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Abstract  

Background: Prescribing errors are a leading preventable cause of patient harm. Clinical decision 

support (CDS) can improve safety by alerting clinicians to potential errors as they enter orders into e-

prescribing systems. However, this can introduce the risk of automation bias; clinicians may over-rely 

on CDS, thereby reducing vigilance in information seeking and processing. Problematically, CDS may 

not detect all significant errors or may generate alerts which are not clinically significant. Omission 

errors occur when clinicians fail to detect prescribing errors because they were not alerted, and 

commission errors occur where incorrect advice is wrongly acted upon. To date, there has been little 

research on automation bias in healthcare, where tasks, decision support and task complexity are likely 

to differ from those utilised in existing research which comes mostly from the heavily automated 

domains of aviation and process control.  

This thesis examines the risk of automation bias in e-prescribing that is assisted by CDS and whether 

this risk is mediated by task complexity. It also examines the relationship between automation bias 

errors, cognitive load, and verification of CDS.  

Methods: One hundred and twenty students in the final two years of a medical degree prescribed 

medicines for nine clinical scenarios using a simulated e-prescribing system in a randomised controlled 

experiment. The quality of CDS (correct, incorrect and no CDS) and task complexity (low, low with 

interruption and high) were varied within-subjects. Omission errors (failure to detect prescribing 

errors), commission errors (acceptance of false positive alerts), cognitive load, and verification of CDS 

(access of drug references) were measured.   

Results: Errors. Compared to no CDS, incorrect CDS significantly increased omission errors by 33.3% 

(p < .0001), 24.5% (p = .009), and 26.7% (p < .0001) and commission errors by 65.8% (p < .0001), 53.5% 

(p < .0001), and 51.7% (p < .0001), for low-, low- with interruption and high-complexity scenarios, 

respectively. Task complexity and interruptions did not affect errors.  

Cognitive Load. The use of CDS reduced cognitive load in high complexity conditions compared to no 

CDS, F(2,117)=4.72,p=.015. Omission errors were associated with significantly lower cognitive load 

with incorrect and no CDS, F(1,636.49)=3.79,p=.023.  

Verification. Lower view times (as a percentage of task time) increased omission errors, F(3, 

361.914)=4.498, p=.035, and commission errors, F(1, 346.223)=2.712, p=.045. View times were lower 

in CDS-assisted compared to unassisted conditions, F(2, 335.743)=10.443, p<.001.  

Conclusions: This thesis contributes the first evidence of automation bias in e-prescribing, a common 

clinical decision-making task aided by a frequently encountered form of CDS. It also contributes the 

first evidence of the relationship between automation bias and reduced allocation of cognitive 
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resources. Participants made omission errors by failing to detect prescribing errors not alerted by CDS 

and made commission errors by accepting incorrect false-positive alerts. The presence of CDS reduced 

cognitive load and verification, and increased errors when CDS was incorrect. These effects were 

exacerbated under conditions of high task complexity, suggesting high complexity may be a risk factor. 

Curiously, however, task complexity had no effect on errors.  

Participants who made automation bias errors allocated fewer cognitive resources and verified less 

than those who avoided errors. These findings support the cognitive miser hypothesis of automation 

bias that CDS alerts were used as a heuristic or mental shortcut for detecting and avoiding prescribing 

errors. It is highly likely that when clinicians suffer an automation bias, they reduce both verification 

behaviours and the cognitive resources allocated to processing information. This, in turn, compromises 

their ability to detect problems, which could potentially result in patient harm.  

The challenge is to foster appropriate reliance on CDS, which improves efficiency and reduces errors 

when correct but can lead to automation bias errors when incorrect. Verification of CDS provides a key 

means to discriminate correct from incorrect CDS that could prevent automation bias errors. More 

research will be needed on how to best assist clinicians with this crucial task whilst simultaneously 

leveraging the enhanced efficiency and safety offered by correct CDS. Clinicians should be mindful of 

the limitations of CDS and the possibility that it can fail. They should be ever-vigilant and ready to verify 

whenever unfamiliarity or uncertainty is present, or a risk of patient harm is suspected.  
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1 Introduction 
1.1 Background 

Health information technology (HIT) has the potential to improve the quality, efficiency and safety of 

healthcare.[1-5] A commonly-encountered technology in healthcare is clinical decision support 

(CDS),[1] which provides clinicians with “knowledge and person-specific information, intelligently 

filtered or presented at appropriate times, to enhance health and health care.”[6] Decision support 

provided in electronic prescribing software can help to prevent adverse events by triggering 

medication alerts which warn clinicians of potential prescribing errors such as adverse drug 

interactions.[3-5]   

CDS is a form of automation, where computer software perform tasks otherwise done by the 

clinician.[7] One such task is the application of a drug knowledge base to determine whether 

medications adversely interact with, or are contraindicated by, patient allergies or comorbidities. This 

can assist clinicians in making prescribing decisions but does not prevent them from applying their own 

knowledge, judgement and seeking further information in addition to that provided by CDS. It is the 

clinician who decides what treatment to prescribe and bears ultimate responsibility for the outcomes 

of those treatment decisions.  

Clinical judgement and oversight are essential, especially as CDS is imperfect and can be incorrect. CDS 

can malfunction, causing alerts to trigger in situations when they should not, failing to trigger alerts 

when they should, and displaying alerts that suggest the wrong action.[8, 9] Malfunctions can occur 

due to programming errors in the CDS software, the incorrect conceptualisation of rules triggering 

alerts and mismatches between clinical problems and data sources used by CDS.[8, 9] The quality of 

patient-specific alerts is dependent on the accuracy and completeness of patient records. Missing or 

inaccurate information can lead to incorrect and unsafe advice.[10] Likewise, data entered improperly 

or in the wrong field cannot be used by CDS.[11] Finally, there are marked variations between the 

systems provided by different vendors regarding the types of errors detected and alerted by CDS.[12] 

This could lead to situations where clinicians form incorrect assumptions about the capabilities of a 

system based on prior experience with another system from a different vendor.  

1.2 Automation bias 

Over-reliance on CDS can lead to errors with the potential for patient harm when CDS alerts are 

incorrect. This over-reliance is known as automation bias (AB), which Mosier and Skitka [13] define as 

“the tendency to use automated cues as a heuristic replacement for vigilant information seeking and 

processing.” Automation bias can lead to two different types of errors. Omission errors occur when 



2  Chapter 1 Introduction 
 
people fail to notice problems because they were not alerted to them by decision support; they involve 

a failure to act. Commission errors occur when people comply with incorrect decision support 

recommendations; they involve wrong actions.[14] 

Importantly, the classification of errors as omission or commission relates directly to the task that is 

assisted by decision support. This work focuses on CDS which automates the task of detecting 

prescribing errors by triggering medication alerts. For example, a clinician would make an omission 

error if they fail to detect a prescribing error because they were not alerted to it by CDS (a CDS false-

negative); this would result in a failure to act to avoid the error. A commission error occurs when a 

clinician performs a wrong action by agreeing with incorrect CDS advice (a CDS false-positive). For 

example, a clinician might be discouraged from prescribing a gold standard treatment due to an 

incorrect alert.  

There is also a closely-related field of research which describes automation-induced complacency,[15] 

where complacency is the “self-satisfaction which may result in non-vigilance based on an unjustified 

assumption of satisfactory system state.”[16] Parasuraman and Manzey [17] suggest that automation 

bias and automation-induced complacency are overlapping manifestations of over-reliance on 

automation, which Parasuraman and Riley [7] refer to as automation misuse. Automation bias 

omission errors and automation-induced complacency both manifest as the failure of the user to 

detect problems because they were not alerted by automation. However, Parasuraman and Manzey 

[17] also suggest that automation bias commission errors display complacency-like effects, especially 

in relation to the verification of automated recommendations.  

The focus of this work is over-reliance on decision support that leads to error, a phenomenon described 

by both automation bias and automation-induced complacency. Accordingly, this thesis incorporates 

both bodies of literature and, for the sake of brevity, will use the term, “automation bias”. The 

classifications of omission and commission errors [13, 14] provide a useful distinction between errors 

made by clinicians resulting from CDS false-negatives and false-positives.  

1.3 Automation bias in healthcare 

There has been little study of automation bias in healthcare.[18, 19] However, there has been a 

number of documented incidents describing automation bias errors. These incidents provide examples 

of how clinical automation and decision support can be incorrect and can thereby adversely influence 

the users of these technologies. They also demonstrate the risk of patient harm which can follow from 

automation bias, thereby also providing a rationale for conducting further study of this phenomenon.  

Omission errors 

1. A physician who prescribed contraindicated hypertensives to a pregnant woman, resulting in 

the death of her unborn baby, put the error down to the lack of a ‘red flag’ warning from the 
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computer system. The inquiry report noted that CDS alerts were not activated at the time of 

the incident,[20] of which the physician seemed unaware. This incident occurred because the 

physician failed to detect a prescribing error that was not alerted by CDS. 

2. A patient with usually well-controlled type 1 diabetes suffered persistent hyperglycaemia (high 

blood sugar levels) upon returning from an overseas trip. He consulted with doctors to stabilise 

his blood sugar but instead ended up being hospitalised with diabetic ketoacidosis. His insulin 

pump had failed, possibly from exposure to airport security scanners. The failure was silent; 

there was no warning or indication that the pump was not working.[21] This likely contributed 

to the delay in identifying and rectifying the cause of the hyperglycaemia. There are a 

multitude of issues which can cause hyperglycaemia. However, failure of the insulin pump was 

not considered until the patient was hospitalised, delaying the initiation of appropriate 

treatment.  

3. A consultant paediatrician made a complaint about not being informed by telephone of an 

abnormally high conjugated bilirubin blood test result, a possible indicator of liver disease. A 

bug in the laboratory’s software meant that no reference range was applied to the test result 

and, consequently, the result was not flagged as high, and the consultant was not informed. A 

root cause analysis noted that nine different people saw the test result, but none recognised 

it as out of range.[22] Staff missed the high result because of the absence of a high result flag. 

The root cause analysis report and permission to describe this incident were provided on the 

condition that it be reported in a de-identified manner.  

Commission errors 

4.  An elderly patient who was admitted to hospital suffering new-onset seizures was given the 

wrong medication after pharmacy staff mis-entered the medicine into the computer system 

as diltiazem (a cardiac drug) instead of dilantin (used to treat seizures). The nurse responsible 

for administering medications recognised the discrepancy between the medication 

administration record which listed the correct prescription of dilantin and the automated 

dispensing cabinet (ADC) which listed the incorrectly dispensed diltiazem. However, the nurse 

relied on the information from the ADC and administered the incorrect medication, which 

resulted in the patient experiencing significant side effects.[23] The nurse wrongly acted on 

the ADC over the correct, handwritten medical record.  

5. A retrospective study examined all electrocardiograms (ECG) from a metropolitan US hospital 

with a computer interpreted diagnosis of atrial fibrillation over a six-month period (n = 1085 

patients). Each ECG was reviewed by two independent and blinded electrophysiologists. The 

computerised diagnosis of atrial fibrillation was incorrect for 35% of patients (n = 382). 

Ordering physicians failed to correct the misdiagnosis for 24% of those cases (n = 92), which 
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led to unnecessary changes to treatment for 10% of patients (n = 39). Two patients developed 

complications as a result of unnecessary changes to their treatment.[24] The changes in 

treatment resulting from the incorrect computerised diagnoses are commission errors. 

6. During surgery, an automated blood pressure monitor, which inflates at specified intervals to 

measure the patient’s blood pressure, showed the patient as having hypertension. The 

anaesthetists began treating the condition and set the monitor to update more frequently. 

Unfortunately, they failed to press the ‘start’ button to reinitiate the device, meaning that no 

further measurements were taken. Instead, the device continued to display the last taken 

measurement which indicated a state of hypertension. For the next 45 minutes, anaesthetists 

aggressively treated the patient for hypertension with powerful drugs, until it was discovered 

that the blood pressure reading displayed was not current, by which time the patient’s blood 

pressure had been over-corrected and was very low.[25] In this incident, anaesthetists relied 

on the monitor, which, as Gaba [25] notes, had a very significant design flaw, to provide 

feedback on the effects of their interventions on the patient’s blood pressure. If they had had 

accurate measurements, they would have treated less aggressively, ceasing once the condition 

had stabilised.  

There are a small number of experimental studies which have directly examined over-reliance on 

decision support in healthcare applications.  

7. A series of studies examined the computer-aided detection (CAD) of cancers in screening 

mammography. CAD assists readers by placing prompts on features which may indicate the 

presence of a cancer.[26] CAD has good sensitivity [27] but low specificity,[26] providing a large 

number of false-positive prompts.[26, 28] This leads to concerns that the use of CAD may result 

in an increase in patients being subjected to unnecessary and invasive follow-up testing.[29] 

Several studies have assessed this by having participants read mammograms with and without 

CAD assistance, and then deciding whether to recall the case for follow-up testing. There has 

been no evidence of AB commission errors, that is, readers recalling cases because of false 

positive prompts.[29] However, readers detected 25% fewer cancers that were not prompted 

by CAD, compared to the same cases when read unaided.[30] These are omission errors. While 

prompts were not relied on to detect cancers, their absence was taken as a strong indication 

that there was no cancer present, leading Alberdi, et al. [30] to suggest that “in many instances, 

the absence of prompts is more informative than their presence.” 

8. Golchin and Roudsari [31] asked general practitioners (GPs) to answer questions about clinical 

scenarios. For difficult scenarios, GPs made significantly more errors when provided with 

incorrect decision support. These are AB commission errors.   
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9. Goddard, et al. [32] asked GPs what they would prescribe for clinical scenarios, after which 

they were shown simulated decision support advice, some of which was incorrect. Participants 

were then asked if they wished to change their responses. When decision support advice was 

incorrect, GPs were more likely to switch a correct decision to an incorrect one. These are AB 

commission errors.   

These incidents and studies demonstrate how: (1) CDS can produce incorrect advice; (2) incorrect 

advice can adversely influence decisions; and (3) these decisions can lead to patient harm. This thesis 

is concerned with the second aspect; it examines the interaction between clinician and incorrect CDS, 

that is, the point where errors can be either avoided or propagated. Automation bias can adversely 

alter outcomes. Further study in this area is important for ensuring patient safety as new decision 

support tools are constantly introduced. 

1.4 Automation bias effects 

Mosier and Skitka’s [13] definition of automation bias characterises it as a heuristic, where over-

reliance stems from the use of automation as a mental shortcut in place of the user’s own efforts in 

information seeking and processing. This is the cognitive miser hypothesis of automation bias,[13] 

which suggests that people are misers when it comes to utilising their cognitive resources, preferring 

to seek adequate, faster and less effortful ways of thinking, rather than engaging in more accurate, but 

slower and more effortful thinking.[33] This is achieved through the use of heuristics or mental 

shortcuts, such as relying on CDS to identify errors, instead of reading monographs and evaluating the 

information to determine whether a drug therapy is safe. This hypothesis is illustrated in Figure 1-1, 

where an increase in automation bias is expected to increase errors, but decrease information seeking 

and information processing.  
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Figure 1-1 The hypothesised effect of automation bias on errors, information seeking and processing 

Figure 1-1 shows the three observable outcomes of automation bias that will be examined: errors, 

information processing and information seeking.  

1.4.1 Errors  

The effect of automation bias is established through the measurement of omission and commission 

errors showing that incorrect CDS increases errors above that which would have occurred with no CDS.  

Omission errors are usually tested by having people detect specific events, such as whether a 

mammogram shows the presence of a cancer [30] or if there is a problem with an aircraft’s engines.[15] 

In these tasks, automation assists by alerting the user to the problem. Because no warning is given 

when automation fails, over-reliance on it produces the risk of problems going undiscovered.  

To date, most experimental research has established the presence of omission errors by observing the 

difference between: (1) constant high accuracy automation which has consistently produced higher 

rates of omission errors and (2) automation that varied between high and low accuracy.[15, 34-38] 

This effect is likely due to participants having greater trust in automation that is highly accurate, a 

disposition which makes them less likely to detect automation failures.[34, 39]  

Omission errors have also been tested in studies which compared incorrect automation with a non-

automated control. These studies showed that when automation was incorrect, errors were higher 

compared to when there was no automation.[30, 40-42]   
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Commission errors are induced by incorrect decision support advice and would not have occurred 

without the automated recommendation. A few studies have found evidence of commission errors in 

controlled experiments.[31, 32, 43, 44] Other studies have found that participants performed actions 

they would not have otherwise performed, for example, shutting down an aircraft engine based on an 

incorrect decision support recommendation, but in the absence of any other information indicating 

the need to do so.[14, 45] 

The effect of over-reliance on, and over-compliance with, automation on errors substantiates the 

existence of automation bias. Automation bias has been widely studied within the human factors and 

ergonomics literature, especially focused on tasks which take place in highly automated environments, 

such as aviation and process control.  

1.4.2 Information seeking / Verification 

One hypothesised effect of automation bias is that it reduces information seeking. Information seeking 

enables verification, the process of establishing the truth or correctness of something through the 

investigation or evaluation of data.[46] Verification plays a key role in the detection of errors by 

enabling the user to: (1) establish whether automation is functioning correctly and (2) identify errors 

independent of automation.  

Research has shown that reduced verification is associated with omission errors [34, 47] and 

commission errors.[48-52] Omission errors were associated with fewer eye gaze fixations on the 

relevant information, while commission errors were associated with less access of data which could 

confirm or invalidate decision support recommendations.  

1.4.3 Information processing / Cognitive Load  

Information processing is a cognitive task whereby the acquired information is evaluated, and 

decisions are made based on this information. For this thesis, information processing is operationalised 

using Cognitive Load Theory,[53] which is based on the idea that human information processing is 

limited by the capacity of working memory.[53] The latter, in turn, has a limited capacity [54, 55] and 

short duration.[56] When information processing takes place in working memory, [57] it generates 

cognitive load.[53] The rationale for this choice is presented in Article I (chapter 2) and its 

measurement is described in Article III (chapter 4).  

There have been a number of studies which measured workload using the NASA Task Load Index 

(NASA-TLX),[58] which measures workload across six dimensions: mental, physical and temporal 

demands, frustration, effort and performance. The NASA-TLX has been extensively used in 

research.[59]  

Prior research has found that high constant accuracy automation which induces higher rates of 

automation bias is associated with lower workload.[37, 44, 60] Prinzel et al.,[37, 61] divided 
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participants into high and low complacency-potential groups based on their scores from the 

Complacency-Potential Rating Scale,[62, 63] a scale designed to rate an individual’s potential to be 

complacent towards automation. High complacency-potential participants made significantly more 

omission errors than low complacency-potential participants with highly-accurate automation, a 

condition known to increase the rate of omission errors.[15, 34-38] Both groups made the same 

number of errors with variable accuracy automation, although participants in the high complacency-

potential group reported a significantly higher workload for the same level of performance.  

To date, the relationship between automation bias and information processing remains largely 

unexplored. Prinzel et al.[37, 61] demonstrates that there are differences in subjective workload based 

on a person’s complacency-potential. This finding needs to be extended further to identify whether 

there are differences in information processing between instances where automation bias errors are 

made and when they are avoided.  

To date, no studies have directly compared differences in cognitive load between people who do and 

do not make automation bias errors within the same experimental conditions. Hence, one key focus 

of this research is the impact of task complexity on automation bias, in particular, whether over-

reliance is more likely in situations where people are cognitively overloaded by the information 

processing requirements of the task.[19] While cognitive load is a likely sub-component of workload, 

it provides a suitable framework for the manipulation and assessment of the effects of task complexity 

on information processing. 

1.5 Limited automation bias research in healthcare 

Automation bias in healthcare is still a relatively new field of study with a sparse body of literature.[18, 

19] The incidental nature of the reporting of automation bias in healthcare limits our understanding of 

the extent to which it occurs and the risks it poses. This is further complicated by reports which do not 

explicitly identify automation bias.[18] Indeed, while many of the incidents discussed in section 1.3 

were described as automation bias or automation-induced complacency, it is very likely that many 

more incidents exist, but have not been identified.   

However, there exists a substantial body of research in the human factors and ergonomics literature, 

the majority of which focuses on tasks derived from aviation and process control applications.[19]   

Automation bias incidents in aviation were identified by analysing the Aviation Safety Reporting 

System (ASRS), a voluntary reporting system which allows pilots, crew, air traffic controllers, and others 

to report incidents and near misses confidentially with the aim of improving air safety. The ASRS has 

operated for over 40 years and recorded over 1.4 million reports, all of which are available via a publicly 

accessible database on their website.[64] 
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While less well-established, the reporting of health information technology-related incidents is 

gathering pace.[65] A group of researchers from the United States has recently reported cases of a 

number of CDS malfunctions [8, 9] and is actively soliciting CDS malfunctions case reports from 

users.[9] The focus of this automation bias research concerns how such malfunctions may impact users 

and contribute to errors. While such reports provide valuable insights into how CDS can be incorrect 

and identify areas for improvement, there remains a need to establish how incorrect CDS impacts 

clinicians. Until a larger and more systematic body of incident reports is collected, researchers are 

limited to the incidental reporting of incidents, such as those described in section 1.3. 

As most of the current research on automation bias comes from the human factors and ergonomics 

literature, it is important to determine how applicable the existing research is to healthcare. It is likely 

that the tasks performed, and the role of decision support in assisting people with these tasks will be 

different to those in aviation and process control tasks. Therefore, it will be critical to compare and 

contrast these two bodies of literature with a view to understanding which research is transferable 

from the human factors literature and which factors are unique to healthcare and require further 

study.   

1.6 Thesis aims 

This thesis seeks to study automation bias in a healthcare context, focusing on tasks, automation, and 

factors characteristic of healthcare settings and applications. It focuses in particular on important 

healthcare factors that do not feature in the established literature which is currently dominated by 

aviation and process control studies. A systematic review of the automation bias literature informs the 

aims and hypotheses of the experimental portion of the thesis. The review also informs the choice of 

task in the experiment.  

The experimental portion of the thesis tests for the presence of automation bias in e-prescribing when 

assisted by CDS medication alerts. The experiment also tests whether task complexity is a cause of 

automation bias and if the relationship between these two factors might be explained by cognitive 

overload.  

An e-prescribing task assisted by CDS was chosen for the experiment for two reasons. First, it 

represents a task and automation type typical of the healthcare studies reported in the review, that is, 

a decision-making task where automated assistance is provided in the form of decision support.  

Second, the earlier example of a physician who blamed a prescribing error on the lack of CDS alerts 

demonstrates that e-prescribing may be susceptible to automation bias omission errors. However, to 

date, there have been no studies assessing this risk. This knowledge gap thus needs to be filled, 

especially in light of the large volume of prescriptions ordered, the increasing prevalence of e-

prescribing that involves CDS, and the risk of harm posed by avoidable prescribing errors. A 
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randomised controlled experiment into automation bias in electronic prescribing would fill this gap 

and provide a vehicle to test hypotheses concerning task complexity and cognitive load.  

Accordingly, this thesis seeks to: 

Aim 1 Identify key tasks, automation (or decision support), and risk factors that are likely to be 

unique to, or feature predominately in, automation bias within healthcare contexts.  

Aim 2 Experimentally test whether there is a risk of automation bias in electronic prescribing 

assisted by medication alerts from clinical decision support.  

Aim 3 Experimentally test whether high-complexity tasks are more susceptible to automation bias 

errors.  

Aim 4 Experimentally test whether task interruptions increase the rate of automation bias errors.  

Aim 5 Experimentally test whether automation bias errors are caused by high cognitive load 

brought about by high task complexity. This may indicate that reliance on decision support 

serves as a coping mechanism when the cognitive demands of a task overwhelm the 

available cognitive resources.  

Aim 6 Determine the relationship between automation bias errors, cognitive load and verification.  

1.7 Thesis structure 

This thesis is presented as a series of four publications which constitute chapters two to five. Three 

articles have been published in peer-reviewed health informatics journals and one has been published 

in a peer-reviewed human factors journal. A brief introduction prefaces each of these chapters to 

orient the reader to how the publication contributes to the thesis’ aims. 

Chapter two presents Article I,[19] a systematic review comparing the healthcare and human factors 

literature on automation bias, with a focus on identifying the tasks, automation and risk factors that 

are unique to or feature predominately in, healthcare. This article seeks to address aim 1.  

An electronic prescribing experiment was conducted; it was designed to answer the questions posed 

in aims 2 to 6. Chapters three to five report the results of this experiment for each of the automation 

bias effects: errors (chapter 3), cognitive load (chapter 4) and verification (chapter 5).  

Chapter three presents Article II [66] which reports the omission and commission errors made by the 

participants in the experiment. It evaluates the hypotheses set out in aims 2 to 4, that is: whether (1) 

electronic prescribing assisted by clinical decision support is susceptible to automation bias errors; (2) 

high complexity tasks are more susceptible to automation bias errors; and (3) interrupted tasks are 

more susceptible to automation bias errors.  
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Chapter four presents Article III [67] which reports the outcome of the experiment on participants’ 

cognitive load and evaluates the hypothesis set out in aim 5, that is, whether high cognitive load 

induces automation bias.  

Chapter five presents Article IV [68] which reports the outcome of the experiment on participants’ 

information seeking or verification behaviours. 

Chapters three to five conclude by constructing a model of the effect of CDS and task complexity on 

the relevant dependent variables: errors (chapter 3), cognitive load (chapter 4) and verification 

(chapter 5).   

Chapter six presents the discussion for the overall thesis as an integrated piece of research on 

automation bias in healthcare. It synthesises the automation bias effects reported in previous chapters 

to: (1) address aim 6 by exploring the relationship between errors, cognitive load and verification, and 

(2) evaluate the overall impact of task complexity across all effects. The contribution, implications, and 

limitations of this thesis, as well as recommendations for further research, are also discussed.  

  



12  Chapter 1 Introduction 
 
1.8 Chapter 1 References 

1. Chaudhry B, Wang J, Wu S, et al. Systematic review: Impact of health information technology on 

quality, efficiency, and costs of medical care. Annals of Internal Medicine 2006;144(10):742-52 doi: 

10.7326/0003-4819-144-10-200605160-00125 

2. Beeuwkes Buntin M, Burke MF, Hoaglin MC, Blumenthal D. The Benefits Of Health Information 

Technology: A Review Of The Recent Literature Shows Predominantly Positive Results. Health 

Affairs 2011;30(3):464-71 doi: 10.1377/hlthaff.2011.0178 

3. Wolfstadt JI, Gurwitz JH, Field TS, Lee M, Kalkar S, Wu W, Rochon PA. The Effect of Computerized 

Physician Order Entry with Clinical Decision Support on the Rates of Adverse Drug Events: A 

Systematic Review. Journal of General Internal Medicine 2008;23(4):451-58 doi: 10.1007/s11606-

008-0504-5 

4. Ammenwerth E, Schnell-Inderst P, Machan C, Siebert U. The Effect of Electronic Prescribing on 

Medication Errors and Adverse Drug Events: A Systematic Review. Journal of the American Medical 

Informatics Association 2008;15(5):585-600 doi: 10.1197/jamia.M2667 

5. van Rosse F, Maat B, Rademaker CMA, van Vught AJ, Egberts ACG, Bollen CW. The Effect of 

Computerized Physician Order Entry on Medication Prescription Errors and Clinical Outcome in 

Pediatric and Intensive Care: A Systematic Review. Pediatrics 2009;123(4):1184-90 doi: 

10.1542/peds.2008-1494 

6. Osheroff JA, Teich JM, Middleton B, Steen EB, Wright A, Detmer DE. A Roadmap for National Action 

on Clinical Decision Support. Journal of the American Medical Informatics Association 

2007;14(2):141-45 doi: 10.1197/jamia.M2334 

7. Parasuraman R, Riley V. Humans and automation: Use, misuse, disuse, abuse. Human Factors 

1997;39(2):230-53 doi: 10.1518/001872097778543886 

8. Wright A, Hickman T-TT, McEvoy D, Aaron S, Ai A, Andersen JM, Hussain S, Ramoni R, Fiskio J, Sittig 

DF, Bates DW. Analysis of clinical decision support system malfunctions: a case series and survey. 

Journal of the American Medical Informatics Association 2016;23(6):1068-76 doi: 

10.1093/jamia/ocw005 

9. Wright A, Ai A, Ash J, Wiesen JF, Hickman T-TT, Aaron S, McEvoy D, Borkowsky S, Dissanayake PI, 

Embi P, Galanter W, Harper J, Kassakian SZ, Ramoni R, Schreiber R, Sirajuddin A, Bates DW, Sittig 

DF. Clinical decision support alert malfunctions: analysis and empirically derived taxonomy. Journal 

of the American Medical Informatics Association 2017;25(5):496-506 doi: 10.1093/jamia/ocx106 



Chapter 1 Introduction  13 
 
10. Berner ES, Kasiraman RK, Yu F, Ray MN, Houston TK. Data Quality in the Outpatient Setting: Impact 

on Clinical Decision Support Systems. AMIA Annual Symposium Proceedings 2005;2005:41-45  

11. Campbell EM, Sittig DF, Guappone KP, Dykstra RH, Ash JS. Overdependence on Technology: An 

Unintended Adverse Consequence of Computerized Provider Order Entry. AMIA Annual 

Symposium Proceedings 2007;2007:94-98  

12. Sweidan M, Williamson M, Reeve JF, Harvey K, O'Neill JA, Schattner P, Snowdon T. Evaluation of 

features to support safety and quality in general practice clinical software. BMC Medical 

Informatics and Decision Making 2011;11(1):1-8 doi: 10.1186/1472-6947-11-27 

13. Mosier KL, Skitka LJ. Human decision makers and automated decision aids: Made for each other. 

In: Parasuraman R, Mouloua M, eds. Automation and human performance: Theory and 

applications. Hillsdale, NJ, England: Lawrence Erlbaum Associates, 1996:201-20. 

14. Mosier KL, Skitka LJ, Heers S, Burdick M. Automation bias: Decision making and performance in 

high-tech cockpits. International Journal of Aviation Psychology 1998;8(1):47-63 doi: 

10.1207/s15327108ijap0801_3 

15. Parasuraman R, Molloy R, Singh IL. Performance consequences of automation-induced 

"complacency.". The International Journal of Aviation Psychology 1993;3(1):1-23 doi: 

10.1207/s15327108ijap0301_1 

16. Billings C, Lauber J, Funkhouser H, Lyman G, Huff E. NASA aviation safety reporting system. 

(Technical Report TM-X-3445).  1976  

17. Parasuraman R, Manzey DH. Complacency and bias in human use of automation: An attentional 

integration. Human Factors 2010;52(3):381-410 doi: 10.1177/0018720810376055 

18. Goddard K, Roudsari A, Wyatt JC. Automation bias: a systematic review of frequency, effect 

mediators, and mitigators. Journal of the American Medical Informatics Association 

2012;19(1):121-27 doi: 10.1136/amiajnl-2011-000089 

19. Lyell D, Coiera E. Automation bias and verification complexity: a systematic review. Journal of the 

American Medical Informatics Association 2017;24(2):423-31 doi: 10.1093/jamia/ocw105 

20. Professional Standards Committee. An inquiry into a complaint in relation to Dr Sunil Kumar Dan.  

NSW Health Care Complaints Commission 24 June 2016 

http://www.hccc.nsw.gov.au/ArticleDocuments/246/DAN%20Sunil%20-%20Decision%20-

%20PSC%20-%2010%20June%202016.pdf.aspx 

http://www.hccc.nsw.gov.au/ArticleDocuments/246/DAN%20Sunil%20-%20Decision%20-%20PSC%20-%2010%20June%202016.pdf.aspx
http://www.hccc.nsw.gov.au/ArticleDocuments/246/DAN%20Sunil%20-%20Decision%20-%20PSC%20-%2010%20June%202016.pdf.aspx


14  Chapter 1 Introduction 
 
21. The Naomi Berrie Diabetes Center. Airport Scanners and Insulin Pumps: A Cautionary Report. 

Secondary Airport Scanners and Insulin Pumps: A Cautionary Report  2013. Retrieved from 

http://www.nbdiabetes.org/news/airport-scanners-and-insulin-pumps-cautionary-tale [archive 

link http://www.webcitation.org/6uxFgkJBT]  

22. Anonymous. Root Cause Analysis: Conjugated Bilirubin.  n.d.  

23. ISMP Canada. Understanding human over-reliance on technology. ISMP Canada Safety Bulletin 

2016;16(5):1 - 4  

24. Bogun F, Anh D, Kalahasty G, Wissner E, Bou Serhal C, Bazzi R, Weaver WD, Schuger C. Misdiagnosis 

of atrial fibrillation and its clinical consequences. American Journal of Medicine 2004;117(9):636-

42 doi: 10.1016/j.amjmed.2004.06.024 

25. Gaba D. Automation in anesthesiology. In: Mouloua M, Parasuraman R, eds. Human performance 

in automated systems: Current research and trends. Hillsdale, NJ: Lawrence Erlbaum Associates, 

1994:57-63. 

26. Taylor P, Champness J, Given-Wilson R, Johnston K, Potts H. Impact of computer-aided detection 

prompts on the sensitivity and specificity of screening mammography. Health Technology 

Assessment 2005;9(6):1-58  

27. Murakami R, Kumita S, Tani H, Yoshida T, Sugizaki K, Kuwako T, Kiriyama T, Hakozaki K, Okazaki E, 

Yanagihara K, Iida S, Haga S, Tsuchiya S. Detection of breast cancer with a computer-aided 

detection applied to full-field digital mammography. Journal Of Digital Imaging 2013;26(4):768-73 

doi: 10.1007/s10278-012-9564-5 

28. Alberdi E, Povyakalo AA, Strigini L, Ayton P, Hartswood M, Procter R, Slack R. Use of computer-

aided detection (CAD) tools in screening mammography: a multidisciplinary investigation. The 

British Journal of Radiology 2005;78(suppl_1):S31-S40 doi: doi:10.1259/bjr/37646417 

29. Marx C, Malich A, Facius M, Grebenstein U, Sauner D, Pfleiderer SOR, Kaiser WA. Are unnecessary 

follow-up procedures induced by computer-aided diagnosis (CAD) in mammography? Comparison 

of mammographic diagnosis with and without use of CAD. European Journal of Radiology 

2004;51(1):66-72 doi: 10.1016/S0720-048X(03)00144-X 

30. Alberdi E, Povykalo A, Strigini L, Ayton P. Effects of incorrect computer-aided detection (CAD) 

output on human decision-making in mammography. Academic Radiology 2004;11(8):909-18 doi: 

10.1016/j.acra.2004.05.012 

http://www.nbdiabetes.org/news/airport-scanners-and-insulin-pumps-cautionary-tale
http://www.webcitation.org/6uxFgkJBT


Chapter 1 Introduction  15 
 
31. Golchin K, Roudsari A. Study of the effects of clinical decision support system's incorrect advice and 

clinical case difficulty on users' decision making accuracy. Studies in Health Technology and 

Informatics 2011;164:13-16 doi: 10.3233/978-1-60750-709-3-13 

32. Goddard K, Roudsari A, Wyatt JC. Automation bias: empirical results assessing influencing factors. 

International Journal of Medical Informatics 2014;83(5):368-75 doi: 

10.1016/j.ijmedinf.2014.01.001 

33. Fiske ST, Taylor SE. Social cognition. New York: Random House, 1984. 

34. Bagheri N, Jamieson GA. Considering subjective trust and monitoring behavior in assessing 

automation-induced "complacency". In: Vincenzi DA, Mouloua M, Hancock PA, eds. Human 

Performance, Situation Awareness and Automation: Current Research and Trends, Vol 2. Mahwah: 

Lawrence Erlbaum Associates, 2004:54-59. 

35. Bailey NR, Scerbo MW, Freeman FG, Mikulka PJ, Scott LA. Comparison of a brain-based adaptive 

system and a manual adaptable system for invoking automation. Human Factors 2006;48(4):693-

709 doi: 10.1518/001872006779166280 

36. Parasuraman R, de Visser E, Lin M-K, Greenwood PM. Dopamine beta hydroxylase genotype 

identifies individuals less susceptible to bias in computer-assisted decision making. PLoS ONE 

2012;7(6) doi: 10.1371/journal.pone.0039675 

37. Prinzel LJ, III, Freeman FG, Prinzel HD. Individual Differences in Complacency and Monitoring for 

Automation Failures. Individual Differences Research 2005;3(1):27-49  

38. Singh IL, Singh AL, Saha PK. Monitoring performance and mental workload in an automated system. 

Proceedings of the International Conference onEngineering Psychology and Cognitive Ergonomics; 

2007 Jul 22-27; Beijing, China. Springer Verlag. 

39. Bailey NR, Scerbo MW. Automation-induced complacency for monitoring highly reliable systems: 

the role of task complexity, system experience, and operator trust. Theoretical Issues in 

Ergonomics Science 2007;8(4):321-48 doi: 10.1080/14639220500535301 

40. Singh IL, Sharma HO, Parasuraman R. Effects of manual training and automation reliability on 

automation induced complacency in flight simulation task. Psychological Studies 2001;46(1/2):21-

27  

41. Skitka LJ, Mosier KL, Burdick M. Does automation bias decision-making? International Journal of 

Human Computer Studies 1999;51(5):991-1006 doi: 10.1006/ijhc.1999.0252 



16  Chapter 1 Introduction 
 
42. Metzger U, Parasuraman R. Automation in future air traffic management: effects of decision aid 

reliability on controller performance and mental workload. Human Factors 2005;47(1):35-49 doi: 

10.1518/0018720053653802 

43. Sarter NB, Schroeder B. Supporting decision making and action selection under time pressure and 

uncertainty: The case of in-flight icing. Human Factors 2001;43(4):573-83 doi: 

10.1518/001872001775870403 

44. Rovira E, McGarry K, Parasuraman R. Effects of imperfect automation on decision making in a 

simulated command and control task. Human Factors 2007;49(1):76-87 doi: 

10.1518/001872007779598082 

45. Mosier KL, Skitka LJ, Dunbar M, McDonnell L. Aircrews and automation bias: The advantages of 

teamwork? International Journal of Aviation Psychology 2001;11(1):1-14 doi: 

10.1207/s15327108ijap1101_1 

46. Oxford English Dictionary. "verification, n.": Oxford University Press, June 2018. 

47. Bagheri N, Jamieson GA. The impact of context-related reliability on automation failure detection 

and scanning behaviour. IEEE International Conference on Systems, Man and Cybernetics (IEEE 

Cat. No.04CH37583); 2004 Oct 10-13. 

48. Bahner J, Huper A-D, Manzey D. Misuse of automated decision aids: Complacency, automation bias 

and the impact of training experience. International Journal of Human-Computer Studies 

2008;66(9):688-99 doi: 10.1016/j.ijhcs.2008.06.001 

49. Bahner J, Elepfandt MF, Manzey D. Misuse of diagnostic aids in process control: The effects of 

automation misses on complacency and automation bias. Proceedings of the Human Factors and 

Ergonomics Society Annual Meeting; 2008 Sep 22-26; New York, NY, United states. Human Factors 

And Ergonomics Society. 

50. Manzey D, Reichenbach J, Onnasch L. Human Performance Consequences of Automated Decision 

Aids: The Impact of Degree of Automation and System Experience. Journal of Cognitive Engineering 

and Decision Making 2012;6(1):57-87 doi: 10.1177/1555343411433844 

51. Reichenbach J, Onnasch L, Manzey D. Misuse of automation: The impact of system experience on 

complacency and automation bias in interaction with automated aids. Proceedings of the Human 

Factors and Ergonomics Society Annual Meeting; 2010 Sep 27 - Oct 1; San Francisco, CA, United 

states. Human Factors And Ergonomics Society. 



Chapter 1 Introduction  17 
 
52. Reichenbach J, Onnasch L, Manzey D. Human performance consequences of automated decision 

aids in states of sleep loss. Human Factors 2011;53(6):717-28 doi: 10.1177/0018720811418222 

53. Sweller J, Ayres P, Kalyuga S. Cognitive load theory. New York: Springer, 2011. 

54. Cowan N. The magical number 4 in short-term memory: a reconsideration of mental storage 

capacity. Behavioral and Brain Sciences 2001;24:87-185  

55. Miller GA. The magical number seven, plus or minus two: Some limits on our capacity for processing 

information. Psychological Review 1956;63(2):81  

56. Peterson L, Peterson MJ. Short-term retention of individual verbal items. Journal of Experimental 

Psychology 1959;58(3):193-98 doi: 10.1037/h0049234 

57. Baddeley A. Working Memory. Science 1992;255(5044):556  

58. Hart SG, Staveland LE. Development of NASA-TLX (Task Load Index): Results of empirical and 

theoretical research. Advances in psychology 1988;52:139-83  

59. Hart SG. Nasa-Task Load Index (NASA-TLX); 20 Years Later. Proceedings of the Human Factors and 

Ergonomics Society Annual Meeting 2006;50(9):904-08 doi: 10.1177/154193120605000909 

60. Singh AL, Tiwari T, Singh IL. Effects of automation reliability and training on automation-induced 

complacency and perceived mental workload. Journal of the Indian Academy of Applied Psychology 

2009;35(spec iss):9-22  

61. Prinzel III LJ, DeVries H, Freeman FG, Mikulka P. Examination of automation-induced complacency 

and individual difference variates (Technical Report NASA / TM-2001-211413).  National 

Aeronautics and Space Administration Langley Research Center 2001 

https://ntrs.nasa.gov/search.jsp?R=20020021642 

62. Singh IL, Molloy R, Parasuraman R. Automation-induced "complacency": Development of the 

Complacency-Potential Rating Scale. The International Journal of Aviation Psychology 

1993;3(2):111-22 doi: 10.1207/s15327108ijap0302_2 

63. Singh IL, Molloy R, Parasuraman R. Individual Differences in Monitoring Failures of Automation. 

The Journal of General Psychology 1993;120(3):357-73 doi: 10.1080/00221309.1993.9711153 

64. NASA Aviation Safety Reporting System. ASRS Program Briefing.  NASA Aviation Safety Reporting 

System 2016 https://asrs.arc.nasa.gov/docs/ASRS_ProgramBriefing2016.pdf 

https://ntrs.nasa.gov/search.jsp?R=20020021642
https://asrs.arc.nasa.gov/docs/ASRS_ProgramBriefing2016.pdf


18  Chapter 1 Introduction 
 
65. Kim MO, Coiera E, Magrabi F. Problems with health information technology and their effects on 

care delivery and patient outcomes: a systematic review. Journal of the American Medical 

Informatics Association 2017;24(2):246-50 doi: 10.1093/jamia/ocw154 

66. Lyell D, Magrabi F, Raban MZ, Pont LG, Baysari MT, Day RO, Coiera E. Automation bias in electronic 

prescribing. BMC Medical Informatics and Decision Making 2017;17(1):28 doi: 10.1186/s12911-

017-0425-5 

67. Lyell D, Magrabi F, Coiera E. The effect of cognitive load and task complexity on automation bias in 

electronic prescribing. Human Factors 2018;60(7):1008 - 21 doi: 10.1177/0018720818781224 

68. Lyell D, Magrabi F, Coiera E. Reduced Verification of Medication Alerts Increases Prescribing Errors. 

Applied Clinical Informatics 2019;10(01):066-76 doi: 10.1055/s-0038-1677009 

 



  19 
 

2 Systematic review 
2.1 Background 

While automation bias is a relatively new area of enquiry in healthcare,[1, 2] it is not a new field of 

study and there exists a substantial body of research.[1-3] Most of what is already known about 

automation bias comes from studies using tasks and automation found in the heavily automated 

domains of aviation and process control,[1, 2] where automation typically assists users with 

monitoring system parameters, such as aircraft engines,[4-17] or the life support system of a 

spacecraft.[18-22] In these domains, automation can also provide decision support to assist users with 

the diagnosis and resolution of system faults. The user’s role is to provide supervisory control, ensuring 

that automation is doing what it should and to take over when things go awry.  

Healthcare and clinical tasks which may be susceptible to automation bias are likely to differ from 

those which have been studied and tested in the existing human factors and ergonomics literature. 

Therefore, it is necessary to establish the extent to which the existing literature is applicable to 

healthcare. Specifically, there is a need to identify: (1) which factors in the existing literature can be 

extended to the healthcare domain, and (2) which factors are unique to healthcare and require further 

study.  

The journal article presented in this chapter reports a systematic review comparing and contrasting 

the human factors and healthcare literature with a specific focus on tasks, automation, and risk factors.  

2.2 Contribution of this article to the thesis 

The systematic review (Article I) seeks to address Aim 1 of the thesis: to systematically review the 

human factors and healthcare literature by: (1) comparing and contrasting tasks, including the role of 

automation in those tasks, and (2) identifying unique risk factors.   

The goal of this review was to identify potential gaps in the research, especially factors which are 

important for automation bias in healthcare that have not been studied in the existing literature.  

The review found evidence of automation bias in single tasks,[2] which is contrary to the prevailing 

view in the human factors literature that it only occurs in multi-task environments.[7, 8] Single tasks 

which produced automation bias involved: (1) diagnostic tasks requiring the identification of the 

current state of a system or the cause of a problematic state, and (2) higher verification complexity, 

that is, the task complexity of verifying automation. Both of these aspects are characteristic of 

healthcare tasks.  
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These findings suggest that task complexity, and especially the complexity involved in verifying 

automation, may be an important risk factor for automation bias in healthcare. Task complexity is a 

key focus of the experimental portion of the thesis. The review concludes by proposing Cognitive Load 

Theory as a methodology for studying task complexity in relation to automation bias.[2]  

2.3 Article details 

This article was published in the Journal of the American Medical Informatics Association (JAMIA).  

Citation 

Lyell D, Coiera E. Automation bias and verification complexity: a systematic review. Journal of the 
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ABSTRACT

Introduction: While potentially reducing decision errors, decision support systems can introduce new types of

errors. Automation bias (AB) happens when users become overreliant on decision support, which reduces vigi-

lance in information seeking and processing. Most research originates from the human factors literature, where

the prevailing view is that AB occurs only in multitasking environments.

Objectives: This review seeks to compare the human factors and health care literature, focusing on the apparent

association of AB with multitasking and task complexity.

Data sources: EMBASE, Medline, Compendex, Inspec, IEEE Xplore, Scopus, Web of Science, PsycINFO, and

Business Source Premiere from 1983 to 2015.

Study selection: Evaluation studies where task execution was assisted by automation and resulted in errors

were included. Participants needed to be able to verify automation correctness and perform the task manually.

Methods: Tasks were identified and grouped. Task and automation type and presence of multitasking were

noted. Each task was rated for its verification complexity.

Results: Of 890 papers identified, 40 met the inclusion criteria; 6 were in health care. Contrary to the prevailing

human factors view, AB was found in single tasks, typically involving diagnosis rather than monitoring, and

with high verification complexity.

Limitations: The literature is fragmented, with large discrepancies in how AB is reported. Few studies reported

the statistical significance of AB compared to a control condition.

Conclusion: AB appears to be associated with the degree of cognitive load experienced in decision tasks, and

appears to not be uniquely associated with multitasking. Strategies to minimize AB might focus on cognitive

load reduction.

Key words: decision support systems, clinical cognitive biases, complexity

INTRODUCTION

Automation in health care assists health professionals with complex

or error-prone tasks such as diagnosis and treatment selection. For

example, a clinical decision support system (CDSS) can help reduce

prescribing errors by alerting clinicians to potential adverse events

such as drug-drug interactions.1 When it performs well, automation

can reduce errors and improve decision performance.1,2 It also,

however, has the potential to introduce new types of errors.3 One

particularly significant risk is that users may become overreliant on

automation, especially when a CDSS tool is less than perfectly accu-

rate or reliable, leading to decision errors.4

This overreliance on less-than-perfect automation has been

described in 2 separate but closely related bodies of research as

either automation bias (AB) or automation-included complacency.

Mosier and Skitka5 define AB as “the tendency to use automated

cues as a heuristic replacement for vigilant information seeking and
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processing.” Here, automation provides cues for humans to attend to,

and these are relied on more heavily than nonautomated cues. They

distinguish between omission errors, where users fail to notice prob-

lems because they were not alerted to them by automation, and com-

mission errors, where users act on incorrect advice given by

automation. Automation-induced complacency6 is “self-satisfaction

which may result in non-vigilance based on an unjustified assumption

of satisfactory system state.”7 Recently, Parasuraman and Manzey8

reviewed both bodies of literature and argued that they are overlap-

ping manifestations of the same automation-induced phenomenon,

with allocation of limited user attention being central to both.

Despite the extensive use of automation and decision support in

health care, little research has been explicitly conducted on AB.

Some studies have documented AB associated with the use of CDSS

without explicitly identifying the bias. Most existing research comes

from human factors and ergonomics, where the prevailing view is

that AB occurs only in environments where users perform multiple

tasks simultaneously.6,9

However, studies from the health care literature, such as radio-

logical computer-aided detection studies (Box 1), took place in

single-task environments. A meta-analysis of AB in health care by

Goddard et al.10 found that incorrect decision support increased the

risk of commission errors by 26% compared to when users did not

have decision support. Three of the 4 studies were single task.11–13

Interestingly, high levels of system accuracy may inadvertently

contribute to AB.6,9,17–24 This may be because accuracy engenders

trust, and it has been shown that users who have greater trust in

automation are less likely to detect automation failures.18,25

Both task complexity10,18 and task difficulty15 have been cited as

factors influencing AB, and are inherent properties of a task. To

date, task complexity has been defined in terms of the cognitive

demands of the task on the user10,18 and the difficulty in terms of

the portion of users who respond correctly to the task.15 However,

there is still no agreed on and systematic approach to the study of

complexity in relation to AB, which limits a unified theoretical treat-

ment of this phenomenon and also impedes the ability to design

effective interventions to mitigate its effects.

This review seeks to compare and contrast the human factors and

health care literature on automation bias, with a view to understanding

the differences between the tasks in each and a specific focus on the

apparent associations between AB, multitasking, and task complexity.

The review will include studies of automation-induced complacency as

well as AB, but for simplicity will use the term automation bias accord-

ing to the definition provided by Mosier and Skitka.5

METHOD

A Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA)-compliant systematic review was undertaken.26

A literature search was conducted in July 2015 using EMBASE,

Medline, Compendex, Inspec, IEEE Xplore, Scopus, Web of Science,

PsycINFO, and Business Source Premiere.

The search consisted of medical subject headings (Appendix A)

and the keywords “automation-induced complacency” and

“automation bias.” The search was limited to articles published in

English since 1983. Eligible research studies needed to meet the fol-

lowing inclusion criteria:

• Experimental or observational research.
• Focus on the interaction between a human user and automation

in performing a task.
• User had the capacity to perform the task manually without

automation.
• User was presented with sufficient information to verify the cor-

rect functioning of automation.
• User had the ability to intervene in the task or choose when to

use or rely on automation.
• Study tested the impact of an automation failure on human users

in their performance of the task.

Study selection
Articles were screened using title and abstract, and those selected for

full text assessment were then assessed by 2 reviewers (D.L. and

R.S.). Interrater agreement was good (Cohen’s j 0.794; n¼81). Dis-

agreements were resolved by consensus. Of 890 unique identified

documents, 40 studies met all the inclusion criteria (Figure 1).

Quality assessment and risk of bias
Risk of bias was assessed using the Cochrane Collaboration tool for

assessing risk of bias in randomized trials.27 As the results of

included studies were not pooled for meta-analysis, no papers were

excluded on quality assessment.

A large portion of papers only provided summary details on

recruitment, allocation, concealment, and blinding. Where data was

missing or excluded, it was declared with reasons provided. Results

were reported against hypotheses, but a sizable portion of studies

did not report the results of statistical tests for significance of AB

compared to a control condition.

Overall, most studies used relatively small samples (median 30,

minimum 5, maximum 181). A large number of studies recruited

Box 1. Examples of automation bias in health care

Computer-aided detection (CAD) in radiology: CAD can

help radiologists detect cancers in screening mammograms

by placing prompts over suspicious image features. CAD

has the potential to increase reader sensitivity and detect

cancers that would otherwise be missed. However, there is

also the risk that erroneous CAD prompts will result in can-

cers going undetected (omission errors), or patients without

cancers being subjected to unnecessary and invasive test-

ing or treatment (commission errors). This risk has been

demonstrated in laboratory studies where qualified readers

examined mammograms for the presence of cancers with

and without the assistance of CAD. These studies found

that when CAD failed to correctly prompt a cancer, subjects

with CAD assistance performed significantly worse than

unassisted readers. However, there was no significant dif-

ference in false positive prompts between the 2 groups.

Hence, while radiologists were unaffected by false positive

prompts from CAD, they were more likely to miss a cancer

that was not prompted by CAD.14,15

Computerized EKG interpretation: Bogun et al.16 found

that, over a 6-month period in a major US hospital, 35% of

patients with a diagnosis of atrial fibrillation were misdiag-

nosed by computerized interpretation of their EKGs. Of

these, ordering physicians failed to correct the misdiagno-

sis for 24% of patients (a commission error), which led to

an unnecessary change of treatment for 10% of patients,

resulting in 2 patients (0.5%) developing complications.
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university students, and nonstudent participants were typically

recruited from the same or a small number of related organizations.

Data extraction and analysis
All experiments using the same task were grouped to allow for com-

parative analysis. Tasks were then systematically reviewed and data

extracted for each of the following themes:

• Task: The experimental task being performed, including any sec-

ondary tasks.
• Task Type: The type of task being performed by the subject, clas-

sified as monitoring, diagnosis, and/or treatment.
• Monitoring tasks require the user to monitor for a change in

the state of a system. Usually this will be the transition from a

desirable to a problematic state.
• Diagnosis tasks require the user to identify and decide what

the current state of the system is and/or what is causing the

system to be in a problematic state.
• Treatment tasks require the user to decide how to best treat

or remedy the problem. Here the user attempts to change the

system back to a desired state.
• Automation Type: Three categories of automated assistance

were identified.
• Alerting automation helps with monitoring tasks by alerting

users to important changes in the state of a system.
• Decision support assists users by providing a diagnosis of the

problem or recommendations for treatment. At higher levels

of automation, decision support may automatically imple-

ment recommendations.
• Implementation automation assists users by implementing

specified actions on their behalf; eg, air traffic control clearan-

ces sent via datalink can be automatically implemented

directly into the flight management system. This category is

used only when this occurs independent of decision support.
• Single-task or Multitask Environment: This refers to the number

of different tasks that are performed simultaneously.

Verification complexity
For each study we sought to measure the complexity of using auto-

mation for a human. Specifically, we introduce the notion of verifi-

cation complexity to describe the task complexity of verifying that

automation is performing correctly. Verification actions can include

assessing that alerts or recommendations are correct and ensuring

that everything is satisfactory when no recommendations are being

made by automation. For example, verifying a monitoring alert

might require a user to observe that the alert is present only when a

parameter is outside an acceptable range and never present when

within normal operating range.

The verification complexity of each study was calculated by esti-

mating the number of acquire, transform, interpret, or use steps nec-

essary for a user to comprehensively test whether automation was

functioning correctly (see Appendix B for an example). This was

scored by 2 reviewers (D.L. and R.S.) and the intraclass correlation

coefficient was 0.763, F (36, 36)¼7.399, P< .001, 95% CI (0.588-

0.870), indicating a high degree of interrater reliability.

RESULTS

Forty studies met the inclusion criteria. These studies explored 17

different experimental tasks. The human factors literature produced

34 studies (85%) using 14 experimental tasks. The remaining 6

studies (15%) used 3 experimental tasks and came from the health

care literature.

Automation bias
The majority of studies reported evidence of automation bias, with

81% of studies (n¼25/31) testing for omission errors and 91%

(n¼21/23) testing for commission errors finding evidence of bias.

Only 9 studies reported statistical significance when testing for the

effect of AB against a nonautomated control (Table 1). Four of these

found a significant effect for omission errors and 4 for commission

errors. The ninth reported no significant effects for combined omis-

sion and commission errors. Effect sizes were not reported.

Records identified 
through database 

searching
(n=1191)

Duplicates 

removed (n=301)

Records screened 
on title and 

abstract (n=890)

Records excluded 
on screening 

(n=809)

Records excluded on eligibility assessment (n=41)

n=3  Were not experimental or observational studies (criterion 1)
n=2  Did not focus on interaction between human and automation (criterion 2)
n=5 The user was not able to choose when to use automation (criterion 4)
n=26 Did not report the impact of automation failure on the user (criterion 6)
n=5  Were duplicates

Full-text articles 
assessed for 

eligibility (n=81)

Articles included 
in analysis (n=40)

Figure 1. Selection of studies
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Some studies reported the significance of AB between different

rates of automation accuracy. These consistently showed that partic-

ipants made significantly more AB errors when assisted by automa-

tion that was constantly highly accurate compared to automation

that varied between high and low accuracy.6,19,20,24,25,28

The remaining studies either reported the significance against

interventions to mitigate AB or did not report on significance.

Task characteristics
The experimental tasks could be divided into 17 unique tasks. The 3

tasks from the health care literature were computer-aided detection

of cancers in screening mammography, computerized interpretation

of EKGs, and computerized clinical decision support systems. The

remaining 14 experimental tasks came from the human factors liter-

ature. Nine tasks originated from aviation, and 1 task each came

from process control, military, security, nuclear power, and space.

Eleven of the tasks, all originating from the human factors litera-

ture, required subjects to perform 2, 3, or 4 tasks concurrently, with

3 being the most common number of concurrent tasks. The remain-

ing 6 experimental tasks involved a single task, 3 of which origi-

nated from the health care literature and 3 from the human factors

literature. All experimental tasks reported in the health care litera-

ture were single task. Interestingly, there were 2 studies that com-

pared the same subtask across single-task and multitask conditions,

which found evidence of omission errors in the multitask but not in

the single-task condition.6,9 Single-task studies involved mostly diag-

nosis, whereas multitask studies included all 3 task types.

Verification complexity
In multitasks experiments, all subtasks assisted by automation were

assessed for verification complexity (Table 2). Ratings varied

between low and high: 4 low, 2 medium, and 5 high. Tasks across

all levels produced evidence of automation bias. Similarly, single-

task experiments also varied between low and high: 1 low, 2

medium, and 4 high. However, only tasks rated medium or higher

produced automation bias. Two studies describing single tasks did

not contain sufficient information to allow for an assessment of

demands on working memory.31,52

DISCUSSION

Single-task vs multitask
The prevailing view in the human factors literature is that automa-

tion bias occurs only in multitask rather than single-task environ-

ments.6 Consistent with this, 10 of the 11 multitask studies reported

automation bias. However, we also found 5 of 6 single-task studies

that produced evidence of automation bias. Two of these, a luggage

screening task51 and the nondestructive testing of components in

nuclear power plants,52 came from the human factors literature. All

3 of the experimental tasks from health care were single task.

This finding signals a key point of difference between the human

factors and health care literature. It also has substantial theoretical

implications. First, it represents a significant departure from the pre-

vailing view that automation bias occurs only in multitask environ-

ments. Second, the finding challenges the theoretical proposition put

forward by Parasuraman and Manzey8 that automation bias occurs

when multiple tasks compete for the user’s attention.

Task and automation type
The primary task for most multitask experiments required subjects

to monitor for changes in a system or decide how to best manage the

problem. Monitoring tasks were assisted by alerts that notified users

of a change in system state. Treatment tasks were assisted by deci-

sion support, which provided recommendations for remedies. Moni-

toring requires a user to detect a change from a desirable to an

undesirable state. Usually this involves monitoring changes in

parameters over time. Examples include monitoring engine gauges

to determine whether there was a change from being within toleran-

ces to exceeding them.

In contrast, all but 1 single-task experiment involved diagnosis,

which requires the subject to ascertain the current state of the sys-

tem, assisted by decision support. Unlike monitoring, diagnosis was

not concerned with detecting a change in the system over time.

Examples include viewing mammograms and determining whether

or not a cancer is present.

Monitoring tasks were used in studies to investigate omission

errors, while diagnosis and treatment tasks were used to investigate

commission errors.

The 2 human factors studies that did report evidence of automa-

tion bias in a single-task environment both involved diagnosis. The

first was a luggage screening task,51 which required subjects to view

an X-ray image and then decide whether or not a weapon was

present. The second, the nondestructive testing of components in a

nuclear power plant,52 required subjects to check computerized

interpretations of eddy current testing on components.

Verification complexity
Our analysis showed that single-task experiments that reported evi-

dence of automation bias were rated medium to high for verification

complexity. The picture for multitasking studies was similar, in that

multiple low-complexity tasks could combine to generate automa-

tion bias. Two Multi-Attribute Task Battery experiments with low

verification complexity did not produce automation bias until they

were combined with a secondary task.6,9

This suggests that (1) a higher level of verification complexity is

required for automation bias to present in a single-task than a multi-

task setting, and (2) the cognitive demands of tasks are cumulative;

ie, the addition of secondary tasks appears to increase demands on a

user to the point where errors emerge.

Very little research has been conducted on the relationship

between task complexity and automation bias. No studies have

directly compared task complexity between single-task and multi-

task settings. However, 2 studies reported that high task complexity

or task difficulty resulted in more automation bias errors, providing

some support for our observation that differences in task complexity

may explain why some single tasks produce automation bias while

others do not. For example, Bailey and Scerbo18 manipulated the

complexity of a monitoring task, finding that subjects made more

automation bias errors when performing more complex (ie, more

cognitively demanding) monitoring tasks.

The role of task complexity is also partially supported by

Wickens and Dixon,54 who, in a review of the costs and benefits

of imperfect automation, found that user dependence on automa-

tion was greater under conditions of high workload, which they

defined in terms of task difficulty or concurrent task load. They

confirmed this finding in a laboratory experiment that suggests

dependence on imperfect automation is greater under circumstan-

ces of high workload when user resources are assumed to be

scarce.55 However, this poses additional risk, since once errors

are made, they are less likely to be detected under conditions of

high workload.56
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Table 1. Characteristics of experimental tasks and the reported significance of automation bias

Task Single

or

Multi

Subtasks Task

Type

Automa-

tion Type

Study Sample Trials Omission

Errors

Commission

Errors

Mammography,

computer-aided

detection

Single Screen mammo-

grams for

cancers

D DS (14) 19 readers 60 sets of mam-

mograms

P< .000001# –

(29) 5 readers 185 sets of mam-

mograms

– Not reported

(15) 44 readers 180 mammo-

grams

– Not reported

EKG, computer-

ized interpreta-

tion

Single Diagnosis of atrial

fibrillation

D DS (16) 2298 EKGs from

1085 patients

– Not reported

Clinical decision

support system

Single Prescribe treat-

ment for patient

scenarios

T DS (30) 26 general practi-

tioners

20 scenarios – P< .05#

Clinical decision

support system

Single Answer clinical

questions

D DS (31) 29 general practi-

tioners

15 questions

about clinical

cases

– P¼ .031#

Multi-Attribute

Task Battery

(multitask)

Multi System monitor-

ing task

M A (17) 24 participants 12 * 10 mins P> .05### –

(25) 24 engineering

students

12 * 10 mins P< .001## –

(19) 40 undergraduate

students

3 * 15 mins P¼ .013## –

(32) 16 students 4 * 15 mins – Not reported

Tracking taska (9) 24 students 4 * 30 mins P< .05## –

(6) 24 participants 12 * 10 mins P< .0001## –

(20) 40 undergraduate

students

2 * 40 mins P< .0001## –

(22) 120 students 6 * 10 mins Not reported –

Fuel management

taska

(33) 20 students 6 * 10 mins P> .05### –

(23) 120 subjects 6 * 10 mins P< .01## –

(34) 16 students 3 * 10 mins P< .01# –

(24) 80 participants 6 * 10 mins P< .01## –

Multi-Attribute

Task Battery

(single task)

Single System monitor-

ing task

M A (9) 16 students 4 * 30 mins P> .05## –

(6) 16 adults 12 * 10 mins P> .05## –

Workload/Per-

formANcE Sim-

ulation (W/

PANES)

Multi Gauge monitoring

task

M, T A, DS (35) 181 students 5 * 10 mins P< .001### P< .001###

Tracking taska (36) 80 students 8 * 8 mins P< .05# Not reported

Waypoints taska (37) 144 students 4 trials P> .05### P< .05###

mini-Advanced

Concepts Flight

Simulator

(ACFS)

Multi Datalink

clearances

M I (38) 48 commercial

pilots

3 part flights Not reported Not reported

EICAS event

(engine fire)

M, D,

T

A, DS (39) 25 commercial

pilots

2 part flights Not reported Not reported

Tracking taska

Smart icing

system

Multi Recover from

inflight icing

events

D, T DS (40) 30 flight instruc-

tors

28 part flights – Not reported

Respond to air

traffic controla
(41) 27 commercial

pilots

10 part flights – P< .001#

Monitor instru-

ments for

failuresa

NASA Stone Soup

simulator

Multib Datalink

clearances

M I (42) 30 commercial

pilots

8 * 10 min part

flights

– Not reported

Airbus A320

touch screen

trainer

Multib Detect throttle

malfunction

M A (43) 35 pilots 1 * 40 mins Not reported –

Unnamed part

flight task

Multi Gauge monitoring

task

M A (18) 32 participants 1 * 100 mins P� .05## –

Mode monitoring

task

M A

(continued)
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Cognitive load theory: a framework for addressing task

complexity
Cognitive load theory may help to explain these findings.57 This theory

has been developed by educational psychologists over the last 30 years

with the aim of improving learning outcomes. Central to the theory is the

notion of limited capacity of human working memory. It claims that the

learning process requires students to manipulate information in working

memory, generating a cognitive load. Learning fails when the cognitive

load generated by the task exceeds the student’s available working mem-

ory. Cognitive load theorists differentiate intrinsic and extraneous cogni-

tive load.57 Intrinsic cognitive load is generated by the task being

learned, whereas extraneous cognitive load arises from other sources

unrelated to the learning task.

One of the stated aims of cognitive load theory is to develop

interventions that reduce extraneous cognitive load and allow

more resources to be allocated to learning. This theory may be

applicable to human-automation interactions in order to under-

stand the cognitive demands that work with automation places on

Table 1. Continued

Task Single

or

Multi

Subtasks Task

Type

Automa-

tion Type

Study Sample Trials Omission

Errors

Commission

Errors

Digital display

monitoring task

M

Tracking taska

Air traffic control

task

Multi Aircraft conflict

detection

M A (44) 20 air traffic con-

trollers

5 * 25 mins P < .05# –

Communications

taska

Updating flight

stripsa

Pilot air traffic

conflict

detection

Single Estimate the clos-

est point of

approach

between own

and intruder

aircraft

D A (45) 24 pilots 72 trials P¼ .46# –

AutoCAMS Multi Supervisory con-

trol of life sup-

port system

(eg, spacecraft)

D, T DS (46) 24 engineering

students

1 * 75 mins – Not reported

(47) 24 engineering

students

1 * 100 mins P< .01### Not reported

Prospective mem-

ory taska

(48) 88 engineering

students

5 * 40 mins – P< .03###

Communication

taska

(49) 88 engineering

students

5 * 40 mins – P< .03###

(50) 32 engineering

students

5 * 40 mins – P< .02###

Command and

control: sensor

to shooter

Multi Making friendly-

enemy engage-

ment decisions

D, T DS (28) 100 adults 300 scenarios – P< .0001###

Communications

taska

(21) 18 undergraduate

students

500 scenarios – P< .001#

Baggage X-ray

screening

Single Detection of

weapons in X-

rays of luggage

D DS (51) 96 undergraduate

students

200 images P< .001## Not reported

Nondestructive

testing in

nuclear power

plants

Single Detection and siz-

ing of faults

D DS (52) 70 trainees 36 trials – Not reported

Robotic arm sim-

ulator

Multi Control of robotic

arm to target

location

M, T A, DS (53) 36 participants 7 trials P< .01### P< .01###

Camera selection T DS

Task type: M¼monitoring; D¼ diagnosis; T¼ treatment.

Automation type: A¼ alerting; I¼ implementation; DS¼ decision support.
aSecondary tasks not assessed for automation bias.bThe task was performed in a multitask environment, but the article did not specify the secondary tasks.
#Probability of automation bias errors compared to manual control.
##Probability of automation bias errors between different levels of automation accuracy.
###Probability of automation bias errors for tested intervention.

Not reported¼ Probability for automation bias errors not reported.

–¼Not tested.
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users. We hypothesize that, just as cognitive overload can prevent

learning, it can also prevent users from being able to adequately

verify the correct operation of automation and lead to automation

bias errors.

The cognitive load theory framework can also apply to the verifi-

cation of automation in the same way. It is possible that supervision

of automation generates both an intrinsic and extraneous cognitive

load. Intrinsic load would come from the cognitive demands of veri-

fying automation, and extraneous load might come from the manner

in which information is presented or from the sociotechnical envi-

ronment in which the primary task is being conducted.

More broadly, cognitive overload may also explain the observed dis-

crepancy between the findings of human factors and health care research-

ers. Whereas the former found automation bias only in multitask settings,

the latter found evidence of automation bias in single-task settings, but

these tasks were likely to be associated with a higher cognitive load.

Implications
Decision-making in health care is complex, as it is characterized by

high levels of ambiguity and detail (eg, in mammograms) and/or

large volumes of information (eg, in drug-drug interactions). Com-

puterized decision support systems thus play a central role in this

setting by helping health care professionals manage this complex-

ity.58 CDSS alerts can provide an opportunity to detect and recover

from errors that have been missed by clinicians. Likewise, verifica-

tion is a vital step that allows for the detection of and recovery from

CDSS failures. However, a major obstacle to this is the complexity

of the task of verification. High verification complexity appears to

increase the risk of automation bias by increasing cognitive load,

making it difficult for health care professionals to verify CDSS per-

formance.

To date, interventions designed to counter automation bias have

had little or no impact. Interventions tested thus far have manipu-

Table 2. Verification complexity

Task Single or

Multi

Subtasks Verification

complexity

Mammography, computer-aided detection14,15,29 Single Screen mammograms for cancers High#

EKG, computerized interpretation 16 Single Diagnosis of atrial fibrillation High

Clinical decision support system30 Single Prescribe treatment for patient scenarios High#

Clinical decision support system31 Single Answer clinical questionsc

Multi-Attribute Task Battery (multitask)6,9,17,19,20,22–25,32–34 Multi System monitoring task Low

Tracking taska Low

Fuel management taska Medium

Multi-Attribute Task Battery (single task)6,9 Single System monitoring task Low

Workload/PerformANcE Simulation (W/PANES)35–37 Multi Gauge monitoring task Low

Tracking taska Low

Waypoints taska Low

mini-Advanced Concepts Flight Simulator (ACFS)38,39 Multi Datalink clearances Low

EICAS event (engine fire) Low

Tracking taska Low

Smart icing system40,41 Multi Recover from inflight icing events High

Respond to air traffic controla Low

Monitor instruments for failuresa Medium

NASA Stone Soup simulator 42 Multib Datalink clearances Medium

Airbus A320 touch screen trainer43 Multib Detect throttle malfunction Low

Unnamed part flight task18 Multi Gauge monitoring task Low

Mode monitoring task Medium

Digital display monitoring task High

Tracking taska Low

Air traffic control task44 Multi Aircraft conflict detection High

Communications taska Medium

Updating flight stripsa High

Pilot air traffic conflict cetection45 Single Estimate the closest point of approach between

own and intruder aircraft

Medium

AutoCAMS46–50 Multi Supervisory control of life support system (eg,

spacecraft)

High

Prospective memory taska Low

Communication taska Low

Command and control: sensor to shooter21,28 Multi Making friendly-enemy engagement decisions Medium

Communications taska Low

Baggage X-ray screening51 Single Detection of weapons in X-rays of luggage Medium#

Nondestructive testing in nuclear power plants52 Single Detection and sizing of faultsc

Robotic arm simulator53 Multi Control of robotic arm to target location High

Camera selection Medium

aSecondary tasks not assessed for automation bias.
bThe task was performed in a multitask environment, but the article did not specify the secondary tasks.
cThe article did not present sufficient information to assess the verification complexity of the task.
#Tasks containing a variable or unspecified number of information cues. An estimation was used in the analysis.
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lated user accountability for performance, which had only a mild

effect on novice subjects and no effect on expert subjects.35 Provid-

ing subjects with contextual information on the reliability of auto-

mation reduced automation bias in some, but not all, experimental

conditions.17 Providing subjects with feedback on performance had

no impact,3 and training interventions resulted in no significant

reduction in rates of automation bias. These included providing

additional training in performing the task manually,22 exposing

users to examples of automation failure,46 and providing explicit

training on automation bias and how to avoid errors.38

If automation bias is partly due to cognitive demands that exceed

the user’s capacity, interventions seeking to reduce automation bias

that do not address this cognitive overload are unlikely to succeed.

Indeed, the interventions reported in the included studies have pro-

duced, at best, marginal reductions in the rates of automation bias.

Efforts can focus on reducing cognitive load from sources exter-

nal to the task in busy clinical environments. For example, eliminat-

ing distractions by introducing no-interruption zones59 or

improving the fit between decision support with existing workflows

using simplified user interfaces60 should free up additional cognitive

resources to attend to the primary task. It will also be necessary to

target the cognitive load generated by the task of verification itself.

Designing interfaces that support effective verification, eg, by pre-

senting critical verification information side-by-side with decision

support, may help in this respect.

Limitations
There is significant fragmentation of the automation bias literature,

not just in terms of the divide between automation bias and

automation-induced complacency, but also because many studies

reporting automation bias do not identify with either camp.29

Comparing studies was difficult.10 Only 9 studies reported the sig-

nificance for the presence of automation bias compared to a manual

(nonautomated) control. This, combined with the large variability in

the reported measures, makes it difficult to draw comparisons between

studies. Studies used very homogeneous samples of subjects, few in

number, and mostly university students or professionals recruited from

the same or a small number of closely related organizations.

CONCLUSION

This review set out to compare and contrast different types of exper-

imental tasks reported in the human factors and health care litera-

ture. We found, contrary to the prevailing view within the human

factors literature, which holds that automation bias occurs only in a

multitask environment, that all the health care experiments report-

ing automation bias took place in a single-task environment.

To understand this contradiction and why some single tasks pro-

duced automation bias while others did not, we examined the char-

acteristics of the experimental tasks. Our analysis revealed that

single tasks that produced automation bias had higher verification

complexity than single tasks that did not.

Cognitive load theory provides a robust framework for studying

the impact of task/verification complexity on automation bias. Fur-

ther research is needed to test these hypotheses, especially in terms

of the impact of cognitive load on automation bias and the potential

of cognitive load theory to explain why human factors experiments

showed no evidence of automation bias in a single-task setting,

whereas health care experiments did.
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APPENDIX A: MEDICAL SEARCH HEADINGS SEARCH TERMS 

Medical Subject Heading (MeSH) terms used in the literature search are shown in Table 1. Searches 
comprised three components: (1) a task, (2) the use of automation to assist in the task, and (3) 
errors occurring in the task as a result of automation. 

Task Automation Error 
• decision making 
• diagnosis  
• diagnosis, differential 
• diagnostic techniques and 

procedures  
• incidental findings 
•  prognosis 
• task performance analysis 

• automation 
• attitude to computer 
• user-computer interface 
• man-machine systems 
 

 

• medical errors 
• diagnostic errors 
• medication errors 
• inappropriate prescribing 

 

Task and Automation 
• diagnosis, computer-assisted  
• image processing, computer-assisted 
• surgery, computer-assisted 
• decision making, computer-assisted 
• diagnosis, computer-assisted 
• therapy, computer-assisted 
• decision support systems, clinical 

Table 1 Medical Subject Heading search terms 

  



APPENDIX B: ESTIMATING VERIFICATION COMPLEXITY 

The estimated number of steps the user needs to perform in order to complete the task.  Each step 
represents one action that is taken in order to acquire, transform, interpret and use information. This 
assumes that the more steps are involved, and the more information the subject needs to attend to, 
the more complex the task. Each step, no matter what type of action, adds a score of one to the task 
complexity, in line with similar complexity scores. 

For example, if a subject performing the unnamed part flight simulator task, has to determine if the 
EGT (engine exhaust temperature) value on a digital display is within tolerances, this would involve 
four steps. If this task were assisted by automation, verifying it would require the subject to 
compare the result they obtained with that of decision support, an additional two steps.  

Step 1. Acquire: Remember the lower threshold of 320. 
Step 2. Acquire: Remember the upper threshold of 340. 
Step 3. Acquire: Acquire the EGT value. 
Step 4. Interpret: Compare threshold values for EGT to actual EGT. 
Step 5. Acquire: Acquire decision support outcome.  
Step 6. Interpret: Compare the actual decision support outcome with expected outcome.  

The user’s level of expertise moderates how many steps are involved. Through learning an expert 
constructs schema stored in long term memory which they can draw upon. For an experienced pilot 
performing the same task might only require four steps.  

Step 1. Acquire: Acquire EGT value 
Step 2. Interpret: Compare EGT value with schema for the acceptable EGT range.  
Step 3. Acquire: Acquire decision support outcome.  
Step 4. Interpret: Compare the actual decision support outcome with expected outcome. 

In this analysis, if the study participants where described as qualified in the task they were 
performing (for example qualified radiologists or pilots), they were taken to be experts. Otherwise 
they were treated as novices.  

The number of steps were grouped into low, medium and high according to the following.  

Low Less than 9 steps. 
Medium Between 10 and 19 steps. 
High Greater than 20 steps.  
 



Chapter 2 Systematic review  37 
 
2.5 Chapter 2 References 

1. Goddard K, Roudsari A, Wyatt JC. Automation bias: a systematic review of frequency, effect 

mediators, and mitigators. Journal of the American Medical Informatics Association 

2012;19(1):121-27 doi: 10.1136/amiajnl-2011-000089 

2. Lyell D, Coiera E. Automation bias and verification complexity: a systematic review. Journal of the 

American Medical Informatics Association 2017;24(2):423-31 doi: 10.1093/jamia/ocw105 

3. Parasuraman R, Manzey DH. Complacency and bias in human use of automation: An attentional 

integration. Human Factors 2010;52(3):381-410 doi: 10.1177/0018720810376055 

4. Bagheri N, Jamieson GA. The impact of context-related reliability on automation failure detection 

and scanning behaviour. IEEE International Conference on Systems, Man and Cybernetics (IEEE 

Cat. No.04CH37583); 2004 Oct 10-13. 

5. Bagheri N, Jamieson GA. Considering subjective trust and monitoring behavior in assessing 

automation-induced "complacency". In: Vincenzi DA, Mouloua M, Hancock PA, eds. Human 

Performance, Situation Awareness and Automation: Current Research and Trends, Vol 2. Mahwah: 

Lawrence Erlbaum Associates, 2004:54-59. 

6. Bailey NR, Scerbo MW, Freeman FG, Mikulka PJ, Scott LA. Comparison of a brain-based adaptive 

system and a manual adaptable system for invoking automation. Human Factors 2006;48(4):693-

709 doi: 10.1518/001872006779166280 

7. Molloy R, Parasuraman R. Monitoring automation failures: effects of automation reliability and task 

complexity. Proceedings of the Human Factors and Ergonomics Society Annual Meeting; 1992 Oct 

12-16; Atlanta, GA, USA. Human Factors And Ergonomics Society. 

8. Parasuraman R, Molloy R, Singh IL. Performance consequences of automation-induced 

"complacency.". The International Journal of Aviation Psychology 1993;3(1):1-23 doi: 

10.1207/s15327108ijap0301_1 

9. Prinzel LJ, III, Freeman FG, Prinzel HD. Individual Differences in Complacency and Monitoring for 

Automation Failures. Individual Differences Research 2005;3(1):27-49  

10. Singh AL, Tiwari T, Singh IL. Effects of automation reliability and training on automation-induced 

complacency and perceived mental workload. Journal of the Indian Academy of Applied Psychology 

2009;35(spec iss):9-22  



38  Chapter 2 Systematic review 
 
11. Singh AL, Tiwari T, Singh IL. Performance feedback, mental workload and monitoring efficiency. 

Journal of the Indian Academy of Applied Psychology 2010;36(1):151-58  

12. Singh IL, Sharma HO, Parasuraman R. Effects of Training and Automation Reliability on Monitoring 

Performance in a Flight Simulation Task. Proceedings of the Human Factors and Ergonomics Society 

Annual Meeting 2000;44(13):53-56 doi: 10.1177/154193120004401314 

13. Singh IL, Sharma HO, Parasuraman R. Effects of manual training and automation reliability on 

automation induced complacency in flight simulation task. Psychological Studies 2001;46(1/2):21-

27  

14. Singh IL, Singh AL, Saha PK. Monitoring performance and mental workload in an automated system. 

Proceedings of the International Conference onEngineering Psychology and Cognitive Ergonomics; 

2007 Jul 22-27; Beijing, China. Springer Verlag. 

15. Skitka LJ, Mosier K, Burdick MD. Accountability and automation bias. International Journal of 

Human-Computer Studies 2000;52(4):701-17 doi: 10.1006/ijhc.1999.0349 

16. Skitka LJ, Mosier KL, Burdick M. Does automation bias decision-making? International Journal of 

Human Computer Studies 1999;51(5):991-1006 doi: 10.1006/ijhc.1999.0252 

17. Skitka LJ, Mosier KL, Burdick M, Rosenblatt B. Automation bias and errors: Are crews better than 

individuals? The International Journal of Aviation Psychology 2000;10(1):85-97 doi: 

10.1207/S15327108IJAP1001_5 

18. Bahner J, Huper A-D, Manzey D. Misuse of automated decision aids: Complacency, automation bias 

and the impact of training experience. International Journal of Human-Computer Studies 

2008;66(9):688-99 doi: 10.1016/j.ijhcs.2008.06.001 

19. Bahner J, Elepfandt MF, Manzey D. Misuse of diagnostic aids in process control: The effects of 

automation misses on complacency and automation bias. Proceedings of the Human Factors and 

Ergonomics Society Annual Meeting; 2008 Sep 22-26; New York, NY, United states. Human Factors 

And Ergonomics Society. 

20. Manzey D, Reichenbach J, Onnasch L. Human Performance Consequences of Automated Decision 

Aids: The Impact of Degree of Automation and System Experience. Journal of Cognitive Engineering 

and Decision Making 2012;6(1):57-87 doi: 10.1177/1555343411433844 

21. Reichenbach J, Onnasch L, Manzey D. Misuse of automation: The impact of system experience on 

complacency and automation bias in interaction with automated aids. Proceedings of the Human 



Chapter 2 Systematic review  39 
 

Factors and Ergonomics Society Annual Meeting; 2010 Sep 27 - Oct 1; San Francisco, CA, United 

states. Human Factors And Ergonomics Society. 

22. Reichenbach J, Onnasch L, Manzey D. Human performance consequences of automated decision 

aids in states of sleep loss. Human Factors 2011;53(6):717-28 doi: 10.1177/0018720811418222 

 





  41 
 

3 Automation bias and error 
This chapter focuses on the relationship between automation bias and errors.  

3.1 Background 

The healthcare studies included in the systematic review (chapter 2) involved decision-making tasks 

which were assisted by computerised decision support and took place within a single task 

environment.[1] The review suggested that increasing task complexity may be a key risk factor for 

automation bias in healthcare tasks.[1]  An experiment was conducted to: (1) test for the presence of 

automation bias in a clinical decision-making task assisted by computerised clinical decision support, 

and (2) determine whether increased task complexity is a risk factor for automation bias. These will be 

assessed by examining the effect of task complexity and clinical decision support on the key outcomes 

of errors, cognitive load (information processing) and verification (information seeking).  

The effect of automation bias was established by comparing an experimental condition that provided 

opportunities for participants to make automation bias errors and a control condition involving no 

decision support. If participants suffered an automation bias, there would have been more errors in 

the experimental than in the control conditions.  

Prescribing errors inserted into the experimental task provided participants with the opportunity to 

make automation bias errors. The potential severity posed by these errors was such that they should 

be avoided in all circumstances. While there is little consensus regarding the assessment of severity,[2] 

many methods exist. Two methods with good validity and reliability are the NCC MERP,[3] originally 

developed to assess actual harm from errors, and a tool by Barber and Dean,[4] which requires at least 

four reviewers. The errors in the experiment were assessed using the method by Dornan and his 

colleagues.[5] It is a commonly used method, provides clear guidance on rating the potential severity 

of prescribing errors that occur independently of actual harm, and could be implemented by a single 

clinical pharmacist.  

While automation bias has been extensively studied within multitask settings, clinical environments 

are also prone to interruptions, requiring clinicians to switch between tasks. Interruptions have the 

potential to increase cognitive workload and overall complexity.[6] However, the effect of interruption 

on automation bias has not yet been tested. Therefore, a secondary aim of the experiment was to test 

the impact of interruptions on automation bias.  
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3.2 Contribution of this article to thesis 

The journal article (Article II) presented in this chapter seeks to address aims 2 to 4 of the thesis. It 

evaluates whether: (1) there is a risk of automation bias in electronic prescribing assisted by clinical 

decision support (aim 2); (2) high-complexity tasks are more susceptible to automation bias errors (aim 

3); and (3) task interruptions increase the rate of automation bias errors (aim 4).  

This article reports the results of the experiment on errors and finds evidence of automation bias 

omission and commission errors. However, task complexity and interruptions did not affect errors.  

3.3 Article details 
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Abstract

Background: Clinical decision support (CDS) in e-prescribing can improve safety by alerting potential errors, but
introduces new sources of risk. Automation bias (AB) occurs when users over-rely on CDS, reducing vigilance in
information seeking and processing. Evidence of AB has been found in other clinical tasks, but has not yet been
tested with e-prescribing. This study tests for the presence of AB in e-prescribing and the impact of task complexity
and interruptions on AB.

Methods: One hundred and twenty students in the final two years of a medical degree prescribed medicines for
nine clinical scenarios using a simulated e-prescribing system. Quality of CDS (correct, incorrect and no CDS)
and task complexity (low, low + interruption and high) were varied between conditions. Omission errors (failure
to detect prescribing errors) and commission errors (acceptance of false positive alerts) were measured.

Results: Compared to scenarios with no CDS, correct CDS reduced omission errors by 38.3% (p < .0001, n = 120),
46.6% (p < .0001, n = 70), and 39.2% (p < .0001, n = 120) for low, low + interrupt and high complexity scenarios
respectively. Incorrect CDS increased omission errors by 33.3% (p < .0001, n = 120), 24.5% (p < .009, n = 82), and 26.
7% (p < .0001, n = 120). Participants made commission errors, 65.8% (p < .0001, n = 120), 53.5% (p < .0001, n = 82),
and 51.7% (p < .0001, n = 120). Task complexity and interruptions had no impact on AB.

Conclusions: This study found evidence of AB omission and commission errors in e-prescribing. Verification of
CDS alerts is key to avoiding AB errors. However, interventions focused on this have had limited success to date.
Clinicians should remain vigilant to the risks of CDS failures and verify CDS.

Keywords: Decision support systems, Clinical, Cognitive biases, Complexity, Electronic prescribing, Medication
errors, Automation bias, Human-computer interaction, Human-automation interaction

Background
The electronic prescription of medicines (e-prescribing)
is now routine, [1] making the clinical decision support
(CDS) systems they include [2] amongst the most
common encountered by clinicians. CDS can help reduce
adverse events by displaying alerts for potential errors
such as drug-drug interactions [3–5].
However, CDS is not perfectly accurate and will at

times provide inaccurate advice [6]. Over-reliance on
alerts may cause clinicians to avoid prescribing particular
medicines due to inappropriate alerts or clinicians may fail
to detect prescribing errors with the potential for harm
because they were not alerted to them.

This over-reliance on CDS is referred to as automa-
tion bias (AB), and is defined as “the tendency to use
automated cues (such as CDS alerts) as a heuristic
replacement for vigilant information seeking and pro-
cessing [7].” With AB omission errors, users fail to
notice problems because they were not alerted to the
problem by CDS, and with commission errors, users
comply with incorrect recommendations [7]. There
are multiple possible causes of AB, [8, 9] and the
literature is currently unclear regarding which, or all,
of these are genuinely causal, and under which
circumstances. For example, commission errors have
been associated with reduced sampling of information
which can verify decision support [10, 11]. However,
human factors studies have found that some individ-
uals make commission errors despite sampling all
required information [12, 13]. This has been
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described as a ‘looking but not seeing’ effect, suggest-
ing that human information processing is also a factor
affecting AB.
The majority of AB research comes from the human

factors and ergonomics literature, mostly focused on
aviation and process control [14]. There have been a
small number of studies conducted in healthcare, find-
ing evidence of AB omission errors in computer-aided
detection of cancers in mammograms, [15, 16] and
commission errors in the computerized interpretation
of EKGs, [17] and answering questions about clinical
scenarios [18]. Goddard, et al. [19] found evidence of
commission errors, where general practitioners an-
swered questions about which drugs they would pre-
scribe for different clinical scenarios. They found a
significant effect for participants changing from correct
to incorrect responses after being provided with incor-
rect CDS advice.
For e-prescribing systems, decision support is com-

monly provided in the form of alerts that warn clini-
cians about potential prescribing errors [2]. Despite
such alerts being one of the most common forms of
decision support, the high volume of prescriptions
ordered, and risk of harm to patients from prescribing
errors, no studies have yet assessed the risk of AB in
e-prescribing.
The prevailing view in the human factors literature

is that AB only occurs in a multi-task environment
[14, 20, 21]. However AB has been reported in some,
but not all, tasks in a single task environment [14].
The discrepancy between single tasks which do and
do not produce AB suggests that properties of the
task itself may be risk factors for AB. The occur-
rence of AB may be related to how complex it is to
verify that automation is working correctly, and that
complexity across multiple simultaneous tasks appears
to be cumulative [14]. In addition to multitasking,
clinical settings are very prone to interruptions, re-
quiring the clinician to switch between their primary
task and the interruption, introducing increased
cognitive workload and task complexity [22]. However,
to date, no studies have tested the impact of interrup-
tions on AB.
This study seeks to test for the presence of AB in e-

prescribing assisted by CDS, which provides decision
support in the form of alerts for prescribing errors.
Additionally, it seeks to test the impact of interruptions
and task complexity on AB. In doing so we seek to
understand: (1) The baseline impact of correct CDS
alerts on prescribing errors; (2) The impact of CDS
false negatives on omission errors; (3) The impact of
CDS false positive alerts on commission errors; (4) The
impact of interruptions on AB; (5) The impact of task
complexity on AB.

Methods
Participants
One hundred and twenty students enrolled in the final
two years of a medical degree at Australian universities
participated in the study. Australian medical education
uses an integrative approach where students learn patient
and clinical content throughout their degree. By the final
two years of their education, participants would have typ-
ically received training in rational and safe prescribing.
They also complete the National Prescribing Curriculum,
a series of online modules based on the prescribing princi-
ples outlined in the World Health Organisation’s Guide to
Good Prescribing [23]. Upon completion of these final
two years, graduates would begin practice as junior
medical officers.
Participants responded to advertisements emailed by

medical schools or posted on social media via medical
students’ societies. Ethical approval was granted by the
ethics committees of Macquarie University and the
University of New South Wales. Participants were of-
fered two movie vouchers and a certificate for their
participation.

Experiment design
The study had two within-subject factors: quality of CDS
(correct, incorrect and no CDS) and task complexity (low,
low with interruption and high) providing nine conditions
(Fig. 1). Each participant received all nine conditions,
completing one scenario in each condition. The experi-
mental control were scenarios presented to participants
with no CDS.
The allocation of the nine prescribing scenarios to the

nine experimental conditions, the order of presentation,
and whether participants received control scenarios first
or last were randomized. The position of prescribing
and false positive errors in the list of medicines to be
prescribed was randomised, allocated at the time of
scenario design. The position of alerts was varied depend-
ing on the CDS condition that was randomly allocated to
the scenario for each participant at the time of enrolment.

Experimental task
Figure 2 provides an example of the participants’ task in
this experiment. Participants were presented with nine
prescribing scenarios for which they were asked to pre-
scribe medicines using an e-prescribing system. Each sce-
nario presented a brief patient history together with a list of
medications to prescribe.
The prescribing scenarios were developed with advice

from an expert panel, including four hospital doctors, a
medical pharmacology registrar and two pharmacists
(including MZR). They were independently reviewed by
a consultant physician specialising in pharmacology (RD),
to ensure clinical relevance. The scenarios presented
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hypothetical patient scenarios and involved prescribing
tasks that were typical of those undertaken by junior med-
ical officers, based on observations of e-prescribing in a
medical ward of a major teaching hospital. A common
task performed by junior medical officers is the prescrib-
ing of medications using an e-prescribing system upon
admission of a patient to hospital, including medicines
taken prior to, and those initiated on admission.
Each scenario included one genuine prescribing error,

where one of the medicines was clinically contraindi-
cated in that scenario (Additional file 1: Appendix A).
These were designed to be unambiguously errors and of
sufficient severity in the risk posed to the patient that
the medicine should be avoided under all circumstances.
To ensure this, the severity of the errors included in
the scenarios were independently assessed by a clinical

pharmacist (LGP). The error in one scenario was assessed
as potentially lethal, five were serious, and three were
significant [24]. All other medicines listed in scenarios
where carefully chosen so as to be unambiguously free
from error.
Scenario complexity was manipulated by varying the

amount of information contained in the prescribing
scenarios [25]. The nine scenarios were divided into six
low-complexity scenarios (each containing six information
elements) and three high complexity scenarios (each
containing seventeen elements). An information element
was classified as either a condition, symptom, test result,
prior treatment, allergy, observation, or requested pre-
scription. Each element could potentially interact with
other elements in a way that could result in a prescribing
error, for example, drug-drug interactions and conditions

Fig. 1 Experimental design with the number of participants in each condition. All participants completed all conditions. However, some were
excluded from the analysis of interruption conditions as they did not trigger the interruption task

Fig. 2 The e-prescribing system interface and scenario
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which may contraindicate the use of a particular medicine.
The more elements, the more potential interactions the
participant needs to assess. Low-complexity scenarios
contained a list of three requested medicines, while high-
complexity ones contained eight. The number of elements
in each scenario was coded by DL and reviewed by MZR;
disagreements were resolved by consensus.
In interruption conditions, participants were inter-

rupted, once per scenario, whilst viewing drug information
and presented with a task requiring a response before they
could continue. The task required them to seek out and
retain in memory three information elements to calculate
a dose (Additional file 1: Appendix B).

E-prescribing system
A simulated e-prescribing system was developed which
allowed for the manipulation of the triggering and con-
tent of CDS alerts. This web-based system was presented
to participants as being in development. A medication
administration record was not implemented, nor were
participants required to specify times of administration.
CDS was provided in the form of alerts (Fig. 3) which

were triggered once a prescription was entered. The alert
provided a generic warning about the nature of the error,
followed by specific details.
Participants could resolve the alert by choosing either

to remove (i.e., not prescribe) the medicine or to over-
ride the alert with a reason and prescribe that medicine
anyway. The alert also provided direct access to drug in-
formation for the relevant medicine from the Australian
Medicines Handbook [26]. The Australian Medicines
Handbook references the Australian formulary and is a
gold standard medicines reference. It is evidence-based,
reflects Australian best practice and is widely utilised in
Australian clinical practice [27]. This reference was also
readily accessible from the medication chart and in
prescription order entry screens and could be used to
identify prescribing errors and verify the information
provided by CDS alerts.
The quality of CDS provided to participants was ma-

nipulated across conditions:

� Correct CDS alerts triggered only by genuine
prescribing errors (true positives). Due to the
severity of the prescribing errors, all correct alerts
were highly relevant. The absence of alerts always
indicated true negatives.

� Incorrect CDS failed to alert the genuine prescribing
error (false negative) and provided one false positive
alert, per scenario, for a medicine that was safe to
prescribe.

� No CDS served as the control condition in which
there was no CDS checking for errors. Participants
were informed of this and advised to use the drug
reference to identify errors.

Procedure
After having given informed consent, participants com-
pleted a pre-experiment questionnaire and watched a
brief instructional video on how to use the e-prescribing
system. The video included a demonstration of the cor-
rect functioning of CDS alerts and how to view drug
information.
Participants were instructed as follows: (1) Approach

tasks as if they were treating a real patient, exercising all
due care; (2) Should they detect any prescribing errors,
these should be addressed by not prescribing that medi-
cine; (3) If the error involved an adverse drug interaction
between two medicines, only one should be omitted; (4)
If there was a discrepancy between CDS and the drug
information they should rely on the drug information.
The task was presented as an evaluation of an e-

prescribing system under development and participants
were told that “Initial testing has shown that alerts are
highly accurate, but occasionally have been incorrect.
Therefore, you should always double check with the
inbuilt drug information reference.” No information was
provided on what types of errors the system would
check and alert. Once all scenarios were completed, par-
ticipants completed a post-experiment questionnaire and
were then debriefed.

Outcome measures
The present study was designed to test and analyze the
following decision errors:

1. Omission errors: Where the participant failed to
detect a genuine prescribing error. If the error was
corrected by the participant, for example, by
reducing a harmful dose to a safe level, it was not
scored as an omission error.

2. Commission errors: Where the participant did
not prescribe a safe medicine because of a false
positive alert.

Fig. 3 CDS Alert
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Prescribing errors were classified according to the
definitions of prescribing error categories provided by
Westbrook et al. [28]. The potential severity of pre-
scribing errors was assessed by a clinical pharmacist
(LGP) using the severity error classification scheme
described in Dornan et al. [24].

Statistical analyses
The presence of AB was tested using McNemar’s test
[29] comparing errors between scenarios with incorrect
CDS and scenarios with no CDS (control). It was esti-
mated that 120 participants would be required to detect
a 25% or greater difference (two-tailed) in errors between
the control and incorrect CDS scenarios with 80% power
and p < 0.05 [30]. With five hypotheses tested, a Bonferroni
correction was applied to control for the increased risk of
making a Type I error when testing multiple hypotheses
[31]. With the desired alpha of 0.05, the corrected alpha
against which all significance probabilities were evaluated
became 0.01. Significance probabilities are only reported for
comparisons between individual conditions, but not for
aggregate figures by quality of CDS, which include multiple
observations from each participant. Scenarios in which par-
ticipants did not experience an interruption were excluded
from the interruption analysis (n = 36 with no CDS, n = 22
with correct CDS, and n = 4 with incorrect CDS).

Results
The participants’ average age was 24 years, and 46.7%
were female. The majority rated their knowledge of
medicines as fair (55.8%, n = 67) and only 5.8% (n = 7)
reported previous training in e-prescribing systems. One
participant completed the experiment twice (on two sep-
arate occasions), and the data from their second attempt
was excluded.
In total, participants prescribed 4,065 medicines and

made 1,049 prescribing errors (Table 1). This included
440 necessary medicines that were not prescribed. Of
the total errors, 735 (70%) errors stemmed from opportun-
ities the experiment provided for participants to make
omission or commission errors. The remaining 314 (30%)
where user-originated errors, independent of the experi-
ment design and the majority of these were transcription
errors. All participants made one or more prescribing
errors. Compared to the control, correct CDS decreased
prescribing errors by 58.8%, while incorrect CDS increased
errors by 86.6%.
Although participants were instructed to omit medi-

cines they believed to contain prescribing errors, there
were 43 instances where it appeared participants had
substituted medicines not included in the scenario in an
attempt to correct errors. Of these, 36 substitutions were
replacing medicines associated with genuine prescribing
errors, six were in response to false positive alerts, and

one substitution was for a medicine not associated with
any experimental manipulation.

Correct CDS decreased prescribing errors
There were 40.8% fewer omission errors in scenarios
with correct CDS compared to scenarios with no CDS
(Table 2). This was significant across all levels of task
complexity, with 38.3% fewer errors in low complexity
(p < .0001, n = 120), 46.6% fewer errors in low + interrupt
(p < .0001, n = 70), and 39.2% fewer errors in high com-
plexity scenarios (p < .0001, n = 120).
However, correct CDS did not significantly alter com-

mission errors (Table 2). This was the case for low
complexity (p = 1.0, n = 120), low + interrupt (p = .219,
n = 65) and high complexity scenarios (p = .678, n =
120). Participants also made omission errors by overrid-
ing correct CDS alerts in 8.3% of scenarios and com-
mission errors by not prescribing the safe, comparator,
medicines in 5.3% of scenarios.

Incorrect CDS increased prescribing errors
Participants missed 28.7% more genuine prescribing er-
rors (omission errors) when assisted by incorrect CDS
compared to no CDS (Table 2). These differences were
statistically significant across all levels of complexity,
with 33.3% more errors in low complexity (p < .0001,
n = 120), 24.5% more errors in low + interrupt (p = .009,
n = 82) and 26.7% more errors in high complexity scenar-
ios (p < .0001, n = 120).
Overall participants made 56.9% more commission

errors (did not prescribe safe medicines) when they
received false positive alerts from incorrect CDS com-
pared to when they received no CDS (Table 2). These
differences were statistically significant across all levels
of complexity, with participants in scenarios receiving
false positive alerts making 65.8% more errors in low
complexity (p < .0001, n = 120), 53.5% more errors in
low + interrupt (p < .0001, n = 82) and 51.7% more er-
rors in high complexity scenarios (p < .0001, n = 120).

Interruptions to prescribing and scenario complexity did
not impact automation bias
Interruptions did not affect omission or commission errors,
or errors in the control scenarios. In interrupted scenarios
with incorrect CDS there were 0.1% more omission errors
(p = 1.0 n = 116) and 9.7% fewer commission errors
(p = .08, n = 116). In interrupted control scenarios there
were 8.9% more omission errors (p = .2, n = 84) and 2.6%
more commission errors (p = .22, n = 84). All of these were
non-significant.
Scenario complexity did not affect omission or com-

mission errors, or errors in the control scenarios. In high
complexity scenarios with incorrect CDS there were
4.2% fewer omission errors (p = .46, n = 120) and 5.0%
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fewer commission errors (p = .35, n = 120). In high com-
plexity control scenarios there were 2.5% more omission
errors (p = .75, n = 120) and 9.2% more commission er-
rors (p = .007, n = 120). The only significant difference
was between low and high complexity control scenarios.

More omission than commission errors
Overall participants made 13.5% more omission than
commission errors when provided with incorrect CDS,
however, this was only significant in the low complexity +
interrupt condition, all others were non-significant. There

Table 1 Prescribing errors

Control Quality of Decision Support

No CDS Correct CDS Incorrect CDS Total

n % n % n % n %

Omission errors

Wrong drug 57 35.8 7 25.0 116 41.9 180 38.8

Wrong dose 55 34.6 9 32.1 72 26.0 136 29.3

Wrong frequency 0 0.0 0 0.0 0 0.0 0 0.0

Drug-drug interaction 28 17.6 7 25.0 60 21.7 95 20.5

Wrong route 0 0.0 0 0.0 0 0.0 0 0.0

Wrong formulation 0 0.0 0 0.0 0 0.0 0 0.0

Duplicated drug therapy 19 11.9 5 17.9 29 10.5 53 11.4

Not indicated 0 0.0 0 0.0 0 0.0 0 0.0

Not Prescribed 0 0.0 0 0.0 0 0.0 0 0.0

Total omission errors 159 28 277 464

Commission errors

Not prescribed 24 100.0 18 100.0 229 100.0 271 100.0

Total commission errors 24 18 229 271

User originated errors

Wrong drug 8 5.8 10 11.6 9 9.9 27 8.6

Wrong dose 43 31.4 29 33.7 22 24.2 94 29.9

Wrong frequency 10 7.3 6 7.0 4 4.4 20 6.4

Drug-drug interaction 0 0.0 0 0.0 0 0.0 0 0.0

Wrong route 0 0.0 0 0.0 1 1.1 1 0.3

Wrong formulation 1 0.7 0 0.0 0 0.0 1 0.3

Duplicated drug therapy 0 0.0 0 0.0 1 1.1 1 0.3

Not indicated 0 0.0 1 1.2 0 0.0 1 0.3

Not prescribed 75 54.7 40 46.5 54 59.3 169 53.8

Total user originated errors 137 86 91 314

Total errors

Wrong drug 65 20.3 17 12.9 125 20.9 207 19.7

Wrong dose 98 30.6 38 28.8 94 15.7 230 21.9

Wrong frequency 10 3.1 6 4.5 4 0.7 20 1.9

Drug-drug interaction 28 8.8 7 5.3 60 10.1 95 9.1

Wrong route 0 0.0 0 0.0 1 0.2 1 0.1

Wrong formulation 1 0.3 0 0.0 0 0.0 1 0.1

Duplicated drug therapy 19 5.9 5 3.8 30 5.0 54 5.1

Not indicated 0 0.0 1 0.8 0 0.0 1 0.1

Not Prescribed 99 30.9 58 43.9 283 47.4 440 41.9

Total errors 320 132 597 1049
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were 10% more omission errors in low complexity
(p = .065, n = 120), 19.8% more in low + interrupt (p = .001,
n = 116) and 10.8% more in high complexity scenarios
(p = .079, n = 120).

Discussion
Main findings
This is the first study to find evidence of automation
bias in the presence of e-prescribing CDS alerts. We
found that when CDS was correct it reduced overall
prescribing errors by 58.8%. This is consistent with prior
literature showing that e-prescribing CDS can reduce
prescribing errors [3–5]. However, when CDS was incor-
rect it increased errors by 86.6%. This increase was due
to AB, that is, the ability of incorrect CDS to adversely
influence participant prescribing decisions.
We found evidence of participants making omission

errors, by failing to detect 28.7% more prescribing errors
when CDS failed to provide alerts, compared to a con-
trol condition with no CDS. This finding was significant
across all levels of task complexity and is potentially
serious as the missed prescribing errors were classified
as being of significant to potentially lethal severity, with
most classified as serious severity.
Likewise, participants made commission errors, acting

on clinically incorrect, false positive alerts, by not pre-
scribing 56.9% more necessary medicines compared to
the control condition. This was significant across all
levels of task complexity.
These findings are consistent with and add to the re-

search on automation bias in healthcare. Finding evidence
of omission errors in the computer-aided detection of can-
cers in screening mammography [15, 16] and commission
errors in the computerized interpretation of EKGs, [17]
answering clinical questions assisted by CDS, [18] and
deciding what to prescribe for clinical scenarios [19].
Interestingly, while participants were found to over-

rely on automation, there was evidence of disagreement
with the CDS provided to them. Participants’ overrode
correct alerts and in doing so made prescribing errors

which CDS was warning them to avoid. They also did
not prescribe medicines which did not contain errors
and for which there were no alerts. Reasons provided for
overriding correct CDS alerts commonly referred to the
condition for which the medicine was intended to treat
(e.g. “VTE risk and pain management”, “vomiting”) or
indicated that the medicine was regularly taken by the
patient (e.g. “patient usual dose”). Participants com-
monly cited the lack of a true contraindication as the
reason for overriding incorrect CDS alerts with many re-
ferring to the drug information. For example, “There is
not any interaction listed on the drug information”.
However, regular patient medicines and the condition
treated were also mentioned as reasons for overriding
incorrect CDS alerts. This suggests that not only did
participants have trouble determining when CDS was
wrong, but some also had trouble recognizing when it
was right and that the alerts, or lack thereof, were bene-
ficial and should be heeded.

Interruptions and task complexity did not impact
automation bias
Interruptions did not affect the rate of AB errors nor did
it affect errors rates in the control condition. However,
interruptions are a complex phenomenon where mul-
tiple variables, including the characteristics of primary
tasks, an individual’s cognitive state, the interruptions
themselves, and the environment, may influence impact
on clinical tasks and errors [22]. Despite clear evidence
that interruptions can disrupt clinical tasks, their effects
are complex, and may not always be detected [32].
Any impact of interruptions on prescribing errors was

not detected in our experiment, replicating earlier results
[33]. In our experiment, upon task resumption partici-
pants had ample time to recall their next action and the
task environment provided cues to aid task resumption,
for example, partly completed orders were visible on
screen. One possible reason for not detecting an effect of
interruptions was thus that disruption were minimized by
these cues within the user interface [34]. This is consistent

Table 2 Number of participants making omission and commission errors

Scenario
complexity

Quality of Decision Support

Control (No CDS) Correct CDS Incorrect CDS

Omission Commission Omission Commission Omission Commission
No alert No alert True positive alert True negative alert False negative alert False positive alert
(n = 120) (n = 120) (n = 120) (n = 120) (n = 120) (n = 120)

n % n % n % n % n % n %

Low 55 45.8 4 3.3 9 7.5 5 4.2 95 79.2 83 69.2

Low + Interrupta 46 54.8 5 6 8 8.2 1 1 92 79.3 69 59.5

High 58 48.3 15 12.5 11 9.2 12 10 90 75 77 64.2

Total 159 49.1 24 7.4 28 8.3 18 5.3 277 77.8 229 64.3
aNumber of participants in low + interrupt conditions: Control (n = 84), Correct DS (n = 98), and Incorrect DS (n = 116)
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with observations from other studies of interruptions to
computer-based tasks where participants were aided by
the screen environment and were able to resume an inter-
rupted task [35, 36]. Performance under cognitive load
from more demanding competing tasks in a clinical envir-
onment may have resulted in a different outcome.
Contrary to expectations, the task complexity manipu-

lation also had no effect on AB errors. This is in stark
contrast to the findings of Bailey and Scerbo [25] who
found performance on a system monitoring task deterio-
rated with increased task complexity, which they defined
in terms of the cognitive demands placed on the partici-
pant. Monitoring tasks required the identification of crit-
ical deviations outside the normal operating range. Less
complex tasks had participants monitor analogue gauges
with marked critical regions. More complex tasks involved
monitoring a display showing raw numbers where the
subject had to remember the critical values for four differ-
ent types of parameters.
Had the complexity manipulation altered the difficulty

of prescribing task we would have expected to see a higher
error rate in the high complexity control conditions. How-
ever, the observed difference was small and non-significant.
This is in contrast to findings of Goddard et al. [19]. who
found a significant effect for task difficulty, as classified by a
panel of practitioners, on decision accuracy without CDS
between medium and difficult scenarios. However, they
found that task difficulty had no effect on commission
errors.
The high error rate for both high and low levels of

complexity in control conditions, with participants missing
nearly half of all prescribing errors, seems to indicate that
the difference in complexity between the two conditions
may not have been large enough for differences in error
rates to emerge.

Implications
When clinical decision support is right, it can reduce
prescribing errors by providing an important opportunity
to detect and recover from prescribing errors. However,
the finding of automation bias suggests that this additional
layer of defence weakens or, at worst, becomes a re-
placement for the clinician’s own efforts in error detec-
tion with error detection delegated to CDS, without
adequate oversight.
An intuitive solution to the problem of AB is to pro-

duce CDS systems that are less prone to error. While
this may reduce the overall error rate, highly accurate
automation is known to increase the rate of AB [25]. In
other words, when automation does fail, the clinician
will be even less able to detect it.
A key problem is that users seem to have difficulty in

determining when CDS should and should not be relied
on. Indeed, human factors research reports an inverse

relationship between measures of verification, such as
viewing drug references, and AB commission errors
[10, 11]. So far, interventions to counter AB have had
little success [37–39]. These include a number specific-
ally targeted at verification, such as exposure to auto-
mation failures; [10] training about AB; and providing
prompts to verify [40]. Compounding this problem fur-
ther are findings of a looking-but-not-seeing effect or
inattentional blindness where participants have made
AB errors despite accessing sufficient information to
assess that automation was incorrect [12, 13].
Verification, the means by which a user can determine

whether the CDS they receive is correct, is key to the
mitigation of AB. However, the lack of successful inter-
ventions indicates that more research is needed on how
to best assist users with this crucial task.
This study has established that there is a risk of auto-

mation bias in electronic prescribing with senior medical
students, who will soon be entering clinical practice as
junior doctors. In doing this, we have also demonstrated
a methodology for detecting AB in e-prescribing. The
true rates and effects of AB in working clinical settings
will require further studies and indeed is likely to vary
by clinicians’ experience and familiarity with medica-
tions, clinical setting, patient complexity, and the par-
ticular decision support system used. All this is future
work. Likewise, the lack of an effect of task complexity,
even in control conditions, was surprising and some-
thing future studies will need to address. This might be
achieved by varying clinician experience with prescribing
and e-prescribing systems. Complexity could also in-
corporate familiarity with medicines, varying between
simple, commonly-used to complex, rarely-prescribed
regimes.
Clinicians need to be mindful that CDS can and does

fail [6]. Ideally, clinicians should make every effort to
detect prescribing errors, allowing CDS to function as
an independent check for errors rather than relying on it
as a replacement of their own error detection efforts.

Limitations
Several limitations arise from the design of this study.
While participants were instructed to approach the task
as if they were treating a real patient, exercising all due
care, the prescribing task was simulated, and prescribing
errors were without consequence.
Also as an experiment, we cannot make any infer-

ences about the true effect size or rate of AB in clin-
ical settings as this will vary with, the user, the tasks
being performed and the accuracy of the decision sup-
port provided. Likewise, the nature and incidence of
the provided opportunities for prescribing errors may
not be representative of those encountered in clinical
practice.
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The lack of a difference in prescribing errors between
the low and high complexity control scenarios limited our
ability to assess the impact of task complexity on AB.
Finally, the use of medical students with little experience

in both prescribing medicines and using e-prescribing sys-
tems provides an indication of how CDS will impact new
clinicians entering practice but limits generalisability for
experienced prescribers or clinicians with e-prescribing
experience.

Conclusion
This study set out to test for the presence of automation
bias in e-prescribing, a clinical decision support system
commonly encountered by clinicians. We found evidence
of omission errors, where participants failed to detect pre-
scribing errors that were not alerted by CDS and commis-
sion errors, where participants acted on clinically incorrect
alerts. Contrary to expectations, task complexity and
interruptions had no impact on AB errors. However,
when prescribing errors were correctly alerted, there
was a dramatic reduction in the number of prescribing
errors, demonstrating the benefits of CDS.
The challenge is to maximize the benefits of CDS

while minimizing the risk of over-reliance. The key to
this is enabling clinicians to determine when the CDS
provided to them is correct, which is achieved through
verification. Unfortunately, interventions tested to date,
including those which focus on verification have produced
little success. More research is needed on how to best
assist clinicians with the task of verifying automation.

Additional file

Additional file 1: Appendix A Overview of prescribing scenarios and
Appendix B Example of an interruption task. (PDF 113 kb)
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Appendix A: Overview of prescribing scenarios  

Scenario  Error Type Medication  Alert displayed to participants Comment Severity  
A 
Low 
complexity 

Prescribing 
Error 

Digoxin 250 microgram tablet, 2 
tablets, PO, three times a day. 

WARNING: High Dose 
The entered dose is higher than the recommended maintenance 
dose range. 

The elderly patient has atrial fibrillation which was 
controlled with Digoxin prior to admission.  
The dose requested by the scenario is a loading dose. The 
maintenance dose for an elderly patient is 62.5 to 125 
micrograms once daily.   

Serious 

False Positive  Lisinopril 5mg tablet, 1 tablet, 
PO, once daily. 

WARNING: Medicine Contraindicated 
This medication is contraindicated for a condition (Pulmonary 
Oedema) contained in the patient record. 

Lisinopril is not contraindicated in patients with 
pulmonary oedema. 

 

B 
Low 
complexity 

Prescribing 
Error 

Spironolactone 25mg tablet, 1 
tablet, PO, once daily. 

WARNING: Medicine Contraindicated 
This medicine is contraindicated for a condition (Hyperkalaemia) 
contained in the patient record. 

Patient has hyperkalaemia for which Spironolactone is 
contraindicated. 

Serious 

False Positive  Augmentin Duo Forte 
(amoxycillin 875 mg + clavulanic 
acid 125 mg) tablet, 1 tablet, PO, 
twice daily. 

WARNING: Medicine Contraindicated 
This medication is contraindicated for a condition (Systolic Heart 
Failure) contained in the patient record. 

Augmentin Duo Forte is not contraindicated in patients 
with heart failure.  

 

C 
Low 
complexity 

Prescribing 
Error 

Warfarin Sodium 2 mg tablet, 1 
tablet, PO, once daily. 
and 
Ibuprofen 400 mg tablet, 1 
tablet, PO, three times daily. 

WARNING: Adverse Drug Interaction 
This medication has a listed adverse interaction with another 
already prescribed medication.  
There is an adverse drug interaction for Warfarin and Ibuprofen. 
This combination should be avoided. 

Non‐steroidal anti‐inflammatory drugs (such as Ibuprofen) 
increase the risk of gastrointestinal bleeding in patients 
taking Warfarin. The combination should be avoided, 
especially as better analgesic options are available.  
 

Significant 

False Positive  Atorvastatin 10 mg tablet, 1 
tablet, PO, once daily.   

WARNING: Medicine Contraindicated 
This medication is contraindicated for a condition (Venous 
Thromboembolism) contained in the patient record. 

Atorvastatin is not contraindicated in patients with 
venous thromboembolism. 

 

D 
Low 
complexity 

Prescribing 
Error 

Aspirin 300 mg tablet: 
effervescent, 3 tablets, PO, every 
6 hours. 

WARNING: Medicine Contraindicated 
This medication is contraindicated for a condition (Peptic Ulcer 
Disease) contained in the patient record. 

Patient has peptic ulcer disease with a history of bleeds 
for which aspirin increases the risk of gastrointestinal 
ulceration. There are better analgesic options.  

Significant 

False Positive  Pantoprazole 40 mg tablet: 
enteric, 1 tablet, PO, once daily. 

WARNING: Medicine Contraindicated 
This medication is contraindicated for a condition (Severe 
Vomiting) contained in the patient record. 

Pantoprazole is not contraindicated in patients with 
severe vomiting.  

 

E 
Low 
complexity 

Prescribing 
Error 

Loperamide Hydrochloride 2 mg 
capsule, 1 capsule, PO, PRN, 
every four hours, maximum 8 
capsules per day. 

WARNING: Medicine Contraindicated 
This medication is contraindicated for a condition (Ulcerative 
Colitis) contained in the patient record. 

Loperamide is contraindicated in patients with ulcerative 
colitis which poses a risk of toxic megacolon.  

Serious 

False Positive  Mesalazine 500 mg tablet: 
enteric, 1 tablet, PO, three times 
daily. 
and 
Prednisolone 25 mg tablet, 1 
tablet, PO, once daily. 

WARNING: Adverse Drug Interaction 
This medication has a listed adverse interaction with another 
already prescribed medication.  
There is an adverse drug interaction for Mesalazine and 
Prednisolone. This combination should be avoided. 

There is no documented adverse drug interaction for 
Mesalazine and Prednisolone.  

 



Scenario  Error Type Medication  Alert displayed to participants Comment Severity  
F 
Low 
complexity 

Prescribing 
Error 

Phenelzine 15 mg tablet, 1 tablet, 
PO, three times daily. 
and 
Tramadol Hydrochloride 50mg 
capsules, 2 capsules, PO, PRN, 
every six hours, maximum 8 
capsules per day. 

WARNING: Adverse Drug Interaction 
This medication has a listed adverse interaction with another 
already prescribed medication.  
There is an adverse drug interaction for Phenelzine and 
Tramadol hydrochloride. This combination should be avoided. 

The combination of phenelzine and tramadol are 
contraindicated due to the possibility of causing serotonin 
toxicity.  

Serious 

False Positive  Ramipril 5 mg tablet, 1 tablet, 
PO, once daily. 

WARNING: Adverse Drug Reaction 
This patient has an Allergy or Adverse Drug Reaction recorded 
for this medication. 

The patient is allergic to Sulfonamide. However Ramipril is 
not contraindicated for this allergy.  

 

G  
High 
complexity 

Prescribing 
Error 

Paracetamol 500 mg tablet, 2 
tablets, PO, four times a day. 
and 
Panadeine Forte (Codeine 
Phosphate with Paracetamol 
Tablet 30 mg‐500 mg) tablet, 2 
tablets, PO, PRN, every four 
hours, maximum 8 tablets per 
day. 

WARNING: High Dose / Duplicate Substance 
Both Paracetamol and Panadeine Forte (Codeine Phosphate 
30mg with Paracetamol 500mg) contain the ingredient 
Paracetamol. The total Paracetamol entered is higher than the 
recommended dose range.   

Prescribed together these two prescriptions provide for a 
combined maximum possible dose of 8 grams of 
paracetamol per day, double the maximum daily dose of 4 
grams.  

Significant 

False Positive  Ciprofloxacin 250 mg tablet, 1 
tablet, PO, twice daily. 

WARNING: Adverse Drug Reaction 
This patient has an Allergy or Adverse Drug Reaction recorded 
for this medication. 

The patient is allergic to penicillin. Ciprofloxacin is an 
antibiotic, however, it is not contraindicated for allergy to 
penicillin.  

 

H  
High 
complexity 

Prescribing 
Error 

Methotrexate 2.5 mg tablets, 3 
tablets, PO, once daily. 

WARNING: High Dose 
The entered dose is higher than the recommended maintenance 
dose range 

Patient has net onset rheumatoid arthritis. For treatment 
of rheumatoid arthritis, the loading dose of methotrexate 
is 7.5mg once weekly.  

Potentially 
lethal 

False Positive  Paracetamol 500 mg tablet, 2 
tablets, PO, PRN, every four 
hours, maximum 8 tablets per 
day. 

WARNING: Medicine Contraindicated 
This medication is contraindicated for a condition (Peptic Ulcer 
Disease) contained in the patient record. 

Patient has newly diagnosed peptic ulcer disease,  
however, it is not a contraindication for paracetamol.  

 

I  
High 
complexity 

Prescribing 
Error 

Metoclopramide Hydrochloride 
10 mg tablet, 1 tablet, PO, PRN, 
three times daily, maximum 3 
tablets per day. 

WARNING: Medicine Contraindicated 
This medication is contraindicated for a condition (Parkinson’s 
Disease) contained in the patient record. 

Patient has a history of Parkinson’s disease for which 
Metoclopramide is contraindicated as symptoms may 
worsen. The drug reference provides an alternative 
medicine as being preferred.  

Serious 

False Positive  Entacapone 200 mg tablet, 1 
tablet, PO, three times daily.  
and 
Rosuvastatin 20 mg tablet, 1 
tablet, PO, once daily. 

WARNING: Adverse Drug Interaction 
This medication has a listed adverse interaction with another 
already prescribed medication.  
There is an adverse drug interaction for Entacapone and 
Rosuvastatin. This combination should be avoided. 

There is no documented adverse drug interaction for 
Entacapone and Rosuvastatin.  

 

 

   



Appendix B: Example of an interruption task 

Harold O'Brien is about to commence Vancomycin for meningitis. Please refer to the test Creatinine Clearance in the 
test results provided and select the appropriate dose and frequency of administration using the dosing tables below.  

Clinical Chemistry  

Sodium (mmol/L)  140  135‐145 

Potassium (mmol/L)  4.5  3.5‐5.0 

Chloride (mmol/L)  106  95‐107 

Bicarbonate (mmol/L)  28  24‐32 

Urea (mmol/L)  9.2  3.0‐8.0 

Creatinine  (mmol/L)  141  60‐110 

Creatinine Clearance (mL/min)  64  97‐137 

 

Creatinine clearance (mL/min)   Starting maintenance dosage 

more than 90  1.5 g 

90 or less  1 g 

 

Creatinine clearance (mL/min)   Frequency 

more than 60  12‐hourly 

20 to less than 60  24‐hourly 

less than 20  48‐hourly  

 

Please review the information above. What dose of Vancomycin should be given and how frequently should it be 
administered? 
 

(a) 1.5g, 12‐hourly 

(b) 1.5g, 24‐hourly 

(c) 1.5g, 48‐hourly 

(d) 1g, 12‐hourly 

(e) 1g, 24‐hourly 

(f) 1g, 48‐hourly 
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Chapter 3 summary 

3.5 Effect of task complexity and clinical decision support on errors 

The effects models presented in the chapter summaries provide a visual summary of the experimental 

findings reported in the chapter. The models are presented as a causal network which illustrates the 

monotonic relationships observed between experimental variables. The links between variables show 

the evaluated relationships, while the link polarity indicates the monotonic relationship between 

variables; positively linked variables vary in the same direction (increase in one is linked to an increase 

in the other and vice-versa), while negatively linked variables vary in opposite directions (an increase 

in one is linked to a decrease in the other and vice-versa).  

Causality can be inferred from this controlled experiment where an independent variable impacts a 

dependent variable. Conversely, causality cannot be inferred for associations between two dependent 

variables.   
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3.5.1 Omission errors 

-ve +ve

1 2

3

4

No effect

No effect

Correct CDS Incorrect CDSHigh task 
complexity

Omission
errors

Interruptions

Clinical decision support High task complexityIndependent variables: Interruptions

Outcome variables: Omission errors

Association between two variables.

Causal link. The arrow shows the direction of cause to effect.

+ve Positively linked variables vary in the same direction (an increase in one is linked to an increase in the other and vice-versa).

-ve Negatively linked variables vary in opposite directions (an increase in one is linked to a decrease in the other and vice-versa).
  

Figure 3-1 Effect of task complexity and clinical decision support on omission errors 

❶Correct CDS decreases omission errors.  

Correct CDS significantly reduced omission errors by 40.8% compared to when there was no CDS. See 
Table 2 in Article II.   

❷Incorrect CDS increases omission errors.  

Incorrect CDS significantly increased omission errors by 28.7% compared to when there was no CDS. 
See Table 2 in Article II.  

❸High task complexity does not affect omission errors.  

There were no significant differences in omission errors between low- and high-complexity with 
incorrect CDS or no CDS. See Table 2 in Article II.  

❹ Interruptions do not affect omission errors.  

There were no significant differences in omission errors between low- and low-complexity with 
interruption scenarios with incorrect CDS or no CDS. See Table 2 in Article II.  
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3.5.2 Commission errors 

+ve

No effect

1

3

2

No effect

Incorrect CDS

High task 
complexity

Commission 
errors

Interruptions

Clinical decision support High task complexityIndependent variables: Interruptions

Outcome variables: Commission errors

Association between two variables.

Causal link. The arrow shows the direction of cause to effect.

+ve Positively linked variables vary in the same direction (an increase in one is linked to an increase in the other and vice-versa).

-ve Negatively linked variables vary in opposite directions (an increase in one is linked to a decrease in the other and vice-versa).
  

Figure 3-2 The effect of task complexity and clinical decision support on commission errors 

❶ Incorrect CDS increases commission errors.  

Incorrect CDS significantly increased omission errors by 56.9% compared to when there was no CDS. 
See Table 2 in Article II.  

❷ High task complexity does not affect commission errors.  

There was no significant difference between low- and high-complexity scenarios with incorrect CDS. 
See Table 2 in Article II.   

❸ Interruptions do not affect commission errors.  

There was no significant difference between low- and low-complexity with interruption scenarios with 
incorrect CDS. See Table 2 in Article II.  
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4 Automation bias and cognitive load 
This chapter examines the relationship between automation bias and information processing. 

Information processing is assessed in terms of the cognitive load experienced by participants as they 

performed experimental tasks. 

4.1 Background 

The systematic review [Chapter 2; 1] identified task complexity as a potential risk factor for automation 

bias in healthcare tasks and proposed Cognitive Load Theory as a framework for assessing its effects.  

It was originally hypothesised that high task complexity would increase participants’ cognitive load, 

which would lead to a greater reliance on decision support to manage the cognitive demands of the 

task. This, in turn, was hypothesised to lead to increased automation bias errors when decision support 

is incorrect. While Article II [Chapter 3; 2] reported that task complexity did not affect automation bias 

errors, an analysis of the cognitive load effects was undertaken to establish how it was affected by 

automation bias errors, task complexity, and the quality of clinical decision support. This analysis is 

reported in Article III [3] and is the focus of this chapter.  

4.1.1 Exclusion of the interruption condition from further analyses 

Article II [Chapter 3; 2] reported no effect of interruptions on errors; therefore, the interruption 

condition was excluded from further analyses. This was to firstly facilitate the concise presentation of 

the cognitive load and verification analyses within self-contained journal articles. Secondly, while 

interruptions may contribute to cognitive load,[4] they are nevertheless a complex phenomenon [4] 

which exceed the scope and aims of this thesis. Instead, further analyses will focus on the task 

complexity manipulation which was designed to impact participants’ cognitive load.  

4.2 Contribution of article to thesis  

Article III [3] tests the hypothesis set out in aim 5: as task complexity increases, so too will participants’ 

cognitive load, which, in turn, would lead to greater reliance on clinical decision support to manage 

increasing cognitive demands and prevent overload.  

This article reports the results of the experiment on participants’ self-reported cognitive load. It 

confirms that increasing task complexity from low to high did significantly increase participants’ 

cognitive load. The major findings are that the presence of decision support lowered cognitive load in 

high complexity tasks. However, omission errors were significantly associated with lower cognitive 

load in both incorrect and no CDS conditions. This refutes the hypothesis set out in aim 5. Errors in the 
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control condition without decision support were associated with lower cognitive load, suggesting that 

errors did not result from cognitive overload, but may be due to insufficient cognitive resources being 

allocated to the task.   

The findings reported in this article further contribute to an understanding of the relationship between 

automation bias errors, task complexity and cognitive load. This contributes to aim 6, which will be 

addressed in the discussion (chapter 6).  

4.3 Article details 

This article was published in Human Factors: The Journal of the Human Factors and Ergonomics Society.  
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Objective: Determine the relationship between 
cognitive load (CL) and automation bias (AB).

Background: Clinical decision support (CDS) for 
electronic prescribing can improve safety but intro-
duces the risk of AB, where reliance on CDS replaces 
vigilance in information seeking and processing. We 
hypothesized high CL generated by high task complex-
ity would increase AB errors.

Method: One hundred twenty medical students pre-
scribed medicines for clinical scenarios using a simulated 
e-prescribing system in a randomized controlled experi-
ment. Quality of CDS (correct, incorrect, and no CDS) 
and task complexity (low and high) were varied. CL, 
omission errors (failure to detect prescribing errors), and 
commission errors (acceptance of false positive alerts) 
were measured.

Results: Increasing complexity from low to high 
significantly increased CL, F(1, 118) = 71.6, p < .001. 
CDS reduced CL in high-complexity conditions com-
pared to no CDS, F(2, 117) = 4.72, p = .015. Partici-
pants who made omission errors in incorrect and no 
CDS conditions exhibited lower CL compared to those 
who did not, F(1, 636.49) = 3.79, p = .023.

Conclusion: Results challenge the notion that AB 
is triggered by increasing task complexity and associ-
ated increases in CL. Omission errors were associated 
with lower CL, suggesting errors may stem from an 
insufficient allocation of cognitive resources.

Application: This is the first research to examine 
the relationship between CL and AB. Findings suggest 
designers and users of CDS systems need to be aware 
of the risks of AB. Interventions that increase user vigi-
lance and engagement may be beneficial and deserve 
further investigation.

Keywords: automation bias, cognitive load, task 
complexity, human-computer interaction, working 
memory, health information technology, medication 
management and safety, patient safety, medication 
alerts, compliance, reliance

Background
One cause of errors when using clinical deci-

sion support (CDS) in electronic prescribing 
(e-prescribing) is automation bias (AB; Lyell  
et al., 2017). AB has been defined as “the 
tendency to use automated cues as a heuristic 
replacement for vigilant information seeking 
and processing” (Mosier & Skitka, 1996, p. 
205). Heuristic replacement is the process in 
which people use CDS as a mental shortcut 
rather than using their own cognitive resources. 
AB can cause clinicians to commit omission 
errors (a failure to take appropriate action to 
avoid prescribing errors because they were not 
alerted to the error by CDS) and commission 
errors (when clinicians comply with incor-
rect CDS recommendations; Mosier & Skitka, 
1996; Mosier, Skitka, Heers, & Burdick, 1998). 
Important to note, omission and commission 
errors are used to classify errors that relate to the 
task assisted by automation; for CDS this is the 
detection of prescribing errors.

E-prescribing systems are widely used (Swei-
dan et al., 2011) and typically include CDS fea-
tures to reduce the risk that patients will be 
harmed by prescribing errors (Britt et al., 2015) 
such as drug-drug interactions (Ammenwerth, 
Schnell-Inderst, Machan, & Siebert, 2008; van 
Rosse et al., 2009; Wolfstadt et al., 2008). CDS 
typically increases the overall quality and safety 
of prescriptions (Ammenwerth et al., 2008), but 
like all clinical information technology, it can 
introduce new classes of error (Kim, Coiera, & 
Magrabi, 2017), including AB. There are several 
potential causes of AB (Goddard, Roudsari, & 
Wyatt, 2012; Parasuraman & Manzey, 2010), 
such as the presence of highly reliable automa-
tion (Bagheri & Jamieson, 2004b; Bailey & 
Scerbo, 2007; Bailey, Scerbo, Freeman, Mikulka, 
& Scott, 2006; Molloy & Parasuraman, 1992; 
Parasuraman, Molloy, & Singh, 1993; Prinzel, 
Freeman, & Prinzel, 2005; Rovira, McGarry, & 
Parasuraman, 2007; I. L. Singh, Sharma, & 
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Parasuraman, 2001; I. L. Singh, Singh, & Saha, 
2007; A. L. Singh, Tiwari, & Singh, 2009). This 
could be due to greater reliability engendering 
greater trust in automation. Users with high trust 
in automation are less likely to detect automation 
failures (Bagheri & Jamieson, 2004a; Bailey & 
Scerbo, 2007). Task complexity and task diffi-
culty also have been cited as potential factors; 
however, the evidence is mixed (Bailey & 
Scerbo, 2007; Goddard et al., 2012; Lyell et al., 
2017; Povyakalo, Alberdi, Strigini, & Ayton, 
2013). It has been suggested that higher com-
plexity tasks result in AB in a single-task envi-
ronment, whereas lower complexity tasks result 
in AB only when performed in a multitask envi-
ronment (Lyell & Coiera, 2017). For this study, 
CDS represents a class of automation whose 
function is to determine whether a prescribing 
error is present in the prescriptions entered into 
an e-prescribing system. In contrast, medication 
alerts are the method by which CDS communi-
cates the discovery of a potential prescribing 
error to the user. Of particular interest is whether 
task complexity could lead to increased depen-
dence on CDS to manage additional workload 
and prevent cognitive overload as complexity 
increases (Sintchenko & Coiera, 2003). Alterna-
tively, AB may be unrelated to task complexity. 
For example, humans might preferentially 
offload decision-making effort onto CDS rather 
than use their own cognitive resources (Mosier & 
Skitka, 1996).

The present work focuses on testing this com-
plexity hypothesis, using cognitive load theory 
as the theoretical framework (Lyell & Coiera, 
2017). Cognitive load theory is based on the 
notion that human cognitive ability is limited by 
the capacity of working memory (Sweller, 
Ayres, & Kalyuga, 2011), which has limited 
storage (Cowan, 2001; Miller, 1956) and a short 
duration (Peterson & Peterson, 1959). When 
information processing takes place in working 
memory (Baddeley, 1992), it generates cognitive 
load (Sweller et al., 2011). Cognitive load theo-
rists differentiate between the intrinsic load gen-
erated by the task and extraneous load, which is 
generated by sources not associated with the 
goals of the task (Sweller et al., 2011). When 
cognitive load exceeds available working mem-
ory, it can lead to error and hinder learning 

(Ayres, 2001; Ayres & Sweller, 1990). This 
study focuses on intrinsic cognitive load, which 
is expected to be influenced by task complexity. 
The user interface, which could generate extra-
neous load, was held constant in the experiment.

This work focuses on the analysis of the rela-
tionship between cognitive load and AB. We 
hypothesize that as task complexity increases, so 
too will participants’ cognitive load, which, in 
turn, would lead to a greater need to rely on CDS 
to manage workload. This would be demon-
strated by (a) individuals reporting a greater 
reduction in cognitive load when assisted by 
CDS than when unaided as complexity increases; 
(b) increasing omission and commission errors 
with increased task complexity (Furthermore, it 
is expected that errors will increase by a greater 
amount for conditions assisted by CDS that is 
incorrect compared to unassisted conditions, 
indicating greater reliance on CDS [although we 
have previously reported that task complexity 
may have no effect on AB errors; Lyell et al., 
2017]); and (c) errors in unaided conditions 
being associated with higher cognitive load, 
which would indicate an association between 
errors and cognitive overload. Alternatively, if 
task complexity has no association with these 
AB-induced errors or errors have no association 
with higher cognitive load, then this is evidence 
that AB may be unrelated to task complexity.

Method
Experiment Design

This study reports an analysis of data col-
lected as part of a previously reported e-pre-
scribing experiment (Lyell et al., 2017). That 
study found significantly more participants 
made omission and commission errors when 
they prescribed with CDS that was incorrect 
compared to when they prescribed with no 
CDS. The present study extends the first by 
presenting an analysis of how cognitive load 
was affected by task complexity, CDS, and AB 
errors. The experiment had two within-subject 
factors: quality of CDS (correct, incorrect, and 
no CDS) and task complexity (low, low with 
interruption, and high), providing a total of nine 
conditions. Each participant completed one sce-
nario in all nine conditions. The experimental 
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control comprised conditions with no CDS; for 
those conditions, participants were told CDS 
had been switched off. For the present analysis, 
we will focus on the low and high task complex-
ity conditions as these aim to manipulate partici-
pants’ cognitive load (see Figure 1).

Participants
A total of 120 students enrolled in the final 2 

years of a medical degree at Australian universi-
ties participated in the study. The participants’ 
average age was 24.5 years (SD = 2.99), and 
53.3% were male. They responded to advertise-
ments emailed by medical schools or posts on 
social media via medical students’ societies. This 
research complied with the National Statement 
on Ethical Conduct in Human Research 2007 
(National Health and Medical Research Council, 
Australian Research Council, & Australian Vice-
Chancellors’ Committee, 2007/2015) and was 
conducted in accordance with protocols approved 
by the human research ethics committees of 
Macquarie University and the University of New 
South Wales. Informed consent was obtained 
from each participant, and participants were fully 
debriefed upon completion of the experiment. 

Participants were offered two movie vouchers and 
a certificate for their participation.

One participant completed the experiment 
twice (on two separate occasions), and the data 
from the second attempt were excluded. Cog-
nitive load scores were not recorded for two 
control scenarios affecting 1 participant; the 
affected scenarios were also excluded from the 
analysis.

Experimental Task
Participants were tasked with prescribing 

between three and eight medicines per patient 
scenario, using an e-prescribing system (see Fig-
ure 2). The prescribing system included a decision 
support function that should generate a warning 
alert when a prescribing error was detected. Each 
scenario provided a brief patient history together 
with a list of the medications participants were 
asked to prescribe for the hypothetical patient 
(see Appendix A for examples). Participants were 
instructed not to prescribe medications that they 
considered unsafe. One of the requested medi-
cations was a deliberately inserted prescribing 
error that was clearly contraindicated and posed 
a sufficiently severe risk of harm that it should be 
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Figure 1. Experimental design with the number of participants in each condition. All participants 
performed one patient scenario in each condition. The allocation of patient scenarios to conditions 
was counterbalanced. The order of presentation and whether control conditions were presented 
first or last were randomized.
*Cognitive load data were not recorded for 1 participant in two control conditions.
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avoided in all circumstances (see Appendix B ). 
Participants’ prescribing this medicine had failed 
to detect the prescribing error and take appropriate 
action so was classified as an omission error. All 
other medicines requested in each scenario were 
safe and appropriate for the patient and therefore 
should be prescribed. In some of the experimen-
tal conditions, an incorrect computer alert was 
triggered during prescribing, suggesting a safe 
medication was in error. Participants’ acting on an 
incorrect CDS alert by removing or not prescrib-
ing the safe medicine was classified as a commis-
sion error (wrong action).

The simulated e-prescribing system allowed 
for the triggering of CDS alerts for prescribing 
errors, and these alerts were manipulated as 
follows:

Correct CDS.

•• Correct CDS alerts were triggered by the pre-
scription of the unsafe medicine (a true positive). 
Due to the severity of prescribing errors in the 
experimental scenarios, all correct alerts were 
highly relevant.

•• The correct absence of an alert when there was no 
prescribing error indicated a true negative.

Incorrect CDS.

•• The incorrect absence of an alert when an unsafe 
medicine was prescribed (a false negative)  

provided an opportunity for an omission error if 
participants failed to detect the error.

•• An alert incorrectly warning about a safe medi-
cine (a false positive) provided an opportunity for 
a commission error.

No CDS (control).

•• No CDS served as the control condition in which 
there was no CDS checking for errors. Partici-
pants were informed that decision support had 
been switched off and was unavailable. They were 
advised to use instead the inbuilt drug reference to 
check for any errors they suspected.

A CDS alert was interruptive, displayed as a 
modal window over the top of the e-prescribing 
system (see Figure 3). It required a resolution, 
either by removing the prescription or overrid-
ing the alert with a reason, before allowing the 
participant to proceed. The alert also provided 
direct access to the relevant drug reference.

Important to note, for errors to be evidence of 
AB, participants had to be able to perform the 
task independently of CDS and be able to assess 
its correctness. The e-prescribing system facili-
tated this by providing access to a drug informa-
tion reference (Australian Medicines Handbook, 
2015) in all conditions. The reference contained 
all information necessary to avoid omission and 
commission errors independently of CDS.

Figure 2. Example of the experimental task showing the e-prescribing system (left) and patient 
scenario (right).
Source. Lyell et al. (2017). Reproduced under CC BY 4.0.
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Task complexity was manipulated by increas-
ing the number of information elements in each 
scenario. Information elements were medical 
conditions, symptoms, test results, prior treat-
ments, allergies, observations, or requested pre-
scriptions that needed to be considered in pre-
scribing decisions. Low-complexity scenarios 
contained 6 elements, and high-complexity sce-
narios contained 17. The more elements, the 
more potential interactions there were between 
elements that needed to be processed, which 
should lead to greater complexity and cognitive 
load (Sweller, 1994).

The allocation of the patient scenarios to exper-
imental conditions was counterbalanced to control 
for potential differences between scenarios. The 
order of presentation and whether participants 
received control scenarios first or last were ran-
domized. The position of errors in the list of medi-
cines to be prescribed was also randomized, allo-
cated at the time of scenario design.

Cognitive Load Measurement
It has been shown that people can reliably 

self-rate their invested mental effort (Gopher & 
Braune, 1984), that is, the cognitive resources 
allocated to a task (Paas, Tuovinen, Tabbers, 
& Van Gerven, 2003). Self-rating of cognitive 
load (Paas, 1992; Sweller et al., 2011) has been 
shown to be reliable, unobtrusive, and sensitive 
to small differences (Paas et al., 2003) and is 
widely used (Sweller et al., 2011). A cognitive 
load inventory (see Appendix C) was adapted 
from a validated instrument (Leppink, Paas, 
van der Vleuten, van Gog, & van Merriënboer, 
2013; Leppink, Paas, van Gog, van der Vleuten, 
& van Merriënboer, 2014) to reflect the nature 

of the specific tasks in the present study. The 
cognitive load inventory was administered at the 
end of each condition.

The three items measuring intrinsic cognitive 
load had excellent internal consistency (Cron-
bach’s alpha = .915). These were converted to 
the same scale and averaged, creating one mea-
sure of intrinsic cognitive load for the analysis.

Procedure
The experiment was presented to participants 

as an evaluation of an e-prescribing system 
still under development. They were cautioned, 
“Initial testing has shown that alerts are highly 
accurate, but occasionally have been incorrect. 
Therefore, you should always double check with 
the inbuilt drug information reference.” To be 
consistent with prior AB studies, these instruc-
tions emphasized two important points: (a) CDS 
could be incorrect and (b) the method available 
to verify CDS uses a nonautomated informa-
tion source (in this study the drug references; 
e.g., Bahner, Huper, & Manzey, 2008; Skitka, 
Mosier, & Burdick, 2000). No information was 
provided about which types of errors the system 
would check and alert. Nor were participants 
provided any information about the prescribing 
errors inserted into the scenarios. Participants 
were blinded to the experimental manipulations 
and experimentally presented opportunities for 
errors. A 3-min instructional video about how 
to use the e-prescribing system was shown; it 
included a demonstration of a correct CDS alert 
and how to view drug information references.

Participants were instructed as follows: (a) 
Approach tasks as if they were treating a real 
patient, exercising all due care. (b) Should they 
detect any prescribing errors, these should be 
addressed by not prescribing that medicine. (c) If 
the error involved an adverse drug interaction 
between two medicines, only one should be omit-
ted. (d) If there was a discrepancy between CDS 
and the drug information, they should always rely 
on the drug information. Participants were not 
provided any feedback on their performance.

Outcome Measures
Each condition provided the opportunity  

for participants to make one omission and one 

Figure 3. Clinical decision support alert.
Source. Lyell et al. (2017). Reproduced under CC BY 4.0.
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commission error. For each condition, we mea-
sured the following:

1.	 Intrinsic cognitive load (0 to 10).
2.	 Omission error (yes/no): Participants were scored 

as making an omission error if they prescribed the 
medication containing the prescribing error. This 
indicated they had failed to detect the error and 
take appropriate action to avoid it. If the partici-
pant corrected the error, for example, by reducing 
a harmful dose to a safe level, it was not scored as 
an omission error.

3.	 Commission error (yes/no): Participants were 
scored as making a commission error if they 
removed or did not prescribe a safe medicine that 
received a false positive alert from incorrect CDS 
(wrong action). As a control, there was a com-
parator medicine in the correct CDS and control 
conditions that was safe and received no CDS 
alert; not prescribing it was scored as a commis-
sion error.

Statistical Analyses
Intrinsic cognitive load was measured as a 

continuous variable, it was normally distributed, 
and there were no outliers. The effect of task 
complexity and the presence of decision support 
on intrinsic cognitive load were tested using a 
2 (Task Complexity) × 3 (Quality of Decision 
Support) repeated-measures analysis of vari-
ance. Multivariate results are reported (Wilks’s 
Lambda), which do not assume sphericity.

Differences in cognitive load between partic-
ipants who did and did not make omission and 
commission errors were tested in the control 
condition with independent samples T tests. The 
sample was likely to have low power to detect 
differences in the CDS-assisted conditions due 
to the uneven split of observations with and 
without errors. Therefore, in the event of a sig-
nificant effect in the control conditions, a multi-
level analysis was to be undertaken to leverage 
more power from the sample. Multilevel models 
(MLMs) explain sources of variance at multiple 
levels of analysis (Hoffman & Rovine, 2007). 
The first level describes differences between 
whether participants did or did not make an 
error, and the second level describes the rela-
tionship between the experimental factors: task 
complexity and quality of decision support.

The fixed effects that were assessed for inclu-
sion in MLM were task complexity (low or 
high), quality of decision support (correct, incor-
rect, or no CDS), omission error (yes or no), and 
commission error (yes or no). We also tested all 
two-way interactions except the interaction 
between the two error types. A stepwise back-
ward elimination method was used for predictor 
selection, where all potential predictors were 
entered into the model and then interactions 
were removed one by one in order of least sig-
nificance. The process was repeated for main 
effects. Model fit was evaluated by comparing 
models using the likelihood ratio test (Peugh, 
2010). Predictors with a significant effect on 
model fit were retained, while predictors with a 
nonsignificant effect were discarded. The model 
included a random intercept for each participant, 
taking into account the nested structure of the 
data. All models were estimated using maxi-
mum likelihood.

Wherever post hoc pairwise comparisons are 
reported, the probabilities have been adjusted 
for multiple comparisons using the Bonferroni 
correction (Bland & Altman, 1995).

Results
All 120 participants completed one scenario 

in each of the six experimental conditions. The 
median time taken for low-complexity scenarios 
was 2:45 min (interquartile range = 1:42 to 
4:08) and for high-complexity scenarios, it was 
5:25 min (interquartile range = 3:59 to 7:21).

Intrinsic Cognitive Load Increases With 
Task Complexity

Increasing task complexity from low to high 
significantly increased intrinsic cognitive load 
(see Table 1) with a very large effect size, 
Wilks’s Lambda = .622, F(1, 118) = 71.597,  
p < .001, ηp

2 = .378. In comparison, the quality 
of decision support, Wilks’s Lambda = .925, 
F(2, 117) = 4.721, p = .011, ηp

2 = .075, and the 
interaction between task complexity and quality 
of decision support, Wilks’s Lambda = .931, 
F(2, 117) = 4.367, p = .015, ηp

2 = .069, also sig-
nificantly affected intrinsic load but produced a 
medium effect size (Richardson, 2011).

Incorrect CDS generated a higher cognitive 
load than correct CDS (p = .031). No CDS  



1014	 November 2018 - Human Factors

(control) also generated a higher cognitive load 
than correct CDS; however, this was not signifi-
cant (p = .052). There was no difference between 
incorrect CDS and no CDS (control; p = 1.000).

The significant interaction between task com-
plexity and quality of decision support (see Fig-
ure 4) indicates that the effect of CDS on cogni-
tive load changed depending on task complexity. 
Correct CDS significantly reduced cognitive 
load compared to no CDS (control) in high-
complexity scenarios (p = .007). Cognitive load 
was lower in high-complexity scenarios with 
incorrect CDS compared to control conditions; 

however, this was not significant once the Bonfer-
roni correction was applied (p = .066). In low-
complexity scenarios, there were no significant 
differences between the three CDS conditions.

Cognitive Load Differences Between 
Participants Who Did and Did Not 
Make Omission and Commission Errors

Participants who made omission errors in 
control conditions, with no CDS, reported a 
significantly lower cognitive load than partici-
pants who detected the errors (see Table 2) for 
both low-, t(117) = 4.087, p < .001, and high-
complexity conditions, t(117) = 2.104, p = .038. 
This supported performing an MLM analysis. 
However, no statistically significant differences 
were found between participants who made and 
avoided commission errors for low-, t(117) = 
.303, p = .701, and high-complexity conditions, 
t(117) = .202, p = .840.

Multilevel Analysis: Omission Errors 
Were Associated With Lower Cognitive 
Load

We evaluated 11 models; from these five 
fixed effects, we found them to significantly 
contribute to the fit of MLM (see Appendix 
D) and included them in the analysis (see 
Table 3 for the significance of fixed effects 
and Appendix E  for model coefficients). 
The final model was significantly better than 
the intercepts-only model, χ2(8) = 110.431,  
p < .001.

Table 1: Mean Intrinsic Cognitive Load (Standard Error) by Task Complexity and Quality of Decision 
Support

Correct CDS Incorrect CDS Control No CDS Overall Mean

Low complexity 3.4
(.16)

3.8
(.16)

3.6
(.18)

3.6a

(.13)
High complexity 4.2b

(.17)
4.4
(.16)

4.9b

(.19)
4.5a

(.14)
Overall mean 3.8c

(.15)
4.1c

(.14)
4.2
(.16)

4.1
(.13)

Note. Means sharing a common superscript are significantly different from each other (p < .05) as determined by a 
two-way repeated-measures analysis of variance. CDS = clinical decision support.
ap < .001.
bp = .007 Bonferroni-corrected pairwise comparison.
cp = .031 Bonferroni-corrected pairwise comparison.

Figure 4. Mean and standard error for intrinsic 
cognitive load by task complexity and quality of 
decision support. This shows the interaction between 
task complexity and quality of decision support.
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Commission errors did not significantly con-
tribute to model fit and were therefore excluded 
from the analysis. The intraclass correlation coef-
ficient was .406, indicating that 40.6% of the vari-
ance in intrinsic load was attributable to variation 
between participants, supporting the conduct of a 
multilevel analysis (Hayes, 2006; Twisk, 2006). 
The model residuals were normally distributed.

Overall, participants who correctly avoided 
making omission errors reported a significantly 
higher cognitive load (M = 4.3, SE = .14) than 
those who made omission errors (M = 4.0,  

SE = .17). There also was a significant interac-
tion between omission errors and the quality of 
decision support (see Figure 5). Participants 
who avoided omission errors reported signifi-
cantly higher cognitive load than participants 
who made errors with incorrect CDS (p = .012) 
and no CDS (control; p < .001).

Discussion
To better understand the cause of AB, we con-

ducted a randomized controlled experiment that 

Table 2: Mean Intrinsic Cognitive Load and Standard Deviation by Whether Participants Made 
Omission or Commission Errors in Each Experimental Condition

No Error Error

Clinical Decision 
Support 
Condition Task Complexity n

Cognitive Load 
Mean (SD) n

Cognitive Load 
Mean (SD)

Failure to detect prescribing errors (omission errors)
Correct Low 111 3.44 (1.7)   9 3.32 (2.0)
Incorrect Low   25 4.19 (1.8) 95 3.66 (1.7)
Control Low   65 4.22 (1.7) 54 2.85 (1.9)
Correct High 109 4.25 (1.9) 11 4.31 (1.9)
Incorrect High   30 4.97 (1.6) 90 4.26 (1.8)
Control High   62 5.24 (2.0) 57 4.44 (2.1)

False positive errors (commission errors)
Correct Low 115 3.39 (1.7)   5 4.33 (1.0)
Incorrect Low   37 4.00 (2.0) 83 3.66 (1.6)
Control Low 115 3.61 (1.9)   4 3.23 (2.6)
Correct High 108 4.30 (1.8) 12 3.88 (2.1)
Incorrect High   43 4.97 (1.6) 77 4.14 (1.8)
Control High 104 4.87 (2.1) 15 4.76 (1.9)

Table 3: Significance of Fixed Effects in the Multilevel Model of Intrinsic Cognitive Load

df F p

Intercept 1, 163.216 983.781 <.001*
Task complexity (low complexity, high complexity) 1, 597.611 82.500 <.001*
Quality of decision support (correct CDS, incorrect 

CDS, control [no CDS])
2, 621.989 0.971 .379

Omission error (omission error, no omission error) 1, 667.989 4.230 .040*
Complexity × Decision Support 1, 597.666 3.584 .028*
Decision Support × Omission Error 1, 636.490 3.785 .023*

Note. CDS = clinical decision support.
*p < .05.
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focused on the relationship between task com-
plexity and AB. We varied task complexity and 
the correctness of decision support, measuring 
omission and commission errors, as well as intrin-
sic cognitive load. In doing so, we sought to deter-
mine whether AB results from increased reliance 
on decision support due to rising task complexity 
mediated by cognitive load. For this hypothesis 
to be supported, we would have needed to find 
evidence of (a) more AB errors in high- than in 
low-complexity conditions, (b) errors in control 
scenarios associated with higher cognitive load, 
and (c) a greater reduction in cognitive load in 
CDS-assisted compared to -unassisted conditions 
as task complexity increases. However, the pres-
ent findings do not support this hypothesis. While 
there was a greater reduction in cognitive load 
between CDS-assisted and -unassisted conditions 
in high- compared to low-complexity scenarios, 
we have previously reported this experiment 
found no difference in error rates between low 
and high complexity, in any decision support 
condition (Lyell et al., 2017). Moreover, omission 
errors were associated with lower, not higher, 
intrinsic cognitive load in both incorrect CDS and 
no CDS conditions (see Figure 5).

The finding that omission errors are associ-
ated with lower cognitive load is at odds with 

cognitive load theory, which typically associates 
errors with higher cognitive load (Ayres, 2001; 
Ayres & Sweller, 1990), where the demands of 
the task either exceed cognitive capacity or do 
not leave sufficient capacity to enable learning. 
However, recalling that our measurements of 
cognitive load are based on self-rated mental 
effort, errors may have occurred because the 
cognitive resources participants allocated to the 
task fell short of those required by it.

AB and Cognitive Load
This experiment found a significant relation-

ship between omission errors and cognitive 
load. Taken together, the findings—that (a) 
incorrect CDS induced more omission errors 
than no CDS and (b) lower cognitive load is 
associated with omission errors across both 
conditions—seem to suggest that when people 
suffer an AB, there is a reduction in the cogni-
tive load allocated to the task.

The greatest reductions in cognitive load were 
observed in CDS-assisted, compared to -unas-
sisted conditions, but only when task complexity 
was high (see Figure 4). This could represent 
participants’ use of CDS to reduce the complex-
ity and cognitive demands of high-complexity 
tasks (Sintchenko & Coiera, 2003). CDS did not 
provide the same benefit when task complexity 
was low. While this suggests that increasing 
complexity might pose an increased risk of AB, it 
had no impact on observed AB errors.

Prior AB studies provide support for the idea 
that automation is associated with a reduction in 
cognitive resources allocated to a task. Work-
load can be reduced by higher levels of automa-
tion (Manzey, Reichenbach, & Onnasch, 2012; 
Rovira et al., 2007) and more reliable automa-
tion (Prinzel et al., 2005; Wickens, Clegg, 
Vieane, & Sebok, 2015). Metzger and Parasura-
man (2005) and Reichenbach, Onnasch, and 
Manzey (2011) found an improvement in sec-
ondary task performance, suggesting that auto-
mation may enable allocation of resources to 
secondary tasks without affecting overall work-
load (Metzger & Parasuraman, 2005). These 
studies measured workload with the NASA-
TLX, which incorporates six dimensions (men-
tal, physical, temporal, performance, frustration, 
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Figure 5. Intrinsic cognitive load, mean and 
standard error by omission error, and quality of 
decision support. This illustrates the interaction 
between quality of decision support and whether 
the participant made an omission error. Asterisks 
indicate significant differences (p < .05), determined 
by the multilevel model.
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and effort; Hart & Staveland, 1988). In contrast, 
intrinsic cognitive load measures mental effort 
applied to processing the complexity of the task, 
a likely subcomponent of workload but a useful 
metric for assessing the effects of task complex-
ity. We are not aware of any reporting on differ-
ences in workload between individuals who do 
and do not make AB errors within the same 
experimental conditions. In the present study, 
this analysis was made possible by the measure-
ment of cognitive load per CDS condition. This 
contrasts with other AB studies, which typically 
measured workload per experimental block, 
recording a rate of errors, and where participants 
received mostly correct but some incorrect auto-
mation (e.g., Prinzel et al., 2005; Reichenbach  
et al., 2011).

There was no association between cognitive 
load and commission errors, suggesting that 
omission and commission errors may involve 
different cognitive processes and demands. 
Indeed, Bahner, Elepfandt, and Manzey (2008) 
have suggested that omission and commission 
errors are separate and independent phenomena, 
having observed that people were differently 
affected by decision support false negatives and 
false positives.

Reduced cognitive load appears to be one way 
in which AB manifests in relation to omission 
errors. This supports the cognitive miser hypothe-
sis of AB (Mosier & Skitka, 1996), which assumes 
that humans have limited cognitive capacity. It 
describes the preference for people to seek ade-
quate, faster, and less effortful ways of thinking, 
rather than engaging in more accurate but slower 
and more effortful thinking (Fiske & Taylor, 
1984), that is, to travel the path of least cognitive 
effort. This is achieved through the use of mental 
shortcuts or heuristics. This is consistent with 
Mosier and Skitka’s (1996) definition of AB as the 
use of automation as a heuristic, relying on it 
instead of engaging in information seeking and 
processing. Research exists showing AB is associ-
ated with a reduction in information seeking 
(Bagheri & Jamieson, 2004a; Bahner, Elepfandt, 
et al., 2008; Bahner, Huper, et al., 2008; Manzey  
et al., 2012). We believe this study provides the 
first evidence of an association between AB and 
reduced intrinsic cognitive load. Our findings, 
however, relate only to omission errors.

Implications
We hypothesized that users of automated 

decision aids would make more AB errors as 
their tasks became more complex. We also 
hypothesized that the cause of these increased 
errors was the increased cognitive load we 
assumed would be generated by increasingly 
complex tasks (Lyell & Coiera, 2017).

Surprisingly, our experimental results were 
not consistent with these hypotheses. Intrigu-
ingly, cognitive load appeared to have an inverse 
relationship with omission errors. Lower, rather 
than higher, cognitive load was associated with 
omission errors. There was no statistically sig-
nificant association between cognitive load and 
commission errors.

Just as surprisingly, while we found the 
expected association between increased com-
plexity and increased cognitive load, complexity 
itself was not associated with changes in omis-
sion errors. This suggests either that complexity 
and load are relatively independent of each other 
in their association with omission errors or that 
the results require replication to ensure there 
were no issues with statistical sampling or study 
design.

If these results hold, then individuals assign 
cognitive resources independently of the com-
plexity of the task they are undertaking. This 
implies that some tasks are assigned more 
resources than needed—a safe but inefficient 
situation—but also that some tasks receive fewer 
resources than needed, leading to errors. This 
may explain why lower cognitive loads were 
associated with omission errors.

Pragmatically, there are several implications of 
these results. First, they reconfirm the challenges 
of using automated decision aids and the caveat 
that both designers and users of such systems need 
to be aware of the risks of AB errors. However, 
interventions tested to date, including providing 
training on AB and how to avoid errors (Mosier, 
Skitka, Dunbar, & McDonnell, 2001), exposure to 
examples of automation failures in training 
(Bahner, Huper, et al., 2008), and externally 
imposed accountability for performance (Mosier 
et al., 1998; Skitka et al., 2000), have had limited 
success in reducing AB errors.

Next, the results show low cognitive load lev-
els are most likely to trigger omission errors. 
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Interventions that assist individuals to recognize 
the amount of cognitive effort they need to 
invest in a particular task may be beneficial. For 
example, interventions that increase user 
engagement during periods of low cognitive 
load or that increase vigilance and engagement 
deserve investigation.

Finally, the causal relationships between task 
complexity, cognitive load, and AB errors are 
more complicated than initially assumed. In par-
ticular, the triggers for high- or low-cognitive-
load states seem to extend beyond the specific 
needs of the task and appear to demonstrate 
more complex strategies for the allocation of 
cognitive resources.

Limitations
The design of this experiment was subject 

to several limitations. First, the inclusion of 
opportunities for both omission and commis-
sion errors in the same condition was necessary 
due to the limited number of trials that could be 
presented without participants dropping out of 
the experiment. However, it limited our ability 
to fully differentiate between the cognitive load 
effects arising from omission and commission 
errors. More research is needed to determine the 
effect of false positive alerts on cognitive load.

Second, the use of medical students provided 
a necessary control, ensuring that participants 
had an equivalent level of knowledge and exper-
tise. These are factors that affect how partici-
pants are affected by task complexity, which in 
turn affects their cognitive load. These results 
are limited in generalizability; they are likely to 
be representative of new clinicians entering 
practice but not of experienced clinicians.

Third, this study used a single task, meaning 
that participants’ attention was not divided 
between multiple, concurrently performed tasks. 
AB is also commonly reported in multiple tasks 
(Lyell & Coiera, 2017), wherein the allocation 
of attention between tasks is an important factor 
(Parasuraman & Manzey, 2010). More research 
is needed to determine the impact of AB on cog-
nitive load when attention is divided between 
multiple concurrent tasks.

Fourth, this was a controlled experiment, 
meaning that participants were not subject to 

time or other external pressures that clinicians 
would ordinarily experience while prescribing. 
This may have affected decisions about reliance 
on CDS.

Finally, the failure of the task complexity 
manipulation to alter the rate of AB errors lim-
ited our ability to assess the relationship between 
task complexity, cognitive load, and AB. There 
were omission and commission errors in both 
high- and low-complexity tasks. If task com-
plexity truly is a cause of AB, then it is likely the 
low-complexity condition in this experiment 
exceeded the threshold at which AB presents. 
Future research could further enhance our under-
standing by replicating this study using a lower 
level of task complexity at which AB errors are 
likely to be reduced or eliminated. This would 
allow an assessment of how cognitive load 
changes as complexity varies between levels 
where AB does and does not present.

Conclusion
This study sought to understand the relation-

ship between task complexity and AB, using 
cognitive load theory as a framework. We did 
not find any evidence of errors resulting from 
high cognitive load brought about by increased 
task complexity, which would have indicated that 
errors resulted from the cognitive demands of the 
task overwhelming available cognitive resources. 
Instead, we found that omission errors with incor-
rect CDS were associated with reduced intrinsic 
cognitive load. In addition, participants who made 
omission errors with no CDS exhibited the same 
reduction in cognitive load but to a significantly 
lesser extent. This could suggest that omission 
errors stem from an insufficient allocation of cog-
nitive resources to the task.

Compared to unaided conditions, the extent to 
which CDS allowed participants to reduce their 
cognitive effort was greatest in high-complexity 
conditions. This suggests that increased com-
plexity poses an increased risk of omission 
errors. However, despite this, there was no effect 
of complexity on errors. This indicates that task 
complexity alone is an insufficient cue to trigger 
the appropriate allocation of cognitive resources 
and therefore, in isolation, is likely to be a poor 
predictor of AB.
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APPENDIX A: EXAMPLES OF PATIENT SCENARIOS 
Background  
The following excerpts are taken from Lyell, D., Magrabi, F., Raban, M. Z., Pont, L. G., Baysari, M. T., Day, R. O., & 
Coiera, E. (2017). Automation bias in electronic prescribing. BMC Medical Informatics and Decision Making, 17(1), 28. 
doi:10.1186/s12911-017-0425-5.  

They are reproduced here under the terms of Creative Commons Attribution 4.0 International License with appropriate 
citation. 

Australian medical education uses an integrative approach where students learn patient and clinical content 
throughout their degree. By the final two years of their education, participants would have typically received 
training in rational and safe prescribing. They also complete the National Prescribing Curriculum, a series of 
online modules based on the prescribing principles outlined in the World Health Organisation’s Guide to 
Good Prescribing (De Vries, Henning, Hogerzeil, & Fresle, 1994). Upon completion of these final two years, 
graduates would begin practice as junior medical officers. 

The prescribing scenarios were developed with advice from an expert panel, including four hospital doctors, 
a medical pharmacology registrar and two pharmacists (including MZR). They were independently reviewed 
by a consultant physician specialising in pharmacology (RD), to ensure clinical relevance. The scenarios 
presented hypothetical patient scenarios and involved prescribing tasks that were typical of those 
undertaken by junior medical officers, based on observations of e‐prescribing in a medical ward of a major 
teaching hospital. A common task performed by junior medical officers is the prescribing of medications 
using an e‐prescribing system upon admission of a patient to hospital, including medicines taken prior to, 
and those initiated on admission. 

Each scenario included one genuine prescribing error, where one of the medicines was clinically 
contraindicated in that scenario (Appendix B). These were designed to be unambiguously errors and of 
sufficient severity in the risk posed to the patient that the medicine should be avoided under all 
circumstances. To ensure this, the severity of the errors included in the scenarios were independently 
assessed by a clinical pharmacist (LGP). The error in one scenario was assessed as potentially lethal, five 
were serious, and three were significant (Dornan et al., 2009). All other medicines listed in scenarios where 
carefully chosen so as to be unambiguously free from error. 

 

   



Low complexity scenario (Scenario D) 

Prescribing error: Aspirin is contraindicated for this patient who suffers peptic ulcer disease as it increases 
the risk of gastrointestinal ulceration (Australian Medicines Handbook Pty Ltd, 2015 January). The severity of 
this error was assessed as significant. Aspirin should not be prescribed to this patient.  

Omission error: Participants who prescribed Aspirin (which was contra‐indicated) failed to detect the error 
and take appropriate action to avoid it. If Aspirin was prescribed in this scenario it was scored as an omission 
error.  

Commission error: Participants made a commission error if they accepted a false alert from incorrect CDS, 
warning that Pantoprazole was contra‐indicated in patients with severe vomiting, by stopping or not 
prescribing that medicine (wrong action). The alert was factually incorrect and contradicted by the drug 
reference. Pantoprazole is a medicine used to treat peptic ulcer disease (Australian Medicines Handbook Pty 
Ltd, 2015 January). It is safe, appropriate and should be prescribed to the patient in this scenario who suffers 
peptic ulcer disease. If Pantoprazole was not prescribed in this scenario it was scored as a commission error. 
As a control measure, this scoring applied to all conditions, regardless of whether a false alert was displayed.  

Medicine  Correct response  Error Correct CDS Incorrect CDS  Control
Pantoprazole  Safe and appropriate 

Should be prescribed 
Commission 
error if not 
prescribed 

No alert 
true‐negative 

Alert 
false‐positive 

No alert 
No CDS support 

Aspirin  Contraindicated 
Should not be 
prescribed 

Omission error 
if prescribed 

Alert 
true‐positive 

No alert 
false‐negative 

No alert 
No CDS support 

Metoclopramide 
Hydrochloride 

Safe and appropriate 
Should be prescribed 

‐  No alert 
true‐negative 

No alert 
true‐negative 

No alert 
No CDS support 

Table 1 Medicines requested for the patient in Scenario D. 

MR Thomas Chapman 
DOB: 21/05/1971, 43 years Weight: 103 kg Height 176 cm Gender: Male 
Allergies: Nil 

Mr Thomas Chapman is a 43 year old man who presented in the emergency department with a severe 
headache and vomiting that have persisted for the last 24 hours.  

He suffers from peptic ulcer disease with a history of bleeds.  

Please prescribe the following medications: 

 Pantoprazole 40 mg tablet: enteric, 1 tablet, PO, once daily.  

 Aspirin 300 mg tablet: effervescent, 3 tablets, PO, every 6 hours.  

 Metoclopramide Hydrochloride 10 mg tablet, 1 tablet, PO, PRN, every 8 hours, maximum 3 
tablets per day.  

Box 1 The text of patient scenario D shown to participants.



High complexity scenario (Scenario I) 

Prescribing error: Metoclopramide Hydrochloride is contraindicated for this patient who suffers Parkinson’s 
disease as it may cause their symptoms to worsen (Australian Medicines Handbook Pty Ltd, 2015 January). 
The severity of this error was assessed as serious. Metoclopramide Hydrochloride should not be prescribed 
to this patient.  

Omission error: Participants who prescribed Metoclopramide Hydrochloride (which was contra‐indicated) 
failed to detect the error and take appropriate action to avoid it. If Metoclopramide Hydrochloride was 
prescribed in this scenario it was scored as an omission error.  

Commission error: Participants made a commission error if they accepted a false alert in the Incorrect CDS 
condition, warning of an adverse drug interaction between Entacapone and Rosuvastatin, by stopping or not 
prescribing one or both of those medicines (wrong action). The alert was factually incorrect and contradicted 
by the drug reference. Entacapone is a medicine used in the treatment of Parkinson’s disease, and 
Rosuvastatin is a medicine used to treat hypercholesterolaemia (high blood cholesterol; Australian 
Medicines Handbook Pty Ltd, 2015 January) a risk for people with coronary heart disease. Both medicines 
are safe, appropriate and should be prescribed for the patient in this scenario who suffers Parkinson’s 
disease and is being treated for heart failure. If Entacapone or Rosuvastatin were not prescribed in this 
scenario it was scored as a commission error. As a control measure, this scoring applied to all conditions, 
regardless of whether a false alert was displayed. 

MR Jasper Larnach 
DOB: 18/09/1949, 65 years Weight: 68 kg Height 167 cm Gender: Male 
Allergies: Opioids 

Mr Jasper Larnach is a 65 year old male who was admitted to hospital this morning with severe 
vomiting and diarrhoea resulting in dehydration and disorientation.  

He has a history of Parkinson’s disease, osteoarthritis and an allergy to opioids. He also had a 
myocardial infarction 10 years ago and has been treated for heart failure since.  

Please prescribe the following medications: 

 Paracetamol 500 mg tablets, 2 tablets, PO, four times daily.  

 Metoprolol Succinate tablet 47.5 mg (controlled release), 1 tablet, PO, once daily.  

 Levodopa 100 mg + Carbidopa Anhydrous 25 mg tablet, 1 tablet, PO, three times daily.  

 Entacapone 200 mg tablet, 1 tablet, PO, three times daily.  

 Ramipril 5 mg tablet, 1 tablet, PO, once daily. 

 Thiamine Hydrochloride 100 mg tablet, 1 tablet, PO, once daily.  

 Rosuvastatin 20 mg tablet, 1 tablet, PO, once daily.  

 Metoclopramide Hydrochloride 10 mg tablet, 1 tablet, PO, PRN, three times daily, 
maximum 3 tablets per day.  

Box 2 The text of patient scenario I shown to participants. 



Medicine  Correct response  Error Correct CDS Incorrect CDS  Control
Paracetamol  Safe and appropriate 

Should be prescribed 
‐  No alert 

true‐negative 
Alert 
false‐positive 

No alert 
No CDS support 

Metoprolol 
Succinate 

Safe and appropriate 
Should be prescribed 

‐  No alert 
true‐negative 

No alert 
true‐negative 

No alert 
No CDS support 

Levodopa  Safe and appropriate 
Should be prescribed 

‐  No alert 
true‐negative 

No alert 
true‐negative 

No alert 
No CDS support 

Entacapone  Safe and appropriate 
Should be prescribed 

Commission 
error if not 
prescribed 

No alert 
true‐negative 

Alert when 
prescribed with 
Rosuvastatin 
false‐positive 

No alert 
No CDS support 

Ramipril  Safe and appropriate 
Should be prescribed 

‐  No alert 
true‐negative 

No alert 
true‐negative 

No alert 
No CDS support 

Thiamine 
Hydrochloride 

Safe and appropriate 
Should be prescribed 

‐  No alert 
true‐negative 

No alert 
true‐negative 

No alert 
No CDS support 

Rosuvastatin  Safe and appropriate 
Should be prescribed 

Commission 
error if not 
prescribed 

No alert 
true‐negative 

Alert when 
prescribed with 
Entacapone 
false‐positive 

No alert 
No CDS support 

Metoclopramide 
Hydrochloride 

Contraindicated 
Should not be prescribed 

Omission error 
if prescribed 

Alert 
true‐positive 

No alert 
false‐negative 

No alert 
No CDS support 

Table 2 Medicines requested for the patient in Scenario I. 

Please note: Patients presented in the prescribing scenarios are fictional. All biographical information was 

made up for the purpose of this experiment in order to present participants with the information they would 

expect in such patient cases. 

 



APPENDIX B: OVERVIEW OF ERRORS IN PATIENT SCENARIOS  
Scenario  Error Type Medication  Alert displayed to participants Comment Severity  
A 
Low 
complexity 

Prescribing 
Error 

Digoxin 250 microgram tablet, 2 
tablets, PO, three times a day. 

WARNING: High Dose 
The entered dose is higher than the recommended maintenance 
dose range. 

The elderly patient has atrial fibrillation which was 
controlled with Digoxin prior to admission.  
The dose requested by the scenario is a loading dose. The 
maintenance dose for an elderly patient is 62.5 to 125 
micrograms once daily.   

Serious 

False Positive  Lisinopril 5mg tablet, 1 tablet, 
PO, once daily. 

WARNING: Medicine Contraindicated 
This medication is contraindicated for a condition (Pulmonary 
Oedema) contained in the patient record. 

Lisinopril is not contraindicated in patients with 
pulmonary oedema. 

 

B 
Low 
complexity 

Prescribing 
Error 

Spironolactone 25mg tablet, 1 
tablet, PO, once daily. 

WARNING: Medicine Contraindicated 
This medicine is contraindicated for a condition (Hyperkalaemia) 
contained in the patient record. 

Patient has hyperkalemia for which Spironolactone is 
contraindicated. 

Serious 

False Positive  Augmentin Duo Forte 
(amoxycillin 875 mg + clavulanic 
acid 125 mg) tablet, 1 tablet, PO, 
twice daily. 

WARNING: Medicine Contraindicated 
This medication is contraindicated for a condition (Systolic Heart 
Failure) contained in the patient record. 

Augmentin Duo Forte is not contraindicated in patients 
with heart failure.  

 

C 
Low 
complexity 

Prescribing 
Error 

Warfarin Sodium 2 mg tablet, 1 
tablet, PO, once daily. 
and 
Ibuprofen 400 mg tablet, 1 
tablet, PO, three times daily. 

WARNING: Adverse Drug Interaction 
This medication has a listed adverse interaction with another 
already prescribed medication.  
There is an adverse drug interaction for Warfarin and Ibuprofen. 
This combination should be avoided. 

Non‐steroidal anti‐inflammatory drugs (Ibuprofen) 
increase the risk of gastrointestinal bleeding in patients 
taking Warfarin. The combination should be avoided, 
especially as better analgesic options are available.  
 

Significant 

False Positive  Atorvastatin 10 mg tablet, 1 
tablet, PO, once daily.   

WARNING: Medicine Contraindicated 
This medication is contraindicated for a condition (Venous 
Thromboembolism) contained in the patient record. 

Atorvastatin is not contraindicated in patients with 
venous thromboembolism. 

 

D 
Low 
complexity 

Prescribing 
Error 

Aspirin 300 mg tablet: 
effervescent, 3 tablets, PO, every 
6 hours. 

WARNING: Medicine Contraindicated 
This medication is contraindicated for a condition (Peptic Ulcer 
Disease) contained in the patient record. 

Patient has peptic ulcer disease with a history of bleeds 
for which aspirin increases the risk of gastrointestinal 
ulceration. There are better analgesic options.  

Significant 

False Positive  Pantoprazole 40 mg tablet: 
enteric, 1 tablet, PO, once daily. 

WARNING: Medicine Contraindicated 
This medication is contraindicated for a condition (Severe 
Vomiting) contained in the patient record. 

Pantoprazole is not contraindicated in patients with server 
vomiting.  

 

E 
Low 
complexity 

Prescribing 
Error 

Loperamide Hydrochloride 2 mg 
capsule, 1 capsule, PO, PRN, 
every four hours, maximum 8 
capsules per day. 

WARNING: Medicine Contraindicated 
This medication is contraindicated for a condition (Ulcerative 
Colitis) contained in the patient record. 

Loperamide is contraindicated in patients with ulcerative 
colitis which poses a risk of toxic megacolon.  

Serious 

False Positive  Mesalazine 500 mg tablet: 
enteric, 1 tablet, PO, three times 
daily. 
and 
Prednisolone 25 mg tablet, 1 
tablet, PO, once daily. 

WARNING: Adverse Drug Interaction 
This medication has a listed adverse interaction with another 
already prescribed medication.  
There is an adverse drug interaction for Mesalazine and 
Prednisolone. This combination should be avoided. 

There is no documented adverse drug interaction for 
Mesalazine and Prednisolone.  

 



Scenario  Error Type Medication  Alert displayed to participants Comment Severity  
F 
Low 
complexity 

Prescribing 
Error 

Phenelzine 15 mg tablet, 1 tablet, 
PO, three times daily. 
and 
Tramadol Hydrochloride 50mg 
capsules, 2 capsules, PO, PRN, 
every six hours, maximum 8 
capsules per day. 

WARNING: Adverse Drug Interaction 
This medication has a listed adverse interaction with another 
already prescribed medication.  
There is an adverse drug interaction for Phenelzine and 
Tramadol hydrochloride. This combination should be avoided. 

The combination of phenelzine and tramadol are 
contraindicated due to the possibility of causing serotonin 
toxicity.  

Serious 

False Positive  Ramipril 5 mg tablet, 1 tablet, 
PO, once daily. 

WARNING: Adverse Drug Reaction 
This patient has an Allergy or Adverse Drug Reaction recorded 
for this medication. 

The patient is allergic to Sulfonamide. However Ramipril is 
not contraindicated for this allergy.  

 

G  
High 
complexity 

Prescribing 
Error 

Paracetamol 500 mg tablet, 2 
tablets, PO, four times a day. 
and 
Panadeine Forte (Codeine 
Phosphate with Paracetamol 
Tablet 30 mg‐500 mg) tablet, 2 
tablets, PO, PRN, every four 
hours, maximum 8 tablets per 
day. 

WARNING: High Dose / Duplicate Substance 
Both Paracetamol and Panadine Forte (Codeinie Phosphate 
30mg with Paracetamol 500mg) contain the ingredient 
Paracetamol. The total Paracetamol entered is higher than the 
recommended dose range. 

Prescribed together these two prescriptions provide for a 
combined maximum possible dose of 8 grams of 
paracetamol per day, double the maximum daily dose of 4 
grams.  

Significant 

False Positive  Ciprofloxacin 250 mg tablet, 1 
tablet, PO, twice daily. 

WARNING: Adverse Drug Reaction 
This patient has an Allergy or Adverse Drug Reaction recorded 
for this medication. 

The patient is allergic to penicillin. Ciprofloxacin is an 
antibiotic however it is not contraindicated for allergy to 
penicillin.  

 

H  
High 
complexity 

Prescribing 
Error 

Methotrexate 2.5 mg tablets, 3 
tablets, PO, once daily. 

WARNING: High Dose 
The entered dose is higher than the recommended maintenance 
dose range 

Patient has net onset rheumatoid arthritis. For treatment 
of rheumatoid arthritis, the loading dose of methotrexate 
is 7.5mg once weekly.  

Potentially 
lethal 

False Positive  Paracetamol 500 mg tablet, 2 
tablets, PO, PRN, every four 
hours, maximum 8 tablets per 
day. 

WARNING: Medicine Contraindicated 
This medication is contraindicated for a condition (Peptic Ulcer 
Disease) contained in the patient record. 

Patient has newly diagnosed peptic ulcer disease,  
however it is not a contraindication for paracetamol.  

 

I  
High 
complexity 

Prescribing 
Error 

Metoclopramide Hydrochloride 
10 mg tablet, 1 tablet, PO, PRN, 
three times daily, maximum 3 
tablets per day. 

WARNING: Medicine Contraindicated 
This medication is contraindicated for a condition (Parkinson’s 
Disease) contained in the patient record. 

Patient has a history of Parkinson’s disease for which 
Metoclopramide is contraindicated as symptoms may 
worsen. The drug reference(2015 January) names an 
alternative medicine as being preferred.  

Serious 

False Positive  Entacapone 200 mg tablet, 1 
tablet, PO, three times daily.  
and 
Rosuvastatin 20 mg tablet, 1 
tablet, PO, once daily. 

WARNING: Adverse Drug Interaction 
This medication has a listed adverse interaction with another 
already prescribed medication.  
There is an adverse drug interaction for Entacapone and 
Rosuvastatin. This combination should be avoided. 

There is no documented adverse drug interaction for 
Entacapone and Rosuvastatin.  

 

 

   



APPENDIX C: COGNITIVE LOAD INVENTORY  
Item IL1 – expected to measure intrinsic cognitive load 
Item:   The content of this scenario was very complex. 
Original:  The content of this activity was very complex.  
 
Scale: 0 (Not at all the case), 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 (Completely the case) 
 
Item IL2 – expected to measure intrinsic cognitive load 
Item:   I invested a very high mental effort in the complexity of this scenario. 
Original:  I invested a very high mental effort in the complexity of this activity. 
 
Scale: 0 (Not at all the case), 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 (Completely the case) 
 
Item IL3 – expected to measure intrinsic cognitive load 
Item:   The scenario I just finished was... 
Original:  The lecture that just finished was… 
 
Scale: Very, very easy (1), Very easy (2), Easy (3), Rather easy (4), Neither easy nor difficult (5), Rather 
difficult (6), Difficult (7), Very difficult (8), Very, very difficult (9) 
 
 
   



APPENDIX D: SELECTION OF PREDICTORS FOR MULTILEVEL MODEL 

Model Evaluated  Fixed effect removed  ‐2 Log Likelihood 
Number of 
Parameters  Likelihood ratio test 

Include in 
final model 

Fixed Intercept, Random Intercept (Participant), Complexity, CDS, Omission Error, 
Commission Error, Complexity*CDS, Complexity*Omission Error, Complexity*Commission 
Error, CDS*Omission Error, CDS*Commission Error 

2673.228  16   

Fixed Intercept, Random Intercept (Participant), Complexity, CDS, Omission Error, 
Commission Error, Complexity * CDS, Complexity * Commission Error, CDS * Omission 
Error, CDS * Commission Error 

Complexity*Omission 
Error 

2673.243  15  χ2(1)=0.015, p=.903  Exclude 

Fixed Intercept, Random Intercept (Participant), Complexity, CDS, Omission Error, 
Commission Error, Complexity*CDS, CDS*Omission Error, CDS*Commission Error 

Complexity*Commission 
Error 

2673.505  14  χ2(1)=0.262, p=.609  Exclude 

Fixed Intercept, Random Intercept (Participant), Complexity, CDS, Omission Error, 
Commission Error, Complexity*CDS, CDS*Omission Error 

CDS*Commission Error  2674.962  12  χ2(2)=1.457, p=.483  Exclude 

Fixed Intercept, Random Intercept (Participant), Complexity, CDS, Omission Error, 
Commission Error, CDS*Omission Error 

Complexity*CDS  2682.599  10  χ2(2)=7.637, p=.022  Include 

Fixed Intercept, Random Intercept (Participant), Complexity, CDS, Omission Error, 
Commission Error 

CDS*Omission Error  2690.058  8  χ2(2)=7.459, p=.024  Include 

Fixed Intercept, Random Intercept (Participant), Complexity, CDS, Omission Error  Commission Error  2690.785  7  χ2(1)=0.727, p=.394  Exclude 

Fixed Intercept, Random Intercept (Participant), Complexity, CDS   Omission Error  2703.03  6  χ2(1)=12.245, p<.001  Include 

Fixed Intercept, Random Intercept (Participant), Complexity   CDS  2712.908  4  χ2(1)=9.878, p=.007  Include 

[Intercepts only model] Fixed Intercept, Random Intercept (Participant)  Complexity  2786.906  3  χ2(1)=73.998, p<.001  Include 

Fixed Intercept  Random Intercept   2966.725  2  χ2(1)=179.819, p<.001  Include 

Final model 
Intercept for fixed effects, Random Intercept: Participant (Covariance structure: Variance Components), Task Complexity (Low, High), Quality of Clinical Decision Support 
(Correct, Incorrect, No CDS), Omission error (Yes, No), Quality of Clinical Decision Support * Omission Error, Scenario Complexity * Quality of Clinical Decision Support, 
Residual.  

11 parameters, ‐2 Log likelihood = 2676.475. 

 

   



APPENDIX E: INTRINSIC COGNITIVE LOAD MULTILEVEL MODEL COEFFICIENTS  
 
 

          95% Confidence 
Interval  

Coefficient  Std. Error  df  t  Sig.  Lower 
Bound 

Upper 
Bound 

Intercept  4.48  .194  508.517  23.038  <.001  4.10  4.86 

Low Complexity  ‐1.28  .175  597.6  ‐7.337  <.001  ‐1.62  ‐0.94 

High Complexity  .  .  .  .  .  .  . 

Correct CDS  0.08  .371  632.675  0.211  .833  ‐0.65  0.81 

Incorrect CDS  ‐0.19  .207  609.211  ‐0.915  .360  ‐0.60  0.22 

Control (No CDS)  .  .  .  .  .  .  . 

No Omission Error  0.73  .194  652.848  3.778  <.001  0.35  1.12 

Omission Error  .  .  .  .  .  .  . 

Low Complexity * Correct CDS  0.46  .246  597.595  1.883  .060  ‐0.02  0.95 

Low Complexity * Incorrect CDS  0.64  .246  597.705  2.591  .010  0.15  1.12 

Low Complexity * Control (No CDS)  .  .  .  .  .  .  . 

High Complexity * Correct CDS  .  .  .  .  .  .  . 

High Complexity * Incorrect CDS  .  .  .  .  .  .  . 

High Complexity * Control (No CDS)  .  .  .  .  .  .  . 

Correct CDS * No Omission Error  ‐1.07  .392  640.594  ‐2.73  .007  ‐1.84  ‐0.30 

Correct CDS * Omission Error  .  .  .  .  .  .  . 

Incorrect CDS * No Omission Error  ‐0.16  .290  632.583  ‐0.534  .593  ‐0.73  0.41 

Incorrect CDS * Omission Error  .  .  .  .  .  .  . 

Control (No CDS) * No Omission Error  .  .  .  .  .  .  . 

Control (No CDS) * Omission Error  .  .  .  .  .  .  . 

 

. = parameter is redundant.   
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Chapter 4 summary 

4.5 Effect of task complexity and clinical decision support on cognitive load 

4.5.1 Omission errors 

-ve

3

+ve

-ve

1

2
Correct CDS Incorrect CDSHigh task 

complexity

Omission
errors

Decision Support

Intrinsic 
Cognitive Load

High complexity 
with CDS

Clinical decision support High task complexityIndependent variables:
Interaction between clinical decision 
support and high task complexity

Outcome variables: Omission errors Intrinsic cognitive load

Association between two variables.

Causal link. The arrow shows the direction of cause to effect.

+ve Positively linked variables vary in the same direction (an increase in one is linked to an increase in the other and vice-versa).

-ve Negatively linked variables vary in opposite directions (an increase in one is linked to a decrease in the other and vice-versa).
  

Figure 4-1 Effect of task complexity, clinical decision support and omission errors on intrinsic cognitive 
load 

❶ High task complexity increases intrinsic cognitive load.  

Intrinsic cognitive load was significantly higher for high- compared to low-complexity scenarios. See 
Table 1 in Article III. 

 Intrinsic cognitive load was reduced in high complexity conditions assisted by CDS.  

The presence of CDS reduced intrinsic cognitive load compared to when there was no CDS in high-, but 
not in low-complexity scenarios. This was significant for correct CDS, however, became non-significant 
for incorrect CDS once the Bonferroni correction was applied. See Figure 4 and Table 1 in Article III.  

❸ Reduced omission errors were associated with increased intrinsic cognitive load 

Participants who avoided omission errors with incorrect CDS and no CDS reported significantly higher 
intrinsic cognitive load than participants who made omission errors. See Figure 5 in Article III.  
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4.5.2 Commission errors 

The analysis revealed no association between reported intrinsic cognitive load and commission errors.  
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5 Automation bias and verification 
This chapter examines the relationship between automation bias and verification. 

5.1 Background 

In the e-prescribing experiment, participants could assess the safety and appropriateness of medicines 

using the provided drug reference.[1] This drug reference provided the means to identify unsafe 

medicines independent of CDS. This was essential in the control condition where there was no CDS 

support. It could also be used to verify the correctness of CDS alerts or their absence.  

This chapter examines participants’ information seeking or verification, as measured by their access of 

the drug reference, and how it relates to automation bias errors and task complexity.  

5.2 Contributions of this article to thesis 

Article IV reports on the analysis of participants’ access of drug references during the electronic 

prescribing experiment. It reports that less verification was significantly associated with both omission 

and commission errors. It also found that verification was reduced by the presence of CDS and high 

task complexity. 

The findings reported in this article (Article IV) contribute to an understanding of the relationship 

between automation bias errors, task complexity and verification. This contributes to aim 6, which will 

be addressed in the discussion (chapter 6).  

5.3 Article details 

This article was published in Applied Clinical Informatics.[2]  

Citation 

Lyell D, Magrabi F, Coiera E. Reduced Verification of Medication Alerts Increases Prescribing Errors. 

Applied Clinical Informatics 2019;10(01):066-76 doi: 10.1055/s-0038-1677009 

The version of record is available from the publisher’s website: 

https://doi.org/10.1055/s-0038-1677009  
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ABSTRACT 

OBJECTIVE: Clinicians using clinical decision support (CDS) to prescribe medications have an 

obligation to ensure prescriptions are safe. One option is to verify the safety of prescriptions if there 

is uncertainty, e.g. by using drug references. Supervisory control experiments in aviation and process 

control have associated errors with reduced verification arising from over‐reliance on decision 

support. However, it is unknown whether this relationship extends to clinical decision making. 

Therefore, we examine whether there is a relationship between verification behaviours and 

prescribing errors, with and without CDS medication alerts, and whether task complexity mediates 

this.  

METHOD: One hundred and twenty students in the final two years of a medical degree prescribed 

medicines for patient scenarios using a simulated e‐prescribing system. CDS (correct, incorrect and 

no CDS) and task complexity (low and high) were varied. Outcomes were omission (missed 

prescribing errors) and commission errors (accepted false‐positive alerts). Verification measures 

were access of drug references and view time percentage of task time.  

RESULTS: Failure to access references for medicines with prescribing errors increased omission errors 

with no CDS (high‐complexity: χ2(1)=12.716, p<.001) and incorrect CDS (Fisher’s exact; low‐

complexity: p=.002, high‐complexity: p=.001). Failure to access references for false‐positive alerts 

increased commission errors (low‐complexity: χ2(1)=16.673, p<.001, high‐complexity: χ2(1)=18.690, 

p<.001). Fewer participants accessed relevant references with incorrect compared to no CDS 

(McNemar; low‐complexity: p<.001, high‐complexity: p<.001). Lower view time percentages 

increased omission, F(3, 361.914)=4.498, p=.035, and commission errors, F(1, 346.223)=2.712, 

p=.045. View time percentages were lower in CDS‐assisted compared to unassisted conditions, F(2, 

335.743)=10.443, p<.001.  

DISCUSSION: The presence of CDS reduced verification of prescription safety. When CDS was 

incorrect, reduced verification was associated with increased prescribing errors.  

CONCLUSION: CDS can be incorrect, and verification provides one mechanism to detect errors. 

System designers need to facilitate verification without increasing workload or eliminating the 

benefits of correct CDS.  
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BACKGROUND 

Prescribing errors are a leading cause of preventable adverse drug events.[1] A common cause of 

prescribing errors is a lack of knowledge about medicines and the patients for whom they are being 

prescribed.[2] Clinical decision support (CDS) within electronic prescribing (e‐prescribing) systems 

has been shown to reduce adverse events by alerting clinicians to potential errors such as drug‐drug 

interactions.[3‐5] However, CDS is not a perfect substitute for information about medicines: not all 

potential problems are alerted,[6] malfunctions can occur,[7‐9] and alerts are frequently 

overridden.[10, 11] 

Verification is the process of establishing the truth or correctness of something by investigation or 

evaluation of data.[12] Prescribing errors could be avoided by verification of prescriptions, testing 

their correctness (safety and appropriateness) against information published in drug references. 

Inadequate verification is considered an indicator of complacency in overseeing automation, such as 

decision support.[13‐15]  

Of specific concern, clinicians may over‐rely on CDS and consequently reduce their verification 

efforts, which could lead to errors when CDS is incorrect. This over‐reliance is known as automation 

bias and occurs when CDS alerts are used as a “heuristic replacement for vigilant information seeking 

and processing.”[16] Omission errors occur when clinicians fail to address problems because they 

were not alerted to the problem by CDS, and commission errors occur when incorrect CDS advice is 

acted upon.[16‐18]  Reduced verification has been associated with automation bias errors in the 

heavily automated domains of aviation and process control in supervisory control tasks,[13‐15, 19‐

22] but has not yet been tested for CDS medication alerts, where tasks, decision support and task 

complexity are likely to differ.[23]  

The evidence for higher task complexity increasing automation bias errors is mixed.[17, 24‐26] 

However high complexity tasks typically have more information to verify [27] and so might result in 

increased reliance on CDS.[23]  

While verification could have a key role in reducing prescribing errors, this relationship has not yet 

been directly studied. Accordingly, this study examines: (1) the relationship between verification and 

prescribing errors with and without CDS medication alerts, and (2) whether task complexity mediates 

this relationship. We are especially interested in the impact of incorrect CDS, which creates the 

potential for automation bias errors.  

METHOD 

This study presents an analysis of verification data collected as part of a previously reported e‐

prescribing experiment.[17] That earlier study reported significant evidence of automation bias, with 

overreliance on incorrect CDS resulting in significantly more errors than when there was no CDS. A 
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second analysis evaluated whether high cognitive load was a cause of automation bias, but instead 

found participants who made omission errors experienced significantly lower cognitive load than 

those who didn’t make errors.[28] This third study extends the prior studies by examining how the 

presence of CDS and automation bias impact participants’ verification and how those changes might 

contribute to errors. 

Participants 

Students enrolled in the final two years of a medical degree at Australian universities, who would 

typically have received training in rational and safe prescribing, and completed the National 

Prescribing Curriculum, a series of online modules based on the principles outlined in the World 

Health Organisation’s Guide to Good Prescribing.[29]  

Experiment design 

The analysis had two within‐subjects factors: quality of CDS (correct, incorrect and no CDS) and 

scenario complexity (low and high). The control involved scenarios with no CDS. The original 

experiment included an interruption condition which was excluded from this analysis as participants 

were interrupted while verifying.[17] All participants performed one scenario in each of the six 

conditions (Figure 1).  

 

Figure 1 Experimental design with the number of participants in each condition.  
(Adapted from “Automation bias in electronic prescribing” by Lyell et al., 2017, BMC Med Inform Decis Mak, 17:28. 
Adapted and reproduced under CC BY 4.0.)  

Outcome measures 

1. Omission error (yes/no): Participants made an omission error if they prescribed a designated 

medication containing a prescribing error, indicating that they had failed to detect it. If the 

error was corrected, it was not scored as an error.  
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2. Commission error (yes/no): Participants made a commission error if they wrongly acted on a 

false‐positive alert by not prescribing a medication that was unaffected by prescribing errors.  

Verification measures 

3. Access (accessed/not accessed): Whether the participant accessed the drug reference for the 

medicine with the prescribing error (omission error) or the medicine triggering the false‐

positive alert (commission error).  

4. View time percentage: The percentage of task time viewing drug references. The conversion 

to a percentage of task time allowed for comparisons between low‐ and high‐complexity 

conditions, which differed in the number of prescription requested. High‐complexity 

scenarios requested five more prescriptions than low‐complexity scenarios.  Task and drug 

reference view time were expected to increase as a function of the number of requested 

prescriptions.  

Experimental task 

Participants were provided with patient scenarios presenting a brief patient history and a list of 

medications for them to prescribe using a simulated e‐prescribing system (Figure 2). One of the listed 

medicines was contraindicated, posing a sufficiently severe risk of harm to the patient that its use 

should be avoided. All other requested medication orders were unaffected by prescribing errors. 

Participants were instructed to prescribe all medications except those they believed to contain a 

prescribing error. Of interest was whether participants would detect the prescribing error. See the 

appendices of Lyell, et al. [28] for examples of the patient scenarios and a summary of the errors 

inserted in the scenarios.  

 

Figure 2 Example of the experimental task showing the e‐prescribing system (left) and patient scenario 
(right).  
(From “Automation bias in electronic prescribing” by Lyell et al., 2017, BMC Med Inform Decis Mak, 17:28. Reproduced 
under CC BY 4.0.) 
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Verification of prescriptions 

Participants were able to verify the safety of prescriptions independently of CDS and the correctness 

of CDS by accessing a drug reference viewer built into the e‐prescribing system. The drug reference 

was easily accessible and displayed monographs from the Australian Medicines Handbook,[30] an 

evidence‐based reference widely utilised in Australian clinical practice.[31] Participants were 

instructed: (1) CDS could be incorrect; (2) how to verify using the drug reference; (3) rely on the drug 

reference over CDS if there was a discrepancy; and (4) refer only to the provided drug reference.  

Drug references were checked by MZR (a pharmacist) and DL to ensure they provided clear and 

sufficient information to enable prescribing errors to be identified. A log recorded access to drug 

references and view times. 

Clinical decision support alerts 

CDS displayed alerts (Figure 3) when a medication order containing a prescribing error was entered 

and required resolution either by removing the prescription or by overriding the alert with a reason. 

For examples of the override reasons provided by participants see Lyell, et al. [17] 

 

Figure 3 CDS medication alert.  
(From “Automation bias in electronic prescribing” by Lyell et al., 2017, BMC Med Inform Decis Mak, 17:28. Reproduced 
under CC BY 4.0.) 

The triggering and content of CDS alerts were manipulated across the three conditions:  

 Correct CDS alerts were triggered by prescription of the medication with the prescribing error 

(true‐positives). The absence of alerts always indicated true‐negatives.   

 Incorrect CDS failed to alert the prescribing error (false‐negative), and instead provided one 

false‐positive alert for a medicine unaffected by prescribing error. These CDS errors provided 

opportunities for one omission and one commission error.  
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 No CDS served as the control condition in which there were no CDS checking for errors. 

Participants were told that CDS had been switched off for these scenarios and were advised 

to use the drug reference to manage any errors.  

Task complexity was manipulated by varying the number requested prescriptions and information 

elements in scenarios.[32, 33] Low‐complexity scenarios requested three prescriptions and contained 

three additional information elements, such as medical conditions, symptoms, test results, allergies 

and observations that could potentially contra‐indicate those medications. High‐complexity scenarios 

requested eight medications and contained nine additional information elements. As a result, high‐

complexity scenarios had five more drug references which could be viewed, more information 

elements to be cross‐referenced and required more verification than low‐complexity scenarios. We 

previously reported that participants found high‐complexity scenarios significantly more cognitively 

demanding than low‐complexity scenarios.[28]  

Allocation of patient scenarios to experimental conditions was counterbalanced to ensure scenarios 

were evenly presented in all conditions.  The order of presentation was randomised to control for 

order effects.  

Procedure 

The experiment was presented as an evaluation of an e‐prescribing system in development. No 

information was provided on what types of errors the system would check and alert. Participants 

were shown an instructional video on how to use the e‐prescribing system, including demonstration 

of a correct CDS alert and how to verify using the drug reference.  

Participants were instructed  to approach tasks as if treating a real patient, exercising all due care 

and to not prescribe any medication believed to contain a prescribing error.  

Statistical analyses 

Chi‐Square test for independence or Fisher’s exact probability tests were used to test whether access 

of drug references relevant to errors was associated with omission and commission errors. 

Differences in access between CDS conditions and levels of task complexity were tested with 

McNemar’s tests.  

Multilevel modelling,[34] which is not affected by missing data,[35] was used to analyse view time 

percentage as participants did not access drug references in all conditions. The predictors assessed 

for inclusion in the model were task complexity, quality of decision support, and whether the 

participant made an omission error and commission error. We assessed all two‐way interactions. A 

stepwise backward elimination method was used for predictor selection, where all predictors were 

entered into the model, and then interactions were removed one by one in order of least 

significance. The process was repeated for main effects. Model fit was evaluated by comparing 
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models using the likelihood ratio test.[36] Only predictors with a significant effect on model fit were 

retained. The model included a random intercept for each participant, taking into account the nested 

structure of the data. Models were constructed using maximum likelihood for parameter estimation. 

RESULTS 

One hundred and twenty participants were included in the analysis. One participant completed the 

experiment twice (on two separate occasions), and the data from their second attempt were 

excluded. Participants’ average age was 24 years, and 46.7% were female. The median time to 

perform low‐complexity scenarios was 2:45 min (interquartile range = 1:42 to 4:08) and for high‐

complexity scenarios, it was 5:25 min (interquartile range = 3:59 to 7:21). Overall participants 

accessed the drug information reference at least once in 64.7% of scenarios. Thirty‐four participants 

viewed at least one reference in all scenarios, while eleven participants did not view any references 

(accounting for 25.9% of the scenarios in which no references were viewed).  

Accessing drug references for medicines with prescribing errors 

Omission errors were higher when drug references for medicines with prescribing errors were not accessed 

When prescribing without CDS (control), omission errors were higher when drug references for 

medicines with prescribing errors were not accessed (Table 1). This was significant for high‐ (χ2 (1, n = 

120) = 12.716, p <.001, phi = ‐.326), but not for low‐complexity scenarios (χ2 (1, n = 120) = 1.569, p = 

.210).  

Table 1 Percentage (number) of participants who accessed the drug reference for medicines with prescribing 
errors by whether an omission error was made.  

   Control (No CDS)     Correct CDS     Incorrect CDS    

   No error  Error  Total  No error  Error  Total  No error  Error  Total 

Low Complexity                         

Accessed  59.7%  40.3%  51.7% (62)  94.1%  5.9%  42.5% (51)  47.6%  52.4%  17.5% (21) 

Not accessed  48.3%  51.7%  48.3% (58)  91.3%  8.7%  57.5% (69)  15.2%  84.8%  82.5% (99) 

Total  54.2% (65)  45.8% (55) 

 

92.5% (111)  7.5% (9) 

 

20.8% (25)  79.2% (95) 

 

High Complexity          

Accessed  70.6%  29.4%  42.5% (51)  90.9%  9.1%  45.8% (55)  62.5%  37.5%  13.3% (16) 

Not accessed  37.7%  62.3%  57.5% (69)  90.8%  9.2%  54.2% (65)  19.2%  80.8%  86.7% (104) 

Total  51.7% (62)  48.3% (58) 

 

90.8% (109)  9.2% (11) 

 

25% (30)  75% (90) 

 

Total          

Accessed  64.6%  35.4%  47.1% (113)  92.5%  7.5%  44.2% (106)  54.1%  45.9%  15.4% (37) 

Not accessed  42.5%  57.5%  52.9% (127)  91.0%  9.0%  55.8% (134)  17.2%  82.8%  84.6% (203) 

Total  52.9% (127)  47.1% (113)     91.7% (220)  8.3% (20)     22.9% (55)  77.1% (185)    

 

A similar relationship was found with incorrect CDS which failed to alert the prescribing error. 

Omission errors were significantly higher when the drug reference for the medicine with the 
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prescribing error was not accessed in both low (Fisher’s exact test, p=.002, n = 120) and high‐

complexity conditions (Fisher’s exact test, p=.001, n = 120).  

For correct CDS, there was no relationship between accessing the relevant drug reference and 

omission errors, as would be expected for correctly alerted prescribing errors (Table 1; Fisher’s exact 

tests: Low‐complexity, p=.731, n = 120; High‐complexity, p=1, n = 120).  

Over all conditions, 35% of participants in the control and 46% of participants in the incorrect CDS 

conditions made omission errors despite accessing the reference necessary to identify the error.  

Clinical decision support reduced participants’ access of drug references for medicines with prescribing 

errors.  

Significantly fewer participants accessed drug references for medicines containing prescribing errors 

with incorrect compared to no CDS (control; McNemar tests: Low‐complexity p<.001, n=120; High‐

complexity, p<.001, n=120). However, there was no difference in access between correct and no CDS 

(control; McNemar tests: Low complexity, p=.169, n=120; High complexity, p=.665, n=120).  

Commission errors were higher when drug references relevant to false‐positive alerts were not accessed.  

False‐positive alerts were more likely to lead to commission errors if the drug reference for the 

medicine triggering the alert was not accessed (Table 2; low‐complexity, χ2 (1, n = 116) = 16.673, 

p<.001, phi = ‐.379; high‐complexity, χ2 (1, n = 111) = 18.690, p < .001, phi = ‐.410.) Even when the 

relevant reference was consulted, 45.9% of participants across all conditions went on to make a 

commission error despite accessing references contradicting the alert. 

Table 2 Percentage (number) of participants who accessed the drug reference relevant to the false‐positive 
alert from incorrect CDS by whether a commission error was made. 
Note: Includes only scenarios in which false‐positive alerts were displayed.  

   No error 
Commission 
Error 

Total 

Low Complexity 
    

Accessed  48.4%  51.6%  53.4% (62) 

Not accessed  13.0%  87.0%  46.6% (54) 

Total  31.9% (37)  68.1% (79) 
 

High Complexity 
  

Accessed  61.2%  38.8%  44.1% (49) 

Not accessed  21.0%  79.0%  55.9% (62) 

Total  38.7% (43)  61.3% (68) 
 

Total      

Accessed  54.1%  45.9%  48.9% (111) 

Not accessed  17.2%  82.8%  51.1% (116) 

Total  35.2% (80)  64.8% (147)    

 

   



Page 10    Verification of Medication Alerts 
 
Task complexity did not affect access of drug references relevant to errors.  

There was no difference in the proportion of participants who accessed drug references for 

medicines with prescribing errors (opportunities for omission errors) between the low‐ and high‐

complexity scenarios (McNemar tests: Control, p=.071, n=120; Correct CDS, p=.665, n=120; Incorrect 

CDS, p=.405, n=120.) Similarly, there was no difference in participants accessing drug references 

relevant to false‐positive alerts (opportunities for commission errors) between the low‐ and high 

complexity scenarios (McNemar’s test: Incorrect CDS, p=.117, n=108.)  

Multilevel analysis of view time percentages 

The multilevel analysis focused on the 466 scenarios (64.7%) in which drug references were accessed. 

View time percentage could not be calculated in one hundred scenarios (21.5% of these) where: task 

time was not recorded due to a software issue (n=93), outliers for task time (n=9) and view time 

(n=1) were removed, or view time data was missing (n=6). Several scenarios were affected by 

multiple issues. View time percentage was calculated for the remaining 366 scenarios (78.5%) and 

included in the model. With no systematic differences detected in the missing data; they were 

treated as being random. 

Thirteen models were evaluated (appendix A) and from these four fixed effects were found to 

significantly contribute to the fit of a multilevel model and were included in the final model. The 

significance of fixed effects (predictors in the model) are reported in Table 3, and the model 

coefficients are presented in Appendix B. The comparison of effects is reported based on the 

estimated marginal means computed by the model. Significance probabilities have been adjusted for 

multiple comparisons using the Bonferroni correction.[37] The final model was significantly better 

than the intercepts only model, χ2(7)=132.867, p<.001. The intraclass correlation coefficient (ICC) was 

.23, indicating that 23% of the variance in verification was attributable to variation between 

participants, supporting the conduct of a multilevel analysis.[38, 39] The model residuals were 

normally distributed.  

Table 3 Significance of fixed effects in the multilevel model of view time percentage.  
* Indicates significant effect (p<.05) 

 
df F  p 

Intercept  1, 244.483  317.245  <.001* 

Task complexity 
     Low complexity, high complexity 

1, 302.436  105.383  <.001* 

Quality of decision support 
     Correct CDS, incorrect CDS, control (No CDS) 

2, 335.743  10.443  <.001* 

Omission error 
     Omission error, no omission error 

1, 361.914  4.498  .035* 

Quality of decision support * commission error  3, 346.223  2.712  .045* 
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Participants who made omission errors spent significantly smaller percentage of task time viewing 

drug references (M = 24.7%, 95%CI [21.1%, 28.2%]) than those who did not make errors (M = 28.4%, 

95%CI [25.1%, 31.6%]).  

Similarly, participants who made commission errors with incorrect CDS spent significantly smaller 

percentage of task time viewing drug references (p=.018; M = 23.6%, 95%CI [20.0%, 27.2%]) than 

those who made no errors (M = 29.7%, 95%CI [25.6%, 33.6%]). This interaction occurs because only 

the incorrect CDS conditions displayed false‐positive alerts that provided an opportunity for 

commission errors. There were no differences in the correct CDS (p=.977) or the control (p=.120) 

conditions.  

View time percentage was significantly reduced by the provision of decision support (Figure 4). View 

time percentage was highest in the control condition which provided no decision support (M = 34%, 

95%CI [29.7%, 39.9%]), and this was significantly higher than correct CDS (p<.001; M = 18.2%, 95%CI 

[12.7%, 23.8%]) and incorrect CDS (p=.012; M = 26.6%, 95%CI [23.7%, 29.5%]).  

 

Figure 4 Estimated marginal means with 95% confidence interval (from the multilevel model) for view time 
percentage by task complexity and quality of decision support. 
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High task complexity significantly reduced view time percentage. Participants spent a significantly 

greater percentage of task time viewing drug references in low‐ (M = 33.6%, 95%CI [30.2%, 37.0%]) 

compared to high‐complexity scenarios (M = 19.5%, 95%CI [16.4%, 22.5%]).  

DISCUSSION 

This experiment demonstrates firstly, that decreased verification, manifesting as either failure to 

access references or reduced view times as a percentage of task time, leads to increased omission 

and commission errors. Secondly, the presence of CDS decreases verification, and that decreased 

verification leads to increased omission and commission errors when CDS is incorrect. 

We found that omission and commission errors increased when participants did not access relevant 

references (see Figure 5). Troublingly, some participants went on to make omission and commission 

errors despite accessing references containing information necessary to avoid those errors. Prior 

studies have reported a similar ‘looking‐but‐not‐seeing’ or ‘inattentional blindness,' [13, 15, 21] 

which describes how people may fail to perceive something in plain sight because they are not 

attending to it.[40] Consequently, accessing the relevant references did not guarantee errors were 

detected, but failure to do so made errors more likely. 

 

Figure 5 The number of participants who made errors by quality of CDS and whether the relevant drug 
reference was accessed.  
Summarises the data presented in Tables 1 and 2, aggregating the low‐ and high‐complexity conditions.  

Seeking further insight into why accessing relevant references avoided some but not all errors, we 

analysed view time percentages. We found participants who avoided errors spent a significantly 

greater percentage of task time viewing references than those who made errors. Together the access 

and view time percentages results suggest: (1) verification should not be viewed as all‐or‐nothing, 
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but rather on a continuum of adequacy or vigilance, and (2) greater verification can reduce both 

omission and commission errors.  

Clinical decision support reduced verification 

We reported finding evidence of automation bias in this experiment; participants made significantly 

more omission and commission errors when provided with incorrect CDS compared to when they 

had no CDS.[17] The risk posed by automation bias is that CDS becomes a replacement for, rather 

than a supplement to, clinicians’ efforts in error detection. The analysis of verification behaviour 

provides some support for the idea of CDS replacing participants’ error detection efforts. A 

significantly smaller percentage of task time was spent viewing references in CDS‐assisted compared 

to unassisted conditions (see Figure 4). This reduction in verification was associated with increased 

errors. It is very likely this relationship is causal with reduced verification impeding the discovery of 

errors.  

Furthermore, when CDS was incorrect, participants who made omission or commission errors spent a 

smaller percentage of task time viewing references than those who did not make errors. This is 

consistent with prior automation bias research, which mostly employed aviation and process control 

tasks.[13‐15, 19‐22] The present study confirms this association extends to the detection of 

prescribing errors assisted by CDS medication alerts.  

Manzey, et al. [13] suggest the looking‐but‐not‐seeing effect, whereby participants made errors 

despite viewing information that could have prevented them, represents an automation bias induced 

withdrawal of cognitive resources for processing verification information. Therefore, while the 

necessary information was accessed, it was not processed in a way that enabled errors to be 

recognised. Our analysis of participants’ cognitive load, reported separately, provides support for 

this. Participants who made omission errors allocated fewer cognitive resources to the task than 

those who did not.[28] Curiously, there was no difference for commission errors. The present 

findings suggest, in addition to reduced processing, there may also be reduced acquisition of 

information. 

This is consistent with a cognitive miser view of automation bias,[16, 28] that people prefer 

adequate, faster and less effortful ways of thinking, rather than engaging in more accurate, but 

slower and more effortful thinking.[41] These findings also support Mosier and Skitka’s description of 

automation bias as the use of automation as a heuristic,[16] with CDS appearing to be used as a 

shortcut in place of verification.  

The same cognitive miser profile could also be found in participants who made errors in the control 

condition but to a significantly lesser extent. This may indicate the presence of other factors which 

trigger reduced verification in addition to automation bias.   
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Less verification in high complexity  

High‐complexity scenarios asked participants to prescribe five more medications, just over two and a 

half times the number requested in low‐complexity scenarios. We expected the time to enter 

prescriptions into the e‐prescribing system would increase as a function of the number of 

medications prescribed. Likewise, drug reference view time was expected to increase with the 

number of prescriptions and drug references that could be viewed. While there were no differences 

in access of relevant drug references as complexity increased from low to high, the view time 

percentage was significantly lower. The reduction in the percentage of task time viewing references 

could represent participants’ efforts to manage the increased workload created by needing to verify 

more information in high‐complexity scenarios. Despite this, we have previously reported that high 

task complexity did not increase automation bias errors.[17] This is puzzling, especially in light of 

present findings that high task complexity reduced verification, suggesting it may be a risk factor for 

automation bias. It is possible that participants’ verification efforts were more sensitive to task 

complexity than errors, with both low‐ and high‐complexity conditions exhibiting automation bias 

errors to a similar extent. If task complexity is a risk factor for automation bias, then both complexity 

conditions likely exceeded the threshold at which it presents. More research is needed to fully 

understand the relationship between task complexity and errors.  

Implications 

These findings highlight the importance of verification in preventing prescribing errors and may be 

generalisable to other forms of CDS. When prescribing is assisted by CDS medication alerts, 

verification provides the crucial means to differentiate between correct and incorrect CDS. However, 

the very presence of CDS is likely to exacerbate the problem, contributing to decreased verification, 

which, in turn, impedes the discovery of errors when CDS fails. This is the risk and challenge of 

automation bias. High task complexity further complicated matters, appearing to place downward 

pressure on verification, although the link between complexity and errors remains unclear. 

Improving the reliability and accuracy of CDS can reduce opportunities for error. However high‐

reliability automation is known to increase the rate of automation bias.[25] This risks clinicians being 

less able to detect CDS failures when they occur.  

The challenge for designers and users of CDS is to ensure appropriate verification in circumstances 

that may promote decreased verification. To date, automation bias has proven stubbornly resistant 

to attempts to mitigate its effects,[23]  including interventions which prompted users to verify.[42]  

While our findings describe how CDS changed the access of references and view time percentages, 

little is known about what factors prompt clinicians to verify, the information sought and how they 

go about verifying, including the assessment of information and resolution of potential conflicts 

between different information sources. More research is needed in this area and how to best assist 
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clinicians with effective verification. Such efforts need to focus on how to best incorporate 

verification information into workflows, presenting only relevant information when, where and in the 

form it is needed. The challenge is to do this in a way that minimally impacts workload, doesn’t 

overwhelm clinicians with too much information and maximises efficiency when CDS is correct.  

Ultimately, clinicians need to be mindful that CDS can and does fail,[7‐9] and that when it does, 

verification is the primary means to avoid errors. While it is impractical and undesirable to verify all 

prescriptions, clinicians would be well advised to verify whenever they suspect medication safety 

issues, even in the absence of medication alerts. It would also be prudent when prescribing 

unfamiliar or little‐used medicines or for unfamiliar issues.  

Limitations 

This experiment was subject to several limitations. The use of medical students provided a necessary 

control for knowledge and experience of prescribing. This provides an indication of verification 

behaviour by junior medical officers entering practice but may have limited generalisability to more 

experienced clinicians. Clinician knowledge is likely to play an important role in verification but 

exceeds the scope of the present study. Likewise, the completeness of knowledge will also be an 

important consideration, for example, a clinician may know a medicine’s contraindications for 

conditions, but not know all its possible adverse drug interactions.  

Replication of our study with other cohorts, including more experienced clinicians, and clinicians 

operating in different clinical contexts would need to be undertaken. The evidence for the presence 

of similar verification results in other non‐healthcare settings [13‐15, 19‐22] suggest however that 

these results are indeed generalisable to clinical decision making assisted by CDS. 

Other factors that are likely to impact verification include the design and accuracy of CDS, and the 

accessibility of verification information. Further research identifying the relative contributions of 

such factors would be informative for developing mitigations.  

Participants were not subjected to experimentally imposed time constraints or required to manage 

competing demands for their attention that clinicians would ordinarily experience in clinical practice.  

Finally, the inclusion of conditions designed to elicit both omission and commission errors in the 

same condition means we cannot fully differentiate the effects of verification for each error type.  

CONCLUSION 

This is the first study to test the relationship between verification behaviours and the detection of 

prescribing errors, with and without CDS medication alerts. Increased verification was associated 

with increased detection of errors, while the presence of CDS and high task complexity reduced 

verification.  
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These findings demonstrate the importance of verification in avoiding prescribing and automation 

bias errors. CDS can alert clinicians to errors that may have been inadvertently missed, however they 

are not perfectly sensitive and specific. Clinicians should allow CDS to function as an additional layer 

of defence, but should not rely on it if they suspect a medication safety issue as it cannot replace the 

clinician's own expertise and clinical judgment.  

CLINICAL RELEVANCE STATEMENT 

Verification of CDS provides one means to avoid prescribing errors and is especially prudent when 

prescribing unfamiliar or little‐used medicines or for unfamiliar issues. Clinical decision support 

medication alerts can help prevent prescribing errors, but CDS is imperfect and can be incorrect.  The 

presence of CDS appears to reduce verification efforts and when CDS are incorrect reduced 

verification is associated with prescribing errors.  

MULTIPLE CHOICE QUESTIONS 

Question: What strategy can be used to reduce prescribing errors when using clinical decision 

support medication alerts? 

a) Improve the accuracy of CDS medication alerts. 

b) Verifying medication alerts, or their absence, with a gold standard, evidence‐based drug 

reference.  

c) Introduce messages into CDS systems that prompt clinicians to verify prescriptions.  

d) Phase out CDS medication alerts.  

Correct answer: The correct answer is b. Verifying medication alerts, or their absence, with a gold 

standard, evidence‐based drug reference. Our results found that when CDS was incorrect greater 

verification was associated with reduced prescribing errors.  

CDS medication alerts have been shown to reduce prescribing errors (not option d), but they 

introduce a risk of over‐reliance. While, improving CDS accuracy would reduce opportunities for 

errors from over‐reliance, perfectly sensitive and specific CDS are likely unattainable. Additionally, 

highly accurate decision support increases the rate of automation bias errors (not option a). 

Automation bias has proven stubbornly resistant to mitigations including prompting users to verify 

(not option c).  

Question: When is verification of clinical decision support medication alerts, or their absence, 

especially prudent? 

a) When prescribing unfamiliar or little‐used medicines. 

b) When prescribing for unfamiliar problems.  

c) When a medication safety issue, such as contraindication, is suspected.  

d) All of the above. 
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Correct answer: The correct answer is d. All of the above.  

Clinicians will be familiar with and have a good knowledge of the medicines they frequently prescribe 

for commonly encountered issues. However, when prescribing unfamiliar or little‐used medicines or 

prescribing for unfamiliar issues, clinicians may have gaps in knowledge and rely more heavily on 

CDS. If CDS is incorrect, however there is a risk of omission or commission errors occurring. In 

general, it is prudent for clinicians to verify computer‐generated alerts, or their absence, if they 

suspect there is a risk of a prescribing error.  
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LIST OF ABBREVIATIONS 

CDS: Clinical Decision Support 

e‐prescribing: Electronic Prescribing 
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APPENDIX A: SELECTION OF PREDICTORS FOR MULTILEVEL MODEL 
Model Evaluated  Fixed effect removed  ‐2 Log 

Likelihood 
Number of 
Parameters 

Likelihood ratio 
test 

Include in 
final model 

Fixed intercept, Random intercept (participant), Complexity, CDS, Omission error, Commission error, Complexity * CDS, 
Complexity * Omission error, Complexity * Commission error, CDS * Omission error, CDS * Commission error,  
Omission error * Commission error 

2969.117 17  

Fixed intercept, Random intercept (participant), Complexity, CDS, Omission error, Commission error, Complexity * CDS, 
Complexity * Omission error, CDS * Omission error, CDS * Commission error, Omission error * Commission error 

Complexity * Commission 
error 

2969.118 16 χ2(1)=.001 p=.975 Exclude 

Fixed intercept, Random intercept (participant), Complexity, CDS, Omission error, Commission error, Complexity * CDS, 
Complexity * Omission error, CDS * Commission error, Omission error * Commission error 

CDS * Omission error 2969.282 14 χ2(2)=.164 p=.921 Exclude 

Fixed intercept, Random intercept (participant), Complexity, CDS, Omission error, Commission error, 
Complexity * Omission error, CDS * Commission error, Omission error * Commission error 

Complexity * CDS 2969.829 12 χ2(2)=.547 p=.761 Exclude 

Fixed intercept, Random intercept (participant), Complexity, CDS, Omission error, Commission error, CDS * Commission error, 
Omission error * Commission error 

Complexity * Omission error 2969.847 11 χ2(1)=.018 p=.893 Exclude 

Fixed intercept, Random intercept (participant), Complexity, CDS, Omission error, Commission error, CDS * Commission error Omission error * 
Commission error 

2970.154 10 χ2(1)=.307 p=.580 Exclude 

Fixed intercept, Random intercept (participant), Complexity, CDS, Omission error, Commission error CDS * Commission error 2976.517 8 χ2(2)=6.363 p=.042  Include 

Fixed intercept, Random intercept (participant), Complexity, CDS, Omission error Commission error 2978.200 7 χ2(1)=1.683 p=.195  Exclude 

Fixed intercept, Random intercept (participant), Complexity, CDS Omission error 2983.210 6 χ2(1)=5.010 p=.025  Include 

Fixed intercept, Random intercept (participant), Complexity  CDS  3029.940 4 χ2(2)=46.730 p<.001  Include 

[Intercepts only model] Fixed intercept, Random intercept (participant) Complexity 3103.021 3 χ2(1)=73.081 p<.001  Include 

Fixed intercept  Random intercept 
(participant) 

3114.720 2 χ2(1)=11.699 p=.001  Include 

[Null model]  Fixed intercept 3567.464 1 χ2(1)=452.744 p<.001  Include 

Final model 
Intercept for fixed effects, Random intercept: Participant (Covariance structure: Variance components), Task complexity (low, high), Quality of clinical decision support 
(correct, incorrect, control), Omission error (no, yes), Quality of clinical decision support * Commission error (no, yes), Residual. 

10 parameters, ‐2 Log likelihood = 2970.154 



APPENDIX B: MULTILEVEL MODEL COEFFICIENTS  
 
 

          95% Confidence 
Interval  

Coefficient  Std. 
Error 

df  t  Sig.  Lower 
Bound 

Upper 
Bound 

Intercept  29.81 5.048 356.884 5.905 .000  19.88  39.74
Low task complexity  14.17 1.380 302.436 10.266  .000  11.45  16.89
High task complexity  . . . . .  .  .
Correct CDS  ‐20.42 7.071 343.683 ‐2.888  .004  ‐34.33 ‐6.51
Incorrect CDS  ‐15.18 5.202 340.806 ‐2.918  .004  ‐25.41 ‐4.95
Control (No CDS)  . . . . .  .  .
No omission error  3.69 1.742 361.914 2.121 .035  .27  7.12
Omission error  . . . . .  .  .
Correct CDS * No commission error  ‐.16 5.346 339.548 ‐.029 .977  ‐10.67 10.36
Correct CDS * Commission error  . . . . .  .  .
Incorrect CDS * No commission error  6.00 2.520 353.936 2.381 .018  1.04  10.96
Incorrect CDS * Commission error  . . . . .  .  .
Control (No CDS) * No commission error  ‐7.87 5.047 345.557 ‐1.560  .120  ‐17.80 2.05
Control (No CDS) * Commission error  . . . . .  .  .

 

. = parameter is redundant.   
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Chapter 5 summary 

5.5 Effect of task complexity and clinical decision support on verification 

5.5.1 Omission errors 
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Causal link. The arrow shows the direction of cause to effect.

+ve Positively linked variables vary in the same direction (an increase in one is linked to an increase in the other and vice-versa).

-ve Negatively linked variables vary in opposite directions (an increase in one is linked to a decrease in the other and vice-versa).
  

Figure 5-1 Effect of task complexity, clinical decision support and omission errors on verification 

❶ Increased verification was associated with decreased omission errors.  

Participants who avoided omission errors spent 3.7% more task time engaged in verification than 
participants who made omission errors. See Table 3 in Article IV.  

❷ The presence of CDS reduced verification 

Compared to when there was no CDS, correct CDS reduced verification time by 16.6% and incorrect 
CDS reduced verification time by 8.2%. See Figure 4 in Article IV.  

❸ Increasing task complexity decreased verification.  

Increasing task complexity from low to high decreased verification time by 14.2%.  
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5.5.2 Commission errors 
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-ve Negatively linked variables vary in opposite directions (an increase in one is linked to a decrease in the other and vice-versa).
  

Figure 5-2 Effect of task complexity, clinical decision support and commission errors on verification 

❶ Increased verification was associated with decreased commission errors. 

Participants who avoided commission errors from incorrect CDS spent 6% more task time engaged in 
verification than participants who made commission errors. See Table 3 in Article IV.  

❷ The presence of CDS reduced verification 

Compared to when there was no CDS, correct CDS reduced verification time by 16.6% and incorrect 
CDS reduced verification time by 8.2%. See Figure 4 in Article IV.  

❸ Increasing task complexity decreased verification. 

Increasing task complexity from low to high decreased verification time by 14.2%.  
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6 Discussion 
This thesis sought to study automation bias in the delivery of healthcare, focusing on the tasks, 

automation, and risk factors which are characteristic of healthcare settings and applications. In so 

doing, this thesis has contributed the first evidence of automation bias in the electronic prescription 

of medicines, a common task performed by clinicians that is assisted by clinical decision support. It has 

advanced greater insights into how people who suffer an automation bias are more likely to make 

errors, spend less time engaged in verification, and allocate fewer cognitive resources to their task. 

This thesis has contributed the first analysis of differences in cognitive load in terms of whether errors 

were made. It has also found that, while higher task complexity did not induce or increase automation 

bias errors, it did appear to adversely impact verification and cognitive load.  

6.1 Contributions of this thesis 

The systematic review [Article I; 1] identified the aspects of automation bias that are unique to 

healthcare, an area where further research is needed (aim 1). These included decision-making tasks 

which were classified as either diagnosis or treatment, where the decision maker was required to 

identify the current state of a system (or patient), identify the cause of a problem or decide how to 

best remedy the problem. All healthcare studies took place in a single task environment. This contrasts 

with non-healthcare studies predominantly from the heavily automated domains of aviation and 

process control that take place in multitask environments. The review found that, contrary to the 

prevailing view within the human factors literature, automation bias can present in a single task 

environment. Moreover, this appears to be associated with higher verification complexity, that is, the 

task complexity of verifying automation. Tasks with lower complexity only seemed to produce 

automation bias when combined with concurrent secondary tasks in a multi-task environment.  

The systematic review initially identified two distinct bodies of work that were labelled based on the 

area of publication (healthcare and human factors). However, the analysis within the review centred 

on tasks. Accordingly, over the course of the research, the labelling of the differences reported in the 

review shifted to one based on tasks rather than areas of publication. This shift better captures the 

relationship between the two bodies of literature: human factors and ergonomics is a field of study 

and practice, while health information technology is an application domain. Indeed, the publication of 

article III [2] in the journal Human Factors exemplifies this point.  

Similarly, the claim in the systematic review about the prevailing view among researchers publishing 

in the human factors and ergonomics literature may seem controversial. Nevertheless, it is based on 
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the prevalence of multitask studies reported within this literature as observed in the systematic 

review,[1] and a 2010 review by Parasuraman and Manzey.[3] The latter proposed an integrated model 

of automation bias and complacency premised on the notion that the phenomenon occurs “under 

conditions of multiple-task load, when manual tasks compete with the automated task for the 

operator’s [limited] attention.”[3] The prevalence of multitask studies is likely influenced by prior 

research. The first reported study of automation bias found no evidence in an air traffic control task 

performed in a single-task environment.[4] Parasuraman and his colleagues’ hypothesis [5] was that 

the absence of an effect in that study may have arisen because: (1) participants were responsible for 

a single task, and (2) automation bias may be more likely when users perform multiple tasks. This 

hypothesis was confirmed in experiments finding evidence of automation bias in a system monitoring 

task in a multi-, but not in a single-task environment.[5, 6]   

The experiment was the first to test for, and find evidence of, automation bias errors in e-prescribing, 

where participants were assisted by CDS alerts which warned them of potential errors in their 

prescriptions [aim 2; Article II; 7]. This represents a common use of a decision support system that is 

encountered in everyday clinical practice. The results demonstrated that, when prescribing with CDS, 

there is a risk of automation bias for junior medical officers who are commencing clinical practice. 

These findings of automation bias are likely to be generalisable to other forms of decision support 

among this cohort of users.  

Additionally, the experiment set out to experimentally test three hypothesised causes of automation 

bias that constitute risk factors characteristic of healthcare settings. Specifically, it tested whether 

automation bias errors may be induced by: (1) high task complexity [aim 3; Article II; 7], (2) 

interruptions [aim 4; Article II; 7], and (3) high cognitive load [aim 5; Article III; 8]. Ultimately, no 

evidence was found to support any of these hypothesised causes.  

While the task complexity manipulation failed to alter the rate of automation bias, the results provided 

an excellent view of automation bias occurring. This enabled an understanding of how automation bias 

impacted each of the outcome variables (aim 6). Automation bias increased omission and commission 

errors.[Article II; 7] Multilevel modelling revealed that reduced cognitive load was associated with 

omission errors,[Article III; 8] while reduced verification was associated with omission and commission 

errors.[Article IV; 2] These relationships are illustrated in Figure 6-1, which is similar to the 

hypothesised relationship presented in Figure 1-1, based on Mosier and Skitka’s definition of 

automation bias.[9]  



Chapter 6 Discussion  135 
 

-ve

+ve

Omission and 
Commission errors

-ve

-ve -ve

Automation Bias
Incorrect CDS

Information
Processing

Cognitive Load

Information 
Seeking 

Verification

(omission errors)

Association between two variables.

Causal link. The arrow shows the direction of cause to effect.

+ve Positively linked variables vary in the same direction (an increase in one is linked to an increase in the other and vice-versa).

-ve Negatively linked variables vary in opposite directions (an increase in one is linked to a decrease in the other and vice-versa).
  

Figure 6-1 Relationship between automation bias, information processing, information seeking and 
errors 

The design of the randomised controlled experiment demonstrated a robust and replicable method 

for the study of automation bias in healthcare settings which use decision support.[10] The presence 

of automation bias was established by comparing incorrect CDS which provided opportunities for 

omission and commission errors with a control condition where participants had to perform the task 

manually without decision support. The control condition provided baseline measurements for errors, 

cognitive load and verification to which the adverse impact of incorrect CDS could be compared.  

Cognitive Load Theory was introduced as a framework for manipulating and testing the effect of task 

complexity and has proven invaluable in understanding how participants allocated cognitive resources 

to the e-prescribing task. Additionally, Cognitive Load Theory provides a large body of research on 

cognitive load effects which have been shown to impact learning and problem-solving outcomes in 

education.[11] Many effects focus on the reduction of extraneous cognitive load in educational 

applications; however, they could be equally applied to the design of e-prescribing systems and clinical 

decision support, and may assist in the development of enhanced verification for CDS.  

Participants’ access of drug references provided an observable measure of verification. It also provided 

insights into how participants’ behaviour was changed by the presence and correctness of CDS, task 

complexity and whether errors were made.  
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The knowledge and experience of participants were controlled by recruiting students in the final two 

years of their medical degree. It was expected that, while participants would have all received training 

in the safe and rational use of medicines, their knowledge of, and expertise in, specific pharmacological 

therapies would be reasonably low. This provided two very important baselines for this study: (1) the 

measurement of cognitive load, and (2) the measurement of verification, both of which are dependent 

on existing knowledge or schema. This enabled between-subjects comparisons, such as exploring 

differences between participants who made errors and those who did not. However, some variation 

in expertise for specific medicines was to be expected.   

Randomisation was essential to control for order or learning effects. Awareness of CDS failures may 

have altered participants’ trust in CDS and therefore their reliance on, and compliance with, it. The 

randomisation of patient scenarios to experimental conditions was necessary to prevent differences 

in participants’ knowledge of different medicines from influencing the results.  

6.2 Automation bias effects model  

A model of the effects of task complexity and quality of decision support on each dependent variable 

was progressively constructed for errors (chapter 3), intrinsic cognitive load (chapter 4) and verification 

(chapter 5). The model provides a graphical view of the relationships between the experimental 

variables.  
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6.2.1 Omission error model 
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Figure 6-2 Automation bias omission error model 

The omission error model (Figure 6-2) demonstrates that CDS provides both benefits and risks. Correct 

CDS reduces omission errors ❶, while incorrect CDS increases them ❷.  

The increase in omission errors caused by incorrect CDS ❷ represents automation bias omission 

errors. Omission errors were associated with reduced verification ❸ and intrinsic cognitive load ❹. 

Increasing task complexity from low to high did not affect omission errors ❺. High task complexity 

decreased verification ❻ and increased intrinsic cognitive load ❼. 

In high complexity scenarios, the presence of CDS decreased intrinsic cognitive load . The presence 

of CDS reduced verification ❾. 
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6.2.2 Commission error model 
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Figure 6-3 Automation bias commission error model 

The commission error model (Figure 6-3) illustrates the effects of false-positive alerts from incorrect 

CDS.  

Incorrect CDS increased commission errors ❶. Commission errors were associated with reduced 

verification ❷. 

Increasing task complexity from low to high had no effect on commission errors ❸, but decreased 

verification ❹. The presence of CDS reduced verification ❺. 

The commission error model (Figure 6-3) differs from the omission error model (Figure 6-2) in two 

main ways: (1) commission errors were unaffected by Correct CDS, and (2) there was no association 

between commission errors and intrinsic cognitive load.  
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6.3 Decision support as a heuristic  

Mosier and Skitka define automation bias as the tendency of people to use automated cues, such as 

advice and alerts from CDS as a “heuristic replacement for vigilant information seeking and 

processing.”[9]  

Humans tend to be cognitive misers, preferring to travel the path of least cognitive effort, seeking 

adequate decisions quickly and with minimal effort, rather than engaging in more accurate but slower 

and more effortful decision-making.[12] This is achieved by employing heuristics, which are simple 

rules or cognitive shortcuts people may use to make efficient decisions, especially in the face of 

uncertainty. Heuristics are frugal; they use some, but not all, of the available information.[13] Ideally, 

heuristics should provide quick and simple ways of making decisions that are sufficiently accurate most 

of the time [9] and are good enough for their purpose. 

In this way, it is possible for clinicians to use clinical decision support alerts as a heuristic to quickly and 

effortlessly determine whether a prescription is safe. Indeed, in the e-prescribing experiment, the 

presence of CDS reduced both the time engaged in verification [Article IV; 2] and cognitive load when 

task complexity was high.[Article III; 8] Furthermore, it improved the detection of prescribing errors, 

but only when CDS was correct.[Article II; 7] This reduction in verification and cognitive load supports 

the notion that CDS was used as a heuristic in determining whether prescriptions were safe.  

When CDS was correct, it proved to be an extremely effective heuristic. But, when incorrect, it led to 

error,[Article II; 7] demonstrating how heuristics become biases when they systematically and 

predictably lead to erroneous decisions. Participants who made omission and commission errors 

exhibited a cognitive miser profile, investing less time in verification,[Article IV; 2] and those who made 

omission errors invested fewer cognitive resources.[Article III; 8] While a similar profile was found for 

participants who made errors in control scenarios without CDS, this was to a significantly lesser extent. 

These findings provide support for the notion that CDS was relied on as a heuristic for detecting 

prescribing errors, with participants forgoing the information seeking and processing necessary to 

recognise prescribing errors and CDS failures.  

More broadly, the relationship between automation bias errors and reduced verification has been well 

established in the research literature.[14-20] The cognitive load analysis presented in Article III [8] 

provided the first evidence of the relationship between omission errors and reduced allocation of 

cognitive resources.  

The use of CDS as a heuristic may also explain the ‘looking but not seeing’ effect observed, whereby 

participants made errors despite accessing the information necessary to identify the error. This is 

similar to inattentional blindness, where people fail to see something in plain sight because their 

attention was not directed towards it.[21] Manzey, et al.,[18] suggest that automation bias may not 
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necessarily result in a complete neglect of verification, but rather in a withdrawal of attentional 

resources for processing looked-at verification information. This is supported by research that has 

found that participants who made commission errors were unable to correctly recall information they 

had accessed [18] or falsely recalled information which supported their agreement with incorrect 

decision support.[22] Some participants made commission errors despite having an awareness of 

contradictory verification information. This may indicate an active discounting of that information. 

However, this was rarer than incorrect recall.[18]  

While the conclusions drawn by Manzey, et al.,[18] relate to commission errors, the experiment 

presented in this research suggests that their conclusions are also likely to be generalisable to omission 

errors. Although the experiment could not confirm whether participants were aware of contradictory 

information, reduced verification time and cognitive load support the idea of the withdrawal of 

cognitive resources. This is troubling; these participants appeared to go through the motions of 

verification, but without the sufficient cognitive engagement required for verification to be effective. 

For this reason, it is important to assess not only the access of verification information, but also the 

quality of verification, such as by testing the recall of key verification information [18, 22], cognitive 

load [8] and view time.[2] 

To be useful, heuristics need to enable efficient decision-making that is good enough for their purpose. 

While the purpose of CDS used in e-prescribing is to prevent prescribing errors, what is good enough 

is determined by the risk of harm to patients. The presence of CDS certainly demonstrated the 

potential to enhance efficiency by reducing cognitive load and verification, but this was dependent on 

the quality of the decision support provided. Correct CDS resulted in substantial improvement. 

However, incorrect CDS meant that participants ordered prescriptions for the hypothetical patients 

which contained significant to potentially lethal errors and also that appropriate treatments were not 

prescribed. Given the risk of harm, there is also a risk that decisions will not be good enough when CDS 

is incorrect. 

6.4 Task complexity  

One primary aim of this research was to establish whether high task complexity induced or 

exacerbated automation bias (aim 3) and whether the effect of high task complexity might be 

explained by high cognitive load (aim 4). Ultimately, the analyses reported in Article II [7] and Article 

III [8] found no support for high task complexity or high cognitive load as a causal or aggravating factor 

that affected automation bias errors.   

Interestingly, however, high task complexity did impact cognitive load and verification in ways that 

appeared to increase the likelihood of automation bias errors. Specifically, Article III [8] reported how 

the presence of CDS reduced cognitive load when task complexity was high. Article IV [2] described 

how both the presence of CDS and high task complexity reduced verification. While these findings 
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could indicate greater reliance on CDS when task complexity is high, high task complexity did not 

translate into higher error rates when assisted by incorrect CDS. This seems to indicate that cognitive 

load and verification were more sensitive to task complexity than automation bias errors. 

Participants appeared to find both levels of task complexity to be difficult, with both low- and high-

complexity conditions producing automation bias errors.[7] Consequently, if task complexity is a cause 

of automation bias, then it is likely that the low complexity task exceeded the threshold at which 

automation bias presents.[8] Indeed, there is some research that suggests that this threshold could be 

quite low. Harris and Goernert [23] observed that participants appeared to make minimal use of a 

decision aid and instead made decisions based on inspection of verification data when performing a 

simple task. This was attributed to the minimal reduction in workload offered by automation for a 

simple task. This suggests that the perceived benefits offered by automation, such as reduced 

workload,[23] cognitive load and verification time, and better performance, may be important 

contributors to automation bias. It also suggests that the benefits of automation may be greater under 

conditions of high task complexity. In multi-task environments, automation provides the benefit of 

allowing the reallocation of attention to other tasks.[3] This may explain the observation of the 

systematic review [Article I; 1] that automation bias presented in low-complexity multitasks, but not 

in single tasks.  

The relationship between task complexity and automation bias appears to be more complicated than 

originally thought. There is a clear and consistent effect of high task complexity and the presence of 

CDS on cognitive load and verification. Therefore, task complexity does seem to have a role in 

automation bias; however, the full extent of this remains unknown. There is reasonable evidence to 

suggest that tasks may require a minimum level of complexity for automation bias to occur. It could 

be that once this minimum threshold of complexity is met, decision support provides sufficient benefit 

to the user to induce reliance. More research is needed to test these specific hypotheses.  

6.5 Implications 

Clinical decision support is a double-edged sword. Correct CDS can prevent harmful prescribing errors 

[24-26] and in the experiment proved extremely effective, reducing prescribing errors with less 

verification and cognitive load.[2, 7, 8] However, incorrect CDS caused errors that would not have 

otherwise occurred. 

Automation bias only becomes problematic when CDS is incorrect, that is, in situations where 

overreliance can lead to omission or commission errors. CDS can be incorrect for diverse reasons: the 

fact that not all clinical problems are evaluated by CDS,[27] the occurrence of malfunctions,[28-30] 

and the frequent over-riding of alerts.[31, 32]   



142  Chapter 6 Discussion 
 
The naïve solution would be to eliminate incorrect CDS; however, perfectly accurate CDS is unlikely to 

be attainable, especially for complex clinical decision-making involving uncertainty and requiring 

expert judgement. More importantly, highly accurate decision support is known to increase the rate 

of automation bias,[5, 6, 14, 33-39] meaning that when incorrect CDS presents, it is even less likely to 

be detected. Consequently, rather than just focusing on CDS, the bias itself must also be tackled.  

If omission and commission errors result from the difficulty of discriminating incorrect from correct 

CDS,[7] then verification is a promising albeit challenging mitigation to pursue. While, there is good 

evidence associating greater verification with reduced automation bias errors,[2, 14-20] the very 

presence of CDS causes a reduction in verification.[2] Furthermore, requiring complete verification of 

all CDS would negate many of the benefits offered by correct CDS.  

Therefore, the challenge is to facilitate appropriate verification that will uncover incorrect CDS, 

without losing the benefits of correct CDS. Unfortunately, automation bias has proven stubbornly 

resistant to interventions aimed at mitigating its effects.[1] Such interventions include training on 

avoiding automation bias errors,[40] exposure to incorrect automation during training,[16] externally 

imposed accountability for performance,[22, 41] feedback on performance,[42] and even prompts to 

verify.[40]  

The interface between the user and CDS provides an opportunity to facilitate appropriate verification. 

To be effective, mitigations need to incorporate verification information into clinical workflows and 

present relevant information at the time of decision-making. Interventions need to enable users to 

recognise incorrect CDS, but with minimal impact on workload and the avoidance of information 

overload.  

More research will be needed to progress such efforts insofar as little is known about what prompts 

clinicians to verify CDS, how they go about verifying and what information they seek. Research 

exploring verification of CDS in clinical environments could provide valuable insights which could 

inform the design of verification systems. It will also be especially important to understand how people 

recognise incorrect CDS and how they resolve discrepancies between CDS and other information 

sources. Such insights would require laboratory experiments that expose clinicians to incorrect CDS, 

which would not be feasible in clinical settings.  

A significant barrier to effective verification is the looking but not seeing effect;[2, 17-19] to date, this 

effect has been reported as an emergent finding of automation bias studies but has yet to be studied 

directly. Research that employs eye tracking and measures eye gaze dwell time could provide valuable 

insights by evaluating whether participants see critical verification information. Measurement of 

cognitive load could enable greater understanding of the relative contributions of adequate 

information searching and the withdrawal of cognitive resources.[18]  
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While the effect of task complexity on automation bias errors remains unresolved,[7, 33, 43, 44] high 

task complexity was shown to adversely impact cognitive load [8] and verification.[2] It is possible that 

verification complexity presented an obstacle for recognising incorrect CDS,[1] even though it did not 

translate into higher rates of automation bias.[7] Cognitive Load Theory provides a useful framework 

for assessing the cognitive demands of verification, as well as a body of well-studied cognitive load 

effects which can be leveraged to reduce cognitive load.[11] Future research could establish the role 

of verification complexity and whether reducing complexity and cognitive load may prevent both 

automation bias errors and looking but not seeing effects.  

Automation bias becomes a risk when CDS becomes a replacement for the clinician's efforts to ensure 

the safe prescribing of medicines. This results in the subversion of CDS’s proper function, namely, to 

provide an extra layer of defence against prescribing errors. Ultimately, clinicians are responsible for 

the treatments they prescribe, and therefore should be mindful that CDS is imperfect and can be 

incorrect.[27-32] Verification is the primary means of avoiding prescribing errors and distinguishing 

incorrect from correct CDS. It would be impractical to expect clinicians to verify all of their 

prescriptions. Nevertheless, they would be well-advised to investigate and verify any prescription they 

suspect may pose a risk of patient harm, even in the absence of CDS medication alerts. Verification 

would also be especially prudent when prescribing unfamiliar or little-used medications and for 

unfamiliar issues.  

6.6 Limitations 

Studying automation bias within an experimental context also presents some challenges. Chief among 

these is the relationship between the participant and automation or decision support. Highly reliable 

automation leads to higher rates of automation bias.[5, 6, 14, 33-39]. This is likely due to greater 

reliability engendering greater trust, where greater trust has been linked to automation bias omission 

errors.[15, 33]. By contrast, experiencing automation failures lowers trust.[19] As such, experience 

over time with automation may help to calibrate users’ trust in it, which, in turn, may affect their 

reliance on, and compliance with, automation.[3]  

For this experiment, there was limited capacity to manipulate the calibration of trust between the 

participants and CDS. They were introduced to CDS of which they had no prior knowledge or 

experience, and then exposed to incorrect CDS. The CDS manipulations may affect the calibration of 

trust and, in turn, reliance on CDS. For this reason, it would be unfeasible to establish the real world 

incidence or prevalence of automation bias errors experimentally. It is likely that any observed rate of 

automation bias will be specific to the decision aids and context used in a particular study.  

Recruiting medical students for this research involved a compromise. On the one hand, recruiting 

medical students allowed for more control; it ensured that all participants had an equivalent amount 

of knowledge and experience which was important for comparing cognitive load and verification. On 
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the other hand, the results of the research have limited generalisability. They may be indicative of 

junior medical officers entering clinical practice, but not of experienced clinicians with a greater 

knowledge of pharmacological therapies and greater experience with e-prescribing systems.  

Additionally, CDS in current e-prescribing systems tend to display a large number of clinically 

insignificant alerts. These alerts, while technically correct, relate to issues which may not be clinically 

significant insofar as they are interruptive but do not require action from the clinician. Consequently, 

these alerts are false-positives and CDS is therefore incorrect for that decision. This is evidenced by the 

high override rate of alerts.[32] Troublingly, clinicians can become desensitised to alerts, thereby 

introducing the risk that alerts for clinically significant issues might also be overridden. This 

phenomenon is known as alert fatigue.[32, 45]  

Differentiating clinically significant from insignificant alerts is aided by verification, but also requires 

clinical judgement to evaluate whether the risks identified are acceptable and outweighed by the 

benefits of a particular treatment. Therefore, it is likely that recognising clinically insignificant false-

positives may differ from recognising factually incorrect alerts. The experiment examined factually 

incorrect false-positives to control for errors arising from the clinical judgement of medication risks 

and benefits in a cohort of medical students with little prescribing experience. Nevertheless, 

addressing alert fatigue that stems from low specificity CDS is also crucial for effective CDS. Further 

research is needed to determine the biasing effect of clinically insignificant alerts from high specificity 

CDS in relation to commission errors.  

The inclusion of opportunities for both omission and commission errors in the same conditions limited 

the ability to fully differentiate the cognitive load and verification effects for each error type. This may 

be important in light of evidence that people are differently affected by false-negative and false-

positive alerts.[17] It is very likely that an alert, regardless of its correctness, provides a cue within the 

decision-making environment. For reasonably specific CDS, such a cue may act as a prompt for users 

to further investigate or verify the alert, thereby initiating actions that could increase the probability 

that false-positives are detected. If so, then commission errors would be less likely than omission errors 

where there is no such cue. There were more omission than commission errors in the experiment, 

although this was not statistically significant. However, this should be studied further and could have 

implications for understanding trade-offs between the sensitivity and specificity of CDS.  

Additionally, the theoretical treatment of automation bias in this thesis has followed the work of prior 

researchers who have written on the topic, most notably Mosier and Skitka’s view of automation bias 

as a heuristic [9] and the characterisation of errors despite verification as being like inattentional 

blindness.[18] This research introduced Cognitive Load Theory [11] as a framework to explore whether 

task complexity might explain why some single-tasks resulted in automation bias while others did not. 

It also enabled new insights into the association between automation bias and the reduced allocation 
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of cognitive resources and how this might contribute to automation bias and the failure to recognise 

errors despite verifying. There are other theoretical frameworks which have not previously been 

explored in the automation bias literature that may offer new insights or different perspectives on the 

relationship between automation bias and how people allocate cognitive and other resources to tasks. 

Future research could review the available evidence, including the findings presented in this research, 

and evaluate coherence with existing and new theoretical frameworks, including Dual-Process 

Theory[46] and the Soft Constraints Hypothesis.[47, 48] 
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6.7 Conclusion 

This thesis set out to study automation bias in healthcare, focusing in particular on the tasks, 

automation and risk factors which may be unique to, or feature prominently in, healthcare 

applications. Significant evidence of automation bias was found in an e-prescribing task that was 

assisted by CDS medication alerts, which is a common clinical decision-making task supported by a 

frequently-encountered form of decision support. Participants made omission errors by failing to 

detect prescribing errors that CDS did not alert. They also made commission errors when they accepted 

factually incorrect false-positive alerts.  

While not supporting high task complexity as a cause of automation bias, the experiment did provide 

an excellent view of automation bias occurring. Omission errors were associated with less verification 

time and lower cognitive load, while commission errors were associated with less verification. The 

results also revealed the tendency of participants, when assisted by CDS, to reduce verification and 

reduce the cognitive resources allocated to high complexity tasks.  

These findings support a cognitive miser view of automation bias, suggesting that CDS medication 

alerts were used as a heuristic shortcut in lieu of deliberate information seeking and processing. This 

produces a state that is highly likely to compromise the effectiveness of verification. Although causality 

cannot be inferred from these findings, it is highly likely that when people suffer an automation bias, 

they reduce both verification behaviours and the cognitive resources allocated to processing looked-

at information. Ultimately, this compromises their ability to detect problems when they arise, which 

could potentially lead to patient harm.  

While automation bias induced by the presence of CDS increases the risk of patient harm, CDS also has 

the great potential to reduce errors and improve efficiency. The challenge is to foster appropriate 

reliance, by relying on CDS when it is correct, disagreeing when it is incorrect, and questioning and 

verifying when unsure. One specific challenge will be to enable effective and efficient verification of 

CDS without losing the benefits that correct CDS provides. More research will be needed on how to 

best assist clinicians with this crucial task. Clinicians should be mindful of the limitations of CDS and 

the possibility that it can fail. They should be ever-vigilant and ready to verify should uncertainty arise.  
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Appendices 

Patient scenarios 

The full text of the patient scenario is presented in Appendix A. The interruption tasks are presented 

in Appendix B. 

Instructions to participants 

The instructions to participants are presented in Appendix C. The instructional video shown to 

participants can be viewed at https://youtu.be/Ah8KFfUzlDE. This demonstrated how to use the e-

prescribing system, a correct CDS alert and how to verify using the drug references.  

Simulated e-prescribing system 

The experiment required an e-prescribing system which permitted manipulation of the triggering and 

content of CDS alerts. It also had to facilitate presentation of the prescribing scenarios. Therefore, a 

simulated e-prescribing system was developed to fulfil these experimental requirements. It was 

developed as a web application allowing the experiment to be delivered online.  

Appendix D provides an overview of the e-prescribing system. 

https://youtu.be/Ah8KFfUzlDE
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 Patient scenarios 

The development of the patient scenarios including prescribing errors, the task complexity 

manipulation and the assessment of the severity of prescribing errors is described in the method 

section of Article II.  

The patient scenarios used in the experiment are presented in the text boxes on the following pages. 

They include the patient’s details, a brief case history and a list of medicines the participants are tasked 

with prescribing. The highlighting of information elements and the numbering of medicines in these 

text boxes are to facilitate the presentation of the patient scenarios in this appendix and were not 

displayed to participants. See Figure D-2 and Figure D-3 in Appendix D for examples of how the 

scenarios appeared to participants.  

This appendix also presents the text of CDS alerts shown to participants in correct CDS conditions, 

which alerted the prescribing error, and the incorrect CDS conditions which provided a false-positive 

alert. See Figure D-8 for an example of a correct CDS alert, and Figure D-9 for an example of an incorrect 

CDS alert as they were shown to participants. An explanation of the prescribing errors is also provided.  

No personally identifying information is contained in the patient scenarios. 

All patient information was made up for this experiment to present participants with the information 

they would expect in such patient cases. 
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Scenario A (Low Complexity) 

 

Box A-1 Scenario A.  

Medications: 3 
Conditions: 2 
Allergies: 0 
Observations: 0 
History/Other: 1 
Total: 6 

Table A-1 Number of information elements in scenario A 

Prescribing error 

A2. Digoxin 250 microgram tablet, 2 tablets, PO, three times a day. 

 

Box A-2 Alert displayed for prescribing error. Triggered by the prescription of medicine A2 with correct 
CDS only. 

The elderly patient has atrial fibrillation which was controlled with Digoxin prior to admission. The 
maintenance dose for an elderly patient is 62.5 to 125 micrograms of Digoxin once daily.  The dose 
requested by the scenario is a loading dose (1,500 mcg over 24 hours), which is too high for the patient 
presented in the scenario.  

Severity: Serious  

False-positive 

A3. Lisinopril 5mg tablet, 1 tablet, PO, once daily. 

 

Box A-3 Alert displayed for false-positive. Triggered by the prescription of medicine A3 with incorrect 
CDS only.  

Lisinopril is not contraindicated in patients with pulmonary oedema. 

MRS Dorothea M COLLINS 
DOB: 13/03/1930, 84 years Weight: 71 kg Height 162 cm Gender: Female 
Allergies: Nil 

Mrs. Dorothea M Collins is an 84 year old woman who was admitted to hospital with an acute 
pulmonary oedema. She has atrial fibrillation which was controlled with Digoxin prior to admission.  

Please prescribe the following medications: 

A1. Pravastatin sodium 20 mg tablet, 1 tablet, PO, once daily. 
A2. Digoxin 250 microgram tablet, 2 tablets, PO, three times a day. 
A3. Lisinopril 5mg tablet, 1 tablet, PO, once daily. 

 

WARNING: High Dose 

The entered dose is higher than the recommended maintenance dose range. 

WARNING: Medicine Contraindicated 

This medication is contraindicated for a condition (Pulmonary Oedema) contained in the 
patient record. 
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Scenario B (Low Complexity) 

 

Box A-4 Scenario B 

Medications: 3 
Conditions: 2 
Allergies: 0 
Observations: 1 
History/Other: 0 
Total: 6 

Table A-2 Number of information elements in scenario B. 

Prescribing error 

B3. Spironolactone 25mg tablet, 1 tablet, PO, once daily. 

 

Box A-5 Alert displayed for prescribing error. Triggered by the prescription of medicine B3 with correct 
CDS only. 

Patient has hyperkalemia which is a contraindication for Spironolactone. 

Severity: Serious 

False-positive  

B2. Augmentin Duo Forte (amoxycillin 875 mg + clavulanic acid 125 mg) tablet, 1 tablet, PO, twice daily. 

 

Box A-6 Alert displayed for false-positive. Triggered by the prescription of medicine B2 with incorrect 
CDS only. 

Augmentin Duo Forte is not contraindicated in patients with heart failure.   

MRS Nancy WEST 
DOB: 9/01/1938, 76 years Weight: 57 kg Height 170 cm Gender: Female 
Allergies: Nil 

Mrs Nancy West is a 76 year old woman. She was admitted with a chest infection. She is also 
receiving ongoing treatment for systolic heart failure. 

Her last blood test indicated she has hyperkalemia. 

Please prescribe the following medications:  

B1. Carvedilol 6.25 mg tablet, 1 tablet, PO, twice daily.  
B2. Augmentin Duo Forte (amoxycillin 875 mg + clavulanic acid 125 mg) tablet, 1 tablet, 

PO, twice daily.  
B3. Spironolactone 25mg tablet, 1 tablet, PO, once daily.  

WARNING: Medicine Contraindicated 

This medicine is contraindicated for a condition (Hyperkalaemia) contained in the patient 
record.  

WARNING: Medicine Contraindicated 

This medication is contraindicated for a condition (Systolic Heart Failure) contained in the 
patient record. 
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Scenario C (Low Complexity) 

 
Box A-7 Scenario C. 

Medications: 3 
Conditions: 3 
Allergies: 0 
Observations: 0 
History/Other: 0 
Total: 6 

Table A-3 Number of information elements in scenario C. 

Prescribing error 

C1. Warfarin Sodium 2 mg tablet, 1 tablet, PO, once daily and  
C3. Ibuprofen 400 mg tablet, 1 tablet, PO, three times daily.  

 
Box A-8 Alert displayed for prescribing error. Triggered by the prescription of medicine C1 and C3 with 
correct CDS only. 

Non-steroidal anti-inflammatory drugs (such as Ibuprofen) increase the risk of gastrointestinal 
bleeding in patients taking Warfarin. The combination should be avoided, especially as better analgesic 
options are available. 

Severity: Significant 

  

MRS Katie Cadman 
DOB: 23/07/1962, 53 years Weight: 67 kg Height 171 cm Gender: Female 
Allergies: Nil 

Mrs Katie Cadman is a 53 year old woman who was admitted to hospital following a fall and is 
suffering from pain in her right hip.   

She has a history of venous thromboembolism and hyperlipidaemia which are adequately 
managed. 

Please prescribe the following medications: 

C1. Warfarin Sodium 2 mg tablet, 1 tablet, PO, once daily. 
C2. Atorvastatin 10 mg tablet, 1 tablet, PO, once daily.   
C3. Ibuprofen 400 mg tablet, 1 tablet, PO, three times daily.  

WARNING: Adverse Drug Interaction 

This medication has a listed adverse interaction with another already prescribed medication.  

There is an adverse drug interaction for Warfarin and Ibuprofen. This combination should be 
avoided.  
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False-positive  

C2. Atorvastatin 10 mg tablet, 1 tablet, PO, once daily.   

 
Box A-9 Alert displayed for false-positive. Triggered by the prescription of medicine C2 with incorrect 
CDS only. 

Atorvastatin is not contraindicated in patients with venous thromboembolism.  

WARNING: Medicine Contraindicated 

This medication is contraindicated for a condition (Venous Thromboembolism) contained in 
the patient record. 
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Scenario D (Low Complexity) 

 
Box A-10 Scenario D. 

Medications: 3 
Conditions: 3 
Allergies: 0 
Observations: 0 
History/Other: 0 
Total: 6 

Table A-4 Number of information elements in scenario D. 

Prescribing error 

D2. Aspirin 300 mg tablet: effervescent, 3 tablets, PO, every 6 hours.  

 
Box A-11 Alert displayed for prescribing error. Triggered by the prescription of medicine D2 with correct 
CDS only. 

Patient has peptic ulcer disease with a history of bleeds for which aspirin increases the risk of 
gastrointestinal ulceration. There are better analgesic options available. 

Severity: Significant 

False-positive  

D1. Pantoprazole 40 mg tablet: enteric, 1 tablet, PO, once daily. 

 
Box A-12 Alert displayed for false-positive. Triggered by the prescription of medicine D1 with incorrect 
CDS only. 

Pantoprazole is not contraindicated in patients with severe vomiting. 

MR Thomas Chapman 
DOB: 21/05/1971, 43 years Weight: 103 kg Height 176 cm Gender: Male 
Allergies: Nil 

Mr Thomas Chapman is a 43 year old man who presented in the emergency department with a 
severe headache and vomiting that have persisted for the last 24 hours.  

He suffers from peptic ulcer disease with a history of bleeds.  

Please prescribe the following medications: 

D1. Pantoprazole 40 mg tablet: enteric, 1 tablet, PO, once daily.  
D2. Aspirin 300 mg tablet: effervescent, 3 tablets, PO, every 6 hours. 
D3. Metoclopramide Hydrochloride 10 mg tablet, 1 tablet, PO, PRN, every 8 hours, 

maximum 3 tablets per day.  

WARNING: Medicine Contraindicated 

This medication is contraindicated for a condition (Peptic Ulcer Disease) contained in the 
patient record. 

WARNING: Medicine Contraindicated 

This medication is contraindicated for a condition (Severe Vomiting) contained in the patient 
record. 
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Scenario E (Low Complexity) 

 

Box A-13 Scenario E 

Medications: 3 
Conditions: 2 
Allergies: 0 
Observations: 1 
History/Other: 0 
Total: 6 

Table A-5 Number of information elements in Scenario E. 

Prescribing error  

E3. Loperamide Hydrochloride 2 mg capsule, 1 capsule, PO, PRN, every four hours, maximum 8 
capsules per day. 

 

Box A-14 Alert displayed for prescribing error. Triggered by the prescription of medicine E3 with correct 
CDS only. 

Loperamide is contraindicated in patients with ulcerative colitis which poses a risk of toxic megacolon. 

Severity: Serious 

  

MISS Ava Sunderland 
DOB: 03/07/1995, 19 years Weight: 48 kg Height 173 cm Gender: Female 
Allergies: Nil 

Miss Ava Sunderland is a 19 year old female who presented to the emergency department with 
severe bloody diarrhoea. She has been passing 8 – 10 stools, containing blood and stringy mucus, 
on a daily basis over the last 3 weeks.  

The results of rectal biopsy and examination are consistent with severe ulcerative colitis.  

Please prescribe the following medications: 

E1. Mesalazine 500 mg tablet: enteric, 1 tablet, PO, three times daily. 
E2. Prednisolone 25 mg tablet, 1 tablet, PO, once daily. 
E3. Loperamide Hydrochloride 2 mg capsule, 1 capsule, PO, PRN, every four hours, 

maximum 8 capsules per day. 

WARNING: Medicine Contraindicated 

This medication is contraindicated for a condition (Ulcerative Colitis) contained in the patient 
record. 
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False-positive  

E1. Mesalazine 500 mg tablet: enteric, 1 tablet, PO, three times daily and  
E2. Prednisolone 25 mg tablet, 1 tablet, PO, once daily. 

 

Box A-15 Alert displayed for false-positive. Triggered by the prescription of medicine E1 and E2 with 
incorrect CDS only. 

There is no documented adverse drug interaction for Mesalazine and Prednisolone. 

  

WARNING: Adverse Drug Interaction 

This medication has a listed adverse interaction with another already prescribed medication.  

There is an adverse drug interaction for Mesalazine and Prednisolone. This combination 
should be avoided.  
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Scenario F (Low Complexity) 

 

Box A-16 Scenario F 

Medications: 3 
Conditions: 2 
Allergies: 1 
Observations: 0 
History/Other: 0 
Total: 6 

Table A-6 Number of information elements in scenario F. 

Prescribing error  

F1. Phenelzine 15 mg tablet, 1 tablet, PO, three times daily and  
F2. Tramadol Hydrochloride 50mg capsules, 2 capsules, PO, PRN, every six hours, maximum 8 
capsules per day. 

 

Box A-17 Alert displayed for prescribing error. Triggered by the prescription of medicine F1 and F2 with 
correct CDS only. 

The combination of phenelzine and tramadol is contraindicated due to the possibility of causing 
serotonin toxicity. 

Severity: Serious  

  

MR Henry O'Connor 
DOB: 05/11/1972, 42 years Weight: 84 kg Height 181 cm Gender: Male 
Allergies: Sulfonamide  

Mr Henry O’Connor is a 42 year old man who was admitted to the emergency department 
suffering severe back pain. He has a history of major depression which is currently managed 
pharmacologically.  

Please prescribe the following medications: 

F1. Phenelzine 15 mg tablet, 1 tablet, PO, three times daily. 
F2. Tramadol Hydrochloride 50mg capsules, 2 capsules, PO, PRN, every six hours, 

maximum 8 capsules per day. 
F3. Ramipril 5 mg tablet, 1 tablet, PO, once daily. 

WARNING: Adverse Drug Interaction 

This medication has a listed adverse interaction with another already prescribed medication.  

There is an adverse drug interaction for Phenelzine and Tramadol hydrochloride. This 
combination should be avoided.  
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False-positive 

F3. Ramipril 5 mg tablet, 1 tablet, PO, once daily. 

 

Box A-18 Alert displayed for false-positive. Triggered by the prescription of medicine F3 with incorrect 
CDS only. 

The patient is allergic to Sulfonamide. However, Ramipril is not contraindicated for this allergy. 

  

WARNING: Adverse Drug Reaction 

This patient has an Allergy or Adverse Drug Reaction recorded for this medication.  
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Scenario G (High Complexity) 

 

Box A-19 Scenario G 

Medications: 8 
Conditions: 6 
Allergies: 1 
Observations: 2 
History/Other: 0 
Total: 17 

Table A-7 Number of information elements in scenario G. 

  

MRS Beverly Elizabeth WALKER 
DOB: 19/03/1942, 72 years Weight: 62 kg Height 176 cm Gender: Female 
Allergies: Penicillin 

Mrs Beverly Elizabeth Walker is a 72 year old woman who was admitted to hospital in a confused 
state following a fall. She has since been diagnosed with a urinary tract infection. 

The microbiology results show the bacteria as E. Coli (gram –ve) UTI which is sensitive to both 
Ciprofloxacin and Ampicillin.  

She has a history of osteoporosis, osteoarthritis, depression and an allergy to penicillin. 

Please prescribe the following medications: 

G1. Citalopram 20 mg tablet, 1 tablet, PO, once daily. 
G2. Ciprofloxacin 250 mg tablet, 1 tablet, PO, twice daily. 
G3. Ramipril 2.5 mg tablet, 1 tablet, PO, once daily.  
G4. Paracetamol 500 mg tablet, 2 tablets, PO, four times a day. 
G5. Atorvastatin 20 mg tablet, 1 tablet, PO, once daily. 
G6. Ural (sodium bicarbonate 1.76 g + citrate sodium 630 mg + citrate 720 mg + tartaric 

acid 890 mg) sachet, 1 sachet, PO, PRN, three times daily, maximum 3 sachets per 
day.  

G7. Panadeine Forte (Codeine Phosphate with Paracetamol Tablet 30 mg-500 mg) 
tablet, 2 tablets, PO, PRN, every four hours, maximum 8 tablets per day.  

G8. Fosamax Plus 7 0mg (alendronate 70 mg + colecalciferol 70 microgram) tablet, 1 
tablet, PO, once a week. 
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Prescribing error 

G4. Paracetamol 500 mg tablet, 2 tablets, PO, four times a day and  
G7. Panadeine Forte (Codeine Phosphate with Paracetamol Tablet 30 mg-500 mg) tablet, 2 tablets, 
PO, PRN, every four hours, maximum 8 tablets per day. 

 

Box A-20 Alert displayed for prescribing error. Triggered by the prescription of medicines G4 and G7 
with correct CDS only. 

Prescribed together, these two prescriptions provide for the combined maximum possible dose of 8 
grams of paracetamol per day, double the maximum daily dose of 4 grams. 

Severity: Significant 

False-positive  

G2. Ciprofloxacin 250 mg tablet, 1 tablet, PO, twice daily. 

 

Box A-21 Alert displayed for false-positive. Triggered by the prescription of medicine G2 with incorrect 
CDS only. 

The patient is allergic to penicillin. While Ciprofloxacin is an antibiotic, it is not contraindicated for 
allergy to penicillin.   

WARNING: High Dose / Duplicate Substance 

Both Paracetamol and Panadine Forte (Codeinie Phosphate 30mg with Paracetamol 500mg) 
contain the ingredient Paracetamol. The total Paracetamol entered is higher than the 

recommended dose range.  

WARNING: Adverse Drug Reaction 

This patient has an Allergy or Adverse Drug Reaction recorded for this medication.  
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Scenario H (High Complexity) 

 

Box A-22 Scenario H. 

Medications: 8 
Conditions: 5 
Allergies: 0 
Observations: 1 
History/Other: 3 
Total: 17 

Table A-8 Number of information elements in scenario H. 

  

MR Arthur Lindsay FOOTE 
DOB: 18/09/1940, 74 years Weight: 102 kg Height 178 cm Gender: Male 
Allergies: Nil 

Mr. Arthur Lindsay Foote is a 74 year old male who presented to hospital with melaena and new 
onset dizziness. He had been on Naprosyn SR 1 g daily for 2 months for joint pain and early 
morning swelling affecting his metacarpophalangeal joints. On examination he has evidence of 
synovitis affecting the small joints of his hands.  

Blood results confirm anaemia. He has been transfused with 2 units of packed red cells for ongoing 
melaena. In addition he has also been diagnosed with a peptic ulcer and new onset rheumatoid 
arthritis.  

Please prescribe the following medications: 
H1. Simvastatin 40 mg tablet, 1 tablet, PO, once daily. 
H2. Temazepam 10 mg tablet, 1 tablet, PO, once daily. 
H3. Perindopril Arginine 5 mg tablet, 1 tablet, PO, once daily. 
H4. Paracetamol 500 mg tablet, 2 tablets, PO, PRN, every four hours, maximum 8 tablets 

per day. 
H5. Omeprazole 20 mg capsule, 2 capsules, PO, once daily.  
H6. Methotrexate 2.5 mg tablets, 3 tablets, PO, once daily. 
H7. Folic acid 500 microgram tablet, 2 tablets, PO, once daily. 
H8. Prednisolone 5 mg tablet, 2 tablets, PO, once daily. 
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Prescribing error 

H6. Methotrexate 2.5 mg tablets, 3 tablets, PO, once daily. 

 

Box A-23 Alert displayed for prescribing error. Triggered by the prescription of medicine H6 with correct 
CDS only. 

Patient has new-onset rheumatoid arthritis. For treatment of rheumatoid arthritis, the loading dose of 
methotrexate is 7.5mg once weekly. This prescribing error requests the drug be administered daily 
instead of weekly, which would result in an overdose.  

Severity: Potentially lethal 

False-positive  

H4. Paracetamol 500 mg tablet, 2 tablets, PO, PRN, every four hours, maximum 8 tablets per day. 

 

Box A-24 Alert displayed for false-positive. Triggered by the prescription of medicine H4 with incorrect 
CDS only. 

Patient has newly diagnosed peptic ulcer disease. However, it is not a contraindication for 
paracetamol. 

 

  

WARNING: High Dose 

The entered dose is higher than the recommended maintenance dose range 

WARNING: Medicine Contraindicated 

This medication is contraindicated for a condition (Peptic Ulcer Disease) contained in the 
patient record.  
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Scenario I (High Complexity) 

 

Box A-25 Scenario I. 

Medications: 8 
Conditions: 7 
Allergies: 1 
Observations: 0 
History/Other: 1 
Total: 17 

Table A-9 Number of information elements in scenario I. 

  

MR Jasper Larnach 
DOB: 18/09/1949, 65 years Weight: 68 kg Height 167 cm Gender: Male 
Allergies: Opioids 

Mr Jasper Larnach is a 65 year old male who was admitted to hospital this morning with severe 
vomiting and diarrhoea resulting in dehydration and disorientation.  

He has a history of Parkinson’s disease, osteoarthritis and an allergy to opioids. He also had a 
myocardial infarction 10 years ago and has been treated for heart failure since.  

Please prescribe the following medications: 

I1. Paracetamol 500 mg tablets, 2 tablets, PO, four times daily.  
I2. Metoprolol Succinate tablet 47.5 mg (controlled release), 1 tablet, PO, once daily.  
I3. Levodopa 100 mg + Carbidopa Anhydrous 25 mg tablet, 1 tablet, PO, three times 

daily.  
I4. Entacapone 200 mg tablet, 1 tablet, PO, three times daily.  
I5. Ramipril 5 mg tablet, 1 tablet, PO, once daily. 
I6. Thiamine Hydrochloride 100 mg tablet, 1 tablet, PO, once daily.  
I7. Rosuvastatin 20 mg tablet, 1 tablet, PO, once daily.  
I8. Metoclopramide Hydrochloride 10 mg tablet, 1 tablet, PO, PRN, three times daily, 

maximum 3 tablets per day. 
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Prescribing error  

I8. Metoclopramide Hydrochloride 10 mg tablet, 1 tablet, PO, PRN, three times daily, maximum 3 
tablets per day. 

 

Box A-26 Alert displayed for prescribing error. Triggered by the prescription of medicine I8 with correct 
CDS only. 

The patient has a history of Parkinson’s disease for which Metoclopramide is contraindicated as it may 
cause symptoms to worsen.  

Severity: Serious 

False-positive 

I4. Entacapone 200 mg tablet, 1 tablet, PO, three times daily and  
I7. Rosuvastatin 20 mg tablet, 1 tablet, PO, once daily. 

 

Box A-27 Alert displayed for false-positive. Triggered by the prescription of medicines I4 and I7 with 
incorrect CDS only. 

There is no documented adverse drug interaction for Entacapone and Rosuvastatin. 

 

 

 

WARNING: Medicine Contraindicated 

This medication is contraindicated for a condition (Parkinson’s Disease) contained in the 
patient record. 

WARNING: Adverse Drug Interaction 

This medication has a listed adverse interaction with another already prescribed medication.  

There is an adverse drug interaction for Entacapone and Rosuvastatin. This combination 
should be avoided.  
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 Interruption tasks 

Interruption task X1 

Trevor Chamberlain is currently being treated for a hospital acquired infection with 
Gentamicin. 

The first dose was given 24 hours ago, a second dose has not yet been administered. Please 
review the patient’s creatinine clearance and using the table below determine if a second dose 
should be given. 

Clinical Chemistry 
Sodium (mmol/L) 136 135-145 
Potassium (mmol/L) 3.9 3.5-5.0 
Chloride (mmol/L) 99 95-107 
Bicarbonate (mmol/L) 25 24-32 
Urea (mmol/L) 10.1 3.0-8.0 
Creatinine  (mmol/L) 160 60-110 
Creatinine Clearance (mL/min) 54 97-137 
 
Creatinine clearance (mL/min) Dosing interval Maximum number of empirical doses 
greater than 60 24 hours 3 (at 0, 24 and 48 hours) 
40 to 60 36 hours 2 (at 0 and 36 hours) 
30 to 40 48 hours 2 (at 0 and 48 hours) 
less than 30 give initial dose once, then seek expert advice 

Please review the information above. When should the second dose of Gentamicin be 
given? 

 Give second dose now  

 Give second dose in 12 hours  

 Give second dose in 24 hours  

 Do not give second dose 
 

Correct response:  Give second dose in 12 hours 
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Interruption task X2 

Arya Sachs is a 6 year old female who requires analgesia. Refer to the tables below and 
determine the volume (mL) of paracetamol 120mg/5mL oral liquid for Arya. 

Average weight according to age for children 
Age Weight (kg) 
6 months 8 
1 year 9.6 
2 years 12 
3 years 14.4 
4 years 16 
5 years 18.4 
6 years 20 
8 years 25.6 
10 years 32 
12 years 40 
 
Paracetamol dose by weight for children 
Weight Paracetamol dose (mg) 
9.6 144 
12 180 
14.4 216 
16 240 
18.4 276 
20 300 
25.6 384 
32 480 
40 600 
51.2 768 
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Paracetamol 120mg/5mL conversion table: Dose 
(mg) to Volume (mL) 
Dose (mg) Volume (mL) 
108 4.5 
120 5 
144 6 
180 7.5 
216 9 
240 10 
276 11.5 
300 12.5 
384 16 

Please review the information above. What volume (mL) of paracetamol 120 mg/5 mL oral 
liquid should be administered? 

 5 mL  

 7.5 mL  

 9 mL  

 10 mL  

 11.5 mL  

 12.5 mL 
 

Correct response: 12.5 mL 
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Interruption task X3 

Harold O'Brien is about to commence Vancomycin for meningitis. Please refer to the test 
Creatinine Clearance in the test results provided and select the appropriate dose and 
frequency of administration using the dosing tables below. 

Clinical Chemistry 
Sodium (mmol/L) 140 135-145 
Potassium (mmol/L) 4.5 3.5-5.0 
Chloride (mmol/L) 106 95-107 
Bicarbonate (mmol/L) 28 24-32 
Urea (mmol/L) 9.2 3.0-8.0 
Creatinine  (mmol/L) 141 60-110 
Creatinine Clearance (mL/min) 64 97-137 
 
Creatinine clearance (mL/min) Starting maintenance dosage 
more than 90 1.5 g 
90 or less 1 g 
 
Creatinine clearance (mL/min) Frequency 
more than 60 12-hourly 
20 to less than 60 24-hourly 
less than 20 48-hourly 

Please review the information above. What dose of Vancomycin should be given and 
how frequently should it be administered? 

 1.5 g 12-hourly  

 1.5 g 24-hourly  

 1.5 g 48-hourly  

 1 g 12-hourly  

 1 g 24-hourly  

 1 g 48-hourly 
 

Correct response: 1 g 12-hourly 
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 Instructions to participants 

Instructions 

The instructions were presented to participants after they provided informed consent and completed 

the pre-experiment questionnaire. The written instructions are shown in Figure C-1.  

 

Figure C-1 Screen capture of participant instructions. 

These instructions emphasised two points important to ensuring consistency with prior automation 

bias studies: (1) that CDS could be incorrect, and (2) the method to verify CDS with a non-automated 

and completely accurate information source,[1, 2] in this experiment the drug reference. 

The instructions set out how participants should respond to prescribing errors by not prescribing the 

affected medicine. Several prescribing errors and CDS false-positives involved an adverse-drug 

interaction between two medicines; in this event, participants were instructed only to omit one.  

The reason for having participants omit medicines containing error was that key experiment 

dependent variables were focused on the information seeking and processing associated with the task 

of detecting prescribing errors. Correcting prescribing errors creates another task, which would involve 

further information seeking and processing as participants search for and evaluate alternative 

treatments which provide the same therapeutic outcomes, but avoid the contraindication identified.  
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Video demonstration 

After viewing the written instructions, participants were shown a 2-minute and 57-second instructional 

video on how to use the e-prescribing system. This was presented as an embedded YouTube video to 

ensure the greatest possible compatibility across different web browsers. 

 

Figure C-2 Screen capture of the instructional video shown after participants read the written 
instructions. 

This video demonstrated: 

• How to identify whether CDS alerts are switched on (experimental CDS assisted conditions) or 
off (control conditions).  

• An overview of the patient scenarios and the participants’ task.  
• How to order a prescription using the e-prescribing system.  
• How to view the drug reference, including adverse drug interactions. 
• How to remove or cease a prescription on the medication chart.  
• The functioning of CDS alerts. This also demonstrated: 

o A prescribing error contained within a patient scenario, where Amoxicillin (an 
antibiotic) was requested for a patient with an allergy to penicillin. 

o Identifying the contraindication using the drug reference.  
o How to resolve CDS alerts.  

This video can be accessed on YouTube at the following URL: https://youtu.be/Ah8KFfUzlDE  

https://youtu.be/Ah8KFfUzlDE
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Orienting participants to CDS assisted and control conditions 

The experimental control were conditions in which participants prescribed with no CDS assistance. It 

was important to clearly differentiate between conditions with and without CDS. This was especially 

important in relation to the absence of alerts, which, in experimental conditions, indicates that CDS 

did not detect any prescribing errors, while, in control conditions, there was no CDS checking.  

To orient participants to whether CDS was assisting them in the current scenario: (1) all control 

scenarios (no CDS) were presented together in a block of three, and all experimental scenarios (correct 

and incorrect CDS) were presented together in a block of six. (2) At the beginning of each block, 

participants were shown a message explaining whether CDS would be switched on or off.  

Figure C-3 depicts the message shown to participants at the beginning of the control scenario block. 

Figure C-4 is the message shown to participants at the beginning of the experimental block for 

scenarios assisted by correct or incorrect CDS.  

Participants were blinded as to whether the CDS assistance they received was correct or incorrect.  

 

Figure C-3 Screen capture of the CDS status message shown at the beginning of the control (No CDS) 
block. 

❶ CDS status indicator, showing that CDS is switched off.  

❷ The implication of CDS being switched off is explained to participants. The system will not check for, 
and alert, prescribing errors and they should refer to the provided drug reference. 

The message was displayed as a modal window and had to be acknowledged before the participant 
could continue.  
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Figure C-4 Screen capture of the CDS status message shown at the beginning of the experimental 
(correct and incorrect CDS) block. 

❶ CDS status indicator, showing that CDS is switched on.  

❷ The significance of this is that CDS will check for, and alert, detected prescribing errors.  

❸ Participants were cautioned that CDS could be incorrect, but that it can be checked using the 
provided drug references.   

❹ Participants are instructed that they should rely on the drug reference over CDS, whenever there is 
a conflict between the two.  
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 Overview of the simulated e-prescribing system 

A key requirement of the experiment was the ability to manipulate the triggering and content of CDS 

alerts within the e-prescribing system and facilitate the presentation of the patient scenarios.  

A simulated e-prescribing system was developed to satisfy these requirements. Functionality was 

limited to only those needed by the experiment, in particular, those functions needed to prescribe and 

cease medicines, view relevant drug references and processes for working with CDS alerts. 

Functionality not required by the experiment was omitted, for example, the medication administration 

record.  

The experiment was presented to participants as the evaluation of an e-prescribing system currently 

in development; this formed part of the pretext for the caution that CDS had failed in testing which 

was described in the instructions.  

Figure D-1 presents a flow diagram of user interactions with the simulated e-prescribing system as they 

performed the experimental task.  
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Figure D-1 Flow diagram of the e-prescribing system. 
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Patient Scenario 

Each scenario (or trial) began with the presentation of the patient scenario (Figure D-2) in which the 

participant was tasked with prescribing medications.  

 

Figure D-2 Screen capture of the initial presentation of the patient scenario.  
This figure depicts the presentation of Scenario B (see Appendix A.) 

❶ The CDS status indicator. 

❷ Patient details.  

❸ Medicines to which the patient is allergic or to which they have experienced an adverse reaction.  

❹ Details of the case, including patient history, the reason for admission and conditions to be 
treated. 

❺ A list of medicines participants are tasked with prescribing.  

❻ For this scenario (Scenario B) this medicine is unaffected by prescribing error.  

❼ For this scenario (Scenario B), Augmentin Duo Forte is the designated 'false-positive' medicine. In 
the incorrect CDS condition, its prescription will trigger a false-positive alert warning that it is 
contraindicated in patients with systolic heart failure.  
This is not a true contraindication and is not supported by the drug reference.  

❽ For this scenario (Scenario B), Spironolactone is the prescribing error. It is contraindicated in 
patients with hyperkalaemia. In the correct CDS condition, an alert is displayed with this information. 
The drug reference documents this contraindication, providing support for the alert.  
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Medication chart 

After viewing the patient scenario, participants started their task on the medication chart screen 

(Figure D-3). The scenario starts with an empty medication chart. From this screen, they can initiate 

the prescription of new medications, view the list of prescribed medications, as well as view the drug 

reference or cease prescribed medicines.  

The medication chart screen (Figure D-3) and prescribing screens (Figure D-4 and Figure D-5) were 

presented side-by-side with the patient scenario. This was to eliminate the potential for split-attention 

effects, whereby people have to integrate information presented on separate screens in working 

memory, which increases cognitive load.[1]  

 

Figure D-3  Screen capture of the e-prescribing system medication chart. 

❶ Patient details.  

❷ List of medicines to which the patient is allergic or has had an adverse reaction to.  

❸ The ‘Prescribe’ button initiates the process to prescribe a medicine for the current patient. This 
takes the participant to the ‘Prescribe, search for medication’ screen (Figure D-4). 

❹ The ‘View instructions’ button opens a modal window allowing the participant to view the 
instructions and instructional video again if they require (Figure C-1 and Figure C-2).  

❺ Participants indicate they have completed the current scenario by pressing the ‘Finish Scenario’ 
button. After confirming the action, they complete the Cognitive Load Inventory, following which the 
next scenario is initiated.  

❻ Prescriptions which have been ordered, providing the generic drug name, strength and form, dose, 
route and frequency of administration.  

❼ The ‘Drug info’ button opens the drug reference for the current medicine.  

❽ The ‘Cease’ button ceases or removes the current medicine.  

❾ Participants can filter ordered medicines by whether they are regularly scheduled, PRN (or as 
needed) or stat (to be administered immediately). By default, the summary tab is shown which displays 
all orders. 
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Prescribe: medication search 

When the participant initiates a new prescription, they are first taken to the medication search and 

selection screen (Figure D-4). On this screen, the participant searches for, and selects, the medicine 

they wish to prescribe.  

 

Figure D-4 Screen capture of the medication search screen. 
Here the participant searches for, and selects, the medicine they wish to prescribe.  

❶ Search for medicine name.    

❷ Search results appear as the participant types in the medicine name. The search results provide all 
possible forms and strengths of the matching medicine which are available.  

As with the medication chart, the patient scenario is displayed to the right of the search for medicine 
screen but is not shown in this figure.  
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Prescribe: order screen 

Once the participant has selected the medication they wish to prescribe, they are directed to the order 

screen (Figure D-5) where they specify the details of the order, including the prescription type, dose, 

frequency and route.  

 

Figure D-5 Screen capture of the medication order screen. 
Here, the participants order the prescription of the medicine they selected in the previous step.  

❶ Opens the drug reference for the currently selected medicine. 

❷ Prescription type: whether the medicine is administered as scheduled, as needed (PRN) or as a 
single dose given immediately (stat).  

❸ Dose: expressed as the number of the select units, in this example, 1 tablet. The units field is pre-
populated based on the currently selected medicine.  

❹ Route: The route of administration, this field is also pre-populated based on the currently selected 
medicine.  

❺ Frequency: The frequency of administration.  

If the prescription type is PRN, an additional field appears where the participant must specify the 
maximum dose per day.  

The patient scenario is displayed to the right of the medication order screen but is not shown in the 
current figure. 
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Drug reference viewer 

The drug reference viewer displays monographs from the Australian Medicines Handbook,[2] for the 

currently selected medicine. The Australian Medicines Handbook references the Australian formulary, 

is evidence-based and is widely utilised in Australian clinical practice.[3] This provided participants with 

sufficient information to verify prescription safety independent of CDS and to verify the correctness of 

CDS alerts.  

The references were checked to ensure they clearly identified all prescribing errors and contradicted 

all false-positive alerts in the patient scenarios (see Figure D-6 and Figure D-7).  

 

Figure D-6  Screen capture of the drug reference viewer, displaying the reference for spironolactone, 
the prescribing error in Scenario B. 

The drug reference is displayed as a modal window over the top of the e-prescribing system.   

❶ The drug monographs presented in the drug reference are from the Australian Medicines 
Handbook.[2] 

❷ The prescribing errors inserted into each scenario were identifiable with information contained in 
the drug reference.  (The relevant section is highlighted for presentation here but was not highlighted 
for participants.) 
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Figure D-7 Screen capture of the drug reference viewer, displaying the reference for Augmentin Duo 
Forte. 

Augmentin Duo Forte receives a false-positive alert in Scenario B when assisted by incorrect CDS which 
provided a warning indicating the presence of a prescribing error when there was none. The reason 
displayed by the alert was made up and is clinically incorrect. Consequently, the alert was not supported 
by the drug reference. In the context of this patient scenario, Augmentin Duo Forte was a necessary 
medicine.  

CDS alerts 

Alerts were triggered by the experimental condition and the medicine prescribed. Correct CDS 

triggered alerts when the medication containing the prescribing error was prescribed, while incorrect 

CDS triggered alerts when the designated false-positive medication was ordered (see Article II).  

Figure D-8 provides an example of an alert triggered by correct CDS in Scenario B, while Figure D-9 

shows an alert triggered by incorrect CDS in the same scenario. Participants were blinded to whether 

CDS was correct or incorrect. Both true- and false-positive alerts were presented identically; the only 

way to differentiate between them was to verify the content for the alert using the drug reference.  
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Figure D-8 Screen capture of a CDS alert triggered by a prescribing error with correct CDS. 

The alerts were interruptive, displayed in a modal window over the top of the e-prescribing system 
and had to be resolved before the participant was allowed to close it and continue.  

This figure shows a true-positive alert from correct CDS, which correctly identifies the prescribing 
error in Scenario B, where Spironolactone is contraindicated because the patient had a test result 
showing hyperkalaemia.  

❶ Alert icon. 

❷ Nature of the alert.  

❸ Specific reason for the alert.  

❹ Actions to resolve the alert. The participant could choose to remove the prescription or override 
the alert and prescribe the medicine.  

❺ The alert provided direct access to the relevant drug reference.  
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Figure D-9 Screen capture of a CDS alert triggered by the designated false-positive with incorrect CDS. 

This example is a false-positive alert from incorrect CDS. Augmentin Duo Forte is unaffected by 
prescribing errors for the patient in Scenario B. The reason for the alert is false and is contradicted by 
the drug reference.  

❶ Resolving an alert by overriding it requires the participant to provide a reason for overriding. Once 
overridden, the prescription is added to the medication chart.  

❷ The alert icon indicates that CDS detected an error in this order. Clicking the icon displays the details 
of the alert without the resolution actions to remove the prescription or override the alert. If the 
participant wanted to remove the order, they could do so from the medication chart using the ‘cease’ 
button.  
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