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Summary

R. Strichartz in [68] asked whether the Lp boundedness of the Riesz transform ob-

served on Rn could be extended to a reasonable class of non-compact manifolds. Many

partial answers have been given since. One such answer given by Auscher, Coulhon,

Duong and Hofmann in [5] tied the Lp boundedness of the Riesz transform to the Lp

boundedness of the Gaffney inequality. Their result was for p > 2 and held on non-

compact manifolds satisfying doubling and Poincaré conditions, along with a stochastic

completeness or preservation condition.

In this thesis the results of [5] are adapted to prove Lp bounds, p > 2, for Riesz trans-

form variations in cases where a preservation condition does not hold. To compensate

for the lack of a preservation condition, two new conditions are required. The results

are general enough to apply in a large number of circumstances. Two extensions on this

result are additionally presented.

The first extension is to non-doubling domains. This extension is specifically in the

circumstance of a manifold with boundary and Dirichlet boundary conditions. An added

benefit of this non-doubling extension is that the Poincaré inequality is no longer required

near the boundary. The second extension shows that the weighted Lp boundedness of

the Riesz transform observed on Rn can also be extended in some degree to a reasonable

class of non-compact manifolds. This second extension includes generalised deriving of

weight classes associated to skewed maximal functions and other operators.

This thesis also contains applications to the case of the Dirichlet Laplacian on various

subsets of Rn. The overall work and particularly the application are motivated by recent

results from Killip, Visan and Zhang in [48].
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Notation

n Refers to the number of dimensions of the space, as in Rn.

x ∧ y Is the minimum of numbers either side, x ∧ y = min(x, y).

f(x) . g(y) Indicates that there exists a constant c > 0 such that the inequality

f(x) ≤ cg(y) holds for all x, y.

Ω Is an arbitrary manifold possibly with boundary.

δΩ Indicates the boundary of the space Ω when it exists.

∇ Is the Riemannian gradient.

∆Ω Is the Dirichlet Laplacian on the space Ω.

1S Is the characteristic function of a given set S.

d(x, y) Is the distance from x to y in Ω.

ρ(x) Is the minimal distance from a point x ∈ Ω to the boundary δΩ,

ρ(x) = infz∈δΩ d(x, z).

w(x) Indicates a weight. This is any positive function defined on Ω.

B Is an open ball of radius r. If B ⊂ Ω then for some x ∈ Ω and

r > 0, B is given by: B = B(r) = B(x, r) = {y ∈ Ω : d(x, y) < r}.
−
∫
B Is an averaged integral over B, −

∫
B f(x) dx = 1

|B|
∫
B f(x) dx.

C∞0 (Ω) The space of infinitely differentiable functions f : Ω → R that

vanish on the boundary.

Lp(Ω) Is the space of functions f that satisfy the following bound,[∫
Ω
|f(x)|p dx

]1/p

<∞.

p′ The conguate exponent p′ of p is defined by 1
p + 1

p′ = 1.

Lp(w) Is the space of functions f that satisfy the following bound,[∫
Ω
|f(x)|pw(x) dx

]1/p

<∞.

Ap Indicates the space of weights w that satisfy the following bound,[
−
∫
B
w(x) dx

] [
−
∫
B
w(x)−p

′/p dx

]p/p′
<∞.

Aα,βp Indicates the space of weights w that satisfy the following bound,[
−
∫
B
α(x)pw(x) dx

] [
−
∫
B
β(x)p

′
w(x)−p

′/p dx

]p/p′
<∞.
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Chapter 1:

Introduction

Slight alterations to the classical singular integral Riesz transform Lp estimate problem

can create a plethora of issues, not all of which can be solved using the standard methods

of the current techniques. Foremost among these issues is the loss of the so called

preservation condition. This thesis extends the literature on Riesz transforms by dealing

with this preservation condition loss.

The classical singular integral Riesz transform refers to the following singular integral

operator, henceforth referred to as the classical Riesz transform.

Rf(x) = ∇∆−1/2f(x)

Here ∇ is the standard vector valued gradient operator on Rn, and ∆−1/2 is the inverse

square root of the standard Laplacian on Rn, known to exist uniquely via spectral theory

(see for example [39] or [56]). The Lp estimate problem refers to whether or not the Riesz

transform satisfies the following Lp → Lp norm bound.

‖|∇∆−1/2f |‖Lp(Rn) . ‖f‖Lp(Rn)

The class of all functions f that satisfy ‖f‖Lp(Rn) < ∞ is named Lp(Rn). If dx is

replaced by a general measure dµ, then this is known as a weighted Lp estimate problem.

It is well known, (see for example [67]) that the classical Riesz transform satisfies an Lp

norm estimate for all 1 < p < ∞, and a weighted Lp norm estimate for all weights

dµ = w(x) dx with w in the Muckenhoupt Ap class.

Possible alterations to the classical Riesz transform include replacing Rn with a new

domain Ω, and substituting the Laplacian with a more general second order differential

3



4 CHAPTER 1. INTRODUCTION

operator L (being careful to ensure L−1/2 is well defined on Ω). The following question

arises:

Does the Riesz transform altered in such a way still satisfy an Lp norm inequality?

‖|∇L−1/2f |‖Lp(Ω) . ‖f‖Lp(Ω) (1.1)

This question was first posed by Strichartz in [68] and many partial solutions have been

given since (see [5] and [17] and references therein. These are reviewed in section 1.3). Im-

portantly for this thesis, cases where the preservation condition (also known as stochastic

completeness) does not hold have not been dealt with in general. To say that there is

no preservation condition is the same as to say,

e−tL1 6= 1.

The answers that this thesis provides are the following:

1. The Riesz transform in cases without a preservation condition is Lp bounded,

p > 2, if Lp bounds for Gaffney and Hardy type operators hold (see Theorem 1.1).

2. Additional heat kernel decay allows the result above to extend to non-doubling

domains (see Theorem 1.2).

3. The result also holds considering weighted Lp boundedness (see Theorem 1.3).

This thesis also contains applications to cases where Ω is a subset of Rn and L is the

Dirichlet Laplacian ∆Ω on Ω. In these cases specific weights for which weighted Lp

boundedness hold are given. Some of these weights are outside the standard Mucken-

houpt class. The main results of this thesis will be formally stated in section 1.4.

1.1 Motivation

The reasons for altering the classical Riesz transform and seeking Lp bounds are var-

ied. Firstly, Riesz transforms are difficult operators to prove bounds for, as they hold

a position near the gap between bounded and unbounded singular integrals. Studying

Riesz transforms creates more knowledge of the general classification of singular inte-

gral operators. Further, Riesz transforms relate to other types of transforms, such as
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Fourier transform multipliers, allowing comparative information between different op-

erators. One final common use of Riesz transform boundedness is the implied relation

between two generalised definitions of a first order differential operator. This allows the

comparison of alternate definitions of Sobolev spaces. That is, the Riesz transform in

equation (1.1) implies the following for all f in the appropriate Sobolev space.

‖|∇f |‖Lp(Ω) . ‖L1/2f‖Lp(Ω) (1.2)

Examples of variations on the Riesz transform that do not satisfy the preservation

condition include the case where the Laplacian is replaced with the Schrödinger operator

L = −∆ + V (x). Whilst the Schrödinger operator case is not investigated in this thesis,

it has in part been investigated before, and the author plans to consider such operators

from the perspective of this thesis as part of postdoctoral study. Another example

already mentioned is the application of this thesis, where Rn is replaced with a subset Ω

and L is the Dirichlet Laplacian ∆Ω defined by Dirichlet boundary conditions on δΩ.

This second example confirms and extends results from [48] found by a different method.

In the case of [48], Lp boundedness of the Riesz transform cannot be achieved for

p ≥ n showing the non-trivial nature of the examples. This assertion is reviewed in

section 10.3 of this thesis. The other extreme of this thesis is a case where weighted Lp

bounds hold for all p ∈ (2,∞) with weights exceeding the Muckenhoupt Ap class.

1.2 The Main Conditions

The process employed to prove Riesz transform bounds in this thesis is a variation of the

good-λ method. This method is common in the literature (see for example [5] or [9]).

To compensate for the lack of a preservation condition, two new conditions are required.

The first new condition is a bounded average on the derivatives of the heat semi-

group e−tL.

sup
B⊂Ω

(
−
∫
B
ϕ(x)2 dx

)(
−
∫
B
|∇e−r2L1Ω(x)|2 dx

)
. 1 (1.3)

In this condition: ϕ(x) is an arbitrary positive function, non-zero almost everywhere;

1Ω(x) is the characteristic function of the set Ω; and the supremum is over all balls
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B ⊂ Ω, which are the sets given by B = B(x, r) = {y ∈ Ω : d(x, y) < r} for some x ∈ Ω

and r > 0. Hence r in condition (1.3) refers to the radius of the ball B. The distance

d(x, y) is the length of the shortest curve connecting x and y in Ω.

The second new condition is a Hardy type inequality,

‖ 1

ϕ
L−1/2f‖Lp(Ω) . ‖f‖Lp(Ω) (1.4)

where ϕ(x) is the same function as in equation (1.3). In cases where the preservation

condition holds and there are Gaussian lower bounds on the heat kernel, equation (1.4)

would not be expected to hold for general f ∈ Lp(Ω) for any ϕ > 0. However, the

preservation condition holding case can sometimes be shown as a limit case (ϕ → 0).

Discussion on this idea is provided in section 10.3. In the application part of this thesis,

where L is the Dirichlet Laplacian on Ω ⊂ Rn, ϕ is specifically chosen to be the minimal

distance ρ(x) from a point x ∈ Ω to the boundary δΩ.

Additional to the two conditions above that replace the preservation condition, sev-

eral other conditions are required to prove the generalised Riesz transform bound. These

are all standard conditions usually required by proofs using a good-λ method. There

are two conditions regarding the space Ω, the first is a doubling condition,

µ(kB) ≤ knµ(B) (1.5)

and the second is a Poincaré inequality.

∫
B
|f(x)− fB|2 dx . r2

∫
B
|∇f(x)|2 dx (1.6)

It is well known that the Poincaré inequality holds for all balls B ⊂ Ω when Ω is Rn,

and further it was shown in [38] that the Poincaré inequality holds for all balls B ⊂ Ω

when Ω satisfies an inner uniform condition. More comments on this will occur in the

preliminaries chapter of this thesis. In some parts of this thesis, including Theorem 1.2

and its proof in chapter 4, these conditions will only need to hold locally.

In addition to these spatial conditions, there are several conditions on the differential

operator L. These begin with the basic assumption that L is well defined on the space Ω,
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with appropriate spectral conditions to allow a holomorphic functional calculus, with the

existence and uniqueness of L−1/2.

L−1/2f(x) = c

∫ ∞
0

e−tLf(x)
dt√
t

The heat semigroup e−tL is the integral operator with kernel pΩ
t (x, y) solving the heat

equation, (
L+

d

dt

)
pΩ
t (x, y) = 0 ∀x, y ∈ Ω

with initial condition given by the dirac-delta function, thought of in a distributional

sense. When Ω has boundary the kernel pΩ
t (x, y) is additionally defined by boundary

conditions. The name of semigroup comes as e−tL can be viewed as a semigroup with

respect to the variable t. It is well known that appropriate spectral and semigroup

properties hold for a large class of second order differential operators L. See chapter 2

for details and references.

The remaining conditions for the operator L are standard conditions for Riesz trans-

form bound proofs. Three of these conditions apply to the heat semigroup and kernel.

The first remaining condition is that of Gaussian upper bounds for the heat kernel.

pΩ
t (x, y) .

e−d(x,y)2/ct

|B(x,
√
t)|

(1.7)

This is most often used in the form of an on-diagonal heat kernel bound, or an off-

diagonal norm heat semigroup bound, both of which are implied by the above equation.

The next condition is an L2 Riesz transform bound.

‖|∇L−1/2f |‖L2(Ω) . ‖f‖L2(Ω) (1.8)

Such a condition is trivial for L as a Laplacian, but non-trivial in general case.

Another condition is the L2 off-diagonal Gaffney estimate,

‖
√
t|∇e−tLf |‖L2(A) . e−d(A,B)2/ct‖f‖L2(B) (1.9)

which is required to hold for all subsets A and B of Ω and all t > 0. The value d(A,B)

is the distance from A to B within Ω.
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The final condition required is an Lq on-diagonal Gaffney estimate.

‖
√
t|∇e−tLf |‖Lq(Ω) . ‖f‖Lq(Ω) (1.10)

This estimate is in terms of some q > p. This condition combined with the off-diagonal L2

Gaffney estimates implies an off-diagonal Lp Gaffney estimate for all p ∈ (2, q). The on-

diagonal Gaffney estimate is known to be a necessary condition for a Riesz transform

bound (see for example [5]).

The six conditions (1.5 - 1.10) are well known to hold in a variety of applications and

are common conditions for a Riesz transform problem. The difference here to previous

proofs is, as already stated, due to the two new conditions (1.3) and (1.4) replacing the

preservation condition. If L is self adjoint with Gaussian upper bounds, or has other

similarities to the Laplacian operator on Rn, some of the conditions become trivial.

It remains to discuss the application part of this paper. Consider the space Ω as an

open subset of Rn with smooth boundary. The Sobolev space W 1,2
0 (Ω) is the completion

of the space of infinitely differentiable functions with compact support in Ω, under the

following inner product.

〈f , g〉
W 1,2

0 (Ω)
=

∫
Ω
∇f(x) · ∇g(x) dx+

∫
Ω
f(x)g(x) dx

Next define the following quadratic form with domain f ∈W 1,2
0 (Ω).

Q(f, g) =

∫
Ω
∇f(x) · ∇g(x) dx

Associated with this quadratic form is a unique non-negative and self-adjoint operator

that is symbolised as ∆Ω and named the Dirichlet Laplacian. The square root of this

operator is ∆
1/2
Ω and has domain W 1,2

0 (Ω) (see [46] or [56]). Due to the self-adjoint

nature of the Dirichlet Laplacian, there is the equivalence,

‖|∇f |‖L2(Ω) = ‖∆1/2
Ω f‖L2(Ω),

which can be used to establish an L2(Ω) bound for the associated Riesz transform.

‖|∇∆
−1/2
Ω f |‖L2(Ω) = ‖f‖L2(Ω)
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Thus the Dirichlet Laplacian satisfies the L2 Riesz transform condition (1.8) from the

main list of conditions. The Dirichlet Laplacian also satisfies all appropriate spectral

conditions. Precise results regarding Riesz transforms based on the Dirichlet Laplacian

are given for a variety of subsets Ω (see Theorem 1.6 and chapter 10). The main difficulty

in extending the results found to a greater class of Ω is due to a lack of precise bounds

on the heat kernels pΩ
t (x, y). The choice of application was inspired by recent results

from Killip, Visan and Zhang in [48].

1.3 Known Results

At the beginning of this thesis it was stated that the traditional Riesz transform ∇∆−1/2

is bounded Lp → Lp for all 1 < p <∞ and further satisfies a weighted bound Lp(w)→

Lp(w) if and only if the weight w belongs to the Muckenhoupt class Ap (see Stein [67]

chapter 5). It was additionally stated that there were partial answers to the question

regarding whether such Lp → Lp boundedness extends to a larger class of operators or

manifolds. This section is an overview of those answers. The first presented is due to

Auscher, Coulhon, Duong and Hofmann, and is the main building block of this thesis.

THEOREM A (From [5]). Let M be a manifold with measure µ that satisfies the

doubling condition. Further, let ∇ be the Riemannian gradient and ∆ be the Laplace-

Beltrami operator. Suppose that the Poincaré inequality (1.6) holds, and an Lq Gaffney

estimate (1.10) holds for some q > 2. Then the following inequality is true for all

2 ≤ p < q and all f ∈ Lp(M).

‖|∇∆−1/2f |‖Lp(M) . ‖f‖Lp(M)

The proof in [5] is general enough to apply to Riesz transforms of the form ∇L−1/2

that additionally satisfy Gaussian upper bounds on the heat kernel (1.7), an L2 Riesz

transform bound (1.8), L2 Gaffney estimates (1.9) and the preservation condition.

The good-λ method used in this thesis is a variation on the good-λ method used to

prove the above theorem in [5]. Another reference that uses such good-λ techniques is [4]

which looks at Riesz transform bounds for elliptic operators. The next theorem presented

is not specific to bounding Riesz transforms, but bounds general singular integrals based
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on kernel estimates. This is due to Duong and McIntosh.

THEOREM B (From [26]). Let T be a linear operator bounded on L2 with associated

kernel k(x, y). Suppose that there exists operators At and Bt with kernels at(x, y) and

bt(x, y) respectively which decrease very quickly to zero, as t tends to infinity.

|bt(x, y)|+ |at(x, y)| ≤ c t−n/2e−α|x−y|2/t

Further suppose that for each t > 0, T −TAt has kernel k(x, y)−kt(x, y) which satisfies:

∫
d(x,y)≥ct1/m

|k(x, y)− kt(x, y)| dµ(x) ≤ c

and that TBt has kernel Kt(x, y) that satisfies:

|Kt(x, y)| ≤


t−n/m for d(x, y) > t1/m

tα/m

d(x,y)n+α for d(x, y) < t1/m

for some α and m. Then the supremum of the truncated operators,

T∗f(x) = sup
ε>0

∣∣∣ ∫
d(x,y)≥ε

k(x, y)u(y) dµ(y)
∣∣∣

is bounded Lp → Lp for all 1 < p <∞ and all f ∈ Lp.

The filter T (I − At) used in Theorem B, is similar to the filter used in this thesis

when separating the Riesz transform into parts. Finding suitable conditions to bound

the filter T (I −At) is the key to both theorems above, and is also key in this thesis.

Theorem B is general in its approach, but does not hold in general Riesz transform

applications. Theorem A only holds for Riesz transforms with a preservation condition

and exponent p > 2. For 1 < p < 2 the preservation and non-preservation cases are

solved in the following from Coulhon and Duong.

THEOREM C (From [17]). Let M be a manifold with measure µ that satisfies the

doubling condition. Further, let ∇ be the Riemannian gradient and ∆ be the Laplace-

Beltrami operator. Suppose that for all x ∈ M and t > 0 the heat kernel satisfies an

on-diagonal bound.

pt(x, x) .
1

|B(x,
√
t)|
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Then the Riesz transform ∇∆−1/2 satisfies a weak type (1, 1) bound, and is norm bounded

Lp → Lp for all 1 < p ≤ 2 and f ∈ Lp(M).

Due to Theorem C, p > 2 is the priority in finding new results. The papers [18]

and [19] should also be mentioned as follow ons of the paper and theorem above with

additional conditions for the case p > 2. However the authors of [18] and [19] have since

contributed to the paper [5] already mentioned as a most general case.

The next theorem is a specific example of a case of Riesz transform related bound-

edness with p > 2 and no preservation condition. This is from Killip, Visan and Zhang.

THEOREM D (From [48]). Let Ω ⊂ Rn be the exterior of a compact convex object.

Let ∆Ω be the Dirichlet Laplacian on Ω. Then for all 1 < p < n there is a Sobolev space

relation,

‖|∇f |‖Lp(Ω) . ‖∆
1/2
Ω f‖Lp(Ω)

that holds for all f ∈ C∞c (Ω). The range of p is optimal.

The proof of Theorem D in [48] uses Littlewood-Paley functionals, as well as the

boundedness of a Hardy type inequality similar to equation (1.4), but with ϕ(x) named

as the distance ρ(x) from x to the boundary δΩ. Similar techniques to those in [48] have

recently been used in [49], [72] and others in pursuit of non-linear Schrödinger results.

Theorem D does not imply that the Riesz transform is bounded 1 < p < n, although it

does imply the Riesz transform is unbounded for p > n. In the application part of this

thesis it is shown that the Riesz transform is bounded 1 < p < n for all f ∈ Lp(Ω) in

the Theorem D case which does imply Theorem D. A similar result to Theorem D in a

particular preservation case is considered in [16].

For the case of bounded Lipschitz domains with Dirichlet boundary conditions a

more general theorem was proven by Jerison and Kenig.

THEOREM E (From [43], Theorem 7.5). Let Ω ⊂ Rn be a bounded Lipschitz domain.

If n ≥ 3 then there exists q > 3 depending on the domain such that the following bound

holds,

‖|∇f |‖Lp(Ω) . ‖∆
1/2
Ω f‖Lp(Ω)

for all 1 < p < q and f ∈ W 1,p
0 . If n = 2 then q can be chosen greater then 4. If the
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domain is C1 then q can be chosen as infinity. These results are optimal in the sense

that when n ≥ 3, for every q > 3 there exists a domain Ω where the inequality fails.

Shen proved a similar result in [60]. Shen’s result was a theorem of the type above

for the Riesz transform of symmetric and uniformly elliptic operators ∇L−1/2 satisfying

certain conditions, and also included weighted results for L2. Theorem E and Shen’s

result show for Ω compact that a full range of Riesz transform boundedness may not

occur if the boundary is not smooth, but does occur if the boundary is smooth. In this

thesis the applications focus on non-compact Ω, where as seen from Theorem D a full

range of boundedness may not occur even when the boundary is smooth.

1.4 Summary of New Results and Techniques

Whilst progress has been made on the problem of studying Riesz transforms on domains,

a proof of the form of Theorem A has not been shown to hold for general domains without

a preservation condition. Examples (see Theorem D or section 10.3 of this thesis) show

that such a proof should be possible, though the final result will vary with Ω. These

examples are backed up with the following main results.

THEOREM 1.1. Let Ω be a doubling space satisfying the Poincaré inequality (1.6) for

all balls B ⊂ Ω. Let ∇ be the Riemannian gradient and L be a second order differen-

tial operator with well defined functional calculus and Gaussian upper bound on its heat

kernel (1.7). Suppose L satisfies: an L2 Riesz transform bound (1.8); L2 Gaffney esti-

mates (1.9); Lq Gaffney estimates (1.10) for some q > 2; a semigroup gradient bound of

the type (1.3) with some non-negative ϕ(x); and Lp Hardy type inequalities (1.4) for all

2 ≤ p < q with the same ϕ(x). Then the Riesz transform ∇L−1/2 is bounded Lp → Lp

for all 2 ≤ p < q.

Theorem 1.1 is proven in chapter 3 of this thesis. Discussion regarding the conditions

continues throughout the application part of this thesis. Below is an outline of the

technique used in this paper to prove Theorem 1.1, see chapter 3 for details.

The main idea is a split of the Riesz transform into parts according to Figure 1.1,

where Ar is an operator given by Ar = I− (I−e−r2L)n, and the notation [f ]Bi indicates

an averaging of the function f over the ball Bi. The rightmost branch in the diagram
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Figure 1.1: Splitting of the Riesz transform in the proof of Theorem 1.1.

∇L−1/2f(x)
PPPPPPq

������)

∇L−1/2Arf(x) ∇L−1/2(I −Ar)f(x)
���

���

HHH
HHj

∇L−1/2Arf(x)−∇Ar[L−1/2f ]Bi(x) ∇Ar[L−1/2f ]Bi(x)

is bounded by standard estimates on the heat kernel and its derivative (these are condi-

tions as outlined by equations (1.8) and (1.10)), and the leftmost branch is bounded by

similar heat kernel estimates along with the Poincaré inequality (1.6). That all works

comparably to a standard good-λ style proof. It is the middle branch of Figure 1.1 that

is of chief concern. In a standard good-λ proof this part vanishes due to the preservation

condition, but does not vanish in this case. Following the standard good-λ proof the

middle branch of the diagram leaves us with the need to find a bound for the following

term,

pKp

∫ ∞
0

λp−1
∑
i

|{x ∈ Bi : |∇Ar[L−1/2f ]Bi(x)| > λ}|dλ

which relies on two parts. These are [L−1/2f ]Bi and |∇Ar1Ω(x)|. Once appropriately

separated these parts match the new conditions given by equations (1.3) and (1.4) earlier

in the introduction. See chapter 3 for details.

The next theorem is a variation on Theorem 1.1 designed to apply to non-doubling do-

mains Ω ⊂ Rn. To compensate for no doubling condition, the value ϕ in equations (1.3)

and (1.4) is specified to be ρ(x), the minimal distance from x to the boundary δΩ. Equa-

tions (4.3) and (4.7) mentioned in the theorem below are the same as equations (1.3)

and (1.4) respectively with ϕ(x) replaced by ρ(x). Further there is a slight change to

Gaussian upper bound, referenced by equation (4.8).

THEOREM 1.2. Let Ω ⊂ Rn be an open and connected subset that may or may

not satisfy a doubling condition. Let ∇ be the Riemannian gradient. Further let L be

a second order differential operator with well defined functional calculus and Gaussian

upper bound on its heat kernel (4.8). Suppose on balls away from the boundary relative
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to their size (c0r(B) < ρ(B) for some fixed c0) L satisfies: a local L2 Riesz transform

bound (‖|∇L−1/2f |‖L2(B) . ‖f‖L2(Ω)); a semigroup gradient bound of the type (4.3); and

a local Ls Gaffney condition (
√
t‖|∇e−tLf |‖Ls(B) . e−d(A,B)2/ct‖f‖Ls(A)) for both s = 2

and s = q for some q > 2. Suppose also that a Hardy type inequality (4.7) holds for all

2 ≤ p < q. Then the Riesz transform ∇L−1/2 is bounded Lp → Lp for all 2 ≤ p < q.

The proof of Theorem 1.2 uses that Ω satisfies a local doubling property and a local

Poincaré inequality in the sense that such inequalities hold on balls B that do not inter-

sect the boundary δΩ. To keep balls away from the boundary a different covering then in

Theorem 1.1 is used. For balls near the boundary the condition ϕ(x) = ρ(x) means that

∇ArL−1/2 is directly comparable to the Hardy operator by use of a Gaffney estimate.

For balls away from the boundary an extra split is required as seen in Figure 1.2. The

characteristic function 1S ensures the Poincaré inequality is only used locally. The set S

is empty for x ∈ Bi near the boundary and is approximately B(x, ρ(Bi)/2) for x ∈ Bi

away from the boundary. A ball B is said to be near the boundary if ρ(B) . r(B) and

away from the boundary otherwise. The proof of Theorem 1.2 is contained in chapter 4.

Figure 1.2: Splitting of the Riesz transform in the proof of Theorem 1.2.

∇∆
−1/2
Ω f(x)

PPPPPPq

������)

∇∆
−1/2
Ω Arf(x) ∇∆

−1/2
Ω (I −Ar)f(x)

���
���

∇Ar1Sc∆−1/2
Ω f(x)

This branch is only used if x is contained

in a ball away from the boundary

@
@
@
@
@R

∇Ar1S∆
−1/2
Ω f(x)

���
���

HHH
HHj

∇Ar1S∆
−1/2
Ω f(x)−∇Ar1S [∆

−1/2
Ω f ]Bi(x) ∇Ar1S [∆

−1/2
Ω f ]Bi(x)

Theorem 1.2 is now extended to a weighted result. For the weighted theorems heat

kernels will need to satisfy an upper bound of the form,

pt(x, y) .
αt(x)βt(y)e−d(x,y)2/ct

tn/2
(1.11)

for some α, β positive in Ω, that will affect the weights involved. It is common but not
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necessary for α and β to vanish on the boundary δΩ. A new weight class is introduced

known as the class of Aα,βp weights. In the equation below and elsewhere, r is the radius

of B.

sup
B⊂Ω

(
−
∫
B
αr2(x)pw(x) dx

)(
−
∫
B
βr2(x)p

′
w(x)−p

′/p dx

)p/p′
<∞ (1.12)

A weight that satisfies equation (1.12) will be called an Aα,βp weight.

THEOREM 1.3. Fix p > 2. Let Ω ⊂ Rn be a space that may or may not satisfy a

doubling condition. Let ∇ be the Riemannian gradient and w ∈ A∞ be a weight. Further

let L be a second order differential operator on Ω with well defined functional calculus,

and heat kernel upper bounds of the form of equation (1.11) for some αt(x) . 1 and

βt(y) . 1. This α and β also must satisfy αt(x) ≤ 2α2t(x) and βt(x) ≤ 2β2t(x) for

all x ∈ Ω and t > 0. The weight w must satisfy w2/p ∈ Aα,β2 and wq/p ∈ Aα,βR for

some q > p where R = 1 + q
2 . Further a weighted Lp(w) Hardy inequality must hold.

Suppose for balls away from the boundary relative to their size (that is c0r(B) < ρ(B)

for some fixed c0) that w satisfies: the Muckenhoupt A2 condition; an L2(w2/p) Riesz

transform bound; an L2(w2/p) Davies-Gaffney estimate; an Lq(wq/p) Gaffney estimate

for the same q > p as considered earlier; and a semigroup gradient bound of the form(
−
∫
B ρ(x)2w−2/p dx

)(
−
∫
B |∇e

−kr2L1Ω|2w2/p dx
)

. 1 for all k ∈ [1, n]. Then the Riesz

transform ∇L−1/2 is bounded Lp(w)→ Lp(w) for all 2 ≤ p < q.

Theorem 1.3 is proven in chapter 5 by the techniques of Theorem 1.2. A weighted

Poincaré inequality is used in the proof, but only away from the boundary. This is what

leads to the w2/p ∈ A2 away from the boundary condition. Near the boundary it is

possible for w to be outside the Ap Muckenhoupt class. In the application part of this

thesis, the class of weights that Theorem 1.3 finds for Riesz transform boundedness on Ω

is not optimal (due to the L2 bound conditions), but Theorem 1.3 is required in the more

complex applications on the way to achieving an optimal class of weights.

The next theorem is a result used during the application chapters to find weight

classes for the various conditions listed in Theorem 1.3.

THEOREM 1.4. For all r > 0 let αr2(x) and βr2(x) be defined continuous and positive

on the doubling space Ω ⊂ Rn. Suppose that αr2(x) and βr2(x) satisfy the following

four listed conditions. In each condition r is taken, as always, as the radius of the
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corresponding ball B.

Firstly for all p > 1 there must exist s ∈ (1, p) such that the following holds.

sup
B⊂Ω

(
−
∫
B
αr2(x)s−p dx

)(
−
∫
B
βr2(x)(s−p)/(s−1) dx

)
. 1

The second condition is a estimate on local integrability.

sup
B⊂Ω

(
−
∫
B
αr2(x) dx

)(
−
∫
B
βr2(x) dx

)
. 1

The third condition is as follows. For every B ⊂ Ω and R > r > 0 there must

exist positive numbers cB,R and CB,R constant with respect to all x ∈ B such that both

estimates,

αr2(x) ∼ (cB,R)αR2(x) and βr2(x) ∼ (CB,R)βR2(x)

hold for all x ∈ B. Further the values cB,R and CB,R must satisfy the inequalities

(r/R)m ≤ cB,R ≤ (R/r)m and CB,R ≤ (R/r)m for some constant m > 0 and all R > r

and B ⊂ Ω.

The fourth condition is that the set I of all balls B ⊂ Ω can be broken up into a finite

collection of subsets Ii, where for each i there exists functions ai and zi such that the

similarity αr2(x) ∼ ai(x)zi(r) holds for all x ∈ 5B whenever B ∈ Ii.

Now let Tt be an integral operator bounded on L2 with kernel of the form of equa-

tion (1.11) as both an upper and lower bound.

pt(x, y) ∼ αt(x)βt(y)e−d(x,y)2/ct

tn/2
(1.13)

Then supt Tt is bounded Lp(w)→ Lp(w) if and only if w ∈ Aα,βp (see equation 1.12).

Theorem 1.4 is proven in chapter 6. The idea behind the proof of Theorem 1.4 is a

comparison to a maximal type function.

Mα,βf(x) = sup
B3x

αr2(x)−
∫
B
βr2(y)|f(y)| dy

Weight classes for more general operators are also considered in chapter 6 by comparison

to this maximal function. This maximal function is shown in chapter 6 to be bounded
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Lp(w) → Lp(w) for all weights w in the class Aα,βp . The conditions on α and β are

there to ensure that if w is in Aα,βp , then w is in Aα,βp1 for some p1 > p and for some

p1 < p, both depending on w. This idea mirrors arguments from Stein in [67] for the

case of standard Muckenhoupt weights and the standard Hardy-Littlewood Maximal

function. Theorem 1.4 is used in chapter 8 to find bounds for the heat semigroup in

various application cases. Cases where Ω is a non-doubling subset of Rn can still use

Theorem 1.4 after an appropriate extension of the operators concerned to a doubling

space. In all the application cases the class Aα,βp is shown to contain weights outside the

Muckenhoupt class Ap.

One of the applications of Theorem 1.4 is to prove the following result.

THEOREM 1.5. Let Ω ⊂ Rn, n ≥ 3, be the exterior of a C1,1 compact convex object.

Let ∇ be the gradient operator and ∆Ω be the Dirichlet Laplacian on Ω. Take 1 < p <∞.

Then,

• The heat semigroup supt e
−tL is bounded Lp(w) → Lp(w) for all weights in the

following class,

sup
B⊂Ω

(
−
∫
B

(
1 ∧ ρ(x)

1 ∧ r

)p
w(x) dx

)(
−
∫
B

(
1 ∧ ρ(x)

1 ∧ r

)p′
w(x)−p

′/p dx

)p/p′
<∞

where r is the radius of B and ρ(x) is the minimal distance from x to δΩ.

• The gradient of the heat semigroup
√
t|∇e−t∆Ω | is bounded Lp(w)→ Lp(w) for all

weights in the following class,

sup
B⊂Ω

(
−
∫
B

( r

ρ(x) ∧ r
∧ ρ(x)

r ∧ 1

)p
w(x) dx

)(
−
∫
B

(
1 ∧ ρ(x)

r ∧ 1

)p′
w(x)−p

′/p dx

)p/p′
<∞

where again r is the radius of B and ρ(x) the minimal distance from x to δΩ.

• The Hardy operator 1
ρL
−1/2f is bounded Lp(w)→ Lp(w) for all weights of the form

w(x) ∼ ρ(x)k with max(−1, p− n) < k < 2p− 1.

Note that the first weight class above contains weights outside the Muckenhoupt

class Ap, and in fact the class Ap is a subset of this first class. The Muckenhoupt Ap

class is not a subset of the second weight class above but neither is that class a subset
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of Ap. For p > n the second class above does not even contain the weight w(x) = 1, yet

for all p ≥ 1 the second class does contain w(x) = ρ(x)p which is outside the Ap class.

There are similar results for the case of Ω as both the area below a parabola in R2,

and as the area above a C1,1 Lipschitz curve in Rn. The weight classes are even larger

for those cases, for the area above a global C1,1 Lipschitz curve in Rn the weight class

Aα,βp contains Ap for each p > 1. Good bounds on the heat kernel pt(x, y) from [74]

allow the solution of this application theorem. Proving Theorem 1.5 is the main theme

of chapters 8 and 9. It remains to consider the Riesz transform in the same application

case.

THEOREM 1.6. Suppose that Ω is the exterior of a C1,1 compact convex object in Rn,

n ≥ 3. Then the Riesz transform ∇∆
−1/2
Ω is bounded Lp(w)→ Lp(w), p ≥ 2, whenever

w(x) ∼ ρ(x)k with max(−1, p− n) < k < 2p− 1.

One of the reasons a more general class of weights (as seen in parts of Theorem 1.5)

does not occur here is due to a condition on the gradient of the weight w which states

that |∇w| . w/ρ.

Again similar results are proven for the case of Ω as the area above a C1,1 Lips-

chitz curve in Rn. Theorem 1.6 combines results from throughout this thesis. It will be

formally proven in chapter 10. Any weight ρ(x)k with k > p − 1 is outside the Muck-

enhoupt Ap class, this is because such weights approach zero faster at the boundary

than usually allowed. In the paper [48], Proposition 7.2 proves that for the exterior of

a convex obstacle the Riesz transform is not bounded (case w(x) = 1) for p > n . This

is the same as what is seen in the weight classes. The argument from [48] is visited in

section 10.3 of this thesis.



Chapter 2:

Preliminaries

In this chapter the background theory required for the various results is covered. Basic

knowledge of the techniques used in Analysis, found in any standard analysis textbook

(for example Rudin [57]) are assumed known. Here more directed and technical ideas

are contained.

The first section regards the idea of well defined operators. Given a second order dif-

ferential operator L, conditions and theorems regarding the existence and uniqueness of

the square root L1/2 and inverse square root L−1/2 are stated. This allows the definition

of the associated Riesz transform ∇L−1/2.

The second section of this chapter considers when the heat kernel related to the

differential operator L is known to satisfy reasonable upper bounds, namely Gaussian

upper bounds.

The third section includes background regarding inner uniform domains and other

domain types which satisfy the spatial conditions required for the application chapters.

There is particular emphasis on Whitney coverings, the Poincaré inequality, and the

Harnack principle for such domains.

The final part of this chapter outlines known results on Muckenhoupt weights in

preparation for the later chapters on weighted results.

2.1 Some Functional Calculus

In this section emphasis is directed at the functional calculus of a differential operator.

The basis is from books by Reed and Simon [56], Dunford and Swartz [25] and Kato [46],

as well as lecture notes from Albrecht, Duong and McIntosh [2]. Other references in-

19
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clude [27] and [28]. Consider the Banach space Lp(Ω) and the second order differential

operator L with domain D(L) ⊆ Lp(Ω).

Definitions 2.1. The operator L is bounded on E ⊆ D(L) if,

‖L‖ = sup{‖Lu‖p : u ∈ E, ‖u‖p = 1} . 1

and is closed on E if the Graph of L given by G(L) = {(u, Lu) : u ∈ E} is a closed

subspace of Lp(Ω)× Lp(Ω). The resolvent set ρ(L) is the set of all ζ ∈ C such that the

transformation ζI − L is invertible. The spectrum set σ(L) is the complement of ρ(L),

so σ(L) contains the ζ ∈ C that are solutions of the eigenvalue problem Lu = ζu.

As L is a second order differential operator, L is closed but not bounded on an

associated Sobolev type subspace of Lp(Ω). Let the space of all holomorphic functions

on an open subset S ⊂ C be denoted by H(S).

Proposition 2.2 (see chapter 7 of [25] or section 3 of [2] for details). Take L as a closed

operator in Lp(Ω) with non-empty resolvant set and with σ(L) ⊂ S for some S ⊂ C.

Then for any f ∈ H(S) the operator f(L) exists and satisfies the following properties:

• If f, g ∈ H(S) and α ∈ C then f(L) + αg(L) = (f + αg)(L)

• If f, g ∈ H(S) then f(L)g(L) = (fg)(L)

• If f ∈ H(S) then f(σ(L)) = σ(f(L))

There is in fact more to this theorem, see the references for details. Precise repre-

sentations are constructed via the resolvant operator (ζI − L)−1. In this thesis it is the

operators given by e−tL and L−1/2 that are of interest. More results can be found for

operators with greater control on the spectrum.

Definitions 2.3. Define the set Sw+ for 0 ≤ w < π as,

Sw+ = {ζ ∈ C : | arg(ζ)| ≤ w} ∪ {0} (2.1)

Note that S0
w+ is the interior of this set. A closed operator is said to be of type Sw+ if

there exists w where σ(L) ⊂ Sw+ and for every µ ∈ (w, π) there exists cµ where for each
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ζ ∈ Scµ+ the following bound holds.

‖(L− Iζ)−1‖ ≤ cµ|ζ|−1 (2.2)

Proposition 2.4 (an example from [2]). Suppose that L is a self-adjoint operator on a

Hilbert space, and that 〈Lu , u〉 ≥ 0 for every u in a Banach space on which L is defined.

Then L is of type S0+.

Example 2.5 (motivated by [48]). Consider the Dirichlet Laplacian defined on the

exterior of the ball of radius 1 and centre 0 in Rn, n ≥ 3. The spectrum σ(∆Ω) con-

tains solutions to ∆Ωu = λu with u satisfying Dirichlet boundary conditions. In radial

coordinates,

u(r, λ) = −rn/2−1
[
Jn/2−1(

√
λr)Yn/2−1(

√
λ)− Jn/2−1(

√
λ)Yn/2−1(

√
λr)
]

is the solution, where J and Y are Bessel functions, and λ is any real positive number.

The Dirichlet Laplacian ∆Ω is self-adjoint on the Hilbert space H1
0 (Ω), and satisfies

〈∆Ωu , u〉 ≥ 0. Hence by Proposition 2.4, ∆Ω is of type S0+, meaning all the eigenvalues

of ∆Ω must be real and positive. In fact every real positive number is an eigenvalue in

this case. Further, as ∆Ω is of type S0+, Definition 2.3 implies that for every ζ ∈ Sc0+

the following bound holds.

‖(∆Ω − Iζ)−1‖ . |ζ|−1

The operators of type Sw+ are important in this thesis. Of great interest is the

relationship between such operators and semigroups. Good references for semigroups

include Pazy [54] for the first sections below and Stein [66] for the later sections.

Definition 2.6. For t > 0, let Tt be a linear operator bounded Lp(Ω)→ Lp(Ω). Then

the collection {Tt}t>0 is a semigroup of bounded linear operators if Tt satisfies for all

t1, t2 > 0 both a semigroup property and an identity preservation.

Tt1+t2 = Tt1 · Tt2 and, T0 = I (2.3)

Definitions 2.7. A family Tz of bounded linear operators is called a holomorphic semi-
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group if Tz satisfies a semigroup property for z ∈ S0
w+ (naturally extending the semigroup

property of the previous definition) and Tz is holomorphic on S0
w+. The infinitesimal gen-

erator of a semigroup Tt, is an operator −L that maps from its domain D(−L) ⊂ Lp(Ω)

to Lp(Ω), and is defined by,

D(−L) = {f ∈ Lp(Ω) : −Lf = lim
t→0+

Ttf − f
t

exists}

Definitions 2.8. A semigroup is said to be strongly continuous in the Banach space

Lp(Ω) if for all f ∈ Lp(Ω),

lim
t→0+

Ttf = f (2.4)

and a semigroup is said to satisfy an Lp(Ω) contraction if,

‖Tt(f)‖Lp(Ω) . ‖f‖Lp(Ω). (2.5)

for all f ∈ Lp(Ω) and t ∈ (0,∞).

Proposition 2.9 (Hille-Yosida). A linear operator −L is the infinitesimal generator

of a semigroup {Tt}t≥0 which satisfies the strongly continuous property (2.4) and the

contraction (2.5) property if and only if −L is a closed operator, the closure of the

domain D(−L) of −L is Lp(Ω) and the resolvent set ρ(L) contains R+ and for all

λ ∈ R+,

‖(−L− Iλ)−1‖ ≤ 1

λ

holds. Note that ρ(−L) containing R+ is equivalent to ρ(L) containing R−.

The differential operators L considered in this thesis are of type Sw+ for some

0 < w < π
2 and have domain dense in Lp(Ω), so that −L is the infinitesimal genera-

tor of a semigroup with the appropriate properties.

The final step of this section improves the contraction property (equation 2.5). Define

the following maximal type function.

MTtf(x) = sup
R>0

1

R

∣∣∣∣∫ R

0
Tt(f)(x) dt

∣∣∣∣
Then the contraction property can be improved to hold with such a maximal function,
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proven by the following generalisation given by Dunford and Schwartz in [25] to a theo-

rem on ergodic means by Hopf in [42].

Lemma 2.10 (Hopf-Dunford-Schwartz ergodic lemma). Let {Tt}t≥0 be a strongly mea-

surable semigroup (meaning Ttf is measurable for each f ∈ Lp(Ω)) that satisfies an

Lp(Ω) contraction (2.5), let f be a measurable function on Ω. Then for all f ∈ L1(Ω),

the Maximal function satisfies a weak (1, 1) inequality.

|{x ∈ Ω : MTt(f)(x) > λ}| ≤ 2

λ
‖f‖L1(Ω)

Further if f ∈ Lp(Ω) for some 1 < p < ∞ then the Maximal function MTt satisfies a

strong Lp bound.

‖MTtf‖Lp(Ω) ≤ 2

(
p

p− 1

)1/p

‖f‖Lp(Ω)

This lemma is used to prove the next proposition of Stein. See [64] for the original

paper, or [66] chapter 3 for a more comprehensive approach. First though, it is necessary

to define the semigroup maximal function as,

f∗(x) = sup
t>0
|Tt(f)(x)| (2.6)

as well as to have the following definition.

Definition 2.11. A semigroup {Tt}t≥0 is symmetric if Tt is self adjoint on the Hilbert

space L2(Ω). The kernel pt(x, y) of a symmetric semigroup satisfies pt(x, y) = pt(y, x).

Not all operators that are considered in this thesis will satisfy a symmetry property.

However, the Dirichlet Laplacians considered in the application chapters are symmetric.

Proposition 2.12 (Stein semigroup maximal theorem). Suppose the semigroup {Tt}t≥0

satisfies symmetry (Definition 2.11), Lp(Ω) contraction (2.5) for p = 2 and p = p0, and

is a strongly continuous semigroup (2.4) with respect to the Banach space L2(Ω). Then

the semigroup maximal function (2.6) satisfies a strong Lp(Ω) bound for all p between 2

and p0.

‖f∗‖Lp(Ω) . ‖f‖Lp(Ω)
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Further, the semigroup is strongly continuous (see equation 2.4) with respect to the Ba-

nach spaces Lp(Ω) for each p between 2 and p0.

Finish this section with another theorem from Stein [64].

Proposition 2.13. Let (M, µ) be a σ-finite measure space, and let the semigroup given

by {Tt}t≥0 satisfy for every t ≥ 0 the symmetric property (Definition 2.11) and an

Lp(Ω) contraction (equation 2.5) for some 1 < p <∞. Then {Tt}t≥0 can be extended to

a holomorphic operator Tz defined in the sector {z ∈ C : | arg(z)| < π
2 (1− |2p − 1|)}

The result still holds if the Lp bounds of the semigroups are replaced with weighted

bounds. The holomorphic property of a symmetric heat semigroup Tt = e−tL can be

used in the construction of time and space derivative bounds (see Davies [22]).

In chapters 3, 4 and 5 it is supposed that the differential operator L has well defined

functional calculus so that L−1/2 and e−tL are well defined. The symmetry property

discussed is not involved until the application part of this thesis. In the application

part L is specified as ∆Ω which is symmetric and ideas stemming from Proposition 2.13

are used.

2.2 Heat Kernel Bounds

Emphasis on heat semigroups will have been noted. The bounds on the kernels of these

heat semigroups is the focus of this section. The heat semigroup e−tL is an operator

that acts on functions f on some domain Ω, and satisfies a heat equation,


(
L+ d

dt

)
e−tLf(x) = 0

lim
t→0

e−tLf(x) = f(x)

for all x ∈ Ω and t > 0. The initial condition mirrors the identity property (seen in

equation 2.3) of the semigroup. The heat semigroup operator can be written as an

integral operator in terms of a kernel pt(x, y). Formally this is,

e−tLf(x) =

∫
Ω
pt(x, y)f(y) dy
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where pt(x, y) is the positive solution to the partial differential heat equation given by,


(
L+ d

dt

)
pt(x, y) = 0

lim
t→0

pt(x, y) = δ(x− y)

where δ(x− y) is the Dirac delta function understood in a distributional sense. In cases

without boundary the solution is required to vanish tending towards extremities. In cases

with boundary, boundary conditions are required for pt(x, y) to be defined uniquely. The

kernel pt(x, y) for the semigroup is named the heat kernel. It is a standard assumption

in the theory to have Gaussian upper bounds for the heat kernel.

|pt(x, y)| . e−d(x,y)2/ct

tn/2

The decay from such kernels allows off-diagonal semigroup estimates such as in the

following proposition.

Proposition 2.14. Suppose that the heat kernel pt(x, y) has Gaussian upper bounds.

Then the following L2 off-diagonal bound holds,

‖e−tLf‖L2(A) . e−d(A,B)2/2ct‖f‖L2(B)

for any two subsets A,B ⊂ Ω, all t > 0, and all functions f compactly supported on B.

The term d(A,B) is the distance from A to B in Ω.

This proposition is well known and the proof is by Hölder’s inequality, followed by

inserting the Gaussian upper bounds and evaluating the integrals. Similar Lp bounds

are possible. The most basic heat kernel, the kernel of the usual Laplace heat equation

on Rn, is the Gaussian precisely. It was proven by Nash in [53] that the kernels of

quite general elliptic operators satisfy Gaussian upper bounds. Similarly Schrödinger

operators have Gaussian upper bounds by the Feynman-Kac formula (see Simon [61]).

The main theorems of this thesis also require reasonable Lp bounds on the gradient

of the heat semigroup, and for the Hardy inequality 1
ϕL
−1/2 to be Lp bounded. To

achieve these conditions in the application part of this thesis the heat kernels used are

sub-Gaussian. Methods by Davies [22], Li and Yau [50], and Nash [53] are useful to gain
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bounds on the derivatives of these heat kernels. Particularly Davies techniques, which

use the analytic property of the heat kernel to gain time derivatives, and results of Li

and Yau, which give pointwise gradient bounds on subsets, will be used in this thesis.

A detailed exposition on Davies idea is in the book [21].

2.2.1 Maximum Principles

Concentrating now on the application part of this thesis, consider the Dirichlet Laplacian

on a subset Ω ⊂ Rn, and the following maximum principle.

Proposition 2.15 (Maximum Principle 1). Suppose that ut(x) is a C2 solution of the

heat equation on some domain Ω × (0,∞). Then the maximum of ut(x) occurs on the

boundary of the domain. Similarly the minimum of ut(x) also occurs on the boundary

of the domain.

This proposition is well known so will not be proven here. This maximum principle

is applied to prove the following proposition, also referred to as the maximum principle.

Proposition 2.16 (Maximum Principle 2). Suppose that A and B are open subsets

of Rn which satisfy A ⊂ B. Let pAt (x, y) and pBt (x, y) be the heat kernels for the Dirichlet

problem in A and B respectively. Then,

pAt (x, y) ≤ pBt (x, y)

for all x, y ∈ A.

Proof. Fix y ∈ A. Given pAt (x, y) and pBt (x, y) as in the proposition, observe that

ut = pBt − pAt solves the heat equation for x ∈ A with initial condition limt→0 ut = 0 and

boundary condition ut(x, y) = pBt (x, y) ≥ 0 for all x ∈ δA. Thus by the first maximum

principle (Proposition 2.15), for every fixed y ∈ A, the function ut(x, y) has minimum

with respect to x ∈ A on the boundary δA. This minimum is non-negative. Thus,

pBt (x, y)− pAt (x, y) ≥ 0

for every x, y ∈ A, which concludes the proof.
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Proposition 2.16 allows the comparison of heat kernels of two sets whenever one set

is a subset of the other. This is considered in section 7.3 of this thesis.

Thus far in this preliminaries chapter the existence of the operators L−1/2 and e−tL

has been studied for a large class of L, and the existence of reasonable bounds on the

heat kernel associated to these operators has been discussed. Here this discussion is

ended, and there is a switch to consider in what spaces Ω it is reasonable to work with

these operators on.

2.3 Regarding Appropriate Subsets

In this section definitions are given regarding the set Ω. This mostly refers to the subsets

Ω ⊂ Rn dealt with in the application part of this thesis. Such domains are open and

connected subsets of Rn. The boundary of Ω is smooth and named δΩ. There is no

requirement on compactness. A ball in Ω means the set:

B(x, r) = {y ∈ Ω : d(x, y) < r} (2.7)

where d(x, y) is the length of the shortest curve connecting x and y that lies entirely

in Ω. The centre x of the ball must also lie in Ω. Two properties required of Ω were

named in the introduction of this thesis.

• Firstly Ω is a doubling space, see equation (1.5).

• Secondly Ω satisfies the Poincaré inequality, see equation (1.6).

In some parts of this thesis these conditions are only required to hold locally. The next

few definitions classify domains that are important in the application chapters of this

thesis. In Definitions 2.18 and 2.19 below the balls referred to are subsets of Rn, unlike

the majority of this thesis where the balls referred to will be subsets of the relevant Ω,

as in equation (2.7).

Definition 2.17. A domain Ω ⊂ Rn is said to be a local Lipschitz domain if there exists

constants r0 > 0 and m > 0 such that for every x̄ ∈ δΩ there exists a local coordinate

system (x1, . . . , xn) where the boundary δΩ is a Lipschitz function with regards to the
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direction x̂1, whilst within the closure of the ball B(x̄, r) in Rn. That is,

‖|∇ψ(x2, . . . , xn)|‖L∞(B(x̄,r0)) ≤ m

where for x = (x1, . . . , xn) ∈ B(x̄, r0) the function x1 = ψ(x2, . . . , xn) describes the

boundary of Ω in terms of a local coordinate system (x1, . . . , xn). The coordinates can

be any rotation of the standard axes, and are chosen to minimise ‖|∇ψ|‖L∞(B(x̄,r0)). Such

a domain is a global Lipschitz domain if r0 can be made as large as wished whilst m

remains fixed.

Definition 2.18. A domain Ω ⊂ Rn is said to be C1,1 if there exists constants r > 0

and m > 0 such that for every x̄ ∈ δΩ there exists a local coordinate system (x1, . . . , xn)

such that the boundary δΩ can be written as x1 = ψ(x2, . . . , xn) where ψ satisfies:

|∇ψ(x2, . . . , xn)−∇ψ(y2, . . . , yn)| ≤ m‖(x2 − y2, . . . , xn − yn)‖

for all x, y ∈ δΩ ∩B(x̄, r).

Definition 2.19. An inner uniform domain Ω is any open and connected subset of Rn

where there exists positive constants c and C, such that for any two points x, y ∈ Ω,

there exists a curve γ from x to y where,

length(γ) < cd(x, y) and d(z, δΩ) ≤ C
d(x, z)d(y, z)

d(x, y)

for all z ∈ γ. This means that a domain is inner uniform if a line can be drawn between

any two points in the domain, and that line stays away from the boundary relative to

its length.

Examples 2.20. The exterior of a ball in Rn is a doubling, locally Lipschitz, C1,1 and

inner uniform domain. However the domain between two parabolas given by the set

S = {(x1, x2) ∈ R2 : −(1 + x2
2) < x1 < 1 + x2

2} is doubling, locally Lipschitz and C1,1

but is not inner uniform. The domain between the exponential curve and the x1 axis,

given by S = {(x1, x2) ∈ R2 : 0 < x2 < ex1} is non-doubling, and not inner uniform, but

has Lipschitz and C1,1 boundary.
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Lemma 2.21. All inner uniform domains are doubling.

Proof. Let Ω be an inner uniform domain, let x0 be a point in Ω, and let B(x0, r) in Ω

be a ball (as in the type defined equation (2.7)) centred at x0. Under the assumption

that B(x0, r) does not cover Ω there is a point x1 ∈ δB(x0, r) that lies in Ω. Under the

inner uniform domain condition, a curve can be drawn from x0 to x1 of length cr for

some constant c, where every z on the curve satisfies,

d(z,dΩ) ≤ Cd(x0, z)d(x1, z)

r

for some C > 0. Suppose that z is a fractional amount s ∈ (0, 1) along the curve so that

d(x0, z) = csr and d(x1, z) = c(1− s)r. Then d(z, dΩ) . s(1− s)r holds. This equation

establishes that around the path there is a volume comparable to rn, and this volume

lies inside both Ω and B(x0, r). A doubling condition results.

Inner uniform domains are studied in depth in [70]. The reason inner uniform do-

mains are interesting in this context is that the Poincaré inequality is known to hold

on such domains. The complete proof of this can be found in [38], a summary of the

proof is included in subsection 2.3.2 below for the reader’s convenience. First Whitney

decompositions are discussed.

2.3.1 Whitney decomposition

There are two generalisations of Whitney decomposition used in this thesis. These are

both based on the traditional Whitney decomposition on Rn details of which can be

found in [67].

The first type of Whitney decomposition considered is when a subset E ⊂ Ω is covered

by balls Bi ⊂ Ω that are sized according to their distance from the boundary of E. The

balls in this covering may touch the boundary of Ω if the set E does. The benefit of this

covering is that for each Bi in the covering, 4Bi contains points outside E. The problem

with this covering is that the Poincaré inequality only holds for general balls Bi if Ω is

an inner uniform domain. There are even more problems if Ω is non-doubling. This first

type of Whitney decomposition is used in chapter 3 of this thesis.
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Figure 2.1: Comparison of two generalisations of Whitney decomposition near the bound-
ary of Ω.
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The second type of Whitney decomposition considered is when a subset E ⊂ Ω is

covered by balls Bi ⊂ Ω that are sized according to their distance from the boundaries of

both E and Ω. Now the Poincaré inequality holds for general balls in the decomposition.

The problem this time is that only for balls away from δΩ does 4Bi contain points

outside E. This decomposition is used in chapters 4 and 5 of this thesis. If E does not

touch the boundary of Ω then the two types of Whitney decomposition are identical.

The first type of Whitney decomposition is proven in the following lemma. The sec-

ond type of Whitney decomposition is equivalent to the standard Whitney decomposition

of [67] (with the boundary in two parts), so will not be proven here.

Lemma 2.22 (Whitney decomposition type 1). Suppose Ω ⊂ Rn is a doubling space with

boundary δΩ. Further suppose that E ⊂ Ω is a set with a closed non-empty complement.

Then there exists a collection of pairwise disjoint balls {Bi}i∈I , each with centre in Ω,

and constants c1 and c2 such that:

1). E = ∪ic1Bi and; 2). c2Bi ∩ Ec 6= ∅ for every Bi

where Ec is the complement within Ω. That is, Ec = {x ∈ Ω : x /∈ E}.

Proof. This proof is based on the proof of a traditional Whitney decomposition given

by Stein in [67] section I.3.2. The extra parts here are due to Ω ⊂ Rn having its own

boundaries interfere. Recall that a ball B ⊂ Ω is the set B(x, r) = {y ∈ Ω : d(x, y) < r}

where d(x, y) is the length of the shortest line that connects x and y and lies in Ω. Given
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a ball B(x, r) define B∗ = B(x, c1r) and B∗∗ = B(x, c2r) where 1 < c1 < c2. Consider

an open set E ⊂ Ω and let d(x) be the distance from x ∈ E to δE. Choose ε ∈ (0, 1)

and observe the collection Ψ = {B(x, εd(x))}x∈E covers E. Select a maximal disjoint

sub-collection of Ψ: {B}k = B1, B2, . . . , Bk, . . . and define c1 = 1/2ε, c2 = 2/ε. By

construction the elements in {B}k are pairwise disjoint and B∗∗k ∩ Ec 6= ∅.

It remains to show ∪B∗k = E. Choose x ∈ E, then as {Bk} is maximal there exists

B(xk, εd(xk)) ∈ {Bk} such that B(xk, εd(xk))∩B(x, εd(x)) 6= ∅. Let c3 ≥ 1 be a constant

such that B(xk, δ) ⊂ B(x, c3δ) whenever B(xk, δ) ∩ B(x, δ) 6= ∅. If d(xk) < d(x)/4c3

and ε < 1/2c3 then B(xk, 2d(xk)) ∩ B(x, d(x)/2c3) 6= ∅. So d(xk) < d(x)/4c3 implies

B(xk, 2d(xk)) ⊂ B(x, d(x)/2), which is a contradiction as B(xk, 2d(xk)) intersects Ec.

Hence ε < 1/2c3 implies d(xk) ≥ d(x)/4c3 so x ∈ B(xk, 4c
2
3εd(xk)) by replacing d(x)

with 4c3d(xk). Take B∗k = B(xk, 4c
2
3εd(xk)) with ε small enough, so that x ∈ E implies

x ∈ B∗k for some k, and ∪kB∗k = E to complete the proof.

A vital consequence of this lemma is the following corollary.

Corollary 2.23 (Finite intersection lemma). Let W be a disjoint Whitney covering

of E ⊂ Ω with associated constant c1 as in Lemma 2.22. Then for each ball B1 in the

decomposition there exists only a finite number of other balls Bi such that c1B1∩c1Bi 6= ∅.

This number is uniformly bounded above.

Proof. Choose y ∈ E. By the previous lemma there exists B1(x1, r1) ∈W with y ∈ c1B1.

By the properties of the Whitney ball construction, and use of the triangle inequality the

radius r1 satisfies, r1 = εd(x1, dE) ≤ ε(c1r1 + d(y,dE)). Take ε < 1/c1, and rearrange

the inequality for r1 to get, r1 ≤ ε
1−c1εd(y,dE)). Suppose next there exists a second

ball B2(x2, r2) ∈ W where y ∈ c1B2. The triangle inequality on the d(y,dE) term

implies r1 ≤ ε
1−c1ε(

r2
ε + c1r2) ≤ 3r2 taking ε small. Similarly r2 ≤ 3r1, implying B2 ⊂

6c1B1 ⊂ 6B1/ε. There exists only a finite number of disjoint balls in 6B1/ε of radius

minimum r1/3. This number is uniformly bounded above.

This completes the properties of the Whitney decomposition needed.
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2.3.2 Poincaré Inequality

The following proposition is proven for inner uniform domains as subsets of very general

spaces by Gyrya and Saloff–Coste in [38].

Proposition 2.24. Suppose that Ω is an inner uniform domain. Then for all balls

B ⊂ Ω the following inequality holds,

∫
B
|f(x)− fB|2 dx ≤ cr2

∫
B
|∇f(x)|2 dx (2.8)

where r is the radius of B.

An outline of their proof is provided for the reader’s benefit. The Poincaré inequality

is well known to be true for all balls in Rn. The issue here regards balls B ⊂ Ω that

touch the boundary of Ω. The proof covers a ball touching the boundary of Ω by balls

that do not touch the boundary of Ω (using the second type of Whitney decomposition

mentioned in subsection 2.3.1). The proof is then based around that covering.

Lemma 2.25. Suppose B1 and B2 are balls in a traditional Whitney decomposition.

Further suppose B1 and B2 are neighbours, 3B1 ∩ 3B2 6= ∅. Then the following bound

holds.

|f4B1 − f4B2 | ≤ cr(B1)

(
1

|B1|

∫
16B1

|∇f(x)|2 dx

)1/2

(2.9)

Lemma 2.25 is proven in [38] by straight calculation, using that the Poincaré in-

equality is true for B1 and B2 as balls in Rn, and that B1 ⊂ cB2. See [38] for details.

Lemma 2.25 allows adjacent balls in a traditional Whitney covering to be compared.

Outline of Poincaré inequality proof in [38]. Consider a ball B ⊂ Ω touching the bound-

ary of Ω. Cover Ω with a Whitney decomposition (of the traditional type, that is, not

touching δΩ) named R, and let R(B) be the collection of all balls Ai in the Whitney

decompostion that satisfy 3Ai∩B 6= ∅. These Ai are small compared to B, as Ai are in a

traditional Whitney decomposition and so are small near the boundary of Ω, whereas B

is large near the boundary as B touches the boundary.

A ‘central ball’ A0 in R(B) exists that has radius comparable to B. This central ball
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is used to replace B.

∫
B
|f − fB|2 dµ .

∫
B
|f − f4A0 |2 dµ

.
∑

Ai∈R(B)

∫
4Ai

|f − f4Ai |2 dµ+

∫
4Ai

|f4Ai − f4A0 |2 dµ

.
∫

4B
|∇f |2 dµ+

∑
Ai∈R(B)

∫
4Ai

|f4Ai − f4A0 |2 dµ

It remains to bound the right side above. If Ai and A0 are neighbouring Whitney balls

this is done by Lemma 2.25. Otherwise a string of comparable balls can be constructed

so as to compare each ball to its neighbour down the string to eventually compare those

at the ends. This bounds the second part above leading to the conclusion.

Next variations on the Harnack inequality are discussed. The Harnack inequality is

not used explicitly in this thesis, however it is used in several papers to prove heat kernel

upper bounds that are required.

2.3.3 Harnack Inequality

Harnack inequalities compare variations in solutions to differential equations. The par-

ticular type of Harnack inequality used to prove the bounds needed in the application

of this thesis is the heat equation boundary Harnack principle from [29]. The argument

used for the development of this boundary Harnack principle mirrors similar arguments

given for simpler operators in [14]. Boundary Harnack principles appeared originally

in [47]. There is also a nice summary of boundary Harnack principles in the book by

Cafferelli and Salsa [15]. More recently boundary Harnack principles have also been es-

tablished for general inner uniform domains. Various proofs for different cases are given

in [1], [3], [35] and [51] and most fully extended for the heat kernel case recently in [38].

Definition 2.26. A uniform parabolic Harnack inequality is satisfied by a domain Ω

if for every cylinder C = B(x, 2r) × (t, t + 4r2) ⊂ Ω × (0,∞) and every non-negative

solution u of the heat equation in C,

sup
Q−

u . inf
Q+

u

where,
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Q− def
= B(x, r)× (t+ r2, t+ 2r2) and Q+

def
= B(x, r)× (t+ 3r2, t+ 4r2).

This is essentially the same as saying that if the heat u has been decaying for r2

amount of time, then the supremum of u in B(x, r) is comparable to the infimum of u

in B(x, r) after a further r2 amount of decay time. The boundary version is simply the

same idea holding near a specified boundary with boundary condition. The Harnack

inequality has been traditionally important due to equivalences such as the following.

Proposition 2.27 (see papers by Gigor’yan [32] and Saloff-Coste [58]). The parabolic

Harnack inequality holding in Ω is equivalent to a two sided Gaussian heat kernel estimate

for the Neumann heat kernel in Ω and is also equivalent to the Poincaré inequality with

volume doubling estimates.

Further papers by Gigor’yan on the same idea in other contexts are [33] and [34].

Boundary Harnack principles allow similar equivalences to various upper and lower

bounds for Dirichlet heat kernels. Applications include Zhang [74] where upper and

lower bounds for the Dirichlet heat kernel on the exterior of a compact convex object

are found, using a local comparison form of a boundary Harnack principle. The bound-

ary Harnack principle Zhang uses is from Fabes, Garofalo and Salsa [29]. This boundary

Harnack principle is based on a Carleson estimate from Salsa [59]. Zhang’s heat kernel

bounds are used extensively in the application part of this thesis. The boundary Har-

nack principle from [29] will also be revisited in chapter 7 of the application part of this

thesis, where more heat kernels are derived.

2.4 Muckenhoupt Weights

The preliminaries chapter is concluded by the following background on Muckenhoupt

weights required for the weighted inequalities chapter. Let µ be a measure on Rn, and

take f ∈ Lp(µ) for some p ∈ [1,∞]. Define the Hardy–Littlewood maximal function to

act on such f by,

Mf(x) = sup
B3x

1

|B|

∫
B
|f(y)| dy. (2.10)

Such a maximal function has many uses in harmonic analysis. It is well known that Mf

is bounded Lp → Lp for all p > 1 and is bounded weak type when p = 1. The idea
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of a Muckenhoupt weight is to classify those µ for which Mf satisfies a weighted Lp(µ)

bound.

‖Mf‖Lp(µ) ≤ c‖f‖Lp(µ) (2.11)

The original solution to this question was provided by Muckenhoupt [52]. The reader is

also referred to [8] and [67] for overviews.

Proposition 2.28. For 1 < p < ∞ the Hardy–Littlewood maximal function satisfies a

weighted Lp bound of the form of equation (2.11) whenever:

• dµ is absolutely continuous; and,

• dµ = w(x) dx where w(x) satisfies the following Muckenhoupt weight condition for

all balls B ⊂ Rn,

Ap(w) =

(
−
∫
B
w(x) dx

)(
−
∫
B
w(x)−p

′/p dx

)p/p′
<∞ (2.12)

where p′ is the dual of p (meaning 1
p + 1

p′ = 1).

There are also sets A1(w) and A∞(w) for L1 and L∞ boundedness of the Hardy-

Littlewood maximal function respectively, see references for details. The classes of

weights w that satisfy the Muckenhoupt weight condition (2.12) for some 1 ≤ p ≤ ∞ are

denoted by Ap. A related class is the reverse Hölder class denoted by RHp. A weight w

is in the reverse Hölder class RHp for some 1 < p <∞, if,

(
−
∫
B
w(x)p dx

)1/p

. −
∫
B
w(x) dx

holds for all balls B ⊂ Ω. If w is in an Ap class, then w is also in a RHq class for

some q depending on w. The converse also occurs (see [67] chapter 5 section 5.1). These

two classes have many properties. For the properties in the proposition listed below

and others, good outlines can be found in Stein [67], in the book by Garca-Cuerva and

de Francia [31] and in Auscher and Martell [8].

Proposition 2.29. The class Ap of weights w that satisfy the Muckenhoupt weight

condition (equation 2.12) also satisfy the following

1. If w(x) is in Ap, then the dilations w(ax) and translations w(x− a) are in Ap.
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2. A1 ⊂ Ap ⊂ Aq ⊂ A∞ for all 1 ≤ p ≤ q ≤ ∞.

3. If w ∈ Ap, then w(x) dx is a doubling measure.

4. For any α ∈ (0, 1) and w ∈ A∞ there exists β ∈ (0, 1) such that for all balls

B ⊂M, and all subsets F ⊂ B: |F | ≤ α|B| =⇒ w(F ) ≤ βw(B).

5. If w ∈ Ap for 1 < p <∞ then there exists 1 < q < p such that w ∈ Aq.

6. If 1 ≤ q ≤ ∞ and 1 ≤ s <∞ then w ∈ Aq ∩RHs if and only if ws ∈ As(q−1)+1.

The last property is from a paper by Johnson and Neugebauer [44]. The fact that

any w ∈ Ap is also in a reverse Hölder class RHq is used to prove condition 5 in Propo-

sition 2.29, which is what leads to the maximal function being bounded for weights in

the Muckenhoupt class. The result for maximal functions can be extended to apply to

more complex operators.

Proposition 2.30. The standard Laplacian Riesz transform on Rn is bounded Lp(µ)→

Lp(µ) if and only if dµ = w(x) dx and w ∈ Ap. An identical result can be shown for the

standard Laplacian heat semigroup maximal function.

See Stein’s book [67] for a good overview on this. In fact this theorem applies to

any operator that is approximately the shape of those outlined in the above proposition.

Similar results for more general operators are sought in chapter 6 of this thesis. This

concludes the preliminaries section. The following chapters prove the main results.



Chapter 3:

A Riesz Transform Bound Part 1:

A General Result in the Absence of a Preservation

Condition

In this chapter Theorem 1.1 is proven. Theorem 1.1 gives conditions leading to Lp → Lp

boundedness of the Riesz transform in the absence of a preservation condition. The

proof is by use of a good-λ inequality in the style of [5]. Theorem 1.1 is reiterated below

as a combination of Theorem 3.1 and Corollary 3.2. A non-doubling variation on this

result is considered in chapter 4, and a weighted variation is considered in chapter 5.

THEOREM 3.1. Let Ω be an open and connected doubling space where the Poincaré

inequality (1.6) is satisfied for all balls B ⊂ Ω. Let ∇ be the Riemannian gradient. Sup-

pose that L is a second order differential operator, with well defined functional calculus

on Ω, and that L also satisfies: Gaussian upper bounds on the heat kernel (1.7); an L2

Riesz transform bound (1.8); L2 off-diagonal Gaffney estimates (1.9); and Lq Gaffney

estimates (1.10) for some q > 2. Further suppose that there exists a strictly positive

function ϕ(x) to satisfy equation (1.3). Then the Riesz transform satisfies a bound of

the form,

‖|∇L−1/2f |‖p . ‖f‖p + ‖ 1

ϕ
L−1/2f‖p

for all 2 ≤ p < q and all f ∈ C∞0 (Ω).

If Ω has a boundary δΩ, then it is reasonable for ϕ(x) to be zero on that boundary.

There are two corollaries. The first extends Theorem 3.1 to the full result of Theorem 1.1.

Corollary 3.2. Suppose that all the conditions of Theorem 3.1 above hold. Further

suppose that a Hardy type inequality (1.4) holds for some p ∈ (2, q) and all f ∈ C∞0 (Ω).

37
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Then the Riesz transform is bounded Lp → Lp for all f ∈ Lp(Ω).

The second corollary relates to a Sobolev space equivalence.

Corollary 3.3. Suppose again that all the conditions of Theorem 3.1 above hold as well

as a Hardy type inequality (1.4) for some p ∈ [2, q). Then there is a Sobolev bound

equivalence of the form,

‖|∇f |‖p . ‖L1/2f‖p

for all f in W 1,p ∩Dom(L1/2).

The corollaries are trivial extensions of the theorem so will not be proven, although

a comment as to the change from f ∈ C∞0 to f ∈ Lp in Corollary 3.2 is given at the

start of the next section. Theorem 3.1 and the corollaries apply to any Riesz transform

that satisfies the necessary conditions. This includes the Riesz transforms of the form of

the Dirichlet Laplacian ∇∆
−1/2
Ω that are the focus of the application part of this thesis.

3.1 Proof of the Result

In this section Theorem 3.1 is proven after a series of lemmas. In particular Lemma 3.4

is new in the literature and replaces a term that vanished when a preservation condition

held in [5]. The rest of the proof is motivated by the work of Auscher, Coulhon, Duong

and Hofmann in [5] sections 2 and 3.

First it needs to be mentioned, that the proof uses the integral representation,

∇L−1/2 = c

∫ ∞
0
∇e−tL dt√

t

known via functional calculus. There is an implicit assumption during the proof (for

example during the decomposition) that such an operator acts on Lp(Ω). To deal with

this observe that the integral representation above can be given as a limit value,

Tε = c

∫ 1/ε

ε
∇e−tL dt√

t

as ε tends to 0. This operator Tε is bounded L2 → L2 and via a Gaffney estimate is seen

to act on Lp, with an Lp bound depending on ε. The proof of Theorem 3.1 along with
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Corollary 3.2 then show that the Lp bound of Tε holds and does not depend on ε for all

f ∈ C∞0 . Through a limiting argument ∇L−1/2 can be shown to satisfy an Lp bound for

all f ∈ C∞0 . Then by a density argument ∇L−1/2 satisfies an Lp bound for all f ∈ Lp.

Thus the operator ∇L−1/2 has its definition extended from an operator bounded on L2

to an operator bounded on Lp. This argument is common and implied in the proof,

and both ideas regarding the limits and density will be implicit from this point, and no

longer mentioned.

Lemma 3.4. Suppose the conditions of Theorem 3.1 hold (In particular the new semi-

group gradient condition (1.3) is needed here with associated function ϕ(x)). Then the

following bound is true,

∫
B
|∇e−kr2LfB(x)|2 dx .

∫
B

[f(x)

ϕ(x)

]2
dx

for all B ⊂ Ω, where k ∈ [1, n] is an integer, r is the radius of B and fB = −
∫
B f(x) dx.

This lemma will be used in the main proof of this chapter with L−1/2f taking the

place of f above. The term on the right is then an averaging of the Hardy operator.

Proof. Fix B. The value of fB is constant with respect to x. This means it can be

separated from the semigroup operator and the gradient.

|∇e−kr2LfB(x)| = |fB||∇e−kr
2L1Ω(x)|

Square the equation above and integrate over B.

∫
B
|∇e−kr2LfB|2 dx = f2

B

∫
B
|∇e−kr2L1Ω(x)|2 dx

Separate out from fB terms ϕ and 1
ϕ and use Hölder’s inequality.

∫
B
|∇e−kr2LfB|2 dx .

(
−
∫
B
ϕ(x)2 dx

)(
−
∫
B

[f(x)

ϕ(x)

]2
dx
)∫

B
|∇e−kr2L1Ω(x)|2 dx

Then use the new condition (1.3). To match condition (1.3) precisely the ball B in

certain parts above will need to be increased to
√
kB. This will involve the doubling
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condition. The result is,

∫
B
|∇e−kr2LfB|2 dx .

∫
B

[f(x)

ϕ(x)

]2
dx

which concludes the proof.

Lemma 3.5. Suppose that the conditions of Theorem 3.1 hold. Then there exists q > p

such that the following bound holds,

1

|B|

∫
B

∣∣∣∇e−kr2L
(
f(x)− fB

)∣∣∣q dx . λq

for all f smooth enough, and all balls B ⊂ Ω where for some fixed c > 1, cB contains

a point x ∈ Ω where M(|∇f |2)(x) < λ2. Here M is the uncentred Hardy-Littlewood

maximal function, k ∈ [1, n] is an integer, and r is the radius of B.

This lemma is used in the proof of the main theorem with L−1/2f taking the place

of f as written in the lemma. This allows f in the lemma to be smooth enough. The

condition on B holds in the main theorem proof as B comes from an appropriate Whitney

covering.

Proof. Let C0 = 2B and Cs = 2s+1B \ 2sB for s ≥ 1. Split e−kr
2L = e−kr

2L/2e−kr
2L/2.

Interpolation between the Gaffney estimates (1.9) and (1.10) gives an off-diagonal Lq

Gaffney estimate for some q > p (smaller than the q in condition 1.10). Use this on the

first e−kr
2L/2.

(∫
B

∣∣∣∇e−kr2L
(
f(x)− fB

)∣∣∣q dx
) 1
q
.
∞∑
s=0

e−c4
s

r

(∫
Cs

∣∣∣e−kr2L/2
(
f(x)− fB

)∣∣∣q dx
) 1
q

(3.1)

Two bounds are applied to the above equation. The first bound is applied to q − 2 of

the terms and is given through Hölder’s inequality and Gaussian heat kernel bounds,

|e−kr2L[1Cmg](x)| . ‖pkr2(x, ·)‖L2(Cm)‖g‖L2(Cm) .
‖g‖L2(Cm)

|B|1/2

and holds for any function g ∈ L2(Cm). On the two remaining terms use the L2 bound

of e−tL,

‖e−kr2L/2[1Cmg]‖L2(Cs) . e−c4
|s−m|‖g‖L2(Cm)
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which again holds for any function g, and some positive constant c due to the Gaussian

heat kernel upper bound (1.7). Apply both these bounds to equation (3.1).

(∫
B

∣∣∣∇e−kr2L
(
f(x)− fB

)∣∣∣q dx
)1/q

.
∞∑
s=0

∞∑
m=0

e−c4
s
e−c4

|s−m|

r|B|(q−2)/2q

[ ∫
Cm

(
f(x)− fB

)2
dx
]1/2

(3.2)

Next Poincaré’s inequality (1.6) is used in the following fashion. First split up the

difference term.

|f(x)− fB| = |f(x)− f2m+1B +

m∑
l=0

f2l+1B − f2lB|

. |f(x)− f2m+1B|+
m∑
l=0

1

|2lB|

∫
2lB
|f(y)− f2l+1B|dy

Take L2 norms on the space Cm on both sides of the inequality above. Then apply

Minkowski’s inequality.

[ ∫
Cm

∣∣f(x)− fB
∣∣2 dx

]1/2
.

[∫
2m+1B

|f(x)− f2m+1B|2 dx

]1/2

+ 2n
m∑
l=0

|2m+1B|1/2

|2l+1B|1/2

[∫
2l+1B

|f(x)− f2l+1B|2 dx

]1/2

Then apply Poincaré’s inequality (1.6) to all parts.

[∫
Cm

∣∣f(x)− fB
∣∣2 dx

] 1
2

. 2n
m+1∑
l=0

2lr|2m+1B|
1
2

|2l+1B|
1
2

[∫
2l+1B

|∇f |2 dx

] 1
2

Insert this back into equation (3.2).

(∫
B

∣∣∣∇e−kr2L
(
f(x)− fB

)∣∣∣q dx
)1/q

.
∞∑
s=0

∞∑
m=0

e−c4
s
e−c4

|s−m|

r|B|(q−2)/2q

m+1∑
l=0

2lr|2m+1B|
1
2

|2l+1B|
1
2

[∫
2l+1B

|∇f |2 dx

] 1
2

Recall that cB contains points in the set where M(|∇f |2) is less than λ2. Further, for

the balls of size 2B and larger up to cB, their size can be increased to cB for the same

effect (with appropriate changes of the weightings to |cB|−1 compensated for by doubling
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condition (1.5)). This means there exists x0 not in the set where M(|∇f |2) > λ2 such

that the following bound holds.

(∫
B

∣∣∣∇e−kr2L
(
f(x)− fB

)∣∣∣q dx
)1/q

.
∞∑
s=0

∞∑
m=0

e−c4
s
e−c4

|s−m|

|B|(q−2)/2q

m+1∑
l=0

2l|2m+1B|
1
2
(
M |∇f |2(x0)

) 1
2

As discussed above, here M(|∇f |2)(x0) < λ2. Use also that l ≤ m+ 1 to simplify.

(∫
B

∣∣∣∇e−kr2L
(
f(x)− fB

)∣∣∣q dx
)1/q

. λ|B|1/q
∞∑
s=0

∞∑
m=0

e−c4
s
e−c4

|s−m|
2(m+1)(1+n

2
)

These summations converge to a constant (depending only on n) and leaving λ|B|1/q.

This concludes the proof.

The next lemma is an argument from the paper [5]. The proof has been reworded

and presented below for the convenience of the reader. Note that the proof of this lemma

uses only local estimates, in the sense that the operators involved are only considered

over a local ball B.

Lemma 3.6 (Lemma 3.1 in [5]). Suppose that ∇L−1/2 is an appropriately defined opera-

tor on the space Ω satisfying the various conditions of Theorem 3.1 (in particular the L2

Riesz transform bound (1.8) and L2 Gaffney estimates (1.9) are needed here). Then the

following bound holds for all B ⊂ Ω and x ∈ B,

1

|B|

∫
B
|∇L−1/2(I − e−r2L)nf(y)|2 dy .M(|f |2)(x)

where M is again the uncentred Hardy-Littlewood maximal function, and r the radius

of B.

Proof. Similar to the previous proof, let C0 = 2B and Cj = 2j+1B \ 2jB for j ≥ 1.

(
−
∫
B
|∇L−1/2(I − e−r2L)nf(y)|2 dy

) 1
2
.
∞∑
j=0

(
−
∫
B
|∇L−1/2(I − e−r2L)n[1Cjf ](y)|2 dy

) 1
2

When j = 0 use that ∇L−1/2 is L2 bounded (1.8), as is (I−e−r2L)n due to the Gaussian

upper bound on the heat kernel (1.7). Also use the doubling condition (1.5). Then the
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following holds for any x ∈ B.

(
−
∫
B
|∇L−1/2(I − e−r2L)n[1C0f ](y)|2 dy

)1/2
.
(
−
∫

2B
|f(y)|2 dy

)1/2
.
[
M(|f |2)(x)

]1/2

Thus the lemma is true in the case j = 0. For j ≥ 1 expand the term (1− e−r2L)n.

|∇L−1/2(I − e−r2L)n[1Cjf ](y)| = |∇L−1/2
n∑
k=0

(−1)k
(
n

k

)
e−kr

2L[1Cjf ](y)|

Expand to the integral representation of L−1/2 and use a change of variables.

|∇L−1/2(I − e−r2L)n[1Cjf ](y)| .
∫ ∞

0

n∑
k=0

(−1)k
(
n

k

)
|∇e−(t+kr2)L[1Cjf ](y)| dt√

t

.
∫ ∞

0

[ n∑
k=0

(
n

k

)
(−1)k1{s>kr2}(s)√

s− kr2

]
|∇e−sL[1Cjf ](y)| ds

Square and integrate over B, then use Minkowski’s integral inequality and L2 Gaffney

estimates (1.9).

∫
B
|∇L−1/2(I − e−r2L)n[1Cjf ](y)|2 dy

.
(∫ ∞

0

∣∣∣ n∑
k=0

(
n

k

)
(−1)k1{s>kr2}(s)√

s− kr2

∣∣∣e−c4jr2/s

√
s

ds
)2
∫
Cj

|f(y)|2 dy (3.3)

The integral with respect to s is evaluated in several parts. Firstly, for the integral

from 0 to r2, only one part of the sum over k is involved.

∫ r2

0

e−c4
jr2/s

s
ds . c

∫ r2

0

sn−1

4jnr2n
ds .

c

4jn

Next the integral from ar2 to (a+ 1)r2 with 1 ≤ a ≤ n is evaluated.

∫ (a+1)r2

ar2

e−c4
jr2/s

√
s

∣∣∣∣∣
a∑
k=0

(
n

k

)
(−1)k√
s− kr2

∣∣∣∣∣ ds . c

∫ (a+1)r2

ar2

cn

4jn
√
s− ar2

ds .
c

4jn

Lastly evaluate the integral from (n + 1)r2 to ∞. Here use a Taylor expansion on

(s − kr2)−1/2 around the point k = 0, then use that
∑n

k=0

(
n
k

)
(−1)kkl = 0 for all
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integers l from 0 to n− 1.

∫ ∞
(n+1)r2

e−c4
jr2/s

√
s

∣∣∣∣∣
n∑
k=0

(
n

k

)
(−1)k√
s− kr2

∣∣∣∣∣ ds . c

∫ ∞
(n+1)r2

e−c4
jr2/s

√
s

r2n

sn+1/2
ds .

c

4jn

Place these integral values back into equation (3.3).

∫
B
|∇L−1/2(I − e−r2L)n[1Cjf ](y)|2 dy .

1

4jn

∫
Cj

|f(y)|2 dy

Use the doubling condition (1.5) and sum over j for the result.

Now Theorem 3.1 is ready to be proven.

Proof of Theorem 3.1. The proof splits the Riesz transform into 3 parts, then finds a

bound for each part. Given the integral representation of the Lp norm,

‖|∇L−1/2f |‖p = p

∫ ∞
0

λp−1µ({x ∈ Ω : |∇L−1/2f(x)| > λ}) dλ, (3.4)

split up the set E = {x ∈ Ω : M(|∇L−1/2f |2)(x) > λ2} into a set of balls {Bi}i∈I by a

Whitney covering lemma. This is done so that:

1. There exists a constant c1 < 1 such that the set {c1Bi}i∈I is pairwise disjoint; and,

2. The collection {Bi}i∈I of balls in the Whitney covering satisfies ∪i∈IBi = E;

3. There exists a constant c2 > 1 where for each ball Bi in the covering: c2Bi∩Ec 6= ∅.

The constants depend on n. The balls in this covering lemma all have centre in Ω and

have size dependent on the distance to Ec. Note that Ec is considered as a complement

inside Ω. That is, Ec = {x ∈ Ω : x /∈ E}. Hence if E touches the boundary of Ω (in cases

where Ω has boundary) then some balls in the covering will also touch the boundary

of Ω. See preliminaries section 2.3 for more discussion on this. Split equation (3.4) by

this covering,

‖|∇L−1/2f |‖p ≤ p
∫ ∞

0
λp−1

∑
i∈I

µ({x ∈ Bi : |∇L−1/2f(x)| > λ}) dλ
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and then scale λ by some K > 2 to be chosen later.

‖|∇L−1/2f |‖p ≤ pKp

∫ ∞
0

λp−1
∑
i∈I

µ({x ∈ Bi : |∇L−1/2f(x)| > Kλ}) dλ

Next define the operator Ar,

Ar = I − (I − e−r2L)n =
n∑
k=1

(−1)k+1

(
n

k

)
e−kr

2L (3.5)

where r = r(Bi) is the radius of the ball Bi. Split the Riesz transform in the manner of

∇L−1/2 = ∇L−1/2Ar +∇L−1/2(1−Ar). Also split the sets containing these terms.

‖|∇L−1/2f |‖p ≤ pKp

∫ ∞
0

λp−1
∑
i∈I

[
µ({x ∈ Bi : |∇L−1/2Arf(x)| > (K − 1)λ})

+ µ({x ∈ Bi : |∇L−1/2(I −Ar)f(x)| > λ})
]

dλ

The first part on the right of the equation above needs to be split further. As Ar and L1/2

commute due to the semigroup condition, ∇L−1/2Arf can be split in the following way:

∇L−1/2Arf(x) = ∇Ar
(
L−1/2f(x)− [L−1/2f ]Bi

)
+∇Ar[L−1/2f ]Bi . Then the bound for

the Lp norm of ∇L−1/2f is given by,

‖|∇L−1/2f |‖p ≤ pKp

∫ ∞
0

λp−1
∑
i∈I

[
µ({x ∈ Bi : |∇Ar[L−1/2f ]Bi(x)| > λ})

+ µ({x ∈ Bi : |∇Ar
(
L−1/2f(x)− [L−1/2f ]Bi

)
| > (K − 2)λ})

+ µ({x ∈ Bi : |∇L−1/2(I −Ar)f(x)| > λ})

]
dλ. (3.6)

where there are three parts to bound separately. For the first part (that is the part

involving |∇Ar[L−1/2f ]Bi(x)|), consider whether the equation given by,

1

|Bi|

∫
Bi

|∇Ar[L−1/2f ]Bi(x)|2 dx > δ2λ2 (3.7)

is true or false, where δ > 0 is small and specified later1. If equation (3.7) is false use a

1This idea of whether an equation is true or false for some small δ is the same idea as motivates
good-λ inequalities, and is used here instead of a good-λ inequality to keep equations more compact.
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weak (2, 2) inequality,

µ({x ∈ Bi : |∇Ar[L−1/2f ]Bi(x)| > λ}) . 1

λ2

∫
Bi

|∇Ar[L−1/2f ]Bi(x)|2 dx . δ2|Bi| (3.8)

and if equation (3.7) is true use Lemma 3.4.

µ({x ∈ Bi : |∇Ar[L−1/2f ]Bi(x)| > λ})

≤ µ({x ∈ Bi :
1

|Bi|

∫
Bi

|∇Ar[L−1/2f ]Bi(x)|2 dx > δ2λ2})

≤ µ({x ∈ Bi :
cn
|Bi|

∫
Bi

| 1

ϕ(x)
L−1/2f(x)|2 dx > δ2λ2})

≤ µ({x ∈ Bi : cnM |
1

ϕ
L−1/2f |2(x) > δ2λ2}) (3.9)

This completes a bound for the first part of equation (3.6). For the second part of

equation (3.6), use a weak (q, q) bound along with Lemma 3.5.

µ({x ∈ Bi : |∇Ar
(
L−1/2f(x)− [L−1/2f ]Bi

)
| > (K − 2)λ})

.
1

(K − 2)qλq

∫
Bi

|∇Ar
(
L−1/2f(x)− [L−1/2f ]Bi

)
|q dx .

1

(K − 2)q
|Bi| (3.10)

Finally, to bound the last part of equation (3.6), consider whether the equation given

by,

1

|Bi|

∫
Bi

|∇L−1/2(I −Ar)f(x)|2 dx > δ2λ2 (3.11)

is true or false. If equation (3.11) is false, use a weak (2, 2) inequality,

µ({x ∈ Bi : |∇L−1/2(I −Ar)f(x)| > λ})

.
1

λ2

∫
Bi

|∇L−1/2(I −Ar)f(x)|2 dx . δ2|Bi| (3.12)

and if equation (3.11) is true, use Lemma 3.6.

µ({x ∈ Bi : |∇L−1/2(I −Ar)f(x)| > λ})

≤ µ({x ∈ Bi :
1

|Bi|

∫
Bi

|∇L−1/2(I −Ar)f(x)|2 dx > δ2λ2})

≤ µ({x ∈ Bi : cnM |f |2(x) > δ2λ2}) (3.13)
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Place all five bounds found (3.8, 3.9, 3.10, 3.12, 3.13) for the various parts of equa-

tion (3.6) back into equation (3.6).

‖|∇L−1/2f |‖p . pKp

∫ ∞
0

λp−1
∑
i∈I

[
µ({x ∈ Bi : cnM |

1

ϕ
L−1/2f |2(x) > δ2λ2})

+ µ({x ∈ Bi : cnM |f |2(x) > δ2λ2}) +
[
2δ2 +

1

(K − 2)q

]
|Bi|

]
dλ.

Sum over the balls Bi using that they are from a Whitney decompostion of the set given

by E = {x ∈ Ω : M(|∇L−1/2f |2)(x) > λ2}.

‖|∇L−1/2f |‖p . pKp

∫ ∞
0

λp−1

[
µ({x ∈ Ω : cnM |

1

ϕ
L−1/2f |2(x) > δ2λ2})

+ µ({x ∈ Ω : cnM |f |2(x) > δ2λ2})

+
[
2δ2 +

1

(K − 2)q

]
µ({x ∈ Ω : M |∇L−1/2f(x)|2(x) > λ2})

]
dλ.

Change out of the integral representations of the Lp norms.

‖|∇L−1/2f |‖p .
Kp

δp
‖(M | 1

ϕ
L−1/2f |2)1/2‖p +

Kp

δp
‖(M |f |2)1/2‖p

+Kp
[
2δ2 +

1

(K − 2)q

]
‖(M |∇L−1/2f |2)1/2‖p.

Choose δ small enough and K large enough to ensure Kp
[
2δ2 + 1

(K−2)q

]
is small, using

also that q > p. In addition use that the uncentred Hardy-Littlewood maximal function

given by [M(|f |2)]1/2 is bounded Lp → Lp for all p > 2.

‖|∇L−1/2f |‖p . ‖
1

ϕ
L−1/2f‖p + ‖f‖p

This completes the proof of Theorem 3.1, and by corollary completes the proof of The-

orem 1.1 from the introduction.

The next two chapters look at variations on this proof.
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Chapter 4:

A Riesz Transform Bound Part 2:

A Non-Doubling Variation

In this chapter Theorem 1.2 is proven. Theorem 1.2 gives conditions leading to Lp → Lp

boundedness of the Riesz transform in the absence of preservation and global doubling

conditions. Theorem 1.2 is revisited below as a combination of Theorem 4.2 and Corol-

lary 4.3.

Let Ω be a subset of a doubling space. A ball B ⊂ Ω is said to touch the boundary δΩ

if the minimal distance ρ(B) from B to δΩ is 0. In this chapter general balls B ⊂ Ω are

not required to satisfy global doubling or Poincaré conditions. Instead there are local

estimates: every ball B(x, r) ⊂ Ω that does not touch the boundary of Ω satisfies a local

doubling condition,

|B(x, 2kr)| . 2nk|B(x, r)| (4.1)

and a local Poincaré condition,

∫
B
|f(x)− fB|2 dµ . r2

∫
B
|∇f(x)|2 dµ (4.2)

but there is no guarantee that any ball B ⊂ Ω that touches the boundary of Ω will

satisfy either condition. In fact the local Poincaré condition will not be used unless

r(B) . ρ(B). It does not matter whether the ball B(x, 2kr) in the doubling equation

touches δΩ, only that B(x, r) does not touch δΩ. It is not difficult to see that if Ω ⊂M

is open andM satisfies the global doubling (1.5) and Poincaré (1.6) conditions then the

local conditions (4.1) and (4.2) hold on Ω.

Example 4.1. Consider the domain given by {(x1, x2) ∈ R2 : 0 < x2 < ex1}. Such a

49
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domain is not globally doubling but does satisfy the local conditions (4.1) and (4.2).

To compensate for the lack of a global doubling condition, ϕ(x) from conditions (1.3)

and (1.4) is chosen as specifically as the minimal distance ρ(x) from x to the boundary δΩ.

A benefit of this choice is that other conditions from chapter 3 can now also be replaced

by local estimates in this chapter. Let B be a ball away from the boundary (this means

c0r(B) < ρ(B) for some fixed c0). Then the following conditions are required for such

balls. Firstly a local version of equation (1.3),

sup
B⊂Ω

(
−
∫
B
ρ(x)2 dx

)(
−
∫
B
|∇e−kr2L1Ω(x)|2 dx

)
. 1 (4.3)

where r remains the radius of B and k ∈ [1, n] is an integer. Secondly a local L2 Riesz

transform.

‖|∇L1/2f |‖L2(B) . ‖f‖L2(Ω) (4.4)

Thirdly a local L2 off-diagonal Gaffney estimate for any subset C ⊂ Ω and f supported

on C.

‖|∇e−tLf |‖L2(B) .
e−d(B,C)2/ct

√
t

‖f‖L2(C) (4.5)

Lastly a local Lq on-diagonal Gaffney estimate for some q > p.

‖|∇e−tLf |‖Lq(B) .
1√
t
‖f‖Lq(Ω) (4.6)

The above conditions are not required to hold on balls where c0r(B) � ρ(B). The Hardy

inequality (1.4) is not a local estimate,

‖1

ρ
L−1/2f‖Lp(Ω) . ‖f‖Lp(Ω) (4.7)

and needs to hold for all f ∈ Lp(Ω). Further, the heat kernel must satisfy the following

variation on Gaussian upper bounds.

pt(x, y) .
e−d(x,y)2/ct

max[|B(x,
√
t)|, |B(y,

√
t)|]

(4.8)

Following the theorem below are remarks regarding the conditions above.
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THEOREM 4.2. Let Ω be a space satisfying the local doubling (4.1) and the local

Poincaré (4.2) conditions, and let ∇ be the Riemannian gradient. Suppose L is a sec-

ond order differential operator with well defined functional calculus and Gaussian up-

per bounds on its heat kernel (4.8). Further suppose on balls away from the boundary

(c0r(B) < ρ(B) for some fixed c0) that L satisfies: a local L2 Riesz transform (4.4); local

Gaffney conditions (4.5) and (4.6) for some q > 2; as well as the semigroup gradient

condition (4.3). Then the Riesz transform satisfies the following Lp bound for every

2 < p < q and f ∈ C∞0 (Ω).

‖|∇L−1/2f |‖p . ‖f‖p + ‖1

ρ
L−1/2f‖p

Corollary 4.3. Suppose further to the conditions of the above theorem that the Hardy

operator 1
ρL
−1/2f is bounded Lp → Lp (4.7) for some p ∈ (2, q) as in Theorem 4.2. Then

the following Riesz transform bound holds for that same p, and every f ∈ Lp(Ω).

‖|∇L−1/2f |‖p . ‖f‖p

Further this leads to a Sobolev space comparison,

‖|∇f |‖p . ‖L1/2f‖p

for every f in W 1,p ∩Dom(L1/2).

Remarks 4.4. The proof of Theorem 4.2 uses a different Whitney decomposition than

used in chapter 3. In this chapter the decomposition involves balls sized according to

distance to both δE and δΩ, whichever is closest (recall Ω as the underlying space on

which our functions are defined, and E = {x ∈ Ω : M |∇L−1/2f |2(x) > λ}). This change

in the decomposition is to ensure every ball in the covering satisfies the local conditions

outlined earlier. The property 3B ∩ Ec 6= ∅ used in chapter 3 is lost for balls closer

to δΩ, but this is compensated for by choice of ϕ(x) as ρ(x). The two types of covering

were compared in the preliminaries section 2.3. Another main difference from chapter 3

is an extra characteristic function that ensures the Poincaré inequality is only used on

balls away from the boundary (c0r(B) < ρ(B)).
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Definition 4.5. For each ball B ⊂ Ω let r(B) be the radius of B and ρ(B) be the

minimal distance from B to the boundary δΩ. For each ball B away from the boundary

(meaning c0r(B) < ρ(B)), let N ≥ 0 be an integer such that r(2NB) ∼ ρ(2NB). The

idea is that N = 0 for balls close to δΩ relative to their size, and N ≥ 1 otherwise. See

Figure 4.1.

In the proof of the main theorem of this chapter the function f(x) is split according

to whether x is in C0 = 2B or in Cj = 2j+1B \ 2jB for some j ≥ 1, and a different

approach is taken depending on whether j < N (x is inside 2NB), or if j ≥ N (x is

outside 2NB).

Figure 4.1: Comparative sizings of B and 2NB relative to the boundary.

fB = B(x0, r)δΩ

2NB ∼ B(x0, ρ(B)/2)

When j ≥ N , this implies ρ(B) . 2j+1r(B). Hence for f supported on 2j+1B \ 2jB

with j ≥ N , the local off-diagonal L2 Gaffney estimate (4.5), leads to the following

bound.

‖|∇e−kr2Lf |‖L2(B) .
e−c4

j

r
‖f‖L2(2j+1B\2jB) . 2j+1e−c4

j
∥∥∥f
ρ

∥∥∥
L2(2j+1B\2iB)

(4.9)

As usual r is the radius of B and k ∈ [1, n] is an integer. Thus the benefit of fixing ϕ(x) as

the distance to the boundary ρ(x), is the direct comparison to the Hardy operator near

the boundary as seen in the above equation. The drawback of the choice ϕ(x) as ρ(x), is

that the 1
ρ part of the Hardy operator will blow up at the boundary. To compensate for

this, Dirichlet boundary conditions are needed for the heat kernel pt(x, y) in applications.

When j < N the ball 2jB is away from the boundary and similar techniques to the proof

in chapter 3 are used.
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4.1 Proof of the Result

Before the main proof there are three lemmas.

Lemma 4.6. Suppose the conditions of Theorem 4.2 hold. Let B ⊂ Ω be any ball far

enough away from the boundary δΩ so that N ≥ 1, where N is from Definition 4.5.

Then the following holds for all integers k ∈ [1, n].

(
−
∫
B
ρ(x)2 dx

)(
−
∫
B
|∇e−kr2L12NB|2 dx

)
. 1

Here 12NB is the characteristic function of 2NB, r is the radius of B, and ρ(x) is the

distance from x to δΩ.

Proof. Let Cj = 2j+1B \ 2jB for j ≥ 1. Split 12NB = 1 −
∑∞

j=N 1Cj . Use this to split

the term |∇e−kr2L12NB| into parts where different conditions can be used on each part.

(
−
∫
B
|∇e−kr2L12NB|2 dx

) 1
2
.
(
−
∫
B
|∇e−kr2L1Ω|2 dx

) 1
2

+
∞∑
j=N

(
−
∫
B
|∇e−kr2L1Cj |2 dx

) 1
2

For the rightmost term above use local L2 Gaffney estimates (4.5) and that 1 ≤ k ≤ n.

(
−
∫
B
|∇e−kr2L12NB|2 dx

)1/2
.
(
−
∫
B
|∇e−kr2L1Ω|2 dx

)1/2
+
∞∑
j=N

e−c4
j

r

|Cj |1/2

|B|1/2

By construction B does not touch the boundary of Ω so satisfies the local doubling

condition (4.1). Further by construction 2−Nρ(B) . r. These properties are both used

on the rightmost term of the above equation.

(
−
∫
B
|∇e−kr2L12NB|2 dx

)1/2
.
(
−
∫
B
|∇e−kr2L1Ω|2 dx

)1/2
+
∞∑
j=N

2N+jn/2e−c4
j

ρ(B)

Evaluate the sum (the result will not depend on N) and multiply both sides of the

equation by (−
∫
ρ(x)2 dx)1/2, to get the left side resembling that in the lemma.

(
−
∫
B
ρ(x)2 dx

)1/2(
−
∫
B
|∇e−kr2L12NB|2 dx

)1/2

.

(
−
∫
B
ρ(x)2 dx

)1/2(
−
∫
B
|∇e−kr2L1Ω|2 dx

)1/2

+
1

ρ(B)

(
−
∫
B
ρ(x)2 dx

)1/2
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The first term on the right above is bounded by a constant according to condition (4.3).

The second term on the right above is bounded by a constant due to the set of inequalities

given by ρ(x) < ρ(B) + 2r < (1 + 2c0)ρ(B) by choice of B away from the boundary in

the lemma. This concludes the proof.

The next lemma replaces Lemma 3.4 from chapter 3. The difference here is due to

the characteristic function present in the left side of the bound.

Lemma 4.7. Suppose the various conditions of Theorem 4.2 hold. Let B ⊂ Ω be any ball

far enough away from the boundary δΩ so that N ≥ 1, where N is from Definition 4.5.

Then the following inequality is true for all integers k ∈ [1, n].

∫
B
|∇e−kr2L(12NBfB)(x)|2 dx .

∫
B

[f(x)

ρ(x)

]2
dx

Again 12NB is the characteristic function of 2NB, fB is the average of f on B, r is the

radius of B, and ρ(x) is the minimal distance from x to δΩ.

Proof. Fix B. Then N and r depend on B and the value of fB is constant with respect

to x. This means fB can be separated from the semigroup operator and the gradient.

|∇e−kr2L(12NBfB)(x)| = |fB||∇e−kr
2L12NB(x)|

Similar to the proof of Lemma 3.4, square the result above and integrate with respect

to x. Regarding the fB term, separate out ρ and 1
ρ and use Hölder’s inequality.

∫
B
|∇e−kr2L(12NBfB)|2 dx .

(
−
∫
B
ρ(x)2 dx

)(
−
∫
B

[f(x)

ρ(x)

]2
dx

)(∫
B
|∇e−kr2L12NB(x)|2 dx

)

Lastly use Lemma 4.6,

∫
B
|∇e−kr2L(12NBfB)(x)|2 dx .

∫
B

[f(x)

ρ(x)

]2
dx

to conclude the proof.

The next lemma replaces Lemma 3.5 from chapter 3. The difference is again due to

a characteristic function present in the left side of the bound. This time it is clear why
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the characteristic function is present: to ensure that Poincaré’s inequality is only used

on balls that do not touch δΩ. Hence only the local Poincaré inequality (4.2) is required.

Lemma 4.8. Suppose that L is an appropriately defined operator satisfying the various

conditions of Theorem 4.2 (in particular the local Poincaré inequality (4.2), and local

Gaffney estimates (4.5) and (4.6) are needed here). Let B ⊂ Ω be a ball far enough away

from the boundary so that N ≥ 1 (N is from Definition 4.5), where for some fixed cn,

cnB includes points outside the set where M(|∇f |2)(x) is greater than λ2. Then there

exists q > p such that the following bound holds,

1

|B|

∫
B

∣∣∣∇e−kr2L1(2NB)

(
f(x)− fB

)∣∣∣q dx . λq

for all f smooth enough and all integers k ∈ [1, n]. Here M is the uncentred Hardy

Littlewood maximal function, fB is the average of f on B, 1(2NB) is the characteristic

function of the set 2NB, and r is the radius of B.

Proof. Let C0 = 2B and let Cj = 2j+1B \2jB for j ≥ 1. Split the heat semigroup by the

equation e−kr
2L1(2NB) =

∑N−1
j=0

∑∞
s=0 e

−kr2L/21Cse
−kr2L/21Cj . Interpolation between

the Gaffney estimates (4.5) and (4.6) gives a local off-diagonal Lq Gaffney estimate for

some q > p (smaller than the q in condition 4.6). Use this on the first part of the split.

(
−
∫
B

∣∣∇e−kr2L1(2NB)(f(x)− fB)
∣∣q dx

)1/q

.
N−1∑
j=0

∞∑
s=0

e−c4
s

r

(∫
Cs

∣∣e−kr2L/21Cj (f(x)− fB)
∣∣q dx

)1/q

Next use heat kernel bounds as in the proof of Lemma 3.5 from chapter 3. It is important

here that the ball B is away from the boundary and so local doubling holds.

(
−
∫
B

∣∣∇e−kr2L1(2NB)(f(x)− fB)
∣∣q dx

)1/q

.
∞∑
s=0

N−1∑
j=0

e−c4
s
e−c4

|s−j|

r|B|(q−2)/2q

(∫
Cj

|f(x)− fB|2 dx

)1/2

(4.10)
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The difference term is now split up so that the local Poincaré inequality can be used.

|f(x)− fB| = |f(x)− f2j+1B +

j∑
l=0

(f2l+1B − f2lB)|

. |f(x)− f2j+1B|+
j∑
l=0

1

|2lB|

∫
2lB
|f(y)− f2l+1B| dy

Take L2 norms on the space Cj on both sides of the inequality above. Then apply

Minkowski’s inequality.

[ ∫
Cj

∣∣f(x)− fB
∣∣2 dx

]1/2
≤
[∫

2j+1B
|f(x)− f2j+1B|2 dx

]1/2

+ 2n
j∑
l=0

|2j+1B|1/2

|2l+1B|1/2

[∫
2l+1B

|f(x)− f2l+1B|2 dx

]1/2

Then apply Poincaré’s inequality to all parts. In this proof we have l ≤ j < N where N

was chosen so that r(2NB) ∼ ρ(2NB) implying that the ball 2lB will not touch the

boundary of Ω. Thus only the local Poincaré condition (4.2) is used, which is where this

proof differs from the proof of Lemma 3.5 in chapter 3.

[∫
Cj

∣∣f(x)− fB
∣∣2 dx

] 1
2

. 2n
j+1∑
l=0

2lr|2j+1B|
1
2

|2l+1B|
1
2

[∫
2l+1B

|∇f |2 dx

] 1
2

Insert this result into equation (4.10).

(∫
B

∣∣∣∇e−kr2L1(2NB)

(
f(x)− fB

)∣∣∣q dx
)1/q

.
∞∑
s=0

N−1∑
j=0

e−c4
s
e−c4

|s−j|

r|B|(q−2)/2q

j+1∑
l=0

2lr|2j+1B|
1
2

|2l+1B|
1
2

[∫
2l+1B

|∇f |2 dx

] 1
2

Recall that cnB contains a point x0 where M(|∇f |2)(x0) < λ2. Further, the balls of

size 2B and larger up to cnB, can be increased to cnB for the same effect (using local

doubling condition (4.1)). The following bound now holds.

(∫
B

∣∣∣∇e−kr2L1(2NB)

(
f(x)− fB

)∣∣∣q dx
)1/q

.
∞∑
s=0

N−1∑
j=0

e−c4
s
e−c4

|s−j|

|B|(q−2)/2q

j+1∑
l=0

2l|2j+1B|
1
2
(
M |∇f |2(x0)

) 1
2
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As discussed above, here M(|∇f |2)(x0) < λ2. Use also that l < j + 1 to simplify.

(∫
B

∣∣∣∇e−kr2L1(2NB)

(
f(x)− fB

)∣∣∣q dx
)1/q

. λ|B|1/q
∞∑
s=0

N−1∑
j=0

e−c4
s
e−c4

|s−j|
2(j+1)(1+n

2
)

These summations are bounded above by a constant (depending only on n) and leave

only λ|B|1/q. This concludes the proof.

Now Theorem 4.2 is proven. This proof uses the lemmas above along with Lemma 3.6

from chapter 3. The proof is similar to the proof of Theorem 3.1 from chapter 3.

Proof of Theorem 4.2. The proof splits the Riesz transform into parts, then finds a

bound for each part. Given the integral representation of the Lp norm,

‖|∇L−1/2f |‖p = p

∫ ∞
0

λp−1µ({x ∈ Ω : |∇L−1/2f(x)| > λ}) dλ, (4.11)

split up the set E = {x ∈ Ω : M(|∇L−1/2f |2)(x) > λ2} by a Whitney type covering

lemma. This is arranged so that;

1. There exists a constant c1 < 1 such that the collection of balls {c1Bi}i∈I in the

covering of E are pairwise disjoint;

2. The collection {Bi}i∈I of balls in the Whitney covering of E satisfy ∪i∈IBi = E;

and,

3. There exists a constant c2 > 1 such that for every ball Bi in the covering of E

min
(
d(Bi, δE), ρ(Bi)

)
∼ c2r(Bi) (meaning the balls in the decomposition are sized

according to the distance to the boundaries δΩ and δE, whichever is closest).

The constant c1 in the covering lemma depends only on the dimension n. The c2 is chosen

in part to match with the choice of c0 in the localised conditions, and the constants

involved in Definition 4.5. There are further comments on this below. Importantly

none of the balls in the covering touch the boundary of Ω, so they all satisfy the local

doubling (4.1) condition. Equation (4.11) is now given by the following.

‖|∇L−1/2f |‖p ≤ p
∫ ∞

0
λp−1

∑
i∈I

µ({x ∈ Bi : |∇L−1/2f(x)| > λ}) dλ.
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For each ball Bi choose N so that r(2NBi) ∼ ρ(2NBi) for some integer N ≥ 0 (see

Definition 4.5). It is necessary when fixing N and the constant c2 in the Whitney

decomposition, that they match with the constant c0 from the conditions at the start of

this chapter, so that c0r(2
NBi) < ρ(2NBi) for each Bi in the decomposition.

Split the group of balls {Bi}i∈I into two sets. The first set I1 are those balls Bi with

N = 0. These balls are close to δΩ. The second set I2 are the remaining balls, which

satisfy N ≥ 1 and are closer to δE. If E is away from the boundary the set I1 may be

empty, but that has no impact on the proof. In parts of the proof these two sets will be

dealt with separately, that will be outlined when it occurs.

In the meantime the proof continues on the same lines as the proof from chapter 3.

Scale λ by some K > 3 to be chosen later.

‖|∇L−1/2f |‖p ≤ pKp

∫ ∞
0

λp−1
∑
i∈I

µ({x ∈ Bi : |∇L−1/2f(x)| > Kλ}) dλ

Next define the operator Ar as,

Ar = I − (I − e−r2L)n =

n∑
k=1

(−1)k+1

(
n

k

)
e−kr

2L. (4.12)

where r = r(Bi) is the radius of Bi. Split ∇L−1/2 = ∇L−1/2Ar +∇L−1/2(1 − Ar) and

also split the set containing these.

‖|∇L−1/2f |‖p ≤ pKp

∫ ∞
0

λp−1
∑
i∈I

[
µ({x ∈ Bi : |∇L−1/2Arf(x)| > (K − 1)λ})

+ µ({x ∈ Bi : |∇L−1/2(I −Ar)f(x)| > λ})
]

dλ

The next split differs from chapter 3, though the style is similar. Let C0 = 2Bi and

Cj = 2j+1Bi \ 2jBi for j ≥ 1. Then split up the sets,

‖|∇L−1/2f |‖p ≤ pKp

∫ ∞
0
λp−1

[∑
i∈I

µ({x ∈ Bi :

∞∑
j=N

|∇Ar1CjL−1/2f(x)| > λ})

+
∑
i∈I2

µ({x ∈ Bi : |∇Ar1(2NBi)L
−1/2f(x)| > (K − 2)λ})

+
∑
i∈I

µ({x ∈ Bi : |∇L−1/2(I −Ar)f(x)| > λ})
]

dλ
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where the second set above contains only terms in I2 (these are the balls closer to δE).

There is one more split that needs to occur before we can start bounding the various

sets. This is a split of the form L−1/2f(x) = (L−1/2f(x)− [L−1/2f ]B) + [L−1/2f ]B which

is now used to split the second set above.

‖|∇L−1/2f |‖p ≤ pKp

∫ ∞
0

λp−1
[∑
i∈I

µ({x ∈ Bi :

∞∑
j=N

|∇Ar1CjL−1/2f(x)| > λ})

+
∑
i∈I2

µ({x ∈ Bi : |∇Ar1(2NBi)[L
−1/2f ]Bi | > λ})

+
∑
i∈I2

µ({x ∈ Bi : |∇Ar1(2NBi)(L
−1/2f(x)− [L−1/2f ]Bi)| > (K−3)λ})

+
∑
i∈I

µ({x ∈ Bi : |∇L−1/2(I −Ar)f(x)| > λ})
]

dλ (4.13)

Each of these sets will be bound separately. To begin consider the first set on the right

in equation (4.13) and whether (for some δ > 0 chosen later) the equation given by,

−
∫
Bi

[ ∞∑
j=N

|∇Ar1CjL−1/2f(x)|
]2

dx > δ2λ2 (4.14)

is true or false. If equation (4.14) is false use a weak (2, 2) inequality.

µ({x ∈ Bi :

∞∑
j=N

|∇Ar1CjL−1/2f(x)| > λ})

.
1

λ2

∫
Bi

[ ∞∑
j=N

|∇Ar1CjL−1/2f(x)|
]2

dx . δ2|Bi|

However if equation (4.14) is true, use equation (4.14) along with the definition of Ar.

µ({x ∈ Bi :
∞∑
j=N

|∇Ar1CjL−1/2f(x)| > λ})

≤ µ({x ∈ Bi : −
∫
Bi

[ ∞∑
j=N

|∇Ar1CjL−1/2f(x)|
]2

dx > δ2λ2})

≤ µ({x ∈ Bi :

n∑
k=1

∞∑
j=N

ck

[
−
∫
Bi

|∇e−kr2L1CjL
−1/2f(x)|2 dx

]1/2
> δλ})
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Due to the choice of N , the technique of equation (4.9) can be applied to get,

µ({x ∈ Bi :
∞∑
j=N

|∇Ar1CjL−1/2f(x)| > λ})

≤ µ({x ∈ Bi : cn

∞∑
j=N

[2j+1e−c4
j

|Bi|

∫
Cj

∣∣∣L−1/2f(x)

ρ(x)

∣∣∣2 dx
]1/2

> δλ})

and recall that the balls Bi in the decomposition satisfy the local doubling condition.

Use the uncentred Hardy-Littlewood Maximal function as an upper bound, and evaluate

the sum. The result does not depend on N .

µ({x ∈ Bi :

∞∑
j=N

|∇Ar1CjL−1/2f(x)| > λ}) ≤ µ({x ∈ Bi : cnM
(∣∣∣L−1/2f

ρ

∣∣∣2)(x) > δ2λ2})

This bound is now in terms of the Hardy inequality. Hence in total for the first part of

equation (4.13), whether or not equation (4.14) is true, the following holds.

µ({x ∈ Bi :
∞∑
j=N

|∇Ar1CjL−1/2f(x)| > λ})

. µ({x ∈ Bi : cnM
(∣∣∣L−1/2f

ρ

∣∣∣2)(x) > δ2λ2}) + δ2|Bi| (4.15)

Next consider the the second part of equation (4.13). On this part the proof follows more

closely that of chapter 3. For this part the balls Bi are in I2, and 2NBi, N ≥ 1, does

not touch δΩ, and in fact satisfies ρ(2NBi) ∼ r(2NBi). Consider whether the equation

given by,

−
∫
Bi

|∇Ar1(2NBi)[L
−1/2f ]Bi(x)|2 dx > δ2λ2 (4.16)

is true or false. If equation (4.16) is false use a weak (2, 2) inequality,

µ({x ∈ Bi : |∇Ar1(2NBi)[L
−1/2f ]Bi(x)| > λ})

≤ 1

λ2

∫
B
|∇Ar1(2NBi)[L

−1/2f ]Bi |2 dx ≤ δ2|Bi|
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and if equation (4.16) is true then use Lemma 4.7.

µ({x ∈ Bi : |∇Ar1(2NBi)[L
−1/2f ]Bi(x)| > λ})

≤ µ({x ∈ Bi : −
∫
Bi

|∇Ar1(2NBi)[L
−1/2f ]Bi(x)|2 dx > δ2λ2})

≤ µ({x ∈ Bi : cnM
(∣∣∣L−1/2f

ρ

∣∣∣2)(x) > δ2λ2})

So in total for the second part of equation (4.13), regardless of whether or not equa-

tion (4.16) is true, the following bound holds.

µ({x ∈ Bi : |∇Ar1(2NBi)[L
−1/2f ]Bi(x)| > λ})

. µ({x ∈ Bi : cnM
(∣∣∣L−1/2f

ρ

∣∣∣2)(x) > δ2λ2}) + δ2|Bi| (4.17)

Next consider the third part of equation (4.13). Use a weak (q, q) inequality.

µ({x ∈ Bi : |∇Ar1(2NBi)(L
−1/2f(x)− [L−1/2f ]Bi)| > (K − 3)λ})

.
1

(K − 3)qλq

∫
Bi

|∇Ar1(2NBi)(L
−1/2f(x)− [L−1/2f ]Bi)|q dx

Due to the choice of Bi ∈ I2, and the definitions of N and Ar, Lemma 4.8 can be applied.

µ({x ∈ Bi : |∇Ar1(2NBi)(L
−1/2f(x)− [L−1/2f ]Bi)| > (K − 3)λ}) . |Bi|

(K − 3)q
(4.18)

This gives a bound for the third part of equation (4.13). It remains to bound the fourth

part of equation (4.13). Here the method is identical to that of Chapter 3. Consider

whether the equation given by,

1

|Bi|

∫
Bi

|∇L−1/2(I −Ar)f(x)|2 dx > δ2λ2 (4.19)

is true or false. If equation (4.19) is false, use a weak (2, 2) inequality,

µ({x ∈ Bi : |∇L−1/2(I −Ar)f(x)| > λ}) . 1

λ2

∫
Bi

|∇L−1/2(I −Ar)f(x)|2 dx . δ2|Bi|

and if equation (4.19) is true, use Lemma 3.6 from chapter 3. Note that this lemma uses
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only the local versions of the L2 Riesz and Gaffney estimates in its proof, and the L2

semigroup bound used (with f supported on a local ball B) follows from Gaussian upper

bounds (4.8).

µ({x ∈ Bi : |∇L−1/2(I −Ar)f(x)| > λ})

≤ µ({x ∈ Bi :
1

|Bi|

∫
Bi

|∇L−1/2(I −Ar)f(x)|2 dx > δ2λ2})

≤ µ({x ∈ Bi : cnM(|f |2)(x) > δ2λ2})

So in total in this fourth case of equation (4.13) the following bound holds.

µ({x ∈ Bi : |∇L−1/2(I −Ar)f(x)| > λ})

. µ({x ∈ Bi : cnM(|f |2)(x) > δ2λ2}) + δ2|Bi| (4.20)

Combine all the bounds found for each part of equation (4.13) together, these are equa-

tions (4.15), (4.17), (4.18) and (4.20).

‖|∇L−1/2f |‖pp ≤ pKp

∫ ∞
0

λp−1

(∑
i∈I

µ({x ∈ Bi : cnM
(∣∣∣L−1/2f

ρ

∣∣∣2)(x) > δ2λ2})

+
|Bi|

(K − 3)q
+ 3δ2|Bi|+ µ({x ∈ Bi : cnM(|f |2)(x) > δ2λ2})

)
dλ

The balls Bi, i ∈ I, cover E. Use also that E is the set where M(|∇L−1/2f |2)(x) > λ2.

‖|∇L−1/2f |‖p ≤pKp

∫ ∞
0

λp−1
[
µ({x ∈ Ω : cnM

(∣∣∣L−1/2f

ρ

∣∣∣2)(x) > δ2λ2})

+
(

3δ2 +
1

(K − 3)q

)
µ({x ∈ Ω : M |∇L−1/2f |2(x) > λ2})

+ µ({x ∈ Ω : cnM(|f |2)(x) > δ2λ2})
]

dλ

Change the integral representations back to Lp norm values.

‖|∇L−1/2f |‖pp ≤
Kp

δp
∥∥(M ∣∣∣L−1/2f

ρ

∣∣∣2)1/2∥∥p
p

+
Kp

δp
‖(M |f |2)1/2‖pp

+Kp
(

3δ2 +
1

(K − 3)q

)
‖
(
M |∇L−1/2f |2

)1/2‖pp
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The maximal function used is bounded on Lp for all p > 2. Chose δ small and K large

for the result.

This concludes the proof of Theorem 4.2, and as a corollary concludes the proof of

Theorem 1.2 from the introduction. The next chapter places weights throughout.
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Chapter 5:

A Riesz Transform Bound Part 3:

A Weighted Result

In this chapter Theorem 1.3 is proven. Theorem 1.3 gives conditions for weighted

Lp → Lp boundedness of the Riesz transform in the absence of a preservation condi-

tion. This is a weighted extension of chapters 3 and 4. Theorem 1.3 can be viewed as a

combination of Theorem 5.1 and Corollary 5.2 below.

It is well known that Ap weights are those for which the standard Riesz transform

on Rn is bounded (see for example [67]). In the case of elliptic operators on Rn or Riesz

transforms on Manifolds weights are discussed in [7] and [10] respectively.

Take Ω as a possibly non-doubling open subset of Rn. Consider balls B ⊂ Ω where

r = r(B) denotes the radius of B and ρ(B) is the minimal distance from B to the

boundary δΩ. The heat kernel on Ω is required to satisfy,

pt(x, y) . αt(x)βt(y)
e−d(x,y)2/ct

tn/2
(5.1)

for some fixed constant c > 0 and a pair of continuous non-negative functions α . 1 and

β . 1 that satisfy αt(x) ≤ 2α2t(x) and βt(y) ≤ 2β2t(y) for all t > 0 and x, y ∈ Ω. Say

that a weight w satisfies an Aα,βp condition (p > 1) if,

(
−
∫
B
αr2(x)pw(x) dx

)(
−
∫
B
βr2(x)p

′
w(x)−p

′/p dx

)p/p′
. 1 (5.2)

holds for all B ⊂ Ω. This mirrors the standard Muckenhoupt Ap weight condition (p > 1)

65
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which a weight w satisfies if,

(
−
∫
B
w(x) dx

)(
−
∫
B
w(x)−p

′/p dx

)p/p′
. 1 (5.3)

for all balls B ⊂ Ω. This standard Ap condition implies a weighted local doubling result,

w(2jB) .
w(2jB)

rn

∫
2jB

1B dx

.

(
1

|B|

∫
2jB

1pBw(x) dx

)(∫
2jB

w(x) dx

)(∫
2jB

w(x)
− p
′
p dx

) p
p′

. 2jnw(B)

for all w satisfying equation (5.3), j ≥ 0 and B ⊂ Ω away from the boundary so as to

satisfy local doubling (4.1).

Continuing to restrict to balls B away from the boundary (c0r(B) < ρ(B)) there is

also required in this chapter a weighted Poincaré inequality,

∫
B
|f(x)− fB|2w(x)2/p dx .

∫
B
|∇f(x)|2w(x)2/p dx (5.4)

a weighted gradient semigroup unit bound,

(
−
∫
B
ρ(x)2w(x)−2/p dx

)(
−
∫
B
|∇e−kr2L1Ω|2w(x)2/p dx

)
. 1 (5.5)

a weighted local L2 Riesz transform estimate,

‖|∇L−1/2f |‖L2(B,w2/p) . ‖f‖L2(Ω,w2/p) (5.6)

a weighted local L2 Davies-Gaffney estimate (with f supported on A),

‖
√
t|∇e−tLf |‖L2(B,w2/p) . e−d(A,B)2/ct‖f‖L2(A,w2/p) (5.7)

and a local weighted Lq Gaffney estimate (again f supported on A).

‖|∇e−tLf |‖Lq(B,wq/p) .
e−d(A,B)2/ct

√
t

‖f‖Lq(A,wq/p) (5.8)

The above conditions are not required to hold when considering balls near the boundary
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c0r(B) � ρ(B). The local Poincaré inequality (5.4) is well known to hold on Ω if

w2/p ∈ A2 (5.3) for balls B away from the boundary c0r(B) < ρ(B) (see [41]).

The final condition needed is a weighted Hardy inequality.

‖1

ρ
L−1/2f‖Lp(w) ≤ ‖f‖Lp(w) (5.9)

The main theorem of this chapter is the following.

THEOREM 5.1. Let Ω be an open subset of Rn with boundary δΩ, and suppose that L

is a second order differential operator with well defined functional calculus on Ω. Further

suppose that the heat kernel of L on Ω has upper bounds of the form of equation (5.1)

for some α . 1 and β . 1 where αt(x) ≤ 2α2t(x) and βt(y) ≤ 2β2t(y) for all t > 0 and

x, y ∈ Ω. With the same α and β, let w ∈ A∞ be a weight that satisfies w2/p ∈ Aα,β2 and

wq/p ∈ Aα,βR for some q > p > 2 with R = 1 + q
2 (see equation 5.2). Considering now

only balls B where c0r(B) < ρ(B), suppose the general local weighted conditions (5.4),

(5.5), (5.6), (5.7) and (5.8) all hold, with the q in condition (5.8) the same as the q

already mentioned. Then the Riesz transform ∇L−1/2 satisfies the following weighted

bound for all f ∈ C∞0 .

‖|∇L−1/2f |‖Lp(w) . ‖f‖Lp(w) + ‖1

ρ
L−1/2f‖Lp(w)

Corollary 5.2. In addition to the conditions of Theorem 5.1 suppose that the weighted

Hardy inequality (5.9) is bounded Lp → Lp for the same weight w and exponent p. Then

the Riesz transform is bounded Lp(w)→ Lp(w) for that same weight and all f ∈ Lp(Ω).

‖|∇L−1/2f |‖Lp(w) . ‖f‖Lp(w)

Further there is a Sobolev space comparison of the form,

‖|∇f |‖Lp(w) . ‖L1/2f‖Lp(w)

for all f in W 1,p(w) ∩Dom(L1/2).

Remarks 5.3. There are three remarks on this theorem. Firstly, in the examples of
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chapter 10, the condition wq/p ∈ Aα,βR with R = 1 + q
2 is the most restrictive part of

Theorem 4.2. This restriction could be weakened by using a higher power Poincaré

inequality. The weight class Aα,βp is studied in detail in the next chapter. For details on

how wq/p ∈ Aα,βR restricts the range of weights in this theorem, and other methods to

improve the range, see the application in chapter 10.

Secondly, this theorem and proof are based on the work in chapter 4. If instead one

tried to extend to weights based on the work in chapter 3, one requirement would be

a weighted Poincaré estimate for all balls B in Ω. If that requirement was satisfied,

then the extension would work and give suitable weights. However, due to the weighted

Poincaré inequality the weight classes that result would be smaller, because the Poincaré

inequality only satisfies a weighted bound on balls in Rn for weights in the Muckenhoupt

class A2 (see chapter 15 of the book by Heinonen et al [41]). By using chapter 4, a more

interesting result occurs by avoiding this restriction.

Thirdly, it was remarked in chapter 4 that the bound on the Hardy inequality in

that chapter (4.7) implied that L−1/2 needed to satisfy Dirichlet boundary conditions.

Suppose now that the weight w considered in this chapter vanished on the boundary.

Then w vanishing fast enough could still allow a weighted Hardy inequality to hold for

at least some p without Dirichlet boundary conditions on L−1/2.

5.1 Proof of the Result

The first lemma corresponds to Lemma 3.4 from chapter 3, and Lemmas 4.6 and 4.7

from chapter 4.

Lemma 5.4. Suppose the conditions of Theorem 5.1 hold. Let B be a ball far enough

from the boundary to ensure N ≥ 1 (where N is defined in Definition 4.5 to ensure the

similarity ρ(2NB) ∼ r(2NB)). Then the following bound holds for such B.

∫
B
|∇e−kr2L[12NBfB](x)|2w(x)2/p dx .

∫
B

[f(x)

ρ(x)

]2
w(x)2/p dx

Here fB denotes the average −
∫
B f(x) dx, 12NB is the characteristic function of 2NB,

and r is the radius of B.
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Proof. Fix B. The value of fB is constant with respect to x. This means it can be

separated from the gradient. Let Cj = 2j+1B \ 2jB for integers j ≥ 1 and separate out

the characteristic function as 12NB = 1−
∑∞

j=N 1Cj .

|∇e−kr2L[12NBfB(x)| . fB|∇e−kr
2L1Ω|+ fB

∞∑
j=N

|∇e−kr2L1Cj |

Apply a weight and integrate the result squared over B.

(∫
B
|∇e−kr2L[12NBfB]|2w(x)

2
p dx

) 1
2
. fB

(∫
B
|∇e−kr2L1Ω|2w(x)

2
p dx

) 1
2

+ fB

∞∑
j=N

(∫
B
|∇e−kr2L1Cj |2w(x)

2
p dx

) 1
2

(5.10)

For the first term on the right above separate from fB terms ρ and 1
ρ and use Hölder’s

inequality.

f2
B .

1

|B|2
(∫

B
ρ(x)2w(x)−2/p dx

)(∫
B

[f(x)

ρ(x)

]2
w(x)2/p dx

)

Using such a bound for fB along with condition (5.5), the first term on the right of

equation (5.10) simplifies.

fB

(∫
B
|∇e−kr2L1Ω(x)|2w(x)2/p dx

)1/2
.
(∫

B

[f(x)

ρ(x)

]2
w(x)2/p dx

)1/2

For the second term on the right in equation (5.10) use the same expansion of fB as

used in bounding the first term. Also use that by the choice of N , ρ(x) . 2Nr holds for

all x ∈ B.

f2
B .

1

|B|2
(∫

B
w(x)−2/p dx

)(∫
B

[f(x)

ρ(x)

]2
w(x)2/p dx

)
4Nr2

Recall the equation (5.3) definition of Ap, and let t ∈ (1, s) be given by t = 1 + 2s
ps′ .

Using w ∈ A∞, which was a condition in Theorem 4.2, implies w ∈ As for some s

large. This further implies w−s
′/s ∈ As′ , which implies w−s

′/s ∈ At′ , which implies

ws
′t/st′ = w2/p ∈ At. This implies a local doubling condition on w2/p. Use this local
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doubling along with weighted local L2 Gaffney estimates.

∞∑
j=N

(∫
B
|∇e−kr2L1Cj |2w(x)2/p dx

)1/2
.
∞∑
j=N

e−c4
j

r

(∫
Cj

w(x)2/p dx
)1/2

.
∞∑
j=N

2nj/2e−c4
j

r

(∫
B
w(x)2/p dx

)1/2

Combine with the fB expansion and use that when considering balls B away from the

boundary (c0r(B) < ρ(B)), then w2/p satisfies an A2 condition (5.3). This follows from

the condition that a local Poincaré inequality (5.4) holds, which requires w2/p to satisfy

an A2 condition on such balls [41]. Note that w2/p is certainly not required to satisfy

an A2 condition (5.3) with balls that do not satisfy c0r(B) < ρ(B).

fB

∞∑
j=N

(∫
B
|∇e−kr2L1Cj |2w2/p dx

)1/2
.
∞∑
j=N

2N2nj/2e−c4
j
(∫

B

[f(x)

ρ(x)

]2
w(x)2/p dx

)1/2

The sum is a constant that depends on n but does not depend on N . Add the bounds

found for the two parts on the right of equation (5.10) to get,

(∫
B
|∇e−kr2L[12NBfB]|2w(x)2/p dx

)1/2
.
(∫

B

[f(x)

ρ(x)

]2
w(x)2/p dx

)1/2

which concludes the proof.

Lemma 5.5. Suppose again that the various conditions of Theorem 5.1 hold. Let B be

a ball far enough from the boundary so that N ≥ 1 (where N is from Definition 4.5).

Suppose there exists a constant c > 1 such that cB does not touch the boundary δΩ

and cB contains a point x0 where M(|∇f |2w2/p)(x0) ≤ λ2. Then the following bound

holds,

1

|B|

∫
B

∣∣∣∇e−kr2L[12NB

(
f(x)− fB

)
]
∣∣∣qw(x)q/p dx ≤ λq

for all f smooth enough and some q > p. Here M is the uncentred Hardy-Littlewood

maximal function, 12NB is the characteristic function of 2NB, and r is the radius of B.

Proof. Let C0 = 2B, and Cs = 2s+1B \ 2sB for s ≥ 1. Split up the heat semigroup

as e−kr
2L12NB =

∑∞
s=0

∑N−1
m=0 e

−kr2L/21Cse
−kr2L/21Cm . Then use the local weighted
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Gaffney estimate given by equation (5.8) on the first part of the split.

(∫
B

∣∣∣∇e−kr2L[12NB

(
f − fB

)
]
∣∣∣qwq/p dx

)1/q

.
∞∑
s=0

N−1∑
m=0

e−c4
s

r

(∫
Cs

∣∣∣e−kr2L/2
[
1Cm(f − fB)

]∣∣∣qwq/p dx
)1/q

(5.11)

Use Hölder’s inequality and the upper bounds for the heat kernel from condition (5.1)

to get the following for x ∈ Cs.

∣∣e−kr2L/2
[
1Cm(f − fB)

]
(x)
∣∣q

.
α kr2

2

(x)qe−c4
|s−m|

rqn

(∫
Cm

(
f(y)− fB

)2
w(y)

2
p dy

) q
2
(∫

Cm

β kr2
2

(y)2w(y)
− 2
p dy

) q
2

Integrate this over all x ∈ Cs, and separate the parts.

∫
Cs

∣∣∣e−kr2L/2
[
1Cm(f − fB)

]∣∣∣qw(x)q/p dx

.
e−c4

|s−m|

rnq

(∫
Cm

(
f − fB

)2
w

2
p dy

) q
2
(∫

Cs

αq
kr2

2

w
q
p dx

)(∫
Cm

β2
kr2

2

w
− 2
p dy

) q
2

The integrals over αqwq/p and βw−2/p will vanish due to the condition from Theorem 5.1

that states wq/p ∈ Aα,βR with R = 1 + q
2 and Aα,βR formed according to equation (5.2).

This is managed as follows. First define l by the equation 2l = 2 max(2s, 2m). Then use

local doubling and the condition that αt(x) ≤ 2α2t(x) and βt(x) ≤ 2β2t(x) for all t > 0

and x ∈ Ω. Further α . 1 and β . 1 implies αq . αR and β2 . βR
′

as R = 1+ q
2 implies

2 < R < q. Finish this bound with the aforementioned condition that wq/p ∈ Aα,βR .

1

rnq

(∫
Cs

α kr2

2

(x)qw(x)
q
p dx

)(∫
Cm

β kr2
2

(y)2w(y)
− 2
p dy

) q
2

.
2l(n+2)(q+2)/2

rn(q−2)/2

(
−
∫

2l
√
kB
αR4lkr2w(x)

q
p dx

)(
−
∫

2l
√
kB
βR
′

4lkr2w(x)
− 2
p dy

) q
2

.
2l(n+2)(q+2)/2

rn(q−2)/2
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Put this information back into equation (5.11) after removing dependence on l.

(∫
B

∣∣∣∇e−kr2L[12NB

(
f(x)− fB

)
]
∣∣∣qw(x)q/p dx

)1/q

.
∞∑
s=0

N−1∑
m=0

2(n+2)(s+m)e−c4
s
e−c4

|s−m|

r(2q+nq−2n)/2q

[ ∫
Cm

(
f(x)− fB

)2
w(x)2/p dx

]1/2
(5.12)

Next the weighted version of the local Poincaré’s inequality (5.4) is used. First split up

the difference term.

|f(x)− fB| = |f(x)− f2m+1B +

m∑
l=0

(f2l+1B − f2lB)|

. |f(x)− f2m+1B|+
m∑
l=0

1

|2lB|

∫
2lB
|f(y)− f2l+1B|dy

Take L2 norms on the space Cm on both sides of the inequality above. Then apply

Minkowski’s inequality.

[ ∫
Cm

∣∣f(x)− fB
∣∣2w(x)2/p dx

]1/2

≤
[∫

2m+1B
|f(x)− f2m+1B|2w(x)2/p dx

]1/2

+ 2n
m∑
l=0

|2m+1B|1/2

|2l+1B|1/2

[∫
2l+1B

|f(x)− f2l+1B|2w(x)2/p dx

]1/2

Then apply the weighted version of Poincaré’s inequality (5.4) to all parts. Observe that

due to the choice of N , and as l < m+ 1 ≤ N , the weighted Poincaré inequality is only

applied to balls away from the boundary r(2l+1B) . ρ(2l+1B).

[∫
Cm

∣∣f(x)− fB
∣∣2w(x)2/p dx

] 1
2

≤ 2n
m+1∑
l=0

2lr|2m+1B|
1
2

|2l+1B|
1
2

[∫
2l+1B

|∇f |2w(x)2/p dx

] 1
2

Insert this back into equation (5.12).

(∫
B

∣∣∣∇e−kr2L[12NB

(
f(x)− fB

)
]
∣∣∣qw(x)q/p dx

)1/q

.
∞∑
s=0

N−1∑
m=0

2(n+2)(s+m)e−c4
s
e−c4

|s−m|

r(nq−2n+2q)/2q

m+1∑
l=0

2lr|2m+1B|
q
2

|2l+1B|
1
2

[∫
2l+1B

|∇f |2w(x)2/p dx

] 1
2

Recall that cB contains a point x0 where M(|∇f |2w2/p)(x0) < λ2 (supposed in the
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lemma). Further, for the balls of size 2B and larger up to cB, their size can be increased

to cB for the same effect (with appropriate changes of the weightings compensated for

by local doubling condition (4.1), balls up to size cB do not touch the boundary of Ω).

(∫
B

∣∣∣∇e−kr2L[12NB

(
f(x)− fB

)
]
∣∣∣qw(x)q/p dx

)1/q

.
∞∑
s=0

N−1∑
m=0

2(n+2)(s+m)e−c4
s
e−c4

|s−m|

r(nq−2n)/2q

m+1∑
l=0

2l|2m+1B|
1
2
(
M(|∇f |2w2/p)(x0)

) 1
2

As discussed above, here M(|∇f |2w2/p)(x0) < λ2. Use also that l < m + 1 and local

doubling on |2m+1B| to simplify.

(∫
B

∣∣∣∇e−kr2L[12NB

(
f(x)− fB

)
]
∣∣∣qw(x)q/p dx

)1/q

. λrn/q
∞∑
s=0

N−1∑
m=0

2(n+2)(s+m)e−c4
s
e−c4

|s−m|
2(m+1)(1+n

2
)

These summations converge to a constant (depending only on n) leaving λ|B|1/q on the

right side of the equation. This concludes the proof.

Lemma 5.6. Suppose that ∇L−1/2 is an appropriately defined operator on a doubling

space Ω satisfying the various conditions of Theorem 5.1 (in particular the L2 Riesz

transform bound (5.6) and L2 Davies-Gaffney estimates (5.7) are needed here). Then

the following bound holds,

1

|B|

∫
B
|∇L−1/2(I − e−r2L)nf(y)|2w(y)2/p dy .M(|f |2w2/p)(x)

for all x ∈ B away from the boundary of Ω (c0r(B) < ρ(B)). Here M is again the

uncentred Hardy-Littlewood maximal function, and r the radius of B.

Proof. Once again let C0 = 2B and Cj = 2j+1B \ 2jB.

(
−
∫
B
|∇L−1/2(I − e−r2L)nf(y)|2w(y)2/p dy

)1/2

.
∞∑
j=0

(
−
∫
B
|∇L−1/2(I − e−r2L)n[1Cjf ](y)|2w(y)2/p dy

)1/2
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When j = 0 use that ∇L−1/2 is locally L2(w2/p) bounded (5.6).

(
−
∫
B
|∇L−1/2(I − e−r2L)n[12Bf ](y)|2w(y)2/p dy

)1/2

.
∞∑
m=0

(∫
Cm

[
(I − e−r2L)n[12Bf ](y)

]2
w(y)2/p dy

)1/2
(5.13)

Regarding the term (I−e−r2L)n use the heat kernel upper bound (5.1), Hölder’s inequal-

ity and local doubling. Also use the conditions that αt(x) ≤ 2α2t(x), βt(x) ≤ 2β2t(x)

and w2/p ∈ Aα,β2 . Then the following holds for any k ∈ [1, n] and x ∈ B.

(∫
Cm

∣∣e−kr2L[12Bf ](y)
∣∣2w(y)2/p dy

)1/2

. 2mn/2e−c4
m

(
−
∫
Cm

α2
kr2w

2/p dy

) 1
2
(
−
∫

2B
β2
kr2w

−2/p dy

) 1
2
(∫

2B
f2w2/p dy

) 1
2

. 2m(n+4)e−c4
m

(
−
∫

2m
√
kB
α2

4mkr2w
2/p dy

) 1
2
(
−
∫

2m
√
kB
β2

4mkr2w
−2/p dy

) 1
2

M
(
|f |2w2/p

) 1
2

. 2m(n+4)e−c4
m[
M(|f |2w2/p)(x)

] 1
2

Hence (1− er2L)n is L2(w2/p) bounded. Put this into equation (5.13), sum over m and

use local doubling.

(
−
∫
B
|∇L−1/2(I − e−r2L)n[12Bf ](y)|2w(y)2/p dy

)1/2

.

(
−
∫

2B
f(y)2w(y)2/p dy

)1/2

Thus the lemma is true when j = 0. For j ≥ 1 expand the term (1− e−r2L)n.

|∇L−1/2(I − e−r2L)n[1Cjf ](y)| = |∇L−1/2
n∑
k=0

(−1)k
(
n

k

)
e−kr

2L[1Cjf ](y)|

Expand to the integral representation of L−1/2 and use a change of variables.

|∇L−1/2(I − e−r2L)n[1Cjf ](y)| .
∫ ∞

0

n∑
k=0

(−1)k
(
n

k

)
|∇e−(t+kr2)L[1Cjf ](y)| dt√

t

.
∫ ∞

0

[ n∑
k=0

(
n

k

)
(−1)k1{s>kr2}(s)√

s− kr2

]
|∇e−sL[1Cjf ](y)| ds

Square and integrate over B, then use Minkowski’s integral theorem and the weighted
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local L2 Gaffney estimates (5.8).

∫
B
|∇L−1/2(I − e−r2L)n[1Cjf ](y)|2w(y)2/p dy

.
∣∣∣ ∫ ∞

0

[ n∑
k=0

(
n

k

)
(−1)k1{s>kr2}(s)√

s− kr2

]e−4jr2/s

√
s

ds
∣∣∣2 ∫

Cj

|f(y)|2w(y)2/p dy (5.14)

The integral with respect to s is evaluated in several parts. This same integral is eval-

uated in detail in Lemma 3.6 so see that proof for the details. Place the integral value

back into equation (5.14).

∫
B
|∇L−1/2(I − e−r2L)n[1Cjf ](y)|2w(y)2/p dy .

1

42jn

∫
Cj

|f(y)|2w(y)2/p dy

Use the local doubling principle and sum over j for the result.

Now conditions are ready for the proof of the main theorem of this chapter.

Proof of Theorem 5.1. The proof splits the Riesz transform into parts, then finds a

bound for each part. The proof is very similar to the proof of the main theorem in

chapter 4. Given the integral representation of the Lp norm;

‖|∇L−1/2f |‖Lp(Ω,w) = p

∫ ∞
0

λp−1|{x ∈ Ω : |∇L−1/2f(x)|w(x)1/p > λ}|dλ, (5.15)

split up the set E = {x ∈ Ω : M(|∇L−1/2f |2w2/p)(x) > λ2} by a Whitney type covering

lemma. This is arranged so that:

1. There exists a constant c1 < 1 such that the collection of balls {c1Bi}i∈I for the

covering of E is pairwise disjoint;

2. The collection {Bi}i∈I of balls in the Whitney covering of E satisfy ∪i∈IBi = E;

and,

3. There exists a constant c2 > 1 such that for every ball Bi in the covering of E

min
(
d(Bi, δE), ρ(Bi)

)
∼ c2r(Bi).

The constant c1 in the covering lemma depends only on the dimension n. The c2 is

chosen in part to match with the localised conditions and Definition 4.5. This is the
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second type of decomposition discussed in section 2.3. Importantly none of the balls in

the covering touch the boundary of Ω. Equation (5.15) is replaced by the following.

‖|∇L−1/2f |‖Lp(Ω,w) ≤ p
∫ ∞

0
λp−1

∑
i∈I
|{x ∈ Bi : |∇L−1/2f(x)|w(x)1/p > λ}|dλ

Scale λ by some K > 3 to be chosen later.

‖|∇L−1/2f |‖Lp(Ω,w) ≤ pKp

∫ ∞
0

λp−1
∑
i∈I
|{x ∈ Bi : |∇L−1/2f(x)|w(x)1/p > Kλ}|dλ

Define the operator Ar as,

Ar = I − (I − e−r2L)n =
n∑
k=1

(−1)k+1

(
n

k

)
e−kr

2L (5.16)

where r is the radius of Bi. Split ∇L−1/2 = ∇L−1/2Ar +∇L−1/2(1−Ar).

‖|∇L−1/2f |‖Lp(Ω,w)

≤ pKp

∫ ∞
0

λp−1
∑
i∈I

[
|{x ∈ Bi : |∇L−1/2Arf(x)|w(x)1/p > (K − 1)λ}|

+ |{x ∈ Bi : |∇L−1/2(I −Ar)f(x)|w(x)1/p > λ}|
]

dλ

Split the covering {Bi}i∈I into two sets as in the proof of chapter 4. This is aligned with

Definition 4.5 where an exponent N is outlined for each Bi such that ρ(2NBi) ∼ r(2NBi).

The first set I1 in the split consists of those balls Bi that satisfy ρ(Bi) ∼ c2r(Bi) so that

N = 0. These balls are closer to δΩ then to δE. The second set I2 are the remaining balls

Bi (with N ≥ 1), which due to the nature of the covering satisfy c2r(Bi) ∼ d(Bi, δE),

meaning they are closer to δE then to δΩ. If E does not touch δΩ then the set I1 is

empty, but that has no impact on the proof. In parts of the proof I1 and I2 will be dealt

with separately. Let C0 = 2Bi and Cj = 2j+1Bi \ 2jBi for j ≥ 1. Then split up the sets
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further,

‖|∇L−1/2f |‖Lp(Ω,w)

≤ pKp

∫ ∞
0

λp−1
[∑
i∈I
|{x ∈ Bi :

∞∑
j=N

|∇Ar1CjL−1/2f(x)|w(x)1/p > λ}|

+
∑
i∈I2

|{x ∈ Bi : |∇Ar12NBiL
−1/2f(x)|w(x)1/p > (K − 2)λ}|

+
∑
i∈I
|{x ∈ Bi : |∇L−1/2(I −Ar)f(x)|w(x)1/p > λ}|

]
dλ

where the second set above contains only terms in I2 (these are the balls closer to δE,

they have N ≥ 1). One more split needs to take place in the second set above.

‖|∇L−1/2f |‖Lp(Ω,w)

≤ pKp

∫ ∞
0

λp−1
[∑
i∈I
|{x ∈ Bi :

∞∑
j=N

|∇Ar1CjL−1/2f(x)|w(x)1/p > λ}|

+
∑
i∈I2

|{x ∈ Bi : |∇Ar12NBi [L
−1/2f ]Bi |w(x)1/p > λ}|

+
∑
i∈I2

|{x ∈ Bi : |∇Ar12NBi(L
−1/2f(x)− [L−1/2f ]Bi)|w(x)1/p > (K − 3)λ}|

+
∑
i∈I
|{x ∈ Bi : |∇L−1/2(I −Ar)f(x)|w(x)1/p > λ}|

]
dλ (5.17)

Each of these sets will be bound separately. Consider first the set,

S1 = {x ∈ Bi :
∞∑
j=N

|∇Ar1CjL−1/2f(x)|w(x)1/p > λ}

and whether the equation given by,

∞∑
j=N

−
∫
Bi

|∇Ar1CjL−1/2f(x)|2w(x)2/p dx > δ2λ2 (5.18)

is true or false. If it is false apply a weak (2, 2) inequality to S1 to get,

|S1| .
1

λ2

∞∑
j=N

∫
Bi

|∇Ar1CjL−1/2f(x)|2w(x)2/p dx . δ2|Bi|

however if equation (5.18) is true then use the definition of Ar and weighted Gaffney
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estimates (5.7).

|S1| ≤ |{x ∈ Bi :
∞∑
j=N

−
∫
Bi

|∇Ar1CjL−1/2f(x)|2w(x)2/p dx > δ2λ2}|

≤ |{x ∈ Bi : cn

∞∑
j=N

e−4j

r2

1

|Bi|

∫
Cj

|L−1/2f(x)|2w(x)2/p dx > δ2λ2}|

The ball B was chosen to satisfy a local doubling condition and N was chosen so that

r(2NB) ∼ ρ(2NB) which implies 2−jρ(x) . r for all x ∈ 2j+1B, as j ≥ N . Use this

before evaluating the sum.

|S1| ≤ |{x ∈ Bi : cn

∞∑
j=N

2j(n+2)e−4j 1

|2j+1Bi|

∫
2j+1Bi

|L−1/2f(x)|2

ρ(x)2
w(x)2/p dx > δ2λ2}|

≤ |{x ∈ Bi : cnM
( |L−1/2f |2

ρ2
w2/p

)
(x) > δ2λ2}|

This leads to a bound for the first set S1 in (5.17) which holds regardless of whether

equation (5.18) is true or false.

|S1| . |{x ∈ Bi : cnM
( |L−1/2f |2

ρ2
w2/p

)
(x) > δ2λ2}|+ δ2|Bi| (5.19)

Next treat the second set from equation (5.17). This set is given by the following

equation.

S2 = {x ∈ Bi : |∇Ar12NBi [L
−1/2f ]Bi |w(x)1/p > λ}

Consider whether the equation given by,

−
∫
Bi

|∇Ar12NBi [L
−1/2f ]Bi |2w(x)2/p dx > δ2λ2 (5.20)

is true or false. If false use a weak type (2, 2) inequality to get,

|S2| .
1

λ2

∫
Bi

|∇Ar12NBi [L
−1/2f ]Bi |2w(x)2/p dx . δ2|Bi|
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however if equation 5.20 is true use Lemma 5.4 to get the following.

|S2| ≤ |{x ∈ Bi : −
∫
Bi

|∇Ar12NBi [L
−1/2f ]Bi |2w(x)2/p dx > δ2λ2}|

≤ |{x ∈ Bi : cn−
∫
Bi

|L−1/2f(x)|2

ρ(x)2
w(x)2/p dx > δ2λ2}|

So in total in this case, whether or not (5.20) is true or false, the following bounds the

second set S2 of equation (5.17).

|S2| . |{x ∈ Bi : cnM
( |L−1/2f |2

ρ2
w2/p

)
(x) > δ2λ2}|+ δ2|Bi| (5.21)

The third set from equation (5.17) is next. This set is given by,

S3 = {x ∈ Bi : |∇Ar12NBi(L
−1/2f(x)− [L−1/2f ]Bi)|w(x)1/p > (K − 3)λ}

and is valid for each Bi with i ∈ I2. These are the balls away from the boundary of Ω

where cB∩Ec 6= ∅ for some constant c. Use a weak type (q, q) inequality and Lemma 5.5.

|S3| .
1

(K − 3)qλq

∫
B
|∇Ar12NBi(L

−1/2f(x)− [L−1/2f ]Bi)|qw(x)q/p dx .
|Bi|

(K − 3)q

(5.22)

It remains to find a bound for the fourth part of equation (5.17).

S4 = |{x ∈ Bi : |∇L−1/2(I −Ar)f(x)|w(x)1/p > λ}|

Consider then whether the inequality given by,

−
∫
Bi

|∇L−1/2(I −Ar)f(x)|2w(x)2/p dx > δ2λ2 (5.23)

is true or false. If equation (5.23) is false, then use a weak (2, 2) inequality.

|S4| .
1

λ2

∫
Bi

|∇L−1/2(I −Ar)f(x)|2 dx . δ2|Bi|
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If however equation (5.23) is true then use Lemma 5.6.

|S4| ≤ |{x ∈ Bi : −
∫
Bi

|∇L−1/2(I −Ar)f(x)|2w(x)2/p dx > δ2λ2}|

≤ |{x ∈ Bi : cnM(|f |2w2/p)(x) > δ2λ2}|

Thus in total, the following bound holds regardless of whether equation (5.23) is true or

false.

|S4| . |{x ∈ Bi : cnM(|f |2w2/p)(x) > δ2λ2}|+ δ2|Bi| (5.24)

Combine all cases together from above and put back into equation (5.17).

‖|∇L−1/2f |‖Lp(w) . pKp

∫ ∞
0

λp−1
[∑
i∈I

3δ2|Bi|+
1

(K − 3)q
|Bi|

+
∑
i∈I
|{x ∈ Bi : cnM

( |L−1/2f |2

ρ2
w2/p

)
(x) > δ2λ2}|

+
∑
i∈I
|{x ∈ Bi : cnM(|f |2w2/p)(x) > δ2λ2}|

]
dλ

Use that Bi cover the set E, with finite intersection by finite intersection lemma.

‖|∇L−1/2f |‖Lp(w)

. pKp

∫ ∞
0

λp−1

[(
3δ2 +

1

(K − 3)q

)
|{x ∈ Ω : M(|∇L−1/2f |2w2/p) > λ2}|

+ |{x ∈ Ω : cnM
( |L−1/2f |2

ρ2
w2/p

)
(x) > δ2λ2}|

+ |{x ∈ Ω : cnM(|f |2w2/p)(x) > δ2λ2}|
]

dλ

Change out of the integral representations, and use that the maximal function is bounded

Lp → Lp for all p > 2 without weight.

‖|∇L−1/2f |‖pLp(w) .
(

3Kpδ2 +
Kp

(K − 3)q

)
‖|∇L−1/2f |‖pLp(w)

+
Kp

δp
‖f‖pLp(w) +

Kp

δp
∥∥L−1/2f

ρ

∥∥p
Lp(w)

Chose δ small and K large for the result.
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This concludes the proof of Theorem 5.1, and as a consequence concludes the proof of

Theorem 1.3 associated from the introduction chapter. This also concludes the general

proofs of Riesz transform boundedness in this thesis. The next chapter provides tools

to find weight classes needed for the conditions of this chapter. Later chapters apply

Theorem 5.1 to cases involving the Dirichlet Laplacian.
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Chapter 6:

Weighted Maximal Functions on Domains

In this chapter Theorem 1.4 is proven. Theorem 1.4 gives weights for the Lp(w)→ Lp(w)

boundedness of maximal type functions. Theorem 1.4 is restated as Theorem 6.5 below.

The ideas of this chapter are based around variations on the traditional Hardy-Littlewood

maximal function,

Mf(x) = sup
B3x
−
∫
B
|f(y)|dy

which is known to be bounded Lp(µ)→ Lp(µ) if and only if dµ = w(x) dx where w is in

the Muckenhoupt Ap class (see Muckenhoupt [52] for the original idea or Stein [67] for

an overview). The same result holds for the traditional Riesz transform. The motivation

is from chapter 5 where weighted bounds for Riesz transform variations were developed

through weight bounds for other operators.

For simplicity in this chapter it is presumed Ω ⊂ Rn. There is also a doubling

condition in this chapter, operators on non-doubling spaces need to be extended onto

doubling spaces for this chapter to be applied. The variations on the Maximal function

and subsequent operators are controlled by the following.

Conditions 6.1. Consider αr2(x) and βr2(x) defined continuous and positive for all

x ∈ Ω and r > 0. There are four conditions. Firstly: for every p > 1 an exponent

γ ∈ (1, p) is required such that the following holds for all balls B ⊂ Ω, with A = (p−γ)/γ.

(
−
∫
B
αr2(x)−Aγ dx

)1/γ (
−
∫
B
βr2(x)−Aγ

′
dx

)1/γ′

. 1 (6.1a)

Usually but not necessarily γ is chosen close to p so that Aγ and Aγ′ are small. The

exponents γ and γ′ are conjugates, and r is the radius of B.

83
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The second condition is also required to hold for all balls B ⊂ Ω, with r again the

radius of B. (
−
∫
B
αr2(x) dx

)(
−
∫
B
βr2(x) dx

)
. 1 (6.1b)

The third condition follows: it is required for there to exist a constant m > 0 such

that for every ball B ⊂ Ω, and every R > r (r is the radius of B), for there to exists

values cB,R and CB,R constant with respect to x ∈ B where the following holds for all

x ∈ B.

αr2(x) ∼ (cB,R)αR2(x) and βr2(x) ∼ (CB,R)βR2(x) (6.1c)

Further the bounds
(
r
R

)m
< cB,R <

(
R
r

)m
and 0 < CB,R <

(
R
r

)m
must hold.

The final condition is: the set I of all balls B ⊂ Ω can be broken up into a finite

number of disjoint sets Ii where for each Ii there exists functions ai(x) and zi(r) where,

αr2(x) ∼ ai(x)zi(r) (6.1d)

holds for all x ∈ 5B and B ∈ Ii. This final condition only applies to α. As usual, r is

the radius of B.

The notation f(x) ∼ g(x) for two functions f and g means that there exists strictly

positive constants c1 and c2 such that f(x) ≤ c1g(x) and g(x) ≤ c2f(x) for all x. This

notation is used repeatedly in this chapter. With functions αr2(x) and βr2(x) satisfying

the conditions above consider the following weight class.

Definition 6.2. The class of Aα,βp adjusted Muckenhoupt weights is given by the set of

weights w such that,

Aα,βp (w)
def
= sup

B⊂Ω

(
−
∫
B
αr2(x)pw(x) dx

)(
−
∫
B
βr2(x)p

′
w(x)−p

′/p dx

)p/p′
<∞

where the value Aα,βp (w) is known as the Aα,βp constant of w and r is the radius of B.

Essentially the traditional Muckenhoupt weight class has been skewed by α and β.

Properties of the weight class Aα,βp are considered in section 6.1. If α and β are bounded

above and below by positive constants, then Aα,βp is equivalent to Ap. Further if 1 . α, β,

then the inclusion Aα,βp ⊂ Ap applies. The opposite inclusion occurs if α, β . 1. If instead
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there is a relation α ∼ β−1, then Aα,βp is a direct scaling of the traditional Ap class.

Example 6.3. In the application section of this thesis one such α, β pair considered is

given by αr2(x) = βr2(x) =
(

1 ∧ ρ(x)
r

)
where ρ(x) is the minimal distance from x to the

boundary of Ω and ∧ refers to the minimum of the terms on either side. It is shown in

chapter 8 that this α, β pair satisfy all of Conditions 6.1.

The following are the three main theorems of this chapter.

THEOREM 6.4. Suppose αr2(x) and βr2(x) satisfy all of Conditions 6.1 on the dou-

bling space Ω. Then the maximal function,

Mα,βf(x) = sup
B3x

αr2(x)

|B|

∫
B
βr2(y)|f(y)| dy (6.2)

is well defined and bounded Lp(w)→ Lp(w) if and only if w ∈ Aα,βp .

THEOREM 6.5. Suppose αr2(x) and βr2(x) satisfy all of Conditions 6.1 on the dou-

bling space Ω. Consider integral operators Tt with kernels satisfying the following upper

and lower bounds.

pt(x, y) ∼ αt(x)βt(y)e−d(x,y)2/ct

tn/2
(6.3)

Then supt Tt is bounded Lp(w)→ Lp(w) if and only if w ∈ Aα,βp .

THEOREM 6.6. Suppose T is a sub-linear operator and that αr2(x) and βr2(x) satisfy

all of Conditions 6.1 on the doubling space Ω. Further suppose T satisfies the following

inequalities for all balls B ⊂ Ω, x ∈ B, z ∈ B and y ∈ 3B.

|{x ∈ B : T [f13B](x) > λ}| . |B|
λ
Mα,βf(z) and T [f1(3B)c ](x) . Tf(y) +Mα,βf(z)

(6.4)

Lastly suppose that for some w ∈ Aα,βp ∩ A∞, T satisfies ‖Tf‖Lp(w) < ∞ whenever

‖Mα,βf‖Lp(w) <∞. Then T is bounded Lp(w)→ Lp(w).

Theorem 6.4 is proven in section 6.2 and Theorems 6.5 and 6.6 are proven in sec-

tion 6.3. Section 6.1 is where the properties of the Aα,βp class are discussed. Theorem 6.5

is used in the application part of this thesis to find weight classes for heat semigroups

and similar operators. Theorem 6.6 is included for the purpose of completeness. The
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weights w(x) considered form continuous measures w(x) dx. Singular measures can be

possible but are not considered in general.

Remarks 6.7. Firstly, the conditions on α and β ensure the maximal operator Mα,β

is well defined for all f ∈ C0. The simplest way to observe this is to first consider

the variation M1,αβ. For this variation condition (6.1b) becomes −
∫
αr2(y)βr2(y) dy . 1.

Hence for any f ∈ C0,

M1,αβf(x) = sup
B3x
−
∫
B
αr2(y)βr2(y)|f(y)|dy . ‖f‖∞

so that M1,αβ is well defined for such f . In the proof of Theorem 6.4, the maximal func-

tions M1,αβ and Mα,β are transitioned between via a continuous and positive function

ai(x). Hence Mα,β is also well defined for f ∈ C0 by comparison.

The operator Tt from Theorem 6.5 is well defined by the comparison to Mα,β that

occurs in the proof of Theorem 6.5. The operator in Theorem 6.6 is supposed well

defined again by comparison to the Maximal function. Details are in section 6.2.

On non-doubling spaces or on spaces with difficult boundary, the contents of this

chapter should be viewed by considering appropriate extensions to Rn. The proofs from

this chapter that ‖Tf‖Lp(Rn,w) . ‖f‖Lp(Rn,w) then imply for f supported in Ω ⊂ Rn that

‖Tf‖Lp(Ω,w) . ‖f‖Lp(Ω,w) for the same class of weights. The only reason this chapter

does not extend to Rn for all weights concerned, is because that approach is not necessary

for the specific applications considered in chapters 8 - 10.

Variations on Muckenhoupt weights have been tried before. One example is [13]

where weights for Schrödinger operator based semigroups and Riesz transforms were

considered as part of the following class. Here x is the centre and r the radius of B,

(∫
B
w dx

)1/p(∫
B
w−p

′/p dx

)1/p′

. |B|
(

1 +
r

γ(x)

)θ

and γ(x) is the critial radius of the Scrödinger operator. It was shown that such a class

was sufficient for boundedness. The author would also like to acknowledge unpublished

work by Xuan Duong, Lesley Ward and Ji Li on weight classes for Riesz transforms.
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6.1 Properties of the New Weight Class

In this section important properties are proven for the Aα,βp weight class. The main

arguments follow from the development of the traditional Ap Muckenhoupt class in [67].

The difficulty lies in appropriate use of doubling and reverse Hölder inequalities. The

following is the main proposition proven.

Proposition 6.8. Suppose that αr2(x) and βr2(x) are positive functions satisfying con-

ditions (6.1a), (6.1b) and (6.1c). Then w ∈ Aα,βp implies that there exists q1 < p and

q2 > p such that w ∈ Aα,βq1 and w ∈ Aα,βq2 . Further w is in Aα,βs for all s ∈ (q1, q2).

The value of the q1 < p and q2 > p on which the proposition holds depend on

the weight w. In the next section, Proposition 6.8 will be used to prove Theorem 6.4.

Proposition 6.8 is proven by a series of lemmas, the key to which is the use of reverse

Hölder inequalities. Any weight in A∞ satisfies a reverse Hölder inequality,

(
−
∫
B
w(x)s dx

)1/s

. −
∫
B
w(x) dx

for all balls B and some s > 1 depending on w. Many comparisons to the standard Ap

classes are made throughout these proofs. Before proceeding with the lemmas, an ap-

parent abuse of notation needs to be dealt with.

To say a function αr2(x)pw(x) is in the space Aq is to say that,

Aq(α
p
r2w) = sup

B

(
−
∫
B
αr2(x)pw(x) dx

)(
−
∫
B
αr2(x)−pq

′/qw(x)−q
′/q dx

)q/q′
<∞ (6.5)

holds for all B ⊂ Ω, where r is the radius of B. The problem is αr2(x)pw(x) cannot

truly be a weight as weights do not depend on the radius r of B. However, αr2(x)pw(x)

still satisfies a number of the properties of Aq weights. There are two mentioned below.

Proposition 6.9. Suppose αr2(x)pw(x) ∈ Aq for some α satisfying condition (6.1c).

Then αr2(x)pw(x) satisfies a doubling statement and a reverse Hölder inequality. The

same occurs for βr2(x)p
′
w(x)−p

′/p ∈ Aq with some β satisfying condition (6.1c).

Proof. Fix a cube Q centred in Ω. By the doubling principle, the definition of Aα,βp can

be changed to involve cubes rather then balls. Cubes are needed for the second half of
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the proof, the first half would still work using balls. Set r as the radius of the smallest

ball containing Q. Use Hölder’s inequality on an averaging fQ.

f qQ ≤ c
(
−
∫
Q
|f(x)|qαr2(x)pw(x) dx

)(
−
∫
Q
αr2(x)−pq

′/qw(x)−q
′/q dx

)q/q′

Multiply both sides by −
∫
Q α

p
r2w dx and use that αr2(x)pw(x) ∈ Aq as in equation (6.5).

Set f(x) = 1E for some E ⊂ Q to get the following statement.

|E|q
∫
Q
αr2(x)pw(x) dx ≤ cAq(αpr2w)|Q|q

∫
E
αr2(x)pw(x) dx

With B fixed and r fixed, the above equation is true for all E ⊂ Q and can be rephrased,

|E|q

|Q|q
≤ cAq(αpr2w)

(αp
r2w)(E)

(αp
r2w)(Q)

using notation αp
r2w(E) =

∫
E αr2(x)pw(x) dx. Interpret this as: for any 0 < ε < 1 then

ε|Q| ≤ |E| =⇒ εq(αp
r2w)(Q) ≤ cAq(α

p
r2w) (αp

r2w)(E). Use equation (6.1c) to get for

some constants c and C: ε|Q| ≤ |E| =⇒ εq(αp
R2w)(Q) ≤ cC2Aq(α

p
r2w) (αp

R2w)(E),

where R ≥ r is chosen later. This holds for any subset E of Q, so applying it to Q \ E

and using that |E|+ |Q\E| = |Q| and w(E)+w(Q\E) = w(Q) allows for any 0 < ε < 1

the following doubling type statement to hold.

|E| ≤ (1− ε)|Q| =⇒ (αp
R2w)(E) ≤

(
1− εq

cC2Aq(α
p
r2w)

)
(αp

R2w)(Q)

So for any γ ∈ (0, 1) and R ≥ r(B), there exists δ ∈ (0, 1) such that,

|E| ≤ γ|Q| =⇒ (αp
R2w)(E) ≤ δ (αp

R2w)(Q) (6.6)

where δ does not depend on R or r. Equation (6.6) is a doubling statement for

αr2(x)pw(x). This doubling statement is now used to prove a reverse Hölder inequality

for αp
r2w on any ball B ⊂ Ω, following the techniques of Stein [67] chapter 5.

Let B ⊂ Ω be a ball of radius r. Cover B by disjoint cubes in a Whitney covering

(the second type discussed in section 2.3, where cubes Q do not touch δΩ, ρ(Q) > 0). Set

W (x) = (c1α
p
r2w)(x) with c1 chosen so that W (B) = 1. Dyadic cubes have side length 2k
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for some integer k and have the Cartesian coordinates of each vertex in a position m2k

for the same integer k and some integer m. Let MD be the dyadic maximal function,

MDf(x) = sup
Q
−
∫
Q
|f(x)|dx

where the supremum is only over dyadic cubes in Ω. Pick any cube Q from the covering

of B. Scale Ω so that |Q| = 1 and arrange coordinates so that Q is dyadic. Let

Ek = {x ∈ Q : MDf(x) > 2Nk} for k ≥ 0 (N is chosen so that 2n−N = γ where 0 < γ < 1

is a constant). By [67] chapter 4 section 3.1, each set Ek can be covered by disjoint

dyadic cubes that satisfy the inequality given by 2Nk < 1
|Qi|

∫
Qi
|f(x)| dx ≤ 2n+Nk (it is

important here that ρ(Q) > 0, |Q| = 1, and W (B) = 1). Let Q0 be a cube in such a

covering of Ek−1, and Qj ⊂ Q0 be cubes in such a covering of Ek. Then,

|Q0 ∩ Ek| ≤
∑
j

|Qj | ≤ 2−Nk
∑
j

∫
Qj

|f(x)|dx ≤ 2−Nk
∫
Q0

|f(x)|dx ≤ 2n−N |Q0| = γ|Q0|

holds for all k. This implies by equation (6.6) that W (Q0 ∩ Ek) ≤ δW (Q0) for some

0 < δ < 1. It is important that r in the definition of W is larger then the radius of the

cubes involved. Union over all dyadic Q0 that cover Ek−1 to get W (Ek) ≤ δW (Ek−1)

which continues as a pattern to give W (Ek) ≤ δkW (Q). Further,

∫
Q
W (x)m dx .

∫
Q

[MDW (x)]m−1W (x) dx

.
∫
{x∈Q:MDW (x)≤1}

[MDW ]m−1W dx+

∞∑
k=0

∫
Ek\Ek+1

[MDW ]m−1W dx

.W (Q) +
∞∑
k=0

2N(k+1)(m−1)W (Ek)

.W (Q) +
∞∑
k=0

2N(k+1)(m−1)δkW (Q) .W (Q)

where the series converges with m chosen close enough to 1, depending on δ < 1, which

itself depends on α and w only (and not c1 or the dilation of Ω). This means m can be

chosen the as the same value for every Q ⊂ B. Undo the dilation on Ω to get |Q|−1 on
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both sides of the equation, which then cancel.

∫
B
W (x)m dx .

∑
Q

∫
Q
W (x)m dx .

∑
Q

W (Q) .W (B) = 1

To finish use that c1 in the definition of W is given by c1 = (−
∫
B αr2(x)pw(x) dx)−1. This

gives a reverse Hölder inequality for αr2(x)pw(x).

∫
B

[
αr2(x)pw(x)

]m
dx .

(∫
B
αr2(x)pw(x) dx

)m

An identical result holds for βr2(x)p
′
w(x)−p

′/p.

The next five lemmas together prove Proposition 6.8.

Lemma 6.10. Suppose w ∈ Aα,βp for some p > 1 and α, β pair continuous and positive

and satisfying conditions (6.1a) and (6.1c). Then αr2(x)pw(x) satisfies a reverse Hölder

inequality.

Proof. Given p > 1, let γ and A be from condition (6.1a). Choose q = p + p/A > p

and observe by this choice of q that A = p(q − p)−1. Use Hölder’s inequality and

condition (6.1a) to get,

−
∫
B
α
−p/(q−p)
r2 β

−p/(q−p)
r2 dx .

(
−
∫
B
α
−pγ/(q−p)
r2 dx

)1/γ (
−
∫
B
β
−pγ′/(q−p)
r2 dx

)1/γ′

. 1 (6.7)

which will be used later in this proof. Next use Hölder’s inequality on the following with

exponent s = qp′/pq′ = (q − 1)/(p− 1) > 1 (the conjugate of s is s′ = (q − 1)/(q − p)).

(
−
∫
B
α
−pq′/q
r2 w−q

′/q dx

)q/q′
.

(
−
∫
B
βp
′

r2w
−p′/p dx

)p/p′ (
−
∫
B
α
− p

(q−p)
r2 β

− p
(q−p)

r2 dx

)q−p

Multiply both sides by −
∫
αpw dx and use the condition developed as equation (6.7) earlier

on the second integral on the right above. Then the equation formed is,

(
−
∫
αp
r2w dx

)(
−
∫
B

[
αp
r2w
]−q′/q

dx

)q/q′
.

(
−
∫
αp
r2w dx

)(
−
∫
B
βp
′

r2w
−p′/p dx

)p/p′

which is to say Aq(α
p
r2w) . Aα,βp (w). This means for all w ∈ Aα,βp then αp

r2w ∈ Aq ⊂ A∞

follows. Hence αp
r2w satisfies a reverse Hölder inequality by Proposition 6.9.
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The next lemma is in a similar vein.

Lemma 6.11. Suppose p > 1 and w ∈ Aα,βp for some α, β pair continuous and positive

and satisfying conditions (6.1a) and (6.1c). Then βr2(x)p
′
w(x)−p

′/p satisfies a reverse

Hölder inequality.

Proof. Given p > 1, let γ and A be from the first α, β condition (6.1a). Choose q = pA+p
A+p

so that 1 < q < p and observe by this choice of q that A = p(q − 1)/(p − q) > 0. Use

Hölder’s inequality and condition (6.1a) to get,

−
∫
B
α
− p(q−1)

p−q
r2 β

− p(q−1)
p−q

r2 dx .

(
−
∫
B
α
− p(q−1)γ

p−q
r2 dx

)1/γ
(
−
∫
B
β
− p(q−1)γ′

p−q
r2 dx

)1/γ′

. 1

which will be used later in the proof. Again use Hölder’s inequality, this time with

exponent s = (p− 1)/(q− 1) > 1 (conjugate s′ = (p− 1)/(p− q)) on the following term.

(
−
∫
B
β
−p′q
q′

r2 (w
−p′
p )
− q
q′ dx

) q′
q

≤
(
−
∫
B
αp
r2w dx

) p′
p
(
−
∫
B
α
− p(q−1)

(p−q)
r2 β

− p(q−1)
(p−q)

r2 dx

) q′
qs′

Multiply both sides by −
∫
βp
′

r2w
−p′/p dx and use the condition developed earlier.

(
−
∫
B
βp
′

r2w
−p′/p dx

)(
−
∫
B

[
βp
′

r2w
−p′/p]−q/q′ dx)q′/q . (−∫

B
βp
′

r2w
−p′/p dx )(−

∫
B
αp
r2w dx

)p′/p

Which is to say Aq′(β
p′

r2w
−p′/p) . Aα,βp (w)p

′/p. Hence w ∈ Aα,βp implies βp
′

r2w
−p′/p ∈ Aq′ .

Hence βp
′

r2w
−p′/p satisfies a reverse Hölder inequality by Proposition 6.9.

Now the two lemmas above are used to prove the q1 and q2 parts of Proposition 6.8.

Lemma 6.12. Consider w ∈ Aα,βp . Suppose that αr2(x)pw(x) satisfies a reverse Hölder

inequality and further suppose the positive functions αr2(x) and βr2(x) satisfy the second

α, β condition (6.1b). Then w ∈ Aα,βq for some q > p.

Proof. Suppose that w ∈ Aα,βp . To show that w ∈ Aα,βq start with the value below.

Aα,βq (w) =

(
−
∫
B
αr2(x)qw(x) dx

)(
−
∫
B
βr2(x)q

′
w(x)−q

′/q dx

)q/q′
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For the part involving βr2(x) use Hölders inequality with exponent t = (q−1)/(p−1) > 1.

(
−
∫
B
βr2(x)q

′
w(x)−q

′/q dx

)q/q′
.

(
−
∫
B
βr2(x)p

′
w(x)−p

′/p dx

)p/p′ (
−
∫
B
βr2(x) dx

)q−p

Then for the part involving αr2(x), use Hölder’s inequality followed by a reverse Hölder

inequality for some s > 1 depending on w (q > p is chosen so that q − p = 1/s′).

−
∫
B
αr2(x)qw(x) dx .

(
−
∫
B
αr2(x)psw(x)s dx

)1/s(
−
∫
B
αr2(x)(q−p)s′ dx

)1/s′

.

(
−
∫
B
αr2(x)pw(x) dx

)(
−
∫
B
αr2(x)(q−p)s′ dx

)1/s′

Then multiply the parts for αr2(x) and βr2(x) together and use condition (6.1b).

(
−
∫
B
αq
r2w dx

)(
−
∫
B
βq
′

r2w
− q
′
q dx

) q
q′

.

(
−
∫
B
αp
r2w dx

)(
−
∫
B
βp
′

r2w
− p
′
p dx

) p
p′

Thus Aα,βq (w) . Aα,βp (w) for some q > p depending on w.

The idea is now repeated for q < p. Even more reverse Hölder work is needed.

Lemma 6.13. Suppose that αr2(x)pw(x) and βr2(x)p
′
w(x)−p

′/p both satisfy reverse

Hölder inequalities and further suppose the positive functions αr2(x) and βr2(x) satisfy

condition (6.1a). Then w ∈ Aα,βp implies w ∈ Aα,βq for some q < p.

Proof. Fix w ∈ Aα,βp . Then there exists s > 1 for which both βp
′

r2w
−p′/p and αp

r2w

satisfy a reverse Hölder inequality (if a weight satisfies a reverse Hölder inequality with

exponent s1, then that same weight satisfies a reverse Hölder inequality with exponent s

for all 1 < s < s1). Choose q = p − Aγ
s′ and R = sp′q/pq′ > 1, given A and γ from

condition (6.1a). By choice of q and R: 1 < q < p; 1 < R < ∞; s′(q − p) = −Aγ; and

q′R′(q − p)/q = −Aγ′ all hold. Use Hölder’s inequality with exponent R and a reverse

Hölder inequality with exponent s.

(
−
∫
B
βq
′

r2w
−q′/q dx

)q/q′
.

(
−
∫
B

(
βp
′

r2w
−p′/p)s dx

)q/q′R(
−
∫
B
β
q′R′−p′sR′/R
r2 dx

)q/q′R′
.

(
−
∫
B
βp
′

r2w
−p′/p dx

)p/p′ (
−
∫
B
β
q′R′(q−p)/q
r2 dx

)q/q′R′

For the part of the Aα,βp (w) constant involving αr2(x), similar to above use a classical
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Hölder inequality, followed by a reverse Hölder inequality, both with exponent s.

−
∫
B
αq
r2w dx .

(
−
∫
B

(αp
r2w)s dx

)1/s(
−
∫
B
α
s′(q−p)
r2 dx

)1/s′

.

(
−
∫
B
αp
r2w dx

)(
−
∫
B
α
s′(q−p)
r2 dx

)1/s′

Multiply the two parts together and use that the choice of q and R imply −Aγ = s′(q−p)

and −Aγ′ = q′R′(q − p)/q and q/q′R′ = γ/s′γ′. Hence by equation (6.1a),

(
−
∫
B
αq
r2w dx

)(
−
∫
B
βq
′

r2w
−q′/q dx

)q/q′
.

(
−
∫
B
αp
r2w dx

)(
−
∫
B
βp
′

r2w
−p′/p dx

)p/p′

which concludes the proof.

It remains to show the above implies w ∈ Aα,βs for the full range of all s ∈ (q1, q2).

Lemma 6.14. Suppose that w ∈ Aα,βp and w ∈ Aα,βq where 1 < p < q < ∞. Then

w ∈ Aα,βs for all s ∈ (p, q).

Proof. The idea is to bound Aα,βs (w) by Aα,βp (w) and Aα,βq (w). Recall p < s < q so that

s = tp+ (1− t)q for some t ∈ (0, 1). Start with Hölders inequality applied to the αsr2w

part of Aα,βs (w) with exponents θ = 1/t and θ′ = 1/(1− t).

−
∫
αr2(x)sw(x) dx = −

∫
αr2(x)tpαr2(x)(1−t)qw(x)tw(x)1−t dx

.

(
−
∫
αr2(x)pw(x) dx

)t(
−
∫
αr2(x)qw(x) dx

)1−t

An identical method deals with the β part. Observe that for the same p, s, q as the α

part q′ < s′ < p′, so that s′ = Tp′ + (1 − T )q′ for some T ∈ (0, 1). For the same T

s′/s = T (p′/p) + (1 − T )(q′/q) also holds. This relates to the t used in the α part by

T = s′pt/sp′ and (1− T ) = s′q(1− t)/sq′. Use this,

(
−
∫
βr2(x)s

′
w(x)−

s′
s dx

) s
s′

=

(
−
∫
βr2(x)Tp

′
βr2(x)(1−T )q′w(x)

−Tp
′

p w(x)
− (1−T )q′

q dx

) s
s′

.

(
−
∫
βr2(x)p

′
w(x)

− p
′
p dx

) tp
p′
(
−
∫
βr2(x)q

′
w(x)

− q
′
q dx

) (1−t)q
q′

and put the results for α and β together to get Aα,βs (w) . [Aα,βp (w)]t[Aα,βq (w)]1−t.

This concludes the proof of Proposition 6.8. To conclude this section some circum-
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stances where Aα,βp weights are similar to Aq weights are considered. Not every α, β

pair that satisfies the main conditions of this chapter will satisfy these next few lemmas,

however most examples of the Dirichlet Laplacian considered later in this thesis satisfy

at least one of the lemmas below.

Lemma 6.15. Let f(r) be a positive function defined for all r > 0. Suppose that both

f(r) . αr2(x) and −
∫
B βr2(x)−Aγ

′
dx . f(r)Aγ

′
hold for all B ⊂ Ω, where A and γ′ are

from condition (6.1a). Then w ∈ Aα,βp implies w ∈ Aq for some q > p.

Proof. Given p > 1, then γ > 1 and A > 0 come from condition (6.1a). Choose

q = p/Aγ′+p and R = qp′/q′p and use Hölder’s inequality on the β part with exponent R.

(
−
∫
B
w dx

)(
−
∫
B
w
− q
′
q dx

) q
q′

.
1

f(r)p

(
−
∫
B
αp
r2w dx

)(
−
∫
B
βp
′

r2w
− p
′
p dx

) p
p′
(
−
∫
B
β
−R
′p′
R

r2 dx

) q
q′R′

By choice of R and q, R′p′/R = Aγ′ and q/q′R′ = p/Aγ′ both hold. Use the condition

−
∫
βr2(x)−Aγ

′
dx . f(r)Aγ

′
to remove the extra β part. The end result is the inequality

given by Aq(w) . Aα,βp (w), which concludes the proof.

Lemma 6.15 when it holds, implies the weight w is doubling and satisfies reverse

Hölder estimates. The Hardy, Gaffney and Riesz transform weights found in the appli-

cation of this thesis all satisfy the conditions of Lemma 6.15. As q > p the weights in

the Aα,βp class here can still exceed the Ap class of weights and will in many application

parts. There are also examples in the application chapters where the conditions of this

lemma do not hold and the weight class found includes weights outside the A∞ class.

One example is the weight w(x) = 1/ρ(x) which is outside A∞ and occurs in heat semi-

group weight classes. Rapid decay of the heat kernel near the boundary is what allows

such weights to occur.

Lemma 6.16. Suppose that αr2(x) . f(r) and βr2(x) . f(r)−1 for some positive func-

tion f , and all r > 0, x ∈ Ω. Then w ∈ Ap implies w ∈ Aα,βp .

Proof. The proof is a trivial substitution after which the two f(r) parts cancel.

(
−
∫
B
αpw dx

)(
−
∫
B
βp
′
w(x)−p

′/p dx

)p/p′
.

(
−
∫
B
w dx

)(
−
∫
B
w(x)−p

′/p dx

)p/p′

Hence Aα,βp (w) . Ap(w) in this case.
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This lemma does not need to hold for the main theorems of this chapter to hold.

The conditions for this lemma hold in most application parts, but not all.

6.2 Application to Maximal Functions

In this section Theorem 6.4 is proven by a series of lemmas and propositions. Theorem 6.4

described the following maximal function as being bounded Lp(w)→ Lp(w) if and only

if w ∈ Aα,βp .

Definition 6.17. The adjusted Maximal function Mα,βf(x) is given by

Mα,βf(x) = sup
B3x

αr2(x)

|B|

∫
B
βr2(y)|f(y)| dy

where r is the radius of the ball B.

The proofs mirror those found in [67] for the traditional Hardy-Littlewood maxi-

mal function and the Muckenhoupt weight class. The first proposition below is not

satisfied for all maximal functions Mα,β considered in this chapter, but is included for

completeness in the discussion.

Proposition 6.18. Suppose that the adjusted Maximal function Mα,β satisfies a weighted

bound Lp(µ) → Lp(µ) for some 1 < p < ∞ and that αr2 and βr2 are continuous and

positive in the interior of Ω. Further suppose there exists δ > 0 such that for every

B ⊂ Ω small enough both αr2(x) ≥ δ and βr2(x) ≥ δ hold for all x ∈ B. Then dµ is

absolutely continuous and dµ = w(x) dx.

Proof. Separate dµ into a continuous part and a singular part dµ = w(x) dx + dν. As

dν is singular, if dν 6= 0 then there must exist a compact set S of points where |S| = 0

but ν(S) > 0. Cover such a set S with,

Vm = {x ∈ Ω : d(x, S) <
1

m
}

and let 1m represent the characteristic function of Vm \ S. Consider the maximal func-

tion Mα,β acting on 1m. Suppose that Mα,β is bounded Lp(µ) → Lp(µ) then it is
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expected, ∫
Ω
|Mα,β(1m)(x)|p dµ .

∫
Ω
|1m(x)|p dµ =

∫
Vm\S

w(x) dx

where the rightmost part tends to 0 as m tends to ∞ by the dominated convergence

theorem (for details on dominated convergence see for example Rudin [57]).

lim
m→∞

∫
Ω
|Mα,β(1m)(x)|p dµ = 0

Next it is shown that this does not occur in the presence of a singular measure. Let B0

be a ball that does not touch the boundary (ρ(B0) > ε > 0) and covers some subset S0

of S so that ν(S0) 6= 0. For each x ∈ S0 choose Bm ⊂ B0 ∩ Vm for some m large. Use

the lower bound of δ for αr2 and βr2 on Bm small enough.

∫
Ω
|Mα,β(1m)(x)|p dµ =

∫
Ω

∣∣∣ sup
B3x

αr2(x)

|B|

∫
B
βr2(y)1m(y) dy

∣∣∣p dµ

≥
∫
S0

∣∣∣ sup
B3x

αr2(x)

|B|

∫
B
βr2(y)1m(y) dy

∣∣∣p dµ

≥ δ2

∫
S0

∣∣∣ 1

|Bm|

∫
Bm

1m(y) dy
∣∣∣p dµ

≥ δ2

∫
S0

∣∣∣ |Bm ∩ (Vm \ S)|
|Bm|

∣∣∣p dµ = δ2ν(S0) > 0

As m tends to ∞ this lower bound for ‖Mα,β1m‖p is fixed. This is a contradiction to

the result of the assumed boundedness of M case considered earlier, which indicated 0

would be the limit as m tended to infinity.

When the conditions of Proposition 6.18 do not hold then a singular measure dν

may be possible. Note however that the heat kernels e−t∆Ω of the application chapters

of this thesis do satisfy Proposition 6.18. Hence only continuous measures w(x) dx have

been sought in general in this chapter. The next lemma is well known.

Lemma 6.19. Suppose that for exponents 1 < r < q < ∞ the sublinear operator T

satisfies a weighted weak (r, r) bound and a weighted weak (q, q) bound for some given

weight. Then T satisfies a Lp(w) bound for each r < p < q.

Proof. The proof is for f ≥ 0. The full case can be shown by combining cases for f > 0
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and −f > 0. Use the integral representation of the weighted Lp norm of Tf .

‖Tf‖pLp(w) = p

∫ ∞
0

λp−1µ({x ∈ Ω : |Tf(x)| > λ}) dλ

Let f1 = f whenever f > λ and f1 = 0 otherwise. Similarly let f2 = f − f1 and split the

two parts. Also use the assumed weak boundedness of T .

‖Tf‖pLp(w) . p

∫ ∞
0

λp−1
[
µ({x ∈ Ω : |Tf1(x)| > λ

2
}) + µ({x ∈ Ω : |Tf2(x)| > λ

2
})
]

dλ

. p

∫ ∞
0

λp−1

[
‖f1‖rLr(w)

λr
+
‖f2‖qLq(w)

λq

]
dλ

Consider the f1 part. Use the integral representation of the Lp norm with the definition

of f1. To keep the equations compact use the notation Ψλ = {x ∈ Ω : f(x) > λ}.

‖f1‖rLr(w) = r

∫ ∞
0

sr−1w({x ∈ Ω : f1(x) > s}) ds

= r

∫ ∞
λ

sr−1w(Ψs) ds+ r

∫ λ

0
sr−1w(Ψλ) ds

This part involving f1 in the bound for T is controlled by,

∫ ∞
0

λp−r−1‖f1‖rLr(w) dλ = r

∫ ∞
0
λp−r−1

∫ ∞
λ

sr−1w(Ψs) dsdλ+ r

∫ ∞
0
λp−1w(Ψλ) dλ

= r

∫ ∞
0
sr−1w(Ψs)

∫ s

0
λp−r−1 dλ ds+ r

∫ ∞
0
λp−1w(Ψλ) dλ

.
∫ ∞

0
λp−1w(Ψλ) dλ

where r < p was required for a finite integral with respect to λ. A similar result for f2

holds (using upper bound of λ on f2, and needing q > p in that case) leads to,

‖Tf‖pLp(w) . p

∫ ∞
0

λp−1µ({x ∈ Ω : f(x) > λ}) dλ . ‖f‖pLp(w)

which concludes the proof.

Now all conditions are ready for the proof of Theorem 6.4. Theorem 6.4 stated that

the maximal function Mα,β is bounded Lp(w) → Lp(w) if and only if w ∈ Aα,βp where

α, β satisfy Conditions 6.1.
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Proof of Theorem 6.4. (→) Suppose w ∈ Aα,βp . Let I be the set of all balls B ⊂ Ω,

and Ii with 1 ≤ i ≤ k be the finite collection of disjoint sets from condition (6.1d) where

∪ki=1Ii = I. Let Mα,β
i be defined for all x ∈ ∪B∈IiB and f ∈ C∞0 by the following

equation.

Mα,β
i f(x) = sup

B∈Ii
B3x

αr2(x)−
∫
B
βr2(y)|f(y)|dy

Again using condition (6.1d), let W (x) = ai(x)pw(x) and observe that,

‖Mα,β
i f‖Lp(∪B∈IiB,w) = ‖M1,αβ

i (f/ai)‖Lp(∪B∈IiB,W )

holds.

Let g = f/ai and define Eλ = {x ∈ ∪B∈IiB : M1,αβ
i g(x) > λ}. Let E be any compact

subset of Eλ. For each x ∈ E there exists a ball B 3 x where B ∈ Ii and equation (6.8)

holds.

λ <
1

|B|

∫
B
αr2(y)βr2(y)|g(y)|dy (6.8)

Let J1 be the set of all such balls. For each ball B ∈ J1 either E ⊂ B or the radius

of B is less than twice the radius of the compact set E. Hence E can be covered by a

subset J2 of balls B ∈ J1 with bounded radii. Then by a Vitali covering lemma there

exists a further subset J3 of disjoint balls B ∈ J2 where ∪5B cover E (See [65] for details

on such a covering). Using this covering, along with conditions (6.1c), (6.1d) and the

doubling part of Proposition 6.9 the following holds.

W (E) ≤
∑
B∈J3

(apiw)(5B)

.
∑
B∈J3

1

zi(r)p

∫
5B
αr2(x)pw(x) dx

.
∑
B∈J3

1

zi(r)p

∫
5B
α25r2(x)pw(x) dx

.
∑
B∈J3

1

zi(r)p

∫
B
α25r2(x)pw(x) dx

.
∑
B∈J3

1

zi(r)p

∫
B
αr2(x)pw(x) dx =

∑
B∈J3

W (B) (6.9)
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From equation (6.8) using Hölder’s inequality and condition (6.1d) gives the following.

λp <
Aα,βp (w)

W (B)
‖g‖pLp(B,W )

Rearrange for W (B) and place into equation (6.9).

W (E) .
1

λp

∑
B∈J3

‖g‖pLp(B,W ) .
1

λp
‖g‖pLp(∪B∈IiB,W ) (6.10)

The constant involved does not depend on E so take the supremum over all compact

E ⊂ Eλ.

W (Eλ) .
1

λp
‖g‖pLp(∪B∈IiB,W )

From the results of the previous section, if w ∈ Aα,βp then w ∈ Aα,βq ∩ Aα,βs for some

q < p, and s > p depending on w. By the working above this gives weak type inequalities

for Lq and Ls which can be interpolated between by Lemma 6.19 to get an Lp norm

bound for Mi. Then setting g(x) = f(x)/ai(x) for each i the following holds.

‖Mα,βf‖Lp(w) .
m∑
i=1

‖Mα,β
i f‖Lp(∪B∈IiB,w)

=
m∑
i=1

‖M1,αβ
i g‖Lp(∪B∈IiB,W ) .

m∑
i=1

‖g‖Lp(∪B∈IiB,W ) . ‖f‖Lp(w)

Hence Mα,βf(x) is Lp(w) bounded for all w ∈ Aα,βp which concludes the first half of the

proof.

(←) Next it is shown if Mα,β satisfies an Lp(w) bound then w ∈ Aα,βp . Start with the

supposition Mα,β satisfies an Lp(w) bound.

∫
Ω
|Mα,βf(x)|pw(x) dx .

∫
Ω
|f(x)|pw(x) dx

Fix B ⊂ Ω and set f = βp
′−1
r2 (w + ε)−p

′/p1B (the ε is to ensure local integrability).

∫
Ω

∣∣∣αr2(x)−
∫
B
βp
′

r2(y)[w(y) + ε]−p
′/p dy

∣∣∣pw(x) dx .
∫
B
βr2(x)p

′
[w(x) + ε]−p

′
w(x) dx
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Using then that (w + ε)−p
′/p = (w + ε)−p

′+1 ≥ (w + ε)−p
′
w rearrange for,

(
−
∫
B

(w+ε)−p
′
w(y)βr2(y)p

′
dy

)p(∫
B
|αr2(x)|pw(x) dx

)
.
∫
B

(w+ε)−p
′
βr2(x)p

′
w(x) dx

then divide both sides by the term on the right.

1

|B|p

(∫
B

(w + ε)−p
′
w(y)βr2(y)−p

′
dy

)p/p′ (∫
B
|αr2(x)|pw(x) dx

)
. 1

Take the limit as ε→ 0 to get Aα,βp (w) . 1 which is the result.

This concludes the proof of Theorem 6.4.

6.3 Application to General Operators

In the final section of this chapter Theorems 6.5 and 6.6 are proven. Theorem 6.5 regards

Lp(w)→ Lp(w) boundedness of the following maximal operator for weights in Aα,βp .

sup
t
Ttf(x)

def
= sup

t>0
αt(x)

∫
Ω
βt(y)

e−d(x,y)2/ct

tn/2
f(y) dy

Proof of Theorem 6.5. The result holds by comparison to the Maximal operator Mα,β

of the previous section. First it is shown that Mα,βf(x) . supt Ttf(x) for all positive

functions f , using that if x, y ∈ B then d(x, y) < 2r. The doubling condition on Ω ⊂ Rn

also helps by implying |B| ∼ rn.

Mα,βf(x) = sup
B3x

αr2(x)−
∫
B
βr2(y)|f(y)| dy

. sup
B3x

αr2(x)−
∫
B
βr2(y)|f(y)|e−d(x,y)2/cr2

dy

. sup
B3x

αr2(x)

|B|

∫
Ω
βr2(y)|f(y)|e−d(x,y)2/cr2

dy

. sup
r>0

αr2(x)

rn

∫
Ω
βr2(y)|f(y)|e−d(x,y)2/cr2

dy

= cn sup
t>0

αt(x)

∫
Ω
βt(y)|f(y)|e

−d(x,y)2/ct

tn/2
dy = cn sup

t
Ttf(x)

It remains to check the opposite inequality. The bound on the constant in the third
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condition on α, β (6.1c) is used here.

sup
t
Ttf(x) = sup

t>0
αt(x)

∫
Ω
βt(y)f(y)

e−d(x,y)2/ct

tn/2
dy

= sup
r>0

αr2(x)

∫
Ω
βr2(y)f(y)

e−d(x,y)2/cr2

rn
dy

. sup
r>0

αr2(x)

∫
Ω
βr2(y)f(y)

∞∑
i=0

1B(x,2ir)2
ine−c4

i

2inrn
dy

= sup
r>0

∞∑
i=0

2ine−c4
i αr2(x)

|2iB|

∫
B(x,2ir)

βr2(y)f(y) dy

. sup
r>0

∞∑
i=0

2i(m+n)e−c4
i α4ir2(x)

|2iB|

∫
B(x,2ir)

β4ir2(y)f(y) dy

. sup
r>0

∞∑
i=0

2i(m+n)e−c4
i
Mα,βf(x) = Mα,βf(x)

The above comparisons can be generalised to hold in the form |Mα,βf(x)| . supt Tt|f |(x)

and | supt Ttf(x)| . |Mα,βf(x)| for any function f by repeating the above proof for f

negative (with appropriate absolute values) and combining the f positive and f negative

cases. ThusMα,βf(x) and supt Ttf(x) are bounded Lp(w)→ Lp(w) with identical weight

classes, proving Theorem 6.5 via Theorem 6.4. Theorem 6.5 mirrors Theorem 1.4 from

the introduction chapter, hence this also concludes the proof of Theorem 1.4.

In the application part of this thesis Theorem 6.5 is applied to heat semigroup max-

imal functions. The rest of this chapter looks to prove Theorem 6.6. Until this point

the weights used could foreseeably be outside the Muckenhoupt class A∞. For the next

part there is an extra condition that the weights are in A∞.

Lemma 6.20. Suppose that T is a continuous sub-linear operator which satisfies the

following weak (1, 1) bound for all balls B ⊂ Ω and all z ∈ B.

|{x ∈ B : |T [f13B](x)| > λ}| . |B|
λ
Mα,βf(z) (6.11)

Further suppose that for all x ∈ B, z ∈ B, y ∈ 3B and f positive, the operator T satisfies

for some fixed c1 > 0 the following regularity estimate.

|T (f1(3B)c)(x)| ≤ c1[Tf(y) +Mα,βf(z)] (6.12)
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Then T satisfies the following good-λ inequality for all w ∈ A∞, where b, c ∈ (0, 1) can

be chosen so that a < bp.

w({x ∈ Ω : |Tf(x)| > λ,Mα,βf(x) ≤ cλ}) ≤ aw({x ∈ Ω : |Tf(x)| > bλ}) (6.13)

Proof. Take f ≥ 0. The proof starts with the case w(x) = 1 which is extended to all

w ∈ A∞ by properties of such weights. Cover the set E = {x ∈ Ω : |Tf(x)| > bλ}

with balls B ⊂ Ω in a Whitney decomposition (the first type discussed in 2.3 where

the balls may touch δΩ). The value of b ∈ (0, 1) is chosen later. The set E is open

as T is continuous. Consider any ball B in the covering that contains a point z where

Mα,βf(z) ≤ cλ, for some c ∈ (0, 1) also chosen later. If there is no such point ignore B.

Let y be a point outside E but within 3B. Such a point exists due to the nature of the

Whitney covering. Split f = f13B + f1(3B)c and use the sub-linear property of T .

|{x ∈ B : |Tf(x)| > λ}|

. |{x ∈ B : |T (f13B)(x)| > bλ}|+ |{x ∈ B : |T (f1(3B)c)(x)| > (1− b)λ}| (6.14)

For the first case use the weak (1, 1) bound supposed in the lemma.

|{x ∈ B : |T (f13B)(x)| > bλ}| ≤ C|B|
bλ

Mα,βf(z) ≤ cC

b
|B|

For the second case use equation (6.12) supposed in the lemma,

|T (f1(3B)c)(x)| . |Tf(y)|+ |Mα,βf(z)| . bλ+ cλ

so if b and c are chosen so that b + c < 1 − b, then the second set in equation (6.14)

is empty. The proof concludes by summing over the relevant balls B using the finite

intersection lemma. This gives,

|{x ∈ Ω : |Tf(x)| > λ,Mα,βf(x) ≤ cλ}| ≤ cC

b
|{x ∈ Ω : |Tf(x)| > bλ}|

where c can be chosen small enough so that cC
b < bp (needed in the next proposition).

A weighted result follows for w ∈ A∞ as |E| ≤ ε|B| implies w(E) ≤ δw(B).
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Proposition 6.21. Suppose that ‖Mα,βf‖Lp(w) < ∞ =⇒ ‖Tf‖Lp(w) < ∞ for all

f ∈ Lp(w) and that T satisfies the good-λ inequality (6.13) for the same weight with

a < bp. Then T is bounded Lp(w)→ Lp(w) for the same weight.

This proposition is proven much more generally in Stein [67] section IV.3.5 lemma 2

so will not be proven here. This concludes the proof of Theorem 6.6.
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Part II

Application to the Dirichlet

Laplacian

105





Chapter 7:

Heat Kernel Bounds

At the core of the operators considered in this thesis is the heat kernel pt(x, y). In this

chapter pointwise bounds for the heat kernel are found in several application cases.

The Dirchlet heat kernel of Ω ⊂ Rn is the unique continuous solution of the partial

differential equation
(

∆Ω + d
dt

)
pt(x, y) = 0, with initial condition lim

t→0
pt(x, y) = δ(x− y)

(∆Ω was defined at the end of section 1.2). It is well known that the solution pt(x, y) is

the same as the solution to the traditional heat equation on Ω with Dirichlet boundary

conditions. 

(
∆ + d

dt

)
pt(x, y) = 0 ∀x, y ∈ Ω

lim
t→0

pt(x, y) = δ(x− y) ∀x, y ∈ Ω

pt(x, y)
∣∣∣
x∈δΩ

= 0 ∀y ∈ Ω

The purpose of this chapter is to provide a combination of estimates for a variety of heat

kernels. There is a mix of known results and new results. Various domains defined in

section 2.3 are used.

THEOREM 7.1 (From [74]). Let Ω ⊂ Rn, n ≥ 3, be the exterior of a compact C1,1

domain. Then the heat kernel of Ω has upper and lower bounds of the form of equa-

tion (7.1).

pt(x, y) ∼ c1

(
1 ∧ ρ(x)√

t ∧ 1

)(
1 ∧ ρ(y)√

t ∧ 1

)
e−d(x,y)2/c2t

tn/2
(7.1)

Here ρ(x) is the distance from x to δΩ, d(x, y) is the distance from x to y in Ω, and ∧

indicates the minimum of the terms on either side.

Zhang proves this theorem in [74] using a local comparison principle from Fabes,

Garofalo and Salsa [29]. Zhang’s proof uses the local comparison principle to compare

107
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the Dirichlet heat kernel on Ω to the Green’s function on Ω to achieve the desired bounds.

The away from the boundary case was originally proven by Grigor’yan and Saloff-Coste

in [35] who also prove the n = 2 case stated below in the same paper.

THEOREM 7.2 (From [35]). Let Ω ⊂ R2 be the exterior of a compact C1,1 domain.

Then the heat kernel of Ω has upper and lower bounds of the form of equation (7.2).

pB
c

t (x, y) ∼ c1

(
1 ∧ log(1 + ρ(x))

log(1 +
√
t)

)(
1 ∧ log(1 + ρ(y))

log(1 +
√
t)

)
e−d(x,y)2/c2t

tn/2
(7.2)

Zhang generalised Theorem 7.1 in [73] by showing that inner uniform and C1,1

domains Ω ⊂ Rn, n ≥ 3, satisfy for t small enough (0 ≤ t < T for some fixed T > 0)

upper and lower bounds on the heat kernel of the form of equation (7.3) below for all

x, y ∈ Ω. Hence the Dirichlet heat kernels of all inner uniform C1,1 domains act similar

for small t.

Song in [62] applied Zhang’s method to show that for Ω as the area above a bounded

Lipschitz C1,1 function, equation (7.3) holds for all x, y ∈ Ω as in the next theorem.

THEOREM 7.3. Let Ω ⊂ Rn be a C1,1 global Lipschitz domain (this is the space above

a C1,1 globally Lipschitz and bounded curve ψ : Rn−1 → R). Then the heat kernel of Ω

has upper and lower bounds of the form of equation (7.3).

pHt (x, y) ∼ c1

(
1 ∧ ρ(x)√

t

)(
1 ∧ ρ(y)√

t

)
e−d(x,y)2/c2t

tn/2
(7.3)

Song’s proof and Zhang’s method are visited in section 7.1 of this chapter. Similar

results are contained in [71]. Next consider the special case of Ω ⊂ Rn, n ≥ 3, as a

bounded C1,1 domain.

THEOREM 7.4 (Combining [20], [23] and [73]). Let Ω be the interior of a C1,1 bounded

domain. Then the heat kernel of Ω has upper and lower bounds,

pBt (x, y) ∼ c1

(
1 ∧ ρ(x)√

t

)(
1 ∧ ρ(y)√

t

)
e−d(x,y)2/c2te−λ1t

tn/2

where λ1 is the first eigenvalue of the Dirichlet Laplacian on Ω.

For 0 < t < T the upper bound of Theorem 7.4 was originally shown by Davies [20]
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and Davies and Simon [23]. These papers also contained proofs showing upper and lower

bounds for t > T > 0. The lower bound for 0 < t < T is from [73].

Back to the case of Ω ⊂ Rn as a general inner uniform domain (here n ≥ 2), Gyrya

and Saloff-Coste prove in [37] and [38] heat kernel upper and lower bounds,

pt(x, y) ∼ h(x)h(y)e−d(x,y)2/c4t√
Vh2(x,

√
t)Vh2(y,

√
t)

where h is harmonic on Ω and satisfies Dirichlet boundary conditions. The Vh2(x,
√
t)

term means the volume of a ball weighted by h2. The proof uses Doob’s h-transform

from Gaussian bounds (see [24] page 102 for details on this technique). Gyrya and

Saloff-Coste’s results include discussion on removing smoothness conditions. Applying

this idea to the area below a parabola in R2 gives the final theorem of this chapter.

THEOREM 7.5. Let Ω be the area below a parabola x1 = x2
2 in Rn. Then the heat

kernel of Ω has the following upper bound, where R = max(x2, 1).

pΩ
t (x, y) .

√(
1 ∧ ρ(x)√

t

)(
1 ∧ ρ(x)

R ∧
√
t

)(
1 ∧ ρ(y)√

t

)(
1 ∧ ρ(y)

R ∧
√
t

)
e−d(x,y)2/c2t

tn/2

Theorems 7.1, 7.2 and 7.4 were mentioned as having being proven elsewhere so will

not be proven here. Theorem 7.3 is also a known result and is reviewed in section 7.1.

Theorem 7.5 is new and is proven in section 7.2 via observations from [38]. Upper bounds

for further cases via the maximum principle and symmetry, including non-doubling cases,

are in section 7.3. The symmetry of the heat kernels can be used as the Dirichlet

Laplacian is self-adjoint. Problems can occur when the boundary δΩ is not smooth, see

comments in section 10.3.

A summary of the outcome of the above theorems is included in Figure 7.1.

7.1 Above a Lipschitz Function

In this section Song’s proof in [62] giving bounds for the heat kernel above a bounded

Lipschitz C1,1 function is reviewed to emphasize how the method applies to the area

above a C1,1 global Lipschitz function as in Theorem 7.3. The following lemmas are

required as part of both Zhang’s [74] and Song’s [62] proofs.
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Figure 7.1: Coefficients of the Gaussians in Theorems 7.1 to 7.5.

Interior of
a Ball

Above a
Lipschitz
function

Exterior of a
Parabola

Exterior of
a Ball

t small 1 ∧ ρ(x)√
t

1 ∧ ρ(x)√
t

1 ∧ ρ(x)√
t

1 ∧ ρ(x)√
t

t large ρ(x)e−λ1t 1 ∧ ρ(x)√
t

1∧
√
ρ(x)

t1/4
∧ ρ(x)

R1/2t1/4
1 ∧ ρ(x)

Lemma 7.6. Suppose that Ω ⊂ Rn, n ≥ 3, is the interior of a compact C1,1 domain.

Then the Green’s function on Ω with Dirichlet boundary conditions on δΩ satisfies,

GΩ(x, y) ∼
(

1 ∧ ρ(x)

|x− y|

)(
1 ∧ ρ(y)

|x− y|

)
1

|x− y|n−2
(7.4)

where the constants depend only on n, the C1,1 constant m and the ratio diameter(Ω)/r.

See Definition 2.18 for details on the values of r and m. The upper bound was

originally proven in [36] and the lower bound in [77]. The comment on the dependence

of the constant is from [12]. The next lemma is Theorem 1.6 from [29] specified for our

circumstance.

Lemma 7.7 (Local Comparison Theorem). Suppose that Ω ⊂ Rn is the interior of a

compact C1,1 domain. Consider a point (x0, s) ∈ δΩ × (0, T ) and the cylinder about

(x0, s) given by,

Ψ(r) = {(x, t) ∈ Ω× (0,∞) : 0 < t < T, |x− x0| < 2r, |t− s| < 4r2}

for some r < min(1
2r0,

1
2

√
s, 1

2

√
T − s). Let u, v be two positive solutions of the heat

equation (∆ + d
dt)u = 0 on Ψ that vanish continuously on δΩ. Then the following bound

holds for all (x, t) ∈ Ψ(r/8),

u(x, t)

v(x, t)
≤ cu(xr, t+ 2r2)

v(xr, t− 2r2)
(7.5)

where xr ∈ Ω is a point r away from the boundary point x0. That is, xr = x0 + x̂jr

where x̂j is a unit vector pointing away from the boundary.
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Lemma 7.7 allows a comparison between the Dirichlet heat kernel on Ω to other

solutions of the heat equation, such as the Green’s function from Lemma 7.6. It is

proven in [29] using a Carleson estimate from [59]. It remains to determine how the

area above a C1,1 globally Lipschitz curve where the heat kernel is sought, and the area

inside a compact C1,1 domain where the Green’s function is known, will be compared.

The final lemma presented is Lemma 2.2 from the paper [62].

Lemma 7.8. Consider a domain Ω ⊂ Rn defined as the area above a smooth C1,1

Lipschitz function ψ : Rn−1 → R. Then for any x′ ∈ Rn−1 and any R ≥ 1 there exists a

bounded C1,1 domain D(x,R) ⊂ Rn such that the boundary δD includes the set:

{y = (y1, y
′) ∈ Ω : |x′ − y′| ≤ R and either y1 = ψ(y′) or y1 = ψ(y′) +R}.

Further the C1,1 constant m of D is bounded above by a constant that does not depend

on x or R, and the ratio R/r is also bounded above by a constant (where r is the other C1,1

constant of D).

Figure 7.2: Cross-section of the construction of the bounded domain D to approximate
the smooth Lipschitz domain Ω.

 

   

     

  

Semispherical 

cap 

Proof. Fix R. The key is to join δΩ and δΩ+R by an approximate semi-spherical cap of

radius cR for some universal constant c. Fix the C1,1 constant r of D as cR, so that R/r

is bounded above. The radius of the semi-spherical cap part of the boundary of D grows

proportional to R so the C1,1 constant m of this part is fixed with r = cR (c small

enough). The C1,1 constant m of the δΩ and δΩ +R parts of the boundary of D is also

fixed for all r due to the global Lipschitz condition. At the joins between δΩ and δΩ+R



112 CHAPTER 7. HEAT KERNEL BOUNDS

and the semi-spherical caps the contribution to the C1,1 constant m will be smaller. The

maximum of the m terms mentioned is the C1,1 constant of D. See Figure 7.2.

This only works if the boundary of Ω can be described by either a bounded function,

or a Lipschitz function. Otherwise the semi-spherical cap joining δΩ + R and δΩ may

not have a radius that grows with R.

Now is the proof of Theorem 7.3.

Proof of Theorem 7.3. The boundary of Ω is given by ψ : Rn−1 → R which is continuous,

Lipschitz and C1,1. Hence there exists κ ∈ (0, 1) where κ(x1 − ψ(x′)) ≤ ρ(x) for all

x = (x1, x
′) ∈ Ω. Choose a point (x, y, t) ∈ Ω × Ω × (0,∞). There are several cases in

this proof, start by considering the case when x1−ψ(x′) ≤
√
a1t and y1−ψ(y′) ≥ 4

κ

√
a1t.

Define x̄ = (ψ(x′), x′), xt = (ψ(x′) +
√

2a1t, x
′) and x̂t = (ψ(x′) + 4

κ

√
a1t, x

′) as in

Figure 7.3.

Figure 7.3: The relative positions of the terms in the proof of Theorem 7.3.

    

           

Construct a bounded C1,1 domain D(x, 8
κ

√
a1t) as in Lemma 7.8. Inside such a

domain the local comparison principle (Lemma 7.7) can be used to get,

pΩ
t (x, y) .

GD(x, 8
κ

√
a1t)

(x, x̂t)

GD(x, 8
κ

√
a1t)

(xt, x̂t)
pΩ

2t(xt, y)

where the constant does not depend on x, y or t. Use the bounds for the Green’s function

found in Lemma 7.6, and the constructed distances |x− x̂t| and |xt − x̂t|.

pΩ
t (x, y) .

|xt − x̂t|n−2ρ(x)

|x− x̂t|n−1
pΩ

2t(xt, y) ≤ cρ(x)√
t
pΩ

2t(xt, y)
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To conclude the first case of this proof use that pΩ
t (x, y) has Gaussian upper bounds by

the maximal principle and that |x− y| ≥ 3|xt − y| by construction.

pΩ
t (x, y) .

ρ(x)√
t

e−|xt−y|
2/2ct

(2t)n/2
.
ρ(x)√
t

e−|x−y|
2/18ct

tn/2

which concludes the case xn−ψ(x′) ≤
√
a1t and yn−ψ(y′) ≥ 4

κ

√
a1t. Next suppose that

xn − ψ(x′) ≤
√
a2t and yn − ψ(y′) ≤

√
a2t. In the previous case the following equation

occurred without using the condition on y.

pΩ
t (x, y) .

ρ(x)√
t
pΩ

2t(xt, y) (7.6)

Use the method of the previous case with ȳ, yt and ŷt replacing x̄, xt and x̂t and with xt

replacing y and 2t replacing t.

pΩ
2t(y, xt) .

ρ(y)√
t
pΩ

4t(yt, xt)

Use Gaussian upper bounds on the heat kernel and that |xt − yt| ≥ |x− y| − c
√
a2t.

pΩ
2t(y, xt) .

ρ(y)√
t

e−|xt−yt|
2/4ct

(4t)n/2
.
ρ(y)√
t

e−|x−y|
2/4ct

tn/2

Put this into equation (7.6) to get,

pΩ
t (x, y) .

ρ(x)ρ(y)

t

e−|x−y|
2/4ct

tn/2

which concludes the second case. Gaussian upper bounds and symmetry prove the

remaining cases. Take the diameter R of the bounded domain D to infinity so that D

tends to Ω for the result.

7.2 The Area Below a Parabola

In this section Theorem 7.5 is proven, which is upper and lower bounds for the heat

kernel for Ω as the area below the parabola x2 = x2
1. This domain falls between the

two cases already considered (that of an exterior domain, and that of a global Lipschitz
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domain), so results between these two is expected by the maximal principle. In the

paper [38] by Gyrya and Saloff-Coste, upper and lower bounds for the Dirichlet heat

kernel on inner uniform domains Ω are given as,

c1
h(x)h(y)e−d(x,y)2/ct√
Vh2(x,

√
t)Vh2(y,

√
t)
≤ pΩ

t (x, y) ≤ c2
h(x)h(y)e−d(x,y)2/ct√
Vh2(x,

√
t)Vh2(y,

√
t)

(7.7)

where h(x) is harmonic on Ω with Dirichlet boundary conditions, and Vh2(x,
√
t) is given

by the following equation.

Vh2(x,
√
t) =

∫
B(x,

√
t)
|h(w)|2 dw.

Further in [38], an example is given of h in the case of Ω as the area below the parabola

x2 = x2
1 in R2.

h(x) = h(x1, x2) =

√
2(

√
x2

1 + (x2 −
1

4
)2 − x2 +

1

4
)− 1

To find reasonable bounds for the parabola heat kernel, the above equations are examined

on three separate exterior regions. These are formed according to whether a point is

above or below the wedge x2 = |x1|+ 1
4 , and for x below the wedge, whether near or away

from the boundary (see Figure 7.4). Start by considering the area below the wedge, and

away from the boundary, in the following lemma.

Lemma 7.9. Let Ω denote the area below the parabola x2 = x2
1 in R2. Consider those

x = (x1, x2) ∈ Ω where x2 < |x1|+1/4, and ρ(x) > 3. Then the harmonic function on Ω

satisfies for such x: h(x) ∼
√
ρ(x). Further the coefficient h(x)√

Vh2 (x,
√
t)

to the Gaussian

in the heat kernel bound satisfies upper and lower estimates of the form:

h(x)√
Vh2(x,

√
t)
∼ 1√

t

(
1 ∧

√
ρ(x)

t1/4

)

Proof. For each x1, x2 pair satisfying x2 < |x1| + 1/4, either x1 = 0 or there exists
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Figure 7.4: Parabola in R2 showing the regions dealt with separately.

 
   

   

 

        
 

 
 

       

     
  

 

a ∈ (−∞,∞) where x2 = ax1 + 1/4. Hence h(x) has the following bound,

h(x) = h(x1, x2) =

√
2(

√
x2

1 + (x2 −
1

4
)2 − x2 +

1

4
)− 1

=



√
|x1|
√

2(
√

1 + a2 − a)− 1 if − 1 ≤ a ≤ 1√
(1

4 − x2)
√

2(
√

(1 + a−2)) + a−1 − 1 if 1 < |a|√
(1

4 − x2)
√

2− 1 if x1 = 0

∼
(
x2

1 + (x2 − 1/4)2
)1/4 − 1

∼
(
x2

1 + x2
2

)1/4 ∼√ρ(x)

which holds away from the boundary concluding the first part of the proof. For the

second half consider the case where x2 < 0 and x1 > 0 (other cases are proven identically,

this assumption only affects the limits used in the integrals). Integrate h(x)2 to get Vh2 .

Vh2(x,
√
t) ∼

∫ x1+
√
t

x1

∫ x2

x2−
√
t
(ξ2

1 + ξ2
2)1/2 dξ2 dξ1
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Then as ρ(x) > 1, and x2 < 0,

Vh2(x,
√
t) ∼

∫ x1+
√
t

x1

∫ x2

x2−
√
t
ξ1 − ξ2 dξ2 dξ1

∼ 1

2

[
(x1 +

√
t)2
√
t− x2

1

√
t− x2

2

√
t+ (−x2 +

√
t)2
√
t
]

∼
[
x1t+ 2t3/2 − x2t

]
∼ ρ(x)t+ 2t3/2

so that,
h(x)√

Vh2(x,
√
t)
∼

√
ρ(x)

√
t
√
ρ(x) ∨

√
t
∼ 1√

t

(
1 ∧

√
ρ(x)

t1/4

)
which concludes the proof.

The next lemma is the below the wedge and near the boundary case.

Lemma 7.10. Let Ω be the area below the parabola x2 = x2
1, and consider the set of all

x = (x1, x2) ∈ Ω satisfying x2 < |x1| + 1/4 and close to the origin ρ(x) ≤ 3. Then in

this region h(x) ∼ ρ(x), and the following bound holds.

h(x)√
Vh2(x,

√
t)
∼ 1√

t

(
1 ∧ ρ(x)√

t ∧ t1/4
)

Proof. Firstly it is a trivial exercise to calculate | d
dx2

h(x1, x2)| and observe this value

is bounded by positive constants above and below for −4 ≤ x2 ≤ 4 which fits the

appropriate region. This along with knowing that h(x) = 0 on the boundary δΩ, but

non-zero inside Ω, allows us to conclude h(x) ∼ ρ(x) in this case.

For the second half of the proof, first observe that as the area below a parabola is

a C1,1 and inner uniform domain, an upper and lower bound for 0 < t < 1 is given by

Zhang in [73].

h(x)√
Vh2(x,

√
t)
∼ 1√

t

(
1 ∧ ρ(x)√

t

)
If t > 1 then the integration of the ball that Vh2(x, y) is integrated over, is dominated by

values in the below the wedge, away from the boundary case. In that case it was shown

there is a bound of the form Vh2(x,
√
t) ∼ ρ(x̃)t+ 2t3/2 where in this case x̃ is the closest

point to x in the away from boundary case. This means ρ(x̃) ∼ 1. As t > 1 this means

Vh2(x,
√
t) ∼ t3/2. Thus the final upper bound in this case when t > 1 is given by the
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following.

h(x)√
Vh2(x,

√
t)
∼ 1√

t

(ρ(x)

t1/4

)

Mix this with the t < 1 case to conclude the proof.

The final lemma considers the above the wedge case. This lemma continues on the

same theme as the previous lemmas.

Lemma 7.11. Let Ω be the area below the parabola x2 = x2
1, and consider the set of all

x = (x1, x2) ∈ Ω where x2 > |x1| + 1/4. Then h(x) = h(x1, x2) ∼ ρ(x)√
x2

, which leads to

the following bound.

h(x)√
Vh2(x,

√
t)
∼ 1√

t

(
1 ∧ ρ(x)√

t ∧ t1/4√x2

)

Proof. The proof is for x1 > 0, a similar proof holds for x1 < 0. Start with the in-

equalities, 0 <
√
x2 ≤ x1 ≤ x2 which hold for all x1, x2 in the region. Basic use of this

ordering allows the determination of the truth of the following inequality.

x2
1

4x2
− (2
√

2− 5)

2
+

(2− 3
√

2)x2

x2
1

− 4x2 +
4(2−

√
2)x2

2

x2
1

≤ 1 ≤ x2
1

x2

Now run through some manipulations applying to all parts of the inequality: subtract 1

and multiply through by x2
1/4x2, then add x2

1 + (x2 − 1
4)2. Take square root then add

−x2 + 1/4, multiply by 2, square root again and subtract 1 to get,

x1√
2x2
− 1√

2
≤

√
2(

√
x2

1 + (x2 −
1

4
)2 − x2 + 1/4)− 1 ≤ x1√

x2
− 1

which is more compactly expressed as the following bound.

x1√
2x2
− 1√

2
≤ h(x) ≤ x1√

x2
− 1

In the region under consideration, and special case x1 > 0, the distance to the boundary

is majorised by the x1 direction as x1−f−1(x1) = x1−
√
x2 (where f(x1) = x2

1 describes

the boundary). So ρ(x) ∼ x1 −
√
x2 and the result of the lemma for h(x) follows.
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Use that h grows away from the boundary and h ∼ ( x1√
x2
−1) to get a bound for Vh2 .

Vh2(x,
√
t) ∼

∫ x1+
√
t

x1

∫ x2

x2−
√
t
|h(ξ1, ξ2)|2 dξ1 dξ2 ∼

∫ x1+
√
t

x1

∫ x2

x2−
√
t

ξ2
1

ξ2
− 2ξ1√

ξ2
+ 1 dξ2 dξ1

Evaluate this integral.

Vh2 ∼ [(x1 +
√
t)3 − x3

1] log(
x2

x2 −
√
t
)− 2[(x1 +

√
t)2 − x2

1](
√
x2 −

√
x2 −

√
t) + t

Now consider two separate cases. For the first take 0 < 2
√
t < x2, then use log(1+a) ∼ a

and
√
b−
√
b− a ∼ a/

√
b for small a and expand.

Vh2(x,
√
t) ∼ [3x2

1

√
t+ 3x1t+ t3/2]

√
t

x2
− 2[2x1

√
t+ t]

√
t

√
x2

+ t

∼ 3x2
1t

x2
+

3x1t
3/2

x2
+
t2

x2
− 4x1t√

x2
− 2t3/2
√
x2

+ t

Next use ρ(x) ∼ (x1 −
√
x2), and that for any a, b > 0 then a+

√
ab+ b ∼ a+ b.

Vh2(x,
√
t) ∼ ρ(x)2t

x2
+
ρ(x)t3/2

x2
+
t2

x2
∼ max

(ρ(x)2t

x2
,
t2

x2

)

Which a bound in this case.

h(x)√
Vh2(x,

√
t)
∼ ρ(x)

√
x2

√
max

(
ρ(x)2t
x2

, t
2

x2

) ∼ 1√
t

(
1 ∧ ρ(x)√

t

)

It remains to check the case that 2
√
t > x2. In this case the box integrated over will go

outside the wedge and tend to being dominated by the outside the wedge case. By the

outside the wedge case there is an upper bound of the form Vh2(x,
√
t) ∼ ρ(x̃)t + 2t3/2

where x̃ is the closest point to x lying on the wedge. In this case ρ(x̃) ∼ x2. So then

2
√
t > x2 implies Vh2(x,

√
t) ∼ t3/2 and there is an upper bound of the form,

h(x)√
Vh2(x,

√
t)
∼ 1√

t

( ρ(x)

t1/4
√
x2

)

which concludes the proof.
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The upper bound for the heat kernel in the parabola case is now fully determined in

terms of t and ρ(x). The result proven so far for the parabola is summarised below.

h(x)√
Vh2

∼ 1√
t



(
1 ∧ ρ(x)

t1/4(1∧t1/4)

)
x below wedge and ρ(x) ≤ 3(

1 ∧
√
ρ(x)

t1/4

)
x below wedge and ρ(x) > 3(

1 ∧ ρ(x)√
t

)
x above wedge and

√
t ≤ x2(

ρ(x)

t1/4
√
x2

)
x above wedge and

√
t > x2

(7.8)

Proof of Theorem 7.5. To prove this theorem all that needs to be done is to show that,

h(x)√
Vh2

∼ 1√
t

√(
1 ∧ ρ(x)√

t

)(
1 ∧ ρ(x)

max(x2, 1) ∧
√
t

)
(7.9)

then the proof is complete by the result of Gyrya and Saloff-Coste in [38] mentioned in

equation (7.7) of this thesis. From the summary of the previous lemmas in equation (7.8)

it is not difficult to see that equation (7.9) is true. The harmonic function does not change

when considering the area below the parabola as a subset of Rn, and hence the full result

of Theorem 7.5 follows.

This concludes the parabola example.

7.3 Extensions and Discussion

Here are collected various remarks and extensions on the theorems of this chapter.

7.3.1 General kernels

Consider what might be expected as an upper bound for a space between (in subset

sense) the exterior of a C1,1 compact object, and the area above a C1,1 global Lipschitz

curve. One such domain is the area below a parabola (as considered in section 7.2) where

the heat kernel found was very similar to a multiplication average of the heat kernels of

the global Lipschitz and exterior domain cases. With the motivation of Hardy and Riesz
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transform bounds in mind, hypothesize a multiplication average of the form,

pt(x, y) = pHt (x, y)1/q pB
c

t (x, y)1/q′ (7.10)

∼
(

1 ∧ ρ(x)√
t

) 1
q
(

1 ∧ ρ(y)√
t

) 1
q
(

1 ∧ ρ(x)

1 ∧
√
t

) 1
q′
(

1 ∧ ρ(y)

1 ∧
√
t

) 1
q′ e−d(x,y)2/ct

tn/2

for some q > 1, where pHt is the global Lipschitz heat kernel of Theorem 7.3 and pB
c

t is

the exterior domain heat kernel of Theorem 7.1. When finding Lp → Lp bounds for the

Hardy inequality in chapter 9 of this thesis:

- The Hardy inequality for the exterior of a ball is bounded for all 1 < p < n; and,

- The Hardy inequality in the halfspace case is bounded for all 1 < p <∞.

Interestingly, the Hardy inequality for a weighted average kernel of the type of equa-

tion (7.10) would be bounded for all 1 < p < qn/(q − 1). This leads to Riesz transform

bounds of the same type. It is unknown what shapes would satisfy the averaged kernel.

For shapes between the halfspace and the interior of a ball, weighted averages are

not as insightful due to domination by the exponential decay of the interior case. Some

work has been done for the interior of a parabola in [11].

There are many spaces where there is little known about heat kernel upper bounds.

The main emphasis of this discussion is to note that while only a small fraction of spaces

have good known upper bounds for their heat kernel, if more kernel upper bounds are

found for specific spaces that fit the pattern above, or are indeed even only of the general

form,

pt(x, y) = αt(x)βt(y)
e−|x−y|

2/t

tn/2

then the techniques in the previous and following chapters can still use this to deter-

mine Lp boundedness of the associated Riesz transform for certain p.

7.3.2 A Non doubling domain

Consider the following domain between the lines x2 = 0 and x2 = ex1 .

Ω = {(x1, x2) ∈ R2 : 0 < x2 < ex1}
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This domain is clearly non-doubling and can be written as the intersection of two domains

which are now analysed separately. Firstly the area in R2 above the line x2 = 0 has heat

kernel upper bound,

p
{x2>0}
t (x, y) .

(
1 ∧ ρ1(x)√

t

)(
1 ∧ ρ1(y)√

t

)
e−d(x,y)2/ct

tn/2

where ρ1(x) = x2 is the distance from the point x to the line x2 = 0. Secondly, the area

below the line x2 = e−x1 is not a global Lipschitz and bounded function, but with the

influence of the other boundary it is still expected for there to be a heat kernel upper

bound of the form,

p
{x2<ex1}
t (x, y) .

(
1 ∧ ρ2(x)√

t

)(
1 ∧ ρ2(y)√

t

)
e−d(x,y)2/ct

tn/2

where ρ2(x) is the distance from the point x to the line x2 = ex1 . The heat kernel for

the region Ω between the lines x2 = 0 and x2 = ex1 is bounded above by the minimum

of these two kernels by the maximum principle. It is likely that better heat kernel upper

bounds exist for Ω in this case, however this maximal principle idea is enough to invoke

the theorems of chapters 4 or 5 to get Riesz transform bounds on the domain Ω, and is

also used in section 9.3 to get bounds for the Hardy inequality on Ω.
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Chapter 8:

Heat Semigroup and Related Bounds

In this chapter the first parts of Theorem 1.5 are proven, along with some other heat

semigroup theorems. This relates to solving heat semigroup and gradient bounds corre-

sponding to conditions (1.3), (1.9) and (1.10) from the introduction chapter, and their

weighted versions (5.5), (5.7) and (5.8).

The space Ω ⊂ Rn is assumed to be open and connected with smooth boundary. In

some parts Ω is named specifically, in other parts the properties of Ω are kept general.

The operator ∆Ω continues as the Dirichlet Laplacian on Ω ⊂ Rn. The first section of

this chapter proves the following extrapolation on the first part of Theorem 1.5.

THEOREM 8.1. Consider the heat semigroup e−t∆Ω with Ω a C1,1 global Lipschitz

domain. Then e−t∆Ω is bounded Lp(w)→ Lp(w) for all weights w in the following class.

ALip1p (w) = sup
B⊂Ω

(
−
∫
B

[
1 ∧ ρ(x)

r

]p
w(x) dx

)(
−
∫
B

[
1 ∧ ρ(x)

r

]p′
w(x)−p

′/p dx

)p/p′
<∞

(8.1)

Next consider the heat semigroup e−t∆Ω with Ω ⊂ Rn, n ≥ 3, as the exterior of a C1,1

compact convex domain1. Then e−t∆Ω is bounded Lp(w) → Lp(w) for all weights w in

the class,

AExt1p (w) = sup
B⊂Ω

(
−
∫
B

[
1 ∧ ρ(x)

1 ∧ r

]p
w(x) dx

)(
−
∫
B

[
1 ∧ ρ(x)

1 ∧ r

]p′
w(x)−p

′/p dx

)p/p′
<∞

(8.2)

Here, as always, r is the radius of B. The proof of this theorem is in section 8.1 of this

chapter and uses results from chapters 6 and 7. The next theorem regards condition (5.5)

1The convex requirement is solely to ensure integration up to the boundary can be managed smoothly
and efficiently and can be replaced with more general requirements if necessary.

123
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for more general Ω ⊂ Rn.

THEOREM 8.2. Given a weight w, suppose that there exists a function u(x) and a

constant c > 0 where w(x) ≤ u(x) ≤ 2w(x) and |∇u(x)| ≤ cu(x)
ρ(x) both hold. Restricting

to only balls away from the boundary c0r(B) < ρ(B), suppose that the weight w satisfies

an A2 condition: (−
∫
B w dx)(−

∫
B w

−1 dx) . 1. Then on such balls the operator ∇e−t∆Ω1Ω

satisfies the following L2 norm bound,

(
−
∫
B
ρ(x)2w(x)−1 dx

) (
−
∫
B
|∇e−r2∆Ω1Ω(x)|2w(x) dx

)
. 1 (8.3)

where again r is the radius of B.

This theorem is proven in section 8.2. In condition (5.5) the weight w is replaced

by w2/p. There is also a k term in condition (5.5), which follows from this theorem by a

basic heat kernel scaling. The second part of Theorem 1.5 is extended in the following

theorem.

THEOREM 8.3. Suppose that w(x) is a weight on Ω ⊂ Rn for which the usual heat

semigroup e−t∆Ω, and a varied version
√
t

ρ(x)e
−t∆Ω, are both bounded Lp(w) → Lp(w).

Further suppose that the heat kernel pt(x, y) satisfies |t d
dtpt(x, y)| . |pt(x, y)|. Then the

heat semigroup of the Dirichlet Laplacian satisfies the following Gaffney estimate for

all f supported on A and all balls B ⊂ Ω.

‖
√
t|∇e−tLf |‖Lp(B,w) . e−d(A,B)2/ct‖f‖Lp(A,w) (8.4)

Theorem 8.3 is proven in section 8.3. Equation (8.4) was required to hold without

weight in chapters 3 and 4, and with weight in chapter 5. Techniques stemming from

‘integration by parts’ on Ω and from the analytic nature of the heat kernel are visited

repeatedly throughout this chapter. In particular ideas of Davies [22] and Li and Yau [50]

are used. In the first section close attention is paid to the heat kernel bounds derived in

the previous chapter. These theorems (with others) are used in chapter 10 of this thesis

as conditions in order to invoke the theorems of chapter 5.
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8.1 The Heat Semigroup

In this section Theorem 8.1 is proven as a combination of Propositions 8.4 and 8.5. After

the proofs there are remarks included regarding further cases.

Proposition 8.4. Suppose Ω ⊂ Rn is a global Lipschitz domain (this is the space

above a C1,1 globally Lipschitz curve). Then the heat semigroup e−t∆Ω satisfies a bound

Lp(w)→ Lp(w) for all weights w in the class ALip1p from Theorem 8.1.

Proof. The kernel of the heat semigroup in this case was given in the previous chapter,

and is stated again below for convenience.

pt(x, y) ∼
(

1 ∧ ρ(x)√
t

)(
1 ∧ ρ(y)√

t

)
e−d(x,y)2/ct

tn/2

Choose αt(x) =
(

1 ∧ ρ(x)√
t

)
and βt(x) =

(
1 ∧ ρ(x)√

t

)
. The idea is to show that this α, β

pair satisfy all of Conditions 6.1 (see chapter 6). Continuity and strict positivity are

trivially satisfied, leaving four remaining conditions: (6.1a), (6.1b), (6.1c) and (6.1d).

For condition (6.1a) consider first balls B away from the boundary r(B) < ρ(B). In

such a case α = β = 1 everywhere in B and this condition holds trivially.

(
−
∫
B
αr2(x)−Aγ dx

)(
−
∫
B
βr2(y)−Aγ

′
dy

)
.

(
−
∫
B

1 dx

)(
−
∫
B

1 dy

)
. 1

Next consider balls B small and near the boundary ρ(B) . r(B). Write x = (x1, . . . , xn)

and let x′ = (x2, . . . , xn). This coordinate system is chosen so that x1 = ψ(x′) is a C1,1

and Lipschitz function ψ : Rn−1 → R that describes the boundary of Ω. Suppose

z = (z1, . . . , zn) is the centre of B and let B′ be the Rn−1 dimensional ball radius r(B)

and centre (z2, . . . , zn). Then the following holds.

(
−
∫
B
αr2(x)−Aγ dx

)(
−
∫
B
βr2(y)−Aγ

′
dy

)
.

(
−
∫
B

rAγ

ρ(x)Aγ
dx

)(
−
∫
B

rAγ
′

ρ(y)Aγ′
dy

)

.

(
1

rn

∫
B′

∫ cr+ψ(x′)

ψ(x′)

rAγ dx1 dx′

(x1 − ψ(x′))Aγ

)(
1

rn

∫
B′

∫ cr+ψ(y′)

ψ(y′)

rAγ
′
dy1 dy′

(y1 − ψ(y′)Aγ′

)
. 1

The value of the constant c in the limits depends on the Lipschitz constant of Ω. The
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integrals require Aγ and Aγ′ to be small enough. This proves condition (6.1a).

Condition (6.1b) is trivial as α, β . 1 implies: −
∫
B α dx−

∫
B β dy . −

∫
B 1 dx−

∫
B 1 dy . 1.

For condition (6.1c), consider x, y ∈ B. Then for all M ≥ 0,

- If ρ(B) ≤ r then: αr2(x) ∼ ρ(x)
r ∼ 2M

(
ρ(x)
2Mr

)
∼ 2Mα4Mr2(x);

- If r ≤ ρ(B) ≤ 2Mr then αr2(x) ∼ 2Mr
ρ(B)α4Mr2(x) where 1 ≤ 2Mr

ρ(B) ≤ 2M ;

- If 2Mr ≤ ρ(B) then αr2(x) ∼ 1 ∼ α4Mr2(x).

This proves (6.1c) for both α and β as they are the same in this case.

Condition (6.1d) holds by the split of the set of all balls I into the set I1 where

ρ(B) ≤ 5r(B) and αr2(x) ∼ ρ(x)/r for x ∈ 5B; and the set I2 where 5r(B) < ρ(B) and

αr2(x) ∼ 1 for x ∈ 5B.

Theorem 6.5 in chapter 6 states that when α and β satisfy Conditions 6.1 the heat

semigroup is bounded for all w in the weight class Aα,βp , which matches ALip1p claimed.

Proposition 8.5. Suppose Ω ⊂ Rn, n ≥ 3, is the exterior of a compact convex C1,1

domain. Then the heat semigroup e−t∆Ω is bounded Lp(w) → Lp(w) for all weights w

in the class AExt1p from Theorem 8.1.

Proof. The kernel of the heat semigroup in this case was stated in the previous chapter.

pt(x, y) ∼
(

1 ∧ ρ(x)

1 ∧
√
t

)(
1 ∧ ρ(y)

1 ∧
√
t

)
e−d(x,y)2/ct

tn/2

Choose αt(x) =
(

1 ∧ ρ(x)

1∧
√
t

)
and βt(x) =

(
1 ∧ ρ(x)

1∧
√
t

)
. These are continuous, strictly

positive in Ω, and pointwise larger than their counterparts in the global Lipschitz case.

For condition (6.1a) observe small balls (r . 1) have locally identical geometry to

the global Lipschitz case, so that condition (6.1a) is satisfied by comparison. Similarly

when 1 . r and ρ(B) ≥ 1 then α = β = 1 so that condition (6.1a) is satisfied trivially.

For large balls (1 . r) near the boundary (ρ(B) < 1), split B into a finite number of

subsets Si, 1 ≤ i ≤ m (m depends only on n and the Lipschitz constant of Ω), where:

S1 = {x ∈ B : ρ(x) ≥ 1} is the collection of x ∈ B away from the boundary; and

S2, . . . , Sm cover those x ∈ B near the boundary (ρ(x) < 1). As Ω is Lipschitz, each

separate Si near the boundary, 2 ≤ i ≤ m, can be sized so that there exists a local

coordinate system (x1, . . . , xn) where distance to the boundary for each x ∈ Si has

approximation: ρ(x) ∼ x1 − ψ(x2, . . . , xn) for some Lipschitz and C1,1 function ψ that
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locally describes δΩ. Using these sets Si construct the following bound.

−
∫
B
αr2(x)−Aγ dx−

∫
B
βr2(y)−Aγ

′
dy

.
1

r2n

(
|S1|+

m∑
i=2

∫
Si

dx

[x1 − ψ(x′)]Aγ

)(
|S1|+

m∑
i=2

∫
Si

dy

(y1 − ψ(y′)Aγ′

)

.
1

r2n

(
rn + rn−1

m∑
i=2

∫ c

0

dt

tAγ

)(
rn + rn−1

m∑
i=2

∫ c

0

ds

sAγ′
+ 1

)
. 1

The integrals require Aγ and Aγ′ to be small enough. This proves condition (6.1a).

Further both α and β are less then 1 so must satisfy condition (6.1b).

The third condition (6.1c) is again by direct verification:

- If 2Mr ≤ 1 then the proof is the same as in the previous case;

- If ρ(B) ≤ r ≤ 1 ≤ 2Mr then αr2(x) ∼ ρ(x)
r ∼

1
rα4Mr2(x) where 1 ≤ 1

r ≤ 2M ;

- If r ≤ ρ(B) ≤ 1 ≤ 2Mr then αr2(x) ∼ 1 ∼ ρ(x)
ρ(B) ∼

α
4Mr2

(x)

ρ(B) where 1 ≤ 1
ρ(B) ≤ 2M ;

- If r ≤ 1 ≤ 2Mr ∧ ρ(B) or if 1 ≤ r ∧ ρ(B) then αr2(x) ∼ 1 ∼ α4Mr2(x);

- Last is the case ρ(B) ≤ 1 ≤ r which gives αr2(x) ∼ ρ(x) ∼ α4Mr2(x).

This concludes the verification of condition (6.1c), using that α and β are identical

here. The final condition (6.1d) holds by splitting the set of all balls in Ω into the sets:

- I1 where 1 ≤ r(B) so that αr2(x) = 1 ∧ ρ(x) on 5B;

- I2 where ρ(B) ≤ 5r(B) < 5 so that αr2(x) ∼ ρ(x)/r on 5B;

- I3 where 5r(B) < ρ(B) ∧ 5 so that αr2(x) ∼ 1 on 5B.

This concludes the proof.

Remarks 8.6. A similar conclusion holds for the exterior of the parabola x2 = x2
1 case,

this time with weight class AParap given below, where R = max(x2, 1).

AParap (w) = sup
B

(
−
∫
B

[(
1 ∧ ρ(x)

R ∧ r

)(
1 ∧ ρ(x)

r

)]p/2
w(x) dx

)

·

(
−
∫
B

[(
1 ∧ ρ(x)

R ∧ r

)(
1 ∧ ρ(x)

r

)]p′/2
w(x)−p

′/p dx

)p/p′
. 1

The non-doubling case of {(x1, x2) ∈ R2 : 0 < x2 < ex1} can similarly be shown

to have a weight class Aα,βp with α = (1 ∧ ρ(x)√
t

) and β = 1 based on the heat kernel

derived in section 7.3. This would require an extension of the heat kernel of that case

to Rn (or another suitable doubling space) for correct use of the theorems of chapter 6.
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Alternatively, the maximal principle can be used to determine weights by comparison

to the heat semigroups on the domains given by S1 = {(x1, x2) ∈ R2 : x2 > 0} and

S2 = {(x1, x2) ∈ R2 : x2 < ex1} which have weight classes as global Lipschitz domains.

This maximal principle idea is used in section 9.3 for Hardy operator bounds

Remarks 8.7. Weights of the form w(x) = ρ(x)k are in both the exterior and global

Lipschitz case weight classes for all k in the range −p− 1 < k < 2p− 1. On balls away

from the boundary (r(B) . ρ(B)) then α = β = 1 in all examples. Hence away from

the boundary the weights resemble the standard Ap Muckenhoupt weights. It is near

the boundary (ρ(B) . r(B)) that the weights act outside the Muckenhoupt classes.

8.2 Gradient of Semigroup Unit

In this section Theorem 8.2 is proven. This theorem bounds −
∫
B |∇e

−r2∆Ω1Ω|2 dx. It is

not good enough to seek the L1 norm bound ‖|∇pr2(x, ·)|‖1, as such a bound is much too

large for our purposes. Some concept of cancellation inside the kernel ∇pt(x, y) needs

to be accounted for. Begin with some remarks.

Remarks 8.8. The idea behind the proof of Theorem 8.2 is to break the heat semi-

group up into the terms e−r
2∆Rn1Ω and e−r

2∆Ω1Ω−e−r
2∆Rn1Ω (∆Rn means the standard

Laplacian on Rn). The key is how quickly as r grows do the respective kernels pΩ
r2(x, y)

and pR
n

r2 (x, y) separate. In Lemma 8.9 this rate is shown comparable to e−ρ(x)2/r2
. Tech-

niques of Davies [20] convert this to an estimate on ∆e−r
2∆Ω1Ω. This is further converted

to an estimate on
∫
B |∇e

−r2∆Ω1Ω|2 dx by an ‘integration by parts’ argument.

In fact for r large and small it is not difficult to see that Theorem 8.2 will hold. Firstly

with appropriate smoothness on the heat kernel it would be reasonable to expect,

lim
r→0
∇e−r2L1Ω(x) = 0

holds for all x ∈ Ω, due to approximation to the identity properties of the heat kernel.

As r tends to 0 there is a preservation effect, as the heat has not had time to escape

through the boundary. Secondly observe that the second integral in equation (8.3) resem-

bles part of the L2 Gaffney estimate given in equation (1.9). In this regard consider 1Ω
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as a sum 1Ω =
∑

1Ci where Ci are the shells 2i+1B \2iB. Then by the Gaffney estimate,

1

|B|

∫
B
|∇e−r2L1Ω|2 dx ≤

∑
i

2in

|2iB|

∫
B
|∇e−r2L1Ci |2 dx

.
∑
i

2in

|2iB|
e−c4

i

r2

∫
Ci

1 dx .
∑
i

2ine−c4
i

r2
.

1

r2

So for r very small or very large Theorem 8.2 will hold. The proof will verify these

observations and include bounds with r between these extremes.

Lemma 8.9. Suppose that Ω is an open subset of Rn. Then the Dirichlet heat semigroup

in Ω satisfies the following bounds for all x ∈ Ω.

|1− e−t∆Ω1Ω(x)| . e−ρ(x)2/72t and |∆e−t∆Ω1Ω(x)| . e−ρ(x)2/144t

t

where ρ(x) is the distance from x to the boundary δΩ.

Proof. There are 3 parts to this proof. The first part of the proof finds a bound for the

term e−t∆Rn1Ω(x). The heat kernel pR
n

t (x, y) is well known to be the Gaussian function

which is used to our advantage. The following holds for all x ∈ Ω.

e−t∆Rn1Ω(x) =

∫
Ω

e−d(x,y)2/4t

(4πt)n/2
1 dy =

∫
Rn

e−d(x,y)2/4t

(4πt)n/2
1 dy −

∫
Ωc

e−d(x,y)2/4t

(4πt)n/2
1 dy

The first integral on the right is 1, and for the second integral on the right use that as

x ∈ Ω, then d(x, y) > ρ(x) (meaning e−ρ(x)2/8t > e−d(x,y)2/8t). The second integral keeps

a e−d(x,y)2/8t term, so is still over a Gaussian function, and can be evaluated as 2n/2.

e−t∆Rn1Ω(x) ≥ 1− e−ρ(x)2/8t

∫
Ωc

e−d(x,y)2/8t

(4πt)n/2
1 dy ≥ 1− 2n/2e−ρ(x)2/8t

Note that 0 is also a lower bound by the maximum principle, so the calculated lower

bound only gives insight when ρ(x)/
√
t is large. The maximum principle also gives an

upper bound of 1. This result holds for all x ∈ Ω.

1− cne−ρ(x)2/8t ≤ e−t∆Rn1Ω(x) ≤ 1 (8.5)

Let pΩ
t (x, y) be the Dirichlet heat kernel for Ω, and p

By
t (x, y) be the Dirichlet heat
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kernel for the ball with centre at y and radius ρ(y). Whenever x ∈ By the inequalities

0 ≤ p
By
t (x, y) ≤ pΩ

t (x, y) ≤ pR
n

t (x, y) hold by the maximum principle. For the same x, y

pair,

pR
n

t (x, y)− pΩ
t (x, y) ≤ pRnt (x, y)− pByt (x, y)

which means a lower bound for p
By
t (x, y) is needed. Again by the maximum principle,

p
By
t (x, y) ≥ pRnt (x, y)−

n∑
i=1

pR
n

t (x, y′i)−
n∑
i=1

pR
n

t (x, y′′i )

where y′i = (y1, . . . , yi−1, yi + ρ(y), yi+1, . . . , yn) and y′′i is similarly defined but with ρ(y)

subtracted from the ith coordinate rather then added. Let By/2 be the ball with centre y

and radius ρ(y)/2. Then the following holds for all x ∈ Ω.

pR
n

t (x, y)− pΩ
t (x, y) ≤


pR

n

t (x, y) if x /∈ By/2∑n
i=1

[
pR

n

t (x, y′i) + pR
n

t (x, y′′i )
]

if x ∈ By/2

=
1

(4πt)
n
2


e−

d(x,y)2

4t if x /∈ By/2∑n
i=1

[
e−

d(x,y′i)
2

4t + e−
d(x,y′′i )2

4t

]
if x ∈ By/2

Then ρ(x) ≤ 3d(x, y) for all x /∈ By/2 and also both ρ(x) ≤ 3d(x, y′i) and ρ(x) ≤ 3d(x, y′′i )

hold for all x ∈ By/2 and integers 1 ≤ i ≤ n. This means a ρ(x) term can be separated

from the heat kernels.

pR
n

t (x, y)− pΩ
t (x, y) ≤ e−ρ(x)2/72t

(4πt)n/2


e−d(x,y)2/8t if x /∈ By/2∑n

i=1

[
e−

d(x,y′i)
2

8t + e−
d(x,y′′i )2

8t

]
if x ∈ By/2

An e−ρ(y)2/ct term could also be separated if wished, but it is not necessary. Observe that

d(x, y) ≤ d(x, y′i) and d(x, y) ≤ d(x, y′′i ) are true for all x ∈ By/2 and integers 1 ≤ i ≤ n.

Hence the following upper bound holds regardless of the position of x and y in Ω.

pR
n

t (x, y)− pΩ
t (x, y) ≤ 2ne−ρ(x)2/72t

(4πt)n/2
e−d(x,y)2/8t

Integrate the above equation over Ω with respect to y to get an inequality of the following



8.2. GRADIENT OF SEMIGROUP UNIT 131

form: e−t∆Rn1Ω(x) − e−t∆Ω1Ω(x) ≤ cne
−ρ(x)2/72t. Then combine with the lower bound

for e−t∆Rn1Ω(x) from equation (8.5).

1− e−t∆Ω1Ω(x) ≤ cne−ρ(x)2/72t (8.6)

This holds for all x ∈ Ω. This is the first result of the lemma. This result is trivial if

cne
−ρ(x)2/72t ≥ 1 but the important part is when ρ(x)2/72t is large.

The final part of this proof is to find a bound for ∆e−t∆Ω1. To do this first a time

derivative bound for the difference constructed above is needed. A method similar to

that of Davies [22] proposition 1 part 2 is used. Let h(z) = eρ(x)2/72z(1 − e−z∆Ω1Ω), so

that h(z) (which is a holomorphic function for z 6= 0 complex) is bounded above by a

constant with respect to z. Call this constant C0 and use Cauchy’s integral formula with

a loop centre t and radius t/2 to get a bound of the form: |h′(t)| ≤ 2C0
t . Substitute in

the definition of h(t) and use the product rule to get,

∣∣∣ρ(x)2

72t2
eρ(x)2/72t(1− e−t∆Ω1Ω) + eρ(x)2/72t

[ d

dt
e−t∆Ω1Ω

]∣∣∣ ≤ 2C0

t

which can be rearranged for for a bound on d
dte
−t∆Ω1Ω.

∣∣∣ d

dt
e−t∆Ω1Ω

∣∣∣ ≤ 2C0e
−ρ(x)2/72t

t
+
ρ(x)2

72t2
|1− e−t∆Ω1Ω|

Then use the upper bound for 1 − e−t∆Ω1Ω found in equation (8.6) (a lower bound for

this term is 0 by the maximal principle).

∣∣∣ d

dt
e−t∆Ω1Ω

∣∣∣ . e−ρ(x)2/72t

t

[
1 +

ρ(x)2

t

]
.
e−ρ(x)2/144t

t

Use that e−t∆Ω1Ω satisfies the heat equation,

|∆Ωe
−t∆Ω1Ω(x)| . e−ρ(x)2/144t

t

where ∆Ωe
−t∆Ωf = ∆e−t∆Ωf for all t > 0 as e−t∆Ωf(x) ∈ C2

0 . This bound holds for all

x ∈ Ω, the constant depends only on n.

The bounds from the previous lemma are now used to prove Theorem 8.2: that the
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weighted equation (5.5) holds in the case of L = ∆Ω as the Dirchlet Laplacian on a

subset Ω ⊂ Rn.

Proof of Theorem 8.2. Recall that the ball B(x0, r) is away from the boundary (meaning

that 2r(B) < ρ(B)) and let φ(x) be an additional weight function supported on 2B. This

weight function satisfies the following properties:

• φ is in C∞c (Rn) and has support on B(x0, 2r);

• φ(x) ≤ c|B(x0, r)|−1/2 for all x ∈ Ω;

• φ(x) ≥ c|B(x0, r)|−1/2 for all x ∈ B(x0, r); and,

• there exists a constant c such that |∇φ(x)| ≤ cr−n/2−1 for all x ∈ Rn.

A continuous and compactly supported approximation of r−n/2e−
∑
|xi−x0|/r will do. The

proof will centre around the following constant A.

A2 =

∫
Ω
φ(x)2|∇e−r2∆Ω1Ω(x)|2u(x) dx

= −
∫

Ω
φ(x)2∇(1− e−r2∆Ω1Ω(x)) · ∇e−r2∆Ω1Ω(x)u(x) dx

Use integration by parts, using that φ(x) is smooth and vanishes on δΩ by construction.

Also use the product rule of differentiation.

A2 ≤
∫

Ω

(
1− e−r2∆Ω1Ω(x)

)
∇[φ(x)2∇e−r2∆Ω1Ω(x)u(x)] dx

≤
∫

Ω

(
1− e−r2∆Ω1Ω(x)

)
φ(x)2∆e−r

2∆Ω1Ω(x)u(x)

+
(
1− e−r2∆Ω1Ω(x)

)
φ(x)∇e−r2∆Ω1Ω(x) ·

[
2u(x)∇φ(x) + φ(x)∇u(x)

]
dx

Insert upper bounds for 1− e−t∆Ω1Ω(x) and ∆e−t∆Ω1Ω(x) determined in previous lem-

mas. Also use the support of φ(x) and the upper bounds |∇φ(x)| . r−n/2−1 determined

by construction, and |∇u(x)| . u(x)/ρ(x) determined by assumption. The ball 2B does

not touch the boundary δΩ so satisfies r−n ∼ |2B|−1 by local doubling.

A2 .
∫

2B
φ(x)2 e

− cρ(x)2

r2

r2
u(x) + φ(x)e−

cρ(x)2

r2 |∇e−r2∆Ω1Ω(x)|u(x)
[ 1

rn/2+1
+
φ(x)

ρ(x)

]
dx
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Use Hölder’s inequality on second part on the right.

A2 .
∫

2B
φ(x)2 e

−cρ(x)2/r2

r2
u(x) dx

+

[∫
2B

[ 1

rn+2
+
φ(x)2

ρ(x)2

]
e−

2cρ(x)2

r2 u(x) dx

] 1
2
[∫

2B
φ(x)2|∇e−r2∆Ω1Ω(x)|2u(x) dx

] 1
2

Next substitute A in on the right and use that φ(x) . r−n/2 which translates to |2B|−1/2

due to 2B away from the boundary. Also use here that e−ρ(x)2/r2
. (1 ∧ r2

ρ(x)2 ).

A2 . −
∫

2B

1

ρ(x)2
u(x) dx+

[
−
∫

2B

1

ρ(x)2
u(x) dx

]1/2

A

This is a quadratic in A which can be solved.

A .
1

2

[
−
∫

2B

1

ρ(x)2
u(x) dx

]1/2

Use u(x) ≤ 2w(x) and multiply the above equation squared by −
∫
ρ(x)2w(x)−1 dx.

A2−
∫
B
ρ(x)2w(x)−1 dx .

(
−
∫
B
ρ(x)2w(x)−1 dx

) (
−
∫

2B

1

ρ(x)2
w(x) dx

)

Use that ρ(B) > 2r implies ρ(2B) > r, so that for all y ∈ B and x ∈ 2B then the

relations ρ(y) ≤ ρ(B) + 2r ≤ 4ρ(2B) ≤ 4ρ(x) hold. Hence the ρ(x) terms in the two

integrals will cancel to give,

A2−
∫
B
ρ(x)2w(x)−1 dx .

(
−
∫
B
w(x)−1 dx

) (
−
∫

2B
w(x) dx

)

which is itself bounded by a constant as w(x) satisfies an A2 condition for balls away

from the boundary. A lower bound for A2 is given by −
∫
B |∇e

−r2∆Ω1(x)|2w(x) dx due to

the lower bound of φ in the ball B, and the lower bound of w(x) for the weight u(x).

(
−
∫
B
ρ(x)2w(x)−1 dx

) (
−
∫
B
|∇e−r2∆Ω1(x)|2w(x) dx

)
. 1

This concludes the proof.

A similar result would hold for balls near the boundary if w ∈ A2 for such balls. It
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is only the away from boundary case that is needed to invoke chapter 5 theorems.

8.3 Gaffney Estimates

In this section Theorem 8.3 is proven. Similar ideas to those in the previous section of

this chapter are used. This includes use of the techniques of Davies [22] and ‘integration

by parts’ methods. The latter part of this section uses localised estimates from Li and

Yau [50]. These estimates find an upper bound of the gradient
√
t|∇pΩ

t (x, y)| in terms of

the kernels of both the heat semigroup and the Hardy operator. To begin is a proposition

well known in the literature, see for example [5], where this proposition and proof are

contained as a comment.

Proposition 8.10. Suppose that the Riesz transform is bounded Lp(Ω)→ Lp(Ω). Then

the on-diagonal Gaffney inequality also holds Lp(Ω)→ Lp(Ω).

Proof. This can be shown by: ‖
√
t|∇e−tLf |‖p ≤ ‖

√
tL1/2e−tLf‖p ≤ ‖f‖p, where the first

inequality is due to a Sobolev inequality as a result of a Riesz transform bound, and the

second holds as the heat semigroup is analytic.

So the Lp Gaffney condition is necessary for an Lp Riesz transform. The on-diagonal

part of the L2 Gaffney estimate is similarly necessary, and thus follows from, the L2

Riesz transform (5.6). The following lemma looks towards getting the off-diagonal part

of the L2 Gaffney estimate.

Lemma 8.11. Suppose that Ω ⊂ Rn, and that the Dirichlet heat kernel pt(x, y) has

upper bound,

pt(x, y) . αt(x)αt(y)
e−d(x,y)2/ct

tn/2

for some α, α pair satisfying all of Conditions 6.1. Then the heat semigroup e−t∆Ω

satisfies the following Davies-Gaffney estimate,

‖e−t∆Ωf‖L2(A,w) + ‖t∆e−t∆Ωf‖L2(A,w) . e−d(A,B)2/ct‖f‖L2(B,w)

for all sets A,B ⊂ Ω, all f supported on B, and all weights w in the class Aα,α2 (see

chapter 6 for the details of such a weight class).
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Proof. Start by considering the inequality for e−t∆Ω . If d(A,B) = 0 then the result is a

corollary of Theorem 6.5 in chapter 6. If d(A,B) 6= 0, then the kernel of e−tL will contain

e−d(x,y)2/ct = e−d(A,B)2/2cte−d(x,y)2/2ct for all x ∈ A, y ∈ B. Extracting the e−d(A,B)2/2ct

part allows the lemma again to hold as a corollary of Theorem 6.5 in chapter 6.

The remainder of the proof is for the value ∆e−t∆. The techniques of Davies are used

similar to as in the previous section. The difference e−t∆Ω − e−t∆Rn cannot be used as

in the previous section here as the term e−t∆Rn will not disappear in this case. Fix f(x)

and let h(z) = e−z∆Ωf(x), which is holomorphic and bounded above. Then by Cauchy’s

integral formula,

|h′(t)| . e−t∆Ωf(x)

t

and as h(t) = e−t∆Ωf(x) satisfies the heat equation in Ω the following holds,

|∆e−t∆Ωf(x)| . e−t∆Ωf(x)

t

using ∆Ωe
−t∆Ωf(x) and ∆e−t∆Ωf(x) are identical for all t > 0. So the result holds for

t∆e−t∆Ωf(x) as a consequence of the result for e−t∆Ωf(x).

It remains to prove a similar estimate for |∇e−tLf |. The method is inspired by [5].

Proposition 8.12. Suppose that w(x) is a weight on Ω for which e−t∆Ω and t∆e−t∆Ω are

off-diagonally L2(w) bounded, and for which 1
ρ(x)∆

−1/2
Ω and ∇∆

−1/2
Ω are on-diagonally

L2(w) bounded. Further suppose there exists a function u(x) and a constant c > 0 such

that w(x) < u(x) < 2w(x) and |∇u(x)| . u(x)
ρ(x) . Then the heat semigroup e−t∆Ω of the

Laplace operator with Dirichlet boundary conditions on Ω satisfies the following Gaffney

estimate for all f supported on B.

‖
√
t|∇e−t∆Ωf |‖L2(A,w) . e−d(A,B)2/ct‖f‖L2(B,w)

Proof. The bound when d(A,B) <
√
t is a consequence of the Riesz transform being

bounded on L2(w), using in that case e−d(x,y)2/ct > e−1/c. It remains to consider the

case d(A,B) >
√
t > 0. Define φ as a continuous function satisfying the following

properties:

• φ ∈ C∞0 and is supported on A0, where A ⊂ A0 and d(A,B) < 2d(A0, B);
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• φ = 1 on A and φ ≤ 1 for all other x ∈ Ω; and,

• there exists c where |∇φ(x)| ≤ cd(A,B)−1 for all x ∈ Ω.

Next define the function Φ by,

Φ2 =

∫
A0

t φ(x)2|∇e−t∆Ωf(x)|2u(x) dx

then use integration by parts (it is important in that regard that e−t∆Ωf(x) vanishes on

the boundary and φ(x) is supported on A0), and differentiation by the product rule.

Φ2 =

∫
A0

tφ(x)2 [∇e−t∆Ωf(x) · ∇e−t∆Ωf(x)]u(x) dx

= t

∫
A0

(
φ(x)2 ∆e−t∆Ωf(x) e−t∆Ωf(x)w(x)

− 2φ(x)
[
∇φ(x) · ∇e−t∆Ωf(x)

]
e−t∆Ωf(x)u(x)

− φ(x)2
[
∇u(x) · ∇e−t∆Ωf(x)

]
e−t∆Ωf(x)

)
dx

Use the constructed upper bound for |∇φ|, and the assumed upper bound for |∇u(x)|.

Φ2 . t

∫
A0

(
|φ(x)2∆e−t∆Ωf(x)e−t∆Ωf(x)u(x)|+ | cφ(x)

d(A,B)
|∇e−t∆Ωf(x)| e−t∆Ωf(x)u(x)|

+ |φ(x)2|∇e−t∆Ωf(x)| e−t∆Ωf(x)
u(x)

ρ(x)
|
)

dx

Next Hölder’s inequality is used on each term, and also use φ ≤ 1.

Φ2 .
[ ∫

A0

|t∆e−t∆Ωf(x)|2u(x) dx
]1/2[ ∫

A0

|e−t∆Ωf(x)|2u(x) dx
]1/2

+

√
t

d(A,B)

[ ∫
A0

tφ(x)2|∇e−t∆Ωf(x)|2u(x) dx
]1/2[ ∫

A0

|e−t∆Ωf(x)|2u(x) dx
]1/2

+
[ ∫

A0

tφ(x)2|∇e−t∆Ωf(x)|2u(x) dx
]1/2[ ∫

A0

|
√
t

ρ(x)
e−t∆Ωf(x)|2u(x) dx

]1/2

Next use that u(x) < 2w(x), that 1
ρ∆
−1/2
Ω is bounded for the weight w, and that e−t∆Ω

and t∆e−t∆Ω are off-diagonally bounded for the same weight w. Also use the definition
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of Φ to replace appropriate terms.

Φ2 . e−d(A,B)2/ct‖f‖2L2(B,w) + e−d(A,B)2/ct‖f‖L2(B,w)

[ √
t

d(A,B)
+ 1
]
Φ

This can be solved as a quadratic inequality to get the bound,

Φ . e−d(A,B)2/ct‖f‖L2(B,w)

with d(A,B) >
√
t. The result follows as Φ is an upper bound for ‖|∇e−t∆Ωf |‖L2(A,w).

The ρ(x)√
t
e−t∆Ω part of the proof of Proposition 8.12 is only involved for arbitrary

weights. If w = 1 was the weight considered, then |∇w| = 0 and the ρ(x)√
t
e−t∆Ω part

vanishes. An Lp(w) bound for the Hardy operator 1
ρ∆
−1/2
Ω would imply an Lp(w) bound

for ρ(x)√
t
e−t∆Ω . Weighted Lp bounds for 1

ρ∆
−1/2
Ω and ρ(x)√

t
e−t∆Ω are considered in chap-

ter 9. The L2 weighted Riesz transform that was required in this proof is considered in

chapter 10.

The proof of Proposition 8.12 does not work to prove Lp bounds. Hence a different

approach is taken. This new approach is specific for the case Ω ⊂ Rn and L the Dirichlet

Laplacian. The result of Proposition 8.12 is implied by the proof below, but was proven

separately above to keep the L2 Gaffney inequality method as general as possible.

This next part uses a localised result from Li and Yau [50]. For further detail see

also Zhang [76] and for variations see Perelman [55] and Zhang [75] and Zhang and

Souplet [63].

Lemma 8.13 (Lemma 1.1 in [50]). Suppose f satisfies the following differential equation.

(
∆ +

d

dt

)
f = −|∇f |2 (8.7)

Then the function F given by F = t|∇f |2 − 2tft satisfies the following inequality.

(
∆ +

d

dt

)
F ≥ −2∇f · ∇F − F

t
+

2t

n
(|∇f |2 − ft)2

The proof is by direct computation and is contained in [50] so will not be proven
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here. The important part is how the above lemma is used in the proof of the next lemma,

which is a version of Theorem 1.2 from [50].

Lemma 8.14. Suppose that pt(x, y) is a heat kernel in Ω. Then pt(x, y) satisfies the

following bound for all x ∈ Ω, t > 0.

t|∇pt(x, y)|2 ≤ c(1 +
t

ρ(x)2
)pt(x, y)

[
pt(x, y) + 2t

d

dt
pt(x, y)

]

Proof. Choose a ball B centre x where r(B) < ρ(B). Define the function φ ∈ C2(Ω)

supported on 2B where φ(x) = 1 for all x ∈ B and φ satisfies the following upper bounds

on its first two derivatives: |∇φ(x)| < r−1
√
φ(x) and |∆φ(x)| ≤ cr−2. Let F be as in

the previous lemma and let (x0, t0) be the point in 2B × [0, t] at which φF is maximal.

At such a point (x0, t0) there are the following three properties.

∇(φF ) = 0 and (φF )t ≥ 0 and −∆(φF ) ≤ 0

Note that t0 = 0 cannot occur as F = 0 at t = 0 by construction. Further if t0 ∈ (0, t)

then (φF )t = 0 would occur. The (φF )t ≥ 0 then takes into account the possibility

t0 = t. Expand out the third property in the equation above.

0 ≥ (−∆φ)F + 2∇F · ∇φ+ φ(−∆F )

Apply Lemma 8.13 to ∆F along with the bound constructed earlier for ∆φ. For ∇φ

use the expansion given by ∇(φF ) = φ(∇F ) + (∇φ)F so that at the point (x0, t0), the

equality φ(∇F ) = −(∇φ)F occurs.

0 ≥ −c F
r2
− 2F

φ
|∇φ|2 + φ

(
− 2∇f · ∇F − F

t0
+

2t0
n

(|∇f |2 − ft)2 + Ft

)

Use the upper bound constructed for |∇φ| and use again that φ(∇F ) = −(∇φ)F . Also

use the lower bound stated at (x0, t0) for Ft earlier (the φ is independent of t).

0 ≥ −c F
r2

+ 2F∇f · ∇φ− φF

t0
+

2φt0
n

(|∇f |2 − ft)2
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Next multiply through by φt0 and use the upper bound constructed for |∇φ|.

0 ≥ −cφt0F
r2
− 2φ3/2t0F

r
|∇f | − φ2F +

2φ2t20
n

(|∇f |2 − ft)2

Use that for any positive number A then A ≤ 1 + A2. So let A be given by the value

A = φ1/2|∇f |r(2n)−1 and then apply this principle (using also that F is positive at its

maximum point (x0, t0)).

0 ≥ −cφt0F
r2
− 4nφt0F

r2
− φ2t0

n
F |∇f |2 − φ2F +

2φ2t20
n

(|∇f |2 − ft)2

Move some terms to the other side of the equation and substitute in the definition of F .

c
φt0F

r2
≥ −φ

2t0
n

F |∇f |2 − φ2F +
φ2

2n
(2F + t0|∇f |2)2

≥ −φ2F +
2φ2F 2

n
+
φ2t0F |∇f |2

n
+
φ2t20|∇f |4

2n

Remove two of the positive terms to get,

c
φt0F

r2
+ φ2F ≥ 2φ2F 2

n

which implies φF ≤ c(1 + t0
r2 ). Choose then for f the value f = log(pt(x, y)) which

satisfies the requirement (8.7) from Lemma 8.13. The value F can then be written in

terms of pt(x, y).

φ
( t|∇pt(x, y)|2

pt(x, y)2
− 2t

d
dtpt(x, y)

pt(x, y)

)
≤ c(1 +

t0
r2

)

Remove φ and arrange the equation using t0 ≤ t for,

t|∇pt(x, y)|2 ≤ c(1 +
t

r2
)pt(x, y)

[
pt(x, y) + 2t

d

dt
pt(x, y)

]

which holds for all x ∈ B and t ∈ (0,∞). The radius r = r(B) can be made as large

as ρ(x)/2. This substitution in the above equation concludes the proof.
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Proof of Theorem 8.3. From the previous lemma the following holds.

t|∇pt(x, y)|2 . p2
t +

t

ρ(x)2
p2
t + pt

∣∣∣t d

dt
pt

∣∣∣+
t

ρ(x)2
pt

∣∣∣t d

dt
pt

∣∣∣
Further in the exterior of a convex object case, and in the area above a Lipschitz function

case, the work of Davies [22] implies the value
∣∣∣t d

dtpt

∣∣∣ has an upper bound of the heat

kernel pt(x, y) (identical to the idea of Lemma 8.9 where bounds for ∆e−t∆Ωf were

found). This means an upper bound for ∇pt(x, y) is then,

√
t|∇pt(x, y)| . pt(x, y) +

√
t

ρ(x)
pt(x, y)

which for f supported on the set A ⊂ Ω gives the following.

‖
√
t|∇e−t∆Ωf |‖pLp(B,w)

.
∫
B

[ ∫
A

√
t|∇pt(x, y)|f(y) dy

]p
w(x) dx

.
∫
B

[ ∫
A
pt(x, y)f(y) +

√
t

ρ(x)
pt(x, y)f(y) dy

]p
w(x) dx

. e−d(A,B)/2ct

∫
B

[ ∫
A
p2t(x, y)f(y) +

√
t

ρ(x)
p2t(x, y)f(y) dy

]p
w(x) dx

. e−d(A,B)/2ct

∫
B

[
e−2t∆Ωf(x)

]p
w(x) dx+ e−d(A,B)/2ct

∫
B

[ √t
ρ(x)

e−2t∆Ωf(x)
]p
w(x) dx

. e−d(A,B)/2ct‖e−2t∆Ωf‖pLp(B,w) + e−d(A,B)/2ct‖
√
t

ρ
e−2t∆Ωf‖Lp(B,w)

So the operator
√
t∇e−tL is bounded Lp → Lp for all weights w for which the heat

semigroup and a variation by
√
t
ρ are bounded Lp → Lp for. Precisely what this class

of weights looks like in the exterior and global Lipschitz cases is considered in the next

chapter.



Chapter 9:

Weighted Hardy Estimates

In this chapter the latter parts of Theorem 1.5 are proven. This is achieved via Theo-

rems 9.1 and 9.3 below. The traditional Hardy inequality is the result,

∫ ∞
0

[
1

x

∫ x

0
|f(t)|dt

]p
dx ≤

(
p

p− 1

)p ∫ ∞
0
|f(x)|p dx

which holds for all f ∈ Lp(R+). This is based on a discrete inequality first considered

by Hardy in [40]. This chapter determines the values p and weights w for which a

generalised version of the Hardy inequality holds,

‖1

ρ
∆
−1/2
Ω f‖Lp(w) . ‖f‖Lp(w) (9.1)

and for which a semigroup inequality of a similar form holds.

‖
√
t

ρ
e−t∆Ωf‖Lp(w) . ‖f‖Lp(w) (9.2)

In the case of Ω ⊂ Rn, n ≥ 3, as the exterior of a compact convex object, it is known

from Killip, Visan and Zhang [48], that equation (9.1) holds with weight w = 1 for

1 < p < n. It could further be argued that [48] implies in the case of Ω as a C1,1 global

Lipschitz domain that equation (9.1) holds for w = 1 and all 1 < p <∞.

Theorem 6.5 from Chapter 6 is used in parts of this chapter. There is also discussion

regarding how the weight classes found compare to the standard Ap classes. To begin is

a summary of the main results, some repeat Theorem 1.5.

THEOREM 9.1. Let Ω ⊂ Rn be the exterior of a C1,1 compact convex domain with

141
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locally Lipschitz boundary1. Then the Hardy operator on such a domain is bounded

Lp(w)→ Lp(w) for weights w of the form w(x) ∼ ρ(x)k with max(−1, p−n) < k < 2p−1.

There is an even better range for the global Lipschitz case.

THEOREM 9.2. Let Ω ⊂ Rn be a global Lipschitz domain2. Then the Hardy operator

on such a domain is bounded Lp(w)→ Lp(w) for all weights w of the form w(x) ∼ ρ(x)k

with −1 < k < 2p− 1.

The final theorem considers the operator
√
t

ρ(x)e
−t∆Ω . As always r is the radius of B.

THEOREM 9.3. Let Ω ⊂ Rn be the exterior of a C1,1 compact convex domain with

locally Lipschitz boundary. Then the operator
√
t

ρ(x)e
−t∆Ω is bounded Lp(w)→ Lp(w) for

all weights w satisfying AExt2p (w) <∞ with AExt2p (w) defined by the following equation.

AExt2p (w)
def
= sup

B⊂Ω

(
−
∫
B

[
r

r ∧ ρ(x)
∧ r

r ∧ 1

]p
w(x) dx

)(
−
∫
B

[
1 ∧ ρ(y)

r ∧ 1

]p′
w(x)

− p
′
p dx

) p
p′

Similarly let Ω ⊂ Rn be a global Lipschitz domain. Then the operator
√
t

ρ(x)e
−t∆Ω is

bounded Lp(w) → Lp(w) for all weights w satisfying ALip2p (w) < ∞ where ALip2p (w) is

defined by the following equation.

ALip2p (w)
def
= sup

B⊂Ω

(
−
∫
B
w(x) dx

)(
−
∫
B

[
1 ∧ ρ(y)

r

]p′
w(x)−p

′/p dx

)p/p′
(9.3)

Remarks 9.4. The Gaffney inequality is bounded for the same weight classes as in

Theorem 9.3 above due to Theorem 8.3. It is important that there are local coordinate

systems that allow smooth integration up to boundaries. Comments are given in the

last section of this chapter regarding the area below a parabola in R2 and the non-

doubling example {(x1, x2) : 0 < x2 < ex1}. The better than Gaussian upper bounds

from chapter 7 are used extensively in this chapter, and directly determine the range of

weights found. Away from boundaries (and away from extreme points x with ρ(x)→∞)

the weights found act similar to those in the traditional Muckenhoupt weight classes.

1As in the previous chapter the convexity condition is solely to ensure neat integration up to the
boundary in the proofs, and can be weakened if necessary.

2This is the space above a C1,1 globally Lipschitz and bounded Rn−1 curve
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For the sake of comparison consider the following example regarding when the weight

w(x) = ρ(x)k is in the traditional Ap Muckenhoupt weight class.

Example 9.5. Let Ω ⊂ Rn be a domain with Lipschitz and C1,1 boundary. This example

is completed with the global Lipschitz and exterior type domains in mind. Consider the

traditional Muckenhoupt class defined according to balls in this domain.

Ap(w) = sup
B⊂Ω

(
−
∫
B
w(x) dx

)(
−
∫
B
w(x)−p

′/p dx

)p/p′
<∞

Let w(x) = ρ(x)k and consider 2 cases. Firstly if r(B) . ρ(B) then the relation given

by ρ(B) ∼ ρ(x) holds due to the set of inequalities: ρ(B) < ρ(x) < ρ(B) + r < 2ρ(B).

(
−
∫
B
ρ(x)k dx

)(
−
∫
B
ρ(x)−kp

′/p dx

)p/p′
. ρ(B)k

(
ρ(B)−kp

′/p
)p/p′

. 1

So there is no restriction on k from this part. Next consider the case ρ(B) . r(B).

Suppose there is a local coordinate system x = (x1, . . . , xn) such that x1 = ψ(x′) de-

scribes δΩ where x′ = (x2, . . . , xn) and ρ(x) ∼ x1 − ψ(x′) for all x in B. Then,

(
−
∫
B
ρ(x)k dx

)(
−
∫
B
ρ(x)−kp

′/p dx

)p/p′
.

(
1

r

∫ 3r

0
λk dλ

)(
1

r

∫ 3r

0
λ−kp

′/p dλ

)p/p′
. 1

holds with k restricted−1 < k < p−1. This covers all cases for a global Lipschitz domain,

and all cases where r(B) . 1 for an exterior domain. For the remaining exterior case,

when ρ(B) . r(B) and 1 . r(B), use that the ball B can be split into a finite number

of regions Si, 1 ≤ i ≤ m, where S1 = {x ∈ B : ρ(x) ≥ 1}, and S2, . . . , Sm cover x ∈ B

where ρ(x) < 1. Additionally each S2, . . . , Sm have local coordinate systems (x1, . . . xn)

where ρ(x) ∼ x1−ψ(x′) for some Lipschitz and C1,1 function ψ that locally describes δΩ.

For x ∈ S1 there exists z ∈ Rn such that ρ(x) ∼ |x− z| > 1. With such regions in mind

the following is a summary of the integrals involved, with sums over the regions Si.

(
−
∫
B
ρ(x)k dx

)(
−
∫
B
ρ(x)

− kp
′
p dx

)p/p′

.

(∫ 3r

1

λk+n−1

rn
dλ+

m∑
i=2

∫ 1

0

λk

r
dλ

)∫ 3r

1

λ
− kp

′
p

+n−1

rn
dλ+

m∑
i=2

∫ 1

0

λ
−kp′
p

r
dλ


p
p′

. 1
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The integrability near the boundary is the biggest restriction on k. That restriction is

given by −1 < k < p− 1.

Before the proofs of the main results of this chapter, there is a proposition regarding

circumstances when a Hardy inequality may be necessary for a Riesz transform bound.

Proposition 9.6. Suppose for f in the range of L−1/2 acting on Lp, a different gener-

alised Hardy inequality held for some 1 < p <∞.

‖f
ϕ
‖Lp(Ω) . ‖|∇f |‖Lp(Ω) (9.4)

Then the Riesz transform bounded for that p implies that the Hardy inequality (1.4) is

bounded for that p (ϕ(x) as a general function is replacing ρ(x) here).

Proof. The proof is one line. If both equation (9.4) and the Riesz transform are bounded

then ‖L
−1/2f
ϕ ‖p . ‖∇L−1/2f‖p . ‖f‖p holds for the same p.

Notice equation (9.4) does not directly mention the operator L, and so will hold for a

domain Ω and function ϕ(x) with a class of functions f independent of L. Equation (9.4)

is not expected to hold for all functions f , certainly some condition of smoothness on f

as well as boundary conditions are expected.

When ϕ(x) = |x| and Ω = Rn equation (9.4) is classical and known to hold for all

f ∈ C∞c when p < n. Similar equations to (9.4) with ϕ(x) = ρ(x) are proven in the cases

of Ω as an interior domain in [69] and as an exterior domain in [48] (again with p < n).

9.1 Case of the Exterior of a Compact Convex Object

In this section Theorem 9.1 is proven along with the first part of Theorem 9.3. The proof

of Theorem 9.1 uses Schur’s test motivated by techniques from [48]. For convenience the

diameter of the compact object is assumed to be 1.

Lemma 9.7 (Schur’s test). Let k(x, y) > 0 be the associated kernel of an integral op-

erator T . Then ‖Tf‖p ≤ ‖f‖p if and only if there exists v(x, y) such that the following

holds. ∫
Ω
k(x, y)v(x, y)1/p dy . 1 and

∫
Ω
k(x, y)v(x, y)1/p′ dx . 1
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The only if part is due to Gagliardo [30] and works as k(x, y) > 0. Schur’s test is

well known so will not be proven here. The next lemma calculates the kernel of the

Hardy operator for the exterior domain case.

Lemma 9.8 (Lemma 5.2 in [48]). The Hardy operator in the exterior of a compact

convex object case can be written as an integral operator with associated kernel k(x, y)

bounded by the following.

k(x, y) .
|x− y|
ρ(x)

(
1 ∧ ρ(x)

1 ∧ |x− y|

)(
1 ∧ ρ(y)

1 ∧ |x− y|

)
1

|x− y|n

Proof. Write the Hardy inequality as an integral over the heat semigroup. This gives

the following equation.

1

ρ(x)
∆
−1/2
Ω f(x) =

c

ρ(x)

∫ ∞
0

e−t∆Ωf(x)
dt√
t

The kernel of the Hardy inequality is therefore given by,

k(x, y) =
c

ρ(x)

∫ ∞
0

pB
c

t (x, y)
dt√
t

which is a well defined value, integrable with respect to y for every y ∈ Ω. Substitute in

the bounds for pB
c

t (x, y) stated in chapter 7 as a result of Zhang [74].

k(x, y) ∼ 1

ρ(x)

∫ ∞
0

(
1 ∧ ρ(x)

1 ∧
√
t

)(
1 ∧ ρ(y)

1 ∧
√
t

)
e−|x−y|

2/ct

tn/2
dt√
t

Evaluate this integral for the upper bound.

Next is the proof of Theorem 9.1.

Proof of Theorem 9.1. Let T be an integral operator with the following kernel.

k(x, y) =
ρ(x)k/p

ρ(y)k/p

(
|x− y|

1 ∧ |x− y|
∧ |x− y|

ρ(x)

)(
1 ∧ ρ(y)

1 ∧ |x− y|

)
1

|x− y|n

There are multiple cases to consider. Schur’s test is used in each case. Each integral

uses an appropriate coordinate transfer before evaluation.

Case 1a: suppose |x− y| < ρ(x) ∧ ρ(y). Let I1 = {y ∈ Ω : |x− y| < ρ(x) ∧ ρ(y)} and
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I2 = {x ∈ Ω : |x − y| < ρ(x) ∧ ρ(y)}. The triangle inequality implies in this case that

ρ(x) < |x− y|+ ρ(y) < 2ρ(y) and ρ(y) < |x− y|+ ρ(x) < 2ρ(x). Hence ρ(x) ∼ ρ(y) so

that with a = p/k, v(x, y) = 1 and λ = |x− y| the following two equations hold.

1)

∫
I1

k(x, y)v(x, y)1/p dy .
∫
I1

ρ(y)−aρ(x)a−1

|x− y|n−1
dy .

∫ ρ(x)

0

1

ρ(x)
dλ . 1

2)

∫
I2

k(x, y)v(x, y)1/p′ dx .
∫
I2

ρ(y)−aρ(x)a−1

|x− y|n−1
dx .

∫ ρ(y)

0

1

ρ(y)
dλ . 1

Thus this case satisfies Schur’s test with no restriction for k.

Case 1b: suppose |x − y| ≤ 3 and ρ(x) ∧ ρ(y) ≤ |x − y|. If ρ(x) ≤ |x − y| ≤ ρ(y)

then ρ(y) ≤ 2|x − y| by the triangle inequality. Similarly if ρ(y) ≤ |x − y| ≤ ρ(x)

then ρ(x) ≤ 2|x − y| by the triangle inequality. Hence the conditions of this case

imply max(ρ(x), ρ(y)) ≤ 2|x − y| ≤ 6. This means x and y are close to each other

and to the boundary δΩ. Consider first the subcase ρ(x) ≤ ρ(y). For this case take

v(x, y) = ρ(x)m

ρ(y)m , a = k/p+m/p, b = k/p−m/p′, I3 = {y ∈ Ω : ρ(x) ≤ ρ(y) ≤ 2|x− y|},

I4 = {x ∈ Ω : ρ(x) ≤ ρ(y) ≤ 2|x− y|} and λ = |x− y|. First consider the dy integral.

1)

∫
I3

k(x, y)v(x, y)1/p dy .
∫
I3

ρ(y)1−aρ(x)a

|x− y|n+1
dy .


∫∞
ρ(x)

ρ(x)
λ2 dλ . 1 if 1 ≤ a∫∞

ρ(x)
ρ(x)a

λ1+a dλ . 1 if 0< a <1

For the dx integral use local coordinates x = (x1, . . . , xn) chosen so that x1 = ψ(x′) with

x′ = (x2, . . . , xn), locally describes δΩ and ρ(x) ∼ x1−ψ(x′) for local x. This requires δΩ

to be locally Lipschitz. The area {x ∈ Ω : ρ(x) < 6}, around the C1,1 compact convex

object can be split into a finite number of local coordinates each satisfying the outlined

condition. As ρ(y) < 2|x− y| in this case, if |x′ − y′| < ρ(y)/4 then |x1 − y1| > ρ(y)/4.

Let s = ρ(x), t = |x1 − y1| and z = |x′ − y′|. Then on appropriate local regions,

2)

∫
I4

k(x, y)v(x, y)1/p′ dx .
∫
I4

ρ(y)1−bρ(x)b

|x− y|n+1
dx

.


∫∞
ρ(y)

ρ(y)
λ2 dλ . 1 if 0 ≤ b∫ ρ(y)

4
0

∫∞
ρ(y)

4

ρ(y)1−b

z1−bt2
dtdz +

∫∞
ρ(y)

4

∫ ρ(y)
0

ρ(y)1−b

s−bz1+b ds dz . 1 if − 1 < b < 0

holds. The conditions a > 0 and b > −1 in this case imply −k < m < kp′ − k + p′ so
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that m exists only if k > −1.

Continue with case 1b, now with subcase ρ(y) < ρ(x). Let v(x, y) and a be as above

and I5 = {y ∈ Ω : ρ(y) < ρ(x) ≤ 2|x − y|}. Again use local coordinates, this time so

that ρ(y) ∼ y1 − ψ(y′) for local y. As ρ(x) < 2|x − y| in this case, if |x′ − y′| < ρ(x)/4

then |x1 − y1| > ρ(x)/4. Let s = ρ(y), t = |x1 − y1| and z = |x′ − y′|.

1)

∫
I5

k(x, y)v(x, y)1/p dy .
∫
I5

ρ(y)1−aρ(x)a

|x− y|n+1
dy

.


∫∞
ρ(x)

ρ(x)
λ2 dλ . 1 if a ≤ 1∫ ρ(x)/4

0

∫∞
ρ(x)/4

ρ(x)a

s1+a dt dz +
∫∞
ρ(x)/4

∫ ρ(x)
0

s1−aρ(x)a

z3 ds dz . 1 if 1 < a < 2

For the dx case let I6 = {x ∈ Ω : ρ(y) < ρ(x) ≤ 2|x−y|}, b = k/p−m/p′ and λ = |x−y|.

2)

∫
I6

k(x, y)v(x, y)1/p′ dx .
∫
I6

ρ(x)bρ(y)1−b

|x− y|n+1
dx

.


∫∞
ρ(y)

ρ(y)
λ2 dλ . 1 if b ≤ 0∫∞

ρ(y)
ρ(y)1−b

λ2−b dλ . 1 if 0 < b < 1

The conditions a < 2 and b < 1 combine for kp′− k− p′ < m < 2p− k. So m only exists

in this case if k < 2p − 1. If Ω was a global Lipschitz domain, then case 1b would not

need the restriction |x− y| < 2 and the kernel would be the same as considered here in

cases 1a and 1b. This is referred to in the proof of Theorem 9.2 in the next section.

Case 2a: suppose 3 ≤ |x− y| and 1 ≤ ρ(x) ≤ |x− y| ∧ ρ(y). The triangle inequality

and the geometry of the case imply |x − y| ≤ 2ρ(y) ≤ 4|x − y|. Take v(x, y) = ρ(x)m

ρ(y)m ,

a = k/p+m/p > 1, b = k/p−m/p′ < 1− n, I7 = {y ∈ Ω : 1 < ρ(x) ≤ ρ(y) ∼ |x− y|},

I8 = {x ∈ Ω : 1 < ρ(x) ≤ ρ(y) ∼ |x− y|}, s = ρ(y) and t = ρ(x). Note ρ(x) and ρ(y) are

radial in this case in the sense that ρ(x) ∼ |x− c| for some c ∈ Rn, and similar for ρ(y).

1)

∫
I7

k(x, y)v(x, y)1/p dy .
∫
I7

ρ(y)−aρ(x)a−1

|x− y|n−1
dy .

∫ ∞
ρ(x)

ρ(x)a−1

sa
ds . 1

2)

∫
I8

k(x, y)v(x, y)1/p′ dx .
∫
I8

ρ(y)−bρ(x)b−1

|x− y|n−1
dx .

∫ ρ(y)

0

tn+b−2

ρ(y)b+n−1
dt . 1

As a > 1 and b > 1 − n in this case, then p − k < m < kp′ − k − p′ + np′ holds which

gives the restriction p− n < k.
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Case 2b: suppose 3 ≤ |x− y| and 1 ≤ ρ(y) ≤ |x− y| ∧ ρ(x). The triangle inequality

and the geometry of the case imply |x − y| ≤ 2ρ(y) ≤ 4|x − y|. Let v(x, y) = ρ(x)m

ρ(y)m ,

a = k/p+m/p < n, b = k/p−m/p′ < 0, I9 = {y ∈ Ω : 1 < ρ(y) ≤ ρ(x) ∼ |x− y|} and

I10 = {x ∈ Ω : 1 < ρ(y) ≤ ρ(x) ∼ |x− y|}. Further s = ρ(x) and t = ρ(y) can again be

described radially here.

1)

∫
I9

k(x, y)v(x, y)1/p dy .
∫
I9

ρ(y)−aρ(x)a−1

|x− y|n−1
dy .

∫ ρ(x)

0
s−a+n−1ρ(x)a−n ds . 1

2)

∫
I10

k(x, y)v(x, y)1/p′ dx .
∫
I10

ρ(y)−bρ(x)b−1

|x− y|n−1
dx .

∫ ∞
ρ(y)

ρ(y)−b

t1−b
dt . 1

As a < n and b < 0 in this case, then kp′−k < m < np−k holds which gives a restriction

k < np− n.

Case 2c: suppose 3 ≤ |x−y| and ρ(y) ≤ 1. The triangle inequality and the geometry

of the case imply ρ(x) ∼ |x−y|. Let v(x, y) = ρ(x)m+p′

ρ(y)m , a = k/p+m/p < 2∧ (n+1−p′),

b = k/p − m/p′ < 1, s = ρ(y), t = ρ(x), I11 = {y ∈ Ω : 3ρ(y) ≤ 3 ≤ |x − y|} and

I12 = {x ∈ Ω : 3ρ(y) ≤ 3 ≤ |x − y|}. As ρ(y) ≤ 1, and as the compact object has

diameter 1, the dy integral is over a volume of size . 3n. Local coordinates are used in

the dy integral as in earlier cases of this proof.

1)

∫
I11

k(x, y)v(x, y)1/p dy .
∫
I11

ρ(y)1−aρ(x)a+p′−2

|x− y|n−1
dy .

∫ 1

0
s1−a ds . 1

2)

∫
I12

k(x, y)v(x, y)1/p′ dx .
∫
I12

ρ(y)1−bρ(x)b−2

|x− y|n−1
dx .

∫ ∞
1

ρ(y)1−b

t2−b
dt . 1

So as a < 2 ∧ (n + 1 − p′) and b < 1 then kp′ − k − p′ < m < (2p − k) ∧ (np − p′ − k)

which implies k < (2p− 1) ∧ (np− n).

Case 2d: suppose 3 ≤ |x−y| and ρ(x) ≤ 1. The triangle inequality and the geometry

of the case ensures ρ(y) ∼ |x − y| holds. Let v(x, y) = ρ(x)m−p

ρ(y)m , a = k/p + m/p > 1,

b = k/p − m/p′ > max(−p,−n + 1), s = ρ(y) and t = ρ(x). Also consider the sets

I13 = {y ∈ Ω : 3ρ(x) ≤ 3 ≤ |x− y|} and I14 = {x ∈ Ω : 3ρ(x) ≤ 3 ≤ |x− y|}. The ρ(y)

term can be described radially. As ρ(x) ≤ 1 the dx integral is over an area of size . 3n.
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Local coordinates are used in the dx integral as in earlier cases of this proof.

1)

∫
I13

k(x, y)v(x, y)1/p dy .
∫
I13

ρ(y)−aρ(x)a−1

|x− y|n−1
dy .

∫ ∞
1

s−a ds . 1

2)

∫
I14

k(x, y)v(x, y)1/p′ dx .
∫
I14

ρ(y)−bρ(x)b+p−1

|x− y|n−1
dx .

∫ 1

0
tb+p−1 dt . 1

So as a > 1 and b > max(−p,−n+1) then p−k < m < min(p+p′+kp′−k, kp′−k+np′−p′)

so the restriction here is max(−1, p− n) < k.

Hence in total by Schur’s test there is an unweighted bound ‖Tg‖p ≤ ‖g‖p for all

g ∈ Lp when max(−1, p − n) < k < 2p − 1. Let f = g/ρk/p and observe due to the

relative kernels that Tg = ρk/p

ρ ∆
−1/2
Ω f . This implies ‖1

ρ∆
−1/2
Ω f‖Lp(ρk) ≤ ‖f‖Lp(ρk) for all

max(−1, p− n) < k < 2p− 1.

The remainder of this section regards proving Theorem 9.3 in the exterior domain

case. The proof involves enforcing Theorem 6.5 from chapter 6. From the results of

chapter 7 the kernel for the operator
√
t
ρ e
−t∆Ω can be approximated by the following.

kt(x, y) ∼
√
t

ρ(x)

(
1 ∧ ρ(x)

1 ∧
√
t

)(
1 ∧ ρ(y)

1 ∧
√
t

)
e−|x−y|

2/ct

tn/2

First functions need to be chosen to take the place of α and β from the theorems of

chapter 6.

Remarks 9.9. The obvious choice for α and β would be straight from the kernel found

above.

αr2(x) =
r

ρ(x)

(
1 ∧ ρ(x)

1 ∧ r

)
and βr2(x) =

(
1 ∧ ρ(x)

1 ∧ r

)
But these do not satisfy the weight conditions of chapter 6. This can be seen by checking

condition (6.1a), on a small ball B (r(B) < 1) far from the boundary (ρ(B) > r(B)).

(
−
∫
B
αr2(x)−Aγ dx

)1/γ (
−
∫
B
βr2(x)−Aγ

′
dx

)1/γ′

=

(
−
∫
B
ρ(x)Aγr−Aγ dx

)1/γ (
−
∫
B

1 dx

)1/γ′

≥ ρ(B)Aγr−Aγ

which grows as ρ(B) does, so importantly is not bounded by 1.

A larger pair of α and β are needed. The choice below is motivated by the fact the
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resulting weight class is contained in the weight class AExt1p discussed in chapter 8.

Lemma 9.10. The following α and β do satisfy the weight conditions of chapter 6.

αr2(x) =

(
r

r ∧ ρ(x)
∧ r

1 ∧ r

)
and βr2(x) =

(
1 ∧ ρ(x)

1 ∧ r

)
(9.5)

Proof. After observing the trivial conditions of continuity and strict positivity there are

four conditions to prove. For condition (6.1a) observe α and β here are larger then those

considered in Proposition 8.5 so (6.1a) holds by comparison.

For condition (6.1b) consider first balls B of radius r that satisfy either r < 1, or

r < ρ(B). These mean αr2(x) . 1 and βr2(x) . 1 so that (6.1b) holds trivially. The

only remaining possibility is B large (r ≥ 1) and near the boundary (ρ(B) . r). This

means αr2(x) = r ∧ r
ρ(x) and βr2(x) = ρ(x) ∧ 1.

(
−
∫
B
αr2(x) dx

)(
−
∫
B
βr2(x) dx

)
=

(
−
∫
B
r ∧ r

ρ(x)
dx

)(
−
∫
B
ρ(x) ∧ 1 dx

)
.
(
r1−n + 1

) (
r−n + 1

)
. 1

It is required here for there to be local coordinate systems near the boundary (for which

the boundary is Lipschitz) and roughly spherical coordinates away from the boundary.

Next check condition (6.1c). If ρ(B) > 2Mr then αr2(x) and α4Mr2(x) are the same

as considered in Proposition 8.5 and so satisfy (6.1c) by that case. Similarly if 2Mr < 1

then αr2(x) = 1 = α4Mr2(x) and (6.1c) holds trivially. For the remaining cases:

- If max(1, r) ≤ ρ(B) ≤ 2Mr; then αr2(x) ∼ 1 ∼ ρ(B)

2Mr
α4Mr2(x) and 1

2M
≤ ρ(B)

2Mr
≤ 1.

- If max(r, ρ(B)) ≤ 1 ≤ 2Mr; then αr2(x) ∼ 1 ∼ 1

2Mr
α4Mr2(x) and 1

2M
≤ 1

2Mr
≤ 1.

- If 1 ≤ ρ(B) ≤ r ≤ 2Mr; then αr2(x) ∼ r

ρ(x)
∼ 1

2M
α4Mr2(x).

- If ρ(B) ≤ 1 ≤ r ≤ 2Mr; then αr2(x) ∼ r ∼ 1

2M
α4Mr2(x).

That βr2(x) also satisfies condition (6.1c) is in the proof of Proposition 8.5.

It remains to prove condition (6.1d). Let I1 and I2 be a decomposition of the set of

all balls B ⊂ Ω:

- I1, contains balls B where either ρ(B) < r < 1 or r < ρ(B) ∧ 1 or 1 < r < ρ(B)

so αr2(x) ∼ 1 for all x ∈ 5B when B ∈ I1; and,

- I2, are the remaining balls and αr2(x) ∼ r(1∧ρ(x)−1) for all x ∈ 5B when B ∈ I2.
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This satisfies condition (6.1d) and concludes the proof.

The ingredients to prove the exterior part of Theorem 9.3 are now ready. This also

proves the remaining part of Theorem 1.5 via Theorem 8.3.

Proof of Theorem 9.3. It was proven in Lemma 9.10 that the αr2 and βr2 of equa-

tion (9.5) satisfy all of Conditions 6.1. Further the kernel αt(x)βt(y) e
−|x−y|2/ct

tn/2
is a

pointwise upper bound for the kernel of
√
t

ρ(x)e
−t∆Ω . Hence by Theorem 6.5 from chap-

ter 6 the operator
√
t

ρ(x)e
−t∆Ω is bounded Lp(w) → Lp(w) for all w in the class Aα,βp

(specified as AExt2p in the case of Theorem 9.3).

Remarks 9.11. The class AExt2p is contained in the class of weights AExt1p from Theo-

rem 8.1 for which the heat semigroup was shown to be bounded. This is easy to see as βr2

is the same in both cases, and αr2 in this case is pointwise larger. In the example below

it is shown that the class AExt2p contains weights outside the Muckenhoupt class Ap. Yet

there are also weights in Ap not in AExt2p (for example for any fixed p, w(x) = ρ(x)p is

in AExt2p but is not in Ap, and yet w(x) = 1 is in Ap but is not in AExt2p for all p ≥ n).

Example 9.12. The weight w(x) = ρ(x)k is in the weight class AExt2p if and only

if k satisfies max(−1, p − n) < k < 2p − 1. For the if part use that 1
ρ(x)∆

−1/2
Ω f(x)

is a pointwise upper bound for
√
t

ρ(x)e
−t∆Ωf(x), and it was shown that 1

ρ(x)∆
−1/2
Ω f(x) is

bounded for all weights ρ(x)k for max(−1, p−n) < k < 2p−1 in the proof of Theorem 9.1.

For the only if part consider first r < 1 and B close to the boundary ρ(B) . r. In

such a case α ∼ 1 and β ∼ ρ/r so that the following holds.

AExt2p (ρk) = Aα,βp (ρk) = sup
B

(
−
∫
B
ρ(x)k dx

)(
−
∫
B

ρ(x)p
′

rp′
ρ(x)−kp

′/p dx

)p/p′

If k ≤ −1 then −
∫
B ρ(x)k dx is not integrable near the boundary. Further if k ≥ 2p − 1

then −
∫
B
ρ(x)p

′

rp′
ρ(x)−kp

′/p dx is not integrable near the boundary.

Secondly consider r > 1 and ρ(B) = 1. Without loss of generality suppose the
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compact object Ω is exterior to is centred at the origin. Then ρ(x) ∼ |x| and ρ(y) ∼ |y|.

(
−
∫
B
αr2(x)pw(x) dx

)(
−
∫
B
βr2(x)p

′
w(x)−p

′/p dx

)p/p′
=

1

rn

∫
B
rpρ(x)k−p dx

( 1

rn

∫
B
ρ(x)−kp

′/p dx
)p/p′

=
1

rn

∫ r

1
rpλk−p+n−1 dλ

( 1

rn

∫ r

1
λ−kp

′/p+n−1 dλ
)p/p′

=
1

rnp


rk+n if np− n < k

rk+n
(
r−kp

′/p+n
)p/p′

if p− n < k < np− n(
r−kp

′/p+n ∧ 1
)p/p′

if k < p− n

Only in the case where p− n < k < np− n do these integrals remain finite as r tends to

infinity. This concludes the example.

9.2 Case of a Global Lipschitz Domain

In this section the argument of the previous section is followed and adapted to the case

of the area above a Lipschitz curve. The result is proofs of Theorem 9.2 and the global

Lipschitz part of Theorem 9.3. Where possible the proofs will be shortened by direct

comparisons to the previous section.

Lemma 9.13. The Hardy operator in the case of the area above a C1,1 global Lipschitz

and bounded curve can be written as an integral operator with associated kernel k(x, y)

bounded above by the following.

k(x, y) .

(
1 ∧ |x− y|

ρ(x)

)(
1 ∧ ρ(y)

|x− y|

)
1

|x− y|n

Proof. As in the proof of Lemma 9.8, use that the Hardy inequality is known to be given

in terms of an integral over the heat semigroup. So the kernel of the Hardy inequality

is given by an integral over the heat kernel,

k(x, y) =
c

ρ(x)

∫ ∞
0

pt(x, y)
dt√
t

which is a well defined value, integrable with respect to y for every x ∈ Ω. Substitute in
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the upper bound for pt(x, y) found in chapter 7 based on the result of Song in [62].

k(x, y) ∼ 1

ρ(x)

∫ ∞
0

(
1 ∧ ρ(x)√

t

)(
1 ∧ ρ(y)√

t

)
e−|x−y|

2/ct

tn/2
dt√
t

The integral with respect to t can be evaluated to have appropriate upper bound.

Proof of Theorem 9.2. Let T be an integral operator with the following associated kernel.

k(x, y) =
ρ(x)k/p

ρ(y)k/p

(
1 ∧ |x− y|

ρ(x)

)(
1 ∧ ρ(y)

|x− y|

)
1

|x− y|n

In cases 1a and 1b of the proof of Theorem 9.1 a kernel of the precise form above

was dealt with, and in case 1b the condition |x − y| ≤ 3 was not used (apart from

determining the kernel shape). These two cases allow Schur’s test to be used with the

kernel given above to get a bound ‖Tg‖p . ‖g‖p for all −1 < k < 2p− 1 and g ∈ Lp(Ω).

Substitute f = ρ−k/pg and Tg = ρk/p

ρ ∆
−1/2
Ω f to get ‖1

ρ∆
−1/2
Ω f‖Lp(ρk) . ‖f‖Lp(ρk) for all

−1 < k < 2p− 1.

The remainder of this section finds a weight class for 1
ρe
−t∆Ω in the global Lipschitz

domain case. As in the previous section the obvious choices for α and β here do not

satisfy the required conditions from chapter 6.

Remarks 9.14. Consider the functions α and β given by,

αr2(x) =
r

ρ(x)

(
1 ∧ ρ(x)

r

)
and βr2(x) =

(
1 ∧ ρ(x)

r

)

for all x ∈ Ω and t > 0. These do not satisfy condition (6.1a) from chapter 6. The proof

involves observing the following for any ball B where ρ(B) > r(B):

(
−
∫
B
αr2(x)−Aγ dx

)1/γ (
−
∫
B
βr2(x)−Aγ

′
dx

)1/γ′

=

(
−
∫
B
ρ(x)Aγr−Aγ dx

)1/γ (
−
∫
B

1 dx

)1/γ′

≥ ρ(B)Aγr−Aγ

which grows as ρ(B) does.

So again the results of chapter 6 cannot be used directly. Instead consider once more

an α, β pair larger then those proposed above, chosen so the final weight class will be
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contained in the weight class for the heat semigroup.

Lemma 9.15. The following α and β do satisfy the weight conditions of chapter 6.

αr2(x) = 1 and βr2(x) =
(

1 ∧ ρ(x)

r

)
(9.6)

Proof. The continuity and strict positivity conditions are trivial leaving four conditions

to prove. Firstly the α and β considered here are pointwise larger than their counterparts

in the proof of Proposition 8.4. Hence condition (6.1a) holds by comparison.

(
−
∫
B
αr2(x)−Aγ dx

)1/γ (
−
∫
B
βr2(x)−Aγ

′
dx

)1/γ′

. 1

For condition (6.1b) use αr2(x) ≤ 1 and βr2(x) ≤ 1 so that condition (6.1b) will hold

trivially.

(
−
∫
B
αr2(x) dx

)(
−
∫
B
βr2(x) dx

)
. 1

Condition (6.1c) similarly holds trivially for α, as αr2(x) = 1 for all x and r. For β

condition (6.1c) is proven to hold in the proof of Proposition 8.4. Condition (6.1d) is

trivial as αr2(x) = 1 on all balls B ⊂ Ω.

All the ingredients are now ready to prove the global Lipschitz part of Theorem 9.3.

Proof of Theorem 9.3. It was proven in Lemma 9.15 that the αr2 and βr2 of equa-

tion (9.6) satisfy all of Conditions 6.1. Further the kernel αt(x)βt(y) e
−|x−y|2/ct

tn/2
is a

pointwise upper bound for the kernel of
√
t

ρ(x)e
−t∆Ω . Hence by Theorem 6.5 from chap-

ter 6 the operator
√
t

ρ(x)e
−t∆Ω is bounded Lp(w) → Lp(w) for all w in the class Aα,βp

(Specified as ALip2p in Theorem 9.3).

Remarks 9.16. Given the weight classes ALip1p (8.1) and ALip2p (9.3) for the operators

e−t∆Ω and
√
t
ρ e
−t∆Ω respectively, observe that Ap ⊂ ALip2p ⊂ ALip1p holds. This is evident

by looking at pointwise upper bounds for α and β in each case. Further the class ALip2p

contains weights outside the Muckenhoupt class Ap (in the example below it is shown

that ρ(x)p is in Aα,βp yet such a weight is not in Ap).

It remains to check the form of typical members of the weight class.
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Example 9.17. The weight ρ(x)k is in the weight class ALip2p if and only if k satisfies

−1 < k < 2p− 1. It is near the boundary that the powers are restricted. For the if part

use that 1
ρ(x)∆

−1/2
Ω f(x) is a pointwise upper bound for

√
t

ρ(x)e
−t∆Ωf(x), and it was shown

that 1
ρ(x)∆

−1/2
Ω f(x) is bounded for all weights ρ(x)k for −1 < k < 2p− 1 in the proof of

Theorem 9.2.

For the only if part consider r < 1 and B radius r close to the boundary, ρ(B) . r.

In such a case α ∼ 1 and β ∼ ρ/r.

ALip2p (ρk) = Aα,βp (ρk) = sup
B

(
−
∫
B
ρ(x)k dx

)(
−
∫
B

ρ(x)p
′

rp′
ρ(x)−kp

′/p dx

)p/p′

If k ≤ −1 then −
∫
B ρ(x)k dx is not integrable near the boundary. Further if k ≥ 2p − 1

then −
∫
B
ρ(x)p

′

rp′
ρ(x)−kp

′/p dx is not integrable near the boundary. This verifies the example

and matches the range of weights found for the Hardy operator 1
ρ∆
−1/2
Ω in this global

Lipschitz case.

9.3 Further Examples

In this section there are remarks on a few further examples. To begin consider the area

below a parabola case.

9.3.1 Exterior of a parabola

For the exterior of the parabola x2 = x2
1 in R2 the kernel of the Hardy inequality is,

k(x, y) ∼ ρ(x)−1

|x− y|n−1

[(
1 ∧ ρ(x)

|x−y|

)(
1 ∧ ρ(x)

R ∧ |x−y|

)(
1 ∧ ρ(y)

|x−y|

)(
1 ∧ ρ(y)

R ∧ |x−y|

)]1/2

where R = max(1, x2). The Hardy operator can be shown in this case to be bounded

for weights w(x) ∼ ρ(x)k whenever −1 < k < 2p − 1 and p/2 − n ≤ k ≤ np − n − p/2.

To find a weight class for the operator
√
t
ρ e
−t∆Ω in this case use the following α and β.

αr2(x) =
( r

ρ(x) ∧ r
∧ r

1 ∧ r

)1/2
βr2(x) =

[(
1 ∧ ρ(y)

r

)(
1 ∧ ρ(y)

1 ∧ r

)]1/2

This pair will satisfy the required conditions of chapter 6.
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Indeed consider any case where the operator involved has a kernel that is an appro-

priate weighted average of the exterior domain and global Lipschitz domain case kernels.

That is consider for some q > 1 the operator with kernel,

k(x, y) ∼ ρ(x)−1

|x− y|n−1

(
1 ∧ ρ(x)

|x−y|

) 1
q
(

1 ∧ ρ(x)

R ∧ |x−y|

) 1
q′
(

1 ∧ ρ(y)

|x−y|

) 1
q
(

1 ∧ ρ(y)

R ∧ |x−y|

) 1
q′

for appropriate R. It would be expected that such a weight class contains ρ(x)k for all

−1 < k < 2p− 1 and p/q′−n ≤ k ≤ pn−n− p/q. This also means that the unweighted

bound (w(x) = 1) holds only if p/q′ < n (q′ dual to q). The α and β pair to use here is,

αr2(x) =
( r

ρ(x) ∧ r
∧ r

R ∧ r

)1/q′

βr2(x) =
(

1 ∧ ρ(y)

r

)1/q(
1 ∧ ρ(y)

R ∧ r

)1/q′

which will satisfy the required conditions of chapter 6. The resulting weight class satisfies

Aα,βp (w) ≤ ALip2p (w)1/qAExt2p (w)1/q′ (taking balls over the appropriate domain, and with

appropriate inclusion of an R term).

9.3.2 Non-doubling Example

Consider the region Ω given by {(x1, x2) ∈ R2 : 0 < x2 < ex1}. Consider further the

regions S1 = {(x1, x2) ∈ R2 : 0 < x2} and S2 = {(x1, x2) ∈ R2 : −ex1 < x2 < ex1}

so that Ω = S1 ∩ S2. Using the maximal principle, the Dirichlet heat kernel on Ω is

bounded by the Dirichlet heat kernels of S1 and S2. Hence for x ∈ Ω closer to the

boundary x2 = 0,

1

ρΩ(x)
∆
−1/2
Ω f(x) ≤ 1

ρS1(x)
∆
−1/2
S1

f(x)

whereas for x ∈ Ω closer to the boundary x2 = ex1 ,

1

ρΩ(x)
∆
−1/2
Ω f(x) ≤ 1

ρS2(x)
∆
−1/2
S2

f(x)

holds. Here ρΩ(x) is the minimal distance to the boundary δΩ, whereas ρS1(x) and ρS2(x)

are the minimal distances to δS1 and δS2 respectively. Define the sets Ω1 and Ω2 by

Ω1 = {x ∈ Ω : ρS1(x) ≤ ρS2(x)} and Ω2 = {x ∈ Ω : ρS2(x) ≤ ρS1(x)}.

‖ 1

ρΩ
∆
−1/2
Ω f‖Lp(Ω,w) ≤ ‖

1

ρS1

∆
−1/2
S1

f‖Lp(Ω1,w) + ‖ 1

ρS2

∆
−1/2
S2

f‖Lp(Ω2,w)
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Use that S1 is the area above a C1,1 Lipschitz and bounded curve, and S2 can be found

to have heat kernel upper bound comparable to that of above a C1,1 Lipschitz and

bounded curve. This means that first term on the right is bounded Lp(w)→ Lp(w) for

weights w(x) ∼ ρS1(x)k with −1 < k < 2p − 1, and the second term on the right is

bounded Lp(w) → Lp(w) for weights w(x) ∼ ρS2(x)j with −1 < j < 2p − 1. In total a

combination,

w(x) ∼


ρ(x)k x ∈ Ω1

ρ(x)j x ∈ Ω2

− 1 ≤ j, k ≤ 2p− 1

is a weight for this case. Weight classes for the operator
√
t
ρ e
−t∆Ω can be determined by

similarly comparing to the global Lipschitz case.
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Chapter 10:

Riesz Transform for the Dirichlet Laplacian

In this chapter Theorem 1.6 is proven. This is the culmination of the application part

of this thesis. Theorem 1.6 classifies a set of weights w for which,

‖|∇∆
−1/2
Ω f |‖Lp(w) . ‖f‖Lp(w) (10.1)

holds with Ω an exterior domain. There are two parts to this classification. The first

part uses Theorem 1.3 (proven in chapter 5) to find an initial class of weights. This

initial class is non-optimal due to the L2 conditions of Theorem 1.3. The second part

extends this initial class to an optimal range.

The following elaborations of Theorem 1.6 are the main results of this chapter.

THEOREM 10.1. Suppose that Ω ⊂ Rn, n ≥ 3, is the exterior of a C1,1 compact

convex object1. Then the Riesz transform based on the Dirichlet Laplacian associated to Ω

is bounded Lp(w)→ Lp(w), p ≥ 2, for all weights w(x) ∼ ρ(x)k where −1 < k < 2p− 1

and p− n < k < np− n.

THEOREM 10.2. Suppose that Ω ⊂ Rn is a C1,1 global Lipschitz domain2. Then

the Riesz transform based on the Dirichlet Laplacian on Ω is bounded Lp(w) → Lp(w),

p ≥ 2, for all weights w(x) ∼ ρ(x)k where −1 < k < 2p− 1.

Results from the previous four chapters have proven all conditions necessary to invoke

Theorem 1.3 bar one: it remains to prove weighted L2 Riesz transform bounds away from

the boundary. The weighted L2 bounds are considered in section 10.1 below. Section 10.2

1Same remark on convexity as in Theorems 8.1 and 9.1.
2Recall this as the area above or below a C1,1 Lipschitz and bounded curve in Rn.

159
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then contains proofs of Theorems 10.1 and 10.2. The chapter finishes with section 10.3

where examples are given regarding which parts of the results can be considered optimal.

10.1 A Weighted L2 Riesz Transform

The Dirichlet Laplacian is the unique self-adjoint operator on Ω satisfying,

∫
Ω
|∇f(x)|2 dx =

∫
Ω
|∆1/2

Ω f(x)|2 dx (10.2)

for all f ∈ W 1,2
0 (Ω). Unweighted L2 Riesz transform bounds hold automatically on Ω

by such a definition. This is discussed in the introduction chapter. In this section the

interest is in when weighted L2 bounds will hold. The self-adjoint property of ∆Ω is

not enough for a weighted L2 Riesz transform bound. Properties of the weights are also

needed.

Proposition 10.3. Let Ω ⊂ Rn be either the exterior of a C1,1 compact object with

n ≥ 3, or a C1,1 global Lipschitz domain. Suppose that w is a weight and that there

exists a constant k ∈ R such that w(x) ∼ ρ(x)k. Then the Riesz transform ∇∆
−1/2
Ω is

bounded L2(w)→ L2(w) for all −1 < k < 3.

Proof. The proof starts with the k ≥ 0 case. The k < 0 case is very similar. Consider

a covering of Ω of disjoint balls {Bi}i∈I where each ball Bi satisfies r(Bi) . ρ(Bi) (this

can be constructed by a disjoint Whitney covering where the gaps between balls are then

covered ensuring both the disjoint, and the r(B) . ρ(B) conditions hold). For each Bi

consider the set Ei = {x ∈ Ω : ρ(x) < 3ρ(Bi)}. Then for all x ∈ Ei and y ∈ Bi the

weight w satisfies w(x) ∼ ρ(x)k ≤ 3kρ(Bi)
k ≤ 3kρ(y)k. Take f supported on Bi and use

that ∇∆
−1/2
Ω is bounded L2 → L2 without weight by definition.

‖|∇∆
−1/2
Ω f |‖L2(Ei,w) .

(∫
Ei

|∇∆
−1/2
Ω f(x)|2w(x) dx

)1/2

. 3k/2ρ(Bi)
k/2
(∫

Ei

|∇∆
−1/2
Ω f(x)|2 dx

)1/2

. 3k/2
(∫

Bi

|f(x)|2ρ(y)k dx
)1/2

. 3k/2
(∫

Bi

|f(x)|2w(x) dx
)1/2

It remains to consider when x ∈ Eci . For this part consider the operator e−t∆Ω . Continue
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with f supported on Bi and use the result of Li and Yau [50]. In section 8.3 Li and

Yau’s result was shown to imply in both the exterior and global Lipschitz cases that:
√
t|∇pt(x, y)| ≤ pt(x, y) +

√
t

ρ(x)pt(x, y).

‖|∇∆
−1/2
Ω f |‖L2(Eci ,w)

.
(∫

Eci

|∇∆
−1/2
Ω f(x)|2w(x) dx

)1/2

.
(∫

Eci

∣∣∣ ∫ ∞
0

∫
Bi

∇pt(x, y)f(y) dy
dt√
t

∣∣∣2w(x) dx
)1/2

.
(∫

Eci

∣∣∣ ∫
Bi

∫ ∞
0

pt(x, y)f(y)
dt√
t

dy
∣∣∣2w(x) dx

)1/2

+
(∫

Eci

∣∣∣ 1

ρ(x)

∫ ∞
0

pt(x, y)f(y)
dt

ρ(x)

∣∣∣2w(x) dx
)1/2

.
(∫

Eci

∣∣∣ ∫
Bi

f(y)

|x− y|n
dy
∣∣∣2w(x) dx

)1/2
+
(∫

Eci

∣∣∣ 1

ρ(x)
∆
−1/2
Ω f(x)

∣∣∣2w(x) dx
)1/2

(10.3)

The second part above is the Hardy operator dealt with in the previous chapter. For

the first part use Hölder’s inequality.

∫
Eci

∣∣∣ ∫
Bi

f(y)

|x− y|n
dy
∣∣∣2w(x) dx .

(∫
Bi

|f(y)|2w(y) dy

)(∫
Eci

∫
Bi

dy

w(y)|x− y|2n
w(x) dx

)

Next use that ρ(x) . |x−y| as x ∈ Eci and y ∈ Bi, and that w(x) ∼ ρ(x)k. The geometry

of Ω implies Eci can be described radially around y0 where y0 is the centre of Bi. Further

the similarity |x− y| ∼ |x− y0| holds.

∫
Eci

∣∣∣ ∫
Bi

f(y)

|x− y|n
dy
∣∣∣2w(x) dx .

∫
Bi

|f(y)|2w(y) dy

∫
Eci

∫
Bi

1

ρ(Bi)k|x− y0|2n−k
dy dx

.
∫
Bi

|f(y)|2w(y) dy

∫ ∞
ρ(Bi)

rn

ρ(Bi)kλn−k+1
dλ

.
∫
Bi

|f(x)|2w(x) dx

The integration required k < n. This can be improved to k < n + 2 in the global

Lipschitz case by using in equation (10.3) the heat kernel upper bound for the global

Lipschitz case found in chapter 7. In total equation (10.3) gives a bound of
∫
Bi
f2w dx

whenever the Hardy inequality is bounded for that same weight. The full result of the
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proposition now follows by considering all the balls Bi.

‖|∇∆
−1/2
Ω f |‖L2(Ω,w) ≤

∑
i∈I
‖|∇∆

−1/2
Ω f1Bi |‖L2(Ω,w)

≤
∑
i∈I

(
‖|∇∆

−1/2
Ω f1Bi |‖L2(Ei,w) + ‖|∇∆

−1/2
Ω f1Bi |‖L2(Eci ,w)

)
.
∑
i∈I
‖f‖L2(Bi,w) . ‖f‖L2(Ω,w)

The final line used that the balls involved were constructed disjoint. The proof is similar

for k < 0 case, though Ei will be {x ∈ Ω : ρ(x) > ρ(Bi)/2}. The L2 Hardy inequality

boundedness in both the exterior domain and above a Lipschitz curve cases is proven in

the previous chapter to hold when w(x) = ρ(x)k and −1 < k < 3. This is the biggest

restriction on k when n ≥ 3.

A similar proof can be used to show a range of weights for an Lp bound given one Lp

weighted or unweighted result. This is considered towards the end of the next section.

Proposition 10.3 implies the local L2 weighted Riesz transform condition (5.6) needed

for Theorem 1.3.

Remarks 10.4. The proof of the weighted L2 bound relied heavily on the knowledge of

unweighted L2 bounds. The establishment of general conditions to ensure an unweighted

equivalence ‖
√
Lf‖2 ∼ ‖|∇f |‖2 is known as the Kato square root problem, originally

conjectured by Kato in [45]. The equivalence is trivial when L is the Laplacian on Rn,

the Dirichlet Laplacian on Ω ⊂ Rn, or the Laplace-Beltrami operator on a general

manifold with an integration by parts type structure. Similar results hold for Schrödinger

operators. Other cases are more difficult. The paper [6] includes the following summary

on the known results for elliptic operators.

Proposition 10.5 (From [6]). Let L = −div(A∇f) be a differential operator on Rn

where A = A(x) is a matrix of L∞ complex coefficients and satisfies ellipticity conditions,

λ|ξ|2 ≤ <[Aξ · ξ⊥] and |Aξ · ζ⊥| ≤ Λ|ξ||ζ|

for all ζ, ξ ∈ Cn and some 0 < λ ≤ Λ < ∞. Then ‖
√
Lf‖2 ∼ ‖|∇f |‖2 holds with

constants depending only on n, λ and Λ.



10.2. A WEIGHTED LP RIESZ TRANSFORM 163

Cases where such operators are considered on subsets on Rn has also been researched,

refer to [6] and references therein for details.

10.2 A Weighted Lp Riesz Transform

To get to the full result of Theorems 10.1 and 10.2, first presented is an inferior result.

Proposition 10.6. Let Ω ⊂ Rn with n ≥ 3 be the exterior of a compact convex object.

Suppose that w is a weight and that there exists a constant k ∈ R such that w(x) ∼ ρ(x)k.

Then the associated Riesz transform satisfies a weighted Lp bound,

‖|∇∆
−1/2
Ω f |‖Lp(w) . ‖f‖Lp(w)

for all p > 2 and max(−1, p− n) < k < p+ 1.

Proof. For this Theorem to hold, the conditions of Theorem 1.3 need to hold in this

case. These conditions are:

• A heat kernel pt(x, y) of the form αt(x)βt(x)t−n/2e−d(x,y)2/ct for some α . 1 and

β . 1 that also satisfy αt(x) ≤ 2α2t(x) and βt(x) ≤ 2β2t(x) (condition 5.1). This

holds by Theorem 7.1.

• That with α and β the same as above, both w2/p ∈ Aα,β2 and wq/p ∈ Aα,βR hold,

with some q > p and R = 1 + q
2 (see equation 5.2 for a reminder of the Aα,βp class).

Weights w(x)q/p ∼ ρ(x)kq/p are in Aα,βR for all −R − 1 < kq/p < 2R − 1 (from

Remarks 8.7) which rearranges for −p/2 − p/q < k < (q + 1)p/q. This allows

any −1 < k < p + 1 choosing q close enough to p. This is one of the biggest

restrictions on k. For the w2/p ∈ Aα,β2 part, this holds for w(x)2/p ∼ ρ(x)2k/p

whenever −3 < 2k/p < 3 (again from Remarks 8.7). Hence −3p/2 < k < 3p/2

from this part.

• That w ∈ A∞ (condition 5.3). This is true for weights w(x) ∼ ρ(x)k whenever

k > −1. This can be observed from ρ(x)k ∈ As whenever −1 < k < s − 1 proven

in Example 9.5.
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• A weighted local Poincaré estimate for balls away from the boundary (c0r < ρ(B))

with weight w2/p (condition 5.4). This is known to hold if w2/p satisfies an A2

condition away from the boundary. This is true for w(x)2/p ∼ ρ(x)2k/p for all k (it

is important that this is only away from the boundary).

• A weighted local semigroup unit condition on balls away from the boundary (con-

dition 5.5). This is proven in Theorem 8.2 to hold whenever w(x) ∼ ρ(x)k for

all k.

• A weighted L2(w2/p) Riesz transform bound on balls away from the boundary

(condition 5.6). This is proven to hold in Proposition 10.3 for all weights of the

form w(x)2/p ∼ ρ(x)k with k in the range −1 < 2k/p < 3 which implies the range

−p/2 < k < 3p/2.

• A weighted local L2(w2/p) Davies-Gaffney estimate (condition 5.7). This is proven

in Proposition 8.12 to be true whenever w(x) ∼ ρ(x)k and the heat semigroup

e−t∆Ω and the Hardy inequality 1
ρ∆
−1/2
Ω satisfy weighted L2(w) bounds for that

same weight. The biggest restriction on k comes from the Hardy inequality and

that restriction on k is given by −1 < 2k/p < 3 which implies −p/2 < k < 3p/2.

This restriction is from Theorem 9.1.

• A weighted Lq(wq/p) Gaffney estimate for some q > p (condition 5.8). This is

stated in Theorem 8.3 to hold whenever the heat semigroup e−t∆Ω and a variation

on the heat semigroup
√
t
ρ e
−t∆Ω are Lq(wq/p) bounded. In chapter 9 a class of

weights for
√
t
ρ e
−t∆Ω is found that is a subset of the class of weights for e−t∆Ω . When

w(x) ∼ ρ(x)k an Lq(wq/p) bound holds for
√
t
ρ e
−t∆Ω if −1 < kq/p < 2q−1 implying

−p/q < k < 2p − p/q. For q close enough to p this allows any −1 < k < 2p − 1.

See Example 9.12.

• A weighted Lp(w) Hardy inequality (condition 5.9). Theorem 9.1 states that this

is true for weights w(x) ∼ ρ(x)k whenever max(−1, p− n) < k < 2p− 1.

Thus by Theorem 1.3 (or equivalently by Theorem 5.1 and associated corollaries), this
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application theorem holds so that,

‖|∇∆−1/2f |‖Lp(w) ≤ c‖f‖Lp(w)

for some constant c whenever w(x) ∼ ρ(x)k and max(−1, p− n) < k < p+ 1.

Proposition 10.7. Let Ω ⊂ Rn be a global Lipschitz domain. Suppose that w is a weight

and that there exists a constant k ∈ R such that w(x) ∼ ρ(x)k. Then the associated Riesz

transform satisfies a weighted Lp bound,

‖|∇∆
−1/2
Ω f |‖Lp(w) . ‖f‖Lp(w)

for all p ≥ 2 and −1 < k < p+ 1.

Proof. Similar to the previous proof, for this theorem to hold the conditions of Theo-

rem 1.3 need to hold in this case. These results are all proven in similar locations to

those given in the proof above. The end result again has w(x) ∼ ρ(x)k where k de-

pends most upon the wq/p ∈ Aα,βR and Hardy conditions which leads to the restriction

−1 < k < p+ 1.

The above two propositions above are inferior versions of Theorems 10.1 and 10.2.

The problem is the condition wq/p ∈ Aα,βR with R = 1 + q
2 and α and β from the heat

semigroup condition (5.1). This condition could be weakened by use of a higher power

Poincaré condition within Theorem 1.3. Instead however, a proof similar to that used

to prove the L2 weighted Riesz transform bounds in section 10.1, is now used to extend

the Lp case.

Propositions 10.6 and 10.7 are used in this proof to establish the existence of a least

one Lp bound. For the global Lipschitz domain case it would have been good enough

above to use Theorem 1.1 to establish an unweighted Lp bound to use in the proof

of Theorem 10.2. However in the exterior case Theorem 1.3 had to be used because

unweighted bounds do not exist in that case for p > n.

Proof of Theorems 10.1 and 10.2. Take w(x) ∼ ρ(x)k. The proof starts with the k ≥ p

case. The k < p case is identical. Consider a covering of Ω of disjoint balls {Bi}i∈I



166 CHAPTER 10. RIESZ TRANSFORM FOR THE DIRICHLET LAPLACIAN

where each ball B satisfies r(B) < ρ(B). Take f supported on Bi and for each Bi

consider the set Ei = {x ∈ Ω : ρ(x) < 3ρ(Bi)}. For all x ∈ Ei and y ∈ Bi the

inequalities ρ(x)k−p ≤ 3k−pρ(Bi)
k−p ≤ 3k−pρ(y)k−p hold. Use that ∇∆

−1/2
Ω is bounded

Lp(w)→ Lp(w) for the weight w(x) = ρ(x)p by the previous proposition.

‖|∇∆
−1/2
Ω f |‖pLp(Ei,w) .

∫
Ei

|∇∆
−1/2
Ω f(x)|pw(x) dx

. 3k−pρ(Bi)
k−p

∫
Ei

|∇∆
−1/2
Ω f(x)|pρ(x)p dx

. 3k−p
∫
Bi

|f(x)|pρ(x)k dx . 3k−p
∫
Bi

|f(x)|pw(x) dx

It remains to consider when x ∈ Eci . Continue with f supported on Bi and for this

part consider the operator e−t∆Ω . Use Li-Yau result [50] to claim the inequality given

by
√
t|∇pt(x, y)| . pt(x, y) +

√
t

ρ(x)pt(x, y) (already dealt with in section 8.3) to be used

momentarily.

‖|∇∆
−1/2
Ω f |‖Lp(Eci ,w)

.

(∫
Eci

|∇∆
−1/2
Ω f(x)|pw(x) dx

)1/p

.

(∫
Eci

∣∣∣ ∫ ∞
0

∫
Bi

∇pt(x, y)f(y) dy
dt√
t

∣∣∣pw(x) dx

)1/p

.

(∫
Eci

∣∣∣ ∫
Bi

f(y)

|x− y|n
dy
∣∣∣pw(x) dx

) 1
p

+
(∫

Eci

∣∣∣ 1

ρ(x)
∆
−1/2
Ω f(x)

∣∣∣pw(x) dx

) 1
p

(10.4)

The second part above is the Hardy operator dealt with in the previous chapter. For

the first part use Hölder’s inequality.

∫
Eci

∣∣∣ ∫
Bi

f(y)

|x− y|n
dy
∣∣∣pw(x) dx

.

(∫
Bi

|f(y)|pw(y) dy

)(∫
Eci

[∫
Bi

1

w(y)p′/p|x− y|np′
dy

]p/p′
w(x) dx

)

Also use that on such domains ρ(x) . |x − y|, and |x − y| ∼ |x − y0| where y0 is the
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Figure 10.1: Range of weights of the form ρ(x)k.
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centre of Bi. Together with w(x) ∼ ρ(x)k and r(Bi) . ρ(Bi) this gives,

∫
Eci

∣∣∣ ∫
Bi

f(y)

|x− y|n
dy
∣∣∣pw(x) dx .

(∫
Bi

|f(y)|pw(y) dy

)(∫
Eci

|Bi|p−1

ρ(Bi)k|x− y0|np−k
dx

)

.

(∫
Bi

|f(y)|pw(y) dy

)(∫ ∞
ρ(Bi)

rnp−n

ρ(Bi)kλnp−n−k+1
dλ

)

.
∫
Bi

|f(x)|pw(x) dx

where the integration requires k < np− n. This restriction on k can be improved in the

global Lipschitz case to k < np+p−n. This works by using the heat kernel upper bound

from chapter 7 in equation (10.4) to get an additional ρ(y)
|x−y| term. These k restrictions

are weaker then the k < 2p − 1 required when considering the Hardy operator. In

total equation (10.4) gives a bound of
∫
Bi
|f |pw dx whenever the Hardy inequality is

bounded for the same weight. The full result of the theorem now follows by considering

all balls Bi.

‖|∇∆
−1/2
Ω f |‖Lp(Ω,w) ≤

∑
i∈I
‖|∇∆

−1/2
Ω f1Bi |‖Lp(Ω,w)

≤
∑
i∈I

(
‖|∇∆

−1/2
Ω f1Bi |‖Lp(Ei,w) + ‖|∇∆

−1/2
Ω f1Bi |‖Lp(Eci ,w)

)
.
∑
i∈I
‖f‖Lp(Bi,w) . ‖f‖Lp(Ω,w)

The last step holds as the covering was chosen disjoint. The proof is similar for k < p

case, but involves integrating over ρ(x)k near the boundary so k > −1 is required along

with the usual Lp(w) Hardy operator bounds. The −1 < k < p range has already been

considered in Propositions 10.6 and 10.7. The Hardy inequality Lp(w) boundedness part

is proven in the previous chapter to hold when −1 < k < 2p− 1 and p−n < k < np−n

whenever n ≥ 3 for the exterior case, and for −1 < k < 2p− 1 in the above a Lipschitz

function case. This is what most restricts the range of k.

Similar results can be found for the area below a parabola case and the non-doubling

example {(x1, x2) ∈ Rn : 0 < x2 < ex1} discussed throughout this thesis. The ranges of k

for weights w(x) ∼ ρ(x)k would continue to be based on the ranges of k found for the

Hardy inequality in the previous chapter. The remainder of this chapter is dedicated to
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discussion and examples regarding the weight classes.

10.3 Optimisation of Results

Four examples are considered in this section. The first is an example showing general

weighted Lp bounds for the Riesz transform will not hold with weights of the form w(x) ∼

ρ(x)k with k ≤ −1 or k ≥ 2p− 1, proving that part of the results optimal. The second

consideration is an example from [48] proving the Riesz transform is not Lp(w) bounded

with w(x) = 1 and p > n in the exterior of a compact object case, proving that part of

the results optimal. The third consideration is from [43] and contains remarks as to why

the theorems include smooth boundary among the conditions, and the final part looks

at the preservation case as a limit of non-preservation cases.

10.3.1 The Halfspace Example

Proposition 10.8. The Hilbert Transform (the 1-dimensional Riesz transform) on the

halfspace R+ is not bounded with weight w(x) = ρ(x)k if k ≤ −1 or k ≥ 2p− 1.

Proof. The Hilbert Transform on the halfspace R+ has known associated kernel.

k(x, y) =
1

x− y
− 1

x+ y

Let f(x) = x1[0,1], then f ∈ Lp( 1
x) for every p ∈ [1,∞]. Apply the Hilbert transform

to f to get,

Hf(x) = x ln
∣∣∣x− 1

x+ 1

∣∣∣− 2

for every x > 0. The part −2 means that as x → 0, Hf(x) → −2. This means

Hf /∈ Lp( 1
x) for any p ∈ [1,∞] due to the 1

x weight not being integrable at the boundary

x = 0.

Next consider the weight w(x) = x2p−1. Notice that functions of the form given by

f(x) = 1
x2 ln(x)

1[0, 1
2

] are in Lp(x2p−1) for all p > 1. With such a function f and x > 1
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observe that,

Hf(x) =

∫ 1/2

0

( 1

x− y
− 1

x+ y

) 1

y2 ln(y)
dy

=

∫ 1/2

0

( 2

(x− y)(x+ y)

) 1

y ln(y)
dy ≥ 2

x(x+ 1)

∫ 1/2

0

1

y ln(y)
dy

The dy integral is infinite. So it is not feasible to have general bounds for ρ(x)k if

k ≥ 2p − 1. Hence the Hilbert Transform on the halfspace is only bounded for weights

w(x) ∼ ρ(x)k if −1 < k < 2p− 1. Similar examples can be constructed for halfspaces of

the form Rn−1 × R+.

10.3.2 Counterexample from Killip et al

Proposition 10.9 (Proposition 7.2 in [48]). The Riesz transform ∇∆
−1/2
Ω is not bounded

Lp(Ω) → Lp(Ω) in the case of Ω as the exterior of a compact convex object whenever

p > n.

Proof. Working with a ball radius 1. Choose φ ∈ C∞(R) where φ(r) = 0 for r > 2 and

φ(r) = 1 for r < 1. Then define χ(r) = φ(r/R) − φ((r − 1)/ε) as an approximation of

the characteristic function of the annulus 1 + ε < r < R. Let u be an eigenfunction for

the Dirichlet Laplacian, It is known that |u(r)| ≤ 1∧ (r− 1) in this case. Using that the

annulus 1 + ε < r < 1 + 2ε has area approximately ε, and that the annulus R < r < 2R

has area approximately Rn the following holds.

‖|u∇χ|‖Lp(Ω) .

(
[sup1<r<1+2ε u]pε

εp
+
Rn

Rp

)1/p

. ε1/p +Rn/p−1 → 0

So if p > n the above tends to 0 as ε tends to 0 and R tends to infinity. Use this to show

a further result.

lim
ε→0
R→∞

‖|∇(χu)|‖Lp(Rn) = lim
ε→0
R→∞

‖χ|∇u|‖Lp(Rn) + lim
ε→0
R→∞

‖u|∇χ|‖Lp(Rn)

≥ lim
ε→0
R→∞

‖χ|∇u|‖Lp(Rn) = ‖|∇u|‖Lp(Rn)
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Then as the eigenvalue λ of the eigenfunction u tends to 0.

lim
λ→0

lim
ε→0
R→∞

‖∇(χu)‖Lp(Rn) ≥ lim
λ→0
‖∇u‖Lp(Rn) ≥ 1

It remains to find an estimate on ∆
−1/2
Ω . By complex interpolation due to the multiplier

theorem,

‖∆Ω(χu− u)‖2Lp(Ω) . ‖(χ− 1)u‖Lp(Ω)‖∆Ω(χ− 1)u‖Lp(Ω)

and for R large enough this improves.

‖∆Ω(χu− u)‖2Lp(Ω) . ε1+1/p‖∆Ω(χ− 1)u‖Lp(Ω)

Dealing with the remaining part,

‖∆Ω(χu− u)‖2Lp(Ω) . ε1+1/p
[
‖u∆Ωχ‖Lp(Ω) + ‖∇χ · ∇u‖Lp(Ω) + λ2‖(χ− 1)u‖Lp(Ω)

]
. ε2/p +Rn/p−1 + λ2‖u‖Lp

and take ε → 0 and R → ∞ and λ → 0 to get a contradiction which proves the

proposition.

10.3.3 Boundary Smoothness

In all the main theorems of this thesis the boundaries of the domains considered have

been smooth, C1,1. The smoothness is used mainly in chapter 7 to build heat kernel

upper bounds on the domain. In the paper [43] by Jerison and Kenig examples are

included that show in a bounded domain case, a non-smooth boundary implies that

the Riesz transform may not be bounded even for p > 4. In the case of this thesis

the domains have been mainly unbounded, however it would be expected that similar

problems would occur. In the case of [43] smooth boundary domains had corresponding

Lp → Lp Riesz transform boundedness for all 1 < p < ∞. This is different from the

unbounded domain cases, where the exterior of a convex object has corresponding Riesz

transform unbounded in Lp for p > n (when unweighted) even when the boundary is

smooth.
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10.3.4 The Limit Towards Preservation

As previously mentioned, when a preservation condition holds the Riesz transform is

bounded by techniques in [5]. Further if there are Gaussian lower bounds on the heat

kernel (as often occurs in preservation cases) the Hardy inequality may not be bounded.

In this section consider a limit of non-preservation cases to a preservation one.

Example 10.10. Fix f ∈ C∞c and let Ω be the space Ω = {x ∈ Rn : x1 > −α}. The

idea of this example is that f will stay fixed, whilst the boundary x1 = −α of Ω moves

away. When f is far enough from the boundary the non-preservation case approaches

the preservation case. The following two heat kernel derivatives are well known;

∇pRnt (x, y) = cn
(y − x)e−|x−y|

2/4t

tn/2+1

and,

∇pΩ
t (x, y) = cn

(y − x)e−|x−y|
2/4t

tn/2+1
− cn

(ȳ − x)e−|x−ȳ|
2/4t

tn/2+1

where ȳ is the reflection of y over the boundary given by ȳ = (−2α−y1, y2, . . . , yn). This

second kernel is only valid when x1, y1 > −α. Observe that,

lim
α→∞

∇pΩ
t (x, y)f(y)→ ∇pRnt (x, y)f(y)

is a pointwise limit. It is not difficult to check that,

|∇pΩ
t (x, y)f(y)| . |∇pRnt (x, y)f(y)| . e−|x−y|

2/4t

tn/2+1/2
f(y)

which is an integrable function with respect to y. So by Lebesgue dominated convergence,

lim
α→∞

∇e−t∆Ωf(x)→ ∇e−t∆Rnf(x)

holds as another pointwise limit. Further the value |∇e−t∆Ωf(x)| can be bounded above

by a constant of the form ct−1/2‖f‖2, using Hölder’s inequality and the presented heat



10.3. OPTIMISATION OF RESULTS 173

kernel gradient. Thus again by Lebesgue dominated convergence,

lim
α→∞

∫ 1/ε

ε
∇e−t∆Ωf(x)

dt√
t
→
∫ 1/ε

ε
∇e−t∆Rnf(x)

dt√
t

also holds as a pointwise limit. It is known that the Lp norm of the terms on the left is

bounded by a constant ‖f‖p.

lim
α→∞

∥∥∥∫ 1/ε

ε
∇e−t∆Ωf(·) dt√

t

∥∥∥
p
→
∥∥∥∫ 1/ε

ε
∇e−t∆Rnf(·) dt√

t

∥∥∥
p

Thus as the non-preservation cases tends to the preservation case the Riesz transforms

match. In this way preservation cases can be thought of as the limit of non-preservation

cases. It is interesting to note that in the same case,

lim
α→∞

|∇e−t∆Ω1Ω(x)| → 0

which comes from observing that condition (1.3) implies,

(
−
∫
B
ρ(x)2 dx

)(
−
∫
B
|∇e−t∆Ω1Ω(x)|2 dx

)
≤ c

where the c will not change with α as each α leads to geometrically the same problem.

Then ρ(x) is the minimal distance from the point x to the boundary which gets large as

α→∞. So fixing B, as α→∞ then ρ(x)→∞ so −
∫
B |∇e

−t∆Ω1Ω(x)|2 dx→ 0, which is

an approach to preservation.
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doi:10.1007/3-7643-7698-8.

[40] G. H. Hardy, Note on a theorem of Hilbert, Math. Z. 6 (1920), no. 3-4, 314–317,

MR:1544414, doi:10.1007/BF01199965.
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