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Abstract 

An emerging paradigm shift is currently underway in neuroscience involving the modelling of 

neural systems using the mathematical framework of Bayesian decision theory, and more 

significantly, treatment of the brain itself as a Bayesian machine. Recent work suggests that the 

brain represents probability distributions and performs Bayesian integration during 

sensorimotor learning, but the evidence remains inconclusive. In this study, we seek to accrue 

additional behavioural evidence for Bayesian sensorimotor learning. Using a novel variation of 

an interlimb generalisation paradigm involving a stochastic visuomotor perturbation, we tested 

the hypothesis that Bayesian sensorimotor learning transfers to the other limb, and relatedly, 

that the representation of this learned visuomotor perturbation is encoded in an extrinsic 

reference frame. Consistent with our hypothesis, we found that interlimb transfer of learning is 

nearly complete when the visuomotor perturbation is congruent in extrinsic coordinates and 

relatively incomplete when congruent in intrinsic coordinates. Interestingly, we also found that 

although the learned prior distribution transfers to the untrained limb, the likelihood is not 

optimally integrated by the untrained limb, indicating that the prior and likelihood are 

represented independently of one another. This study provides valuable information about the 

nature of the representations underlying Bayesian integration in sensorimotor learning and 

opens up a number of intriguing paths for future investigation.   
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1. General Introduction 

There is a major paradigm shift underway in contemporary cognitive science and neuroscience 

towards thinking about the brain as a Bayesian machine that encodes probability distributions 

and performs probabilistic inference (Rao et al. 2007; Clark 2013, 2015; Pouget et al. 2013). 

This idea has been termed the “Bayesian coding hypothesis” (Knill and Pouget 2004). 

Consistent with this trend, Bayesian modelling approaches are becoming increasingly prevalent 

(Knill and Richards 1996; Knill and Pouget 2004; Doya et al. 2006; Körding 2007, 2014; 

Vilares and Körding 2011; Ma 2012, Ma and Rahmati 2013; Lee and Wagenmakers 2014). 

These approaches combine the powerful mathematical frameworks of Bayesian statistics 

(Bayes and Price 1763) and Bayesian decision theory (Berger 2013). Bayesian statistics 

formalises how new information should be combined with prior beliefs and decision theory 

specifies how those updated beliefs lead to optimal decisions. These approaches have been 

employed to model aspects of vision (Knill and Richards 1996; Kersten et al. 2004; Stocker and 

Simoncelli 2008), multisensory integration (van Beers 1996, 1999; Ernst and Banks 2002; 

Fetch et al. 2011, 2013), sensorimotor control (Körding and Wolpert 2006; Bays and Wolpert 

2007; Orbán and Wolpert 2011; Franklin and Wolpert 2011; Wolpert 2007), and even neural 

coding and computation (Eliasmith and Anderson 2003; Ma et al. 2013; Pouget, Beck, Ma and 

Latham 2013; Ma and Jazayeri 2014).  

Despite their popularity, Bayesian approaches have attracted their share of criticism (for 

a review, see Hahn 2014).1 One persistent challenge centres on the claim that the neuroscientific 

evidence supporting Bayesian estimation in the brain is at best inconclusive and at worst 

extremely weak (Jones and Love 2011; Bowers and Davis 2012a, b). For instance, Bowers and 

Davis (2012a) disparage Bayesian models as providing highly unconstrained “just-so stories” 

                                                 
1 It is important to note up front that the thesis does not address a very different yet similar sounding debate in 

contemporary cognitive science and neuroscience concerning the appropriateness of Bayesian statistical analysis 

methods (Bayes factors) over null hypothesis significance testing (see, e.g., Kruschke 2010; Cumming 2013; 

Körding 2015; Puga et al 2015). Instead, the central focus here is whether Bayesian ideas provide a fruitful 

framework for understanding how the brain represents or encodes information, namely, in the form of 

probability distributions (i.e., the Bayesian coding hypothesis). 
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that are only weakly tied to neural data. Another challenge emphasises how the extreme 

flexibility or arbitrariness in the choice of model parameters including priors, likelihoods, and 

utility functions can make Bayesian models virtually unfalsifiable (Bowers and Davis 2012a, 

b). Other criticisms focus on the predictive and/or explanatory limitations of Bayesian models. 

Bowers and Davis (2012a) maintain that Bayesian models are, in many circumstances, 

predictively equivalent to non-Bayesian models. Colombo and Seriès (2012) and Colombo and 

Hartmann (2015) argue that Bayesian models are non-mechanistic and lack explanatory power 

when they fail to describe underlying neural mechanisms.  

 The aims of the project are to shed further light on the nature of Bayesian computation 

and representation in the brain, and to deepen our understanding of Bayesian modelling 

approaches in neuroscience The primary aim of the project is to test a Bayesian hypothesis 

concerning human sensorimotor learning. Recent work suggests that the brain both represents 

probability distributions and performs Bayesian integration during bouts of sensorimotor 

learning involving visuomotor perturbations (e.g., Körding and Wolpert 2004; Pouget et al. 

2013). However, evidence for these claims remains inconclusive.  

In this study, we seek to provide additional behavioural evidence to further constrain 

Bayesian accounts of sensorimotor learning. Specifically, we will test whether Bayesian 

integration during sensorimotor learning is limb-specific by asking whether subjects who are 

exposed to and learn the statistical distribution of a visuomotor perturbation task using one arm 

will show similar compensation when tested with the other arm.  

Although interlimb transfer is a well-established paradigm for investigating visuomotor 

learning (e.g., Sainburg and Wang 2002; Wang and Sainburg 2003, 2004, 2005; Taylor et al. 

2011; Carroll et al. 2014, 2016), it remains unknown whether the internal statistical 

representation of the task domain that subjects learn using one limb transfers across limbs, and 

if so, how rapidly and completely this transfer occurs. Accordingly, this study will provide 

critical information about aspects of the underlying processes and representations through 

which sensorimotor learning is achieved. Specifically, the study will help to determine whether 
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probability distributions are represented in an effector-specific or effector-general manner in 

the motor system. 

A secondary aim of the project is to reflect more broadly on the role that Bayesian 

approaches play in contemporary neuroscience (Jones and Love 2011). Some have claimed 

that Bayesian models are not falsifiable (Bowers and Davis 2012a). Others have claimed that 

the approach is explanatorily bankrupt without supporting neural evidence. Based on the 

current study and related studies, it is argued that Bayesian models of behavioural phenomena 

can and do play important roles in cognitive and brain science. Despite their limitations, well 

designed behavioural studies can provide useful constraints on the discovery of underlying 

neural mechanisms and representations supporting Bayesian integration.  

 

1.1 Types of sensorimotor learning 

Before discussing Bayesian approaches to sensorimotor learning, it is important to understand 

in general terms what sensorimotor learning is and how it has been experimentally interrogated 

in recent decades. Sensorimotor learning can be informally defined as the learning of new 

“mappings” or “transformations” between sensory and motor variables (Krakauer and Mazzoni 

2011; Wolpert et al. 2011). A tennis player learning to return a serve – which involves learning 

to transform visual information about the motion and speed of the ball into appropriate swings 

of the racket – is a prototypical example of sensorimotor learning. A novice computer user 

learning to control a mouse cursor is another, more mundane, example. Sensorimotor learning 

has been extensively studied (Wolpert et al. 2011). 
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1.1.1 Error-based versus reinforcement-based sensorimotor learning 

Another important distinction for understanding the nature of sensorimotor learning is that 

between error-based and reinforcement-based learning (Wolpert et al. 2011). All forms of 

supervised learning (Jordan and Rumelhart 1992) depend on the availability of an error signal 

that can be used to improve behaviour over time. Error-based learning is a form of supervised 

learning in which the error signal is “signed”, and therefore provides information about both 

the direction and magnitude of the error between the actual and desired behavioural outcome 

(Jordan and Rumelhart 1992; Kuperstein 1988; Kawato et al. 1987). Error-based learning is 

thought to underlie improvements in behavioural performance in many well-established motor 

adaptation paradigms including prism adaptation (Martin et al. 1996), visuomotor adaptation 

(Krakauer et al. 2000), and force field perturbations (Shadmehrand Mussa-Ivaldi 1994; 

Flanagan and Wing 1997). Learning in these paradigms is often extremely rapid, occurring over 

the course of individual trials and single experimental sessions (Lackner and Dizio 1994; 

Shadmehr and Mussa-Ivaldi 1994). While error-based learning is of primary relevance to the 

current project, there are other learning processes that have been invstigated in the sensorimotor 

domain. For instance, reinforcement learning is another (less relevant) form of supervised 

learning in which the error signal is inherently “unsigned”, providing information about success 

or failure without supplying information about the direction or magnitude of the error to update 

behaviour on subsequent trials (Wolpert et al. 2001; Taylor et al. 2014; Wu et al. 2014).  

 

1.1.2 Kinematic versus dynamic sensorimotor learning 

Another important distinction is between learning kinematic transformations versus learning 

dynamic transformations (or simply, kinematics learning versus dynamics learning) (Atkeson 

1989; Shadmehr and Wise 2005). Kinematic learning refers to learning the transformations or 

mappings between positional variables such as joint angles and hand position (Atkeson 1989; 

Shadmehr and Wise 2005). For example, learning to move the hand to a target involves, at a 
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minimum, learning what joint angles the muscles need to achieve in order to move the limb 

segments to that target position. These learned sensorimotor mappings are sometimes 

distinguished in terms of the involvement of different kinds of internal representations or 

internal models. Because they capture the inverse of the normal causal relationship between 

motor variables (actions) and their consequences, they are often referred to as inverse internal 

models (Kawato 1999; Wolpert and Ghahramani 2000). Investigations of kinematics learning 

have relied predominantly on prism adaptation (Martin et al 1996) and visuomotor adaptation 

paradigms (Krakauer et al. 2000).  

 In the standard visuomotor adaptation paradigm, a visual perturbation is introduced that 

distorts the normal mapping between movements and their visual consequences, while 

proprioceptive feedback remains unchanged (for review, see Krakauer 2009). For example, 

visual feedback of the subject’s hand position might be rotated clockwise by 90 degrees so that 

straight ahead reaches result in feedback consistent with what is normally experienced during 

rightward movements. Anyone who has inadvertently had their wireless mouse rotated 180 

degrees on their desk, has informally experienced a visuomotor perturbation. In experimental 

contexts, visuomotor adaptation is typically achieved either by having subjects wear prism 

goggles (Held and Freedman 1963; Martin et al. 1996a,b) or by withholding visual feedback of 

the real hand and having subjects move a cursor to targets on the screen in which the relationship 

between cursor position and hand position is manipulated (Krakauer et al. 1999, 2000). This 

manipulation alters the normal kinematic mapping between motor output and sensory feedback. 

For example, having subjects wear prism goggles that shift the visual field by x degrees laterally 

will produce initial reaches that are off by x degrees. With practice, subjects will gradually 

minimize their motor errors and eventually learn to reach targets accurately. This recovery of 

normal motor performance provides evidence that they have successfully learned the new 

kinematic mapping. An additional source of evidence that sensorimotor learning has occurred 

comes from the observation that when goggles are removed, subjects make inaccurate reaches 
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(missing by –x degrees). These training-induced errors, known as aftereffects, are signatures of 

the sensorimotor learning process. 

 Kinematic transformations are not, however, the only type of transformation that must 

be learned to generate accurate and appropriate motor behaviour. Consider the difference 

between learning to lift a full cup of coffee compared to learning to lift an empty cup. Although 

the hand trajectories (kinematics) to be learned in the two cases may be the same, the 

appropriate torques on the elbow that need to be learned will differ. Dynamics learning refers 

to the process by which the motor system learns precisely how much force/torque to produce 

on each joint to generate the desired movement (Atkeson 1989; Shadmehr and Wise 2005). 

This fundamentally concerns learning the appropriate mapping that relates input forces and/or 

torques on the joints to output motions of the limb.  

Dynamics learning has been primarily studied using another adaptation paradigm, called 

force-field adaptation, in which the dynamics of a task can be systematically altered while 

kinematics remain unchanged (Shadmehr and Mussa-Ivaldi 1994; Shadmehr et al,, 2010). 

Force-field paradigms involve subjects reaching to visual targets in the presence of an 

externally-imposed force field, which alters the normal mapping between input forces on the 

limb joints (motor commands) and desired movement outputs (as reflected in visual and 

proprioceptive feedback). As indicated above, this mapping or transformation is termed 

dynamics. Force-field adaptation experiments are typically performed by having subjects grasp 

the handle of a robotic manipulandum that produces forces on the hand that change with hand 

motion (Shadmehr and Mussa-Ivaldi 1994; Shadmehr et al. 2013). Because force fields change 

the dynamics of the task, subjects will initially make inaccurate reaches (compared to those 

made in the absence of externally-imposed forces, termed the so-called null field). Subjects will 

eventually learn the appropriate dynamical mapping and produce accurate reaches in the force 

field. After training, subjects will also show pronounced aftereffects in response to the sudden 

removal of the force field, providing additional evidence for motor adaptation or learning.  
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 Although the theoretical distinction between kinematics and dynamics learning is clear 

enough, it remains controversial whether this tidy division is respected in the brain. Some 

investigators maintain that kinematic and dynamic transformations are learned independently, 

and are represented and stored in distinct areas of working memory (Krakauer et al. 1999). 

Others claim that kinematics learning can be the source of interference for dynamics learning 

and vice versa, which provides evidence that they are not represented independently (Tong et 

al. 2002). Consequently, it remains unclear the degree to which kinematics and dynamics 

learning interact, and whether the underlying representational substrates for these types of 

learning are distinct or shared. 

 

1.1.3 Intrinsic versus extrinsic reference frames for sensorimotor learning 

The brain must also learn motor tasks and plan movements in the appropriate reference frame 

(or reference frames) (Soetching and Flanders 1992, 1995). For example, if the task is to reach 

for the coffee cup on the table in front of you, information about the spatial location of the cup 

might be represented in an extrinsic reference frame relative to some external feature of the 

workspace such as the centre of the table surface. Critically, spatial information represented in 

this way would be insensitive to changes in arm configuration (for instance, the cup remains at 

the same table-centred coordinates even if you were to move your arm). The same movement 

can also be represented in an intrinsic reference frame such as one centred on the shoulder or 

elbow joint of the limb being moved. In the toy example (Fig. 1), the location of the cup defined 

in intrinsic joint coordinates changes as a function of limb posture. The concepts of intrinsic 

and extrinsic reference frames are particularly important for studies of sensorimotor learning 

involving generalisation across limbs and will therefore be addressed in more detail below. 
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Fig. 1. Intrinsic and extrinsic reference frames. 

 

1.1.4 Intralimb versus interlimb generalisation of sensorimotor learning 

Generalisation patterns are frequently used to test and further constrain hypotheses about the 

processes and representations underlying sensorimotor learning (Thoroughman and Shadmehr 

2000; Shadmehr 2004; Paz and Vaadia 2009). Generalisation may be defined as the process by 

which a skill (sensorimotor or otherwise) gained through training or experience in one context 

changes performance in another (Poggio and Bizzi 2004; Criscimagna-Hemminger et al. 2003). 

When generalisation is beneficial, it is termed transfer. When it is detrimental, it is termed 

interference. A motor skill may generalise across similar tasks within the same limb, referred 

to as intralimb generalisation (Wang and Sainburg 2004). For example, a subject may learn a 

new visuomotor mapping for a restricted set of movement directions in the workspace and then 

generalize this learned mapping to new directions (Bedford 1989; Ghilardi et al.1995; 

Ghahramani et al. 1996; Wu and Smith 2013). A learned motor skill may also generalise to the 

other limb, referred to as interlimb generalisation (Criscimagna-Hemminger et al. 2003; Wang 

and Sainburg 2003; Taylor et al. 2011; Joiner et al. 2013; Stockinger et al. 2015; Shadmehr et 

al. 2010; Parmer et al. 2015). 
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1.2 Key experimental results 

1.2.1 Intralimb generalisation of sensorimotor learning 

Using versions of the standard visuomotor adaptation paradigm, a number of studies of reaching 

movements provide converging evidence for the hypothesis that hand kinematics are learned 

from errors in extent and direction in an extrinsically-defined reference frame (Flanagan and 

Rao 1995; Wolpert et al. 1995; Krakauer 2009). Results such as these are typically established 

by training subjects to learn a distorted visuomotor mapping in one region of the workspace 

(e.g., in a region to right of the body midline) and then immediately test how this learning 

generalizes to other regions of the workspace (e.g., in a region to the left of the body midline). 

The error patterns generated during generalisation provide useful (albeit limited) information 

about how sensorimotor learning is represented in the nervous system (Thoroughman and 

Shadmehr 2000; Shadmehr 2004; Paz and Vaadia 2009). One specific piece of information that 

can be gleaned from these experiments is whether the learned information is represented in an 

intrinsic or extrinsic reference frame. 

As indicated above, one can define a movement in extrinsic coordinates by specifying 

its starting point and a movement vector. For a straight point-to-point movement, the movement 

vector is just the directed line segment connecting its start and end points. One can also define 

a movement in intrinsic coordinates by specifying the joint angle changes required to bring 

about the movement. Consider a simplified example of how the reference frame of sensorimotor 

learning can be tested. Suppose that during the training period, subjects are required to learn a 

new visuomotor mapping by performing reaches in a region of the workspace to the right of the 

body midline (right workspace). During the test period, subjects are required to make 

movements in a region of the workspace to the left of the body midline (left workspace). In one 

test condition, the visuomotor mapping experienced over a number of trials in the left 

workspace is the same as the previously learned mapping in the right workspace only when 

specified in extrinsic coordinates. In another test condition, the visuomotor mapping is the same 

as the previously learned mapping only in intrinsic coordinates. If prior learning generalizes 
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(transfers) more readily or more completely in one condition over the other, this is taken as 

evidence that the observed sensorimotor learning is internally represented in that reference 

frame. 

 Along these lines, Krakauer et al. (1999) demonstrated that intralimb generalisation (and 

more specifically, transfer) of kinematic learning predominantly occurs in an extrinsic reference 

frame. Krakauer (2000) demonstrating that adaptation to a 30° rotation resulted in 100% 

generalisation to novel targets that deviated as much as 22.5° from the trained directions. Wang 

and Sainburg (2005) extended these findings by demonstrating generalization of 85% when 

reaching to targets that deviated by 45° from the trained directions, and 60% generalization to 

a direction that deviated nearly 90° from its closest training direction. 

 The claim that kinematic adaptation is encoded in an extrinsic reference frame was 

strengthened by Krakauer et al. (2000) who demonstrated that accuracy in reaching movements 

after adaptation to visuomotor rotations is achieved by using errors in extent and direction to 

adaptively update a vectorial representation of intended movement in extrinsic coordinates. 

Wang and Sainburg (2005) went on to confirm this vectorial hypothesis of movement planning 

by demonstrating that the brain integrates information regarding the location of the target and 

the initial position of the hand to form a hand-centred plan of the intended movement trajectory 

as a direction and extent in extrinsic space. 

 In another seminal motor learning study, Shadmehr and Mussa-Ivaldi (1994) developed 

the force-field adaptation paradigm to test intralimb generalisation of dynamics learning. They 

showed that subjects generalized what they had learned about the force field environment in an 

intrinsic (joint-based) reference frame. In other words, subjects generalized learning when the 

force field encountered during the test period was the same as the field encountered during 

training when specified in intrinsic, joint-based coordinates. No transfer of sensorimotor 

learning was observed when the training and test phases were only invariant in extrinsic 

coordinates and did not match in terms of arm joint configurations). The representation of 

dynamics learning in intrinsic, joint-based coordinates has subsequently been confirmed in a 
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number of studies (Brashers-Krug et al.1996; Gandolfo et al. 1996; Conditt et al. 1997; 

Flanagan et al. 1999; Shadmehr and Mussa-Ivaldi 2000;).  

 These studies all reveal a general pattern that holds up with a high degree of consistency 

across studies: Kinematic learning is predominantly encoded in extrinsic coordinates, while 

dynamic adaptation is encoded in intrinsic coordinates. 

 More recent studies suggest a more complex picture. For example, Brayanov et al. 

(2012) provided behavioural evidence that visuomotor learning relies on a gain-field 

combination of representations in both intrinsic and extrinsic coordinates. Berniker et al. (2014) 

similarly demonstrated that no single coordinate frame accounted for the generalization pattern 

following force-field adaptation. Instead, they argued that the representation of learning 

involved a mixture of reference frames. 

 

1.2.2 Interlimb generalisation of sensorimotor learning 

The above studies specifically test generalisation of sensorimotor learning within a single limb. 

Another important set of findings about sensorimotor learning relate to generalisation of 

learning from one limb to the other, known as interlimb generalisation. Subjects who adapt and 

learn new kinematic or dynamic mappings using one hand may show no adaptation, full 

adaptation, or some degree of partial adaptation in between these two extremes if asked to 

switch to performing the task with the opposite hand. The degree of adaptation (or transfer or 

interference) provides valuable information about the characteristics of the internal 

representation acquired by the subject during the previous episode of sensorimotor learning.  

In contrast to studies of intralimb generalisation, there is considerably more divergence 

in the findings concerning interlimb generalisation of prior sensorimotor learning.  

 The transfer of visuomotor adaptation, whereby subjects maintained a fraction of their 

adapted performance when completing the same task with their opposite limb, has been 

observed predominantly across extrinsic coordinates (Imamizu and Shimojo 1995; Sainburg 

and Wang 2002; Wang and Sainburg 2004, 2005; Taylor et al. 2011).  
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In contrast, when performing reaches with their opposite limb to opposite rotations 

(incongruent across extrinsic coordinates) transfer was absent altogether (Wang and Sainburg, 

2004; Wang 2008). Further, while numerous studies have indicated that kinematic transfer is 

asymmetrical; from non-dominant to dominant limb but not vice versa (Anguera et al. 2007; 

Sainburg and Wang 2002; Wang and Sainburg 2004) some evidence exists to the contrary 

(Balitsky and Henriques 2010; Isaias et al. 2011; Taylor et al. 2011; Poh et al. 2016). 

 In order to test interlimb generalisation of dynamics, Criscimagna-Hemminger et al 

(2003) adapted the standard force-field paradigm used to investigate intralimb generalisation. 

They report that interlimb transfer only occurs in extrinsic coordinates, a finding reiterated by 

Stockinger et al. (2015). These findings are striking because it is seemingly at odds with the 

conventional wisdom in the field that dynamics are represented and learned (at least as far as 

intralimb generalisation is concerned) in intrinsic coordinates (Shadmehr and Mussa-Ivaldi 

1994, 2000). Interestingly, dynamics learning transfers also occurred asymmetrically from the 

dominant to non-dominant limb, but not vice versa; and transfer even occurred in one subject 

for whom the corpus callosum had been completely severed (Criscimagna-Hemminger et al. 

2003).   

 

The jury is, however, still out on the nature of interlimb generalisation of sensorimotor learning. 

Several more recent studies have reported contradictory findings. For example, Wang and 

Sainburg (2004) report significant transfer in joint-based coordinates, and Burgess et al. (2007) 

describe weak but significant non-dominant to dominant transfer. Recently, Carroll et al. (2014, 

2016) has responded by insisting that these studies are inconclusive because they both share a 

key methodological limitation. Specifically, they argue that these studies uniformly rely on a 

corrupted measure of transfer – size of the movement kinematic (movement) error. This 

measure, they maintain, is problematic because a number of other processes could contribute 

to straighter trajectories (smaller kinematic errors), which have little if nothing to do with 

transfer. These include changes in limb impedance and/or changes in feedback gains. Hence, 
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inferring transfer on the basis of the size of the kinematic error alone may not provide definitive 

information about the degree to which a novel sensorimotor map of dynamics – learned by one 

limb – is available to the other limb. 

 Joiner et al. (2013) recently re-examined dynamical transfer using an “error-clamp” 

paradigm specifically designed to avoid this limitation. They restricted all movement 

kinematics to a straight path to the target, and measured the lateral forces made by subjects 

against the walls of a virtual force channel. Accordingly, it was hypothesized that adaptive 

impedance compensation would no longer occur and hence the lateral forces measured should 

more directly reflect the transfer of learned dynamics to the opposite limb. Using this approach, 

they report a small but significant transfer (approx. 12%) in an extrinsic reference frame. 

 Given that dynamics are conventionally thought to be represented in joint-based 

coordinates, the findings of Joiner et al. (2013) are also surprising. One possible explanation 

for these results involves appeal to the idea that sensorimotor learning or transformations do 

not generalize globally according to any single reference frame, but rather appear to involve 

flexible or context-dependent representation in some combination of multiple reference frames 

(Sober and Sabes 2003, 2005; Berniker et al. 2014; Parmar et al. 2015). This raises the question 

of how sensorimotor learning (and especially interlimb generalisation) is affected when the 

reference frames in which the tasks are learned are aligned or misaligned across the limbs.  

 To investigate this issue, Carroll et al. (2016) test interlimb transfer of learning of a 

velocity-dependent force field oriented in the sagittal plane (aligned in both intrinsic and 

extrinsic reference frames across the limbs) and compared it to interlimb transfer of learning of 

a velocity-dependent force field oriented in the transverse plane (misaligned in intrinsic but not 

extrinsic reference frames across the limbs). They report that the interlimb transfer of learning 

in the sagittal force field was significantly greater than the transfer of learning for the transverse 

field. Consequently, Carroll et al. (2016) conclude that dynamic transfer is contingent upon an 

intrinsic reference frame after all, since it is reduced when the learned dynamics are misaligned 

in intrinsic coordinates across the two limbs. Their results are consistent with the recent 
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hypothesis that learned dynamics are internally represented according to both the intrinsic and 

extrinsic coordinates of the sensorimotor context experienced during adaptation. 

 One potential limitation of all visuoumotor and force field adaptation studies discussed 

above is that subjects are required to learn and internally represent what we might call stationary 

(non-changing) perturbations or task contexts. For instance, in one experiment the learned 

visuomotor perturbation might be a fixed rotation of visual feedback information by 45 degrees 

or lateral displacement of 2 cm. Similarly, the velocity-dependent force field subjects are 

required to learn may be a constant 10 nM force in one direction (e.g., perpendicular to the 

direction of movement). Accordingly, most of the generalisation results that have been reported 

in the literature involve generalisation over deterministic tasks. But what about learning and 

generalisation in probabilistic tasks? It seems one may reasonably contend that although 

perturbations can be stationary in a controlled experimental environment, this is an exception 

and not the rule when it comes to sensorimotor learning in the real world rife with variability 

and uncertainty. If true, this raises questions about the external validity of the results canvassed 

above. As a minimum, it opens up new questions about what sensorimotor learning might look 

like in task contexts involving uncertainty.  

 

1.3 Sensorimotor learning under uncertainty: Does the brain perform Bayesian integration? 

Uncertainty about the state of the environment and our bodies reflects both intrinsic sensory 

and motor variability or noise, and places a fundamental constraint on all information 

processing in the brain (Faisal et al. 2008). For example, a descending fog may increase the 

degree of uncertainty about whether the silhouette is an oncoming vehicle or a tree. Moreover, 

even if noise could somehow be eliminated, other physical limitations in our sensory systems 

entail that we only receive partial and ambiguous information about environmental properties 

(Yuille and Kersten, 2006; Purves and Lotto 2011).  

 The stochastic physical and chemical nature of our sensory receptors and the intrinsic 

noise associated with neural signalling and transformations means that neural signals plagued 
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with uncertainty and noise are the rule and not the exception in the brain (Faisal et al. 2008). 

Noise is present at all stages of sensorimotor control, from sensory processing, through 

planning, to the outputs of the motor system (Faisal et al. 2008). Sensory noise contributes to 

variability in estimating both internal states of the body (e.g., position of our hand in space) and 

external states of the world (the location of a cup on a table). Noise also contaminates the 

planning process leading to variability in movement endpoints (Gordon et al. 1994; Vindras 

and Viviani, 1998; Harris and Wolpert 1998) and is reflected in neuronal variability of cortical 

neurons that can predict variability in reaching (Churchland et al. 2006). In addition, variability 

in action can arise through noise in motor commands (van Beers et al. 2004). There is evidence 

that the major reason for the signal-dependent nature of this variability may come from the size 

principle of motor unit requirement (Jones et al. 2002).  

Given these basic facts, it seems undeniable that the brain must routinely contend with 

uncertainty. One well established way to make inferences (or more generally, process 

information) under uncertainty is to operate according to Bayesian principles.  

 

1.3.1 Bayesian sensorimotor learning 

Bayesian statistics formalizes the optimal inferential strategy under circumstances where 

uncertainty or noise are present. Consider estimating the trajectory of an incoming tennis ball 

based on noisy or incomplete visual information (such as when playing at dusk). One way to 

supplement this impoverished visual input is to augment it with information based on your prior 

history. This includes your prior interactions with tennis balls and their behaviour (e.g., that 

they eventually fall to the ground, that they move along continuous rather than discontinuous 

trajectories), your prior history playing the game of tennis (e.g., that it is against the rules to 

win a serve by hitting over the line), and even your prior history playing against this specific 

opponent (that they favour their backhand). The distribution characterizing the probability 

assigned to each possible ball trajectory at a given time constitutes the posterior probability, 

P(A|B). Calculating the posterior requires two pieces of information. First, on the basis of prior 
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experience, you need to know (or have an estimate of) the probability of each potential ball 

trajectory occurring, termed the prior distribution P(A). Second, for any given sensory input, 

you need an estimate of how probable that particular input is for different possible states of the 

world that might have generated it. This is termed the likelihood, P(B|A). For example, sensing 

a curved trajectory is more likely if the ball is spinning than if it is not. From the prior and 

likelihood, the posterior can then be estimated simply by multiplying the prior by the likelihood 

(and normalizing the result to sum to a probability of one) according to Bayes’ rule: 

 

          (1) 

 

1.3.2 Recent experimental work and next steps 

Despite their growing popularity in cognitive science and neuroscience, the Bayesian coding 

hypothesis has been challenged along multiple fronts including, most critically, that it is poorly 

supported by neural evidence (Jones and Love 2011; Bowers and Davis 2012a). Although this 

remains an open challenge, there is a growing and increasingly diverse body of computational 

modelling and experimental research on how Bayesian inference might actually be 

implemented in neural systems (e.g., Zemel et al. 1998; Ma et al. 2006, 2008; Rao et al. 2002; 

Rao 2004; Fetsch et al. 2009, 2011, 2013; Vilares et al. 2012; Pouget et al. 2013; Ma and 

Jazayeri 2014; Rich et al. 2015; Ting et al. 2015; van Bergen et al. 2015; Dekleva et al. 2016; 

Tan et al. 2016; Palmer et al. 2016).  

 In addition to this important work, a broad range of findings from sensory and motor 

psychophysical experiments provide another complementary – albeit less direct – line of 

empirical support for the Bayesian coding hypothesis (e.g., Knill et al. 1996; Ernst and Banks 

2002; Schrater and Kersten 2002; Adams et al. 2004; Körding and Wolpert 2004; Stocker and 

Simoncelli 2006; Tassarini et al. 2006; Maloney and Mamassian 2009; Brayanov and Smith 

2010; Verstynen and Sabes 2011; Fernandes et al. 2012, 2014; Sato and Körding 2014; Acuna 
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2015). Although the inferences that may be drawn on the basis of behavioural evidence alone 

are limited, it is our contention that well-designed psychophysical experiments can nonetheless 

provide highly useful constraints on the search for neural mechanisms (Colombo and Hartmann 

2015), and in doing so can help supply additional support for the Bayesian coding hypothesis.  

 It is for this reason that we sought to use behavioural experiments to test and further 

constrain Bayesian accounts of sensorimotor learning (Körding and Wolpert 2004; Fernandes 

2012, 2014). In this study, we take the next step forward in understanding Bayesian 

sensorimotor learning by asking about the reference frame in which this learning occurs and 

whether the learned representations are limb- or effector-specific. We do this by probing 

whether subjects who learn the statistical distribution of a visuomotor perturbation task using 

one arm will show similar compensation when tested with the other arm. Although interlimb 

transfer is a well-established paradigm for investigating visuomotor learning and the nature of 

the underlying representations involved (e.g., Sainburg and Wang 2002; Wang and Sainburg 

2003, 2004, 2005; Taylor et al. 2011; Carroll et al. 2014, 2016), it remains unknown whether 

the internal statistical representation of the task domain that subjects learn using one limb 

transfers across limbs, and if so, how readily this transfer occurs. The current study provides 

valuable information about whether Bayesian integration in sensorimotor learning is 

represented in an effector-specific manner in the human motor system, and relatedly, whether 

these representations are encoded in an extrinsic or intrinsic reference frame.



2. Investigating Interlimb Generalisation of Bayesian Sensorimotor Learning 

2.1 Introduction 

Recent work suggests that the brain both represents probability distributions and performs 

Bayesian integration during episodes of sensorimotor learning involving visuomotor perturbations 

(e.g., Körding and Wolpert 2004; Tassinari et al. 2006; Fernandes et al. 2012, 2014). Understanding 

precisely how these statistical distributions are represented and learned remains a key open 

challenge for the field. Although direct neural evidence remains limited and difficult to interpret 

(Vilares et al. 2012), other more indirect routes for investigating these underlying representations 

are available.  

 Generalisation – the process by which training or experience in one context changes 

performance in another – is widely thought to provide a useful window into the representational 

changes underlying other forms of sensorimotor learning (Thoroughman and Shadmehr 2000; 

Poggio and Bizzi 2004; Shadmehr 2004; Paz and Vaadia 2009). It is well-established that 

sensorimotor learning generalizes across similar tasks using the same limb (intralimb 

generalisation), such as when subjects learn a novel visuomotor mapping (kinematic 

transformations from desired limb position into joint angle changes) for a restricted set of 

movement directions in the workspace and then generalize this learning to untrained directions 

(Bedford 1989; Ghilardi et al.1995; Ghahramani et al. 1996; Malfait et al. 2002; Wu and Smith 

2013). Intralimb generalisation of prior learning of limb dynamics (dynamic transformation from 

desired limb trajectories into joint torques and forces) resulting from exposure to novel force field 

environments has also been reported (Shadmehr and Mussa-Ivaldi 1994,  2000; Thoroughman and 

Shadmehr 2000). Sensorimotor learning of new kinematic and dynamic transformations also 

generalizes from the trained to the untrained limb (Criscimagna-Hemminger et al. 2003; Wang and 

Sainburg 2003, 2004; Taylor et al. 2011; Joiner et al. 2013; Stockinger et al. 2015; Shadmehr et al. 

2010; Parmer et al. 2015 Carroll et al. 2014, 2016).  
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 Generalisation studies can provide valuable information about the reference frame in which 

the learning occurs as well as the specificity of the underlying representation of the learned task. 

Specificity is here defined as the degree to which training effects are restricted to the specific 

conditions experienced, which includes the local region of the workspace or the limb used during 

training. Investigating the reference frame in which a motor task is learned is important as the brain 

appears to represent a given task in terms of one or more coordinate systems, for instance, extrinsic 

(i.e., screen-centred), or intrinsic (i.e., joint-centred) (Sober and Sabes 2003, 2005; Carroll et al. 

2014).  

 Error patterns generated during generalisation from training are typically used to determine 

how sensorimotor learning is represented in the nervous system including whether the learned 

information is encoded in an intrinsic or extrinsic reference frame. Consider a simplified example 

that illustrates how this is done. Suppose that during the training period, subjects are required to 

learn a new visuomotor mapping (e.g., a counterclockwise rotation of visual feedback relative to 

the real hand position defined in extrinsic, screen-based coordinates). In one test condition, the 

visuomotor mapping experienced over a number of novel trials to new untrained directions is the 

same as the previously learned mapping only when specified in extrinsic (e.g., screen-based) 

coordinates. In another test condition, the visuomotor mapping is only the same as the previously 

learned mapping when specified in intrinsic (e.g., joint-based) coordinates (i.e., relative to the joint 

configuration of the arm). If prior learning generalizes (transfers) more readily or more completely 

in one condition over the other, this provides evidence that the observed sensorimotor learning is 

internally represented in that reference frame. If prior learning fails to generalize, this suggests that 

the reference frame in which learning occurred is different and incompatible from that in which 

testing occurred, and perhaps that the internal representation may be limb- or effector-specific. 

 A number of visuomotor adaptation studies involving a single limb provide converging 

evidence for the hypothesis that hand kinematics are learned from errors in extent and direction in 
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an extrinsically-defined reference frame such as one anchored to the centre of the screen or physical 

workspace (Flanagan and Rao 1995; Wolpert et al. 1995; Krakauer 1999, 2000; Vetter et al. 1999). 

 Clearly, a considerable amount is now known about how learning of fixed or deterministic 

visuomotor perturbations (involving a single fixed rotation or 1-dimensional shift in the visuomotor 

mapping) generalise (or fail to generalise) to new contexts with the same limb or the other limb. 

By comparison, relatively little is known about intralimb generalisation of prior learning of 

indeterministic or stochastic visuomotor perturbations (Körding and Wolpert 2004; Tassarini 2006; 

Fernandes et al. 2012, 2014), involving a probability distribution of rotations or shifts in the 

visuomotor mapping.  

While no previous study has investigated interlimb transfer of a statistical adaptation, there 

is some behavioural evidence for distinct representations of the prior and likelihood (Beierholm 

2009; Shams 2012) as well as limited neural evidence (Vilares et al. 2011). Fernandez et al. (2012) 

investigated how prior uncertainty generalized during reaching by having different groups of 

subjects groups adapt to a visual rotation with the same mean (30º ) but different levels of feedback 

uncertainty (standard deviations of 0º, 4º or 12º for the different experimental groups). They found 

that subjects rapidly adapted to the mean, however, as the uncertainty of the perturbation increased, 

the rate of adaptation slowed. Despite this slower rate, the breadth of generalisation was the same 

across all groups, limited to a width of ± 30º. Fernandez et al. concluded that generalisation of a 

stochastic visuomotor perturbation is independent of feedback uncertainty, which supports the 

hypothesis that the prior and likelihood are independently represented. While these findings pertain 

to intralimb generalization, to the best of our knowledge, no one has investigated interlimb transfer 

of a statistical prior or integration of the likelihood distribution by the untrained limb.  
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2.2 General Material and Methods 

2.2.1 Ethics  

All participants gave informed consent before the experiment.2 All experimental protocols were 

approved by the Macquarie University Human Research Ethics Committee (protocol number: 

5201600282).  

 

2.2.2 Participants 

35 right-handed subjects (22 males, 13 females, age 17-49 years) with normal or corrected to 

normal vision and no history of motor impairments participated in the experimental study. Subjects 

were either paid and recruited from the Macquarie University Cognitive Science Participant 

Register (https://mq-cogsci.sona-systems.com) or were Macquarie University students 

participating for course credit. All participants were randomly assigned to 1 of 5 experimental 

groups across 3 experimental paradigms. Seven subjects participated in Experiment 1, which 

consisted of a stochastic visuomotor adaptation task. Fourteen subjects participated in Experiment 

2, which sought to test interlimb transfer of visuomotor learning using the same basic task from 

Experiment 1. Seven subjects participated in Experiment 3, which consisted of a variation of the 

basic visuomotor adaptation task used in Experiment 1. 

 

2.2.3 Equipment 

A unimanual KINARM endpoint robot3 (BKIN Technologies, Kingston, Ontario, Canada) was 

utilized in all experiments (Fig. 2).4 The KINARM has a single graspable manipulandum that 

permits unrestricted 2D arm movement in a horizontal 2D plane (the movement plane). A 

                                                 
2 See Appendix 1 for ethic approval and a copy of the consent form used. 
3 See Appendix 2 for additional detail pertaining to the KINARM setup. 

 
4 Because the KINARM was brand new to our lab, all programming of the KINARM experimental paradigm was 

done from scratch by C.H. Programming was done using MATLAB Simulink. 

https://mq-cogsci.sona-systems.com/
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projection-mirror system facilitates presentation of visual stimuli that appear in the movement 

plane. Subjects received visual feedback about their hand position via a cursor (white sphere, 1 cm 

diameter) that was controlled in real-time by moving the manipulandum. Mirror placement and an 

opaque apron attached to the participant ensured that visual feedback from the real hand was not 

available for the duration of the experiment. 

 

 

Fig 2. Experimental setup and paradigms. 
 

2.2.4 General Experimental procedure 

Subjects were instructed to perform fast and accurate reaching movements with the dominant 

(right) arm using cursor feedback, whenever it was available. Reaches were from a start target 

located at the centre of the workspace to a single end target located 20 cm away (Fig. 3a). When 

subjects moved the cursor within the boundaries of the start target, its colour changed from blue to 

red indicating the start of a trial. Subjects were free to reach at any time after the target colour 

changed. Once the cursor exited the start target, cursor feedback was extinguished and laterally 
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shifted to the right of the true hand position (positive in the x-plane) by an amount drawn at random 

on each trial from a Gaussian distribution with mean of 1 cm and standard deviation of 0.5 cm (the 

true prior). At the midpoint of the movement, displaced cursor feedback was provided for 100 ms 

(midpoint feedback).  

To test whether Bayesian integration occurs during sensorimotor learning, following 

Körding and Wolpert (2004), the reliability of the sensory feedback information provided about 

the true cursor position at the reach midpoint was varied by introducing different amounts of visual 

noise or blur (thus changing the degree of sensory uncertainty) on each trial. This allowed us to 

assess the subjects’ reliance on their previously experienced distribution of shifts. One of four 

visual uncertainty conditions (σ0, σM, σL, σ∞) (Fig. 3b) was selected at random on each trial with 

the frequencies of the 3, 1, 1, 1, respectively5. In the zero uncertainty condition (σ0), midpoint 

feedback was a single white sphere (1 cm diameter), identical to the initial cursor. In the moderate 

uncertainty condition (σM), midpoint feedback was one of ten randomly generated point clouds6 

comprised of 50 small translucent spheres (0.2 cm diameter) distributed as a two-dimensional 

Gaussian with a standard deviation of 1 cm and a mean centred over the true (displaced) cursor 

position on the current trial. In the large uncertainty condition (σL), everything was analogous to 

the moderate uncertainty condition (σM) except that the point clouds had a standard deviation of 2 

cm. In the unlimited uncertainty condition (σ∞), no midpoint feedback was provided. Cursor 

feedback was again extinguished for the remainder of the reach to the end target. Cursor feedback 

at the endpoint of the reach (endpoint feedback) was provided only in the zero uncertainty (σ0) 

condition for a duration of 100 ms. After movement offset, there was a delay of 150 ms before the 

                                                 
5 Specifically, the clear condition σ0 was presented 3 times more that the σM, σL, and σ∞ conditions respectively. For 

instance, in a 1000 trial block, approximately 498 σ0 trials and 166 σM, σL, and σ∞ trials would be presented. As 6 

does not divide into 1000 neatly, we chose to run 1080 trails per block (540 σ0 /180 σM /180 σL /180 σ∞). 

  
6 See Appendix 3.1 for point cloud generation script. 
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start target reinitialised the next trial by changing colour from red back to blue. The maximum 

allowable time to complete a reach was 4000 ms7. Irrespective of the cursor’s position along the x-

axis, if subjects did not cross the lower bound of the end target along the y-axis (dashed line, Fig. 

3a) the trial would time out. Timeouts were signalled by the disappearance of the end target and 

the start target changing back to blue.  

 

 

Fig 3. Experimental paradigm. (a) KINARM workspace with example hand and cursor paths shown when a 2 

cm visual shift is applied. Dashed white lines indicate feedback windows. (b) Midpoint feedback conditions 

with different amounts of visual uncertainty. 

 

                                                 
7 Despite explicitly instructing the subjects to complete the raeches as rapisly and accurately as possible, the 

maximum allowable reach time of 4000ms is conservative in comparison to a timeout period of 500ms-1s as 

previously reported during other visuomotor pointing tasks (Goodbody and Wolpert 1999; Baraduc and Wolpert 

2002; Knill and Kersten 2004). In contrast to other pointing tasks that require subjects to reach unemcumbered 

(whereby the motion of a reach trajectory is remotely tracked), our paradigm required subjects to grip accelarate and 

decelerate the kinarm manipulandum, hence additional reach time was deemed appropriate. Importantly, post-hoc 

safeguards were applied in order to discard reach outliers (see section 2.2.5 Analysis). 
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2.2.5 Analysis 

Kinematic data including hand position and velocity was recorded for all trials using BKIN’s 

Dexterit-E experimental control and data acquisition software (BKIN Technologies, Kingston, 

Ontario, Canada). Hand position data was recorded at 200Hz and logged in Dexterit-E. Custom 

scripts for data processing and analysis were written in MATLAB. 8 Hand position, velocity, and 

cursor shift values were extracted from the c3d files in MATLAB as integers. A combined spatial- 

and velocity-based criterion was used to determine movement offset and corresponding reach 

endpoints (Georgopoulos et al. 1982; Moran and Schwartz 1999; Scott et al. 2001). Specifically, 

movement offset was defined as the first point in time t at which the movement dropped below a 

minimum velocity threshold (<5% of peak velocity), after a minimum reach of 19 cm from the start 

target in the y-plane. Reach endpoints were defined as the x- and y-values at time t. The additional 

spatial criterion ensured that data from the start of the trial (also <5% of peak velocity) was not 

included in subsequent analysis.  

 Since the visual shift was systematically applied along the x-axis, the primary measure of 

the subject’s estimate of the visuomotor perturbation (the estimated prior) was their mean hand 

position (x-coordinate only) at the end of the reach (henceforth endpoint) for all reaches completed 

during the unlimited uncertainty (σ∞) condition. If a subject estimates the lateral shift to be +n 

degrees, then successfully acquiring the target requires the final hand position to be at –n degrees. 

The unlimited uncertainty (σ∞) condition was used because it provides the most uncontaminated 

measure of the subject’s prior, as endpoints on those trials are not influenced by midpoint feedback. 

  Endpoint indicates the extent to which the prior distribution of shifts was integrated and 

provides an estimate of lateral shift. In Experiment 1, mean endpoint was computed across the 

entire testing phase (trial 1080-2160; testing phase) (Fig. 4a). In Experiment 2, the degree of 

                                                 
8 See Appendix 3 for representative Matlab scripts. 
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generalisation was assessed by comparing the mean endpoint at the end of the training phase (trial 

980-1080; late training phase) with the mean endpoint at the start of the testing phase (trial 1080-

1180; early testing phase) for the respective groups. 

 

 

Fig 4. Experimental design. 
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The second measure of statistical learning was deviation from target (cursor error9) as a 

function of the applied shift. Specifically, we compared the slopes of the linear fits for these plots, 

sorted by visual uncertainty condition, in order to determine the degree to which subjects 

compensated for visual uncertainty by changing their reliance on their stored prior. In Experiment 

1, cursor error as a function of shift (slope) was determined by averaging across the entire testing 

phase (trials 1080-2160). In Experiment 2, slope was assessed at the end of the training phase (trials 

980-1080; late training phase) at the start of the testing phase (trials 1080-1180; early testing phase) 

for the respective groups (Fig. 4b,c). If subjects compensate fully for the visual feedback, then the 

average deviation from target for all visual conditions should be zero. If, however, subjects 

integrate the statistically learned prior and current visual evidence, then endpoint should move 

towards the mean of the prior and depend on sensory uncertainty (Körding and Wolpert 2004). 

Hence, for a Gaussian distribution of visual uncertainty, if subjects perform Bayesian estimation, 

a linear relationship between cursor error and the imposed shift is expected. Specifically, the linear 

fit will intercept the abscissa at the mean of the prior (1 cm) and have a slope that increases as a 

function of visual uncertainty. 

 A repeated measures ANOVA with planned pairwise comparisons was used to analyse 

mean endpoints across all subjects within experimental groups, and the slopes for all experiments. 

The Mauchley test was used to assess the sphericity of repeated measures effects of visual condition 

as it constitutes a four-level factor. If sphericity was violated, Greenhouse-Geisser degree of 

freedom corrections were applied. The significance level for all non-corrected contrasts was α < 

.05. Statistical analysis was performed using SPSS v22.0 for Windows.  

  

                                                 
9 Hand position and cursor position are related as a function of the imposed shift. Specifically, cursor position is 

calculating as hand position + shift. Cursor error is the difference between the cursor position and the end target 

location at movement offset. 
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2.3 Experiment 1: Bayesian visuomotor adaptation (VA)  

The primary aim of Experiment 1 was to test whether subjects learn to compensate for the imposed 

stochastic visuomotor perturbation (lateral shifts drawn from a distribution with fixed mean and 

SD). A secondary aim was to provide an approximate replication of the findings reported by 

Körding and Wolpert (2004). Before the experiment started, each subject performed 10 

familiarization trials in which cursor feedback was always provided and no lateral shift was 

imposed. Further, for 2 of the 7 subjects tested, an additional Baseline task was run to measure 

each subject’s baseline motor variability and directional biases when reaching with each hand. The 

Baseline task used the same basic paradigm as the other experiments and consisted of the following 

sequence: 10 feedback trials with the right hand (cursor feedback always provided; no lateral shift 

imposed), 10 no-feedback trials with the right hand (no cursor feedback provided; no lateral shift 

imposed), 10 feedback trials with the left hand (cursor feedback always provided; no lateral shift 

imposed), and 10 no-feedback trials with the left hand (no cursor feedback provided; no lateral 

shift imposed). After completing the Familiarization and Baseline tasks, subjects completed 2160 

trials of the Visuomotor Adaptation (VA) task with their right hand (Fig 2a,b). For the purposes of 

comparison with Körding and Wolpert (2004), and comparison with data from the transfer 

experiment (Experiments 2) we nominally defined the training phase as the first 1080 trials in each 

session and the testing phase as second 1080 trials in each session (Fig. 4a). In this experiment, 

there were no objective differences between these phases. 

 

2.3.1 Models of visuomotoradaptation 

Following Körding and Wolpert (2004), we consider three possible computational models of 

sensorimotor integration that subjects could use to reach accurately to the target on the basis of the 

visual feedback provided.  
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2.3.1.1 Full compensation model 

One possibility is that subjects fully compensate for the sensed lateral shift (Fig. 5a). According to 

this model, increasing the uncertainty of the feedback for an imposed shift would increase endpoint 

variability (variance) without changing the mean. Importantly, this model does not require subjects 

to estimate either visual uncertainty or the prior distribution of shifts applied. 

 

2.3.1.2 Minimal mapping model  

The minimal mapping model involves an iterative mapping from visual feedback about cursor error 

to an estimate of the imposed shift. This crucial error signal can be reduced over repeated trials, 

and an accurate estimate of the shift can be attained. While this model predicts a mean endpoint of 

1cm to the left of the target (for a 1 cm rightward shift), indicating that the mean of the prior had 

been learned, it does not require an explicit representation of either the prior distribution or visual 

uncertainty (Körding and Wolpert 2004). All that is required in order to learn this mapping is an 

indication of cursor error at the end of the movement. However, in our paradigm, cursor error is 

only provided for the clear feedback condition (𝜎0). Therefore, a mapping may only be learned 

based on this condition and then applied to all other conditions (𝜎𝑀, 𝜎𝐿 , 𝜎∞) (hence the term 

minimal, for minimal condition mapping). Importantly, the minimal mapping model predicts a 

compensation pattern that is the same for all trials, regardless of visual uncertainty (Fig. 5b). 
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2.3.1.3 Bayesian estimation model  

The final model considered is the Bayesian estimation model10, according to which subjects use 

information about the prior distribution and the uncertainty of the visual feedback in order to 

estimate the imposed shift. The posterior probability distribution can be obtained by applying 

Bayes’ rule as follows: 

 

𝑃(𝑥𝑡𝑟𝑢𝑒|𝑥𝑠𝑒𝑛𝑠𝑒𝑑) =  
𝑃(𝑥𝑠𝑒𝑛𝑠𝑒𝑑|𝑥𝑡𝑟𝑢𝑒)𝑃(𝑥𝑡𝑟𝑢𝑒)

𝑃(𝑥𝑠𝑒𝑛𝑠𝑒𝑑)
      (2) 

 

Where 𝑥𝑡𝑟𝑢𝑒 is the imposed shift, 𝑥𝑠𝑒𝑛𝑠𝑒𝑑 is the sensed shift (the visual evidence) and 𝑃(𝑥𝑡𝑟𝑢𝑒) the 

prior distribution of shifts. Assuming that the noise of each measurement is independently Gaussian 

(Fig. 6) then the optimal estimate of the imposed shift is a sum of the mean of the prior and the 

sensed feedback position (𝜇𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒) weighted by their relative variances [(𝜎𝑝
2 ) and (𝜎𝑠

2) 

respectively]: 

 

𝜇𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =  
𝜎𝑠

2

𝜎𝑠
2+ 𝜎𝑝

2  [1𝑐𝑚] + 
𝜎𝑝

2

𝜎𝑠
2+ 𝜎𝑝

2  𝑥𝑠𝑒𝑛𝑠𝑒𝑑        (3) 

 

Where (
𝜎𝑠

2

𝜎𝑠
2+ 𝜎𝑝

2) and (
𝜎𝑝

2

𝜎𝑠
2+ 𝜎𝑝

2) is the ‘weighting’ (degree of influence) attributed to the prior and visual 

information relative to their respective variance. Accordingly, the joint variance (𝜎𝑠𝑝
2 ) of the 

posterior is given by: 

                                                 
10 It is important to note that while we are not employing Bayesian statistics to analyse our psychophysical data (we 

employ, instead, a frequentist approach the choice of statistical methods by which to analyse our data, in no way 

influences the fundamental hypothesis that we are testing; namely that the brain performs Bayesian sensorimotor 

integration. The credibility of this hypothesis is contingent upon whether or not subjects (a) learn the prior from a 

statistical distribution of priors and (b) integrate the degree of sensory uncertainty with the learned prior in order to 

estimate the imposed shift.  
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𝜎𝑠𝑝
2 =  

𝜎𝑠
2𝜎𝑝

2

𝜎𝑠
2+ 𝜎𝑝

2          (4) 

The Bayesian estimation model predicts that as visual uncertainty increases, the subject’s estimate 

of the imposed shift moves away from the sensed shift and tends towards the mean of the learned 

prior distribution (Fig. 5c). For example, consider an imposed shift of 2cm. Given sensory 

uncertainty there are multiple shifts that can produce a sensed shift of approximately 2 cm (i.e., 

within the range of 1.8-2.2 cm). However, if visual uncertainty is a function of Gaussian noise on 

the visual feedback, then, according to the Bayesian model, the most probable shift is less than 2 

cm, due to the influence of the learned prior. Hence, the estimated shift will tend toward the prior 

by an amount that depends on both the prior distribution and the degree of uncertainty in the visual 

feedback (Figs. 5c & 6). Furthermore, without visual feedback (𝜎∞) the estimate should 

approximate the mean of the learned prior (because the likelihood distribution is flat).  

 

 

Fig 5. Computational models. The average lateral cursor deviation from the target (cursor error) as a function 

of the imposed shift for the models. (a) Full compensation model, (b) minimal mapping model, and (c) Bayesian 

estimation model. (Transparent bands indicate the relative degree of variability in estimation). The colours of 

the linear fits correspond to the visual condition (matching Fig. 3b), as do the bands of variability in (c). 
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Fig 6. The experimentally imposed prior distribution of shifts is Gaussian with a mean of 1 cm (in black). The 

probability distribution of possible visually experienced shifts under the clear and the moderate and large 

uncertainty conditions are represented with solid lines (colours as in Fig. 3b) for a trial in which the imposed 

shift is 2 cm. The Bayes-optimal estimate of the shift that combines the prior with the evidence is represented 

by dashed lines (colours also as in Fig 3b). 

 

 

2.3.2 Predictions 

Based on the previous results of Körding and Wolpert (2004), we predicted that subjects would not 

only learn the prior distribution of imposed shifts, but would apply it in a fashion consistent with 

the Bayesian estimation model. Accordingly, we predicted that the (sign-inverted) mean endpoint 

across the entire testing block (trials 1080-2160) would closely approximate the mean of the 

learned prior of 1 cm, and that subjects would integrate the degree of visual uncertainty when 

estimating the imposed shift. It was also expected that cursor error would increase as a function of 

visual uncertainty as depicted in Fig. 5c (where increasing error is indicated by a larger slope). That 

is, subjects will estimate the imposed shift with a greater degree of accuracy during trials in which 

visual feedback is more reliable, and with accuracy decreasing across less reliable visual feedback 

conditions (accuracy during 𝜎0 > 𝜎𝑚> 𝜎𝐿 > 𝜎∞). 
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2.3.3 Results 

The mean endpoint (𝜎∞) across the experimental group was -1.51 ± 0.15cm (mean ± SD) to the 

left of the target indicating that subjects had learned the average shift of 1 cm experienced over the 

ensemble of trials (Fig. 7). 

 

 

Fig 7. Mean endpoints over the entire testing phase of Experiment 1 (VA). A mean end point of -1.51 ± 0.15cm 

(SD) indicates that the prior distribution had been learned. Note that endpoint error is plotted in screen 

coordinates, where 0 along the x-axis corresponds to the body midline. 
 

Cursor error as a function of shift was averaged across 11 bins of applied shift values and plotted 

for all visual feedback conditions (representative subject in Fig. 8a). The slope of the linear fit was 

analysed in order to investigate the relationship between cursor error and the imposed shift. 

Mauchly’s test for sphericity was violated (p = .01), requiring Greenhouse-Giesser correction. 

According to the corrected repeated measures ANOVA, slope increased significantly (F3,81 = 14.1 

p= .002) with increasing uncertainty in the visual feedback (Fig. 8b). 
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Fig 8. Results for a Gaussian distribution. (A) Cursor error at the end of the trial as a function of the imposed 

shift for a representative subject. Colours as in Fig. 3b. Values represent Cartesian screen coordinates. Error 

bars denote standard deviation. The horizontal dotted line indicates the full compensation prediction, while the 

dashed line is the fit for the minimal mapping model that ignores sensory feedback on the current trial, 

correcting for the mean over all trials only. The solid line provides the Bayesian estimation, fitted to the data, 

relative to the sensory uncertainty. (B) The slopes of the linear fits for all subjects in Experiment 1 (the first bar 

in each grouping corresponds to the subject represented in panel a). A Greenhouse-Geisser corrected repeated-

measures ANOVA of the slope, with visual uncertainty as the main factor, indicates a significant difference 

across visual conditions (F3,81 = 14.1 p=.002). A planned comparison of the slopes between visual conditions 

indicated significant differences for all visual conditions except the 𝛔𝟎 conditions which was similar (p = .46) to 

condition 𝛔𝐌.11  

 

2.3.4 Discussion 

On average, across the entire 1080 trial testing block, subjects consistently reached to the left of 

the target with a mean endpoint of -1.51 ± 0.15 cm (mean ± SD across subjects), indicating that 

they had learned the average visual shift of +1 cm (mean of the imposed prior) over the course of 

the testing phase. The mean overshoot of -0.51 cm may be explained by the size of the cursor 

relative to that of the end target. The use of a 2 cm diameter target, and a 1cm diameter cursor may 

                                                 
11 Due to trial scheduling statistics, the applied shift values differ slightly across each subject. Hence a lack of cursor 

error values for small shifts in the σL and σ∞ conditions is evident for the individual subject depicted in Fig 8a. Shift 

values in this range were represented across other subjects, and critically, every subject experienced the same overall 

statistical distribution of shifts during the training phase.    



41 

 

have induced a spectrum of subjective accuracy. Although subjects were instructed to reach as 

accurately – to the origin of the target – as possible, no special feedback was provided on correct 

trials. Consequently, bringing the cursor anywhere within the circumference of the target may have 

been perceived as an ‘accurate’ reach by the subject (leading to no further corrections or 

compensation). Any pre-existing bias in any direction up to ± 1cm (the radius of the target) might 

therefore remain uncorrected through the experiment. To determine if this was the case, we 

collected baseline reach data for the last 2 of the 7 subjects in Experiment 1.12 Baseline-adjusted 

mean endpoint averaged over those 2 subjects indicate a compensation of -1.16 ± 0.12cm (mean ± 

SD) (Fig. 9), providing a closer correspondence to the mean of the true prior (and closer to the 

results reported by Körding and Wolpert 2004). 

 

Fig 9. Baseline-adjusted mean endpoints across the entire testing phase (1080-2160) for subjects 6 and 7 from 

each group only. Mean baseline endpoints were -0.35 ± 0.03cm for right hand reaches, and 0.126 ± 0.02cm for 

left hand reaches.  

 We then examined the relationship between imposed shift and cursor error. On trials in 

which feedback was provided, there was compensation during the second half of the movement 

(Fig. 3a, example hand and cursor paths for a trial with an imposed shift of 2 cm shown in blue). 

                                                 
12 In retrospect, it would have been useful to collect baseline data for all subjects. We initially expected that any 

directional biases would be eliminated due to the sheer number of exposure trials in the experimental session. After 

data from 5 subjects across all the experiments was collected and analysed, we came to appreciate the potential 

target-cursor size tolerance issue and the role for baseline corrections.  
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The visual feedback midway through the movement provides information about the imposed shift. 

Cursor error as a function of shift is explicitly shown for a representative subject in Fig. 8a. It is 

also reflected in the slope plots for all experimental subjects in Fig. 8b. These plots show slopes 

that increase with increasing uncertainty, a pattern that is inconsistent with both the Full 

Compensation and Minimal Mapping models. In contrast, the Bayesian Estimation Model predicts 

slopes that increase with increasing uncertainty. Specifically, as visual uncertainty increases the 

influence of visual feedback on cursor endpoint is expected to decrease and reliance on the learned 

prior increases (Fig. 8a,b). 

 The influence of visual uncertainty on cursor error is evident across the population of 

subjects tested. For all 7 subjects, the slope increases significantly with visual uncertainty across 

three conditions (𝜎𝑀, 𝜎𝐿 , 𝜎∞) but not for the clear condition (𝜎0) (Fig. 8b). One possible explanation 

for this is that the clear and moderate uncertainty conditions provide similar information about the 

imposed shift (Fig. 3b). Although the stimuli used for the moderate uncertainty condition were 

randomly generated Gaussian point cloud distributions of 25 translucent spheres with a standard 

deviation of 1 cm, the origin of the moderate uncertainty feedback is still relatively easy to discern. 

Hence, from the subject’s perspective, there might have been no effective difference between the 

clear (solid white sphere of 1cm diameter) and moderate uncertainty feedback conditions. This 

could have produced the similar slopes observed across these two conditions. Nevertheless, the 

influence of visual uncertainty on cursor error remains significant for all other comparisons. This 

indicates that subjects integrate their degree of uncertainty in the current visual evidence with the 

learned prior distribution in order to generate motor behaviour that compensates for the imposed 

shift, as predicted by the Bayesian estimation model. 
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2.4 Experiment 2: Extrinsic vs. intrinsic transfer  

In comparison to intralimb generalisation studies, studies investigating the generalisation of 

visuomotor learning across limbs have been met with mixed results. For example, partial transfer 

of visuomotor adaptation has been reported when the perturbation imposed across limbs is 

congruent in an extrinsic reference frame (Imamizu and Shimojo 1995; Sainburg and Wang 2002; 

Wang and Sainburg 2004, 2005; Taylor et al. 2011;), while others note its absence (Wang and 

Sainburg, 2004; Wang 2008). Furthermore, while most studies report that transfer is asymmetrical, 

there is disagreement about the direction of transfer (dominant hand to non-dominant hand or vice 

versa) [Anguera et al. 2007; Sainburg and Wang 2002; Wang and Sainburg 2004]). Finally, Carroll 

et al. (2014) observe interlimb transfer exclusively when the perturbation is congruent across both 

extrinsic and intrinsic reference frames during an isometric force-aiming task.  

Despite this broad range of research on interlimb generalisation, to our knowledge, virtually 

nothing is known about whether and to what extent learning generalises across limbs in statistical 

contexts. The aim of Experiment 2 was therefore to build on the results of Experiment 1, and test 

whether Bayesian sensorimotor learning generalises from one limb to the other. Relatedly, we were 

interested in testing whether the initial visuomotor learning occurring during training is represented 

in extrinsic or intrinsic coordinates.  

 Like Experiment 1, Experiment 2 started with 10 trials of a familiarization task in which 

cursor feedback was always provided and no lateral shift was imposed. After completing a training 

phase with their right hand (1080 trials), subjects completed a testing phase (1080 trials) using their 

left hand in which they experienced cursor feedback sampled from the same Gaussian distribution 

as experienced previously with the right hand (mean of 1cm, SD of 0.5cm) (Fig. 4 b,c). To assess 

the reference frame in which transfer occurs, 7 subjects experienced a congruent-extrinsic (CE) 

condition in which the cursor was shifted in the same visual direction across both the training phase 

with the right arm (Fig. 2c) and the testing phase with the left arm (Fig. 2d). By design, the imposed 
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visuomotor perturbation was congruent in extrinsic (screen-based) coordinates (rightward lateral 

shift), yet incongruent in intrinsic coordinates (requiring an elbow joint flexion in the right arm and 

an elbow joint extension in the left to compensate for the shift). Another 7 subjects experienced a 

congruent-intrinsic (CI) condition in which the cursor was shifted in opposite visual directions for 

each arm (rightward shift for the right arm during the training phase [Fig. 2e], and leftward shift 

for the left arm during the testing phase [Fig. 2f]). This time, the visuomotor perturbation imposed 

across both the training and testing phases was congruent in intrinsic coordinates (requiring joint 

flexion in both right and left arms), yet incongruent in extrinsic coordinates.  

If the learning that occurs during the training phase is represented in an extrinsic reference 

frame, this predicts that transfer will be relatively strong and complete in the CE condition and 

relatively weak and incomplete in the CI condition. If the learning that occurs during the training 

phase is represented in an intrinsic reference frame, this predicts that transfer will be relatively 

strong and complete in the CI condition and relatively weak and incomplete in the CE condition. 

Here, we define strong transfer as indicated by early LH endpoints that are greater than or 

approximate to 50% of late RH endpoints, and weak transfer as endpoints that are less than 50%, 

according to the following generalisation equation13: 

 

% Generalisation =  
mean early LH endpoints 

mean late RH endpoints 
 × 100        (5) 

   

Finally, it is important to note that since we were primarily interested in assessing the degree of 

generalization of the learned prior, only endpoints from the (𝜎∞) trials were used in the analysis 

                                                 
13 Assessing generalisation via the comparison of early LH reaches and late RH reaches is in line with the methods 

used by Wang and Sainburg (2005) and Brayanov et al. (2015). Another way of testing generalisation is via the 

comparison of early RH and LH reaches, as employed by Carroll et al. (2014), which provides a comparison of 

learning rate between training and testing reaches. Given that we are not explicitly investigating the rate of learning, 

comparing late RH with early LH reaches is preferable as it indicates the percentage generalisation after complete 

RH adaptation.  
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(as in Experiment 1). In these trials, the influence on the prior should be least contaminated by 

current sensory evidence (see General Methods [Section 2.2.5]).  

 

2.4.1 Models and predictions of generalisation 

Having established that subjects behave in a fashion consistent with the Bayesian estimation model 

in Experiment 1, we considered three variants of the Bayesian estimation model as applied to 

interlimb transfer.  

 

2.4.1.1 Full-Bayesian model 

According to the Full-Bayesian model, the internal representation of statistical sensorimotor 

learning is limb- or effector-independent. Consequently, this model predicts that the mean of the 

prior will transfer to the other limb, and the likelihood will be optimally integrated. For Experiment 

2, the specific predictions are that left arm (LH) trials early in the testing phase should resemble 

right arm (RH) trials late in the training phase (once learning has stabilised) both with respect to 

endpoints (indicating transfer of the previously learned prior) and sensitivity to degree of visual 

feedback uncertainty (indicating integration of the likelihood). The Full-Bayesian model therefore 

predicts that learning will transfer and endpoints will accurately estimate the imposed prior, and 

cursor error as a function of shift (slopes) will increase proportionally to increasing visual 

uncertainty.  

 Importantly, there are two sub-varieties of this model (and also the Partial-Bayesian model) 

that relate to the different reference frames in which the imposed prior might be encoded: an 

Extrinsic reference frame model and an Intrinsic reference frame model. According to the Extrinsic 

model, the prior is initially learned and therefore generalised to the opposite limb in extrinsic 

coordinates. Because the imposed prior learned in RH training has a positive value (shifts are 

rightward along the x-axis), this model predicts a negatively-signed mean endpoint in early LH 

trials for both CE and CI conditions (adapted endpoints should be leftward along the x-axis). 
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According to the Intrinsic model, the prior is initially learned and therefore generalised to the 

opposite limb in intrinsic (joint-based) coordinates. Because the imposed prior learned in RH 

training has a positive value, requiring a compensatory flexion in the right limb, this model predicts 

an analogous flexion in the left limb resulting in a positively-signed mean endpoint in early LH 

trials for both CE and CI conditions (adapted endpoints should be leftward along the x-axis). 

 

2.4.1.2 Partial-Bayesian model 

According to the Partial-Bayesian model, some but not all of the internal representations of the 

component distributions involved in Bayesian integration are limb- or effector-specific. This model 

is based on recent evidence that the mean and variance of probability distributions involved in 

Bayesian integration may exhibit different patterns of generalization (Fernandes et al. 2014), and 

that prior and likelihood distributions might have quite distinct representational substrates in the 

human brain (Vilares et al. 2012). The Partial-Bayesian model predicts that either the mean of the 

prior, or its likelihood distribution will transfer, but not both. For Experiment 2, this model predicts 

that if the mean transfers, then early LH trials should be highly similar to late RH trials with respect 

to endpoints but visual uncertainty will not immediately be integrated. In contrast, if the likelihood 

transfers, then subjects will rapidly integrate visual uncertainty in early LH trials, but will fail to 

generate reach endpoints that compensate for the imposed shift.  

 

2.4.1.3 Quarantine model 

The quarantine model predicts that all internal representations learned under high levels of 

uncertainty will be “quarantined” in the sense that generalisation to new, untrained contexts will 

not occur (Fernandes et al. 2012). Although the prior distribution of experienced shifts and the 

likelihood distribution of visual uncertainty may be learned during the RH training phase, these 

representations would be restricted in their application to the specific context in which they were 



47 

 

learned. Consequently, they could not be recruited for the purposes of generalisation including for 

opposite limb reaches. According to the quarantine model, subjects will not compensate for the 

imposed shift with any degree of efficiency, nor will they integrate visual uncertainty. For 

Experiment 2, this model specifically predicts that early LH trials during the testing phase for both 

CE and CI groups will be highly similar to naïve performance exhibited very early in the initial RH 

training phase. 
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2.4.2 Results 

In this experiment, a training phase of 1080 RH trials was followed by 1080 LH trials for both the 

CE and CI conditions (Fig. 4b,c). The percentage of generalisation was determined by comparing 

the mean endpoint during late training (trials 980-1080) against the mean endpoint from the early 

LH trials (1080-1180), as per equation (5). To rule out the possibility that training differences 

between subjects participating in Experiments 1 and 2 could influence our results, mean endpoints 

during late RH training (980-1080) were compared across VA, CE, and CI groups. Endpoints were 

highly similar: -1.52 ± 0.2cm, -1.23 ± 0.32cm and -1.34 ± 0.22cm (mean ± SD in all cases) for VA, 

CE and CI groups, respectively (Fig. 10a), and the observed differences were not significant (VA 

vs CE, p=.069; CE vs CI, p=.31; VA vs CI, p=.15). This result indicates that learning of the prior 

distribution for CE and CI subjects was comparable to learning for VA subjects.14  

During early LH trials (1080-1180), a mean endpoint (𝜎∞) of -1.22 ± 0.1cm (mean ± SD) 

was observed for subjects in the CE group, which is highly similar to VA endpoints during the 

same period (p=.094) (Fig. 10b). This indicates strong (98%)15 transfer of the learned prior when 

the visual perturbation is congruent in an extrinsic reference frame. 

                                                 
14 In addition, the mean endpoint (𝜎∞) during late training (980-1080) for VA subjects was similar to both late 

training (1980-2160) (see footnot figure), and the entire block of 1080 trials from the testing phase, thus reinforcing 

the use of late testing reaches (980-1080) as a suitable indicator of prior learning. 

 

 
15 Calculated according to equation (5) as follows:  
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In contrast, an endpoint of 0.31 ± 0.26cm (mean ± SD) during early LH reaches was observed for 

CI subjects, which is significantly different to both CE and VA endpoints during the same period 

(p=.0001 in both cases) (Fig. 10b). This indicates that the learned prior incompletely generalised 

(23%) when the perturbation is only congruent in an intrinsic reference frame. Transfer in the CI 

group was relatively weak in comparison to the nearly complete transfer observed in the CE group, 

suggesting that the learned prior is encoded in extrinsic coordinates.  

 

 
 

Fig 10. A comparison of endpoints for all experimental groups. (A) Mean endpoint during late RH training. (B) 

Mean endpoints during early LH testing.  

 

Although the mean endpoint averaged across the first 100 trials of the testing phase may 

provide some indication of transfer, it may also reflect new learning with the opposite limb. Hence, 

an analysis of early LH reaches with higher temporal resolution was required.16 

Subsequently, a moving average analysis was performed on early LH reaches (Fig. 11). For 

the CE group, the moving average reveals a significant degree of rapid adaptation from a mean 

endpoint of -0.56 ± 0.12cm (45%) in the first 5 trials and -0.86cm ± 0.18cm (68%) between 5 and 

                                                 
𝑚𝑒𝑎𝑛 𝐿𝐻 𝐶𝐸 𝑟𝑒𝑎𝑐ℎ𝑒𝑠 (1080 − 1180)

𝑚𝑒𝑎𝑛 𝑅𝐻 𝐶𝐸 𝑟𝑒𝑎𝑐ℎ𝑒𝑠 (980 − 180)
=  

−1.21

−1.23
 ×100 = 45% 

 

The same calculation is performed to calculate the percentage for early CI reaches as well (not shown here). 
16 Ideally, interlimb generalisation would be measured by running a block of probe trials with the left hand, 

immediately following right hand training, in which no visual feedback is provided (𝜎∞ condition). Due to 

differences in our paradigm, especially those stemming from our aim of replicating the findings of Körding and 

Wolpert (2004), such probe trials were not included. Probe trials will be included in future studies. 
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10 trials (providing an average of 0.7cm [56%] over the first 10 trials), before stabilising from 25 

trials onward toward toward a mean of -1.27 ± 0.13cm (103%) after 100 trials (Fig. 11a).  

Mean endpoints in CI significantly and rapidly adapt to a mean imposed shift of -1cm (left, 

in extrinsic, screen-based coordinates); from -0.6 ± 0.13cm (45%) in the first 5 trials and -0.75 ± 

0.16cm (55%) between 5 and 10 trials (providing an average of 0.67cm [50%] over the first 10 

trials). However, Despite this rapid adaptation, endpoints plateau toward a mean of 0.41 ± 0.06cm 

(30%) after 100 trials (Fig. 11b). Interestingly, there was no significant difference between mean 

endpoints for both CE and CI groups after 5 trials (p=.65) or after 10 trials (p=.45). A signficant 

difference between CE and CI groups only began to emerge after 15 trials (p=.002), a difference 

which was maintained over the remaining trials.  

 

Fig 11. Moving average plot for early LH trials. (a) A moving average of endpoints across the first 100 trials in 

the LH testing block for CE (b) and for CI (b). Each bar represents the average across 7 subjects using a window 
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size of 5 trials.17 The dashed line represents the mean across the 100 reaches. Note that all values represent 

endpoints in horizontal screen-based coordinates. 

 

Following an investigation of early LH reaches, remaining reaches over the course of the LH testing 

phase were assessed via a moving analysis of 50 trial windows (Fig. 12). For later trials (1180-

2160), mean endpoints for the CE group remain constant, settling at -1.28 ± 0.05cm in the last 80 

trials of the testing phase, representing a mean of -1.22cm over the entire 1080 trial testing block 

(Fig. 12 in green). In contrast, mean endpoints for the CI group did not recover toward a mean of 

1cm, but rather, settled on a diminished value of 0.42 ± 0.04cm (31% compared to late RH CI) in 

the last 80 trials of the testing phase, representing a mean of 0.51cm over the entire 1080 trial 

testing block (Fig. 12 in orange).18 

                                                 
17 Although each block of 5 trials constitutes a mean over a theoretical maximum of 35 endpoints (5 trials x 7 

subjects), each block actually represents a mean of less trials due to the frequency of 𝜎∞ trials represented (average 

probability of 
1

6
 from four possible trial types with a frequency of 3,1,1,1). From analysis, the range of trials was 

determined to be 6-8 per block across the data set. 

 
18 It remains possible that the observed pattern of over-correction in the CE group and incomplete correction for the 

CI group could reflect a generalised leftward bias in aiming that applies across both arms. Such a bias may be the 

result of an implicit consequence of dominant versus non-dominant limb dynamics, or as a result of recruiting an 

explicit stratergy learned during the training phase. To reduce the influence of such effects, in future experiments we 

can introduce more task complexity including counter-balancing the direction of the cursor shifts (within each limb), 

varying the target direction, and/or using more than one reach target.  
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Fig 12. Moving average plot for the testing phase (trials 1080-2160). Same conventions as in Fig. 11, except that 

window size is 50 trials. Mean values over the entire 1080 testing block are represented by dashed horizontal 

lines for the respective groups. Also, note that the last bar constitutes the mean over 80 rather than 50 trials). 

 

It is important to note that a repeated measures analysis of variance across the averaged windows 

was not possible for the data displayed in Figures 11 and 12. As both the number of trials and the 

subjects represented differ across windows, neither trial-matching, nor repeated measure matching 

was possible.19 Accordingly, the significance values reported in Figures 11 and 12 correspond to a 

pairwise analysis of the group mean and standard deviation between consecutive windows. 

Although not a comprehensive statistical analysis of the data, such pairwise analysis confirms the 

apparent difference between the CE and CI data displayed in the figures, which, given the 

consistency evident in the data, does not detract from the overarching trend that is evident. 

                                                 
19

Although each window constitutes theoretical maximum of 350 endpoints (50 trials x 7 subjects), the average 

number of trials per window was determined to be 56 ± 9 across the data set. This variation was a result of the way in 

which the visual feedback condition was randomly allocated for a given trial. Subsequently, the number of trials per 

subject varied across windows, and hence, a pairwise comparison of means across windows was not possible.  
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Nonetheless, future studies will include trial-matched conditions across subjects in order to provide 

a more robust statistical analysis of the data. 

Next we assessed the slopes of cursor error as a function of the imposed shift across the 

different visual uncertainty conditions. Slopes increased significantly as a function of visual 

uncertainty for all experimental groups during late RH training trials (980-1080), indicating that 

CE and CI subjects were comparable to VA subjects with respect to integrating visual uncertainty 

at the end of the RH training phase (Fig. 13). 

 

 

Fig. 13. Similar integration of visual uncertainty across subjects in Experiments 1 (VA) and 2 (CE and CI). 

 

Figure 14 indicates cursor error as a function of the imposed shift for both experimental 

groups, averaged over the entire LH testing phase (panels a,g), and averaged across 100 trials at 

different junctures throughout the testing phase (panels b-l). There is no readily discernible trend 

across CE reaches (Fig 14a, p=.06), however, there is some evidence of a trend of increasing slope 

as a function of visual uncertainty on cursor error across the CI testing phase (Fig. 14g, p=.01). 

Although there are significant differences across visual conditions for early reach trials during the 

1080-1180 block in the CE group (Fig. 14b, p=.01), no consistent pattern is evident. The same is 

also true for CE subjects in the 1280-1380 block (Fig. 14c, p=.01). In contrast, a significant trend 

of increasing slopes emerges in the CI group during the 1280-1380 block (Fig. 14i; p=.001). The 



54 

 

same trend of increasing slopes as a function of visual uncertainty continues for CI subjects during 

the late 1780-1880 block (Fig.14k, p=.025), but then largely disappears during the subsequent 

1960-2160 block (Fig, 14l; p=0.2). 

 

 



55 

 

 

Fig 14. Mean slopes (cursor error as a function of shift) for CE and CI groups. Plots for the entire testing phase 

(top row) and four 100-trial blocks extracted from different parts of the LH testing phase.  
2.4.3 Discussion 
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2.4.3.1 Generalisation of the learned prior 

In this experiment, we investigated the interlimb generalisation of Bayesian sensorimotor learning 

by having subjects learn to perform reaches with one limb in a task involving a probability 

distribution of visuomotor shifts (with a fixed mean and SD) before testing the degree to which this 

learning generalises to the opposite limb. This paradigm allows us to assess how well subjects 

adapt their movements to the average experienced visuomotor perturbation (mean of the prior), the 

uncertainty in the visual feedback (visual uncertainty or likelihood), and most importantly, the 

reference frame in which learning generalises to the opposing limb.   

The moving average analysis of early LH reach endpoints in early CE trials revealed a 

significant degree of rapid adaptation from a partially generalised mean endpoint of -0.7cm [56%] 

over the first 10 trials to -1.29 ± 0.14cm after 25 trials before stabilising around a mean of -1.4cm 

± 0.09cm after 100 trials (Fig. 11a). Similarly, LH reach endpoints in early CI trials significantly 

and rapidly adapt from a mean endpoint of -0.67cm [50%] over the first 10 trials to 0.6 ± 0.07cm 

after 15 trials, before reaching a plateau toward a mean of 0.41 ± 0.06cm cm after 100 trials (Fig. 

11b). The negatively-signed mean endpoints in early LH trials across both CE and CI conditions 

match the predictions of the Extrinsic reference frame model. The observed generalisation pattern 

across both early CE and CI trials therefore indicates that the prior learned during RH training is 

represented in a limb-general format available to both limbs, and relatedly, is encoded in an 

extrinsic reference frame. At a minimum, this disqualifies the quarantine model.  

 We then considered our results in Bayesian terms. Firstly, as a simplifying assumption, we 

considered the case of 100% generalisation of the prior learned during RH adaptation.20 

Specifically, we modelled the result of Bayesian estimation during early LH reaches for both the 

                                                 
20 This is not to be confused with complete generalisation of the true prior of +1cm. Instead, according to equation 

(5), 100% generalisation implies that the prior learned during RH adaptation generalises completely to early LH 

reaches.  
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CE and CI conditions assuming a mean of the learned prior of 1.23cm21 (SD = 0.5cm) for CE (Fig 

10a), and 1.34cm (SD = 0.5cm) for CI (Fig10a), respectively; values which were obtained directly 

from our data. These priors were integrated with a likelihood reflecting an imposed mean visual 

shift of +1cm and a standard deviation of 0.7cm, the latter of which represents the average variance 

across all experienced visual uncertainty conditions22 ( 𝜎0, 𝜎𝑀, 𝜎𝑀, 𝜎∞) (Fig. 15).  

 

 
 
Fig 15. Model of Bayesian estimation for early CE and CI reaches assuming 100% generalisation of an 

extrinsically encoded prior. 

 

A posterior estimate23 of 1.15cm was calculated for the simulated early CE reach trials, and 0.55cm 

for the early CI trials, representing endpoints of -1.15cm and -0.55cm, respectively. While the 

                                                 
21 Priors and likelihood distributions are described in terms of extrinsic, workspace-based coordinates, where positive 

values indicate right of the workspace midline and negative values indicate left of midline. 

 
22 In Matlab, the likelihood was generated as follows (shown for CI): 

 

LIKELIHOOD = makedist('Normal','mu',-1,'sigma',0.7); 

LIKELIHOOD = pdf(LIKELIHOOD,X); 

 
23 In Matlab, the Posterior estimate was generated as follows: 

POST = (LIKELIHOOD.*PRIOR)/max(LIKELIHOOD); 

 

Where max(LIKELIHOOD) is the probability of the imposed shift 𝑃(𝐷). And the prior, generated for the CE 

example is as follows: 

 

PRIOR = makedist('Normal','mu',1.23,'sigma',0.5); 

PRIOR = pdf(LIKE,X); 
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model approximates the average endpoint of -0.67cm observed over the first 10 CI reaches24, it 

does not accurately predict the average endpoint of -0.70cm observed over the first 10 CE reaches. 

The magnitude and sign of the discrepancy between the modelled endpoint and that observed 

during early CE reaches suggests that the learned prior is not generalised completely from RH 

adaptation to LH reaches in the CE condition, thus strengthening the hypothesis of partial 

generalisation across extrinsic coordinates as observed previously (Imamizu and Shimojo 1995; 

Sainburg and Wang 2002; Wang and Sainburg 2004, 2005; Taylor et al. 2011).  

 In order to test this hypothesis more rigorously, we ran the same Bayesian model, this time 

assuming partial generalisation of the prior (as observed experimentally). Specifically, we assumed 

a prior of 0.7cm (SD = 0.5cm) was integrated in CE reaches and a prior of 0.67cm (SD = 0.5cm) 

was integrated in CI reaches25, where the same likelihood reflecting an imposed mean visual shift 

of +1cm and a standard deviation of 0.7cm was applied (Fig. 16). 

 

                                                 
24 Note that the posterior estimate has a lower probability than either the prior or the likelihood of the visual 

feedback, which, although a product of Bayesian estimation, is far from Bayes-optimal in this case. Yet such a sub-

optimal estimate is exactly what is expected if a statistical prior, encoded in extrinsic coordinates is erroneously 

applied to an incongruent shift defined in extrinsic coordinates (as in the CI condition). As an interesting 

consequence, the detection of sub-optimal Bayesian estimation may provide a means by which to categorise the 

degree of congruence across task domains that are otherwise indistinguishable, whereby a posterior estimate that is 

less probable than the prior may be used to identify the contextual bounds of a given task domain.  

 
25 A prior -0.70cm and -0.67cm represents a partial generalisation of 57% and 50% for CE and CI respectively, 

obtained directly from our data (based on late RH [980-1080] endpoints). 
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Fig 16 Models of Bayesian estimation for early CE and CI reaches assuming partial generalisation of an 

extrinsically encoded prior. 

 

 

This time, assuming partial generalisation, a posterior estimate of 0.75cm was calculated for the 

simulated CE reaches, and 0.12cm for early CI reaches, representing endpoints of -0.75cm and    -

0.12cm respectively. In contrast to the 100% generalisation model, this model of partial 

generalisation provides a closer approximation of the observed mean endpoint across the first 10 

CE trials = -0.70cm, but the same is not true for CI endpoints (mean endpoint across the first 10 CI 

trials = -0.67cm). 

 Consequently, while the model of 100% generalisation accurately predicts early CI 

endpoints, it does not predict early CE endpoints, thus indicating partial generalisation of the 

learned prior. However, when assuming partial generalisation, the model accurately predicts early 

CE but not CI endpoints. These opposed findings are puzzling, indicating the possibility of distinct 

processses of adaptation across the CE and CI conditions, the interaction of other unmodelled 

factors, or both. A more refined experimental paradigm, including a richer set of target directions, 

might help to resolve this puzzle and shall be considered in future work. 

This issue notwithstanding, both early CE and CI endpoints indicate that the prior learned 

during RH adaptation is encoded in an extrinsic reference frame in a limb-general manner, and is 



60 

 

therefore at least partially available to influence learning with the opposite limb. These reference 

frame findings are striking and closely resemble a number of earlier results indicating intralimb 

learning and generalisation of visuomotor rotations in extrinsic coordinates (Flanagan and Rao 

1995; Wolpert 1995; Vetter et al. 1999; Krakauer et al. 2000) and interlimb generalisation in 

extrinsic coordinates (Imamizu and Shimojo 1995; Sainburg and Wang 2002; Wang and Sainburg 

2004, 2005; Taylor et al. 2011). Nevertheless, they differ from more recent findings. For instance, 

Carroll et al. (2014) reported strong and immediate interlimb transfer only when a static visual 

perturbation was congruent across both intrinsic and extrinsic reference frames. Transfer was 

highly limited when the visuomotor perturbation was only congruent in single reference frame 

(19% during an extrinsic-congruent condition and 8% during an intrinsic-congruent condition). 

Clearly, it is their findings about lack of transfer in an extrinsic reference frame congruent condition 

that is most relevant for present purposes.  

One important difference between our paradigm and the one employed by Carroll et al. that 

could potentially explain the divergent results is that theirs was an isometric visuomotor rotation 

task in which forces or torques produced by a static hand are mapped into cursor movement. 

Isometric movements involve muscle contraction without corresponding changes in joint angle and 

muscle length, and are known to differ in terms of the muscle activity required from that used in 

natural multi-joint movements (Sergio et al. 2005). It is therefore possible that learning a 

visuomotor rotation in an isometric task is more closely linked to learning arm dynamics than 

learning arm kinematics, and involves at least partial coding in intrinsic coordinates (Shadmehr 

and Mussa-Ivaldi 1994).  

Using a similar isometric visuomotor task, Rotella et al. (2015) provide evidence that the 

learned visuomotor rotation transferred predominantly in intrinsic (joint-based) coordinates. Given 

this, the observation by Carroll et al. (2014) of minimal transfer when the visuomotor rotation was 

only congruent across an extrinsic reference frame may be less surprising. Accordingly, transfer in 
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an isometric visuomotor task would be expected only if there was congruence in intrinsic 

coordinates. However, since the transfer reported by Rotella et al. (2015) was incomplete, they 

could not rule out the possibility that the visuomotor learning was encoded by a mixture of intrinsic 

and extrinsic reference frames (Brayanov et al. 2012). 

 More recently, Poh et al. (2016) reinforce the possibility of a mixed reference frame 

representation underlying visuomotor learning using a more standard (non-isometric) reaching 

task. By implementing an innovative variation on the standard visuomotor rotation paradigm, Poh 

et al. (2016) were able to concurrently investigate both the evolving degree of adaptation in the 

trained limb and transfer to the untrained limb. They report stronger transfer when the visuomotor 

rotation is congruent in both extrinsic and intrinsic coordinates as compared to when the 

perturbation is aligned in only a single reference frame. They claim that these results implicate a 

role for mixed reference frames in the interlimb transfer of visuomotor learning. Although these 

results appear at odds with our own, their focus seems to be on the degree of transfer relatively 

late in the testing phase with the untrained limb (specifically the last two blocks of “probe” trials; 

see their Figure 4e). By contrast, our primary focus was on early transfer. Although paradigm 

differences make a direct comparison difficult, the pattern of transfer Poh et al. (2016) observed 

in early blocks of probe trials appears less consistent with their mixed reference frame conclusion 

than the transfer pattern observed in late blocks. Further investigation is therefore required. 

Specifically, ruling out the possibility of a combined instrinsic-extrinsic representation (Brayanov 

et al. 2012) underlying learning and transfer in our paradigm will require a further experimental 

condition in which the mapping learned across the limbs is aligned in both reference frames (see 

Section 3.5).     

 In addition to the relatively strong generalisation of an extrinsically encoded prior, another 

phenomenon of interest in our results is evident during early LH reaches pertaining to the rate of 

subsequent adapation. While early CE reaches adapt as expected toward a mean endpoint of -1cm, 
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the pattern of adaptation during early CI reaches is unexpected. Contrary to a gradual shift from 

erroneous endpoints toward a mean of +1cm (as predicted by an automatically applied prior), an 

abrupt error-corrective switch is observed after 15 reaches (Fig. 11b). One plausible explanation 

for this rapid shift is that some explicit motor learning strategy is invoked (Taylor and Ivry, 2013). 

According to Taylor and Ivry (2013), generalisation between effectors and across workspaces may 

involve both implicit and explicit learning processes. In fact,  Poh et al. (2016) investigated the 

contribution of explicit processes to transfer of visuomotor learning and found that explicit learning 

is typically encoded in extrinsic coordinates and is fully available to the opposite limb. With these 

distinct learning processes in mind, one explanation may be that after implicitly generalising the 

extrinsically coded prior (reflected in endpoints for initial CI trials), subjects soon explicitly 

recognize a change in task context and thus rapidly adopt a new explicit strategy (e.g., reach to the 

right of the target). Although an interesting source of speculation, our paradigm was not designed 

to address this issue.  

Another especially interesting finding is that while CE reaches stabilise toward a mean 

endpoint of -1.22cm over the course of LH reaches, CI reaches plateau on a diminished mean value 

of 0.51cm over the course of the LH reaches. This finding indicates a clear distinction between the 

CE and CI conditions in terms of the extent of subsequent adaptation over the course the LH testing 

block. One possible explanation for this CI-specific effect might be anterograde interference26 in 

the extent of subsequent adaptation. For example, interference has been demonstrated if, at some 

time after initial visuomotor learning, a counter-rotation equal in magnitude but opposite in 

direction is learned (Wigmore et al. 2002; Krakauer et al. 2005). Given our results indicating that 

the statistical visuomotor perturbation is learned and generalised to the other limb in extrinsic-

                                                 
26 In the context of sensorimotor adaptation, anterograde interference is defined as a negative change in performance 

of task B in virtue of adaptation during task A, which may constitute an increase in early endpoint error, an increase 

in the rate, and/or a decrease in the overall extent of subsequent adaptation (Shadmehr and Brashers-Krug 1997; 

Miall et al. 2004; Krakauer et al. 2009).  
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coordinates, it is possible that the transferred prior, erroneously applied to visual shifts that are 

opposite in extrinsic coordinates during the CI condition gives rise to interference.  

 According to Krakauer (2009) motor memory, undergoes a process of consolidation, 

whereby a newly acquired internal model becomes increasingly resistant to modification by a 

competing model. Not only does this consolidation commence rapidly (Krakauer et al. [2005] 

report significant consolidation after 5 minutes), but it appears to strengthen as a function of time 

and is strongly correlated with number of adaptation trials performed (Krakauer et al. 2005). When 

investigating visuomotor adaptation in non-human primates, Yin and Kitazawa (2001) 

demonstrated that although a similar extent of adaptation occurred between testing blocks of 250 

versus 500 trials, the duration of aftereffects resulting from the initial adaptation varied. Monkeys 

trained on 250 trials showed evidence of aftereffects up to 24 hours later, whereas animals trained 

on 500 trials showed aftereffects up to 3 days later. Interestingly, nothing further was learned on 

these additional exposure trials. According to Yin and Kitazawa (2001), “the error during the 

exposure period had already decreased to nil asymptote by the 250th trial” (2001, p. 253). 

Nevertheless, it seems that the “additional repetition of reaching with approximately zero errors 

that was crucial for triggering the [more robust] consolidation” (ibid, p. 253). Given that our 

subjects adapted to the extrinsically encoded perturbation over a large number of trials (1080), the 

process of consolidation may render the prior robust to change which thus slowly – and 

incompletely – updates toward the mean of -1cm. Future experiments involving the systematic 

manipulation of the number of exposure trials are needed to test the consolidation theory. 

  Another possible explanation for the observed plateau (lower asymptote) for CI reaches is 

that the recruitment of an explicit strategy may override implicit learning (Taylor and Ivry, 2013; 

Taylor et al. 2014) and lead subjects to perseverate on left-shifted reaches with the left limb. For 

example, if subjects come to adopt a simple high-level cognitive strategy such as “land to the left 

of the target” during the training phase with the right limb, this explicit strategy might carry over 



64 

 

to the testing phase and result in incomplete correction over the course of CI reaches with the left 

limb. Additionally, the large cursor-target size tolerance (footnote 12) might also allow a leftward 

(or rightward) bias to persist for longer than if the tolerance were smaller and more frequent error 

feedback was given. 

In summary, experiment 2 provides compelling evidence of three distinct phenomena 

including; the significant generalisation of the learned prior across extrinsic reference frames, 

rapid, contextual generalisation of the prior across intrinsic reference frames, and the prescence of 

a consolidated prior. Furthermore, while both rapid contextualisation and consolidation strengthens 

the hypotheiss of generalisation of the prior across extrinsic reference frames, they are mutually 

exclusive as explanations of their target phenomena, thus requiring additional investigation in order 

to disentangle what is actually occuring over the couse of CI reaches. 

However, despite such puzzling findings, what is clearly evident according to early CE and CI 

endpoints is that the prior learned during RH adaptation is encoded in extrinsic coordinates and 

generalized accros limbs. This finding rules out the proposed quarantine model. However, these 

results alone do not allow us to arbitrate between the partial-Bayesian model and full-Bayesian 

model. Next, we discuss the degree to which information about the experienced distribution of 

visual uncertainty (the likelihood) is generalised during early LH reaches. 

  

2.4.3.2 Integrating visual uncertainty 

Interestingly, our results indicate that visual uncertainty is not being integrated by the CE group at 

any time throughout the LH testing phase (Fig 14a-f). While the average slopes across the entire 

testing phase are large for all visual conditions (Fig. 14a), there is no discernible pattern over the 

course of reaches, culminating in a mixture of small and negative slopes during the last 100 reaches. 

Similarly, early CI reaches indicate that visual uncertainty is not being integrated. Taken together 

with the previously discussed results, this supports the partial-Bayesian model of transfer. These 
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findings are broadly consistent with recent work suggesting separate representations of the prior 

and likelihood in the human brain (Vilares et al. 2012), as well as evidence that the “components” 

(mean and variance) of a prior distribution involved in Bayesian computation might be represented 

and generalized independently (Fernandez et al. 2012). 

 Although our results indicate that the likelihood of visual uncertainty is not optimally 

integrated with the untrained limb it is expected that over time CE subjects recommence 

integrating uncertainty. This is not the case, however. Instead, CE subjects appear to cease 

integrating visual uncertainty over the entire LH testing phase (Fig. 14a-f). Interestingly, CI 

subjects do recommence the integration of visual uncertainty over the course of the LH testing 

phase (Fig. 14g-l). One possible explanation is that differing attentional demands across the CE 

and CI conditions may be partially responsible. The incongruence of the imposed visual 

perturbation across extrinsic reference frames encountered in the CI condition may provide 

enough of a discrepancy between task contexts to require sustained attention toward the degree of 

visual uncertainty present in the midpoint feedback during individual trials. Further experiments 

are needed to test this hypothesis.  

Another possibility is that a limb-dominance effect contributes to the lack of likelihood 

integration during reaches with the non-dominant limb, which in turn gives rise to differences in 

the results observed between the CE and CI conditions. For instance, according to Berniker and 

Körding (2008), motor errors experienced during training of the nondominant limb are more 

frequently attributed to a misestimate of limb dynamics as opposed to uncertainty in the applied 

perturbation. At this stage, we do not know whether optimal integration of likelihood information 

occurs when subjects are exposed to a stochastic visuomotor rotation for the first time with the 

non-dominant limb (i.e., without prior training experience with the dominant limb). Future 

experiments testing non-dominant to dominant transfer are therefore important.  
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2.5 Experiment 3: Temporal constraints on Bayesian sensorimotor learning  

The aim of Experiment 3 was to investigate the influence of timing on the stability of the learning 

effects observed in Experiment 1 (VA). Specifically, we aimed to test whether an inter-trial delay 

was required for subjects to show evidence of Bayesian integration in sensorimotor learning. Based 

on previous studies of motor learning (e.g., Krakauer 2009), it seemed plausible to assume that 

there might be some temporal constraints on motor memory consolidation while learning a new 

task, and consequently, that certain timing changes to the task (or interval between task trials) might 

therefore influence their ability to learn. Accordingly, a new cohort of subjects (n = 7) completed 

an identical task to that of the Experiment 1, but with zero (or minimal) delay in between 

subsequent trials (the truncated zero-delay condition).27 Instead of providing a delay interval 

between trials matched to the main experiment (150 ms), visual feedback was maintained for the 

same 100 ms after movement offset in the zero uncertainty (σ0) condition as in the main experiment, 

but, this time, with no delay before the start target reappeared, and only a minimal delay 

(corresponding to the amount of time required for the hand to return to the start target), before a 

new trial commenced (Fig. 17).  

We also wanted to determine whether it was the specific presence of an inter-trial delay or 

simply longer feedback processing time at the end of the trial that was required for the observed 

learning. To address this, we tested another cohort of subject (n = 7) using a different timing 

condition. As in the truncated zero-delay condition, these subjects were given no time in between 

subsequent trials (Fig. 17). However, instead of simply truncating all trials so that they ended with 

the cessation of visual feedback 100 ms after movement offset, visual feedback was provided for 

a full 250 ms at the end of zero uncertainty (σ0) reaches followed by no delay before the start target 

                                                 
27 Importantly, the name of this condition reflects the absence of a delay interval between trial events – the offset of 

visual feedback at the end of the previous trial and the appearance of the start target indicating the start of the next 

trial. Unavoidably, there was a minimal delay corresponding to the time required for subjects to bring their hands 

back to the start target.  
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reappeared and a new trial commenced (long-feedback zero-delay condition). For comparison 

purposes, the 250 ms feedback duration matched the total duration of the 100 ms of visual feedback 

+ 150 ms inter-trial delay that subjects experienced in Experiment  

 

Fig. 17 The differences in visual feedback and trial delay periods across the experimental conditions. For 

comparison purposes, visual feedback duration and inter-trial interval are provided for Experiment 1 (VA). 

2.5.1 Predictions 

If an inter-trial delay is required for Bayesian sensorimotor learning, subjects experiencing either 

the truncated zero-delay condition or the long-feedback zero-delay condition will show no evi-

dence of Bayesian integration in sensorimotor learning (when compared against subject data col-

lected in Experiment 1). For example, the lack of delay between trials – no matter how long the 

feedback was delivered – could interfere with learning and consolidation of the imposed prior. If 

Bayesian sensorimotor learning simply requires more processing time than 100 ms after movement 

offset (even in the absence of an inter-trial interval), adaptation comparable to that exhibited by 

subjects in Experiment 1 should occur in the long-feedback zero-delay condition but not in the 

truncated zero-delay condition. 

 

2.5.2 Results 

Across the testing phase (1080-2160), a mean endpoint of -1.57 ± 0.38cm for the truncated group 

is significantly similar (p=.28) to a mean of -1.37 ± 0.28cm for the 250ms group, while both 

truncated and 250ms endpoints are significantly similar to their VA counterparts (Fig. 18a). These 

results indicate that the mean of the imposed prior distribution of shifts was equivalently learned 
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across both groups, suggesting that, at least within the tested ranges, inter-trial intervals and 

specific feedback durations are not required for Bayesian sensorimotor learning.  

 

 

Fig. 18 (A). A comparison of endpoints across the delay conditions in experiment 3, indicating that the mean of 

the prior is learned by all groups (all endpoint are significantly similar). (B & C) Cursor error as a function of 

shift during early test reaches. While there is a significant trend toward increasing slopes for the 250ms group 

(C), no such trend exists for the Truncated group (B). 

 

 

Although significantly different across visual conditions, cursor error as a function of visual 

uncertainty for the truncated condition does not show a consistent increase as is expected for 

subjects performing Bayesian integration (F3,81 = 3.26, p=.046; Fig. 18b). In contrast, there is a 

significant trend of increasing slopes across visual uncertainty conditions for the 250ms group (F3,81 

=24.6 p=.001; Fig. 18c). 

 

2.5.3 Discussion 

Interestingly, while both the truncated and long-feedback groups learn the mean of the prior, only 

the long-feedback group showed evidence of integrating visual uncertainty (comparable to subject 

data in Experiment 1). The lack of uncertainty integration in the truncated grooup is puzzling and 

difficult to explain. Initially, we expected that the absence of a delay period between the end of the 

current trial and the start of the next would hinder the subject’s ability to integrate feedback about 

cursor error at movement offset and consequently learn to adapt their movements to the visual shift.  
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In both zero-delay conditions, endpoint feedback (on unlimited uncertainty trials) and the 

onset of the start target to initiate the next trial occur very close together in time. Consequently, 

this could have resulted in a kind of dual-task interference (Pashler, 1994; Frensch 1998; Schmidt 

1988; Taylor and Thoroughman, 2007), which is known to occur when subjects are required to 

perform two concurrent attention-demanding tasks. Moreover, Taylor and Thoroughman (2007) 

specifically argue that such interference can sometimes occur in motor learning, resulting in the 

disruption of “proper encoding and transformation of previously experienced errors into changes 

in predictive control” (ibid p. 325), which thereby limits adaptation in motor learning. Strikingly, 

our results show that while adaptation to the mean of the prior is not affected in either of the zero-

delay conditions, the capacity to integrate visual uncertainty about midpoint feedback appears to 

be disrupted. This finding is particularly puzzling, given the fact that the mid-point feedback 

conditions were analogous between the truncated and long-feedback groups. One plausible 

explanation is that, due to a lack of delay-period, subjects performing the truncated task became 

overly fatigued as a result of repetition, in the absence of the minimal delay period afforded to the 

long-feedback group, who, once integrated endpoint feedback availed themselves of the additional 

150ms to rest between trials. If this interpretation is on track, it is plausible to propose that a visual 

feeback period of ≥100ms is required in order to adapt to endpoint error. Another plausible 

explanation for the observed differences between delay conditions is that two different processes 

(operating over two different timescales) are in play (e.g., Smith et al. 2006). For instance, the brain 

may only update its estimate of visual uncertainty given an extended period of visual feedback, 

while the estimate of the mean shift (the peak of the prior distribution) may be updated relatively 

rapidly via a different process such as a high-level explicit strategy (Taylor et al. 2014). In this 

case, both estimates would be updated during the long- feedback trials (hence both uncertainty and 

the mean shift would be integrated), but only the mean shift would be updated during truncated 
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trials. Clearly, more experimental work is needed to disentangle the time-dependence of these 

observed effects. 

Reassuringly, we observed highly similar results between subject performance in the long-

feedback condition compared to Experiment 1. This implies that additional visual feedback 

(>150ms) neither inhibits nor aids adaptation, and the capacity to integrate visual uncertainty is not 

disrupted by the extended window of visual feedback. More experimental studies are needed to 

investigate the precise temporal switch point that determines whether Bayesian estimation is 

strengthened or inhibited. 

 

3. General Discussion  

In stark contrast to the moderate claims of Bayesian modelling approaches, which employ the 

mathematical framework of Bayesian statistics to model psychological and neural phenomena, the 

Bayesian coding hypothesis (henceforth BCH) makes stronger claims about the brain. Specifically, 

the BCH proposes that cognitive, perceptual, and/or motor processes are Bayes-optimal, and that 

the brain encodes probability distributions and performs probabilistic inference (Knill and Pouget 

2004; Körding 2014). According to the proponents of the BCH there exists “strong behavioural 

and physiological evidence that the brain both represents probability distributions and performs 

probabilistic inference” (Pouget et al. 2013, p. 1).  

 On the back of their behavioural findings, which have inspired much of the experimental 

work reported in this thesis, Körding and Wolpert (2004) claim to have shown that “subjects 

internally represent both the statistical distribution of the task and their sensory uncertainty, 

combining them in a manner consistent with a performance-optimizing Bayesian process.” Thus 

concluding that “[t]he central nervous system therefore employs probabilistic models during 

sensorimotor learning.” (2004, 1). Clearly, drawing such a strong conclusion about Bayesian 

inference being implemented in the brain on the basis of behavioural evidence alone is at very least 
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premature. While such behavioural evidence does serve to indicate that the brain integrates sensory 

information in a Bayes-optimal way, it does not, on its own, provide conclusive evidence for BCH. 

Substantiating BCH clearly requires information about how Bayesian computations are neurally 

implemented.  

In an attempt to provide direct neural evidence in support of BCH, several neuroimaging 

studies have identified brain regions specifically associated with the integration of prior learning 

and sensory likelihood during sensorimotor (Vilares et al. 2012; d’Acremont et al. 2013). For 

instance, Vilares et al. (2012) employed a task in which they could independently vary prior and 

likelihood and found that were differentially represented in the human brain. They report selective 

activation of early areas in the visuomotor processing pathway when likelihood uncertainty was 

manipulated, and activation of a diverse range of areas outside the visuomotor pathway when the 

standard deviation of learned priors was manipulated including amygdala, insula, and orbitofrontal 

cortex. Although neuroimaging localization studies like these begin to tell us about where in the 

brain Bayesian integration is performed, they provide scant information about how neural circuits 

actually implement the required computations. Given the well-known spatial and temporal 

resolution limitations inherent to BOLD fMRI (Logothesis 2008), neuroimaging studies provide 

inconclusive evidence about how Bayesian computations are performed by the brain. In light of 

the lack of direct neural evidence, models of computational models have also been relied upon to 

provide useful constraints. Two models have been particularly influential for theorising about the 

neural basis of Bayesian integration.  

 

3.1 The Probabilistic Population Code (PPC) model 

In a prominent modelling study, Ma et al., (2006) proposed their “probabilistic population code” 

(PPC) model (Fig 19). The PPC model involves two basic assumptions. First, Bayesian integration 

is performed by relatively small neural populations rather than in individual neurons or entire brain 
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regions. Second, the firing rates of individual neurons in the relevant population must be highly 

variable to the extent that they approximately obey Poisson statistics. In extreme cases where 

variability is essentially random and Poisson-like, the mean response of a neuron for a given 

condition might be equal to or even exceed its variance (Fano factor ≥ 1). Ma et al.’s critical insight 

is that this variability is not a nuisance or unwanted noise, but rather that neural populations 

automatically encode probability distributions in virtue of this Poisson-like variability. More 

specifically, because of the variability in individual neuron responses to some stimulus, s, the 

overall response of the population made up of these neurons, r, to s is best described in terms of a 

probability distribution, p(r|s), rather than a deterministic mapping from s onto a single value of r. 

Importantly, p(r|s) may be thought of as the likelihood distribution from Bayes’ rule. With 

information about the prior distribution p(s), Bayes’ rule can be used to recover information about 

the probability of the stimulus given the population response, p(s|r), the posterior distribution.  

Ma et al. also assume that each distribution is represented by the activity of a distinct neural 

population (Fig. 19). According to their model, the mean and variance of each distribution are 

encoded by population activity in such a way that a population with a higher mean will naturally 

have lower variance (lower uncertainty) and vice versa. Accordingly, summing two population 

responses (representing an individual prior and individual likelihood) in a new population response 

(representing the posterior) will be skewed towards the population response with the larger mean 

(lower variance), just as one would expect for Bayesian integration. In the toy example depicted in 

Fig. 19, the population response representing the likelihood has lower variance (uncertainty), so 

would have a proportionally larger influence on the downstream population response representing 

the posterior. 
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Figure 19. Probabilistic population model of Bayesian integration. Adapted from Ma and Pouget (2008). 

 

Despite its aspirations as a model of neural implementation, it remains to be seen whether real 

neural systems perform Bayesian computations in the same way. Currently, there is no way to map 

key aspects of the PPC model onto real neural structures and activities. Obviously, the ultimate 

arbiter of the success of the PPC model will be the extent to which it is consistent with neural data. 

Unfortunately, at the moment, there is a serious lack of data to test the model. 

 

3.2 The Neural Weighting (NW) model 

In a set of recent empirical studies, Fetsch et al. (2009, 2012) investigated the neural correlates of 

Bayesian multisensory integration.28 They recorded single-unit activity while monkeys performed 

a heading discrimination task in which the reliability of the visual motion information was 

                                                 
28 In this case, Bayesian inference occurs in the absence of a prior. Instead, it is the likelihood of multiple sensory 

cues that are summed together instead of summing a single cue with an existing prior (as per our experiments). 

Nonetheless, the process is analogous in both cases. 
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manipulated by varying the percentage of dots in the stimulus moving coherently in a single 

direction. During the experiment, monkeys were presented with either a single-cue (visual or 

vestibular) indicating motion, or a combined-cue (visual plus vestibular) where the two cues were 

in conflict with one another. Behavioural thresholds from the single-cue conditions were used to 

estimate cue reliability (the inverse of uncertainty or variance), and the weighting that an ideal 

observer should apply to each cue. Psychometric data collected during cue conflict trials were then 

compared to theoretical estimates predicted by Bayes’ rule. Monkey’s choices were significantly 

biased towards the more reliable cue, indicating that monkeys are integrating sensory information 

according to its variance, in a Bayesian manner.  

 To explore the neural basis of these behaviours, Fetsch et al. recorded single unit activity 

in dorsal medial superior temporal (MSTd) – an area involved in self-motion perception – while 

monkeys performed the heading task described above. When they modelled the firing rates, they 

found that many MSTd neurons encoded information about cue reliability (sensory uncertainty). 

Specifically, the modelled weights on individual MSTd neurons varied with cue reliability on a 

trial-by trial basis in a manner consistent with optimal Bayesian integration.  

 

3.3 A Fundamental Tension Between the Two Models 

There is a fundamental tension between the two neural implementation models. According to the 

PPC, Bayesian integration is implemented at the population level, implying that cue reliability is 

reflected in the population activity. This means that each neuron within the population has the same 

fixed reliability-based weight = 1 (for instance, the visual weight of each neuron in the visual 

population is equal to 1 and the weight of each neuron in the population representing the prior is 

equal to 1). 

 This assumption is in tension with the NW model proposed by Fetsch et al. in which 

reliability-dependent reweighting occurs at the level of individual neurons and hence are not fixed 
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and uniform across a given population. Subsequently, the principles laid out by the PPC and the 

NW models imply vastly different – even incompatible – ways of implementing Bayesian 

integration. Needless to say, exactly how the brain might implement Bayesian computations 

remains an open question that will continue to occupy neuroscientists and computational modellers 

well into the future.  

 An important consequence of these different assumptions is that they both embody rather 

different views about what we should be looking for in the brain. The PPC model predicts that 

there are specialised brain regions that separately encode and process priors versus sensory 

uncertainty (likelihoods). By contrast, the NW model predicts that information about both prior 

and uncertainty is localised with individual neurons primarily involved in coding task-relevant 

sensory or motor variables.  

 

3.4 What kind of constraints can behavioural evidence provide? 

Given the paucity of solid neural evidence supporting BCH, there is good reason to look elsewhere 

to find potential support. Although less direct than neural evidence, carefully designed behavioural 

experiments can also provide informative constraints on the representations involved in Bayesian 

estimation (Fiser et al. 2010). In the context of sensorimotor learning, generalisation studies have 

proven to be a highly useful tool for revealing underlying representations (Thoroughman and 

Shadmehr 2000; Poggio and Bizzi 2004; Shadmehr 2004; Paz and Vaadia 2009). These studies 

have the capacity to provide useful constraints on the format in which learning represented (and 

specifically, whether the learned information is encoded in an intrinsic or extrinsic coordinate 

frame), and the degree to which prior learning generalises to novel contexts. In light of the difficulty 

of investigating the neural basis of Bayesian estimation directly, researchers have recently started 

to use behavioural experiments to explore the issue. For instance, Fernandez et al. (2012) 

investigated how prior uncertainty generalized during reaching by having different groups of 
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subjects groups adapt to a visual rotation with the same mean but different levels of feedback 

uncertainty. They conclude that the generalisation of a stochastic perturbation is independent of 

the uncertainty of visual feedback, indicating that the prior and sensory likelihood are 

independently represented. Despite the usefulness of this study, Fernandez et al.’s results do not 

provide information about the reference frame in which learning and generalization occurs. By 

limiting generalization to an intralimb setting, the reference frame in which generalization occurred 

did not change, and thus the format in which such adaptation is generalized could not be 

investigated.  

 To provide useful constraints on the aspects of the underlying processes and representations 

through which sensorimotor learning is achieved, especially the frame of reference in which such 

learning occurs and the degree to which the learned representation is limb-specific or effector-

general, is readily investigated via interlimb generalisation studies like ours. 

 Accordingly, our results indicate that Bayesian integration in visuomotor learning exhibits 

some degree of effector-specificity in the human motor system, and relatedly, that the underlying 

representations are predominantly encoded in an extrinsic reference frame. Furthermore, the strong 

transference of the prior and simultaneous lack of integration of visual uncertainty during early CE 

reaches indicates that the prior and sensory likelihood may be represented independently. 

Furthermore, our results provide useful constraints on both the PPC and NW models.  

 With reference to the PPC model, our results make distinct neural predictions for both CE 

and CI reaches. Although neuroimaging or neural recording was not a part of the current study, it 

is interesting to speculate about the neural correlates of the sensorimotor learning we observed. In 

particular, activity within relevant visuomotor populations that significantly correlate with both 

RH adaptation and LH CE reaches would be plausible candidates for limb-general representations 

of the prior, but not the likelihood. In contrast, population activity that correlates significantly with 

RH adaptation reaches exclusively, but not LH CE reaches, would be natural candidates for the 
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limb-specific representation of sensory likelihood. Of course, these conjectures will ultimately 

have to be judged according to the weight of neural evidence, when it is available.  

In terms of the NW model, our results predict that the activity of neurons in the same 

population should be significantly correlated during both RH and LH reaches (CE and CI). Further, 

if that single population was to be identified (in some region in the sensorimotor processing 

network), it is expected that single-unit recording should identify a distinction in neural weighting. 

Specifically, in light of the NW model, we might expect that individual neurons within this 

population flexibly update their weights on the prior and sensory likelihood based on the reliability 

of the midpoint feedback provided about the true cursor position – i.e., the four visual uncertainty 

conditions (σ0, σM, σL, σ∞). As uncertainty increases (reliability decreases), we might expect the 

modelled weights on the firing rates of these individual neurons to shift more toward the prior. And 

as uncertainty decreases, we might expect weights to shift toward the likelihood. 

 One obvious area to begin to test these hypotheses is in the neural regions known to be 

engaged during sensorimotor learning and interlimb generalisation (inferred from PET and fMRI) 

(Imamizu et al., 2000; Inoue et al., 2000; Miall et al., 2001; Krakauer et al., 2004; Graydon et al., 

2005; Anguera et al., 2007). Most recently, Anguera et al., (2007) use fMRI to investigate whether 

any regions engaged during early visuomotor learning were also involved during transfer. They 

showed that during early learning of a visuomotor adaptation task increased activation occurred in 

frontal and parietal regions, including bilateral dorsal premotor cortex. During transfer, activation 

was seen in the temporal cortex as well as the right medial frontal gyrus and the middle occipital 

gyrus. Although these findings are far from conclusive, they do suggest that frontal cortex might 

be a useful place to start looking for neural populations involved in the Bayesian integration during 

sensorimotor learning and during transfer. 
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3.5 Future Directions 

Having demonstrated how well-designed behavioural studies have the capacity to levy fruitful 

constraints on neural models of Bayesian integration, it goes without saying that more progress 

remains to be made in this area. Although we investigated transfer across intrinsically and 

extrinsically congruent reference frames, we did not investigate the degree of transfer across mixed 

reference frames (i.e., when the perturbation is constant across both extrinsic and intrinsic reference 

frames simultaneously). The fact that a number of recent studies (Carroll et al. 2014, 2016; Poh et 

al. 2016) indicate that transfer may be more complete when the visuomotor perturbation is aligned 

across both intrinsic and extrinsic reference frames highlights the importance of conducting similar 

investigations in a Bayesian context.  Furthermore, in light of the fact that the findings of Carroll 

et al. (2014 and 2016) pertain to isometric force aiming and the findings of Poh et al. (2016) pertain 

predominantly to late transfer, further investigations utilising more naturalistic reach settings that 

account for all stages of transfer are needed.  

 Accordingly, we have designed and will soon run a protocol that investigates the extent to 

which a stochastic visuomotor adaptation transfers across limbs in congruent reference frames. 

Analogous to the visuomotor rotation paradigm run in our Experiments 1-3, subjects will complete 

reaches to one of several targets under four different visual feedback conditions in which visual 

uncertainty is varied (𝜎0, 𝜎𝑀, 𝜎𝐿 , 𝜎∞) at the midpoint. Like the current experiments, visual feedback 

will only be provided during the veridical condition (𝜎0), and the shift applied on each trial will be 

randomly drawn from a normal distribution (mean of 1 cm and standard deviation of 0.5 cm). 

Unlike our previous experiments, however, subjects will perform reaches starting from either the 

left or the right towards a target aligned with the body midline while adapting to a visual shift 

imposed along the sagittal plane (the y-plane of the screen) (Fig 20). Accordingly, the applied 

visual shift will be congruent across both intrinsic and extrinsic reference frames between left -and 

right-hand reaches. Further, we shall alter the trial scheduling in order to deliver more precisely 
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matched visual conditions across subjects during both training and testing phases. Unfettered by 

the goal of replicating Körding and Wolpert (2004), we will also incorporate a block of no-

feedback (𝜎∞) “probe” trials at the beginning of the testing phase to obtain an improved measure 

of interlimb transfer over the current experiments. Finally, borrowing from the innovative 

methodology developed by Poh et al. (2016), we shall interleave no-feedback probe trials (𝜎∞) 

involving the trained and untrained limbs as a means by which to assess concurrent adaptation and 

transfer rates. Finally, as an important control, we also plan to run a (non-Bayesian) version of this 

experiment in which the imposed visuomotor perturbation is fixed. 

 

Fig. 20 A) Paradigm for investigating visuomotor transfer across jointly congruent reference frames. The 

visual shift is applied positively in the y-plane for both left and right reaches. Accordingly, compensation 

requires an elbow flexion for both left and right reaches, which are thus congruent in both extrinsic and 

intrinsic reference frames. B) Midpoint feedback conditions with different amounts of visual uncertainty. 

 

In order to further investigate the nature and representation of statistical priors, and the degree to 

which these representations generalise across the limbs, we also intend on implementing analogous 

protocols in which the mean and variance of the imposed prior are independently varied during 

learning (Fernandez et al. 2014). The degree of adaptation and interlimb generalisation observed 

across these follow-up experiments will help shed further light on the nature of Bayesian 

integration in sensorimotor learning.  

b) a) 
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A.2 The KINARM in detail 

 

The unimanual version of the KINARM endpoint robot was utilized in all experiments 

(Appendix figure 1a). The KINARM includes a single handle manipulandum which provides 2D 

movement across a horizontal plane. The handle is located beneath a 2D virtual reality display, 

which allows the presentation of visual stimuli such that the stimuli (e.g., targets for reaching 

movements, and a cursor that represents handle location) appear at the same horizontal level as 

the hand (Appendix Figure 1b). Feedback of hand position is acquired through incremental 

encoders that log position incrementally at 200Hz. 

 

 

Appendix Figure 1: A The KINARM endpoint Robot. B A Schematic of the KINARM in use. 

 

A.2.1 Dexterit-E TM experimental control and data acquisition software 

 

The Dexterit-E TM experimental control and data acquisition software runs on a multi-computer 

system. Dexterit-E itself runs on a Windows-based computer, in which it effectively acts as a 

user-interface for choosing task protocols, providing visual feedback to the operator, and saving 

data. The chosen task protocol is associated with a real-time computer, which is used to control 

the task. The real-time computer runs Xpc Target, a Simulink model (Mathworks Corporation), 

with which Dexterit-E interfaces. During the execution of a reaching task, communication 

between the real-time computer to the Windows-based computer allows the Windows-based 

computer to offer online feedback to the operator. 
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A.2.2 Creating a task program 

 

Task programs are created to define and control the system behaviour that can occur during a 

single trial of a reaching task implemented by Dexterit-E. For a generic reaching task, the task 

protocol may be defined as follows: 

 

1. A start target will turn on during a trial. 

2. Once a subject reaches that target, the target will change state and a second (end) target 

will turn on. 

3. The subject reaches to the second target, which will turn off when the subject reaches the 

target. 

4. trial is over. 

5. The start target reverts to its initial state. 

6. Back to step 1. 

 

The task program does not define the details of the task, such as the target location, color, inter-

trial period, visual feedback conditions or the number of trials. These parameters are specified 

through the BKIN Dexterit-E’s windows-based interface. Creating a task program involves 

modelling the task parameters in Simulink via the Stateflow toolboxes. Simulink is a block 

diagram programming environment for a model based design in which task programs are 

developed and represented as a graph of data flow in the task.  

Stateflow is a graphical design tool for developing event-driven state machine that allows 

transitions between the states defined in the task. Task programs built in stateflow are compiled 

by Matlab and the xPC Target toolbox, using a generic C/C++ compiler. 

The figure below (Appendix Figure 2) shows a schematic of the stateflow chart that controls task 

parameters during a single trial in our experiments. 
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Appendix figure 2: Simulink State flow of the steps implemented during experimental protocol.
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In this flow chart, states are represented by ovals and transitions between states are represented 

with arrows. An event can only exist in one state at a time, and the event must be in one of the 

defined states. The event transfer from one state to another can only occur when there is a 

transition between the states, and the conditions for that transition are true. The eleven states in 

the flow state are as follows:  

 

1. Initialize – When this state is entered, all target and cursor variables are initialised with 

empty states. 

2. FirstTargetOn – When this state is entered, the first target will be turned on. In addition, 

three logical windows (invisible windows within which visual feedback is modified) will 

be turned on. The event will stay in this state until the cursor enters the first target. 

3. StayAtFirstTarget – When this state is entered, data logging is initialized, indicating that 

the cursor has entered the first target. At this point, the first target changes state (color). 

Once the condition “wait for a specific time” is true, the event will switch to the 

“ShowSecondTarget” state.  

4. ApplyShift – This state is entered when the cursor leaves the first target. At this point, 

visual feedback of the cursor is extinguished, and a generated shift (from veridical hand 

position) is applied to the cursor position. 

5. ShowSecondTarget – When this state is entered, the second target will be turned on, 

indicating to the subject that they may commence their reaching movement. The condition 

“MaxReachTime” will turn on, initializing a count-down timer signaling the maximum 

trial duration. The event will stay in this state until the cursor exits the first target, or max 

trial duration has past 

6. ShowCursor – This state is entered when the hand position enters the logical window at 

the mid-point of the reach, at which point the designated visual feedback condition is 

turned on at the shifted position.  

7. SwitchOfCursor2 – When the cursor leaves the mid-point logical window, visual 

feedback of the cursor position is turned off.  

8. StayAtSecondTarget – When the hand position enters the second target, this state is 

initialised. While the target state (colour) remains the same, visual feedback of the cursor 
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will change according to the designated feedback type. of the cursor entered Once the 

condition “wait at second target for a specific time” is true, the event will switch to the 

“EndOfTrial” state. 

9. EndOfTrial – When this state is entered, the states of all initialised variables within the 

previous trial return to zero, and the next trial commences. – When this state is entered, 

the target will be turned off. This state will switch to “Between Trials” state. 

10. InterTrialState – When this state is entered, State flow sends a signal to the task program 

that trial is over and to provide a specific time delay, allowing the Task Program to update 

the Trial Protocol for the next trial. Exiting from this state back to the “Target On state” 

for the next trial occurs after a specified time delay. 
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A.3 Protocol scripts 

A.3.1 Point cloud function 

 
function makePointclouds(num_figs,number_of_points,meanc,stdc) 
  
%use as makePointclouds(num_figs) where num_figs is the number of figures 
%you want created, number of points is the # points in the cloud drawn from 

distribution meanc, stdc 
  
close all; 
meanc=meanc*100; 
stdc=stdc*100; 
  
    for i=1:num_figs 
        n=number_of_points; % number of points 
        radius = meanc + stdc.*randn(n,1); %draw n radii 
        xc = randn(n,1); % 
        yc = randn(n,1); 
  
        xc=xc'; 
        yc=yc'; 
  
        theta = rand(1,n)*(2*pi); 
        r = sqrt(rand(1,n)).*radius'; 
        x = xc + r.*cos(theta); 
        y = yc + r.*sin(theta); 
  
        hs=scatter(x,y,10); 
  
        set(hs,'MarkerFaceColor','w'); 
        set(hs,'MarkerEdgeColor','w'); 
  
        set(hs,'MarkerFaceAlpha',0.5); 
        set(hs,'MarkerEdgeAlpha',0.0); 
  
        set(gcf, 'Position', [0 0 400 400]); 
  
        axis equal; 
        axis off; 
  
        xlim([-400 400]); 
        ylim([-400 400]); 
  
        title([]); 
  
        %hold on 
  
        export_fig(['pointcloud_',num2str(stdc/100),'_',num2str(i)],... 

  '-transparent','-png','-native','-nocrop'); 
    end 
  
end; 
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A.3.2 Read in .c3d, sort data and designate required bin size 

 
%Read in c3d data 

% Trial type 1 = sigma_1, 10-1 = sigma_m, 20-29 = sigma_L, 30 = sigma_0; 

right_hand_veridical = c3d_load('*_01_*.c3d'); 
right_hand_low = c3d_load('*_10_*.c3d', '*_11_*.c3d','*_12_*.c3d',... 

'*_13_*.c3d','*_14_*.c3d' , '*_15_*.c3d', '*_16_*.c3d', '*_17_*.c3d', 

'*_18_*.c3d', '*_19_*.c3d'); 
right_hand_high = c3d_load('*_20_*.c3d', '*_21_*.c3d', '*_22_*.c3d', 

'*_23_*.c3d', '*_24_*.c3d','*_25_*.c3d', '*_26_*.c3d', '*_27_*.c3d',... 

'*_28_*.c3d', '*_29_*.c3d'); 
right_hand_unlimited = c3d_load('*_30_*.c3d'); 
  
%Sort data by ascending trial number 

for idx=1:size(right_hand_veridical, 2) 
    right_hand_veridical(1, idx).TRIAL_NUM = 

right_hand_veridical(1,idx).TRIAL.TRIAL_NUM; 
end 
right_hand_veridical = nestedSortStruct(right_hand_veridical, 'TRIAL_NUM'); 
  
for idx=1:size(right_hand_low, 2) 
    right_hand_low(1, idx).TRIAL_NUM = right_hand_low(1,idx).TRIAL.TRIAL_NUM; 
end 
right_hand_low = nestedSortStruct(right_hand_low, 'TRIAL_NUM'); 
  
for idx=1:size(right_hand_high, 2) 
    right_hand_high(1, idx).TRIAL_NUM = 

right_hand_high(1,idx).TRIAL.TRIAL_NUM; 
end 
right_hand_high = nestedSortStruct(right_hand_high, 'TRIAL_NUM'); 
  
for idx=1:size(right_hand_unlimited, 2) 
    right_hand_unlimited(1, idx).TRIAL_NUM = 

right_hand_unlimited(1,idx).TRIAL.TRIAL_NUM; 
end 
right_hand_unlimited = nestedSortStruct(right_hand_unlimited, 'TRIAL_NUM'); 
 
% Select data window (i.e Trial 0-100 shown here) 
 

idx = [right_hand_veridical(:).TRIAL_NUM]>0 & 

[right_hand_veridical(:).TRIAL_NUM]<101;  

right_data_veridical= right_hand_veridical(idx); 
  
idx = [right_hand_low(:).TRIAL_NUM]>0 & [right_hand_low(:).TRIAL_NUM]<101; % 

Those in right_data_low= right_hand_low(idx); 
  
idx = [right_hand_high(:).TRIAL_NUM]>0 & [right_hand_high(:).TRIAL_NUM]<101; % 

Those in  
right_data_high= right_hand_high(idx) 
  
idx = [right_hand_unlimited(:).TRIAL_NUM]>0 & 

[right_hand_unlimited(:).TRIAL_NUM]<101; %  
right_data_unlimited= right_hand_unlimited(idx); 

 

A.3.3 Unpack desired data field 
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function UndesignatedField = UnpackField(FieldName,data_in) 
  
%%Unpack required field "FiieldName" from c3d array "data_in", 
  
fieldData = {}; 
  
for n=1:length(data_in) 
    fieldData{n} = getfield(data_in(n), FieldName);     
end 
  
minLen = length(fieldData{1}); 
for n=2:length(data_in) 
    minLen = min(minLen, length(fieldData{n})); 
end 
  
arr = fieldData{1}; 
matrixVersion = arr(end-minLen+1:end); 
for n=2:length(data_in) 
    arr = fieldData{n}; 
    maxLen=length(arr); 
    deltaLen=maxLen-(minLen); 
     
    if  deltaLen <1 
        arr=arr; 
    else  
        arr= arr(end-minLen+1:end); 
    end 
     
    matrixVersion  = [matrixVersion, arr]; 
end 
  
UndesignatedField = matrixVersion; 
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A.3.4 Unpack reach coordinates and velocity profiles 
 

%% Calculate reach trajectories for each visual condition type 
 

%sigma_1 data 
RH_X_veridical = UnpackField('Right_HandX', right_data_veridical); 
RH_Y_veridical = UnpackField('Right_HandY', right_data_veridical); 
  
%sigma_m data 
RH_X_low = UnpackField('Right_HandX', right_data_low); 
RH_Y_low= UnpackField('Right_HandY', right_data_low); 
  
%sigma_L data 
RH_X_high = UnpackField('Right_HandX', right_data_high); 
RH_Y_high = UnpackField('Right_HandY', right_data_high); 
  
%Sigma_0 data 
RH_X_unlimited = UnpackField('Right_HandX', right_data_unlimited); 
RH_Y_unlimited = UnpackField('Right_HandY', right_data_unlimited); 

 

%% Calculate Velocity 
RH_vel_veridical = UnpackField('Right_L1Vel', right_data_veridical); 
RH_vel_low = UnpackField('Right_L1Vel', right_data_low); 
RH_vel_high = UnpackField('Right_L1Vel', right_data_high); 
RH_vel_unlimited = UnpackField('Right_L1Vel', right_data_unlimited); 
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A.3.5 Apply position and velocity criteria to calculate endpoints 
 

%% Endpoint Capture (minimum velocity criteria) [Example for sigma_1 only] 
  
%Find the maximum velocity within the trial vector 
maxima_veridical=squeeze(max(RH_vel_veridical,[],1))'; 
  
%populate an array of possible endpoints @ 5% max velocity 
threshold_veridical=0.05*maxima_veridical; 
  
for i=1:length(maxima_veridical) 
maxima_veridical_IDX(i)=min(find(ismember(RH_vel_veridical(:,i),maxima_veridic

al(i)))); 
end 
  
for i=1:length(threshold_veridical) 
    if 

isempty(find(RH_vel_veridical(maxima_veridical_IDX(i):end,i)<threshold_veridic

al(i),1,'first')) 
    fivepc_veridical_IDX(i)=0; 
    else 
    

fivepc_veridical_IDX(i)=find(RH_vel_veridical(maxima_veridical_IDX(i):end,i)<t

hreshold_veridical(i),1,'first')+maxima_veridical_IDX(i)-1; 
    end 
end 
  
%find min velicity endpoint after 20cm reach (y>34cm)  
logical_veridical=RH_Y_veridical>0.34; 
  
for i=1:size(logical_veridical,2) 
    if isempty(find(logical_veridical(:,i),1,'first')) 
    y_veridical_IDX(i)=999; 
    else 
    y_veridical_IDX(i)=find(logical_veridical(:,i),1,'first'); 
    end 
end 
  
index_veridical=fivepc_veridical_IDX(fivepc_veridical_IDX > y_veridical_IDX); 
idx_veridical=(fivepc_veridical_IDX > y_veridical_IDX); 
X_veridical_temp=RH_X_veridical(:,idx_veridical); 
Y_veridical_temp=RH_Y_veridical(:,idx_veridical); 
  
for i=1:size(Y_veridical_temp,2); 
Y_veridical(i)=Y_veridical_temp(index_veridical(i),i); 
end 
Y_veridical=Y_veridical'; 
  
for i=1:size(Y_veridical_temp,2); 
    endpoints_veridical(i)=X_veridical_temp(index_veridical(i),i); 
end 
endpoints_veridical = endpoints_veridical'; 
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A.3.8 Unpack the imposed shift, calculate endpoints and cursor position 
 

%% Calculate X_Shifts 
shift_veridical=UnpackField('XSHIFT', right_data_veridical); 
shift_veridical=shift_veridical'; 
shift_veridical=shift_veridical(:,end); 
shift_veridical = shift_veridical(idx_veridical); 
  
shift_low=UnpackField('XSHIFT', right_data_low); 
shift_low=shift_low'; 
shift_low=shift_low(:,end); 
shift_low = shift_low(idx_low); 
  
shift_high=UnpackField('XSHIFT', right_data_high); 
shift_high=shift_high'; 
shift_high=shift_high(:,end); 
shift_high = shift_high(idx_high); 
  
shift_unlimited=UnpackField('XSHIFT', right_data_unlimited); 
shift_unlimited=shift_unlimited'; 
shift_unlimited=shift_unlimited(:,end); 
shift_unlimited = shift_unlimited(idx_unlimited); 

 

%% Calculate reach endpoints 
endpoints_veridical = []; 
endpoints_low = []; 
endpoints_high = []; 
endpoints_unlimited = []; 
 
endpoints_combined;  
  
mean_endpoints_veridical=mean(endpoints_veridical); 
mean_endpoints_low=mean(endpoints_low); 
mean_endpoints_high=mean(endpoints_high); 
mean_endpoints_unlimited=mean(endpoints_unlimited); 

 
%% Calculate cursor position (endpoint + shift) 
cursor_position_veridical = endpoints_veridical + shift_veridical; 
cursor_position_low = endpoints_low + shift_low; 
cursor_position_high = endpoints_high + shift_high; 
cursor_position_unlimited = endpoints_unlimited + shift_unlimited; 
  
mean_cursor_veridical = mean(cursor_position_veridical); 
mean_cursor_low = mean(cursor_position_low); 
mean_cursor_high = mean(cursor_position_high); 
mean_cursor_unlimited = mean(cursor_position_unlimited); 
 

 



107 

 

A.3.6 calculate and plot cursor error as a function of the imposed shift 

 
%Calculate and plot cursor error as a function of applied shift 

%Exemplar - Sigma_1 (repeated for all visual conditions) 
 
% bin data, calculate mean of bins [11 bins]; 

[N,edges,bins] = histcounts(shift_veridical(:,1),11); 
X_vals_veridical = accumarray(bins(:),shift_veridical,[],@mean); 
Y_vals_veridical = accumarray(bins(:),cursor_position_veridical,[],@mean); 
e_veridical=accumarray(bins(:),cursor_position_veridical,[],@std); 
P_veridical = polyfit(X_vals_veridical,Y_vals_veridical,1); 
yfit_veridical = P_veridical(1)*X_vals_veridical+P_veridical(2); 
  
trend_cursor_binned_veridical = fit(-X_vals_veridical,-

Y_vals_veridical,'poly1'); 
 

figure 
scatter(-X_vals_veridical,-Y_vals_veridical); 
hold on; 
plot(-X_vals_veridical,-yfit_veridical, 'r-.'); 
ylabel('Deviation from target (cursor poition)'); 
xlabel('true veridical shift values'); 
title ('Deviation from target as a function of true lateral Shift (sigma_1)'); 
axis([-0.01 0.02 -0.02 0.02]); 
errorbar(-X_vals_veridical,-Y_vals_veridical,-e_veridical); 
 
%calculate slope of trendline 
slope_cursor_veridical = trend_cursor_binned_veridical(1); 
intercept_binned_cursor_veridical = trend_cursor_binned_veridical(2); 
trendline_cursor_veridical= 

trend_cursor_binned_veridical(1)*shift_veridical+trend_cursor_binned_veridical

(2); 
disp(['veridical slope' ' ' (num2str(slope_cursor_veridical)) ' ' 'metres']) 
 

 

 

 
 

 

 

 

 

 


