ON THE ORIGIN AND EVOLUTION OF WOLF-RAYET CENTRAL STARS OF PLANETARY NEBULAE

By

Kyle David DePew

A THESIS SUBMITTED TO MACQUARIE UNIVERSITY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF PHYSICS & ASTRONOMY MARCH 2011

© Kyle David DePew, 2011.

Typeset in $\mathbb{E} T_{\mathbb{E}} X \, 2_{\mathcal{E}}.$

Except where acknowledged in the customary manner, the material presented in this thesis is, to the best of my knowledge, original and has not been submitted in whole or part for a degree in any university.

Kyle David DePew

Acknowledgements

I must first thank my supervisor, Prof Quentin Parker, for recommending me for the MQRES scholarship and taking me on as his student. I have also benefited enormously from the expertise of A/Prof Orsola De Marco, my co-supervisor, who helped me understand the background of Wolf-Rayet central stars. Special thanks also go to Dr David Frew, who, although not an official supervisor, was just as helpful with his seemingly encyclopedic knowledge of planetary nebulae.

I have been supported by a generous Macquarie University Research Excellence Scholarship during my last three and a half years here. This thesis would not have been possible without significant grants of observing time by the Siding Spring and South African Astronomical Observatory time assignment committees. Thanks also go to all the telescope support staff, especially Donna Burton and Geoff White, for help when everything broke down.

I also thank Madusha Gunawardhana, Quentin Parker and David Frew for graciously allowing me access to their paper on SHS flux calibrations prior to publication.

I would also like to thank my fellow PhD students here in the department. I have been extremely fortunate to work among such thoughtful and enjoyable people. Stacey Bright and Niyas Madapatt especially helped me to remember that there was a world beyond the office and served to distract me (sometimes perhaps too much)

from the tedium of my work. I also thank Anna Kovacevic for training me on the 2.3 Metre Siding Spring Telescope, Korinne McDonnell for LaTeX help and general cubicle mateship, as well as the guys from the quantum information group—Johann-Heinrich Schönfeldt, Gerardo Paz Silva, Aharon Brodutch, Ressa Said, Tommaso De Marie, Mauro Cirio, and all the others—for their camaraderie.

Thanks also go to Duane Hamacher, who first put the idea of moving to Australia into my head, a decision which I have not yet had occasion to regret.

I am also grateful to all the professional staff, especially Carol McNaught, for help with all the paperwork.

Finally, I wish to thank my family, my parents Anne and Ron, my sister Alyssa and brother-in-law Aaron, for never once asking me why I've been studying physics for the past decade plus, and for always understanding my desire to see this through to the bitter end.

List of Publications

Papers and Conference Proceedings Produced in the Course of This Thesis

- DePew K., Parker Q.A., Miszalski B., De Marco O., Frew D.J., Acker A., Kovacevic A.V., Sharp R.G., 2011. Newly Discovered Wolf-Rayet and Weak Emission-Line Central Stars of Planetary Nebulae. MNRAS, in press.
- Corradi R.L.M., Valentini M., Munari U., Drew J.E., Rodríguez-Flores E.R., Viironen K., Greimel R., Santander-García M., Sabin L., Mampaso A., Parker Q., DePew K., Sale S.E., Unruh Y.C., Vink J.S., Rodríguez-Gil P., Barlow M.J., Lennon D.J., Groot P.J., Giammanco C., Zijlstra A.A., Walton N.A., 2010. *IPHAS and the symbiotic stars. II. New discoveries and a sample of the most common mimics.* A&A, 509, 41.
- DePew K., Frew D.J., Parker Q.A., De Marco O., 2011. Wolf-Rayet Central Stars of Planetary Nebulae: Their Evolution and Properties. APN5 Conf. Proceedings, A.A. Zijlstra, F. Lykou, I. McDonald, E. Lagadec, eds., 160.

Abstract

The origin of hydrogen-deficiency in the central stars of planetary nebulae (CSPNe) is currently a topic of heated debate. This class of objects is comprised of Wolf-Rayet ([WR]) stars, weak emission-line stars (WELS), and PG 1159 stars, each differentiated by a set of unique spectral characteristics. For some time, there have been questions surrounding the evolutionary status of these rare stars: what environmental conditions, such as chemical abundances, are necessary for their emergence, whether any of them represent different stages of development in the same class of stars, and what the characteristics of their progenitors may be. However, such investigations have been hampered by a lack of a sufficient number of these stars and their various sub-classes until recently.

This thesis presents the significant discovery of 22 new [WR] stars and 10 new WELS, many uncovered specifically during this thesis in the course of the MASH survey and through serendipitous fibre placement during follow-up of MASH objects. All examples have been carefully classified as accurately as possible using the best current available data though for many this remains a preliminary assignment pending deeper spectra. This work expands the known sample of H-deficient stars by 30%, allowing a more detailed study of their properties than previously possible and moving us closer to a more complete census of local H-deficient CSPNe.

In the course of our classifications, Abell 48 was found to be a particularly interesting object. Further analysis of nebular chemical abundances, modeled temperature, and ionization state as indicated by the chemical species present suggests that the CSPN of Abell 48 may be very similar to the CSPN of PB 8, which has recently been redesignated as the founding member of a new and rare [WN/WC] class (Todt et al. 2010). Its similarity to and differences with other oxygen-rich [WO] and carbon-rich [WC] stars as well as previously identified [WN] stars are examined.

All these stars have also been studied in the context of a new subclass-dynamical age relationship that we have also discovered. This major finding is the first to show evidence of an evolutionary trend amongst the [WR] population and was made possible by use of the powerful new surface brightness-radius (SB-r) relation of Frew (2008) that can, at last, provide accurate distances to PN (and hence also their central stars). Key data acquired here as well as modeled effective temperatures and excitation classes of other [WR]s, WELS and PG 1159 central stars found in the literature were also utilized in generating this relationship.

Finally, continuing with the SB-r relation, the scale heights of the most complete available sample of [WR], WELS and PG 1159 CS populations are determined and compared. These data show that both WELS and PG 1159 stars are found to possess significantly higher Galactic heights than the members of the [WR] class, implying that PG 1159s do not all descend from [WR]s, and that WELS are not evolutionarily related to [WR]s. This is another major finding of this work. It is possible, however, that the WELS class, and perhaps the PG 1159 class as well, are heterogeneous groups.

Contents

\mathbf{A}	cknov	wledge	ements	v
Li	st of	Publi	cations	vii
A	bstra	\mathbf{ct}		ix
Li	st of	Figure	es >	vii
Li	st of	Table	5 X	xix
1	Intr	oducti	ion	1
	1.1	Life C	ycle of Low- to Intermediate-Mass Stars	2
		1.1.1	Introduction to the Hertzsprung-Russell Diagram	3
		1.1.2	Description of the Life Cycle of Low- to Intermediate-Mass Stars	3
		1.1.3	Description of PNe	6
	1.2	Past I	PNe Surveys	9
	1.3	Centra	al stars of PNe	11
	1.4	Gener	al Spectral Classifications of Massive Wolf-Rayet Stars	12
		1.4.1	General Properties of Massive Wolf-Rayet Stars	15
		14.2	Theorized Evolution of Massive Wolf-Bayet Stars	16

	1.5	Wolf-I	Rayet Central Stars of PNe and their classification	22
	1.6	Taxon	omy of Hydrogen-Deficient Central Stars of PNe	25
		1.6.1	Theorized Evolution of Wolf-Rayet Central Stars of PNe and	
			Thermal Pulse Scenarios	27
		1.6.2	The Born Again Scenario	30
		1.6.3	PG 1159 and WELS Stars	31
		1.6.4	Modeling of [WR] Stars	35
	1.7	Conclu	usion	36
2	Dat	a Red	uction	37
	2.1	The D	ual Beam Spectrograph	38
	2.2	Basic	Spectroscopic Data Required	39
		2.2.1	Bias Frames	40
		2.2.2	Dark Frames	41
		2.2.3	Flat-Field Frames	41
		2.2.4	Sky Flats	41
		2.2.5	Calibration Frames	42
		2.2.6	Target frames	42
		2.2.7	Cosmic Rays	42
		2.2.8	Spectrophotometric Standard Stars	42
	2.3	Spectr	roscopic Data Acquired During This Thesis	43
	2.4	The In	nage Reduction and Analysis Facility; IRAF	43
		2.4.1	Reduction of DBS Data	44
		2.4.2	Flat Preparation	45
		2.4.3	Flat Subtraction	47
		2.4.4	Cosmic Ray Cleaning	48
		2.4.5	Spectrum Extraction	48
		2.4.6	Wavelength Calibration	50

		2.4.7 Flux Calibration	51
	2.5	WiFeS Data	52
		2.5.1 File Preparation	53
		2.5.2 Calibrations	5 4
		2.5.3 Final Reduction	55
	2.6	SPIRAL Data Reduction	55
		2.6.1 Data Preparation	6
		2.6.2 Data Reduction	30
3	Nev	w and Old Hydrogen-Deficient Objects 6	3
	3.1	Introduction	34
		3.1.1 [WR]s in the MASH Sample	37
	3.2	Spectroscopic Observations	58
	3.3	Classification Schemes	71
	3.4	Individual Objects	'2
		3.4.1 New [WR] Stars	'5
		3.4.2 Possible [WR]s and WELS	34
	3.5	Conclusions	39
	3.6	Comprehensive Table of Hydrogen-Deficient Central Stars of Planetary	
		Nebulae	39
4	Abe	ell 48 and the [WN/WC] Class 10	5
	4.1	Introduction)6
	4.2	Massive WR stars and the WN Class)7
	4.3	The Putative [WN] Class)7
		4.3.1 PM5)8
		4.3.2 LMC-N66)9
		4.3.3 PB8	2

		4.3.4	Considerations for [WN] Stars	112
	4.4	Spectr	oscopic Observations	114
	4.5	Flux N	Jeasurements and Distance Calculation	115
	4.6	Redde	ning	116
		4.6.1	Abell 48: Planetary Nebula or Massive Ring Nebula?	117
	4.7	The A	bell 48 Nebula–Spectral Characteristics and Other Properties	119
	4.8	The C	entral Star	121
		4.8.1	Central Star Properties	124
	4.9	Nebula	ar Plasma Diagnostics and Line Ratios	127
		4.9.1	Electron Temperature	129
		4.9.2	Electron Density	129
		4.9.3	Finding Plasma Diagnostics and Abundances Using HOPPLA	130
	4.10	Calcul	ating the Ionized Mass	136
	4.11	Compa	arison with PB 8	138
	4.12	Evolut	ionary Considerations	139
		4.12.1	The AGB Final Thermal Pulse	141
		4.12.2	The Late Thermal Pulse	141
		4.12.3	The Very Late Thermal Pulse	142
		4.12.4	Which Pathway for Abell 48?	142
	4.13	Conclu	isions	143
5	New	v Evolu	itionary Relationships for Wolf-Rayet Central Stars of Plan	1-
	etar	y Neb	ulae	147
	5.1	Introd	uction	148
	5.2	The H	α Surface Brightness-Radius Relationship	149
	5.3	Determ	nination of Planetary Nebula Dynamical Age	155
	5.4	The [V	VR] Dynamical Age Sequence	156
	5.5	Excita	tion Classes and Effective Temperatures	157

		5.5.1 Constructing an Excitation Class- [WR] Subclass Function	160
	5.6	$H\alpha$ Surface Brightness Evolution	163
	5.7	Discussion & Conclusions	168
6	A	Comparison of the Galactic [WR], WELS and PG 1159 CSPN	1
	Pop	oulations	171
	6.1	Introduction	172
	6.2	Data Collection and Analysis	173
	6.3	Galactic Distributions	173
		6.3.1 Considerations Involving White Dwarfs	187
	6.4	Evolutionary Scenarios	189
	6.5	Conclusions	190
7	Cor	nclusions	199
	7.1	The [WR] Population	200
	7.2	The [WN/WC] Stars	200
	7.3	The Subclass Evolutionary Sequence	202
	7.4	The Evolutionary Relationship Between [WR]s, WELS and PG1159 Stars	s202
	7.5	Future Work	203
Re	efere	nces	205

List of Figures

1.1	An example of a Hertzsprung-Russell diagram showing the evolution of	
	a 2 ${\rm M}_{\odot}$ star of solar metallicity. Note the main sequence line in the right	
	lower quadrant. The blue line represents a born-again track, triggered by	
	a very late thermal pulse (see §1.6.2). The red star represents PG 1159-	
	035, an H-deficient star, and the green star represents NGC 6853, an H- $$	
	normal star. Numerical labels indicate the logarithm of the approximate	
	time in years for the indicated evolutionary phase. Taken from Herwig	
	(2005)	4
1.2	A diagram of the layers of an AGB star. During the AGB phase, a	
	star will begin thermal pulsations. Convection currents will form in the	
	convective zone, eventually throwing core matter into the surrounding	
	space and enriching it with nucleosynthetic elements. Adapted from	
	Karakas et al. (2002)	5
1.3	The Wolf-Rayet spectral classifications of van der Hucht (2001). This	
	system was developed for use with massive Wolf-Rayets. \ldots	13
1.4	The WR classification system of Crowther et al. (1998). This system	
	was developed for both massive and CSPN types of Wolf-Rayets	14

1.5	An example of a Wolf-Rayet spectrum, from star WR1, the first Wolf-	
	Rayet star identified. Note the strong emission lines. Retrieved from	
	http://www.amateurspectroscopy.com/Astrophysics-spectrum.htm	
	on 6 March 2008	16
1.6	Spectra of several [WR] stars, taken from Parker & Morgan (2003)	24
1.7	This figure, from Acker & Neiner (2003), shows the drastic difference in	
	linewidth between several [WO4] pec stars and a WELS star. The thick	
	line gives the spectrum for M 1-51, the thin solid line Cn 1-5, M 1-32	
	the dashed line, and PM 1-89 the dashed-dotted line. The dotted line	
	shows the spectrum of M 1-61, a WELS star, for contrast. \ldots	32
2.1	A picture of the DBS, mounted on the 2.3 Metre telescope. The blue	
	arm is to the left and the red is to the right. \ldots \ldots \ldots \ldots \ldots	39
2.2	Example frames taken on the 2.3m in May 2008. At top is a bias frame.	
	The noisy nature is apparent. The middle frame is a flat-field taken	
	with a quartz lamp. The illumination is smooth, as the lamp emits	
	a continuum of wavelengths. This is in contrast to the example arc	
	lamp exposure at bottom, which clearly shows the distinct wavelengths	
	produced in the gas	40
2.3	A simplified flow chart illustrating the basic data reduction process.	
	As illustrated, dark frames (if necessary) are subtracted from a target	
	frame, while the bias signal of the chip is subtracted off of the flat-field	
	image. The quotient of the remaining science image and the perfect flat	
	is taken to produce the output image, which will then be wavelength-	
	and flux-calibrated.	45

2.4	An image of the CCD chip after observing the planetary nebula Abell	
	48 through the blue arm of the 2.3 Metre Dual Beam Spectrograph. The	
	spatial direction (the direction of the slit) is along the vertical axis, and	
	the dispersion direction is along the horizontal axis. This observation	
	was taken 11 May 2008	47
2.5	An image of the CCD chip after observing the planetary nebula Abell 48	
	through the red arm of the 2.3 Metre Dual Beam Spectrograph (DBS).	
	As before, the spatial direction is along the vertical axis, and the dis-	
	persion direction is along the horizontal axis. This exposure was taken	
	concurrently with the blue image on 11 May 2008	47
2.6	The previously presented spectrum after cosmic ray cleaning	49
2.7	A screenshot of PNDR. The horizontal lines represent the upper and	
	lower bounds of regions on the plate which the user wishes to be binned.	
	Separate regions are designated for sky (background) lines, for upper	
	and lower nebular regions (either side of the star), and the star itself. $% \left({{{\bf{n}}_{{\rm{s}}}}} \right)$.	50
2.8	An example of a nebular spectrum awaiting wavelength- and flux-calibration	n. 51
2.9	The selection of gratings available on WiFeS. Taken from the the Aus-	
	tralian National University WiFeS user pages (http://msowww.anu.edu.au/	observing
	/ssowiki/index.php/WiFeS_Main_Page)	53
2.10	The image slicer of WiFeS, as shown in the observing manual, available	
	at http://msowww.anu.edu.au/observing/ssowiki/index.php/WiFeS_Main_	Page.
	Note the concentric design, which follows the same concepts as McGre-	
	gor et al. (1999) and McGregor et al. (2003)	53
2.11	An image of the PN PB8 in $H\alpha$ after subtracting sky lines	55
2.12	The AAOmega spectrograph.	56
2.13	A schematic diagram of AAOmega, showing the red camera in high	
	dispersion mode, and the blue camera in low dispersion mode	57

73

74

2.14	The SPIRAL IFU, which is designed for use with AAO mega. Its 32 \times	
	16 array of fibres allows a possible 512 separate spectra	57
2.15	At left is a composite colour image of the MASH PN PHR1811-3042 (see	
	Chapter 3) with H α , short red and B band images represented as red,	
	green and blue respectively, obtained from the online SuperCOSMOS	
	survey data (Parker et al. 2005). At right is the same PN observed by	
	SPIRAL at commissioning on 28 June 2006. Images taken from Sharp	
	& The Aaomega+Spiral Team (2006a)	58
2.16	The 2dfdr data reduction facility interface.	59
3.1	A montage of the new MASH [WR] and WELS PNe, ordered according	
	to Galactic longitude. Each $H\alpha/SR/B_J$ composite colour image is ac-	
	companied by the H α /short-red quotient image to its right. The H α /SR	
	images are from the SuperCOSMOS $\mathrm{H}\alpha$ Survey (Parker et al. 2005) and	
	the B_J images from Hambly et al. (2001). The lengths of the image sides	
	in arcseconds are presented alongside the name of each object. North is	

3.2 A montage of the non-MASH PNe found to contain a true or candidate [WR] or WELS central star. As in Fig. 3.4, each $H\alpha/SR/B_J$ composite colour image (Parker et al. 2005; Hambly et al. 2001) is accompanied by the $H\alpha/short$ -red quotient image to its right. Again, the lengths of the image sides in arcseconds are presented alongside the name of each object. North is to the top and east is to the left for all images.

to the top and east is to the left for all images. . . .

3.3 Spectra of objects whose central stars have recently been identified as being [WR]s or WELS; all spectra have been rectified. The most prominent lines have been identified (dashed lines and labels).90

3.4	Spectra of objects whose central stars have recently been identified as	
	being [WR]s or WELS; all spectra have been rectified. The most promi-	
	nent lines have been identified (dashed lines and labels).	91

- 3.6 Spectra of objects whose central stars have recently been identified as being [WR]s or WELS; all spectra have been rectified. The most prominent lines have been identified (dashed lines and labels).93
- 4.1 The spectrum of LMC-N66 as observed in 1995 and 1996, as presented in Peña et al. (1997a). The upper two cover the UV and blue range, and the bottom two expand the spectral regions around the He II, C IV and N V lines to show the substructure evident in these features. 110

4.4	The spectrum of PM 5, as presented in Morgan et al. (2003). Note the	
	7118Å feature, which may be mistaken for a broad C II line, but derives	
	instead from a series of N IV lines	119
4.5	The SHASSA image of Abell 48. The coarse resolution (48" pixels)	
	reduces this PN to four pixels, designated by the concentric circles. $\ . \ .$	120
4.6	Three images of Abell 48. At left, a false-colour image of Abell 48 in	
	the J, H and K bands from 2MASS (Skrutskie et al. 2006). J, H and K	
	wavelengths are represented as blue, green and red respectively. Image	
	dimensions are 3" \times 3". The faint purple extended ring of emission is	
	expected from a true PN (Cohen et al. 2010). At middle is a composite	
	$H\alpha/SR/B_J$ colour image (Parker et al. 2005), and at right is a radio	
	image of Abell 48 from NVSS (Condon & Kaplan 1998). Dimensions in	
	the middle and right panels are $90" \times 90"$	121
4.7	The blue nebular spectra of Abell 48 and PB 8 for comparison, obtained	
	from WiFeS, with the three important nebular lines –H $\beta~\lambda4861$ and	
	[O III] $\lambda\lambda$ 4959,5007 labelled	122
4.8	The red nebular spectra of Abell 48 and PB 8 for comparison, obtained	
	from WiFeS, with labelled nebular lines at [O I] $\lambda 6300$, [N II] $\lambda \lambda 6548,84$,	
	H α λ 6563 and [S II] $\lambda\lambda$ 6717,31	123
4.9	A close-up view of the [S II] lines at 6717 and 6731Å, normally used for	
	plasma diagnostics.	124
4.10	The blue spectrum of the central star of Abell 48, taken by Wachter et	
	al. on 4 Sep 2008 with the 200" Hale Telescope at Palomar Observatory.	
	The spectral resolution is approximately 5-7 Å. Note the presence of N $$	
	V $\lambda\lambda$ 4604,4620 and the prominent He II λ 4686 feature	127

- 4.13 An Hα image divided by the broad-band 'SR' quotient image of Abell 48, created using SHS data. There appear to be two sets of faint arcs that might be associated with previous ejecta from the host star that are identified here for the first time. To the northwest there appear to be two faint closely spaced arcs about 30 arcseconds in extent, with the outermost being 46 arcseconds from the CSPN. To the south there appears to be another faint shorter arc some 105 arcseconds from the CSPN. These could be evidence for opposing jets ejected prior to the main nebular shell, as seen in other PNe such as NGC 3918. The different observed angular distances of the northern and southern arcs from the CSPN could be the result of their projection onto the plane of the sky rather than anything dynamical.

140

4.14	A 5" \times 5" H α image divided by broad-band 'SR' quotient image of PB8
	created using SHS data. There is a faint outer asymmetric shell outside
	of the inner nebula (centered on the host star) that is clearly associated.
	Again this represents previous ejecta from the host star that has been
	identified here for the first time. The northeast section of the shell is
	38" from the CSPN and the southwest component $27"$ from the CSPN.
	The fact that the only two known $\left[\mathrm{WN}/\mathrm{WC}\right]$ CSs reside in PNe that
	possess faint outer haloes may be significant if it reflects some ejection
	mechanism related to the star's chemistry
5.1	The surface brightness-log radius (SB-r) relation, based on a sample of
	122 calibrating PNe. The line is a least-squares bisector fit (Isobe et al.
	1990). Taken from Frew (2008)
5.2	A comparison of high-excitation (HE) and common-envelope PNe to-
	gether versus others, illustrating the systematically lower $\mathrm{H}\alpha$ surface
	brightnesses in the former group. Taken from Frew (2008) 152
5.3	The subclass-dynamical age relationship. Subclass index indicates: [WO1]=1,
	, $[WO4]=4$, $[WC4]=5$,, $[WC11]=12$. WELS are represented by
	subclass index 13 and PG1159 stars are represented at number 0. PB $$
	8 has been placed at subclass index 6.5, consistent with its former clas-
	sification of [WC5-6] (Acker & Neiner 2003). Note the apparent quick
	evolution from [WC9] to [WC5]. $\dots \dots \dots$
5.4	The subclass-excitation class relationship, using the ρ EC method of
	Reid & Parker (2010). As above, subclass index indicates: $[WO1]=1$,
	, [WO4]=4, [WC4]=5,, [WC11]=12. A distinct general trend is
	clearly evident with the hottest CSPN inferred from the high excitation
	class values correlating with the early [WO] subclass

5.5	The subclass-effective temperature relationship. 'X's represent [WR]s,	
	stars the WELS, squares the [WC]-PG1159s, and triangles the [WN/WC] $$	
	stars PB 8 and Abell 48. The WELS denoted by half-filled pentagons	
	represent upper limits for the central stars of NGC 6543 and NGC 6629.	
	Temperature sources are noted in Table 5.3	166
5.6	${\rm H}\alpha$ surface brightness versus spectral type of H-deficient CSPNe	167
6.1	The Galactic distribution of the [WR], WELS and PG 1159 stars in our	
	sample. The figure is oriented such that an observer looking toward the	
	centre of the Galaxy finds objects with small positive longitudinal values	
	on the left, positive Galactic latitude direction up, etc. \ldots	175
6.2	A histogram showing the distribution of [WR]s as a function of Galactic	
	height $ \boldsymbol{z} .$ The black line corresponds to the exponential fit function	176
6.3	A histogram showing the distribution of WELS as a function of Galactic	
	height $ z $	176
6.4	A histogram showing the distribution of PG 1159 central stars as a	
	function of Galactic height $ z $	177
6.5	The distribution of [WR], WELS and PG 1159 stars with derived dis-	
	tances smaller than 3 kpc, where the significant differences between the	
	[WR], WELS and PG 1159 Galactic height distributions can be seen	
	more clearly	182
6.6	A histogram showing the distribution of a volume-limited sample of	
	[WR] central stars as a function of Galactic height $ z $. Here all included	
	$[\mathrm{WR}]\mathrm{s}$ are within 3 kpc. Note that 26 of the 28 $[\mathrm{WR}]\mathrm{s}$ in this sample	
	have $ z $ heights below 300 pc	183
6.7	A histogram showing the distribution of a volume-limited sample of	
	WELS central stars as a function of Galactic height $ z $. Here all WELS	
	within 3 kpc are included in the plot	184

6.8	The changing spectrum of Longmore 4, as presented in Werner et al.	
	(1992). Note the sudden appearance and gradual decline of emission	
	lines C IV $\lambda4658$ and He II $\lambda4686,$ to the point where they form an	
	absorption trough in the last spectrum, consistent with a PG 1159 star.	
	C IV $\lambda\lambda5801,\!12,$ O IV $\lambda\lambda5279,\!5289$ and He II $\lambda6560$ also briefly appear	
	before declining in strength	186
6.9	A plot of calculated PG 1159 PN radii versus effective temperatures.	
	There does not seem to be a relationship between the two variables	187
6.10	One possible evolution scenario for the evolution of [WR]s, in which the	
	[WCL]s evolve into [WCE]s, [WO]s, down through the PG 1159 stages	
	and into the white dwarf region of the H-R diagram. Boxes are overlaid	
	on top of the H-R diagram of Herwig (2005)	190
6.11	A second possible evolution scenario for the evolution of [WR]s, in which	
	the [WCL]s evolve into WELS before becoming [WCE]s. This possibil-	
	ity is considered because WELS effective temperatures and ${\rm H}\alpha$ surface	
	brightnesses fall between those of [WCL]s and [WCE]s. This scenario is	
	however unlikely because of the difference in Galactic heights between	
	these populations	191
6.12	A third possible evolution scenario for the evolution of [WR]s, in which	
	the PG 1159 class is a common endpoint for both $\left[\mathrm{WR}\right]$ and H-deficient	
	WELS evolution.	192
6.13	A possible evolution scenario for the evolution of WELS, in which the	
	H-rich types evolve into hybrid PG 1159 and then DAO and DA white	
	dwarfs	193
6.14	The typical evolution sequence for aging H-rich central stars, for com-	
	parison.	194

6.15	The spectrum of the binary central star V477 Lyrae, presented in Pol-	
	lacco & Bell (1994). Note the N III-C III-C IV $\lambda4650$ complex	196
6.16	Two WELS spectra from Marcolino & de Araújo (2003). Note the sim-	
	ilarity of the N III-C III-C IV $\lambda4650$ complex to that seen in Figure	
	6.15	197

List of Tables

2.1	A summary of observing runs carried out in the course of this thesis.	
	Spectral resolution and wavelength coverage varied according to the spe-	
	cific gratings used on the night. Please refer to later chapters for details	
	on these values.	44
3.1	Observational details of the new CSPNe discovery spectra	70
3.2	A list of the newly discovered [WR] CSPNe, along with WELS found in	
	the course of examining the sample. The top portion lists all of those	
	PNe from the MASH sample, while those objects below the line are for	
	previously known PNe	88
3.3	All known Galactic PNe with [WR], WELS and PG1159 central stars	94
3.4	All known Galactic PNe with [WR], WELS and PG1159 central stars	95
3.5	All known Galactic PNe with [WR], WELS and PG1159 central stars	96
3.6	All known Galactic PNe with [WR], WELS and PG1159 central stars	97
3.7	All known Galactic PNe with [WR], WELS and PG1159 central stars	98
3.8	All known Galactic PNe with [WR], WELS and PG1159 central stars	99
3.9	Observation details of the objects listed in Appendix A	102

3.10 Below are FWHM, EW and dereddened intensities of stellar lines in our discovery spectra. The FWHM and EW of C IV $\lambda\lambda$ 5801,12 and C III λ 5696 are marked. All other columns are the intensities of the lines, with C IV $\lambda\lambda 5801,12 = 100$. (We do not list the absolute C IV line fluxes because our spectra were not absolutely flux calibrated.) Spaces marked '-' were not seen in the spectra. 'N.O.' indicates that the designated line lay in a region of the spectrum which was not observed. 'P' indicates that the line is present, but the exact value cannot be measured due to the absence of the continuum or C IV $\lambda\lambda$ 5801,12. 'S' indicates a strong line. 'W' signifies a weak line. Again, ':' denotes an uncertain value, 1044.1 4.2Observation details for Abell 48. All observations were taken at Siding Spring Observatory, on the 2.3 metre telescope, using the Wide Field Spectrograph (WiFeS). 114 An abbreviated comparison of quantities for Abell 48 if it is a PN versus 4.3118Nebular lines found in Abell 48, taken from the 2.3 metre April 2010 4.4 spectrum. $\lambda_{Helio}(Å)$ signifies the wavelength after heliocentric correction. The flux of H β is in 10⁻¹⁵ erg/cm²/s/Å, but the remainder are set such that $H\beta = 100....$ 1324.5Stellar lines found in the CSPN of Abell 48, taken from the spectra of Wachter et al. (2010) and our own WiFeS data. λ_{Helio} represents the heliocentric velocity corrected wavelength of the line, while λ_{Sys} signifies the wavelength after systemic velocity correction. λ_{Lab} denotes the laboratory measured value. 133Photometric values of the central stars of Abell 48 and PB 8. 4.6135

4.7	Nebular chemical abundances, obtained from HOPPLA. Here log (H)	
	= 12. Line ratios for the PB 8 analysis were taken from Girard et al.	
	(2007). Abundances for Abell 48 are only lower limits (see §4.11)	138
4.8	Properties of the central stars of Abell 48 and PB 8. Values for PB 8	
	have been taken from Todt et al. (2010). \ldots \ldots \ldots	139
5.1	Wolf-Rayet, WELS and PG 1159 central stars used for the subclass-	
	dynamical age relation	158
5.2	Wolf-Rayet central stars used for the subclass-excitation class relation,	
	with relative intensities and excitation classes	162
5.3	Wolf-Rayet central stars used for the subclass-temperature relation	164
5.4	H-deficient central stars used for the subclass-H $\!\alpha$ surface brightness re-	
	lation.	165
5.5	H-deficient central stars used for the subclass-H $\!\alpha$ surface brightness re-	
	lation (continued).	167
6.1	The numbers of known [WR], WELS and PG 1159 star CSPNe, before	
	and after MASH, as well as the number that are known to be within 3 $$	
	kpc, and the average Galactic height $ z $ and scale heights. It must be	
	noted that the number within 3 kpc is merely a lower limit. \ldots .	173
6.2	Galactic Distribution of Objects	178
6.3	Galactic Distribution of Objects	179
6.4	Galactic Distribution of Objects	180