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Abstract

Information Extraction (IE) is the task of extracting from a text the entities and the relationships

that hold between them, in a form that can be stored in a database called a Knowledge Base (KB)

or Knowledge Graph (KG). Link prediction, also called as Knowledge Base Completion, is the

task of predicting missing links in order to make KG more complete. While most of IE and link

prediction models have focused on binary relationships, in the real world relationships are often

n-ary (n > 2). Recently, IE algorithms have been proposed that can extract relationships of

arbitrary arity, but as far as we know there is no corresponding work on link prediction involving

relationships of arbitrary arity. In this thesis, we introduce the task of n-ary link prediction by

proposing two different models to model n-ary relationships and two different training methods

to train the proposed models. We also provide new dataset (based on Wikidata) for training and

evaluating our proposed approaches. We also propose a modification in the standard evaluation

criteria in order to overcome the bottleneck of huge computational complexity when working

on large-scale KBs. Evaluation in terms of Mean Rank, Hits@10 and classification accuracy on

tuple dataset show that our proposed approaches have the ability to generalize link prediction

over tuples having arbitrary arity.
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Language is a process of free creation; its laws

and principles of generation are used is free

and infinitely varied. Even the interpretation

and use of words involves a process of free

creation.[4]

Noam Chomsky, American Linguist

1
Introduction

1.1 Overview of Knowledge Bases (KBs)

Natural Language Processing (NLP) is the branch of Artificial Intelligence (AI) that deals with

analyzing, understanding and generating the languages that humans use naturally in order to

interface with computers in both written and spoken contexts. Information Extraction (IE), one

of the major task of NLP, is the process of extracting facts (about the world) from from text

information. Therefore, IE is the task of extracting from a text the entities and the relationships

that hold between them, in a form that can be stored in a database called a Knowledge Base

(KB) or Knowledge Graph (KG). These KBs are special kind of relational databases especially

designed for knowledge management, collection and retrieval [5]. KBs are special in the sense

that they capture human knowledge and places it into a system where they are used to solve

complex problems normally requiring a high level of human expertise. KBs store real-world

information in the form of entities and the relationships between them in structured form. These

structured KBs provides easy reasoning ability and can be used for inference. This motivation

has lead to built various KBs/KGs such as Freebase [6],Wikidata [7], YAGO [8] , DBpedia [9],
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NELL [10] and Google Knowledge Vault [11].

KBs are collection of facts about people, places or things, and their relationship between

them. These facts are generally stored in the form of triples (head entity, relation, tail entity)

i.e., (h, r, t), which are particular case of tuples where tuple length can be any arbitrary length

in the form of (h, r1, t1, . . . , rn, tn). Figure 1.1 shows an example of sample knowledge graph

where entities are represented as nodes in the graph and relationship between two entities is

represented as an edge. Representing worldly knowledge in the form of triples (specially in the

form of simple graph), is not able to express complete information. For example given the fact

X, there is loss of information while representing this fact in the form of triples, because creating

a direct relationship from the actor/actress to the award won means that there is no way to work

out for which movie they have won award for.

X: "Lauren Bacall was nominated for Academy Award for Best Actress in Supporting Role

in The Mirror has 2 Faces"

Hence, representing facts in the form of triples have limitations in terms that they are not

able to model the long relationship between entities. In order to overcome this limitation, we

represent these knowledge graphs in the form of a hypergraph in which a relationship (called

hyperedge) can connect any number of given nodes. While simple graph permits a relationship

to have only one start node and one end node, the hypergraph allows any number of nodes at

either end of a relationship. Hence, hypergraphs are useful for modeling tuples having n-ary

relationships. Hypergraphs are more accurate, are information rich and are multi-dimensional,

hence they are more generalized than simple graphs. Figure 1.2 shows that we can represent

the fact X along with other facts in the form of a hypergraph which is able to express complete

information in the fact and is able to take account of long relationship between two entities. This

thesis is about extending techniques that are used for triple-based KBs to tuple based KBs.

1.2 Applications of KBs

There has been much attention in the research community to construct large-scale KBs due to

its varied applications in terms of enriching search engines [12], training relation extractors and

semantic parsers [13], [14],[15], and in question answering [16]. Information Retrieval (IR),

which refers to various techniques of searching of documents, searching specific information

within documents, searching for meta-data and searching within databases corresponding to

user’s queries. Search engines are one of the main contribution of IR technology. KBs present

structured data to the search engines in order to make it easy for the search engines to better
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Figure 1.1: An example of sample Knowledge Graph.

understand the content and context of the web pages [17], [18]. Search engines use KBs

(form of structured data) to generate rich snippets, which are small pieces of information that

appear in search results. Search engines have limitations in the sense that they provide only

documents but no specific answers to the query. Recently, NLP research community has moved

towards integrating Information Extraction technology with Information Retrieval technology to

make search engines more reliable, accurate, specific to user queries and having high semantic

understanding. Though, user queries can be answered as Question Answering problem where

we can provide direct answer to user queries. In order to accomplish this goal, there is a need to

have highly structured KBs and better KB inference techniques.

With the increasing use of digital assistants (Apple Siri, Microsoft Cortana and Amazon

Echo) and open ended show quiz (IBM Watson), research is in the direction to develop open

ended question answering systems [19],[20], [21],[22]. Question Answering systems, which

refers automatically answer questions posed by humans in natural language query. The goal

of Knowledge Base question answering system is to automatically return answers from the

KB given a natural language questions. There are two mainstream research directions for

this task. One based on semantic parsing focus on constructing a semantic parser that could

convert natural language questions into structured expressions like logical forms. On the other

hand, information retrieval methods are more like to search answers from the KB based on the

information conveyed in the questions. Ranking techniques are employed to score the answers
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Figure 1.2: Representing facts in the form of a hypergraph.

and to select the correct one from top scored answers [23].

Relation extraction systems use KBs as a source of training data. The relation extraction

task focuses on extracting individual mentions of relations from text. One key aspect of every

relation extractor is how to annotate training and test data in order to leverage advantage

of machine learning approaches. Recently, distant supervision or self-supervised learning

[24],[25],[26],[27],[28] has become an important technique which exploit large KBs (such as

Freebase, Wikidata or DBpedia) to automatically label entities in text and use the annotated

text to extract features and train a classifier [29],[30],[31],[32]. Distant supervision, which is

a semi-supervised learning algorithm expecially used in relation extraction that make use of

weakly labelled training set (based on a heuristic labeling function) typically relying on a KB.

Moreover, KBs helps in Named Entity Linking, also called as Named Entity Disambiguation

or Named Entity Normalization, which is the task of identifying the entity that corresponds to

a particular occurrence of a noun in a text document. References to entities in natural text is

quite ambiguous, because particular entity can refer to many mentions and on the other hand,

particular mention can refer to many entities. For example, "Paris" can refer to entity mention

location (GPE) i.e. city (Capital of France), or it can refer to entity mention person (PER) i.e.

Paris Hinton (an actress). Hence, entity linking is the task of resolving named entity mentions

to entries in a structured KB. The similarity measure between the text mention and an entity

candidate in KB helps to disambiguate named entities [33],[34],[35].
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Knowledge bases also plays vital role in semantic parsing, which is mapping of text to

a meaningful representation. In other words, semantic parsing is concerned with translating

language utterances into executable logical forms [16]. Fundamental challenge in using semantic

parsers is getting annotated data for training and extending it to new domains [36]. To overcome

this limitation, KBs acts as training data in order to train semantic parsers [37], [38].

Recent interest is to use KBs for understanding complex diseases and for advancing precision

medicine [39]. Researchers are developing PrecisionMedicine Knowledge Bases (PMKBs) [40]

to pioneer a new model of personalized, individual, patient-powered research and treatment.

With rise of Electronic Health Records (EHRs), Internet of Things (IoT), big data technology and

building large scale PMKBs, it gives greater variety of characteristics to better understand which

types of treatments work best for more specific subsets of population based on factors including

health condition, environment and lifestyle [39]. Hence, PMKBs could mean personalized,

individualized research and treatment that empowers patients [41], [42].

1.3 Link prediction in Knowledge Bases

Although KBs can be extremely large, containing billions of facts, million of entities and

thousands of relations, but they are far from complete [43],[44], [45]. For e.g., about 75% of

people in Freebase do not have their nationalities and 70% of people in Wikidata do not have

their known place of birth [11]. Also, it is impossible to put all entities, facts or relations into the

KBwhile it is manually curated in the beginning. In order to overcome this missing information,

researchers [46], [47], [48], [49], [43], [50], [51], [52], [53] have formulated ways by which we

can do reasoning over the facts already existing in the KB to automatically derive new facts.

The task of predicting missing entries in the KBs is called as link prediction, knowledge base

completion or knowledge graph inference [54],[45],[46]. Link prediction can also be seen as

graph completion problem, where we need to find missing links between various nodes (i.e.

entities). Link prediction is one of the main problems in Statistical Relational Learning (SRL)

[55].

Generally, KBs represent facts in the form of triples like (h,r, t). Hence, link prediction can

be formalized as filling in the missing or incomplete triples like (h,r,?) or (?,r,t) by predicting

head or tail, by reasoning over existing triples in the KB [56]. Based on the example given

in Figure 1.1, we would likely able to predict new facts (or links) such as (Humphrey Bogart,

nationality, United States), (Humphrey Bogart, wins, Academy Award), given the facts that

(Humphrey Bogart, bornIn, New York City), (Lauren Bacall, wins, BAFTA), (Lauren Bacall,
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Subject Predicate Object
(Humprey Bogart, nominated_for, Academy Award)
(Humprey Bogart, for, Best Actor)
(Humprey Bogart, in, Casablanca)
(Lauren Bacall, nominated_for, Academy Award)
(Lauren Bacall, for, Best Actress)
(Lauren Bacall, for, 2 Faces)

Table 1.1: Representing information in the form of triples.

nominate_for, Academy Award) and (Humphrey Bogart, wins, BAFTA), because it is very likely

that Academy Award and BAFTA are given to movie stars and movie stars have profession as

Actor/Actress.

Link prediction is widely used in various NLP applications as discussed in section 1.2.

Hence, correctness and completeness of KBs can improve these applications. Therefore, it is

necessary to develop link prediction methods which find missing relationships in the KBs [57].

1.4 From Triples to Tuples

Completeness, accuracy and data quality are important parameters that defines the usability of

KBs [45]. Various NLP applications are dependent upon KBs, so any deficiency in KBs leads

to poor performance in the applications it leads to. Majority of existing KBs adopt Resource

Description Framework (RDF) as their representation, which is the Web standard for expressing

information about entities. Hence, KBs represent facts in the form of <s,p,o>, where s, p and

o denotes subject, predicate and object respectively. Here subject and object are entities and

predicate is relationship that holds between two entities. Note that <s,p,o> notation is same as

(h,r,t) which are ways of denoting triples in the KB. For instance,

Example X: Humprey Bogart was nominated for Academy Award for Best Actor in

Casablanca

Example Y: Lauren Bacall was nominated for Academy Award for Best Actress in 2 Faces

The information extracted from Examples X and Y can be represented in the form of triples

as shown in Table 1.1.

Though modern KBs are based on triples, but real world facts are tuples and can have any

arbitrary length, denoted by (h,r1,t1,. . . , rn ,tn). Examples X and Y can be represented in the

form of tuples as shown in Table 1.2

As seen in Table 1.1, the information that Bogart is nominated for Academy Award for

his role in Casablanca is lost. But, when we represent the same information using tuples as
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head rel1 tail1 rel2 tail2 rel3 tail3
Bogart, nominated_for Academy Award for Best Actor in Casablanca
Bacall, nominated_for Academy Award for Best Actress in 2 Faces

Table 1.2: Representing information in the form of tuples.

shown in Table 1.2, it holds information that Bogart is nominated for Academy Award for his

role in Casablanca. Hence, tuples are more expressive than triples. Also, tuples hold complete

information and takes longer context which can be beneficial for reasoning over KBs.

With the need to have modern question answering systems and web search, there is growing

research in the direction of extracting n-ary relations where (n>2) [58]. Link prediction plays

a similar role in relation extraction, what a language model plays role in speech recognition.

Hence, link prediction and relation extraction are complementary to each other. Although in the

real world relationships are often n-ary (n > 2) and Information Extraction algorithms that can

identify relationships of arbitrary arity have been recently proposed [58], [59],[60],[61], most

link prediction orKBcompletionmodels have focused on binary relationships. However, as far as

we know there is no corresponding work on knowledge base completion involving relationships

of arbitrary arity. Therefore, n-ary link prediction can be highly useful for improving accuracy

of n-ary relation extraction. These reasons motivated us to look KBs in the form of tuples and

to have reasoning over tuples in order to make KBs more complete.

1.5 Problem Description

State-of-the-art link prediction models such as TransE [46], SE [47], RESCAL [48], TRESCAL

[49], NTN [43], TransH [50], TransR [51], TransG [52], STransE [53] work on triples, but

real-world data is in the form of n-ary relations of arbitrary length denoted as tuples. Lot of

research has already been done in developing triples based KBs and triple based link prediction

models. Recently, research efforts are towards representing and extracting facts in the form of

tuples. Representing any fact in the form of tuple takes into account of all entities and relations

present in the original fact present in a text. Therefore, tuples hold semantics of the fact that is

present in the text, in turn converting it to structured form which we can store in the form of a

KB. Representing worldly facts in the form of tuples, instead of triples provides advantages in

terms of more expressive in nature, takes context into account as well as hold semantics of the

original fact in the form of natural language text.

In triple-based KBs, each fact denoted as (h, r, t), there is one head and one tail. On the other

hand, fact in a tuple denoted as (h, r1, t1, . . . , rn, tn), there is one head and can have multiple
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Figure 1.3: Triples based knowledge base completion. Upper example illustrates missing tail
and lower one illustrates missing head in triples.

Figure 1.4: Tuples based knowledge base completion. Upper example illustrates missing tail
and lower one illustrates missing head in tuples.

tails. For example, tuple of length 3 have one head and one tail, tuple of length 5 have one

head and two tails, and so on. Triple based link prediction models predict missing head or

tail, of given fact in the form of triple. For example, Figure 1.3 shows triples based knowledge

base completion. But, we are interested in predicting missing head or tail, of given fact in the

form of tuple. Figure 1.4 shows example of predicting missing tail or missing head in a given

tuple. In this thesis, we aim at predicting missing values in n-ary relationships (also called

tuples, or tuples having arbitrary arity). We focus on predicting a single missing entity either

head or tail in an n-ary relationship tuple. The task of n-ary link prediction is useful for many

purposes, including for improving the accuracy of an IE system where n-ary link prediction

can identify implausible relations as likely extraction errors, and improving performance of

open-ended question answering systems. So we aim at generalizing link prediction over tuples

having arbitrary arity.

1.6 Objectives

The objectives of this thesis are identified as follows:

1. To propose the new task of knowledge graph completion for arbitrary arity relations (also

called as tuples, or n-ary relationships).

Lot of work has been done for embedding triple based KGs and link prediction over triple
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based KGs, but no work has been towards link prediction over tuples. In this thesis,

we proposed this new task as hypergraph completion problem because hypergraphs have

ability to model n-ary relationships. The overall goal of this proposed task is to generalize

link prediction so that it can take tuples of arbitrary arity into its account. Our general

approach to hypergraph completion is to reduce a tuple to a set of triples, so we can then

use any triple based graph completion algorithm.

2. To propose methods by which we can model n-ary relationships in a KG.

In order to generalize link prediction and to model n-ary relationships, we proposed two

models by which we are reducing tuples into triples, namely The head-triple reduction

model and The clique reduction model. These models differs in the way we reduce tuples

into triples. We also proposed two different training methods by which we train our two

proposed models.

3. To provide tuple dataset in order to evaluate proposed approaches for modeling n-ary

relationships.

There are many standard datasets for triple prediction, but there is no dataset for tuple

prediction. So we created our own dataset from latest Wikidata dump as on date 3rd

January, 2017. The dataset contains tuples in the form of (h, r1, t1, . . . , rn,tn), where h

denotes head entity, r1 denotes first relation, t1 denotes first tail entity, and so on. Our

tuple dataset containing 102, 231 entities, and 353 relations is quite large compared to

standard triple based datasets.

4. To propose modification in the existing triple based link prediction evaluation protocol

for tuples and to scale it for large-scale KGs.

There are standard evaluation metrics to evaluate triples based link prediction models.

First, the evaluation metrics proposed to evaluate tuple based link prediction models are

direct extensions of metrics used to evaluate triple based models. Second, link prediction

task involves evaluating all possible triples that are formed by substituting all entities in

the dataset, which becomes computationally expensive when the set of entities becomes

very large, as it is in our dataset. So, we have also proposed modification in the evaluation

criteria in order to scale it to large KGs.
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1.7 Organization of Thesis

This thesis is structured as follows:

Chapter 2 provides brief literature review of Statistical Relational Learning, provides an

overview of embedding triples based KBs, discussed state-of-the-art link prediction models for

triple based KBs, their evaluation criteria and their comparative analysis.

Chapter 3 propose two different ways of modeling n-ary relations as a way of reducing

tuples to triples namely, The head-triple reduction model and The clique reduction model. Two

different methods of training the proposed models namely, triples based training and tuples

based training are also proposed in this chapter.

Chapter 4 propose modification to existing link prediction evaluation protocol for evaluating

large-scale KBs, provides statistics of tuple dataset generated from Wikidata. This chapter

provides empirical evaluation of 4 proposed approaches (2 proposed models coupled with 2

proposed training methods) on tuple dataset and detailed analysis of the results.

Finally, Chapter 5 discusses the contributions of this thesis and important conclusions,

highlights limitations of this work and provides directions for future research.



Research is to see what everybody else has

seen, and to thinkwhat nobody else has thought

Albert Szent-Gyorgyi

2
Literature Review

This chapter describes the background knowledge that is necessary to further understand the

concepts and proposed approaches introduced in this thesis. Section 2.1 gives overview of

knowledge representation in the form of graphs and section 2.2 highlights link prediction in

triple-based knowledge bases. Section 2.3 provides detailed analysis of various triple-based

embedding models, including TransE model. Section 2.6 gives overview of standard evaluation

metrics for triple-basedmodels. Finally, chapter concludeswith current research inn-ary relation

extraction and the need to have n-ary link prediction. We discuss TransE model, a triple-based

embedding model for link prediction in KBs in detail, because we want to generalize TransE

model over our tuple dataset.

2.1 Representation andReasoning ofKnowledgewithGraphs

With the rise in technology, humans are generating vast amount of data. The goal of Artificial

Intelligence (AI) is to built intelligent machines that can make intelligent use of this vast amount

of generated data. One of the most important and interesting area where every company is

currently focusing on is how to do knowledge aggregation, knowledge representation and do
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Subject Predicate Object
Humphrey Bogart won Academy Award
Humphrey Bogart gender male
Humphrey Bogart nationality American
Humphrey Bogart nominated_for BAFTA Award
Lauren Bacall profession actress
Lauren Bacall gender female
Lauren Bacall nationality American
Lauren Bacall nominated_for BAFTA Award

Table 2.1: Example RDF graph in triple representation.

reasoning over data collected from various sources[62]. Information Extraction (IE) technolo-

gies helps to efficiently and effectively analyze free text and to discover valuable and relevant

knowledge from it in the form of structured information [63]. The input to IE system is a col-

lection of documents (email, web pages, news groups, and so on) and output is a representation

of the relevant information from the source document according to some specific criteria [64].

Hence, the goal of IE is to extract salient facts about pre-specified types of events, entities, or

relationships, in order to build more meaningful, rich representations of their semantic content,

which can be used to populate databases that provide more structured input [63].

Most of the real-world data we see around us is inherently relational, whether it is social

networks, gene-protein interactions, hyper-linking pages for world wide web, clustering of

documents based on particular topic, author-publication citations, large-scale networks as well

as semantic web and related standards [65]. Graphs have ability to represent this inherently

relational data in such a way that knowledge based reasoning becomes possible. Current

Semantic Web technologies represent knowledge in various forms, most prevalent among which

is semantic networks. These semantic networks structures can be found in Resource Description

Framework (RDF) graph representation, whose nodes represents entities (or concepts) and

arcs represents relations between those entities. Hence, facts in RDF have the form (subject,

predicate, object), which is also referred to as RDF triples. Most of the KGs store facts in

the form of triples which can naturally be viewed as tables with more than 2 columns. Table

2.1 shows RDF graph in the form of triples and Figure 2.1 shows its corresponding graphical

representation.

2.2 Link Prediction in Triple based KGs/KBs

Curated KBs typically have high precision, but suffer from a lack of coverage. In order to auto-

matically increase coverage by predicting missing entries, researchers have developed methods
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Figure 2.1: Example RDF graph from Table 2.1 in graphical representation.

[66], [67]. These methods are commonly categorized under the heading of Knowledge Base

Completion (KBC) or link prediction in KBs, which is one of the main problems in Statistical

Relational Learning [68]. Apart from this, there is lot of redundancy among relations that are

existing in the KBs. This natural redundancy among relations often make it possible to fill in the

missing entries of a KB [67]. For example, it is not possible to record awards won by all movie

stars, but it can be inferred easily if we know the facts that movie stars are very likely to win

Academy Award, BAFTA or Golden Globe award, compared to Pulitzer prize or Nobel prize.

Also, we know the relation PlaceOfBirth, it is very likely to predict Nationality of someone,

which might earlier be missing in the KB.

Link prediction in KBs is very similar to recommendation systems and finding missing link

between users in social networks. In recommendation systems, goal is to predict the rating

of the movies which are not already rated and recommending it to users to have better user

experience. Similarly, in Knowledge Base Completion, the goal is to check whether a particular

triple not in the KB is likely to be true or not [47], [69]. As an example, in Figure 2.2, the

task of link prediction is to find the profession of Humphrey Bogart from the facts already

exiting in the KB. Hence, link prediction in KBs is one attempt to mitigate the problem of

knowledge sparsity and to make them more robust and complete so that they can be effectively

used for various downstream applications, including question-answering, web/mobile search,

social media analysis, recommendation systems, co-reference resolution, information retrieval

and semantic parsing.

2.3 Approaches for link prediction in Knowledge Bases

Link prediction is quite well formulated problem in Statistical Relational Learning, also called as

multi-relational learning, which refers to the set of methods that are used for statistical analysis
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Figure 2.2: Link prediction in triple based KBs. Dotted line shows link to predict.

of relational or graph-structured data [45]. Early models for link prediction in KGs are based

on Probabilistic models, also called as Probabilistic Latent Factor models, which conditions

the probability distribution of the relations between two entities based on the latent factors of

entities [3]. Probabilistic models have limitations in terms of scaling to large KGs because of

the complexity of the probabilistic inference and learning [70], [3].

One of the most promising approach to link prediction in KGs is to embed entities and

relations in a low-dimensional vector space. Representing KGs in low-dimensional vector space

helps to learn continuous, low-dimensional representation (also called embeddings) for entities

and relations between them. These embeddings captures the semantics of entities and relations

in the knowledge graph. Representing embeddings in low-dimensional vector space not only

leads to lower model complexities, but also reduced run time and low memory load.

2.3.1 Embedding based models

In recent years, lot of interest has risen in learning low-dimensional embeddings for representing

language, entities and relations inspired by word2vec model [71]. The word2vec model learns

dense vector representation of words that captures the semantic meaning of words and is useful

for wide range of NLP applications. The most amazing property of word embeddings is that

they capture the laws of analogy. Figure 2.3 represents four words in the continuous vector space

and it shows that word2vec model is able to perform very well on this word analogy task [72],

[73], for example

man is to woman as king is to –?–

walked is to walking as swam is to –?–

Sydney is to Australia as Tokyo is to -?–

Word embeddings is one of the major success in unsupervised learning which makes NLP
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Figure 2.3: An example of word embeddings [1].

breakout. The word2vec model learns the embeddings from the given words in a way that, it

gives

vking -vman + vwoman ≈ vqueen

Generally, knowledge graph embed entities h and/or t and relations r as a k-dimensional

vector. The embedding representation of each entity and relation in the KG encodes the global

information, since the representation is obtained by minimizing a global loss function involving

all entities and relations [2]. The plausibility of the triplet (h, r, t) is measured by a score function

fr(h, t).

Let us denote a knowledge graph G having E set of entities and R set of relations. The

knowledge graph G consists of true triplets (or facts) denoted as (h, r, t), where (h, t) ∈ E and

r ∈ R. The embedding model learns the embeddings of entities and relations in a knowledge

graph, in a way that the score of a true triplet denoted by fr(h, t) is smaller than the score of

false (or negative) triplet denoted by fr(h′, t′), where (h, r, t) ∈ G and (h′, r, t′) ∈ G′. Various

approaches have been explored for knowledge graph embedding which are described in the

following sections.

Unstructured Model (UM): The Unstructured Model [74] considers graph as a mono-

relational and sets all translations r = 0, hence the score function of UM model is fr(h, t) =

‖h − t‖. As UM model does not take relations r into account, it cannot distinguish different

relations which limits its use for link prediction [50], [51], [52], [53], [75].

Structured Embeddings (SE) model: The SE model [47] is based on two relation specific

matrices, Mr,1 for head entities and Mr,2 for tail entities, having score function as fr(h, t) =

|Mr,1h − Mr,2t |. Since, the SE model has two separate matrices to optimize, it cannot capture

precise relation between entities and relations. The SEmodel extends theUMmodel by assuming

that the head and tail entities are similar only in a relation-dependent subspace, hence have two
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different matrices [50], [51], [52], [53], [75].

Neural Tensor Network (NTN) model: The score function of NTN model [43] is as

ut
rg(htWr t +Wrhh +Wrtt + br), where ur is a relation-specific linear layer, g(.) denotes tanh

operation, Wr ∈ Rd×d×k , a 3-way tensor and Wrh,Wrt ∈ Rk×d , weight matrices. Though NTN

model has high expressiveness, but has limitations in terms of having high complexity due to

large number of network parameters which limits its use for large-scale KGs [50], [51], [52],

[53], [75].

Latent Factor Model (LFM) model: LFM model [76] falls under the category of bilinear

models which considers second-order correlations between entity embeddings using a quadratic

form, and hence have scores function defined as fr(h, t) = hT Mr t. The bilinear model has its

improved performance over SE and other models, but it is restricted to model linear interactions

only. Also, bilinear model lacks its expressive power and requires lot of parameters [50], [51],

[52], [53], [75].

TransE model: The TransE model [46] is one of the most promising embedding models as

it is simple, efficient, while achieving state-of-the-art link prediction results. In TransE, both

entities (h and t) as well as relation (r) are represented with k-dimensional vectors such that

(h, t) ∈ Rk and r ∈ Rk . These vectors are chosen such that for each triple (h,r,t), it maintains the

relation:

h + r ≈ t (2.1)

The score function of TransE model is the norm of this translation as given:

fr(h, t) = ‖h + r − t‖22 (2.2)

The score function fr(h, t) is chosen such that the score for the positive triple (h, r, t) ∈ G is

lower than the score for the corrupted triple (ht, r, tt) ∈ Gt . In order to learn model parameters,

margin-based objective function is minimized as follows:

L =
∑
(h,r,t)∈G

(ht,r,tt )∈Gt
(h,r,t)

[γ + fr(h, t) − fr(ht, tt)]+ (2.3)

where [x]+ = max(0, x), γ is the margin hyper-parameter, G denotes training set of correct

triples, Gt denotes set of incorrect triples that are formed by corrupting either h or t from the

correct triples (h, r, t) ∈ G. "Bernoulli" trick is applied to choose whether head or tail is to

be corrupted from entire set of entities to form negative (or incorrect) triples [77]. Figure 2.4
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Figure 2.4: TransE embedding model [Adapted from [2]].

shows representation of triple in the embedding vector space for the triple (Humphrey bogart,

nominated_for, Academy Award). In this example, TransE model learns the embedding vectors

of entities and relations in such as way that vHumphreyBogart + vnominatedf or − vAcademyAward ≈ 0.

See algorithm 1 for detailed steps in TransE model.

Though TransE model is quite simple and highly effective, it has good performance for

1-to-1 relations, but has issues when modeling 1-to-M, M-to-1 and M-to-M relations [50], [51],

[52], [53], [75]. From 1-to-1 relations, we mean that for a particular relation in triples-based

KB, there is only one head and one tail attached to that particular relation. On the other hand,

when for a particular relation it has only one head and multiple tails (1-to-M), multiple heads

and only one tail (M-to-1) and multiple heads and multiple tails (M-to-M), the TransE models

has limitations to such cases [50], [51], [52], [53], [75].

TransH model: To overcome the limitations of TransE model in terms of modeling 1-to-M,

M-to-1 and M-to-M relations, [50] proposed TransH model which associates each relation with

a relation specific hyperplane and uses a projection vector to project entity vectors onto that

hyperplane. For a triple (h, r, t), the entity embeddings h and t are first projected to the hyperplane

of wr , denoted as h⊥ and t⊥. Hence, the score function is defined as fr(h, t) = |h⊥ + r − t⊥ |22 .

Restricting |wr |2 = 1, we get h⊥ = h − wT
r hwr and t⊥ = t − wT

r twr . By projecting entity

embeddings into relation hyperplanes, it allows entities playing different roles in different

relations [50], [51], [52], [53], [75].

TransR model: TransE and TransH model assume embeddings of entities and relations in

the same space Rk . An entity can have various semantic meanings when attached to different

relations in a particular KB. To allow same entity playing different roles in different relations,

TransR model [51] embeds entities and relations in separate space, i.e. entity space and relation

spaces (relation-specific entity spaces), and performs translation in the corresponding relation

space [50], [51], [52], [53], [75].
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Algorithm 1 TransE Model Algorithm [46]
Input
Training set S = {(h, r, t)}, entity set E , relation set R, margin γ, and embedding dimension
k

1: initialize r ← uniform
(
−6√

k
, 6√

k

)
for each r ∈ L

2: r ← r/‖r ‖ for each r ∈ L

3: e← uniform
(
−6√

k
, 6√

k

)
for each e ∈ E

4: loop
5: e← e/‖e‖ for each e ∈ E
6: Sbatch ← sample (S, b)
7: Tbatch ← φ //initialize a set of pair of triplets
8: for (h, r, t) ∈ Sbatch do
9: (ht, r, tt) ← sample (St

(h,r,t)) //sample a corrupted triplet

10: Tbatch ← Tbatch ∪
{(
(h, r, t), (ht, r, tt)

)}
11: end for
12: Update embeddings w.r.t
13:

∑(
(h,r,t),(ht,r,tt )

)
∈Tbatch

∇[γ + d(h + r, t) − d(ht + r, tt)]+
14: end loop

2.4 Path based embedding models

In order to take rich context of information and to improve existing embedding models, relation

path between entities has been taken into account. Path based models [78], [79], [80], [81], [82],

[83], [84], [85], [86], [87] represent a relation path by a vector which is the composition of vectors

of all relations in the path. Various compositions tried are sumoperation, multiplication and other

non-linear operations. PTransE [87] is path-based model which uses path information to find

the missing facts in the KG. PTransE doubles the number of edges in the KG by creating reverse

relationships for every existing relationship in the KG. [84] proposed Path Ranking Algorithm

(PRA) based on the technique of random walk inference. [83] uses PRA algorithm which takes

random walks from head to tail and predicts unseen relationship between head and tail. TransE-

NMM [85] takes nearest neighbors of entities (both head and tail) into account to improve link

prediction results. Table 2.2 provides the comparison of various prominent knowledge base

embedding models in terms of their score function, required number of parameters to learn and

optimization algorithm used.
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Model Score Function Parameters Op. Algo
Unstructured [74] ‖h-t‖22 O(nek) SGD

SE [47] ‖Wr,1h-Wr,2t‖`/2 O(nek) SGD
TransE [46] ‖h+r-t‖22 O(nek + nr k) SGD
TransH [50] ‖(h-wT

r hwr)+ dr -(t-wT
r twr)‖22 O(nek + 2nr k) SGD

TransR [51] ‖Wr,1h + r - Wr,2t‖`/2 O(nek + nr k + nr k2) SGD
Single Layer ut

rg(Wrhh +Wrtt + br) O(nek + nr(sk + s)) AdaGrad
NTN [43] ut

rg(htWr t +Wrhh +Wrtt + br) O(nek + nr(sk2 + 2sk + 2s)) L-BFGS
STransE [53] ‖Wr,1h + r -Wr,2t‖`/2 O(nek + nr k) SGD

Bilinear Model [76] htWr t O(nek + nr k + 10k2) AdaGrad

Table 2.2: Comparison of various KB embedding models based on: (1). Score function
f (h, r, t), (2). Parameters required, (3). Optimization methods used. k is the dimension of
embedding space, O represents number of parameters, s is the hidden nodes of neural network
or slices of a tensor, ne represents the number of unique entities and nr represents the number
of unique relations. h denotes head, r denotes relation and t denotes tail of triple.

2.5 Optimization algorithms and their effect on KB comple-

tion models

Optimization algorithms plays central role in training link prediction models and they may

require large amount of time for converging to optimal solution. Optimization algorithms

minimize the objective function to learn various model parameters in the form of learning entity

embeddings, relation embeddings or matrices. Various optimization algorithms, including

Stochastic Gradient Descent (SGD), AdaGrad [88], AdaDelta [89], L-BFGS [90], Adam [91]

are used for optimizing objective function in various link prediction models proposed in the

literature. SGD have limitations in terms of initialization and properly tuning of the learning

rate η [92]. Hence, non-adaptive algorithms require longer time to learn. Moreover, if part of

data is infrequent, of which parameters need to be updated (or tuned) less frequently during

the learning process, then model can take longer time to train. Thus, optimization algorithms

having fixed learning rate take days or week to terminate while training large-scale knowledge

graphs [49], [3].

Optimization algorithm is used to minimize an objective function J(θ) parameterized by a

model’s parameter θ ε Rd by updating the parameters in the opposite direction to the gradient

of the objective function ∇θ J(θ) with respect to model parameters. The learning rate η decides

the size of step we need to take to reach minimum value (better global minimum). Stochastic

Gradient Descent(SGD) performs a parameter update for each training example x(i) and label

y(i) i.e.

θ = θ − η.∇θ J(θ; x(i); y(i)) (2.4)
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Another variant of SGD which performs update for every mini-batch of n training examples is

called mini-batch gradient descent and have following update equation:

θ = θ − η.∇θ J(θ; x(i:i+n); y(i:i+n)) (2.5)

Gradient Descent algorithms suffer from limitation of carefully tuning the learning rate η and

inability to adapt to dataset’s characteristics [93]. AdaGrad [88] adapts the learning rate to the

parameters because of which it is well-suited for dealing with sparse data [93]. The update rule

of AdaGrad is given below:

Gk = Gk−1 + ∇J(θk−1)2 (2.6)

θk = θk−1 − α√
(Gk−1)

.∇J(θk−1) (2.7)

where . and sqrt are element wise operations. G is the historical gradient information. For each

parameter, sum of squares is stored for all historical gradients. This sum is used to scale/adapt a

learning rate. In contrast to SGD, AdaGrad learning rate is different for each of the parameters.

2.6 Evaluating triple-based link prediction models

The performance of various knowledge base embedding models focuses on two knowledge base

completion tasks: (1) Link prediction, which aims at predicting the missing entity (either head

or tail) in a given triple based on the existing facts in the KB. (2). Triplet classification, which

aims at predicting whether the given triple is true or not.

2.6.1 Link prediction task

The task of link prediction is to predict the missing head or tail for a given triple in the form

(head, rel, tail) as described in [46],[43],[50]. There are two metrics by which we measure

the link prediction ability of any knowledge base embedding model, namely: (1). Mean Rank

(MR), and (2). Hits@10 (H10).

Calculating Mean Rank (MR) and Hits@10 (H10)

For a given knowledge base denoted by G, having m entities, n relations and N number of triples

(or true facts) denoted as (h, r, t), where (h, t) ∈ E and r ∈ R. We take triple (h, r, t) from dataset

and replace either h or t, say h with all the m entities and calculate the score of each m triples.
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head relation tail label
Lauren Bacall nominated_for Academy Award +1
Lauren Bacall nominated_for Booker Prize -1

Table 2.3: Triplet classification example.

Then, sort these m triples in ascending order as per their score calculated by the TransE model

and find the position of the correct triple in the entire m triples. This is called rank of the triple.

We repeat the same process for all the triples present in the dataset and take the mean of rank

of all triples, which give Mean Rank for head side called HeadMR. Same approach is followed

by replacing tail t, which gives Mean Rank for tail side called TailMR. Finally, taking mean of

HeadMR and TailMR gives overall Mean Rank (MR) of the entire dataset. If the rank of true

triples lies within top 10 positions, then Hits@10 is incremented by 1. For all the triples present

in the dataset, calculating Hits@10 score for head side and dividing by the number of triples

gives HeadH10. Similarly, we calculate Hits@10 score for tail side given by TailH10. Finally,

taking mean of HeadH10 and TailH10 gives overall Hits@10 score (H10) for the entire dataset.

2.6.2 Triplet classification task

The task of triple classification is to confirm whether the given triple (h, r, t) is true or not [43],

[75], [51], [50], [85]. The triplet classification is a pair wise classification task as proposed

by [43], in which positive triple (labeled as +1) represents true fact having both entities and

relation as true, but negative triple (labeled as -1) represents false fact having either of the entity

as false. Each positive triple is provided with a negative triple which is formed by changing

any of the entity (either head or tail) from positive one making it corrupt (or false). For each

pair of triple (positive and negative), score is calculated and if the score of positive triple is less

than the score of the negative triple, then it is predicted as true. As an example, given a positive

and its negative triple in Table 2.3, the triple (Lauren Bacall, nominated_for, Academy Award)

is correct, but the triple (Lauren Bacall, nominated_for, Booker Prize) is false because Booker

Prize is always given for literary work and not to movie stars, and Lauren Bacall is a movie star.

So, a good link prediction model will always give lower score to the correct triple and higher

score to the false one. Hence, given test signed set, we count the number of triplet pairs that

are predicted true, which gives the overall triplet classification accuracy. A good link prediction

model gives lower MR, higher H10 and higher classification accuracy. Lower the MR, better

is the performance of the model in terms of Mean Rank evaluation metric. On the other hand,

higher the H10 score, better is the performance of the model. Here H10 (in %) of 100 shows
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Dataset #E #R #Train #Dev #Test
WN18 40,943 18 141,442 5,000 5,000
FB15k 14,951 1,345 483,142 50,000 59,071

Table 2.4: Statistics of the experimental datasets used in previous works. #E is the number of
entities, #R is the number of relations. #Train, #Dev and #Test are the numbers of triples in the
train, dev and test sets, respectively.

Model WORDNET (WN18) FREEBASE(FB15K)
- MR H10(%) MR H10 (%)

Unstructured [94] 315 35.3 1074 4.5
RESCAL [48] 1180 37.2 828 28.4

SE [47] 1011 68.5 273 28.8
SME Linear [95] 545 65.1 274 30.7
SME Bilinear [95] 526 54.7 284 31.3

LFM [76] 469 71.4 283 26.0
TransE [46] 263 75.4 243 34.9

TransE[AdaGrad] [3] 169 80.5 189 44.0

Table 2.5: Link Prediction Results: Test performance of several state-of-the-art link prediction
models [Results reported from [3]].

best performance and 0 shows worst performance. Also, for classification task, higher the triplet

classification accuracy, better is the performance of the model (where classification accuracy (in

%) of 0 shows worst performance and 100 shows best performance).

2.7 Performance of triples-based link prediction models

In order to show that adaptive optimization algorithms are better at providing state-of-the-art

link prediction results, [3] had done the empirical evaluation of various optimization algorithms

on two standard datasets namely, WORDNET (WN18) and FREEBASE (FB15K)[46] based on

two evaluation metrics as discussed in section 2.6 : (1). Mean Rank that measures the average

position of the true test triplet in the ranking, and (2). Hits@10 score that measures the number

of times the true test triplet is ranked among the most likely 10 triples (i.e. proportion of ranks

not larger than 10). Table 2.4 shows the statistics of the standard datasets used. Experimental

results shown in Table 2.5 based on two evaluation metrics shows that TransE model when

trained with adaptive learning rate provides the best results.

The literature of Statistical Relational Learning [55], [96], [97], [98] is vast and lot of

methods have been proposed for link prediction task in the past. The effectiveness of model for

link prediction task depends upon: (1). require less parameters, (2). easy to train, (3). simple

and efficient, (4). can be scalable to large knowledge graphs, (5). have better link prediction
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and classification performance [98]. Taking consideration of all these points, TransE [46] is the

most promising embedding model providing state-of-the-art link prediction results. Moreover,

properly tuning model hyper-parameters and choosing better optimization algorithms (adaptive

learning rates) can further enhance the performance of TransE model [99], [100], [101], [102].

Apart from this, simpler models like TransE tends to generalize better and are less prone to

overfitting than complex models especially for real-world knowledge graphs which are very

sparse [53]. Also, it has been experimentally proved that TransE model achieves state-of-the-art

predictive performance on link prediction task, while being able to scale to large and web-scale

knowledge graphs [103]. All these factors motivated us to opt TransE model for modeling n-ary

relationship dataset. In this thesis work, we opted TransE model to generalize it over tuples

having arbitrary arity.

The reason why we discussed TransE model in detailed manner is because we want to

generalize TransE model over tuples having arbitrary arity. Moreover, we discussed evaluation

metrics in detail because we want to extend the same evaluation metrics for tuples based link

prediction. Though, there are various other more sophisticated triples-based link prediction

models but majority of them are direct extensions of TransE model. So, it is reasonable to opt

TransE model for generalizing it over tuples.

2.8 N-ary relation extraction

Past two decades have witnessed a significant advancement in extracting binary domain-

dependent relations, but modern question-answering and summarization systems have triggered

interest in capturing detailed information in a structured and semantically coherent fashion, thus

motivating the need for complex n-ary relation extraction systems [58], [104]. [105] proposed

n-ary relation extraction system that factorize complex n-ary relation into binary relations, rep-

resenting them in a graph, and tried to reconstruct the complex relation by making tuples from

selected maximal cliques in the graph. Then, each relation is classified usingMaximum Entropy

(MaxEnt) classifier. Recently, [106] make use of lexical semantics to train a model based on

distant supervision for n-ary relation extraction. [58] proposed algorithm for extracting n-ary

relations from biographical data which extracts entities using Conditional Random Fields (CRF)

and n-ary relations using Support VectorMachine (SVM) from twomanually annotated data-sets

which contains biography summaries of Australian researchers.

Representing facts in the form of n-ary relations (or tuples) adds more expressiveness and

also hold context of long relationships between entities, which in turn puts challenge of how we



2.9 Chapter Summary 24

can check the implausibility of these tuples. Hence, the task of n-ary link prediction will help

to check the implausibility of facts represented in the form of tuples, improves the accuracy of

n-ary relation extraction and will help to make KBs more complete, which in turn can help in

varied downstream NLP applications.

2.9 Chapter Summary

This chapter gives overview of knowledge representation in the form of graph based databases,

also known as KBs or KGs. It also provides what link prediction is and how link prediction

can predict the missing facts in KBs based on the regularities in facts that are already exiting

in the knowledge base. It also highlights literature of various triple-based embedding models

for link prediction in KBs. Chapter concludes with importance of using adaptive learning

rate optimization algorithms for improving performance of link prediction models and provide

reasons for opting TransE model for modeling link prediction over n-ary relationships. In this

thesis work we are generalizing TransE model over tuples, because of which we discussed in

detail about TransE model and triple based link prediction evaluation metrics.



That there is no such thing as the scientific method,

one might easily discover by asking several scientists

to define it. One would find, I am sure, that no two of

them would exactly agree. Indeed, no two scientists

work and think in just the same ways.

Joel H. Hildebrand, American educator and pioneer

chemist

3
Modeling N-ary Relationships

In this chapter, we describe Neo-Davidsonian representation, which is an obvious technique of

decomposing tuples to triples. We also analyze its limitationswhenmodeling n-ary relationships.

Then, we propose two different models as a way of reducing tuples to triples namely: The head-

triple reduction and the clique reduction. We also propose two different trainingmethods namely:

triples based training and tuples based training. In order to model our n-ary relationships (or

tuples based) dataset using TransE, a triples-based embedding model, there is a need to convert

tuples into triples so that we can provide training data in terms of triples to TransE model.

3.1 Reducing Tuples to Triples

In order to generalize link prediction for n-ary relationships and to leverage the advantage of

predictive performance of TransE model, it is necessary to convert tuples into triples. Reducing

tuples to triples provide triples based training data, which in turn can be used to train any standard

triple-based link prediction model such as TransE. Though Neo-Davidsonian representation is

quite obvious way of reducing tuples to triples, but it has limitations because of which it can’t

be used for modeling n-ary relationships. So, we proposed two different models as a way of
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Figure 3.1: Neo-Davidsonian reduction of tuple P in terms of triples.

reducing tuples to triples. First, Neo-Davisonian reduction and its limitations are discussed and

then we describe our proposed models and training methods.

3.1.1 Neo-Davidsonian reduction

Reification techniques such as Neo-Davidsonian representation [107] provides a way to represent

n-ary relations [108]. In order to represent a tuple in the formofNeo-Davidsonian representation,

an intermediate (or auxiliary) entity is created which acts as unique tuple ID and serves as the

subject of the entire set of binary relations that are formed by decomposing tuples to triples. Let

us suppose that tuple P is in our train set and tuple Q is in our test set as given below.

P: (Lauren Bacall, nominated_for, Academy Award, for, Best Actress in Supporting Role, in,

The Mirror has 2 Faces)

Q: (Lauren Bacall, nominated_for, BAFTA Award, for, Best Actress, in, The Shootist)

The Neo-Davidsonian representation of tuple P in the form of triples is shown below, where

ID1 acts as a tuple ID.

actress(ID1, Lauren Bacall)

nominated_for(ID1, Academy Award)

for(ID1, Best Actress in Supporting Role)

in(ID1, The Mirror has 2 Faces)

The Neo-Davidsonian reduction of tuple P can be represented in the form of a graph as

shown in Figure 3.1. Neo-Davidsonian reduction is an obvious way of decomposing tuples to

triples as it completely encode all the information in the original tuple, but its limitation lies in

getting latent representations (embeddings) of the tuple IDs that are unseen in training. Though

model can learn the embeddings of entities, relations and tuple IDs that appear in the training
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data, but it can’t learn the embeddings of the tuple IDs representing tuples in the dev and test set

that have never been seen by the model during training. Therefore, tuple IDs for tuples in dev

and test set do not have embedding vectors. In Figure 3.1, ID1 is the tuple ID for tuple P. Since,

tuple P is in our train set, model can learn embedding vector for ID1, but the tuple Q is in test

set and no doubt, we can convert it into triples assigning ID2 to it as shown below, but model

can’t learn embeddings of ID2 since it has never seen this id in the train set.

actress(ID2, Lauren Bacall)

nominated_for(ID2, BAFTA Award)

for(ID2, Best Actress)

in(ID2, The Shootist)

Learning embeddings of tuple IDs for the tuples present in dev and test set is not possible using

Neo-Davidsonian reduction. Thus, Neo-Davidsonian reduction model can’t learn embeddings

of the tuple IDs that act as auxiliary nodes (or entities) for the entire dataset. Therefore, though

Neo-Davidsonian reduction is able to reduce tuples of arbitrary arity into triples, but learning the

embedding vectors of tuple IDs puts limitation in using Neo-Davidsonian reduction for modeling

n-ary relationships (or tuples dataset). So, we propose two different models of decomposing

tuples to triples overcoming the limitation of Neo-Davidsonian reduction, which are explained

in next subsections.

3.1.2 The head-triple reduction model

The head-triple reduction model decomposes tuples to triples very similar to Neo-Davidsonian

representation, overcoming its limitations of learning latent vector of tuple IDs. In head-triple

reduction model, the head (h) acts as a common entity for all the triples formed by decomposing

tuple. Given facts in the form of tuples, each tuple is reduced to triples using the head-triple

reduction model as described in Algorithm 2. For example, given a tuple having representation:

(h, r1, t1, . . . , rn, tn), it is decomposed into triples as follows: (h, r1, t1), (h, r2, t2), . . . , (h, rn, tn).

As an example, given below are three tuples P, Q and R which are reduced to triples using

head-triple reduction model as shown in Table 3.1. The horizontal lines in Table 3.1 are not the

output of the model, they are to highlight the separation of all triples reduced from particular

tuple.

P: (Lauren Bacall, nominated_for, Academy Award, for, Best Actress in Supporting Role,

in, The Mirror has 2 Faces)
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Algorithm 2 The head-triple reduction model
Given tuple dataset having tuples Ti (where i= 1 to M) and let S denotes the set the triples that
are reduced from tuples T . Then, the head-triple reduction model is defined by the following
procedure:
Input
Tuples Ti where i=1 to M // Total M tuples in the dataset
Each tuple Ti is denoted by (h, r1, t1, . . . , rn, tn) where j=1 to n;
(h, t1, . . . , tn) ∈ E, (r1, r2, . . . , rn) ∈ R, E denotes entities andR denotes relations in the dataset;
Output
Set of triples S reduced from tuples T ;
Procedure
1: initialize S = {φ} // Empty set of triples
2: for each tuple Ti where i=1 to M do
3: for j=1 to n do
4: S = S U (h, r j, t j)
5: end for
6: end for
7: return: S

head rel tail
(Lauren Bacall, nominated_for, Academy Award)
(Lauren Bacall, for, Best Actress in Supporting Role)
(Lauren Bacall, in, The Mirror has 2 Faces)
(Lauren Bacall, nominated_for, BAFTA Award)
(Lauren Bacall, for, Best Actress)
(Lauren Bacall, in, The Shootist)

(Humphrey Bogart, nominated_for, Academy Award)
(Humphrey Bogart, for, Best Actor in Leading Role)
(Humphrey Bogart, in, Casablanca)

Table 3.1: Reducing tuples P, Q and R into triples based on the head-triple reduction model.
The horizontal lines highlight the separation of all triples reduced from particular tuple and are
not the output of the model.

Q: (Lauren Bacall, nominated_for, BAFTA Award, for, Best Actress, in, The Shootist)

R: (Humphrey Bogart, nominated_for, Academy Award, for, Best Actor in Leading Role, in,

Casablanca)

Graphical representation of reducing tuples P, Q and R using the head-triple reduction model

is shown in Figure 3.2. As head is common for all the triples that are formed by reducing tuples

to triples, this approach is named as the head-triple reduction. The head-triple reduction model

arguably includes the key information from the tuples. One weakness is that the triples in the

head-triple reduction associate all the relational information with the head entity. If the head

entity is the only prominent entity in the tuple, then this is perhaps plausible, but in other relations

this can result in important information being lost. For example, the head-triple reduction loses

the information that The Shootist was nominated for a BAFTA Award while Casablanca was
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Figure 3.2: Graphical representation of Table 3.1 based on the head-triple reduction model.

nominated for an Academy Award. In order to overcome this ambiguity, we propose the clique

reduction model which is described in the next subsection.

3.1.3 The clique reduction model

The clique reduction model adds some of the information that the head-triple reduction model

is missing. It forms additional relations between entities from the existing relations in the tuple

as a clique in a hypergraph. The formation of additional relations is similar to hyperedges

in a hypergraph, therefore model is named as the clique reduction model. Given facts in the

form of tuples, each tuple is reduced to triples using the clique reduction model as described

in Algorithm 3. Given a tuple: (h, r1, t1, . . . , rn, tn), it is decomposed in the form of triples

as follows: (h, r1, t1), (h, r2, t2), (t1, r−1
1 .r2, t2), (h, r3, t3), . . . , (h, rn, tn). It is important to note

that the clique reduction model, in addition to triples gives by the head-triple reduction model,

gives additional relations in the form of (r−1
1 .r2), . . . , (r−1

n−1.rn), and also additional triples in

the form of (t1, r−1
1 .r2, t2), . . . , (tn−1, r−1

n−1.rn, tn), . Here new relation (r−1
1 .r2) is formulated by

concatenation of relations r1 and r2. The embedding vector of the new relation (r−1
1 .r2) is not

derived from applying a composition function to the embedding on the inverse of relations r1

and r2. The reason is because it requires learning a function to map the embedding of a relation

to its inverse too which will add additional computation complexity. To overcome this, the

new relations are formed at the pre-processing stage and the model learns embedding of new

relation in a standalone manner without any composition to its parent relations. The Formation

of additional relations and additional triples depends upon the length of the tuple. For example,

if tuple length is five, then there is one additional relation and one additional triple. If tuple

length is seven, then there are two additional relations and two additional triples. Therefore,

tuples having longer length add far more relations and triples as compared to shorter length.
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Algorithm 3 The clique reduction model
Given tuple dataset having tuplesTi (where i= 1 toM) and let S denotes the set the triples that are
reduced from tuples T . Then, the clique reduction model is defined by the following procedure:
Input
Tuples Ti where i=1 to M // Total M tuples in the dataset
Each tuple Ti is denoted by (h, r1, t1, . . . , rn, tn) where j=1 to n;
(h, t1, . . . , tn) ∈ E, (r1, r2, . . . , rn) ∈ R, E denotes entities andR denotes relations in the dataset;
Output
Set of triples S reduced from tuples T ;
Procedure
1: initialize S = {φ} // Empty set of triples
2: for each tuple Ti where i=1 to M do
3: for j=1 to n do
4: S = S U (h, r j, t j)
5: if j < n then
6: S = S U (t j, r−1

j .r j+1, t j+1)
7: end if
8: end for
9: end for
10: return: S

Reducing tuples P, Q and R based on the clique reduction model contains all the triples

from the head-triple reduction model, plus also the triples given in Table 3.2. The graphical

representation of the tuples decomposed into triples using this model is shown in Figure 3.3.

The entity name Supporting Role is shortened to SR and Leading Role is shortened to LR in

figures to fit figures onto the page. In Figure 3.3, dotted lines represent new relations formed

by concatenating existing relations. We can see that the extra triples in the clique reduction

model encode the information that The Shootist was nominated for a BAFTA Award, while The

Mirror has 2 Faces andCasablancawere nominated for Academy Award. In this case, the clique

reduction model captures almost all the information in the source tuples.

head rel tail
(Academy Award, nominated_for.for, Best Actress in Supporting Role)

(Best Actress in Supporting Role, for.in, The Mirror has 2 Faces)
(Academy Award, nominated_for.in, The Mirror has 2 Faces)
(BAFTA Award, nominated_for.for, Best Actress)
(Best Actress, for.in, The Shootist)

(BAFTA Award, nominated_for.in, The Shootist)
(Academy Award, nominated_for.for, Best Actor in Leading Role)

(Best Actor in Leading Role, for.in, Casablanca)
(Academy Award, nominated_for.in, Casablanca)

Table 3.2: Reducing tuples P, Q and R into triples based on the clique reduction model. The
horizontal lines highlight the separation of all triples reduced from particular tuple and are not
the output of the model.
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Figure 3.3: Graphical representation of Table 3.2 based on the clique reduction model. Dotted
lines represent new relations formed by concatenating existing relations.

However, even the clique reduction model can sometimes fail to completely encode all the

information in the source tuples. Suppose (counterfactually) that Bacall had also starred in

Casablanca, and that Bacall had been nominated for an Academy Award and Bogart had been

nominated for both an Academy Award and BAFTA Award for their performances. This would

be encoded by the additional tuples S and T as given below:

S: (Lauren Bacall, nominated for, Academy Award, for, Best Actress in Supporting Role, in,

Casablanca)

T: (Humphrey Bogart , nominated for, BAFTA Award, for, Best Actor, in, Casablanca)

It is easy to see that in this case the triples in the clique reduction model do not encode suffi-

cient information to determine that Bogart was nominated for a BAFTA Award for Casablanca,

while Bacall was not (Recall that Bacall was nominated for a BAFTA Award for a different

movie).

3.2 Training the models

In order to train two different proposedmodels, we have proposed two different trainingmethods.

These training methods differs in the way we feed data as input during training. While triple

based training method takes only triples as an input during training, tuples based training method

takes complete tuple as an input during training. Both methods work by comparing the score of

an element from the training data (which we call a positive example) with the score of a corrupted

version of that element, in which an entity had been replaced with a randomly sampled entity

(we call this a negative example). In triple based training the elements are triples, while in tuple

based training the elements are tuples. The score of a tuple is the sum of the scores of the triples

in its reduction.
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3.2.1 Triple based training

Triples-based link prediction models such as TransE takes training data in the form of triples.

Both, the head-triple reduction model as well as the clique reduction model provides triples

which we can directly provide as input training data to train triples-based link prediction model.

In triple based training, the model is trained on the triples in the way triples based prediction

models are trained. For a given tuple: (h, r1, t1, . . . , rn, tn), also given in equation 3.1, the TransE

model is trained on the triples formed from the tuples either formed by the head-triple reduction

model or the clique reduction model. In triple based training, the training set to TransE model

is in the form of triples and the score function of each triple formed is given by equation 3.2.

(h, r1, t1, r2, t2, . . . , rn, tn) where i = 1 to n (3.1)

The complete tuple in equation 3.1 is decomposed into triples as given below and for each of

these triples, the objective function is given in equation 3.2

(h, r1, t1), (h, r2, t2), (h, r3, t3), . . . . . . , (h, rn, tn)

fr(h, t) = ‖vh + vr − vt ‖22 (3.2)

where fr(h, t) denotes score of the triple, vh, vr and vt denotes embedding vector of head, relation

and tail respectively. For e.g. given tuple: (Bogart, wins, Academy Award, for, Best Actor),

the head-triple reduction model gives 2 triples from this tuple namely: (Bogart, wins, Academy

Award) and (Bogart, for, Best Actor), then the TransE model is trained having score function for

these triples as follows: ‖vBogart+vwins−vAcademyAward ‖22 and ‖vBogart+v f or−vBest Actor ‖22 where

v represents the embedding vector for particular entity or relation. On the other hand, when the

clique reduction model is trained based on triples based training, it also takes additional triples

that are formed by concatenating existing relations in the tuple. Taking same above example,

there is formation of one additional relation, i.e. wins−1. f or which is formed by concatenating

relations wins and for present in the tuple. The score function of extra triples formed by the

clique reduction model is given in equation 3.3.

frnew (ti, ti+1) = ‖vti + vrnew − vti+1 ‖22 (3.3)

where i=1 to n, rnew denotes additional relation formed by concatenating relations ri and ri+1,

frnew (ti, ti+1) denotes score of the extra triple formed by clique reduction model, vti denotes em-

bedding vector of ith tail, vrnew denotes embedding vector of new relation formed by concatenating
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relation ri and ri+1, and vti+1 denotes embedding vector of (i + 1)th . The clique reduction model

provides one extra triple formed from the tuple as (Academy Award, wins.for, Best Actor), hence

the score function of this extra triple is as follows: ‖vAcademyAward + vwins−1. f or − vBest Actor ‖22 .

3.2.2 Tuple based training

In triples based training, it is quite straightforward to feed triples directly to TransE model which

we have got from our two proposed models. But, there is loss of information because triples

based training do not take longer context between entities and relations in given tuples. In

order to take longer dependency between entities and relations, tuple based training is proposed

which takes whole tuple as an input for training. Given a tuple denoted by equation 3.4, for the

head-triple reduction model, the TransEmodel is trained having score function given in equation

3.5.

(h, r1, t1, r2, t2, . . . , rn, tn) where i = 1 to n (3.4)

f (h, r1, t1, . . . , rn, tn) =
n∑

i=1
‖vh + vri − vti ‖22 (3.5)

where i=1 to n, f (h, r1, t1, . . . , rn, tn) denotes score of the tuple, vh, vri and vti denotes embedding

vector of head, ith relation and ith tail respectively. For e.g. given tuple: (Ben Affleck, wins,

Academy Award, for, Best Actor), the TransE model is trained on the tuple having score function:

‖vBogart + vwins − vAcademyAward ‖2 + ‖vBogart + v f or − vBest Actor ‖2. On the other hand, for the

clique reduction model, the TransE model is trained having score function given by equation

3.6.

f (h, r1, t1, . . . , rn, tn) =

n∑
i=1
‖vh + vri − vti ‖22 +

n−1∑
i=1
‖vti + vrnew − vti+1 ‖22 (3.6)

where f (h, r1, t1, . . . , rn, tn) denotes score of the tuple, vrnew = vri−1ri+1 is the embedding vector

of new relation formed by concatenating concatenating relations ri and ri+1. Also, vh, vri and

vti denotes embedding vector of head, ith relation and ith tail respectively. For e.g. given

tuple: (Bogart, wins, Academy Award, for, Best Actor), the TransE model is trained on the

tuple having score function: ‖vBogart + vwins − vAcademyAward ‖2 + ‖vBogart + v f or − vBest Actor ‖2 +

‖vAcademyAward + vwins−1. f or − vBest Actor ‖2. Here rnew = r−1
i .ri+1 represents wins−1. f or , which

is an additional relation formed by concatenating relations wins and for. Tuple based training

takes account of all entities and relations in a tuple which is beneficial for link prediction task

such as (Lauren Bacall, wins, ?). Apart from inter-tuple context, tuple based training might be
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beneficial to take intra-tuple dependencies. For example, tuple of length 5 (Humphrey Bogart,

wins, Academy Award, for, Best Actor) might be beneficial for link prediction task on tuple

having length 3 (Humphrey Bogart, profession, ?) to predict actor, because it is highly likely

that movie stars win Academy Award.

Coupling two different proposed models with two different proposed training methods gives

overall 4 approaches. We call these 4 approaches namely: Approach 1 (the head-triple reduction

model coupled with triples-based training), Approach 2 (the clique reduction model coupled

with triples-based training), Approach 3 (the head-triple reduction model coupled with tuples-

based training) and Approach 4 (the clique reduction model coupled with tuples-based training).

In this thesis, we aim to evaluate performance of these proposed 4 approaches on our n-ary

relationship (or tuples) dataset.

3.3 Chapter Summary

This chapter provides overview of Neo-Davidsonian representation, a technique of reducing

tuples into triples. Neo-Davidsonian representation have limitations in terms of learning em-

bedding vectors for tuple IDs which are not seen while training, which limits its use for modeling

n-ary relationships. To overcome this limitation, Chapter proposed two different models as two

different ways of reducing tuples into triples, namely the head-triple reduction and the clique

reduction. We also proposed two different training methods as two different ways of training

the proposed models.



The scientific man does not aim at an immedi-

ate result. He does not expect that his advanced

ideas will be readily taken up. His work is like

that of a planter -for the future. His duty is

to lay the foundation of those who are to come

and point the way.

Nicola Tesla, Inventor, physicist and engineer

4
Experimental Evaluation

4.1 Proposed modification in standard evaluation criteria

Training link prediction models on large-scale Knowledge Bases (KBs) have bottlenecks in

terms of computation time [109]. One have to wait long to check how well a prediction model

is performing during training. Link prediction models are trained on a train set and the best

model is selected based on performance in terms of Mean Rank (MR) based on the Dev set [46].

Final evaluation on test set is done based on the best model selected. As the size of KB grows,

calculating MR and Hits@10 on large set of entities is computationally expensive and often

training takes huge amount of time (may be days, or weeks) depending upon the total number of

entities in the KB. To overcome this challenge of computationally demanding task, we propose

modification to existing evaluation criteria for evaluating performance of link prediction models

on large-scale KBs which is simple, highly efficient and faster than original evaluation criteria,

ultimately leading to rapid prototyping and visualization of model performance. Our modified

evaluation criteria can be applied to almost all link prediction models and experimenter have the

privilege to choose required set of entities out of total entities upon which one wants to check



4.2 Evaluating n-ary relationship models 36

the performance of the prediction model.

In our modified evaluation criteria, MR is calculated on a selected set of entities called

"evaluation subset", which are sampled from the entire set of entities present in the KB based

on their probability count. The steps are listed below:

• Collect all entities by processing train, dev and test set. Let N denotes total number of

entities (i.e. unique set of entities) that appear in train, dev and test set.

• Count the number of times a particular entity appears in the entire dataset giving count of

each entity. Let ni denotes the count of ith entity among N entities, where i = 1, 2, 3, ...., N .

• Dividing entity count by the sum of all entity counts gives the probability of occurrence

of each entity in the entire data set. i.e. pi =
ni∑N
i=1 ni

where pi denotes the probability of ith

entity.

• Depending upon the number of entities we want to take into account in order to check

model performance in terms of MR and H10 score, m entities are sampled from the entire

distribution of entities without replacement to form evaluation subset.

Evaluating link prediction model on evaluation subset of entities rather than complete set of

entities helps to overcome the computational bottleneck. In this thesis, we have taken evaluation

subset of 1000 entities to check model performance during training and also to test the proposed

approaches. The evaluation subset of 1000 entities follows the same distribution as the original

set of entities. Moreover, while evaluating models on link prediction task, it is ensured that

the head (or tail) entity must be there in the evaluation subset. If not, then head (or tail) entity

is appended making overall 1001 entities, in turn making the resulted performance a good

approximation of the performance measures when computed on the original set of entities.

4.2 Evaluating n-ary relationship models

In section 2.6 we describe evaluation protocol for triple-based models. We follow the same

protocol for evaluating our proposed models for modeling n-ary relationships. Since we are

evaluating tuples denoted by (h, r1, t1, . . . , rn, tn) having arbitrary length, we evaluate our pro-

posed approaches on two standard tasks: (1). Tuple classification, and (2). Link prediction over

tuples.
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h r1 t1 r2 t2 label
Lauren Bacall nominated_for Academy Award in The Mirror has 2 Faces +1
Lauren Bacall nominated_for Academy Award in Titanic -1

Table 4.1: Tuple classification example.

Tuple Classification

The task of tuple classification is to validate whether the given tuple is correct or not. Similar to

triplet classification task, tuple classification task comes with tuple pairs. For a given positive

tuple say, (h, r1, t1, r2, t2, . . . , rn, tn), first we sample i uniformly from 0 to n, then if i = 0, we

replace the first entity in the positive tuple (i.e. head of the tuple) from an overall distribution of

entities in the knowledge graph and so on. Hence positive tuple is the correct tuple given in the

dataset, whereas negative tuple is obtained by replacing one of the entities with another entity

chosen randomly. While making negative tuples, it is ensured that the formed negative tuple

does not appear as a positive tuple in the entire dataset.

For a given pair of tuple (one positive and other negative), score of each tuple is calculated

as the sum of the scores of the triples in its reduction, and if the score of positive tuple is less

than the score of negative tuple, then it is predicted as true. As an example, Table 4.1 shows a

pair of tuples where the positive tuple (labeled +1) have all entities and relations correct because

Lauren Bacall has starred in The Mirror has 2 Faces and she was nominated for Academy Award

for this movie, but the negative tuple (labeled -1) have one entity (tail in this example) wrong

because Lauren Bacall has not starred in movie Titanic, making it a false tuple. The score of

tuple is calculated as the sum of score of all the triples it reduces to as per the model (either the

head-triple reduction or the clique reduction). Given a tuple denoted as given in equation 4.1,

the score of tuple is calculated based on the head-triple reduction model given by equation 4.2.

(h, r1, t1, r2, t2, . . . , rn, tn) where i = 1 to n (4.1)

Score of tuple =
n∑

i=1
fri (h, ti) (4.2)

where fri (h, ti) denotes the score of the triples formed from the tuple. In case of calculating score

of the tuple based on the clique reduction model we have to take account of additional triples

formed from the tuple. Hence, the score of tuple is calculated based on the clique reduction
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h r1 t1 r2 t2
Lauren Bacall nominated_for Academy Award in The Mirror has 2 Faces

Table 4.2: An example of tuple for link prediction.

model given by equation 4.3.

Score of tuple =
n∑

i=1
fri (h, ti) +

n−1∑
i=1

frnew (ti, ti+1) (4.3)

where rnew = r−1
i .ri+1 denotes additional relations formed by concatenating existing relations in

the tuple. fri (h, ti) denotes the score of the simple triples and frnew (ti, ti+1) denotes the score of

the additional triples formed by the clique reduction model. As an example, the score of tuple

given in Table 4.2 is calculated based on the head-triple reductionmodel as given in equation 4.4.

The name of entities have been shortened to fit text on page where LB denotes Lauren Bacall

and AA denotes Academy Award for tuple given in Table 4.2.

Score of tuple = Score of triple (LB, nominated_for, AA) + Score of triple (LB, in, 2 Faces)

(4.4)

Based on equation 4.3, the score of tuple given in Table 4.2 is calculated based on the clique

reduction model as given in equation 4.5.

Score of tuple = Score of triple (LB, nominated_for, AA) + Score of triple (LB, in, 2 Faces)

+ Score of triple (AA, nominated_for.in, 2 Faces) (4.5)

Link prediction

The task of link prediction is to predict any missing entity in a given tuple. In this thesis work,

we focus on predicting a single missing entity (head or tail) in an n-ary relationship tuple. By

tail, we mean last entity appearing in the tuple. For a tuple having notation (h, r1, t1, . . . , rn, tn),

here head is denoted by h and tail is the last tail appearing in the tuple denoted by tn. For the

sake of simplicity, we call tn as t (i.e. tail) in a tuple. The intuition behind taking only the

head and the tail (the last entity in the tuple) into evaluation is to make the task of n-ary link

prediction the direct extension of triples-based link prediction. Moreover, in our tuples dataset,

tuples have different lengths ( having triples also). So, intermediate entities are not subject to
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evaluation because it is not possible to do evaluation on the triples present in our dev and test

set (as they have only one head and one tail).

For each tuple in the dataset, we replace either h or t by m entities i.e. evaluation subset

which are sampled as described in section 4.1. We calculate MR for head side, denoted by

HeadMR and MR for tail side denoted by TailMR as described in section 2.6 replacing head

and tail respectively in tuples. Taking mean of HeadMR and TailMR gives overall MR of the

dataset. Also, if the position of correct tuple lies in the top 10 positions, then Hits@10 score

is incremented by 1. Calculating HeadH10, TailH10 as described in Chapter 2 section 2.6 and

taking their mean, gives overall H10 score of dataset. Taking example of tuple from Table 4.2,

the tuple’s true head is Lauren Bacall and true tail is The Mirror has 2 Faces. While calculating

rank and Hits@10 for head side, we replace head with 1000 entities that belong to evaluation

subset. If true head does not appear in 1000 entities, then true head is appended making 1001

entities in evaluation subset. Then, score of all tuples is calculated and tuples are arranged in

ascending order as per their scores. Finally we find the position of true tuple giving rank of the

tuple and if position lies within top 10 positions, then Hits@10 is incremented by 1. We repeat

the process for all tuples in the dataset for head side and taking their mean, gives HeadMR and

HeadH10. Similarly, in order to calculate rank and Hits@10 for tail side, we replace tail i.e.

The Mirror has 2 Faces with 1000 entities in evaluation subset. It is ensured that true tail lies

in the evaluation subset, if not, then it is appended making 1001 entities in evaluation subset.

Then, score of all tuples is calculated and tuples are arranged in ascending order as per their

scores. Finally we find the position of true tuple giving rank of the tuple and if position lies

within top 10 positions, then Hits@10 is incremented by 1. We repeat the process for all tuples

in the dataset for tail side and taking their mean, gives TailMR and TailH10. Finally, taking

mean of HeadMR and TailMR gives overall MR of the dataset; also taking mean of HeadH10

and TailH10 gives overall H10 of the dataset.

A good link prediction model should have lower MR, higher H10 and higher classification

accuracy. Given two link prediction models, say model A and model B, then model A is

better than model B if MR(A)<MR(B), H10(A)>H10(B) and Classification Accuracy (A) >

Classification Accuracy (B).

4.3 Dataset

There are many standard datasets for link prediction on triples, but there is no dataset for link

prediction on tuples. So, we created our own tuple dataset from latest Wikidata dump [7].
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# E #R #Train #Dev #Test
102,231 353 684,488 9,998 9,997

Table 4.3: Statistics of the tuple dataset. # E denotes number of entities, # R denotes number
of relations, # Train, # Dev and # Test denotes number of tuples in train, dev and test set
respectively.

The Wikidata tuple dataset we have worked on in this thesis is generated from Wikidata dump

of 3rd January, 2017. Entities and relations are pruned (i.e. do not appear in the dataset) if

they appear less than particular count in the Wikidata dump, and also if they appear less than

particular count in a long relation in theWikidata dump. The dataset used in this thesis is named

as Wikidata −m1000 − l20, highlighting that the entities and relations are pruned (i.e., they do

not appear in a data file) if they appear less than 1000 times in the Wikidata dump and if they

appear less than 20 times in a long relation in the Wikidata dump. The dataset contains tuples

in the form of (h, r1, t1, . . . , rn, tn), where h denotes head entity, r1 denotes first relation, t1

denotes first tail entity, and so on. A file mapping entity and relation ids to English descriptions

is also given so that we can check the actual English name corresponding to each entity and

relation. Appendix A.1 provides the detailed statistics of our tuple dataset. In this thesis, we

constrained our work over tuples having length not greater than 13. The reason for this constraint

is due to lack of tuples in our dev and test set having length greater than 13 (see Appendix A.1

for details). Though there are 684, 665 train, 10, 000 dev, and 10, 000 test tuples in our original

dataset, we removed tuples having length greater than 13, leaving 684, 488 tuples in train, 9, 998

tuples in dev and 9, 997 tuples in test set. Table 4.3 shows the statistics of tuple dataset we have

worked upon.

4.4 Experiments

4.4.1 Experimental setup

In order to evaluate our proposed approaches based on TransE model, we choose learning rate

η for AdaGrad among {0.001, 0.01, 0.1} , embedding dimension k among {20, 50, 100, 200,

500}, margin γ among {1, 2, 5, 10}, dissimilarity measure d as {L2} and number of sampled

entities m = 1000 (i.e. evaluation subset) for calculating MR and H10 scores that are randomly

sampled as described in section 4.1. For fair evaluation, we used same set of 1000 sampled

negative entities (or evaluation subset) in all of the four proposed approaches. For each of the

proposed approach, best model is selected based on lowest Mean Rank (MR) on Development
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Approach HeadMR TailMR MR HeadH10 TailH10 H10 Acc
Approach 1 347.63 27.10 187.37 5.34 92.92 49.13 77.16
Approach 2 332.65 25.11 178.88 9.78 93.24 51.51 78.47
Approach 3 220.20 32.68 126.44 10.79 91.69 51.24 78.03
Approach 4 194.23 29.11 111.67 17.25 92.82 55.04 80.24

Table 4.4: Results of proposed 4 approaches. HeadMR denotes Mean Rank for head side,
TailMR denotes Mean Rank for tail side, MR denotes overall Mean Rank. Similarly, HeadH10
denotes Hits@10 for head side (in %), TailH10 denotes Hits@10 for tail side (in %) and H10
denotes overall Hits@10 score (in %). Acc (in %) denotes tuple classification accuracy.

set. Table 4.4 gives the experimental results of all the proposed 4 approaches.

In Table 4.4, approach 1 refers to "the head-triple reduction model coupled with triples based

training", approach 2 refers to "the clique reduction model coupled with triples based training",

approach 3 refers to "the head-triple reduction model coupled with tuples based training" and

approach 4 refers to "the clique reduction model coupled with tuples based training". From

experimental result in Table 4.4, approach 2 performs better than approach 1, giving lower

MR, higher H10 and higher classification accuracy. Similarly approach 4 performs better than

approach 3 giving lower MR, higher H10 and higher classification accuracy. Hence, the clique

reduction model performs better than the head-triple reduction model. The clique reduction

model forms extra relations from the relations already existing in the tuples, it provides more

relations between entities. The clique reduction model is trained with lot many new relations

apart from the existing ones given by the head-triple reduction model, which leads the clique

reduction model to provide better predictive performance than the head-triple reduction model.

Moreover, if we compare the performance of tuple based training (i.e. approach 3 and 4)

with triples-based training (i.e. approach 1 and 2), the tuple based training models provides

lower MR, higher H10 and higher classification accuracy compared to the triples-based training

models. This signifies that tuple based training performs better compared to triple based training.

In tuples based training, model is able to take account of links between all entities and relations

in a particular tuple leading to better predictive performance. It is worth highlighting that when

we replace entities with tail in the tuples, the performance of all four approaches is pretty good

(i.e. low TailMR and high TailH10), but when we replace entities with head in the tuples, the

performance of all four approaches is poor (i.e. very high HeadMR and quite low HeadH10).

This further raised question "Why predicting head is difficult compared to tail?". In order to

answer this question, we did detailed analysis described in section 4.6. It is due toTransEmodel’s

inability to handle M-to-1, 1-to-M and M-to-M relationships. Comparing all the 4 approaches,

approach 4 (The clique reduction model coupled with tuple based training) performs better than



4.5 Qualitative Results 42

other 3 proposed approaches, giving lowestMR, highest H10 and highest classification accuracy.

In terms of computational complexity, the dataset used in this thesis is quite large compared

to various standard triple based datasets. Moreover, the clique reduction approach gives rise

to large number of new relations (increasing quadratically in the worst case), making original

evaluation criteria totally prohibited in term of computation time required to train models. Our

proposed modification in evaluation criteria train models in short computation time (depending

upon the number of entities to work upon), making it highly efficient leading to rapid prototyping

and visualization of model performance. In this thesis work, we are taking 1000 entities into

account for calculating MR and H10 which are sampled from total 102, 231 set of entities based

on their probability distribution as described in 4.1. Hence, we are able to test our models 100

times faster using our proposed modification.

4.4.2 Complexity of the proposed models

In tuple dataset, there are 684, 488 tuples in the train set. The head-triple reduction model

decompose these tuples into 1, 544, 560 triples having 102, 231 entities and 353 relations. It is

found that the number of triples resulted from the clique reduction depends upon the number

of triples resulted by the head-triple reduction and the total number of tuples as given by

equation 4.6.

ncr = 2 ∗ nhtr − ntup (4.6)

where ncr denotes the number of triples resulted from the clique reduction, nhtr denotes the

number of triples resulted from the head-triple reduction and ntup denotes the number of tuples

in the dataset. Hence, the clique reduction model decompose these tuples into 2, 404, 632

triples having 102, 231 entities and 1, 736 relations. So, the clique reduction model give rise to

additional 860, 072 triples and 1, 383 relations which increases model complexity. Therefore,

the clique reduction model encodes additional information about tuples at the cost of higher

computational complexity.

4.5 Qualitative Results

To illustrate model’s capability in modeling n-ary relationships, this section presents sample

examples where model is able to predict true tail (or head) in the top 10 positions and some

examples where model fails to predict true tail (or head) in top 10 positions. Predicted tails or

heads are top 10 entities predicted by model and are presented in order given by ranks.
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Input (h, r1, t1, . . . ) Predicted Tails (Top 10 positions)
Conservative Party, instance
of

Political Party, university, private not for profit edu-
cational institution, male given name, position, profes-
sion, municipality of Brazil, comune of Italy, country,
art museum

Protein FAM83D, biological
process, mitotic nuclear divi-
sion, determination method

TAS, ISO, ISS, IBA, IPI, IMP, IDA, IGI, IEA, NAS

The smiling Lieutenant,
nominated for, Academy
Award for Best Picture, subject
of

29th Tony Awards, 10th Tony Awards, 5th Academy
Awards, 11th AcademyAwards, 6th AcademyAwards,
7th Academy Awards, 15th Tony Awards, 54th Tony
Awards, 33rd Tony Awards, 3rd Academy Awards

Norma Shearer, nominated
for, Academy Award for
Best Actress, for work, The
Divorcee, subject of

13th Academy Awards,3rd Academy Awards, 26th
Academy Awards, 16th Academy Awards, 15th
Academy Awards, 18th Academy Awards, 32nd
Academy Awards, 37th Academy Awards, 17th
Academy Awards, 29th Academy Awards

Joseph Konstan, educated at,
University of California Berke-
ley, academic degree, Master
of Science, academic major

jurisprudence, economics, computer science, physics,
mathematics, philosophy, political science, theology,
chemistry, law

Dmitri Bystrov, place of
birth, Moscow, located
in the administrative
territorial entity, Rus-
sian Soviet Federative Socialist
Republic, country

United States of America, Soviet Union, Russian Em-
pire, United Kingdom, Socialist Federal Republic of
Yugoslavia, Abbasid caliphate, Italy, Sweden, Japan,
Switzerland

Table 4.5: Example predictions of tails on test set based on the head-triple reduction model
where model is able to predict true tail in top 10 positions. Bold indicates the test tuple’s true
tail predicted by the model.

4.5.1 Sample successful example predictions

Table 4.5 shows sample example predictions where model is successful in predicting true tail

of given tuple in top 10 positions based on the head-triple reduction model. Input in terms of

(h, r1, t1, . . . , rn) is given to themodel and goal is to predict the true tail for the given input. text

denotes relations in the tuple. Similarly, Table 4.6 shows sample example predictions where

model is able to predict tuple’s true head in top 10 positions. From these examples, it is clear

that model is not only able to predict tuple’s true tail (or head) in top 10 positions, but also is able

to cluster entities which are quite relevant (or near) to tuple’s true tail (or head), which makes

common-sense. In case of the clique reduction model, model is given with additional relations

formed by concatenating two relations present in the tuple, in addition to relations already

present in the tuple. Taking first example from Table 4.7, actual tuple was (Mile Jedinak, place

of birth, Sydney, country, Australia). So, model is provided with additional one relation
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Predicted heads (Top 10 positions) Input(. . . , rn, tn)
Milan, Brigham Young University, Florence, Tilburg,
Leiden, Groningen, Vietnam, Singapore, Toulouse,
National Library

instance of, country

Screen Actors Guild Award for Outstanding Perfor-
mances by a cast in a Motion Picture, Screen Ac-
tors Guild Award for Outstanding Performance by an
Ensemble in a Drama Series, Academy Award for
Best Supporting Actress, Golden Raspberry Award for
Worst Picture, Screen Actors Guild Award for Out-
standing Performance by an Ensemble in a Comedy
Series, Directors Guild of America Award for Out-
standing Directing Feature Film, Broadcast Film Crit-
ics Association Award for Best Cast, Hugo Award for
Best Dramatic Presentation, Los Angeles Film Critics
Association Award for Best Director, BAFTA Award
for Best Direction

winner, Ang Lee, for work,
Crouching Tiger Hidden Dragon,
winner.for work

Douglas Shearer, Norma Shearer, Cedric Gibbons,
Greg P Russell, Lyle R. Wheeler, Walter M Scott,
Charles LeMaire, Edith Head, Edwin B Willis, Vic-
tor Young, Thomas Newman

nominated for, Academy
Award for Best Actress, for
work, The Divorcee, subject
of, 3rd Academy Awards

Table 4.6: Example predictions of heads on test set based on the head-triple reduction model
where model is able to predict true head in top 10 positions. Bold indicates the test tuple’s true
head predicted by the model.

place of birth.country which is formed by concatenating relation place of birth and

relation country. Here, as the length of tuple is 5, so there is only 1 additional relation. If

length of tuple is 7, then there are 2 additional relations, and so on. Hence, model has to predict

true tail of the given tuple, i.e. Australia in this particular example. Table 4.7 shows various

example for the clique reduction model, where model is able is predict given tuple’s true tail in

top 10 positions.

For predicting head based on the clique reduction model, model is provided with all the

information as described above except head and model has to predict given tuple’s true head.

As an example from Table 4.8, the task for model is (?, employer, College de France, position

held, professor), i.e. predicting true head which is Adam Mickiewicz in this case. Here addition

relation employer.position held is also provided to the model.

4.5.2 Sample failure example predictions

There are cases where model is unable to predict tuple’s true tail (or head) in top 10 positions.

Table 4.9 shows examples where model is unable to predict tuple’s true tail in top 10 positions

based on the head-triple reduction. In the first example of Table 4.9, model has to predict
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Input (h, r1, t1, . . . ) Predicted Tails (Top 10 positions)
Mile Jedinak, place of birth, Sydney,
country,place of birth.country

Russian Empire, United States of America,
Australia, France, Soviet Union, Spain,
United Kingdom, Germany, Sweden, So-
cialist Federal Republic of Yugoslavia

Avengers:Age of Ultron, cast member,
Robert Downey Jr., character role, cast
member.character role

B’Elanna Torres, Josh Lyman, Josiah Bart-
let, Toby Ziegler, Tony Stark/Iron Man,
Adam Schiff, C.J.Cregg, Charlie Young,
Tom Paris, Margaret Hooper

Nucleoporin Nup43, biological process,
cell cycle, determination method,
biological process.determination
method

IEA, IMP, IDA, IBA, TAS, ISS, IGI, ISO,
NAS, IEP

Table 4.7: Example predictions of tails on test set based on the clique reduction model where
model is able to predict true tail in top 10 positions. Bold indicates the test tuple’s true tail
predicted by the model.

Predicted heads (Top 10 positions) Input(. . . , rn, tn)
Erhard Schmidt, Sagiri Kitao, Ernest Renan, Robert
Ballard, Adam Mickiewicz, Herbert Kurke, Mashiro
Okunu, Serotinin binding, Nicholas Rowe, Homeobox
protein Hox-D3

employer, College de France,
position held, professor,
employer.position held

Phenacyl chloride exposure, propanoic acid exposure,
abrin exposure, Petroleum ether exposure, Prosti,
adiponitrile exposure, chloropicrin exposure, theionyl
chloride exposure, Dimethyl carbamoyl chloride expo-
sure, VX exposure

first aid measure, prompt
washing with soap, route
of administration,
skin absorption, first
aid measure.route of
administration

Table 4.8: Example predictions of heads on test set based on the clique reduction model where
model is able to predict true head in top 10 positions. Bold indicates the test tuple’s true head
predicted by the model.

true tail for the given input (China Mieville, award received, Locus Award for Best Fantasy

Novel, for work, ?), though model is unable to predict true tail but looking in details about the

predicted tails reveal that all are movie names which makes sense for the given tuple. Similar

trend can be seen in predicted heads in Table 4.10 where model is able to predict closely related

head for the given tuple but unable to predict it in the top 10 positions.

Table 4.11 and Table 4.12 shows few examples where model is unable to predict tuple’s

true tail and head respectively based on the clique reduction model. Closely analyzing all these

example reveals that though model is unable to predict true tail (or head) in top 10 positions

but all the 10 top predicted entities (either head or tail) are closely related to the entity to be

predicted. This shows that bothmodels (the head-triple reductionmodel and the clique reduction

model) are able to learn the semantics of the tuples quite well.
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Input (h, r1, t1, . . . ) Predicted Tails (Top 10 positions)
China Mieville, award
received, Locus Award for
Best Fantasy Novel, for work

The Last King of Scotland, The Lord of the Rings:The
Return of the King, Lost in Translation, Sideways,
Antwone Fisher, Traffic, Argo, Villain, Karl Heinz
Clasen, The Prestige

Julia Gillard, position held,
Deputy Prime Minister of Aus-
tralia, replaces, Mark Vaile,
replaced by

Benjamin Disraeli, Bernhard von, Charles de Gaulle,
Michael Foot, Andrei Smirnov, John Foster Dulles,
Benedetto Cairoli, Avigdor Lieberman, Helmut Kohl,
Kim Beazley

Table 4.9: Example predictions of tails on test set based on the head-triple reduction model
where model fails to predict true tail in top 10 positions.

Predicted heads (Top 10 positions) Input(. . . , rn, tn)
Mandatory Minimums, Rise, Ninety Miles Away,
Posse Comitatus, Royal Affairs in Versailles, 20 Hours
in America, Bad Moon Rising, Walter Hugo Gross,
Should I Stay or Should I Go?, Requiem

cast member, John Spencer,
character role, LeoMcGarry

Joseph Heller, Abigail Breslin, Bruce Boxleitner,
Nancy Allen, Ante Covic, Aleksandr Dugin, Anthony
Franciosa, Nina Menshikova, Ivan Turgenev, Yuri
Zavadsky

place of birth,
Moscow, located in
the administrative
territorial entity, Rus-
sian Soviet Federative Socialist
Republic, country, Soviet
Union

ZNF573, EX0SC10, ADAMTS8, FAM83B, BMP2K,
ATXN7, IMPAD1, CELSR2, TAF11, APCDD1

strand orientation, Reverse
Strand, genomic assembly,
Genome assembly GRCh38,
genomic assembly, Genome
assembly GRCh37

Table 4.10: Example predictions of heads on test set based on the head-triple reduction model
where model fails to predict true head in top 10 positions.

On the basis of results, it is clear that both models (the head-reduction and the clique

reduction) have predictive performance high for the tail side and have low for the head side.

Moreover, there are various cases where the head-triple reduction model fails to predict true

head (or tail) in top 10 positions, but the clique reduction model is able to predict them in top

10 positions. This reflects that the clique reduction, with additional complexity have higher

predictive performance compared to the head-triple reduction. Finally, based on the examples

of both successful and failure cases, it is clear that models are able to learn the properties of

KG quite well. This is revealed from the fact that in all the examples, models are able to predict

entities very similar to the tuple’s actual tail (or head).
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Input (h, r1, t1, . . . ) Predicted Tails (Top 10 positions)
Carlos Beltran, award received, Ma-
jor League Baseball All-Star, league,
National League, position player
on team, award received.league,
league.position player on team

power forward, first baseman, relief pitcher,
center, shooting guard, forward, defender,
small forward, midfielder, Carlo Lizzani

Hugo Award for Best Dramatic Presen-
tation, winner, Mario Puzo, for work,
winner.for work

TheLord of the Rings:TheReturn of theKing,
The Help, Gosford Park, The Sopranos, The
King’s Speech, Brokeback Mountain, Traffic,
No Country for Old Men, Talk to Her, Aliens

Die vielen Abenteuer von Winnie
Puuh, voice actor, Inge Wolffberg,
character role, Rabbit, applies to
part, voice actor.character role,
character role.applies to part

background, takeoff, landing, left, fore-
ground, right, Rabbit, down, adult, uridine
kinase URK1 YNR012W

Table 4.11: Example predictions of tails on test set based on the clique reduction model where
model fails to predict true tail in top 10 positions.

4.6 Performance of link prediction models with cardinality

constraints

The performance of link prediction models are subject to different cardinality constraints [110],

[46], [50], [51]. Cardinality on relations specifies the number of relations the particular entity is

associated with. There are two cardinalities for each particular relation, namely head cardinality

and tail cardinality. As an example, taking triple (Humphrey Bogart, nominated_for, Academy

Award), head cardinality of relation nominated_for is the number of entities that appear as

head in this particular relation, which are the name of movie stars. On the other hand, tail

cardinality of relation nominated_for is the number of entities that appear as tail in the relation

nominated_for, which are the name of Awards that movies stars have been nominated for.

Therefore, cardinality constraints can be 1-to-1 (one-to-one), 1-to-M (one-to-many), M-to-1

(many-to-one) and M-to-M (many-to-many).

TransE model has poor performance in handling 1-to-M and M-to-1 cardinality of relations

[46], [50], [51]. To illustrate this fact, let us take an example for any triple based prediction

model, (Humphrey Bogart, gender, male). In this example, the relation gender can have very

high head cardinality, because there can be M number of people in the KB who have gender as

male. On the other hand, the relation gender have very low tail cardinality (exactly 2), because

there are only two possible cases of gender (either male or female). Given the task of link

prediction (Lauren Bacall, gender, ?), any link prediction model can very well predict the true

tail, which is female because the tail cardinality for relation gender is only 2 which is very small.
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Predicted heads (Top 10 positions) Input(. . . , rn, tn)
Santo Loquasto, John Lee Beatty, Anne Ban-
croft, Jo Mielziner, Diego Abad de san-
tillan, Donald Pleasence, Ethan Coen, car-
benoxolone, Jason Robards, National Football
League

nominated for, Tony Award for Best
Featured Actor in a Play, subject
of, 58th Tony Awards, nominated
for.subject of

Transforming growth factor beta-1, Neu-
rogenic locus notch homolog protein 1,
Sonic hedgehog protein, RAC-alpha serine,
Presenilin-1, Bone morphogenetic protein 7,
Apoptosis regulator Bcl 2, Catenin beta-1,
P2X purinoceptor 7, cell division control pro-
tein 42 homolog

biological process, cell cy-
cle, determination method, IEA,
biological process.determination
method

Georgy Malenkov, Valery Legasov, Eduard
Bagritsky, Siko Dolidz, Mike Bryan, Roy
Dolby, Aleksandr Domogarov, Boris Dolin,
Ben Stiller, Paul Greengard

place of death, New York City,
located in the admin territory,
New York, country, United States of
America, place of death.located
in the admin territory, located
in the admin territory.country

Table 4.12: Example predictions of heads on test set based on the clique reduction model where
model fails to predict true head in top 10 positions.

On the other hand, given the task of link prediction (?, gender, female), it is quite difficult to

predict the very true head of the triple because the head cardinality of relation gender is very

high.

To have an idea of how cardinality constraints affects our results, we did analysis of tuples

in our train set to get head cardinality and tail cardinality for each relation. Table 4.13 shows

10 most common relations in our training data with their actual name, head cardinality and tail

cardinality. For all the relations in Table 4.13, the head cardinality value is quite high compared

to tail cardinality, which indicates that predicting head is difficult as compared to predicting tail.

In order to investigate further, we did analysis of our dev set. The intuition behind analyzing dev

set is that our test set is generated very similar to dev set. The analysis on dev set will directly

reflect analysis of test set, without actually seeing test set. We processed tuples in our dev set to

get first relations and last relations. First relation refers to the relation that appears after head

and last relation refers to the relation that appear before the last tail. For example, given tuple

W,

W: (Battenin, biological_process, membrane organization, determination_method,

IMP)

In tuple W, first relation is biological_process as it is coming after the head, and last relation

is determination_method as it is just appearing before tail. The reason why we focused on
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rel Actual Name Head cardinality Tail cardinality
P459 determination method 22839 25
P680 molecular function 21785 1790
P681 cell component 19962 745
P682 biological process 21846 4328
P1057 chromosome 6630 24
P2548 strand orientation 9951 2
P17 country 8637 224
P19 place of birth 3673 995
P805 subject of 5884 234
P1411 nominated for 6208 406

Table 4.13: Head cardinality and tail cardinality of most common relations in train set.

first and last relation in a tuple is because, when calculating MR and H10 for head side, we

are replacing m entities with the head, which is directly linked to the first relation. Hence,

head cardinality of first relation defines how model will perform in predicting head in top 10

positions. Similarly, when calculating MR and H10 for tail side, we are replacing m entities

with that tail which is directly linked to the last relation. Hence, tail cardinality of last relation

defines how model will perform in predicting tail in top 10 positions. In our dev set, having

9998 tuples, there are 94 relations that appear as first relation and there are 74 relations that

appear as last relation. The three most common relations that appear as first relation in our

dev set are P680 (molecular function), P681 (cell component) and P682 (biological

process) (these three relations occur in 8056 tuples out of total 9998 tuples in our dev set).

Looking at these three relations in Table 4.13, we find that the head cardinality is very high

compared to tail cardinality, making the task of predicting true head of the tuple quite difficult.

On the other hand, the most common relation that appear as last relation in our dev set is P459

(determination method) (this relation occurs in 8088 tuples out of total 9998 tuples in our

dev set). Looking at relation P459 in Table 4.13, we find that the tail cardinality is very low

compared to head cardinality, making the task of predicting true tail of the tuple quite easy.

Link prediction models do not behave equally for head and tail side due to cardinality

constraints. Due to high head cardinality and low tail cardinality, the predictive performance of

our proposed approaches is poor for head side and good for tail side. This is directly reflected

in the results we presented in Table 4.4.
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4.7 Significance Test

Statistical evaluation of experimental results has widely been seen as a method of validating new

machine learning models [111]. In any field of study, one is often testing whether a particular

technique gives improved results in terms of any evaluation metrics on some test set, when

compared to other techniques proposed for the same problem. Often this raises question in

researcher’s mind whether the improved results are due to particular technique actually being

good or it is just due to chance. The random variation in evaluation results can be due to data bias,

different intuition of human annotators, different experimental setups, and so on. Significance

tests are designed to account for these variations that is due to random effects, assuming that all

parameters that may have a systematic influence on evaluation results are kept constant. Hence,

statistical significance is an estimate of the degree to which a particular technique (or approach)

lies within a confidence interval. A commonly used level of reliability of result is 95%, also

known as p-value or p-level. A p-value less than 0.05 is generally considered statistically

significant.

It is the common practice in NLP to evaluate the performance of some given model on a

small sample of held-out labeled data [112]. Hence, statistical significance testing provides

the confidence that the observed difference in performance of two models is not likely to be

due to mere chance [113], [112], [114]. [111] presents various arguments in favor of using

non-parametric methods such as Wilcoxon signed rank test to estimate significance. Also,

nonparametric methods are suitable for nominal, ordinal, interval and ratio scaled data. Since

our evaluation metrics are nominal, nonparametric test such as Wilcoxon sign rank is most

suitable for our problem. Non-parametric tests are distribution free tests which means that they

do not assume a certain distribution of the input data. Wilcoxon singed rank test [115] is a

non-parametric method alternative to paired t-test which ranks the differences in performances

of two models.

We conducted paired, two-sidedWilcoxon sign rank test in R1 [116], [117] for our proposed

approaches. Approach 1 (The head-triple reduction model coupled with triples based training)

is the obvious baseline for modeling n-ary relationship prediction. Approach 2 (The clique

reduction model coupled with triples based training), Approach3 (The head-triple reduction

model coupled with tuples based training) and Approach 4 (The clique reduction model coupled

with tuples based training) are compared with the baseline (i.e. Approach 1).

TheWilcoxon sign rank test shows that approach 2 is significantly better than baseline having

1R: A Language and Environment for Statistical Computing and Graphics
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W = 28406000 and p < 2.2e−16, where p-value <0.01 shows statistical significant results.

TheWilcoxon sign rank test shows that approach 3 is significantly better than baseline having

W = 33451000 and p < 2.2e−16, where p-value <0.01 shows statistical significant results.

TheWilcoxon sign rank test shows that approach 4 is significantly better than baseline having

W = 35424000 and p < 2.2e−16, where p-value <0.01 shows statistical significant results.

For all the three evaluation metrics namely MR, H10 and classification accuracy, approach

2, approach 3 and approach 4 are significantly better than the baseline (p-value <0.01). The

sample size of our dataset is huge because of which the calculated p-value given by R is quite

low.

4.8 Chapter Summary

Experimental results on our tuple dataset showed that our proposed approaches have ability

to generalize link prediction task in order to make KBs more robust and complete. Out of

four proposed approaches, approach 4 (the clique reduction coupled with tuples-based training)

performed significantly better than other 2 approaches and baseline in term of MR, H10 and

classification accuracy. The proposed approaches gave high predictive performance for tail side

and low for head side. Based on the analysis on dev set, performance is low for head side due

to very high head cardinality of relations and inability of TransE model to handle M-to-1 and

1-to-M property of relations. Sample example predictions results highlighted the ability of our

proposed approaches to model n-ary relationships and to hold the semantics of tuples, which is

reflected from the examples that the predicted heads (or tails) highly matches to actual domain

of entity (either head or tail) to be predicted.



There will come a time when you believe ev-

erything is finished. That will be beginning.

Louis L Amour

5
Conclusions and Future Work

In this thesis we presented novel approaches for link prediction on n-ary relationship data. We

proposed two different models as two different ways of reducing tuples into triples, which in

turn can be provided to any triple-based models to train. We also proposed two different training

methods according to which the TransE model is trained. To evaluate our proposed approaches

we presented tuple dataset generated fromWikidata. Experimental results showed that the clique

reduction model when coupled with tuples-based training performed significantly better than

other three proposed approaches.

5.1 Conclusion

The need to capture detailed and complete information in a structured and semantically coherent

fashion has triggered research in extracting n-ary relations. Predicting n-ary relationships in

KBs can be useful for relation extraction, question answering and summarization systems. We

introduced the new task of n-ary relationship prediction, defined a new dataset and evaluation

methodology for n-ary relationship prediction models, and introduced baseline models for n-

ary relation prediction which are based on state-of-the-art TransE, triples-based link prediction
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model. Experimental results showed that the clique reduction model performs better at link

prediction task compared to the head-triple reduction model. Moreover, tuple based training

provides better link prediction results compared to triple based training.

5.2 Future Work

The work in this thesis is more exploratory in nature and it opens many opportunities for

extending the scope of this thesis. This section presents some of the research directions which

would be explored in order to improve the task of n-ary link prediction.

• Using more sophisticated models

It is reasonable and quite obvious to start task of modeling n-ary relationships with TransE

model which is one of the most promising triple-based model due to its simplicity and

state-of-the-art predictive performance. The work in this thesis have limitations in terms

of poor performance in predicting tuple’s correct head in top 10 positions. TransE model

has issues in modeling M-to-1 and 1-to-M relationships, in turn gives poor predictive

performance, because of which there is the need to use more sophisticated triple based

models such as TransH, TransR and path based models such as PTransE.

• To try other optimization algorithms

There exists a whole series of optimization algorithms. In this thesis we used AdaGrad

optimization algorithm to optimize the loss function of TransE model. It would be

interesting to explore other optimization algorithms including, Momentum, RMSProp,

Adam and Adadelta. Also, more wider range of hyperparameters can be tried with these

optimization algorithms, which might lead to improvement in results.

• Predicting two or more entities

In this thesis we focus on predicting a single missing entity (either head or tail). Future

work might involve simultaneously predicting two or more missing entities in a tuple, or

predicting the relationships between a sequence of entities, which will be highly useful

for improving the performance of n-ary relation extraction and also populating knowledge

bases in a more robust and in an efficient manner. Also, it is of utmost importance in

validating factoid answerswhere two ormore entities (or relations) are erroneous produced

as an output of the relation extractor.



5.2 Future Work 54

• All entities and relations subject to evaluation

As the objective of this thesis is to create a baseline, only the head and the tail (the last

entity in the tuple) are subject to evaluation in the link prediction task. In future, all

entities and relations present in the tuple (irrespective of their position) will be subject to

evaluation.

• Leveraging composition of new relation from existing relations

In this thesis, the new relation is formed by concatenating the strings of its two parent

relations. It would be interesting to learn a mapping function in order to have composition

of embedding of the parent relations to form embedding of new relation and its inverse

too. Hence, the embedding vector of new relation (r−1
1 .r2) can be derived by applying a

composition function to the embeddings on the inverse of relations r1 and r2. This will

lead to more sophisticated model leveraging the advantage of semantic composition of

embedding vectors.



A
Appendix:Description of tuple dataset

A.1 Database Description

The tuple dataset that we worked on to evaluate our proposed approaches for modeling n-ary

relationships is generated fromWikidata dump of 3rd January, 2017. Each fact is represented in

the form of a tuple denoted as (h, r1, t1, . . .), where h denotes head, r1 denotes first relation, t1

denotes first tail, and so on. The tuples are extracted from Wikidata dump as per the thresholds

on number of entities and relations. So, our tuple dataset contains facts formed by entities that

appears at least 1000 times in any relation, or appear at least 20 times in a long relation (one with

more than 2 entities). We split this collection into TRAIN, DEV and TEST sets. The entities

are denoted with QXXX, where XXX after Q refers to entity ids and relations (or property) are

denoted with PXXX, where XXX after P refers to relation ids. There is a file mapping entity

and relation ids to English descriptions. As an example, Table A.1 shows actual tuple present in

our train set and its corresponding actual representation in English. The statistics of the dataset

is given in A.2. The detailed description about tuples of individual length in train, dev and test

set is given in A.3.
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Q16293174 P69 Q156598 P812 Q2329
Rutger van Santen educated at Leiden University academic major Chemistry

Table A.1: Sample tuple present in our dataset.

Entities Relations Train Dev Test DevSigned TestSigned
111,354 353 684,665 10,000 10,000 20,000 20,000

Table A.2: Statistics of Wikidata-m1000-l20 dataset.

Tuple Length Train Dev Test Total
3 2,239 45 42 2,326
5 537,731 7,800 7,817 553,348
7 115,871 1,733 1,735 119,339
9 24,507 364 333 25,204
11 3,622 54 63 3,739
13 518 2 7 527
15 72 0 0 72
17 26 1 0 27
19 13 1 0 14
21 15 0 2 17
23 8 0 0 8
25 7 0 0 7
27 4 0 1 5
29 6 0 0 6
31 1 0 0 1
33 8 0 0 8
35 1 0 0 1
37 5 0 0 5
41 1 0 0 1
43 6 0 0 6
49 1 0 0 1
53 2 0 0 2
107 1 0 0 1

Table A.3: Detailed statistics of Wikidata-m1000-l20 dataset.
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