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Abstract

Field based techniques assessing wildland bushfire fuel characteristics are limited by the spatial

extent at which they can be implemented due to cost, labour intensity, and terrain accessibility.

Within Australia, research using remote sensing instruments to assess fuel characteristics has

utilised low resolution imagery, simultaneously assessing all fuel strata. Within this research,

fuel load is used to quantify wildland fuel distribution. Fuel load has been suggested to not

account for fuel particle arrangement. This thesis presents two manuscripts: the first investig-

ates the fuel hazard classification of pan-sharpened imagery to improve bushfire fuel assessment

resolution, and the second investigates machine learning algorithms and the fusion of LiDAR

and high resolution imagery to classify a single fuel stratum, the understory. Results suggest

that the use of pan-sharpening to improve bushfire fuel assessment resolution is plausible, and

that understory fuels can be classified with moderate accuracy using Support Vector Machine

classification of a fusion of imagery and LiDAR metrics.
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Chapter 1 Introduction

1.1 Background

1.1.1 Wildland Fire in Australia

In Australia, wildland fires, those which occur on uncultivated or uncleared land such as national

parks and commonly referred to as bushfires, are an intrinsic part of the environment and a

significant natural hazard1. Bushfires are not simply a physiochemical process, but rather

a fundamental biogeochemical process occurring in the natural environment (Williams et al.,

2012; Bowman et al., 2009). Native vegetation has evolved a range of strategies for surviving and

reproducing after a fire, including loosely attached bark and leaves containing highly flammable

oils which act as a catalyst to promote fire events (Cash, 2012; Keith, 2004). Fire also links

biomass and the atmosphere through the release of gases from combustion, and nutrients into

soils through decomposition (Williams et al., 2012). Successive fires can result in loss of habitat,

changes to biodiversity levels, erosion, water quality effects and carbon emissions (Whelan

et al., 2006). When proximal to urban areas or anthropogenic landscape features they pose

a significant natural hazard causing the damage and destruction of property and loss of life

(Middlemann, 2007).

1.1.2 Fuel and Fire Behaviour

Bushfire, although significant, is a natural hazard for which the potential impacts can be

minimised before a fire occurs (Middlemann, 2007). This minimisation is undertaken through

the management of fuels, which influence a fire’s behaviour. Fire is described by a complex set

of chain oxidation reactions (Cheney and Sullivan, 2008; Keane, 2015). At their finest scales

these reactions require heat, oxygen, and fuel to occur (Countryman, 1969; Keane, 2015), often

illustrated through the fire triangle (see Figure 1.1.1). In a wildland environment, oxygen is

supplied by the atmosphere and fuel supplied by biomass, which is susceptible to burn because of

it’s organic chemical constituency (Keane, 2015). Heat or ignition, required to start the reaction,

can come from both human and natural, means such as arson or lightning, respectively. Fuels

are defined as live or dead biomass available for combustion, which influences the development

and propagation of a fire through their arrangement, structure and chemical composition (Hollis

et al., 2015; Williams et al., 2012; Keane, 2015). When this definition is applied across increasing

spatial and temporal scales it is clear that knowledge of fuel characteristics which influence a

fire are fundamental to making predictions about their behaviour, as illustrated in Figure 1.1.1.

1Within this thesis the terms bushfire and wildland fire are used interchangeably.
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Chapter 1 1.1. Background

Figure 1.1.1: A plot of the fire triangle over spatial and temporal scales. The fire triangle describes the
factors influencing fire behaviour, how they change across space and time (arrows), and the feedbacks
fire has on them (loops). Source: Moritz et al. (2005).

In order to assess fuels for management purposes, models which link fuel characteristics to

fire behaviour need to be defined. Traditionally, fire behaviour modelling research has followed a

geographic, empirical vs mechanistic dichotomy (Cruz and Gould, 2009). In Australia, empirical

models which statistically correlate experimental fire behaviour with input characteristics are

used (Sullivan, 2009a). In North America, mechanistic or physical models, are formulated as

expressions of the underlying theory of the physical processes at play (Sullivan, 2009a; Cruz

and Gould, 2009). Due to the nature of technology the used to develop models, the outputs

of fire behaviour models have historically been one dimensional quantifications such as forward

rate of spread, or flame height. This is because the level of sophistication of the model tends

to match that of the technology used to implement them. With the development of computer

technology it is now possible to integrate both empirical and mechanistic fire behaviour models

with propagation algorithms to simulate a fire’s behaviour over a landscape (Sullivan, 2009b).

These models, known as fire behaviour simulation models, have been developed in both North

America and Australia for mechanistic (Finney and Andrews, 1999) and empirical (Tolhurst

et al., 2008) fire behaviour models, respectively. It should be noted however, that attempts

to apply North American fire behaviour models within Australia, and other models across

jurisdictions have not been successful (Watson, 2009; Fogarty et al., 1998). Therefore for this

study, only fuel characteristics pertaining to empirical and fire behaviour simulation models

developed for Australia will be considered.
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Chapter 1 1.1. Background

In Australia, research into modelling fire behaviour was pioneered in the late 1950s and

early 1960s by A. G. McArthur in Eastern Australia and by G. B. Peet in Western Australia

(Cruz and Gould, 2009). Their experiments consisted of igniting point source fires for various

vegetation types such as forests and grasslands which were allowed to spread for varying times,

while weather (e.g., wind speed, and air temperature) and fire behaviour characteristics (e.g.,

rate of spread) were monitored (Cruz and Gould, 2009). The models developed from these

experiments were made available to users in a variety of forms such as numerical tables, and

slide rules. These models take estimates of local weather conditions, fuel moisture, and structure

as inputs and output quantified fire behaviour measurements such as rate of forward spread

(Cruz et al., 2014). While moisture and weather conditions are significant factors influencing

fire behaviour, this thesis limits its scope to the assessing the structure and spatial distribution

of fuels.

Within fire behaviour modelling, unique fuel vegetation groups exhibit an identifiable asso-

ciation of fuel elements with a distinctive species, form, size, arrangement and continuity, which

together, have characteristic fire behaviour under defined burning conditions (Merrill and Al-

exander, 1987). Since the 1950’s, a number of other models have been developed for other fuel

vegetation groups found within Australia (see Cruz et al. (2014)). From these experiments it

was identified that different variables, some unique to each fuel group, influence fire behaviour

in different ways.

1.1.3 Assessing Fuel Structure

Fuel structure, within and across different fuel vegetation groups, can be assessed and quan-

tified in a number of different ways, depending on the fire behaviour model or management

application. Within Australia, the management of fuels falls to the responsibility of state and

territory jurisdictions and is undertaken by relevant land management and emergency response

agencies within these areas (Hollis et al., 2011). Due to this and the number of different veget-

ation groups found across Australia, different methods of assessing fuels, used to derive values

for input to fire behaviour models, have been developed. Common to most of these methods is

the assessment of fuels within vertical structural layers called fuel strata (Hollis et al., 2015),

as illustrated in Figure 1.1.2. The arrangement of fuel strata across a wildland is complex

and dynamic. It varies with fuel group and responds to growth, decomposition and episodic

disturbances (Hollis et al., 2015).
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Chapter 1 1.1. Background

Figure 1.1.2: Illustrates the vertical structural layers, fuel strata, used in the assessment of fuel
hazard. Source: Gould (2007).

Within each fuel strata the amount of biomass that is available to be consumed in a fire

is quantified through fuel load. Fuel load is defined as dried mass per unit area, measured in
kilograms

metre2
, or at larger scales tonnes

hectare
(Keane, 2015). This method is the most common way that

fuel structure is quantified for a variety of fire behaviour models (McArthur, 1966a,b, 1967),

as it directly relates available biomass to fire behaviour and can be assessed using common

biomass estimation techniques (see Catchpole and Wheeler, 1992). The most accurate of these

methods are destructive sampling techniques which require fuels to be sampled and oven dried

to obtain direct biomass estimates (Keane, 2015). While the most accurate, when their use

is extended to the landscape scale their precision decreases due to the small spatial extent for

which they estimate fuel load (Gould and Cruz, 2012). In a land management setting, use of

destructive sampling is also limited due to its labour intensity and implementation cost (Keane,

2015; Turner, 2007).

Recently, Hines et al. (2010) demonstrated that fuel load may not be the most robust

determinant of fire behaviour, as for the same amount of fuel load available, a fire can behave

differently based on varying fuel arrangement. Therefore, using fuel load homogenises different

fuel arrangements, providing a poor indication of potential fire behaviour. In order to overcome

the limitations of destructive sampling techniques and the use of fuel load, visual sampling

techniques which estimate fuel hazard have been developed, respectively.

Fuel hazard is a rating on a five point scale representing the difficulty of fire suppression

based on potential behaviour under first attack conditions (Hines et al., 2010; McCarthy et al.,

1999). Fuel characteristics of an observed site are compared to descriptions which represent

different fuel hazards (see Figure 1.1.1). A fuel hazard rating is determined for each strata,

which are then combined to give an overall hazard rating for a sampled site (Hines et al., 2010;

McCarthy et al., 1999; Gould et al., 2008). In this way, fuel hazard considers not only the

amount of fuel but also its arrangement, providing a more robust indication of potential fire

behaviour and suppression difficulty (Hines et al., 2010). It is also advantageous as fuel hazard
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Chapter 1 1.1. Background

ratings either for individual strata or overall can be converted into fuel load estimates (Hines

et al., 2010; McCarthy et al., 1999).

Table 1.1.1: Attributes used to assess elevated strata fuel hazard from the Overall Fuel Hazard
Assessment Guide (Hines et al., 2010). Source: Hines et al. (2010).

Key attributes Fuel

Hazard

RatingPlant Cover
%

dead
Vertical Continuity Vegetation density

Thickness of

fuel pieces

<20% or

low flam-

mability

species

<20%

Easy to walk in any

direction without

needing to choose a

path between shrubs

Low

20-30% <20%

Most of the fine

fuel is at the top of

the layer.

Easy to choose a path

through but brush

against vegetation

occasionally.

Moderate

30-50% <20%

Most of the fine

fuel is at the top of

the layer

Moderately easy to

choose a path through,

but brush against

vegetation most of the

time.

High

50-80%
20-

30%

Continuous fine

fuel from bottom

to top of layer

Need to carefully select

path through.

Mostly less

than 1-2 mm

thick.

Very

High

>70% >30%

Continuous fine

fuel from the

bottom to the top

of the layer

Very difficult to select a

path through. Need to

push through

vegetation.

Large amounts

of fuel <2 mm

thick.

Extreme

Visual assessment enables the rapid and nondestructive sampling and description of fuel

hazard which can be tailored for different geographic regions and their specific fuel vegetation

groups (Watson et al., 2012). Due to this, the use of visual estimation methods has become

widespread by land managers within Australia (Hollis et al., 2015). However, while less limited

than destructive methods, visual assessment techniques are also restricted in the spatial extent

to which they can be implemented due their labour intensiveness, cost, and site accessibility

(Watson et al., 2012). It has also been determined that visual assessment techniques suffer from

assessor subjectivity. This variability of assessor subjectivity has been demonstrated by Gorrod

and Keith (2009) using vegetation condition assessment protocols. Gorrod and Keith (2009)

found an average coefficient of variation (CV) between assessment score of 15-18%. This is

similar to Watson et al. (2012) who found a variation of 13%-21% between assessors for overall

fuel hazard estimations.
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Chapter 1 1.1. Background

1.1.4 Remote Sensing of Fuels

As with fire behaviour models, the assessment of fuels can be associated with the sophistication

of the technology used to undertake them (see Section 1.1.2). Fuel assessment can now be

carried out using Remote Sensing (RS) instruments such as satellite based optical systems or

airborne laser systems. As RS insturments are are able to obtain information about objects

without being in direct contact with them (Jensen, 2005), they have a number of advantages

over field based techniques such as those described in Section 1.1.3. Remote Sensing instruments

can obtain data over a greater spatial extent in a shorter time-frame, are cost-effective and can

collect fuel data from regions inaccessible to humans (Frolking et al., 2009; Cash, 2012). In

Australia, studies concerning fuel assessment using RS are limited, in number, the variety of

RS instruments used, and fuel characteristics assessed (see Table 1.1.2). Arroyo et al. (2008)

identify the potential of high resolution imagery, LiDAR, and the use of data fusion, which are

either yet to be used or only have used been to a limited extent in Australia.

Table 1.1.2: Australian research which utilises RS instruments for fuel assessment.

Study Title Fuel

Properties

Description

Brandis

and

Jacobson

(2003)

Estimation of vegetative fuel loads

using Landsat TM imagery in New

South Wales, Australia

Fuel

Load

Investigates the estimation of fuel

loads using Landsat TM data based

on equations describing litter

accumulation and decomposition.

Caccamo

et al.

(2012)

Monitoring live fuel moisture

content of heathland, Shrubland

and sclerophyll forest in

south-eastern Australia using

MODIS data

Fuel

Moisture

Investigates the use MODIS data and

derived spectral indices to monitor live

fuel moisture content of fire-prone

vegetation types.

Cash

(2012)

Assessing the capabilities of

Landsat imagery for measuring fuel

properties in Sydney Coastal Dry

Sclerophyll Forest

Fuel

Load

Investigates the use of Landsat TM

derived spectral indices to estimate

fuel load.

Chafer

et al.

(2004)

The post-fire measurement of fire

severity and intensity in the

Christmas 2001 Sydney wildfires

Fuel

Load

Uses pre- and post-fire satellite

imagery from SPOT2, to examine the

fire severity and intensity of the

Christmas 2001 wildfires in the greater

Sydney Basin.

Haywood

et al.

(2010)

Fuel hazard mapping of the

Victorian central highlands using

LiDAR data

Fuel

Hazard/

Load

Investigates the utility of LiDAR and

Landsat TM data in retrospective fuel

hazard mapping
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Chapter 1 1.1. Background

High resolution imagery

High Resolution (HR) imagery is captured in the optical portion of the electromagnetic spec-

trum at resolutions ranging from ~5 m to less than 1 m (Jensen, 2016). In their review, Arroyo

et al. (2008) identifies that there are very few studies using HR imagery for fuel mapping,

and that the levels of accuracy attained are comparable to those reported for lower resolution

sensors. Since this review, only a single study has investigated the use of HR imagery for the

assessment of fuel characteristics. Jin and Chen (2012) determined that the use of HR imagery

provided improved estimates of total fine and total dead fuel loads when compared with coarser

resolution Landsat imagery. It can therefore be seen that further investigation into the use of

HR imagery for the assessment of fuel characteristics must be undertaken.

LiDAR

LiDAR emits and receives short bursts of laser energy that measure distance to target surfaces;

which, when combined with Global Positioning Systems and Inertial Navigation Systems, allow

the three dimensional coordinates of surfaces intercepted by the laser beam to be precisely

computed. Their advantage over passive RS instruments is the ability to exploit gaps in canopy

cover such that the vertical structure of sub-canopy vegetation can be sampled (Goodwin, 2006).

This ability, which makes LiDAR ideal for the estimation of fuel hazard, has been demonstrated

for retrospective fuel mapping by Haywood et al. (2010). Haywood et al. (2010) determined

that LiDAR, fused with Landsat, can be used to generate estimates of fuel hazards efficiently

and accurately over an extensive area.

Data Fusion

Data fusion is a data processing technique that deals with the association, correlation, and

combination of information and data from different sources (Haywood et al., 2010). It is

undertaken to obtain more information than could be provided by any single input dataset,

considering only a minimum loss or distortion of data (Amarsaikhan et al., 2012). Haywood

et al. (2010) and Garcia et al. (2011) demonstrate an example of this through the use of vertical

vegetation structure measurements taken from LIDAR, and horizontal spectral measurements

taken from a multispectral sensor. Data fusion can take a number of forms including pixel/data,

feature, and decision fusion (Zhang, 2010).

7



Chapter 1 1.2. Thesis Aims and Structure

1.2 Thesis Aims and Structure

The broad aim of this thesis is to investigate the use of RS to classify bushfire fuel hazard,

which is motivated by the currently limited body of research concerning the use of RS to assess

fuel characteristics within Australia (see Section 1.1.4, and Table 1.1.2). More specifically and

directly, this thesis aims to address gaps identified by Cash (2012), who identified that; (a) more

research needs to be done to test the ability of RS to measure fuel load with higher spatial

resolutions, and (b) to determine if RS can measure fuel loads in multiple layers after fuel has

had a long time to recover and accumulate. This thesis takes to form of two draft journal

manuscripts with individual aims and objectives outlined in Table ??. As previously outlined,

fuel load does not account for the arrangement of fuels within a complex, which significantly

affects fire behaviour (see Section 1.1.3). As well as this, when assessing fuel load one is unable

to determine the load contribution from individual strata. For these reasons, this thesis will

investigate the estimation of fuel hazard, rather than fuel load. As well as this, to address

the temporal facet of (b) a study site which has not been significantly impacted by a fire event

(>10 years), allowing fuels to recover and accumulate has been used. The Royal National Park,

NSW Australia was suitably identified for this purpose.

The first paper, Chapter 2, is titled ’Estimating fuel hazard using optical datasets obtained

at different times with pan-sharpening’. The aim of this chapter is to addresses (a) by invest-

igating the potential to which pan-sharpening of high resolution ADS40 and Landsat 8 OLI

imagery obtained at different times can be used to classify fuel hazard. The second paper,

Chapter 3, is titled ’Classifying understory fuel hazard using LiDAR and high resolution im-

agery, integrating data fusion and machine learning’. The aim of this chapter is to address

(b) by investigating the use of LiDAR, very high resolution imagery, data fusion and machine

learning techniques to estimate understory fuel hazard in a wildland area. The final chapter

of this thesis is a conclusion, synthesises the findings from both papers and suggests directions

for future work.
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Chapter 2 Estimating fuel hazard using optical

datasets obtained at different times

with pan-sharpening

Purpose

This chapter presents original research that has been undertaken entirely within this Master by

Research program. This chapter provides an introduction, methods, results and discussion and

conclusion pertaining to the estimation of fuel hazard using datasets obtained at different times

with pan-sharpening. This chapter aims to investigate the potential to which pan-sharpening

of high resolution ADS40 and Landsat 8 OLI imagery obtained at different times can be used

to classify fuel hazard.

Format

In accordance with the Macquarie University policy for higher degree research thesis by publica-

tion1, this chapter has been written for submission to a peer-reviewed journal, the International

Journal of Wildland Fire. Repetition and any referencing and stylistic inconsistencies have been

minimised to facilitate the thesis examination process. References from the paper and the lit-

erature review in the preceding chapter have been combined into one reference list provided at

the end of the thesis.

Author contributions

Liam Turner (LT) carried out fieldwork and sampling, analysed all data, designed and drafted

all figures and tables (except where acknowledged), wrote and edited the paper.

Hsing-Chung Chang (HC) provided comments on a draft of the paper, and supervised LT

in the research.

Other significant contributions

William Farebrother (WF) undertook field sampling with LT and provided GIS technical

advice

Sam Shumack (SS) assisted LT with the development of the IDL classification processing

script, and provided ENVI and GIS technical advice

1The Macquarie University policy for thesis by publication states that a thesis may include a relevant paper
or papers that have been published, accepted, submitted or prepared for publication for which at least half of
the research has been undertaken during enrolment. The papers should form a coherent and integrated body
of work. The papers are one part of the thesis, rather than a separate component (or appendix) and may be
single author or co-authored. The candidate must specify their contribution and the contribution of others to
the preparation of the thesis or to individual parts of the thesis in relevant footnotes/endnotes. Where a paper
has multiple authors, the candidate would usually be the principal author and evidence of this should appear
in the appropriate manner for the discipline. MQ Policy:

http://www.mq.edu.au/policy/docs/hdr_thesis/policy.html
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Chapter 2 2.1. Introduction

Abstract

Field based fuel asssesment methods are spatially restricted, costly, and the assessment of fuel

load does not account for fuel particle arrangement. Although remote senisng insturments can

overcome issues related to spatial extent, for temporally frequent instruments, this comes at the

cost of low image resolution. To overcome this limitation, we used the Maximum Likelihood

to classify fuel hazard from imagery and indices, derived using Gram-Schmidt pan-sharpening

of ADS40 and Landsat 8 OLI imagery obtained at different times. The key findings from

this study were: (i) no image resolution-independent image classification effect which could be

attributed to pan-sharpening; (ii) low (<1%/m) rates of change in accuracy/image resolution,

inferring the plausibility of pan-sharpening as a method; (iii) fuel vegetation groups significantly

affected the fuel hazard classification, and (iv) spectral indices provide no benefit for fuel hazard

classification.

2.1 Introduction

Wildland fires are a major environmental issue in a wide range of ecosystems around the

world (Arroyo et al., 2008). Accurate fuel maps are required for fire behaviour prediction and

management of fuels at a variety of spatial and temporal scales (Arroyo et al., 2008). Fuel

load is commonly used for mapping the distribution of fuels (Brandis and Jacobson, 2003;

Cash, 2012; Chafer et al., 2004), however fuel load does not take into account the arrangement

of fuels (Hines et al., 2010) which may lead to inaccurate fire behaviour predictions. Land

managers commonly assess fuels in the field. While field based assessment is more accurate,

this method is restricted in the spatial extent to which it can be implemented. This limitation

can be overcome with Remote Sensing (RS). Although RS can provide greater coverage, for

temporally frequent instruments, such as Landsat 8 OLI, this comes at the cost of low image

resolution. For high resolution imagery the opposite relationship holds. To overcome this, the

fusion of high resolution ADS40 and Landsat 8 OLI imagery obtained at different times through

pan-sharpening, is proposed.

2.1.1 Fuel Hazard

Fuel is defined as any live or dead biomass available for combustion, which significantly in-

fluences the development and propagation of a fire (Hollis et al., 2015; Williams et al., 2012;

Keane, 2015). The sum and arrangement of fuel in an area is termed a fuel complex (Watson,

2009). Within a fuel complex, a series of vertical structural layers known as fuel strata are

often identified (Hollis et al., 2015; Watson, 2009). Fuel particles within each strata have a

variety of characteristics which affect the way a fire behaves, including the thickness/fineness

of fuel elements, mass of flammable material, live/dead fuel ratio, species composition, and

arrangement of material (Watson, 2009; Roff et al., 2005; Keane, 2015). As there are several

characteristics which contribute to a fires behaviour, fuels can be described in a number of ways.

Historically, empirical fire behaviour models (those commonly used in Australia), required the

dry mass of fuels (fuel load) as input to represent the magnitude of available fuels within a

complex (McArthur, 1958, 1960, 1966b, 1967). However as demonstrated by Hines et al. (2010),
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Chapter 2 2.1. Introduction

for the same available fuel load a fire can behave differently based on fuel particle arrangement.

To describe fuels so that fuel particle arrangement is accounted for, the concept of fuel hazard

has been developed (McCarthy et al., 1999; Hines et al., 2010; Watson, 2009). Fuel hazard

is a rating on a five point scale for each contributing fuel stratum representing the difficulty

of fire suppression based on potential behaviour under first attack conditions (Hines et al.,

2010). Fuel hazard considers not only the amount of fuel but also its arrangement. It provides

a more robust indication of potential fire behaviour and suppression difficulty (Hines et al.,

2010). Describing fuel with fuel hazard is also advantageous as rating levels can be transformed

into a fuel load values which incorporate vertical structure, in order to create products for fire

behaviour simulations (Hines et al., 2010).

2.1.2 Fuel Vegetation Groups

Wildland vegetation coalesces into similar forms (structures and arrangements) based on to-

pography, micro and macro climatic conditions, access to water and various other factors. In

order to catalogue vegetation, Keith (2004), provides a comprehensive description of vegetation

forms in NSW. In the context of fire behaviour, these forms are termed fuel vegetation groups,

and are defined as an identifiable association of fuel elements of distinctive species, form, size,

arrangement and continuity that will exhibit characteristic fire behaviour under defined burning

conditions (Merrill and Alexander, 1987). Within Australia, a number of discrete fire behaviour

models exist, for fuel vegetation groups which frequently burn including forests, grasslands, and

shrublands (which include heathlands) (Cruz et al., 2015). While they are distinct, Watson

(2009) identifies that fuel vegetation groups can occur within a matrix of other vegetation types

such as heathlands within dry sclerophyll forests, and as such, tend to burn at the same time.

Coastal heathlands are particularly fire prone and exhibit unique properties such as well aerated

fuel and the tendency of dead foliage, which contains flammable oils and waxes, to persist on

plant. As a result, when heathlands are encountered by a spreading fire, they may significantly

change the nature of its behaviour. Understanding the unique fuel hazard that each fuel group

presents is important for the planning and implementation of fuel management strategies and

to model fire behaviour.

2.1.3 Remote Sensing of Fuel Characteristics

While the most accurate method for the assessment of fuel characteristics is field based (Keane,

2015), implementing field based methods at large spatial scales can be time-consuming and

costly (Cash, 2012). In order to overcome this, Remote Sensing (RS) instruments, which can

obtain data over a greater spatial extent, in a shorter amount of time, and at lower cost, have

been used to estimate fuel characteristics (Cash, 2012). Within Australia only a few studies have

used coarse to medium resolution optical instruments to assess fuel characteristics including fuel

load (Brandis and Jacobson, 2003; Chafer et al., 2004; Cash, 2012) and fuel moisture (Caccamo

et al., 2012).

Within these studies spectral indices, products derived from combinations of individual

bands of multispectral RS instrument, are also used to assess fuel characteristics (Cash, 2012).

Healthy vegetation reflects more in the Near Infrared (NIR) part of the electromagnetic spec-
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trum due to intra leaf scattering, and absorbs in the red and blue parts of the spectrum due

to photosynthetic pigments found in chlorophyll (Cash, 2012). The most commonly used, are

broadband greenness indices such as Simple Ratio (SR), and Normalised Difference Vegetation

Index (NDVI). These indices measure the quantity, health, and condition of vegetation (Cash,

2012), and therefore can be used for the assessment of fuel characteristics. Other indices de-

veloped on SR and NDVI, are more sensitive in high biomass regions and less sensitive to

atmospheric effects, for example, the Enhanced Vegetation Index (EVI) and Atmospherically

Resistant Vegetation Index (ARVI), respectively. Unlike SR and NDVI, these indices are yet

to be used for the purposes of fuel assessment.

Although RS instruments have been used to assess fuel characteristics the potential of very

high resolution imagery has not yet been explored in depth (Arroyo et al., 2008). Only a

single study, Jin and Chen (2012), has investigated the use of high resolution imagery for

the assessment of fuel characteristics. Jin and Chen (2012) determined that the use of high

resolution imagery provided improved estimates of total fine and dead fuel loads when compared

with coarser resolution Landsat imagery. This demonstration motivates the investigation of the

use of high resolution imagery for fuel hazard mapping.

2.1.4 Data Fusion

Remote sensing instruments record data in a variety of configurations determined by the por-

tion of the electromagnetic spectrum they observe, how often they record new data, their

location above the ground, and sensor characteristics (Ghassemian, 2016). Integrating data

from different instruments and configurations can provide greater insight about features on the

ground than may otherwise be achieved through the use of a single sensor. This process, termed

data fusion, is undertaken to obtain more information, with minimal loss or distortion of data

(Amarsaikhan et al., 2012). Data fusion also enables the use of datasets recorded at different

resolutions and times. This is advantageous as datasets recorded by RS instruments are either

of high spatial resolution and low temporal frequency or vice versa. This is due to both the

geometry of satellites in orbit and the cost of airborne RS. Arroyo et al. (2008) identified that

the use of multiple data sources represents a promising approach in remote sensing for fuel

mapping. Although RS data fusion can be performed in a number of ways (see Amarsaikhan

et al., 2012; Zhang, 2010; Ghassemian, 2016) pixel level fusion, which combines raw data from

multiple sources into single dataset, is particularly useful. As pixel-level fusion can enhance

structural and textural details while retaining the spectral fidelity of input data (Zhang, 2010).

2.1.5 Research Aims and Objectives

The aim of this study is to investigate the potential to which pan-sharpening of high resolution

ADS40 and Landsat 8 OLI imagery obtained at different times can be used to classify fuel

hazard. More specific objectives are to: i) investigate the data fusion effect, independent of

resolution, of pan-sharpening on fuel hazard classification, ii) determine if pan-sharpening can

be used to improve the resolution of fuel hazard classification both overall and for each fuel

hazard class, and iii) examine the influence of fuel vegetation groups on the classification of

fuel hazard
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2.2 Methods

2.2.1 Study Area

This study was done in the Royal National Park (RNP) in New South Wales, Australia. The

RNP covers 13, 348 ha of land and is locatec adjacent to the Tasman Sea and the southern

fringe of metropolitan Sydney (see Figure 2.2.1). It has a varied topography consisting of ridges

and valleys on the western side of the park, and a coastal plateau towards the eastern side of

the park (see Figure 2.2.1). The park contains a rich floristic diversity including several types

of rainforest, freshwater swamps and estuarine wetlands (National Parks & Wildlife Service

NSW, 2000), and is dominated by dry sclerophyll forest and coastal heathlands (See Figure

2.2.1).

The fire history of the park has been recorded and mapped since 1965. Since this time, the

largest fires recorded occurred in 1993 and 2001, burning approximately 97.9% and 59.6% of

the park respectively. Historically, most frequent pattern of fire spread is for fires to enter the

from the west and north-west sides of the park; which sit adjacent to areas of public access

(National Parks & Wildlife Service NSW, 2000). At the time of this study, the majority of

vegetation within the park had not been burnt for a period of approximately 15 years.
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Figure 2.2.1: Map of the study site. Bottom left (inset): Location of the RNP along the NSW coast.
Top left: the dominant vegetation types occurring in the RNP (Land & Property Information NSW,
2013). Top right: topography of the RNP (Geoscience Australia, 2015). Bottom right: location of
study sampling sites and access paths (Office of Environment & Heritage NSW, 2016).

2.2.2 Datasets

Field Data

Field data used to train and validate the image classifications for this analysis was collected

by two assessors during April and June 2016. Fuel hazard levels were visually assessed within

a 20 m radius using the Overall Fuel Hazard Assessment Guide 4th Ed (OFHAG) (see Table

2.2.1)(Hines et al., 2010). Visual assessment was chosen as it is a low cost, rapid, and non-

destructive technique (Brandis and Jacobson, 2003). Sites were chosen in the field, separated

by approximately 250 m along walking accessible paths including fire trails, tracks, and when

safely accessible, roads. At each site, assessors walked into the vegetation from the access

path for a minimum of 20 m (the assessment radius), or as far as safely possible. This was

done to minimise any path edge effects and ensure assessors viewed a significant portion of

the vegetation associated with each site (Gould and Cruz, 2012). To minimise any structural

sampling bias, sites were located on alternating sides of accessed paths. These paths were chosen

within the constraints of time and to obtain a dataset with comprehensive spatial coverage.

During fieldwork in April, sites were assessed for some paths in a spatially clustered manner;
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assessors pushed into alternate sides of the path from the same point. This clustering could

not be achieved during the June portion of fieldwork due to time constraints brought about by

severe weather, and dataset spatial coverage. The location of each site was also recorded using

a Garmin 72H GPS with an accuracy variance of within 10 m.

Table 2.2.1: Summary of fuel characteristics and the stratum for which they were recorded at each
sampling site site.

Stratum Height Characteristics Assessed

Canopy > 4 m Canopy Base Height, Canopy Top Height

Elevated 1-4 m % Cover, % Dead, Average Height (m), Elevated Fuel Hazard (1-5)

Near
Surface

0-1 m % Cover, % Dead, Average Height (cm),
Near Surface Fuel Hazard (1-5)

Surface 0 m % Cover, Average Depth (mm), Surface Fuel Hazard (1-5)

Bark Stringy Hazard (0, 2-5), Ribbon Hazard 0, 2-5), Other Hazard (1-3)

Recorded sample site locations were imported into ArcGIS (ESRI, 2011) and buffered with

a 30 m radius, to incorporate the GPS inaccuracy. Due to the clustered sampling regime,

paired sites with overlapping buffers were observed (see Figure 2.2.1). As each site had unique

fuel hazard values, the site from each overlapping pair furthest from the accessed path was

retained in order to maximise the size of the dataset and minimise edge effects. Sites were also

removed where proximal to the processing extent due to processing edge effects (2 sites), and

where duplicate assessment occurred for calibration purposes (2 sites). From the 249 field sites,

selective site removal resulted in 219 buffered areas, with a total area of 61 ha equivalent to

approximately 0.5% of the study area (see Figure 2.2.1).
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To produce datasets for classification training and validation, the buffered areas were split

into training (70%) and testing (30%) datasets using random selection stratified across the fuel

hazard ratings to ensure a balanced representation of each class was in the derived datasets.

This was done with the Sample Design Tool (Buja, 2015) in ArcGIS (ESRI, 2011).

To investigate the classification of overall fuel hazard for different fuel vegetation groups,

the field site buffers were intersected with a native vegetation dataset obtained from the Land

Property Information NSW (LPI, 2013) . Areas were assigned the majority fuel group that fell

within them. The fuel vegetation groups with the requisite number of samples to produce a

validation classification, >10n per class (n number of layers) (Jensen, 2016), were Dry Sclero-

phyll Forests, and Heathlands. The samples for each of these structures were then separated

into balanced training and testing datasets using the method described.

Remote Sensing Data

The imagery used for this study was acquired by the LPI as a part of their Standard Coverage

Program in March 2008 (Land & Property Information NSW, 2008). The image (referred to as

ADS40 image) was created by ortho-rectifying, colour matching and joining overlapping image

strips captured on 30/3/2008 with multiple flight lines using a Leica ADS40 airborne digital

sensor (Land & Property Information NSW, 2008). The ADS40 image was provided by the

vendor as a Standard Colour (three band, red green blue) Orthorectifed Mosaic in the ECW file

format, with a ground sample distance of 50 cm (Land & Property Information NSW, 2008).

A cloud free Landsat 8 OLI scene, taken closest to the second period of field data was

downloaded from USGS Earth Explorer (USGS, 2016). Although the field data was recorded

in two separate time periods, the remotely sensed phenological variation between these periods

was low, and there were no significant disturbances such as fire affecting imagery texture.

Remotely sensed phenological variation was determined to be low due to a strong correlation

(R2
adj = 0.94) of NDVI pixel values from images taken closest to each of the field data collection

periods (see Appendix 1). Therefore, rather than analyse two separate Landsat images, analysis

of single scene was deemed appropriate. Use of a single scene also mitigated the temporal break

up of the training/validation dataset, which might introduce bias. Before analysis, the Landsat

8 OLI scene was pre-processed within ENVI 5.3 (Exelis Visual Information Solutions, 2016a)

using the Radiometric Calibration tool and FLAASH atmospheric correction tool. The Landsat

8 OLI scene, calibration and correction details are outlined in Table 2.2.2.

Table 2.2.2: A summary of the Landsat 8 OLI scene, radiometric calibration, and atmospheric
correction details.

Landsat Scene Radiometric Calibration Atmospheric Correction

Sensor: Landsat 8 OLI
ID: LC80890842016206LGN00
Capture Date: 24/7/2016
Path 89 / Row 84
Resolution: 30 m
Bands: 7

Algorithm: ENVI
Radiometric Calibration
Calibration: Radiance
Interleave/Type:
BIL/Float
Scale Factor: 0.10

Algorithm: FLAASH
Atmospheric Model:
Mid Latitude Winter
Aerosol Model:
2 Band over water
Aerosol Retrieval: Maritime
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2.2.3 Data Fusion

Gram-Schmidt pan-sharpening was used as a data fusion method for this study. Gram-Schmidt

pan-sharpening is a intensity modulation algorithm (Zhang, 2010; Jawak and Luis, 2013) which

uses a generalised principle component orthogonalisation procedure (Ghassemian, 2016) to

create a set of non- or less correlated components from input datasets (Amarsaikhan et al.,

2012). This algorithm was chosen for implementing and as it is characterised by high fidelity

in rendering the spatial details in the fused product (Ghassemian, 2016). It has also been

identified as having the most comprehensive performance when compared to a number of other

pan-sharpening methods (Jawak and Luis, 2013).

For pan-sharpening, a pan-chromatic image at high resolution is required. For this study,

a synthetic panchromatic image was derived from the ADS40 image by taking the mean of

the three bands supplied at their native resolution 50 cm (see 2.2.2). To determine if pan-

sharpening can be used to improve the resolution of fuel hazard classification both overall and for each

fuel hazard class, this image was resampled out to 1, 2, 5, 10, 15, 20, 25, and 30 m resolutions,

respectively. Each resampled synthetic panchromatic ADS40 image was then fused within the

SPEAR Pan-sharpening Tool in ENVI 5.3 (Exelis Visual Information Solutions, 2016a).

Figure 2.2.2: Pan-sharpening inputs and output. Bottom right (inset): full study site extent, and
extent of zoomed images. Top right: input ADS40 panchromatic image at 5 m resolution. Top left:
input Landsat 8 OLI image, at 30 m resolution. Bottom left: output pan-sharpened Landsat 8 OLI
image,at 5 m resolution.
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2.2.4 Spectral Indices

To further investigate the effect of data fusion, a number of spectral indices were derived from

both the Landsat 8 OLI image at its native resolution, and for each resolution of the pan-

sharpened images. The spectral indices calculated for this study are outlined in Table 2.2.3.

Simple Ratio (SR) and Normalised Difference Vegetation Index (NDVI) were chosen as they

are the most commonly used spectral indices derived from RS instruments, and have been used

previously to assess fuel characteristics (Chafer et al., 2004; Cash, 2012; Brandis and Jacobson,

2003). While functionally these indices are similar, NDVI is more commonly used as it does

not suffer from multiplicative noise issues such as illumination differences, cloud shadows, at-

mospheric attenuation, or topographic variation (Cash, 2012). Comparing the results derived

from these indices should then give an indication of whether these issues are affecting the clas-

sification of fuel hazard. For this reason, two other spectral indices, Atmospherically Resistant

Vegetation Index (ARVI) and the Enhanced Vegetation Index (EVI), were also computed. At-

mospherically resistant vegetation index is an enhanced version of NDVI which is more resistant

to atmospheric factors making it useful in regions of high atmospheric aerosol content such as

coastal regions (Kaufman and Tanre, 1992). Enhanced vegetation index was developed as an

improvement of NDVI, which is optimised for dense vegetation conditions (Jensen, 2016). This

makes EVI suitable for the assessment of the fuel vegetation groups considered in this study

(see Section 2.1.2).

Table 2.2.3: Summary of spectral indices used in this investigation

Spectral
Index

Formula Description

Simple Ratio
(SR)

SR = Red
NIR

A ratio of wavelengths with highest
reflectance for vegetation (NIR) and the
deepest chlorophyll absorption (Red)
(Birth and McVey, 1968).

Normalised
Difference
Vegetation
Index (NDVI)

NDV I = (NIR−Red)
(NIR+Red)

Similar to SR, it’s formulation and use
of the highest absorption and reflectance
regions of chlorophyll make it robust
over a wider range of conditions
(Rouse Jr et al., 1974).

Enhanced
Vegetation
Index (EVI)

EV I = 2.5
(

NIR−Red
NIR+(6∗Red)−(7.5∗Blue)+1

)

Developed to optimise vegetation signal
with improved sensitivity in high
biomass regions through a de-coupling
of the canopy background signal
(Huete et al., 2002).

Atmospherically
Resistant
Vegetation
Index (ARVI)

ARV I = NIR−[Red−γ(Blue−Red)]
NIR+[Red−γ(Blue−Red)]

where γ = 1

An enhanced NDVI less sensitive to
atmospheric effects, due to correction for
molecular scattering and ozone absorption
(Kaufman and Tanre, 1992; Jensen, 2016).
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2.2.5 Image Classification

For this analysis, Maximum Likelihood Classification (MLC) was used to classify the image

pixels into fuel hazard ratings. Maximum likelihood classification is a commonly used supervised

image classification algorithm which utilises probability density functions to assign classes,

based on the pixels in the images used to train the algorithm (James, 2013). Each image

or index produced has been grouped into an image set determined by whether or not pan-

sharpening has been applied. Along with this, a comparison image set, comprising of the

original ADS40 RGB imagery and derived panchromatic ADS40 imagery at the processing

resolutions was also produced.

Image classification was done using IDL 8.5 (Exelis Visual Information Solutions, 2016b),

and accuracy assessment undertaken using the ’validate()’ function from the RStoolbox package

based in the R statistical computing language (R Development Core Team, 2008; Leutner and

Horning, 2016). The validity of each classification, and therefore the ability to estimate fuel

hazard, was assessed using Overall Accuracy (OA%) which represents the number of correctly

classified pixels (the diagonal of the confusion matrix), divided by all pixels that have been

classified (Huete et al., 2002; Jensen, 2016). A summary of the input images and details of

the training and validations datasets used for classification are summarised in Tables 2.2.4 and

2.2.5.

Table 2.2.4: The derivation and grouping of imagery and indices into comparison, non-pan-sharpened,
and pan-sharpened image sets.

Image Set Resolution (m) Derivation Image/Index

Comparison
1, 2, 5, 10, 15,
20, 25, 30

Obtained Dataset ADS40 RGB

Mean ADS40 RGB ADS40 Panchromatic

Non-pan-
sharpened

30
Corrected Landsat 8 OLI Landsat 8 OLI

Corrected Landsat 8 OLI NDVI, SR, EVI, ARVI

Pan-
sharpened

1, 2, 5, 10, 15,
20, 25, 30

Corrected Landsat 8 OLI Landsat 8 OLI

Pan-sharpened Landsat 8 OLI NDVI, SR, EVI, ARVI

Table 2.2.5: The distribution of sampling sites amongst fuel vegetation groups and fuel hazard
ratings. The distribution is stratified across fuel hazard ratings within each fuel group. * Other are
sampling points that fell into any other vegetation type, such as rainforests or wetlands.
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2.2.6 Analysis

The processing steps to derive the fuel hazard classification results for this study are illustrated

in Appendix 2. The results of this analysis are presented as three sections addressing the

objectives in Section 2.1.5. The Data Fusion Section investigates the data fusion effect, inde-

pendent of resolution, of pan-sharpening on fuel hazard classification. While the Accuracy and

Resolution section seeks to determine if pan-sharpening can be used to improve the resolution

of fuel hazard classification both overall and for each fuel hazard class. The influence of fuel

vegetation groups on the classification of fuel hazard is examined simultaneously through these

sections.

Data Fusion

To investigate the effect of data fusion, all images and indices at 30 m resolution (that of the

Landsat 8 OLI image pan-sharpening input) from the comparison, non-pan-sharpened, and

pan-sharpened image sets are used (see Table 2.2.4). The results of this investigation also

establish a control, to which the results of other investigations in this study can be compared.

Accuracy and Resolution

The desired outcome of the use of data fusion is to at best improve, or at worst, incur only

a small (but known) loss in fuel hazard accuracy with increasing resolution. To determine

if the data fusion method of pan-sharpening achieves this outcome, the OA% results of the

comparison and pan-sharpened image sets are plotted against the resolutions at which they

have been produced (1, 2, 5, 10, 15, 20, 25, 30 m, respectively). The quality, magnitude and

direction of the relationship for each image or index is quantified by fitting a linear model to

obtain the R2
adj and model equation, respectively. The R2

adj statistic quantifies the quality of the

relationship, while the slope of the fitted line shows the how OA% changes with pan-sharpened

image resolution (OA% vs m-resolution). This shows the degree to which pan-sharpening

achieves the desired outcome.

Fuel Class

To make decisions concerning the implementation fuel management techniques it useful to know

more accurately where fuel hazard may meet or exceed maximum fuel threshold. For this, the

accuracy for each fuel hazard classification is more critical than the OA%. The accuracy for each

fuel hazard class can be determined by calculating the User and Producer accuracies. These

accuracies are calculated across the rows and down the columns of a classification matrix, and

represent the classified fuel hazard rating commission and omission accuracy, respectively. The

User and Producer accuracies have been calculated for both for all images and indices across

image sets and resolutions, and presented for all 30 m images (similar to the Data Fusion

section), and then increasing resolution (similar to the Accuracy and Resolution section). For

the purposes of visualisation the accuracies have been binned into ranges of 10%.
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2.3 Results

Across all imagery assessed in this study the OA was low, <50% OA. The best performing

model achieving an accuracy of 43% for heathlands using pan-sharpened Landsat 8 OLI image

at 30 m resolution.

2.3.1 Data Fusion

The effect of data fusion was investigated through the classification of all 30 m resolved imagery

from each of the images sets derived for this analysis (see Table 2.2.4). The results of these

classifications are illustrated in Figure 2.3.1. Within this figure a wide variance of results is

observed, that is, no single effect or trend which may be attributed to pan-sharpening, can be

identified.

Figure 2.3.1: Image classification results of the Data Fusion section for each fuel group. Confidence
intervals (95%) are displayed as dashed lines.
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What can be discerned is the greater ability of both non-pan-sharpened and pan-sharpened

imagery to classify fuel hazard for the heathlands fuel group. This is hypothesised to be caused

by the relative openness of heathland vegetation to dry sclerophyll which has greater canopy

closure. This closure is thought to obfuscate the spectral signal from understory vegetation

structures resulting in a loss in classification accuracy (Cash, 2012; Goodwin, 2006).

Comparing the indices within Figure 2.3.1, there is no clear distinction concerning the

ability to classify fuel hazard, regardless of fuel vegetation group, between those indices which

are optimised (EVI, ARVI), and those which are not (SR, NDVI). It was also evident that

these indices do not ever outperform some form of the Landsat 8 OLI imagery (either non-pan-

sharpened, or pan-sharpened). It is suggested that this is due to the reduced dimensionality of

the indices, which surmise data from the Landsat 8 OLI imagery. From this, and the lack of

any distinct trends in the data it is hypothesised that the results, for imagery and indices are

detecting signals which are biased by the sampling method and design rather than the inherent

fuel hazard distribution.

2.3.2 Accuracy and Resolution

Overall, there is a significant degree of variability in the quality of the fitted linear models, with

R2
adj ranging from -0.17 to 0.9 (on a possible scale of 0-12) in Figure 2.3.2.

The best model fit acheived with pan-sharpened Landsat 8 OLI imagery for all fuel vegeta-

tion groups (R2
adj = 0.9). From Figure 2.3.2, it can be seen that the magnitude of the OA% vs

m-resolution is low, <1 OA% vs m-resolution. There was also large variation in the direction

(sign of OA% vs m-resolution value) of the fitted models, when examined across the imagery

types and fuel vegetation groups.

2.3.3 Fuel Class

Results to determine whether pan-sharpening can be used to improve the resolution of fuel

hazard classification for each fuel hazard class are illustrated in Figure 2.3.3 for the non-pan-

sharpened imagery at 30 m resolution, and 2.3.4 for pan-sharpened imagery across all resolutions

produced (comparison image set results are also included in each of these figures). When fuel

classes were examined using non-pan-sharpened imagery at 30 m resolution, a maximum of up

to three fuel hazard rating classes were predicted better than 10% (Figure 2.3.3). In more than

half the cases, these are hazard ratings greater than or equal to High. However, there is no

consistency either across the images, or fuel vegetation groups. For the Producer accuracy, the

results were much more variable. However, some classes were classified with high accuracy (e.g.

EVI achieves a (90, 100]OA% for Very High fuel hazard, and all fuel vegetation groups).

When examined across pan-sharpened imagery resolution for imagery type and fuel group

(Figure 2.3.4), no clearly definable trend is exhibited. Very High and Extreme fuel hazard

ratings are the most consistently classified, with relatively higher User-Producer accuracies

than other rating classes. Similarly, the Low fuel hazard rating has the poorest classification

consistency, never reaching a User or Producer accuracy greater than 10%.

2Negative R
2

adj values occur where the fit model is worse than would be otherwise achieved by fitting a
straight line.
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Figure 2.3.2: Image classification results of Accuracy and Resolution section. For comparison the results non-pan-sharpened images at 30m resolution
are also plotted. Results from the Comparison image set denoted by ^. Shown in grey are the confidence intervals (95%) for each linear model.
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2.4 Discussion

There are a number of issues which affect the results of this study. These issues include various

facets of the field data and its collection including its location accuracy, the sample radius,

sampling design and method, the nature of the data fusion method used, and the classification

method.

Pixels used to train and validate fuel hazard classification models were taken from each

image using a 30 m buffer around each site assessed in the field. This buffer incorporated both

the accuracy of the GPS used to collect the location of the sites (10 m) and the radius over

which fuel hazard was assessed (30 m). While this area is suitable for the assessment of fuel

in the field, it can be seen that by incorporating GPS accuracy in this way, the assessment

area is synthetically enlarged such that pixels are included in these areas which have not been

assessed, introducing error. In addition, the area of assessment is kept fixed and has not been

scaled relative to the resolution of the images used. This is hypothesised to introduce spectral

signal noise within the assessment areas as the image resolution increases, acting to obfuscate

MLC.

The sampling design and method are also hypothesised to introduce error into the collected

field data. Field sites for this study were located, in a clustered manner during the initial

period of collection and a non-clustered manner in the secondary period of collection (see Section

2.2.2). Field based sample site allocation, rather than pre-determined site allocation resulted in

a variable number of data points for each fuel hazard class. Due to the limited number of points

collected and the large number removed as part of the field data pre-processing (See Section

2.2.2) it was not possible to further remove points to normalise the training/validation data. It

is also hypothesised that normalising the data in this way would remove the representation of

fuel hazard distribution that is inherent in the data. It can be seen from the results of the fuel

hazard classification (Section 2.3.3) that the data would have benefited from being normalised,

as not normalising the dataset resulted in significant errors of omission and commission for

each fuel hazard rating. Similarly, due to the number of overlapping points removed, spatially

clustered data points had to be retained to meet the amount of data required for classification.

This clustering is hypothesised to bias the sampled spectral signal representative of each fuel

hazard. Resulting in the training data not being representative of the study area. It can

also be seen that splitting the data into training and testing datasets (rather than using other

methods such as cross-validation) may act to further bias the dataset by training on spatially

clustered points which may have a similar spectral signal, and then testing on points which

have a different spectral signal but the same fuel hazard rating.

The visual estimation method used in this analysis is hypothesised to introduce error into

this analysis as a result of assessor subjectivity. Watson et al. (2012) determined that visual

estimation methods can be susceptible to as much as 15% variability between assessors in their

rating of fuel hazard. This, in conjunction with a limited number of calibration points between

assessors, an ill-defined assessment radius, and significant difference in assessor height (~165 cm,

and ~197 cm respectively), are thought to compound error for the fuel hazard ratings recorded
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in this study. As well as this, there is no way to validate the way this visual estimation method

captures the variability of fuel hazard over the scale considered in this analysis.

The errors introduced by the sampling method and design are hypothesised to be amplified

when used as inputs for MLC. This is due to MLC assuming that input datasets are normally

distributed. In future work, alternative classification methods which are not restricted by

assumptions of normality or linear decision boundaries such as a Support Vector Machine are

suggested.

The direct fusion of the two datasets introduces error due to possible image misregistration,

as well as spatial and spectral distortions introduced by pan-sharpening. Pan-sharpening is

more commonly used with datasets from the same sensor, which are inherently spatially re-

gistered and have the same sensor characteristics such as optical distortions and sensitivity.

Due to this, pan-sharpening does not consider local dissimilarities between images, which can

result in significant spectral and spatial distortions when images from difference sensors are

used. These distortions may be further amplified where datasets are spatially and spectrally

misregistered. For this analysis, as the images were not taken at the same time and the appar-

atus to validate and correct the spatial registration of the imagery (to the minimum resolution

used i.e. 1 m) was unavailable. Only a superficial assessment of the registration (through visual

inspection) was undertaken.

This study demonstrated that there is limited benefit for the use of spectral indices, as

indicated by the greater performance of the non- or pan-sharpened Landsat 8 OLI imagery

over any of the derived indices (see 2.3.1). This is attributed to the greater dynamic range

of the imagery compared to the spectral indices. This greater dynamic range is suggested to

provide more information for the classification algorithm to delineate fuel hazard classes. In

addition, other studies have shown that the effectiveness of the use of indices can vary between

conditions including location, level of cover, and sensor used; even within similar environmental

regions (Cash, 2012).

Due to the limited literature concerning the assessment of fuel characteristics within Aus-

tralia. The results of this study are only comparable to one other. In estimating fuel load for

the purposes of retrospective fire severity mapping, using Landsat derived NDVI image and

166 sample sites dominated by Dry Sclerophyll forest; Chafer et al. (2004) obtained R2 = 0.43

in the Metropolitan and Woronora water supply catchments near Sydney. For the purposes of

comparison, fuel hazard and fuel load are considered analogous. It can be seen in this study

for the Dry Sclerophyll fuel group, that non-pan-sharpened NDVI achieved an OA% of 14.4%.

Although assessing fire severity, Chafer et al. (2004) used similar sampling methods and design

to this study. Due to this similarity, the relative difference in inaccuracy is suggested to be

caused, in this study, by the inclusion the GPS inaccuracy in the field site buffers, and the use

of non-normalised data in conjunction with MLC.
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2.5 Conclusion

While methods used in this study incur a number of limitations, there was evidence inferring

plausible use of pan-sharpening to improve the resolution of imagery and indices for fuel hazard

classification. Pan-sharpening imagery has a number of advantages including the ability to ar-

bitrarily improve image resolution with a known and quantified effect on classification accuracy.

Improving the resolution at which fuel hazard is classified would also enable an increase in the

spatial precision of fire behaviour modelling. This would inform a more detailed understanding

of the risks imposed by potential fire behaviour, which has a number of advantages for research

and land management.

This study also presents evidence that the classification of fuel hazard is influenced by the

structure of the vegetation within the fuel vegetation groups investigated. Particularly high

canopy closure is hypothesised to obfuscate the spectral signal from understory vegetation

structures decreasing fuel hazard classification accuracy

2.5.1 Future Work

It is suggested that future work investigate the relationship between canopy cover, fuel group,

and fuel hazard, so that canopy cover measurements, which can also be derived from remotely

sensed imagery such as Foliage Projective Cover, could be integrated into the method. Future

work should also investigate the temporal relationship between the input datasets, to determine

whether the degree of structural change over time in the absence of significant disturbance plays

a role in fuel hazard classification accuracy. In this way, the temporal extent of the difference

between input imagery sets could be determined.

More broadly, further investigation into the relationship between field based fuel assessment

methods and remotely sensed datasets needs to be undertaken. It is proposed that visual estim-

ation methods needs to be be more rigorously developed, both in terms of method and design.

Increased robustness in the use of visual estimation methods with remotely sensed datasets

will be advantageous in both management and research settings, and at various spatial scales.

An example of how they might be improved is through the integration of visual obstruction

methods (Davies et al., 2008) which directly quantify vegetation structure, and not limited by

assessor subjectivity. As well as developing specific sampling design schema, such as those used

in fractional cover methods (Muir et al., 2011), that are spatially scalable.
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Research program. The chapter provides an introduction, methods, results and discussion and

conclusion pertaining to classifying understory fuel hazard using LiDAR and high resolution

imagery, integrating fusion and machine learning. This chapter aims to investigate the use

of LiDAR, very high resolution imagery, data fusion and machine learning techniques to estimate

understory fuel hazard in a wildland area.
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at the end of the thesis.
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Abstract

Understory fuel strata contain the most important source of fuels which contribute the most to

the rate of spread and flame height of a wildland fire. By managing these fuels, the difficulty

of fire suppression and likelihood of an uncontrollable crown fire breaking out is minimised,

reducing the risk a fire posed to people and the environment. Traditionally, fuel assessment is

field based, which is time-consuming and costly. While optical remote sensing instruments have

been used, they are unable to directly quantify the hazard of understory fuels due to canopy

obstruction. This study aimed to use LiDAR, high resolution imagery, data fusion and machine

learning classification techniques to estimate understory fuel hazard within a wildland area. Key

findings were: that the combined use of LiDAR point elevation and intensity metrics provide the

most accurate classification of understory fuel hazard, and although statistical fusion through

principal component analysis achieved the highest classification accuracy, the simplest form of

data fusion image stacking provided a more consistent improvement of accuracy.

3.1 Introduction

Fire is a principle wildland disturbance that shapes the landscape mosaic and influences biogeo-

chemical cycles (Hermosilla et al., 2014). To develop and implement fire management strategies

an understanding of the spatial distribution of fuels is essential (Arroyo et al., 2008).

The understory strata contains the most significant source of fuels (Cheney, 1994; Goodwin,

2006). These fuels burn in the continuous flaming zone at the edge of a fire contributing the

most to its rate of spread and flame height (Hines et al., 2010). Cheney (1994) showed that

independent crown fires are unlikely to occur where there is a lack of understory fuels as crown

fires are produced by convection pre-heating from ignited understory fuels. Therefore, if the

amount of understory fuels can be managed, the difficulty of fire suppression and likelihood of

an uncontrollable crown fire breaking out is minimised, in turn, reducing the risk a fire posed

to people and the environment.

3.1.1 Fuel Assessment

Traditionally, the spatial distribution of fuels has been assessed using field based techniques

such as destructive sampling or visual estimation (McCarthy et al., 1999; Hines et al., 2010;

Ferster and Coops, 2014; Davies et al., 2008). While field based methods are the most accurate

techniques (Keane, 2015), at larger spatial and temporal scales they become time-consuming

and costly to implement (Keane et al., 2001; Rollins et al., 2004; Arroyo et al., 2008; Cash,

2012). To overcome these limitations, Remote Sensing (RS) instruments, which are able to

obtain data at a greater spatial extent and temporal frequency with a relatively lower cost,

have been applied to estimate fuel distribution (Frolking et al., 2009; Cash, 2012). Within

Australia, passive optical RS instruments have been used to estimate fuel properties across

all vegetation strata. These properties include fuel load (Brandis and Jacobson, 2003; Chafer

et al., 2004; Cash, 2012), fuel moisture (Caccamo et al., 2012) and post-fire vegetation regrowth

(Jacobson, 2010). While these properties can be used to inform management practices, when

estimated using optical RS instruments they are inferred rather than direct measurements. This
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inference is due to the inability of these sensors to detect the contribution of fuels from strata

below the canopy when overstory coverage is high (Keane et al., 2001; Garcia et al., 2011).

3.1.2 LiDAR

Light Detection and Ranging (LiDAR) is becoming an effective alternative for overcoming the

previously described limitations of optical RS, as it can be used to estimate the structure of

fuels beneath the canopy (Keane et al., 2001; Chuvieco and Kasischke, 2007; Arroyo et al.,

2008). LiDAR is an active RS technique which utilises distance measurements of laser pulses

to produce highly accurate, precisely georeferenced, three dimensional point representation of a

scanned surface (Lefsky et al., 1999; Baltsavias, 1999; Ediriweera et al., 2014; González-Ferreiro

et al., 2014). In forested areas, most pulses are reflected back to the sensor from leaves and

branches of the vegetation canopy. However, as the canopy is not an opaque/impermeable

surface and its magnitude of cover can vary with vegetation composition, pulses are able to

penetrate and reflect back to provide measurements of understory structure (González-Ferreiro

et al., 2014).

Due to the large data volume (greater than tens of millions of points at the landscape scale)

and high dimensionality (multiple recorded returns, each with x- y- z- locations and intensity

per emitted pulse), the raw LiDAR point cloud is precluded from direct use in modelling

algorithms (Zhao et al., 2011). Therefore, metrics which summarise point characteristics are

commonly derived for use in analysis. These metrics are grouped into point elevation based

metrics which summarise the distribution of elevation amongst points (Garcia et al., 2011)

and point intensity based metrics which summarise the backscattered energy from scanned

objects (González-Ferreiro et al., 2014). Point elevation metrics are more commonly used, as

the point cloud data from which they are derived is not affected by atmospheric issues common

to other remote sensors such as illumination differences, clouds and shadows. Intensity metrics

are less commonly used as their signal can be affected by factors such as terrain properties,

and flight and sensor characteristics (González-Ferreiro et al., 2014). Although suffering from

these problems the use of intensity metrics for the characterisation of fuels in the context

of fuel hazard is motivated, as the sensor operates in the Near InfraRed (NIR) part of the

electromagnetic spectrum. The NIR portion of the spectrum is commonly used to characterise

the ’greenness’ or productivity of vegetation through spectral indices (Cash, 2012). As the

intensity values recorded by a LiDAR sensor lay within the NIR portion of the spectrum these

values may then be used as a proxy for the productivity of vegetation, or the ratio of dead/live

fuel when considered in the context of fuel assessment.

3.1.3 Data Fusion

Data fusion deals with the association, correlation and combination of information and data

from different sources (Haywood et al., 2010). Fusing data from different sources can occur

in a number of ways from simple image stacking, termed data type fusion, to more advanced

statistical fusion techniques such as Principle Component Analysis (PCA), and Minimum Noise

Fraction (Mutlu et al., 2008), termed statistical fusion. A number of studies (Erdody and

Moskal, 2010; Garcia et al., 2011; Jakubowksi et al., 2013; Kane et al., 2014; Nordkvist et al.,
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2012) have shown that combining LiDAR data with other data sources can improve the accuracy

of results, compared to those individual input data sources (Garcia et al., 2011). For the

study presented here, fusing LiDAR and imagery will take advantage of the vertical structure

information from the LiDAR and the horizontal multispectral information from the optical data

(Garcia et al., 2011).

3.1.4 Machine Learning

To produce and assess the validity of maps which portray the spatial distribution of fuels, image

classification techniques are commonly used. Supervised classification or Machine Learning

(ML) algorithms are a subset of these techniques which apply statistical learning methods to

a set of training data, to quantify the functional relationship between the observations within

a dataset to make inferences or predictions about other unseen datasets (Lary et al., 2016).

These ML algorithms are known as ’universal approximators’ (Lary et al., 2016) and are ideal for

addressing non-linear systems and situations where there is incomplete theoretical knowledge

but for which a significant number of observations exist (Lary et al., 2016).

In general ML algorithms are either, parametric or non-parametric based on the nature

of the assumptions they hold about input datasets. Parametric algorithms summarise data

with a set of parameters using a predefined functional form (James, 2013). These algorithms

have traditionally been used in RS analysis for the classification of imagery, as they are quick

to run, the resultant parameters easy to understand, and the functional form is known (Hsu

et al., 2010). However they are limited by the predefined functional form which may not fit the

relationship under investigation (James, 2013). Non-parametric ML algorithms overcome this

limitation by not making explicit assumptions concerning the nature of the functional form,

and instead seek its estimation (James, 2013).

3.1.5 Research Aims and Objectives

The overall aim of this study is to to investigate the use of LiDAR, very high resolution imagery,

data fusion and machine learning techniques to estimate understory fuel hazard in a wildland area. In

order to achieve this aim a number of more specific objectives are to: i) investigate the ability to

use LiDAR point and intensity metrics for understory fuel hazard estimation, ii) compare the effects of

data fusion methods, and iii) compare/contrast the accuracy of different machine learning algorithms

for the estimation of understory fuel hazard
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3.2 Materials and Methods

3.2.1 Study Area

This study was done in the Royal National Park (RNP) in New South Wales, Australia. The

RNP covers 13, 348 ha of land and is located adjacent to the Tasman Sea and the southern

fringe of metropolitan Sydney. It has a varied topography consisting of ridges and valleys on

the western side of the park, and a coastal plateau towards the eastern side of the park (See

Figure 3.2.1). The park contains a rich floristic diversity including several types of rainforest,

freshwater swamps and estuarine wetlands (National Parks & Wildlife Service NSW, 2000),

and is dominated by dry sclerophyll forest and coastal heathlands (See Figure 3.2.1).

The fire history of the park has been recorded and mapped since 1965. Since this time, the

largest fires recorded occurred in 1993 and 2001, burning approximately 97.9% and 59.6% of

the park respectively. Historically, the most frequent pattern of fire spread is for fires to enter

the from the west and north-west sides of the park; which sit adjacent to areas of public access

(National Parks & Wildlife Service NSW, 2000). At the time of the study, the majority of

vegetation within the park had not been burnt for a period of approximately 15 years.

Figure 3.2.1: Map of the study site. Bottom left (inset): Location of the RNP along the NSW coast.
Top left: the dominant vegetation types occurring in the RNP (Land & Property Information NSW,
2013). Top right: topography of the RNP (Geoscience Australia, 2015). Bottom right: location of
study sampling sites and access paths (Office of Environment & Heritage NSW, 2016).
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3.2.2 Data

Field Data

Field data used to train and validate the image classifications for this analysis was collected by

two assessors during April and June 2016. Fuel hazard levels of Near Surface and Elevated fuel

strata were visually assessed within a 20 m radius using the Overall Fuel Hazard Assessment

Guide 4th Ed (OFHAG) (see Table 3.2.1)(Hines et al., 2010). Visual assessment was chosen as

it is a low cost, rapid, and non-destructive technique (Brandis and Jacobson, 2003). Sites were

chosen in the field, separated by approximately 250 m along walking accessible paths including

fire trails, tracks, and when safely accessible, roads. At each site assessors walked into the

vegetation from the access path for a minimum of 20 m (the assessment radius), or as far as

safely possible. This was undertaken to minimise any path edge effects and ensure assessors

viewed a significant portion of the vegetation associated with each site (Gould and Cruz, 2012).

To minimise any structural sampling bias, sites were located on alternating sides of accessed

paths. These paths were chosen within the constraints of time, and in order to obtain a dataset

with comprehensive spatial coverage. During the April fieldwork, sites were assessed for some

paths in a spatially clustered manner; assessors pushed into alternate sides of the path from the

same point. This clustering could not be achieved during the June portion of fieldwork due to

time constraints brought about by severe weather, and dataset spatial coverage. The location

of each site was also recorded using a Garmin 72H GPS with an accuracy variance of within

10 m.

Recorded sample site locations were imported into ArcGIS (ESRI, 2011) and buffered with

a 30 m radius, in order to incorporate the GPS inaccuracy. Due to the clustered sampling

regime, paired sites with overlapping buffers were observed (see Figure 3.2.1). As each site had

unique fuel hazard values, the site from each overlapping pair furthest from the accessed path

was retained in order to maximise the size of the dataset and minimise edge effects. Sites were

also removed where proximal to the processing extent due to processing edge effects (2 sites),

and where duplicate assessment occurred for calibration purposes (2 sites). From the 249 sites

sampled in the field, this resulted in 219 buffered areas, with a total area of 61 ha equivalent

to approximately 0.5% of the study area (see Figure 3.2.1).

Table 3.2.1: Summary of fuel characteristics and the stratum for which they were recorded at each
sampling site site.

Stratum Height Characteristics Assessed

Canopy > 4 m Canopy Base Height, Canopy Top Height

Elevated 1-4 m % Cover, % Dead, Average Height (m), Elevated Fuel Hazard (1-5)

Near
Surface

0-1 m % Cover, % Dead, Average Height (cm),
Near Surface Fuel Hazard (1-5)

Surface 0 m % Cover, Average Depth (mm), Surface Fuel Hazard (1-5)

Bark Stringy Hazard (0, 2-5), Ribbon Hazard 0, 2-5), Other Hazard (1-3)
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Imagery and LiDAR

Imagery and LiDAR were provided by the Land & Property Information, NSW (LPI). An

ADS40 image captured on 30/3/2008 by the LPI as a part of their Standard Coverage Program

in March 2008 (Land & Property Information NSW, 2008) was provided as a Standard Colour

(Red (R), Green (G), Blue (B)) Orthorectifed Mosaic in ECW file format, with a ground sample

distance of 50 cm.

A LiDAR point cloud acquired by LPI in May 2011 using a Leica ALS50-II sensor was

provided by the vendor in LAS 1.2 file format classified to the C3 standard with a horizontal

accuracy of 0.8 m, and a vertical accuracy of 0.3 m (Land & Property Information NSW, 2011;

Intergovernmental Committee on Surveying & Mapping, 2010). This dataset contained four

return values with an average point density of 1.62 per square metre.

3.2.3 LiDAR Metrics

Before metrics could be derived the LiDAR point cloud was topographically normalised, by

subtracting the elevation of a DEM derived from all ground classified points. Normalisation is

necessary so that the x- y- z- locations within the point cloud represent the height above the

ground rather than height above sea level. This was done using the LasHeight algorithm within

ERDAS Imagine 2015 (Hexagon Geospatial, 2015; Isenberg, 2016).

For this study, both point elevation and point intensity metrics were derived using univariate

first and second moment summary statistics (Jensen, 2016) (see Table 3.2.2). A height bin

metric, defined as the number of points that fall within a discrete height range divided by the

total number of points that within each cell, which describes the percentage of cover within the

height bin, were also derived (Heritage and Large, 2009).

Both elevation and intensity metrics were produced using the r.in.lidar tool in GRASSGIS

(GRASS Development Team, 2016) from the normalised height cloud. A processing resolution

of 5 m was chosen so that a sufficient number of points were available to compute each metric

and provide an accurate representation of cover within each height bin (Garcia et al., 2011).

Missing values that occurred within the metrics were removed using a conditional 3x3 focal

mean filter. All metrics and the respective R, G, B ADS40 bands (once resampled to 5 m) were

then standardised by taking their Z score (Equation 3.2.1). This standardisation is necessary

in order to avoid metrics with greater numeric ranges dominating those with smaller ranges

which could bias results during data fusion and machine learning (Hsu et al., 2010; Garcia

et al., 2011).

Z Score =
x− x̄

stddev(x)
(3.2.1)
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Table 3.2.2: Summary of the LiDAR metrics derived in this investigation.

Metric Type Description Fuel Strata
Height (m)

Reference

Coefficient
of
Variation

Point/
Intensity

Surface
roughness

Elevated: 1-4
Near Surface:
0-1

Garcia et al., 2011
Erdody and Moskal, 2010
Ediriweera et al., 2014
González-Ferreiro et al., 2014
Kramer et al., 2014

Mean Point/
Intensity

Mean Point
Elevation for
Fuel Strata

Elevated: 1-4
Near Surface:
0-1

Garcia et al., 2011
Erdody and Moskal, 2010
Hermosilla et al., 2014
Ediriweera et al., 2014
Andersen et al., 2005
Kramer et al., 2014

Standard
Deviation

Point/
Intensity

Standard
Deviation of
point elevation

Elevated: 1-4
Near Surface:
0-1

Garcia et al., 2011
Jakubowksi et al., 2013
Hermosilla et al., 2014
Ediriweera et al., 2014
González-Ferreiro et al., 2014
Kramer et al., 2014

Skewness Point Skewness of
Point elevations,
represents the
skew of point
distribution as a
function of
elevation

Elevated: 1-4
Near Surface:
0-1

Garcia et al., 2011
Hermosilla et al., 2014
Ediriweera et al., 2014
González-Ferreiro et al., 2014
Kramer et al., 2014

Variance Point/
Intensity

Variation of
elevation within
fuel strata

Elevated: 1-4
Near Surface:
0-1

(Kramer et al., 2014)

Height
Bins

Point Number of
points within
height bin,
divided by all
points within
the cell

Elevated: 1-1.5,
1.5-2, 2-2.5,
2.5-3, 3-3.5,
3.5-4, 1-4
Near Surface:
0-0.5, 0.5-1, 0-1

Garcia et al., 2011
Koetz et al., 2008
Popescu and Zhao, 2008
Erdody and Moskal, 2010
Heritage and Large, 2009
Mutlu et al., 2008
Skowronski et al., 2007
Skowronski et al., 2016
Kramer et al., 2014
Ediriweera et al., 2014
Hermosilla et al., 2014
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3.2.4 Data Fusion

To investigate the effect of data fusion on the estimation of understory fuel hazard, image stack-

ing and Principle Component Analysis (PCA) was used. Image stacking is a fusion technique

where image bands or other derived raster datasets are combined into a single dataset. Im-

age Stacking represents the simplest case of data fusion, the combination of multiple datasets

(Mutlu et al., 2008). Principle Component Analysis (PCA) is a statistical fusion technique

that is used to produce uncorrelated output bands, segregate noise components, and reduce the

dimensionality of datasets (Jensen, 2005; Mutlu et al., 2008; Haywood et al., 2010).

The Composite Bands tool in ArcGIS (ESRI, 2011) was used to derive image stacks for

each LiDAR metric type (points and intensity), a combination of both LiDAR metric types,

and for each of these stacks including the standardised ADS40 imagery bands (See Table 3.2.3).

The image stacks with both LiDAR metrics and ADS40 imagery were then statistically fused

using PCA. From the uncorrelated PCA output bands, those greater than or equal to the first

cumulative 95% of the variance in the data was used (see Table 3.2.3). The image stacks were

then grouped by the data fusion method used (see Table 3.2.3).

Table 3.2.3: LiDAR metrics and image bands as well as a summary of Principle Component Analysis
band details included in each image stack, grouped by data fusion method.

Fusion
Method

Image Stack LiDAR Metrics/Imagery

Control

ADS40 ADS40 R G B

LiDAR Points LiDAR Point Metrics

LiDAR Intensity LiDAR Intensity Metrics

LiDAR Combined LiDAR Point & Intensity Metrics

Data
Type

ADS40 + LiDAR Points ADS40 R G B, LiDAR Point Metrics

ADS40 + LiDAR Intensity ADS40 R G B, LiDAR Intensity
Metrics

ADS40 + LiDAR Combined ADS40 R G B, LiDAR Point & Intensity
Metrics

Statistical

PCA Band
Characteristics

No. of PCA
Components
Taken

Cumulative
Variance

Total No. of
PCA
Components

ADS40 PCA 2 97.13% 3

ADS40 + LiDAR Points PCA 8 95% 15

ADS40 + LiDAR Intensity PCA 4 97% 7

ADS40 + LiDAR Combined PCA 11 96.6% 19
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3.2.5 Machine Learning

For this study, both a parametric, Maximum Likelihood Classification (MLC), and non-parametric

Support Vector Machine (SVM) algorithm was chosen. Maximum likelihood classification is a

commonly applied supervised image classification algorithm which utilises probability density

functions to assign classes to pixels in unseen data. Pixels that are classified based on the

highest probability a pixel falls into that class, determined from the distribution of classes in

the input training dataset (Mustapha et al., 2010). A SVM is an ML algorithm which seeks to

determine the optimal separating hyperplane between classes (Jensen, 2016). The data points,

or vectors, that are closest to the hyperplane are used to delineate the classes; hence they

are termed ‘support vectors’ (Pal and Mather, 2005). To control the robustness of the separ-

ating hyperplane, a trade-off between the location of the plane and misclassification error is

controlled by a user defined constant, Cost (Pal and Mather, 2005). SVM’s can be extended

for non-linear decision boundaries (where classes are not linearly separable) by projecting data

into a higher dimensional feature space through the use of a kernel function (Pal and Mather,

2005). For this study, a radial basis kernel was used, as it allowed for the investigation of a

non-linear classification algorithm while keeping the number of parameters to be optimised to

a minimum. Use of this kernel introduces only one other hyper-parameter relative to other

kernels (Hsu et al., 2010) which controls the width of the Gaussian kernel (Foody et al., 2006).

Determination of the requisite SVM hyper-parameter values was done using a two layer grid

search optimised against overall classification accuracy as recommended by Hsu et al. (2010).

The first layer consisted of an order of magnitude search (9 orders), while the second layer

involved a coarse grid search, ranged half an order of magnitude either side of the optimal

values determined in the first layer. The resultant hyper-parameter values of this optimisation

procedure are outlined in Table 3.2.4.

Table 3.2.4: Summary of optimised Supoort Vector Machine hyper-parameter values, computed using
a two layer order of magnitude, and coarse search method.
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3.2.6 Analysis

Classifier training and validation assessment was undertaken using the ’superclass()’ function

from the RStoolbox package based in the R statistical computing language (R Development

Core Team, 2008; Leutner and Horning, 2016). This function takes an image and spatial

polygons as input datasets and allows for the number of samples and method of validation to

be specified; for this analysis 1000 samples per polygon and 5-fold cross validation were used,

respectively. The training and validation dataset utilised in this analysis were derived by taking

a 70% training, 30% validation random split stratified across fuel classes of the field data site

polygons (see Section 3.2.2), using the Sample Design Tool (Buja, 2015) within ArcGIS (ESRI,

2011). A summary of the process used to derive the data products for this analysis provided

in Appendix 3.

The validity and accuracy of the models developed in this analysis was determined using

overall classification accuracy (OA), and the coefficient of agreement, Kappa (K) (Jensen, 2016);

both of which are output by the ’superclass()’ function used to train and validate the models.

Overall classification accuracy represents the number of correctly classified pixels (for all classes,

the diagonal of the confusion matrix), divided by all pixels that have been classified (Jensen,

2016). Overall classification accuracy does not however include an assessment of the errors

of omission and commission within a confusion matrix. As such, K, which incorporates an

assessment of the chance of agreement (the errors of omission and commission as represented

by the column and row totals within a confusion matrix), is also computed (Jensen, 2016).

Another method for determining the accuracy/validity of classification models is to assess

their accuracy on a per class basis. This was done in a similar manner to the calculation of

OA. However per class accuracies are computed on a per row, or per column basis; termed

User and Producer accuracies, respectively. User accuracy, computed across rows, indicates

the probability that a pixel classified on a map actually represents the category on the ground

and is a measure of commission (Jensen, 2016). Producer accuracy, computed down columns,

indicates the probability of a reference pixel being correctly classified and is a measure of

omission (Jensen, 2016). For this analysis, an accurate method for all categories is desirable.

As such, User and Producer accuracies are used to investigate whether models are classifying

better for certain classes than others, and the effect this has on the OA.

The results of this analysis are presented in three stages; the first two based on methods

used to assess the the validity of the models, Overall Accuracy and User-Producer Accuracy.

The Overall Accuracy section investigates both the potential to use LiDAR point and intensity

metrics for understory fuel hazard estimation and compares the effects of data fusion methods.

The third stage addresses the broader aim of this study to investigate the use of LiDAR, very

high resolution imagery, data fusion and machine learning techniques to estimate understory

fuel hazard in a wildland area. Within each of these, the the accuracy of different machine

learning algorithms for the estimation of understory fuel hazard are also compared.
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3.3 Results

3.3.1 Overall Accuracy

Overall accuracy results within this study were very low, <40% OA and 0.25 K, see Figure

3.3.1. However, when datasets from the different methods were compared, a number of general

trends were exhibited. As the dimensionality (number of layers) between the Control and

Data Type image stacks (see Table 3.2.3) increases , model performance improved. It was

evident that across fuel hazard strata, the model performance increases with height; mean

model performance for Elevated fuel strata was greater than that for Near Surface fuel strata.

Performance of PCA models in Statistical Fusion, is of much greater variability than either

the control or data type methods. In addition, the distribution of OA and K results for all

methods, across both fuel strata are similar, as shown in Figure 3.3.1. When compared however,

the values of K are lower, approximately half those of OA suggesting that the results of the

models are not too distant from the null hypothesis, that the confusion matrices produced by

the classifications are no better than random chance.

Control

Of all the methods the results of the Control method are the lowest. It can be seen in Figure 3.3.1

that both types of LiDAR metrics (point and intensity) derived for this analysis outperform the

high resolution ADS40 imagery. This result is to be expected as the imagery product is unable to

penetrate the canopy and measure understory vegetation structure used to estimate understory

fuel hazard. When compared between the types, each metric type performs differently for

the different fuel hazard strata modelled. Overall classification accuracy and K are greater

for LiDAR point than LiDAR intensity metrics for Near Surface fuels, while the opposite

relationship exists for Elevated fuels. When these metrics are used in combination it can be seen

that the classification accuracy increases compared to the use of either metric type individually.

There also exists a relationship between fuel strata and model performance variability. Results

for Near Surface fuels exhibit small variability, while the results for Elevated fuels have relatively

greater variability.

Data Type

When ADS40 imagery is introduced to the datasets modelled in the data type method, a

slight improvement in model performance was seen. This suggests that combining multiple

datatypes can improve model performance. However, as the imagery used for this method is

not temporally consistent with the field data and LiDAR metrics used, the magnitude of this

inference cannot be determined. The same relationships between LiDAR metric type, model

variability and fuel strata were also exhibited.

Statistical Fusion

Statistical fusion produces the best performing model, ADS40 + LiDAR Combined PCA (SVM

Elevated: 38.4 OA%, Near Surface: 35.2 OA%; MLC Elevated 33.0 OA%, Near Surface 29.7

OA%). However it can not be said that this method of fusion increases the accuracy of all

models relative to those in the Data Type method. Instead, the spread of model performance

is increased, reducing the ability to make inferences regarding the general effect of statistical
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Figure 3.3.1: Overall Accuracy method organised by validation assessment metric (Overall Accuracy %, and Kappa) and understory fuel strata with
95% confidence intervals.
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fusion for this analysis. It was also evident that the improvement introduced by statistical

fusion is small (SVM Elevated: +0.9 OA%, Near Surface: +1.4 OA%; MLC Elevated: +2.1

OA%, Near Surface: +1.2 OA%) when compared to the next best performing model, ADS40

+ LiDAR Combined.

3.3.2 User-Producer Accuracy

User and Producer accuracies for each fuel hazard class are illustrated in Figure 3.3.2. From

this figure, a number of trends are exhibited. Comparing the shape of the User and Producer

accuracy distributions it can be seen that although lower, the User accuracy is much more

consistent per class than the Producer accuracy. This suggests that the models under invest-

igation are more consistently making errors of commission than omission per class. However

the inconsistency of the Producer accuracies both for individual and across classes infers that

these results are no more reliable than those of the User accuracies.

3.3.3 Understory Fuel Hazard Classification Maps

Fuel hazard classification maps of the best performing models within each method (Control,

Data Fusion, and Statistical Fusion) for each understory fuel strata are illustrated in Figure

3.3.3. It can be seen in these maps that Very High to Extreme Fuel hazard ratings correspond

with the location of the heathlands (see Figure 3.2.1) in the eastern coastal side of the RNP and

Low to Moderate fuel hazard ratings correspond in location with wet and dry sclerophyll forest

in the inland western side of the RNP. Low fuel hazard ratings are also observed surrounding

urbanised areas such as Bundeena and Heathcote (see Figure 3.3.3), which may be attributed

to either the implementation of fuel management, or due to this being an common entry point

for fires to enter the park through anthropogenic ignition.
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Figure 3.3.3: Maps of the best performing fuel hazard classifications (A and B: LiDAR Combined.
C and D: ADS40 + LiDAR Combined, E and F: ADS40 + LiDAR Combined PCA) for each method
(Top: Control. Middle: Data Type. Bottom: Statistical), organised by understory fuel strata (Left:
Elevated, Right: Near Surface).
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3.4 Discussion

The results of this study indicate that the combined use of LiDAR point and intensity metrics,

high resolution imagery and data fusion techniques are able to estimate the distribution of

understory fuel hazard with low to moderate accuracy.

Currently there is only limited literature concerning the application of LiDAR to estimate

fuel characteristics within Australia. The most analogous study Haywood et al. (2010), invest-

igated the ability of LiDAR to estimate retrospective overall fuel hazard within the Victorian

Central Highlands. Haywood et al. (2010), using LiDAR height bins and skewness metrics,

PCA data fusion and MLC were able to produce overall fuel hazard estimates with moderate

accuracy (48.72% OA LiDAR-Landsat stack, 56.41% OA PCA derived stack). Comparison

with Haywood et al. (2010) infers that the results of this study, although objectively low in

terms of more general image classification methods, are reasonable in terms of the estimation

of fuel characteristics from LiDAR derived metrics for Australian vegetation.

A number of issues including the LiDAR metric derivation process, LiDAR sensor charac-

teristics and vegetation effects, dataset temporal discrepancy and field data sampling method

are thought to contribute to the low model performance in this study. As the complexity of

overstory structure and amount of cover increases, the probability that LiDAR pulses are able

to penetrate below the canopy is significantly decreased (Ediriweera et al., 2014). The reduction

of LiDAR point density as a function of overstory cover results in low understory point density

limiting the ability to derive metrics which accurately describe understory fuel structure. The

magnitude of LiDAR pulse penetration is also affected by the relative size difference between

the gaps in the canopy and the Instantaneous Field of View (IFOV) of the LiDAR sensor. This

difference is determined by the altitude at which the sensor is flown (Goodwin, 2006). At the

height at which LiDAR sensros are flown the difference between the sensor IFOV and gaps in

the canopy is low reducing LiDAR pulse penetration of the canopy. These effects are compound

to reduce the understory point density such that within some cells, the values of the LiDAR

metrics can not be computed, producing missing values. For the method developed, smoothing,

which takes the 3x3 focal mean of the surrounding cells, is used to fill these missing values.

This procedure, while robust in its utilisation of local data points may not accurately represent

the nature of understory vegetation within the filled areas. Resulting in training and validation

data which confounds classification.

For LiDAR analyses of structures close to ground level (Near Surface fuel hazard) a common

procedure is to set a minimum height boundary for example 50 cm (Goodwin, 2006) to filter out

ground classified points. For this analysis, to have a sufficient point density for the computation

of the LiDAR metrics a minimum height boundary has not been defined. By not setting this

boundary, ground classified points may be introducing unnecessary noise into the metrics and

reducing their ability to accurately represent the structure of fuels.
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Figure 3.4.1: Conroy fuel load model [F = a − c · (e−bt), where a, b, c are constants for each
vegetation type, t is time since last fire, and F is fuel load in tonnes/hectare] for various vegetation
types (analogous to fuel vegetation groups, Conroy 1993). A black line indicates 25 years of fuel
accumulation, the point at which accumulation rates have stabilised.

The temporal discrepancy of the input datasets is another issue which may have affected

the ability of using multiple datasets to estimate understory fuel hazard. The ADS40 spectral

signature, LiDAR structural measurements and field sampled fuel hazard measurements are a

function of number of aspects of vegetation which should correspond when these sensors are

used at the same, or within a short space of time. When data are not from the same date,

a number of environmental processes may interact with vegetation on varying, and sometimes

unquantifiable, timescales changing both its spectral signature and structure such that fuel

hazard estimates derived between datasets may not correspond. An example of such an envir-

onmental process is fire itself which consumes fuel. Empirical models such as Conroy’s fuel load

model for the Sydney region, show that fuel accumulates for different vegetation types with the

negative exponent of time (see Figure 3.4.1). This means that to accurately use datasets which

are not temporally concurrent, they need to be recorded past 25 years after a fire, as this is the

point at which fuel accumulation rates have stabilised. For this analysis we could not access

temporally concurrent or datasets over this threshold. Haywood et al. (2010) also used input

datasets from different dates, as such, the degree to which this affects the ability to estimate

fuel hazard is unknown and for this analysis cannot be quantified.

To reduce the time taken to collect data points for this analysis, multiple assessors were used.

When fuels which exhibit arrangements or structural aspects for which the visual estimation

methodology does not have a description, an assessor has to subjectively assign a fuel hazard

rating. Watson et al. (2012) determined that this subjectivity can lead to significant variation

in the assessment of fuels of the same arrangement. In their study, variation between assessors

resulted from differing perceptions of the extent to which plot characteristics fitted, as well

as alignment observed vegetation arrangements to the fuel hazard level descriptions. Within

this study, assessor subjectivity is hypothesised to introduce a significant loss in accuracy due

to the low number of calibration assessments undertaken (one away from the study site, and

one for each time assessors went into the field), and the assessors relative inexperience in the
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assessment of fuels.

Field sites were located with a standard GPS receiver, accurate to 10 m. This was under-

taken due to financial, time and portability constraints of more accurate handheld, or differential

GPS devices respectively. When compared to similar literature (Haywood et al., 2010)which

utilise LiDAR metrics for the estimation of vegetation structures, this method is seen to be less

valid, as these studies use a more significantly accurate position to correctly register their input

datasets. Within the method developed, it is intended that this source of error be minimised by

incorporating the GPS inaccuracy into the fuel hazard site buffer. This was undertaken with

independent consideration of the processing resolution used for this analysis. When considered

together, it can be seen that incorporating the GPS inaccuracy in this way the location and

assessment accuracy actually decrease. Error is introduced in this way due to the misclassi-

fication of pixels included within the buffer. That may, or may exhibit the fuel hazard rating

recorded for that area. In a similar manner the assessment radius also acts as a source of error.

The value for this radius was taken from the OFHAG as the value for which fuel is assessed.

However in the field, the area produced by a radius of this distance was not defined or visualised

by the assessors. As such the assessment radius may not be consistent between assessors, nor

between sites. It can also be seen that bias may be introduced, due to the height difference

(~165 cm and ~197 cm, respectively) between assessors and their height relative to that of the

surrounding vegetation (~0.5 m - +2 m).

From the literature concerning the assessment of fuel hazard, there is little guidance re-

garding the type of sampling design method which should be employed (Watson, 2009). At

most, either an unspecified number of point samples should be taken evenly spaced across an

area and averaged (Watson, 2009), or that 10 samples should be taken along a ’sample walk’

and averaged to estimate fuel hazard for a 20 ha area (Gould, 2007). Initially, the latter of

these methods was to be employed for this analysis. However, due to the time constraints this

method could not be implemented. The validity of the area assessed by this method could

also not be reconciled by the author, where the height and topography of the vegetation would

act to obscure visual estimation, were taken into consideration. The initial method settled

on, was to take an average fuel hazard rating of paired sample sites along the paths accessed.

However, it was identified that within these pairs fuel structures could be varied substantially,

greater then up or down a single hazard rating as suggested by the OFHAG (Hines et al.,

2010). Constraints such as time, weather, and spatial coverage also impacted on field sampling,

which resulted in the decision to drop the paired nature of this method. It is hypothesised that

error is introduced where non-overlapping, but spatially clustered sample sites are included for

training/validation. Clustered sites are thought to bias both the spatial accuracy, and diversity

of fuel hazard rating measurements within the dataset.
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3.5 Conclusion

Within this study, fusing imagery with LiDAR metrics which utilise both intensity and elevation

measurements provided the most accurate results. This demonstrates that the data fusion of

LiDAR and ADS40 Imagery can be used to estimate understory fuel hazard in a wildland area.

The model developed can be used to produce understory fuel hazard rating maps for land

management agencies to plan and implement fuel management practices. The high resolution

of these maps enables their use with fire behaviour simulation models, which could enable more

realistic and accurate predictions of fire spread and intensity.

3.5.1 Future Work

Future work should investigate the combination of point elevation and intensity metrics for the

assessment of understory vegetation structure. In addition, a standardised method to normalise

and atmospherically correct LiDAR intensity measurements should be developed. This would

enable increased use of LiDAR intensity data. Drone based LiDAR is suggested as a method to

improve the robustness of the LiDAR point cloud, therefore improving derived metric quality.

Drones can be used alongside a number of optical remote sensors as well as LiDAR, and provide

a number of benefits including low material and operational costs, flexible spatial and temporal

resolution, and high-intensity data collection (Tang and Shao, 2015). Critically, drones are able

to fly at significantly lower altitudes than those permitted for full sized aircraft. A lower flight

altitude would correspondingly reduce the LiDAR sensor IFOV increasing the relative allowing

greater canopy penetration, for a more precise measurement of understory vegetation structure

(see Section 3.4).
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4.1 Synthesis of key findings

Within Australia, there is currently a limited body of research concerning the use of RS to

assess fuel characteristics. This thesis investigates the ability of RS to measure fuel hazard

(which accounts for the arrangement of fuels in a complex (Hines et al., 2010)) at higher spatial

resolutions, and determine whether RS can measure fuel hazard in multiple fuel strata. Studies

in this thesis are located in the Royal National Park NSW Australia, where there have been no

recent significant fire events, allowing fuel recovery and accumulation .

Chapter 2 addresses Aim 1, investigating the ability of high resolution imagery from different

dates to assess fuel hazard and integrating pan-sharpening to arbitrarily determine image res-

olution. Independent of resolution, no single effect that could be attributed to pan-sharpening

was identified. In fitting linear models to Overall Accuracy OA% vs image resolution plots.

Pan-sharpened imagery exhibited low slope values (<1 OA% vs m-resolution) and variable

slope directions, indicating the plausible use of pan-sharpening as a method to improve the

resolution of fuel hazard classification. A per fuel hazard class analysis identified that High

and, Very High and Extreme fuel hazard ratings were most consistently classified with accuracy

>10% for User and Producer accuracies, respectively.

Chapter 3 addresses Aim 2, to use LiDAR, high resolution imagery, data fusion and ma-

chine learning classification techniques to estimate understory fuel hazard within a wildland

area. Point elevation and intensity LiDAR metrics were determined to most accurately classify

Elevated fuel hazard when combined with ADS40 imagery, statistically fused using principal

component analysis, and classified with a Support Vector Machine (SVM) (38.4 OA%, 0.23

Kappa (K)). Statistical fusion resulted in the best performing models for SVM classification

and similar results for data type fusion for Maximum Likelihood Classification (MLC), when

examined across understory fuel strata. However, within the SVM classification results, use of

data type fusion was more consistent than statistical fusion when compared to the results of

the control method. For both OA% and K, SVM classification outperformed MLC across both

understory fuel strata and data fusion methods.

The implications of this thesis are that it is possible to use a high resolution imagery fused

with that from different dates, and LiDAR metrics for fuel hazard classification. The results

suggest that future research to improve fuel hazard classification should utilise data fused from

a range of RS instruments, and classified with non-parametric machine learning algorithms.
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4.2 Directions for future work

Future avenues of research arising from the findings of this research include:

1. The use RS datasets, both high resolution imagery and LiDAR, obtained using drones.

Drones are able to capture data at much lower altitudes than permitted for aircraft, over

similar spatial extents at a significantly lower cost (Tang and Shao, 2015). A lower cost

enables the capture of more temporally frequent high resolution images, while lower alti-

tudes permit greater LiDAR pulse penetration through the canopy measuring understory

fuel structure in greater detail.

2. The use of a mobile handheld LiDAR scanner, such as Zebedee (Bosse et al., 2012), to

supplement the subjective visual estimation of fuel hazard in the field. This scanner has

been shown that it is possible to automatically derive information for different understory

vegetation components from a ground-based LiDAR point cloud (Marselis et al., 2016).

Use of such a scanner would enable precise point based characterisation of understory fuel

structures. Which could then be correlated with point clouds captured using airborne

LiDAR scanners for precision fuel hazard estimation over large spatial extents.
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Appendicies

4.3 Appendix 1
Plot of pixel values from NDVI images taken for each field data collection period. A strong
goodness of fit (R2

adj = 0.94) between NDVI images demonstrates low phenological variation
between them.
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Chapter 4 4.4. Appendix 2

4.4 Appendix 2
Data flow diagram summarising the steps used to derived imagery for paper: Estimating fuel
hazard using optical datasets from different dates with pan-sharpening.
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4.5 Appendix 3
Data flow diagram summarising the steps used to derived imagery for paper: Classifying
understory fuel hazard using LiDAR and high resolution imagery, integrating fusion and
machine learning
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