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Q., DePew K., Sale S.E., Unruh Y.C., Vink J.S., Rodŕıguez-Gil P., Barlow
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Abstract

The origin of hydrogen-deficiency in the central stars of planetary nebulae (CSPNe) is

currently a topic of heated debate. This class of objects is comprised of Wolf-Rayet

([WR]) stars, weak emission-line stars (WELS), and PG 1159 stars, each differentiated

by a set of unique spectral characteristics. For some time, there have been questions

surrounding the evolutionary status of these rare stars: what environmental conditions,

such as chemical abundances, are necessary for their emergence, whether any of them

represent different stages of development in the same class of stars, and what the

characteristics of their progenitors may be. However, such investigations have been

hampered by a lack of a sufficient number of these stars and their various sub-classes

until recently.

This thesis presents the significant discovery of 22 new [WR] stars and 10 new

WELS, many uncovered specifically during this thesis in the course of the MASH

survey and through serendipitous fibre placement during follow-up of MASH objects.

All examples have been carefully classified as accurately as possible using the best

current available data though for many this remains a preliminary assignment pending

deeper spectra. This work expands the known sample of H-deficient stars by 30%,

allowing a more detailed study of their properties than previously possible and moving

us closer to a more complete census of local H-deficient CSPNe.

ix



x Abstract

In the course of our classifications, Abell 48 was found to be a particularly inter-

esting object. Further analysis of nebular chemical abundances, modeled temperature,

and ionization state as indicated by the chemical species present suggests that the

CSPN of Abell 48 may be very similar to the CSPN of PB 8, which has recently been

redesignated as the founding member of a new and rare [WN/WC] class (Todt et al.

2010). Its similarity to and differences with other oxygen-rich [WO] and carbon-rich

[WC] stars as well as previously identified [WN] stars are examined.

All these stars have also been studied in the context of a new subclass-dynamical

age relationship that we have also discovered. This major finding is the first to show

evidence of an evolutionary trend amongst the [WR] population and was made possible

by use of the powerful new surface brightness-radius (SB-r) relation of Frew (2008) that

can, at last, provide accurate distances to PN (and hence also their central stars). Key

data acquired here as well as modeled effective temperatures and excitation classes of

other [WR]s, WELS and PG 1159 central stars found in the literature were also utilized

in generating this relationship.

Finally, continuing with the SB-r relation, the scale heights of the most complete

available sample of [WR], WELS and PG 1159 CS populations are determined and

compared. These data show that both WELS and PG 1159 stars are found to possess

significantly higher Galactic heights than the members of the [WR] class, implying that

PG 1159s do not all descend from [WR]s, and that WELS are not evolutionarily related

to [WR]s. This is another major finding of this work. It is possible, however, that the

WELS class, and perhaps the PG 1159 class as well, are heterogeneous groups.



Contents

Acknowledgements v

List of Publications vii

Abstract ix

List of Figures xvii

List of Tables xxix

1 Introduction 1

1.1 Life Cycle of Low- to Intermediate-Mass Stars . . . . . . . . . . . . . . 2

1.1.1 Introduction to the Hertzsprung-Russell Diagram . . . . . . . . 3

1.1.2 Description of the Life Cycle of Low- to Intermediate-Mass Stars 3

1.1.3 Description of PNe . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Past PNe Surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Central stars of PNe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 General Spectral Classifications of Massive Wolf-Rayet Stars . . . . . . 12

1.4.1 General Properties of Massive Wolf-Rayet Stars . . . . . . . . . 15

1.4.2 Theorized Evolution of Massive Wolf-Rayet Stars . . . . . . . . 16

xi



xii Contents

1.5 Wolf-Rayet Central Stars of PNe and their classification . . . . . . . . . 22

1.6 Taxonomy of Hydrogen-Deficient Central Stars of PNe . . . . . . . . . 25

1.6.1 Theorized Evolution of Wolf-Rayet Central Stars of PNe and

Thermal Pulse Scenarios . . . . . . . . . . . . . . . . . . . . . . 27

1.6.2 The Born Again Scenario . . . . . . . . . . . . . . . . . . . . . . 30

1.6.3 PG 1159 and WELS Stars . . . . . . . . . . . . . . . . . . . . . 31

1.6.4 Modeling of [WR] Stars . . . . . . . . . . . . . . . . . . . . . . 35

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2 Data Reduction 37

2.1 The Dual Beam Spectrograph . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Basic Spectroscopic Data Required . . . . . . . . . . . . . . . . . . . . 39

2.2.1 Bias Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.2 Dark Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.3 Flat-Field Frames . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.4 Sky Flats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.5 Calibration Frames . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.6 Target frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.7 Cosmic Rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.8 Spectrophotometric Standard Stars . . . . . . . . . . . . . . . . 42

2.3 Spectroscopic Data Acquired During This Thesis . . . . . . . . . . . . 43

2.4 The Image Reduction and Analysis Facility; IRAF . . . . . . . . . . . . 43

2.4.1 Reduction of DBS Data . . . . . . . . . . . . . . . . . . . . . . 44

2.4.2 Flat Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4.3 Flat Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4.4 Cosmic Ray Cleaning . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4.5 Spectrum Extraction . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4.6 Wavelength Calibration . . . . . . . . . . . . . . . . . . . . . . 50



Contents xiii

2.4.7 Flux Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.5 WiFeS Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.5.1 File Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5.2 Calibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.5.3 Final Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.6 SPIRAL Data Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.6.1 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.6.2 Data Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3 New and Old Hydrogen-Deficient Objects 63

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.1.1 [WR]s in the MASH Sample . . . . . . . . . . . . . . . . . . . . 67

3.2 Spectroscopic Observations . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3 Classification Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4 Individual Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4.1 New [WR] Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4.2 Possible [WR]s and WELS . . . . . . . . . . . . . . . . . . . . . 84

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.6 Comprehensive Table of Hydrogen-Deficient Central Stars of Planetary

Nebulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4 Abell 48 and the [WN/WC] Class 105

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2 Massive WR stars and the WN Class . . . . . . . . . . . . . . . . . . . 107

4.3 The Putative [WN] Class . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.3.1 PM5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3.2 LMC-N66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3.3 PB8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112



xiv Contents

4.3.4 Considerations for [WN] Stars . . . . . . . . . . . . . . . . . . . 112

4.4 Spectroscopic Observations . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.5 Flux Measurements and Distance Calculation . . . . . . . . . . . . . . 115

4.6 Reddening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.6.1 Abell 48: Planetary Nebula or Massive Ring Nebula? . . . . . . 117

4.7 The Abell 48 Nebula–Spectral Characteristics and Other Properties . . 119

4.8 The Central Star . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.8.1 Central Star Properties . . . . . . . . . . . . . . . . . . . . . . . 124

4.9 Nebular Plasma Diagnostics and Line Ratios . . . . . . . . . . . . . . . 127

4.9.1 Electron Temperature . . . . . . . . . . . . . . . . . . . . . . . 129

4.9.2 Electron Density . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.9.3 Finding Plasma Diagnostics and Abundances Using hoppla . . 130

4.10 Calculating the Ionized Mass . . . . . . . . . . . . . . . . . . . . . . . . 136

4.11 Comparison with PB 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.12 Evolutionary Considerations . . . . . . . . . . . . . . . . . . . . . . . . 139

4.12.1 The AGB Final Thermal Pulse . . . . . . . . . . . . . . . . . . 141

4.12.2 The Late Thermal Pulse . . . . . . . . . . . . . . . . . . . . . . 141

4.12.3 The Very Late Thermal Pulse . . . . . . . . . . . . . . . . . . . 142

4.12.4 Which Pathway for Abell 48? . . . . . . . . . . . . . . . . . . . 142

4.13 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5 New Evolutionary Relationships for Wolf-Rayet Central Stars of Plan-

etary Nebulae 147

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.2 The Hα Surface Brightness-Radius Relationship . . . . . . . . . . . . . 149

5.3 Determination of Planetary Nebula Dynamical Age . . . . . . . . . . . 155

5.4 The [WR] Dynamical Age Sequence . . . . . . . . . . . . . . . . . . . . 156

5.5 Excitation Classes and Effective Temperatures . . . . . . . . . . . . . . 157



Contents xv

5.5.1 Constructing an Excitation Class- [WR] Subclass Function . . . 160

5.6 Hα Surface Brightness Evolution . . . . . . . . . . . . . . . . . . . . . 163

5.7 Discussion & Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 168

6 A Comparison of the Galactic [WR], WELS and PG 1159 CSPN

Populations 171

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.2 Data Collection and Analysis . . . . . . . . . . . . . . . . . . . . . . . 173

6.3 Galactic Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.3.1 Considerations Involving White Dwarfs . . . . . . . . . . . . . . 187

6.4 Evolutionary Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

7 Conclusions 199

7.1 The [WR] Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

7.2 The [WN/WC] Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

7.3 The Subclass Evolutionary Sequence . . . . . . . . . . . . . . . . . . . 202

7.4 The Evolutionary Relationship Between [WR]s, WELS and PG1159 Stars202

7.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

References 205



xvi Contents



List of Figures

1.1 An example of a Hertzsprung-Russell diagram showing the evolution of

a 2 M⊙ star of solar metallicity. Note the main sequence line in the right

lower quadrant. The blue line represents a born-again track, triggered by

a very late thermal pulse (see §1.6.2). The red star represents PG 1159-

035, an H-deficient star, and the green star represents NGC 6853, an H-

normal star. Numerical labels indicate the logarithm of the approximate

time in years for the indicated evolutionary phase. Taken from Herwig

(2005). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 A diagram of the layers of an AGB star. During the AGB phase, a

star will begin thermal pulsations. Convection currents will form in the

convective zone, eventually throwing core matter into the surrounding

space and enriching it with nucleosynthetic elements. Adapted from

Karakas et al. (2002). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 The Wolf-Rayet spectral classifications of van der Hucht (2001). This

system was developed for use with massive Wolf-Rayets. . . . . . . . . 13

1.4 The WR classification system of Crowther et al. (1998). This system

was developed for both massive and CSPN types of Wolf-Rayets. . . . . 14

xvii



xviii List of Figures

1.5 An example of a Wolf-Rayet spectrum, from star WR1, the first Wolf-

Rayet star identified. Note the strong emission lines. Retrieved from

http : //www.amateurspectroscopy.com/Astrophysics−spectrum.htm

on 6 March 2008. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6 Spectra of several [WR] stars, taken from Parker & Morgan (2003). . . 24

1.7 This figure, from Acker & Neiner (2003), shows the drastic difference in

linewidth between several [WO4]pec stars and a WELS star. The thick

line gives the spectrum for M 1-51, the thin solid line Cn 1-5, M 1-32

the dashed line, and PM 1-89 the dashed-dotted line. The dotted line

shows the spectrum of M 1-61, a WELS star, for contrast. . . . . . . . 32

2.1 A picture of the DBS, mounted on the 2.3 Metre telescope. The blue

arm is to the left and the red is to the right. . . . . . . . . . . . . . . . 39

2.2 Example frames taken on the 2.3m in May 2008. At top is a bias frame.

The noisy nature is apparent. The middle frame is a flat-field taken

with a quartz lamp. The illumination is smooth, as the lamp emits

a continuum of wavelengths. This is in contrast to the example arc

lamp exposure at bottom, which clearly shows the distinct wavelengths

produced in the gas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 A simplified flow chart illustrating the basic data reduction process.

As illustrated, dark frames (if necessary) are subtracted from a target

frame, while the bias signal of the chip is subtracted off of the flat-field

image. The quotient of the remaining science image and the perfect flat

is taken to produce the output image, which will then be wavelength-

and flux-calibrated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



List of Figures xix

2.4 An image of the CCD chip after observing the planetary nebula Abell

48 through the blue arm of the 2.3 Metre Dual Beam Spectrograph. The

spatial direction (the direction of the slit) is along the vertical axis, and

the dispersion direction is along the horizontal axis. This observation

was taken 11 May 2008. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5 An image of the CCD chip after observing the planetary nebula Abell 48

through the red arm of the 2.3 Metre Dual Beam Spectrograph (DBS).

As before, the spatial direction is along the vertical axis, and the dis-

persion direction is along the horizontal axis. This exposure was taken

concurrently with the blue image on 11 May 2008. . . . . . . . . . . . . 47

2.6 The previously presented spectrum after cosmic ray cleaning. . . . . . . 49

2.7 A screenshot of PNDR. The horizontal lines represent the upper and

lower bounds of regions on the plate which the user wishes to be binned.

Separate regions are designated for sky (background) lines, for upper

and lower nebular regions (either side of the star), and the star itself. . 50

2.8 An example of a nebular spectrum awaiting wavelength- and flux-calibration. 51

2.9 The selection of gratings available on WiFeS. Taken from the the Aus-

tralian National University WiFeS user pages (http://msowww.anu.edu.au/observing

/ssowiki/index.php/WiFeS Main Page). . . . . . . . . . . . . . . . . . . 53

2.10 The image slicer of WiFeS, as shown in the observing manual, available

at http://msowww.anu.edu.au/observing/ssowiki/index.php/WiFeS Main Page.

Note the concentric design, which follows the same concepts as McGre-

gor et al. (1999) and McGregor et al. (2003). . . . . . . . . . . . . . . . 53

2.11 An image of the PN PB8 in Hα after subtracting sky lines. . . . . . . . 55

2.12 The AAOmega spectrograph. . . . . . . . . . . . . . . . . . . . . . . . 56

2.13 A schematic diagram of AAOmega, showing the red camera in high

dispersion mode, and the blue camera in low dispersion mode. . . . . . 57



xx List of Figures

2.14 The SPIRAL IFU, which is designed for use with AAOmega. Its 32 ×

16 array of fibres allows a possible 512 separate spectra. . . . . . . . . . 57

2.15 At left is a composite colour image of the MASH PN PHR1811-3042 (see

Chapter 3) with Hα, short red and B band images represented as red,

green and blue respectively, obtained from the online SuperCOSMOS

survey data (Parker et al. 2005). At right is the same PN observed by

SPIRAL at commissioning on 28 June 2006. Images taken from Sharp

& The Aaomega+Spiral Team (2006a). . . . . . . . . . . . . . . . . . . 58

2.16 The 2dfdr data reduction facility interface. . . . . . . . . . . . . . . . . 59

3.1 A montage of the new MASH [WR] and WELS PNe, ordered according

to Galactic longitude. Each Hα/SR/BJ composite colour image is ac-

companied by the Hα/short-red quotient image to its right. The Hα/SR

images are from the SuperCOSMOS Hα Survey (Parker et al. 2005) and

the BJ images from Hambly et al. (2001). The lengths of the image sides

in arcseconds are presented alongside the name of each object. North is

to the top and east is to the left for all images. . . . . . . . . . . . . . . 73

3.2 A montage of the non-MASH PNe found to contain a true or candidate

[WR] or WELS central star. As in Fig. 3.4, each Hα/SR/BJ composite

colour image (Parker et al. 2005; Hambly et al. 2001) is accompanied

by the Hα/short-red quotient image to its right. Again, the lengths of

the image sides in arcseconds are presented alongside the name of each

object. North is to the top and east is to the left for all images. . . . . 74

3.3 Spectra of objects whose central stars have recently been identified as

being [WR]s or WELS; all spectra have been rectified. The most promi-

nent lines have been identified (dashed lines and labels). . . . . . . . . 90



List of Figures xxi

3.4 Spectra of objects whose central stars have recently been identified as

being [WR]s or WELS; all spectra have been rectified. The most promi-

nent lines have been identified (dashed lines and labels). . . . . . . . . 91

3.5 Spectra of objects whose central stars have recently been identified as

being [WR]s or WELS; all spectra have been rectified. The most promi-

nent lines have been identified (dashed lines and labels). . . . . . . . . 92

3.6 Spectra of objects whose central stars have recently been identified as

being [WR]s or WELS; all spectra have been rectified. The most promi-

nent lines have been identified (dashed lines and labels). . . . . . . . . 93

4.1 The spectrum of LMC-N66 as observed in 1995 and 1996, as presented

in Peña et al. (1997a). The upper two cover the UV and blue range, and

the bottom two expand the spectral regions around the He II, C IV and

N V lines to show the substructure evident in these features. . . . . . . 110

4.2 The best fitting model of PB 8’s spectrum, adapted from Todt et al.

(2010). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.3 A montage of all currently known [WN] and [WN/WC] objects. Clock-

wise from top left are Abell 48, PB8, LMC-N66, and PM5. Abell 48,

PB8 and PM5 are shown in Hα/SR/BJ false-colour composites where

Hα is represented by red, SR by green, and BJ by blue (Parker et al.

2005). All apart from LMC-N66 are 60” × 60”. 5” × 5” HST STIS im-

age of LMC-N66, taken from Peña et al. (2004), was observed through

the MIRVIS grating. Note the bipolar appearance of LMC-N66 and PB8

compared to the spherical and elliptical appearances of PM5 and Abell

48, respectively, showing that there do not appear to be any common

morphological traits in the surrounding nebulae. . . . . . . . . . . . . . 118



xxii List of Figures

4.4 The spectrum of PM 5, as presented in Morgan et al. (2003). Note the
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