xB 1, 

 
t tK 0 ,  

x jixb 1,,  and  
t jitk 0,, . To determine the optimal number of 

additional factors, the Bayesian Information Criterion (BIC)2 is used as the main 

statistical measure to balance between model fit and over-parameterisation. Other 

indicators include the patterns of the residual plots, the trends of the additional 

parameters and the volume of data under investigation. 

 
                                                 
2 The BIC is calculated as )ln(ˆ2 dp nnl  , where l̂  is the computed log-likelihood, pn  is the 

effective number of parameters being estimated, and dn  is the number of observations. 
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After calibration of the model, the time components tK  and jitk ,,  need to be projected 

into the future. Previous studies have shown that the common mortality index tK  

tends to be linear and decreasing for various countries (Li et al., 2016). Hence, tK  can 

be modelled as a random walk with drift: 

ttt eKK  1  

where   is the drift term and te  is a normally distributed random variable with mean 

0 and variance 2 . On the other hand, the sex-specific terms jitk ,,  are intended to 

represent short-term deviations from the main trend for each sex, so a mean-reverting 

process is an ideal model. Hence, each jitk ,, is assumed to follow a weakly stationary 

AR(p) process: 




 
p

l
jitjitjiljijit kk

1
,,,,1,,,,0,,   

where ji,,0  and jil ,,  are autoregressive model parameters and jit ,,  is a normal error 

term with mean 0 and variance 2
, ji . The order p is chosen based on the partial 

autocorrelation function (PACF) of the time components and the autocorrelations of 

the residuals. Additionally, each jitk ,,  is assumed to be independent to the others.3 

Under these conditions, future death rates (in year t > T) can be projected as: 









 



n

j
jiTjitjixTtxiTxitx kkbKKBmm

1
,,,,,,,,,, )ˆ()ˆ(expˆ   

where tK̂  and jitk ,,
ˆ  are projected values from their respective time series setting the 

error terms to zero, and the starting point of the projection iTxm ,,  is calculated from the 

latest set of data in year T. This helps to avoid significant bias in the beginning of the 

projection period (Lee and Miller, 2001). Using these projections, the ratio of male-to-

female death rates can be expressed as: 









 



n

j
jTjtjxjTjtjx

tx

tx

tx

tx kkbkkb
m

m

m

m

1
,1,,1,,1,,2,,2,,2,

1,,

2,,

1,,

2,, ))ˆ()ˆ((exp
ˆ

ˆ




. 

                                                 
3 An alternative is to model the jitk ,, terms as multivariate time series when assessing uncertainty of 

mortality changes, but this approach may complicate the projection exercise with a small data period. 
This is left as an option for future research. 
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This ratio only converges to a constant if jtk ,1,
ˆ  and jtk ,2,

ˆ  also converge. This is 

ensured as long as each jitk ,, is weakly stationary. In cases where the fitted model is 

not weakly stationary, an alternative model such as a random walk without drift can 

also be used. 

 

3.2. Poisson common factor model with variable sex-specific factors 

 

This thesis now proposes a modified version of the PCFM with variable sex-specific 

factors (PCFM-VSF), which relaxes the initial assumption that the number of 

additional sex-specific factors is the same for each sex. This approach can be 

interpreted as allowing for the existence of potential factors or trends that only affect 

one sex or impact each sex differently. For example, life expectancy figures have 

shown their own distinct trends in recent decades. While both sexes have continually 

improved, male life expectancy has increased faster than female life expectancy over 

time. Li (2013) demonstrated that for Australian data, the observed difference 

between sexes was approximately 7 years in 1968, reduced to 4.5 years in 2007, and 

can be projected to narrow to 3.1 years in 2050. This lends credence to the theory that 

there are some factors that are impacting male mortality rates more than females. 

 

Utilising the same notation as above, the log central death rate is modelled as: 





in

j
jitjixtxixitx kbKBam

1
,,,,,,,ln  

where there are ni additional sex-specific factors for sex i. The estimation procedure 

remains the same with slight modifications (see Appendix for details), while future 

death rates under this model are projected as: 









 



in

j
jiTjitjixTtxiTxitx kkbKKBmm

1
,,,,,,,,,, )ˆ()ˆ(expˆ   

and the ratio of male-to-female death rates becomes: 









  

 

2 1

1 1
,1,,1,,1,,2,,2,,2,

1,,

2,,

1,,

2,, )ˆ()ˆ(exp
ˆ

ˆ n

j

n

j
jTjtjxjTjtjx

tx

tx

tx

tx kkbkkb
m

m

m

m




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3.3. Poisson common factor model with a common age effect 

 

Hyndman and Ullah (2007) proposed a generalised version of the Lee-Carter model 

using a functional data analysis approach. One of the extensions for modelling 

multiple groups considered a common age effect (CAE), where different populations 

share the same age-period function. Kleinow (2015) also proposed a CAE extension 

of the Lee-Carter model, and found that instead of considering an individual age 

effect for each country, adding an extra common age-period effect resulted in a better 

model fit. This common age concept can readily be adapted to the PCFM. As shown 

in Figures 1 and 2 below, some of the computed jixb ,,  values from the original PCFM 

for the countries under consideration indeed show fairly similar peaks and troughs 

between females and males. This interesting observation provides a strong incentive 

to seek a more efficient use of model parameters. 

 

Accordingly, this thesis proposes a modification of the PCFM with a common age 

effect (PCFM-CAE), in which the age sensitivity measures for each additional sex-

specific factor are assumed to be equal between the sexes, that is, jxjx bb ,2,,1,  . This 

assumption allows a more parsimonious use of parameters and may lead to a lower 

BIC value in some cases. As a result, the log central death rate is modelled as 





n

j
jitjxtxixitx kbKBam

1
,,,,,,ln  

Again, only slight changes are needed for the estimation procedure (see Appendix for 

details). Future death rates are projected using the same equation as the baseline 

PCFM, with jixb ,,  replaced by jxb , : 









 



n

j
jiTjitjxTtxiTxitx kkbKKBmm

1
,,,,,,,,, )ˆ()ˆ(expˆ   

and the ratio of male-to-female death rates becomes: 









 



n

j
jTjtjTjtjx

tx

tx

tx

tx kkkkb
m

m

m

m

1
,1,,1,,2,,2,,

1,,

2,,

1,,

2,, ))ˆ()ˆ((exp
ˆ

ˆ




 

 



15 

3.4. Description of data 

 

Datasets for six populations – Australia, France, West Germany, England and Wales, 

the United States, and Canada – are obtained from the Human Mortality Database 

(HMD 2016). The six developed countries are selected on the basis that they are good 

representatives of the major continents including Australasia, Europe, and North 

America. As shown in the next chapter, the data of these countries call for different 

model choices amongst the alternatives considered, highlighting the importance to 

have more flexibility in the modelling approach. These datasets are separated by sex 

and single year of age. As the exposed-to-risk and death counts are generally too 

volatile for more advanced ages, the age range 0-89 is chosen to allow for more 

precise analysis.4 Moreover, in line with previous studies (Li, 2013; Yang et al., 2016), 

the year 1970 is chosen as the start of the sample period in order to avoid the 

structural changes in mortality improvement that occurred around that time.5 This 

ensures that the data used are relevant and helps to make projections more 

straightforward. The ending year of 2011 is the latest year that all six populations 

have data available. 

                                                 
4 The volatile patterns of advanced ages tend to distort the model fitting and require a further separate 
analysis, e.g. see Thatcher (1999).  
5 Booth et al. (2002) developed a statistical measure for selecting the optimal fitting period for the 
original Lee-Carter model. Li et al. (2011) investigated the detection of structural changes and their 
impact on forecasting. 
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Figure 1: Computed 1,,ixb  values from the baseline PCFM for females (left) and males (right), 

Australia, France, and England and Wales. 
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Figure 2: Computed 1,,ixb  values from the baseline PCFM for females (left) and males (right), United 

States, West Germany, and Canada. 
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Chapter 4 

 

Analysis of Model Fitting Results 

 

This section details the results of fitting the three models discussed in the previous 

chapter to the six population datasets. The R statistical software package (R Core 

Team, 2015) is used to perform all the computations6. The optimal model fit is 

decided by analysing the BIC values and standardised residual plots. Table 1 shows 

the BIC results for the PCFM-VSF and PCFM-CAE for Australia. Baseline PCFM 

results are also included on the diagonal, as the PCFM-VSF is effectively an 

expansion of the base model. The baseline model agrees with the results from Li 

(2013) and Yang et al. (2016) that two sex-specific factors is the optimal choice, with 

the lowest BIC value (72,718) on the diagonal. The PCFM-CAE results suggest a 

further improvement in model fit (71,838), where there is no change in the optimal 

number of factors. In contrast, the PCFM-VSF results indicate that the optimal choice 

is to eliminate one factor from the optimal baseline model – still using two male-

specific factors but incorporating only one female-specific factor (72,674). For 

Australian data, both new models produce a better fit than the baseline model, with 

the PCFM-CAE as the most optimal choice amongst all. 

                                                 
6 The R code used is available from the author on request. 
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Table 1: BIC values for the PCFM, PCFM-VSF and PCFM-CAE, Australia. 

 
No. of female factors   

0 1 2 3 4 5 6 CAE 
N

o.
 o

f m
al

e 
fa

ct
or

s 0 75,495 75,189 75,233 75,902 76,727 77,581 78,498 75,495 
1 73,246 72,941 72,985 73,654 74,478 75,332 76,249 72,983 
2 72,980 72,674 72,718 73,387 74,212 75,066 75,983 71,838 
3 73,632 73,326 73,370 74,039 74,864 75,717 76,634 72,277 
4 74,456 74,151 74,195 74,864 75,688 76,542 77,459 73,203 
5 75,329 75,023 75,067 75,736 76,561 77,414 78,331 74,237 
6 76,245 75,939 75,983 76,652 77,477 78,331 79,248 75,351 

 

The BIC values for France are presented in Table 2. The baseline model points to the 

use of four factors (94,176). Similar to the results above, the PCFM-VSF suggests that 

the optimal model choice is to remove one factor from the optimal baseline model, 

resulting in three female-specific factors and four male-specific factors (93,743). On 

the other hand, the PCFM-CAE leads to a different conclusion of adding more factors 

instead, where the optimal choice is using five factors for each sex (92,980). For 

French data, both new models deliver a better fit than the original model, again with 

the PCFM-CAE being the most optimal one. 

 

Table 2: BIC values for the PCFM, PCFM-VSF and PCFM-CAE, France. 

 
No. of female factors   

0 1 2 3 4 5 6 CAE 

N
o.

 o
f m

al
e 

fa
ct

or
s 0 119,537 115,127 111,205 111,007 111,440 111,986 112,663 119,537 

1 111,222 106,812 102,890 102,692 103,125 103,671 104,348 107,222 
2 105,437 101,027 97,106 96,907 97,340 97,886 98,563 100,074 
3 103,298 98,888 94,967 94,768 95,201 95,747 96,424 96,158 
4 102,273 97,863 93,941 93,743 94,176 94,722 95,399 93,998 
5 102,570 98,160 94,238 94,040 94,473 95,019 95,696 92,980 
6 103,127 98,717 94,795 94,597 95,030 95,576 96,253 93,290 

 

The BIC values for England and Wales are set forth in Table 3. Here, there is no 

improvement in the PCFM-VSF over the baseline – both versions choose n = 3 for 

both male- and female-specific factors (90,810). In comparison, the PCFM-CAE 

suggests an additional factor for each sex which results in a better model fit under the 

common age effect (89,174). 
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Table 3: BIC values for the PCFM, PCFM-VSF and PCFM-CAE, England & Wales. 

 
No. of female factors   

0 1 2 3 4 5 6 CAE 

N
o.

 o
f m

al
e 

fa
ct

or
s 0 123,144 112,825 108,014 106,555 106,723 107,446 108,210 123,144 

1 113,530 103,211 98,400 96,941 97,109 97,832 98,596 104,438 
2 107,799 97,480 92,669 91,210 91,378 92,101 92,865 95,180 
3 107,400 97,081 92,270 90,810 90,979 91,701 92,465 90,150 
4 107,558 97,239 92,428 90,969 91,137 91,860 92,624 89,174 
5 108,199 97,880 93,069 91,609 91,778 92,500 93,264 89,791 
6 108,866 98,547 93,735 92,276 92,445 93,167 93,931 90,545 

 

Table 4 lists the BIC values for the United States. There is a slight departure in the 

model fitting results here compared to other populations. While the baseline model 

recommends n = 5 (114,904), the PCFM-VSF, rather than removing a factor from the 

optimal baseline, suggests adding an extra male-specific factor, leading to five 

female-specific and six male-specific factors (114,788). The PCFM-CAE also 

supports adding more factors over the optimal baseline model, resulting in six factors 

for each sex as the optimal choice (115,012). For United States data, the PCFM-VSF 

shows the best model fit, whereas the PCFM-CAE is the least optimal among the 

three candidates. 

 

Table 4: BIC values for the PCFM, PCFM-VSF and PCFM-CAE, United States. 

 
No. of female factors   

0 1 2 3 4 5 6 CAE 

N
o.

 o
f m

al
e 

fa
ct

or
s 0 323,884 269,642 247,122 233,627 231,845 231,682 232,047 323,884 

1 272,805 218,563 196,043 182,547 180,766 180,603 180,968 222,510 
2 234,615 180,372 157,852 144,357 142,575 142,412 142,777 170,417 
3 214,808 160,565 138,045 124,550 122,768 122,605 122,970 138,098 
4 209,124 154,882 132,362 118,866 117,085 116,921 117,287 121,819 
5 207,106 152,864 130,344 116,848 115,067 114,904 115,269 117,425 
6 206,991 152,748 130,228 116,733 114,951 114,788 115,153 115,012 

 

Table 5 presents the BIC values for West Germany. The PCFM-VSF shows no 

improvement over the baseline model here (101,580), but the PCFM-CAE suggests 

adding two extra factors for each sex, rather than just one like previously, and leads to 

a lower BIC value (99,922). 
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Table 5: BIC values for the PCFM, PCFM-VSF and PCFM-CAE, West Germany. 

 
No. of female factors   

0 1 2 3 4 5 6 CAE 
N

o.
 o

f m
al

e 
fa

ct
or

s 0 120,661 116,638 114,439 113,910 113,724 113,747 113,890 120,661 
1 113,223 109,199 107,000 106,471 106,285 106,308 106,451 109,367 
2 110,722 106,699 104,500 103,971 103,785 103,808 103,951 105,193 
3 109,297 105,274 103,074 102,545 102,359 102,382 102,526 102,647 
4 108,518 104,494 102,295 101,766 101,580 101,603 101,746 101,039 
5 108,757 104,734 102,535 102,006 101,820 101,843 101,986 100,153 
6 109,071 105,048 102,849 102,320 102,134 102,157 102,300 99,922 

 

Finally, the BIC values for Canada are given in Table 6. The results here are similar to 

those of England and Wales, in which the PCFM-VSF makes no improvement over 

the baseline (77,159), while the PCFM-CAE requires one more factor for each sex 

and produces a better model fit (76,381). 

 

Table 6: BIC values for the PCFM, PCFM-VSF and PCFM-CAE, Canada. 

 
No. of female factors   

0 1 2 3 4 5 6 CAE 

N
o.

 o
f m

al
e 

fa
ct

or
s 0 88,740 85,687 85,184 85,282 86,167 87,066 87,990 88,740 

1 83,266 80,213 79,710 79,808 80,693 81,592 82,516 82,576 
2 80,715 77,662 77,159 77,257 78,142 79,042 79,965 77,046 
3 81,064 78,011 77,508 77,606 78,491 79,390 80,314 76,381 
4 81,841 78,788 78,285 78,383 79,268 80,167 81,090 77,061 
5 82,681 79,628 79,125 79,223 80,108 81,007 81,931 78,075 
6 83,583 80,530 80,027 80,125 81,010 81,909 82,833 79,166 

 

Overall, the PCFM-CAE leads to the best model fit for five of the countries, the 

PCFM-VSF is the best one for one case, and the baseline PCFM is the least optimal 

amongst the three options for five countries. These results clearly show that the two 

proposed extensions outperform the original model in terms of fitting population 

mortality data from a number of different countries. It appears that the age sensitivity 

is rather similar between the sexes for certain countries and so setting common age 

sensitivity can make the model more parsimonious in these cases. Moreover, a 

different number of factors for each sex can provide more flexibility for modelling 

mortality data in some cases. 

 



22 

Next, the standardised deviance residuals7 for the three models and six datasets are 

displayed in Figures 3-8. Overall, there do not appear to be any significant systematic 

patterns in the residuals plotted against age or calendar year. However, there are signs 

of some weak patterns in the residuals plotted against cohort year. More importantly, 

there are slight differences in the magnitude of these patterns between the models. For 

Australia, although the PCFM-VSF improves the model fit over the baseline PCFM, it 

comes at the cost of a more obvious pattern in the residuals for females. This feature 

has also been found for France, though to a lesser extent. These observations are 

likely due to the optimal PCFM-VSF model having one less female-specific factor 

compared to the baseline PCFM. However, the same is not evident for the United 

States, owing to the large number of factors used in both models. For the PCFM-CAE, 

there are no noticeable differences in cohort residual randomness for Australia, France 

and the United States when compared to the baseline PCFM. For England and Wales, 

as well as Canada, the PCFM-CAE shows a slight improvement in the residuals over 

the baseline model. In contrast, for West Germany, the PCFM-CAE has a slightly 

more pronounced pattern in the residuals. In fact, these cohort patterns may be 

addressed by modifying the PCFM-VSF and PCFM-CAE to include a cohort factor in 

a similar approach to Yang et al. (2016) – this modification is left as an option for 

future research. 

 

To conduct a more thorough investigation on the deviance residuals, the 

autocorrelation function (ACF) can be used. For each age and sex combination, if the 

sample ACF is less than twice the estimated standard error in magnitude, it is 

considered insignificant. While the results are not shown here, there are significant 

autocorrelations at multiple lags for many age and sex combinations. As the usage of 

the BIC in model fitting assumes that serial correlations in the data have been 

adequately captured, this result is slightly problematic for the proposed models. 

                                                 
7 To account for possible over-dispersion in the data, the residuals are standardised with respect to the 
dispersion parameter (Li, 2013; Yang et al., 2016). The equation is shown in the Appendix. 
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In order to conduct another check of the suitability of the model fit, the mean absolute 

percentage error (MAPE) values of the fitted log central death rates are displayed in 

Table 7. The MAPE is defined as: 




itx itxitx

itxitxitx

d ed

edm

n ,, ,,,,
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where dn  is the number of data points, itxm ,,
~  is the fitted log central death rate, and 

itxd ,,  and itxe ,,  are observed values of the number of deaths and exposed-to-risk 

respectively. The MAPE values are expressed in percentage below. As an alternative 

measure, the MAPE values on the fitted actual central death rates are also provided. 

 

Table 7: MAPE values for fitted log (actual) central death rates 

Country PCFM PCFM-VSF PCFM-CAE 
Australia 1.12% (7.14%) 1.18% (7.40%) 1.17% (7.53%) 
France 0.66% (3.96%) 0.67% (4.08%) 0.67% (4.07%) 
England & Wales 0.73% (4.57%) - 0.72% (4.56%) 
United States 0.35% (1.97%) 0.34% (2.06%) 0.37% (1.94%) 
West Germany 0.72% (4.36%) - 0.73% (4.42%) 
Canada 0.90% (5.66%) - 0.88% (5.61%) 

 

All the MAPE values for log rates are quite small in general, and the differences are 

very small between the three models. None of the models has a clear advantage over 

the others. In terms of the goodness-of-fit, the performances of all three models are 

satisfactory. This pattern also holds for considering the MAPE values on the actual 

rates. 

 

As a final note, it is interesting to see that there seems to be some trade-off between 

setting common age sensitivity (fewer parameters) and adding more factors (more 

parameters). For five of the countries being considered, the PCFM-CAE applications 

require adding one or two extra factors compared to the baseline model. Consequently, 

there are more time components in the structure and so more time series models are 

needed to perform future projections. Despite a better model fit, using more time 

series models complicates the projection exercise and does not necessarily lead to 

better projection results. This issue will be investigated in the next chapter. 
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Figure 3: Standardised deviance residuals for the PCFM (top panel), PCFM-VSF (middle panel) and 

PCFM-CAE (bottom panel), Australia. The first row is for females and the second for males. Residuals 

are plotted against age (left), calendar year (middle), and then cohort year (right). 
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Figure 4: Standardised deviance residuals for the PCFM (top panel), PCFM-VSF (middle panel) and 

PCFM-CAE (bottom panel), France. The first row is for females and the second for males. Residuals 

are plotted against age (left), calendar year (middle), and then cohort year (right). 
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Figure 5: Standardised deviance residuals for the PCFM (top panel) and PCFM-CAE (bottom panel), 

England and Wales. The first row is for females and the second for males. Residuals are plotted against 

age (left), calendar year (middle), and then cohort year (right). 
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Figure 6: Standardised deviance residuals for the PCFM (top panel), PCFM-VSF (middle panel) and 

PCFM-CAE (bottom panel), United States. The first row is for females and the second for males. 

Residuals are plotted against age (left), calendar year (middle), and then cohort year (right). 
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Figure 7: Standardised deviance residuals for the PCFM (top panel) and PCFM-CAE (bottom panel), 

West Germany. The first row is for females and the second for males. Residuals are plotted against age 

(left), calendar year (middle), and then cohort year (right). 
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Figure 8: Standardised deviance residuals for the PCFM (top panel) and PCFM-CAE (bottom panel), 

Canada. The first row is for females and the second for males. Residuals are plotted against age (left), 

calendar year (middle), and then cohort year (right). 
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Chapter 5 

 

Model Projection 

 

5.1. Analysis of forecasting results 

 

This section investigates the accuracy and convergence of the mortality forecasts 

produced by the optimal model for each of the three variations. As mentioned in 

Chapter 3, the common mortality index tK  is modelled as a random walk with drift, 

while the sex-specific terms jitk ,, are modelled as AR(p) processes. The order p is 

chosen based on the PACF of the time components, the autocorrelations of the 

residuals8, and whether the fitted model is weakly stationary. In cases where a weakly 

stationary AR(p) model does not exist, a random walk without drift is used as a 

substitute. The purpose is to ensure that the forecast ratio of male-to-female death 

rates at each age eventually converges to a constant, thus avoiding the potential 

problems of unrealistic projected ratios and mortality crossover as demonstrated in Li 

(2013) and Yang et al. (2016). 

 

In line with the 42 years of data from 1970-2011, the projection period is chosen to be 

42 years long ranging from 2012-2053. Figures 9-14 display the projected ratios of 

male-to-female death rates for the three models. In general, the three models all show 

similar projection properties. There are some slight differences in the direction and 

speed of convergence across the age groups, but the projected ratios all converge 

ultimately and appear roughly in line with the past trends. One possible issue arises 
                                                 
8 See Appendix for details. 
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with the PCFM-CAE projection for West Germany – because the optimal model has 

two more factors than the baseline model, there are four extra time components to be 

projected. Using more time series models for the extra components results in forecast 

ratios with much stronger autoregressive effects, most evident in the 0-9 and 10-29 

age groups.9 Although the ratios still converge and the projection reflects the past data 

well, the frequent fluctuations may nevertheless be undesirable for forecasting 

purposes. This problem could be mitigated by using AR(1) models as opposed to 

AR(p) models for the time components, but this alternative approach is rather 

arbitrary. 

 

5.2. Analysis of out-of-sample testing results 

 

Another method of checking the accuracy of mortality forecasts is to perform out-of-

sample testing, also known as backtesting, to compare the PCFM, PCFM-VSF and 

PCFM-CAE mortality projections against observed data.10 The sample period is split 

into two parts – the first 30 years (1970-1999) are used to fit each model and the 

remaining 12 years (2000-2011) are used to evaluate the forecasting performance of 

that model. The projection accuracy is measured using the MAPE of the projected log 

(actual) central death rates of each sex i, defined in a similar manner to Chapter 4. The 

MAPE of the projected ratios of male-to-female death rates is also considered, defined 

as: 


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9 It is worth noting that three of the four extra time components in the PCFM-CAE for West Germany 
are of order 3 or higher. 
10 As before, cases where the optimal PCFM-VSF selects the same number of factors as the PCFM are 
omitted. 
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Figure 9: Projected ratios of male-to-female death rates, Australia. 
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Figure 10: Projected ratios of male-to-female death rates, France. 
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Figure 11: Projected ratios of male-to-female death rates, England and Wales. 
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Figure 12: Projected ratios of male-to-female death rates, United States. 
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Figure 13: Projected ratios of male-to-female death rates, West Germany. 
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Figure 14: Projected ratios of male-to-female death rates, Canada. 
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Table 8 presents the MAPE values of the projected estimates of the six countries 

under the three models, and Figures 15-20 display the projected male-to-female ratios 

compared to observed values. Similar to the results in the previous chapter, the MAPE 

values for male and female log central death rates are very small, and the differences 

between models are negligible. The MAPE values for actual death rates are quite a bit 

larger, especially for Australia, but again, no single model has clear advantages 

compared to the others. However, when considering male-to-female ratios, the 

PCFM-CAE noticeably outperforms the baseline model in all cases except one. The 

more obvious examples are France (5.38% compared to 6.02%) and West Germany 

(5.01% compared to 6.77%). This outcome is further emphasised by looking at the 

graphs – for France (Figure 16), age groups 0-9 and 30-49 are the main contributors to 

the difference, while for West Germany (Figure 19), age group 10-29 is the key 

difference. 11  These results suggest that the PCFM-CAE may be a more accurate 

model for forecasting in regards to considering male-to-female death rate ratios.  

 

For the PCFM-VSF compared to the baseline model, the results are not as clear. 

Regarding projected male-to-female ratios, the PCFM-VSF slightly outperforms the 

base model for Australia, is slightly outperformed instead for France, and the 

difference between the models for the United States is negligible. From a graphical 

perspective, only France appears to have a noticeable difference – the PCFM-VSF is 

slightly worse at the very end of the projection in age groups 0-9 and 10-29. With 

fewer populations to compare, it is difficult to come to any conclusions as to whether 

the PCFM-VSF outperforms the baseline model. 

 

It is important to consider that the results of out-of-sample testing can change 

substantially if a different split between the sample and projection periods is used. To 

further investigate the forecast accuracy of the three models, the analysis is repeated 

with a sample period of 25 years (1970-1994) and a projection period of 17 years 

(1995-2011). The results of this second out-of-sample test are presented in Table 9 

and Figures 21-26. Comparing the two tests in regards to MAPE values for individual 

sexes, there does not appear to be an overall pattern in performance changes. However, 

                                                 
11 Again, it is worth noting that the optimal models for West Germany contain some higher order 
AR(p) processes, resulting in a highly fluctuating projection that overly reflects past data. Additionally, 
in this out-of-sample test, the optimal PCFM-CAE has six additional factors compared to the PCFM’s 
three. 
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when looking at the MAPE values for projected male-to-female death rate ratios, the 

longer projection period results in lower accuracy in all cases except the PCFM for 

West Germany. Comparing the graphs between the two analyses, France (Figure 22) 

performs noticeably worse with the shorter data period, where the 10-29 age group is 

visibly less accurate. For the United States (Figure 24), the projected male-to-female 

death rate ratios are constantly higher than the actual values for the 10-29 and 30-49 

age groups, in contrast to the first analysis where the projected ratios are constantly 

lower. Overall, however, there does not appear to be a significant decrease in 

accuracy for the larger projection period. 

 

One final thing to note is that all the models considered sometimes produce death rate 

ratio forecasts that are fairly different to what have actually happened, including ages 

10 to 29 for Australia and West Germany and ages 30 to 69 for France. Nevertheless, 

the results presented here and in the previous chapter broadly reaffirm that the PCFM-

CAE and PCFM-VSF have potential advantages over the base PCFM, without 

significantly sacrificing fitting or projection accuracy. 
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Table 8: MAPE values from the PCFM, PCFM-VSF and PCFM-CAE 

 PCFM PCFM-VSF PCFM-CAE 

Country Femalea Malea 

Male to 
female 
ratiosb Femalea Malea 

Male to 
female 
ratiosb Femalea Malea 

Male to 
female 
ratiosb 

Australia 
1.99% 

(15.55%)
2.56% 

(18.15%) 7.71% 
2.06% 

(16.09%)
2.56% 

(18.15%) 7.43% 
2.02% 

(15.87%)
2.55% 

(17.97%) 7.21% 

France 
1.95% 

(14.45%)
2.20% 

(13.97%) 6.02% 
1.86% 

(13.44%)
2.20% 

(13.97%) 6.32% 
1.90% 

(14.09%)
2.08% 

(12.77%) 5.38% 
England 
& Wales 

1.85% 
(11.29%)

2.53% 
(13.16%) 5.22% - - - 

1.76% 
(11.17%)

2.60% 
(13.25%) 5.70% 

United 
States 

1.27% 
(7.10%) 

1.89% 
(8.38%) 4.39% 

1.27% 
(7.08%) 

1.89% 
(8.38%) 4.41% 

1.21% 
(6.97%) 

1.70% 
(7.82%) 3.84% 

West 
Germany 

1.65% 
(10.56%)

1.76% 
(10.25%) 6.77% - - - 

1.63% 
(10.88%)

1.79% 
(10.80%) 5.01% 

Canada 
1.80% 

(11.19%)
2.38% 

(12.32%) 6.38% - - - 
1.80% 

(11.20%)
2.39% 

(12.38%) 6.34% 
This out-of-sample analysis, applies the PCFM, PCFM-VSF (where applicable) and PCFM-CAE to the first period, 
projects death rates for the second period, and compares the projected values against the observed rates. The first 
period is 30 years and the second period is 12 years. 
a: MAPE values are based on fitted log (actual) central death rates. 
b: The MAPE values of the projected male-to-female ratios of death rates are based on 10-year age groups, since the 
ratios can be volatile for younger individual ages. 
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Figure 15: Observed (solid lines) and projected (dotted lines) ratios of male-to-female death rates, 

Australia. The sample period is 30 years and the projection period is 12 years. 
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Figure 16: Observed (solid lines) and projected (dotted lines) ratios of male-to-female death rates, 

France. The sample period is 30 years and the projection period is 12 years. 
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Figure 17: Observed (solid lines) and projected (dotted lines) ratios of male-to-female death rates, 

England and Wales. The sample period is 30 years and the projection period is 12 years. 
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Figure 18: Observed (solid lines) and projected (dotted lines) ratios of male-to-female death rates, 

United States. The sample period is 30 years and the projection period is 12 years. 
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Figure 19: Observed (solid lines) and projected (dotted lines) ratios of male-to-female death rates, West 

Germany. The sample period is 30 years and the projection period is 12 years. 

 

 

 

 

 

 

 

 



46 

 

 

 

 

 

 
Figure 20: Observed (solid lines) and projected (dotted lines) ratios of male-to-female death rates, 

Canada. The sample period is 30 years and the projection period is 12 years. 
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Table 9: MAPE values from the PCFM, PCFM-VSF and PCFM-CAE 

 PCFM PCFM-VSF PCFM-CAE 

Country Femalea Malea 

Male to 
female 
ratiosb Femalea Malea 

Male to 
female 
ratiosb Femalea Malea 

Male to 
female 
ratiosb 

Australia 
2.14% 

(14.42%)
2.65% 

(15.93%) 8.12% 
2.15% 

(14.47%)
2.69% 

(15.73%) 7.59% 
2.15% 

(14.47%)
2.73% 

(15.81%) 7.51% 

France 
2.05% 

(15.52%)
2.51% 

(18.41%) 7.81% 
2.05% 

(15.52%)
2.49% 

(18.10%) 7.08% 
2.07% 

(15.62%)
2.42% 

(17.52%) 7.53% 
England 
& Wales 

1.71% 
(10.04%)

2.53% 
(13.18%) 6.46% - - - 

1.68% 
(9.96%) 

2.53% 
(13.19%) 6.14% 

United 
States 

1.42% 
(7.68%) 

2.21% 
(13.29%) 12.95%

1.41% 
(7.68%) 

2.21% 
(13.22%) 12.75% 

1.54% 
(8.41%) 

2.24% 
(13.27%) 11.20% 

West 
Germany 

1.67% 
(10.60%)

1.85% 
(10.67%) 5.83% - - - 

1.62% 
(10.25%)

1.86% 
(10.79%) 6.50% 

Canada 
1.69% 

(10.77%)
2.32% 

(13.13%) 10.24% - - - 
1.69% 

(10.79%)
2.32% 

(13.13%) 10.17% 
This out-of-sample analysis, applies the PCFM, PCFM-VSF (where applicable) and PCFM-CAE to the first period, 
projects death rates for the second period, and compares the projected values against the observed rates. The first 
period is 25 years and the second period is 17 years. 
a: MAPE values are based on fitted log (actual) central death rates. 
b: The MAPE values of the projected male-to-female ratios of death rates are based on 10-year age groups, since the 
ratios can be volatile for younger individual ages. 
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Figure 21: Observed (solid lines) and projected (dotted lines) ratios of male-to-female death rates, 

Australia. The sample period is 25 years and the projection period is 17 years. 
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Figure 22: Observed (solid lines) and projected (dotted lines) ratios of male-to-female death rates, 

France. The sample period is 25 years and the projection period is 17 years. 
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Figure 23: Observed (solid lines) and projected (dotted lines) ratios of male-to-female death rates, 

England and Wales. The sample period is 25 years and the projection period is 17 years. 
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Figure 24: Observed (solid lines) and projected (dotted lines) ratios of male-to-female death rates, 

United States. The sample period is 25 years and the projection period is 17 years. 
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Figure 25: Observed (solid lines) and projected (dotted lines) ratios of male-to-female death rates, West 

Germany. The sample period is 25 years and the projection period is 17 years. 
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Figure 26: Observed (solid lines) and projected (dotted lines) ratios of male-to-female death rates, 

Canada. The sample period is 25 years and the projection period is 17 years. 
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6. Concluding Remarks 

 

This thesis has suggested two modifications to the PCFM proposed by Li (2013) and 

evaluated the data fitting and forecasting performance when applied to multiple 

populations. The two modifications involve allowing for a different number of sex-

specific factors, and incorporating a common age effect into the model in a similar 

fashion to Kleinow (2015). The results indicate that the modified PCFM-VSF and 

PCFM-CAE produce better fitting results compared to the base PCFM, while 

maintaining reasonable and accurate joint projections of male and female mortality. 

These new modifications offer more flexibility to deal with different features and 

patterns in different populations. 

 

One potential issue for concern lies in the out-of-sample forecasting results. This 

thesis has shown that the time series dynamics of the PCFM family of models 

sometimes results in peculiar mortality projections. Further investigation into the 

sample period’s impact on forecast accuracy is warranted. Moreover, there does not 

appear to be a universal relationship between the three models and the optimal choice 

of parameters. It would be interesting to apply these models to more population 

datasets and examine the results. Another limitation that needs to be addressed is the 

serial correlations in the data. By using the BIC, the model fitting procedure assumes 

that serial correlations have been adequately captured by the time series models, but 

analysis of the deviance residuals and the ACFs of the time series residuals 

demonstrate that this is not the case. 
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Ideas for future research include adding a cohort term to the PCFM-VSF and PCFM-

CAE. Yang et al. (2016) extended the base PCFM with a cohort term and found that it 

reduced the need for additional period factors. The parsimony of the PCFM-VSF and 

PCFM-CAE could be further improved in a similar fashion. Moreover, it would be 

useful to apply these models to practical scenarios such as insurance pricing and 

government policy planning, since a realistic joint projection of females and males is 

very important for valuing annuities, pensions and social benefits correctly. 

Furthermore, a more detailed investigation of the use of time series models would be 

warranted. The choice of time series modelling affects not only the central projection 

but also the level of variability in the simulation. For insurance or demographic 

studies requiring probabilistic calculations, one should be cautious about the specific 

effects of assuming a particular time series model. 
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Appendix 

 

The iterative updating scheme used to estimate the parameters of the PCFM, PCFM-

VSF and PCFM-CAE is designed to minimise the deviance function: 


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or equivalently, maximise the log likelihood function: 
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itx

itxitxitxitx ddddLl
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,,,,,,,, )!ln(ˆ)ˆln(ln  

where itxd ,,  is the observed number of deaths at age x in year t for sex i, and itxd ,,
ˆ  is 

the corresponding fitted number of deaths. For example, in the PCFM-CAE the fitted 

number of deaths is calculated as: 
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The parameters are updated using the Newton-Raphson method: 

22
*

/

/







l

l
 

However, previous studies (Li, 2013; Yang et al., 2016) have shown that attempting 

to update all parameters simultaneously does not necessarily lead to an optimal 

solution, as the iterative procedure tends to head towards some local maxima. For 

practical purposes, a multi-stage estimation method is used to calculate a conditional 

maximum likelihood instead, as suggested in Booth et al. (2002). 

 



60 

Below is an illustration of the updating procedure as described in Li (2013), modified 

for the PCFM-CAE. First the model is fitted with the common factor only, i.e. n = 0. 

Assuming an age range of 0-89: 

 

(1) Set up initial parameter values ( ixa ,ˆ = mean of log death rates at age x of sex i over 

time, xB̂ = jxb ,
ˆ = 1/90, tK̂ = jitk ,,

ˆ = 0), and calculate itxd ,,
ˆ . 

(2) Update  
t t

itxitxitxixix dddaa ,,,,,,,
*

,
ˆ/)ˆ(ˆˆ for all x and i, and then recalculate all 

itxd ,,
ˆ . 

(3) Update 2

, ,
,,,,,,

* ˆˆ/ˆ)ˆ(ˆˆ
x

ix ix
itxxitxitxtt BdBddKK   for all t, adjusted with 0ˆ * 

t
tK , 

and then recalculate all itxd ,,
ˆ . 

(4) Update 2

, ,
,,,,,,

* ˆˆ/ˆ)ˆ(ˆˆ
t

it it
itxtitxitxxx KdKddBB    for all x, and then recalculate all 

itxd ,,
ˆ . 

(5) For final parameter estimates, divide xB̂ by 
x

xB̂ and multiply tK̂  by 
x

xB̂ . 

(6) Compute the log-likelihood function or deviance function. 

(7) Repeat (2) - (6) until the log-likelihood or deviance converges. 

Now, treating the estimated parameters as given, the additional sex-specific factors 

are added one at a time and the new parameters are estimated as below: 

 

(8) Update 2
,,,,,,,,,,

*
,,

ˆˆ/ˆ)ˆ(ˆˆ
jx

x x
itxjxitxitxjitjit bdbddkk    for all t, all i, and j = 1, 

adjusted with 0ˆ*
,, 

t
jitk , and then recalculate all itxd ,,

ˆ . 

(9) Update 2
,,

, ,
,,,,,,,,,

*
,

ˆˆ/ˆ)ˆ(ˆˆ
jit

it it
itxjititxitxjxjx kdkddbb   for all x, and j = 1, and then 

recalculate all itxd ,,
ˆ . 

(10) Similarly to (5), divide jxb ,
ˆ by 

x
jxb ,

ˆ and multiply jitk ,,
ˆ by 

x
jxb ,

ˆ . 

(11) Compute the log-likelihood function or deviance function. 

(12) Repeat (8) – (11) until the log-likelihood or deviance converges. 
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 (13) Treating the newly estimated jxb ,
ˆ  and jitk ,,

ˆ  as given as well, repeat (8) – (12) for 

the other values of j. 

 

This conditional maximum likelihood approach offers a more convenient modelling 

strategy, and has no problems with convergence of the parameters or the log-

likelihood/deviance. The procedure is easily tweaked for the PCFM-VSF as well, by 

replacing jxb ,
ˆ  with jixb ,,

ˆ  and omitting the relevant parts of (8) and (9) once all of one 

sex’s factors have been added. 

 

The standardised deviance residuals are calculated as in Li (2013): 

̂

)ˆ)ˆ/(2
)ˆ(sign ,,,,,,,,

,,,,,,
itxitxitxitx

itxitxitx

dddd
ddr


  

where pn  is the effective number of parameters being estimated, dn  is the number of 

observations and the dispersion parameter 
pd nn 


deviance̂ . 

 

The tables below illustrate the ACFs of the residuals of the selected time series 

processes for model projection. The symbols +, - and * are used to indicate whether 

the sample ACF value at a certain lag is larger than twice the estimated standard error, 

smaller than negative twice the estimated standard error, or is statistically 

insignificant. RW is used if the time series was modelled as a random walk without 

drift instead. Although there are some significant values in the chosen time series 

models, the alternative choices are non-stationary or otherwise unsuitable for 

projection purposes. 

 

Australia PCFM 
Lag 1 2 3 4 5 6 7 8 
kf1 RW        
kf2 * + + * * * * * 
km1 * * * + * * * * 
km2 * * * * * * * * 
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Australia PCFM-VSF 
Lag 1 2 3 4 5 6 7 8 
kf1 RW        
km1 * * * + * * * * 
km2 * * * * * * * * 

 

Australia PCFM-CAE 
Lag 1 2 3 4 5 6 7 8 
kf1 - * * + * * * * 
kf2 * * * * * * * * 
km1 * * * + * * * * 
km2 * * * * * * * * 

 

France PCFM 
Lag 1 2 3 4 5 6 7 8 
kf1 * * * * * * * * 
kf2 * + * * * * * * 
kf3 * * * * * * * * 
kf4 * + + * * * * * 
km1 * * * * * * * * 
km2 * + * * * * * * 
km3 * * * * + * * * 
km4 * * + * * * * * 

 

France PCFM-VSF 
Lag 1 2 3 4 5 6 7 8 
kf1 * * * * * * * * 
kf2 * + * * * * * * 
kf3 * * * * * * * * 
km1 * * * * * * * * 
km2 * + * * * * * * 
km3 * * * * + * * * 
km4 * * + * * * * * 

 

France PCFM-CAE 
Lag 1 2 3 4 5 6 7 8 
kf1 * * * * * * * * 
kf2 * * * * * * * * 
kf3 * + * * * * * * 
kf4 * * * * * * * * 
kf5 * * * - * * * * 
km1 * * + * * * * * 
km2 * * * * * * * * 
km3 * * * * * * * * 
km4 * * * * + * * * 
km5 * * + * * * * * 
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England & Wales PCFM 
Lag 1 2 3 4 5 6 7 8 
kf1 * * * * * * * * 
kf2 * + * * * * * * 
kf3 * * + * * * * * 
km1 RW        
km2 * * * + * + * * 
km3 * * * * * * * * 

 

England & Wales PCFM-CAE 
Lag 1 2 3 4 5 6 7 8 
kf1 * * * * * * * * 
kf2 RW        
kf3 * * * * * * * * 
kf4 * * * * * * * * 
km1 RW        
km2 RW        
km3 * * * + * * * * 
km4 * * * + * * * * 

 

United States PCFM 
Lag 1 2 3 4 5 6 7 8 
kf1 * * * * - * * * 
kf2 * * * * * * * * 
kf3 * + * * * * * * 
kf4 * * * * * * * * 
kf5 * * * * * * * * 
km1 * * * * * * * * 
km2 * * * * * * * * 
km3 * * * * * * * * 
km4 * * * * * * * * 
km5 * * * * * * * * 

 

United States PCFM-VSF 
Lag 1 2 3 4 5 6 7 8 
kf1 * * * * - * * * 
kf2 * * * * * * * * 
kf3 * + * * * * * * 
kf4 * * * * * * * * 
kf5 * * * * * * * * 
km1 * * * * * * * * 
km2 * * * * * * * * 
km3 * * * * * * * * 
km4 * * * * * * * * 
km5 * * * * * * * * 
km6 * * * * * * * * 
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United States PCFM-CAE 
Lag 1 2 3 4 5 6 7 8 
kf1 * * * * * * * * 
kf2 * * * * * * * * 
kf3 * * * * * * * * 
kf4 * + * * * * * * 
kf5 * * * * * * * * 
kf6 * * * * * - * * 
km1 RW        
km2 * * * * * * * * 
km3 * * * * * * * * 
km4 * * * * * * * * 
km5 * * * * * * * * 
km6 * * * * * * * * 

 

West Germany PCFM 
Lag 1 2 3 4 5 6 7 8 
kf1 * * * * * * * * 
kf2 RW        
kf3 * * * * + * * * 
kf4 * * + - + * * * 
km1 * * + * + * * * 
km2 RW        
km3 * * * * * * * * 
km4 * * * * * * * * 

 

West Germany PCFM-CAE 
Lag 1 2 3 4 5 6 7 8 
kf1 * * * * * * * * 
kf2 RW        
kf3 * * + * + * * * 
kf4 - * * * + - + * 
kf5 * * * * * - * * 
kf6 * * * * * * * * 
km1 * * + * + * * * 
km2 * * * * * * * * 
km3 * * * * * * * * 
km4 * * * * * - * * 
km5 * * * * + * * * 
km6 * * * * * * * * 

 

Canada PCFM 
Lag 1 2 3 4 5 6 7 8 
kf1 RW * * * * * * * 
kf2 * * * * * * * * 
km1 * * * * * * * * 
km2 * * + * + * * * 
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Canada PCFM-CAE 
Lag 1 2 3 4 5 6 7 8 
kf1 * + * * * * * * 
kf2 RW        
kf3 * * + * * * * * 
km1 * * * * * * * * 
km2 * * + * * * * * 
km3 * * * * * * * * 

 


