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Abstract

There are frequent situations when observations are recorded consecutively over a period

of time, for an example, daily values of currency exchange rates. Sequential observations

appear one by one, so data are analysed as they are collected without fixing the sample size

in advance. Further sampling may be terminated according to a pre-defined stopping rule.

There are situations where we need to make decisions considering the observations which

we are already having while future observations are not known yet. Sequential data analysis

has a variety of applications in a wide range of fields including industrial quality control,

econometrics, analysis of financial systems among many others. In this thesis, we develop

several versions of a Cross-Entropy method to find an approximate optimal stopping rule.

Here we have considered cases of both independent and dependent observations. We have

carried out a simualtion study, which has shown the accuracy of the proposed algorithm.
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1
Introduction

1.1 Background and Aims

A sequential data set is a collection of records which are ordered with respect to time. There

are frequent situations where data are sequentially collected over time such as rainfall mea-

surements on successive days, daily values of currency exchange rates etc.

Sequential observations appear one by one, and the data are analysed as they are col-

lected without fixing the sample size in advance. Therefore, there are situations when we

need to make decisions on already obtained information while future observations are not

known yet. The important question is, therefore, how a decision can be made when the data

get updated in real-time.

1



2 Introduction

Problems like this are faced regularly in many areas including industrial quality control

(detecting changes in the manufacturing process) [63], environmental applications (detect-

ing changes in ecological systems) [3, 34], signal processing (structural analysis of electroen-

cephalographic signals)[47, 48], epidemiology (timely detection and prevention of various

types of diseases)[19, 39] and finance (buying or selling an asset)[13, 17, 57].

The following are examples of some specific applications of sequential data analysis.s

1. In finance: Consider a problem of buying an asset and selling it in a later time

within a specific time period. For this problem we need to assume the market prices

are random observations from a known distribution. If X1, X2, . . . , Xn are the market

prices of our asset for n time periods, we observe Xn+1 and decide whether we are

going to buy this asset at time n + 1 (if it has been already purchased, we observe

Xn+1 and decide whether to sell the asset at time n + 1 for a value of Xn+1). Our

objective should be to maximize our profit while taking two decisions sequentially to

stop and buy the asset and to stop and sell the asset for a given sequence of market

prices [57]. Apart from parametric models, non-parametric techniques can be used for

such problems [13].

2. In industrial quality control: Suppose we sequentially observe a series of products

and we estimate the quality of those products. If observe X1, X2, . . . and we want to

detect the time of which the distribution of the observations possibly has changed at

some unknown time point. With sequential data analysis we can develop an on-line

quality controlling procedure for the manufacturing process which will detect a change

in the distribution as soon as possible with a low false alarm rate [63].

3. In environmental applications: Consider the process of changing the structure

of ecological community over time. The change happens continuously over time and

sometimes it is important to detect these changes. With sequential data analysis we

can detect the changes, which can be used to prevent changes associated with loss of

essential ecosystem functionality [2].
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We observe a sequence of random variables, which can be interpreted as the value of

an asset at a particular time. We have to decide when we must stop, given that no recall

allowed, that is, a random variable once rejected cannot be chosen later on. Our decision to

stop depends on the observations already made, but does not depend on the future obser-

vations which are not yet known. Our objective is to maximize an expected reward. There

is an extensive literature on optimal stopping problem. For previous work related to this

topic see [12, 18]. The main issue with finding an optimal stopping rule is the necessity

to evaluate complex integrals. Thus efficient evaluation is not straightforward and requires

the development of numerical methods, for example, methods based on Monte-Carlo (MC)

integration.

A simple least squares approach was discussed in [36] to approximate the value Amer-

ican options using least squares MC method. The fitted values of the model were used to

estimate the optimal stopping rule for the option. Linear and non-linear optimization tech-

niques were used in [5, 9, 26] for optimal stopping problems for Markov decision processes.

An adaptive learning version of regression MC to solve optimal stopping was proposed in

[22]. The regression MC was considered as a sequential stochastic optimization design for

a discrete time optimal stopping problem with a finite horizon. The problem of finding an

optimal stopping rule for a buying and selling problem with independent observations was

discussed in [57] to maximize the expected gain. The problem was discussed considering

two stops to buy and to sell an asset. The further extensions and applications of multiple

optimal stopping rule can be found in [40, 46, 56, 59, 60].

Sequential change-point problem (also known as the quickest change-point problem) can

be considered as an optimal stopping problem. A procedure to detect sequential change-

point using a Cross-Entropy (CE) method was discussed in [58]. The study was carried out

considering an objective of maximizing the average detection delay with restrictions on av-

erage run length to false alarm. Further applications of the CE method in optimal stopping

problem can be found in [61].
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It is clear that the major focus of sequential data analysis is finding stopping rules (exact

or approximate), that is, selecting a time for an action that would maximize the expected

gain. Many problems including the problems we discussed above considered within the

framework of the theory of optimal stopping rules for both dependent and independent

observations. This study aims to develop numerical procedures that will allow us to make

the best possible decision based on the data available. In this thesis, we focus on constructing

a CE method to find an approximate optimal stopping rule using MC simulation. The study

is developed considering independent random observations developing the stopping rule to

maximize the expected gain. The CE method is further extended to dependent observations

with the aim of applying to the real data sets. As our future research, we can consider real

data related to stock market to develop an optimal stopping rule to buy or sell an asset

by maximizing the expected gain. Further, we can also develop numerical techniques for a

sequential change-point problem.

1.2 Statement of Problem

In this thesis, we consider an optimal stopping problem for finite discrete time stochastic

sequences. We observe X1 = x1, X2 = x2, . . . , Xi = xi sequentially and we must decide

either to stop and accept the value xi at time i (i = 1, 2, . . . , N − 1) or continue and observe

Xi+1. We must stop and accept the final value xN as our gain if we did not stop earlier.

We consider the case of “sampling without recall” for our problem, therefore, if we pass any

observation without stopping, we cannot return to that object again in later time and accept

the value as the gain. The random variable Xi can be interpreted as the value of an asset

at time i.

At any stage of the sampling process, suppose n is the number of observations remained

to be observed. After at least one observation has been considered for sampling, our position

is considered by the value of x, the most recent observation taken. We denote Vn(x) as the

gain from the optimal procedure. Therefore, if we observe X1 = x1, X2 = x2, . . . , Xi = xi,

the gain from the optimal procedure can be denoted as VN−i(xi). Since we must stop and
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accept the final observed value x as our gain as no further observations are available, it gives

V0(x) = x.

Let vn be the expected gain with n observations remained, n = 1, 2, . . . , N . For this

problem we are sampling our observations using sampling without recall from a known

distribution F . The value vn depends only on the number of observations remaining to be

considered for sampling and it does not depend on the observations which have already been

taken for sampling. According to [18], the expected gain vn can be expressed as follows

vn = E[Vn−1(X)] =
∫ ∞
−∞

Vn−1(x)dF (x). (1.1)

The gain Vn(x) for n = 1, 2, . . . , N − 1 from the optimal procedure is the maximum of

the gain x obtaining if we stop and the the expected gain vn by continuing. Therefore,

Vn(x) = max{x, vn}. (1.2)

Since we have considered V0(x) = x, the functions V1, V2, . . . and the values v1, v2, . . .

can be determined using equations (1.1) and (1.2). Our aim is to find a stopping rule which

maximizes the expected gain vN .

1.2.1 Backward Induction

We have a finite horizon N for the number of observations for sampling. We apply backward

induction method to obtain the optimal solution for the stopping problem. This means that

we start with the final stage of observation and work backward to the first stage of observa-

tions [12, 18].

For a sequential random sample X1, X2, . . . , XN , we observe X1, X2, . . . , XN−1 and con-

sider whether it is better to select the final observation XN . We start to make decisions by

considering backwards. At the next stage, since we know the values X1, X2, . . . , XN−2, we

can now decide whether it is better to select XN−1. Similarly, since we know the optimality of

selecting observations at each point, knowing each possible value of Xn−1 for n = 1, 2, . . . , N ,
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we can make our decisions about future observations. Therefore, we can compare the risk

of observing X1 and continuing in an optimal pattern after that with taking the immediate

decision without observing any further variables. This method of comparing risks in early

stages of decision making gives an optimal sequential decision procedure.

1.2.2 Optimal Stopping Problem for Uniformly Distributed Ran-

dom Variables

Consider a sequential random sample X1, X2, . . . , XN taken from a uniform distribution on

the interval (a, b). If the sampling process is terminated after observing X1 = x1, X2 =

x2, . . . , Xn = xn for (n = 1, 2, . . . , N), the gain is xn. For n = 1, 2, . . . , if v0 = a, v1 =

(a+ b)/2, then we can use equations (1.1) and (1.2) to obtain vn.

v2 = E[V1(X)],

V1(X) = max{x, v1}.

Then we can write

v2 = E[V1(X)] =
∫ b

a
max{x, v1}

1
(b− a)dx

since

max{x, v1} =


x, x ≥ v1

v1, x < v1.

We have

v2 =
∫ v1

a
v1

1
(b− a)dx+

∫ b

v1
x

1
(b− a)dx

= v1x

(b− a)

∣∣∣∣v1

a
+ x2

2(b− a)

∣∣∣∣b
v1

= 1
2(b− a) [b2 − 2v1a+ v1

2].

Therefore, in general we can write the value of the threshold at (n+ 1)-th time as

vn+1 = 1
2(b− a) [b2 − 2vna+ vn

2]. (1.3)
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For our problem we are considering a sequential random sample X1, X2, . . . taken from a

uniform distribution on the interval (0, 1). Therefore, using equation (1.3), the value of the

threshold at (n+ 1)-th time can be written as

vn+1 = 1
2[1 + vn

2]. (1.4)

1.3 Sequential Change-Point Problem

In the sequential change-point problem (or the quickest change-point problem) we consider

sequence of observations appear one by one in time and we do not have any information

on future observations. The objective is to identify the change-point in the sequence of ob-

servations as quickly as possible while avoiding “false alarms”. There have been developed

several sequential detection rules for the quickest change-point problem. These include cu-

mulative sum (CUMSUM) procedure [42], exponentially weighted moving average (EWMA)

procedure [49] and Shiryaev-Roberts (SR) procedure [54, 55].

Suppose we observe independently and identically distributed (iid) random variables

Y1, Y2, . . . , YN sequentially. Consider the sequence is in the “control state” initially, that

is, the random variables are distributed according to a common probability function F0 for

t = 1, 2, . . . , τ − 1 with parameter θ0 and at unknown time τ a change happens in the

distribution and the process becomes “out of control”. After the change has occurred, we

observe random variables with a different probability function F1(F0 6= F1) with parameter

θ1(θ0 6= θ1).

1.3.1 Sequential Change-Point Problem as an Optimal Stopping

Problem

The sequential change-point can be considered as an optimal stopping problem [12]. Suppose

that a change occurs in the process at a time τ and we have the aim of detecting the

occurrence of the change. Assume that τ is a non-negative integer-valued random variable
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with probabilities

P (τ = 0) = π,

P (τ = k|τ > 0) = rk, k = 1, 2, . . .
( ∞∑

1
rk = 1

)
.

As above, if the change occurres at time τ then we observe y1, . . . , yτ−1, yτ
′, yτ+1

′, . . . in

which y1, y2, . . . are iid with a known distribution F0 and y1
′, y2

′, . . . are iid with a known

distribution F1.

Suppose we stop the process at time n. Then we will loose

c if τ > n,

n− τ if τ ≤ n,

where c is considered as a fixed inspection cost. Our aim is to maximize the expected gain

(the loss multiplied by -1)

xn = −c(1− πn)−
n−1∑
i=0

(n− i)pin n = 0, 1, 2, . . .

with

pi
n = P (θ = i|Fn) (i, n ≥ 0),

πn = P (θ ≤ n|Fn) (n ≥ 0),

where Fn is the σ-algebra generated by the first n random variables.

1.4 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 discusses the literature related

to the optimal stopping problem. It contains detailed information on previously proposed

numerical method to solve optimal stopping problems. The numerical methods discussed
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in this chapter cover parametric and non-parametric methods. Chapter 3 covers the theory

and methodology used in this thesis. It provides detailed information about the CE method

including its modification for noisy optimization. The chapter further describes the conver-

gence properties of the CE method.

Chapter 4 displays the results of the simulation study which we have performed by

implementing the proposed versions of the CE method for sequences of independent and

dependent random variables. Chapter 5 summarises the thesis outcomes and discusses the

scope of the future extensions related to the topic.



2
Literature Review

In this chapter of the thesis, we discuss the literature related to optimal stopping prob-

lem. We give detailed information about some numerical techniques developed for optimal

stopping problem.

Secretary Problem

According to [21], the secretary problem or the marriage problem (or the dowry problem)

was first introduced by Martin Gardner in early 1960’s in a mathematical games column

issued by Scientific American. The basic form of the problem was discussed like following.

“Imagine a company wants to hire a secretary for a one secretarial position avail-

able out of n number of applicants. The applicants are interviewed one-by-one

10
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in a random order. The decision about the applicant is made as soon as the in-

terview is finished for that particular applicant. The applicants are ranked from

best to worst without any ties and the decision is based on those ranks. When

assigning the ranks the interviewer has no idea about the unseen applicants. If

an applicant is rejected then that applicant cannot be recalled later. The objec-

tive should be to maximize the probability of selecting the best applicant via an

optimal strategy.”

The above problem was then extended by many mathematicians and statisticians. Dy-

namic programming principles were introduced for this sequential decision problem by Lind-

ley in 1961 [35], where the author showed that the dynamic programming methods which

can be used as computational techniques in the problem of statistical decision making. He

extended the secretary problem of assigning a rank arbitrary for the applicant selected and

then he particularly considered the problem of minimizing the expected rank of the selected

applicant. However, the author could not address some issues like finding asymptotic opti-

mal strategies for large n and relative ranks. Those problems were solved by Chow et al.

in 1964 [10]. They discussed the secretary problem as an optimal selection problem based

on relative ranks. The authors developed the theories related to the problem considering

relative ranks. They solved the problem by having the objective to find an optimal stopping

rule which minimizes the expectation of the absolute rank of the person selected.

Optimal Stopping Problem

With the introduction of the secretary problem, extensions and developments have been

made on the basic problem which was extended to the problem of optimal stopping [11].

Applications of the optimal stopping problem can be found in many areas; Griffeath and

Snell in 1974 [23] consider a class of optimal stopping problems for conditioned random walk

with selling strategies in the stock market. They aim to demonstrate the results obtained

by Boyce in 1970 [6], on how stock prices adopt to Brownian motion, using a simple process

of discrete random walk. Authors were able to develop maximum entropy methods for the

optimal stopping problem in selling strategies in the stock market. Also, the authors used
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the maximum entropy measures to formulate discrete solutions for the stock market results

in Boyce (1970) [6].

The applications of the optimal stopping problem in option pricing can be found in the

literature. Jacka (1991) showed that the problem of pricing American put option is equiva-

lent to solving an optimal stopping problem [30]. Author established the optimal stopping

problem by considering the martingale measures and the fact that the fair price of the op-

tion could be regarded as a function of the present stock price and the time horizon. The

connection between the option pricing and the optimal stopping problem was discussed by

generalizing the Black-Scholes option formula. Further applications of optimal stopping

problem in option pricing can be found in [24, 36, 44].

Optimal stopping problems can further modified by introducing reward functions to the

problem. In 2005, Novikov and Shiryaev presented a method to obtain an effective solution

of the optimal stopping problem when a reward function is an integer power function of a

random walk on an infinite time interval [41]. The authors have used the results obtained by

Darling et al. (1972) [16] when generalizing the proposed method to check the optimality of

the stopping time with integer power function rewards. The optimal stopping problem was

extended to a case when more than one decision should be made. For example, Sofronov et

al. (2006) consider a problem which involves two stops: the first stop is to buy an asset and

the second stop for selling the asset [57]. For further extensions and applications of multiple

optimal stopping rules see [40, 43, 56].

Numerical Methods on Optimal Stopping Problem

Several numerical methods were developed considering the optimal stopping problem. Longstaff

and Schwartz (2001) used the least squares Monte-Carlo (LSM) method to approximate the

value of American options [36]. The idea of the method is to compare the immediate exer-

cise value of an option with the expected cash flow from continuing to develop the optimal

strategy. The conditional expectations of the cash flows were approximated using the least
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squares applying backward induction [12, 18]. The proposed LSM algorithm was illustrated

using cross sectional information of an American put-option on a share of non-dividend-

paying stock. A set of basis functions was used to identify the conditional expectation using

simple regression. One possible choice of the basis functions is the set of weighted Laguerre

polynomials.

Ln(X) = exp(−X/2)e
X

n!
dn

dXn
(Xne−X).

Then the fitted value of regression was obtained using

F (ω; tK−1) =
∞∑
j=0

ajLj(X)

for first M <∞ basis functions. The fitted values accurately estimate the optimal stopping

rule for the option. The authors have discussed the convergence properties of the proposed

method and illustrated the applicability of the method considering examples related to Amer-

ican put options and American-Bermuda-Asian options. Further applications of regression

Monte-Carlo to solve optimal stopping problems through simulations can be found in [22].

Yu and Bertsekas (2006) proposed another algorithm based on the least squares method-

ology [64]. The methodology was developed as a new Q-learning algorithm to approximate

cost evaluation of optimal stopping problems. The authors consider optimal stopping of

Markovian decision problems for discrete time with large state space where dynamic pro-

gramming solutions cannot be implemented practically. The authors use linear function

approximation to the optimal cost functions (Q-factors) [62].

Linear programming and non-linear programming techniques have also been proposed

to solve optimal stopping problems. Cho and Stockbridge (2002) formulated the optimal

stopping problem using an infinite-dimensional linear programming (LP) technique [9]. The

optimal stopping problem was described considering a process X and a reward R(x) which

can be obtained when the process is stopped at time τ in state x (when X(τ) = x). The

objective is to find the stopping rule which maximizes the expected reward E[R{X(τ)}].
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The authors describe the LP formulation for the optimal stopping problem and establish the

equivalence between the stochastic process and the LP formulation. Moreover, they develop

the equivalence between optimal stopping problems and control problems. To illustrate the

accuracy of the LP formulation, the authors have used an example of one-dimensional Brow-

nian motion.

Helms (2002) considers both liner and non-linear programming techniques to solve op-

timal stopping problems [26]. The author has considered a linear programming method for

optimal stopping problems with unimodal function of a threshold value and another method

which is applicable to more general stopping problems. For the later the author has used

both linear and non-linear optimization techniques. Both methods were illustrated using

Shiryaev’s quickest detection problem [55] for Brownian process and the author suggests

that the LP techniques are convenient and easy when analysing decision problems. For

more applications of the linear programming formulation in the optimal stopping problem

for Markov decision process see [5].

The Cross-Entropy (CE) method [50, 52] is another numerical techniques which can be

used to solve the optimal stopping problem effectively. Sofronov et al. (2013) applied the

CE method for finding an approximate solution of the multiple best choice problem [61].

The CE method was used to develop the optimal stopping rule and the value of the game.

Further applications of the CE method in optimal stopping problems can be found in [45].

The sequential change-point detection problem can be treated as an optimal stopping

problem. There is an extensive literature on this topic and for previous work related, see,

for example, [20, 58].



3
Theory and Methodology

In this section of the thesis, we provide detailed information on the theory and methodology

used in the subsequent chapter corresponding to our simulation study. The theory and

methods have discussed in detail to deliver an overview of the scope of the thesis.

3.1 The Cross-Entropy Method

The Cross-Entropy (CE) method is an adaptive Monte Carlo (MC) approach introduced by

Reuven Y. Rubinstein in 1999 [50]. By extending the work done in [51], the method was

developed as an adaptive algorithm for rare event simulation using variance minimization

technique. Then the method was further modified not only for estimating rare event probabil-

ities but also for solving complex combinatorial, continuous and multi-extremal optimization

15
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problems [32, 50, 52]. The CE method has been employed to solve many complicated op-

timization problems like travelling salesman problem (TSP), the max-cut problem and the

quadratic assignment problem (QAP) [52]. Also, the CE method has been applied to many

research problems like buffer allocation problem [1, 29], sequential change-point detection

[58], vehicle routing problem [8], decision problem [37, 61], control and navigation [27], noisy

optimization etc.

The CE method can be applied to both estimation and optimization problems. It uses

Kullback-Leibler [33] (or cross-entropy) distance, which is considered as a fundamental con-

cept of modern information theory. For the estimation problems, the CE method uses the

Kullback-Leibler distance to measure the difference between two sampling distributions. The

CE method works together with the importance sampling (IS) technique to solve rare event

estimation problems.

The CE method is a fast adaptive procedure with asymptotic convergence properties

[28]. With the optimization problem, first the CE method translates the problem into a rare

estimation problem. The translated estimation problem is called as an associate stochastic

problem (ASP) and it typically involves rare event estimation.

The CE method is an iterative procedure, which can be summarized using the following

three steps.

• Step 1: Generate a random sample of objects (vector of parameters) according to a

statistical distribution.

• Step 2: Obtain the best performing sample of objects using the performance (objec-

tive) function.

• Step 3: Update the parameters of the statistical distribution in Step 1, using the

sample from Step 2, to produce a better sample at the next iteration.
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The CE method can be applied for both deterministic and stochastic combinatorial opti-

mization problems. For stochastic optimization, the objective function should be estimated

through simulations. Stochastic optimization involves optimizing noisy objective functions.

For this case it is assumed that the objective function is corrupted with some additional

noise and this can be frequently found in simulation-based problems. Examples of noisy

optimization include vehicle routing problem [4, 8], buffer allocation problem [1, 29] and

simulated annealing [31].

3.1.1 Importance Sampling

Importance sampling (IS) is considered as a variance reduction technique and can be seen

as more efficient approach for simulation. It is considered as a most important pre-requisite

for sequential Monte-Carlo. IS can be used to study one distribution while sampling from

another. Suppose we want to find l, the expected performance of a stochastic system. Let

l = EfH(X) = EfΨ
(
S(X); γ

)
=
∫

Ψ
(
S(x); γ

)
f(x)µ(dx).

Here

S is the sample performance function.

Ψ
(
·; γ
)

is the real-valued function of the sample performance which depends on γ.

f is the density of X with respect to some measure µ.

Let g be another probability density such that H is dominated by g. Using g, we can write

l =
∫
H(x)f(x)

g(x) g(x)µ(dx) = EgH(X)f(X)
g(X) .

Here g is the importance sampling density and f is the nominal density. The importance

sampling estimator of l is

l̂ = 1
N

N∑
i=1

H(Xi)
f(Xi)
g(Xi)

.

Here X1, X2, . . . , XN are iid random vectors with density g.
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3.1.2 Kullback-Leibler Distance

Kullback-Leibler (KL) distance, the fundamental concept of information theory [33], is a nat-

ural distance function between the true probability distribution and the target probability

distribution. The KL distance is also called KL divergence, relative entropy and discrimina-

tion information. The principles of KL divergence is used in developing the CE method.

For two probability distributions P and Q with probability distribution functions p and

q on the sample sample space X , the KL divergence is defined as

DKL(P,Q) = EP ln
(
p(X)
q(X)

)
.

The KL divergence can be defined for discrete and continuous distributions separately as

follows.

DKL(P,Q) =



N∑
i=1

p(xi) ln
(
p(xi)
q(xi)

)
, if P and Q are discrete distributions

∞∫
−∞

p(x) ln
(
p(x)
q(x)

)
dx, if P and Q are continuous distributions

The following are some properties of the KL divergence.

1. KL divergence is always non-negative

DKL(P,Q) ≥ 0.

2. In general DKL(P,Q) 6= DKL(Q,P ). Therefore, it is not symmetric and does not verify

the triangular inequality.

3. The equality of the KL divergence reached when P (X) = Q(X).

4. KL divergence is a convex function on the domain of probability distributions.
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3.2 General CE Algorithm for Optimization

Consider X , an arbitrary set of states and a real valued performance function S on X . If

there is only one corresponding state x∗ where our maximum is attained, then we can denote

our maximum as γ∗

γ∗ = max
x∈X

S(x). (3.1)

When the state space X is finite, our optimization problem (3.1) is referred as a discrete

or combinatorial optimization problem. To apply the CE method, first our deterministic op-

timization problem is translated into an estimation problem, so-called an associate stochastic

problem (ASP). To develop the ASP for our deterministic optimization problem, we con-

sider a collection of indicator functions I{S(X)≥γ} on X for levels γ ∈ R. We define family

of probability density functions (pdfs) {f(·;u), u ∈ U} on the set X . For a certain u ∈ U ,

associating (3.1), the following estimation problem

l(γ) = Pu(S(X) ≥ γ) = EuI{S(X)≥γ} (3.2)

is considered as a rare event estimation problem. Here X is a random vector with pdf f(·;u)

for some x ∈ X , Pu is a probability measure associated with f(·;u), Eu is the expectation

operator and γ is a known or an unknown parameter.

For a certain γ which will be closer to γ∗, estimating l is a rare event estimation problem.

For that, the CE method uses the KL divergence in a multi-level algorithm. It constructs a

sequence of levels γ̂1, γ̂2, . . . , γ̂t and reference parameters (vectors) û1, û2, . . . , ût correspond-

ing to the state x∗ that gives the highest performance such that γ̂t converges to the optimal

γ∗ and ût converges to the optimal reference vector u∗ [53]. That is, for γ = γ∗, l(γ) in

equation (3.2) can be estimated using a log-likelihood estimator with reference parameter

u∗.

u∗ = arg max
u

EuI{S(X)≥γ} ln f(X, u).

This parameter u∗ can be estimated by
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û∗ = arg max
u

1
M

M∑
i=1

I{S(Xi)≥γ} ln f(Xi, u).

Here X1, X2, . . . , XM are generated from pdf f(·;u).

The general CE algorithm can be described as follows.

Algorithm 1: General CE algorithm

1. Initialization: Define an initial parameter vector û0 of the statistical distribution.

Set the iteration counter t = 1.

2. Adaptive updating of γt: Generate X1, X2, . . . , XM from the density f(·;u) and

calculate the performances S(X1),S(X2), . . . ,S(XM). Sort the values in an increasing

order S(1) ≤ S(2) ≤ · · · ≤ S(M), where S(i) is the i-th order statistic of the performances

S(X1),S(X2), . . . ,S(XM).

Let γt be the (1− ρ)- quantile of S(X) under ut−1 which satisfies

Put−1(S ≥ γt) ≥ ρ,

Put−1(S ≤ γt) ≥ 1− ρ.

The estimate of γt is

γ̂t = S(d(1−ρ)Me).

3. Adaptive updating of ut: For fixed γt and ut−1, obtain estimates for ut applying

the CE method to the optimization problem

û = arg max
u

Eut−1I{S(X)≥γt} ln f(X, u).
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Update the parameters of the statistical distribution using the best performing (elite)

sample.

û = arg max
u

1
M

M∑
i=1

I{S(Xi)≥γ̂t} ln f(Xi, u). (3.3)

4. Smoothed updating of ut: Instead of updating the parameter vector ût directly, the

following smoothed updating procedure can be used.

ût = αũt + (1− α)ût−1

Here ũt is a vector derived using equation (3.3) and α is the smoothing coefficient

(0 ≤ α ≤ 1). For best results it is empirically found that α should be 0.4 ≤ α ≤ 0.9. If

there are two or more optimal solutions the smoothed updating of ut helps CE method

to prevent from converging to sub-optimal solutions [15]. If α = 1, the updating will

not be smoothed.

5. If the specified stopping criterion is met, obtain the solution which maximizes the per-

formance function. Otherwise, increase t = t + 1, and repeat steps 2 to 4 until the

stopping criterion is met.

To complete specification of the algorithm, initial parameters û0,M, ρ and a stopping

criterion should be supplied.

3.2.1 CE Method for Noisy Optimization

The CE method is an effective method to handle noisy optimization, that is, when the ob-

jective function is corrupted with noise. For example, when the objective function value

obtained via simulations [1, 14]. Noisy optimization may also be called stochastic optimiza-

tion. The general CE algorithm can easily be modified to be used for noisy optimization
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problems [52].

For the maximization problem in (3.1), consider our performance function S(x) corrupted

with noise. For example, we can consider another random vector Y with a pdf which may

depend on x. Then we can write the noisy optimization function

Ŝ(x) = Ŝ(x, Y ).

Our aim is to solve the maximization problem

max
x∈X

E Ŝ(x, Y ).

When S(x) = E Ŝ(x) is not available, we can use the sample value Ŝ(x) as an unbiased

estimate of E Ŝ(x). Therefore S(x) = E Ŝ(x) = E Ŝ(x, Y ) for all x and S(x) has an optimal

value of γ∗ corresponding to the state x∗ that gives the highest performance. Therefore the

steps for updating γt and ut in the noisy optimization algorithm can be considered as follows.

1. Adaptive updating of γt: Let γt be a (1− ρ)-quantile of Ŝ(x) under ut−1, for a fixed

ut−1. Then the estimate of γt is

γ̂t = Ŝ(d(1−ρ)Me).

Here Ŝ(i) is the ith order statistic of the performances Ŝ(X1), Ŝ(X2), . . . , Ŝ(XM) for a

random sample of X1, X2, . . . , XM from f(·;ut−1) (Similar to Step 2 in Algorithm 1).

2. Adaptive updating of ut: For fixed γt and ut−1, obtain estimates for ut applying

CE method to

û = arg max
u

Eut−1I{Ŝ(X)≥γt} ln f(X, u).

For fixed γ̂t and ût−1 update the parameters of the statistical distribution for the elite

sample using
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û = arg max
u

1
M

M∑
i=1

I{Ŝ(Xi)≥γ̂t
} ln f(Xi, u).

CE Method for Optimal Stopping Problem

Consider a problem of finding a set of thresholds that maximizes the value of the game for an

optimal stopping problem. The maximization problem was developed considering random

variables Y1, Y2, . . . , YN from the standard uniform distribution U(0, 1). We can write the

maximization problem to obtain the set of thresholds x∗ = (x1
∗, x2

∗, . . . , xN
∗) as

max
x∈X

E Ŝ(x, Y ).

Here X = {x = (x0, x1, . . . , xN), xj ∈ (0, 1), j = 1, 2, . . . , N, x0 = 0}, N is the number of

thresholds and Ŝ(x, Y ) is an estimate of the value of the game (expected gain). We can

describe the CE algorithm for the above problem as follows. In this algorithm we have

considered the normal distribution to generate samples of X.

Algorithm 2: CE algorithm for optimal stopping problem considering normal distribution

1. Initialize: Choose initial values for

µ(0) =
(
µ1

(0), µ2
(0), . . . , µN

(0)
)

and (σ2)(0) =
(
(σ1

2)(0)
, (σ2

2)(0)
, . . . , (σN 2)(0))

.

Set t = 0.

2. Repeat: Steps 3 to 7 until maxj(σj(t)) < ε.

3. Draw: Increase t by 1. Generate M random vectors X1, X2, . . . , XM from the mul-

tivariate normal distribution with parameters
(
µ(t−1), (σ2)(t−1)), that is, for all j =

1, 2, . . . , N , draw Xij from Normal
(
µj

(t−1), (σj2)(t−1))
, i = 1, 2, . . . ,M .

4. Evaluate: Evaluate the performance of eachXi, i = 1, 2, . . . ,M : Ŝ(X1), Ŝ(X2), . . . , Ŝ(XM).

5. Select: Let I be the indices of the N elite best performing (elite) samples. Let N elite =

ρM be the size of the elite sample.
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6. Update: for all j = 1, 2, ..., N , estimate µ̃(t)
j and (σ̃2

j )(t) using elite sample

µ̃
(t)
j =

∑
i∈I

Xij/N
elite

and

(σ̃2
j )(t) =

∑
i∈I

(Xij − µj(t))2/N elite.

7. Smooth:

µ(t) = αµ̃(t) + (1− α)µ(t−1),

(σ2)(t) = α ˜(σ2)(t) + (1− α)(σ2)(t−1)
.

3.3 Statistical Distributions to Simulate Samples for

the CE Method

When using the CE method to obtain thresholds in the optimal stopping problem, we need

to generate random samples according to a statistical distribution. In our study we have

considered three distributions to generate random samples with the aim of comparing the

performance of the proposed CE algorithms. They are normal, truncated normal and beta

distributions.

3.3.1 Normal Distribution

A random variable X has a normal (or Gaussian) distribution whose probability density

function is defined for any point of x (−∞ < x <∞) by

f(x|µ, σ2) = (2πσ2)− 1
2 exp

[−(x− µ)2

2σ2

]
.

Here µ (−∞ < µ <∞) is the mean and σ2 (σ2 > 0) is the variance of the the distribution.
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3.3.2 Truncated Normal Distribution

A truncated normal distribution, which is defined on the range (L,U) is a modified version of

the normal distribution. According to [7], depending on the truncated range we can consider

four cases of the distribution.

1. Nontruncated case when L = −∞ and U =∞.

2. Lower truncated case when L > −∞ and U =∞.

3. Upper truncated case when L = −∞ and U <∞.

4. Doubly truncated case when L > −∞ and U <∞.

For our study, we have considered the fourth case which is the doubly truncated case

within the range (0, 1). The truncated normal probability density function is denoted by

f(x|µ, σ2, L, U). Here, µ and σ2 are the parameters for the mean and the variance of the

distribution whereas, L and U give the lower and the upper bound of the truncated range.

The probability density function for the truncated normal distribution can be given by

f(x|µ, σ2, L, U) =



0, if L ≥ x

(2πσ2)− 1
2 exp

[
−(x−µ)2

(2σ2)

]
Φ
(
U−µ
σ

)
− Φ

(
L−µ
σ

) , if L < x < U

0, if x ≥ U

where Φ(·) is the cumulative distribution function of the standard normal distribution.

3.3.3 Beta Distribution

A random variable X has a beta distribution with parameters α and β with a probability

density function is defined by

f(x|α, β) =


Γ(α + β)
Γ(α)Γ(β)x

α−1(1− x)β−1, for 0 < x < 1

0, otherwise
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Here Γ(·) is the gamma function defined by

Γ(θ) =
∞∫

0

yθ−1e−ydy, θ > 0.

3.4 Convergence Properties of the CE Algorithm

The asymptotic convergence properties of the CE algorithm is discussed in detail in [15,

25, 38]. The idea and the technique was mainly developed in [25] considering two ant al-

gorithms, and [38] has done several additional modifications to speed up the CE method

and to improve the convergence. In [38], the author derives two graph-based CE algorithms

which can be considered to be very close to ant algorithms in [25]. The two modifications

were named as the conservative modification and the conservative modification with lower

bound. Author further proved asymptotic convergence of these modified algorithms.

The theoretical results in convergence properties of the CE algorithm in discrete opti-

mization was discussed in [15]. The authors have showed that the CE algorithm with a

constant smoothing parameter has a significantly faster rate of convergence compare to the

CE algorithm with decreasing smoothing schemes. They prove several theorems on the con-

vergence of the CE method and illustrate them using numerical examples.

In this thesis, we develop CE algorithms for optimal stopping problems. These may be

considered as discrete optimization problems. Therefore, we can refer to the convergence

properties discussed in [15, 25, 38].



4
Simulation Study

In this chapter of the thesis, we perform a simulation study using the algorithms discussed

in Chapter 3. All the data are simulated and analysed using the statistical software R.

4.1 The Cross-Entropy Method for Independent Ran-

dom Variables

We consider an optimal stopping problem for a sequence of independent uniformly dis-

tributed random variable over the interval (0, 1). For this study, we have considered N = 7

consecutive time points for K = 1000 simulation paths. We obtained the set of thresholds

v∗ = (v1
∗, v2

∗, . . . , vN
∗) at each time point and the value of the game v. The objective func-

tion is to maximise the expected gain; see equations (1.1) and (1.2).

27
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We developed two versions the CE method for the optimal stopping problem. We use

the following parametrisation of the algorithm: M = 1000, ρ = 0.05, α = 0.7 and ε = 0.01.

The two versions of the CE algorithm are described below.

4.1.1 The Algorithm for Non-ordered Thresholds

To perform the CE algorithm for optimal stopping problem, we generate random samples

from three different distributions for the step 3 in Algorithm 2, which we have discussed in

Chapter 2 of this thesis.

1. Normal distribution (CE-N): As we have mentioned in algorithm 2, we have con-

sidered the normal distribution with initial parameter vectors

µ(0) =
(
µ1

(0), µ2
(0), . . . , µN

(0)
)

and (σ2)(0) =
(
(σ1

2)(0)
, (σ2

2)(0)
, . . . , (σN 2)(0))

,

where µi(0) = (σi2)(0) = 0.5 for i = 1, 2, . . . , N .

2. Truncated normal distribution (CE-TN): We have considered the truncated nor-

mal distribution with initial parameter vectors µi(0) = (σi2)(0) = 0.5 for i = 1, 2, . . . , N

within the interval 0 and 1.

3. Beta distribution (CE-B): As the third distribution, we have considered beta distri-

bution with initial shape parameters α∗ = β∗ = 1. Then to initialize µi(0) and (σi2)(0)

we have considered the relationships

µ(0) = α∗

α∗ + β∗

and

(σi2)(0) = α∗β∗

(α∗ + β∗)2(α∗ + β∗ + 1)
.
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In each iteration we estimate the two shape parameters α∗ and β∗ for the elite sample

using

α∗(t) =
(1− µ(t))

σ2(t) − 1
µ(t)

(µ(t))2

and

β∗(t) = α∗(t)

 1
µ(t) − 1



and update the current parameter set. Here t indicates the iteration count.

The R code for the CE algorithm for non-ordered thresholds considering all 3 distribu-

tions can be found in the appendix of the thesis.

The accuracy of the estimated set of thresholds and the value of the game was checked

using the root mean squared error (RMSE). The RMSE for the estimated values can be

obtained by using

RMSE =

√∑N
i=1 (truei − estimatei)2

N
. (4.1)

The true values can be obtained using equation (1.4) in Chapter 1. The algorithm was

performed for 50 repetitions and we obtained the distribution of the average RMSE values

for the estimated gain at each point. Table 4.1 represents the true values for each time point

and the average values of the estimated gain we obtained by using each distribution.

It is clear that the estimated thresholds are very close to the true values of the thresholds

for each time point, which shows that the algorithm performs very well. We have repre-

sented the behaviour of the estimated thresholds compared with the true values in Figure

4.1. Figure 4.2 displays the density for average RMSE obtained for three distributions using
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the CE method for non-ordered thresholds.

Table 4.1: True values and the average estimates of the thresholds for each time point produced
by the CE method for non-ordered thresholds

Time Point n True Value
Average of the Estimates

CE-N CE-TN CE-B

1 0.500 0.513 0.514 0.509

2 0.625 0.635 0.638 0.626

3 0.695 0.697 0.692 0.706

4 0.742 0.749 0.752 0.744

5 0.775 0.782 0.777 0.778

6 0.800 0.809 0.803 0.807

7 0.820 0.820 0.817 0.824

4.1.2 The Algorithm for Ordered Thresholds

The CE algorithm was then modified for ordered thresholds. That is, in each iteration the

randomly generated samples Xi’s for thresholds were sorted in an ascending order before

evaluating performance of each Xi using step 4 in Algorithm 2. In order to compare the

performance of this algorithm with the algorithm for non-ordered thresholds, we used nor-

mal (CE-No), truncated normal (CE-TNo) and beta (CE-Bo) distributions with same initial

parameters (“o” in the abbreviations stands for “ordered”). Algorithm was performed for

50 repetitions for the same simulated data values which we have used in the algorithm for

non-ordered thresholds. The R code for the CE algorithm for ordered thresholds considering

all 3 distributions can be found in the appendix of the thesis.

Average of the estimated thresholds from 50 repetitions are recorded in Table 4.2. The

RMSE for the estimated thresholds were calculated using equation (4.1). We can clearly see

that the estimated thresholds converge to their true values. The behaviour of the estimated
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Figure 4.1: Values of the estimated thresholds using the CE method for non-ordered thresholds

thresholds with their true values are presented in Figure 4.3. The distribution of the average

RMSE using the CE method for ordered thresholds is given in Figure 4.4.

To compare the convergence of the estimated thresholds by using the two algorithms,

Table 4.3 summarizes the average RMSE and the standard deviations of RMSE values of

the estimates obtained for the thresholds.

The value of the game v was obtained for each distribution for 50 repetitions. The true

value for the value of game v is also calculated by considering each simulated data matrix

in each repetition. The average of the true value of game is obtained as 0.836. The average

values obtained for the estimated value of game considering both algorithms are included in

Table 4.4.
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Figure 4.2: Density plots for average RMSE by the CE method for non-ordered thresholds

Table 4.2: True values and the average of the estimated gains for each time point by CE method
for ordered thresholds

Time Point N True Value
Average of the Estimates

CE-No CE-TNo CE-Bo

1 0.500 0.495 0.510 0.502

2 0.625 0.614 0.619 0.621

3 0.695 0.674 0.695 0.688

4 0.742 0.728 0.733 0.739

5 0.775 0.769 0.776 0.773

6 0.800 0.801 0.801 0.803

7 0.820 0.825 0.829 0.825
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Figure 4.3: Values of the estimated thresholds using CE method for ordered thresholds

Table 4.3: Average RMSE and the standard deviations of RMSE values of the estimates using
two algorithms

Algorithm Distribution Average RMSE Standard Deviation of RMSE

Non-ordered thresholds

CE-N 0.020 0.013

CE-TN 0.017 0.014

CE-B 0.017 0.013

Ordered thresholds

CE-No 0.018 0.011

CE-TNo 0.016 0.012

CE-Bo 0.019 0.014
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Figure 4.4: Density plots for average RMSE by CE method for ordered thresholds

Table 4.4: Average values obtained for true value of game and the estimated value of game
using two algorithms

Algorithm Distribution Average of Estimated Value of Game

Non-ordered thresholds

CE-N 0.841

CE-TN 0.842

CE-B 0.842

Ordered thresholds

CE-No 0.839

CE-TNo 0.841

CE-Bo 0.840
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Table 4.5 provides summary statistics for the iteration count and the processing time (in

seconds) for the three distributions with respect to the proposed algorithms. The numerical

results show that the algorithm developed for the CE method for ordered thresholds per-

forms better than the non-ordered version of the algorithm. The processing time is relevant

to a 64-bit OS, 3.60GHz Intel Core i7 processor with 16GB RAM.

Table 4.5: The iteration count and the running time for the CE method considering all distri-
butions for both algorithms

Distribution
Iteration Count Running time

Min Max Average Median Min Max Average Median

CE-B 14 48 21.96 21.00 33.88 122.39 54.82 53.09

CE-Bo 11 33 16.96 15.50 29.87 103.97 52.63 50.27

CE-N 14 33 19.94 20.00 33.53 90.44 50.29 48.94

CE-No 11 25 16.44 16.00 26.30 85.69 50.38 48.54

CE-TN 13 33 19.80 19.00 33.36 79.03 49.56 48.24

CE-TNo 11 33 15.64 14.00 30.54 86.75 48.49 45.78

4.2 The Cross-Entropy Method for Dependent Ran-

dom Variables

In this section, we consider an optimal stopping problem for a sequence of dependent random

variables. We are particularly focussed in an autoregressive (AR) model. For our simulation

study we consider an AR(1) model:

Xn = φ1Xn−1 + εn,

where φ1 = 0.5 and εn v Normal(0, 1). For our study we simulate N = 5 consecutive time

points for K = 1000 simulation paths. For the dependent observations we estimate the
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threshold value at each time point Xn considering the values at previous time point Xn−1.

For that, we used a linear model

vn = a0,n + a1,nXN−n (4.2)

We develop a CE algorithm to obtain the vectors of coefficients an = (a0,n, a1,n) for each

n = 1, . . . , N with initial values M = 1000, ρ = 0.05, α = 0.7 and ε = 0.03. The proposed

CE algorithm can be described as follows.

4.2.1 The Algorithm for Estimating the Coefficients of the Poly-

nomial

To perform the CE algorithm for an optimal stopping problem considering dependent random

variables, we generate random samples for the vector of coefficients an = (a0,n, a1,n) using

a normal distribution in step 3, Algorithm 2 (see Chapter 2). We use the following initial

parametrization:

µ(0) =
(
µ1

(0), . . . , µN
(0)
)

and (σ2)(0) =
(
(σ1

2)(0)
, . . . , (σN 2)(0))

where µi(0) = 0 and (σi2)(0) = 1 for i = 1, 2, . . . , N .

We update the parameters at each iteration considering the elite sample obtained by the

estimated thresholds values of the model (4.2). We try to obtain the best set of coefficients

which can be used to find the thresholds in order to maximize our expected gain. When

updating the parameters at each iteration for the coefficients, we maximize the expected gain

as a performance function. Therefore, after reaching the stopping criterion the CE method

provides the coefficients for the best fitted values of the threshold.

The R code of the proposed CE algorithm can be found in the appendix of this thesis.
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Figure 4.5: Estimated thresholds using CE method for polynomials
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Figure 4.5 illustrates the estimated linear models for the thresholds. This means, for

example, if we observe a value of XN−1 greater than 0.946345 (the intersection of the two

lines), we will accept this value as our gain and stop. Otherwise, we will proceed to the next

observation.



5
Discussion and Future Research

5.1 Summary

Chapter 1 of this thesis provides the general introduction and the background of our study.

It discusses the nature of sequential data and the how we can make decisions using these

data. It further provides details on the applicability of the sequential data analysis in many

research areas and specifically how it is related with decision making. The optimal stopping

problem was developed in this chapter considering discrete time stochastic sequences. It

describes the theory to develop the objective function in order to maximize the expected

gain. The chapter describes the backward induction method, which was used for uniformly

distributed random variables to obtain the threshold values and the value of game. These re-

sults are later used in Chapter 4 to illustrate the accuracy of the estimated results. Lastly, the

chapter provides brief theoretical information on sequential change-point detection, which

39
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can be considered as an optimal stopping problem.

Chapter 2 gives a literature review on the topic. It also provides the historical background

of the optimal stopping problem, which was initially discussed as the secretary problem ap-

peared as a mathematical game in early 1960’s. Then the chapter outlines applications of the

the optimal stopping problem, mainly in the area of finance. It provides extensive literature

on the optimal stopping problem considering various modifications and extensions in reward

functions and problems involving more than one stops. It further describes several numerical

methods that have recently been used to solve the optimal stopping problem. Finally, the

chapter reviews literature on the Cross-Entropy (CE) method, which we are focussed at to

solve the optimal stopping problem.

Chapter 3 covers the theory and methodology we have used in the thesis. It starts with

the general introduction to the CE method, which was introduced by Reuvan Y. Rubinstein

in 1999 [50] as an adaptive Monte-Carlo approach. The chapter gives information about

the application of CE method to both estimation and optimization problems. It further

describes importance sampling, a variance reduction techniques which is considered as a

most important pre-requisite for sequential Monte-Carlo. Then the chapter gives details

on Kullback-Leibler (KL) distance, which is used to develop the CE method. The descrip-

tion of the general CE algorithm for optimization is provided along with the corresponding

algorithm for noisy optimization. Finally, the chapter discusses relevant literature on the

convergence properties of the CE algorithm.

Chapter 4 provides the numerical results obtained from our simulation study. We con-

sidered an optimal stopping problem for independent random variables from the uniform

distribution Uniform(0, 1). The chapter describes the method we have used to build up CE

algorithms for non-ordered thresholds and ordered thresholds considering three separate dis-

tributions to generate random samples in the algorithms. We show how well the estimated

values from the proposed algorithms perform when compared with the theoretical values.
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Further, the chapter provides information on the speed of the performance of the two algo-

rithms using the descriptive statistics on iteration count and the running time, relevant to a

64-bit OS, 3.60GHz Intel Core i7 processor with 16GB RAM. Finally, we consider a simula-

tion study for dependent random variables. A CE method was developed for the coefficients

for the simple model vn = a0,n + a1,nXN−n considering an optimal stopping problem for an

autoregressive model of order 1, AR(1).

5.2 Discussion

In this thesis, we applied the Cross-Entropy (CE) method as a numerical technique to solve

optimal stopping problems for sequences of discrete random variables. Our objective is to

maximize the expected gain. At each time point we compared the observed value with the

threshold value and decided whether to stop or to continue to the next observation. We

considered sequences of random variables from the uniform distribution over the interval

(0, 1). Using [18], we derived formulae for the thresholds at each time point and the value of

the game. We carried out a simulation study considering 7 consecutive time points for 1000

simulated paths to estimate the thresholds at each time point and the value of the game

using the CE method that we developed.

The first CE algorithm was developed considering non-ordered thresholds. That is, we

generated random samples from a distribution with corresponding initial parameters. Then

we evaluated the performance of our sample using the objective function. We selected the

best performing sample as the elite sample and updated our initial parameters according

to the elite sample until we met our stopping criterion. The algorithm was performed for

50 repetitions on different sequences of uniform distributed random variables. To generate

the random samples, we considered, firstly, a normal distribution (CE-N); secondly, a trun-

cated normal distribution (CE-TN) within the interval (0, 1) and, thirdly, a beta distribution

(CE-B). We used the Root Mean Squared Error (RMSE) to calculate the accuracy of the

estimates.
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For the second CE algorithm we modified the first algorithm using ordered thresholds.

At each iteration the randomly generated samples were sorted in an ascending order and

then we evaluated the performance of the sorted sample using the objective function. The al-

gorithm was performed considering the same three distributions normal (CE-No), truncated

normal (CE-TNo) and beta (CE-Bo). To check the accuracy of the estimates, the RMSE

was used. When comparing the algorithm for non-ordered thresholds with the algorithm for

ordered thresholds, it was clear that the later performs in a better way since this optimal

stopping problem belongs to the monotonic case. The second algorithm provided smaller

RMSE values for the estimated thresholds and for the value of the game. The iteration

count and the processing time (in seconds) obtained for the three distributions with respect

to the proposed algorithms further confirmed that the CE method for ordered thresholds

performed better than the non-ordered version of the algorithm.

The next modification of the CE method was for optimal stopping problems with the

dependent observations. We considered the optimal stopping problem for random data

simulated from an AR(1) autoregressive model. Here we considered data for 5 consecutive

time points and 1000 simulation paths. We considered a linear model vn = a0,n + a1,nXN−n

to estimate vn, the value of threshold at time point N − n, using the observed value XN−n

as a covariate in the model. Our approach was somewhat similar to the method used by [36]

but here we proposed to estimate the thresholds directly. We developed a CE method to

obtain the best suitable coefficients for the model. We obtained the threshold values which

we can be used to make decisions at each time point. It is clear that a linear model is the

simplest model that depends on the observed value, so our method can be modified by using

other basis functions like set of Laguerre polynomials discussed in [36].

5.3 Future Work

We have carried out a study on solving optimal stopping problems. The study presented in

this thesis can be modified and generalised in many directions. The following are potential

extensions and applications which we plan to develop.
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Developing other numerical techniques

In this thesis we have presented only one specific numerical techniques in optimal stopping

problems. We considered the Cross-Entropy (CE) method based on Monte-Carlo (MC)

simulation technique for different types of stopping problems for both independent and

dependent observations. We plan to extend our study to other numerical methods including

Expectation-Maximization (EM) algorithm and Markov chain Monte-Carlo (MCMC). Also,

we intend to apply numerical methods such as linear programming principles or dynamic

programming methods to solve our problem (see, for example, [9, 26]).

Modifying gain function

For this study we have considered the observed value as a reward. As a future research, we

will modify our gain function to solve the optimal stopping problems. For example, we can

consider as a reward a more complicated function when obtaining the expected gain. Also,

it will be possible to include cost functions at each time point when maximizing the reward.

Dependent case with more complicated polynomials

In the simulation study of this thesis, we discussed developing a CE method for a linear

function to estimate threshold values in order to make the decision in our optimal stopping

problem for dependent observations. For this study we considered observations from an

AR(1) autoregressive model. In the future, we will consider data from some other distri-

butions like Geometric Brownian Motion. While in this study we have started our analysis

considering a simple linear function, we plan to use more complicated polynomials to esti-

mate the thresholds in decision making. In future research we can include set of Laguerre

polynomials, Hermite polynomials or Jacobi polynomials as our basis function in the model

[36].
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Multiple stopping problem

So far we have considered only one stop to make our decision. That is, we are comparing our

value with a threshold value and we are deciding to stop at that point taking the observed

value as a gain, or to proceed with the next observation. As future research, we can generalize

our study to optimal stopping problems involving more than one stop (multiple stopping

problems) [40, 59]. We will modify our proposed CE method and also the other numerical

methods which we plan to develop for multiple stopping problems.

Application of sequential change-point detection problem

As we mentioned in Chapter 1 of this thesis, the sequential change-point problem (or the

quickest change-point problem) can be considered as an optimal stopping problem (see, for

example, [12]). We intend to further develop our numerical methods for the sequential

change-point problem.

Developing an R package

With the extensions we have discussed above, we will be able to develop a new package

within R software, in which the proposed methods and techniques will be directly used by

simply inputting data into a function. The developed R package would be very useful for

decision makers who are interested in optimal stopping problems.



A
Appendix - R Code

This appendix contains supplementary information on the algorithms we have developed

using CE method for optimal stopping problems. We have discussed the methodology we

have used to develop these algorithms and the results which we have obtained in Chapter 4

and Chapter 5.

45
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A.1 Cross-Entropy Method for Independent Random

Variables

A.1.1 Algorithm for Non-ordered Thresholds

Using Normal Distribution (CE-N)

library(msm)

n <- 8 # number of time points
Sim <- 1000 # number of simulated paths
a=0 # lower value for the uniform distribution
b=1 # upper value for the uniform distribution
d=n-1 # the length of x

M <- matrix(runif((n*Sim),min=a, max=b),ncol=n)

Gain <- function(x) # the length of x is n-1
{

x1 <- c(x[1:(n-1)],-Inf)
MaxFirst <- function(y)
{

y[min(which(y>=x1))]
}
mean(apply(M,1,MaxFirst))

}

true=numeric()
true[d]=0.5
for(k in (d-1):1)
{

true[k]=(b/2)*(1+(true[k+1]/b)ˆ2)
}

------CE Method Using Normal Distribution-------

myfunctionCE=function(M)
{

N = 1000 # number of observations generated for the algorithm
rho =0.05
Nelite =round(N*rho) # number of observations in the elite sample
smooth=0.7
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eps=0.01
d=n-1 # the length of x

mu_0_1=rep(0.5,d)
sd_0_1=rep(0.5,d)

t_1=1

mu_old_1=mu_0_1
sd_old_1=sd_0_1

t_max_1=200

ptm1_1 <- proc.time()

while ((max(sd_0_1)>eps)&(t_1<=t_max_1))
{

Gain_est_1 <- array(0,dim=c(N,d))

for (i in 1:d)
{

Gain_est_1[,i] <- matrix(rnorm(N,mean=mu_0_1[i],sd=sd_0_1[i]),ncol=1)
}

score_1 <- apply(Gain_est_1,1,Gain)

score_sorted_1=sort(score_1,decreasing=TRUE,index.return=TRUE)

elite_index_1=score_sorted_1$ix[1:Nelite]
elite_sample_1= Gain_est_1[elite_index_1,]

if (d>1)
{

mu_new_1=apply(elite_sample_1,2,mean)
sd_new_1=apply(elite_sample_1,2,sd)

}

if (d==1)
{

mu_new_1=mean(elite_sample_1)
sd_new_1=sd(elite_sample_1)
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}

mu_0_1=smooth*mu_new_1+(1-smooth)*mu_old_1
sd_0_1=smooth*sd_new_1+(1-smooth)*sd_old_1

mu_old_1=mu_0_1
sd_old_1=sd_0_1

print(c(t_1,mu_0_1,sd_0_1))

t_1=t_1+1
}

print(proc.time()-ptm1_1)

---------RMSE Calculation--------

CE=as.data.frame(Gain_est_1)
CE["RMSE"]<-NA

SE_1=matrix(0,Sim,d)

for(m in 1:d)
{

SE_1[,m]=(true[m]-Gain_est_1[,m])ˆ2
}

for(m in 1:d)
{

for(l in 1:N)
{

CE$RMSE[l]=sqrt(sum(SE_1[l,m])/d)
}

}

CE$Val_Game=Gain(apply(Gain_est_1,2,mean))

return(apply(CE,2,mean))
}

------ Results for 50 Repetitions---------

getResults <- function(M)
{
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resCE <- as.numeric(myfunctionCE(M))

return(resCE)

}

Ntimes <- 50
ResultCE=matrix(NA,nrow = Ntimes,ncol= 9) # store results for 50

different M values
Resulttrue=matrix(NA,nrow = Ntimes,ncol= 1)

for (i in 1:Ntimes)
{

M <- matrix(runif((n*Sim),min=a, max=b),ncol=n)

ResultCE[i,] <- getResults(M)
}

Using Truncated Normal Distribution (CE-TN)

For the algorithm performed using truncated normal distribution, we changed only the

Gain est 1 array using

Gain_est_2[,i] <- matrix(rtnorm(N,mean=mu_0_2[i],sd=sd_0_2[i],
lower=0,upper=1),ncol=1).

Using Beta Distribution (CE-B)
------CE Method Using Beta Distribution-------

myfunctionBE=function(M)
{

N = 1000
rho =0.05
Nelite =round(N*rho)
smooth=0.7
eps=0.01

alpha0=beta0=rep(1,d)
mu0=1/(1+(beta0/alpha0))
sd0=sqrt((alpha0*beta0)/((alpha0+beta0)ˆ2)*(alpha0+beta0+1))

t=1
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alpha_old=alpha0
beta_old=beta0
mu_old=mu0
sd_old=sd0

t_max=200

ptm1 <- proc.time()

while ((max(sd0)>eps)&(t<=t_max))
{

Gain_est <- array(0,dim=c(N,d))

for (i in 1:d)
{
Gain_est[,i] <- matrix(rbeta(N,alpha0[i],beta0[i]),ncol=1)

}

score <- apply(Gain_est,1,Gain)

score_sorted=sort(score,decreasing=TRUE,index.return=TRUE)

elite_index=score_sorted$ix[1:Nelite]
elite_sample= Gain_est[elite_index,]

if (d>1)
{

mu_new=apply(elite_sample,2,mean)
sd_new=apply(elite_sample,2,sd)

}

if (d==1)
{

mu_new=mean(elite_sample)
sd_new=sd(elite_sample)

}

mu0=smooth*mu_new+(1-smooth)*mu_old
sd0=smooth*sd_new+(1-smooth)*sd_old
alpha0=(((1-mu0)/(sd0ˆ2))-(1/mu0))*(mu0ˆ2)
beta0=alpha0*((1/mu0)-1)

mu_old=mu0
sd_old=sd0
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alpha_old=alpha0
beta_old=beta0

print(c(t,mu_0,sd_0))

t=t+1
}

print(proc.time()-ptm1)

A.1.2 Algorithm for Ordered Thresholds

In the algorithm for ordered thresholds, we sorted the samples we are generating for Gain est

array in an ascending order before evaluating the performance using the performance function

Gain. The modification we have done for each distribution can be represent like follows. We

have only provided the modified part of the original code in this section.

Gain_est_sn <- array(0,dim=c(N,d))
Gain_est_st <- array(0,dim=c(N,d))
Gain_est_sb <- array(0,dim=c(N,d))

-----Normal Distribution---------

for (i in 1:d)
{

Gain_est_n[,i] <- matrix(rnorm(N,mean=mu_0_1[i],sd=sd_0_1[i]),ncol=1)
}

----------Truncated Normal Distribution---------

for (i in 1:d)
{

Gain_est_t[,i] <- matrix(rtnorm(N,mean=mu_0_2[i],sd=sd_0_2[i],
lower=0,upper=1),ncol=1)

}

-----------Beta Distribution-----------

for (i in 1:d)
{
Gain_est_b[,i] <- matrix(rbeta(N,alpha0[i],beta0[i]),ncol=1)

}
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----------Sorting the generated samples in ascending order----------

for (j in 1:N)
{

Gain_est_sn[j,]=sort(Gain_est_n[j,],decreasing = TRUE)
Gain_est_st[j,]=sort(Gain_est_t[j,],decreasing = TRUE)
Gain_est_sb[j,]=sort(Gain_est_b[j,],decreasing = TRUE)

}

A.2 Cross-Entropy Method for Dependent Random Vari-
ables

library(msm)

n <- 5 # number of time points
K <- 1000 # number of simulated paths
d=n-1 # the length of x
p=0.5 # order of the AR model

M=matrix(NA,ncol=n,nrow=K)

for(k in 1:K)
{

M[k,] <- arima.sim(model=list(ar=p),n=n)
}

Gain <- function(x) # the length of x is n-1
{

x1 <- c(x[1:(n-1)],-Inf)
MaxFirst <- function(y)
{

y[min(which(y>=x1))]
}
mean(apply(M,1,MaxFirst))

}

----------- CE method for coefficients of the polynomial-----

myfunctionLA <- function(M)
{
N = 1000
rho =0.05



A.2 Cross-Entropy Method for Dependent Random Variables 53

Nelite =round(N*rho)
smooth=0.7
eps=0.03
d=n-1 # the length of x
m=1 # order of the polynomial
l=m+1 # number of parameters in the polynomial

mu0_l=rep(0,n)
sd0_l=rep(1,n)

t_l=1

mu_old_l=mu0_l
sd_old_l=sd0_l

t_max_l=500

ptm1_l <- proc.time()

while ((max(sd0_l)>eps)&(t_l<=t_max_l))
{

a_l <- matrix(NA, nrow=n, ncol=l) # coefficient matrix
fit_val <- matrix(NA,nrow = N, ncol=d)

for(k in d:1)
{
for (i in 1:n)
{

for(j in 1:l)
{

a_l[i,j] <- matrix(rnorm(1,mean=mu0_l[j],sd=sd0_l[j]),nrow = 1)
}

}

L=matrix(0,nrow=K,ncol=l)

for(j in 1:l)
{

L[,j]=M[,k]ˆ(j-1)
}

fit_val= L %*% t(a_l)
}
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score_l <- apply(fit_val,1,Gain)

score_sorted_l=sort(score_l,decreasing=TRUE,index.return=TRUE)

elite_index_l=score_sorted_l$ix[1:Nelite]
elite_sample_l= fit_val[elite_index_l,]

if (d>1)
{

mu_new_l=apply(elite_sample_l,2,mean)
sd_new_l=apply(elite_sample_l,2,sd)

}

if (d==1)
{

mu_new_l=mean(elite_sample_l)
sd_new_l=sd(elite_sample_l)

}

mu0_l=smooth*mu_new_l+(1-smooth)*mu_old_l
sd0_l=smooth*sd_new_l+(1-smooth)*sd_old_l

mu_old_l=mu0_l
sd_old_l=sd0_l

print(c(t_l,mu0_l,sd0_l))

t_l=t_l+1

}
proc.time()-ptm1_l
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