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Abstract

Human activity recognition (HAR) is a key application on wearable devices in the

areas of fitness tracking, healthcare and elder care support. However, inaccurate

recognition results may cause an adverse effect on users or even an unpredictable

accident. Therefore, it is necessary to improve the accuracy of human activity recog-

nition. This thesis aims to provide effective and efficient HAR methods to address

main challenges of HAR, which can be divided into the following three contributions.

The first contribution is a novel feature extraction and selection algorithm that ad-

dresses the interclass similarity problem in the confounding activity recognition.

The second contribution is a novel approach of leveraging local and global features,

which addresses both the intraclass variability and interclass similarity problems in

HAR. The third contribution is a multiscale feature engineering approach, which

leverages local and global features and addresses the negative effect on HAR caused

by users’ different habits. For the proposed approaches, extensive experiments

have been conducted on real datasets or real scenarios. The experiments have

demonstrated the proposed methods are superior to the state of the art.
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Chapter 1

Introduction

Human activity recognition (HAR) using wearable devices has been widely used in

personal use as well as in industries. According to [6], the total market for wearable

devices will reach over $170 billion by 2026. With this increasing popularity of

wearable devices, it becomes important to assess the feasibility of developing HAR

applications for general public based on wearable devices. However, misleading

or false reports may cause an adverse effect on users. It could make a bad user

experience on wearable fitness tracking system. It may also interfere with clinical

decision making if the application poorly discriminates between normal and abnor-

mal users. Worse still, inaccurate recognition results could lead to life-threatening

accidents. This happens especially in assisted living for older people if a genuine fall

is not detected. Therefore, I need to adopt the technology into any mission critical

real-world applications with high accuracy of HAR. However, to achieve satisfactory

accuracy in HAR is very challenging as human activities are highly complex and

diverse.

1.1 Challenges in Human Activity Recognition

The fundamental challenge in HAR is that human daily life activity is highly complex

and diverse which can interfere with the reliability and accuracy of HAR.

1. Intraclass variability problem in the same activity recognition.

In real world scenario, same activity can be performed differently by different

1
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Fig. 1.1. Comparison of the movement patterns

individuals or even by the same person. For example, an activity such as

walking upstairs (as shown in Fig.1.1 (a)) is performed by two different

individuals. From this figure, it can be seen that the activity remains the

same but the performing manner is different. The difference in the change of

the signal patterns can be seen when the same activity is performed by two

different person. Similarly, smoking style while standing and sitting may be

more dynamic (as shown in Fig.1.1 (b)). The change in the signal patterns

clearly shows how the same activity varies even if it is performed by the same

individual. Thus, in real world, the performing manner of the same set of

activity may vary from person to person or even by the same person.

2. Interclass similarity problem in the confounding activity recognition.

Another challenge is to detect those activities that are fundamentally different

but show very similar characteristics in the sensor data. For example, activities

such as smoking and drinking (as shown in Fig.1.1 (c)) involve similar arm
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movement patterns but are completely different set of activities. From the

Fig.1.1 (c), it can be seen that the activities are different but the arm movement

manners are similar. The signals generated from the arm movement appear

similar when both the activities are performed. Such close similarity can

often only be resolved by using additional cues captured by different sensors

or by analyzing co-occurring activities. Thus, in real world, the performing

manner of different set of activities may have similar patterns irrespective of

the person.

3. Different habits cause a negative effect on HAR.

Furthermore, different people have their own habits which may cause a

significant effect on HAR, contributing to a unstable classification result. The

reason is that the sensitivity of sensors’ orientation changes. Sensor-based

HAR applications are sensitive to some of the sensors’ orientation changes.

With the lack of orientation independence, users are required to place the

sensors, such as the accelerometer and gyroscope, in a specific orientation,

which limits their freedom to use these devices. For example, results of the

same set of activities vary when the sensors are attached at different body

locations. In Fig.1.1 (d) , the same set of activities are performed using a

wearable sensor. In the first case, the sensors are attached in front of the wrist

whereas in the second case, it is attached to the back of the wrist. The user

performs the same activities in both cases but the signal patterns generated

are not similar. Thus, the sensors’ orientation changes are important factor to

consider while developing a real world HAR applications.

1.2 Contributions of the Work

In order to address the above significant and challenging problems in HAR, this

thesis makes three major contributions.
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1. The first contribution of this thesis is a novel feature extraction and selec-

tion algorithm for confounding activity recognition.

(a) To address the interclass similarity problem in the confounding activity

recognition, I design orientation features and rotation features, and evaluate

the performance of confounding activity recognition using orientation and

rotation features, both alone and in combination.

(b) I propose an ensemble feature selection mechanism for selecting the most

relevant features and discarding those irrelevant or redundant, with the main

goal of reinforcing the classification accuracy. Four commonly-used feature

selection approaches are used to develop the ensemble feature selection

machine, which are ‘Distance Correlation Coefficient’, ‘Randomized Lasso’,

‘Ridge’, and ‘Recursive Feature Elimination’.

Experiments conducted on real world datasets illustrate that on average, my

methods can recognize the confounding activities with higher accuracy than

the existing methods.

2. The second contribution of this thesis is a novel approach of leveraging

local and global features to detect human daily activities.

(a) To address both the intraclass variability problem and interclass similarity

problem, I propose countable and uncountable activities to better facilitate

the understanding of human activities.

(b) I implement a prototype utilizing a smart phone and a wearable device to

collect the data of countable activities.

(c) I design global and local features and their leveraged feature set for

classifying countable and uncountable activities. The key idea is to examine

human activities from different perspectives.

Using one self-collected and another public dataset, my approach is evaluated
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to recognize human daily activities with higher accuracy than the state of the

art using only one accelerometer.

3. The third contribution of this thesis is MFE-HAR: a multiscale feature engi-

neering approach for human daily life Activity.

(a) I improve my previous work about leveraging local and global features

to detect human daily activities. I represent the global features through

a comprehensive analysis on acceleration, angular velocity, position, and

orientation of body movement; and design the local features based on the

characteristics of gesture’s orientation.

(b) I address the problem referring to the different habits cause a negative

effect on HAR through extracting features from the Quaternions which are

orientation insensitive.

I conduct an empirical study which shows that MFE-HAR approach is effective

for HAR compared with the state of the art.

1.3 Roadmap of the Thesis

This thesis is structured as follows:

• Chapter 2 provides a comprehensive literature review of the state of the art

in HAR.

• Chapter 3 proposes a novel feature extraction and selection algorithm for

confounding activity recognition. This chapter is based on the published paper

[3].

• Chapter 4 proposes a novel approach of leveraging local and global features

to detect human daily activities. This chapter is based on the under review

paper [4].



§1.3 Roadmap of the Thesis 6

• Chapter 5 proposes a multiscale feature engineering approach for human

daily life Activity. This chapter is based on the under review paper [5].

• Chapter 6 concludes the work in this thesis and discusses some directions for

future research opportunities.



Chapter 2

Literature Review

2.1 HAR Using Multi-device Based Approach

In human activity recognition using multi-Device based Approach, people wear

multiple devices simultaneously on different parts of the body. Several works have

been done for improving the accuracy of HAR using multi-device based approach. In

[7], the authors used five biaxial accelerometer devices worn on different parts of the

body for 20 activities recognition. Their experiment result reached an overall mean

recognition rate of 80.0%. In their study, they also proposed an additional device on

the thigh to increase the mean recognition rate. Similarly in [8], the authors used

four wearable devices placed on the wrist, chest, hip and ankle. They recognized

activities such as sitting, lying, standing, vacuuming, walking, ascending stairs, and

descending stairs. They achieved an overall mean recognition rate of 93.9%. Most

of multi-device based approaches achieve impressive results in HAR due to the

comprehensive descriptions of an activity from the devices placed on different parts

of the body. However, a multi-device based HAR system is not easy to wear on a

daily basis. Besides, this approach is usually inefficient in terms of manufacturing,

maintenance, and incurring importantly more power usage. Therefore, it is not

ideal for real-world applications. In comparison, single-device based approach is

more practical to be used in daily life.

7
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2.2 HAR Using Single-device Based Approach

Compared with the multi-device based approach which can obtain comprehensive

descriptions of an activity from the wearable devices placed on different parts of the

body, single-device based approach has the limitation in terms of the data diversity.

Therefore, a few solutions have been developed rely on the single-device based

approach to improve HAR accuracy.

2.2.1 Deep Classification Model Approach

Some studies applied deep learning classification models like convolutional neural

network (CNN), deep neural network (DNN), and long short-term memory (LSTM)

to improve the accuracy of HAR. In study [9], the authors used deep learning

approach for human activity recognition using wearable devices. They proposed

deep, convolutional and recurrent models, and evaluated their models using three

datasets. Their classification results achieved mean f1-score of 90.4% in DNN, 93.7%

in CNN, 88.2% in forward LSTM, and 86.8% in bi-directional LSTM. It demonstrated

that deep learning approaches outperformed the state of the art classification models.

However, these complex models require large dataset for training, and their training

costs are often very expensive to incur high computation overhead. Moreover,

although the deep classification models give extraordinary predictive abilities, they

are more like black box models which make them very difficult to understand and

trust. In IoT, especially in the Internet Of Medical Things (IoMT) domain, people

need to demystify the complex black-box models and improve transparency and

interpretability to make them more trustworthy and reliable so that the medical

investigators can understand the main features that affect the outcomes and be able

to explain the medical decisions that are made by an decision model. Therefore,

deep classification models impose unrealistic constraints on the wearable HAR

systems. Since the classification results are determined collectively by the chosen
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models, the available dataset and the extracted features [10], I am more leaning

towards a feature engineering based approach which does not require complex

classification models or large datasets.

2.2.2 Feature Engineering Approach

In the feature engineering approach, people use domain knowledge of human

activities to create features that make HAR algorithms work. The features in the

sensor data are important to the predictive models people use and will influence the

results people are going to achieve. The quality and quantity of the features will have

great influence on whether the classification model is good or not. Better features

could produce simpler and more flexible models, and they often yield better results.

In [11], the authors selected a dataset collected from 10 participants with 13 daily

life activities (e.g., walking and jogging) from a smart wristband. They extracted

motion features, orientation features and rotation features from accelerometer and

gyroscope, respectively, and their feature set achieved highest accuracy of 89% in

Random Forest. In another study [12], the authors used accelerometer sensors for

various forms of smoking activities detection, such as smoking while sitting and

smoking while standing. In their evaluation, 51 candidate features from a wrist

device were computed which are largely statistical (e.g., mean, standard deviation,

maximum, minimum, median, kurtosis, skew, percentile, SNR and RMS of each

window, peak-peak amplitude, peak rate, local peak point, correlation coefficients,

crossing rate between axes, slope, MSE and R-squared). Their classification result

was impressive with 95% accuracy (F1-score) as they successfully captured the

nature of smoking activity. In [13], they used feature selection techniques to improve

recognition accuracy. In their study, the authors designed 21 statistical time-domain

features and then applied the non-parametric weighted feature extraction (NWFE)

combined with the principal component analysis (PCA) to select features to train a

LS-SVM classifier. Their experiment showed that the classifier with features selected
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by PCA combining NWFE achieved the best performance (99.65% accuracy). A

feature-engineering based approach can be an alternative to improve the accuracy

of HAR, which does not require a deep classification model, does not require

large dataset (which are often not available or inaccessbile), and gives a good

understanding about feature importance. As the result, I intend to incorporate

the feature engineering with single-device approach into a real-world project to

investigate its applicability with more complex scenarios at real-time.



Chapter 3

A Novel Feature Extraction and
Selection Algorithm for Confounding
Activity Recognition

In my first work [3]1, I propose a novel feature extraction and selection algorithm

to address the interclass similarity problem in the confounding activity recognition.

3.1 Confounding Activity Dataset Development

Fig. 3.1. Arduino 101 based sensor device used for capturing data of hand motion
related confounding activities.

I design smoking, drinking, eating, scratching head and biting nails as my

target confounding activities. During the data collection, five participants (age

1 This chapter is based on the published paper [3]. The other co-authors are contributing to the writing
of the paper while the supervisor is involved with the motivation, design and results discussion of
the paper. I am responsible for the solution, implementation and experimentation.

11
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range: 30−35) take part in my data collection experiments and each activity is

performed around 5 minutes. All participants perform these activities alone and

in a controlled environment. The raw sensor data is collected by using on-board

six axis accelerometer and gyroscope from an Arduino 101 development board in

the form of a wrist band as shown in Fig.3.1. The accelerometer and gyroscope

are ranged at ±2G and ±250 degrees, respectively, with a calibration before data

collection. All the raw data are sampled at 20 Hz with minor variations based on

on-board clock accuracy.

3.2 Feature Extraction and Selection

3.2.1 Feature Extraction

In this section, I design three groups of features including (1) acceleration based

orientation features, (2) angular velocity based orientation features and (3)

Euler angles based rotation features. The orientation features are computed from

the accelerometer and gyroscope measurements, where the accelerometer is used

to measure the orientation with respect to gravity and the gyroscope is used to

measure the angular velocity. In addition, I calculate the Euler angles (pitch, yaw,

and roll) from the accelerometer and gyroscope values. And then rotation features

are calculated from pitch, yaw, and roll, respectively.

The magnitude of acceleration and the magnitude of angular velocity are utilized

for the extraction of orientation features, and the magnitude of Euler angles is used

for the extraction of rotation features. They are calculated by square-root of the

sum of the squares of readings in each accelerometer axis, gyroscope axis, and pitch,

yaw, and roll, respectively. Fig.3.2(a) summarizes the features I designed in this

work. All these features are extracted under a window size of 30 seconds with 50%

window overlapping.



§3.2 Feature Extraction and Selection 13

(a) (a) (b) 

Fig. 3.2. Feature extraction and selection

3.2.2 Feature Selection

A total of 165 features are extracted in this work including 55 orientation accelerom-

eter features, 55 orientation gyroscope features and 55 rotation features. However,

not all of them are useful for the confounding activity recognition due to the fact that

these features can be relevant (the features that have influence on the evaluation)

or irrelevant (the features have no effect on the evaluation). In order to find the

relevant feature subset from the entire feature set and increase the efficiency of the

machine learning algorithm (prediction), I borrow the idea from ensemble learning

algorithm, and then design an ensemble feature selection mechanism for the feature

selection as shown in Fig.3.2(b). Four commonly-used feature selection approaches

are used in the ensemble feature selection procedure to reinforce the result, which

are ‘Distance Correlation Coefficient’, ‘Randomized Lasso’, ‘Ridge’, and ‘Recursive

Feature Elimination’. After the entire feature set is fed to the ensemble feature

selection process, each feature is graded by each of the above four approaches. I

scale each feature score to a range from 0 to 1 and then calculate the mean score
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for each feature. I sort the mean scores and the unique features corresponding to

the highest 15 mean scores are selected as the relevant features.

3.3 Performance Evaluation

For the performance evaluation, a stratified 10 fold cross-validation without shuf-

fling approach is applied. I compute the accuracy, precision, recall and F1-measure

for each estimator. In this study, I evaluate the performance obtained from three

ways, using only the accelerometer measurements, using only the gyroscope mea-

surements, and using both the accelerometer and gyroscope measurements.

3.3.1 Recognition with Accelerometer

In this section, a total number of 55 orientation features are extracted from the

acceleration. Fig.3.3 shows the feature selection result using my feature selection

procedure. 18 features are selected from 55 features according to their mean score

(unique features of top 15 scores were selected). In Table 3.1, the results with SVM

Fig. 3.3. Selected features with mean scores (Accelerometer)

classifier are presented. All activities except eating activity present a low accuracy.

The average F1-score for all activities is 63% while F1-scores for each activity are
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Table 3.1: Accuracy performance for each activity by SVM (Accelerometer)
Accuracy Performance By SVM

Activities Precision Recall F1-score
Smoking 0.47 0.5 0.48
Drinking 0.42 0.71 0.53
Eating 0.9 0.82 0.86
Biting Nail 0.62 0.5 0.56
Scratching Head 1.00 0.62 0.77
Average 0.67 0.62 0.63

Table 3.2: Accuracy performance for each activity by RF (Accelerometer)
Accuracy Performance By RF

Activities Precision Recall F1-score
Smoking 1.00 0.64 0.78
Drinking 0.56 0.71 0.63
Eating 0.92 1.00 0.86
Biting Nail 0.77 1.00 0.87
Scratching Head 1.00 0.88 0.93
Average 0.87 0.84 0.84

48% for smoking, 53% for drinking, 86% for eating, 56% for biting nail and 77% for

scratching head. Eating activity achieves the highest score in all of the 5 activities.

Table 3.2 presents the results using random forest (RF). Comparing with SVM results

given in Table 3.1, the accuracy for all the activities are improved. The average

F1-score for all activities using RF classifier is 84% while F1-scores for each activity

arse 78% for smoking, 63% for drinking, 96% for eating, 87% for biting nail and

93% for scratching head. In particular, the accuracy for the smoking activity and

biting nail activity achieves a significant improvement; up to 30% increase using

RF classifier. Again, the performance of eating activity recognition is still the best

among these 5 similar activities. According to the results obtained from SVM and

RF, although the SVM classifier performs relatively poor, the performance with

only accelerometer measurements is still acceptable for these 5 similar activities

recognition with an average of 84% accuracy using RF classifier.
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3.3.2 Recognition with Gyroscope

In this section, I present the results obtained using only the gyroscope measurements.

A total of 55 orientation features are extracted from the gyroscope readings, same

as the number of features used with the accelerometer. Fig.3.4 shows the feature

selection result using my feature selection procedure. 25 features are selected

from 55 features according to their mean score (unique features of top 15 scores

were selected). In Table 3.3, the results with SVM classifier are presented. All

Fig. 3.4. Selected features with mean scores (Gyroscope)

the activities recognized by SVM indicates a less accuracy compared with the SVM

results obtained using the accelerometer. The average F1-score for all activities is

33% while F1-scores for each activity are 56% for smoking, 38% for drinking, 58%

for eating, 0% for biting nail and 0% for scratching head. Note that none of the

biting nail and scratching head activity is recognized by using SVM classifier. Table

3.4 presents the results with RF. Compared with SVM results given in Table 3.3, the

accuracy for all the activities are improved. The average F1-score for all activities

using RF classifier is 65% while F1-score for each activity is 69% for smoking,

67% for drinking, 70% for eating, 44% for biting nail and 78% for scratching

head. Particularly, the accuracy for the biting nails and scratching head activity

achieves a significant improvement using RF classifier from 0% to 44% and 78%,
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Table 3.3: Accuracy performance for each activity by SVM (Gyroscope)
Accuracy Performance By RF

Activities Precision Recall F1-score
Smoking 0.43 0.64 0.56
Drinking 0.26 0.57 0.38
Eating 0.83 0.64 0.58
Biting Nail 0.00 0.00 0.00
Scratching Head 0.00 0.00 0.00
Average 0.39 0.40 0.33

Table 3.4: Accuracy performance for each activity by RF (Gyroscope)
Accuracy Performance By RF

Activities Precision Recall F1-score
Smoking 0.75 0.64 0.69
Drinking 0.55 0.86 0.67
Eating 0.78 0.64 0.70
Biting Nail 0.50 0.40 0.44
Scratching Head 0.70 0.88 0.78
Average 0.67 0.66 0.65

respectively. According to the results represented from SVM and RF, using the

gyroscope measurements alone, the SVM classifier still performs poorly for these 5

confounding activities. Although the result of RF classifier is much better than the

result of SVM in this section, the performance with only gyroscope solution is still

significantly low with an average accuracy of 65%.

3.3.3 Recognition with Both Accelerometer and Gyroscope

Recognition with rotation features only: Firstly, I present the results obtained

using only rotation features (features computed from the Euler angles pitch, yaw,

and roll). A total of 55 rotation features are extracted from the Euler angles

pitch, yaw, and roll. Fig.3.5 shows the feature selection result using my feature

selection procedure. 21 features are selected from 55 features according to their

mean score (unique features of top 15 scores were selected). In Table 3.5, the
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Fig. 3.5. Selected features with mean scores (Rotation features)

Table 3.5: Accuracy performance for each activity by SVM (Rotation features)
Accuracy Performance By SVM

Activities Precision Recall F1-score
Smoking 0.73 0.57 0.64
Drinking 0.25 0.71 0.37
Eating 0.90 0.82 0.86
Biting Nail 1.00 0.50 0.67
Scratching Head 1.00 0.00 0.00
Average 0.64 0.90 0.55

results of SVM classifier are presented. All the activities recognized by SVM show

worse accuracy compared with the SVM results obtained using orientation features

from accelerometer, but better than the SVM results obtained using the orientation

features from gyroscope. The average F1-score for all activities is 55% while F1-

scores for each activity are 64% for smoking, 37% for drinking, 86% for eating, 67%

for biting nail and 0% for scratching head. Note that the scratching head activity

is none recognized by the SVM classifier. Table 3.6 presents the results with RF.

Compared with SVM results given in Table 3.5, the accuracy for all the activities

are improved. The average F1-score for all activities using RF classifier is 80%

while F1-scores for each activity are 71% for smoking, 93% for drinking, 100% for

eating, 95% for biting nail and 38% for scratching head. Particularly, the recognition
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Table 3.6: Accuracy performance for each activity by RF (Rotation features)
Accuracy Performance By RF

Activities Precision Recall F1-score
Smoking 0.71 0.71 0.71
Drinking 0.88 1.00 0.93
Eating 1.00 1.00 1.00
Biting Nail 1.00 0.90 0.95
Scratching Head 0.38 0.38 0.38
Average 0.80 0.80 0.80

of drinking, eating and biting nails activities achieves a high accuracy using RF

classifier. According to the results represented from SVM and RF using rotation

features alone, the SVM classifier still shows a poor performance in recognizing these

5 confounding activities. However, the performance with using rotation features

only can still be acceptable for these 5 confounding activities with average accuracy

of 80% using RF classifier.

Recognition with orientation and rotation features: Then,I present the re-

sults obtained by using both orientation and rotation features. A total of 165

features are extracted from the accelerometer and gyroscope readings (55 orien-

tation accelerometer features, 55 orientation gyroscope features and 55 rotation

features). Fig.3.6 illustrates the feature selection result using my feature selection

procedure. 19 features were selected from 165 features according to their mean

score (unique features of top 15 scores were selected). In Table 3.7, the results with

SVM classifier are presented. In this section, the SVM classifier makes a superior

performance compared with the performance in Section 3.3.1, Section 3.3.2 and

‘Recognition with rotation features only’ part in Section 3.3.3. The average F1-score

for all activities achieves 78% while F1-scores for each activity are 90% for smoking,

56% for drinking, 80% for eating, 75% for biting nail and 80% for scratching head.

Smoking activity achieves the highest score in all of the 5 activities. Table 3.8

presents the results with RF (RF). Compared with SVM results given in Table 3.7, the
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Fig. 3.6. Selected features with mean scores (Orientation and Rotation features)

Table 3.7: Accuracy performance for each activity by SVM (Orientation and Rotation
features)

Accuracy Performance By SVM
Activities Precision Recall F1-score
Smoking 0.82 1.00 0.90
Drinking 0.45 0.71 0.56
Eating 0.89 0.73 0.80
Biting Nail 1.00 0.60 0.75
Scratching Head 0.86 0.75 0.80
Average 0.83 0.78 0.78

Table 3.8: Accuracy performance for each activity by RF (Orientation and Rotation
features)

Accuracy Performance By RF
Activities Precision Recall F1-score
Smoking 0.93 1.00 0.97
Drinking 0.67 0.86 0.75
Eating 1.00 0.64 0.78
Biting Nail 0.91 1.00 0.95
Scratching Head 0.88 0.88 0.88
Average 0.90 0.88 0.88
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accuracy for all the activities are improved. The average F1-score for all activities

using RF classifier is 88% while F1-scores for each activity are 97% for smoking,

75% for drinking, 78% for eating, 95% for biting nail and 88% for scratching head.

Again, the performance of smoking activity recognition is the best among these 5

similar activities. Furthermore, for the RF classifier, the average F1-score of 88% is

the highest score compared with the 84% in Section 3.3.1, 65% in Section 3.3.2 and

80% in ‘Recognition with rotation features only’ part of Section 3.3.3. According to

the results represented from SVM and RF, although the average accuracy of 78%

using SVM classifier is not as remarkable as the average accuracy of 88% achieved

using RF, the performance with orientation and rotation features are reasonably

high for these 5 similar activities using both the classifiers.

3.4 Summary

The first thing that can be noted from this work is, the solution of using only one

accelerometer sensor to recognize the 5 highly related activities, namely, smoking,

drinking, eating, biting nail, and scratching head, can perform in a similar way

using both an accelerometer and gyroscope with RF classifier. However, adopting

the solution of using both the accelerometer and gyroscope features can improve the

prediction result slightly using RF classifier, or strongly using SVM (see the F1-score

in Table 3.7). In contrast, the solution of using only gyroscope features without

any other sensor measurements cannot provide good performance in detecting

these activities. The second thing that I observed from my research is, although

the performance of using the gyroscope features alone to predict these 5 highly

related activities is not satisfactory, however, as shown in Fig.3.8, these features

extracted from the gyroscope could be highly relevant to the prediction. Fig.3.8

presents 19 features selected in Fig.3.6, in which 7 out of 19 features are contributed

by the gyroscope, accounts for 36.80% of the whole feature set, and 3 features
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Fig. 3.7. F1-score summary under different solutions.
Legend acc: Accelerometer only features, gyro: Gyroscope only features, r: Rotation feature, o+r:

Orientation and Rotation features

are contributed by the accelerometer and gyroscope combination, accounts for

15.8%. More than 50% of the features are directly or indirectly related to gyroscope

features.
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Fig. 3.8. Percentage of features occupied from an Accelerometer and Gyroscope



Chapter 4

Leveraging Local and Global
Features to Detect Human Daily
Activities

This study[4] 1 continues and expands my previous work [3] from confounding

activities recognition to human daily activity recognition. It addresses both the

intraclass variability problem and interclass similarity problem by leveraging local

and global features to detect human daily life Activity.

4.1 Important Definition of Countable and Uncount-
able Daily Life Activities

Depending on human daily life activities complexity, I categorize them into two

different levels: ‘gestures’ and ‘activities’. ‘Gestures’ are elementary movements

of a human’s body part, and are the atomic components describing the fundamental

human behaviors, such as ‘lifting an arm’ and ‘raising a leg’. ‘Activities’ are composed

of multiple gestures, which can describe many complex human behaviors, for

instance, ‘walking’ and ‘smoking’. Based on these two categories, I then define the

‘uncountable activity’, which usually is a long-duration activity and composed by

countless gestures or a single long-duration gesture. The reason I call this kind

1 This chapter is based on the under review paper [4]. The other co-authors are contributing to
the writing of the paper while the supervisor is involved with the motivation, design and results
discussion of the paper. I am responsible for the solution, implementation and experimentation.

24
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of activities as uncountable activities is that they are difficult to be divided into a

certain number of gestures. For example, a ‘walking’ activity includes innumerable

steps (gestures) and it is hard to define a specific number of steps to represent a

‘walking’. On the other hand, I define the ‘countable activity’ as a short-duration

activity and composed by countable gestures, since a countable activity can easily be

divided into a certain number of gestures. For instance, smoking activity comprises

a set of short arm movements (gestures), which is lift arm, hold-still, puff, and lift

down. Compared with the classification of countable activities, the classification of

uncountable activities is relatively easy. The reason is that uncountable activities are

often processed using a common sliding window method [7, 8] with a given window

size and the signals of uncountable activities usually have identifiable patterns as

shown in Fig.4.1(a). However, processing the signals of countable activities are often

required to design a specific activity segmentation algorithm[11] and usually these

signals have fairly similar patterns which increase the difficulty in the classification

as shown in Fig.4.1(b).

4.2 Leveraging Local and Global Features to Detect
Human Daily Activities

In this work, I extract my features from a global perspective (global feature) and a

local perspective (local feature), respectively. Global features describe an overall

perspective of the activities as they illustrate the general trend of movement in an

activity, while local features are supplementary to global features which provide

more specific details of an activity in a subtle time period of movement. The key

idea is to examine the daily life activity from different perspectives, and attempt

to give a comprehensive description about characteristics of each activity through

the combination of the global and local features. An overview of my approach

for activity detection is shown in Fig.4.2. Firstly, the raw data are collected from
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(a) Uncountable activities of standing, vacuuming and walk-
ing

(b) Countable activities of drinking, smoking, and scratching
nose

Fig. 4.1. Example of uncountable activities and countable activities signal patterns

the wearable sensors, by performing various activities of real life. These signals

are then preprocessed, which include noise removal, signal segmentation and re-

sampling procedures. These operations are important in order for the subsequent

operations, such as the feature extraction, to perform efficiently on these real data.

I then perform the feature extraction from these signals in order to better facilitate

the extraction of activities accurately. In this process, I propose a novel feature

extraction procedure, consisting of two sets of features, namely, global and local

features. These local and global features aid the detection of uncountable and

countable activities accurately. Subsequent to feature extraction, feature selection

is performed to identify the most useful and relevant features for HAR.
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Fig. 4.2. Data processing pipeline for activity detection

4.2.1 Data Acquisition

In this work, one public dataset and one self-collected dataset are used for the

evaluation of my feature extraction approach.

Daily Life Activities (DaLiAc) Dataset [8]. I select DaLiAc as the uncountable

activity dataset. The authors of DaLiAc designed 13 daily life activities including

sitting, lying, standing, washing dishes, vacuuming, sweeping, walking, ascending

stairs, descending stairs, treadmill running, bicycling on ergometer, and rope jump-

ing. In this work, for the purpose of making a benchmark study, I select sitting,

lying, standing, vacuuming, walking, ascending stairs, and descending stairs as my

target uncountable activities.

Self-Collected Arm-Movement activities (AmA) Dataset. In this study, I re-

design 6 confounding activities consisting of arm movements, namely, smoking,

drinking, eating, scratching head, scratching nose, and using phone, which form

my countable activities dataset. I remove ‘biting nail’ from my dataset due to the

difficulty of its collection in the real world. These activities mimic the hand motion of
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a person in real life setting with an uncontrolled environment, which is a improved

method of data collection compared with the one I used in the previous study[3]

under a controlled environment. AmA dataset is collected from 21 participants

(each participant performed 6 activities) using on-board three axis accelerometer

built on an Arduino 101 development board, in the form of a wrist band prototype

as shown in Fig.4.3. These three-axis accelerometers have a range of ±2G, and the

raw data are sampled at 50 Hz.

Fig. 4.3. Arduino 101 based wrist band prototype used for capturing hand motion
related activities

4.2.2 Noise Removal

Raw signals usually contain noise that arises from different sources, such as sensor

miscalibration, sensor errors, errors in sensor placement, or noisy environments[14].

These noisy signals adversely affect the signal segmentation, feature extraction

and then significantly hamper activity prediction. Since the gravitational force is
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Fig. 4.4. Accelerometer signals of example smoking activity with (a) and without
(b) noise removal

assumed to have only low frequency components, I use fourth order Butterworth

low-pass filter for the noise removal. Fig.4.4 compares the sensor signal pattern

with (Fig.4.4(a)) and without (Fig.4.4(b)) noise removal for the same activity.

4.2.3 Data Segmentation

Sliding window for DaLiAc. For the DaLiAc data, I use a sliding window approach

for further processing. I select the window size with five seconds, as used in [8].

Specific activity segmentation for AmA. The activity data collected in the AmA

dataset, such as for smoking and drinking, comprise raw accelerometer sequences,

in addition to non-activity periods (stationary signals) in between the activities.

In order to retrieve the signals corresponding to a particular activity (excluding

non-stationary signals) from the sensor streams, I divide the raw accelerometer

signals into a set of individual segments, where each segment corresponds to a

‘specific’ activity. Previously, many segmentation methods have been used in various

activity detection studies, like top-down [15], bottom-up [16], sliding window [17],

and Sliding Window And Bottom-up (SWAB) [16] methods. In this work, I use the
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bottom-up based segmentation method for processing the AmA data.

Further segmentation for DaLiAc and AmA. Moreover, I develop another kind

of the frame, which is based on each sliding window or individual ‘specific’ activity

segments in my experiment. I further divide each window, and the ‘specific’ activity

segment, into 4 frames, where each frame includes one second data of an activity

as shown in Fig.4.5.

Fig. 4.5. Example of a further data segmentation from an activity segment

4.2.4 Data Resampling

Data Resampling for DaLiAc. In this section, I use the data from DaLiAc dataset

without resampling, as used in the study [8].

Data Resampling for AmA. From the collected data in AmA, I observe that

all the extracted segments are not of the same length, since all the activities are

performed by different subjects mimicking the real life activity. In this study, I aim

to extract local features from activity segment besides global features. In order to

make the local features dimension consistent across different activities and subjects,

all the segments need to be adjusted to have the same length. Therefore, I re-sample

these segments to form a uniform length of samples across all the segments. In

my experiment, as the minimum number of samples found in segments is 115 (2.3

seconds), whilst the maximum number of samples found in segments is 235 (4.7
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seconds), I choose a uniform length of 200 samples corresponding to 4 seconds for

each ‘specific’ activity segment.

4.2.5 Feature Extraction

Fig.4.6 illustrates my proposed framework of feature extraction approach , where

the features that are extracted from the sliding window or complete activity seg-

ment forms the ‘global features’, and these extracted from a sub time frame of the

sliding window or complete activity segment forms the ‘local features’. I calculate

time domain features and (or) frequency domain features to describe an overall

perspective of the activities in global features. In addition, I calculate time domain

features and (or) frequency domain features for each sub time frame for the purpose

of providing more specific details of an activity in a subtle time period of movement.

Furthermore, I calculate the Delta (4) features between two consecutive sub time

frames for indicating local level variations within an activity.

Fig. 4.6. Proposed feature extraction approach framework

In [8], six generic features are computed for each sliding window in each of the

three accelerometers and gyroscope axes. In my work, I extract six features as global

features for each sliding window and ‘specific’ activity segment (which excludes
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Table 4.1: List of global features computed for each axis

1 minimum 4 variance
2 maximum 5 skewness
3 mean 6 kurtosis

non-stationary signals) from every accelerometer axis. Besides the three-axis (x, y

and z) accelerometer signals, the resultant Magnitude of x, y and z axis are also

used for feature extraction.

The six global features are listed in Table 4.1. In total, this results in 24 global

features per sensor node (by timing x, y, z, and Magnitude).

Similar to global features, mean, variance, maximum, minimum, skewness and

kurtosis are extracted for each frame to consider them as local features. Thus, they

comprise 24×5 (frames)= 120 local features for DaLiAc dataset, and 24×4 (frames)

= 96 local features for AmA dataset. Moreover, 3 Delta local features, corresponding

to the changes of signal pattern distribution are also calculated for this study.

Before explaining these 3 Delta local features, I define the parameters that are

used to represent a specific activity segment, and the framing approach to extract

these new local features.

Definition 1 Raw Accelerometer Stream A records acceleration in each axis, given as,

A= (ax , ay , az, t) is a tuple with accelerations (x; y; z) and timestamp (t).

Definition 2 The axis’ value of A for ‘specific’ activity segments is given as Aax i s ,i =

{aaxis,i}mi=1, where ax is = {x , y, z, mag} and i = {1, 2, 3, . . . , m}, which represents the

ith “specific” activity segment in A.

Definition 3 Accelerometer frame A( f )
ax i s ,i

is a set of ‘single frame length’ (in this case 1

second length) accelerometer records in each axis for ‘specific’ activity segments, given

as, A( f )
ax i s ,i

= {aaxis,i(( f −1)∗n+1 : f ∗n)}mi=1, where n = 50 is the number of samples

in a ‘single frame length’ accelerometer record, f = {1, 2, 3, 4} represents the fth ‘single

frame length’ accelerometer record.



§4.2 Leveraging Local and Global Features to Detect Human Daily Activities33

My proposed 3 Delta local features are listed below:

1. Change of Correlation of Acceleration Values (CCA). I calculate the Pearson

correlation coefficient between a pair of accelerometer axes for each window

frame of activity using:

CA( f ){a,b} =

∑

(A( f )a − A−( f )a )(A( f )b − A−( f )b )
r

∑

(A( f )a − A−( f )a )
2
(A( f )b − A−( f )b )

2
(4.1)

where {a, b} ∈ {{x , y}, {x , z}, {y, z}}. Then I compute the change of Pearson

correlation values between two consecutive frame lengths (seconds) in each

segment using:
CCA( f ){a,b} = CA( f +1)

{a,b} − CA( f ){a,b} (4.2)

where {a, b} ∈ {{x , y}, {x , z}, {y, z}}. A value of CCA closer to zero indicates

a small change in the correlation values of acceleration in two consecutive

frames.

2. Change of Similarity of Acceleration Values (CSA). I use fast dynamic time

warping (FastDTW) algorithm to determine the similarity between a pair

of accelerometer axes for each frame. I use FastDTW over the traditional

dynamic time warping (DTW) since FastDTW is an accurate approximation of

DTW which incurs lower time and space complexity [18]. First, I calculate

the similarity of acceleration (SA) by:

SA( f ){a,b} = f astDTW (A( f )a , A( f )b ) (4.3)

where {a, b} ∈ {{x , y}, {x , z}, {y, z}}. Then I compute CSA between two

consecutive frames in each segment using:

CSA( f ){a,b} = SA( f +1)
{a,b} − SA( f ){a,b} (4.4)

where {a, b} ∈ {{x , y}, {x , z}, {y, z}}. A value of CSA closer to zero indicates

a small change in SA between two consecutive frames.
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3. Difference of Linear Approximation Error of Acceleration Values (∆LAEA)

I calculate the best fitting line for each axis and magnitude signal of each

frame using least-squares approximation, and compute their difference of

linear approximation error between two consecutive frames using:

∆LAEA( f )i = lstsqE(A( f +1)
i , A( f )i ) (4.5)

where i ∈ {x , y, z, mag} and lstsqE(·) is the function for calculating the least-

squares error, ∆LAEA( f ) represents the difference of linear approximation

error in each axis or magnitude signal between two consecutive frames f +1

and f . A value of ∆LAEA closer to zero indicates similar goodness of fit for

consecutive frames.

These new features comprise (3+ 3+ 4)× 4(∆ f rame) = 40 local features.

Hence, a total of 96+ 40= 136 local features are extracted for this work.

Finally, I select an optimal feature subset from the whole feature set using

sequential floating forward selection (SFFS) algorithm [19]. As SFFS is a wrapper

method, I wrap K-Nearest-Neighbor (KNN) classifier with K = 5 and 20-fold cross-

validation for the feature selection.

4.3 Evaluation and Discuss

4.3.1 Evaluation Methods

Using the two datasets explained previously (i.e., DaLiAc and AmA datasets), I com-

pare the state of the art solutions in detecting HAR (i.e., detecting only uncountable

activities using global features) with my proposed approach to detect both uncount-

able and countable activities leveraging global and newly introduced local features.

I implement my algorithm in python 2.71, using Scikit-learn 0.17.1 package which

is an open source Python library to implement machine learning algorithms [20],

and Mlxtend (machine learning extensions) which is a Python library of useful tools
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for the day-to-day data science tasks [19]. I select two classifiers for my evaluation,

SVM and Random Forest. Both of the classification models are trained and selected

with leave-one-subject-out cross-validation. Moreover, I split 30% of the samples as

my testing data for the performance evaluation.

4.3.2 DaLiAc Results

The overall performance (average accuracy classification rates of all activities) of

SVM and RF using global (G) and combination of global and local features (G+L)

for each sensor node is shown in Table 4.2. The average accuracy of SVM classifier

using global features varies from 73% to 86% across different sensor positions.

The best performance (86%) is achieved for ‘Ankle’ sensor, where ‘Wrist’ shows

the worst (73%). Interestingly, leveraging local features with the global ones

do not improve the performance of classifiers significantly for this classifier. In

particular, the performance remains the same for ‘Wrist’ and ‘Chest’ sensors, where

the performance rises by 2% and 1% for ‘Hip’ and ‘Ankle’ sensors, respectively. In

comparison with SVM, the average performance of RF classifier varies from 78% to

89% across different sensor positions using global features. RF performs equal or

even better to all sensors using the leveraged local and global features. The best

improvement is found for ‘Chest’ and ‘Hip’ sensors, where the performance increases

5% by using RF classifier. Similar to SVM classifier, either the use of combination

of global and local features improves the overall performance or they remain the

same for individual sensor. The maximum improvement of performance (5%) for

individual sensor using RF is higher than the one (2%) achieved using SVM. In

addition, this maximum improvement using RF is found for ‘Chest’ and ‘Hip’ sensor,

where for SVM it is found only for ‘Hip’ sensor.

In summary, leveraging global and local features can perform better or at least

equal compared with the state of the art of using global features only in detecting

uncountable activities. These results also indicate that the local features have
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Table 4.2: Mean classification rates in DaliAc*

Sensor posi-
tion

Feature and classifiers

SVM RF
Global Global + Lo-

cal
Global Global + Lo-

cal
Wrist 73 73 78 78
Chest 84 84 81 85
Hip 81 83 81 85
Ankle 86 87 89 91

* Mean classification rates (in percent) of support vector machine (SVM) and Random Forrest (RF)
classifiers using global features, and the combination of global and local features for individual

sensor nodes wrist, chest, hip and ankle.

minimal capacity to extract additional information from the uncountable activities,

which are exclusive in the DaLiAc dataset and thus the improvement of classification

accuracy is limited. According to the definition of uncountable activities - they are

difficult to be described by a set of gestures, which means there is no or very limited

specific local patterns in them that can be extracted using my proposed local feature

extraction methods.

4.3.3 AmA Results

Fig. 4.7. Mean classification rates in AmA*
Legend Mean classification rates (in percent) of SVM and RF classifiers using global features, and the

combination of global and local features.

The overall performance of SVM and RF classifiers using global (the state of the
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(a) Performance of each activity in SVM

(b) Performance of each activity in Random Forest

Fig. 4.8. Performance of each Activity in AmA
Legend G: global features, G+L: the combination of the global and local features, S: smoking, D:

drinking, E: eating, SH: scratching head, SN: scratching nose, UP: using phone

art) and combining global and local features are shown in Fig.4.7. Unlike DaLiAc

dataset, the introduction of my proposed local features significantly improves the

average classification performance of both classifiers for the AmA dataset, where

the improvement is higher 17% for SVM (from 76% to 93%) compared to RF 10%

(from 86% to 96%). For individual feature set (either global or leveraged), the RF

classifier shows better performance than SVM, however the difference reduces to

3% from 10% when both local and global features are used. This indicates that

the local features not only contribute to the improvement of performance but also

improve the generalization capacity across machine learning models. This significant

performance improvement can be attributed to the countable activities (described
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by a specific number of gestures) of AmA dataset. Since local features extraction

methods are proposed to capture temporal variation of an activity, they have added

valuable information on top of global features. Therefore, the combination of global

and local features provides a comprehensive description on the characteristics

of an activity, which is translated in a significant improvement in classification

performance.

As shown in Fig.4.8, from the individual activity point of view of AmA dataset,

for both SVM and RF classifiers, the leveraged global and local features clearly show

better performance than using global only. Surprisingly, the lowest classification

performances of 56% and 70% are obtained for SVM and RF in classifying ‘Eating’

activity. Adding local features improves that to 92% for both classifiers, which is

strikingly high and shows the strong capacity of local feature in improving perfor-

mance for countable activities. All these results support my hypothesis that local

features are important to be included with global features to better comprehend

the characteristics of daily living activities, in particular of the countable activities.

In summary, the local features are more important for comprehending the

characteristics of countable activity than the uncountable activities. In addition, the

local features do not have any negative impact on classification performance when

they are added with global features to classify uncountable activities. Thus, the use

of local features on top of existing global features is always beneficial irrespective

of the type of activities in a particular dataset. Most importantly, the true daily life

activities are a combination of both uncountable and countable activities, hence

combining global and local features to detect human life activities is necessary to

obtain the optimal classification performance.



Chapter 5

MFE-HAR: Multiscale Feature
Engineering for Human Activity
Recognition Using Wearable Sensors

MFE-HAR approach [5]1 improves my previous work [4] to detect human daily

activities using local and global features.

5.1 Multiscale Feature Engineering Design

5.1.1 Global Features

1. Acceleration and Angular Velocity Based Features (AAVBF)

In previous studies, most of the features are statistical features which are

extracted directly from accelerometer and gyroscope signals [4, 8]. In this

work, I perform statistic analysis on acceleration to understand the time rate

of change of velocity of arm movement while observing the rotation occurring

from time t to t+∆t by measuring the instantaneous angular velocity. Since

velocity has a magnitude and a direction, acceleration and instantaneous an-

gular velocity of arm movement can form two vectors [xacc, yacc, zacc], [x g yo,

yg yo, zg yo] which contain both magnitude and direction. Therefore, features

calculated from two vectors can be used to analyze the general movement

1 This chapter is based on the under review paper [5]. The other co-authors are contributing to
the writing of the paper while the supervisor is involved with the motivation, design and results
discussion of the paper. I am responsible for the solution, implementation and experimentation.
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trend (direction) of both acceleration and instantaneous angular velocity of

arm movement. In AAVBF, I estimate arm movement from three-dimensional

coordinate axes and their magnitudes. I extract my features by computing

general statistics features (GSFs) including mean, standard deviation, max-

imum, minimum, skewness and kurtosis. Thus, my feature set consists of

comprise 6×4 (3-D coordinate axes and magnitude) × 2 (accelerometer and

gyroscope) = 48 features in acceleration and angular velocity based features.

2. Position and Orientation Based Features (POBF)

Tondu et al. [21] indicates that normal person’s arm movement can be

accurately described as a seven-degrees-of-freedom pose movement which

includes ball-and-socket joint, shoulder, upper arm, elbow, lower arm, wrist

and hand. These seven parts collectively, which people named human pose,

define the position and orientation of arm movement. Therefore, I can analyze

the human pose to study arm movement. Moreover, study [22] reports the

body poses based movement representations are highly effective for HAR. As

a result, I use human pose for human behaviour analysis and calculate the

position and orientation of arm movement through the data collected from

Inertial Measurement Units, i.e., the accelerometer and gyroscope.

Position Based Features: I estimate the integral of sensor reading using

trapezoidal rule where an approximate area of the trapezoid in interval [ai−1,

ai]. The velocity is calculated with an initial value of zero, given the vector

of accelerometer reading and sensor’s sampling time. After that, I obtain my

position features with an initial value of zero, given the velocity and sampling

time.
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Orientation Based Features: Besides position features, I also extract ori-

entation features. One common approach to represent orientation is Euler

angles (pitch-yaw-roll) as shown in Fig.5.1. Pitch-yaw-roll is good for decom-

posing rotations into individual degrees of freedom. However, Euler angles

are limited by a phenomenon called gimbal lock which prevents them from

measuring orientation when pitch angle approaches ±90 degrees. Quaternion

Yaw Axis

Roll Axis

YAW

ROLL

PITCH

Fig. 5.1. Pitch-yaw-roll.

is an alternative approach for representing orientation. It is widely used in

the development of unmanned aerial vehicles (UAVs) where people obtain a

good feedback for the orientation controller [23]. In this study, quaternion

is used to track the orientation of arm movement among various of human

daily activities for high accurate rate instead of controlling orientation. The

reason is that it avoids gimbal lock and is an efficient way to compute. After

calculating quaternions in spatial rotations, I convert them to Euler angles

directly to avoid gimbal lock. Quaternion is generally represented in the form:

q = (q1, q2, q3, q4) = (cos θ2 , sin θ2 nx , sin θ2 ny, sin θ2 nz) (5.1)
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I use first order Runge-Kutta to update q0, q1, q2, q3. The quaternion differen-
tial equation is listed below:


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
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
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+g y rox · q3 + g y roy · q0 − g y roz · q1

−g y rox · q2 + g y roy · q1 + g y roz · q0









(5.2)

where g y ro is the angular velocity output of gyroscope. However, I do not use

the gyroscope readings directly to calculate the quaternion in practice as they

drift with time and generate additional errors accumulating over a period of

time. In order to minimize the error, I use accelerometer and PI controller to

calibrate the gyroscope so as to obtain an accurate angular velocity as shown

in Fig.5.2, where initial values of q0, q1, q2 and q3 are 1, 0, 0, 0 respectively.

vx_t

vy_t

vz_t

ax_t

ay_t

az_t

Cross 
Product

Proportional-
Integral (PI) 

Compensation

A_gx_t

A_gy_t

A_gz_t

Quaternion 
Differential 

Equation

Q0_t+1

q1_t+1

q2_t+1

q3_t+1

Q0_t
q1_t
q2_t
q3_t

ex_t

ey_t

ez_t

Q0_t
q1_t
q2_t
q3_t

gx_t

gy_t

gz_t

Accelerometer
Readings

Adjusted
Gyroscope
Readings

Gyroscope
Readings

Fig. 5.2. Quaternion computation with PI cpntroller.

vx , v y and vz are calculated components of gravity, which can be computed

by:
vx t = 2 · (q1t · q3t − q0t · q2t),

v yt = 2 · (q0t · q1t + q2t · q3t),

vzt = q0t · q0t − q1t · q1t − q2t · q2t + q3t · q3t .

(5.3)
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I calculate the errors between estimated components of gravity and calculated

components of gravity by:

ex t = (a yt · vzt − azt · v yt),

e yt = (azt · vx t − ax t · vzt),

ezt = (ax t · v yt − a yt · vx t).

(5.4)

I obtain adjusted gyroscope measurements by using noise filter with proportional-

integral compensation to correct bias:

Ag x t = g x t + kp · ex t + ex Int t ,

Ag yt = g yt + kp · e yt + e y Int t ,

Agzt = gzt + kp · ezt + ezInt t ,

(5.5)

and ex Int, e y Int, ezInt are integral error scaled integral gains:

ex Int t = ex Int t + ex t · ki ,

e y Int t = e y Int t + e yt · ki ,

ezInt t = ezInt t + ezt · ki .

(5.6)

The initial values of ex Int, e y Int and ezInt are 0, 0, 0, respectively. kp is the

proportional coefficient and ki is the integral coefficient. In this study, I let Kp

= 3.5 and ki = 0.05 because these two values achieve the best performance

comparing with other settings. Eventually, I use the adjusted gyroscope

measurements to calculate the quaternions by (5.2). Then I use obtained

quaternions to extract POBF. Since the exponential map for quaternion q is:

exp (q) = exp (0, n̂θ2 ) = (cos θ2 , n̂ sin θ2 ). (5.7)

I calculate the logarithm of quaternion, which is:

log(exp (0, n̂θ2 )) = (0, n̂θ2 ), (5.8)

where n̂θ2 is the vector of the half value of the rotation angles in a quaternion.

I calculate GSFs on nx θ2 , ny θ2 and nz θ2 , respectively, as part of orientation
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features. In addition, I convert the quaternion to Euler angles by:
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. (5.9)

I calculate GSFs on pitch, roll and yaw respectively as another part of orienta-

tion features. Eventually, I extract 1(position) + 6(GSFs) × 3(nx θ2 , ny θ2 and

nz θ2 ) + 6(GSFs) × 3(pitch, roll and yaw) = 37 position and orientation based

features.

5.1.2 Local Features

In addition to the global features, I also design local features, i.e., gesture features.

Global features contain overall information of an activity while local features are

more relevant to some specific points of an activity. In order to extract gesture

features, I have to firstly identify the gestures in each activity. I make a regression

data analysis on sensor readings to determine the gesture frames in an activity using

Piecewise Linear Approximation techniques [24] as shown in Fig.5.3, which create

the segmented version of the time series data, i.e., raw sensor data. In this work, I

obtain the gestures from an activity using the bottom-up algorithm. I firstly create

n
2 segments joining adjacent points in a n-length time series from each 5-second

sliding window, and then calculate the approximation error of each initial segment.

After that, the cost of merging adjacent segments is calculated for the purpose of

merging the lowest cost pair of segments to a new and bigger segment. The new

approximation error of merged segments are then updated. If the error is less than

the defined stopping criteria, the process goes back to the first step and repeat

the whole steps again, otherwise I obtain my gesture segments. In this process,

time series data of segmented version are an approximation of the original series,

which represent a liner regression of movement. I use the start and end anchors of
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Start

Input:
Sliding window time series 

Creating n/2 segments joining adjacent points in 
a n-length time series

Calculate the approximation error of 
each initial segments

Calculate the cost (accumulative error) of 
merging adjacent segments

Merge  the lowest cost pair of segments to 
a new, bigger segment.

Calculate and update the approximation error 
of merged segments

Approximation error
less than the  defined stopping 

criteria (threshold)

Out:
Gesture segments

End

Yes

No

Approximate a time 
series with straight 
lines:
Linear Regression:  
approximating line for 
the subsequence is 
taken to be the best 
fitting line in the least 
squares sense. 

Piecewise linear 
representation :
(segmented version )

Fig. 5.3. Flowchart of Gestures Extraction
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segmented version time series to separate signals to obtain the gesture frame. As

an approximation can smooth the original series and reduce unwanted noise which

help to calibrate accelerator’s bias to a certain extent [25], it is unnecessary to apply

the noise filter here. In this work, I obtain the gestures based on the change of the

acceleration magnitude and direction to capture the general arm movement trend.

In each gesture frame, I convert the accelerometer and gyroscope values to Euler

angles, and calculate their basic statistics including mean, maximum and minimum

of roll, pitch and yaw, respectively. I use mean to analyze the general orientation

of a gesture in a given time period while applying maximum and minimum to

estimate the possible start and end of gesture orientation. Since the number of

gesture segments is a variable across various activities or even for the same activity,

the feature vector extracted from gestures cannot be used directly for training

a classification model. I address this problem by calculating the statistic values’

extrema, i.e., minima and maxima of the gesture segments for each activity. Since

extrema can be used to compress a time series without losing too much important

information [26], I use extrema of the gesture statistics to represent key gestures of

an activity. Eventually, I extract 2 (minima and maxima) × (3 (max pitch, max yaw

and max roll) + 3 (min pitch, min yaw and min roll) + 3 (mean pitch, mean yaw

and mean roll)) = 18 local features in total.

5.2 Empirical Setting

In this study, my proposed MFE-HAR approach and baseline are verified using two

datasets: Daily Life Activities (DaLiAc) [27] and mHealth [28]. The programming

environment is Python 3.6, and the integrated development environment is Pycharm

2017. The computing configuration environment is Intel R© CoreTM i7-6700 CPU @

3.40GHz processor, 16GB RAM and Windows 8.1 64-bit operating system.
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5.2.1 Daily Life Activities (DaLiAc) Dataset

For more details of DaLiAc, see Section 4.2.1.

5.2.2 mHealth Dataset

This dataset includes 12 physical activities: standing still, sitting and relaxing, lying

down, walking, climbing stairs, waist bends forward, frontal elevation of arms,

knees bending (crouching), cycling, jogging, running, and jump front and back.

The data are recorded by wearable devices placed on the chest, right wrist and left

ankle of the subjects, where there are 10 participants. Multiple devices are able

to measure the acceleration, the rate of run and the magnetic field orientation. In

addition, 2-lead ECG measurements are provided by the device placed on the chest.

For all sensing activities, the sampling rate is 50Hz, window length and overlapping

are 4s respectively.

5.3 Results and Discussion

5.3.1 DaLiAc Dataset

In this section, I report arm-based activity recognition results by using five machine

learning models: gradient boosting decision tree (GBDT), random forest (RF),

logistic regression (LR), k-nearest neighbors algorithm (KNN) and support vector

machine (SVM). My previous approach mentioned in chapter 4 is used to be my

baseline. Fig.5.4 summaries their classification performance in terms of precision,

recall and F-measure, based on my proposed MFE-HAR approach and baseline. It

can be seen that the classification rates of MFE-HAR obtained from these models

are all greater than 80%, where GBDT achieves the highest classification rate up

to 93% in all accuracy measurements. Therefore, I select GBDT to compare the

performance with the state of the art approaches [7, 8, 29, 30, 31, 32], where four

wearable devices are placed on the right hip, chest, right wrist and left ankle.
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Fig. 5.4. Performance results of DaLiAc dataset.

Fig.5.5 shows the mean and each classification rate for 13 activities of my

proposed solution compared to the state of the art. My proposed solution reaches the

highest overall mean classification rate of 93%, and 100% in terms of RJ particularly,

which outperforms other solutions in BC100, VC, BC50 and SW. The classification

rates of AS, DS, ST, SI, WD, RJ, LY, WK and RU are very close to [8], which is only

lower by 2% on average. However, my MFE-HAR approach is superior to previous

studies, such as [8] which uses multi-devices, while my proposed solution is based

on a single-device on wrist to detect activities.

Fig. 5.5. Classification rates comparison of DaLiAc dataset.

Study [8] has a better performance on LY, WD, SW, WK, AS and DS due to multi-
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devices are able to provide comprehensive information to represent human activities.

One analysis [33] based on the performance of each single device deployed in multi-

device solution indicates that in DaLiAc most considered activities are strongly

related to the movements of lower extremities, while the hip covers a wide range

of basic activities. That is, ankle and hip are two essential positions to recognize

human activities. Therefore, the devices placed on ankle and hip provide more

significant contributions to HAR in DaLiAc, comparing with devices placed on wrist.

My proposed MFE-HAR approach can achieve similar or even better recognition

results than multi-device based solutions using a single device placed on wrist. The

reason is that most studies only use AAVBF to recognize human activities which can

be only used to analyze the characteristics of acceleration and angular velocity of

an activity. These features cannot be used to determine the movement state in a 3D

space. I observe that tracking arm movement in a 3D space can be actually treated

as tracking a wearable device’s movement. If I treat a wearable device as a rigid

body, I would need position and orientation to determine the movement state in 3D

space [34]. As a result, not only acceleration and angular velocity, but position and

orientation are used in my proposed MFE-HAR solution to capture arm movement.

For bicycling on ergometer (50W) and bicycling on ergometer (100W), I make a

significant improvement on their recognition accuracy comparing with the state of

the art solutions. According to confusion matrix of my MFE-HAR classification results

as shown in Fig.5.6, I find that most instances of BC50 and BC100 are misclassified

to each other. There are 84% correctly classified BC50 with lower resistance level

and 11% misclassified as BC100 with higher resistance level. Meanwhile, 88%

BC100 are correctly classified and 8% misclassified as BC50. The reason is that

they are actually confounding activities with different resistance levels but similar

movement patterns to confuse the classifier. I analyze top 20 important features in

recognizing the activities between them using Extra Trees classifier and find out that

12 features are local features, which indicates that MFE-HAR has an outstanding
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ability to recognize confounding activities by combining local features with global

features.

Fig. 5.6. Confusion matrix of MFE-HAR classification accuracy for DaLiAc.

5.3.2 mHealth Dataset

I also use mHealth dataset to estimate the validation of MFE-HAR approach. The

recognition accuracy results are shown in Fig.5.7. It clearly indicates that by using

even only one wrist device, my proposed solution performs better than multi-device

based approach [35] and my baseline on all five machine learning models. The

GBDT model achieves the highest mean classification rate 98% compared with other

four models, where recognition performance is good for confounding activities

such as walking and climbing stairs, jogging and running. Therefore, my MFE-HAR

approach is able to be applied in different wearable devices.

Fig. 5.7. Accuracy results comparison of mHealth dataset.



Chapter 6

Conclusion

In spite of many existing works on human activity recognition, few solutions are

practical enough to be adopted in mission critical real-world applications. Especially

in the health domain, these solutions either require excessive number of wearable

devices (multi-device approach) or demand complex classification models and large

training datasets (deep classification approach). My studies attempt to look into the

very nature of daily activities and propose effective and efficient feature engineering

approaches to address the fundamental challenges in HAR. My experiments have

demonstrated the proposed methods are superior to the state of the art. As a next

stage work, I intend to incorporate the feature engineering approaches into a real-

world IoT health project to investigate its applicability with more complex scenarios

at real time.
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