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Summary

In a global environment where mortality continues to decline, it is becoming
increasingly important to develop mortality models which are able to account for
global trends and relationships while also producing reasonable forecasts. In recent
years there has been a growing interest in the co-modelling of multiple populations to
address this. One such example is the Poisson common factor model proposed by Li

(2013) for modelling mortality jointly for both sexes.

This thesis expands on the Poisson common factor model by proposing two
alternative parameterisations which relax some of the original assumptions. One
variation allows a different number of sex-specific factors for each sex, providing
more flexibility in taking into account differing features and trends between females
and males. The other variation considers a common age effect shared by both sexes,

potentially improving the parsimony of the model's optimal use of parameters.

The two extended models are then tested using mortality data from six populations.
Model performance is measured using goodness-of-fit and forecasting accuracy. The
results indicate that both of the two modifications improve fitting compared to the

original model, and slightly improve forecasting accuracy in many cases.
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Chapter 1

Introduction

In a world that is becoming increasingly connected, changes in population
demographics and trends have the potential to cause a large impact on future
economic and environmental planning. In particular, the continual improvement in
life expectancy over the last few decades presents a significant challenge for
government pension schemes, superannuation funds and other retirement income
providers. With the additional factor of a rapidly developing longevity risk market, it
is of utmost importance to develop suitable mortality models for measuring the trends
and also to examine their projection results for potential use in future planning

exercises.

There have been many developments in the field of mortality modelling and
projection in the last two decades. Ever since Lee and Carter (1992) laid the
foundation for stochastic mortality modelling, much discussion has surrounded model
selection, modelling procedures and improving mortality forecasts. The Lee-Carter
model is elegant and straightforward, but it also suffers from various limitations.
Many extensions, modifications and alternatives to the Lee-Carter model have been
proposed and tested in the literature — see Cairns et al. (2008) and Cairns et al. (2009)

for a comprehensive review and comparison of the prevalent mortality models.

A research area that has recently gained much attention is the co-modelling of
multiple populations. In general, examples of related populations include

geographically and socioeconomically close countries, female and male populations



of the same region, and regional compared to national mortality of the same country.
It can be argued that these subdivided groups or neighbouring populations are linked
by certain common driving forces, and mortality models should be developed to
capture the underlying relationships properly. One of the main criteria of a good
multi-population mortality model is biological consistency. For instance, it is a
common feature that females have a higher life expectancy than that of males. A
model that forecasts the opposite situation would be difficult to justify due to

inconsistency with historical data.

Early implementations of the Lee-Carter model have treated related populations
separately (or simply in aggregate). However, studies have found that this practice can
lead to future projections that are inconsistent with historical data. Carter and Lee
(1992) and Li and Lee (2005) noted that treating the two sexes as independent when
applying the Lee-Carter model could result in divergent mortality projections, and
possibly a mortality crossover — Li (2013) also expressed similar concerns when
modelling Australian mortality. Without considering related populations jointly,
mortality forecasts in the long run could become nonsensical and unusable. This
thesis focuses on the female-male mortality relationship and explores some new ways

to improve modelling mortality of both sexes together.

In order to produce coherent or non-divergent mortality forecasts, Li and Lee (2005)
proposed an extension of the Lee-Carter method, known as the augmented common
factor model. This multi-population model allows for a common population-wide
factor for the main long-term trend as well as an additional sex-specific factor for
short-term deviations of each sex from the main trend. The specific time series
modelling of the additional factors ensures convergence in projected male-female
death rate ratios at each age in the long term. This helps avoid undesirable effects
such as a mortality crossover or continual divergence between the sexes. Li (2013)
presented an improvement on the augmented common factor model by modifying the
homoscedastic error term assumption, incorporating a Poisson model to cater for the
total number of deaths rather than the death rate, and generalising the model to
incorporate multiple sex-specific factors. This Poisson common factor model (PCFM)

maintains a male-female death rate ratio convergence at each age, serves as a formal



model framework for statistical analysis, and provides more flexibility in capturing

higher order effects in the data.

Nevertheless, there is still room for improvement in the PCFM. Yang et al. (2016)
extended the PCFM by incorporating the cohort effect in a number of variations, and
found that the new structures improve model fitting, reduce the optimal number of
additional factors and maintain coherent mortality forecasts. This thesis, on the other
hand, seeks to modify the PCFM in a different fashion, as very briefly noted in Li et
al. (2016). One suggestion arises from the fact that the original PCFM does not allow
for a different number of male- and female-specific factors. In principle, relaxing this
limitation should allow the model to capture more different features or trends between
the sexes, resulting in a more flexible model that is applicable to more situations.
Another alternative is to impose a common age-to-period sensitivity effect on the sex-
specific factors in the PCFM. This has the potential to improve the parsimony of the
model, in terms of reducing the number of parameters required. These two
suggestions work in an opposite way to some extent — one allows for differences in
the period effects, whereas the other exploits similar age sensitivity patterns (if any)
between females and males. But the main purpose is the same — to develop more ways

to adapt the PCFM to data from different populations with diverse features.

In summary, this thesis aims to test the two extensions of the PCFM and determine if
the alternatives show a performance improvement over the baseline model. Given the
need to focus on coherent forecasting, this improvement is measured by investigating
the accuracy of the model fit, as well as forecast accuracy and checking long-term

forecast trends.

The remainder of this thesis is structured as follows. Chapter 2 presents a literature
review of mortality modelling and projection. Chapter 3 reviews the PCFM and
provides details of the two proposed model variations. Chapter 4 applies the models to
datasets of six populations and analyses the fitting results. Chapter 5 compares the
models in terms of forecasting performance, and also performs out-of-sample testing.

Finally, Chapter 6 sets forth concluding remarks and comments on future research.



Chapter 2

Literature Review

This chapter provides a brief review of existing mortality models in the literature and
the precursors to the PCFM. It also highlights the issues facing mortality forecasting

and the need for joint mortality models.

2.1. Outline

Mortality models used for forecasting can be broadly classified into three categories:
expectation!, explanation and extrapolation (Booth and Tickle, 2008). Of these three
categories, extrapolative forecasting methods are the most widely used. Expectation
models are based on subjective opinions from experts to predict future mortality
trends. Explanation methods rely on structural or epidemiological models to connect
mortality rates to causes of death. Extrapolative methods make use of age patterns and
trends over time found in mortality data, under the assumption that past mortality

trends will continue in the future.

Of the three approaches, extrapolative models are the most common and widely used.
Expectation methods suffer from the drawback of requiring subjective input. This
tends to result in overly pessimistic estimates of mortality decline (Alho and Spencer,
1990; Lee and Carter, 1992; Lee and Miller, 2001). Explanatory models are difficult

to use in practice, because the connections between mortality and risk factors are

!The expectation models are also known as judgmental models.



constantly changing and hard to quantify. Moreover, it is also required to produce
forecasts of the risk factors themselves, which may be just as difficult as forecasting
mortality. Indeed, forecasts with structural models have generally not performed very
accurately, especially in the long term (Booth, 2006; Booth and Tickle, 2008; Keyfitz,
1982). In comparison, extrapolative models are relatively straightforward to
implement, possessing no reliance on theories or hypotheses except that the future
will reflect past patterns. This is a key strength but also a fundamental weakness.
Nevertheless, extrapolative approaches have proven to be widely popular in the
literature (Booth, 2006). The most prominent extrapolative approach is the Lee-Carter
model; the remainder of this review focuses on this model and the developments that

lead to the PCFM.

2.2. The Lee-Carter model and extensions

Lee and Carter (1992) introduced an age-period-specific model to forecast mortality.
The log central death rate is expressed as a function of two age factors and one time
factor:

Inm, =a, +bk +¢,,
where a, represents the base age effect, k, describes the overall change in mortality

over time, and b, is an age-specific sensitivity measure. &,, is a homoscedastic error

term. Parameters are estimated via singular value decomposition (SVD). The Lee-

Carter model can be used for forecasting by modelling the time component k, as a

time series such as a random walk with drift.

The main advantages of the Lee-Carter model lie in its simplicity and ability to
produce mortality forecasts without relying on subjective inputs. Due to this, it has
been a popular choice for academics and practitioners for many years. However, the
Lee-Carter model is not without drawbacks. For example, the assumption of a
constant b, over time is unrealistic when it comes to forecasting mortality. The model
assumes that the rates of mortality decline across different ages always maintain the
same ratios to one another over time, but in practice this is not the case (Lee, 2000).

Another issue is that the estimates of b, tend to be jagged across different ages,



leading to uneven mortality forecasts which should be expected to be smooth (De
Jong and Tickle, 2006). A final example is that with only one factor, the Lee-Carter
model cannot incorporate cohort effects — residual analysis for certain populations
show clear evidence of clustering, violating the assumption of independence (Cairns

et al., 2008).

Many extensions to the Lee-Carter model have been proposed to improve its
shortcomings. Lee and Miller (2001) noted that forecasting performance can be
improved by focusing on goodness-of-fit in the final, jump-off year as opposed to the
entire dataset. Brouhns et al. (2002) demonstrated a Poisson regression approach to
estimating parameters, implementing more formal statistical methods such as
maximum likelihood estimation and making the model more intuitively acceptable.
Enhanced models with higher-order terms and cohort-specific terms have also been
considered (Booth et al., 2002; Renshaw and Haberman, 2003, 2006). Others have
formulated approaches to tackle the Lee-Carter model’s smoothing issues (De Jong
and Tickle, 2006; Delwarde et al., 2007). Indeed, many of the base Lee-Carter
model’s flaws have been examined and improved over the years. However, many of

these models have remained focused on applying the model to a single population.

2.3. Mortality trends and joint modelling

In the context of globalisation, countries are becoming more closely linked in terms of
lifestyle, technology and other socio-economic factors. As such, it appears reasonable
to assume that similarities in mortality patterns will also begin to emerge among
closely related populations. In order to collate information and patterns across groups
of populations, various joint mortality models have been proposed. These joint
models attempt to improve model fit and produce more accurate, coherent forecasts

compared to implementing separate individual models.

Potential issues regarding separate modelling of individual populations have been
identified as early as Carter and Lee (1992), where it was demonstrated that
forecasting US mortality for the two sexes separately results in a long-term

divergence of mortality rates. Such a large difference between male and female death



rates is illogical from a biological perspective. Moreover, the forecasts also indicated
a mortality crossover — where at certain ages, females were projected to have higher
mortality than males. This conclusion would be inconsistent with the historical sex
differential. Similar inconsistency issues also exist for other scenarios — for example,
comparing countries of vastly different trends, or modelling mortality of an insurance
portfolio against nationwide mortality to account for longevity basis risk. While
Carter and Lee (1992) suggested some approaches to model the two sexes, an explicit
joint model extension of the Lee-Carter model was not proposed until Li and Lee

(2005).

2.4. The augmented common factor model

Li and Lee (2005) noted that while the Lee-Carter model works well for a single
population (either one sex or both sexes combined), dealing with each sex separately
would result in the divergence problem described in Carter and Lee (1992).

To tackle this issue, Li and Lee (2005) proposed the augmented common factor model.
It is a multi-population extension of the Lee-Carter model:

ln mx,t,i = ax,i + Bx Kt + bx,i kt,i + gx,t,i

where B K, represents the common factor, and a,;, b,;, k; and ¢,; hold similar

X0 2 X,i 2
meanings to the Lee-Carter model for specific population i. The common factor
describes the main long-term trend in mortality change for the combined population
as a whole, while the additional population-specific factors represent short-term

deviations from the main trend. For forecasting, the common factor K, is modelled as
a random walk with drift, and the additional factors k;; are assumed to be stationary

AR(1) processes. These assumptions cause the projected ratio of death rates between
two populations to tend to a constant in the long run, thus allowing for short-term

discrepancies but avoiding mortality divergence.

While the augmented common factor model manages to deal with the issue of
divergence, it inherits some of the shortcomings of the original Lee-Carter model.
Also, incorporating multiple time components can result in increased uncertainty in

short-term forecasts. Some extensions to the model have been proposed — one



example is the product-ratio method (Hyndman et al., 2013), which can be viewed as
a generalisation of the augmented common factor model. The product-ratio method
allows for multiple specific factors and incorporates more dynamic time series
processes. Using this model, Hyndman et al. (2013) focused on a more precise
definition of “coherent” forecasting, as opposed to simple non-divergence, and
demonstrated a marked improvement in forecasting accuracy compared to other
methods. A second extended model is the PCFM (Li, 2013), which applied Poisson
regression as in Brouhns et al. (2002) to the augmented common factor model,
resulting in similar benefits. A more detailed review of the PCFM follows in the next

chapter.

2.5. Other models

There are a number of other multi-population mortality models that have been
proposed in the literature. Li et al. (2014) provided a comprehensive review of these
models. Many of these models are designed for modelling a large population with a
much smaller sub-population in insurance hedging applications. In contrast, this thesis
focuses on co-modelling females and males within a population, with potential use in
government policy planning and insurance pricing. As such, the other models are only

briefly mentioned here.

The Cairns-Blake-Dowd (CBD) model (Cairns et al., 2006) is a single-population
model that focuses on how old-age mortality changes over time. While it may fit older
ages better in certain cases compared to the Lee-Carter model, it comes at the cost of a
poorer fit if it is applied to the whole age range. Nevertheless, the CBD model can be
considered another starting branch for many extensions and modified models. Joint

extensions of the CBD model also exist — one such example is detailed in Tan et al.

(2014).

Some other models reviewed in Li et al. (2014) are based on Lee-Carter but have been
developed separately to the augmented common factor model. For example,
Russolillo et al. (2011) incorporated a population effect as a third dimension in their

joint Lee-Carter extension. Debon et al. (2011) also proposed a joint Lee-Carter



extension with an extra factor. These can be loosely described as a group of models

that incorporate common and specific factors (Li et al., 2014).

2.6. Summary

There have been many developments in mortality modelling and forecasting in the
past few decades. Most of the mortality models in the literature can be said to belong
to either the Lee-Carter family or CBD family of models. However, the motivations
of this thesis lead to a focus on the Lee-Carter branch — specifically, extensions of the
PCFM for co-modelling male and female populations. The potential usefulness of the
PCFM has already been demonstrated — examples of applications to demographic and
insurance problems can be found in Li and Haberman (2015), Li et al. (2016), Parr et
al. (2016), and Yang et al. (2016). It is hoped that the proposed extensions to the

PCFM result in a model that is more suitable to a wide variety of applications.



Chapter 3

Data and Methods

3.1. Review of the Poisson common factor model

In the PCFM (Li, 2013), the force of mortality 4, ; at age X in year t for sex I is

assumed to be constant over an integer age-period interval. As a result, the central

death rate m,,; = u,,; and the number of deaths can be modelled directly as a

Poisson random variable:

Dx,t,i ~ Pn(Ex,t,imx,t,i)

where D, ; is the number of deaths and E,; is the corresponding exposure to risk.
While E, ;; is a known quantity, m,,; is an unknown parameter that requires
estimation.

The Poisson assumption has several advantages. As argued in Li (2013), this
assumption leads to a rigorous statistical framework for analysing mortality data. Also,

treating the number of deaths D, ; as a counting random variable is a more natural

choice compared to modelling the death rate with a homoscedastic error term in
earlier models such as Lee and Carter (1992) and Li and Lee (2005). This Poisson
framework is widely used in the literature — see Brouhns et al. (2002) and Cairns et al.
(2009) for previous applications. When assessing uncertainty in mortality changes,

however, death counts in population data appear to be over-dispersed for many

countries, with a higher variance than mean (Cairns et al., 2009). In such cases, the

10



Poisson assumption can readily be modified as over-dispersed Poisson, in which the

mean E(Dx,t,i): Ex,t,imx,t,'

; remains the same while the variance is defined as

Var(DX’t’i ): ¢ E, ;M instead, with ¢ >1as the dispersion parameter (Renshaw and

i
Haberman, 2006). There is no change needed in the computation algorithm and the
parameter estimates would stay the same, except that the extra dispersion parameter

has to be calculated separately from the deviance function.

In line with the augmented common factor model in Li and Lee (2005), the log central

death rate is modelled as:

ti,]

n
Inm,,; =a, +B,K, + mek
[

where a,; represents the overall age effect, B K is the common factor for both sexes,

and b, . .k

..i.iei.j1s the jth additional sex-specific factor for sex i. In more detail, K, is the

mortality index of the common factor, and B, measures the sensitivity of the log

ri.j1s the time

central death rate to changes in K, for each age category. Similarly, k
component of the jth sex-specific factor for sex i, with corresponding age sensitivity

measure b,;; . Compared to Li and Lee (2005), the PCFM allows for the

incorporation of multiple sex-specific factors where necessary, resulting in improved

modelling results (Li, 2013; Li et al., 2016).

The (conditional) maximum-likelihood parameter estimates of the PCFM are

calculated via an iterative updating scheme (see Appendix for details). In order to

ensure model identification, the model is subject to (4n + 2) constraints zx B, =1,

Zt K,=0, bex,i,j =1 and Zt Ki.j=0. To determine the optimal number of

additional factors, the Bayesian Information Criterion (BIC)? is used as the main
statistical measure to balance between model fit and over-parameterisation. Other
indicators include the patterns of the residual plots, the trends of the additional

parameters and the volume of data under investigation.

> The BIC is calculated as — 2| +n o In(n, ), where I is the computed log-likelihood, N, is the

effective number of parameters being estimated, and Ny is the number of observations.
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After calibration of the model, the time components K, and k,; ; need to be projected

ti,
into the future. Previous studies have shown that the common mortality index K,
tends to be linear and decreasing for various countries (Li et al., 2016). Hence, K, can
be modelled as a random walk with drift:

Ki=u+K_ +¢
where p is the drift term and e, is a normally distributed random variable with mean

0 and variance . On the other hand, the sex-specific terms K, ; are intended to

ti, ]
represent short-term deviations from the main trend for each sex, so a mean-reverting

process is an ideal model. Hence, each k., : is assumed to follow a weakly stationary

ti,j

AR(p) process:

p
kt,i,j =y j +Zal,i,jkt—l,i,j + &
=1

where ¢, ; and ¢, ; are autoregressive model parameters and &,; ; is a normal error

i
term with mean O and variance a)fj . The order p is chosen based on the partial

autocorrelation function (PACF) of the time components and the autocorrelations of

the residuals. Additionally, each K, . is assumed to be independent to the others.’

ti, ]
Under these conditions, future death rates (in year t > T) can be projected as:

M, =Mer; eXp[Bx(Kt -Ki)+ sz,i,j (kt,i,j - kT,i,j )]

j=t

by A

where K, and k,; . are projected values from their respective time series setting the

ti,]

error terms to zero, and the starting point of the projection m, ; ; is calculated from the

latest set of data in year T. This helps to avoid significant bias in the beginning of the
projection period (Lee and Miller, 2001). Using these projections, the ratio of male-to-

female death rates can be expressed as:

rﬁx,t,z mx,t,z . o ~
N = exXp Z(bx,z,j (kt,z,j - kT,2,j )— bx.l,j (kt,l.j - kTJ,J' ) |-
mx,t,l mx,t,l j=1

3 An alternative is to model the K, ; . terms as multivariate time series when assessing uncertainty of

ti, ]
mortality changes, but this approach may complicate the projection exercise with a small data period.
This is left as an option for future research.

12



This ratio only converges to a constant if k,; and k;,; also converge. This is

ensured as long as each K, . is weakly stationary. In cases where the fitted model is

ti,j
not weakly stationary, an alternative model such as a random walk without drift can

also be used.

3.2. Poisson common factor model with variable sex-specific factors

This thesis now proposes a modified version of the PCFM with variable sex-specific
factors (PCFM-VSF), which relaxes the initial assumption that the number of
additional sex-specific factors is the same for each sex. This approach can be
interpreted as allowing for the existence of potential factors or trends that only affect
one sex or impact each sex differently. For example, life expectancy figures have
shown their own distinct trends in recent decades. While both sexes have continually
improved, male life expectancy has increased faster than female life expectancy over
time. Li (2013) demonstrated that for Australian data, the observed difference
between sexes was approximately 7 years in 1968, reduced to 4.5 years in 2007, and
can be projected to narrow to 3.1 years in 2050. This lends credence to the theory that

there are some factors that are impacting male mortality rates more than females.

Utilising the same notation as above, the log central death rate is modelled as:

ti, ]

r.ll
Inm,,; =a,; +BK, + Z b, K
j=l

where there are ni additional sex-specific factors for sex i. The estimation procedure
remains the same with slight modifications (see Appendix for details), while future
death rates under this model are projected as:
i
mx,t,i =M1, eXP[Bx(Kt -Ky)+ Zlbx,i,j (Rt,i,j - kT,i,j)j
=

and the ratio of male-to-female death rates becomes:

R ; . .
Moz~ Mtz [ S (K —k bk —k

- =— exXp Z x,2,j( t,2,i T,2,j)_z x,l,j( tLj T,l,j)
mx,t,l mx,t,l j=1 j=1
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3.3. Poisson common factor model with a common age effect

Hyndman and Ullah (2007) proposed a generalised version of the Lee-Carter model
using a functional data analysis approach. One of the extensions for modelling
multiple groups considered a common age effect (CAE), where different populations
share the same age-period function. Kleinow (2015) also proposed a CAE extension
of the Lee-Carter model, and found that instead of considering an individual age
effect for each country, adding an extra common age-period effect resulted in a better
model fit. This common age concept can readily be adapted to the PCFM. As shown

in Figures 1 and 2 below, some of the computed b, ; ; values from the original PCFM

j
for the countries under consideration indeed show fairly similar peaks and troughs
between females and males. This interesting observation provides a strong incentive

to seek a more efficient use of model parameters.

Accordingly, this thesis proposes a modification of the PCFM with a common age
effect (PCFM-CAE), in which the age sensitivity measures for each additional sex-
specific factor are assumed to be equal between the sexes, that is, b, ; =b, , ;. This
assumption allows a more parsimonious use of parameters and may lead to a lower

BIC value in some cases. As a result, the log central death rate is modelled as

Inm,; =a,; +B,K, + be, K

j=1

tij

Again, only slight changes are needed for the estimation procedure (see Appendix for
details). Future death rates are projected using the same equation as the baseline

PCFM, with b, |

]

replaced by b, ;:

mx,t,i =M1, eXp[Bx(Kt -Ky)+ be,j (lzt,i,j - kT,i,j )J

j=1

and the ratio of male-to-female death rates becomes:

rﬁx,t,z mx,t,z : ~ ~
N =— eXp be,j ((kt,z,j - kT,z,j )— (kt,l,j - kT,l,j )
mx,t,l mx,t,l i=1
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3.4. Description of data

Datasets for six populations — Australia, France, West Germany, England and Wales,
the United States, and Canada — are obtained from the Human Mortality Database
(HMD 2016). The six developed countries are selected on the basis that they are good
representatives of the major continents including Australasia, Europe, and North
America. As shown in the next chapter, the data of these countries call for different
model choices amongst the alternatives considered, highlighting the importance to
have more flexibility in the modelling approach. These datasets are separated by sex
and single year of age. As the exposed-to-risk and death counts are generally too
volatile for more advanced ages, the age range 0-89 is chosen to allow fer more
precise analysis.* Moreover, in line with previous studies (Li, 2013; Yang et al., 2016),
the year 1970 is chosen as the start of the sample period in order to avoid the
structural changes in mortality improvement that occurred around that time.> This
ensures that the data used are relevant and helps to make projections more
straightforward. The ending year of 2011 is the latest year that all six populations

have data available.

4 The volatile patterns of advanced ages tend to distort the model fitting and require a further separate
analysis, e.g. see Thatcher (1999).

5 Booth et al. (2002) developed a statistical measure for selecting the optimal fitting period for the
original Lee-Carter model. Li et al. (2011) investigated the detection of structural changes and their
impact on forecasting.
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Chapter 4

Analysis of Model Fitting Results

This section details the results of fitting the three models discussed in the previous
chapter to the six population datasets. The R statistical software package (R Core
Team, 2015) is used to perform all the computations®. The optimal model fit is
decided by analysing the BIC values and standardised residual plots. Table 1 shows
the BIC results for the PCFM-VSF and PCFM-CAE for Australia. Baseline PCFM
results are also included on the diagonal, as the PCFM-VSF is effectively an
expansion of the base model. The baseline model agrees with the results from Li
(2013) and Yang et al. (2016) that two sex-specific factors is the optimal choice, with
the lowest BIC value (72,718) on the diagonal. The PCFM-CAE results suggest a
further improvement in model fit (71,838), where there is no change in the optimal
number of factors. In contrast, the PCFM-VSF results indicate that the optimal choice
is to eliminate one factor from the optimal baseline model — still using two male-
specific factors but incorporating only one female-specific factor (72,674). For
Australian data, both new models produce a better fit than the baseline model, with

the PCFM-CAE as the most optimal choice amongst all.

 The R code used is available from the author on request.
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Table 1: BIC values for the PCFM, PCFM-VSF and PCFM-CAE, Australia.

No. of female factors

0 1 2 3 4 5 6 CAE

75,495 | 75,189 | 75,233 | 75,902 | 76,727 | 77,581 | 78,498 | 75,495

73,246 | 72,941 | 72985 | 73,654 | 74,478 | 75,332 | 76,249 | 72,983

72,980 | 72,674 | 72,718 | 73,387 | 74,212 | 75,066 | 75,983 | 71,838

73,632 | 73,326 | 73,370 | 74,039 | 74,864 | 75717 | 76,634 | 72,277

74,456 | 74,151 | 74,195 | 74,864 | 75,688 | 76,542 | 77,459 | 73,203

75,329 | 75,023 | 75,067 | 75,736 | 76,561 | 77,414 | 78,331 | 74,237

No. of male factors

OO~ |W|N|F|O

76,245 | 75,939 | 75983 | 76,652 | 77,477 | 78,331 | 79,248 | 75,351

The BIC values for France are presented in Table 2. The baseline model points to the
use of four factors (94,176). Similar to the results above, the PCFM-VSF suggests that
the optimal model choice is to remove one factor from the optimal baseline model,
resulting in three female-specific factors and four male-specific factors (93,743). On
the other hand, the PCFM-CAE leads to a different conclusion of adding more factors
instead, where the optimal choice is using five factors for each sex (92,980). For
French data, both new models deliver a better fit than the original model, again with

the PCFM-CAE being the most optimal one.

Table 2: BIC values for the PCFM, PCFM-VSF and PCFM-CAE, France.

No. of female factors

0 1 2 3 4 5 6 CAE

119,537 | 115,127 | 111,205 | 111,007 | 111,440 | 111,986 | 112,663 | 119,537

111,222 | 106,812 | 102,890 | 102,692 | 103,125 | 103,671 | 104,348 | 107,222

105,437 | 101,027 | 97,106 | 96,907 | 97,340 | 97,886 | 98,563 | 100,074

103,298 | 98,888 | 94,967 | 94,768 | 95,201 | 95,747 | 96,424 | 96,158

102,273 | 97,863 | 93,941 | 93,743 | 94,176 | 94,722 | 95,399 | 93,998

102,570 | 98,160 | 94,238 | 94,040 | 94,473 | 95,019 | 95,696 | 92,980

No. of male factors
O |WIN(FR|O

103,127 | 98,717 | 94,795 | 94,597 | 95,030 | 95,576 | 96,253 | 93,290

The BIC values for England and Wales are set forth in Table 3. Here, there is no
improvement in the PCFM-VSF over the baseline — both versions choose n = 3 for
both male- and female-specific factors (90,810). In comparison, the PCFM-CAE
suggests an additional factor for each sex which results in a better model fit under the

common age effect (89,174).
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Table 3: BIC values for the PCFM, PCFM-VSF and PCFM-CAE, England & Wales.

No. of female factors

0 1 2 3 4 5 6 CAE

123,144 | 112,825 | 108,014 | 106,555 | 106,723 | 107,446 | 108,210 | 123,144

113,530 | 103,211 | 98,400 | 96,941 | 97,109 | 97,832 | 98,596 | 104,438

107,799 | 97,480 | 92,669 | 91,210 | 91,378 | 92,101 | 92,865 | 95,180

107,400 | 97,081 | 92,270 | 90,810 | 90,979 | 91,701 | 92,465 | 90,150

107,558 | 97,239 | 92,428 | 90,969 | 91,137 | 91,860 | 92,624 | 89,174

108,199 | 97,880 | 93,069 | 91,609 | 91,778 | 92,500 | 93,264 | 89,791

No. of male factors
O IWIN(FR|O

108,866 | 98,547 | 93,735 | 92,276 | 92,445 | 93,167 | 93,931 | 90,545

Table 4 lists the BIC values for the United States. There is a slight departure in the
model fitting results here compared to other populations. While the baseline model
recommends N =5 (114,904), the PCFM-VSF, rather than removing a factor from the
optimal baseline, suggests adding an extra male-specific factor, leading to five
female-specific and six male-specific factors (114,788). The PCFM-CAE also
supports adding more factors over the optimal baseline model, resulting in six factors
for each sex as the optimal choice (115,012). For United States data, the PCFM-VSF
shows the best model fit, whereas the PCFM-CAE is the least optimal among the

three candidates.

Table 4: BIC values for the PCFM, PCFM-VSF and PCFM-CAE, United States.

No. of female factors

0 1 2 3 4 5 6 CAE

323,884 | 269,642 | 247,122 | 233,627 | 231,845 | 231,682 | 232,047 | 323,884

272,805 | 218,563 | 196,043 | 182,547 | 180,766 | 180,603 | 180,968 | 222,510

234,615 | 180,372 | 157,852 | 144,357 | 142,575 | 142,412 | 142,777 | 170,417

214,808 | 160,565 | 138,045 | 124,550 | 122,768 | 122,605 | 122,970 | 138,098

209,124 | 154,882 | 132,362 | 118,866 | 117,085 | 116,921 | 117,287 | 121,819

207,106 | 152,864 | 130,344 | 116,848 | 115,067 | 114,904 | 115,269 | 117,425

No. of male factors
O WIN|F|O

206,991 | 152,748 | 130,228 | 116,733 | 114,951 | 114,788 | 115,153 | 115,012

Table 5 presents the BIC values for West Germany. The PCFM-VSF shows no
improvement over the baseline model here (101,580), but the PCFM-CAE suggests

adding two extra factors for each sex, rather than just one like previously, and leads to

a lower BIC value (99,922).
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Table 5: BIC values for the PCFM, PCFM-VSF and PCFM-CAE, West Germany.

No. of female factors

0 1 2 3 4 5 6 CAE

120,661 | 116,638 | 114,439 | 113,910 | 113,724 | 113,747 | 113,890 | 120,661

113,223 | 109,199 | 107,000 | 106,471 | 106,285 | 106,308 | 106,451 | 109,367

110,722 | 106,699 | 104,500 | 103,971 | 103,785 | 103,808 | 103,951 | 105,193

109,297 | 105,274 | 103,074 | 102,545 | 102,359 | 102,382 | 102,526 | 102,647

108,518 | 104,494 | 102,295 | 101,766 | 101,580 | 101,603 | 101,746 | 101,039

108,757 | 104,734 | 102,535 | 102,006 | 101,820 | 101,843 | 101,986 | 100,153

No. of male factors
O IWIN(FR|O

109,071 | 105,048 | 102,849 | 102,320 | 102,134 | 102,157 | 102,300 | 99,922

Finally, the BIC values for Canada are given in Table 6. The results here are similar to
those of England and Wales, in which the PCFM-VSF makes no improvement over
the baseline (77,159), while the PCFM-CAE requires one more factor for each sex
and produces a better model fit (76,381).

Table 6: BIC values for the PCFM, PCFM-VSF and PCFM-CAE, Canada.

No. of female factors

0 1 2 3 4 5 6 CAE

88,740 | 85,687 | 85,184 | 85,282 | 86,167 | 87,066 | 87,990 | 88,740

83,266 | 80,213 | 79,710 | 79,808 | 80,693 | 81,592 | 82,516 | 82,576

80,715 | 77,662 | 77,159 | 77,257 | 78,142 | 79,042 | 79,965 | 77,046

81,064 | 78,011 | 77,508 | 77,606 | 78,491 | 79,390 | 80,314 | 76,381

81,841 | 78,788 | 78,285 | 78,383 | 79,268 | 80,167 | 81,090 | 77,061

82,681 | 79,628 | 79,125 | 79,223 | 80,108 | 81,007 | 81,931 | 78,075

No. of male factors
O |WIN(FR|O

83,583 | 80,530 | 80,027 | 80,125 | 81,010 | 81,909 | 82,833 | 79,166

Overall, the PCFM-CAE leads to the best model fit for five of the countries, the
PCFM-VSEF is the best one for one case, and the baseline PCFM is the least optimal
amongst the three options for five countries. These results clearly show that the two
proposed extensions outperform the original model in terms of fitting population
mortality data from a number of different countries. It appears that the age sensitivity
is rather similar between the sexes for certain countries and so setting common age
sensitivity can make the model more parsimonious in these cases. Moreover, a
different number of factors for each sex can provide more flexibility for modelling

mortality data in some cases.
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Next, the standardised deviance residuals’ for the three models and six datasets are
displayed in Figures 3-8. Overall, there do not appear to be any significant systematic
patterns in the residuals plotted against age or calendar year. However, there are signs
of some weak patterns in the residuals plotted against cohort year. More importantly,
there are slight differences in the magnitude of these patterns between the models. For
Australia, although the PCFM-VSF improves the model fit over the baseline PCFM, it
comes at the cost of a more obvious pattern in the residuals for females. This feature
has also been found for France, though to a lesser extent. These observations are
likely due to the optimal PCFM-VSF model having one less female-specific factor
compared to the baseline PCFM. However, the same is not evident for the United
States, owing to the large number of factors used in both models. For the PCFM-CAE,
there are no noticeable differences in cohort residual randomness for Australia, France
and the United States when compared to the baseline PCFM. For England and Wales,
as well as Canada, the PCFM-CAE shows a slight improvement in the residuals over
the baseline model. In contrast, for West Germany, the PCFM-CAE has a slightly
more pronounced pattern in the residuals. In fact, these cohort patterns may be
addressed by modifying the PCFM-VSF and PCFM-CAE to include a cohort factor in
a similar approach to Yang et al. (2016) — this modification is left as an option for

future research.

To conduct a more thorough investigation on the deviance residuals, the
autocorrelation function (ACF) can be used. For each age and sex combination, if the
sample ACF is less than twice the estimated standard error in magnitude, it is
considered insignificant. While the results are not shown here, there are significant
autocorrelations at multiple lags for many age and sex combinations. As the usage of
the BIC in model fitting assumes that serial correlations in the data have been

adequately captured, this result is slightly problematic for the proposed models.

7 To account for possible over-dispersion in the data, the residuals are standardised with respect to the
dispersion parameter (Li, 2013; Yang et al., 2016). The equation is shown in the Appendix.
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In order to conduct another check of the suitability of the model fit, the mean absolute
percentage error (MAPE) values of the fitted log central death rates are displayed in
Table 7. The MAPE is defined as:

1 |lnrﬁ

nd X,t,0 ‘

X, i _ln(dx,t,i /ex,t,i)|
1n(dx,t,i /ex,t,i) ‘

where Ny is the number of data points, M, ,; is the fitted log central death rate, and

i
>

d

are observed values of the number of deaths and exposed-to-risk

and e,

X,4,i
respectively. The MAPE values are expressed in percentage below. As an alternative

measure, the MAPE values on the fitted actual central death rates are also provided.

Table 7: MAPE values for fitted log (actual) central death rates

Country PCFM PCFM-VSF PCFM-CAE
Australia 1.12% (7.14%) | 1.18% (7.40%) | 1.17% (7.53%)
France 0.66% (3.96%) | 0.67% (4.08%) | 0.67% (4.07%)

England & Wales

0.73% (4.57%)

0.72% (4.56%)

United States

0.35% (1.97%)

0.34% (2.06%)

0.37% (1.94%)

West Germany

0.72% (4.36%)

0.73% (4.42%)

Canada

0.90% (5.66%)

0.88% (5.61%)

All the MAPE values for log rates are quite small in general, and the differences are
very small between the three models. None of the models has a clear advantage over
the others. In terms of the goodness-of-fit, the performances of all three models are
satisfactory. This pattern also holds for considering the MAPE values on the actual

rates.

As a final note, it is interesting to see that there seems to be some trade-off between
setting common age sensitivity (fewer parameters) and adding more factors (more
parameters). For five of the countries being considered, the PCFM-CAE applications
require adding one or two extra factors compared to the baseline model. Consequently,
there are more time components in the structure and so more time series models are
needed to perform future projections. Despite a better model fit, using more time
series models complicates the projection exercise and does not necessarily lead to

better projection results. This issue will be investigated in the next chapter.
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Figure 3: Standardised deviance residuals for the PCFM (top panel), PCFM-VSF (middle panel) and
PCFM-CAE (bottom panel), Australia. The first row is for females and the second for males. Residuals
are plotted against age (left), calendar year (middle), and then cohort year (right).
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Figure 4: Standardised deviance residuals for the PCFM (top panel), PCFM-VSF (middle panel) and
PCFM-CAE (bottom panel), France. The first row is for females and the second for males. Residuals
are plotted against age (left), calendar year (middle), and then cohort year (right).
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Figure 8: Standardised deviance residuals for the PCFM (top panel) and PCFM-CAE (bottom panel),
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Chapter 5

Model Projection

5.1. Analysis of forecasting results

This section investigates the accuracy and convergence of the mortality forecasts
produced by the optimal model for each of the three variations. As mentioned in

Chapter 3, the common mortality index K, is modelled as a random walk with drift,

while the sex-specific terms K, . . are modelled as AR(p) processes. The order p is

ti, ]
chosen based on the PACF of the time components, the autocorrelations of the
residuals®, and whether the fitted model is weakly stationary. In cases where a weakly
stationary AR(p) model does not exist, a random walk without drift is used as a
substitute. The purpose is to ensure that the forecast ratio of male-to-female death
rates at each age eventually converges to a constant, thus avoiding the potential
problems of unrealistic projected ratios and mortality crossover as demonstrated in Li

(2013) and Yang et al. (2016).

In line with the 42 years of data from 1970-2011, the projection period is chosen to be
42 years long ranging from 2012-2053. Figures 9-14 display the projected ratios of
male-to-female death rates for the three models. In general, the three models all show
similar projection properties. There are some slight differences in the direction and
speed of convergence across the age groups, but the projected ratios all converge

ultimately and appear roughly in line with the past trends. One possible issue arises

8 See Appendix for details.
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with the PCFM-CAE projection for West Germany — because the optimal model has
two more factors than the baseline model, there are four extra time components to be
projected. Using more time series models for the extra components results in forecast
ratios with much stronger autoregressive effects, most evident in the 0-9 and 10-29
age groups.’ Although the ratios still converge and the projection reflects the past data
well, the frequent fluctuations may nevertheless be undesirable for forecasting
purposes. This problem could be mitigated by using AR(1) models as opposed to
AR(p) models for the time components, but this alternative approach is rather

arbitrary.

5.2. Analysis of out-of-sample testing results

Another method of checking the accuracy of mortality forecasts is to perform out-of-
sample testing, also known as backtesting, to compare the PCFM, PCFM-VSF and
PCFM-CAE mortality projections against observed data.!® The sample period is split
into two parts — the first 30 years (1970-1999) are used to fit each model and the
remaining 12 years (2000-2011) are used to evaluate the forecasting performance of
that model. The projection accuracy is measured using the MAPE of the projected log
(actual) central death rates of each sex i, defined in a similar manner to Chapter 4. The
MAPE of the projected ratios of male-to-female death rates is also considered, defined

as:

mx,t,z /mx,t,l - (d x,t,2 /ex,t,z)/(d x.t,1 /ex,t,1)|
(d x,t,2 /ex,t,z ) /(d x,t,1 /ex,t,l) ‘

% It is worth noting that three of the four extra time components in the PCFM-CAE for West Germany
are of order 3 or higher.

19 As before, cases where the optimal PCFM-VSF selects the same number of factors as the PCFM are
omitted.
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Figure 9: Projected ratios of male-to-female death rates, Australia.
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Figure 10: Projected ratios of male-to-female death rates, France.

33



England & Wales PCFM

35
30
25 - 5%
o
= 20 ——10-29
o
R A— ——30-49
1.5 fuaer=r X - B
'\N\WM\M\,—_ 50-69
L4 —— 7089
1970 1990 2010 2030 2050
Year
England & Wales PCFM-CAE
35
30
25 - 5%
o
= 20 ——10-29
Vo ——30-49
15 - =
50-69
L4 —— 7089
05

1970 1990 2010 2030 2050

Year

Figure 11: Projected ratios of male-to-female death rates, England and Wales.
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Figure 12: Projected ratios of male-to-female death rates, United States.
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Figure 13: Projected ratios of male-to-female death rates, West Germany.

—0-9
—10-29
—30-49
50-69
—70-89

—0-9
—10-29
—30-49
50-69
—70-89

36



Canada PCFM

35
30
25 5%
=
R 20 "Ny —— 1029
o Mw’?.\.ﬂ_\%. ;
A 30-49
15 —
VAN A W — -50-69
L4 —— 7089
1970 1990 2010 2030 2050
Year
Canada PCFM-CAE
35
30
25 5%
=
= 20 .-N’\'\:;J' —— 1029
o P
s Mo — 30-49
MY AN A S, —— - 50-69
L4 —— 7089
05

1970 1990 2010 2030 2050

Year

Figure 14: Projected ratios of male-to-female death rates, Canada.
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Table 8 presents the MAPE values of the projected estimates of the six countries
under the three models, and Figures 15-20 display the projected male-to-female ratios
compared to observed values. Similar to the results in the previous chapter, the MAPE
values for male and female log central death rates are very small, and the differences
between models are negligible. The MAPE values for actual death rates are quite a bit
larger, especially for Australia, but again, no single model has clear advantages
compared to the others. However, when considering male-to-female ratios, the
PCFM-CAE noticeably outperforms the baseline model in all cases except one. The
more obvious examples are France (5.38% compared to 6.02%) and West Germany
(5.01% compared to 6.77%). This outcome is further emphasised by looking at the
graphs — for France (Figure 16), age groups 0-9 and 30-49 are the main contributors to
the difference, while for West Germany (Figure 19), age group 10-29 is the key
difference. !! These results suggest that the PCFM-CAE may be a more accurate

model for forecasting in regards to considering male-to-female death rate ratios.

For the PCFM-VSF compared to the baseline model, the results are not as clear.
Regarding projected male-to-female ratios, the PCFM-VSF slightly outperforms the
base model for Australia, is slightly outperformed instead for France, and the
difference between the models for the United States is negligible. From a graphical
perspective, only France appears to have a noticeable difference — the PCFM-VSF is
slightly worse at the very end of the projection in age groups 0-9 and 10-29. With
fewer populations to compare, it is difficult to come to any conclusions as to whether

the PCFM-VSF outperforms the baseline model.

It is important to consider that the results of out-of-sample testing can change
substantially if a different split between the sample and projection periods is used. To
further investigate the forecast accuracy of the three models, the analysis is repeated
with a sample period of 25 years (1970-1994) and a projection period of 17 years
(1995-2011). The results of this second out-of-sample test are presented in Table 9
and Figures 21-26. Comparing the two tests in regards to MAPE values for individual

sexes, there does not appear to be an overall pattern in performance changes. However,

1 Again, it is worth noting that the optimal models for West Germany contain some higher order
AR(p) processes, resulting in a highly fluctuating projection that overly reflects past data. Additionally,
in this out-of-sample test, the optimal PCFM-CAE has six additional factors compared to the PCFM’s
three.
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when looking at the MAPE values for projected male-to-female death rate ratios, the
longer projection period results in lower accuracy in all cases except the PCFM for
West Germany. Comparing the graphs between the two analyses, France (Figure 22)
performs noticeably worse with the shorter data period, where the 10-29 age group is
visibly less accurate. For the United States (Figure 24), the projected male-to-female
death rate ratios are constantly higher than the actual values for the 10-29 and 30-49
age groups, in contrast to the first analysis where the projected ratios are constantly
lower. Overall, however, there does not appear to be a significant decrease in

accuracy for the larger projection period.

One final thing to note is that all the models considered sometimes produce death rate
ratio forecasts that are fairly different to what have actually happened, including ages
10 to 29 for Australia and West Germany and ages 30 to 69 for France. Nevertheless,
the results presented here and in the previous chapter broadly reaffirm that the PCFM-
CAE and PCFM-VSF have potential advantages over the base PCFM, without

significantly sacrificing fitting or projection accuracy.
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Table 8: MAPE values from the PCFM, PCFM-VSF and PCFM-CAE

PCFM PCFM-VSF PCFM-CAE

Male to Male to Male to

female female female

Country Female? Male? ratios® | Female? Male? ratiosP | Female? Male? ratios?
1.99% 2.56% 2.06% 2.56% 2.02% 2.55%

Australia | (15.55%) | (18.15%) | 7.71% | (16.09%) | (18.15%) | 7.43% | (15.87%) | (17.97%) | 7.21%
1.95% 2.20% 1.86% 2.20% 1.90% 2.08%

France | (14.45%) | (13.97%) | 6.02% | (13.44%) | (13.97%) | 6.32% | (14.09%) | (12.77%) | 5.38%
England 1.85% 2.53% 1.76% 2.60%

& Wales | (11.29%) | (13.16%) | 5.22% - - - (11.17%) | (13.25%) | 5.70%
United 1.27% 1.89% 1.27% 1.89% 1.21% 1.70%

States (7.10%) | (8.38%) | 4.39% | (7.08%) | (8.38%) | 4.41% | (6.97%) | (7.82%) | 3.84%
West 1.65% 1.76% 1.63% 1.79%

Germany | (10.56%) | (10.25%) | 6.77% - - - (10.88%) | (10.80%) | 5.01%
1.80% 2.38% 1.80% 2.39%

Canada | (11.19%) | (12.32%) | 6.38% - (11.20%) | (12.38%) | 6.34%

This out-of-sample analysis, applies the PCFM, PCFM-VSF (where applicable) and PCFM-CAE to the first period,
projects death rates for the second period, and compares the projected values against the observed rates. The first
period is 30 years and the second period is 12 years.
2 MAPE values are based on fitted log (actual) central death rates.
b The MAPE values of the projected male-to-female ratios of death rates are based on 10-year age groups, since the

ratios can be volatile for younger individual ages.
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Figure 15: Observed (solid lines) and projected (dotted lines) ratios of male-to-female death rates,

Australia. The sample period is 30 years and the projection period is 12 years.
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Figure 16: Observed (solid lines) and projected (dotted lines) ratios of male-to-female death rates,

France. The sample period is 30 years and the projection period is 12 years.
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Figure 17: Observed (solid lines) and projected (dotted lines) ratios of male-to-female death rates,

England and Wales. The sample period is 30 years and the projection period is 12 years.
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Figure 18: Observed (solid lines) and projected (dotted lines) ratios of male-to-female death rates,

United States. The sample period is 30 years and the projection period is 12 years.
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Figure 19: Observed (solid lines) and projected (dotted lines) ratios of male-to-female death rates, West

Germany. The sample period is 30 years and the projection period is 12 years.
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Figure 20: Observed (solid lines) and projected (dotted lines) ratios of male-to-female death rates,

Canada. The sample period is 30 years and the projection period is 12 years.



Table 9: MAPE values from the PCFM, PCFM-VSF and PCFM-CAE

PCFM PCFM-VSF PCFM-CAE

Male to Male to Male to

female female female

Country Female? Male? ratios® | Female? Male? ratiosP | Female? Male? ratios?
2.14% 2.65% 2.15% 2.69% 2.15% 2.73%

Australia | (14.42%) | (15.93%) | 8.12% | (14.47%) | (15.73%) | 7.59% | (14.47%) | (15.81%) | 7.51%
2.05% 2.51% 2.05% 2.49% 2.07% 2.42%

France | (15.52%) | (18.41%) | 7.81% | (15.52%) | (18.10%) | 7.08% | (15.62%) | (17.52%) | 7.53%
England 1.71% 2.53% 1.68% 2.53%

& Wales | (10.04%) | (13.18%) | 6.46% - - - (9.96%) | (13.19%) | 6.14%
United 1.42% 2.21% 1.41% 2.21% 1.54% 2.24%

States (7.68%) | (13.29%) | 12.95% | (7.68%) | (13.22%) | 12.75% | (8.41%) | (13.27%) | 11.20%
West 1.67% 1.85% 1.62% 1.86%

Germany | (10.60%) | (10.67%) | 5.83% - - - (10.25%) | (10.79%) | 6.50%
1.69% 2.32% 1.69% 2.32%

Canada | (10.77%) | (13.13%) | 10.24% - (10.79%) | (13.13%) | 10.17%

This out-of-sample analysis, applies the PCFM, PCFM-VSF (where applicable) and PCFM-CAE to the first period,
projects death rates for the second period, and compares the projected values against the observed rates. The first
period is 25 years and the second period is 17 years.
2 MAPE values are based on fitted log (actual) central death rates.
b The MAPE values of the projected male-to-female ratios of death rates are based on 10-year age groups, since the

ratios can be volatile for younger individual ages.
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Figure 21: Observed (solid lines) and projected (dotted lines) ratios of male-to-female death rates,

Australia. The sample period is 25 years and the projection period is 17 years.
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Figure 22: Observed (solid lines) and projected (dotted lines) ratios of male-to-female death rates,

France. The sample period is 25 years and the projection period is 17 years.
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Figure 23: Observed (solid lines) and projected (dotted lines) ratios of male-to-female death rates,

England and Wales. The sample period is 25 years and the projection period is 17 years.

50



United States PCFM

o
= 20 TR
o
——30-49
15
50-69
4 —70-89
1970 1980 1990 2000 2010
Year
United States PCFM-VSF
35
3.0
25 05
=
= 20 —10-29
[a
——30-49
15
50-69
Lo —70-89
05
1970 1980 1990 2000 2010
Year
United States PCFM-CAE
35
3.0
21 B
o
= 20 - TR
o _,--"'_/-‘_
——30-49
15
50-69
4 —70-89
05

1970 1980 1990 2000 2010

Year

Figure 24: Observed (solid lines) and projected (dotted lines) ratios of male-to-female death rates,
United States. The sample period is 25 years and the projection period is 17 years.
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Figure 25: Observed (solid lines) and projected (dotted lines) ratios of male-to-female death rates, West

Germany. The sample period is 25 years and the projection period is 17 years.
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Figure 26: Observed (solid lines) and projected (dotted lines) ratios of male-to-female death rates,

Canada. The sample period is 25 years and the projection period is 17 years.
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6. Concluding Remarks

This thesis has suggested two modifications to the PCFM proposed by Li (2013) and
evaluated the data fitting and forecasting performance when applied to multiple
populations. The two modifications involve allowing for a different number of sex-
specific factors, and incorporating a common age effect into the model in a similar
fashion to Kleinow (2015). The results indicate that the modified PCFM-VSF and
PCFM-CAE produce better fitting results compared to the base PCFM, while
maintaining reasonable and accurate joint projections of male and female mortality.
These new modifications offer more flexibility to deal with different features and

patterns in different populations.

One potential issue for concern lies in the out-of-sample forecasting results. This
thesis has shown that the time series dynamics of the PCFM family of models
sometimes results in peculiar mortality projections. Further investigation into the
sample period’s impact on forecast accuracy is warranted. Moreover, there does not
appear to be a universal relationship between the three models and the optimal choice
of parameters. It would be interesting to apply these models to more population
datasets and examine the results. Another limitation that needs to be addressed is the
serial correlations in the data. By using the BIC, the model fitting procedure assumes
that serial correlations have been adequately captured by the time series models, but
analysis of the deviance residuals and the ACFs of the time series residuals

demonstrate that this is not the case.
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Ideas for future research include adding a cohort term to the PCFM-VSF and PCFM-
CAE. Yang et al. (2016) extended the base PCFM with a cohort term and found that it
reduced the need for additional period factors. The parsimony of the PCFM-VSF and
PCFM-CAE could be further improved in a similar fashion. Moreover, it would be
useful to apply these models to practical scenarios such as insurance pricing and
government policy planning, since a realistic joint projection of females and males is
very important for valuing annuities, pensions and social benefits correctly.
Furthermore, a more detailed investigation of the use of time series models would be
warranted. The choice of time series modelling affects not only the central projection
but also the level of variability in the simulation. For insurance or demographic
studies requiring probabilistic calculations, one should be cautious about the specific

effects of assuming a particular time series model.
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Appendix

The iterative updating scheme used to estimate the parameters of the PCFM, PCFM-
VSF and PCFM-CAE is designed to minimise the deviance function:

d .. .
deviance = zzldx,t,i ln[dx’t" J_ d,.+ dx,t,i]

X, X,

or equivalently, maximise the log likelihood function:

I=InL=3d,In(d,)~d,;~Ind,"

X,t,0

X,t0

where d, ;; is the observed number of deaths at age X in year t for sex i, and d wti 18

i
)

the corresponding fitted number of deaths. For example, in the PCFM-CAE the fitted

number of deaths is calculated as:

A

d X,t,i = Ex,t,i mx,t,'

1
"~ ~ n ~ ~
= Ex,t,i exp| a,; + B,K, + be,jkt,i,j
i1

The parameters are updated using the Newton-Raphson method:

o =010
0*1 /06

However, previous studies (Li, 2013; Yang et al., 2016) have shown that attempting
to update all parameters simultaneously does not necessarily lead to an optimal
solution, as the iterative procedure tends to head towards some local maxima. For
practical purposes, a multi-stage estimation method is used to calculate a conditional

maximum likelihood instead, as suggested in Booth et al. (2002).
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Below is an illustration of the updating procedure as described in Li (2013), modified
for the PCFM-CAE. First the model is fitted with the common factor only, i.e. n = 0.

Assuming an age range of 0-89:

(1) Set up initial parameter values (4, ;= mean of log death rates at age X of sex i over

A

time, B, = BX’ ;= 1/90 = 0), and calculate d

II]

K,=
(2) Update &; =4,; + Z:(dx,t,i —d i)/ Zd «; for all X and i, and then recalculate all
t t

d

Xt

(3) Update K, =K, +> (d

Xti

th)B /Z:dxtI B; for all t, adjusted with ZKt =
t

and then recalculate all d XL

(4) Update B = B + Z:(dth —d, ;) z > for all X, and then recalculate all

ti

d

X,

(5) For final parameter estimates, divide |_5>X by Z |_5>X and multiply Kt by Z I§X .

(6) Compute the log-likelihood function or deviance function.
(7) Repeat (2) - (6) until the log-likelihood or deviance converges.
Now, treating the estimated parameters as given, the additional sex-specific factors

are added one at a time and the new parameters are estimated as below:

(8) Update ki, =k, +>.(d,, —d Xt,)bX]/det, ¢; for all t, all i, and j =

adjusted with z K =0 , and then recalculate all d i

ti, ]

(9) Update b +Z(dxt,— Xt,)kt,J/det, . ;for all x, and j = 1, and then

recalculate all d X
(10) Similarly to (5), divide b, , by 3B, , and multiply k,, ;by >'b, ;.

(11) Compute the log-likelihood function or deviance function.

(12) Repeat (8) — (11) until the log-likelihood or deviance converges.
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(13) Treating the newly estimated BX,- and K

i +i.j as given as well, repeat (8) — (12) for

the other values of j.

This conditional maximum likelihood approach offers a more convenient modelling
strategy, and has no problems with convergence of the parameters or the log-

likelihood/deviance. The procedure is easily tweaked for the PCFM-VSF as well, by

with Bx,i’- and omitting the relevant parts of (8) and (9) once all of one

replacing BX, . i

]

sex’s factors have been added.

The standardised deviance residuals are calculated as in Li (2013):

. |2d,,./d . )-d . +d ..
=sign(d, .. —d ..) (i X’U)A xei T dyei)
Xt Xt ¢

where n is the effective number of parameters being estimated, n, is the number of

rX,t

i
)

. . . ~ deviance
observations and the dispersion parameter ¢ = ————.
n, —n
d p

The tables below illustrate the ACFs of the residuals of the selected time series
processes for model projection. The symbols +, - and * are used to indicate whether
the sample ACF value at a certain lag is larger than twice the estimated standard error,
smaller than negative twice the estimated standard error, or is statistically
insignificant. RW is used if the time series was modelled as a random walk without
drift instead. Although there are some significant values in the chosen time series
models, the alternative choices are non-stationary or otherwise unsuitable for

projection purposes.

Australia PCFM

Lag 1 2 3 4 5 6 7 8
kfl RW

kfz * + + * * * * *
kml * * * + * * * *
km2 * * * * * * * *
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Australia PCFM-VSF

Lag 1
kf1l RW
km1 *
km2 *

Australia PCFM-CAE

Lag

1

kf1l
kf2
km1
km2

*

*

*

* +

* +

France PCFM

Lag

N

kf1l
kf2
kf3
kf4
km1l
km2
km3
km4

* 4+ o+ + ok 4 *

*

France PCFM-VSF

Lag

1

N

kf1l
kf2
kf3
km1
km2
km3
km4

* ok 4+ *

+

France PCFM-CAE

Lag

1

kfl
kf2
kf3
kf4
kf5
km1
km2
km3
km4
km5
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England & Wales PCFM

Lag 1 2
kfl * *
kf2 * +
kf3 * *
km1 RwW

km2 * *
km3 * *

England & Wales PCFM-CAE

Lag 1 2
kfl * *
kf2 RwW
kf3 * *
kf4 * *
km1l RwW
km2 RW
km3 * *
km4 * *

United States PCFM

Lag 1 2
kfl * *
kf2 * *
kf3 *

kf4 * *
kf5 * *
km1 * *
km2 * *
km3 * *
km4 * *
km5 * *

United States PCFM-VSF

Lag 1

kfl * *
kf2 * *
kf3 * +
kf4 * *
kf5 * *
km1 * *
km2 * *
km3 * *
km4 * *
km5 * *

km6 * *



United States PCFM-CAE

Lag

kfl *
kf2 *
kf3 *
kf4 *
kf5 *
kf6 *
km1 RW
km2 *
km3 *
km4 *
km5 *
km6 *

West Germany PCFM

Lag

kf1l *
kf2 RW
kf3 *
kf4 *
km1 *
km2 RW
km3 *
km4 *

West Germany PCFM-CAE

2

Lag

kfl *
kf2 RW
kf3 *
kf4 -
kf5 *
kf6 *
km1 *
km2 *
km3 *
km4 *
km5 *
km6 *

*

Canada PCFM

Lag 1
kf1l RW
kf2 *
km1 *
km2 *
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Canada PCFM-CAE

Lag

1

kfl
kf2
kf3
km1
km2
km3

*

* + x4+
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