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Thesis Abstract 

Illusions reveal some of the sophisticated, underlying neural mechanisms that often remain 

hidden in our day-to-day visual experience. Illusions have traditionally been studied using 

psychophysical methods, which quantify overall, system-level effects observable at the 

highest layer of the visual hierarchy. This thesis applies the relatively new technique of 

computational modelling to the study of visual illusions, to quantify bias and uncertainty 

within various levels of our visual system.  The method adopted in this thesis merges 

statistical inferences, obtained from exposure to image subsets, with filtering operations that 

mimic visual neural processing from layer to layer. Previous computational models of visual 

illusions have considered these in isolated arrangement. This dissertation highlights the 

benefits of combinatorial modelling, which includes separating out the contribution of neural 

operations from potential statistical influences.  

 

The first study in this dissertation investigates a well-known line-length illusion in a 

benchmark model of the visual ventral stream, demonstrating that a model imitating the 

structure and function of our cortical visual system is susceptible to illusions. In the second 

study, we further scrutinise this line-length illusion inside each layer of the benchmark model, 

observing magnitudes of uncertainty and bias that propagate through each level. In the third 

and final study, we introduce a new model based on exponential filters inspired by contrast 

statistics of natural images. We apply a suite of lightness illusions to this new model and 

demonstrate that low-level kernel operations can account for a large set of these illusions. In 

summary, this thesis shows that combining filtering functions with natural image statistics not 

only allows for illusory bias and uncertainty to be imitated in artificial neural network models, 

but it also provides further evidence for and against some proposed theories of visual 

illusions.  
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1.1 General overview 

 

“It may be necessary to invent imaginary brains — by constructing functional machines and 

writing computer programs to perform perhaps much like biological systems. In short, we 

may have to simulate to explain; though simulations are never complete or perfect.”  

(Gregory, 1963) 

 

Every day we encounter visual illusions.  From the moment we switch on our phones, 

televisions or computer screens, we perceive continuous image motion instead of a series of 

flickering static visual frames. Our brains are able to effortlessly stitch together a series of still 

images into one smooth moving percept, by making continuous sensory predictions that may 

or may not accurately reflect our external environment. This example is one of many that 

highlights the ubiquity of visual illusions in our day-to-day lives and the rich insights that 

they offer in further understanding our minds. 

 

Illusions have long been recruited as a method for uncovering hidden neural processes. The 

method of choice in experiments to date has been psychophysical, measuring system-level 

effects that quantify biases that are present when viewing a range of stimuli. In the past couple 

of decades, neuroimaging techniques have gained popularity in examining where and when 

biases occur. A very recent and under-utilised technique, computational modelling, allows 

researchers to explore how illusions might occur by specifying the nature of neural 

computations that could bring about certain biases. This thesis applies specific computational 

models to the study of visual illusions and highlights some advantages of adopting such an 

approach. 
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In this dissertation, we demonstrate the versatility of computational modelling by applying it 

to two types of illusion: one type of illusion that deals with line-length discrimination and 

another type that deals with lightness judgements. We present two different types of models: a 

well-known hierarchical feature model that approximates the visual ventral stream, and an in-

house model of early visual processing. By recruiting two different models that represent 

either the cortical or pre-cortical stages of visual processing, we show that illusions can be 

modelled at multiple stages of the visual hierarchy. 

 

In the first study, we demonstrate a well-known line-length illusion, the Müller-Lyer illusion, 

in a benchmark model of the visual ventral stream known as HMAX (Serre et al., 2005; 

Mutch and Lowe, 2008). The Müller-Lyer illusion (Figure 1-1a) occurs when a line with 

arrowheads or arrow-tails appears shorter or longer respectively (Müller-Lyer, 1889). The 

underlying cause of the illusion has been under contention since its inception (Müller-Lyer, 

1889; Heymans, 1896; Lewis, 1909; Pieron, 1911) with prominent contenders including 

statistical correlations of line configurations in the environment (Howe and Purves, 2005b), 

the top-down application of size constancy scaling rules learnt by exposure to natural images 

(Gregory, 1963), a reliance on low spatial frequency information (Carrasco et al, 1986), and 

bottom-up neurological mechanisms, such as lateral inhibition (Coren, 1970). The model 

produces a larger bias when classifying Müller-Lyer images with more acute fin angles, 

consistent with human observers. Our training images are all artificially constructed, 

demonstrating that exposure to natural images is not a necessary condition for bringing about 

the illusion. We also find that there is no additional reliance on the outputs of low spatial 

frequency filters over those of high spatial frequency, showing that this is also an unnecessary 

condition. Following from these experiments, we conducted another study to delve more 

deeply into the potential underlying causes of the Müller-Lyer illusion and measure how bias 

is transformed within the model.  
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In the second paper, we extend the first study to examine the contribution of complex and 

simple cell operations in HMAX towards Müller-Lyer bias and uncertainty. This study is 

essentially a lesioning analysis, where layers of the model are removed one by one to observe 

the effect this has on classifying Müller-Lyer images. We discover that there is an initial bias 

present in the input images, representative of the possible influence of image statistics in 

generating the illusion (Howe and Purves, 2005b). Our study reveals that any processing of 

Müller-Lyer images within the model reduces bias when compared to classifying images 

directly. We hypothesise that increasing the variance of line positions in input images would 

engage complex cell operations and therefore reduce bias levels. We find that, in particular, 

complex cell operations reduce levels of uncertainty and bias in 87.5% of cases. 

 

In the third and final study, we move away from the aforementioned cortical model of visual 

processing to a model based on pre-cortical mechanisms. This model uses filters optimised for 

natural images that also approximate horizontal cell operations found in the retina. In 

addition, the model incorporates normalisation functions that are based on contrast gain 

control principles found in the LGN. We test a battery of lightness illusions using this model, 

some of which are purported to involve higher-level processing. The model is able to 

accurately predict the direction of 24 out of 27 illusion, accounting for a large proportion of 

lightness illusions using solely low-level mechanisms. As with the previous study, we 

demonstrate that a combination of statistical influences and filtering operations are able to 

bring about a bias commensurate with human perceptual experience. 

The studies included in this thesis showcase sophisticated modelling techniques that are 

robust enough to apply to a large breadth of illusory stimuli. These papers supplement and 

complement existing neurological and psychophysical studies. Moreover, they generate 

predictions for studies using other methods. Each paper provides further evidence for and 
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against proposed theories behind each illusion. We are able to rule out some of the necessary 

causes of certain illusions and tease apart the separate contributions of different causes 

leading to particular illusions. Using feed-forward models, we identify the contribution of 

low-level, bottom-up mechanisms towards each of these illusions (as distinct from higher-

level, top-down influences). We lesion layers to determine the progression of illusory bias and 

uncertainty layer to layer within a network. We are also able to manipulate the parameters of 

the models that represent or simulate various neural properties, such as levels of lateral 

inhibition or the sizes of certain neural populations, to determine how this affects accuracy 

and precision. Not only are we able to show the separate contributions of low-level versus 

higher-level mechanisms, but we are able to tease apart and quantify the contribution of 

specific mechanisms found within the various levels of the visual hierarchy (such as filtering 

versus contrast gain normalisation) towards illusory effects.  

 

This thesis highlights that illusory effects are brought about by a complex interplay between 

statistical influences obtained from images in the environment, with neural operations that 

transform an image into its sensory representation. The studies suggest that neural operations 

shaped by image statistics are responsible for bringing about illusory effects, as put forward 

by Coren (1970), Bertulis and Bulatov (2001), Howe and Purves (2005) and Corney and Lotto 

(2007), to name just a few. It is evident that there is a complex integration of both external 

and internal factors that bring about a range of illusory effects. This has implications for 

artificial systems that mimic their biological counterparts, demonstrating their susceptibility 

to certain illusions and suggesting that these biases can be mitigated by the careful selection 

of training images. Furthermore, this thesis also impacts on human perception, bringing about 

further understanding of some of the likely origins of certain illusions and demonstrating the 

power and capability of computational modelling as a tool to better inform our understanding 

of illusions. 
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1.2 Defining illusions 

1.2.1 A general definition 

Visual illusions have long been established as an aid to uncover some of the fundamental 

mechanisms that underlie our visual perception. Illusions are defined as “systematic visual 

and other sensed discrepancies from simple measurements with rulers, photometers, clocks 

and so on” (Gregory, 1997, p.2).  Gregory’s definition is apt in that it highlights two key 

points about illusions. Firstly, he uses the term systematic, to demonstrate that perceptual 

discrepancies for illusions are not simply one-off events, but repeatable biases. Secondly, 

Gregory refers to “visual and sensed discrepancies” that differ from other cognitive 

discrepancies such as belief disorders.  

 

This thesis deals with visual illusions that are known to occur through mechanisms in the 

brain, as distinct from optical illusions that are caused by properties of the light and eye. 

Visual illusions help to reveal underlying assumptions and algorithms that the brain uses 

(Gilchrist, 2003). Optical illusions, on the other hand, are useful for studying physical light 

properties. For example, a straw appears bent in water due to light being refracted by 

travelling through two different mediums of water and air. In the interests of revealing 

potential neural mechanisms behind particular illusions, this dissertation focuses on visual 

illusions.   
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 a)      b) 

   
  
 c)     d) 
 
 
 
   
 
 
 
 
 
 e) 

 

Figure 1-1: Illusions in this chapter in order of mention a) Müller-Lyer (1889) b) 

Penrose triangle (Penrose & Penrose, 1958) c) Necker cube (Necker, 1832) d) Kanisza 
(1976) triangle e) Kitaoka's (2003) rotating snakes 
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While it is common to define illusions as a discrepancy between perception and physical 

reality, some researchers argue that it is difficult to formulate an adequate description of 

reality, especially when an illusion is presented in an artificially contrived situation (Rogers, 

2014). For example, take the Penrose Triangle (Penrose & Penrose, 1958, Figure 1-1b), which 

is an impossible object that would not exist in reality only insofar as we assume that all edges 

are straight and converge. Finding a way to measure this object in the environment, or 

construct a veridical description of it, would be difficult if not impossible. For many illusions 

however, it is possible to directly measure the discrepancy between reality and perception, by 

using physical tools to quantify an object in the external (to the observer) world, and 

psychophysics to quantify the internal (to the observer) perceptual experience. 

1.2.2 Illusions as source reconstructions 

Defining illusions as a discrepancy between physical reality and internal perceptual 

experience is sometimes referred to as an “error” in perception. The use of this term can be 

misleading, because it may be that your perceptual system is not actually making any 

“mistakes” at all, in terms of computing what is presented to it, but is instead making the best 

inferences or predictions possible given the limited information available. In many cases, 

illusions are constructed to leave out information that would otherwise be normally present in 

the natural world, where we would rely on context for interpreting stimuli. Taking the Penrose 

triangle example again (Penrose & Penrose, 1958), we know that each individual corner of the 

object is presented in a plausible manner in 3 dimensional space, yet the object as a whole is 

implausible.  Here it is evident that we are simply making the best inference possible, given a 

stimulus that is locally consistent but globally contradictory.  

There are many examples that demonstrate the idea that our visual system is making the best 

conceivable estimation given impoverished, ambiguous or inconsistent stimuli. This has led 

Weiss et al. (2002) and others to refer to illusions as “optimal percepts”, where instead of 
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making an “error” in judgment, our perceptual system is behaving optimally overall and when 

viewing an illusion, prior assumptions lead the system to the inappropriate conclusion.  Our 

visual system reconstructs the most likely stimulus that would produce our current percept, 

commonly referred to as the ideal source. To discover the ideal source, our brains would first 

estimate the probabilities of certain features or properties inherent in natural images that we 

have been exposed to over our previous experience. The underlying patterns that our brain 

extracts may relate to co-occurring features or image properties, such as contrast distributions 

(Field, 1987; Zhu and Mumford, 1997). After establishing the patterns that arise in natural 

image statistics, our perceptual system will apply these probabilities to fill in the gaps of 

information that is missing in the stimulus, essentially reconstructing the most probable real-

world source of the retinal image (Dakin and Bex, 2003; Corney and Lotto, 2007; Brown and 

Friston, 2012).  

 

 

Figure 1-2. The inverse problem regenerates an image from representation 
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Regenerating the best source by exploiting typical underlying patterns in natural images is 

referred to as the inverse optics problem (Purves and Lotto, 2010) or just as the inverse 

problem (Hill and Johnston, 2007). In all descriptions of the inverse problem, there are some 

clear elements that define the process of information flow over time. Firstly, information 

flows from a retinal image through hierarchical layers of the brain where a representation is 

formed as a set of neural activations at each level. A representation is “a set of measurements 

which collectively encode the geometry and other visual qualities” (Edelman, 1997). For 

example, a set of lines and shaded areas viewed by the eye may trigger a representation in 

higher levels of the brain. Once a representation is generated, this allows for information to 

flow back down the hierarchy to regenerate or best predict the initial stimulus. During the 

execution of these two steps, time will have passed and slight changes in the environment will 

have occurred. This means that the prediction that is generated will have altered slightly 

compared to a new input image due to internal noise, (such as stochastic variations in neural 

firing), or external noise (such as changes in lighting, etc). Comparing predictions that are 

generated from the brain (source reconstructions) with the updated stimulus determines the 

amount of error between prediction and reality. Figure 1-2 illustrates the information flow of 

the inverse problem.  

The inverse problem originated from Helmholtz’s idea of “unconscious inference” – that 

visual impressions are formed in an involuntary fashion, a process oblivious to the observer 

(Helmholtz, 1867). The concept of unconscious inference highlighted that observers 

continuously make predictions about sense data without even being aware of the absence or 

degradation of information. Helmholtz’s idea has since been explored at the neural level, 

looking at how information can be encoded, transported and recoded to reconstruct the input. 

Our visual system will often receive input that is noisy or missing, and yet is able to 
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reconstruct a perceived stimulus source despite this.  

Helmholtz’s idea of unconscious inference is nowadays more formally interpreted as being an 

early example of predictive coding. Predictive coding was highlighted as a general principle 

in low-level vision, whereby noise within a system would be reduced by exploiting existing 

patterns found in natural scenes (Srinivasan et al, 1982). This principle was also extended to 

higher-level visual areas (Rao and Ballard, 1999). Predictive coding has been popularly 

implemented into generative computer models, to reconstruct “fantasies” of the most likely 

stimuli based on probabilities of simultaneously occurring features (Hinton and Zemel, 1994; 

Mumford, 1994; Lee and Mumford, 2003; Kersten et al., 2004; Friston, 2005). These 

networks are sometimes referred to as hierarchical predictive coding models. While Clark 

(2013) reviews the evolution of these models and proposes their extension into the future, 

section 1.9 includes further elaboration on this class of model. 

1.3 Categorising illusions 

 

Through the decades there have been numerous attempts to systematise illusions, either by 

their causes or by their appearance, to identify some of the potential common causes that may 

underlie some illusions. Classifying illusions by their appearance has a potentially far greater 

chance of consensus among researchers compared to classifying illusions by their causes, 

since the origin of many illusions is still in dispute. For now, we outline some of the proposed 

classifications of illusions that include defining causes as a distinguishing factor.  

 

One of the best-known and most robust taxonomies of illusions was proposed by Richard 

Gregory (Gregory, 1997). He proposed a tentative classification of illusions, creating a 4 x 4 

matrix of appearances and causes (Gregory, 1997). Appearances were sub-divided into four 

kinds: ambiguities e.g. Necker Cube (Necker, 1832) (Figure 1-1c), distortions e.g. Müller-
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Lyer Illusion (Müller-Lyer, 1889) (Figure 1-1a), paradoxes e.g. Penrose Triangle (Penrose & 

Penrose, 1958) (Figure 1-1b), and fictions e.g. Kanisza triangle (Kanisza, 1976) (Figure 1-1d). 

Each illusion was then classified along another dimension based upon its proposed aetiology, 

using four categories: optics, signals, rules, and objects. These four causes could be grouped 

into those that are physical, as a result of light or optical disturbances, or cognitive, involving 

the misapplication of rules or specific knowledge. Gregory’s specification of physical causes 

is straightforward and presents less room for contention. Attributing illusions to cognitive 

aspects is less clear, which we elaborate on below.  

 

Gregory (1997) defines knowledge as being specific to particular classes of stimuli (using his 

example, that faces are convex), whereas rules are general principles that are applied to all 

objects and scenes (such as the Gestalt laws). Gregory also differentiates knowledge from 

rules in terms of the direction of information flow, such that knowledge flows “top-down” 

and rules are applied “sideways”. Let’s take for example, Gregory’s (1970) hollow face or 

hollow mask illusion, where a mask that is rotated so that the concave side is facing the 

observer, is seen as a convex object. While it is clear that the hollow mask illusion is stronger 

in the upright position for faces compared to when it has been inverted (Hill and Bruce, 

1993), it is also clear that our perception of convexity applies to other objects, creating 

illusions such as the hollow potato illusion (Hill and Bruce, 1994). Hill and Johnston (2007) 

show that the hollow illusion extends to other objects besides the humble potato, and that for 

objects with a canonical orientation, the illusory strength for an upright concave object is 

greater than for its inverted configuration. These studies indicate that any specific knowledge 

that is purportedly applied to the convexity of faces is also applicable to a variety of objects. 

From studies such as Hill and Johnston (2007), we can infer that it is not face-specific 

“knowledge” that is applied, but more generic object-based “rules” that apply to this illusion.  
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Changizi et al (2008) presented a more recent attempt to systematise illusions, this time into a 

7 x 4 matrix of 28 classes, with one dimension being the property that is manipulated and the 

other dimension being the perception it affects. The authors distinguish 24 illusion classes 

based on the effects of (1) size, (2) speed, (3) luminance contrast, (4) distance, (5) 

eccentricity, and (6) vanishing point, on perceived (A) size, (B) speed, (C) luminance 

contrast, and (D) distance. They also present another 4 classes that do not clearly fit into this 

framework, bringing the number of illusion categories up to 28. They put forward that a 

single visual information processing mechanism adequately explains all of the illusions in 

their framework. This work was criticised shortly afterward by Briscoe (2010), who upheld 

Gregory’s taxonomy as a more versatile grouping. Briscoe (2010) argues that the task of 

systematising illusions is perhaps an illusion in itself, drawing attention to the work of Coren, 

Girgus and Day (1973) who state that visual illusions are “multiply caused and maintained by 

a number of different peripheral and central factors” (p. 504). In other words, illusions may 

not be linearly separable by their causes. Rather than relying on one-to-one mappings between 

illusions and their most probable cause, it is useful to employ set theory to link illusions with 

their multiple causes. Set theory is a branch of mathematical logic where collections of 

objects form sets and an object can belong to multiple sets. Allowing for illusions to belong to 

multiple sets would lead to a new logical and visual configuration that taxonomises illusions 

with more than one aetiology. To date, illusion classifications have only been presented in 

tables, automatically constricting each effect to having only a one-to-one mapping with its 

most probable or the current most broadly accepted cause.  

This thesis specifically selects illusions where there is no current consensus in the literature, 

with many researchers suggesting different causes behind each effect. These illusions may 

purportedly be the result of a number of factors, necessitating their placement across multiple 

groupings. Using computational networks, it is possible to separate the individual 



22 
 
mechanisms or operations that are applied to a stimulus to determine the necessary causes of 

an illusion and therefore its appropriate grouping within a taxonomy. By testing some of the 

necessary causes of each illusion using computational models, we can quantify the potential 

contributions towards each effect and build more accurate classifications.  

 

1.4 Aims, strengths and limitations of models 

1.4.1 Limitations of Models  

 

“Since any fit of a model to data is never more accurate than the data themselves, a 

model is only worthwhile when it can describe data sufficiently accurately using far 

fewer parameters than the number of data points modeled.” 

(Zhaoping, 2014, p. 2) 

 

A model is an abstract representation of an existing, real system. This thesis looks specifically 

at models that emulate how information is processed from the retina to LGN and along the 

brain’s visual ventral stream. When constructing a model, there is always a trade-off between 

explanatory power (the ability to explain a phenomena with as few parameters as possible) 

and complexity, with the former providing greater links to proposed theories and the latter 

providing greater fidelity to the real system (Meeter et al., 2007; Zhaoping, 2014; Low-

Décarie et al., 2014). This trade-off forms a sliding scale that encapsulates a range of models, 

where cognitive models generally aim to provide greater explanatory power, and 

computational neuroscience models aim to provide a precise description of data. This scale 

does not say that one approach is more sophisticated or difficult than the other, but 

emphasizes that these different approaches have separate goals in mind. 
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Figure 1-3: The trade-off between cognitive and computational models. 

 

To implement a theory in a computational model, a researcher needs to consider a number of 

questions. What flows into and out of the system? Is information stored in memory? How 

would this system interact with other systems? How is information represented between 

levels? The process of analysing information flow and transformation inside a model 

implements the details of a theory and makes explicit any assumptions made. Theory and 

models provide the link between neurophysiology and visual perception (Zhaoping, 2014), 

often imitating biological architecture and neuronal functions to predict system-level 

behaviours. 

 

It is essential to point out that all models come with their own set of assumptions and inbuilt 

limitations. As expressed by Box and Draper (1987, p. 424): “all models are wrong, but some 

are useful”. For example, many early artificial neural network models are incorrect since they 

contain artificial neurons that communicate numerical values rather than discrete spikes of 

activity. It is therefore important to firstly address the primary motivation behind building or 

using a model. Many models aim for fidelity first and foremost, which would be the 

dominating incentive for the majority of computer vision systems. The execution speed of the 

model in producing a prediction can also be a dictating factor, especially for real-time 

Chapter 1. Models Meet Illusions 3
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Figure 1.1: The tradeo↵ between cognitive and computational models. Computa-
tional neuroscience models have greater complexity but less explanatory power. The

inverse is true for cognitive models.

1.2 Models

1.2.1 What models can and cannot do

A model is an abstract representation of an existing, real system. In this thesis, I

look specifically at models of visual object recognition, particularly those that attempt

to emulate how information is processed in the brain’s visual ventral stream. When

constructing a model, there is always a tradeo↵ between simplicity and fidelity to the

real system. This tradeo↵ forms a sliding scale that encapsulates a range of various

models. Generally, computational neuroscience models would lie on the complex end of

the scale whereas cognitive models would lie on the other. This is not to say that one

approach is more sophisticated or di�cult than the other, but to highlight that these

di↵erent approaches have separate aims in mind.

It should first be pointed out that all models are wrong. For example, all connectionist

models are incorrect since these artificial neurons communicate real values rather than

discrete spikes of activity. It is therefore important to firstly address what is the primary

aim of building a model. Many models aim for accuracy first and foremost, which would

be the case in the majority of computer vision systems. Speed can also be a dominating

factor, as well as ease of implementation and less parameterisation. However, these

goals generally constitute the motivating factors for computer scientists and engineers.

An equally important goal for some models is explanatory power - the ability for a
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systems. Ease of implementation is also considered valuable, as well as reducing the number 

of free parameters. These goals generally constitute the motivating factors for computer 

scientists and engineers. An equally important goal for some modellers is explanatory power: 

the ability of a model to provide simplified descriptions of real-life phenomena so that it can 

be linked to theories. This would be a more influential motivating factor for psychologists, 

who wish not only to predict psychophysical data, but also to explain it. 

 

It may seem that a model that captures entire system dynamics faithfully and completely 

would be the perfect model. A number of current projects exist with this aim in mind, such as 

the “Blue Brain Project” (Markram, 2006), the Human Brain Project (Markram, 2011) and the 

BRAIN Initiative (Alivisatos et al., 2013). However, a model that demonstrates complete and 

precise emulation of a real system will not necessarily provide any more information about 

the inner workings of that system than the original. A faithful replica of the brain would still 

require well-designed tests to measure the success of one theory against another. Simpler 

abstractions may be just as informative and require much less time and effort to implement.  

 

In selecting the models for this thesis, we propose to find the appropriate balance between 

complexity and explanatory power (Figure 1-3). We select models that are able to provide 

adequate explanatory power while also showcasing high levels of accuracy. The main 

motivation for selecting each model is to test and support at least one particular theory or 

explanation for a selected illusion. However, there is one caveat when selecting any model: 

that models are not isomorphic with theories. Models can be considered as formalisations of 

theories, but as Norris (2005) states: ‘there is rarely a straightforward one-to-one mapping 

between model and theory’. There are a number of additional steps required to bridge this 

gap, which we describe below.  
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1.4.2 From theories to models and back 

This thesis does not explicitly build a model to test one particular theory. Instead, we first 

select a particular illusion known to occur in the visual areas that are being modelled. The 

illusion or illusions that we select have competing theories for their underlying causes. We 

choose an appropriate model that emulates the functioning of the principal visual areas where 

a particular illusion is thought to occur, providing a platform to test one theory against 

another. Each study presents quantitative results that not only demonstrate the relevant 

model’s ability to predict the direction of bias, but also measures the magnitude of the 

illusion, allowing these to be directly compared against human psychophysical data.  

 

We emphasise that evidence of a particular cause in bringing about an illusion in a model 

does not equate to whether that cause can generalise to humans. Simulations can be compared 

to and linked with predictions made by theories, allowing us to assess some of the existing 

explanations of illusions. However, considering that our models are not exact facsimiles of 

the brain, we cannot explicitly generalise results from our model to human causes. In a model, 

we are able to hint at various factors as being necessary to bring about an illusion. These may 

hint about some of the likely causes of an illusion in humans and may provide support for one 

explanation over another. Nevertheless, these explanations are satisfactory only for models 

and not for humans. Our studies identify what cause is not necessary to bring about an illusion 

across all systems.  

 

Many existing models are built to support one particular theory over all others in explaining a 

particular effect. For instance, let us look at existing models of the Müller-Lyer illusion 

(MLI), an effect where the perceived length of a line is contracted (or elongated) with 

arrowheads (or arrow-tails). Bertulis and Bulatov (2001, 2005) implemented a model based 

purely on filtering mechanisms, with the motivation to test only the theory of lateral inhibition 
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in explaining the MLI. Howe and Purves (2002, 2004, 2005a and 2005b) look only at the 

statistical relationships that are theorised to be responsible for the effect. Until Zeman et al. 

(2013, 2014), no attempt had been made to combine image filtering with statistical biases and 

quantify the level of contribution of multiple factors. As mentioned previously, illusions are 

most often underpinned by a number of causes (Coren, Girgus and Day, 1973). 

 

We can see that models provide a useful device for testing theories against one another. 

Models allow for particular simulations that are simply not possible to conduct in humans 

(this is also possible using TMS and other neuroimaging techniques and we elaborate on the 

added benefits of models here). For example, models allow for lesioning studies, where 

sections of the model can be knocked out, which can also be achieved using TMS but only for 

outer cortical regions. Models also allow for parameters to be adjusted, such as levels of 

lateral inhibition, which cannot be achieved in neuroimaging or TMS. The effectiveness of 

computational modelling is further highlighted by looking at how models can better inform 

and potentially improve theories. The process of building or selecting a computational model 

may expose assumptions and details in a theory that have not been fully enunciated, leading to 

a deeper understanding of the proposed explanations. Most of all, models can provide 

quantifiable predictions that theories alone are not able to produce themselves. In other words, 

they are the ‘crucial link between theory and data’ (Norris, 2005).  

1.5 Marr’s different levels of description 

 

David Marr released his seminal work in 1982, which described different levels of analysis 

for a computational problem (Marr, 1982). Building on work with Tomaso Poggio (Marr & 

Poggio, 1977), which describes four levels of description, Marr compressed these into three, 

namely the “computational level”, the “algorithmic level” and the “hardware implementation 
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level”. The computational level addresses the end goal of the system in order to predict a 

certain perceptual experience, for example, to identify whether a given image contains a cat or 

a dog. The algorithmic level addresses how to implement the computation, describing input 

and output representations and the operations that transform input into output. Finally, the 

hardware implementation level addresses the physical system used to perform the 

computations.  

 

   

Figure 1-4 Marr's 3 levels with the corresponding research question that each level 

addresses (reproduced from Marr, 1982)  

 

 

Marr’s levels of description allow us to essentially separate computers from their 

computations. We know that a computer program can run on separate computers, and so the 

hardware implementation is independent from the program. For example, we can run a text 

editor on a Unix machine, a Windows machine or a Mac. Likewise, the algorithms underlying 

the operations can be independent from the hardware and the required task. Taking our 

previous example, different text editor programs could use different algorithms to manipulate 

text, with the Unix-based vi command-line editor being distinctly different from screen-based 
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text editors. Finally, the computational task can be separately defined from the hardware and 

the algorithmic levels, such that a text-based program can be used to write a letter, a poem, or 

a card.  

 

The three levels of description address separate questions in regards to the system being 

modelled. The computational theory level addresses the overall question of what is being 

computed and why. The algorithmic level addresses how input and output are represented and 

the transformation process from input to output. The hardware implementation level looks at 

the physical realisation of the algorithm. Figure 1-4 illustrates the core question that is raised 

and addressed through the adoption of each of the three levels (reproduced from Marr, 1982). 

A model that is able to encapsulate some degree of comparison across multiple levels – the 

physical, the computational and the algorithmic, showcases a very strong measure of 

biological plausibility.  

1.6 Biological analogies 

1.6.1 Historical influences from biology 

 

Over the past five decades, neurophysiology has exerted a massive influence on 

computational models of vision. Work in the lab of Stephen Kuffler, in the 1950s and ‘60s, 

was key in influencing the type and function of artificial neurons, their hierarchical 

arrangement and how information is modified and transformed within each neuron. Kuffler 

himself was instrumental in establishing the functional organisation of the retina, publishing 

landmark studies on the receptive fields of retinal ganglion cells (Kuffler, 1952; Kuffler, 

1953). Kuffler showed that the maximal response rate of retinal ganglion cells occurred when 

light was presented in a dark surround, (for units known as on-centre cells), or when a dark 

centre was surrounded by a light surround (for units known as off-centre cells). It was around 
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this time that three soon-to-be influential researchers joined Kuffler, building on the work that 

he had established: David Hubel, Torsten Wiesel and Horace Barlow.  

 

It was in Kuffler’s lab that David Hubel developed a new technique using microelectrodes 

that allowed for extracellular recordings of single cells in various cortical areas (Hubel, 1959). 

Hubel then collaborated with Torsten Wiesel to pioneer work on single-cell recordings in the 

visual areas of cats (Hubel and Wiesel, 1959). They discovered that cells in the visual cortex 

responded vigorously to lines and edges instead of the spots and circles to which retinal 

ganglion cells respond preferentially (Wiesel, 1960). Hubel and Wiesel applied this new 

method to measure the firing rate of single cells in response to a range of visual stimuli, in cat 

striate (Hubel and Wiesel, 1962) and extra-striate visual areas (Hubel and Wiesel, 1965). 

They identified two types of cells: “simple” cells that fire rapidly when presented with edges 

and gratings of a particular orientation in a specific location within the cell’s receptive field, 

and “complex” cells that respond to edges and gratings of a particular orientation anywhere in 

within their receptive field.  

 

At around the same time, Horace Barlow began suggesting why certain sensory information 

was transmitted to formulate a set of communication principles (Barlow, 1961). Earlier, 

Barlow had investigated single cell responses in the frog’s retina (Barlow, 1953). It was from 

these experiments, and from Hubel and Wiesel’s work, that Barlow began to question not just 

what information was being computed at each neuron (the calculations), but what information 

was being transmitted neuron to neuron (the connections or relays). Barlow wanted to identify 

what information was deemed important to pass on and why some information was 

propagated and other information was not. Barlow proposed 3 hypotheses behind the 

transmission of sensory information. His first hypothesis was that neurons transmitted key 

information that led directly to certain behavioural responses and that irrelevant signals were 
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rejected (the “Password Hypothesis”). His second hypothesis was that relays regulated or 

controlled the flow of sensory information (the “Controlled Pass-Characteristic Hypothesis”). 

This would prevent the system being bombarded with excess information and becoming 

overloaded. His third hypothesis was that connections recoded sensory messages to reduce 

redundancies (the “Redundancy-Reducing Hypothesis”). Barlow phrased this final hypothesis 

as “recoding to reduce the redundancy of our internal representation of the outer world”. In 

other words, the signals transmitted by neurons were either aimed at being important 

(communicating the most influential information), transmitting select information (reducing 

overload in the system) or at economising sensory information (removing repetitive signals).  

 

During this period in Kuffler’s lab, Barlow began to take a subtly divergent approach to 

researching the visual system from that of Hubel and Weisel. Hubel and Wiesel were 

predominantly interested in investigating single cell responses at each stage of the visual 

hierarchy and mapping out these stimulus-response pairings. The work of Hubel and Wiesel 

demonstrated that certain aspects of the visual system were essentially deterministic, showing 

that a certain input to a cell would produce a well-defined output. In contrast, Barlow was 

interested in the motivating principles behind why such stimulus-response pairings took place. 

He turned to information theory as a means to quantify and better understand the underlying 

communication principles between neurons. Barlow formulated his Redundancy-Reducing 

Hypothesis (Barlow, 1961) using the formal definition of “information” - a quantitative 

measure dependant upon the prior probability of previous messages (Shannon, 1948). A 

message that is completely noisy will not carry any information. Also, a message that could 

already be predicted based on prior probabilities would carry no additional information. Using 

Shannon’s principle, it becomes clear that improbable events carry more information than 

probable ones (Prokopenko et al., 2007). Turning to statistical approaches, Barlow focused on 

how information was being conveyed over an imperfect, noisy communication channel. 
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Rather than focusing on neural operations themselves, which appeared to be deterministic, he 

honed in on the probabilistic nature of neurons firing in a noisy environment.   

 

This divergence in fundamental approaches continues to this day, with proponents of 

computational modelling showing either an inclination towards statistical modelling, or 

towards pre-defined filtering operations. That is not to say that these two approaches cannot 

exist together in a unified model, but that many researchers have a favoured approach for 

analysing computer vision problems, leaning more favourably towards a probabilistic or a 

deterministic approach. There are advantages and disadvantages in taking either approach. 

Deterministic models are easier to implement and test and do not require any learning periods, 

since kernel operations are hard-coded. On the other hand, probabilistic models provide 

greater sophistication but also require learning periods to extract prior probabilities for which 

to predict future events.  

 

When modelling the visual system, computer scientists do not only need to decide whether it 

is more appropriate to take a probabilistic approach or a deterministic one. Modellers also 

need to consider the difficult question of where to define the beginning and end of the visual 

system. Is it necessary to go back as far as the retina and model functions representing rod and 

cone populations? Likewise, is it necessary to incorporate decision-making models to emulate 

the abilities of pre-frontal cortex? Many visual ventral stream models only emulate cortical 

areas V1 to IT and bypass retinal and LGN cell functions. In the following subsections we 

review pre-cortical (section 1.8) and cortical ventral stream (section 1.9) models of vision.  

 

1.6.2 Biologically inspired systems 

Many information technology researchers turn to biology for inspiration since it provides 
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living solutions to computational problems. Notably, in scenarios that involve distributed 

processing and/or decision-making, many biological systems provide exemplar cases. 

Biologically inspired systems, which are also referred to as bioinspired or biologically 

plausible, attempt to model the biological entity that they are emulating, rather than simply to 

reproduce the end result (Helms et al., 2009; Flammang & Porter, 2011).  

 

One point of contention in using the term bioinspired, is the level of fidelity to the biological 

counterpart being emulated (Flammang & Porter, 2011). Specifically, at what point does an 

artificial visual system become biologically plausible? If a researcher decides to implement 

artificial neurons, how many should be simulated? Do we need to simulate down to the level 

of ion interactions? Shall we simulate from V1 or earlier at the thalamus or the retina or even 

the physical wave properties of light? It is best to describe biological plausibility on a sliding 

scale, rather than just as a binary distinction, in order to encapsulate these varying levels. 

Biological plausibility may not just occur at a structural level, but at a system level or a 

temporal level or at a micro-level. To address the different levels of computation that are 

needed to model vision, we look to Marr’s (1982) treatise mentioned in Section 1.5.  

 

1.7 Computational models of vision 
 

1.7.1 Deterministic versus probabilistic 

 

Computational models that simulate vision are roughly divided into those that are 

deterministic and those that are probabilistic. Deterministic models produce the same result 

for every simulation run given a pre-defined input with pre-defined filters. After receiving an 

input image, these models then convolve the image with one or more kernels to produce a 

filtered image. Here the terms filter and kernel are used interchangeably. Probabilistic models, 
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on the other hand, are influenced by patterns embedded within large sets of natural images. 

Common properties such as contrast and spatial structure (Geisler, 2008) are extracted to 

produce a set of image statistics that represent the typical properties of stimuli that occur 

naturally. Statistics are either manually pre-specified or learnt before run-time, during which a 

stochastic element is involved. Once a set of statistical patterns is determined from a series of 

images, these patterns or templates are then applied to new images that the model is exposed 

to. Taking an image and analysing whether it conforms to a template removes any 

information that is not in line with the template. In this way, noise is removed from images 

since it does not conform to any underlying pattern. Following on from this, probabilistic 

models are generally better at handling noise (Srinivasan et al., 1982).  

 

Models that use learning are referred to as machine learners. Learning usually happens before 

run-time execution, but can also occur during run-time. Learning allows for connection 

strengths, referred to as weights, to be adjusted within an artificial neural network. In 

supervised learning, a machine learner is presented with labeled examples that it then uses to 

infer an underlying function that will be used to predict future examples. Each example input 

is provided with a desired output in supervised learning. In contrast, unsupervised learning is 

where there is no clear well-defined output for each input. In this case, a machine learner 

extracts patterns or structure from examples presented to it. Deterministic models, having a 

fixed input to output mapping, do not use any learning. Probabilistic models may recruit 

learning, although this is not necessary if probabilities are pre-defined. Probabilistic models 

may use supervised learning, unsupervised learning or a combination of the two.  

 

It is worth noting that although some models can be easily classified as deterministic (e.g. 

Bertulis & Bulatov, 2001, 2005) or probabilistic (Howe and Purves, 2002; Howe and Purves, 

2004; Corney & Lotto, 2007; Brown and Friston, 2012), there are some models that combine 
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both techniques (Dakin & Bex, 2003; Serre et al., 2007). We opt for a combined approach, 

where filters can be learnt from images that the model is trained on (Serre et al., 2007) or 

where image statistics are gleaned from filtered images instead of original source images 

(Dakin & Bex, 2003). In the coming sections we highlight a variety of deterministic and 

probabilistic approaches that are subdivided into pre-cortical and cortical models. We focus 

on the initial pre-cortical stages of image processing before addressing processing along the 

entire visual ventral stream. We divide these two categories of models, pre-cortical models 

and ventral stream models, into two separate sections of this thesis as outlined below. With 

each section, we highlight historical context, some of the models that have recently been 

applied to illusions and the modelling approach we take.  

 

1.8 Pre-cortical models  

1.8.1 Historical context 

 

Early models of the retina and LGN were deterministic, designed to receive input as a map of 

stimulus intensities that would be transformed by a weighted sum (Kuffler, 1953; Rodieck, 

1965). The weighted sum would allow for intensities falling in the ON regions to be 

positively weighted and those falling in the OFF regions to be negatively weighted, 

resembling the functionality of centre-surround cells (refer to the left side of Figure 1-5A). 

Any function that transforms an input to output using a reweighting scheme is referred to as 

filtering. Filtering the stimulus using both positive and negative weights results in an output 

containing negative values. For the output to correspond to firing rates, it needs to be 

converted to only positive values. Once responses have been filtered, where the result could 

include negative values, these were transformed into only positive values corresponding to 

firing rates. Linear rectification allows for a simple positive transformation, with values below 
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a threshold being output as zero and values above threshold being output as a linear function 

(Carandini & Ferster, 2000). Figure 1-5A illustrates this process (reproduced from Carandini, 

2004).  

In pre-cortical models, centre-surround receptive fields are usually modelled using a 

difference of Gaussians (DOG), first proposed by Rodieck (1965). DOG filters are based on 

two different sized Gaussians, where a Gaussian with smaller standard deviation is subtracted 

by a Gaussian with larger standard deviation. These 2D Gaussians are rotated about the mean, 

forming an isotropic filter. Marr and Hildreth (1980) put forward a Laplacian of Gaussians 

(LoG) as a more effective filter function for edge detection. LoG filters are also isotropic, 

showing no orientation selectivity. DOG is commonly used as an efficient approximation for 

LoG (Burger and Burge, 2013, p. 325).  

 

 

Figure 1-5: Models of the LGN, reproduced from Carandini (2004). A) Traditional model 

that maps stimulus c(x,y,t) to firing rate using centre-surround filtering and linear 

rectification. B) Bonin et al.'s (2004) model incorporating a suppressive field with divisive 

gain control. 

 

Carandini (2004) highlights shortcomings of the traditional filtering model presented in 

Figure 1-5A and advocates a revised model illustrated in Figure 1-5B (Bonin et al., 2004). 
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Figure 1. Two models of LGN responses. A: Model based on the receptive field. The model includes a 
rectification stage that converts intracellular signals into firing rate. B: Model incorporating a suppressive 
field and divisive gain control.  

To illustrate the behavior of LGN neurons, and compare it to model predictions, I will 
show data from X cells of cat LGN. Most of the arguments, however, could be extended  
to other LGN neurons, including Y cells in cat and M and P cells in monkey. 

The model based on the receptive field explains the basic features of spatial and 
temporal summation in LGN. For example, it explains size and the timing of the 
responses to drifting gratings varying in spatial frequency (Figure 2C) and in temporal 
frequency (Figure 2D) (Cai et al., 1997; Dawis et al., 1984). Similar results, with a similar 
model, have been obtained in retinal ganglion cells (Enroth-Cugell and Robson, 1984; 
Enroth-Cugell et al., 1983). The model can also predict responses to more complex 
stimuli: Full field luminance changes with rich temporal dynamics (Keat et al., 2001), and 
even, to some extent, complex video sequences  (Dan et al., 1996). 
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Figure 2. The receptive field of an LGN neuron explains selectivity for spatial and temporal frequency. A: 
Profile in space (x,y) of the receptive field of an LGN neuron (an X cell in cat LGN), described using the 
model by Cai et al. (1997). B: Profile in space-time (x,t) of the same receptive field. Curves illustrate 
corresponding one-dimensional profiles. C: Responses of the cell to drifting gratings varying in spatial 
frequency. Stimuli were presented in a large window and drifted at 16 Hz. Ordinates report amplitude 
(top) and phase (bottom) of responses measured at the stimulus frequency. Curves are predictions 
based on the receptive field. D: Same, for stimuli varying in temporal frequency tuning (presented at 0.7 
cycles/deg).  From (Mante et al., 2002). 

Suppression in LGN 

In addition to these behaviors, however, LGN neurons also exhibit response properties 
that cannot be explained by a receptive field alone. In particular, there are a number of 
phenomena indicating that the responses are affected by suppression originating both 
within and around the region of the receptive field.  

A first phenomenon of suppression in LGN is contrast saturation, which can be observed 
with a single test drifting grating: As the contrast the grating increases, responses grow 
much less than proportionally (Figure 3A) (Maffei and Fiorentini, 1973; Sclar et al., 
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The revised model incorporates a suppressive field (in line with work from Levick et al., 

1972), providing a mechanism not just for driving inputs (increasing overall output) but also 

for modulating them (increasing output relative to other values). The receptive field 

(combining excitatory and inhibitory zones) and the suppressive field are incorporated 

together using divisive gain control (Freeman et al., 2002; Solomon et al., 2002). Gain is the 

rate at which response grows as a function of input magnitude. Divisive gain control 

modulates the output of the neuron by taking into account the range of signals output by the 

suppressive field. The model in Figure 1-5B that integrates receptive and suppressive fields 

provides an accurate model of LGN neurons for both the cat and monkey (Carandini, 2004).  

It is worth noting that LoG filters are not wholly representative of retinal processing and 

Daugman (1988) describes stimuli that are invisible to these filters, including texture 

discrimination, motion perception and pattern detection. The study we propose, which 

involves lightness illusions (Chapter 4), does not involve texture discrimination or any of the 

limitations listed by Daugman (1988). Wallis (2001) provides an in-depth comparison 

between LoG, DoG and Gaussian functions, and their relation to monkey physiology.  

 

1.8.2 Current models applied to illusions 

One of the most extensively investigated pre-cortical models applied to illusions is the DOG 

model (Blakeslee & McCourt, 1997). This deterministic model successfully demonstrated the 

Simultaneous Contrast Illusion (SCI), where a grey patch with a light surround appears darker 

than an otherwise identical grey patch with dark surround (Chevreul, 1839) (Figure 1-6). 

Subsequent versions of the DOG model required oriented filters to account for a larger variety 

of illusions (Blakeslee & McCourt, 1999, 2001, 2004; Blakeslee et al., 2005). The 

introduction of an orientation component into DOG filters makes the model more closely 

matched to V1, and therefore it no longer strictly fits into our pre-cortical model category. 
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More recent versions of the model have removed the orientation component and reintroduced 

isotropic DOG filters (Cope et al., 2013, 2014a, 2014b).  

 

 

Figure 1-6: Simultaneous contrast illusion (SCI), The left grey patch surrounded by 

white appears darker than the right grey patch surrounded by black (Chevreul, 1839) 

 

 

Figure 1-7: Craik, Cornsweet, O'Brien Illusion (CCOB) by Fibonacci (2007) 

 

 



38 
 
Probabilistic models have also been applied to low-level illusions (Williams et al., 1998a, 

1998b; Nundy & Purves, 2000; Purves and Lotto, 2003; Dakin and Bex, 2003), although the 

mapping of these models to pre-cortical areas of the brain is not intended or shown. Some 

probabilistic models however, do emphasise pre-cortical involvement in processing illusions. 

Dakin and Bex (2003) use an approach that combines filtering and image statistics. They 

apply a bank of LoG filters to a set of images to find common underlying distributions of 

filter amplitudes over a range of spatial frequencies. Dakin and Bex pay particular attention to 

the Craik–Cornsweet–O’Brien effect (CCOB), (O’Brien 1958; Craik 1966; Cornsweet 1970), 

illustrated in Figure 1-7. The CCOB illusion is where introducing an edge (a light-dark 

transition) between monochrome grey areas makes the region adjacent to the lighter 

luminance values of the edge appear lighter (right of Figure 1-7) and the region adjacent to 

darker values of the edge appear darker (left of Figure 1-7). After applying LoG filters to the 

CCOB, Dakin and Bex find that low spatial frequencies (SFs) are responsible for this effect. 

By boosting noise in low SFs, effectively eliminating the low SF structure, the illusion can be 

eradicated. Conversely, introducing noise in high SFs maintains the illusion. This result was 

tested and confirmed in human experiments. From these results, Dakin and Bex propose that 

restoring responses of a filter bank to those that we expect when viewing a natural image 

(through reweighting SFs), could be extended to account for other lightness illusions. 

 

1.8.3 Our model selection: Exponential filter family model  

Taking a similar approach to Dakin and Bex (2003), we implement a filter model that also 

takes into account contrast distributions found in natural images. We adopt an in-house model 

that uses a family of exponential filters described in Basu & Su (2001). These filters are 

designed to optimise the encoding of typical stimulus details as established using image 

statistics. Looking at contrast distributions over a large set of natural images, it is evident that 
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a similar underlying pattern is present, well described by a histogram with high kurtosis 

(having a sharp peak) and a heavy tail (Field, 1987; Simoncelli & Olshausen, 2001). The 

distribution that would best fit this description would be an exponential function (Zhu & 

Mumford, 1997). Zhu and Mumford put forward that Gaussian filters are not appropriate for 

extracting high spatial frequency information such as edges. Based on their analysis of 

images, they propose that exponential filters provide a better solution than Gaussian filters for 

preserving image structure. Taking an approach inspired by natural image statistics, we apply 

a set of different size and shape exponential filters to an image and then optionally normalise 

the result using divisive gain control (Carandini, 2004), which is described within this section 

above and illustrated in Figure 1-5. Our model follows the same process as that shown in 

Figure 1-5B, replacing the receptive field by the exponential function.  

 

We emphasise that our exponential filter model is not intended to closely mimic biology. Our 

motivation is to take effective image filtering techniques that have been found in computer 

vision and use these to explore the effect that other types of filters may have on the processing 

of illusions. Nevertheless, it is possible to draw analogies between our model and 

neurobiology. To determine what brain areas or cell types are best represented by our 

exponential filter model, we identify some of the relationships between this model and 

neurobiology. We find that the model is best matched to pre-cortical visual areas in the 

following ways: 

1. Exponential filters with high kurtosis have been identified in H1 horizontal retinal 

cells (Packer and Dacey, 2002, 2005).   

2. Exponential filters with medium kurtosis form a Gaussian function. Gaussian 

differences (DOG) and Gaussian derivatives (LoG) are commonly used to model the 

LGN and retina (Kuffler, 1952; Kuffler, 1953).  
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3. From a functional standpoint, where the purpose of DOG and LoG filters is to extract 

edges from an image, Basu and Su (2001) find that exponential filters are well-suited 

for this purpose  

4. Exponential filters are able to deal well with increasing amounts of noise (Basu and 

Su, 2001), which is believed to be an underlying principle behind the function of 

inhibition in the retina (Srinivasan, 1982)  

5. The method of normalisation we use, divisive gain control, is shown to be present in 

LGN (Carandini, 2004). 

 

1.9 Ventral stream models 

1.9.1 General properties 

The majority of visual ventral stream models are hierarchical in structure, with each layer 

corresponding to activations over increasing receptive field sizes with increasing 

generalisation across image features (Serre, 2014), (see Figure 1-8). Features are specific 

structures in an image such as points, edges or shapes. The presence or absence of a feature is 

determined by applying a filter to the image. For example, by applying a DOG filter, we can 

determine whether a circular feature of a stipulated size is present at a specified image 

location. 

 

As the hierarchy is traversed, each layer stores a higher-level representation of the previous 

layer. These systems usually process information in a linear-non-linear chain of alternating 

cell types (Serre, 2014). Linear transformations represent processing by a bank of filters or a 

feature dictionary and non-linear functions pool information over multiple filters. Features at 

the lower levels are usually points and edges, compared to more complex mid and high-level 

features that encapsulate combinations of features, such as edge intersections, or object parts. 
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As information flows from the early retinal layers to higher neural layers such as the 

inferotemporal cortex (IT), representations generally become more compact (the number of 

neurons per layer decreases) and neurons respond with increasing invariance to stimulus 

location. These efficient representations reduce the number of connections required, 

increasing what is termed sparsity. Increasing sparsity helps to reduce the level of energy 

consumption needed for maintaining connections.  

 

 

 

 

Figure 1-8: Layers of the visual system that form the ventral pathway. Black arrows 
represent feed-forward connections and white arrows represent feedback connections. 

Connections not represented here are those made within layers and also between 

remotely-connected layers. 
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1.9.2 Hierarchical models in historical context 

The Neocognitron is a multi-layered neural network consisting of feature-extracting S-cells 

and feature-combining C-cells. It was one of the first models of the ventral visual stream to 

include both “simple” (S) and “complex” (C) cells inspired by physiology (Fukushima, 1980).  

Fukushima (1988) designed the Neocognitron for recognising digital characters, successfully 

demonstrating resilience to changes in position, scale and deformation (Fukushima, 1988). 

Building on the simple-complex cell architecture from the Neocognitron, LeCun and 

colleagues later demonstrated the ability of a similar network structure to recognise hand-

written digits (LeCun et al., 1989a). This was successfully applied to postal-code recognition 

(LeCun et al., 1989b) and digit recognition for handwritten cheques (LeCun et al., 1997). 

LeCun’s (1989a, 1989b) model, called LeNet, has been recruited for a variety of applications 

speech and time-series prediction as well as image classification (LeCun and Bengio, 1995).  

Over the past couple of decades, a number of hierarchical models have been designed that 

employ a simple-complex architecture for image recognition (Wallis and Rolls, 1997; 

Riesenhuber and Poggio, 1999; Thorpe et al., 2001; Ullman et al., 2002; VanRullen, & 

Thorpe, 2002; Serre et al., 2007; Masquelier and Thorpe, 2007). A thorough review of these 

models can be found in Serre (2014).  

 

Most models to date have adopted a simple-complex cell architecture because of its excellent 

robustness to noise, translation, scaling and rotation. This common architecture can be 

roughly mapped to parts of the human brain involved in object recognition (see Figure 1-8), 

namely the ventral regions of the human visual processing hierarchy. This stream of 

processing begins at the retina, from whence information is propagated forwards (and 

backwards) through layers towards the pre-frontal cortex (PFC), where an object is identified. 

PFC is the area of the cerebral cortex covering the front part of the frontal lobe usually 

associated with decision making. Usually in computer models, areas V1 to IT are replaced 
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with stacked alternating layers of simple and complex artificial cells. A decision making 

algorithm is applied at the top-most layer to represent the role of PFC. Cortical models 

usually bypass modelling LGN and the on- and off-centre cells therein. Instead, they first 

perform filtering at the V1 level using, most commonly, Gabor filters. The model layers 

corresponding to visual processing modules from V1 to IT represent a “dictionary of features” 

(Mutch and Lowe, 2008) that are often drawn upon to distinguish object categories. The 

highest layer, representing PFC, is responsible for ultimately deciding how an object is 

recognised or categorised.  

 

Models of vision are generally sub-divided into feed-forward and feedback models. Feed-

forward models attempt to emulate the first 100-130ms of visual processing that has been 

shown to produce accurate object categorisation in monkeys (Hung et al., 2005) and humans 

(Kirchner and Thorpe, 2006). One of the most widely researched and applied feed-forward 

models is HMAX, which we describe in detail below. We adopt HMAX as our model of 

choice among the available ventral stream models, predominantly because there is a large 

body of evidence showcasing its biological plausibility (Serre et al., 2010). We also discuss 

feedback models to contrast with our choice of HMAX in order to highlight some of the 

advantages and disadvantages of these two different approaches.  

 

1.9.3 Our model selection: feed-forward model HMAX 

The aim of this model is to replicate the first feed-forward sweep of visual processing by 

implementing a feed-forward architecture consisting of simple and complex cell layers. 

Simple (S) cells fire with fine-tuned selectivity towards particular stimuli whereas complex 

(C) cells respond invariantly despite variance in the stimulus, such as spatial location (Serre et 

al., 2005b). In other words, simple cells achieve discrimination in detecting features at 
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specific locations in the visual field. Complex cells allow for generalisation by pooling 

activations across simple cells.  

 

The HMAX system has been extensively tested using a variety of paradigms, one of the first 

being a set of experiments inspired by Logothetis et al. (1995) where monkeys were trained to 

recognise novel paperclip objects. Logothetis and co-authors found cells in IT that were 

selectively responsive to different scaled, translated and rotated views of individual paperclips 

that were previously unknown. Similar experiments were performed using an early version of 

the HMAX model by Riesenhuber & Poggio (1999). The model was trained with specific 

views of paperclips and was later tested with both the same paperclips and other distractor 

objects. Artificial units within the model demonstrated a high response to the trained stimulus 

and a decreasing response as the view was rotated, scaled or translated. Over certain ranges of 

transformations, the response of the unit was greater to the preferred stimulus than to any of 

the distractors. Response properties of the artificial cell matched those from single cell 

recordings of the monkey after it was trained on the paperclip task. 

 

Later versions of the model were tested in a rapid animal versus non-animal recognition task 

(Serre, 2007). The results for the model are directly comparable to those for human observers 

performing the same recognition task using a brief image display followed by a mask to limit 

feedback. The model performed at an accuracy level similar to human subjects when the delay 

between stimulus and mask was around 50ms, indicating that the HMAX model provides a 

satisfactory description of the feed-forward path of visual object recognition in humans. 

 

The model has been further extended in a number of ways to account for other visual 

phenomena. An extensive list of model capabilities is listed in (Serre et al., 2007). The 

HMAX model is able to demonstrate that object recognition is largely feed-forward in the 
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first 100-200ms (Serre et al., 2007). The results of the system are comparable with biological 

and human psychophysical data (Serre and Poggio, 2010), allowing for direct comparison to 

the physical, algorithmic and computational levels proposed by Marr (1982). These multi-

level comparisons give greater evidence to the plausibility of the model. 

 

HMAX, however, does show some limitations. Being a model that is restricted to feed-

forward processing, it does not include any of the back-projections found in visual cortex. 

Without feedback, this model cannot account for visual phenomena involving top-down 

attentional mechanisms. Modelling feedback would be necessary if we wish to model 

perception within the visual ventral stream beyond the first 100-200ms. 

 

1.9.4 Feedback models  

Feedback models are those in which information flows in two directions, where signals 

traverse upwards along the hierarchy and back down it. From the suite of possible feedback 

models, probabilistic generative models have recently gained momentum as increasingly 

plausible models of perception (Friston, 2010; Bastos et al., 2012; Clark, 2013). These models 

are referred to under a variety of names, including Bayesian inference models, free energy 

networks, deep Boltzmann machines and deep sparse networks. Their underlying architecture 

is hierarchical and focuses heavily on feedback. Using Bayesian inference, higher levels 

predict patterns that emerge from lower levels, where differences between expectations and 

sensory readings are minimised from the top down. The gap between bottom-up signals and 

top-down predictions is called the error term. Clark (2013) provides an overview on the 

evolution of these architectures.  

 

Historically, training very deep (multi-level) feedback networks was a difficult problem until 
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Hinton et al. (2006) and Hinton (2007) demonstrated a technique for minimising error at 

lower levels of the architecture. Compared to feed-forward networks, feedback networks 

generally take a long time to train. However, one of the biggest advantages in using 

probabilistic generative models is that all features at multiple levels are learnt in an 

unsupervised manner, emerging from patterns in the sensory input. Because features are 

learnt, input to the system can be in any form – sound, touch, smell, temperature, etc. This 

property of probabilistic generative models lends them to a wide variety of applications, from 

acoustic speech recognition (Mohamed et al., 2013) to handwritten digit recognition (Ciresan 

et al., 2010). 

 

Probabilistic generative models are still relatively recent and have had much less comparison 

with their neurophysiological counterparts, in contrast to feed-forward models that more 

clearly map to neurophysiology. Although Friston (2012) has shown that probabilistic models 

are theoretically possible, there has been no neurological evidence to demonstrate this. 

Probabilistic generative models have been applied to visual illusions with success (Brown and 

Friston, 2012; Brown et al., 2013). For the purposes of this thesis, we limit computational 

modelling to feed-forward models in order to explore the extent to which they alone can 

emulate illusory effects. By modelling illusions in feed-forward networks we can clearly 

separate explanations that rely on feedback mechanisms from those that are only feed-forward 

driven.    

 

1.10 Existing computational models of visual illusions 

1.10.1 How to model illusions 

We introduced illusions as a sensed discrepancy that differs from the physical measurement 

of the stimulus source (Section 1.2). The question then arises: if we use computer model to 
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emulate an illusion, how is it possible to measure this sensed discrepancy? Furthermore, if we 

replicate a systematic bias in a computer model, how do we know this is an illusion versus a 

mistake in the machine learner? We consider each of these questions in turn.   

 

Firstly, we address how it may be possible to measure an illusion within a computer model. In 

order to do this, we turn to our definition of illusions and reflect on what information can be 

measured in a computer model versus what information is measured externally to the model. 

Our previous definition of illusions was as a discrepancy between what is sensed and the 

physical stimulus.  Taking this definition, it is possible to demonstrate an illusion as being a 

mismatch between external measurements of the stimulus and representations of that stimulus 

inside a model. The representation taken from within the computer model would be at the 

final layer or from previous layers.  

 

Secondly, how do we demonstrate that an illusion, and not a general error, is being replicated 

within a computer model? Is it possible to classify any error as an “illusion” in a model? In 

order to establish this, we propose a method to determine whether the classifier is able to 

perform accurately using features from the model before exposing it to possible biases. This 

process contains two necessary steps: 1. Propose a control task, demonstrating accurate 

performance; 2. Demonstrate a pattern of errors in response to specific illusory stimuli that is 

reproducible and not random. By demonstrating that the machine learner is first capable of 

handling a control task, for which no bias is present, then the programmer can be confident 

that the algorithm is capable of handling the input and producing a valid result. It is worth 

noting that a model contains many parameters that can be adjusted to ensure correct 

performance. The control task is also useful for this purpose, in assuring that the parameter 

settings of the model are correct.  
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1.11 Scope of this thesis 

 
This thesis looks at two different types of illusion in two separate feed-forward models. We 

first focus on emulating illusory bias and precision in a benchmark model of the visual 

system, demonstrating that models of visual cortex are susceptible to illusions and can be 

used to further inform our understanding of the causes of illusions. In order to cover the full 

gamut of modelling information from the retina, the second model emulates pre-cortical 

neural operations. This is to emphasize the important influence that early visual processing 

has on our perception of certain illusory images, which is bypassed in the first model which 

only simulates neurons from V1 onwards.   

 
We select illusions that are static (no motion), greyscale (no color), monocular (occur even 

when viewing with only one eye) and are known to be mediated by processes in the visual 

ventral pathway, starting from the retina. We deliberately select illusions that are subject to 

ongoing debate about the role of low level versus high level mechanisms, or about the 

influence of bottom-up versus top-down information. By purposely selecting feed-forward 

models to simulate these illusions, we are able to determine some of the requirements for 

bringing about a particular illusion and separate low level from high level influences. 

 
The first model we select is HMAX, and within HMAX, we choose to model the Müller-Lyer 

illusion, for which there is plentiful debate regarding its causes being statistically-driven 

(Gregory, 1963; Howe and Purves, 2005b) or filter-driven (Müller-Lyer, 1889; Coren, 1970). 

In this architecture, there is no modelling of lower-level areas such as the retina or LGN. 

Because of this, the second model in this thesis focuses on pre-cortical areas that feed into the 

visual ventral stream. Lightness illusions are proposed to be mediated by processing within 

very early visual areas (Blakeslee and McCourt, 1999, 2001, 2004), although there are 

theories that suggest higher-level influences impact on our lightness perception (Gilchrist, 
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1977; Knill and Kersten, 1991; Anderson, 1997). This second model simulates a range of 

lightness illusions that have been previously tested in other filtering models of early visual 

processing (Blakeslee & McCourt, 2004; Robinson et. al, 2007) to show whether high level 

visual areas are necessary in bringing about a range of lightness effects.  

 

1.12 Thesis layout  

This thesis consists of five chapters. The first introductory chapter includes a literature review 

of illusions, computational models of the visual system and how these subjects are combined 

together to bring about further understanding of the theories behind particular illusions. 

Chapters 2, 3 and 4 consist of 3 extensive published or submitted studies. The second chapter 

demonstrates the Müller-Lyer illusion in HMAX, a state-of-the-art model of visual cortex, 

ruling out the necessity of some of the proposed explanations behind the illusion. The third 

chapter delves deeper into HMAX simulations of the Müller-Lyer, quantifying bias and 

uncertainty layer-to-layer and identifying key mechanisms that bring about the effect. The 

fourth chapter looks at a pre-cortical model of vision and emulates a suite of lightness 

illusions in this model. The fifth and final chapter provides a discussion on how 

computational modelling, and in particular the experiments included in this thesis, have 

provided a deeper understanding of the necessary factors that drive visual illusions.  
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Abstract 

Studying illusions provides insight into the way the brain processes information. The Müller-

Lyer Illusion (MLI) is a classical geometrical illusion of size, in which perceived line length 

is decreased by arrowheads and increased by arrowtails. Many theories have been put forward 

to explain the MLI, such as misapplied size constancy scaling, the statistics of image-source 

relationships and the filtering properties of signal processing in primary visual areas. 

Artificial models of the ventral visual processing stream allow us to isolate factors 

hypothesised to cause the illusion and test how these affect classification performance. We 

trained a feed-forward feature hierarchical model, HMAX, to perform a dual category line 

length judgment task (short versus long) with over 90% accuracy. We then tested the system 

in its ability to judge relative line lengths for images in a control set versus images that induce 

the MLI in humans. Results from the computational model show an overall illusory effect 

similar to that experienced by human subjects. No natural images were used for training, 

implying that misapplied size constancy and image-source statistics are not necessary factors 

for generating the illusion. A post-hoc analysis of response weights within a representative 

trained network ruled out the possibility that the illusion is caused by a reliance on 

information at low spatial frequencies. Our results suggest that the MLI can be produced 

using only feed-forward, neurophysiological connections. 

 

2.1 Introduction 

Visual illusions have the potential to offer great insight into our visual perception. Illusions 

have been extensively studied by psychologists, as a method of deducing the assumptions that 

the brain makes and how we process visual information. One classical illusion known to 

induce misjudgement, is the Müller-Lyer Illusion (MLI). In the MLI, the perceived length of a 

line is affected by arrowheads or arrowtails placed at the ends of the line (Müller-Lyer, 1889). 

Specifically, the line appears elongated in the arrowtails and contracted with arrowheads (see 
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Figure 2-1A). Behavioural studies have shown that the strength of the illusion is correlated 

with factors including shaft length (Fellows, 1967; Brigell & Uhlarik, 1979), fin angle 

(Dewar,1967) and inspection time (Coren & Porac, 1984; Predebon, 1997).   

Although many theories have been put forward to explain the MLI (reviewed in Bertulis & 

Bulatov, 2001), there is ongoing debate as to the source of the MLI. Originally, the illusion 

was explained as a combination of two opposing factors: ‘confluxion’ and ‘contrast’ (Müller-

Lyer, 1896a, 1896b). These terms were later interpreted into more modern concepts of lateral 

inhibition and contour repulsion (Coren, 1970). Higher weighting placed on low spatial 

frequency information has also been investigated as a possible contributing factor towards the 

MLI (Carrasco et al., 1986; Ginsburg, 1978). Explanations based on spatial filtering 

properties have been investigated further in computer models and have been found to produce 

a Müller-Lyer effect (Bertulis and Bulatov, 2001). It is possible that these mechanistic 

explanations may not provide a full explanation of the illusion and we may need to look 

beyond explanations that purely involve bottom-up neural computation. Gregory was the first 

researcher to suggest that the images in our environment could influence our perception of the 

MLI and introduced another type of explanation based on misapplied size constancy scaling. 

Size constancy scaling refers to our visual system’s ability to perceive an object as being of a 

constant size, even though changes in viewing distance change the size of its retinal image. To 

deduce the real-world size of an object, we take into account the perceived distance when 

scaling the retinal image size. When the depth of an image is misperceived, the scaled size 

judgement will also be erroneous. Gregory (1963) proposed that implicit depth cues in the 

arrowtails image imply that this object is more distant than the arrowheads image, such that 

their identical retinal sizes produce unequal perceived sizes. 

Explaining the illusion has proven difficult because the effect persists even when the wings of 

the illusory figure are replaced with other terminating shapes, such as circles or squares 
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(Figure 2-1B). Even without the shaft (Figure 2-1), the perceptual effect remains. These 

variants demonstrate the persistence of line length misjudgement and rule out simple 

explanations for the cause of the illusion. 

 

Figure 2-1 The ML illusion in various forms. A: The classical four-wing form illustrates the 

perceptual effect of the top line appearing shorter than the bottom line, even though the lines 

are of equal length. B: Terminating circles still induce a perceptual effect of line length 

misjudgment. C: The effect persists even when shafts are removed from the original figure. 

 

Although there is disagreement on what causes the MLI, there is some consensus on where 

the illusion occurs in the brain. It is commonly accepted that visual information is processed 

via two pathways (Goodale & Milner, 1992): the ventral stream or ‘what’ pathway, which 

extends from striate cortex to infero-temporal lobe and the dorsal stream or ‘where’ pathway, 

which extends from occipital to parietal cortex. A recent fMRI study shows increased blood 

oxygen level-dependant signal strength in the Lateral Occipital Cortex (LOC) when 

participants viewed the MLI versus a control image (Weidner & Fink, 2007). An MEG study 

has demonstrated results consistent with the previous fMRI data, showing strong activation 

along the ventral visual pathway in lateral occipital areas and the inferior temporal cortex 

(Weidner et al., 2010). Therefore, a number of studies support the proposal that the ventral 

stream plays a dominant role in processing the MLI. We hypothesised that as the MLI occurs 

parietal cortex. A recent fMRI study shows increased blood
oxygen level-dependant signal strength in the Lateral Occipital
Cortex (LOC) when participants viewed the MLI versus a control
image [15]. An MEG study has demonstrated results consistent
with the previous fMRI data, showing strong activation along the
ventral visual pathway in lateral occipital areas and the inferior
temporal cortex [16]. Therefore, there is much evidence that the
ventral stream plays a dominant role in processing the MLI. We
hypothesised that as the MLI occurs within the ventral stream of
visual processing, then a model that imitates the structure and
functionality of this region should be able to demonstrate this
perceptual effect.
Currently, a number of biologically plausible image recognition

models exist that computationally mimic visual cortex. To date,
the majority of these have been concerned with correct object
identification or classification. In this paper we apply these models
to a task known to produce an illusion in human observers. Here,
we seek to demonstrate a similarity to human perception, not
simply by reproducing a poor level of overall performance, but
further by producing a specific predictable pattern of errors. We
highlight several advantages for researchers from different fields
who adopt this novel approach of mimicking visual ‘errors’ in
computational object recognition models. For perceptual psychol-
ogists, a model that imitates illusory perception would allow for the
isolation and testing of factors thought to contribute to an illusion.
Errors of perception have been extremely informative in
demonstrating how the human brain works. Working with
a computational model opens up possibilities for conducting
experiments that are difficult, if not impossible, to do in humans.
These types of experiments include parameter changes (such as the
level of inhibition), the modification of learning stimuli and
exploration of the effect caused by artificial lesions. For the
computer scientist, classification that matches human error
patterns increases the biological psychological plausibility of
a model. Identifying illusions can enable computers to reject
interpretations of the world that yield impossible objects or
paradoxes. Classification experiments may also reveal elements of
neural information processing that have yet to be uncovered and
lead to improved object recognition and categorisation. Thus, we
can use models to test explanations of well-studied geometrical
illusions from a new perspective.
This paper outlines a set of experiments conducted in HMAX,

a well-established, biologically plausible model of object recogni-
tion [17]. The main goal is to analyse performance of the model in
judging relative line lengths for control stimuli versus Müller-Lyer
stimuli. Essentially, we want to assess whether a feed-forward
object recognition model, with no exposure to natural images, can
‘perceive’ the MLI. We found a consistent pattern of errors that

demonstrated a Müller-Lyer effect in HMAX after training on
a non-natural set of images.

Methods

Our experiments required a model that was biologically plausible,
in that it could be functionally mapped to the human visual ventral
stream. A number of models currently exist which have been
inspired by neurophysiology, pioneered by systems such as the
Neocognitron [18] and convolutional networks [19,20]. From
these biologically plausible options, we selected the model that has
demonstrated much evidence consistent with neurological and
psychological data. The HMAX model, with features inspired by
visual cortex [17] has not only shown results congruent with
psychological and neurological experiments, but it has also made
correct predictions of biological phenomena [21]. We selected
a version of the HMAX model that exclusively models the ventral
visual stream and has successfully demonstrated mutli-class
categorisation [22].
The five-layer architecture setup is similar to that described in

[22], where input to the network is fed through an image layer and
then processing flows sequentially through the other four layers.
These layers alternate in their primary functionality, dedicated to
either template matching or convolution. The behaviour of these
artificial cells is said to model the Simple (‘S’) and Complex (‘C’)
neuronal functionality discovered by Hubel and Wiesel in cat
striate cortex [23]. Simple cells demonstrate higher levels of
activation in response to a specific, preferred stimulus, whereas
Complex cells demonstrate invariance through high response
levels across varied but related inputs. Figure 2 illustrates the set of
layers within the model which are described in further detail
below.

HMAX Layer Descriptions
Image Layer. Input to the model is fed via the image layer,

which receives a 2566256 pixel greyscale image. An image
pyramid with 10 levels is constructed using bicubic interpolation,
with each level 21=4 smaller than the previous. We therefore have
the image duplicated at scales of 2156215, 1816181, 1526152,
1286128, 1086108, 91691, 76676, 64664 and 54654 pixels.
This forms a multi-scale representation of the input image.
S1 Layer (Gabor filter). Output from the image layer is

received by the S1 layer, which employs Gabor filters at every
position and scale. Twelve orientations are used for the Gabor
filters which are 11611 in size and are applied to all levels of the
4D pyramid, before the results are normalised.
C1 Layer (Local invariance using hard MAX). This layer

pools the response of nearby S1 units to create position and scale
invariance at a local level. The range of a C1 unit forms the shape

Figure 1. The ML illusion in various forms. A: The classical four-wing form illustrates the perceptual effect of the top line appearing shorter than
the bottom line, even though the lines are of equal length. B: Terminating circles still induce a perceptual effect of line length misjudgement. C: The
effect persists even when shafts are removed from the original figure.
doi:10.1371/journal.pone.0056126.g001
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within the ventral stream of visual processing, then a model that imitates the structure and 

functionality of this region should be able to demonstrate this perceptual effect. 

Currently, a number of biologically plausible image recognition models exist that 

computationally mimic visual cortex. To date, the majority of these have been concerned with 

correct object identification or classification. In this paper we apply these models to a task 

known to produce an illusion in human observers. Here, we seek to demonstrate a similarity 

to human perception, not simply by reproducing a poor level of overall performance, but 

further by producing a specific predictable pattern of errors. We highlight several advantages 

for researchers from different fields who adopt this novel approach of mimicking visual 

‘errors’ in computational object recognition models. For perceptual psychologists, a model 

that imitates illusory perception would allow for the isolation and testing of factors thought to 

contribute to an illusion. Errors of perception have been extremely informative in 

demonstrating how the human brain works. Working with a computational model opens up 

possibilities for conducting experiments that are difficult, if not impossible, to do in humans. 

These types of experiments include parameter changes (such as the level of inhibition), the 

modification of learning stimuli and exploration of the effect caused by artificial lesions. For 

the computer scientist, classification that matches human error patterns increases the 

biological psychological plausibility of a model. Identifying illusions can enable computers to 

reject interpretations of the world that yield impossible objects or paradoxes. Classification 

experiments may also reveal elements of neural information processing that have yet to be 

uncovered and lead to improved object recognition and categorisation. Thus, we can use 

models to test explanations of well-studied geometrical illusions from a new perspective. 

This paper outlines a set of experiments conducted in HMAX, a well-established, biologically 

plausible model of object recognition (Serre et al., 2005). The main goal is to analyse 

performance of the model in judging relative line lengths for control stimuli versus Müller-
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Lyer stimuli. Essentially, we want to assess whether a feed-forward object recognition model, 

with no exposure to natural images, can ‘perceive’ the MLI. We found a consistent pattern of 

errors that demonstrated a Müller-Lyer effect in HMAX after training on a non-natural set of 

images. 

 

2.2 Methods 

Our experiments required a model that was biologically plausible, in that it could be 

functionally mapped to the human visual ventral stream. A number of models currently exist 

which have been inspired by neurophysiology, pioneered by systems such as the 

Neocognitron (Fukushima, 1980) and convolutional networks (LeCun et al., 1989, LeCun & 

Bengio, 1995). From these biologically plausible options, we selected the model that has 

demonstrated much evidence consistent with neurological and psychological data. The 

HMAX model, with features inspired by visual cortex (Serre et al., 2005) has not only shown 

results congruent with psychological and neurological experiments, but it has also made 

correct predictions of biological phenomena (Serre & Poggio, 2010). We selected a version of 

the HMAX model that exclusively models the ventral visual stream and has successfully 

demonstrated multi-class categorisation (Mutch & Lowe, 2008). 

The five-layer architecture setup is similar to that described in Mutch & Lowe (2008), where 

input to the network is fed through an image layer and then processing flows sequentially 

through the other four layers. These layers alternate in their primary functionality, dedicated 

to either template matching or convolution. The behaviour of these artificial cells is said to 

model the Simple (‘S’) and Complex (‘C’) neuronal functionality discovered by Hubel and 

Wiesel in cat striate cortex (Hubel & Wiesel, 1959). Simple cells demonstrate higher levels of 

activation in response to a specific, preferred stimulus, whereas Complex cells demonstrate 

invariance through high response levels across varied but related inputs. Figure 2-2 illustrates 
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the set of layers within the model which are described in further detail below. 

2.2.1 HMAX Layer Descriptions 

 

Image Layer. Input to the model is fed via the image layer, which receives a 256x256 pixel 

greyscale image. An image pyramid with 10 levels is constructed using bicubic interpolation, 

with each level 21/4 smaller than the previous. We therefore have the image duplicated at 

scales of 215x215, 181x181, 152x152, 128x128, 108x108, 91x91, 76x76, 64x64 and 54x54 

pixels. This forms a multi-scale representation of the input image. 

S1 Layer (Gabor filter). Output from the image layer is received by the S1 layer, which 

employs Gabor filters at every position and scale. Twelve orientations are used for the Gabor 

filters which are 11x11 in size and are applied to all levels of the 4D pyramid, before the 

results are normalised. 

C1 Layer (Local invariance using hard MAX). This layer pools the response of nearby S1 

units to create position and scale invariance at a local level. The range of a C1 unit forms the 

shape of a pyramid spanning an area 10x10 units across the base with a height of 2 levels. The 

response RC of a C unit is the maximum value of all S units X1 to Xn that fall within the filter 

range. This max filter achieves subsampling by moving around each S1 orientation pyramid 

in steps of five with an overlap of 2 positions and scales. The resultant C1 output is a 

convolved and compressed representation of S1 units. Note that the max function is not 

applied over different orientations, hence the C1 layer maintains a 4D pyramid structure. 

S2 Layer (Learned intermediate features). This layer performs template matching at every 

position and scale in the C1 layer. A patch of C1 units centered at each position and scale is 

compared with a prototype patch d. These prototypes are randomly sampled from the C1 

layers of the training images in the initial feature learning stage. After feature learning is 
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complete, each of these prototypes can now be seen as an additional convolution filter which 

is run over C1. 

C2 Layer (Global invariance using hard MAX). This layer constructs a d - dimensional 

vector, where each element is the maximum response to one of the model’s d prototype 

patches anywhere within the image. All orientation information is collapsed into one 

representation. At this stage of the model, all position and scale information has been 

removed, so it is now a ‘bag of features’. 

SVM Layer (Decision making module). Finally, classification of the image is performed 

using an all-pairs linear SVM. C2 vectors are normalised before being fed into the classifier. 

The majority-voting method is used to assign test images to categories. 

 

 

Figure 2-2 HMAX model architecture. Information flows unidirectionally through the 
hierarchical layers. Input to the system is a 256x256 greyscale image and the output is a 

classification of the image as LONG or SHORT. The input image is first transformed 
onto multiple scales via the Image Layer. The following four layers alternate in their 

functionality, dedicated to template matching (S layers) or feature pooling (C layers). 

The final SVM layer performs binary classification.  

 

of a pyramid spanning an area 10610 units across the base with
a height of 2 levels. The response RC of a C unit is the maximum
value of all S units X1 to Xn that fall within the filter range. This
max filter achieves subsampling by moving around each S1
orientation pyramid in steps of five with an overlap of 2 positions
and scales. The resultant C1 output is a convolved and
compressed representation of S1 units. Note that the max function
is not applied over different orientations, hence the C1 layer
maintains a 4D pyramid structure.
S2 Layer (Learned intermediate features). This layer

performs template matching at every position and scale in the C1
layer. A patch of C1 units centered at each position and scale is
compared with a prototype patch d. These prototypes are
randomly sampled from the C1 layers of the training images in
the initial feature learning stage. After feature learning is complete,
each of these prototypes can now be seen as an additional
convolution filter which is run over C1.
C2 Layer (Global invariance using hard MAX). This

layer constructs a d{dimensional vector, where each element is
the maximum response to one of the model’s d prototype patches
anywhere within the image. All orientation information is
collapsed into one representation. At this stage of the model, all
position and scale information has been removed, so it is now
a ‘bag of features’.
SVM Layer (Decision making module). Finally, classifi-

cation of the image is performed using an all-pairs linear SVM. C2
vectors are normalised before being fed into the classifier. The
majority-voting method is used to assign test images to categories.

Task Description
The task in these experiments was to perform a two choice

category task on a set of images. This task mimics a psychophysical
yes-no length discrimination procedure. The classifier had to
decide whether the top line in a given image was longer (L) or
shorter (S) than the bottom line. Examples of images from each
category are illustrated in Fig. 3. All images fed into the model
were 2566256 pixels in size, with black lines drawn using a 262
pixel pen on a white background. For the L condition, the top line
had randomised line length between 120 and 240 pixels. For the S
condition, the bottom line length was randomised also between
120 and 240 pixels. The comparator line length was randomised
to be between 2 and 62 pixels shorter than the top (or bottom) line
for the L (or S) condition. The vertical position of the top line was
randomised between 48 and 108 pixels from the top of the image
while bottom line’s vertical position was randomly placed between

148 and 208 pixels. This forced the machine learner to rely on
invariant properties rather than on absolute positional information
for classification.

Experimental Setup
We ran each experiment in two stages: a training stage and a test

stage. The model consisted of interleaved S and C layers, with
a support vector machine (SVM) on top to perform final
classification (see Methods Section for details). For the training
period, we exposed the network to a set of 450 images to learn
features at different positions and scales. Features were only learnt
in the S2 and C2 cell layers; S1 and C1 have a fixed set of features
(refer to Methods Section). Once the C2 vectors were built for the
training set, the SVM was trained to perform the L/S classification
task. For the test phase, C2 vectors were built for the test set of
images which were then classified using the SVM.
Cross Fin (XF) images (Fig. 3 Column 1) were used for training,

since they contain features present in both control and test stimuli
and they do not induce any illusory effects. Fin lengths were
randomised between 15 and 40 pixels (measured from the end of
the shaft to the tip of the fin). Fin angles were randomised between
10 and 90 degrees for both top and bottom lines. This was to
prevent the classifier from relying on the end positions of fins or on
bounding box information to make a length judgment. Essentially,
we wanted to confirm that the machine learner was making its
decision based only on the length of the inside lines (shafts) while
also allowing it to be exposed to other irrelevant features.

Results

Experiment I: Control
The first experiment we ran was to ensure that the classifier was

able to distinguish long from short images at an acceptable level of
accuracy and precision for a set of control stimuli. The control
stimuli we used are illustrated in Fig. 3 Column 2, where the top
line has arrows pointing to the left and the bottom line has arrows
pointing to the right. Fin angles were randomised between 10 and
70 degrees. We selected these control stimuli (annotated LR)
because they contain the same number of features as those present
in our illusion test stimuli.
As expected, performance results for the experiment were

affected by the size of the network. We varied the number of S2
units (corresponding to the number of learned features) and
measured the accuracy of classification as the average of
performance (% correct) in each of 10 runs with 150 test images

Figure 2. HMAX Model architecture. Information flows unidirectionally through the hierarchical layers. Input to the system is a 2566256
greyscale image and the output is a classification of the image as LONG or SHORT. The input image is first transformed onto multiple scales via the
Image Layer. The following four layers alternate in their functionality, dedicated to template matching (S layers) or feature pooling (C layers). The final
SVM layer performs binary classification.
doi:10.1371/journal.pone.0056126.g002
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2.2.2 Task Description 

 
The task in these experiments was to perform a two choice category task on a set of images. 

This task mimics a psychophysical yes-no length discrimination procedure. The classifier had 

to decide whether the top line in a given image was longer (L) or shorter (S) than the bottom 

line. Examples of images from each category are illustrated in Figure 2-3. All images fed into 

the model were 256x256 pixels in size, with black lines drawn using a 262 pixel pen on a 

white background. For the L condition, the top line had randomised line length between 120 

and 240 pixels. For the S condition, the bottom line length was randomised also between 120 

and 240 pixels. The comparator line length was randomised to be between 2 and 62 pixels 

shorter than the top (or bottom) line for the L (or S) condition. The vertical position of the top 

line was randomised between 48 and 108 pixels from the top of the image while bottom line’s 

vertical position was randomly placed between 148 and 208 pixels. This forced the machine 

learner to rely on invariant properties rather than on absolute positional information for 

classification. 

2.2.3 Experimental Setup 

 
We ran each experiment in two stages: a training stage and a test stage. The model consisted 

of interleaved S and C layers, with a support vector machine (SVM) on top to perform final 

classification (see Methods Section for details). For the training period, we exposed the 

network to a set of 450 images to learn features at different positions and scales. Features 

were only learnt in the S2 and C2 cell layers; S1 and C1 have a fixed set of features (refer to 

Methods Section). Once the C2 vectors were built for the training set, the SVM was trained to 

perform the L/S classification task. For the test phase, C2 vectors were built for the test set of 

images which were then classified using the SVM. 

Cross Fin (XF) images (Figure 2-3 Column 1) were used for training, since they contain 
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features present in both control and test stimuli and they do not induce any illusory effects. 

Fin lengths were randomised between 15 and 40 pixels (measured from the end of the shaft to 

the tip of the fin). Fin angles were randomised between 10 and 90 degrees for both top and 

bottom lines. This was to prevent the classifier from relying on the end positions of fins or on 

bounding box information to make a length judgment. Essentially, we wanted to confirm that 

the machine learner was making its decision based only on the length of the inside lines 

(shafts) while also allowing it to be exposed to other irrelevant features. 

 

Figure 2-3 Images presented to the model, categorised as LONG (top row) or SHORT 

(bottom row). The consistent manipulation across all three conditions (training, control and 

illusion) is the difference between top and bottom line lengths (while the size and orientation 

of fins changes as well as the distance between top and bottom lines.  Column 1: Cross Fin 

(XF) images are used for training in all experiments. Column 2: Control (LR) images are used 

to test accuracy levels for a standard stimulus. Column 3: Illusion (ML) images are used to 

test performance levels for images that induce human perceptual error.  

 

per category. Figure 4 illustrates these results, with error bars
marking standard error of the mean between runs. When the
network size reached 1000 S2 cells, performance exceeded 90%.
With network sizes larger than 1000, performance did not
substantially improve. We therefore chose to use this network size
for all subsequent experiments so as to achieve high accuracy while
minimising computational expense. For our following experi-
ments, the critical comparison was between our control and
illusion conditions.

With a network size of 1000 S2 cells, we achieved an overall
accuracy of 90.3% for our control. We noticed a slight bias
between our LONG category (89.2%) and our SHORT category
(91.47%), however this was not statistically significant (using a two-
tailed paired t-test, p.0.05).

Experiment II: Illusion Effect
The second experiment compared the results from the control

experiment against those obtained using illusory Müller-Lyer (ML)

Figure 3. Images presented to the model, categorised as LONG (top row) or SHORT (bottom row). Column 1: Cross Fin (XF) images are
used for training in all experiments. Column 2: Control (LR) images are used to test accuracy levels for a standard stimulus. Column 3: Illusion (ML)
images are used to test performance levels for images that induce human perceptual error.
doi:10.1371/journal.pone.0056126.g003

Figure 4. Experiment I: Control Results. Accuracy for the control condition versus the network size of S2 units. Values shown are the average of
10 runs. Error bars show standard error of the mean.
doi:10.1371/journal.pone.0056126.g004
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2.3 Results 

2.3.1 Experiment I: Control 

The first experiment we ran was to ensure that the classifier was able to distinguish long from 

short images at an acceptable level of accuracy and precision for a set of control stimuli. The 

control stimuli we used are illustrated in Figure 2-3 Column 2, where the top line has arrows 

pointing to the left and the bottom line has arrows pointing to the right. Fin angles were 

randomised between 10 and 70 degrees. We selected these control stimuli (annotated LR) 

because they contain the same number of features as those present in our illusion test stimuli. 

As expected, performance results for the experiment were affected by the size of the network. 

We varied the number of S2 units (corresponding to the number of learned features) and 

measured the accuracy of classification as the average of performance (% correct) in each of 

10 runs with 150 test images per category. Figure 2-4 illustrates these results, with error bars 

marking standard error of the mean between runs. When the network size reached 1000 S2 

cells, performance exceeded 90%. With network sizes larger than 1000, performance did not 

substantially improve. We therefore chose to use this network size for all subsequent 

experiments so as to achieve high accuracy while minimising computational expense. For our 

following experiments, the critical comparison was between our control and illusion 

conditions. 

With a network size of 1000 S2 cells, we achieved an overall accuracy of 90.3% for our 

control. We noticed a slight bias between our LONG category (89.2%) and our SHORT 

category (91.47%), however this was not statistically significant (using a two- tailed paired t-

test, p < 0.05). 
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Figure 2-4 Experiment I: Control Results. Accuracy for the control condition versus the 
network size of S2 units. Values shown are the average of 10 runs. Error bars show 

standard error of the mean. 

 

2.3.2 Experiment II: Illusion Effect 

The second experiment compared the results from the control experiment against those 

obtained using illusory Müller-Lyer (ML) images. The ML images we tested are shown in 

Figure 2-3 Column 3, where the top line always has arrowtails and the bottom line always has 

arrowheads. The fin length and fin angle were varied in the same way as for the control 

images. If the top line always has arrowtails for every single test image, the top line will 

appear perceptually elongated. The bottom line always having arrow- heads will appear 

contracted. For a human observer, this means that when the two lines are objectively of equal 

length, the top line will appear longer. When humans are presented with any of these ML 

images, they will therefore classify them as ‘long’ on more occasions than when control 

images are used. 
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If the model is not susceptible to the illusion, accuracy levels should be similar to those 

shown in Experiment I. However, if the model is susceptible to the illusion, then we should 

expect to see two effects. Firstly, for the LONG category, we would expect to see the model 

classifying these above the accuracy level in the control condition (89.2%). Secondly, for the 

SHORT category, we expect to see the classifier perform worse than the control condition 

(91.47%). Because of the consistent configuration of the test images, the machine learner 

would classify images as ‘long’ more often than the control condition. This would cause it to 

overclassify for the LONG category and underclassify in the SHORT category. 

Figure 2-5 shows the accuracy (in terms of % correct) of ML image classification plotted 

alongside the control condition from Experiment I. Values displayed are the average of 10 

runs for 150 test images per category and error bars indicate standard error. S2 network size 

was set to 1000 as in the control condition. As we can see from the figure, the ML condition 

shows classification accuracy above the control condition for the LONG category, however 

this difference was only trending towards significance (using a two- sample, equal variance t-

test, p=0.0674). The inverse effect is shown in the SHORT category, where the ML condition 

performs under the classification accuracy of the control condition. The difference between 

the ML and Control conditions for the SHORT category was significant (using a two-sample, 

equal variance t-test, p=0.000027). This indicates that the model is indeed susceptible to the 

MLI. 
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Figure 2-5 Experiment II: Control vs. Illusion Results. Accuracy (in terms of % correct) 

for the control versus ML images. Values shown are the average of 10 runs. Error bars 

indicate standard error of the mean. 

 

2.3.3 Experiment III: Illusion Strength Affected by Angle 

The results shown in Experiment II demonstrate errors consistent with an illusory effect; 

however they do not provide a detailed picture of classification performance using HMAX for 

control versus illusory data. We can obtain a better picture of the illusory effect within 

HMAX by measuring classification across incremental line length differences. By plotting 

classification results as a psychometric function, we are able to extract information such as the 

Point of Subjective Equality (PSE), for the illusory stimulus. Furthermore, we can separate 

out factors known to affect the strength of the illusion, such as the fin angle size or fin length, 

and observe consequent changes in the PSE.  



74 
 
Figure 2-6 shows results for the control condition versus illusion conditions with three 

separate fin angles, plotted as psychometric functions. Looking along the x-axis, negative 

values on the left indicate the SHORT category, and positive values on the right represent the 

LONG category. The y-axis indicates the percentage of images classified as LONG. If a 

classifier was always able to correctly identify the line length categories, we would see a 

sharp step function that takes the value of 0% on the left and 100% on the right, with a sharp 

transition at a line length difference of zero. Instead, what we see is a series of sigmoid 

functions indicating that when line length difference is large (in either negative or positive 

direction), it is easier for the system make a correct classification judgement. Sigmoid curves 

such as these are typical when mapping human psychophysical responses. 

We first plotted the control condition with all angles collapsed. When there were large 

differences in line lengths (60 pixels), HMAX was able to categorise near ceiling for both the 

LONG category (far right) and the SHORT category (far left). When classification was at 

50%, indicating that the top and bottom lines were judged to be the same length (i.e. the PSE), 

the line length difference was zero, indicating no bias. However, ML figures with 40 degree 

fins showed a PSE of -12.5 pixels. This indicates that with 40 degree fins, the top line must be 

12.5 pixels shorter for HMAX to regard the two lines to be of equal length. Illusory lines with 

20 degree angle fins demonstrated a much smaller PSE of -41 pixels. Considering human 

data, 20 degree angle fins would create an illusory bias of 26% (Restle & Decker, 1977). For 

our lines of 120 to 240 pixels, this would create an average PSE of 46.8 pixels. Therefore the 

PSE for 20 degree angle fins in HMAX is relatively congruent with human data. Illusory lines 

with 60 degree angle fins no longer demonstrated an illusory effect, indicated by a PSE of 

zero. 
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Figure 2-6 Experiment III: Illusion Strength Affected by Angle. Results here are plotted 

as psychometric curves with values on the left representing the SHORT condition, and 
values on the right representing the LONG condition. The control condition with all 

angles collapsed shows no bias. For illusory lines with 40 degree fins we see a PSE of 

approximately 12 pixels. Illusory lines with 20 degree fins show a larger PSE, congruent 
with human data. Illusory lines with 60 degree fins no longer demonstrate an illusory 

effect, indicated by intersection of the curve through 50% when the line length 
difference is zero. 

 

Human data for the Müller-Lyer Illusion shows smaller effects as the angle becomes larger 

(Restle & Decker, 1977), which was also demonstrated by HMAX. For 20 degree data, 

HMAX performance matched human performance closely. However, as fin angles were 

increased, the illusory effect tapered off earlier in HMAX compared with human data. The 40 

degree data showed a smaller effect than expected, while the 60 degree data show no effect at 

all, whereas humans are known to experience a Müller-Lyer effect with angles up to 80 

degrees (Restle & Decker, 1977). So although we observed an overall illusory effect and a 

Figure 5. Experiment II: Control vs. Illusion Results. Accuracy (in terms of % correct) for the control versus ML images. Values shown are the
average of 10 runs. Error bars indicate standard error of the mean.
doi:10.1371/journal.pone.0056126.g005

Figure 6. Experiment III: Illusion Strength Affected by Angle. Results here are plotted as psychometric curves with values on the left
representing the SHORT condition, and values on the right representing the LONG condition. The control condition with all angles collapsed shows
no bias. For illusory lines with 40 degree fins we see a PSE of approximately 12 pixels. Illusory lines with 20 degree fins show a larger PSE, congruent
with human data. Illusory lines with 60 degree fins no longer demonstrate an illusory effect, indicated by intersection of the curve through 50% when
the line length difference is zero.
doi:10.1371/journal.pone.0056126.g006
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degradation of illusory strength with an increase in fin angles, the illusory effect decreased 

faster for HMAX compared to humans. 

2.4 Discussion 

In this paper, we devised a set of experiments to measure the classification performance for an 

ML stimulus versus a control, in a biologically plausible model of object recognition. The 

task was to classify images as SHORT or LONG based on the relative lengths of top and 

bottom lines in an image. We trained the model using a set of cross fin images that do not 

induce any illusion in humans and that contain all features present in test stimuli. In 

Experiment I, we explored different network sizes to achieve an overall classification 

accuracy level of 90% for our control condition. We then compared these results to an illusory 

stimulus in Experiment II, where we observed a respective increase and decrease in 

classification accuracy for the long and short conditions. This indicates that, as for human 

observers, this computational model of object recognition shows skewed performance levels 

when judging relative line lengths for Müller-Lyer stimuli. In Experiment III, we further 

investigated the strength of the illusion within the model by manipulating fin angle. We 

observed a smaller PSE for illusory stimuli with more acute fin angles, indicating a larger 

illusory effect. As fin angles increased, the PSE increased. This suggests that the HMAX 

computational model of object recognition is able to emulate the human MLI in two ways: 1) 

by demonstrating an overall bias in line length classification with illusory stimuli and 2) by 

demonstrating a larger Müller-Lyer effect with more acute fin angles. 

Although HMAX is able to demonstrate an illusory effect, our results are not identical to 

patterns seen in human data. In particular, one possible reason for this is that even though 

HMAX is a biologically plausible model, it does omit a number of features present in the 

human visual system, most notably the notion of feedback or recurrent connections. Because 

HMAX is fundamentally a feed-forward model, to make a fair comparison between the 
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illusion in HMAX and the illusion in humans, results from the model should be compared 

with human results obtained using a backward masking paradigm or repetitive transcranial 

magnetic stimulation (rTMS). Human psychophysical experiments performed on the MLI 

have, to date, not included methods that eliminate feedback processing, such as backward 

masking or rTMS. We plan to run further experiments using backward masking in human 

subjects to allow for this comparison. 

Careful consideration was applied to selecting our control test stimuli. We ruled out the use of 

straight fin images (having wings orthogonal to the shaft) because they contain a smaller 

number of features compared to ML stimuli. We also ruled out the possibility of using 

different combinations of terminating fins because the Müller-Lyer illusion exists in many 

forms. We discovered that the best control stimuli were a combination of left and right 

arrowheads. These control images not only contain the same number of features as the ML 

stimuli, but also allow us to directly compare accuracy levels with varying fin angles and fin 

lengths. 

Misclassification of the ML images, as shown in Figure 2-5, indicates that this computational 

model is susceptible to perceptual errors similar to those experienced by humans. These 

experimental results add to the plausibility of models that adopt a simple- complex 

architecture. Not only is the HMAX model able to achieve accuracy levels on par with 

humans in performing rapid object categorisation (Serre et al., 2007), we now show that this 

model can mimic aspects of human performance in misclassifying illusory stimuli. 

The other significant and perhaps most surprising finding from these experiments is that the 

illusion was generated in a model that includes only feed-forward processing. No feedback 

connections are present in the HMAX model, and apart from initial feature training in the 

learning stage of the model, weights and connections are fixed during normal operation. 
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Information in the system flows in one direction, from the initial image layer through simple 

and complex layers to the SVM. This implies that ML line length misjudgement can occur 

from feedforward connections alone. 

Shortcomings of HMAX, including the lack of recurrent connections, may not be the sole 

explanation for the gap between model and human data. Another possibility for this mismatch 

is the use of constrained training images, consisting entirely of thin black lines on a white 

background. Including natural scenes as part of the training set, for example, may improve the 

match with human data. Each of these points could be addressed separately by testing other 

models or by training HMAX with other image sets. Our results provide a baseline for further 

comparisons and the analysis of other potential explanations of the MLI. 

The images used for training the model allow us to further assess proposed explanations of 

the MLI. The image set we used for training was inherently two dimensional in nature, 

consisting only of straight black lines on a white background (see XF images in Figure 2-3). 

In order to verify Gregory’s (1963) misapplied size constancy scaling theory, we would need 

to train the model on images taken of 3D scenes. Gregory (1963) argues that illusory figures 

are ‘flat projections of typical views of objects lying in three-dimensional space’. Given that 

our model exhibited an illusory effect without training on any 3D images, we can be confident 

that misapplied size constancy scaling is not a necessary factor in causing the MLI in our 

model, and to the extent that this model mimics human visual processing of ML figures, it 

may not be necessary to explain the behaviour of human subjects. Our training image set 

further suggests that the ML illusion can occur in the absence of statistics of image-source 

relationships. Howe and Purves (2005) propose that the ML illusion is caused by the 

‘‘statistical relationship between retinal images and their real- world sources’’. For our 

experiments, we did not train HMAX on any natural images and maintained a consistent 
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number of features across our training images. Our results suggest that the Müller-Lyer 

illusion can be caused even without information embedded in natural images. 

 

 

Figure 2-7 An image of the Müller-Lyer Illusion high and low pass filtered. A: the 

original image B: The image high pass filtered at 5 cycles per image. C: The image low pass 

filtered at 5 cycles per image. 

 

Ginsburg (1978) suggested that in human observers, the MLI is caused primarily by stronger 

weighting of low spatial frequency information, later supported by results from Carrasco 

(1986). When Müller-Lyer figures are low pass filtered, a physical difference manifests, 

elongating the wings-out figure (see Figure 2-7). If HMAX were to give stronger weighting to 

information flowing from units representing larger spatial scales, this would be expected to 

produce a similar effect. To investigate this possibility, we conducted a post-hoc analysis on 

one of the trained networks. We first extracted how information is weighted within the SVM 

layer of the model and then mapped these weights to spatial frequencies. Within the HMAX 

model, there is a direct relationship between spatial frequency information and receptive field 

size (Serre & Riesenhuber, 2004). We were able to graph the bounding box sizes of the top 20 

most influential features used by the SVM in order to make a classification decision (out of 

1000 available). Figure 2-8 shows that the majority of highly weighted features fed into the 

SVM contain high spatial frequency information. This is inconsistent with the potential 

size or connectivity of their network. In [7], Bertulis and Bulatov
created a computer model to replicate the spatial filtering
properties of simple cells and convolution of complex cells in
visual cortex. They compared human and model data for the
Müller-Lyer Illusion, however their model centred only on filtering
properties of neurons. In contrast, our study employs machine
learning techniques to train the model on multiple images before
running a classification task and comparing the task of interest to
a control. Our study allows us to separate out the inner workings
of a model from the input fed into it, in the form of training

images. So although studies exist that model visual illusions within
artificial neural networks, we believe that the current study
represents a significant advance, being the first to model a visual
illusion in a ‘biologically plausible’ artificial neural network.
That HMAX is capable of object classification, the task for

which it was originally developed, may be considered impressive,
given the relative simplicity of the model, which includes no
feedback. However, in the current study we have presented
evidence that the model is able to predict human-like performance
in a completely unrelated task: that involving the discrimination of

Figure 7. An image of the Müller-Lyer Illusion high and low pass filtered. A: the original image B: The image high pass filtered at 5 cycles per
image. C: The image low pass filtered at 5 cycles per image.
doi:10.1371/journal.pone.0056126.g007

Figure 8. The twenty most influential features used by the SVM layer in a representative trained network, ordered by bounding
box size. A post-hoc analysis of a trained network showed the 20 most influential features used to make a classification decision out of 1000
available. Stronger weighting is placed on features that have small bounding boxes and hence contain high spatial frequency information.
doi:10.1371/journal.pone.0056126.g008
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explanation that low spatial frequency information is highly influential in driving the MLI in 

humans. We can therefore rule out the possibility that the illusion in the network is caused by 

stronger weighting of low spatial frequency information. 

 

We have demonstrated that a Müller-Lyer effect can arise in an artificial model of neural 

information processing. This provides an opportunity to test the extent to which hypothesised 

underlying neural mechanisms contribute to the illusion. For instance, lateral inhibition has 

been proposed as an explanation for the MLI (Coren, 1970). We initially explored how 

changing lateral inhibition levels within the HMAX architecture affects classification 

performance, but altering lateral inhibition levels affected the accuracy of classification of 

control stimuli, which was maximal at the default parameter settings. Since we measured the 

Müller-Lyer effect by comparing classification performance for illusory images against 

control images, we therefore decided to keep the default lateral inhibition levels where the 

control accuracy was highest. It may be useful to further examine the role of lateral inhibition 

in the future. Other possibilities include the isolation of information at different orientations to 

assess their relative contributions to the size of the illusion. Although beyond the scope of the 

current study, these have the potential to be useful tests of contributing mechanisms.  
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Figure 2-8 The twenty most influential features used by the SVM layer in a 

representative trained network, ordered by bounding box size. A post-hoc analysis of a 

trained network showed the 20 most influential features used to make a classification decision 

out of 1000 available. Stronger weighting is placed on features that have small bounding 

boxes and hence contain high spatial frequency information. 

 

To date, there have been relatively few studies where artificial neural networks or computer 

models have been used to explore visual illusions (Bertulis & Bulatov, 2001; Ogawa et al., 

1999; Corney & Lotto, 2007). In some cases, these artificial neural networks were not built in 

order to mimic neural computation, but rather to demonstrate statistical correlations in input 

data (Corney & Lotto, 2007). The model used in Corney & Lotto (2007) consisted of only one 

hidden layer with four homogenous neurons, which few would consider to be even a crude 

representation of visual cortex. The work presented in Ogawa et al. (1999) used a network 

with three hidden layers of ‘orientational neurons’, ‘rotation neurons’ and ‘line unifying 

neurons’. This network could roughly correspond to one layer of simple cells that provide 

orientation filters and one layer of complex cells that provide convolution. However, this 

size or connectivity of their network. In [7], Bertulis and Bulatov
created a computer model to replicate the spatial filtering
properties of simple cells and convolution of complex cells in
visual cortex. They compared human and model data for the
Müller-Lyer Illusion, however their model centred only on filtering
properties of neurons. In contrast, our study employs machine
learning techniques to train the model on multiple images before
running a classification task and comparing the task of interest to
a control. Our study allows us to separate out the inner workings
of a model from the input fed into it, in the form of training

images. So although studies exist that model visual illusions within
artificial neural networks, we believe that the current study
represents a significant advance, being the first to model a visual
illusion in a ‘biologically plausible’ artificial neural network.
That HMAX is capable of object classification, the task for

which it was originally developed, may be considered impressive,
given the relative simplicity of the model, which includes no
feedback. However, in the current study we have presented
evidence that the model is able to predict human-like performance
in a completely unrelated task: that involving the discrimination of

Figure 7. An image of the Müller-Lyer Illusion high and low pass filtered. A: the original image B: The image high pass filtered at 5 cycles per
image. C: The image low pass filtered at 5 cycles per image.
doi:10.1371/journal.pone.0056126.g007

Figure 8. The twenty most influential features used by the SVM layer in a representative trained network, ordered by bounding
box size. A post-hoc analysis of a trained network showed the 20 most influential features used to make a classification decision out of 1000
available. Stronger weighting is placed on features that have small bounding boxes and hence contain high spatial frequency information.
doi:10.1371/journal.pone.0056126.g008
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study did not present any quantitative data and did not clearly state details of their method, 

such as the size or connectivity of their network. Bertulis and Bulatov (2001) created a 

computer model to replicate the spatial filtering properties of simple cells and convolution of 

complex cells in visual cortex. They compared human and model data for the Brentano (single 

shaft) form of the Müller-Lyer Illusion with 45 degree fins, which combines contraction and 

elongation effects, so it is not straightforward to make a direct comparison of results with 

HMAX performance. The Bertulis and Bulatov (2001) model centred only on filtering 

properties of neurons. In contrast, our study employs machine learning techniques to train the 

model on multiple images before running a classification task and comparing the task of 

interest to a control. Our study allows us to separate out the inner workings of a model from 

the input fed into it, in the form of training images. So although studies exist that model visual 

illusions within artificial neural networks, we believe that the current study represents a 

significant advance, being the first to model a visual illusion in a ‘biologically plausible’ 

artificial neural network.  

That HMAX is capable of object classification, the task for which it was originally developed, 

may be considered impressive, given the relative simplicity of the model, which includes no 

feedback. However, in the current study we have presented evidence that the model is able to 

predict human-like performance in a completely unrelated task: that involving the 

discrimination of line length. Further, the correspondence of performance between��� man and 

machine represents not just degrees of classification��� accuracy, but also captures the pattern of 

errors that are made as ���a function of difference in line length and fin angle, and produces ��� 

evidence of an illusion. These were emergent properties, rather ���than the model being 

deliberately constructed to produce these ���features. This might raise questions as to other 

visual phenomena that HMAX may be capable of accounting for, and also raises the 

possibility that HMAX may be capable of predicting other yet to be observed phenomena. We 
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look forward to such research being carried out in the near future. 
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2.6 Appendix: Determining whether low spatial frequency information may be 

influencing the SVM 

To determine whether the illusion, or part of it, could be caused by higher weighting being 

placed on low spatial frequency information we took a closer look into a trained network, first 

extracting how information is weighted within the SVM layer of the model and then mapping 

these weights to spatial frequencies. Below is the two-stage process we adopted in order to 

extract this information and see whether certain spatial frequency information was favoured in 

making a classification decision. 

2.6.1 Stage I: Extracting the highest weights entering the SVM layer 

 

Two learning mechanisms play a role in the HMAX architecture making a decision:���  

i) the classification uses a supervised learning procedure. In this a linear support vector 

machine is trained, with input from the top layer of the HMAX network that consists of 1000 

features. The output of this module is the classification. 

ii) the neural network (layers S1,C1,S2,C2) is trained in an unsupervised way. The features 

(and spatial scales) in C2 (and also in C1) are the ones with maximum response in the layer 

below, i.e., for different types of input used during training, the features in C2 may 

correspond to different spatial scales. 

 

To identify which spatial scales are the ones actually used for a classification, we needed to 

consider the effects of both mechanisms. Beginning at the classification module, we have our 

support vector machine which in its primal form aims to satisfy the equations: 

1) wx -b=1���for inputs x that belong to the first class, and 

���2) w x - b = -1���for inputs x that belong to the second class. (where w are x are vectors and b is 

a bias term). 
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The absolute value of a component of the weight vector w describes how strong the influence 

of its respective input feature to the classification is (weights can be positive or negative). The 

support vector machine is trained by solving using an optimisation problem in which a 

number of support vectors are found (points close to the decision plane that lies between both 

classes), and corresponding Lagrange multipliers Alpha. We reconstruct w using the support 

vectors and Alpha, and use them to identify the strongest contributing features from C2 to our 

classification. 

 

 

Figure 2-9: All 1000 weight values feeding into the SVM 

 

Here we can see the majority of weights are around zero and the absolute value of the 

maximum weight does not go above 0.25. To extract the most influential weights we sorted 

by absolute value and had a look at the top 20 and top 100 weightings going into the SVM. 

 

ii)%the%neural%network%(layers%S1,C1,S2,C2)%is%trained%in%an%unsupervised%way.%
The%features%(and%spatial%scales)%in%C2%(and%also%in%C1)%are%the%ones%with%
maximum%response%in%the%layer%below,%i.e.,%for%different%types%of%input%used%
during%training,%the%features%in%C2%may%correspond%to%different%spatial%scales.%
%
To%identify%which%spatial%scales%are%the%ones%actually%used%for%a%classification,%we%
needed%to%consider%the%effects%of%both%mechanisms.%Beginning%at%the%
classification%module,%we%have%our%support%vector%machine%which%in%its%primal%
form%aims%to%satisfy%the%equations:%
1)%w%x%%A%b%=%1%
for%inputs%x%that%belong%to%the%first%class,%and%
2)%w%x%A%b%=%A1%
for%inputs%x%that%belong%to%the%second%class.%(where%w%are%x%are%vectors%and%b%is%a%
bias%term).%
%
The%absolute%value%of%a%component%of%the%weight%vector%w%describes%how%strong%
the%influence%of%its%respective%input%feature%to%the%classification%is%(weights%can%
be%positive%or%negative).%The%support%vector%machine%is%trained%by%solving%using%
an%optimisation%problem%in%which%a%number%of%support%vectors%are%found%(points%
close%to%the%decision%plane%that%lies%between%both%classes),%and%corresponding%
Lagrange%multipliers%Alpha.%We%reconstruct%w%using%the%support%vectors%and%
Alpha,%and%use%them%to%identify%the%strongest%contributing%features%from%C2%to%
our%classification.%

%
Figure'1:'All'1000'weight'values'feeding'into'the'SVM'

Here%we%can%see%the%majority%of%weights%are%around%zero%and%the%absolute%value%
of%the%maximum%weight%does%not%go%above%0.25.%To%extract%the%most%influential%



89 
 
 

 

Figure 2-10 Positions of the top 20 weights within the SVM 

 

2.6.2 Stage II: Identify the spatial scale of the top contributing features in C2. 

Information is propagated in the model from S1->C1->S2->C2->SVM.��� So it is only the C2 

layer that directly affects the SVM decision. In order to see how information in C2 is 

organised, we first look at how information is structured in the lower layers. 

 

S1 is arranged into 12 orientations with patches of increasing size. The size of S1 is 

12*(246*246 + 205*205 +171*171 +142*142 +118*118 +98*98 + 81*81 +66*66 + 54*54 + 

44*44). We can see that there are many more high spatial filters applied (246*246) than low 

spatial filters (44*44). Smaller Gabor patch filters (or receptive fields) correspond to high 

spatial filters. According to [1], spatial frequency is directly correlated with the receptive field 

size. This is because Serre and Riesenhuber (2004) fix the wavelength, aspect ratio and 

effective width of the Gabor filters in order "to account for general cortical cell properties, 

weights%we%sorted%by%absolute%value%and%had%a%look%at%the%top%20%and%top%100%
weightings%going%into%the%SVM.%

%
Figure'2:'Positions'of'the'top'20'weights'within'the'SVM'

Stage%2:%Identify%the%spatial%scale%of%the%top%contributing%features%in%C2.%%%
%
Information%is%propagated%in%the%model%from%S1A>C1A>S2A>C2A>SVM.%
So%it%is%only%the%C2%layer%that%directly%affects%the%SVM%decision.%In%order%to%see%
how%information%in%C2%is%organised,%we%first%look%at%how%information%is%
structured%in%the%lower%layers.%%
%
S1%is%arranged%into%12%orientations%with%patches%of%increasing%size.%%The%size%of%S1%
is%12*(246*246%+%205*205%+171*171%+142*142%+118*118%+98*98%+%81*81%
+66*66%+%54*54%+%44*44).%We%can%see%that%there%are%many%more%high%spatial%
filters%applied%%(246*246)%than%low%spatial%filters%(44*44).%Smaller%Gabor%patch%
filters%(or%receptive%fields)%correspond%to%high%spatial%filters.%According%to%[1],%
spatial%frequency%is%directly%correlated%with%the%receptive%field%size.%This%is%
because%Serre%and%Riesenhuber%fix%the%wavelength,%aspect%ratio%and%effective%
width%of%the%Gabor%filters%in%order%"to%account%for%general%cortical%cell%properties,%
that%is:%(i)%Cortical%cells'%peak%frequency%selectivities%are%negatively%correlated%
with%the%receptive%field%sizes.%(ii)%Cortical%cells'%spatial%frequency%selectivity%
bandwidths%are%positively%correlated%with%their%receptive%field%sizes".%

A%similar%structure%of%filter%sizes%are%preserved%throughout%the%C1%and%S2%layers,%
but%the%C2%layer%takes%the%maximum%of%responses%learned%using%unsupervised%
learning%stage.%Therefore%connections%need%to%be%traced%back%to%the%previous%
layer%in%order%to%extract%the%bounding%box%sizes.%We%then%map%the%area%of%
bounding%boxes%to%the%c2%units%that%are%most%influential.%
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that is: (i) Cortical cells' peak frequency selectivities are negatively correlated with the 

receptive field sizes. (ii) Cortical cells' spatial frequency selectivity bandwidths are positively 

correlated with their receptive field sizes". 

 

A similar structure of filter sizes are preserved throughout the C1 and S2 layers, but the C2 

layer takes the maximum of responses learned using unsupervised learning stage. Therefore 

connections need to be traced back to the previous layer in order to extract the bounding box 

sizes. We then map the area of bounding boxes to the C2 units that are most influential. 

 

Figure 2-11 Top 20 most influential features ordered by size 

 

From this graph above we can see the majority of the top 20 most influential features on the 

SVM are features with small bounding boxes or higher frequency spatial information. We can 

also plot the top 100 most influential features that contribute towards the SVM classification 

sorted by bounding box area. This is illustrated below a blue histogram. The 1000 available 

features that the SVM uses to make a classification decision are shown as a red histogram. 
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We can see that the majority of features that influence the SVM have small bounding boxes/ 

contain high spatial frequency information. 

 

Figure 2-12 The 100 most influential features versus the 1000 available sorted by 
bounding box area 

 

The previous graph illustrates that the SVM decision does not heavily rely on low spatial 

frequency information. This is in contrast to the prediction that the decision would be strongly 

dependent on the low spatial frequency information.  
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3 Study 2 

Complex cells decrease errors for the Müller-Lyer illusion in a model of the visual ventral 

stream. 
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3.1 Abstract 

To improve robustness in object recognition, many artificial visual systems imitate the way in 

which the human visual cortex encodes object information as a hierarchical set of features. 

These systems are usually evaluated in terms of their ability to accurately categorize well-

defined, unambiguous objects and scenes. In the real world, however, not all objects and 

scenes are presented clearly, with well-defined labels and interpretations. Visual illusions 

demonstrate a disparity between perception and objective reality, allowing psychophysicists 

to methodically manipulate stimuli and study our interpretation of the environment. One 

prominent effect, the Müller-Lyer illusion, is demonstrated when the perceived length of a 

line is contracted (or expanded) by the addition of arrowheads (or arrow-tails) to its ends. 

HMAX, a benchmark object recognition system, consistently produces a bias when 

classifying Müller-Lyer images. HMAX is a hierarchical, artificial neural network that 

imitates the “simple” and “complex” cell layers found in the visual ventral stream. In this 

study, we perform two experiments to explore the Müller-Lyer illusion in HMAX, asking: (1) 

How do simple vs. complex cell operations within HMAX affect illusory bias and precision? 

(2) How does varying the position of the figures in the input image affect classification using 

HMAX? In our first experiment, we assessed classification after traversing each layer of 

HMAX and found that in general, kernel operations performed by simple cells increase bias 

and uncertainty while max-pooling operations executed by complex cells decrease bias and 

uncertainty. In our second experiment, we increased variation in the positions of figures in the 

input images that reduced bias and uncertainty in HMAX. Our findings suggest that the 

Müller-Lyer illusion is exacerbated by the vulnerability of simple cell operations to positional 

fluctuations, but ameliorated by the robustness of complex cell responses to such variance. 
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3.2 Introduction 

 

Much of what is known today about our visual perception has been discovered through visual 

illusions. Visual illusions allow us to study the difference between objective reality and our 

interpretation of the visual information that we receive. Recently it has been shown that 

computational vision models that imitate neural mechanisms found in the ventral visual 

stream can exhibit human-like illusory biases (Zeman et al., 2013). To the extent that the 

models are accurate reflections of human physiology, these results can be used to further 

elucidate some of the neural mechanisms behind particular illusions. 

In this paper, we focus on the Müller-Lyer Illusion (MLI), which is a geometrical size illusion 

where a line with arrowheads appears contracted and a line with arrow-tails appears elongated 

(Müller-Lyer, 1889) (see Figure 3-1). The strength of the illusion can be affected by the fin 

angle (Dewar, 1967), shaft length (Fellows, 1967; Brigell and Uhlarik, 1979), inspection time 

(Coren and Porac, 1984; Predebon, 1997), observer age (Restle and Decker, 1977), the 

distance between the fins and the shaft (Fellows, 1967) and many other factors. The illusion 

classically appears in a four-wing form but can also manifest with other shapes, such as 

circles or squares, replacing the fins at the shaft ends. Even with the shafts completely 

removed, the MLI is still evident. 
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Figure 3-1 The ML illusion in classical four-wing form. Horizontal lines are the same 

length in all cases. The ML effect is stronger for more acute angles (Left) and weaker for 

more obtuse angles (Right). 
 

Here, we employ an underused method to explore the Müller-Lyer illusion and its potential 

causes using an Artificial Neural Network (ANN). To date, few studies have used ANNs to 

explore visual illusions (Ogawa et al., 1999; Bertulis and Bulatov, 2001; Corney and Lotto, 

2007). In some cases, these artificial neural networks were not built to emulate their 

biological counterparts, but rather to demonstrate statistical correlations in the input. One such 

example is the model used by Corney and Lotto (2007), consisting of only one hidden layer 

with four homogenous neurons, which few would consider to be even a crude representation 

of visual cortex. The work presented by Ogawa et al. (1999) used a network with three hidden 

layers of “orientational neurons,” “rotational neurons” and “line unifying neurons.” This 

network could roughly correspond to one layer of simple cells that provide orientation filters 

and one layer of complex cells that combine their output. However, this study presented no 

quantitative data and lacked a detailed description of the model, such as the size or 

connectivity of their network. Bertulis and Bulatov (2001) created a computer model to 

replicate the spatial filtering properties of simple cells and the combination of these units’ 

outputs by complex cells in visual cortical area V1. Although they compared human and 

model data for the Müller-Lyer Illusion, their model centered only on the filtering properties 
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FIGURE 1 | The ML illusion in classical four-wing form. Horizontal lines
are the same length in all cases. The ML effect is stronger for more acute
angles (Left) and weaker for more obtuse angles (Right).

“rotational neurons” and “line unifying neurons.” This network
could roughly correspond to one layer of simple cells that provide
orientation filters and one layer of complex cells that combine
their output. However, this study presented no quantitative data
and lacked a detailed description of the model, such as the size
or connectivity of their network. Bertulis and Bulatov (2001)
created a computer model to replicate the spatial filtering prop-
erties of simple cells and the combination of these units’ outputs
by complex cells in visual cortical area V1. Although they com-
pared human and model data for the Müller-Lyer Illusion, their
model centered only on the filtering properties of early visual neu-
rons. These models do not adequately represent the multi-layered
system that would best describe the relevant neural structures.
Neuroimaging studies have shown areas V1, V2, V4, and IT
are recruited when viewing the MLI (Weidner and Fink, 2007;
Weidner et al., 2010) and hence the inclusion of operations from
such visual ventral stream subdivisions is desirable. Therefore,
studying the MLI in a computational model known to mimic
these areas would provide a more biologically representative
result.

In a previous report, we studied the MLI in a benchmark
model of the ventral visual stream that imitates these cortical areas
(Zeman et al., 2013). Following from our hypothesis that the MLI
could occur in a model that imitates the structure and function of
visual ventral areas, we demonstrated its manifestation in a bio-
logically plausible artificial neural network. Although the models
listed above are capable of reproducing the MLI, we believe our
work provides a significant advance, being one of the first stud-
ies to model a visual illusion in a simulated replica of the ventral
visual stream. In addition, our study contrasts with those above
by employing techniques to train the model on multiple images
before running a classification task and comparing the task of
interest to a control. This allows us to separate the inner workings
of the model from the input in the form of training images.

The model we recruit, HMAX (Serre et al., 2005), is a feed-
forward, multi-layer, artificial neural network with layers corre-
sponding to simple and complex cells found in visual cortex. Like
visual cortex, the layers of HMAX alternate between simple and
complex cells, creating a hierarchy of representations that cor-
respond to increasing levels of abstraction as you traverse each
layer. The simple and complex cells in the model are designed to
match their physiological counterparts, as established by single
cell recordings in visual cortex (Hubel and Wiesel, 1959). Here,
we briefly describe single and complex cell functions and pro-
vide further detail on these later in Section 2.1. In short, simple
cells extract low-level features, such as edges, an example of which

would be Gabor filters that are often used to model V1 operations.
The outputs of simple cells are pooled together by complex cells
that extract combined or high-level features, such as lines of one
particular orientation that cover a variety of positions within a
visual field. Within HMAX, the max pooling function is used to
imitate complex cell operations, giving the model its trademark
name. In general, low-level features extracted by simple cells are
shared across a variety of input images. High-level features are less
common across image categories. The high-level features output
by complex cells are more stable, invariant and robust to slight
changes in the input.

HMAX has been extensively studied in its ability to match and
predict physiological and psychological data (Serre and Poggio,
2010). Like many object recognition models, HMAX has been
frequently tested using well-defined, unambiguous objects and
scenes but has not been thoroughly assessed in its ability to
handle visual illusions. Our previous demonstration of the MLI
within HMAX showed not only a general illusory bias, but also
a greater effect with more acute fin angles, corresponding to
the pattern of errors shown by humans. Our replication of the
MLI in this model allowed us to rule out some of the neces-
sary causes for the illusion. There are a number of theories that
attempt to explain the MLI (Gregory, 1963; Segall et al., 1966;
Ginsburg, 1978; Coren and Porac, 1984; Müller-Lyer, 1896a,b;
Bertulis and Bulatov, 2001; Howe and Purves, 2005; Brown and
Friston, 2012) and here we discuss two. One common hypothesis
is the “carpentered-world” theory—that images in our environ-
ment influence our perception of the MLI (Gregory, 1963; Segall
et al., 1966). To interpret and maneuver within our visual envi-
ronment, we apply a size-constancy scaling rule that allows us to
infer the actual size of objects from the image that falls on our
retina. While arrowhead images usually correspond to the near,
exterior corners of cuboids, arrow-tail configurations are associ-
ated with more distant features, such as the right-angled corners
of a room. If the expected distance of the features is used to
scale our perception of size, when a line with arrowheads is com-
pared to a line with arrow-tails that is physically equal in length,
the more proximal arrowhead line is perceived as being smaller.
Another common theory is based upon visual filtering mecha-
nisms (Ginsburg, 1978). By applying a low spatial frequency filter
to a Müller-Lyer image, the overall object (shaft plus fins) will
appear elongated or contracted. Therefore, it could simply be
a reliance on low spatial frequency information that causes the
MLI. In our previous study, we were able to replicate the MLI in
HMAX, allowing us to establish that exposure to 3-dimensional
“carpentered world” scenes (Gregory, 1963) is not necessary to
explain the MLI, as the model had no representation of distance
and hence involved no size constancy scaling for depth. We also
demonstrated that the illusion was not a result of reliance upon
low spatial frequency filters, as information from a broad range
of spatial frequency filters was used for classification.

In the current study, we set out to investigate the condi-
tions under which the Müller-Lyer illusion manifests in HMAX
and what factors influence the magnitude and precision of the
effect. In particular, we address the following questions: (1) How
do simple vs. complex cell operations within HMAX affect illu-
sory bias and precision? (2) How would increasing the positional
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of early visual neurons. These models do not adequately represent the multi-layered system 

that would best describe the relevant neural structures. Neuroimaging studies have shown 

areas V1, V2, V4, and IT are recruited when viewing the MLI (Weidner and Fink, 2007; 

Weidner et al., 2010) and hence the inclusion of operations from such visual ventral stream 

subdivisions is desirable. Therefore, studying the MLI in a computational model known to 

mimic these areas would provide a more biologically representative result. 

In a previous report, we studied the MLI in a benchmark model of the ventral visual stream 

that imitates these cortical areas (Zeman et al., 2013). Following from our hypothesis that the 

MLI could occur in a model that imitates the structure and function of visual ventral areas, we 

demonstrated its manifestation in a biologically plausible artificial neural network. Although 

the models listed above are capable of reproducing the MLI, we believe our work provides a 

significant advance, being one of the first studies to model a visual illusion in a simulated 

replica of the ventral visual stream. In addition, our study contrasts with those above by 

employing techniques to train the model on multiple images before running a classification 

task and comparing the task of interest to a control. This allows us to separate the inner 

workings of the model from the input in the form of training images. 

The model we recruit, HMAX (Serre et al., 2005), is a feed-forward, multi-layer, artificial 

neural network with layers corresponding to simple and complex cells found in visual cortex. 

Like visual cortex, the layers of HMAX alternate between simple and complex cells, creating 

a hierarchy of representations that correspond to increasing levels of abstraction as you 

traverse each layer. The simple and complex cells in the model are designed to match their 

physiological counterparts, as established by single cell recordings in visual cortex (Hubel 

and Wiesel, 1959). Here, we briefly describe single and complex cell functions and provide 

further detail on these later in Section 2.2.1. In short, simple cells extract low-level features, 

such as edges, an example of which would be Gabor filters that are often used to model V1 
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operations. The outputs of simple cells are pooled together by complex cells that extract 

combined or high-level features, such as lines of one particular orientation that cover a variety 

of positions within a visual field. Within HMAX, the max pooling function is used to imitate 

complex cell operations, giving the model its trademark name. In general, low-level features 

extracted by simple cells are shared across a variety of input images. High-level features are 

less common across image categories. The high-level features output by complex cells are 

more stable, invariant and robust to slight changes in the input. 

HMAX has been extensively studied in its ability to match and predict physiological and 

psychological data (Serre and Poggio, 2010). Like many object recognition models, HMAX 

has been frequently tested using well-defined, unambiguous objects and scenes but has not 

been thoroughly assessed in its ability to handle visual illusions. Our previous demonstration 

of the MLI within HMAX showed not only a general illusory bias, but also a greater effect 

with more acute fin angles, corresponding to the pattern of errors shown by humans. Our 

replication of the MLI in this model allowed us to rule out some of the necessary causes for 

the illusion. There are a number of theories that attempt to explain the MLI (Gregory, 1963; 

Segall et al., 1966; Ginsburg, 1978; Coren and Porac, 1984; Müller-Lyer, 1896a, 1896b; 

Bertulis and Bulatov, 2001; Howe and Purves, 2005; Brown and Friston, 2012) and here we 

discuss two. One common hypothesis is the “carpentered world” theory - that images in our 

environment influence our perception of the MLI (Gregory, 1963; Segall et al., 1966). To 

interpret and manoeuvre within our visual environment, we apply a size-constancy scaling 

rule that allows us to infer the actual size of objects from the image that falls on our retina. 

While arrowhead images usually correspond to the near, exterior corners of cuboids, arrow-

tail configurations are associated with more distant features, such as the right-angled corners 

of a room. If the expected distance of the features is used to scale our perception of size, when 

a line with arrowheads is compared to a line with arrow-tails that is physically equal in length, 
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the more proximal arrowhead line is perceived as being smaller. Another common theory is 

based upon visual filtering mechanisms (Ginsburg, 1978). By applying a low spatial 

frequency filter to a Müller-Lyer image, the overall object (shaft plus fins) will appear 

elongated or contracted. Therefore, it could simply be a reliance on low spatial frequency 

information that causes the MLI. In our previous study, we were able to replicate the MLI in 

HMAX, allowing us to establish that exposure to 3-dimensional “carpentered world” scenes 

(Gregory, 1963) is not necessary to explain the MLI, as the model had no representation of 

distance and hence involved no size constancy scaling for depth. We also demonstrated that 

the illusion was not a result of reliance upon low spatial frequency filters, as information from 

a broad range of spatial frequency filters was used for classification. 

In the current study, we set out to investigate the conditions under which the Müller-Lyer 

illusion manifests in HMAX and what factors influence the magnitude and precision of the 

effect. In particular, we address the following questions: (1) How do simple vs. complex cell 

operations within HMAX affect illusory bias and precision? (2) How would increasing the 

positional variance of the input affect classification in HMAX? Our principal motivation is to 

discover how HMAX processes Müller-Lyer images and transforms them layer to layer. 

Following from this, we aim to find ways to reduce errors associated with classifying Müller-

Lyer images, leading to improvements in biologically inspired computational models. We are 

particularly interested in how hierarchical feature representation could potentially lead to 

improvements in the fidelity of visual perception both in terms of accuracy (bias) and 

precision (discrimination thresholds). 
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3.3 Materials and Methods 

3.3.1 Computational model: HMAX 

To explore where and how the illusion manifests, we first examined the architecture of 

HMAX: a multi-layer, feed-forward, artificial neural network (Serre et al., 2005; Mutch and 

Lowe, 2008; Mutch et al., 2010). Input is fed into an image layer that forms a multi-scale 

representation of the original image. Processing then flows sequentially through four more 

stages, where alternate layers perform either template matching or max pooling (defined 

below). HMAX operations approximate the processing of neurons in cat striate cortex, as 

established by single cell recordings (Hubel and Wiesel, 1959). Simple cells are modeled 

using template matching, responding with higher intensity to specific stimuli, while complex 

cell properties are simulated using max pooling, where the maximum response is taken from a 

pool of cells that share common features, such as size or shape. 

Image information travels unidirectionally through four layers of alternating simple (“S”) and 

complex (“C”) layers of HMAX that are labeled S1, C1, S2, and C2. When the final C2 level 

is reached, output is compressed into a 1D vector representation that is sent to a linear 

classifier for final categorization. While previous versions of HMAX employed a support 

vector machine (SVM), in this paper we used the GPU-based version of HMAX (Mutch et al., 

2010) that uses a linear classifier to perform final classification. The task for the classifier was 

to distinguish Long (i.e., top shaft longer) from Short (top shaft shorter) stimulus categories 

under a range of conditions, where the top or bottom line length varied by a known positive or 

negative extent. Figure 3-2 summarizes the layers and operations in the model. Precise details 

are included in the original papers (Serre et al., 2005; Mutch and Lowe, 2008; Mutch et al., 

2010).  
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3.3.2 Stimuli: Training and test sets (Control and Müller-Lyer) 

 

To carry out our procedure, we generated three separate image sets: a training (cross fin) set, a 

control test set (CTL) and an illusion test set (ML). All images were 256 × 256 pixels in size, 

with black 2 × 2 pixel lines drawn onto a white background (see Figure 3-3). Each image 

contained two horizontal lines (“shafts”) with various fins appended. Each different image set 

was defined by the type of fins appended to the ends of the shafts. The fin type determines 

whether an illusory bias will be induced or not. Unlike the ML set, the cross fin and control 

test sets do not induce any illusions of line length in humans (Glazebrook et al., 2005; Zeman 

et al., 2013). 

Within each two-line stimulus, the length of the top line was either “long” (L), or “short” (S), 

compared to the bottom line. The horizontal shaft length of the longest line was independently 

randomized between 120 and 240 pixels. The shorter line was varied by a negative extent 

randomly between 2 and 62 pixels for the training set, or by a known negative extent between 

10 and 60 pixels for the test sets. The positions of each unified figure (shaft plus fins) were 

independently randomly jittered in the vertical direction between 0 and 30 pixels and in the 

horizontal direction between −30 and 30 pixels from center. The vertical position of the top 

line was randomized between 58 and 88 pixels from the top of the image while the bottom 

line’s vertical position was randomized between 168 and 198 pixels. Top and bottom fin 

lengths randomized independently between 15 and 40 pixels. Fin lengths, line lengths and line 

positions remained consistent across all image sets. The parameters that varied between sets 

were fin angle, the direction of fins and the set size. If an image was generated that had any 

overlapping lines, for example, arrowheads touching or intersecting, these images were 

excluded from the sets. 
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Figure 3-2 The input to the system is a 256 × 256 pixel image. The output is a binary 

classification. HMAX consists of alternating template matching (S layers) and feature 
pooling (C layers). The neural substrate approximations are taken from Serre et al. 

(2005). 

Zeman et al. Complex cells decrease Müller-Lyer illusion

FIGURE 2 | HMAX architecture. The input to the system is a 256 × 256 pixel image. The output is a binary classification. HMAX consists of alternating
template matching (S layers) and feature pooling (C layers). The neural substrate approximations are taken from Serre et al. (2005).

2.3. PROCEDURE: LEARNING, PARAMETERIZATION, ILLUSION
CLASSIFICATION

Our method, established in Zeman et al. (2013), was carried out
in three stages:

1. Training. Given a set of training images, a fixed-size net-
work adjusted its internal weights to find the most informative
features using unsupervised learning.

2. Test Phase 1: Parameterization. Using the CTL set, we ensured
that the classifier was able to distinguish long from short
images at an acceptable level of classification performance
(above 85% correct), before testing with illusory stimuli. If
performance fell below this level, we increased the size of the
network and retrained (step 1).

3. Test Phase 2: Illusion classification. Using the ML set, we estab-
lished the discrimination thresholds and the magnitude of the
illusion that manifested in the model.
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Training images contained two horizontal lines with cross fins appended to the ends of the 

shafts (see Row 1, Figure 3-3). Fin angles were randomized independently for the top and 

bottom lines between 10 and 90◦. Five hundred images per category (long and short) were 

used for training. 

Two sets of test images were used, one as a control test set (CTL) and one as an illusion test 

set (ML). The CTL set used for parameterization contained left facing arrows for the top line 

and right facing arrows for the bottom line (see Row 2, Figure 3-3). CTL fin angles were 

randomized between 10 and 80◦ (the angles between top and bottom lines was the same). For 

parameterization, we used 200 images per category (totalling 400 images for both long and 

short) to test for overall accuracy levels with a randomized line length difference between 2 

and 62 pixels. To establish performance levels for the control set, we tested 200 images per 

pixel condition for each category i.e., 200 images at 10, 20, 30, 40, 50, and 60 pixel increment 

differences for both short and long. 

The ML set was used to infer performance levels for images known to induce an illusory bias 

in humans. In this ML set, all top lines contained arrow-tails and all bottom lines contained 

arrowheads (see Row 3, Figure 3-3). Fin angles for ML images were fixed at 20 and at 40◦ in 

two separate conditions. Compared to our previous study, we removed the 60◦ condition 

because there was no bias effect present in the model. In this study, we were primarily 

interested in investigating the ML bias. At the C2 layer, we tested 200 images for each pixel 

condition within each category (totalling 1200 images for the short category at 10, 20, 30, 40, 

50, and 60 pixel length increments and 1200 for the long category). For all other layers (Input, 

S1, C1, and S2), we tested 100 images per pixel condition within each category. In each case 

we took the average of 10 runs, randomizing the order of training images. Classification 

results for the input, S1 and C1 levels are based on deterministic operations, without 
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dependence on the weights developed during training. In these cases, randomizing the order 

of training images has no effect on classification results. To produce variation for these 

conditions, we generated additional test images that were randomized within the parameters 

specified above (with identical position ranges, fin angles, fin lengths, etc). 

 

Figure 3-3 Representative sample of images categorized as LONG or SHORT. The Cross 

fin set (Top row) was used for training. The Control CTL set (Middle row) and Illusory ML set were 

both used for testing. Images are grouped into those that were jittered both horizontally and vertically 

(Left group) and those that were jittered only vertically (Right group). 

 

3.3.3 Procedure: Learning, parameterization, illusion classification 

Our method, established in Zeman et al. (2013), was carried out in three stages: 

1. Training. Given a set of training images, a fixed-size network adjusted its internal 

weights during the learning process. In HMAX, both supervised learning and 

unsupervised learning are used. Unsupervised learning is first used to extract the most 
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FIGURE 3 | Representative sample of images categorized as LONG or
SHORT. The Cross fin set (Top row) was used for training. The Control
CTL set (Middle row) and Illusory ML set were both used for testing.

Images are grouped into those that were jittered both horizontally and
vertically (Left group) and those that were jittered only vertically (Right
group).

3. RESULTS
3.1. EXPERIMENT I: CLASSIFICATION OF ML IMAGES AFTER EACH

LEVEL OF HMAX
The aim of this experiment was to assess how simple and complex
cell operations contribute toward bringing about the MLI. To
this end, we examined the inner workings of HMAX, looking at
classification performance for illusory images at each level of the
architecture. We used a linear classifier to perform classification
after each subsequent layer of HMAX, (which included process-
ing of all previous layers required to reach that stage). Therefore,
we ran classification on the Input only, on S1 (after information
arrived from Input), on C1 (after information traversed through
Input and S1 layers) and so on.

We first tested classification performance on our control
images, which exceeded 85% when the size of the S2 layer was
1000 nodes. Using this network configuration, we tested classifi-
cation on 20 and 40◦ ML images at the C2 level. We then tested
classification at each layer of HMAX using the same illusory set.

When plotted in terms of the percentage of stimuli classified
as “long” as a function of the difference in line length (top–
bottom) for each separate data set (i.e., control images, illusory
images with 20◦ fins and with 40◦ fins), we observed a sigmoidal
psychometric function, characteristic of human performance in

equivalent psychophysical tasks. The data were characterized by
a cumulative Gaussian, with the parameters of the best-fitting
function determined using a least-squares procedure. Figure 4
illustrates an example data set. When Gaussian curves did not
fit significantly better than a horizontal line at 50% (chance
responding) in an extra sum of squares F-test, the results were dis-
carded (2 runs out of a total of 52). This allowed us to determine
the Point of Subjective Equality (PSE) the line length difference
for which stimuli were equally likely to be classified as long or
short (50%), represented by the mean of the cumulative Gaussian.
Here, PSEs are taken as a measure of accuracy, representing the
magnitude of the Müller-Lyer Illusion manifested in the model.
We also established the Just Noticeable Difference (JND) for each
data set. The JND represents perceptual precision—the level of
certainty of judgments for a stimulus type, and is indicated by the
semi-interquartile difference of the Gaussian curve (the standard
deviation multiplied by 0.6745). A higher JND represents greater
uncertainty, and hence lower precision.

As can be seen in our results (see Figure 5A), the model pro-
duces a pattern of PSEs for illusory images consistent with human
bias. We see a larger bias for more acute angles (20◦) vs. less acute
angles (40◦), a pattern that is also consistent with human per-
ception. This constitutes a replication of our previous findings

Frontiers in Computational Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 112 | 5



104 
 

informative features at the S2 layer (features at the S1 and C1 levels are fixed). 

Labeled data is then presented to the network to carry out the supervised learning 

phase, which adjusts weights within the network.   

2. Test Phase 1: Parameterization. Using the CTL set, we ensured that the classifier was 

able to distinguish long from short images at an acceptable level of classification 

performance (above 85% correct), before testing with illusory stimuli. If performance 

fell below this level, we increased the size of the network and retrained (step 1). As 

shown in Figure 2-4, taken from Zeman et al. (2013), performance converges around 

85-90% with a relatively small training image set (500 images for both V and HV 

conditions).   

3. Test Phase 2: Illusion classification. Using the ML set, we established the 

discrimination thresholds and the magnitude of the illusion that manifested in the 

model. 

3.4 Results  

3.4.1 Experiment I: Classification of ML images after each level of HMAX 

The aim of this experiment was to assess how simple and complex cell operations contribute 

toward bringing about the MLI. To this end, we examined the inner workings of HMAX, 

looking at classification performance for illusory images at each level of the architecture. We 

used a linear classifier to perform classification after each subsequent layer of HMAX, (which 

included processing of all previous layers required to reach that stage). Therefore, we ran 

classification on the Input only, on S1 (after information arrived from Input), on C1 (after 

information traversed through Input and S1 layers) and so on. 

We first tested classification performance on our control images, which exceeded 85% when 

the size of the S2 layer was 1000 nodes. We acknowledge the HV condition would represent 

less learning than the V condition, given the same number of training images. We aimed to 
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keep the number of S2 nodes as well as the number of training images consistent across all 

conditions in order to make comparisons across these conditions.  Using this network 

configuration, we tested classification on 20 and 40◦ ML images at the C2 level. We then 

tested classification at each layer of HMAX using the same illusory set. 

 

Figure 3-4 Example data sets from (A) CTL and (B) ML (40◦) conditions. The best fitting 

curve (blue) allows derivation of the point of subjective equality (PSE) where classification is 

at 50%, and the just noticeable difference (JND), corresponding to the semi-interquartile 

difference. 
 

When plotted in terms of the percentage of stimuli classified as “long” as a function of the 

difference in line length (top - bottom) for each separate data set (i.e., control images, illusory 

images with 20◦ fins and with 40◦ fins), we observed a sigmoidal psychometric function, 

characteristic of human performance in equivalent psychophysical tasks. The data were 

characterized by a cumulative Gaussian, with the parameters of the best fitting function 

determined using a least-squares procedure. Figure 3-4 illustrates an example data set. When 

Gaussian curves did not fit significantly better than a horizontal line at 50% (chance 

responding) in an extra sum of squares F-test, the results were discarded (2 runs out of a total 

of 52). This allowed us to determine the Point of Subjective Equality (PSE) the line length 

difference for which stimuli were equally likely to be classified as long or short (50%), 
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FIGURE 4 | Example data sets from (A) CTL and (B) ML (40◦) conditions. The best fitting curve (blue) allows derivation of the point of subjective equality
(PSE) where classification is at 50%, and the just noticeable difference (JND), corresponding to the semi-interquartile difference.

FIGURE 5 | Experiment I results as a function of the HMAX layer for
images with 20◦ and 40◦ fins. Error bars represent ± 1 s.e.m. across
multiple runs. (A) Accuracy (PSEs). (B) Precision (JNDs).

(Zeman et al., 2013) using a linear classifier, as opposed to a sup-
port vector machine (SVM), confirming that these findings are
robust to the specific method of classification. These two trends
are observable not only at the final C2 layer but at all levels of the
architecture.

We observe that the illusion is present at the input level, sug-
gesting that underlying statistical information may be present in
our training images, despite careful design to remove bounding
box cues and low spatial frequency information. The influence
of image-source statistics on the Müller-Lyer illusion has already
been studied using real-world environmental images and an input
layer bias is to be expected (Howe and Purves, 2005). Because the
aim of our study is to explore the Müller-Lyer within a biolog-
ically plausible model of the visual ventral stream, we are more
interested in how the network would process the input. Our novel
contribution, therefore, is to focus on how such information is
transformed in terms of changes in accuracy and precision layer
to layer as we traverse the cortical hierarchy within the HMAX
network.

Observing the PSE for each HMAX layer after a linear classifier
is applied, this experiment demonstrates three key findings:

1. Running a linear classifier on the raw images revealed a bias at
the input level that would represent statistical influences such
as those proposed by Howe and Purves (2005). However, each
layer of the HMAX architecture counteracts this bias produc-
ing a reduction in PSE magnitude after every S and C layer is
traversed, when compared to the input layer.

2. In the majority of cases (87.5% of the time), illusory bias and
uncertainty is reduced after complex cell operations have been
applied. A reduction in uncertainty and bias can be seen when
comparing the PSE and JND for S1 vs. C1 layers, for both 20
and 40◦ fin angles in the illusion set. Going from S2 to C2, PSE
is reduced for 40◦ angles but not for 20◦ angles in the ML set,
whereas JND is reduced for all cases.

3. When simple cell operations follow complex, illusory bias and
uncertainty is increased. At the S2 layer, we see an increase in
PSE and in JND for both 20◦ and 40◦ ML images.

The observations concerning accuracy data are echoed for pre-
cision. In Figure 5B, we see a higher JND (lower precision) for
images with more acute fin angles at all levels of HMAX archi-
tecture. Looking at each layer of the architecture, we see lower
JNDs (higher precision) at each level of HMAX compared to the
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represented by the mean of the cumulative Gaussian. Here, PSEs are taken as a measure of 

accuracy, representing the magnitude of the Müller-Lyer Illusion manifested in the model. We 

also established the Just Noticeable Difference (JND) for each data set. The JND represents 

perceptual precision—the level of certainty of judgments for a stimulus type, and is indicated 

by the semi-interquartile difference of the Gaussian curve (the standard deviation multiplied 

by 0.6745). A higher JND represents greater uncertainty, and hence lower precision. 

As can be seen in our results (see Figure 3-5A), the model produces a pattern of PSEs for 

illusory images consistent with human bias. We see a larger bias for more acute angles (20◦) 

vs. less acute angles (40◦), a pattern that is also consistent with human perception. This 

constitutes a replication of our previous findings (Zeman et al., 2013) using a linear classifier, 

as opposed to a support vector machine (SVM), confirming that these findings are robust to 

the specific method of classification. These two trends are observable not only at the final C2 

layer but at all levels of the architecture. 

We observe that the illusion is present at the input level, suggesting that underlying statistical 

information may be present in our training images, despite careful design to remove bounding 

box cues and low spatial frequency information. The influence of image-source statistics on 

the Müller-Lyer illusion has already been studied using real world environmental images and 

an input layer bias is to be expected (Howe and Purves, 2005). Because the aim of our study 

is to explore the Müller-Lyer within a biologically plausible model of the visual ventral 

stream, we are more interested in how the network would process the input. Our novel 

contribution, therefore, is to focus on how such information is transformed in terms of 

changes in accuracy and precision layer to layer as we traverse the cortical hierarchy within 

the HMAX network. 
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Figure 3-5 Experiment I results as a function of the HMAX layer for images with 20◦ 

and 40◦ fins. Error bars represent ± 1 s.e.m. across multiple runs. (A) Accuracy (PSEs). 
(B) Precision (JNDs). 
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FIGURE 4 | Example data sets from (A) CTL and (B) ML (40◦) conditions. The best fitting curve (blue) allows derivation of the point of subjective equality
(PSE) where classification is at 50%, and the just noticeable difference (JND), corresponding to the semi-interquartile difference.

FIGURE 5 | Experiment I results as a function of the HMAX layer for
images with 20◦ and 40◦ fins. Error bars represent ± 1 s.e.m. across
multiple runs. (A) Accuracy (PSEs). (B) Precision (JNDs).

(Zeman et al., 2013) using a linear classifier, as opposed to a sup-
port vector machine (SVM), confirming that these findings are
robust to the specific method of classification. These two trends
are observable not only at the final C2 layer but at all levels of the
architecture.

We observe that the illusion is present at the input level, sug-
gesting that underlying statistical information may be present in
our training images, despite careful design to remove bounding
box cues and low spatial frequency information. The influence
of image-source statistics on the Müller-Lyer illusion has already
been studied using real-world environmental images and an input
layer bias is to be expected (Howe and Purves, 2005). Because the
aim of our study is to explore the Müller-Lyer within a biolog-
ically plausible model of the visual ventral stream, we are more
interested in how the network would process the input. Our novel
contribution, therefore, is to focus on how such information is
transformed in terms of changes in accuracy and precision layer
to layer as we traverse the cortical hierarchy within the HMAX
network.

Observing the PSE for each HMAX layer after a linear classifier
is applied, this experiment demonstrates three key findings:

1. Running a linear classifier on the raw images revealed a bias at
the input level that would represent statistical influences such
as those proposed by Howe and Purves (2005). However, each
layer of the HMAX architecture counteracts this bias produc-
ing a reduction in PSE magnitude after every S and C layer is
traversed, when compared to the input layer.

2. In the majority of cases (87.5% of the time), illusory bias and
uncertainty is reduced after complex cell operations have been
applied. A reduction in uncertainty and bias can be seen when
comparing the PSE and JND for S1 vs. C1 layers, for both 20
and 40◦ fin angles in the illusion set. Going from S2 to C2, PSE
is reduced for 40◦ angles but not for 20◦ angles in the ML set,
whereas JND is reduced for all cases.

3. When simple cell operations follow complex, illusory bias and
uncertainty is increased. At the S2 layer, we see an increase in
PSE and in JND for both 20◦ and 40◦ ML images.

The observations concerning accuracy data are echoed for pre-
cision. In Figure 5B, we see a higher JND (lower precision) for
images with more acute fin angles at all levels of HMAX archi-
tecture. Looking at each layer of the architecture, we see lower
JNDs (higher precision) at each level of HMAX compared to the
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Observing the PSE for each HMAX layer after a linear classifier is applied, this experiment 

demonstrates three key findings: 

1. Running a linear classifier on the raw images revealed a bias at the input level that 

would represent statistical influences such as those proposed by Howe and Purves 

(2005). However, each layer of the HMAX architecture counteracts this bias 

producing a reduction in PSE magnitude after every S and C layer is traversed, when 

compared to the input layer.  

2. In the majority of cases (87.5% of the time), illusory bias and uncertainty is reduced 

after complex cell operations have been applied. A reduction in uncertainty and bias 

can be seen when comparing the PSE and JND for S1 vs. C1 layers, for both 20 and 

40◦ fin angles in the illusion set. Going from S2 to C2, PSE is reduced for 40◦ angles 

but not for 20◦ angles in the ML set, whereas JND is reduced for all cases.  

3. When simple cell operations follow complex, illusory bias and uncertainty is 

increased. At the S2 layer, we see an increase in PSE and in JND for both 20◦ and 40◦ 

ML images. 

The observations concerning accuracy data are echoed for precision. In Figure 3-5B, we see a 

higher JND (lower precision) for images with more acute fin angles at all levels of HMAX 

architecture. Looking at each layer of the architecture, we see lower JNDs (higher precision) 

at each level of HMAX compared to the input alone. We also observe higher precision 

(smaller JNDs) following processing by complex cells, but lower precision when the output 

from these layers is passed through a simple cell layer. In the case of results for precision, 

these observations held without exception. 

Comparing these results directly to human data, Restle & Decker (1977) found that 20 degree 

angle fins would create an illusory bias of 26% and 40 degree angle fins would create a bias 
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of 23%. For our lines of 120 to 240 pixels, this would create an average PSE of 46.8 pixels for 

20 degree fins and a PSE of 41.4 pixels for 40 degree fins. JND results were not reported by 

Restle & Decker (1977) and so a direct comparison between human results and HMAX 

cannot be made on this measure. However, it is possible to directly compare PSE at different 

layers of the HMAX model with human results. In this case, the S1 layer provides the best 

approximation of PSE for both 20 and 40 degree fins.  

Considering the PSEs show in Figure 3-5A, an interesting observation is that ML figures with 

40 degree angles present a "U" shape in traversing from the input layer to the C2 layer. This 

differs from the overall pattern presented by 20 degree angles that show an exponential shape 

when going from layer to layer.  The main discriminating factor between the shapes of these 

20 and 40 degree results is at the final C2 layer, where the PSE becomes larger in magnitude 

when going from S2 to C2 for 20 degree fins, yet decreases in magnitude for 40 degree fins. 

This demonstrates the influence of complex cell operations in reducing bias for 40 degree ML 

figures but not for 20 degree figures.  

The contrast between results following processing by simple cell and complex cell layers 

encourages examination of the principal differences between the operations performed by 

these cells. The major distinction between S-layer and C-layer operations concerns the 

response to variance in the image. Unlike simple cells, whose outputs are susceptible to image 

variations such as fluctuations in the locations of features, complex cells’ filtering properties 

allow them to respond similarly to stimuli despite considerable positional variance. When 

initially designing the training stimuli for HMAX, we wanted the system to build higher-level 

representations of short and long independent of line position, exact line length and of 

features appended to the shaft ends. This would require an engagement of complex cell 

functionality and less reliance on simple cell properties. To this end, we varied these 

parameters randomly in a controlled fashion to reduce reliance on trivial image details. If one 
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of our training parameters were to be restricted, the architecture would be less able to build 

such robust concepts of short and long. Given that complex cells are designed to pool 

information across simple cells with similar response properties and fire regardless of small 

changes in the afferent information, decreasing the variance in one of our training parameters 

would underutilize C cell properties and the short and long concepts within HMAX would 

become less flexible. This is likely to reduce the overall categorization performance of the 

computational model. More specifically, we hypothesize that restricting positional jitter to 

only one dimension would decrease accuracy and precision with which HMAX categorizes 

Müller-Lyer images. If this hypothesis holds true, we would demonstrate that greater 

positional variance reduces illusory bias and uncertainty. To seek further support for this 

proposition, we remove horizontal positional jitter from all stimuli in our second experiment. 

3.4.2 Experiment II: HMAX classification of ML images with reduced variance 

 

In our previous experiment, we observed a reduction in the level of bias after complex cell 

operations and hypothesized that introducing greater variance in the input would further 

reduce bias levels. To test this, we measured classification performance for HMAX layer C2 

under two conditions: (1) Using our default horizontal and vertical jitter (HV) and (2) Under 

conditions of decreased positional jitter (V). We reduced the positional jitter in our training 

and test images from two- dimensional jitter in both the horizontal and vertical dimensions to 

one-dimensional, vertical jitter. While the top and bottom lines and their attached fins in our 

training and test sets remained independently jittered vertically (between 0 and 60 pixels), we 

removed all horizontal jitter, instead centering each stimulus. The vertical position of the top 

line was randomized between 48 and 108 pixels from the top of the image while the bottom 

line’s vertical position was randomized between 148 and 208 pixels. We thus maintained a 

maximal 60 pixel jitter difference per line while limiting jitter to only one dimension. 
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Figure 3-6 Experiment II results as a function of jitter type for control images, and 

Müller-Lyer images with 20◦ and 40◦ fins. (A) Accuracy (PSEs). (B) Precision (JNDs). 
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input alone. We also observe higher precision (smaller JNDs) fol-
lowing processing by complex cells, but lower precision when the
output from these layers is passed through a simple cell layer. In
the case of results for precision, these observations held without
exception.

The contrast between results following processing by sim-
ple cell and complex cell layers encourages examination of the
principal differences between the operations performed by these
cells. The major distinction between S-layer and C-layer oper-
ations concerns the response to variance in the image. Unlike
simple cells, whose outputs are susceptible to image variations
such as fluctuations in the locations of features, complex cells’
filtering properties allow them to respond similarly to stimuli
despite considerable positional variance. When initially design-
ing the training stimuli for HMAX, we wanted the system to
build higher-level representations of short and long indepen-
dent of line position, exact line length and of features appended
to the shaft ends. This would require an engagement of com-
plex cell functionality and less reliance on simple cell properties.
To this end, we varied these parameters randomly in a con-
trolled fashion to reduce reliance on trivial image details. If
one of our training parameters were to be restricted, the archi-
tecture would be less able to build such robust concepts of
short and long. Given that complex cells are designed to pool
information across simple cells with similar response properties
and fire regardless of small changes in the afferent informa-
tion, decreasing the variance in one of our training param-
eters would underutilize C cell properties and the short and
long concepts within HMAX would become less flexible. This
is likely to reduce the overall categorization performance of
the computational model. More specifically, we hypothesize that
restricting positional jitter to only one dimension would decrease
accuracy and precision with which HMAX categorizes Müller-
Lyer images. If this hypothesis holds true, we would demon-
strate that greater positional variance reduces illusory bias and
uncertainty. To seek further support for this proposition, we
remove horizontal positional jitter from all stimuli in our second
experiment.

3.2. EXPERIMENT II: HMAX CLASSIFICATION OF ML IMAGES WITH
REDUCED VARIANCE

In our previous experiment, we observed a reduction in the
level of bias after complex cell operations and hypothesized
that introducing greater variance in the input would further
reduce bias levels. To test this, we measured classification per-
formance for HMAX layer C2 under two conditions: (1) Using
our default horizontal and vertical jitter (HV) and (2) Under
conditions of decreased positional jitter (V). We reduced the
positional jitter in our training and test images from two-
dimensional jitter in both the horizontal and vertical dimen-
sions to one-dimensional, vertical jitter. While the top and
bottom lines and their attached fins in our training and test
sets remained independently jittered vertically (between 0 and
60 pixels), we removed all horizontal jitter, instead center-
ing each stimulus. The vertical position of the top line was
randomized between 48 and 108 pixels from the top of the
image while the bottom line’s vertical position was randomized

between 148 and 208 pixels. We thus maintained a maximal 60
pixel jitter difference per line while limiting jitter to only one
dimension.

In an initial parameterization stage, we first tested perfor-
mance using the CTL set, and found an overall classification score
of 91.5% with an S2 size of 1000 nodes. The results of control
and illusion image classification for our default jitter condition
and for reduced positional jitter is shown in Figure 6. In terms
of accuracy measurements (Figure 6A), it can be seen that for
ML images PSEs are more extreme for V jitter only, compared
to HV jitter. These results provide support for our hypothesis,
demonstrating an increase in the magnitude of the Müller-Lyer
effect for both 20 and 40◦ illusory conditions when reducing posi-
tional jitter, and hence image variance. As in before, the pattern of
results for accuracy is echoed in terms of precision measurements
(Figure 6B). Following the trend from our previous experiment,
we see lower JND values for more obtuse angles compared to
more acute angles. Comparing JND results for HV jitter with
those for V jitter, we see that the classifier has higher precision
when distinguishing short from long lines in the HV condition.
In summary, decreasing the amount of positional variance in our
stimuli increases bias and reduces the level of certainty in making
decisions.

FIGURE 6 | Experiment II results as a function of jitter type for control
images, and Müller-Lyer images with 20◦ and 40◦ fins. (A) Accuracy
(PSEs). (B) Precision (JNDs).
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In an initial parameterization stage, we first tested performance using the CTL set, and found 

an overall classification score of 91.5% with an S2 size of 1000 nodes. The results of control 

and illusion image classification for our default jitter condition and for reduced positional 

jitter is shown in Figure 3-6. In terms of accuracy measurements (Figure 3-6A), it can be seen 

that for ML images PSEs are more extreme for V jitter only, compared to HV jitter. These 

results provide support for our hypothesis, demonstrating an increase in the magnitude of the 

Müller-Lyer effect for both 20 and 40◦ illusory conditions when reducing positional jitter, and 

hence image variance. The pattern of results for accuracy is echoed in terms of precision 

measurements (Figure 3-6B). Following the trend from our previous experiment, we see 

lower JND values for more obtuse angles compared to more acute angles. Comparing JND 

results for HV jitter with those for V jitter, we see that the classifier has higher precision when 

distinguishing short from long lines in the HV condition. In summary, decreasing the amount 

of positional variance in our stimuli increases bias and reduces the level of certainty in 

making decisions. 

3.5 Discussion 

 

Our aim for this study was to investigate the conditions under which the Müller-Lyer illusion 

manifests in HMAX and the factors that could influence the magnitude of the effect. Our 

primary motivation was to explore how hierarchical feature representation within HMAX 

affects classification performance. We ran two experiments performing binary image 

classification using HMAX. Images contained two horizontal lines that were jittered 

independently. Various configurations of fins were appended to the line shafts to create 

separate training and test images. Our first experiment compared the effects of operations 

performed by simple vs. complex cells by applying a linear classifier after each layer of 

HMAX when distinguishing long from short MLI images. Our second experiment examined 



113 
 
HMAX classification of MLI images with decreased positional jitter. 

The main finding from our first experiment is that the addition of any simple or complex cell 

layers reduces bias, compared to classification directly made on the input images. Illusory 

bias changes from layer to layer within a simple-complex cell architecture, with increases in 

MLI magnitude as information passes through simple layers. In most cases, the effect 

decreases as information passes through complex layers. The pattern of results for accuracy is 

replicated when measurements of precision are considered. All levels of HMAX show 

improved precision compared to classified input images, with further JND reductions caused 

by complex cell layers, and increases caused by simple cell layers. Proposing that the C 

layers’ property of invariant responding may underlie their ability to increase accuracy and 

precision, we hypothesized that decreasing variance in the input images and retraining the 

network would increase the MLI. We chose to decrease the positional variance by removing 

horizontal jitter and including only vertical jitter for the stimuli in our second experiment. 

Consistent with our hypothesis, experiment 2 showed an increase in illusion magnitude for 

both 20 and 40 degree angles. 

In this paper and in our previous study, we focused solely on the ML illusion in its classical 

four-wing form. It would also be possible to study other variants of the Müller-Lyer and other 

illusory figures to test more generally for the susceptibility of hierarchical artificial neural 

networks. Some variants of the Müller-Lyer to be tested could include changing the fins to 

circles (the “dumbbell” version) or ovals (the “spectacle” version) (Parker and Newbigging, 

1963). Other monocular line length or distance judgment illusions occurring within the visual 

ventral stream may also manifest in similar hierarchical architectures, for example, the Oppel-

Kundt illusion (Oppel, 1854/1855; Kundt, 1863). 

Some illusions are moderated by the angle at which the stimulus is presented (de Lafuente 
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and Ruiz, 2004). This raises the question whether illusory bias and uncertainty changes in 

classifying Müller-Lyer images that are presented diagonally, rotated by a number degrees to 

the left or to the right. Simple cells in HMAX consist of linear oriented filters, and are present 

in multiple orientations. The max pooling operations combine input from these and provide an 

output that is invariant to rotation. As a result, we would predict no difference in results when 

processing versions of the Müller-Lyer illusion in HMAX rotated at any arbitrary angle. This 

prediction is also consistent with human studies. While a number of illusions demonstrate an 

increase in magnitude when presented in a tilted condition, there is no difference in magnitude 

for the MLI (Prinzmetal and Beck, 2001). 

In our last study, we recruited a previous version of HMAX known as FHLib, a Multi-scale 

Feature Hierarchy Library (Mutch and Lowe, 2008). In the current study, a more recent, 

GPU-based version of HMAX, known as CNS: Cortical Network Simulator (Mutch et al., 

2010) was used. The main difference between these architectures was a linear classifier 

replacing the SVM in the final layer of the more recent code. The network setup between 

architectures was identical: one image layer followed by four layers of alternating S and C 

layers. Both had the same levels of inhibition (50% of cells in S1 and C1). The image layer 

contained 10 scales, each level 21/4 smaller than the previous. Compared to our previous 

study, we were able to replicate similar levels of bias despite a change in the classifier, 

demonstrating that our result is robust and dependent upon properties of the HMAX 

hierarchical architecture, rather than the small differences between the implementation of 

these two related models. 

Reflecting upon the implication of our results for other models, we would predict that those 

that have a similar hierarchical architecture would exhibit similar trends. That is, comparable 

networks would demonstrate increased bias with decreased precision when categorizing MLI 

images with less variance. Considering models that only contain filtering operations (akin to 
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layers of simple cells) we would observe an illusory effect that may also be exacerbated 

compared to those with more complex operations, with low accuracy and precision. Examples 

of would include the model of Bertulis and Bulatov (2001). 

The reduction of bias in computer vision systems has significant ramifications for applications 

such as automated driving, flight control and landing, target detection and camera 

surveillance. Correct judgment of distances and object dimensions in these systems could 

affect target accuracy and reduce the potential for crashes and errors. Our hypothesis that 

increasing positional variance in the stimuli would reduce the magnitude of illusory bias 

could be extended to include other forms of variance, such as image rotation, articulation or 

deformation, hence examining the generality of this proposal. Furthermore, it would be 

informative to test the generality of the results presented in this study in other computational 

models. If a general effect could be confirmed, then we would advise the implementation of 

many forms of input variance during training to improve their judgment capabilities, 

providing more accurate and precise information. 

Our work not only has implications for the field of computer science, but also for psychology. 

Computational models allow manipulations of parameters that are impossible or impracticable 

to perform in human subjects, such as isolating the contributions of different neural structures 

to the effect. Artificial architectures allow us to make predictions about overall human 

performance as well as how performance changes from layer to layer within the visual 

system. Considering that this model not only provides an overall system performance (C2 

output), but also supplies information at multiple levels of the architecture that correspond 

approximately to identifiable neural substrates, it may be possible to test the model’s 

predictions with neuroimaging data. Using functional magnetic resonance imaging (fMRI), 

we could obtain blood-oxygen-level dependent (BOLD) signals at different levels of the 

visual cortices of observers viewing the MLI compared to a control condition (using a similar 
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method to that described by Weidner and Fink, 2007). Then by applying a classifier to these 

signals, we could map this information to changes in model bias and quantify how well the 

model matches human brain data. This forms a possible direction for future research. 
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An exponential filter model predicts lightness illusions 
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Abstract 

 

Lightness, or perceived reflectance of a surface, is influenced by surrounding context. This is 

demonstrated by the Simultaneous Contrast Illusion (SCI), where a grey patch is perceived 

lighter against a black background and vice versa. Conversely, assimilation is where the 

lightness of the target patch moves toward that of the bounding areas and can be demonstrated 

in Whites Effect. Blakeslee and McCourt (1999) introduced an oriented difference-of-

Gaussian (ODOG) model that is able to account for both contrast and assimilation in a 

number of lightness illusions and that has been subsequently improved using localized 

normalization techniques. We introduce a model inspired by image statistics that is based on a 

family of exponential filters, with kernels spanning across multiple sizes and shapes. We 

include an optional second stage of normalization based on contrast gain control. Our model 

was tested on a well-known set of lightness illusions that have previously been used to 

evaluate ODOG and its variants, and model lightness values were compared with typical 

human data. We investigate whether predictive success depends on filters of a particular size 

or shape and whether pooling information across filters can improve performance. The best 

single filter correctly predicted the direction of lightness effects for 21 out of 27 illusions. 

Combining two filters together increased the best performance to 23, with asymptotic 

performance at 24 for an arbitrarily large combination of filter outputs. While normalization 

improved prediction magnitudes, it only slightly improved overall scores in direction 

predictions. The prediction performance of 24 out of 27 illusions equals that of the best 

performing ODOG variant, with greater parsimony. Our model shows that V1-style 

orientation-selectivity is not necessary to account for lightness illusions and that a low-level 

model based on image statistics is able to account for a wide range of both contrast and 

assimilation effects.  
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4.1 Introduction 

Lightness is the perceived reflectance of a surface, which can vary greatly according to 

surrounding context, as demonstrated by lightness illusions (see Kingdom (2011) for a recent 

review). One clear and well-known example is the Simultaneous Contrast Illusion (SCI), 

where a grey target patch is perceived as lighter when surrounded by a black background and 

darker when surrounded by a white background (Chevreul, 1839) (Figure 4-1 left). The SCI 

demonstrates the contrast phenomenon, where lightness shifts away from surrounding 

luminance values, luminance being the amount of light that reaches the eye. Under other 

circumstances, lightness can shift towards the luminance values of bordering areas – a 

phenomenon known as assimilation1. This is effectively demonstrated by a version of White’s 

Illusion (White, 1979), where the test patches are not as wide as they are tall (Figure 4-1 

right).  

Theories that aim to explain lightness illusions can be broadly categorized into low-level and 

higher-level accounts. Higher-level theories argue that scene interpretation is necessary to 

account for lightness illusions, where cortical processing of surface curvature, depth and 

transparency are known to influence perceived reflectance (Knill and Kersten, 1991). For 

instance, Schirillo et al. (1990) demonstrated that lightness perception is dependent upon 

depth cues. Given that depth perception is thought to be a cortical function, higher-level areas 

must be recruited when perceiving reflectance. In 1999, Gilchrist et al. (1999) established the 

Anchoring Theory of lightness, where perceived reflectance of a patch is “anchored” to the 

highest luminance value within the retinal image (global information) and is also “anchored” 

to luminance values in surface groups that share commonalities such as being situated within 

the same depth plane (local information). Another notable high-level theory is Anderson 

                                                

1 In some cases, target patches have equal bordering white and black areas, making it difficult to distinguish 
whether a contrast or assimilation effect is predominantly present. 



    124 
 
(1997)’s Scission Theory, based upon the principle that a visual scene is split into different 

causal layers of reflectance, transparency and illumination (the amount of light incident on a 

surface), to determine the surface properties of a homogenous area. While these high-level 

theories are able to offer consistent explanations for a variety of complex lightness 

phenomena, our aim in this paper is to quantify the performance of low-level models whose 

computations do not require higher-level scene interpretation. In the interests of providing a 

succinct quantitative account of a range of lightness phenomena, we apply Occam's Razor, 

emphasizing the capability of low-level theories to deliver improved modeling precision with 

greater parsimony.  

Low-level theories concentrate on filtering operations and statistical image properties as the 

key explanation behind many lightness illusions. The main principle underlying low-level 

theories is that of image reconstruction: that lightness is inferred by reconstructing the most 

probable source image using filtering operations (Blakeslee and McCourt, 1999; Dakin and 

Bex, 2003). The filters concerned are considered to reside in early stages of the visual 

hierarchy such as the retina, LGN and/or V1. Blakeslee and McCourt (1997) designed a low-

level model using a multi-scale array of two-dimensional Difference of Gaussian filters 

(DOG) with responses that were pooled and normalized. The isotropic filters in this model 

approximated retinal ganglion or LGN single cell function. The DOG model was able to 

account for the contrast effect shown in the SCI but not the assimilation observed in White’s 

Effect. To account for assimilation, Blakeslee and McCourt (1999) extended this model to 

include anisotropic filters (oriented difference of Gaussians, or ODOG filters) that were 

pooled non-linearly. These orientation selective filters best approximate V1 functions, shifting 

the focus of the model from pre-cortical to cortical operations to account for a larger set of 

lightness illusions. Shortly after this, Dakin and Bex (2003) introduced an isotropic filter 

model that reweighted filter outputs using spatial frequency (SF) properties found in image 
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statistics. Using a series of center-surround, Laplacian of Gaussian filters, they demonstrated 

that low SF structure is an essential ingredient of two well-known lightness illusions: White’s 

Effect and the Craik–Cornsweet–O’Brien Effect (O’Brien, 1958; Craik, 1966; Cornsweet, 

1970). Dakin and Bex (2003) demonstrated that orientation selective filters were not required 

to successfully model assimilation effects, and highlighted the importance of weighting or 

normalization schemes within these low-level models.  

 

Figure 4-1 Simultaneous Contrast versus White's Effect. Albedo of grey target patches in 

Simultaneous Contrast shift away from background, demonstrating contrast. Targets in 

White's Effect shift towards surrounding context, demonstrating assimilation. Increasing 

spatial frequency increases the effect in both cases. 

 

Since Dakin and Bex’s paper, focus on statistical image properties (Corney and Lotto, 2007) 

and on post-filtering operations that weight the relative filter outputs (Robinson et al., 2007) 

has intensified in the context of low-level lightness models. Corney and Lotto (2007) 

demonstrated contrast and assimilation effects using an approach inspired by image statistics, 

training an artificial neural network with virtual scenes that possess naturalistic structure. In 
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Figure 1. Simultaneous Contrast versus White’s Effect. Albedo of grey target patches in Simultaneous
Contrast shift away from background, demonstrating contrast. Targets in White’s Effect shift towards
surrounding context, demonstrating assimilation. Increasing spatial frequency increases the effect in both
cases.
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contrast to Dakin and Bex (2003) who made statistical relationships explicit through 

weighting operations, Corney and Lotto (2007) trained an artificial neural network to 

implicitly learn the relationships between images and their underlying statistics. In the same 

year, Robinson et al. (2007) focused on applying different normalization schemes to improve 

predictions using the ODOG model. Normalization is commonly used as a weighting scheme 

to smooth distributions and scale all values to a baseline magnitude (usually 1). Robinson et 

al. (2007) focused on applying two different normalization schemes to the ODOG model:  

local-normalization of filter outputs (LODOG) and spatial frequency-specific local 

normalization (FLODOG). In LODOG and FLODOG, parameters of the normalization 

function (such as normalization window size) were adjusted to produce different model 

predictions. Robinson et al. (2007) systematically tested ODOG, LODOG and FLODOG on a 

catalog of 28 stimuli, 27 of which are known to induce illusions of contrast or assimilation in 

human observers. While ODOG was able to predict only 13 illusions in the correct direction, 

the best performing LODOG model was able to predict 18. FLODOG proved the most 

effective, correctly predicting 24 lightness illusions with an optimal parameter set. 

Here we extend the literature using an approach inspired by natural image statistics. As 

established by Dakin and Bex (2003), the underlying distribution of structural properties 

present in natural images can greatly influence lightness judgments. Natural images share 

common underlying statistics, regardless of their origin (Zhu and Mumford, 1997a,b). For 

example, contrast histograms for natural images are skewed towards lower contrasts and have 

an exponential tail (Field, 1987; Ruderman and Bialek, 1994). Basu and Su (2001) 

investigated filters that encode the distribution of contrasts over different spatial frequencies.  

They concluded that exponential distributions provide a better fit than the Gaussian kernels 

that have been used in the models described above. By employing exponential filters of 

different sizes and shapes within a computational model, we represent the profile of contrast 
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statistics present in natural images and observe how these may influence the direction and 

magnitude of a set of lightness illusions. These filters have x and y-axis symmetry, ranging 

from ridged, “peaky” distributions to flatter, more rounded distributions (illustrated in Figure 

4-2).  

The exponential filters we explore in this study are offered as another kind of inhibitory 

mechanism, since the image filtered by the exponential function is subtracted from the 

original image. As such, this model shares much in common with other filtering approaches, 

such as ODOG (Blakeslee and McCourt, 1999). Indeed, this filtering approach bears 

similarity to the extra classical surround model of Ghosh et al. (2006) and is most similar to 

the filtering approach of Shapiro and Lu (2011), with the exception of the shape of the 

surround. 

 

 

Figure 4-2 Exponential function family, taken from Basu & Su (2001) with increasing 
values of the m exponent. 
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Figure 2. Exponential function family, taken from Basu and Su (2001) with increasing values of the m
exponent.
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While the filters in ODOG (and variants) approximate the functioning of orientation-selective 

V1 cells, and while Difference or Laplacian of Gaussian filters approximate the operations of 

isotropic LGN or retinal ganglion cells, exponential filters, not unlike those forming the basis 

of our model, have been identified in H1 horizontal retinal cells (Packer and Dacey, 2002, 

2005). Our model is predominantly motivated by the computer vision literature, where 

exponential filters have been shown to be excellent edge detectors as well as resilient to noise 

(Zhu and Mumford, 1997a). The level of biological plausibility in our model is not strongly 

emphasized, but we do identify possible neurobiological equivalents to the filters that we 

apply. Geisler (2008) illustrates responses to natural images of a sensor that has a receptive 

field profile similar to V1, where an exponential function shows a better fit over a Gaussian 

distribution. While there are parallels here in demonstrating that an exponential fit is better 

than Gaussian in terms of filter responses, the filters that we apply are not oriented V1-style 

filters. Therefore, we would not suggest any relationship between our model results and the 

involvement of cortical neurons. 

Our study differs from that of Corney and Lotto (2007) in that we make statistical 

relationships explicit through filtering and normalization operations, instead of training an 

artificial neural network to implicitly learn the relationships between images and their 

underlying statistics. Our method is similar to that of Dakin and Bex (2003), in that we both 

capitilize on the properties of image statistics to reconstruct the final image. In our method, 

we employ exponential shape filters that are based on image statistics. In Dakin and Bex 

(2003), the authors split an image into different spatial frequencies (SFs) using band-pass 

filters. The distribution of SFs was then reweighted to match that which occurs in natural 

scenes. In our model and in that of Dakin and Bex (2003), the filters are designed to extract 

the most salient features while being robust to noise (Basu and Su, 2001). In this way, both of 

our studies align with the predictive coding principle by Srinivasan et al. (1982) - that by 
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exploiting the spatial correlations of natural scenes, early visual systems are much better able 

to handle noise in the environment.   

In the current study, we set out to investigate how well an exponential model is able to predict 

human data in response to a large battery of 28 lightness illusions previously used to test 

ODOG and its derivatives (Blakeslee and McCourt, 1999, 2001, 2004; Blakeslee et al., 2005; 

Robinson et al., 2007). We apply exponential filters with a range of different shapes and sizes 

to an input image, with and without normalization of varying spatial extent. The outputs of 

this model are taken as predictions of perceived lightness both for single filters and for 

multiple-filter combinations. 

 

4.2 Material & Methods  

4.2.1 Stimuli  

A standard battery of 28 figures known to produce particular lightness effects was used as a 

stimulus set in this study (see Robinson et al., 2007). Each stimulus (with the exception of the 

Benary Cross) involves a pair of uniform, mean luminance target patches, each surrounded by 

details with the opposite contrast polarity. Stimuli are illustrated in Figure 4-3 (reproduced 

from Robinson et al., 2007). All stimuli are 512 x 512 pixels in size. Each stimulus is listed 

below in Table 1 with original sources and comparative results reported for human responses 

where available. Table 1 also includes the reported illusion direction by humans as the patch 

perceived as the lightest within the image and the corresponding classification of the 

predominant effect as contrast or assimilation.  
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Table 1 Stimuli with original sources, reproduced results (for strength comparison) and 

illusion direction reported by humans 

 

The majority of images exhibit assimilation effects, with contrast effects demonstrated by 

figures n, o, p, q, w, and x. In some cases, target patches have equal bordering white and black 

areas, making it difficult to establish whether a lightness effect should be defined as a contrast 

or assimilation effect (as in stimulus s). Stimuli y and z demonstrate opposing illusion 

directions for patches with identical bordering surrounds, presenting both contrast and 

assimilation effects simultaneously. In most cases, illusory effect directions reported in the 

original articles have been replicated in follow-up studies by Blakeslee and McCourt (used 

here and in Robinson et al. (2007) for direct strength comparisons). However, due to slight 

differences in methodology, stimuli (e) and (q) demonstrate discrepancies between the two 
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accurate predictions. Oriented filters, such as those found in area V1, are not necessary for modelling these
lightness illusions. Instead, the lightness illusions presented here may occur in areas before V1, as far back
as the retina.

2 MATERIAL & METHODS

2.1 STIMULI

Figure 3 illustrates the catalog of stimuli we test, reproduced from Robinson et al. (2007).

Table 1. Stimuli with original sources, reproduced results (for strength comparison) and illusion direction reported by humans

Figure Original Source Reproduced Results Human Contrast (C) or
Direction Assimilation (A)?

a White (1979) Blakeslee and McCourt (1999) Left A
b White (1979) Blakeslee and McCourt (1999) Left A
c Robinson et al. (2007) Top A
d Anderson (2001) Blakeslee et al. (2005) Right A
e Howe (2001) Blakeslee et al. (2005) No illusion N/A
f Clifford and Spehar (2003) Left A
g Anstis (2003) Bottom A
h Anstis (2003) Bottom A
i Anstis (2003) Bottom A
j Anstis (2003) Bottom A
k Howe (2005) Right A
l Howe (2005) Right A
m Howe (2005) Right A
n McCourt (1982) Blakeslee and McCourt (1999) Area between C

black
o Chevreul (1839) Blakeslee and McCourt (1999) Right C
p Chevreul (1839) Blakeslee and McCourt (1999) Right C
q Pessoa et al. (1998) Blakeslee and McCourt (1999) Left (Right C

in original)
r Todorovic (1997) Blakeslee and McCourt (1999) Right A
s Todorovic (1997) Blakeslee and McCourt (1999) Right N/A
t Pessoa et al. (1998) Blakeslee and McCourt (1999) Right A
u De Valois and De Valois (1988) Blakeslee and McCourt (2004) Right A
v De Valois and De Valois (1988) Blakeslee and McCourt (2004) Right A
w De Valois and De Valois (1988) Blakeslee and McCourt (2004) Left C
x Adelson (1993) Blakeslee and McCourt (2001) Bottom C
y Benary (1924) Blakeslee and McCourt (2001) Left N/A
z Todorovic (1997) Blakeslee and McCourt (2001) Second in 1-2 N/A

Fourth in 3-4 N/A
aa Bindman and Chubb (2004) Left A
bb Bindman and Chubb (2004) Left A
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sets of human data. In these cases, we follow the convention of Robinson et al. (2007) to 

allow for easy comparison between their models and those described here. 

 

 

Figure 4-3 Illusions tested, replicated from Robinson et al. (2007) 
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a)# b)# c)# d)# e)#

f)# g)# h)# i)# j)#

u)#

k)# l)# m)# n)# o)#

p)# q)# r)# s)# t)#

v)# w)# x)# y)#

z)# aa)# bb)#

Figure 3. Illusions tested, replicated from Robinson et al. (2007).
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As each stimulus involves 2 (or more) uniform, mean luminance target patches, each 

surrounded by details with the opposite contrast polarity, the lightness effects observed on 

these patches are expected to be equal and opposite. Our model’s predictions regarding the 

presence of contrast or assimilation effects are made by taking mean lightness values from the 

largest rectangular patch inside the bounds of the target areas (matched for size) and 

subtracting the values for the patch that appears darker from those for the lighter. For stimulus 

n, (“grating induction”), we select rectangular areas that are 26 pixels wide to the left and 

right of center for our prediction comparison (0.4 of the spatial period of the grating), while 

maintaining the same patch height as Robinson et al. (2007). 

4.2.2 Model 

Our model consists of two-stages: 1) linear filtering using exponential functions 2) non-linear 

divisive normalization by coefficient of variation. Although the details of each stage may 

vary, this linear-nonlinear modeling method is commonly used to model physiology (Nykamp 

and Ringach, 2002; Schwartz and Simoncelli, 2001). Once the two stages of the model have 

produced lightness values at each pixel location of each target patch, we produce a prediction 

by calculating the mean difference over the target patches and applying linear scaling. Details 

of each step in the model and on calculating the comparison metric are described below. 

4.2.2.1 Filtering  

The set of exponential filters we apply are taken from Basu and Su (2001). These exponential 

filters are two dimensional in shape and possess x-symmetry, y-symmetry and symmetry with 

respect to the origin. They take the form: 
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2.2.1 Filtering The set of exponential filters we apply are taken from Basu and Su (2001). These172
exponential filters are two dimensional in shape and possess x-symmetry, y-symmetry and symmetry with173
respect to the origin. They have unit volume and take the form:174

g(x) =
1

K1
exp

�K2|x|m (1)

where K1 , K2 and m are all positive constants. The m exponent corresponds to the shape of the filter.175
The normalization or scaling factor K1 is calculated using K2 and m as follows:176

K1 = (1/K
1/m
2 )(1/m)�(1/m) (2)

where constant K2 is a function of the variance of g(x), which denotes the size of the filter. �(x) is the177
Gamma function defined as:178

�(x) =

Z 1

0
t

(x�1)
exp(�t)dt (3)

Figure 2 illustrates the variety of exponential filter shapes. When m is small, the exponential filter is179
described as having ‘high kurtosis’, showing a sharper peak with more prominent ridges. When m is large,180
the exponential filter has ‘low kurtosis’, being flatter and rounder with smoother ridges. A special case is181
formed when m = 1

2�2 , where the function becomes a Gaussian with added rotational symmetry.182

Each filter of a specific size and shape is applied to every pixel within the image. The size of the183
filter affects the information that is gleaned from an image. Smaller filters (high spatial frequencies or184
SFs) show better responsiveness but are less resilient to noise. Larger filters (low SFs) blur a lot of185
information, essentially losing information present in the images, but cope better with noise. There is186
a trade-off between selecting precise information and having greater resilience to noise, which is where187
scale selection comes in. The most appropriate filter selection finds the right compromise between these188
two factors, taking the smallest scale with the most reliable response.189

A small amount of Gaussian noise is added to the image (0.1%) before filtering. Adding noise to the190
image is to avoid divide-by-zero errors when implementing divisive normalization. We are aware of other191
approaches to avoid divide-by-zero errors, such as adding a constant to the denominator term (Cope et al.,192
2013).193

Responses are then convolved to create a filtered image of the same dimensions as the original input.194
The filtered convolved image is subtracted from the original image as the final step in processing. We195
explore a range of different filter shapes and sizes and produce a set of filtered images for every size196
and shape of filter. We use 10 filter sizes ranging from 5 pixels to 95 in increments of ten. The filter197
shapes range from 0.1 to 1.9 in increments of 0.2. Figure 4 illustrates the result of applying three example198
filters with different shape parameters to White’s Illusion. The predictive success of this particular filter199
size is well demonstrated for this particular image, regardless of filter shape. The bottom row in Figure200
4 demonstrates a close approximation to the Gaussian filter, which in this case is able to predict the201
direction and magnitude of White’s Effect. This filter differs from the DOG filters used by Blakeslee and202
McCourt (1997)’s model in two key ways. Firstly, Blakeslee and McCourt use a Difference-of-Gaussian203
(DOG) filter, rather than an approximate Gaussian pictured here. Secondly, Figure 4 demonstrates a single204
filter operation, rather than a bank of filters used by Blakeslee and McCourt (1997).205

2.2.2 Normalization (optional) After applying a specific contrast filter with shape m and size K2 to206
each pixel location in the image, we optionally normalize the filter outputs. Normalization is not only207
useful in its primary function of constraining the dynamic response range of image filters, but is also208
beneficial for generating a faithful representation of image contrast. Following Bonin et al. (2005), at209
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where K1, K2 and m are all positive constants. The m exponent corresponds to the shape of 

the filter. The normalization or scaling factor K1 is calculated using K2 and m as follows: 

 

where constant K2 is a function of the variance of g(x), which denotes the size of the filter. 

Γ(x) is the Gamma function defined as: 

 

Figure 4-2 illustrates the variety of exponential filter shapes. When m is small, the 

exponential filter is described as having “high kurtosis”, showing a sharper peak with more 

prominent ridges. When m is large the exponential filter has “low kurtosis”, being flatter and 

rounder with smoother ridges. A special case is formed when where the function 

becomes a Gaussian with added rotational symmetry. 

Each filter of a specific size and shape is applied to every pixel within the image. The size of 

the filter affects the information that is gleaned from an image. Smaller filters (high spatial 

frequencies or SFs) show better responsiveness but are less resilient to noise. Larger filters 

(low SFs) blur a lot of information, essentially losing information present in the images, but 

cope better with noise. There is a trade-off between selecting precise information and having 

greater resilience to noise, which is where scale selection comes in. The most appropriate 

filter selection finds the right compromise between these two factors, taking the smallest scale 

with the most reliable response. 

 

A small amount of Gaussian noise is added to the image (0.1%) before filtering. Adding noise 

to the image is to avoid divide-by- zero errors when implementing divisive normalization. We 
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where K2 and m are constants. The m exponent is strictly a positive number and corresponds to the
shape of the filter. The normalization or scaling factor K1 corresponds to the size of the filter, and is
calculated using K2 and m:

K1 = (1/K
1/m
2 )(1/m)�(1/m) (2)

where �(x) is the Gamma function defined as:

�(x) =

Z 1

0
exp(�t)dt (3)

A special case is formed when m = 1
2�2 , where the function becomes a Gaussian with added rotational

symmetry.

Figure 4 illustrates some example filters applied to an image of White’s Illusion. When m is small
(approximately 0.1), the exponential filter is peakier with more prominent ridges. When m is large
(approximately 3.0), the exponential filter is flatter and more Gaussian-like.

2.2.2 Normalization (optional) After applying a specific filter with shape m and size K2 to the image,
we optionally normalize this result using non-linear divisive normalization by coefficient of variation.
Carandini and Heeger (2012) describe normalization in the retina (and in other areas of the brain)
as a canonical process, required for light adaptation and for representing contrast. Bonin et al. (2005)
combine three methods of suppression (contrast saturation, size tuning and masking) into a single
parsimonious model implementing contrast gain control. Bonin et al. (2006) relate their contrast gain
control mechanism to that found in the LGN and so we apply it here as a biologically plausible method
for normalization in pre-cortical areas. The normalization approach we use is identical to that in Groen
et al. (2013).

To normalise a filtered image, we first calculate the local Coefficient of Variance that determines the
standard deviation of local contrast in the suppressive field:

c

local

=
�

local

µ

local

(4)

This is then used to calculate the neural gain control of the suppressive field, using equation (4) from
Bonin et al. (2005)):

V = V

max

g(x)

c50 + c

local

(5)

where c50 determines the strength of the suppressive field, and V

max

is the maximum response of the filter
to the image. g(x) is the filtered response defined above.

We implement normalization as an optional step here to assess whether it is necessary for producing
lightness effects. Previously, in Robinson et al. (2007), the authors found that normalization in ODOG
was crucial for achieving predictions that aligned with human results. With the un-normalized ODOG
(UNODOG) model, only 10 out of 28 illusions were predicted in the correct direction, compared with 13
out of 28 for normalized ODOG. The main focus in Robinson et al. (2007) was to achieve a normalization
function that produced the best predictive success by appropriately weighting the contributions of each
filter. In our paper, the main focus is on defining the predictive success of filtering operations that follow
efficient coding principles and that may not necessarily rely on normalization for accurate prediction.
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Table 1. Stimuli with original sources, reproduced results (for strength comparison) and illusion direction reported by humans

Figure Original Source Reproduced Results Human Perceived Illusion
Direction (lighter patch)

a White (1979) Blakeslee and McCourt (1999) Left
b White (1979) Blakeslee and McCourt (1999) Left
c Robinson et al. (2007) Top
d Anderson (2001) Blakeslee et al. (2005) Right
e Howe (2001) Blakeslee et al. (2005) No illusion
f Clifford and Spehar (2003) Left
g Anstis (2003) Bottom
h Anstis (2003) Bottom
i Anstis (2003) Bottom
j Anstis (2003) Bottom
k Howe (2005) Right
l Howe (2005) Right
m Howe (2005) Right
n McCourt (1982) Blakeslee and McCourt (1999) Area between black
o Chevreul (1839) Blakeslee and McCourt (1999) Right
p Chevreul (1839) Blakeslee and McCourt (1999) Right
q Pessoa et al. (1998) Blakeslee and McCourt (1999) Left (Right in original)
r Todorovic (1997) Blakeslee and McCourt (1999) Right
s Todorovic (1997) Blakeslee and McCourt (1999) Right
t Pessoa et al. (1998) Blakeslee and McCourt (1999) Right
u De Valois and De Valois (1988) Blakeslee and McCourt (2004) Right
v De Valois and De Valois (1988) Blakeslee and McCourt (2004) Right
w De Valois and De Valois (1988) Blakeslee and McCourt (2004) Left
x Adelson (1993) Blakeslee and McCourt (2001) Bottom
y Benary (1924) Blakeslee and McCourt (2001) Left
z Todorovic (1997) Blakeslee and McCourt (2001) Second in 1-2 comparison

Fourth in 3-4 comparison
aa Bindman and Chubb (2004) Left
bb Bindman and Chubb (2004) Left

where K2 and m are constants. The m exponent is strictly a positive number and corresponds to the
shape of the filter. The normalization or scaling factor K1 corresponds to the size of the filter, and is
calculated using K2 and m:

K1 = (1/K
1/m
2 )(1/m)�(1/m) (2)

where �(x) is the Gamma function defined as:

�(x) =

Z 1

0
t

(x�1)
exp(�t)dt (3)

A special case is formed when m = 1
2�2 , where the function becomes a Gaussian with added rotational

symmetry.
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where K2 and m are constants. The m exponent is strictly a positive number and corresponds to the
shape of the filter. The normalization or scaling factor K1 corresponds to the size of the filter, and is
calculated using K2 and m:

K1 = (1/K
1/m
2 )(1/m)�(1/m) (2)

where �(x) is the Gamma function defined as:

�(x) =

Z 1

0
exp(�t)dt (3)

A special case is formed when m = 1
2�2 , where the function becomes a Gaussian with added rotational

symmetry.

Figure 4 illustrates some example filters applied to an image of White’s Illusion. When m is small
(approximately 0.1), the exponential filter is peakier with more prominent ridges. When m is large
(approximately 3.0), the exponential filter is flatter and more Gaussian-like.

2.2.2 Normalization (optional) After applying a specific filter with shape m and size K2 to the image,
we optionally normalize this result using non-linear divisive normalization by coefficient of variation.
Carandini and Heeger (2012) describe normalization in the retina (and in other areas of the brain)
as a canonical process, required for light adaptation and for representing contrast. Bonin et al. (2005)
combine three methods of suppression (contrast saturation, size tuning and masking) into a single
parsimonious model implementing contrast gain control. Bonin et al. (2006) relate their contrast gain
control mechanism to that found in the LGN and so we apply it here as a biologically plausible method
for normalization in pre-cortical areas. The normalization approach we use is identical to that in Groen
et al. (2013).

To normalise a filtered image, we first calculate the local Coefficient of Variance that determines the
standard deviation of local contrast in the suppressive field:

c

local

=
�

local

µ

local

(4)

This is then used to calculate the neural gain control of the suppressive field, using equation (4) from
Bonin et al. (2005)):

V = V

max

g(x)

c50 + c

local

(5)

where c50 determines the strength of the suppressive field, and V

max

is the maximum response of the filter
to the image. g(x) is the filtered response defined above.

We implement normalization as an optional step here to assess whether it is necessary for producing
lightness effects. Previously, in Robinson et al. (2007), the authors found that normalization in ODOG
was crucial for achieving predictions that aligned with human results. With the un-normalized ODOG
(UNODOG) model, only 10 out of 28 illusions were predicted in the correct direction, compared with 13
out of 28 for normalized ODOG. The main focus in Robinson et al. (2007) was to achieve a normalization
function that produced the best predictive success by appropriately weighting the contributions of each
filter. In our paper, the main focus is on defining the predictive success of filtering operations that follow
efficient coding principles and that may not necessarily rely on normalization for accurate prediction.

Frontiers in Human Neuroscience 5



    134 
 
are aware of other approaches to avoid divide-by-zero errors, such as adding a constant to the 

denominator term (Cope et al., 2013). 

 

Responses are then convolved to create a filtered image of the same dimensions as the 

original input. The filtered convolved image is subtracted from the original image as the final 

step in processing. We explore a range of different filter shapes and sizes and produce a set of 

filtered images for every size and shape of filter. We use 10 filter sizes ranging from 5 pixels 

to 95 in increments of ten. The filter shapes range from 0.1 to 1.9 in increments of 0.2. Figure 

4-4 illustrates the result of applying three example filters with different shape parameters to 

White’s Illusion. . The predictive success of this particular filter size is well-demonstrated for 

this particular image, regardless of filter shape. The bottom row in Figure 4-4 demonstrates a 

close approximation to the Gaussian filter, which in this case is able to predict the direction 

and magnitude of White’s Effect. This filter differs from the DOG filters used by Blakeslee 

and McCourt (1997)’s model in two key ways. Firstly, Blakeslee and McCourt use a 

Difference- of- Gaussian (DOG) filter, rather than an approximate Gaussian pictured here. 

Secondly, Figure 4-4 demonstrates a single filter operation, rather than a bank of filters used 

by Blakeslee and McCourt (1997).   

 

4.2.2.2 Normalization (optional)  

After applying a specific contrast filter with shape m and size K2 to each pixel location in the 

image, we optionally normalize the filter outputs. Normalization is not only useful in its 

primary function of constraining the dynamic response range of image filters, but is also 

beneficial for generating a faithful representation of image contrast. Following Bonin et al. 

(2005), at each image location we divisively normalize the linear filter output by the output of 

a suppressive field, which computes the statistics of filter outputs surrounding the image 

location of interest. Bonin et al. (2005)’s normalization method, referred to as contrast gain  
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Figure 4-4 Exponential filters applied to White’s illusion, all with size K
2
= 5. The top row 

shows a filter with high kurtosis (m = 0.5), the middle row shows a medium kurtosis filter (m 

= 1.0) and the bottom row shows a low kurtosis filter (m = 2.0). From left to right, column 1 

is a top-down view of the filter shape, column 2 is the original image (of size 512 x 512 

pixels), column 3 is the same image filtered and column 4 is a cross section of greyscale 

values through row y=250 pixels (where 0 represents black and 255 represents white). The 

locations of target patches are highlighted yellow in the final column. 

 

control, is closely related to that found in the LGN and so we apply it here as a biologically 

plausible method for normalization in pre-cortical areas. In contrast to Bonin et al. (2005), 

who take the local root-mean-square contrast as the suppressive field, we divide filter 

Zeman et al. Exponential modelling of lightness illusions

Filter'to'apply'
(top-down'view)'

Original''
image'

Image'a7er'
filter'applied'

Grey-scale'values''
at'cross-sec=on'

Figure 4. Exponential filters applied to White’s illusion, all with size � = 5. The top row shows a filter
with high kurtosis (m = 0.5), the middle row shows a medium kurtosis filter (m = 1.0) and the bottom
row shows a low kurtosis filter (m = 2.0). The final column is a cross-section of greyscale values at y =
250, where 128 represents mid-grey.
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responses by the local coefficient of variation. The local coefficient of variation is inversely 

related to local Weibull statistics and as such is diagnostic of local image structure. Divisive 

normalization by the local coefficient of variation amplifies local image contrast. Similarly to 

Bonin et al. (2005), we compute normalized filter outputs using the following formula: 

 

where c
50 determines the strength of the suppressive field, V

max is the maximum response of 

the filter to the image, and g(x) is the filtered response defined above. Finally, c
local

 is the local 

coefficient of variation: 

 

c
local

  is calculated based on the mean (μ) and the size of the suppressive field (σ) that is used 

as one of the parameters in our normalization step. The σ parameter specifies the size of the 

suppressive field compared to the size of the receptive field. When σ = 1, the size of the 

suppressive field is equal to that of the receptive field.  When σ = 2, the size of the 

suppressive field is twice that of the receptive field.  

 

4.2.2.3 Analysis Metrics  

For each stimulus that we analyze, we take the resultant values (denoted as R) from the filter-

only output (step 1) or from normalized output (step 2) with either σ = 1 or σ = 2 (as 

described above, σ represents the size of the suppressive field, as a proportion of the receptive 

field). We refer to σ = 1 as short-range normalization, where the suppressive field is the same 

area as the receptive field. σ = 2 is referred to as long-range normalization, where the 

suppressive field is twice the size of the receptive field. Within each image, we compare 

Zeman et al. Exponential modelling of lightness illusions

where constant K2 is a function of the variance of g(x) and �(x) is the Gamma function defined as:

�(x) =

Z 1

0
t

(x�1)
exp(�t)dt (3)

Figure 2 illustrates the variety of exponential filter shapes. When m is small, the exponential filter is
described as having ‘high kurtosis’, showing a sharper peak with more prominent ridges. When m is large,
the exponential filter has ‘low kurtosis’, being flatter and rounder with smoother ridges. A special case is
formed when m = 1

2�2 , where the function becomes a Gaussian with added rotational symmetry.

Each filter of a specific size and shape is applied to every pixel within the image. A small amount of
Gaussian noise is added to the image (0.1%) before filtering. Responses are then convolved to create a
filtered image of the same dimensions as the original input. We explore a range of different filter shapes
and sizes and produce a set of filtered images for every size and shape of filter. We use 10 filter sizes
ranging from 5 pixels to 95 in increments of ten. The filter shapes range from 0.1 to 1.9 in increments
of 0.2. Figure 4 illustrates the result of applying three example filters with different shape parameters to
White’s Illusion.

2.2.2 Normalization (optional) After applying a specific contrast filter with shape m and size K2 to
each pixel location in the image, we optionally normalize the filter outputs. Normalization is not only
useful in its primary function of constraining the dynamic response range of image filters, but is also
beneficial for generating a faithful representation of image contrast. Following Bonin et al. (2005), at
each image location we divisively normalize the linear filter output by the output of a suppressive field,
which computes the statistics of filter outputs surrounding the image location of interest. Bonin et al.
(2005)’s normalization method, referred to as contrast gain control, is closely related to that found in the
LGN and so we apply it here as a biologically plausible method for normalization in pre-cortical areas. In
contrast to Bonin et al. (2005), who take the local root-mean-square contrast as the suppressive field, we
divide filter responses by the local coefficient of variation. The local coefficient of variation is inversely
related to local Weibull statistics and as such is diagnostic of local image structure. Divisive normalization
by the local coefficient of variation amplifies local image contrast. Similarly to Bonin et al. (2005), we
compute normalized filter outputs using the following formula:

V = V

max

g(x)

c50 + c

local

(4)

where c50 determines the strength of the suppressive field, V
max

is the maximum response of the filter
to the image, and g(x) is the filtered response defined above. Finally, c

local

is the local coefficient of
variation:

c

local

=
�

µ

(5)

c

local

is calculated based on the mean (µ) and the size of the suppressive field (�) that is used as one
of the parameters in our normalization step. The � parameter specifies the size of the suppressive field
compared to the size of the receptive field. When � = 1, the size of the suppressive field is equal to that of
the receptive field. When � = 2, the size of the suppressive field is twice that of the receptive field.

2.2.3 Analysis Metrics Metrics For each stimulus that we analyze, we take the resultant values
(denoted as R) from the filter-only output (step 1) or from normalized output (step 2) with either � = 1 or
� = 2 (as described above, � represents the size of the suppressive field, as a proportion of the receptive
field). We refer to � = 1 as short-range normalization, where the suppressive field is the same area as
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where K2 and m are constants. The m exponent is strictly a positive number and corresponds to the
shape of the filter. The normalization or scaling factor K1 corresponds to the size of the filter, and is
calculated using K2 and m:

K1 = (1/K
1/m
2 )(1/m)�(1/m) (2)

where �(x) is the Gamma function defined as:

�(x) =

Z 1

0
exp(�t)dt (3)

A special case is formed when m = 1
2�2 , where the function becomes a Gaussian with added rotational

symmetry.

Figure 4 illustrates some example filters applied to an image of White’s Illusion. When m is small
(approximately 0.1), the exponential filter is peakier with more prominent ridges. When m is large
(approximately 3.0), the exponential filter is flatter and more Gaussian-like.

2.2.2 Normalization (optional) After applying a specific filter with shape m and size K2 to the image,
we optionally normalize this result using non-linear divisive normalization by coefficient of variation.
Carandini and Heeger (2012) describe normalization in the retina (and in other areas of the brain)
as a canonical process, required for light adaptation and for representing contrast. Bonin et al. (2005)
combine three methods of suppression (contrast saturation, size tuning and masking) into a single
parsimonious model implementing contrast gain control. Bonin et al. (2006) relate their contrast gain
control mechanism to that found in the LGN and so we apply it here as a biologically plausible method
for normalization in pre-cortical areas. The normalization approach we use is identical to that in Groen
et al. (2013).

This is then used to calculate the neural gain control of the suppressive field, using equation (4) from
Bonin et al. (2005)):

V = V

max

g(x)

c50 + c

local

(4)

where c50 determines the strength of the suppressive field, and V

max

is the maximum response of the filter
to the image. g(x) is the filtered response defined above.

To normalise a filtered image, we first calculate the local Coefficient of Variance that determines the
standard deviation of local contrast in the suppressive field:

c

local

=
�

µ

(5)

We implement normalization as an optional step here to assess whether it is necessary for producing
lightness effects. Previously, in Robinson et al. (2007), the authors found that normalization in ODOG
was crucial for achieving predictions that aligned with human results. With the un-normalized ODOG
(UNODOG) model, only 10 out of 28 illusions were predicted in the correct direction, compared with 13
out of 28 for normalized ODOG. The main focus in Robinson et al. (2007) was to achieve a normalization
function that produced the best predictive success by appropriately weighting the contributions of each
filter. In our paper, the main focus is on defining the predictive success of filtering operations that follow
efficient coding principles and that may not necessarily rely on normalization for accurate prediction.
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values over the two areas that have been assigned to be target patches (see section 4.2.1). The 

lighter patch (as established in human experiments) is assigned to be patch A and the darker 

patch is assigned to be patch B. Mean values are obtained for both target patches before the 

mean of patch B is subtracted from the mean of patch A. Because patch A is assigned to be 

the lighter patch, a prediction in the correct direction is indicated by a positive value, whereas 

an incorrect prediction is negative. A value of zero indicates no difference in patch lightness 

values and therefore no illusion.  

To compare resultant values, we scale the difference between target patches to the strength of 

White’s Illusion for ease of comparison. The magnitude of White’s illusion is denoted as Ra. 

This means that all resultant values are scaled to the strength (or magnitude) of White’s 

illusion. A resultant value of 1 is then interpreted as having identical illusory strength to 

White’s illusion. A value greater than 1 indicates the illusion is stronger than White’s, and a 

value less than 1 (and above 0) indicates the illusion is weaker than White’s. Although any 

stimulus could have been selected for comparative purposes, we follow Robinson et al. 

(2007)’s convention by selecting stimulus a as our comparative figure. 

 

 

We also calculate the difference between model predictions and human results (where 

available) to quantify how well different model configurations match human data. We do this 

by subtracting the human result Rhuman from the model result Rmodel for stimuli from a to 

bb for which human results are available, and calculating the root mean square error 

(RMSerror). The smaller the RMSerror value, the better the model matches human data, and 

the greater the predictive accuracy of the model in terms of illusion magnitude or strength. 

Zeman et al. Exponential modelling of lightness illusions

2.2.3 Analysis Metric To compare the resultant R
x

values of lighter patch A (as established in human
experiments) with the darker patch B for each image x, we take the difference in mean values of the
two patches. This value is then scaled to the absolute difference in response to figure (a), denoted as R

a

.
As pointed out by Robinson et al. (2007), scaling is necessary to compare model output with human
responses, and we follow convention from this paper in scaling values to the strength of figure (a), WE-
thick, denoted as R

a

. Therefore, a result above zero indicates a correct result, and a result below zero
indicates an incorrect prediction. A zero result indicates no effect - thresholded at an absolute value of
0.01 after scaling.

R = (A� B)./|R
a

| (6)

3 RESULTS

We test our model on a battery of 28 lightness illusions that have been tested on ODOG and other
derivative models (Robinson et al., 2007). Figure 3 illustrates the illusions tested. Figure 5 illustrates
the number of correct illusions predicted (out of a maximum possible of 28) using a single filter. We show
predicted results for different model configurations: with no normalization, with normalization (� = 1)
and with normalization (� = 2). With no normalization, the highest prediction made by a single filter
was 21 out of 28 illusions with a small-sized filter that had a more Gaussian profile. With normalization
(� = 1), the highest prediction made by a single filter was also 21 out of 28 illusions, present in two small-
sized filters with high kurtosis. With increased normalization distribution (� = 2), the best prediction
result was slightly lower at 20 out of 28.

There was no increase in performance of correctly predicted illusions when going from not-normalized
to normalized results for single filter predictions. Normalized results provided predictions with much less
magnitude, as we would expect. Overall, normalized results with � = 1 provided the best prediction for
single filters, showcasing reasonable magnitudes for predictions and the highest level of predictability in
more than one case.

Combining filters does improve predictive success, with the maximum predictability being 22 out of
28 illusions for all scenarios using two filters. Interestingly, combining filters at larger sizes for non-
normalized filters improves results. For normalized filters with � = 1, we see better predictions across all
shapes and sizes, with the lowest maximum predictability being 18 out of 28. In this scenario, the best
results are seen when combining across multiple shapes at the lowest size filter. For normalized filters
with a larger distribution (� = 2), there is no clear trend for where to improve predictive success and there
appears to be fewer occurrences of highly predictive filters.

Table 1 lists the results for the difference of the mean values over the target patches. We reproduce
results from (Robinson et al., 2007) for the ODOG model and human scaled results. In all examples,
we arranged the resultant difference to be the lighter patch minus the darker patch, regardless of whether
the patch was on the left or right side of the image. Therefore, a result above zero indicates a correct
result, and a result below zero indicates an incorrect prediction. A result of zero indicates no effect (with
the absolute value thresholded at 0.01 for figure (e) WE-Howe). We highlight correct predictions in bold.
Human data is scaled to the strength of WE-thick as measured in Blakeslee and McCourt (1999).

The results presented so far have only demonstrated the capability of single filter predictions. We can
also combine multiple filters to observe the possibility of improving predictive success. Figure 6 illustrates
the result from combining two filters together by taking the difference of the sums of means over target
patches, scaled to WE-thick. Illustrated is the best possible outcome for combining a filter of a particular
size and shape with another particular filter of any other size and shape across all 28 illusions. The best
result across all environments, normalized and not normalized, for a dual filter combination is 22 out
of 28. It is of course possible to combine filters across many sizes and shapes to determine whether an
optimal weighting scheme between multiple filters exists. The maximum predictive success we were able
to achieve by permutating over all possible filter combinations was 24 out of 28.

This is a provisional file, not the final typeset article 6



    138 
 

 

When combining the outputs of two filters α and β of different sizes or shapes, we simply 

sum the difference in mean responses to the light and dark patches separately for each filter 

(removing scaling to figure a):  

 

4.3 Results 

We assess the performance of our model in two ways: the number of predictions in the correct 

direction, and also how closely the predicted values match the scaled human data on illusion 

magnitude.  We exclude figure e from our analysis, given that no illusion direction is reported 

for humans. Figure 4-5 illustrates the number of illusion directions correctly predicted (out of 

a maximum possible of 27) using a single filter over a range of 10 filter shapes and 10 filter 

sizes. For figure z, there are two predictions, annotated as z2-1 and z4-3, for comparing the two 

left patches and the two right patches in the image respectively. We take a correct result to be 

when (z2-1  + z4-3) / 2 > 0. 

Zeman et al. Exponential modelling of lightness illusions

2.2.3 Analysis Metric To compare the resultant R
model

values of lighter patch A (as established in
human experiments) with the darker patch B for each image x, we take the difference in mean values
of the two patches. This value is then scaled to the absolute difference in response to figure (a), denoted
as R

a

. As pointed out by Robinson et al. (2007), scaling is necessary to compare model output with
human responses, and we follow convention from this paper in scaling values to the strength of figure (a),
WE-thick, denoted as R

a

. Therefore, a result above zero indicates a correct result, and a result below zero
indicates an incorrect prediction. A zero result indicates no effect - thresholded at an absolute value of
0.01 after scaling.

R

model

= (A� B)./|R
a

| (6)

We also calculate the difference from human results (where available) to quantify how well different
model configurations match to human data. We do this by subtracting the human result R

human

from the
model result R

model

for each figure a to bb (where the human result is available) and calculating the root
mean square error RMS

error

of all n available results (in our case, 17 of 28 possible). The smaller the
RMS

error

value, the better the model matches human data.

RMS

error

=

vuut 1

n

bbX

a

⇣
R

model

�R

human

⌘2
(7)

3 RESULTS

We test our model on a battery of 28 lightness illusions that have been tested on ODOG and other
derivative models (Robinson et al., 2007). Figure 3 illustrates the illusions tested. Figure 5 illustrates
the number of correct illusions predicted (out of a maximum possible of 28) using a single filter. We show
predicted results for different model configurations: with no normalization, with normalization (� = 1)
and with normalization (� = 2). With no normalization, the highest prediction made by a single filter
was 21 out of 28 illusions with a small-sized filter that had a more Gaussian profile. With normalization
(� = 1), the highest prediction made by a single filter was also 21 out of 28 illusions, present in two small-
sized filters with high kurtosis. With increased normalization distribution (� = 2), the best prediction
result was slightly lower at 20 out of 28.

There was no increase in performance of correctly predicted illusions when going from not-normalized
to normalized results for single filter predictions. Normalized results provided predictions with much less
magnitude, as we would expect. Overall, normalized results with � = 1 provided the best prediction for
single filters, showcasing reasonable magnitudes for predictions and the highest level of predictability in
more than one case.

Combining filters does improve predictive success, with the maximum predictability being 22 out of
28 illusions for all scenarios using two filters. Interestingly, combining filters at larger sizes for non-
normalized filters improves results. For normalized filters with � = 1, we see better predictions across all
shapes and sizes, with the lowest maximum predictability being 18 out of 28. In this scenario, the best
results are seen when combining across multiple shapes at the lowest size filter. For normalized filters
with a larger distribution (� = 2), there is no clear trend for where to improve predictive success and there
appears to be fewer occurrences of highly predictive filters.

Table 1 lists the results for the difference of the mean values over the target patches. We reproduce
results from (Robinson et al., 2007) for the ODOG model and human scaled results. In all examples,
we arranged the resultant difference to be the lighter patch minus the darker patch, regardless of whether
the patch was on the left or right side of the image. Therefore, a result above zero indicates a correct
result, and a result below zero indicates an incorrect prediction. A result of zero indicates no effect (with
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and calculating the root mean square error (RMS

error

). The smaller the RMS

error

value, the better the248
model matches human data, and the greater the predictive accuracy of the model in terms of illusion249
magnitude or strength.250

RMS

error

=

vuut 1

n

bbX

a

⇣
R

model

�R

human

⌘2
(7)

When combining the outputs of two filters ↵ and � of different sizes or shapes, we simply sum the251
difference in mean responses to the light and dark patches separately for each filter (removing scaling to252
figure a):253

R

↵� = R

↵ +R

� (8)

3 RESULTS

We assess the performance of our model in two ways: the number of predictions in the correct direction,254
and also how closely the predicted values match the scaled human data on illusion magnitude. We exclude255
figure e from our analysis, given that no illusion direction is reported for humans. Figure 5 illustrates the256
number of illusion directions correctly predicted (out of a maximum possible of 27) using a single filter257
over a range of 10 filter shapes and 10 filter sizes. For figure z, there are two predictions, annotated as z2�1258
and z4�3, for comparing the two left patches and the two right patches in the image respectively. We take a259
correct result to be when (z2�1 + z4�3)/2 > 0. RMS

error

is also calculated using the average over these260
two comparisons. We show predicted results for various model configurations: with no normalization,261
and with 2 ranges of local normalization (� = 1 and � = 2). With no normalization, the highest number of262
correct direction predictions made by a single filter was 20 illusions using a large-sized filter with medium263
kurtosis. With short-range normalization (� = 1), the highest number of correct direction predictions made264
by a single filter was 21 illusions (present in a small-sized filter with high kurtosis). With an increased265
normalization range (� = 2), the best prediction result was slightly lower at 19 out of 28.266

Table 2 lists the results for the best performing size and shape filter in terms of the difference of the267
mean values over the target patches. As mentioned above, we exclude figure e from our results because268
no illusion is reported in human results. We report values for z2�1 and z4�3 (in gray) and take the average269
of these two as our prediction for z, maintaining a single value prediction per illusion. In table 2 we also270
reproduce results from Robinson et al. (2007) for the ODOG, best LODOG and best FLODOG model271
alongside human scaled results for direct comparison. Predictions in the correct direction are shown in272
bold and tallies of the number of these correct predictions are presented at the bottom. For each model, we273
also list the RMS

error

that represents how well the model’s predictions match the magnitude of human274
results.275

Table 2 shows that performance was maintained (in terms of number of correct direction predictions)276
when going from raw filter output to short-range normalized results for single filter predictions.277
Normalized results provided predictions with much smaller magnitudes of lightness illusions, as we would278
expect. Across predictions of both direction and magnitude, normalized results with � = 1 provided the279
best predictions for single filters, showcasing the highest number of correct direction predictions (21) and280
reasonable magnitudes for these predictions (indicated by a substantially reduced RMS

error

compared to281
filter-only output). Indeed, in this case RMS

error

shows an accuracy of prediction that is matched only282
by the small values of the ODOG model, which fares considerably less well in terms of number of correct283
direction predictions (13). The RMS

error

increased when the normalization range was extended to � = 2,284
where only 19 correct direction predictions were made.285
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Figure 4-5 Single filter predictions over 10 different shapes and 10 different sizes. The 
number of correct illusions predicted (out of 28 possible) for different model 

configurations using a single filter. 

Not$normalized$
Best$Result:$20$
K2#=#65,#m#=#0.7#

Normalized,$σ$=$2$
Best$Result:$19$
K2#=#85,#m#=#0.7#
$

Normalized,$σ$=$1$
Best$Result:$21$
K2#=#5,#m#=#1.5#



    140 
 
RMSerror is also calculated using the average over these two comparisons. We show 

predicted results for various model configurations: with no normalization, and with 2 ranges 

of local normalization (σ = 1 and σ = 2). With no normalization, the highest number of correct 

direction predictions made by a single filter was 20 illusions using a large-sized filter with 

medium kurtosis. With short-range normalization (σ = 1), the highest number of correct 

direction predictions made by a single filter was 21 illusions (present in a small-sized filter 

with high kurtosis). With an increased normalization range (σ = 2), the best prediction result 

was slightly lower at 19 out of 28. 

 

Table 2 lists the results for the best performing size and shape filter in terms of the difference 

of the mean values over the target patches. As mentioned above, we exclude figure e from our 

results because no illusion is reported in human results. We report values for z2-1 and z4-3 (in 

gray) and take the average of these two as our prediction for z, maintaining a single value 

prediction per illusion. In table 2 we also reproduce results from Robinson et al., (2007) for 

the ODOG, best LODOG and best FLODOG model alongside human scaled results for direct 

comparison. Predictions in the correct direction are shown in bold and tallies of the number of 

these correct predictions are presented at the bottom.  For each model, we also list the RMSerror 

that represents how well the model’s predictions match the magnitude of human results. 

 

Table 2 shows that performance was maintained (in terms of number of correct direction 

predictions) when going from raw filter output to short-range normalized results for single 

filter predictions. Normalized results provided predictions with much smaller magnitudes of 

lightness illusions, as we would expect. Across predictions of both direction and magnitude, 

normalized results with σ = 1 provided the best predictions for single filters, showcasing the 

highest number of correct direction predictions (21) and reasonable magnitudes for these  
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Figure 4-6 Dual filter predictions. Highest predictive success when combining a filter of 
specified size and shape with any other size and shape filter  

Not$normalized$
Best$Result:$21$

Normalized,$σ$=$2$
Best$Result:$21$
$

Normalized,$σ$=$1$
Best$Result:$23$
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predictions (indicated by a substantially reduced RMSerror compared to filter-only output). 

Indeed, in this case RMSerror shows an accuracy of prediction that is matched only by the small 

values of the ODOG model, which fares considerably less well in terms of number of correct 

direction predictions (13). The RMSerror increased when the normalization range was extended 

to σ = 2, where only 19 correct direction predictions were made.  
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The results presented so far have demonstrated the capability of single filter predictions. We 

also combined multiple filters to observe the possibility of improving predictive success. 

Figure 4-6 shows the result of combining pairs of filters together, taking a particular size and 

shape filter and combining it with the best possible match to maximize the number of correct 

directions predicted. The best result across all environments (normalized and filter-only), for 

dual filter combinations was 23 correct directions. The best resultant combinations in terms of 

maximizing the number of correct prediction directions occurred for a number of filter 

pairings within different environments. In the filter-only environment, the best filter pairs 

occurred across a combination of 6 different large sized filters ranging from high to low 

kurtosis. For normalized filters with σ = 1, the best filter pair was with a small sized filter 

with medium kurtosis and a medium sized filter with low kurtosis. For normalized filters with 

a larger range of normalization (σ = 2), the best pairings occurred across a range of filters 

with medium kurtosis over various sizes, or were large in size and had low to medium 

kurtosis. 

 

Figure 4-7  The four filter combinations that achieve the maximum of 24 correct illusion 
direction predictions for the exponential filter model. These combinations were found 

for short-range, normalized filters. The filters across all four combinations were tallied 

and the frequency of these is presented on the right. 

Zeman et al. Exponential modelling of lightness illusions

Figure 7. The four filter combinations that achieve the maximum of 24 correct illusion direction
predictions for the exponential filter model. These combinations were found for short-range, normalized
filters. The filters across all four combinations were tallied and the frequency of these is presented on the
right
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We extended our multi-filter analysis to allow for the combination of any number of size and 

shape filters to determine whether an optimal combination of multiple filters exists. Using an 

ordered search sequence over the space of all possible shape and size filter combinations, we 

found that the maximum predictive success (in terms of illusion direction) that the model was 

able to achieve was 24 out of 27. This value represents the upper bound of performance of 

this exponential filter model and was found for the set of short-range normalized filters. 

Figure 4-7 illustrates the four filter combinations that achieve the maximum of 24 correct 

illusion direction predictions for the exponential filter model. This was found for the set of 

normalized  (σ = 1) filters. The filters across all four combinations were tallied and the 

frequency of these is presented on the right. A minimum of 6 filters was required to reach the 

best prediction as shown in combination 1. These were filters of size K2 = {15, 35, 85} and 

shape m = {0.5, 1.3}. Combinations 2 -4 in Figure 4-7 show the other filter combinations for 

which 24 illusions were correctly predicted. We see that a spread of different size and shape 

filter combinations is required to produce the best predictive performance. Certain filters are 

found to be informative whereas others are found to be consistently uninformative. Looking at 

the frequency of specific size and shape filters across all five most successful combinations, 

we see that filter (K2 = 15, m = 1.3) is common across all filter arrangements. It is also 

evident that the organization of multiple filters is distributed across the parameter space. 

 

4.4 Discussion 

In this study, we applied a series of exponential filters differing in scale and shape to a set of 

lightness illusions that have previously been tested with Oriented Difference-of-Gaussian 

(ODOG) filters and associated models. The exponential model far outperforms the early 

ODOG models, and demonstrates predictive capabilities that match the successes of more 

recent elaborations of these models – LODOG and FLODOG – that incorporate local 
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normalization post filtering. Using a single filter, the direction of 21 (out of a possible 27) 

illusions can be predicted successfully. Using a two-filter combination, the predictive success 

of the model increases to 23. Extending the model to include any number of combined shape 

or size filters allows us to define the maximum capability of this model as 24 correct illusion 

direction predictions. Our results show that a low-level filtering model based on exponential 

filters can account for a large number of lightness illusions without requiring orientation-

selective filters. 

Comparing our work to the current literature, we highlight that existing models are restricted 

to filters of a specific shape (either DOG or LoG). We wanted to explore the effect of 

variation in the shape of the filters, which remains fixed in existing models. Our aim was not 

to emphasize stronger prediction performance, but to investigate whether filters inspired by 

image statistics can provide predictions on par with current state-of-the-art models. We have 

shown that this is indeed the case, where Gaussian-shaped filters do not provide the best 

predictability for the illusion set under all circumstances. 

While the 28 stimuli used in this study feature substantial differences, one pertinent respect in 

which they vary is the induction of contrast or assimilation. Six of our illusions can be 

classified as predominantly contrast effects, whereas 18 primarily produce assimilation, with 

4 illusions unclassifiable (see 2.1). Our best single-filter model was able to achieve 5/6 and 

13/18 accuracy for contrast and assimilation effects respectively, showing its ability to deal 

effectively with both classes of effect. 

Among our catalog of illusions there are several sets of images that vary principally in terms 

of SF. These not only include low and high SF versions of White’s Effect (a and b) and the 

SCI (o and p) as highlighted in Figure 4-1. Variations in SF are also seen for radial White’s 

Effect (figures g through to j), circular configurations of White’s Illusion (figures k, l and m), 
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the Checkerboard illusion (u, v and w) and Bullseye figures (aa and bb). In table 2 (column 

3), we list values of illusion magnitudes where human data is directly comparable with 

various SF configurations of the same illusion (reproduced from Robinson et al., 2007). Such 

comparisons are available for White’s illusion (a and b), the SCI (o and p) and the 

Checkerboard illusion (u, v and w). We draw direct conclusions for the performance of our 

best single-filter model to these figures. For the remaining figures with no directly 

comparable human data, we make observations based on the general rule that higher spatial 

frequencies yield greater effects. Our best single-filter model (normalized with σ = 1) predicts 

the correct direction of illusion for both high and low SF versions of White’s illusions (stimuli 

a and b) and of the SCI (figures o and p). In the case of the SCI the model can also account 

for the change in the size of the illusion as a function of SF, successfully predicting a larger 

effect at higher SF. However, in conflict with the human data, a reduction of the effect at 

higher SF is predicted for White’s illusion. The Checkerboard illusion is an interesting case 

where the direction of the effect flips from assimilation to contrast for human observers when 

the visual angle of checkerboard squares is greater than approximately 1 degree of visual 

angle.  Our best single-filter model is able to successfully account for two out of three illusion 

directions, with an appropriate increase in magnitude when comparing the lowest (w) and 

highest (u) SF versions.  Despite an incorrect direction being predicted for figure v, the model 

correctly predicts a reduction in magnitude compared with u. Comparing the performance of 

our model to the best ODOG variants, we see that only ODOG and LODOG are able to 

account for all variations of correct illusory magnitudes where human data is available, 

performing with 5/5 correct relative magnitudes (for comparisons b > a, p > o, u > v, w > v 

and u > w). The best performing model in terms of illusion direction, FLODOG, is able to 

successfully account for 3 out of a possible 5 illusory magnitudes consistent with SF. We 

conclude that our model is able to surpass that of FLODOG, with 4/5 illusion magnitudes that 

are commensurate with human data for both high and low spatial frequencies.  
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Reflecting on the best performance of the exponential model using a single filter, we note that 

two particular illusions that were predicted incorrectly − t (Pessoa et al., 1998); and x 

(Adelson, 1993) − warrant closer inspection. Stimulus t can be said to belong to the family of 

modified Simultaneous Contrast Illusion figures from q to t. Figure s is a modified version of 

figure o (conventional SCI), where squares with opposite contrast polarity to the background 

are overlaid onto the target patch, creating equal boundaries of light and dark. Figures r, q and 

t are modified versions of s with increasing crossbar lengths. The spectrum of figure 

arrangements from q to t demonstrate changes to figure-ground relationships in terms of 

object assignment, depth placement and scene segmentation. In figures q, r, and s, the target 

patch appears to be contiguous with the surrounding white or black regions (as in the SCI: see 

stimuli o and p), and is positioned behind black or white square occluders. However, in 

stimulus t – the figure that posed a problem for our most successful single filter model – a 

quite different depth arrangement is evident, as the target patch now forms a cross that 

appears to be the most proximal object, and no longer shares the same depth plane as the 

surround. The exponential model we adopt does not include higher-level information such as 

depth cues of occlusion. Depth information is also evident in the corrugated Mondrian (figure 

x), providing shadow cues that could be processed by higher cortical levels for lightness 

judgments. These results may be taken to support suggestions that some illusions may escape 

successful prediction by low-level mechanisms if their lightness depends on depth 

relationships (Schirillo et al., 1990).   

While the ODOG model and its variants closely approximate the orientation selective 

operations in V1, exponential filters based on image statistics represent an efficient coding 

scheme that could be present in pre-cortical areas as early as the retina. The prevailing view in 

early work with lightness illusions was that they arose from retinal interactions, rather than 

cortical processing (Cornsweet, 1970; Todorovic, 1997). However, more recent research 
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highlights the influence of higher-level mechanisms on our lightness perception (Adelson, 

2000; Anderson and Winawer, 2005; Gilchrist, 2006). Using our model, we do not prescribe 

that filtering mechanisms alone can explain all lightness illusions. Instead, we set out to 

quantify the gap between what filtering operations can and cannot demonstrate. We propose 

that our exponential filtering model represents the first stage in a process of operations to 

estimate lightness. Later operations, such as those responsible for the scission of a scene into 

its component causal layers (Anderson, 1997) would occur post filtering and normalization. 

The anchoring of lightness values to local and global context (Gilchrist, 2006) could occur 

within normalization operations or post normalization. In our model’s normalization step, the 

filtered image is first scaled to local responses (using local coefficient of variance) and then to 

the global maximum response within the image. This provides one of many approximations 

for the anchoring of lightness values.  

The filtering approach we use reshapes contrast distributions towards those that best describe 

natural images using the exponential filter family. Similarly to Dakin and Bex (2003), we 

essentially reconstruct an image that represents the most probable naturally occurring source. 

By redistributing lightness values to more closely reflect the underlying statistical 

relationships of images within our environment, we can form predictions of perceptual 

lightness estimates that align with a large array of lightness illusions. Figure 4-8 illustrates 

the power spectra for a set of images that are unfiltered (left column) and filtered (right 

column) using different shape filters that are all of size 5 pixels. The top row illustrates power 

spectra for 28 natural images. From these graphs we can see that the power spectra for filtered 

natural images is quite similar to the power spectra for unfiltered natural images. The bottom 

row shows the power spectra for illusory images. The unfiltered images in the bottom left 

graph show a flatter power spectrum in the lower SFs than the filtered images in the bottom 

right graph. By applying these exponential filters, we see that they not only push the power 
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spectra of illusory images toward that of natural images, reflecting the properties of image 

statistics. Applying these filters also boosts low SF information, hypothesized to be a driving 

factor in the perception of lightness illusions (Dakin and Bex, 2003). Dakin and Bex (2003) 

find that low spatial frequencies are primarily responsible for the Craik, Cornsweet, and 

O’Brien (CCOB) illusion that they study. The LoG filters that they apply boost this 

information when it is not present. From their results, Dakin and Bex (2003) hypothesize that 

low SF information may drive many illusions. 

 

 

Figure 4-8 Power spectra for images that are unfiltered (left column) and filtered with 

size=5 pixels (right column). Top row: 28 natural images. Bottom row: 28 illusory 
images. 
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In a post-hoc analysis, we analyse whether filters of a particular shape aid in boosting low SF 

information, which is postulated by Dakin and Bex (2003) as a driving factor for many 

illusions. Figure 4-9 illustrates the effect of different shape filters on the power distribution of 

a filtered White’s Illusion image. Looking at the left side of the graph, we see that different 

shape filters have an effect on the low spatial frequency distributions. Filters with high 

kurtosis (those that have a low exponent and a sharper distribution) boost low SFs more than 

filters with low kurtosis (those that have a high exponent and a flatter distribution). The 

exponential filters therefore provide a mechanism to boost lower spatial frequency 

information more than Gaussian filters. 

We emphasize that this study was conducted to investigate filters that are best able to push the 

power spectra of images toward that of natural images as well as preserve image structure 

while being resilient to noise. In earlier work, we showed that a filter size selection model 

helps in extracting and amplifying local image structure (Ghebreab et al., 2009). Thismodel 

locally selects the smallest filter (extracting high-frequency information) with a response 

above a noise threshold (ensuring resilience to noise). In a similar fashion, local selection of 

filter shape may further enhance local image structure. Instead of performing local scale and 

shape selection in this paper, we study how different types of filters, varying in size and 

shape, may explain illusions. 

The two-stage process of our model uses exponential filters that allow for efficient coding, 

followed by divisive normalization to boost shallow edges, promoting faithful representation 

of salient image features.  In this way, the filtering stage of our model relies on the Efficient 

Coding Hypothesis, a theoretical model of sensory coding in the brain (Barlow, 1961). The 

Efficient Coding Hypothesis states that sensory information is represented in the most 

efficient way possible, such that it is closely representative of an organism’s natural 

environment. The Efficient Coding Hypothesis is closely related to the Predictive Coding 
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approach (Srinivasan et al., 1982), which states that the representation of sensory information 

in a statistically efficient way allows sensory systems to reduce redundancies and also 

provides greater resilience to noise (Barlow, 1961, 2001). In the specific case of our model, 

there is ample evidence from Basu and Su (2001) that exponential filters are resilient to many 

types and intensities of noise. From Dakin and Bex (2003) we see that statistical image 

representation and noise handling complement one another in understanding and predicting 

lightness illusions. Alongside Dakin and Bex (2003), by successfully modeling illusions using 

properties of image statistics, we support the predictive coding approach proposed by 

Srinivasan et al. (1982).   

 

Figure 4-9 Average power over spatial frequency of different shape filters applied to 

White's Illusion (Figure a). All filters are of size 5 pixels. m refers to the exponent. 
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In earlier work we showed that globally processing images with filters of different sizes 

results in scale space image representations that account for different visual phenomena 

(Ghebreab et al., 2009). We also showed that collapsing scale space representations into a 

single image representation via local scale selection accounts for even further visual 

phenomena. This model locally selects the smallest filter (extracting high-frequency 

information) with a response above a noise threshold (ensuring resilience to noise). In a 

similar fashion, local selection of filter shape may further enhance local image structure. 

Instead of performing local scale and shape selection, in this work we first studied if and how 

different types of filters, varying in size and shape, may explain illusions. We found this is 

indeed the case. We also tested whether combining different image representations, obtained 

by globally applying different filters, adds to explaining illusions. The next step in our work 

would be to determine whether local selection of filter size and shape, based on a model 

similar to Ghebreab et al. (2009), is able to further explain illusions.  

An interesting future direction of study would be to explore additional versions of White’s 

effect, particularly those that have been found to produce an inverted effect (Spehar et al., 

1995; Ripamonti and Gerbino, 2001; Spehar et al., 2002). It is well- known that White’s 

effect holds only when the luminance of the two target patches lies between the luminance 

values of the surrounding gratings (Spehar et al., 1995). Modifying the luminance values of 

the test patches to double-increments or double-decrements, relative to the gratings, not only 

drastically reduces the magnitude of illusion, but can also reverse the direction of the illusion 

from assimilation to contrast (Spehar et al., 1995; Ripamonti and Gerbino, 2001; Spehar et al., 

2002). Inverted versions of White's effect have not been successfully accounted for using 

Blakeslee and McCourt (1999)’s ODOG model, according to Spehar et al. (2002). Testing 

double-increment and double-decrement versions of White’s effect in the exponential filter 

model may further demonstrate its robustness in accounting for an even larger range of 



    153 
 
lightness illusions. 

Another direction for follow-up work would be to investigate the effects of different types and 

intensities of noise on human perception of lightness illusions and observe how closely these 

results are matched by our exponential filter model. Dakin and Bex (2003) show that when 

introducing different levels of noise into their stimuli, their model maintains a close 

approximation to human performance. However, ODOG has shown discrepancies in matching 

human response magnitudes for noisy stimuli (Betz et al., 2014). If the exponential filter 

model demonstrates results similar to human observers in classifying illusory images with 

noise manipulations, this would provide further support for predictive coding (Srinivasan et 

al.,1982).  

In summary, our study demonstrates that a filter model based on contrast distribution statistics 

of natural images is able to account for the direction of 21 out of 27 lightness illusions using a 

single filter. When two filter combinations are considered, the number rises to 23, with 

asymptotic performance at 24 for an arbitrarily large combination of filter outputs. We 

observe the effect of incorporating non-linear divisive normalization, providing a better 

understanding of the role that contrast gain control provides in the perception of these 

illusions. While short-range normalization only slightly improves the number of correct 

direction predictions, it considerably reduces the error in predicting illusion magnitude, 

measured as RMS
error

.  The exponential filters we employ are not orientation selective, 

demonstrating that V1-style operations are not required to account for a large number of 

lightness illusions. Given that these exponential filters could be found as early as the retina, it 

is possible that the majority of these lightness effects result from pre-cortical operations, 

leaving only a few to be explained by higher level mechanisms. 
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5.1 Chapter overview 
 

This chapter provides a general discussion aimed at further elucidating some of the elements of 

the studies included within this thesis. This chapter is divided into five main sections. Section 

5.2 summarises each of the studies and integrates these together. Section 5.3 discusses how this 

work fits in with the wider academic literature and how this work impacts on knowledge within 

the field. Potential improvements in the methods that we used and possible future directions for 

follow-up studies are highlighted in Section 5.4. Section 5.5 suggests some of the applications 

of this work for the fields of psychology and computer science fields. Finally, in Section 5.6, 

we provide some closing remarks.  

 

5.2 Summary and integration of studies  

5.2.1. Each of the studies in summary 
 

In our first study (Chapter 2, Zeman et al., 2013), we conducted a series of three experiments to 

show that the MLI manifested in a benchmark model of the visual ventral stream, HMAX, 

which is commonly associated with object recognition (Mutch & Lowe, 2008). HMAX adopts 

filters that emulate the simple and complex cell firing behaviour that was recorded in Hubel 

and Wiesel’s landmark studies (Hubel, 1959; Hubel & Wiesel, 1959, 1962, 1965). We found 

that HMAX was not only susceptible to the MLI, but it also generated bias patterns that were 

consistent with human results, demonstrating greater bias for fins with more acute angles. We 

were able to rule out some of the necessary factors required to generate illusory bias by 

demonstrating that the effect in HMAX was present without exposure to 3D images and 

without the presence of feedback (Gregory, 1963). Using HMAX, we also found that there was 

no particular reliance on low-spatial frequency filters in generating the effect, ruling out 

mandatory reliance on low-spatial frequency information (Carrasco et al., 1986).  
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Our second study (Chapter 3, Zeman et al., 2014) built on the findings of the first, presenting 

two experiments looking at levels of accuracy and precision in the model’s responses to MLI 

figures at each stage of the HMAX hierarchy. Surprisingly, we found that HMAX reduced the 

illusion compared to the input level. This suggests that image statistics are the main driver for 

the illusion in the model, in line with proposals from Howe and Purves (2002, 2005a, 2005b) 

and Corney and Lotto (2007). We found that at every stage of the model, bias and uncertainty 

were reduced when compared with input-level classification (without any processing by 

HMAX simple or complex cell layers). Within the model, we found that in the majority of 

cases (87.5%), complex cells reduced illusory bias or uncertainty. Following on from this 

finding, we hypothesised that increasing the positional variance at the input level would engage 

more complex cell functionality and would therefore reduce errors. We confirmed this result by 

introducing horizontal positional variance (in addition to vertical jitter) and demonstrating a 

reduction in bias. By comparing input-level classification to model classification at various 

layers, and by manipulating properties of the training image set, we concluded that image 

statistics were the main driving factor behind the illusion in this model. Our research focus then 

shifted to more statistics-driven approaches and to image representation at lower levels of the 

visual hierarchy.  

 

For our final study (Chapter 4, Zeman et al., in submission), we conducted a series of 

comprehensive simulations focused on modelling a set of 28 lightness illusions, using an 

approach inspired by image statistics. We looked at a set of illusions that would be likely to 

occur within early visual areas (Blakeslee & McCourt 1999, 2001, 2004; Robinson et al., 

2007). The most extensively researched model of illusions in early visual areas is ODOG 

(oriented difference of Gaussians) (Blakeslee & McCourt 1999, 2001, 2004, 2008; Blakeslee et 

al., 2005, 2008), which supports a low-level account of lightness illusions. However, some 
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researchers argue for the involvement of higher-level cortical processes in influencing our 

lightness perception (Gilchrist, 1977; Knill and Kersten, 1991; Anderson, 1997; Gilchrist et al., 

1999; Schmid & Anderson, 2014). Our aim was to demonstrate the extent to which lightness 

illusions can be accounted for by low-level filtering mechanisms. We used filters derived from 

contrast distributions found in natural images that have been shown to preserve image structure 

while removing noise. We found that by employing exponential filters of multiple sizes and 

shapes (Basu and Su, 2001), we were able to account for a large array of existing lightness 

illusions. The benefits of our approach over existing models is that the exponential filter model 

has greater resilience to noise; provides a normalisation scheme that has greater biological 

plausibility (Bonin et al., 2005); has greater flexibility in allowing for shape as well as size 

selection of filters, and has greater parsimony over existing models.  

 

5.2.2. Common threads between studies 
 

The three studies contained within this thesis cover the computational modelling of pre-

cortical and cortical areas of vision, demonstrating illusory effects at multiple stages of visual 

processing. To tie these studies together, we highlight common threads between the models 

that we used and their relationship to studying illusions: 

• both models that we used were feed-forward, allowing us to establish the influence of 

bottom-up only connections in bringing about illusory effects  

• both models allowed us to assess the suitability of lower or higher level explanations 

for a range of illusions  

• both models quantified the influence of different cell types or filters on the overall 

effect 

• both models were influenced by image statistics in separate ways 
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• both models combined filtering techniques with image statistics  

We now elaborate on each of these points in turn.  

 

Both models that we implemented, HMAX and our exponential filter model, are feed-

forward. One – the exponential fitler model of perceived lightness – is fully deterministic 

(Zeman et al., in submission), while the other – HMAX – has a degree of stochasticity 

influenced by feature learning from a training set of images (Serre et al., 2005a, 2005b, 2007; 

Mutch & Lowe, 2008; Serre & Poggio, 2010). For each of these models, information only 

flows one-way, allowing us to investigate the degree to which an illusory effect can be 

brought about by the feed-forward sweep within an artificial network. In all three studies, we 

were able to measure levels of bias for the illusions that we studied and additionally assess 

other quantifiable parameters. We measured effect magnitudes while manipulating the fin 

angle or line positioning for the MLI (Zeman et al., 2013, 2014). For the studies using 

HMAX, we were also able to assess precision, or the level of certainty, for different 

manipulations of the MLI. In our third study, using our exponential filter model, we were able 

to quantify the number of correct predictions made for a range of illusions as well as how 

closely these predictions matched human performance (Zeman et al., in submission). 

Therefore, in all of our studies, we were able to put forward a set of metrics that establish the 

success of these models in predicting a range of illusions and allow for direct comparison 

with human results. This set of quantifiable measurements provides a baseline for other 

competing models to be assessed and compared against, establishing a framework for further 

comparative studies to be made in the future.  

The models that we implemented can be broadly mapped to different levels of the neural 

hierarchy. The analogies between biology and the models that we used allow us to separate 

out bottom-up versus top-down explanations of particular illusions. Taking an example from 
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our third study (Chapter 4, Zeman et al., in submission), we tested our exponential filter 

model using a range of images, including the Benary Cross illusion (Benary, 1924), where 

two identical grey triangles that share the same bordering information appear to have different 

luminance that depends on contextual placement inside or outside an object (illustrated in 

Figure 5-1). Theories surrounding the Benary Cross range from lower-level to higher-level 

explanations (Salmela & Laurinen, 2009). The dependence on figure-ground assignment 

could involve the recruitment of higher areas such as IT (Baylis and Driver, 2001), although 

other studies suggest that the neural processes associated with border ownership could occur 

within earlier areas such as V1 and V2 (Zhou et al., 2000). Given that we were able to show 

the illusion manifest within our exponential filter model that has no hierarchical architecture, 

we demonstrate that higher levels are not necessary for bringing about the Benary Cross 

illusion, in agreement with other studies such as Salmela & Laurinen (2009). 

 

 

Figure 5-1 Benary Cross illusion, reproduced from Zeman et al., in submission.  

Although both of the models covered in this thesis, the exponential filter family model and 

HMAX, combine filtering with image statistics, the influence of image statistics on each is 

slightly different. In the exponential filter model, natural image statistic profiles are embedded 
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in the filter functions that are applied to the image (Basu and Su, 2001). The contrast 

distributions for natural images are shown to have a common underlying relationship (Zhu 

and Mumford, 1997). Zhu and Mumford propose that exponential filters provide a better way 

to extract high spatial frequency information such as edges and preserve the distribution of 

spatial frequencies after they are applied to images. By applying exponential filters, the 

distribution of contrasts over different spatial frequencies is more closely matched to that of 

natural images. HMAX, on the other hand, learns hidden relationships between input images 

and the labels assigned to them during the training phase, much like the model of Corney & 

Lotto (2007). In other words, the exponential filter model explicitly encodes relationships 

with image statistics, whereas HMAX implicitly learns this.   

 

The models chosen for this thesis were purposefully selected for their simplicity. By 

observing effects reproduced in a scaled-back model, we aimed to provide better explanations 

for illusory effects by observing what components are first necessary in order to bring about 

bias. While it is tempting to opt for more sophisticated models that incorporate, for instance, 

feedback or temporal dynamics, these models would be excessive and unnecessary unless 

there are specific questions that require these features. For example, if we were interested in 

how bias for the Müller-Lyer illusion changes with inspection time (Coren and Porac 1984; 

Predebon et al. 1993; Predebon, 1998, 2006), then it would be useful to incorporate feedback 

in a model. Instead, we selected feed-forward models in the interests of quantifying bottom-

up effects and eliminating top-down interactions from higher-levels.  

 

Competing theories surround the illusions in humans that have been presented in this thesis. 

Many of these theories can be separated into low-level and higher-level accounts, 

corresponding to the brain areas that are believed to contribute towards biases. Computational 

modelling provides a useful tool to delineate the influence of these areas by providing 
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parallels with designated brain regions. Levels of HMAX map to areas of the visual ventral 

stream (Riesenhuber & Poggio, 1999; Serre et al., 2007; Serre & Poggio, 2010), giving an 

opportunity to observe simulation results at each hierarchical level and, as a result, observe 

higher or lower-level influences on bias.  The exponential filter model, while inspired in part 

by successful edge detection algorithms in computer vision, best maps to the receptive fields 

of retinal cells and LGN normalisation operations. This is in contrast to the highly successful 

ODOG model (Blakeslee & McCourt, 1999), which is most closely matched to filtering 

operations in V1. By matching theories and models to their appropriate neural correlates, it is 

possible to narrow down the level of contribution or reduction that each brain area may have 

towards a particular illusory effect (Chapter 3, Zeman et al., 2014). 

 

5.3 Our studies in the context of wider academic literature 

5.3.1. Can illusions manifest in artificial brains? 
 

Historically, artificial models existed that did not contain multiple layers but were still able to 

demonstrate illusory bias. These models were able to produce output similar to human 

behaviour when presented with illusory figures, either by emulating the filtering operations of 

cells (Bertulis & Bulatov, 2001, 2005) or by analysing statistics in the environment (Howe and 

Purves 2002, 2005a, 2005b; Corney and Lotto, 2007). However, these models were 

deterministic, non-hierarchical systems that did not involve any feature learning. It was not 

until Brown and Friston (2012) that hierarchical systems were first considered as candidates for 

modelling illusions, even though the authors omitted important details of the model’s 

architecture, such as the number of layers they recruited.  

 

In order to find a hierarchical model capable of learning, we turned to current state-of-the-art 

object recognition systems that were inspired by neurobiology. Such artificial systems have 
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been highly developed and are capable of accurate object classification under a variety of harsh 

conditions including changes to lighting and angle (Serre et al., 2005a, 2005b, 2007; Mutch & 

Lowe, 2008; Serre & Poggio, 2010). HMAX provided an architecture that was hierarchical in 

structure and capable of learning (Riesenhuber & Poggio, 1999; Serre, 2014).  

 

Initially, we considered that a network consisting only of feed-forward connections and lacking 

any feedback would be a weak contender for showing any manifestation of the Müller-Lyer 

illusion (Müller-Lyer, 1889). This was given that the prevalent explanation of the illusion 

centred on common feature associations (between arrowhead and arrow-tail placement and 

distance to objects) that were fed back into the network from higher to lower levels (Gregory, 

1963, 1966, 1997).  The plan for our first study was to show that if no illusion occurred in such 

a feed-forward, hierarchical model, then additional elements would be required to demonstrate 

a bias.  

 

Surprisingly, the HMAX model did show a repeatable bias for the Müller-Lyer illusion with 

several different fin angle configurations (Chapter 2, Zeman et al., 2013). The magnitude of 

bias was greater for more acute angles compared to obtuse angles, consistent with human data 

(Restle & Decker, 1977). So to summarise, illusions can manifest in artificial systems that are 

both hierarchical and capable of learning. Whether these networks rely on exposure to the same 

images that we see during training, or on filtering mechanisms that are based on similar neural 

operations, they produce a consistent and repeatable illusory bias. In terms of Marr’s (1982) 

levels of description (see section 1.6), it appears that illusions can manifest at the hardware 

level (Howe & Purves, 2005a, 2005b) and at the algorithmic/representational level (Bertulis 

and Bulatov, 2001, 2005; Zeman et al., 2013). 
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5.3.2. Alternatives to HMAX and associated illusion predictions  

 

Our first two studies used HMAX as our model of choice for studying the MLI. There are, of 

course, other models of the visual ventral stream, with some containing only feed-forward 

connections and others that employ feedback connections within their architecture. We now 

take a brief look at some other models of the visual ventral stream and compare these with 

HMAX. Based on the similarities and differences between these models and HMAX, we then 

provide a set of predictions for how these models would perform when presented with a set of 

Müller-Lyer images.  

 

Considering other well-known feed-forward models of the visual ventral stream, we turn our 

attention to SpikeNet: an eight-layer network that incorporates the coding of information across 

time as a sequence of spikes (VanRullen et al., 1998; Thorpe et al., 2001; VanRullen and 

Thorpe, 2001a, 2001b, 2002; VanRullen et al., 2005). SpikeNET uses Rank Order Coding 

(ROC) as a temporal coding scheme, which is where a cell fires with a short delay after 

stimulus onset if the cell prefers that stimulus. Conversely, cells with a lower preference for the 

input will fire with a greater delay (Thorpe et al., 2001). Using this coding scheme, the precise 

timing of spikes is less important than the order in which neurons fire (Gautrais and Thorpe, 

1998). SpikeNET uses on-centre and off-centre cells as filters within its hierarchy (VanRullen 

and Thorpe, 2001). The spatial scales of on- and off- centre cells increase as the layers are 

traversed. The first layer of the system is an approximate model of retinal ganglion cells and 

the second layer is the rough equivalent of V1 (Thorpe et al., 2001). Supervised learning is 

used to train neurons to fire in the appropriate order.  

 

Comparing HMAX to SpikeNET, one obvious difference is that HMAX omits on- and off-

centre cell functions. This raises the question whether processing by on- and off-centre filters 
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would also demonstrate system susceptibility to bias when viewing Müller-Lyer images. From 

our second study, we found that bias was evident at the input level and that filter processing by 

subsequent levels of HMAX reduced bias when compared to the input. We would hypothesise 

that a similar mechanism would occur within SpikeNET, which is that processing by filter 

layers would serve to reduce bias but not eliminate it altogether. Figure manipulations such as 

fin angle may have greater activation levels with orientation-selective cells (such as those 

present in HMAX), however on- and off-centre cells would still be activated, albeit to a lesser 

degree, within different regions of the image.  

 

Other differences also exist between HMAX and SpikeNET. Masquelier and Thorpe (2007) 

provide an informative comparison between a modified version of SpikeNET and HMAX, the 

main difference between these two approaches being the size of their filter banks. HMAX has a 

large set of available filters that are activated by particular image features. Exposure to an 

image causes activations to cascade through the network, later activating nodes in the final 

layer of the model. The last layer of HMAX is used for classification that is explicitly relevant 

to the learning task. SpikeNET, on the other hand, consists of a smaller feature dictionary that 

automatically selects features that hold the greatest importance. The difference in network sizes 

between these two models should not affect the classification of input images. Within each 

model, the size of the network, which reflects the size of available filter banks, would affect the 

percent correct score. As shown in our first study, adjusting the size of one of the layers of 

HMAX affects the proportion of correct categorisations for our control condition. Therefore, 

once the network size for a particular model is adjusted so that it is able to reach high 

performance levels for the classification of control images, we would still expect a bias to be 

present for MLI images.    
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We now move away from focusing solely on feed-forward models and instead look at 

comparisons between feedback models and HMAX. Being a descriptive (i.e. feed-forward) 

model, HMAX differs from generative models of the visual ventral stream, such as those 

presented by Hinton and Zemel (1994), Lee and Mumford (2003), Kersten et al., (2004), 

Friston (2005a, 2008, 2010, 2012) and Bastos et al. (2012), which generate predictions based 

on long and short histories of previous input. In contrast, HMAX contains only a conceptually 

long history of exposure to inputs, which is accumulated during training and remains static 

during run-time of the model. In regards to whether these alternative models of the visual 

ventral stream would predict the MLI, we hypothesise that all of these models would be 

susceptible to the illusion. From our second study, we concluded that the MLI, at least as 

manifested in HMAX, is a result of the statistics of the input training images. Given that all of 

the above examples are artificial neural networks that would be trained on these images, they 

would be exposed to mappings between object sizes and visual templates of arrowheads and 

arrow-tails (Howe and Purves, 2005b). In feedback models, it would be interesting to observe 

the level of bias over time, to see if, as with humans, the magnitude decreases with inspection 

time (Predebon, 1998). Given that we’ve shown how complex cells reduce errors associated 

with the Müller-Lyer (Chapter 3, Zeman et al., 2014), it would be interesting to see whether 

bias and uncertainty also change between levels of a hierarchical feedback model. If errors 

decrease within each ascending layer of the network, propagating this information back down 

through the system would help to reduce errors at the lower levels and therefore demonstrate a 

reduction in bias over time. 

5.3.3. Alternatives to the exponential model and associated illusion predictions 
 

As outlined in the introduction (Chapter 1), a number of low-level models of vision exist that 

either emulate the filtering operations of cells in early visual areas (including the retina and 
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LGN) or that capitalise on the statistical regularities (such as contrast distributions) of images 

found within the natural environment. We now revisit some of the most successful of these 

models to provide a comparison with our exponential filter model and to provide illusion 

predictions in these alternate models. We consider the difference-of-Gaussians (DOG) model 

(Blakeslee and McCourt, 1997) and the oriented-difference-of-Gaussians (ODOG) (Blakeslee 

and McCourt, 1999, 2001, 2004, 2008; Blakeslee et al., 2005, 2008; Robinson et al., 2007), 

which have been used to model the same range of lightness illusions as our third study (Chapter 

4). Our third study included the predictions made by these models for the same set of lightness 

illusions that we covered. In this subsection we discuss recent extensions of the DOG model 

(Cope et al., 2013, 2014a, 2014b) for comparison with our model and propose predictions for 

other illusions in these DOG-variant models versus ours. We also provide more in-depth 

discussion of Dakin and Bex's (2003) model.  

 

Our exponential filter model differs from existing models in two key ways – either in the 

filtering operations it employs or in the normalisation procedure. The original DOG model used 

a set of isotropic filters (Blakeslee and McCourt, 1997). An orientation component was added 

to account for White's illusion in Blakeslee and McCourt (1999). Subsequent studies using the 

ODOG model showed its versatility in being able to account for a large series of illusions 

(Blakeslee and McCourt, 1999, 2001, 2004, 2008; Blakeslee et al., 2005, 2008; Robinson et al., 

2007). The recent modelling work of Blakeslee and McCourt has returned to non-oriented 

DOG filters (Cope et al., 2013), where such isotropic filters would best describe retinal 

ganglion and LGN cell operations (Kuffler, 1953, 1973). Recent models presented by Blakeslee 

and McCourt have also adopted greater biological plausibility, incorporating contrast gain 

control (Cope et al., 2014a, 2014b). New versions of the DOG model are therefore more 

similar to our exponential filter model than versions of ODOG, in that they employ gain control 

mechanisms and that they use filters that are not orientation-selective. The main difference 
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between these two systems lies in the kernel functions applied to the input image, on which we 

elaborate below.  

 

 
Figure 5-2: Hermann grid illusion, reproduced from Lafuente & Ruiz (2004).  

a) Standard Hermann grid b) Tilted Hermann grid 

 

One key feature that differentiates our model from existing models is our use of exponential 

filters, Dakin and Bex (2003) use Laplacian of Gaussian or LoG filters, which best approximate 

the Hodgkin and Huxley (1952) “Mexican hat” function. DOG filters provide an approximation 

for LoG filters (Klette, 2014, p.75), having circular symmetry that produces identical filtering 

magnitudes at any rotation angle. This property of isotropy is what differentiates our 

exponential filters from DOG or LoG filters. Turning our attention to the ODOG model, we see 

that ODOG uses oriented filters presented at 6 different orientations (Blakeslee and McCourt, 

2001). The authors describe these filters as being similar to simple cells in the cat or monkey, 

being selective to orientation and spatial frequency. Orientations in ODOG are weighted after 

the response of each orientation filter is calculated, so as to produce equivalent activity levels 

across each orientation. Comparing the exponential filter model to ODOG, exponential 

functions require no orientation-specific weighting, having an in-built preference for increasing 

activation along the cardinal axes.   
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Our use of exponential filters, which differentiates our model from other existing approaches, 

could potentially impact on predictions for tilted illusions. Tilted lightness illusions are those 

where magnitude changes as a function of orientation, usually showcasing a decrease in 

magnitude is usually observed. Examples of tilted lightness illusions include the tilted 

Hermann Grid (de Lafuente and Ruiz, 2004, Figure 5-2), the scintillating grid illusion (Qian 

et al., 2009) and the jaggy diamonds illusion (Kawabe et al., 2010). Some illusions, however 

are unaffected by orientation (Hamburger and Shapiro, 2009) and these could be 

straightforwardly modelled using isotropic filters without loss of generality. In order to 

account for a reduction in magnitude for tilted lightness illusions, a model would need to 

incorporate anisotropic filters. DOG and LoG models produce an even distribution of 

activation levels in all directions, predicting the same magnitude of an effect in all directions 

and be unable to account for tilted phenomena. Exponential and ODOG filters could both 

potentially account for tilted lightness illusions considering that both types of filters are 

anisotropic. As pointed out above, many orientations within ODOG are equivalently weighted 

despite being individually represented, which would create difficulties in simulating changes 

in magnitude for oriented illusion forms.  

 

Considering exponential filters, these show strong activation levels for stimuli presented 

along the cardinal axes and reduced activation at obliques. In relation to the biological 

analogy between horizontal retinal cell activation and the exponential function (Packer and 

Dacey,  2002, 2005), we emphasise that the exponential model shows increased activation 

along the cardinal axes and reduced activation at obliques - such that levels of activation are 

still present for oriented stimuli and simply produce a smaller magnitude compared to stimuli 

presented along cardinal axes.  Having shown greater activation levels for cardinal axes, we 

hypothesise that exponential filters may predict larger magnitudes for illusions presented at 
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horizontal and vertical orientations than illusions presented at an angle. This provides 

predictions in line with tilted illusions such as the Hermann Grid (de Lafuente and Ruiz, 

2004). Therefore, one possibility for differentiating between low-level visual models, 

including LoG, DOG, ODOG and the exponential filter model, may be in their prediction of 

tilted lightness illusions. 

 
 

5.4 Possible improvements and future studies 

5.4.1. Evaluating theories using computer models  
 

As pointed out in the introduction (Chapter 1), the link between theories and models is not 

straightforward. Norris (2005) captures this succinctly in his statement that ‘there is rarely a 

straightforward one-to-one mapping between model and theory’. Starting from the 

perspective of a particular theory and looking at how this can be implemented in a model 

requires a number of stages. To explore how to interpret theories in computer models, we take 

the example of the misapplied size constancy scaling theory of the Müller-Lyer illusion 

(Thiéry, 1895; Woodworth, 1938; Gregory, 1963) and break it down how this can be 

evaluated from a number of studies, including our first study (Chapter 2, Zeman et al., 2013).  

 

Inappropriate size constancy scaling was highlighted in Gregory (1963) as the dominating 

factor that causes the Müller-Lyer illusion. Size constancy scaling refers to the way in which 

our visual system relates the size of retinal images to their real-life object size, based on the 

principle that the physical size of an object remains constant despite the size of its image 

changing on our retina. Using depth cues to judge the distance to an object, we implicitly 

scale the sizes of all objects that we see. So if depth is perceived erroneously, then the judged 

size of the object will also be incorrect. Observers commonly encounter two types of display: 

outside corners (Figure 5-3 left) and inside corners (Figure 5-3 right). If the inside corner is 
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perceived as further away than the outside corner, then the constancy scaling would be 

different for each figure. Given their identical retinal size, the display perceived as more 

distant (being the outside corner with arrow-tails) would be perceived as larger than the more 

proximal display (the inside corner with arrowheads). Gregory (1963) proposed that the 

presence of arrow-tails or arrowheads appended to the ends of lines present misleading depth 

cues when placed out of context. Figure 5-3 illustrates this misapplied size constancy scaling 

theory (reproduced from Gregory, 1966).  

 

Unpacking Gregory’s theory, there are a number of elements to consider. To provide a 

implementation of misapplied size constancy scaling theory in a model, one prerequisite may 

be for an artificial visual system to have some representation of depth. An artificial model 

may also need to view many examples of real world images, such as that presented in Figure 

5-3, in order to extract depth information. The previous statement is simply one interpretation 

of Gregory's theory. Some researchers may assert that exposure to 3D natural scenes is not 

mandatory for Gregory's theory to hold true, but that it is only necessary to retain the 

underlying image statistics inherent in such images and present these to an artificial neural 

network. Taking this interpretation based on image statistics, which is abstracted away from 

exposure to 3D scenes, infers that training a model by exposing it to artificial environments 

(such as those presented by Corney and Lotto, 2007) would equate to an implementation of 

Gregory's theory. Howe and Purves (2005a) demonstrate that the MLI can be driven by the 

statistics of object features coupled with their distances to an observer. Although they 

concluded that the MLI arises from the statistical relationships between visual stimuli and 

their real-world sources, they also demonstrated that straight-edged corners, such as those 

shown in Figure 5-3, contribute minimally to the MLI effect.  They conclude that while 

Gregory's intuition that linking retinal images to their sources is a main driver for the effect, 

straight-edged corners are not a dominating factor. 
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Figure 5-3: A visualisation of misapplied size constancy scaling theory, where “regions 

indicated by perspective as distant are expanded, while near regions are shrunk”. 
Reproduced from Gregory (1966). 

 

In this example, it is difficult to say whether Howe and Purves' (2005a) study supports the 

theory of misapplied size constancy scaling or not. Interpretation about the involvement of 

architectural influences is just one instance of determining the link between computer model 

results and support for or against a theory. Whether or not Howe and Purves' (2005a) study 

demonstrates support for Gregory's theory, this example highlights one of the benefits of 

computational modelling in light of theories in general. This work shows how computer 

models can expose assumptions (the necessity of straight edged corners) and push for more 

accurate definitions of theories.   

 



    176 
 
5.4.2. Extensions and limitations of the HMAX model 

5.4.2.1. Possible follow-up experiments on the Müller-Lyer illusion in HMAX 
 

There are a number of variations and manipulations of the Müller-Lyer (Brentano, 1892; 

Cooper and Runyon, 1970; Greist-Bousquet and Schiffman, 1981; Predebon, 1992, 1994) that 

could provide further comparisons between humans and artificial networks, or even between 

different models of explanation.  For instance, Predebon (1992, 1994) demonstrated a 

reversed Müller-Lyer effect when the wings of the figure were amputated from the centre 

shaft and displaced horizontally away from the shaft (see Figure 5-4). By testing these images 

using HMAX, we would be able to determine the extent to which modelling the MLI in 

HMAX is able to generalise to other forms of the illusion. If bias is produced in the model for 

modified forms of the MLI, we would again be able to separate the influence of statistics (at 

the input level) from the influence of filtering operations (at subsequent levels within 

HMAX), much like what was shown in Chapter 3 (Zeman et al., 2014). This would allow us 

to determine the extent to which the reversed form of the Müller-Lyer is driven by statistics 

versus determined by filter processing. If bias is observed within the model, we would also be 

able to test whether conjoined features, such as wings attached to the shaft, directly contribute 

to the MLI effect in the model, or whether the effect is more reliant on simpler features such 

as single or double lines. This second point emphasises the influence of higher-level features, 

and their corresponding neurological counterparts, on perception of the MLI. These 

experiments would elucidate more information about causes of the MLI. From our previous 

study, we found that the main driver of the MLI effect was the underlying correlations 

between feature statistics and line length estimation (Chapter 3, Zeman et al., 2014). We 

would be able to determine whether this explanation can be extended to account for reversed 

forms of the MLI, or whether a different explanation needs to be sought.  
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Figure 5-4: MLI configuration with wings displaced away from shaft  
(Predebon, 1992, 1994) 

 

5.4.2.2. Experiments on other illusions in HMAX  
 

We considered modelling other line length illusions in HMAX, such as the Ponzo illusion 

(Ponzo, 1911), which, like the Müller-Lyer illusion involves two parallel horizontal lines of 

equal length that are flanked on the outside by two converging oblique lines (see Figure 5-5 

top row). To test the Ponzo illusion using HMAX, we would construct a binary classification 

task, much like that presented in Chapter 2 (Zeman et al., 2013). We would present two cases 

to the machine learner: a long case, where the top horizontal line is longer than the bottom 

(Figure 5-5B), and a short case, where the top horizontal line is shorter than the bottom 

(Figure 5-5C). To measure the size of the illusion we would adjust the length of the inside 

horizontal lines (Fisher, 1968). Other manipulations of the outer oblique lines that have been 

shown to affect illusion strength in humans, such as their length, angle and distance to the 

horizontal lines (Jordan and Randall, 1987), could also be employed.  

 

Before testing any illusory figures using HMAX, a training set of images would need to be 

defined as well as a control image set. see Figure 5-5D provides one example of a training 

image that we predict would not induce any illusion but would expose a machine learning 
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algorithm to all possible features that may be present in any one image. As with the illusory 

test images, a number of aspects of the training images could also be manipulated, including 

the length of the inside lines, the distance between the inside lines, the length of the outer 

lines, the angle of the outer lines, the distance between the inner and outer lines, or the global 

positioning of the unified figure. Figure 5-6 demonstrates these manipulations using a series 

of example images. Once HMAX had completed training using these images, it would then be 

presented with a set of control images (see Figure 5-5 E, F) to ensure that it is able to 

complete a baseline task of line length judgment with an acceptable level of performance. 

Demonstration of the illusion in HMAX would provide evidence that feedback is not 

necessary to bring about the effect.  

 

The Ponzo illusion provides an interesting case in that it is classed within the same category 

as the Müller-Lyer according to Gregory (1963, 2005). Gregory (1963, 2005) assigns both of 

these illusions as being potentially caused by features that may indicate depth through an 

observer’s perspective. The Ponzo illusion is often referred to as the “railroad tracks” illusion, 

which immediately makes apparent the link between environmental images and the illusion 

(see Figure 5-7, reproduced from Gregory, 1968). In the Ponzo illusion, the horizontal line 

that would appear further away when laid on railroad tracks is perceptually enlarged 

compared to the horizontal line that would appear nearer. This relates again to Gregory's 

misapplied size constancy scaling theory, where visual depth cues can cause the enlargement 

or contraction of an object in order for the size of that object to be coherent its placement in 

3D space. However, just as with the Müller-Lyer illusion, there are conflicting accounts as to 

the source of the illusion. Prinzmetal et al. (2001) propose another theory to account for the 

Ponzo illusion, that they call tilt constancy theory. They propose that the Ponzo illusion is as a 

result of misperceiving orientation induced by local visual cues (see Figure 5-8, reproduced 

from Prinzmetal et al., 2001). They suggest that the mechanisms that normally help us 
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Figure 5-5: The Ponzo illusion (top row) with corresponding training and control images 
for testing in HMAX. The long case is where the top line is longer than the bottom line. 

The short case is where the top line is shorter than the bottom line. 

 

 

Figure 5-6: Some example training images for testing the Ponzo illusion in HMAX 

D. Training image 
example 

E. Control image 
(long example) 

A. Ponzo illusion 
(equal line lengths) 

B. Ponzo illusion 
(long test case) 

C. Ponzo illusion 
(short test case) 

F. Control image 
(short example) 
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perceive constant orientation despite changes in retinal or body orientation (tilt constancy) 

underlie the effect. Take Figure 5-8A, where the top dot appears to the left of the bottom dot 

due to the tilt induction effect. This effect also causes the top dot to appear slight to the right 

in Figure 5-8B. Combining these two effects causes the Ponzo effect in Figure 5-8C. Other 

explanations for Ponzo illusion are based solely on low-level mechanisms, such as low-pass 

filtering (Ginsburg, 1984). Ginsburg (1984) suggests that stronger weighting placed on low 

spatial frequencies over higher spatial frequencies is the main driver for the Ponzo effect. 

Ginsburg’s low-pass filtering explanation extends to other illusions, including the Müller-

Lyer (Ginsburg, 1978). Our study in Chapter 2 (Zeman et al., 2013) demonstrated that heavier 

reliance on low-spatial frequency information (large sized filters) over high-spatial frequency 

(small sized filters) information was not responsible for the Müller-Lyer effect we found in 

HMAX.  

 

By testing the Ponzo illusion in HMAX we can separate the influence of depth cues present at 

the input level from filtering mechanisms present within the network. If we are able to 

reproduce the Ponzo using HMAX, we can assert that misapplied depth cues are not necessary 

for bringing about the illusion, since the model does not account for any depth information. 

This allows us to rule out Gregory’s (1963) theory of misapplied size constancy scaling as a 

cause of the Ponzo illusion in the model. If bias for the Ponzo is present in the network, we 

can determine which features are primarily responsible for the effect. We can separate out the 

influence of low-spatial frequency information from high-spatial frequency information in 

making the final classification decision, much like that presented in Zeman et al. (2013). If 

low-spatial frequency information (shown by the activation of smaller-sized filters) receives a 

higher weighting than higher spatial frequency information (shown by the activation of large-

sized filters), then this provides support for Ginsburg’s (1984) account of the Ponzo illusion 
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in the model. To show whether the Ponzo effect was due to tilt constancy scaling, we would 

look at the orientation filters used to make a decision in the final classification layer. If heavy 

 

 

Figure 5-7: The Ponzo illusion overlaid on a set of railroad tracks.  

Reproduced from Gregory (1968). 

 

Figure 5-8: Prinzmetal et al.'s (2001) demonstration of the tilt induction effect as an 
explanation for the Ponzo illusion. A. The top dot appears slightly left to the bottom dot 

because of the tilt induction effect. B. The top dot appears slightly to the right of the 
bottom dot.  C. Combined together, the misplacement of the endpoints cause the Ponzo 

illusion. Reproduced from Prinzmetal et al. (2001). 

PONZO�AND�ORIENTATION�PERCEPTION 101

length�in�the�Ponzo�illusion�might�be�unrelated�to�orien-
tation�perception.�The�goal�of�this�paper�is�to�directly�test
this�account�of�the�Ponzo�illusion.

Our�account�of�the�Ponzo�illusion�is�part�of�a�more
general�theory�that�we�call�the�tilt�constancy theory (see
Prinzmetal�&�Beck,�in�press;�Shimamura�&�Prinzmetal,
2000).�We�will�present�the�theory�in�more�detail�in�the
General�Discussion�section.�Briefly,�by�tilt�constancy,�we
mean�the ability�to�perceive�vertical�and�horizontal�de-
spite�changes in�retinal�orientation.�We�have�also�called
this�approach�the�orientation�framing�theory�(Shima-
mura�&�Prinzmetal,�2000),�but�here�we�use�the�term�tilt
constancy�to�emphasize�the�adaptive�significance�of�the
mechanisms�that�underlie�these�illusions.�In�the�tilt�in-
duction�effect,�visual�cues�(the�oblique�lines)�cause�errors
in�the�perception�of�orientation,�but�generally�visual�cues
to�orientation�provide�veridical�and�stable�information

about�vertical�and�horizontal,�despite�changes�in�retinal
orientation.�Although�the�goal�of�the�present�paper�is�to
test�the tilt�constancy�theory�of�the�Ponzo�illusion,�we
will�suggest�in�the�General�Discussion�section�that�the
theory�can�also�account�for�a�number�of�other�illusions.

In�Experiment 1,�we�compared�the�magnitude�of�the
misperception�of�orientation�with�the�magnitude�of�the
Ponzo�illusion,�using�the�same�observers�and�almost�iden-
tical�stimuli.�This�experiment�illustrates�that�the�misper-
ception�of�orientation�is�of�the�appropriate�magnitude�to
account�for�the�Ponzo�illusion.

In�Experiments�2,�3,�and�4,�we�compared�our�tilt�con-
stancy�theory�of�the�Ponzo�illusion�with�previous�theo-
ries�of�this�illusion.�The�theories�that�we�considered�in
this�paper�are�(1) the�low-pass�filter�theory�(Ginsburg,
1984),�(2) the�assimilation�theory�(Pressey�&�Epp,�1992),
(3) a�size-comparison�theory�based�on�the�work�of�Kün-

A B C

Figure 3.�The�relation�between�the�tilt�induction�effect�and�the�Ponzo�illusion
is�illustrated.�In�panel�A,�the�tilt�induction�effect�causes�the�top�dot�to�appear
slightly�to�the�left�of�the�bottom�dot.�In�panel�B,�the�top�dot�appears�slightly�to�the
right�of�the�bottom�dot.�Panel�C�combines�these�effects�to�create�the�Ponzo�illusion.

Zöllner Ponzo

Figure 4.�The�relation�between�the�Zöllner�and�the�Ponzo�illusions.�The top�panel�illus-
trates�the�two�illusions�separately.�In�the�bottom�panel,�the�illusions�are�superimposed.�Note
that�the�direction�of�the�misperception�of�space�is�the�same�in�both�illusions.
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reliance is placed on the vertical orientation nodes in making a decision at the final layer, then 

this would indicate that Prinzmetal et al. (2001)'s tilt constancy scaling account is responsible 

for the illusion in HMAX.  

 

5.4.2.3. What illusions cannot be modelled in HMAX? 
 

One of the obvious restrictions of HMAX is that it is limited to feed-forward processing. 

While this constraint allows the model to be appropriate for the modelling of rapid visual 

classification (within the first 100-200ms) (Serre et al., 2007), HMAX would be unable to 

model any visual phenomena that require feedback or contain some form of temporal 

dynamics. Looking at Gregory’s (1997) taxonomy of illusions, we can generate hypotheses 

about which illusions can and cannot be simulated in HMAX. Gregory (1997) proposes four 

classes of illusion that are labelled as ambiguities, distortions, paradoxes and fictions (see 

section 1.X). We use each of these illusion categories as a rough guideline for investigating 

those that can be simulated in HMAX, identifying modelling requirements for emulating 

human performance within each category. If HMAX is not sufficient, we propose an 

alternative model that is capable of reproducing the illusion class.  

 

Illusions of ambiguity involve images that give rise to multiple percepts that change over 

time, despite the stimulus remaining constant (Gregory, 1997). For example, the Necker cube 

(Figure 5-9A) is a line drawing of a transparent-faced cube, where the surfaces that are 

perceived as the front and back switch with viewing time (Necker, 1832). Other ambiguous 

illusions include figure-ground illusions such as the Rubin face-vase illusion (Figure 5-9B), 

where depending on your assignment of the main figure versus the background, an observer 

can perceive either a face or a vase (Rubin, 1915). We consider what features would be 
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advantageous to model these illusions computationally. It would be favourable to be able to 

model the activation of the network across time, so as to demonstrate an oscillation between 

representations. For example, a network may switch from the face description to the vase 

description as being more likely at any given time point, without settling permanently on any 

one stable representation.  

 

 

Figure 5-9 Ambiguous Figures. a) Necker cube b) Face-vase illusion 

 

We turn our focus now to HMAX, to assess its suitability for modelling illusions of 

ambiguity. Within HMAX, the network may trigger multiple nodes that are activated layer by 

layer up to the C2 level. Then the final stage would select the most likely classification given 

the input, using a winner-take-all strategy. HMAX has no temporal modelling, so exposing 

the network to an ambiguous stimulus would produce a final percentage classification of the 

stimulus representing one percept versus another, e.g. the face versus the vase. This 

percentage split of classifications would be the metric used to assess the overall success of the 

model. A human experiment could be run that presents observers with discrete, brief-duration 

exposures of the face-vase that would be used to measure the percentage with which they 
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classify one percept versus the other.  The overall trial results of human observers could be 

compared to the classification split obtained when the model is presented with the same 

stimuli.  

 

Using HMAX to model ambiguous illusions, although possible, is far from an ideal. The 

limitation of HMAX in not being able to model fluctuations in network dynamics across time 

make it unsuitable as the best modelling approach for this class of illusions. Instead, models 

incorporating feedback would work best in this scenario. Probabilistic generative models, 

which we introduced in Chapter 1 Section 1.9.4, would optimally satisfy the prerequisites for 

modelling this class of illusions, being able to generate likelihoods for multiple 

representations based on the state of the network at each point in time. Examples of such 

probabilistic generative models include Lee and Mumford (2003), Kersten et al., (2004), 

Friston (2005a, 2008, 2010, 2012), Brown and Friston (2012), Brown et al., (2013).  

 

 

Illusions of distortion are those that produce a perceived enlargement or contraction of space. 

These illusions include the Müller Lyer (Figure 1-1A), which was successfully modelled in 

our first two studies. Others illusions of distortion include the Ponzo illusion (Figure 5-5A), 

discussed in Section 5.4.2.2. This class of illusions may be the simplest to model within 

HMAX, since the classifier can be trained to distinguish between categories. HMAX may in 

fact provide an integrated way to model some of these illusions, given that filtering-only 

explanations, or accounts based on natural scene statistics, may be sufficient. HMAX is 

predominantly useful in this scenario for exploring the interaction between these two 

explanations. Referring to other feedforward models, the SpikeNET architecture (VanRullen 

et al., 1998; Thorpe et al., 2001; VanRullen and Thorpe, 2001a, 2001b, 2002; VanRullen et 

al., 2005) would also be capable of modelling this type of illusion. However, as for HMAX, 
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emulation of the temporal dynamics of viewing the Müller-Lyer (Coren & Porac, 1984; 

Predebon et al. 1993; Predebon, 1998, 2006) would not be possible in such a feed-forward 

architecture. A generative model would be needed to capture the rates of decrement over time 

for both the arrowhead and arrow-tail forms of the illusion, as demonstrated in Predebon 

(2006). It would only be possible to model top-down effects, such as those of selective 

attention, using feedback models. Goryo et al. (1984) measured the effect of selective 

attention on Müller-Lyer figures, finding that attentional mechanisms increase bias to a 

greater extent for distortions of contraction versus expansion. A generative model would be 

needed to simulate the effect of top-down activation signals on the magnitude of illusory bias 

to compare with human results.  

 

Illusions of paradox are those that present an overall percept that is incoherent or impossible 

despite coherency being demonstrated at a local level. Paradoxes include the Penrose triangle 

(Chapter 1, Figure 1-1B) which illustrates coherent individual edges and corners of a 3D 

triangle that join to form an impossible 3D object (Penrose & Penrose, 1958).  In order to 

model paradoxes, a network would need to read in an image, activate nodes to generate a 

high-level representation of this input (e.g. a solid, 3D triangle) and then reactivate lower-

level nodes using feedback. A mismatch between nodes that are activated directly by the 

stimulus and nodes that are activated from higher levels in the network (also originating from 

that same stimulus) could indicate a paradox. Again, probabilistic generative models appear to 

be the most suitable solution for emulating human perception of this class of illusion. Using 

this type of model, lower-level activations would be generated based on higher-level 

representations in the network. The top-down activations or “fantasy” would then be used to 

assess the extent to which it matches up with the initial stimulus. The discrepancy between the 

fantasy and the stimulus would be quantified as a mismatch error. With coherent objects 

presented as input, there would be a small error term. For a paradoxical illusion, there will 
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always be a mismatch between input and fantasy, producing a recurring error given the same 

stimulus. For paradoxical objects, the error term would remain high. Feedback models would 

allow for the error term to be measured over time, propagating back and forth through the 

network and showing no resolution between top-down representations activated at higher-

levels and the bottom-up, stimulus-driven representations. Feed-forward models such as 

HMAX would not be capable of activating representations from higher to lower levels of the 

network and would therefore be unsuitable for demonstrating paradoxical illusions.  

 

Illusions of fiction are those that generate imaginary contours and surfaces that are not present 

in the stimulus. The Kanisza triangle is one example of an illusion of fiction, where three 

circles, each having a triangular cutout, are strategically placed so that the apices of their 

cutouts align like three corners of a triangle (Chapter 1, Figure 1-1D). Fictional illusions 

would once more be most suitably modelled in a probabilistic generative network, given that 

they would be able to generate phantom percepts through feedback mechanisms. Taking the 

Kanizsa triangle as our example, observers of the illusion perceive a large triangle that is the 

same colour as the background occluding the three circles. A model able to reproduce this 

percept would need to be capable of storing multiple object representations at once, would 

need to recognise that perceiving fully closed circles is more likely than perceiving circles 

with missing wedges, and then fantasise that the most likely explanation for viewing these 

objects is for a triangle to be present that occludes the other three objects. Feed-forward 

networks such as HMAX would be unable to generate fictional representations. However, it 

may be possible to train HMAX into recognising triangles, circles and other shapes and then 

test its ability to classify an object that is fictional.  

 

 In summary, we have analysed example illusions of fiction, paradox, distortion and 

ambiguity that constitute Gregory’s schema. As made evident in Chapters 2 & 3 (Zeman et 
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al., 2013, 2014), HMAX is able to model an illusion of distortion, namely the Müller-Lyer, 

and could be adapted to account for other variations of the Müller-Lyer (Section 5.4.2) as well 

as the Ponzo illusion (Section 5.4.2.2). As pointed out in the preceding paragraphs, HMAX 

however, would not be suitable for modelling other illusion classes. Instead, probabilistic 

generative networks or other feedback models would be required to model illusions of fiction, 

paradox and ambiguity.  

 

5.4.1. Extensions and limitations of the exponential filter model 
 

Our exponential filter model was able to demonstrate a range of lightness illusions (Chapter 4, 

Zeman et al., in submission), raising some follow-up questions: What other illusions could be 

predicted by this exponential filter model? Are there certain limitations within the model that 

would prevent the simulation of particular illusions? To address these questions, we first 

address some of the constraints of pre-cortical models before looking at certain classes and 

examples of illusions that could be reproduced within these networks.  

 

An obvious limitation of low-level visual models is in their capability to model complex 

features, for example, oriented edges and shapes. Interestingly, many of the illusions 

successfully emulated in the exponential filter model contained edges or enclosed shapes, 

such as the simultaneous contrast effect (Blakeslee & McCourt, 1999), the checkerboard 

illusion DeValois and DeValois (1988), radial White’s illusion (Anstis, 2003) and the 

Todorovic (1997) illusion. This highlights the independence between assessing lightness of a 

stimulus patch and more complex properties of the stimulus, such as the presence of edges or 

gratings. Therefore, illusions that contain edges or shapes can still be simulated using 
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exponential filters. We turn again to Gregory’s (1997) categories of illusions to explore 

whether certain classes of illusion are suited to this particular type of model.  

 

Gregory’s (1997) classification schema defines illusions not just by their appearance, but also 

by their proposed aetiology, separating physical explanations from cognitive ones. As 

mentioned previously in Chapter 1, Gregory defines four causes of illusions, divided into 

explanations that are based on optics, signal processing, the recruitment of domain-specific 

rules or object knowledge. Rule and knowledge-based explanations would involve cortical 

mechanisms and so would not be applicable here. We also rule out explanations that are based 

on optics (such as those that rely on the physics of light waves), since they are created outside 

of the system we are trying to model. Hence, illusions driven by signal processing are most 

suitable for modelling by low-level models such as our exponential filter model. We now look 

at specific examples of these illusion cases. Many of these examples are ruled out in the 

models that we recruit, since the scope of these networks does not involve motion or colour 

and would not receive multiple input images. However, some illusions that Gregory lists can 

be simulated within the exponential filter model, and we describe these below. 

 

We now turn to Gregory's examples of signal processing illusions, which involve low-level 

mechanisms. These include after images (where an image continues to appear in one's vision 

after exposure to the image has ceased) and the Café wall (where alternating black and white 

tiles separated by grey mortar induce tilt, as illustrated in Figure 5-10). Using a pre-cortical 

network, it may be possible to model both after images and the Café wall illusion. In order to 

simulate after images, it would be necessary to include a temporal component in a model in 

order to account for adaptation with the overstimulation of neurons. Therefore, the 

exponential filter model would not be suitable for modelling after images. The Café wall 

illusion (Gregory & Heard, 1979) provides an interesting example of induced perceived tilt 
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that is dependent upon the luminance of the mortar lines (see Figure 5-10). A closely related 

effect is the illusion of striped cords (Kitaoka, 1998), Figure 5-11, with additional variations 

of this ensemble of illusions being presented in Kitaoka et al. (2004). All of these stimuli 

could be presented to the model and filter values observed along tile intersections. Having an 

orientation read-out in a model would be necessary for simulating these tilted illusions. 

Taking a network such as HMAX, an image would be presented to it and the maximally 

activated neurons would indicate the most likely orientations within the image.  

 

 

Figure 5-10: The café wall illusion, reproduced from Gregory & Heard (1979), 

demonstrating how changes in luminance of mortar between the black and white tiles 
affects perceived tilt.  

 

Figure 5-11: Striped chord illusion, reproduced from Kitaoka (1998), demonstrating 
changes in luminance of the tiles or of the chord affects the magnitude of perceived tilt. 

 

Border locking and the Café Wall illusion 2

Figure 3. The Café Wall display, showing the basic effect of change of luminance of the mortar lines. The illusion is only present when the
mortar luminance lies between, or at least is not far outside, the luminances of the dark and light tiles. The mortar width was controlled with
spacers. (This model is made with squares of grey paper of two albedos, and not the white paper and retroreflecting material used in the
experiment.)

(ix) The wedge distortion never reverses for any changes of
luminosities. (The wedges do, however, reverse with half-cycle
shifts of alternate rows of the tiles as stated in the first ‘law’,
above.)

(x) The distortion is clearly greater in somewhat peripheral
vision (cf Moulden and Renshaw 1979), or for foveal vision when
the display is blurred by a weakly de-accommodating lens.

There is an indication that each tile is distorted into a separate
small wedge: a problem is why these are seen as a continuous long
wedge for each row, in alternate directions, though the figure has
only repeated small asymmetry of the displaced tiles. (This is
enantiomorphic symmetry, cf Shuhnikov and Koptsik 1974.)
Similar large scale distortions from repeated small-scale
asymmetries are found in many other illusions, such as the Fraser
figure (Fraser 1908).

(xi) The wedge distortion occurs over a very wide range of
visual angles for the display as a whole.

(xii) The distortion occurs over perhaps the entire working
luminance range of the eye.

(xiii) Tile distortion occurs only for narrow mortar lines; they
must not subtend more than about 10 min of arc (at high tile
contrast, less at low contrast) or the illusion is lost.

Figure 4. The apparent spiral is in fact concentric circles. This is
usually regarded as evidence of visual spatial integration, in this
case from misleading line elements.

1.3 Further observations

Dynamic effects occur while either the mortar-line luminance
or the luminance of the tiles is varied. The bounding borders of the
tiles are seen to move. They creep across the mortar during
luminance changes. Though a difficult observation, it seems that
the movement is greatest for the borders having the lower
boundary contrast with the mortar, as the mortar luminance is
varied between the tile luminances. This slight asymmetry of the
shifts of the borders is more easily seen when the tiles are
displaced a quarter of a cycle, to give a chessboard pattern. It is
clear by using colour contrast for the mortar, that this is not
merely loss of the mortar when it becomes isoluminant with the
dark or light tiles.

It seems to us very important to distinguish between the
dynamic shifts with luminance changes and the static
displacements observed at constant luminance. They could well be
effects or symptoms of different physiological processes, as, for
example, static wedge distortion does not increase with mortar
luminances not much darker than the dark or much lighter than the
light tiles; but this is not so for the dynamic shifts, which are
dramatic with extreme changes of mortar contrast. We shall
attempt a functional explanation—in terms of processes that seem
necessary for maintaining registration of borders. it is hoped that
underlying physiological mechanisms may soon be identified,
explaining how the functions are mediated.

1.4 Suggested explanation—the border-locking theory

For visual displays such as printing or television, it is
technically exceedingly difficult to obtain precise spatial
registration at borders, and where contrasting luminances or
colours should meet without gaps or overlaps due to
misregistration. These border discrepancies are annoying and
confusing. Registration may be achieved by high stability of the
mechanical or electronic components. but neural components are
relatively labile. This problem is exacerbated by the recent finding
(Zeki 1976) that visual characteristics such as luminance, colour,
and movement are ‘mapped’ in separate cortical regions. By
analogy with the display registration problem it is remarkable that
vision is normally free of spurious lines, gaps. or coloured edges
at borders where regions of different luminance or colour meet.

Visual registration does, however, seem to be lost in some
conditions: (a) with extremely high luminance contrasts,
especially at low luminance levels, and (b) for contrasting colours
presented with no or very small luminance differences
(isoluminance) (Gregory 1977). The former produces
discrepancies during image—retina movement, which is hardly
surprising, as under conditions of extreme luminosity contrast
retinal receptors have very different response times, which must.
during image—retinal movement, produce spatial discrepancies of
retinally signalled positions. Under the conditions of isoluminant
colour contrast. borders appear markedly ‘jazzy’ (an effect used, if
unwittingly, in Op Art) and at isoluminance there is instability and
there are relative shifts with movement. So we find similar



    190 
 
Moving away from Gregory's schema and turning to other examples of illusions that could be 

modelled in the exponential filter model, we turn our attention to what differentiates our 

model from other existing pre-cortical models. This allows us to distinguish which particular 

illusion predictions would differ in our model compared to others. The filters used in our 

model (Chapter 4, Zeman et al., in submission) are differentiated from DOG filters in one key 

way – the exponential filters that we recruit are anisotropic (Basu and Su, 2001). This may 

have an impact on oriented forms of lightness illusions, some of which have been shown to be 

influenced by the angle at which they are presented. Examples of tilted lightness illusions 

were mentioned earlier in Section 5.3.3, including the tilted Hermann Grid (de Lafuente and 

Ruiz, 2004), the scintillating grid illusion (Qian et al., 2009) and the jaggy diamonds illusion 

(Kawabe et al., 2010). Let's take as an example the Hermann Grid illusion (Figure 5-2), where 

a set of vertically and horizontally aligned black squares on a white background can induce 

phantom grey areas at intersections (Hermann, 1870). The Hermann Grid illusion has been 

shown to be orientation dependent, with the effect at oblique angles being roughly a third of 

the magnitude compared to presentations with horizontal and vertical configurations (de 

Lafuente and Ruiz, 2004). A model with isotropic filters would fail to predict differences in 

magnitude for tilted configurations. Blakeslee and McCourt (1997) demonstrate predictions 

for the standard form of the Hermann Grid in their original DOG model, but they did not test 

the Hermann Grid at oblique orientations, nor did they assess any form of the illusion in 

subsequent ODOG models. It would be interesting to see whether the ODOG model with 

oriented filters would be capable of predicting both the standard and tilted forms of the 

Hermann Grid.  

 

5.5 Applications for computer modelling of illusions 

5.5.1. Autonomous systems and engineering applications 
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The possibility for computer vision systems to misjudge the size or length of objects has 

implications for distance judgments in computerised systems that depend upon camera 

information. Automated navigation and landing systems rely on sensory information to 

calculate distances to known objects and orientate themselves within the environment. In 

recent years, driverless cars, such as the Google car, have been heavily researched and tested, 

motivated by providing one of the safest transport options, removing dangers for motorists 

and pedestrians on top of reducing traffic congestion and fuel intake (Guizzo, 2011). 

Driverless vehicles use mounted camera images alongside radars, GPS and wheel sensors to 

calculate the position and orientation of the vehicle (Guizzo, 2011; Whitwam, 2014). The 

heights of objects that are aligned with straight-edged features, such as roads, trees or 

buildings, could be calculated incorrectly by an artificial visual system and therefore provide 

erroneous information to the navigation systems.  

 

In our second study (Chapter 3, Zeman et al., 2014), we demonstrated a reduction in errors 

(measured as bias and uncertainty) through modelling the MLI in HMAX. We found that 

operations performed by complex cells reduced bias and uncertainty errors in the majority of 

cases. We hypothesised that by capitalising on the properties of complex cells, that is, 

increasing the level of positional variance in input images, we would be able to produce a 

similar pattern of error reduction. This hypothesis was confirmed, as both bias and uncertainty 

decreased. Other artificial systems that require accurate length estimations may also benefit 

from increasing variance in their training images and recruiting complex cell operations 

within their network. By taking into account potential misjudgements related to illusions of 

line length, these systems could learn to compensate for such errors and provide systems that 

are more accurate and more reliable, and therefore safer.  

 



    192 
 
5.5.2. Links with psychological disorders  

Visual illusions are a useful tool for assessing the integrity of basic sensory processing 

mechanisms for people with psychological disorders (Happé, 1996; Ropar and Mitchell, 

1999; Silverstein & Keane, 2011; Notredame et al., 2014). Furthermore, they also present a 

way to quantify the effectiveness of ongoing treatment. By simulating illusions using 

computer models of the visual system, it may be possible to manipulate parameters within an 

artificial network to reflect some of the compromised visual processing mechanisms 

associated with particular cognitive disorders. By matching models to the visual experiences 

of clinical populations, we can gain a deeper understanding of these disorders, make 

predictions for other visual experiences of clinical populations and ultimately provide support 

for and against theories of these disorders.  

 

In this section, we look at schizophrenia as our main example, since both the Müller-Lyer 

illusion and lightness illusions have been extensively studied in these populations. People 

with schizophrenia have been shown to have greater susceptibility to the Müller-Lyer illusion 

compared to non-schizophrenic mental patients and normal populations (Weckowicz and 

Witney, 1960; Letourneau (1974), Capozzoli & Marsh, 1994; Pessoa et al., 2008; Kantrowitz 

et al., 2009). By greater susceptibility, we mean that schizophrenics demonstrate larger biases 

(measured as PSEs) compared to non-schizophrenics. As a result of these early studies, some 

visual illusions, including the Müller-Lyer, were considered as effective diagnostic tools of 

schizophrenia, over more subjective, verbal assessments (Cromwell, 1975; Cromwell & 

Pithers, 1981; Pessoa et al., 2008).  

 

In the last decade, however, most of the findings that schizophrenics have increased levels of 

bias for visual illusions have been overturned. Researchers have shown that schizophrenics 

can also demonstrate reduced susceptibility, or even a complete eradication of bias, for other 
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illusions than those mentioned previously (Dakin et al., 2005; Dima et al., 2009; Kantrowitz 

et al., 2009; Barch et al., 2012; Notredame et al., 2014). Dakin et al. (2005) was one of the 

first studies to demonstrate reduced bias in a contrast-contrast illusion, where a textured 

annulus perceptually appears to have a reduced contrast level when surrounded by an outer 

textured annulus, compared with no surround. Follow-up neurological studies demonstrated 

that reduced bias for the contrast-contrast illusion was predominantly a result of reduced 

contrast surround suppression for schizophrenics (Fogelson et al., 2011, Seymour et al., 

2013). Dima et al. (2009) found that schizophrenics do not experience the hollow-face 

illusion. Later follow-up studies explored the neurological components of this finding, that it 

was due to impaired top-down processing (Dima et al., 2010, 2011). These recent studies 

investigating illusions in schizophrenics demonstrate two key points. Firstly, that illusions 

provide a useful diagnostic tool for schizophrenia, taking into account increased or reduced 

bias levels that is dependant upon the illusion presented. Secondly, that illusions can provide 

insight into the neural processing of clinical populations.  

 

We now consider the models and illusions that have been studied in this thesis in light of 

schizophrenia. Reflecting on our work in modelling the Müller-Lyer illusion in HMAX, it is 

possible to manipulate levels of lateral inhibition and decrease these to reflect the reduced 

levels that have been proposed to be the main cause by Must et al. (2004), Dakin et al. (2005) 

and Robol et al. (2013). Robol et al. (2013) suggest two main forms of inhibition to be 

considered for visual modelling of schizophrenics: local, tuned suppression and long-range 

intrinsic inhibition. In some preliminary experiments that were run to determine the optimal 

levels of long-range inhibition between neurons in HMAX, we found that the default setting 

provided the highest level of performance for the control task. When levels of long-range 

inhibition were lower or higher that the default setting in HMAX, we found that the 

percentage of correct classifications fell for the control task in the model. Interestingly, 
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reduced levels of long-range inhibition may also reflect the general poor performance of 

schizophrenics in performing low-level visual tasks (Robol et al., 2013). After reducing 

lateral inhibition levels in the model, we could observe the levels of bias and uncertainty for 

the Müller-Lyer and determine whether these increase, in line with the work of Weckowicz 

and Witney (1960), Capozzoli & Marsh (1994), Pessoa et al. (2008) and Kantrowitz et al. 

(2009). Kantrowitz et al. (2009) present one of the most recent studies on the MLI in 

schizophrenics, demonstrating the effect of contrast on a series of line length illusions, 

including the MLI and Ponzo illusions for schizophrenics versus controls. Kantrowitz et al. 

(2009) reported that increasing contrast levels for the MLI decreased susceptibility to the 

illusion and that increasing contrast levels for the Ponzo increased susceptibility for healthy 

populations. Comparing this result to schizophrenics, increasing the contrast levels of these 

illusions showed an increased bias for the Müller-Lyer and a decreased bias for Ponzo, when 

compared with the control group. It is possible to manipulate contrast levels for the training 

and test stimuli in HMAX, allowing us to see if the effect of increasing contrast shows a 

similar trend in the machine learner as it does in humans. This would allow us to compare 

model results for both healthy and clinical populations. In HMAX, lateral inhibition levels can 

also be altered, opening up further experiments to test the relationship between illusion 

susceptibility and modified neural mechanisms using a computational model. This would 

allow us to investigate not just the effect of compromised forms of neural inhibition on 

illusory bias, but it would also allow us to observe the interaction between statistical 

properties inherent in images and the operations on these. This may provide insight into the 

visual functioning of schizophrenics, in determining whether image statistics, neural 

operations, or a combination of these two factors lead to alterations in illusion susceptibility. 

 

Regarding the exponential filter model, one feature that we can manipulate is the gain control 

that forms part of the normalisation step (Chapter 4, Zeman et al., in submission). We now 
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consider lightness illusions that are thought to be dependant upon gain control mechanisms to 

see whether modelling these can provide insight into the visual mechanisms of 

schizophrenics. Schizophrenics have been shown to be less vulnerable to one such 

phenomenon known as the contrast-contrast effect or Chubb illusion (Dakin et al., 2005 and 

Barch et al., 2012). The Chubb illusion (Chubb et al, 1989) involves a textured patch with a 

uniform grey surround (Figure 5-12A), which appears to have a higher contrast than an 

identical patch with a high contrast surround (Figure 5-12B). The spatial frequency of the 

surround affects the lightness perception of the target patch, in that changing the surround 

from high (Figure 5-12B) to low spatial frequency (Figure 5-12C) eliminates the effect. Olzak 

and Laurinen (1999) demonstrate that multiple gain control processes are present in the 

Chubb illusion and Zenger-Landolt & Heeger (2003) link the Chubb illusion to levels of gain 

control in V1 using fMRI. Dakin et al. (2005), Barch et al. (2012) and Robol et al. (2013) 

have studied the contrast-contrast illusion in schizophrenics and have put forward weak gain 

control mechanisms as an explanation for why they are less vulnerable to the illusion.   

 

 

 

Figure 5-12: The Chubb effect, reproduced from Figure 1, Lotto and Purves (2001). The 
target patch in A is the same contrast as the centre patch in B, although the target patch 

in B appears to have a lower contrast. Manipulating the spatial frequency of the 
surround can eliminate the effect (C).  

 

generate successfully guided behavior in a wholly em-
pirical manner (see review by Purves et al., 2001).
Consistent with this hypothesis, the brightness, satura-
tion, and/or hue of identical targets can be changed
dramatically by making the overall stimulus more con-
sistent with the targets being different objects under the
different illuminants, or, conversely, by making the
stimulus more consistent with similar objects under
similar illuminants (Lotto & Purves, 1999; Purves et al.,
2001; Williams et al., 1998a, 1998b).

These demonstrations and their interpretation have
focused on the effects of changing the probable con-
tribution of reflectance and/or illumination to the
stimulus. Here we test whether changing the probable
contribution of transmittance to stimuli affects percep-
tion in a similarly predictable manner. The reason for
considering the Chubb effect in this argument, in
addition to its intrinsic interest, is the similarity of
the Chubb stimulus to the stimuli used by Metelli
(1970, 1974) and Metelli, da Pos, and Cavedon (1985)
to induce illusory perceptions of ’transparency’ . The
following experiments therefore test whether the
Chubb and related stimuli can be successfully explained
in terms of experience with the effects of transmittance
on light stimuli.

The Empirical Consequences of Imperfect
Transmittance

All scenes viewed at the surface of the earth are seen
through media that, to a greater or lesser degree, affect
the amount of light that reaches the eye from the
relevant objects. Although the relative clarity of the
atmosphere minimizes the effects of transmittance in

most circumstances, viewing objects at a distance, near-
by objects in fog or smog, or through semitransparent
liquids or solids (e.g., water or glass) are all frequent and
consequential factors in determining the spectral prop-
erties of the light that ultimately falls on the retina and
initiates perception.

The effects of imperfect transmittance are illustrated
in Figure 2. If, for example, two target surfaces reflect,
respectively, 80% and 30% of the incident light (Figure
2A), the return from the more reflective surface in
perfectly transmitting conditions will be greater than
the return from the less reflective surface by a ratio of
8:3 (’ ’Ratio-1’ ’ in Figure 2A). If, however, the same
surfaces are viewed through an imperfectly transmitting
medium, this ratio is reduced (’ ’Ratio-2’ ’ in Figure 2A).
Although the interposition of such a medium reduces
the amount of light coming from the affected surfaces
proportionally, some light is also added to the luminan-
ces attributable to the two surfaces in question. The
latter effect occurs because the medium also reflects
light to the eye (see Figure 2A). Since this reflected light
is added equally to any return from a surface viewed
through the medium, the luminance attributable to the
less reflective target surface is always increased to a
greater degree than the luminance associated with the
more reflective surface. As a result, the difference in the
luminance of the two target surfaces is reduced, in this
example from a ratio of 8:3 in perfect transmittance to
about 7:5 (see also Metelli, 1970, 1974; Metelli et al.,
1985).

In short, an imperfectly transmitting medium, irre-
spective of its particular properties, always reduces the
luminance differences between differently reflective sur-
faces seen through the medium. If perceptions are

Figure 1. The Chubb effect. A
’ target’ pattern embedded in a
surround of higher luminance
contrast (A) appears to have
more contrast than when the
same pattern is placed in a
uniform surround of the same
average luminance (B). This
effect does not occur, however,
if the spatial frequency of the
surround is made lower than
that of the spatial frequency of
the target (C). Nonetheless,
lower spatial frequency patterns
are perfectly capable of indu-
cing the Chubb effect (cf. D and
E), as long as the patterns are
continuous across the target
surround boundary (cf. E
and F).
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Within our model, it is possible to manipulate the levels of gain control and observe 

differences in luminance values of the centre target patch. Looking at examples of the Chubb 

illusion in Figure 5-12 (reproduced from Lotto and Purves, 2001), it would be possible to 

create stimuli using combinations of A, B and C to compare the effects of surround contrast 

and spatial frequency on the target patch. To assess the model’s ability to account for the 

Chubb effect, we would measure the output lightness values for the two different luminances 

in the target patches, and calculate a single perceived contrast measure using these values. If 

the exponential filter model is successful in simulating the contrast-contrast effect, this would 

imply the possible involvement of pre-cortical areas. While levels of gain control for the 

Chubb illusion have been linked to V1 (Zenger-Landolt & Heeger, 2003), this does not 

eradicate the involvement of earlier areas such as LGN or the retina. To demonstrate the 

effect in a V1-like model, it would be more appropriate to use Gabor filters with surround 

suppression. 

 

5.6 Closing Remarks 
 

The interdisciplinary nature of this research lends itself to improving machine learning 

techniques as well as gaining a better understanding of psychological processes. While it 

should be acknowledged that demonstrating an effect in one model does not guarantee that the 

same causes are responsible for the same effect in another system, by simulating visual 

illusions in computational models we have eliminated the necessity of some causes. For 

example, depth information is not necessary to bring about the MLI, because we can simulate 

the illusion in a model that does not account for depth (Chapter 2, Zeman et al., 2013).   
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In addition to eliminating some of the necessary causes behind an illusion (Chapter 2, Zeman 

et al., 2013), we have identified potential sources of bias that may help to improve automated 

computer vision systems (Chapter 3, Zeman et al., 2014). We hypothesise how potential 

biases can be overcome, which we then demonstrate in practice (by increasing positional 

variance in the stimuli to reduce illusory errors of bias and uncertainty). The ability of this 

technique to reveal potential flaws in, for example, automated navigation systems, and to 

suggest ways to reduce and even eliminate these biases is just one future application of the 

work presented in this thesis.   

 

In our final study, we demonstrate how low-level filtering techniques, inspired by the contrast 

statistics of natural images, can account for a large repertoire of lightness illusions (Chapter 4, 

Zeman et al., in submission). By applying filters of different shapes as well as different sizes, 

we expand on the current literature that already demonstrates the large influence of low-level 

processing on lightness illusions. The exponential filters we employ are not orientation 

selective, demonstrating that V1-style operations are not required to account for many 

lightness illusions. 

 

As a whole, this dissertation highlights many advantages in applying computational modelling 

to the study of visual illusions. Together, the studies within this thesis demonstrate that the 

proposed causes of visual illusions can be separately tested and assessed within a model for 

their impact on illusory bias and uncertainty. Importantly, through the use of computational 

models, we are able to identify some of the factors that are not necessary for bringing about 

certain visual illusions. 
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