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Abstract

This thesis is about skew monoidal categories and consists of two relatively independent

chapters, the �rst of which shows that the units of a skew monoidal category are unique

up to a unique isomorphism, and internalises this fact to skew monoidales. Some bene�ts

of certain extra structure on the unit maps are also discussed. We include some remarks

on the unit conditions for a monoidal functor between skew monoidal categories that

generalises the earlier uniqueness result. In the second, an interesting characterisation

of a skew monoidale in the monoidal bicategory Span is given, generalising the case

where the unit of the skew monoidale is of a certain restricted form, along with an

example. Finally in an appendix, we show that the �ve axioms of a skew monoidal

category are independent.
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Chapter 1

Introduction

Generalisations of the notion of monoidal category have been studied almost as long as

the notion itself; several of these involve relaxing the invertibility of the maps expressing

the associativity and unit conditions. Once invertibility is dropped the directions of

these constraints must be speci�ed; one such choice leads to the notion of skew monoidal

category.

For a left skew monoidal category C with tensor product functor ⊗ : C × C → C and

unit object I, the natural families of lax constraints have the following orientations

αX,Y,Z : (X ⊗ Y )⊗ Z −→ X ⊗ (Y ⊗ Z)

λX : I ⊗X −→ X

ρX : X −→ X ⊗ I.

Given the orientation of these lax constraints for a skew monoidal category, we now

need to ask what particular (coherence) equations they satisfy. Mac Lane in [18] shows

that a list of �ve axioms is su�cient for the coherence for monoidal categories. Kelly

in [14] found that there were redundancies in that list and reduced it down to two.

However this reduction relied on the invertibility of the associativity and unit maps.
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In the context of skew monoidal categories no such invertibility is assumed and so we

require all of the �ve axioms of Mac Lane. These �ve conditions are the pentagon for

α, one relating αX,I,Y , λY and ρX , one relating αI,X,Y and λ, one relating αX,Y,I and ρ,

and one relating λI and ρI .

In [6], Burroni de�nes a pseudocategory, where a pseudocategory with one object

amounts to a category with the same orientations for the α and ρ as above but with

the direction of λ reversed. Grandis in [11], de�nes a biased d-lax 2-category, where a

one object version amounts to a category where the direction of α is reversed but the

orientations of λ and ρ are the same as a left skew monoidal category. However guided

by directed homotopy, the biased d-lax 2-categories of Grandis require six axioms, with

instead two equations relating λI and ρI . On the other hand, the lax monoidal cate-

gories described in [8] provides an unbiased generalisation of a monoidal category where

now for each n ∈ N there is a functor ⊗n : Cn −→ C and two other structural maps

satisfying three axioms.

It should be noted that there is an analogous notion of a right skew monoidal category

where the constraints have their directions reversed. A left skew monoidal structure

on C yields a right one both on Cop (in which morphisms are reversed) and on Crev (in

which the tensor is switched) and so a left one on (Cop)rev. In [1], Altenkirch, Chapman

and Uustalu, while studying relative monads, show a certain functor category is (left)

skew monoidal, they call it lax monoidal. Independently, and motivated by bialgebroids,

Szlachányi in [21], �rst names and studies (both left and right) skew monoidal categories

as such. In this text what we call a skew monoidal category is usually referred to as a left

skew monoidal category, and what could have been referred to as a skew pseudomonoid

we call a skew monoidale. (However, Uustalu in [22], calls what we call a left skew

monoidal category, a right skew monoidal category.)

One of the �rst observations about a monoid is that its unit (if it exists) is unique,

as shown by the equality i = i.j = j. In a monoidal category these equalities become
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isomorphisms I ∼= I ⊗ J ∼= J ; where now in this context there is also a uniqueness

result. We show, in Chapter 2, an analogous result for the units of a skew monoidal

category. In this context we no longer have isomorphisms I ∼= I ⊗ J or I ⊗ J ∼= J but

only the maps I −→ I ⊗ J and I ⊗ J −→ J . Thus it might seem that uniqueness up to

isomorphism is lost, but surprisingly, it turns out that the composite I −→ I⊗J −→ J

is invertible, and we do still have a uniqueness result for this isomorphism.

In Section 2.2 we establish that the units of a skew monoidal category are unique up to

a unique isomorphism; this is the analogue for skew monoidal categories of Proposition

1.7 in [15]. This was shown for monoidal categories by Kock in [15], where earlier

references are given to this result by Saavedra Rivano in [20]. The coherence results for

monoidal categories with units, by Mac Lane in [18], would imply that the isomorphisms

between the units are unique. The proofs here follow the same methods employed in

[15] where in our context, we de�ne the category of units for a skew monoidal category

and show that it is terminal. We then impose some extra structure on the unit maps of

a skew monoidal category, such as requiring that λ be invertible, and remark on some

consequences of this extra structure. Section 2.3 consists of some remarks on the unit

conditions of a monoidal functor between skew monoidal categories which allows us to

generalise the uniqueness result of the previous section. In Section 2.4 we internalise

the main result of Section 2.2 to skew monoidales; that is, out of the cartesian monoidal

2-category Cat and into a monoidal bicategory, although by the coherence results of

[10] it su�cies to work in a Gray monoid.

A general classi�cation of skew monoidales in a monoidal bicategory in terms of simpli-

cial maps from the Catalan simplicial set into the nerve of the monoidal bicategory is

shown in [5]. In Chapter 3 of this thesis we consider a skew monoidale in the monoidal

bicategory Span. Since their introduction by Bénabou in [4], Span and the Span con-

struction are ubiquitous in higher category theory. This is mainly due to the fact that

a category can be regarded as a monad in the bicategory of spans Span, and vari-
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ous generalisations. However, what interests us is Span not just as a bicategory but

as a monoidal bicategory made monoidal using the cartestian product of sets. Skew

monoidales (= skew pseudomonoids) were de�ned by Lack and Street in [17], where

they also show that quantum categories are skew monoidal objects, with a certain unit,

in an appropriate monoidal bicategory. This contains as a special case the fact that

categories are equivalently skew monoidales C in the monoidal bicategory Span with

tensor product given by

C × C (s,t)←− E
t−→ C

for some set E, and where the unit is assumed to be of the form

I
!←− C

1−→ C ;

where I is a terminal object in Set.

In Chapter 3 we characterise skew monoidales in Span without any restrictions on the

unit of the skew monoidale. This means that the tensor product for the skew monoidale

C is given by

C × C (s,r)←− E
t−→ C

for some set E, and where the unit has the form

I
!←− U

j−→ C .

This characterisation follows some lengthy but not di�cult calculations in Section 3.2,

which are made easier using the concrete form a pullback takes in Set. We recover the

fact in [17], that categories are equivalently skew monoidales in Span with a unit of a

certain restricted type. Section 3.3 collects the extra structure obtained from a skew

monoidale in the form of a functor R with some interesting properties.
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We �nish the chapter with a simple example of a skew monoidale (actually just a

monoidale) in Span whose unit is not of the restricted type previously considered.

In the �rst appendix we show the independence of the �ve axioms for a skew monoidal

category. The second appendix consists of the de�nition of a Gray monoid.
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Chapter 2

Skew Monoidal Categories

2.1 Skew Semimonoidal Categories

A skew semimonoidal category is a triple (C,⊗, α) where C is a category equipped with

a functor ⊗ : C × C → C (called tensor product), and a natural family of lax constraints

α whose components have the form

αX,Y,Z : (X ⊗ Y )⊗ Z −→ X ⊗ (Y ⊗ Z)

subject to the condition that the following diagram commutes

(W ⊗X)⊗ (Y ⊗ Z)
αW,X,Y⊗Z

**
((W ⊗X)⊗ Y )⊗ Z

αW⊗X,Y,Z

44

αW,X,Y ⊗1Z
��

W ⊗ (X ⊗ (Y ⊗ Z))

(W ⊗ (X ⊗ Y ))⊗ Z αW,X⊗Y,Z

//W ⊗ ((X ⊗ Y )⊗ Z)

1W⊗αX,Y,Z

OO

(2.1)

for all objects W , X, Y and Z.
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2.2 The Category of Units

A skew monoidal category is a skew semimonoidal category equipped with a chosen

unit, in a sense to be de�ned below. We shall see that if such a unit exists, it is unique

up to isomorphism. More precisely, there is a unique compatible isomorphism, in the

sense that it is a morphism in the category of units, which we now de�ne.

Given a skew semimonoidal category (C,⊗, α), we form a category U(C) as follows.

The objects are triples (I, λ, ρ) where I is an object of C and where λ and ρ are natural

families of lax constraints whose components have the form

λX : I ⊗X −→ X

ρX : X −→ X ⊗ I

subject to four conditions asserting that the following diagrams commute:

(I ⊗X)⊗ Y

λX⊗1Y ''

αI,X,Y // I ⊗ (X ⊗ Y )

λX⊗Yww
X ⊗ Y

(2.2)

(X ⊗ I)⊗ Y
αX,I,Y // X ⊗ (I ⊗ Y )

1X⊗λY
��

X ⊗ Y

ρX⊗1Y

OO

1X⊗Y

// X ⊗ Y

(2.3)

(X ⊗ Y )⊗ I
αX,Y,I // X ⊗ (Y ⊗ I)

X ⊗ Y
ρX⊗Y

gg

1X⊗ρY

77
(2.4)
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I

ρI ""

1I // I

I ⊗ I
λI

<<

.

(2.5)

An arrow of U(C) from (I, λ, ρ) to (J, λ′, ρ′) is given by an arrow ϕ : I −→ J in C such

that the following two triangles commute

I ⊗X

λX ##

ϕ⊗1X // J ⊗X

λ′X{{
X

X ⊗ I 1X⊗ϕ // X ⊗ J

X

ρX

dd

ρ′X

::
(2.6)

The composition of arrows in U(C) is then given by the composition in C.

Given two objects (I, λ, ρ) and (J, λ′, ρ′) of U(C) we de�ne ϕI,J : I −→ J to be the

following composite

I
ρ′I // I ⊗ J λJ // J ; (2.7)

so with this notation ϕJ,I : J −→ I is the following composite

J
ρJ // J ⊗ I

λ′I // I .

When no confusion arises we will call these maps just ϕ.

Lemma 2.2.1. The map ϕI,J de�ned by (2.7) is an arrow in U(C) from (I, λ, ρ) to

(J, λ′, ρ′).

Proof. We show that the �rst diagram of (2.6) commutes by considering the following

diagram

I ⊗X
ρ′I⊗1X //

1X⊗Y

##

(I ⊗ J)⊗X λJ⊗1X //

αI,J,X

��

J ⊗X
λ′X
��

I ⊗ (J ⊗X)

λJ⊗X

55

1I⊗λ′X
��

X

I ⊗X
λX

55
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in which the left-hand triangle commutes by equation (2.3) for (J, λ′, ρ′), the right-hand

triangle commutes by equation (2.2) for (I, λ, ρ), and the rectangle commutes by the

naturality of λ. The right-hand side of (2.6) is analogous.

Proposition 2.2.2. There is exactly one morphism from (I, λ, ρ) to (J, λ′, ρ′) in U(C).

Proof. Suppose we have another morphism τ from I to J in U(C), and consider the

following diagram

I
ρ′I //

τ
��

I ⊗ J
τ⊗1J

��

λJ

''
J

ρ′J

//

1J

::J ⊗ J
λ′J

// J

The square commutes by the naturality of ρ′, the triangle commutes by the assumption

that τ satis�es the left-hand side of equation (2.6), and the semi-circle commutes by

(2.5) for (J, λ′, ρ′). This shows that τ = ϕ.

Corollary 2.2.3. Any two objects (I, λ, ρ) and (J, λ′, ρ′) in U(C) are isomorphic.

Proof. Both ϕJ,I ◦ϕI,J and 1I are arrows from (I, λ, ρ) to (I, λ, ρ) in U(C) so by unique-

ness they are equal. That ϕI,J ◦ ϕJ,I = 1J is analogous.

We may combine the previous two results into:

Theorem 2.2.4. For a skew semimonoidal category C, if U(C) is non-empty then it is

equivalent to the terminal category.

Thus a skew semimonoidal category is a skew monoidal category if U(C) is non-empty.

Proposition 2.2.2 and Corollary 2.2.3 then imply that the units for a skew monoidal

category are unique up to a unique isomorphism (if they exist).

Next, we shall see that either λ or ρ determines the other.
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Corollary 2.2.5. If (I, λ, ρ′) and (I, λ, ρ) are in U(C) then ρ′ = ρ.

Proof. Consider the unique morphism ϕJ,I : (I, λ, ρ
′) −→ (I, λ, ρ) where J = (I, λ, ρ′).

By (2.5), this must be 1I ; then by (2.6) we deduce that ρ = ρ′.

Corollary 2.2.6. If (I, λ, ρ) and (I, λ′, ρ) are in U(C) then λ = λ′.

Proof. Dually, by reversing the tensor and the direction of arrows, we can instead repeat

the above argument instead using ϕI,J .

Remark 2.2.7. Equation (2.1) or the pentagon equation was not used in Proposi-

tion 2.2.2 or its Corollaries. This leads to the possibility of similar results about the

units of skew versions of categories not satis�ng (2.1) such as in [13].

Remark 2.2.8. The proof of Lemma 2.2.1 uses equations (2.2), (2.3) and (2.4) but

not (2.1) or (2.5), while the proof of Proposition 2.2.2 uses the equations (2.5) and

(2.6). Now suppose that λ and ρ satisfy only (2.2), (2.3) and (2.4). Then the composite

I
ρI // I ⊗ I λI // I satis�es (2.6) and so (2.5) becomes a special case of the uniqueness

result in Proposition 2.2.2.

We denote a skew monoidal category by the 6-tuple (C,⊗, I, α, λ, ρ). For the following

proposition, we use the fact that, as ⊗ is a bifunctor, the interchange law holds, in

particular,

(f ⊗ 1) ◦ (1⊗ g) = (1⊗ g) ◦ (f ⊗ 1).

Proposition 2.2.9. Let (C,⊗, I, α, λ, ρ) be a skew monoidal category . If there exists

an object J and an isomorphism ϕ : J −→ I in C then (J, λ′, ρ′) is also a unit of C,

where λ′X : J ⊗X −→ X and ρ′X : X −→ X ⊗ J are given by the following composites:

J ⊗X ϕ⊗1X // I ⊗X λX // X X
ρX // X ⊗ I 1X⊗ϕ−1

// X ⊗ J
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Proof. We need to show that these composites satisfy the four conditions in the de�ni-

tion. Consider the following diagrams.

For the one on the left, the square commutes by the naturality of α and the triangle

commutes by (2.2). For the one on the right, the square commutes by the naturality of

α and the triangle commutes by (2.4).

(J ⊗X)⊗ Y α //

(ϕ⊗1)⊗1

��

J ⊗ (X ⊗ Y )

ϕ⊗1

��
(I ⊗X)⊗ Y α //

λ⊗1 ''

I ⊗ (X ⊗ Y )

λww
X ⊗ Y

(X ⊗ Y )⊗ J α // X ⊗ (Y ⊗ J)

(X ⊗ Y )⊗ I α //

1⊗ϕ−1

OO

X ⊗ (Y ⊗ I)

1⊗(1⊗ϕ−1)

OO

X ⊗ Y
1⊗ρ

77

ρ

gg

For the following diagram, the square commutes by the naturality of α and the outside

commutes by (2.3). The semicircle on the left commutes as ϕ is an isomorphism. Thus

the irregular lower region commutes as required.

(X ⊗ I)⊗ Y α // X ⊗ (I ⊗ Y )

1⊗λ

��

(X ⊗ J)⊗ Y α //

(1⊗ϕ)⊗1

OO

X ⊗ (J ⊗ Y )

1⊗(ϕ⊗1)

OO

(X ⊗ I)⊗ Y

(1⊗ϕ−1)⊗1

OO
(1⊗1)⊗1

??

X ⊗ Y
1

//ρ⊗1oo X ⊗ Y

For the �nal diagram, the top right square commutes by the interchange law, the bottom

right square commutes by the naturality of λ, the top left square commutes by the

naturality of ρ and below this, the upper triangle commutes by (2.5).
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J
ρJ //

ϕ

��
1

��

J ⊗ I 1⊗ϕ−1
//

ϕ⊗1

��

J ⊗ J

ϕ⊗1

��
I

ρI //

ϕ−1

��

1

!!

I ⊗ I 1⊗ϕ−1
//

λI

��

I ⊗ J

λJ

��
J ϕ

//

1

99I
ϕ−1

// J

Proposition 2.2.10. If (C,⊗, I, α, λ, ρ) is a skew monoidal category then

(I ⊗ I, λX ◦ (λI ⊗ 1X), (1X ⊗ ρI) ◦ ρX) is a unit of C if and only if λI : I ⊗ I −→ I is

invertible (or equivalently, ρI is invertible).

Proof. Assuming that (I ⊗ I, λX ◦ (λI ⊗ 1X), (1X ⊗ ρI) ◦ ρX) is a unit we can use

Lemma 2.2.1 and Proposition 2.2.2 and just show that ϕI⊗I,I = λI by considering the

following diagram.

I ⊗ I

λI

��

ρI⊗I // (I ⊗ I)⊗ I

λI⊗1I

��
I

ρI //

1I ""

I ⊗ I

λI
yy

I

where the square commutes by the naturality of ρ and the triangle commutes by (2.5).

Conversely, if λI : I⊗I −→ I is invertible then by (2.5) ρI ◦λI = 1I⊗I , so then λ
−1
I = ρI

and we can apply Proposition 2.2.9.
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A skew monoidal category (C,⊗, I, α, λ, ρ) is weakly normal if it also sati�es the condi-

tion that ρI ◦ λI = 1I⊗I ; equivalently, if λI or ρI (and so both) is invertible.

Proposition 2.2.11. If (C,⊗, I, α, λ, ρ) is a weakly normal skew monoidal category

then the monoid End(I) of endomorphisms of the unit object I is commutative.

Proof. As λI : I ⊗ I −→ I is invertible, it induces an isomorphism ψ : End(I ⊗ I) −→

End(I) de�ned by ψ(γ) = λI ◦ γ ◦ λ−1I . For f ∈ End(I) we deduce, by the naturality of

λ, that

f = f ◦ λI ◦ λ−1I

= λI ◦ (1I ⊗ f) ◦ λ−1I

= ψ(1I ⊗ f)

Similarly, using the naturality of λ−1 we get f = ψ(f ⊗ 1I).

So for f, g ∈ End(I) we have, by the interchange law, that

f ◦ g = ψ(f ⊗ 1) ◦ ψ(1⊗ g)

= ψ((f ⊗ 1) ◦ (1⊗ g))

= ψ((1⊗ g) ◦ (f ⊗ 1))

= ψ(1⊗ g) ◦ ψ(f ⊗ 1)

= g ◦ f

Remark 2.2.12. Let R-Mod denote the category of left R-modules over some ring R.

Regarding R as a left module over itself using its product, and noticing that End(R) is

the monoid R if we regard R as a monoid under multiplication, we can use Lemma 2.2.11

to conclude that if R is a non-commutative ring then R is not the unit object for a weakly

normal skew monoidal structure on R-Mod.
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A skew monoidal category is left normal if λ is invertible. This implies that tensoring

on the left by I is an equivalence. Using the naturality of λ and the invertibilty of λX

we deduce that

λI⊗X = 1I ⊗ λX

A skew monoidal category is right normal if ρ is invertible and normal if both λ and ρ

are invertible.

Remark 2.2.13. If C is a left normal skew monoidal category then for any units I and

J in C we have I ⊗ J ∼= J and so I ⊗ J is also a unit by Proposition 2.2.10. Thus, if C

is a left normal skew monoidal category then the ⊗ from C applied to U(C) gives U(C)

the structure of a skew semimonoidal category.

Lemma 2.2.14. If (C,⊗, I, α, λ, ρ) only satis�es (2.2) and (2.3) with both λ and ρ

being invertible then (2.5) holds.

Proof. Consider the following diagram:

(I ⊗ I)⊗X α //

λI⊗1X

&&

I ⊗ (I ⊗X)

1I⊗λX=λI⊗X

��
I ⊗X

ρI⊗1X

OO

1
// I ⊗X

The outside commutes by (2.3), the upper triangle commutes by (2.2) where we used

the assumption of λ being invertible and the resulting identity that 1I ⊗λX = λI⊗X , so

then the lower triangle commutes. Now taking X = I and using the assumption that ρ

is a natural isomorphism we get (2.5).
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2.3 Monoidal Functors

Let (C,⊗′, I, α′, λ′, ρ′) and (D,⊗, J, α, λ, ρ) be skew monoidal categories. A monoidal

functor from C to D is a triple (F, ϕ, F0) where F : C −→ D is a functor of the underlying

categories, F0 is a morphism J −→ F (I) in D, and ϕ is a natural transformation with

components ϕX,Y : F (X) ⊗ F (Y ) −→ F (X ⊗′ Y ) such that the following diagrams

commute.

(F (X)⊗ F (Y ))⊗ F (Z)
αF (X),F (Y ),F (Z) //

ϕX,Y ⊗1F (Z)

��

F (X)⊗ (F (Y )⊗ F (Z))
1F (X)⊗ϕY,Z

��
F (X ⊗′ Y )⊗ F (Z)

ϕX⊗′Y,Z

��

F (X)⊗ F (Y ⊗′ Z)
ϕX,Y⊗′Z
��

F ((X ⊗′ Y )⊗′ Z)
F (α′X,Y,Z)

// F (X ⊗′ (Y ⊗′ Z))

(2.8)

J ⊗ F (X)
λF (X) //

F0⊗1F (X)

��

F (X)

F (I)⊗ F (X) ϕI,X

// F (I ⊗′ X)

F (λ′X)

OO
F (X)

F (ρ′X)

��

ρF (X) // F (X)⊗ J

1F (X)⊗F0

��
F (X ⊗′ I) F (X)⊗ F (I)ϕX,I

oo

(2.9)

A monoidal functor between skew monoidal categories is normal if F0 is an isomorphism,

and is strong if both ϕ and F0 are isomorphisms. If the skew monoidal categories were

monoidal then these are the usual notions of lax, normal, and strong monoidal functors.

Proposition 2.3.1. Let (C,⊗′, I, α′, λ′, ρ′) and (D,⊗, J, α, λ, ρ) be skew monoidal cat-

egories and let F be a functor and ϕ a natural transformation such that (2.8) holds.

Then there is at most one F0 such that (2.9) holds.

Proof. Let F
′
0 be another such morphism in D, so in particular F

′
0 : J −→ F (I) satis�es
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the equations in (2.9). Consider the following diagram.

J
ρJ //

F
′
0

��

1J

&&
J ⊗ J λJ //

F
′
0⊗1J

��
1J⊗F0

��

J

F0

��

F (I)
ρF (I) //

1F (I)

!!

F (ρI)

��

F (I)⊗ J

1F (I)⊗F0

��
F (I ⊗′ I)

F (λI)

**

F (I)⊗ F (I)
ϕI,Ioo J ⊗ F (I)

F
′
0⊗1F (I)oo

λF (I)

��
F (I)

1F (I)

// F (I)

The part involving the semicircles on the top and left-hand side commute by (2.5).

The top square commutes by the naturality of ρ, and the square below it commutes

by the right-hand equation in (2.9). The triangle next to the squares commutes by the

interchange law. The bottom triangle commutes by the left-hand equation in (2.9) and

the remaining part of the diagram (on the right) commutes by the naturality of λ. The

commutativity of the exterior gives the required uniqueness.

Remark 2.3.2. If F0 : J −→ F (I) is an isomorphism in D then by Proposition 2.2.9,

F (I) is also a unit in D. Now, by Proposition 2.2.2, there is a unique morphism

between these units, namely ϕJ,F (I) and using the naturality of λ it can be shown that

ϕJ,F (I) = F0.

Remark 2.3.3. This lemma generalises the uniqueness result of Proposition 2.2.2,

which we may recover on taking the two skew monoidal categories to be the same, F to

be the identity functor, and ϕ the identity natural transformation. It also implies the

16



uniqueness of units for monoids in a skew monoidal category by taking C = 1.

Remark 2.3.4. We denote by SkMon the category with objects skew monoidal cate-

gories and 1-cells monoidal functors; and SkSemiMon the category with objects skew

semimonoidal categories and 1-cells semimonoidal functors (drop the F0 conditions for

the unit).

We denote the obvious forgetful functor where we drop all reference to units and any

associated conditions by V : SkMon −→ SkSemiMon . For an object C of SkSemi-

Mon, that is, any skew semimonoidal category, the �bre of V at C is the category U(C)

of units of C.

The uniqueness of F0 in Proposition 2.3.1 implies that the forgetful functor V is faithful.

Moreover, the uniqueness and existence results from Section 2.2 imply that V is full on

isomorphisms in SkSemiMon, and by Proposition 2.2.9 V is also an iso�bration.

17



2.4 Skew Monoidales

The results of Section 2.2 can be lifted to skew monoidales, these were �rst de�ned in

[17] as an internal version of a skew monoidal category. So in this section we internalise

the main result of Section 2.2. By the coherence results of [10], however, it will su�ce

to work in a Gray monoid; see Appendix B.

Let B be a Gray monoid; see Appendix B for an explicit de�nition. Note that for 1-cells

f : A −→ A′ and g : B −→ B′ in a Gray monoid, the only structural 2-cells are the

invertible 2-cells of the form

A⊗B 1⊗g //

f⊗1
��

∼=

A⊗B′

f⊗1
��

A′ ⊗B
1⊗g

// A′ ⊗B′

or tensors and composites thereof. In this section we denote them with the symbol ∼=

as above. These 2-cells satisfy some axioms which we do not list here but will appeal

to throughout the rest of this section; see Appendix B once again. We write I for the

unit object of the Gray monoid.

2.4.1 Skew Semimonoidales

A skew semimonoidal structure on an object A in B consists of a morphism

p : A⊗ A −→ A called the tensor product, and a 2-cell

A⊗ A⊗ A 1⊗p //

p⊗1
��

A⊗ A
p

��
A⊗ A p

//

α

KS

A

18



subject to the �pentagon� axiom

A⊗ A⊗ A

1⊗p

��

p⊗1
''

A⊗ A⊗ A⊗ A

p⊗1⊗1 77

1⊗1⊗p

��

∼=

A⊗ A

p

��

A⊗ A
p

''
A⊗ A⊗ A

1⊗p ''

p⊗1 77

A

A⊗ A
p

77

α

s{

α

rz

=

A⊗ A⊗ A
p⊗1
''

A⊗ A⊗ A⊗ A

p⊗1⊗1 77

1⊗1⊗p

��

1⊗p⊗1 ''

A⊗ A

p

��

A⊗ A⊗ A

1⊗p

��

p⊗1

77

A⊗ A⊗ A

1⊗p ''

A

A⊗ A
p

77

α⊗1

rz

1⊗α
bj

αqy

(2.10)

An object A of B equipped with such a skew semimonoidal structure is called a skew

semimonoidale in B; we denote it by (A, p, α).

A skew semimonoidale in the cartesian monoidal 2-category Cat of categories, functors

and natural transformations is a skew semimonoidal category.

2.4.2 The Category of Units

If (A, p, α) is a skew semimonoidale in B, we form its category of units U(A, p, α) as

follows. The objects are triples (j, λ, ρ), called units, where j is a morphism j : I −→ A

in B equipped with 2-cells, denoted by λ and ρ, called the left unit and right unit

constraints. These have the form

A⊗ A

p

!!

A
j⊗1oo

1

��
A

λ
&.

A

1⊗j

��
A

1

==

A⊗ Ap
oo

&.
ρ

19



and are required to satisfy the following four equations

A⊗ A
1⊗p
��

j⊗1⊗1//

∼=

A⊗ A⊗ A
1⊗p
��

p⊗1 // A⊗ A
p

��
A

j⊗1 //

1

88A⊗ A p // A

αks

��λ

=

A⊗ A
1⊗p
��

j⊗1⊗1//

1

66A⊗ A⊗ A p⊗1 // A⊗ A
p

��
A

1

88
∼= A

��λ⊗1

(2.11)

A⊗ A
p⊗1
��

1⊗1⊗j//

∼=

A⊗ A⊗ A
p⊗1
��

1⊗p // A⊗ A
p

��
A

1⊗j
//

1

88A⊗ A p
// A

α

KS

ρ
KS

=

A⊗ A
p⊗1
��

1⊗1⊗j//

1

66A⊗ A⊗ A 1⊗p // A⊗ A
p

��
A

1

88
∼= A

1⊗ρ
KS

(2.12)

A⊗ A 1 //

1⊗j⊗1 ''

1

))

A⊗ A

p

��

A⊗ A⊗ A
1⊗p
��

p⊗1

77

A⊗ A p
// A

ρ⊗1
��

{�
1⊗λ αpx

=

A⊗ A 1 //

1

��

≡

A⊗ A

p

��
A⊗ A p

// A

(2.13)

I
j //

j
��

∼=

C

1⊗j
��

1

��
C

j⊗1
//

1

66C ⊗ C p
// C

ρ{�

��λ

=

I
j //

j
��

≡

C

1
��

C
1

// C

(2.14)

The arrows of U(A, p, α) from (j′, λ′, ρ′) to (j, λ, ρ) are given by the 2-cells j′
ϕ // j in

B satisfying the following equations

p(j′ ⊗ 1)

p(ϕ⊗1)
��

λ′

##
p(j ⊗ 1)

λ
// 1

p(1⊗ j′)
p(1⊗ϕ)
��

1 ρ
//

ρ′
;;

p(1⊗ j)

(2.15)
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In the case of a skew semimonoidal category seen as a skew semimonoidale (A, p, j) for

Cat, this agrees with the previous de�nition.

Given (j′, λ′, ρ′) and (j, λ, ρ) in U(A, p, α) we denote the following 2-cell by ϕj′,j.

I
j′

ww

j

''∼=A
1⊗j

''

1

��

A
j′⊗1

ww

1

��

A⊗ A

p

��

λ′
%-ρ

19

A

When no confusion will arise we drop the subscripts and simply write ϕ.

Lemma 2.4.1. The 2-cell ϕ is an arrow in U(A, p, α).

Proof. We need to show that ϕ satis�es (2.15). We shall only verify the equation

involving ρ; the one involving λ is similar.

The composite 1
ρ′ // p(1⊗ j′) p(1⊗ϕ) // p(1⊗ j) appearing in (2.15) may be

constructed as the following pasting composite.

A

1⊗j′ww 1⊗j ''

1

yy ∼=A

1

%%

A⊗ A
1⊗1⊗j

''

1

��

p
oo

∼=

A⊗ A
1⊗j′⊗1

ww

1

��

A⊗ A⊗ A

1⊗p

��

1⊗λ′ #+1⊗ρ
3;

ρ′ ��

A⊗ A
p
��
A

21



Using equation (2.12) this is equal to

A

1⊗j′ww 1⊗j ''

1

yy ∼=A

1

%%

1⊗j ''

A⊗ A
1⊗1⊗j

''

p
oo

∼=

A⊗ A
1⊗j′⊗1

ww

1

��

A⊗ A

p

��

A⊗ A⊗ A

1⊗p

��

p⊗1oo

1⊗λ′ #+

ρ′ ��

α

5=ρ

;C

A⊗ A
p
��
A

which, by equations (B.2) and (B.1), is equal to

A
1⊗j
''

1

yy
A

1

%%

1⊗j
''

∼= A⊗ A
1⊗j′⊗1
ww

1

zz

1

��

A⊗ A

p

��

A⊗ A⊗ A

1⊗p

��

p⊗1oo

1⊗λ′ #+

α

5=ρ

;C

ρ′⊗1 ��

A⊗ A
p
��
A

which �nally, by equation (2.13), is equal to
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A
1⊗j
''

1

zz
A

1

&&

1⊗j
''

∼= A⊗ A1

{{

1

��

A⊗ A

p

��

ρ

;C

A⊗ A
p
��
A

≡

Proposition 2.4.2. There is exactly one morphism from (j, λ, ρ) to (j′, λ′, ρ′) in U(A, p, α).

Proof. Let τ be another such 2-cell I

j

##

j′

<<A
τ

�

in U(A, p, α), so, in particular it

satis�es

A

j⊗1

��

1

!!
A⊗ A p

// A

λ

.6

= A

j⊗1

��

j′⊗1

��

1

��
A⊗ A p

// A

τ⊗1
+3 GO

λ′

(2.16)

By assumption (2.16), the 2-cell φ

I
j

ww

j′

''∼=A
1⊗j′

''

1

��

A
j⊗1
ww

1

��

A⊗ A

p

��

λ
#+

ρ′
3;

A

is equal to
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I
j

ww

j′

''∼=A
1⊗j′

''

1

��

Aj⊗1

��

1

rr

j′⊗1nnA⊗ A

p

��

λ′ #+ρ′
3;

τ⊗1 ��

A

which, by equation (B.2), is equal to

Ij

��

j′

''
j′nn ∼=A

1⊗j′ ''

1

��

A
j′⊗1

ww

1

��

A⊗ A

p

��

λ′
%-

ρ′
19

τ ��

A

which �nally, by equation (2.14), is equal to

I
j′ //

j

��

j′

��

A

1

��

≡

A
1

// A

τ
+3

A skew semimonoidale in a Gray monoid B is a skew monoidale in B if U(A, p, α) is

non-empty. We denote such a skew monoidale by (A, p, j, α, λ, ρ).

The results proven above now imply, as in the case of the previous section, the following:
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Theorem 2.4.3. The units of a skew monoidale (A, p, j, α, λ, ρ) are unique up to a

unique isomorphism (if they exist).

Remark 2.4.4. (Theory of Skew Monoidales) It should not be a surprise that the

elementary nature of the proofs in Section 2.2 carry over to this setting, especially if

we were to write the axioms for a skew monoidale not as pasting diagrams in a Gray

monoid but as equations between the 1-cells p and j. Consider equations (2.14) and

(2.13) rewritten as

p(1⊗ j)j
∼= // p(j ⊗ 1)j

λj

��
j

1
//

ρj

OO

j

p(p⊗ 1)(1⊗ j ⊗ 1)
α(1⊗j⊗1) // p(1⊗ p)(1⊗ j ⊗ 1)

p(1⊗λ)
��

p
1

//

p(ρ⊗1)

OO

p

These equations �look� like the corresponding equations (2.5) and (2.3) from the pre-

vious section. In Houston's 2007 thesis [12] there is de�ned a formal language for a

collection of objects, 1-cells, 2-cells, and equations between the 2-cells, that admits an

interpretation, or model, in a monoidal bicategory which he has called a �calculus of

components�. The calculus of components was used in [12] to show that some results

for pseudomonoids(= monoidales) follow formally using the formal language from the

corresponding result in the cartesian monoidal 2-category Cat. As noted in [12], the

formal language is not completely general, it applies to a collection of 1-cells of the

form A1⊗ ⊗An // B where these can then create, by tensoring and composi-

tion, composite 1-cells into a single target object such that the composite 1-cells are of

the same form of the original collection. It was also noted in [12] that the calculus of

components should be regarded as a higher dimensional analogue of the typed languages

for monoidal categories de�ned by C. Barry Jay in [2].

Our only remark is that, we can use the calculus of components, from [12], to form a

theory of skew monoidales since the only real di�erence to a theory of pseudomonoids(=

monoidales), as presented by Houston in [12], is that we would need three basic 2-cells
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as opposed to six, and �ve equations between the 2-cells as opposed to two (not counting

the invertibilty equations). With this in mind we then recognise that the results and

proofs of this section are formally identical to the proofs in Section 2.2. That is, a formal

proof in the language or theory of skew monoidales is the �same� as the proof of the

corresponding result for skew moniodal categories from Section 2.2. For example, the use

of one of the derivation rules for the equations between the 2-cells called the naturality

axiom in [12] corresponds to our use of naturality in the proof of Propostion 2.2.2. So

if we were to de�ne a theory of skew monoidales using the calculus of components we

could deduce the results of this section from Section 2.2.
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Chapter 3

Skew Monoidales in Span

3.1 Span as a Monoidal Bicategory

Recall from Section 2.4 the de�nition of and notation for a skew monoidale in a monoidal

bicategory B. In this chapter we are interested in the case where B is Span. We �rst

remind the reader of some details of Span.

The objects of Span are those of Set ; so A, B, C ..... are sets. We denote the terminal

object in Set by 1 and the unique arrow into it by !.

An arrow r : A | // B is a span r = (f,R, g) in Set, as in (a), where composition of

these arrows is by pullback (pullback along g and h), as in (b), and the identity arrow

is the span (c) below.

(a) R
f

~~

g

��
A B

(b) R

~~

g

��

T
h

�� ��
A B C

(c) C
1

~~

1

��
C C

A 2-cell from (w,R, x) to (f, S, g) is a map τ : R −→ S in Set such that the following
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commutes

R

w

��

x

��

τ
��
S

g ��f��
A B

As Set is a category with �nite products as well as pullbacks (in the presence of a

terminal object, �nite products can be obtained as a special case of pullbacks) then the

bicategory Span has a monoidal product on it induced by the cartesian product of sets.

To calculate a left whiskering, such as in the following diagram (on the left), we �rst

form the pullbacks of f and w along v, then we use the fact that fτ = w and v1 = v

to construct the dotted arrow in the diagram on the right.

R

w

��

x

��

τ
��

E
v

��

u

��

S

g ��f��
C A B

E ×A R

((vv ��
E

u

��

1

E ×A S

##zz

R

x

��

τ
��

E

v
$$

u��

S

g ��fzz
C A B
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3.2 Notation and Calculations

The motivation for this section is from [17] where skew monoidales in Span with a unit

of the form (!, C, 1) : 1 | // C are shown to be equivalent to categories. Here we give

a characterisation of a general skew monoidale in Span.

Consider a skew monoidale in Span with underlying object the set C.

The 1-cells of a Skew Monoidale:

The tensor p : C × C | // C has the form

E
(s,r)

{{

t

��
C × C C

So for f ∈ E we will record this data as s(f)
f // t(f) and r(f) ∈ C.

The unit j : 1 | // C has the form

U
!

��

j

��
1 C

So for u ∈ U we will record this data as j(u) ∈ C.

Given a skew monoidale, with its unit having the restricted form (!, C, 1) : 1 | // C ,

it will become evident when dealing with the general case below, that this forces the

�rst span to be of the form C × C (s,t)←− E
t−→ C , and that it de�nes a category with

E as its set of arrows. Conversely, given a category C = (C1, C0, 1, s, t, ◦), we construct

the following two spans: C0 × C0
(s,t)←− C1

t−→ C0 , and 1
!←− C0

1−→ C0 . The 2-

cell structure making this category into a skew monoidale comes from the composition

and identity arrows of the category, with the skewness arising from the non-symmetric

nature of the �rst span.
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The 2-cells of a Skew Monoidale:

What is now required is a long and often repetitive calculation with, when we include

the equations between the 2-cells, sixteen pullback constructions in Set; so we will

present enough of it to introduce and justify the supporting notation that will form our

input for a further characterisation.

For the 2-cell λ : p(j × 1) =⇒ 1 we need to consider the following composite

U × C
!×1

yy

j×1

%%

E
(s,r)

{{

t

��
1× C C × C C

First we need to form the following pullback

P
q //

p
��

E

s
��

U
j
// C

(3.1)

then the required composite is

P
(p,rq)

yy

q

##
U × C

!×1

yy

j×1

%%

E
(s,r)

{{

t

��
1× C C × C C

so we �nally have for the 2-cell λ, a function which we also denote by λ, such that the
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following diagram commutes,

P

rq

��

tq

��

λ
��
C

1 ��1��
C C

it can only exist if rq = tq and is then given as a morphism in Set by the common value

rq = tq. (3.2)

As we are in Set we can write P as P =
{
(u, f)|u ∈ U, f ∈ E, j(u) = s(f)

}
with

p(u, f) = u and q(u, f) = f as the projections. With our notation, the elements in P

look like j(u)
f // y . We can now record the e�ect of λ as : j(u)

f // y � λ // y = r(f).

Thus the existence of λ implies that if j(u)
f // y then y = r(f), and the map itself

sends (u, j(u)
f // y ) to y.

In the case of a category (that is, the case where U is C and the unit is of the form

1
!←− C

1−→ C ) then P = E = C1 and j = 1 forces r = t, so λ is just t .

For the 2-cell ρ : 1 =⇒ p(1× j) we �rst need to construct the following pullback

B

m
��

k // E

r
��

U
j
// C

31



In the diagram below

C

ρ
��

1





φ

��

(1,ψ)

��

1

��

B

k ##(sk,m)yy
C × U

1×j %%proj1{{

E

t ��(s,r){{
C C × C C

(3.3)

the square is the pullback involved in the composite p(1×j), so to give ρ : 1 =⇒ p(1×j)

is equivalently to give φ : C −→ E and ψ : C −→ U satisfying tφ = 1, sφ = 1, and

rφ = jψ. That these equations hold can be seen by the following diagrams extracted

from (3.3).

C

1

��

1

��

(ψ,φ)
��
B

tk ��sk��
C C

C

ψ

��

φ

##
(ψ,φ)

��
B

m
��

k // E

r
��

U
j
// C

We record for later use that

rφ = jψ.

As we are in Set, B =
{
(u, f)|u ∈ U, f ∈ E, j(u) = r(f)

}
with m(u, f) = u and

k(u, f) = f as the projections. With respect to our notation, the elements in B look

like (j(u) = r(f), x
f // y ) so we record the e�ect of φ as

x ∈ C � φ // ( x
φx // x )

then ψx ∈ U satis�es j(ψx) = r(φx).

Note that in the case of a category then B = E = C1 and so ρ is just the identity.
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For the 2-cell α : p(p× 1) =⇒ p(1× p) we need the following two pullbacks

X

h
��

l // E

s
��

E
t
// C

Y

e
��

y // E

r
��

E
t
// C

The objects X and Y will appear as the vertex of the spans p(p × 1) and p(1 × p),

respectively.

In the diagram below

X

α
��

(sh,rh,rl)

��

δ

��

(sh,τ)

��

tl

��

Y

y
##(sy,e)yy

C × E

1×t %%1×(s,r)ww

E

t ��(s,r){{
C × C × C C × C C

(3.4)

the square is the pullback involved in the composite p(1 × p), so to give α : p(p ×

1) =⇒ p(1 × p) is equivalently to give τ : X −→ E and δ : X −→ E satisfying tδ = tl,

sδ = sh,sτ = rh, rτ = rl, and rδ = tτ . That these equations hold can be seen by the

following diagrams extracted from (3.4).

X

(sh,rh,rl)

��

tl

��

(τ,δ)
��
Y

ty
&&

(sy,se,re)yy
C × C × C C

X

τ

��

δ

##
(τ,δ)

  
Y

e
��

y // E

r
��

E
t
// C

As we are in Set, X =
{
(f, g)|f, g ∈ E; t(f) = s(g)

}
with l(f, g) = g and h(f, g) = f

as the projections. Similarly, Y =
{
(f, g)|f, g ∈ E; t(f) = r(g)

}
with y(f, g) = g and

33



e(f, g) = f as its projections. So with respect to our notation, elements of X look like

x
f // y

g // z and elements of Y look like ( x
f // r(g) , y

g // z ) with r(f), r(g)

∈ C and we record the e�ect of δ as

x
f // y

g // z � δ // x
gf // z

and τ as

x
f // y

g // z � τ // r(f)
gf // r(gf)

with r(gf ) = r(g) in C.

Note that δ gives us a map from x to z which we have called gf . We want to interpret

the set E as a set of arrows and gf as a composite (with φx as an identity), indeed,

that this is the composite in a category will be shown below. The map τ gives us a

map from r(f) to r(gf) which we have called gf . This map will form the basis of our

characterisation for the resulting �extra� structure given on the category.

We now consider the equations between the 2-cells and just do one calculation

to give the reader an indication of how the �nal relations are obtained. Consider the

left-hand side of equation (2.10) and the whiskering

C × C × C × C p×1×1 // C × C × C p×1 //

1×p
��

C × C
p

��
C × C p

// C

αks
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For this we need to compose

X

(sh,rh,rl)

��

tl

��

(τ,δ)

��
E × C × C

t×1×1

((

(s,r)×1×1

uu

Y

ty
&&

(sy,se,re)yy
C × C × C × C C × C × C C

First form the pullbacks

Q

y′

��

l′ // Y

y

��
X

l
// E

W

h′

��

w // X

h
��

X
l
// E

then we have the following pullbacks

Q
l′ //

(hy′,sel′,rel′)
��

Y

(sy,se,re)
��

E × C × C
t×1×1

// C × C × C

W
w //

(hh′,rhw,rlw)
��

X

(sh,rh,rl)
��

E × C × C
t×1×1

// C × C × C

and so form

W
w

**

(hh′,rhw,rlw)

rr
µ

��
E × C × C

(s,r)×1×1

��

1

Q
l′

%%

(hy′,sel′,rel′)

vv

X

tl

��

(τ,δ)

t|
E × C × C

t×1×1 (((s,r)×1×1uu

Y

ty
&&

(sy,se,re)yy
C × C × C × C C × C × C C
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As before, to give the map p(p× 1)(p× 1× 1)
α(p×1×1) // p(1× p)(p× 1× 1) is equiv-

alently to give γ : W −→ E and ε : W −→ Y as in the diagram below.

W
w

**

(hh′,rhw,rlw)

rr
µ

�� ε

��

γ

��

E × C × C

(s,r)×1×1

��

1

Q

l′
%%

(hy′,sel′,rel′)vv

X

tl

��

(τ,δ)

t|
E × C × C

t×1×1 (((s,r)×1×1uu

Y

ty
&&

(sy,se,re)yy
C × C × C × C C × C × C C

From this diagram we now establish some relationship between (γ, ε) and (τ, δ). We get

γ = hh′ and ε = (τ, δ)w = (τw, δw). Now writing these as functions into just the set E

we recall the previous pullbacks we had constructed and consider the following diagram

W

µ

��
γ=hh′





ε

��

τw=eε

��

yε=δw

��

Q
l′

  

y′

~~
X

l   

h

~~

Y
e

  y
~~

E

t   

E

s
~~

r
  

E

t��
C C

From this diagram we have γ = hh′ , yε = y(τw, δw) = δw and eε = e(τw, δw) = τw.

As we are in Set,W =
{
(x1, x2)|x1, x2 ∈ X; l(x1) = h(x2)

}
with projections h′(x1, x2) =

x1 and w(x1, x2) = x2. Similarly, Q =
{
(x, z)|x ∈ X, z ∈ Y ; l(x) = y(z)

}
with

projections y′(x, z) = x and l′(x, z) = z. So with respect to our notation, the elements

of the setW look like a
f // b

g // c
k // d with r(f), r(g), r(k) ∈ C and the elements

of Q look like ( a
f // b

g // c , v k // r(g) ) with r(f), r(g) and r(k) ∈ C.
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So the 2-cell under consideration gives for W −→ Q that

a
f // b

g // c k // d +3 ( a
f // b , r(g) kg // r(kg) , b

kg // d )

Now observe that the two sides of the cube (2.10) act as in the diagram below,

(gf, gf , h) � α(1⊗p⊗1) // (gf, hgf , h(gf))
_

p(1⊗α)
��

(f, g, h)
0

p(α⊗1)
88

_

α(p⊗1⊗1)
��

((hgf )g
f
, hgfgf , h(gf))

(f, hg, hg)
�

∼= ''

(hg, (hg)f , (hg)f)

(hg, f, hg)
) α(1⊗1⊗p)

44

so the cube commutes if and only if the two expressions in the lower right corner agree; in

other words, if the following equations, hg = (hgf )g
f
, (hg)f = hgfgf , and (hg)f = h(gf)

hold, for a composable triple of arrows. The remaining four equations are analyzed

similarly, and the results summarized below.
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Summary: We summarize all the calculations with respect to a skew monoidale into

the notation introduced earlier to get:

For the 1-cell p : C × C | // C with vertex E : For f ∈ E , x
f // y for x, y ∈ C

and r(f) ∈ C.

For the 1-cell j : 1 | // C with vertex U : For u ∈ U that j(u) ∈ C.

For the 2-cell λ : if j(u)
f // y then y = r(f) in C.

For the 2-cell ρ : for x ∈ C we have x
φx // x in E and ψx ∈ U with j(ψx) = r(φx).

For the 2-cell α : if x
f // y

g // z then r(f)
gf // r(gf) and x

gf // z are both in

E with r(gf ) = r(g).

For the equation between the 2-cells involving (λ, ρ) : For j(u) ∈ C we have ψj(u) = u,

that is, ψj = 1.

For the equation between the 2-cells involving (ρ, α) : For x
f // y we have

ψy = ψr(f), φyf = f , and φfy = φr(g).

For the equation between the 2-cells involving (λ, α) : For j(u)
f // y

g // z we

have gf = g.

For the equation between the 2-cells involving (ρ, α, λ) : For x
f // y we

have fφx = f .

For the equation between the 2-cells involving (α, α) (the pentagon) :

For x
f // y

g // z
h // a we have (hg)f = h(gf) , (hg)f = hgfgf , and hg = (hgf )g

f
.
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We conclude that we can now safely rename φx as 1x and change our notation for

x
f // y to an arrow x

f // y and with the condition that (hg)f = h(gf) obtain a

category with some extra structure consisting of :

(a) for each morphism f an object r(f).

(b) a set U with a function j from U to the set of objects.

(c) for each composable pair x
f // y

g // z a map r(f)
gf // r(gf)

with r(gf ) = r(g).

(d) for each object c an element ψc ∈ U .

satisfying the following

For u ∈ U that ψj(u) = u. (3.5)

For x ∈ C that r(1x) = jψ. (3.6)

For j(u)
f // y

g // z that gf = g. (3.7)

For x
f // y , r(f) ∈ C that 1fy = 1r(f). (3.8)

For x
f // y , r(f) ∈ C that ψy = ψr(f). (3.9)

For x
f // y

g // z
h // a that (hg)f = hgfgf . (3.10)

For x
f // y

g // z
h // a that hg = (hgf )g

f

. (3.11)

Before we consider these equations again, we notice that from (3.5) j is already injective.

Lemma 3.2.1. If j is surjective then r = t.

Proof. If j is surjective then by (3.1) q is also surjective. Since rq = tq by (3.2), we can

conclude that r = t.
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So with the assumption that j is surjective we see that a skew monoidale in Span is

precisely a category. The extra structure given by τ and the map gf reduces to gf = g

for all f, g ∈ E by (3.7). This recovers the result in [17] where the skew monoidale in

Span assumed the unit was of the form

C
!

��

1

��
1 C
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3.3 A Characterisation

3.3.1 Coslice Category

In this subsection we use the notation of [19] to denote the coslice category or under-

category of a category, which we now de�ne.

Let C be a category and x an object of C, then the coslice category denoted by (x ↓ C)

has objects the arrows of C with source x, that is, x
f // y which we sometimes denote

by the pairs (f, y); and arrows those g : (f, y) −→ (f ′, z) where y
g // z is an arrow

of C such that f ′ = gf , which we usually denote as (f, y)
g // (gf, z) . It is useful

sometimes to write these arrows as the following triangles

x

f

��

gf

��
y g

// z

There is an evident functor Codx : (x ↓ C) −→ C de�ned on objects by x
f // y 7−→ y

and on arrows by (f, y)
g // (gf, z) 7−→ y

g // z .

Note: Let A and B be categories and x an object of A. For a functor T : A −→ B

there is an induced functor (x ↓ A) (x↓T ) // (Tx ↓ B) sending an object x
f // y

to Tx
Tf // Ty and an arrow

x

f

��

gf

��
y g

// z

7−→ Tx

Tf
��

T (gf)=T (g)T (f)

!!
Ty

Tg
// Tz

Let C be a category and f : x −→ y be an object of (x ↓ C); we remind the reader

of the coslice category (f ↓ (x ↓ C)). This category has as its objects the morphisms

in (x ↓ C) starting at f denoted by f
g // gf and as its morphisms the commuting
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triangles between its objects which we denote by

f

g

��

hg

!!
gf

h
// hgf

we sometimes denote them by g
h // hg .

The functor (f ↓ Codx) : (f ↓ (x ↓ C)) // (y ↓ C) is invertible; it sends an object

f
g // gf to g and a morphism

f

g

��

hg

!!
gf

h
// hgf

7−→ Cod(f)

g

��

hg

&&
Cod(gf)

h
// Cod(hgf)
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3.3.2 The Functor Rx

From the previous sections we have seen that a skew monoidale C in Span gives rise

to a category C with some extra structure via the function gf and equations (3.5) -

(3.11). In this section we use some of these equations to obtain a functor from a coslice

category of C to C and relate the remaining equations to this functor.

For x ∈ C we use equations (3.8) and (3.10) to de�ne a functor Rx : (x ↓ C) −→ C send-

ing an object x
f // y to r(f) and an arrow (f, y)

g // (gf, z) to r(f)
gf // r(gf) .

When it is clear in context we write that on the objects Rx(f) = r(f) and on the arrows

Rx(g) = gf . We check that we do have a functor.

We have by de�nition that Rx(hg) = (hg)f and Rx(h)Rx(g) = hgfgf and by (3.10) these

agree so that Rx preserves composition. Similarly by (3.8), Rx preserves identities and

so is a functor.

We now express equation (3.11) in terms of the functor Rx. However for the bene�t of

the reader we will explicitly describe the functor (f ↓ Rxf) : (f ↓ (x ↓ C)) // (Rxf ↓ C)

which is de�ned on objects by f
g // gf 7−→ r(f)

gf // r(gf) and on arrows by

f

g

��

hg

!!
gf

h
// hgf

7−→ r(f)

gf

��

hgfgf=(hg)f

$$
r(gf)

hgf
// r(hgf)

The above remark allows us to conclude that equation (3.11) asserts that the following

diagram commutes (it agrees on objects since r(gf ) = r(g)).

(y ↓ C) Ry // C

(f ↓ (x ↓ C))

(f↓Codx)

OO

(f↓Rxf)
// (Rxf ↓ C)

RRxf

OO

(3.12)
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In the following section we consider the remaining structure involving U , j, and ψ.

3.3.3 The Function E

We de�ne a function E on the set of objects of the category C by E(x) = r(1x). Using

(3.8) and r(gf ) = r(g) (for a composable pair of morphisms), we note that if x
f // y

then E(r(f)) = E(y). Taking f = 1x we �nd that E(E(x)) = E(r(1x)) = E(x), so E is

idempotent.

From equation (3.5), ψj = 1, and equation (3.6), jψx = r(1x), we can de�ne U , j, and

ψ as a splitting of E. So in terms of the functor Rx we have E(x) = Rx(1x) for each

object x in the category C. With this notation, equation (3.9) then asserts that the

following diagram commutes on the objects of the respective categories:

Ob(x ↓ C) Rx //

Codx

��

Ob(C)

E

��
Ob(C)

E
// Ob(C)

(3.13)

Following an object x
f // y of (x ↓ C) around (3.13) then asserts in terms of the

functor Rx that Ry(1y) = RRxf (1Rxf ) and as Rx is a functor we also have RRxf (1Rxf ) =

RRxf (Rx(1y)).

However if we follow the object y
1y // y of (y ↓ C) around (3.12) (really we follow

f
1y // 1yf of (f ↓ (x ↓ C)) around (3.12)) we get that Ry(1y) = RRxf (Rx(1y)). So we

have shown:

Lemma 3.3.1. If (3.12) holds then so does (3.13).
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We now consider the remaining equation (3.7) in terms of the functor Rx. It is the

statement that if for j(u)
f // y

g // z then gf = g.

As ψj = 1 it can be shown that x = jψx if and only if there exist a u such that x = ju.

So for the u where x = ju then x = E(x) = Rx(1x) (We could now de�ne U to be those

x for which x = Rx(1x)). So we conclude that (3.7) is the statement that if x = Rx(1x)

then Rx = Codx.

Conclusion: A skew monoidale C in Span amounts to a category C with

(a) a functor Rx : (x ↓ C) −→ C for each x in C.

(b) if x = Rx(1x) then Rx = Codx.

(c) Rx satis�es (3.12), that is, for an arrow x
f // y in C the following

commutes

(y ↓ C) Ry // C

(f ↓ (x ↓ C))

(f↓Codx)

OO

(f↓Rxf)
// (Rxf ↓ C)

RRxf

OO

Note: For each x ∈ C, the case when j = 1 (equivalently, j is surjective) corresponds

to Rx = Codx.

45



3.3.4 The Simplicial category and the Decalage Functor

We recall some standard facts about the simplex category ∆, before using it in our

characterisation. There are many references for this section we use [19] and [9].

The simplicial category ∆ has as objects the �nite ordinals n = {0, 1, . . . , n − 1} and

morphisms the order-preserving functions ξ : m −→ n with composition that of func-

tions; the composite of order preserving functions is again order preserving.

If 0 ≤ i ≤ n, we write δi : n → n+1 for the injective order-preserving function where

δi(k) is equal to k if k < i and k + 1 otherwise. Similarly, if 0 ≤ i ≤ n − 1, we write

σi : n+1 → n for the order-preserving surjective function where σi(k) is equal to k if

k ≤ i and k−1 otherwise. We call these maps coface and codegeneracy maps respectively

and they satisfy the well known simplicial identities which allow for a presentation of

∆ with the δi and σi as its generators and the simplicial identities as its relations, see

[19]. A simplicial set is a contravariant functor from ∆ to Set. The category Simp of

simplicial sets and simplicial maps between them is de�ned to be the functor category

[∆op,Set]. For a functor S : ∆op −→ Set we write Sn for S(n). It can be shown that

the data for a simplicial set can be speci�ed by the sets Sn and maps di : Sn −→ Sn−1

and si : Sn −→ Sn−1 where for 0 ≤ i ≤ n we de�ne di as Sδi and si as Sσi. We call

these face and degeneracy maps and they satisfy relations dual to those in ∆, and they

allow us to display a simplicial set S by

S : . . . . . . Sn

dn

...

��
d0

&&
Sn−1

sn−1

ff

s0

...

UU . . . . . . S2

d2

��

d1

��
d0

%%
S1

s0

[[
s1

ee

d1

��
d0
$$
S0

s0

dd

For a simplicial set S we consider the shift or decalage functor Dec: Simp −→ Simp

which removes the 0-th face and degeneracy maps, shifts dimension so that
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(Dec(S))n = Sn+1 and shifts indices on the remaining face and degeneracy maps down

by 1 so that di : (Dec(S))n −→ (Dec(S))n−1 is di+1 : Sn+1 −→ Sn and si : (Dec(S))n −→

(Dec(S))n+1 is si+1 : Sn+1 −→ Sn+2. We depict this as

Dec(S) : . . . . . . Sn+1

dn+1

...

��
d1

&&
Sn

sn

ff

s1

...

UU
. . . . . . S3

d3

��

d2

��
d1

%%
S2

s1

[[
s2

ee

d2

��
d1
$$
S1

s1

dd

Given a category C we can form the nerve N(C) of C, it is the well known simplicial

set where the face and degeneracy maps are those given in [19] and where

N(C)0 = set of objects in C

N(C)1 = set of morphisms in C

N(C)2 = set of composable pairs of morphisms in C

...

N(C)n = set of composable n-tuples of morphisms in C.

With the above discussion in mind we see that if C is a category then so is Dec(C)

where

Dec(C)0 = set of morphisms in C

Dec(C)1 = set of composable pairs of morphisms in C

...

Dec(C)n = set of composable (n+ 1)-tuples of morphisms in C.

Recall that in the category Cat of small categories and functors, the coproduct of a

family of categories is their disjoint union. For I a set and (Ci)i∈I a family of objects in

Cat we write
∐

i∈I Ci for the coproduct of the family (Ci)i∈I . Now with this notation

and from the functors Codx we can form a functor from
∐

x∈C(x ↓ C) to C which we

denote by Cod.
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Having described above what the functor Dec does on objects of Cat we notice for a

category C, that Dec(C) =
∐

x∈C(x ↓ C). So to complete this (brief) description of

Dec as an endofunctor from Cat we need to describe what it does on arrows of Cat.

Let F : X −→ C be a functor where X and C are categories. As we need a functor from

a coproduct in Cat, it is su�cient, for each x ∈ X, to specify a functor from (x ↓ X)

to Dec(C) where Dec(C) =
∐

c∈C(c ↓ C). We de�ne the functor Dec(F )x : (x ↓ X) −→

Dec(C) by the following composite

(x ↓ X)
(x↓F ) // (F (x) ↓ C) inclusion // Dec(C)

So we have a functor Dec(F ) : Dec(X) −→ Dec(C).

Using these constructions we can rewrite the previous description of a skew monoidale

in Span as:

Conclusion: A skew monoidale C in Span amounts to a category C with

(a) a functor R : Dec(C) −→ C, where

(b) R makes the following diagram commute

Dec(C) R // C

Dec(Dec(C))
Dec(R)

//

Dec(Cod)

OO

Dec(C)

R

OO

(c) such that, if x = R(1x) then Rx = Codx.

Note that when starting with just a category then R = Cod.
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3.4 An Example

In this section we denote by (M,µ, η) or just M a monoid in the monoidal category

(Set,×, 1) where the tensor product is the cartesian product × and 1 = {?} denotes a

one point set as its unit. Here the two arrows µ and η in Set satisfy the usual equations

(see [19]). For µ : M ×M −→M and for a, b ∈M we write µ(a, b) = a.b and write for

η({?}) = 1M , we sometimes just write η({?}) = 1 where it should be clear in context

what 1 represents.

We recall the embedding (−)? : Set −→ Span which is the identity on objects and

assigns to the morphism f : A −→ B the following span

f? = A
1A

��

f

��
A B

In fact, this is a strong monoidal pseudofunctor and as a consequence sends monoids in

Set to monoidales in Span. We can therefore consider a monoid (M,µ, η) in Set as a

(skew) monoidale in Span.

The 1-cell p : C × C | // C for a skew monoidale in Span is given by

M ×M
(π1,π2)

xx

µ

$$
M ×M M

where πi : M ×M −→M is de�ned by πi(m1,m2) = mi for i=1,2 and m1,m2 ∈M .

The 1-cell j : 1 | // C for a skew monoidale in Span is given by

1
1

��

η

  
1 M
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With these choices for p and j, the 2-cell ρ : 1 =⇒ p(1 × j) for this skew monoidale is

given by the following diagram

M

ρ

��
1

		

(1,η)

��

(1,!)

��

1

��

M × 1

1×η &&(π1,π2)xx
M × 1

1×η &&π1{{

M ×M

µ
$$(π1,π2)xx

M M ×M M

and the 2-cell α : p(p× 1) =⇒ p(1× p) is given by

M ×M ×M
α=1
��

(π1,π2,π3)

��

1×µ

��

(π1,π23)

��

µ(µ×1)

��

M ×M ×M

1×µ (((π1,π23)uu
M ×M ×M

1×µ ))1×(π1,π2)uu

M ×M

µ
$$(π1,π2)ww

M ×M ×M M ×M M

where π23 : M ×M ×M −→M ×M is de�ned as π23(m1,m2,m3) = (m2,m3). We will

now describe the resulting monoidale in terms of the characterisation of skew monoidales

in Span given in the previous sections.

So with these choices for p and j, M is a category whose objects are the elements of

the set M and whose arrows are the pairs (a, b) ∈M ×M with source π1(a, b) = a and

target µ(a, b) = a.b which we represent as a
b // a.b . The composition of arrows in

M and the functor R : Dec(M) −→ M are both de�ned by the 2-cell α : p(p × 1) =⇒

p(1× p). The composition of arrows in M is then given by (a, b, c) � 1×µ // (a, b.c)

for (a, b, c) ∈ M ×M ×M and so the composite a b // a.b c // (a.b).c is given by

a
b.c // a.(b.c) .
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For the functor R : Dec(M) −→M and the p and j chosen from M we have on the ob-

jects of Dec(M) that R((a, b)) = π2(a, b) = b or R( a b // a.b ) = b and on the arrows of

Dec(M) we have that R((a, b, c)) = π23(a, b, c) = (b, c) or R( a b // a.b c // (a.b).c ) =

b
c // b.c .

The identity arrow for the category M exists via the 2-cell ρ : 1 =⇒ p(1 × j) and is

represented as a
1 // a.1 = a .

Remark 3.4.1. The monoids in Set constitute a categoryMon and the above example

de�nes the object part of a functor T : Mon −→ Cat. For a morphism of monoids

f : (M,µ, η) −→ (M ′, µ′, η′) the induced functor TM −→ TM
′
sends an object m to

fm and a morphism (m,n) to (fm, fn).

Remark 3.4.2. Considering a category as a partial monoid and using the notation of

[19]; we can instead start with a (small) category C where O, A and A×OA respectively

denotes the sets of objects, arrows and composable arrows of C.

The tensor for a monoidale in Span is given by

A×O A
(π1,π2)

yy

comp

##
A× A A

The unit for that monoidale in Span is given by

O
!

��

id

��
1 A

Remark 3.4.3. The following is a non-trivial example given by Stephen Lack at a talk

to the Australian Category Seminar [16].

Batanin and Markl in [3] de�ne a strict operadic category as a category C equipped

with a cardinality functor into sFSet, the skeletal category of �nite sets, where each
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connected component of C has a chosen terminal object. One of the axioms for a strict

operadic category requires the existence of a family of functors from a slice category of C

into C, for the chosen terminal object this is required to be the domain functor. Lack has

shown that strict operadic categories are equivalent to left normal skew monoidales in

Span([N,Set]). Here N denotes the set of natural numbers, seen as a discrete category,

and the functor category [N,Set] is given a monoidal structure via Day's convolution.
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Appendix A

Independence of the Axioms

In this section we show that the �ve axioms for a skew monoidal category, given by

equations (2.1), (2.2), (2.3), (2.4), and (2.5), are independent. The underlying category

we use is Set where the cartesian product between two sets is denoted by ×; we often

identify the cartesian product of a one-point set with a set as the set itself and X × Y

with Y ×X in what follows.

For a set M , de�ne a tensor product on Set by X ⊗ Y = M × X × Y ; this gives

a functor Set× Set ⊗ // Set . If M has a product M ×M µ //M , denoted by

µ(m,n) = m.n, then there is a natural transformation α : M ×M × X × Y × Z −→

M ×X×M ×Y ×Z given by sending (m,n, x, y, z) to (m.n, x,m, y, z). Let I be a one-

point set, and 1 ∈M . The map λ : I ⊗X(=M ×X) −→ X de�ned by sending (m,x)

to x and the map ρ : X −→ X ⊗ I(= M ×X) de�ned by sending x to (x, 1) are both

natural transformations. With these maps, equations (2.2) and (2.5) are automatic,

while equation (2.1) asks that the product on M is associative, equation (2.3) asks that

1 ∈ M is a right identity on M , and equation (2.4) asks that 1 ∈ M is a left identity

on M . (These maps are based on the constructions in the �rst section of [17].)

We take for M the following three sets. The M de�ned by the table on the left has a

left and right identity but is not associative, so equation (2.1) does not hold but the
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other four equations do.

. 1 a b

1 1 a b

a a 1 b

b b a 1

. 1 a

1 1 a

a 1 a

. 1 a

1 1 1

a a a

TheM de�ned by the table in the middle has no right identity, but has a left identity and

is associative. In this case, equation (2.3) does not hold but the other four equations do.

The M de�ned by the table on the right has no left identity, but has a right identity

and is associative. In this case, the equation (2.4) does not hold but the other four

equations do.

Thus each of the equations (2.1), (2.3) and (2.4) is independent of the remaining four

equations. By reversing the tensor, direction of arrows and the order of composition we

notice that equation (2.2) and equation (2.4) are dual, so statements such as indepen-

dence holds for one if and only if it holds for the other. Thus independence of equation

(2.2) follows from the independence of equation (2.4).

This leaves equation (2.5), for which we take the tensor product to be the cartesian

product, so X ⊗ Y = X × Y . The map α : (X × Y )× Z −→ X × (Y × Z) is the usual

associativity isomorphism (X × Y )× Z ∼= X × (Y × Z), and I is given by {a, b}. The

map λ : I × X −→ X is de�ned by sending (i, x) to x and the map ρ : X −→ X × I

de�ned by sending x to (x, a) are natural transformations. In this case, equation (2.5)

asks for the elements of I to be identical which is not the case here, so equation (2.5)

is not satis�ed but it is easy to see that the other four equations hold.

With these four examples and duality we have shown:

Proposition A.0.4. The �ve axioms for a skew monoidal category are independent.
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Appendix B

Gray Monoids

In this section, following [7], we explicitly record the de�nition of a Gray monoid.

A Gray monoid M is a 2-category equipped with the following:

(1) an object I;

(2) for all objects A, two 2-functors LA = A⊗− : M −→M and RA = −⊗A : M −→M

satisfying the following equations for all objects A and B:

LI = RI = 1M, RBLA = LARB, LA(B) = RB(A) which allows us to de�ne A ⊗ B as

LA(B), LA⊗B = LALB, and RA⊗B = RBRA.

(3) for all arrows f : A −→ A′, g : B −→ B′, an invertible 2-cell cf,g

A⊗B A⊗g //

f⊗B
��

=⇒
cf,g

A⊗B′

f⊗B′
��

A′ ⊗B
A′⊗g

// A′ ⊗B′

satisfying the following axioms:

(a) if both f and g are identities then cf,g is an identity,

(b) for all arrows f : A −→ A′, g : B −→ B′, h : C −→ C ′, the following equations hold:

A⊗(cg,h) = cA⊗g,h, cf,g ⊗ C = cf,g⊗C , and cf,B⊗h = cf⊗B,h. (B.1)
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(c) for all arrows f, h : A −→ A′, g, k : B −→ B′, and 2-cells A
f
''

h

77�� α A′ , B

g
((

k

77�� β B
′

A⊗B

A⊗k
**

A⊗g

44

=⇒
cf,g

f⊗B

��

A⊗B′

h⊗B′

��

f⊗B′

��
A′ ⊗B

A′⊗g
// A′ ⊗B′

+3
α⊗B′

A⊗β
KS

=

A⊗B

f⊗B

��

h⊗B

��

A⊗k //

=⇒
cf,g

A⊗B′

h⊗B′

��
A′ ⊗B

A′⊗g

44

A′⊗k
**
A′ ⊗B′

+3α⊗B

A′⊗β
KS

(B.2)

(d) for all arrows f : A −→ A′, g : B −→ B′, f ′ : A′ −→ A′′, g′ : B′ −→ B′′,

A⊗B A⊗g //

=⇒
cf,g

f⊗B

��

A⊗B′

=⇒
cf,g′

A⊗g′
//

f⊗B′

��

A⊗B′′

f⊗B′′

��
A′ ⊗B

=⇒
cf ′,g

A′⊗g
//

f ′⊗B

��

A′ ⊗B′

f ′⊗B′

��

=⇒
cf ′,g′

A′⊗g′
// A′ ⊗B′′

f ′⊗B′′

��
A′′ ⊗B

A′′⊗g
// A′′ ⊗B′

A′′⊗g′
// A′′ ⊗B′′

=

A⊗B A⊗g′g //

f ′f⊗B

��

=⇒
cf ′f,g′g

A⊗B′′

f ′f⊗B′

��
A′′ ⊗B

A′′⊗g′g
// A′′ ⊗B′′

Identifying f⊗g as R′B(f)◦LA(g) and α⊗β as R′B(α)◦LA(β) makes each Gray monoid

a monoidal bicategory.

The coherence theorem in [10] implies that

Theorem B.0.5. Every monoidal bicategory is monoidally biequivalent to a Gray monoid.
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