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Chapter 1

Introduction

This thesis is positioned in the research area represented at the intersection of term

struture estimation and the modeling of macroeconomic and monetary policy. The

main contribution to the existing literature is the investigation on different aspects

of the term structure and developing new methods for estimating and forecasting.

Furthermore, the forecasting performance of several models of the term structure

is assessed and also examined for its forecasting stability. Another main contri-

bution of this thesis is to analyze the informational content of yield curve and

examine its influence on the economy.

My thesis comprises a collection of four papers, which make empirical and method-

ological contributions to the empirical financial and monetary economics and dy-

namic term structure modeling of the yield curve term structure. In Chapter 2,

I propose a macro-finance-fiscal term structure model to incorporate fiscal vari-

ables and yield spread in examining the impact of fiscal instability on the entire

yield curves and macroeconomic variables. In Chapter 3, I compare the fore-

casting accuracy of the dynamic semiparametric factor model and the dynamic

Nelson-Siegel term structure model and further investigate the forecasting insta-

bility of both models. In Chapter 4, I present the term structure model with the

Sheen-Trueck-Wang (2014) business conditions index to analyze the linkage be-

tween the forward looking information contained in the index and the evolution

of term structure. Finally, I use a Bayesian structural vector-autoregressive model

with sign restrictions in Chapter 5 to analyzes the effectiveness of unconventional

monetary policy in changing yield slope and macroeconomic variables at the zero

1



Chapter 1. Introduction 2

lower bound interest rate.

In the first paper entitled “Spanish Sovereign Term Structure: Implications of the

Sovereign Debt Crisis” as presented in Chapter 2, I introduce a macro-finance-fiscal

term structure model to study the dynamic relation between fiscal instability and

the shape of the entire sovereign yield curves for Spain. The term structure of

sovereign bond yields is estimated by the Nelson and Siegel (1987) parametric

model, using a state space specification and Kalman filtering for maximum likeli-

hood estimation as suggested by Diebold and Li (2006a) and Diebold et al. (2006).

The model is developed in a vector-autoregressive (VAR) model with unobserved

yield factors, fiscal indiscipline proxies, macroeconomic variables and yield spread,

which is specifically used as an signal of instability in fiscal stance. I apply this

model to Spanish monthly data over the period between January 1988 to August

2011.

My main results show that fiscal indiscipline significantly determines the term

spread. An increase in public debt or a worsened net government budget posi-

tion widens yield spread associated with sovereign default intensities. However,

the government budget position shock is found to generate a significant response

of the yield spread, whereas a shock of the public debt to GDP entails no sig-

nificant reaction of yield spread since it takes more than a year to react. The

results implies fiscal instability drives expected default probabilities and thereby

term spread. Corresponding, I suggest that fiscal discipline can be considered as

a necessary condition for fiscal policy to effectively stimulate economy.

The second paper entitled “Term Structure Forecasting - A Comparison between

the Dynamic Semiparametric Factor Model and the Dynamic Nelson-Siegel Model”

is presented in Chapter 3. In this paper, I compare the in-sample fit and out-of-

sample forecasting performance of the dynamic semiparametric factor model, the

dynamic Nelson-Sielgel model with other competitors, including the random walk.

I consider the dynamic semiparametric factor model and show how the smoothness

from non-parametric estimation can be combined with the dynamic factor model.

The dynamic factor model without a pre-specified functional form is able to fit a

wide range of yield curves.
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The assessments are conducted using monthly data of Australian zero-coupon

bond yields over the period from April 1999 to March 2013. My results indicate

that the dynamic semiparametric factor model provide a better in-sample fit rel-

ative to dynamic Nelson-Sielgel model. However, the overall forecasting results

are not encouraging to find a model that dominates all competitors and over-

come the random walk. Comparing between the dynamic semiparametric factor

model and the dynamic Nelson-Siegel model, I find the relative performance of

these models vary over time. The dynamic Nelson-Siegel model perform better

in relatively volatile periods, especially the global financial crisis during 2008 to

2009. However, the dynamic semiparametric factor model is more suitable to fit

more persistent period. The difference in forecasting performance is partly due

to structural breaks. I then conduct the Giacomini and Rossi (2010) fluctuation

test which is statistically confirmed the uncertain environment resulting from the

global financial crisis. forecasting instabilities of the individual models during the

period of study. The dramatic lowering of yields during the global financial crisis

lessened the predictability performance of both the dynamic semiparametric factor

model and the dynamic Nelson-Siegel model against the random walk.

The third paper entitled “Term Structure Forecasting with a Business Condition

Index” is then presented in Chapter 4. I explore the role of forward looking in-

formation regarding the business conditions in improving the understanding of

the term structure. I propose to use the Sheen-Trueck-Wang business conditions

index as an additional information to estimate and forecast the term structure.

Sheen et al. (2014) extended the Aruoba et al. (2009) business conditions index

for the closed economy to a small open economy and used the Kalman filter to

measure economic activity from different frequencies. This index represents real

time economic activity and also contains predictive content of the future economy.

The term structure modeling and forecasting are estimated by using Australian

monthly data from March 1999 to April 2013.

Based on term structure estimation, I find the incorporating information about

the current state of the economy as well as forward-looking information con-

tained in the Sheen-Trueck-Wang business conditions index offers an anchor for

cross-sectional and in-sample term structure model. Furthermore, the forecasting

performance of the term structure model with the Sheen-Trueck-Wang business
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conditions index is then assessed relative to the two most common survey-based

Australian indicators: the the Melbourne/Westpac leading index and the Mel-

bourne/Westpac consumer sentiment index. I find the informational advantage

of the forward-looking information carried by my proposed model provides better

out-of-sample predictive accuracy. My findings are consistent with the expectation

hypothesis of the term structure that assumes the evolution of the yield curve is

driven by expectations about the future state of the economy.

The last paper of this thesis entitled “The Economic Impact of Quantitative Easing

on the US Economy: A Structural VAR with Sign Restriction Analysis”, I present

it in Chapter 5. This paper analyzes the effectiveness of unconventional mone-

tary policy in changing the long-end of term structure, in other words, the yield

slope. In this perspective, I employ a Bayesian structural vector autoregressive

(SVAR) model with sign restrictions to assess the economic impact of quantita-

tive easing (QE) measure. The structural innovation of unconventional monetary

policy is identified by a zero restriction on the policy interest rate and positive

sign imposed output growth on inflation. The effect on yield slope is unrestricted

to examine the transmission mechanism through long term rate. The Bayesian

SVAR model is estimated using monthly data over the period from January 2003

to August 2013, covering the period of the Federal Reserve’s quantitative eas-

ing implementation programs: QE1, QE2 and Operation Twist, during November

2008 to September 2012.

I find that unconventional monetary policy shock leads to a significant increase in

output growth and inflation by compressing yield slope. The increase in the size of

Federal Reserve’s balance sheet provides additional loan for financial institutions.

In turn, it restores confidence and causes term premia charged on long term rate

to decline. Nonetheless, the relative effects of unconventional monetary policy

appear to be quite smaller in comparison to conventional monetary policy. That

implies that the attempt of the central bank to stimulate the economy requires

much larger assets. However, the objective of unconventional monetary measures

to avert deflationary pressure at the zero bound interest rate appears to be more

effective to raise inflation. The effectiveness of unconventional monetary policy

even robust for a sample period which is limited to the pre-crisis period. My find-

ings suggest that unconventional monetary policy is effective to boost output and
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avert deflation while the conventional monetary policy is relatively silent when the

economy at a zero-lower-bound interest rate.





Chapter 2

Spanish Sovereign Term

Structure: Implications of the

Sovereign Debt Crisis

2.1 Introduction

We analyze the impacts of fiscal instability on yield spreads and the economy over

the period that covers the global financial crisis, focusing on Spain, one of the

peripheral European countries suffering high government debt following the crisis.

It is the only one among other vulnerable countries that had not obviously suffered

from a chronic structural budget deficit prior to the crisis. The widening of the

spread was solely caused by an increase in the probability of a sovereign default

associated with a sharp drop in public revenue and a surge in public debt from the

bailout of debt held by commercial banks. This Spanish study provides a good

example for other countries to avoid an unsustainable fiscal policy implementation

that could subsequently lead to a sovereign debt crisis following the onset of the

financial crisis.

In this paper, we introduce a macro-finance-fiscal term structure model to study

the dynamic relation between fiscal instability and the shape of the entire yield

curves for Spain. The term structure of sovereign bond yields is estimated by

7
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the Nelson and Siegel (1987) parametric model, following a state space specifi-

cation and Kalman filtering for maximum likelihood estimation as suggested by

Diebold and Li (2006b) and Diebold et al. (2006). We apply our model to Spanish

monthly data over the period between January 1988 to August 2011. The yield

latent factors, term spread, macroeconomic and fiscal variables are related in a

country-specific vector autoregressive (VAR) model, which then allows us to ex-

amine the dynamic relation by means of impulse response function and forecast

error variance decomposition.

The sovereign yield spread between the bonds of two countries is an indicator of

perceived relative credit risk. When the perceptions of default risk increase, mar-

kets will raise premia and widen spreads until sufficiently high enough to cover their

obligations. The persistence of budget deficits and rising public debt could raise

sovereign risk premia as the default probability increases. Thus, the remarkable

rise in the yield spread indicates that markets penalize fiscal profligacy resulting

from financial indiscipline. In turn, policy makers could consider a higher yield

spread as a signal of unsustainable fiscal positions. This may ensure more prudent

fiscal policy implementation to prevent a sovereign debt crisis.

The question whether fiscal indiscipline has a statistically significant widening ef-

fect on yield spreads has been investigated from several existing literatures. The

most common method is regression of yield spreads on a set of variables, including

fiscal position variables. Following this approach, fiscal deficits and government

debt are found to be significant to explain spreads at the long-end of the yield as

mentioned by Von Hagen et al. (2011) and Bernoth et al. (2012). There are a few

studies (see Borgy et al. (2011), Afonso and Martins (2012) and Dewachter et al.

(2015)) that have thoroughly assessed the dynamic relations between fiscal devel-

opments and the whole shape of the sovereign yield curve. In this approach, there

may be a possible empirical linkage between fiscal position variables and latent

factors which are extracted from the panel of yields across time. The unobserved

yield factors and the fiscal variables are related together with other macroeconomic

variables in a vector-autoregressive (VAR) model. This allows the yield curve to

be driven by unobserved yield factors as well as fiscal variables that contain infor-

mation about risk premia. Therefore, we can then examine the economic impact
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of fiscal indiscipline on the whole yield curve through yield latent factors.

Borgy et al. (2011) and Dewachter et al. (2015) combine an affine term structure

model with public debt-to-GDP and other macroeconomic variables to investigate

how the government bonds react to the change in fiscal variables across the entire

yield curve. They find a significant increase in sovereign yields, albeit there is no

further exploration of the potential impact on output and inflation. A study which

is even more focused on the interrelation between fiscal variables and yield curve

factors was conducted by Afonso and Martins (2012). They set-up a macro-finance

term structure model based on the more parsimonious Nelson and Siegel (1987)

framework. However, their study fails to observe any statistically significant ef-

fects of fiscal instability on yield latent factors and the monetary policy interest

rate.

The aforementioned literatures discussed so far do not provide a sufficient ex-

planation of how fiscal indiscipline affects yields for the entire range of maturities

through widened yield spreads that would eventually have an influence on macroe-

conomic variables. We complement the literature by the inclusion of fiscal variables

in macro-finance term structure model, and further replace the policy interest rate

with the term spread. Our macro-finance-fiscal term structure model gives a more

specific link between the development of yield spreads and the evolution of fiscal

indiscipline. It is based on the expectation theory concerning fiscal instability that

drives the potential term premium to compensate for expected sovereign default

risk and expected loss of income from recession. This model leads to the use of

a term spread in a macro-finance term structure model, which is more closely re-

lated to expected default risk than the use of the policy interest rate as used in

Afonso and Martins (2012). The yield spread can therefore be considered as an

instrument to signal the stance of fiscal policy for the transmission mechanism. It

enhances the macro-finance model by avoiding the constraints from the zero lower

bound of the interest rate and non-autonomous monetary regime, which makes

the earlier mentioned literature entirely silent on the effects of fiscal indiscipline.

Our main results for Spain from 1988 to 2011 show that fiscal indiscipline sig-

nificantly determines the term spread. Both fiscal variables; the net change in

the government budget position to GDP and the change in public debt to GDP,
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are statistically significant in explaining the sovereign term spread. When pub-

lic debt increases or the net government budget position worsens, there would

more likely be a rise in the yield spread. However, we find the evidence of asym-

metric responses obtained from these two alternative variables that gauge fiscal

indiscipline. A shock of the government budget position is found to generate a

significant response of the yield spread, while a shock of the public debt to GDP

does not immediately bring about a significant reaction. In fact, the impulse re-

sponse to a shock on public debt takes more than a year to react. The results

indicate that market participants penalize a worsened government budget posi-

tion, whereas higher public debt does not seem to urgently matter for the yield

spread because of the substantial lag response. This finding is consistent with the

expectation hypothesis of the term structure according to which a deteriorating

government budget means that a higher term premium may be required to com-

pensate for higher perceived sovereign default risk. Our empirical study confirms

the results of Bernoth et al. (2012), who found evidence that European countries

have generally focused on deficits to measure fiscal stability and often ignored pub-

lic debt. We also redesign the macro-finance-fiscal term structure model using a

term spread instrument and in contrast to Afonso and Martins (2012)’s study and

find that fiscal indiscipline actually has a significant impact on yield spreads and

affects macroeconomic variables later. It is revealed that the unpromising results

from earlier studies are due to a zero lower bound constraint that kept interest

rates at a prevailing low level over a period of study.

The remainder of the paper is organized as follows. Section 2.2 presents an

overview of the literature. Section 2.3 summarizes the stylized fact about Spanish

fiscal imbalance and sovereign debt crisis. Section 2.4 explains the methodology to

estimate the Nelson and Siegel (1987) paramatric model and the macro-finance-

fiscal term structure model used to determine the influence of fiscal indiscipline

on term spread and macroeconomy. Section 2.5 presents the data collected and

Section 2.6 discusses the term structure estimation results. Section 2.7 analyses

the VAR estimation, impulse response function and forecast error variance decom-

position of the macro-finance-fiscal model and Section 2.8 concludes the paper.
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2.2 Review of Literature

There are number of empirical papers on the relationship between yield spreads

and fiscal variables. Most of these studies, including Schuknecht et al. (2009),

Von Hagen et al. (2011), Bernoth et al. (2012), Eichler and Maltritz (2013), Geor-

goutsos and Migiakis (2013), Aristei and Gallo (2014) and Afonso and Nunes

(2015); mainly focus on investigating determinants of the yield difference between

a risky and a risk-free sovereign bond, particularly yield differentials on 10-year

government bonds issued by European countries against the German bond. They

regress yield spreads at certain maturities on several candidate explanatory vari-

ables that may represent default risk premia and liquidity premia in the absence

of exchange rate risk since the common currency was introduced in 1999. A com-

mon finding in this literature is that the European sovereign yield spreads are

significantly influenced by country-specific factors related to sovereign default risk

from fiscal distress. However, there is no consensus on the relative importance of

the determining factors on yield spread. Nonetheless, fiscal condition factors do

become more important to explain widened term spreads after the global financial

crisis in 2008 because of adverse market sentiment. The factors that are normally

used to capture the government probability’s of default are the ratio of public

debt-to-GDP and net budget position (surplus or deficit) to GDP. Debt-to-GDP

represents a country’s leverage ratio. If the outstanding public debt exceeds a

critical level, the interest rate begins to rise and the term spread increase. The

increased cost of borrowing would then penalize fiscal indiscipline and encourage

the government to re-balance its fiscal position. The rise in yield spreads is associ-

ated further with an increasing national level of leverage. Another proxy for fiscal

imbalance is a negative government budget to national income, in other words

the fiscal deficit-to-GDP. A larger deficit may put a greater upward pressure on

interest rates due to the crowding out effect on private spending. By running a

deficit, the revenue side of the government budget would be expected to decline

dramatically and could become unsustainable. The yield spread may amplify with

the increased risks of exposure to default in anticipation of continuing inadequate

revenue. In this respect, an increase in credit risk may entail a significantly up-

surge in term spreads in order to correct for government irresponsibility.

Although the relevant literature provides that net government budget position and
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the debt-to-GDP are most used as a gauge of default risk premia, it is not unan-

imous about how these fiscal imbalances affect interest rates. Earlier studies by

Gale and Orszag (2004) and Laubach (2009) find government bond yield spreads

depend positively on the government budget deficit. An empirical investigation

for European countries show that the indiscipline of government spending became

more influential after the start of the European Monetary Union (EMU) for 1999.

Bernoth et al. (2012) find the market reaction to fiscal deficits much stronger af-

ter the provisions of the EMU Stability and Growth Pact (SGP), were enacted

in 17 June 1997, advocating a balanced budget in the longer term and specify-

ing a ceiling for deficit spending of 3 percent of GDP for each member country.

Von Hagen et al. (2011) also report that financial markets pay less attention to

public debt; however, they reacted more strongly to the deficit-to-GDP than they

previously did after the default of Lehman Brothers in September 2008. These

findings confirm that the needs for maintaining sustainability of the government

budget has considerably increased. However, Afonso and Nunes (2015) observe

that the deficit-to-GDP loses its statistical significance in explaining a widened

yield spread after the onset of the Greek sovereign debt crisis from October 2009.

At that time, the Greek government unveiled drastic revisions to its deficit fig-

ures which in turn destroyed its government’s credibility. Investors overlooked the

budget statistics and public debt regained interest for them. In fact, term spreads

respond more significantly to changes in national indebtedness than the level of

debt. Eichler and Maltritz (2013) state that investors actually proxy the burden

of debt by the growth rate of sovereign debt-to-GDP instead of the current level of

debt. They claim that a larger debt burden implies the expectation of a worsening

solvency problem that particularly boosts long-term yield spread. This finding

suggests the growth rate of debt mainly affects the long-end of yield curve. The

evidence of a significantly higher a long-term yield associated with an increasing

debt-to-GDP is reported by Gruber and Kamin (2012) and Marattin et al. (2011).

Fiscal conditions have been confirmed by many empirical studies as a major con-

tributor in determining the yield spread. Yet, the relation between yield and

fiscal imbalance can be sharpened by using a term structure model to exploit the

information contained in the yield latent factors. Oliveira et al. (2012) use the

Heath-Jarrow-Morton (1992) multi-factor interest rate model to extract yield la-

tent factors and use them together with other fiscal variables to explain the changes

in term spread. Their study reveals that yield factors as well as the change in public
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debt-to-GDP appear to influence yield spreads. Interestingly, yield factors become

less important after the global financial crisis while the change in debt-to-GDP is

found to be more significant. Borgy et al. (2011) follow Dai and Philippon (2005)

to combine a Duffee (2002) and Ang and Piazzesi (2003) arbitrage-free affine term

structure model with a set of macroeconomic variables; including fiscal variables,

in a vector-autoregressive (VAR) model to trace the effect of a fiscal variable shock

on the yield latent factors and other macroeconomic variables. Since their model is

built on a dataset of European countries which all have a common policy interest

rate, the effect of fiscal variables is therefore expected to drive the term spread

at the long-end of the yield. They find debt-to-GDP is the main determinant for

the sharp increases in the European yield spreads after the global financial crisis

in 2008. Another affine term structure model augmented with macroeconomic

variables was used by Dewachter et al. (2015). Unlike Borgy et al. (2011)’s study,

they not only explore the effect of macroeconomic variable on the term structure,

but also utilize Joslin et al. (2014)’s spanned factors framework to derive unob-

served principal components from a group of macroeconomic variables, including

debt-to-GDP, and examine their effect on yields at different maturities. They

find a positive innovation to the first (level) and second (slope) components of

macroeconomic variables significantly increase bond spread. For the investigation

on the effect of fiscal distress on yield spreads, they observe a significant increase in

long-term yields after a positive shock in debt-to-GDP. Apart from the affine term

structure model, Afonso and Martins (2012) apply a Nelson-Siegel (1997) macro-

finance term structure model, as proposed by Diebold et al. (2006). They extend

this model with fiscal variables to analyze the impact of public debt shock on the

yield latent factors and macroeconomic variables. Unfortunately, their study only

reports a short-lived decrease in the curvature factor, however there is no signifi-

cant responses on other yield latent factors and the monetary policy interest rate.

2.3 Spain fiscal imbalance and sovereign debt

crisis

Spain is the fourth largest economy in the Eurozone which uses the euro as its

currency. It is one of five Eurozone nations known as PIIGS; Portugal, Ireland,

Italy, Greece, and Spain itself, which were fiscally vulnerable after the eruption of
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the sovereign debt crisis in 2009. Comparing with other countries in this group,

Spain is relatively different and markets did not expect a dramatic surge in its

term spread. During the 1990s, its public debt significantly declined and reached

the Treaty of Maastricht ceiling level at 60 percent of GDP in the second half of

the 1990s. Italy and Greece still, however, were above 90 percent debt-to-GDP.

In terms of budget deficit-to-GDP, Spain also maintained its level below the 3

percent Maastricht criteria and even ran a budget surplus from earning extra tax

revenue on housing in the years from 2005 to 2007. In contrast, Greece, Portugal

and Ireland encountered a structural budget deficit during 2001 to 2007 due to

their chronic macroeconomic imbalance. Evidently, Spain had never experienced

fiscal instability before the global financial crisis emerged.

Indeed, joining the Eurozone helped Spanish banks to raise funds from other

member countries without any exchange rate risk. The excessive optimism of

a sound economy drives a massive capital inflow to fuel domestic consumption

and property-related borrowing. In turn, the accumulated external debt actually

made Spain into a vulnerable economy. In the aftermath of the global financial

crisis, Spain lost competitiveness from real exchange rate appreciation. As a re-

sult, its current account deficit reached more than 10 percent of GDP in 2008 to

2009. A collapse in its housing bubble and together with the huge burden of ex-

ternal debt in Spanish banking system caused the Spanish central bank to bailout

and subsequently transfer private debt into public debt. Therefore, the sovereign

debt crisis in Spain was originally generated by the private sector, while Portugal,

Greece and Italy were mainly led by public debt.

To illustrate the evolution of the Spanish sovereign debt crisis we will explore de-

velopment of public debt and the fiscal deficit and their impact on yield spread in

more detail. During the 1990s, Spain experienced a period of sustained economic

growth and boosted tax revenue, so that outstanding public debt declined. After

the global financial crisis started in 2007, the Spanish public debt-to-GDP began

to climb once again due to a sizable government bailout of the banking system.

As shown in Figure 2.1, Spanish public debt-to-GDP continuously declined from

around 65 percent of GDP in 1998 and reached its lowest level at 38 percent of

GDP in 2007. Afterward, it started to sharply rise again and returned to the high
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Figure 2.1: Spanish Debt to GDP

levels of the 1990s in 2011. Following the Greek’s austerity package announcement

after its above 3 percent deficit limit was disclosed in October 2009, fiscal distress

intensified throughout peripheral Europe and subsequently Spanish public debt-

to-GDP surged from 36 percent in 2008 to reach 65 percent in 2011.

As mentioned before, a drastic increase in public debt was the result of fiscal trans-

fer from private debt. For over a decade until 2007, Spain experienced a credit

boom that later generated a bubble in housing and the real estate sector. The

housing boom was actually financed by foreign lenders with a low interest rate and

risk premium. After the onset of global financial crisis in 2007, the housing bubble

finally burst which caused a plunge in asset prices. The markets started to ponder

whether the crisis could increase further defaults and losses on mortgage loans.

Such concerns raised default risk premia. In turn, it became more difficult for

borrowers to refinance their existing debt obligation. The Spanish share of non-

performing loans to total gross loans jumped from 0.8 percent in 2004 to 4.1 and

6.0 percent in 2009 and 2011 respectively. In this crucial time, commercial banks

were required to raise more capital to resolve their large stock of non-performing

loans. Since commercial banks lacked suitable collateral, the Spanish central bank

therefore needed to temporarily remove bad debts from the banks and recapitalize
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them. The central bank bailout by considerable purchasing private debt hence

increased the burden of Spanish public debt.

During the credit and housing booms from 2003 to 2007, Spain earned ballooning

tax revenues through the non-indexation of many tax categories. The crash in

housing prices combined with the global financial crisis brought budget position

to below the threshold of 3 percent of GDP beyond 2008.

Figure 2.2: Spanish Budget (Surplus/Deficit) to GDP

As Figure 2.2 shows the seasonally adjusted (solid thick line) and the non-seasonally

adjusted (thin line) Spanish net budget position to GDP. Over the period from

1998 to 2007, the net budget position to GDP varied in a range between -3.0

percent deficit and 2 percent surplus-to-GDP. With a growing budget revenue

from housing bubble, the budget position to GDP ratio even turned into a surplus

between 2005 to 2007. Nevertheless, the housing bubble burst and the global fi-

nancial crisis began, leaving a deep fiscal deficit that exceed the Maastricht ceiling

of 3 percent of GDP after 2007.



Chapter 2. Spanish Sovereign Term Structure: Implications of the Sovereign
Debt Crisis 17

Evidence of the housing boom and bust cycle in the 2000s indicates a failure of

tight fiscal policy to counter a speculative bubble forming. If the Spanish govern-

ment had adopted an indexation tax, it would help to reduce housing demand when

the economy was booming. A counter-cyclical fiscal policy could have prevented

a deep recession and avoided adverse deficit dynamics at the cost of moderate

growth. As discussed before, a collapse in house prices exacerbated unexpected

loan losses. The financial institution had to cut back their loans which led to a

credit crunch. In severe financial distress, the Spanish economy deteriorated fur-

ther into a deep recession. Tax revenue from residential construction and dwelling

sectors declined. With lower government revenue, the deficit-to-GDP increased

larger-than-expected and breached the prescribed ceiling of 3 percent in the last

four-year period of study from 2008 to 2011. A concern about the violation of the

EMU fiscal rule had a negative impact on sovereign bond yields since investors

penalized this fiscal indiscipline with higher risk premium.

Figure 2.3: 10-year Spanish and German Government Bond Yield and Spread

In Figure 2.3, we plot the 10-year Spanish spread relative to Germany govern-

ment bond from 1998 to 2011. Between 1998 and 2001, the yield spread hovered

around 30 basis points. After 2001, the yield spread was typically below 20 basis

points and stayed in the only 1-5 basis points range during 2005 to 2006. With
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the burst of the Spanish housing bubble and global financial crisis in 2007, yield

spreads widened to over 100 basis points. From the late 2009 onwards, fears of a

the European sovereign debt crisis developed and the yield spread spiked sharply

to reached above 300 basis points in the late 2011.

Basically, the evolution of yield spreads reflects heightened risk and/or investors’

risk aversion. For Spain and other Eurozone members, yield spreads are all de-

nominated in a common currency. With the elimination of exchange rate risk,

the yield spreads therefore mainly represent market perception of the unobserved

sovereign default risks. During 1999 to 2000, the average yield spread had some-

what widened because of market illiquidity. However, a more integrated and liquid

secondary market gradually developed which caused lower spreads observed be-

tween 2001 to 2006. These would represent market perception of a fully credible

EMU commitment to the bail-out of unpaid debt of its member states. With the

collapse of the housing bubble and subsequent effect from global financial turmoil,

yield spreads were substantially pushed upward. In 2009, the European sovereign

debt crisis intensified associated with the deterioration of deficit budget and public

debt, yield spreads increased further and reached values exceeding 300 basis points

in 2011. The rising spread implies that investors rebalanced their portfolios away

from riskier bonds.

2.4 Methodology

In this section, we give an overview of the Nelson and Siegel (1987) exponential-

polynomial parametric yield curve model and further discuss about the dynamic

Nelson-Siegel term structure model, which are introduced by Diebold and Li

(2006a) and Diebold et al. (2006). Then, we propose a macro-finance-fiscal term

structure model to incorporate additional fiscal variables as proxies to measure

fiscal indiscipline and also introduce term spread as a signal of transmission mech-

anism, instead of using policy interest rate. Afterwards, we explain the Kalman

filter algorithm for maximum likelihood estimation that is used to obtain all model

parameters in one step. This technique was claimed by Diebold et al. (2006) among
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others as an effective technique to avoid spurious regression and enhance statisti-

cally efficient of term structure estimation.

2.4.1 The Dynamic Nelson-Siegel Term Structure Model

We firstly employ the exponential-polynomial parametric Nelson and Siegel (1987)

function to model sovereign term structure with a limited set of unobserved factors

spanning the entire curve. It allows us to present Spanish government bond yields

in a parsimonious and flexible model which is able to capture a variety of shapes.

2.4.1.1 The Nelson-Siegel Yield Curve Estimation

Nelson and Siegel (1987) proposed a model to fit the yield curve at a given date

with a mathematical as a constant plus a Laguerre function, which is a polyno-

mial times an exponential decay term. Even though the Nelson-Siegel model was

designed to be a static model, Diebold and Li (2006b) reformulate the original

Nelson-Siegel expression as a dynamic latent factor for the yield curve as

yt(τ) = β1,t + β2,t(
1− e−λτ

λτ
) + β3,t(

1− e−λτ

λτ
− e−λτ ) (2.1)

where yt(τ) denotes the set of (zero-coupon) yields at each period t and τ) is the

corresponding maturity. The three parameters are β1,t, β2,t and β3,t and their

respective loadings are given by 1, 1−e−λτ
λτ

and 1−e−λτ
λτ

− e−λ. The parameter λ

governs the exponential decay rate.

Diebold and Li (2006b) interpret β1,t, β2,t and β3,t as time-varying unobserved fac-

tors that govern the yield shape together with the exponential decay rate λ at each

period t, while the three factors loading are illustrated as a function of time-to-

maturity. The evolution of the yield curve is driven by 3 components; short-term,

medium-term and long-term components. The long-term component is the factor



Chapter 2. Spanish Sovereign Term Structure: Implications of the Sovereign
Debt Crisis 20

loading on β1,t which is equal to one and constant for every maturity. The short-

term component is the factor loading on β2,t which is designated as 1−e−λτ
λτ

. The

value of short-term loading starts at one, and then decays monotonically to zero

at an exponential rate. The medium-term component is the factor loading on β3,t

which is defined as 1−e−λτ
λτ
− e−λ. This loading starts at zero. Then, it increases

for to capture medium-term maturities, and finally decays to zero.

The three factor coefficients are labeled by Diebold and Li (2006b) as level, slope

and curvature factors. The reasons are related to what extend of the entire yields

are affected by each factor. The long-term factors β1,t determine the yield curve

level. An increase in the value of β1,t will lead to a consistent increase in the level

of the yield curve for all time-to-maturities. The short-term factor β2,t is related to

the yield curve slope, which is defined as the ten year-to-maturity yield minus the

three months-to-maturity yield. Alternatively, yield curve slope can be defined as

yt(∞)− yt(0) which is equal to −β2,t. Finally, the medium-term factor β3,t affects

the yield curve curvature since it has the greatest impact on medium-term yields.

Using the Nelson-Siegel framework, we can estimate the cross-sectional yield curve

with the method of least square to derive regression coefficients of latent factors

β̂i where i = 1,2 and 3 from a series of yield observations at any specific period t.

yt(τ) = β1,t + β2,t(
1− e−λτ

λτ
) + β3,t(

1− e−λτ

λτ
− e−λτ ) + ut (2.2)

The disturbances are assumed to be independent with mean zero and constant

variance for a given time t. With the cross-sectional estimated factors β̂i, we can

fit them into the Nelson-Siegel model to obtain the value of estimated yield ŷt(τ)

for each period t.

2.4.1.2 The State Space Specification

Suppose these three latent factors; level β1,t, slope β2,t and curvature β3,t factors,

which follow a first order vector autoregressive VAR(1) process, Diebold et al.
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(2006) proposed to cast a dynamic factor model into a state-space representation,

which allows us to obtain maximum-likelihood estimates from the Kalman filter.

The state-space model is typically a linear dynamical system of the measurement

and state equations. Given a set of observed yields, measurement equation relates

actual yield observations with the three latent factors, while state equation de-

scribes the evolution of latent factors.

Let Yt be the vector of yields, which contains N different maturities and let βt be

the vector of latent factors.

(1) Measurement equation

The measurement equation specifies relationship between the yield vector Yt and

latent factor vector βt at a given period t. For this purpose, the cross-sectional

Nelson-Siegel yield curve estimation is rewritten as.

Yt = Xtβt + ut ut ∼ N(0, Qt) (2.3)

Xt is the (N × 3) factor loading measurement matrix where its (i, j) element is

given by .

Xi,j(λ) =


1 if j = 1
1−e−λτ
λτ

if j = 2
1−e−λτ
λτ
− e−λ} if j = 3

(2.4)

The disturbance vector ut is Gaussian white noise and assumed to be independent

across maturities. The variance of the yield σ2(τi) is constant for each maturity

but different across maturities.

(2) State equation
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The state equations represent the evolvement of latent factors. We follow Diebold

et al. (2006) to specify the dynamics of factors with the first-order vector autore-

gressive VAR(1) process with mean µ.

βt = µt + Tβt−1 + ωt ωt ∼ N(0, Ht) (2.5)

T is transition matrix.

(3) The Variance-covariance Matrix

The vector ut and ωt are serially uncorrelated, normal distributed error terms with

mean zero and positive definite covariance matrices Qt and Ht.

(
ωt

ut

)
∼ WN

[(
0

0

)(
Q 0

0 H

)]
(2.6)

If the decay parameter λ is fixed as a priori known, one can estimate latent factors

through a linear least squares regression for each cross-sectional period. Then, we

can model the dynamics of latent factors from the previous stage. This two-step

estimation procedure is obviously simple and widely used by practitioners. How-

ever, Diebold et al. (2006), Morales (2010) and Laurini (2014) argued this two-step

method is in fact inefficient since it does not take into account the estimated latent

factor in the first step of yield curve estimation and therefore generates inaccurate

results.

Another estimation technique is to assume that decay parameter λ is still constant

but rather unobserved. Therefore, we can simultaneously estimate it with latent

factors in one-step through maximum likelihood estimation using Kalman filter.

In our study, we follow Diebold et al. (2006) to apply this method to enhance

statistical efficiency.



Chapter 2. Spanish Sovereign Term Structure: Implications of the Sovereign
Debt Crisis 23

2.4.2 Macro-Finance-Fiscal Term Structure Model

Based on the yield latent factors from the Nelson and Siegel (1987) yield curve

estimation and the VAR(1) dynamics as mentioned in the previous subsection,

we now assess the role of fiscal indiscipline and macroeconomic variables in the

yield curve dynamics. Following Diebold et al. (2006) and Afonso and Martins

(2012), we expand the state-space framework of the Nelson-Siegel dynamic term

structure model to draw explicit connections between the latent factors that drive

the yield curve dynamics and observable fiscal and macroeconomic variables that

characterize the state of the economy. In this analysis, we focus on the impact of

fiscal instability on yield spread and the role of sovereign default risk in explaining

the yield dynamics and macroeconomy.

We propose a macro-finance-fiscal term structure model to study the transmission

mechanism of fiscal stance that signal fiscal instability through the yield spread and

affect macroeconomic variables. Afonso and Martins (2012) attempted to include

fiscal variables into the Nelson-Siegel term-structure model to examine the impact

of fiscal shocks. However, they found fiscal variables do not significantly affect

the yield curve dynamics. Their study also left unexplored the connections be-

tween the term spread and yield latent factors as well as macroeconomic dynamics.

In order to bridge this gap, we construct a dynamic term structure model based on

the Nelson-Siegel yield curve, fiscal variables and macroeconomic variables, which

allows for an explicit feedback from fiscal indiscipline variables to term spread,

yield latent factors and macroeconomy. Meanwhile, the inclusion of yield spread

that reflects expected default risk can also help us to model the propagation of the

economic environment in the transmission mechanism and other dynamic changes

of the entire term structure.

A straightforward extension of the state-space model is to augment the additional

fiscal and macroeconomic variable to the set of state equations, which leads to

following system of simultaneous equations.
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2.4.2.1 Measurement equation

The measurement equation in the macro-finance-fiscal model is extended to include

macroeconomic and fiscal instability variables to analyze the dynamic interaction

between the latent factors determining shape of the yield curve, macroeconomy

and effect from fiscal instability. In spite of that the macroeconomic and fiscal

variables are represented through a minimum set of variables required to assess

the macro dynamic to maintain parsimony of the yield curve model. There are

four macroeconomic and fiscal variables included; the growth rate of industrial

production index (GIPI) as a measure of economic activity, the inflation index

(INF) as a measure of nominal growth and the change in yield spread (SPRD)

as an instrument of instability in fiscal stance, the fiscal instability variable (FIS)

which can be either the net government budget position to GDP (GBTG) or the

growth rate of public debt to GDP (GDTG), and the three yield curve latent

factors, level (LEV), slope (SLP), and curvature (CUR). Now, our macro-finance-

fiscal model replaces state variables of the previous state space specification with

Zt = (GIPI, INF, SPRD,FIS, LEV, SLP,CUR).

[
Y

Z

]
=

[
X 0

0 I

][
β

Z

]
+

[
ε

0

]
(2.7)

where Y ; is the vector of yields, X is factor loading matrix and ε is the mea-

surement errors. Similar to a previous dynamic latent factor models of the yield

curve, the yields at all maturities load only on the unobserved yield factors. Z

is the vector of observed macroeconomic and fiscal variables, and I is a identity

matrix.

2.4.2.2 State equation

The state equation relates the dynamics of yield latent factors, macroeconomic

and fiscal variables. We assume the transition follows the first-order vector au-

toregressive VAR(1) process that allows for exploiting the dynamic relationships

between fiscal instability, economy and term structure. The VAR model can be
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written as.

ξt = µ+ V ξt−1 + ηt (2.8)

where ξt is the vector notation of yield latent factors, macroeconomic and fiscal

variables. µ is a vector of intercept terms. V is the matrix of autoregressive coef-

ficients and ηt is the vector of random disturbances.

The ordering of the variables in the model is based on Diebold et al. (2006) and

others as in the Nelson-Siegel macro-finance term structure literatures. We place

the yield curve latent factors and then fiscal and macroeconomic variables are fol-

lowed. Any changes in the shape of the yield curve, represented by latent factors,

will affect fiscal and macro variables and vice versa. A shock to fiscal stance of

instability may impact the term spread due to a change in perceived probability of

default risk. The adjustment of macroeconomic variables will then work through

the reaction of economic agents to the term spread signal.

2.4.2.3 The Variance-covariance Matrix

Following the state space presentation in a simple model from the previous section,

the innovations of both measurement equation and state equation are assumed to

be normally distributed and mutually uncorrelated. Additionally, the measure-

ment and transition disturbances are assumed to be orthogonal to each other.

This assumption is used to avoid numerical difficulties by reducing the number of

coefficients and obtain computational tractability.

(
ωt

ut

)
∼ WN

[(
0

0

)(
Q 0

0 H

)]
(2.9)

where Q is non-diagonal matrix of variance-covariance of the innovations for the

measurement equation and H is the diagonal matrix of variance-covariance matrix

for the state equation.
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In comparison with the standard model, the measurement equation in our macro-

finance-fiscal model remains fully described by the three latent factors. For the

state equation, however, the yield latent factors are appended to include macro

and fiscal variables. Hence, the inclusion of macroeconomic and fiscal instability

information affects the dynamic term structure only through unobserved yield fac-

tors.

2.4.3 The One-step Estimation Procedure Based On Kalman

Filter

In order to estimate the model, we implement a simultaneous estimation of the

measurement and state equations by using the Kalman filter method. The one-

step estimation performed in the Kalman filter gives maximum likelihood estimates

of unobserved parameters conditional on the past and current observations. The

Kalman filter is a recursive algorithm for updating linear projections for a dynamic

system in state-space representation. This method carries out the prediction error

decomposition of the likelihood function. We have to use numerical procedure of

optimization in order to get the best parameters.

By present the dynamic Nelson-Siegel model as a linear Gaussian state space

model, the state vector of unobserved factors βt can be extracted conditional on

the past and concurrent observations of yields by the Kalman filter. 1

Assuming normality in all distributions of the state space system, the conditional

distribution of latent factor βt derived from yield Yt can be characterized by its

expected mean β̂t and covariance P̂t+1.

1Filter is a term used to describe an algorithm that allows recursive estimation of unobserved,
time varying parameters rely on information up to time t. Once a new observation yt becomes
available, it will update information.
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βt+1 = E(βt+1|Yt) (2.10)

Pt+1 = V ar(βt+1|Yt) (2.11)

(2.12)

The mean of the conditional distribution of βt+1 represents an optimal estimator

of the state vector at time t+ 1 based on the observations up to yield Yt. It mini-

mizes the mean squared error (MSE) matrix E[(βt+1 − µt+1)(βt+1 − µt+1)
′
] for all

βt+1.

To estimate unobserved factors βt conditional on yield Yt, it needs to have a prior

guess of the initial state β0 under the assumption that it is a Gaussian random

variable with expected mean E(β0|Yt−1) = β0 and variance V ar(β0|Yt−1) = P0.

2.4.3.1 The Prediction Equation

Under the assumption that latent factor βt given information of yield Yt is normally

distributed with expected mean β̂t and covariance Pt implies that β̂t+1 and Pt+1

can be calculated recursively from β̂t and Pt as.

β̂t|t+1 = µt + Tβt−1 (2.13)

The corresponding optimal predictor of yt given information at t− 1 is.

Yt|t−1 = Xtβt|t−1 + ut (2.14)

The prediction error is

νt = ηt|t−1 = yt − yt|t−1 = yt −Xtβt|t−1 (2.15)

and its variance of prediction error is
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ft|t−1 = E[(β̂t|t−1 − βt−1)(β̂t|t−1 − βt−1)
′
] (2.16)

Equivalently

ft|t−1 = TPt|t−1T
′ +Q (2.17)

2.4.3.2 The Updating Equation and Filtered Estimation

When new observation yt is available, the optimal predictor β̂t|t−1 and its variance

are updated. The filtered estimate of βt is β̂t and is updated from β̂t|t−1

β̂t = β̂t|t−1 + Pt|t−1T
′
f−1
t|t−1(yt −Xtβt|t−1) (2.18)

where κt = P(t|t− 1)T
′
f(t|t− 1)−1 is denoted as the Kalman gain. It is a weight

given to new information contained in the prediction error.

2.4.3.3 The Smoothed Estimates

The smoothed estimate of βt updates estimation based on the whole set of T ob-

servation Yt when they are available.

β̂t|T = β̂t|t−1 + κtηt|t−1 (2.19)

The smoothed estimates are recursively calculated backwards to the last value of

the filtered estimate with covariance.

Pt|T = Pt|t−1 + κtTPt|t−1 (2.20)

Denote θ as the parameters of the state space model. The Kalman Filter produces

the prediction errors which can be decomposed into log-likelihood function of the
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prediction error.

lnL(θ|y) = −NT
2

ln 2π − 1

2

T∑
t=1

ln |Ftθ| −
1

2

T∑
t=1

ν
′

t(θ)F
−1
t F−1

t (θ)νt(θ) (2.21)

Estimation of parameters is based on the numerical maximization of the log-

likelihood function. A Nelder-Mead optimization method is employed for solving

the optimal value of parameters.

2.5 Data

The dataset used here consists of end-of-month Spanish zero-coupon bond yields

of 22 maturities; 3, 6, 9, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102,

108, 114 and 120 month-to-maturity, from January 1998 through September 2011.

We also use Spanish macroeconomic and fiscal variables for vector-autoregressive

analysis, which are the growth rate of public debt-to-GDP (GDTG), net govern-

ment budget position-to-GDP (GBTG), change in yield spread between Spanish

and German 10-year government bond (DSPRD), the growth in industrial pro-

duction index (GIPI) and inflation rate (INF).

2.6 Empirical Results

In this section, we provide summary statistics for the data set and perform prelimi-

nary analysis that gives a foundation for the subsequent estimation. In Subsection

2.6.1, we present descriptive statistics of the yields, macroeconomic and fiscal vari-

ables. Then, we conduct an in-sample fit assessment to evaluate the performance

of the maximum likelihood estimation with Kalman filter in Subsection 2.6.2 and

report the empirical results of the estimated latent factors in Subsection 2.6.3.
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2.6.1 Descriptive Statistics

Prior to fitting the term structure model, we report summary statistics for Span-

ish government bond yields at representative maturities and provide descriptive

statistics of the macroeconomic and fiscal variables afterwards.

2.6.1.1 Yield Statistics

In this part, a three-dimensional plot of yields for various maturities are presented

and discussed, following by summary statistics of the yields over the period of

1998 to 2011.

Figure 2.4: The Spanish Actual Yield Curve

Figure 2.4 graphically shows that the Spanish yields exhibit substantial variation

in their level while their slope and curvature are less varied. For the reference

period, yield curves are typically upward sloped, humped and monotonically con-

cave. As can be seen the in time series plots of Figure 2.4, the yields with longer

time to maturity tends to be less volatile.
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Table 2.1 reports yield statistics for different maturities. For each maturity, we

report mean, standard deviation, minimum, maximum and a selection of autocor-

relation. The empirical statistics for proxies of the level, slope, and curvature of

the yield curve also presented.

Table 2.1: Descriptive statistics of the Spanish government bond yield

Maturity Mean Std Dev Min Max ρ(1) ρ(12) ρ(30)

3 3.05 1.36 0.63 5.38 0.98 0.38 -0.32
6 3.09 1.26 0.93 5.36 0.98 0.40 -0.34
9 3.09 1.25 0.92 5.37 0.98 0.41 -0.34
12 3.15 1.22 1.09 5.38 0.98 0.41 -0.35
18 3.24 1.17 1.17 5.47 0.98 0.42 -0.32
24 3.33 1.12 1.22 5.52 0.97 0.43 -0.28
30 3.43 1.08 1.28 5.58 0.97 0.44 -0.23
36 3.53 1.05 1.36 5.61 0.97 0.44 -0.20
42 3.62 1.01 1.45 5.64 0.97 0.45 -0.17
48 3.71 0.99 1.53 5.67 0.97 0.46 -0.14
54 3.79 0.96 1.62 5.70 0.96 0.47 -0.10
60 3.86 0.94 1.71 5.72 0.96 0.48 -0.07
66 3.94 0.92 1.79 5.75 0.96 0.48 -0.05
72 4.01 0.91 1.88 5.78 0.96 0.50 -0.02
78 4.07 0.89 1.95 5.81 0.96 0.51 0.01
84 4.14 0.88 2.02 5.83 0.96 0.52 0.03
90 4.19 0.87 2.09 5.86 0.96 0.53 0.06
96 4.25 0.87 2.15 5.90 0.96 0.54 0.08
102 4.30 0.86 2.21 5.95 0.96 0.55 0.09
108 4.34 0.85 2.26 6.00 0.97 0.56 0.11
114 4.39 0.84 2.31 6.04 0.97 0.56 0.12
120 4.43 0.84 2.36 6.07 0.97 0.57 0.13
Slope 0.74 0.67 -0.94 1.98 0.94 0.00 -0.16
Curve -0.66 0.46 -1.45 0.40 0.93 0.26 -0.28

The descriptive statistics reveal that the yield curve tends to be upward sloping

and concave. The volatility of the yields decreases with longer maturity. Time

series of yields are persistence given by the first order autocorrelation above 0.96

for all maturities. The empirical level, slope, and curvature are also persistent but

the curvature is least persistent.
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2.6.1.2 Macroeconomic and Fiscal Variable Statistics

The descriptive statistics of the macroeconomic and fiscal variable used in the

macro-finance-fiscal term structure model are reported in Table 2.2. For each

variable, we report the mean, standard deviation, minimum, maximum, autocor-

relation coefficient at various displacements and the Augmented Dickey-Fuller test

statistics for unit-root.

Table 2.2: Descriptive statistics of macroeconomic variables

Maturity Mean Std Dev Min Max ρ(1) ρ(12) ρ(30) ADF

GDTG 0.36 12.08 -10.80 36.01 0.99 0.54 -0.02 0.20*
GBTG -1.23 2.63 -10.98 2.27 0.95 0.64 -0.05 0.76*
DSPRD 0.11 0.45 -1.14 1.80 0.92 0.10 0.16 1.21*
GIPI -0.10 5.95 -21.61 10.96 0.93 0.17 -0.12 0.27*
INF 2.77 1.22 -1.40 5.30 0.96 -0.11 0.02 0.48*

Notes: Bold numbers imply variables are found to be stationary by augmented
Dickey-Fuller: ADF test and * indicates statistical significance at 5 percent level

Concerning the macroeconomic and fiscal variables, we use monthly data from

January 1998 to August 2011 for the growth rate of public debt-to-GDP (GDTG),

net government budget-to-GDP (GBTG), change in yield spread between Spanish

and German 10-year government bond (DSPRD), the growth rate of in industrial

production index (GIPI) and inflation rate (INF). All five variables are measured

as percentages for two main reasons: first, for the stationarity consideration; and

secondly, for consistency with the yield spreads which for all maturities are mea-

sured in annual percent format.

As shown in Table 2.2, the change in yield spreads range between -1.14 and 1.80

percent points and average about 11 basis points. For fiscal variables; the net gov-

ernment budget position to GDP is less volatile, compared with the growth rate

of debt-to-GDP, as witnessed by their standard deviations. In fact, the growth

rate of public debt to GDP is the highest volatility among macroeconomics and

fiscal variables due to its unprecedented rise after the run-up to the global finan-

cial crisis, staying high during the European sovereign debt crisis afterwards. The

autocorrelation coefficients at a one-month lag show all variables are strongly pos-

itive autocorrelated. We also examine whether the time series are unit roots by
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applying the augmented DickeyFuller (ADF) test and find all variables are sta-

tionary.

2.6.2 Model Estimation

In this subsection, we report and discuss the accuracy of the dynamic Nelson-Siegel

model estimated by maximum likelihood with Kalman filter and then present the

estimation of yield curves at some selected dates.

2.6.2.1 Estimation Accuracy

To assess the ability of the dynamic Nelson-Siegel model with the Kalman filter

estimation to fit the yield data, we report the statistics that describe the in-sample

fit and the residuals from the estimation procedure as shown in Figure 2.5 and

Table 2.3.

Figure 2.5: The Residual of the Spanish Yield Curve Estimation
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Figure 2.5 shows the good fit of the Nelson-Siegel term structure model. There is

not a large difference between the estimated yields and the historical yields. For

short maturity yields, we find minimal residuals which confirms the stylized facts

that short-end yields have more variation.

Table 2.3 provides descriptive statistics for the residuals. The goodness of fit also

measures by root mean square errors of the estimated yields from various maturi-

ties.

Table 2.3: Descriptive statistics of the yield curve residuals,estimated by the
Nelson-Siegel model with Kalman filter estimation

Maturity Mean Std Dev Min Max RMSE ρ(1) ρ(12) ρ(30)

3 0.04 0.08 -0.29 0.36 0.09 0.79 0.21 -0.11
6 -0.01 0.04 -0.20 0.14 0.04 0.71 0.36 0.00
9 0.01 0.05 -0.20 0.31 0.06 0.78 0.10 -0.29
12 -0.02 0.06 -0.36 0.10 0.06 0.75 0.18 -0.02
18 -0.04 0.04 -0.25 0.11 0.06 0.57 0.05 -0.01
24 -0.03 0.03 -0.10 0.18 0.04 0.39 0.04 -0.14
30 -0.02 0.03 -0.17 0.10 0.03 0.59 0.30 0.13
36 -0.01 0.02 -0.07 0.17 0.03 0.55 0.11 -0.06
42 0.01 0.03 -0.10 0.11 0.03 0.76 0.13 -0.29
48 0.02 0.02 -0.05 0.12 0.03 0.78 0.06 -0.26
54 0.03 0.02 -0.04 0.13 0.04 0.75 -0.02 -0.21
60 0.03 0.02 -0.05 0.12 0.04 0.71 -0.06 -0.24
66 0.04 0.02 -0.05 0.11 0.04 0.68 -0.06 -0.19
72 0.03 0.02 -0.03 0.09 0.04 0.60 -0.11 -0.18
78 0.03 0.01 -0.02 0.06 0.03 0.58 -0.15 -0.08
84 0.02 0.01 -0.03 0.04 0.02 0.51 -0.02 0.03
90 0.01 0.01 -0.04 0.02 0.01 0.56 0.12 -0.04
96 0.00 0.01 -0.05 0.02 0.01 0.71 0.17 -0.08
102 -0.01 0.01 -0.07 0.03 0.02 0.76 -0.01 -0.24
108 -0.03 0.02 -0.11 0.03 0.03 0.66 -0.05 -0.19
114 -0.03 0.02 -0.13 0.07 0.04 0.61 -0.06 -0.14
120 -0.05 0.03 -0.16 0.10 0.05 0.58 -0.06 -0.08

Statistics of the residuals indicates that the estimates from the Nelson-Siegel fit the

Spanish yield data well. The residual sample autocorrelations imply the dynamics

are persistent. The estimated means and standard deviations of the residuals are

negligible. Root mean square errors indicate a good in-sample fit at all maturities.
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2.6.2.2 Cross-sectional in-sample fit

To further examine the fit of the Nelson-Siegel model, we examine the estimated

yield curves from both models against the actual yields at particular days as shown

in Figure 2.6. We plot the yield curves on 30 November 1998, 28 April 2006, 29

August 2006 and 31 August 2009. These four selected dates are examples of the

various different term structure shapes that occur in the data.

Figure 2.6: Fitted yield curve for specific months

In Figure 2.6, the plots demonstrate that the term structure curve shapes can vary

over time. On the 30 November 1998 curve is a J-curve shape and the curve for

29 August 2008 is an inverted yield curve. The shapes of the yields are concave

upward for 28 April 2006 and 31 August 2009, despite the first one in April being

much steeper for short maturities. As expected, the Nelson-Siegel model seems

flexible enough to fit complex curves, for example, a J-curve shape.
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2.6.3 Dynamic Latent Factor Estimates

In this subsection, we report the descriptive statistics of the estimated latent

factors and provide correlation coefficients between the latent factors and macroe-

conomic variables. Then, we plot the time series of estimated latent factors, their

corresponding proxies and potentially related macroeconomic variables.

2.6.3.1 Latent factor statistics

The statistical properties of the estimated latent factors from the Nelson-Siegel

model are presented in Table 2.4.

Table 2.4: Descriptive statistics of the latent factors, estimated by the Nelson-
Siegel model (NS)

Mean Std Dev Min Max ρ(1) ρ(12) ρ(30) ADF

LEV 4.98 0.82 2.99 6.66 0.96 0.64 0.30 -0.85
SLP -1.82 1.15 -3.65 0.79 0.97 0.22 -0.26 -1.20
CUR -2.43 1.43 -5.07 1.32 0.87 0.13 -0.20 -0.90

Our regression provides us with three latent factors and a set of residuals. The

descriptive statistics of latent factors are summarized in Table 2.4. The yield curve

dynamics are characterized, by the evolution of the estimated latent factors. We

found the level factor (LEV) is positive with a mean of 4.98. In contrast, the slope

(SLP) and curvature (CUR) take negative mean values, fluctuating around -1.82

and -2.43 respectively. Based on autocorrelation coefficients with lags of 1, 12

and 30 months, all factors demonstrate high positive autocorrelation. The slope

factor is the most persistent amongst other estimated factors. This strong auto-

correlation across the sample indicates the future values of these factors should

be forecasted with their own lagged values. In terms of volatility, we observed

the curvature factor has highest standard deviation even it is the least persistent.

With negative means and other quite similar statistical properties, the slope and

curvature factors are noticeably correlated.
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2.6.3.2 Latent Factor Correlation

We present the correlation coefficients between the latent factors and macroeco-

nomic variables, including fiscal positions in Table 2.5.

Table 2.5: Correlation coefficients of the estimated latent factors and their
empirical proxies

LEV SLP CUV GDTG GBTG DSPRD GIPI INF

LEV 1.00
SLP -0.09 1.00
CUV -0.17 0.42 1.00
GDTG -0.41 -0.47 -0.21 1.00
GBTG 0.29 0.43 0.27 -0.83 1.00
DSPRD -0.49 -0.11 -0.03 0.46 -0.48 1.00
GIPI 0.23 0.12 0.20 -0.51 0.38 -0.37 1.00
INF 0.15 0.48 0.28 -0.70 0.55 -0.04 0.42 1.00

In regard to the relation among yield factors, we find the the correlation between

all pairs of latent factors are not strongly correlated with factor variables. For

the relation between the curvature and slope factors, their correlation coefficient

is found to be non-negligible at 0.42. There are apparently some strong bilateral

relations between latent factors and macroeconomic variables. Indeed, there is a

negative correlation between yield level factor and term spread because a lower

level of interest rates are expected to offset the excessive increase in borrowing

costs caused by the widening term spreads. We also find that the yield slope is

positively correlated with inflation expectations. The yields on long-term bonds

tend to be higher if investors expect a future increase in inflation, thus yield slope

will rise with inflationary pressure.

We observe the growth rate of public debt-to-GDP and the net position of govern-

ment budget to GDP are significantly and negatively correlated. A worse budget

position may lead government to become highly indebted borrowers. More in-

terestingly, some negative correlations between yield latent factors and growth in

public debt-to-GDP are observed. Higher debt could cause a worsened recession.

A deflationary pressure would probably decrease the expected policy interest rate

and therefore lessen long-term yields. Since expected interest rates are lower, the

yield curve level falls together with an inverted yield slope. Another interesting
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point we should mention is there exists positive correlation between the growth

of public debt and term spread. High growth of public debt is assumed to entail

higher yield spread associated with a higher perceived default risk. We also ob-

serve the evidence for the presence of a negative relation between the growth of

public debt-to-GDP and economic activities. As we expect, growth in government

debt-to-GDP would increase more concern about an unsustainable government

and then cause an even more output and price level deterioration.

2.6.3.3 Latent factors, Empirical yields and Macro variables

In this part, we explore the empirical relevance of our estimated latent factors,

their corresponding proxies and potentially related macroeconomic variables. A

plot of each factor against its empirical counterpart can help us to investigate

whether our model can accommodate the stylized facts of yield factors. We also

compare the evolvement of latent factors with some seemingly related macroeco-

nomic variables to examine the comovements among them. Figure 2.7 plots the

time series of the estimated latent factors against those of the their empirical prox-

ies and selected macroeconomic variables. The upper panel shows level (LEV),

empirical level (E-LEV) and yiels spread (SPRD), while slope (SLP), empirical

slope (E-SLP) and inflation (IFL) are plotted in the middle panel. In the lower

panel, we just only plot plot curvature (CUR) and empirical curvature (E-CUR)

since relationships between curvature and macroeconomic variables are minimal.

We follow Diebold et al. (2006) to define the empirical proxy for the level factor

as the long-term (10-year) bond yield. The empirical slope is represented by the

difference between the long-term (10-year) and short-term (3-month) yield and

the empirical curvature is determined as two times the 2-year yield minus the sum

of the 10-year and 3-month yields.

From the upper panel of Figure 2.7, the estimated level factor is closely related

to its empirical proxy and yield spread. This evidence is consistent with the ex-

pectation hypothesis of the term structure that the long-term rate reflects the

anticipation of future short-term rate plus a risk premium. A higher term pre-

mium drives up the long-end of the yield and thereby widens the yield spread.
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We find that over our sample period, the movement of the level factor and its

corresponding proxy are persistent, particularly after the formation of EMU in

1999. Even if there are minimal effects from a drastic increase in yield spreads

after the financial turmoil in 2008, we observe evidence of structural change when

the tensions of a sovereign debt crisis intensified. Our finding is consistent with

previous studies in the macro-finance literature, for example, Lange (2013) and

Ullah et al. (2013) who found that level factor movements are related to monetary

variables. Nonetheless, we use the yield spread as a channel of a fiscal transmission

mechanism to financial markets instead of the policy interest rate since it is not

independently determined by the Spanish central bank and ran into the zero lower

bound after the global financial crisis.

In the middle panel of Figure 2.7 we observe a close link between the estimated

slope factor, empirical slope factor and inflation. The slope of the yield curve can

indicate the link between expectations of inflation and the long-term yield, which

is also found in Lange (2013). When the markets anticipate that inflationary pres-

sure is rising, there would be a steeper slope of the yield curve that require an

increase in long-term rate. For the Spanish case, rising real estate prices in the

early 2000s led the yield slope to rise associated with the increase in expected

inflation. After reaching the peak level in 2008, yield slope fell steeply since the

fear of delation had been triggered after the global financial crisis. From 2009

onwards, the higher-than-expected sovereign debt then returned the yield slope

to an upward trend. Our findings suggest the variation in yield slope is closely

explained by state of economy, and indicate the long-term interest rate became an

important possible monetary instrument in the absence of monetary policy inde-

pendence.

For the last panel of Figure 2.7, we can observe the estimated curvature factor

and its yield proxy are correlated even though the estimated factor is the more

volatile relative to its proxy. Although there is no evidence of a relation between

the curvature factor and other macroeconomic variables, we find the movement of

curvature factor follow the same pattern as the slope factor, though it is relatively

less persistent.
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2.7 Macro-Finance-Fiscal Model Analysis

In order to integrate fiscal instability variable in the macro-finance-fiscal term

structure model, we have two alternative fiscal proxies represented fiscal indisci-

pline; the growth rate of public debt to GDP (GDTG) and net government budget

position-to-GDP (GBTG). Indeed, public debt and net government budget posi-

tion could convey relevant information regarding to sovereign credit risk that might

explain a widening term spread. Our choice of seperating the macro-finance-fiscal

term structure model is based on the argument that a different fiscal instabil-

ity proxies would generate different estimates obtained from macro-finance-fiscal

model .

In this section, we estimate the vector-autoregressive (VAR) model in a unique

state-space model with different fiscal proxies for fiscal instability; public debt to

GDP (GDTG) and net government budget position-to-GDP (GBTG) respectively.

We report the estimated coefficient matrices for each model. Then, we present the

impulse response functions (IRFs) to positive innovation of yield latent factors,

macro and fiscal variables with magnitude of one standard deviation. To provide a

more intuitive and quantified description of the dynamic reaction, we conduct fore-

cast error variance decomposition (FEVD). The following results are based on the

estimates of the individual model which has been described in the previous section.

2.7.1 Macro-Finance-Fiscal Model with Debt-to-GDP as a

Proxy for Fiscal Instability

We are now present the estimation results for the model in the case of using the

growth rate of public debt to GDP (GDTG) as fiscal instability proxy.

2.7.1.1 VAR(1) Parameter Estimates

Table 2.6 reports the estimates of the parameters which represent the interac-

tion between the yield latent factors and macroeconomic variables, including the
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change in debt-to-GDP.

Table 2.6: Estimates of the Macro-finance-fiscal Model with a change in debt-
to-GDP proxy for fiscal instability

L t-1 S t-1 C t-1 GDTG t-1 DSPRD t-1 GIPI t-1 INF t-1 u

L t 0.97 0.00 0.02 -0.01 0.07 0.00 -0.04 0.30
0.02 0.02 0.01 0.00 0.05 0.00 0.02 0.13

S t 0.01 0.93 0.07 0.01 -0.08 0.01 0.05 -0.16
0.03 0.02 0.02 0.00 0.06 0.00 0.03 0.16

C t -0.08 -0.03 0.87 -0.02 0.26 0.02 -0.16 0.47
0.08 0.06 0.04 0.01 0.16 0.01 0.07 0.42

GDTG t 0.28 0.13 0.04 0.96 0.54 -0.16 -0.10 -0.72
0.10 0.07 0.05 0.01 0.19 0.01 0.08 0.52

DSPRD t -0.02 0.02 -0.01 0.00 0.93 0.00 0.02 0.08
0.02 0.01 0.01 0.00 0.03 0.00 0.01 0.08

GIPI -0.15 -0.54 0.23 0.00 -0.93 0.92 -0.08 0.56
0.24 0.18 0.13 0.02 0.49 0.03 0.21 1.30

INF t -0.01 -0.02 0.04 0.00 0.08 0.02 0.90 0.35
0.04 0.03 0.02 0.00 0.08 0.01 0.03 0.21

Notes: The table displays matrix of the macro-finance-fiscal model’s coefficients
and standard errors. Bold numbers indicate statistical significance at 5 percent

level while italic numbers refer to standard errors.

The results from the estimation shows a total of 16 coefficients are significant, 7 di-

agonal and 9 off-diagonal. The diagonal coefficients reveal the yield latent factors

and other macro variables, including change in debt-to-GDP are highly persistent.

Considering the lagged influence of the government debt position on current yield

curve factors, this previous period fiscal variable explains negatively the level and

curvature factors but positively the slope factor. Since recession causes a steep

deterioration in government finances and a rapid rise in government debt, the de-

fault risk premia on long-term government bonds consequently tend to be high.

Meanwhile, the expected short-term rate tends to be lower and causes the yield

level as well as the curvature to decrease. As the long end of the yield curve rises

whereas the short end rate goes down, the yield slope therefore increases due to

high potential exposure to government bond losses.

For the coefficients showing the influence of the lagged change in debt-to-GDP on

macroeconomic variables, only the current period growth of government debt and

the changes in yield spread are significantly and positively affected, albeit with a
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minimal impact on the spread. Another main finding is that the lagged value of

the spread between 10-year Spanish bonds over German bonds influences current

changes in debt-to-GDP and changes in the industrial production index as well as

its own lagged rate. In particular, a positive impact of lagged yield spread on the

change in debt-to-GDP indicates that government liabilities would increase as the

bonds are being paid back more which is associated with a higher default risk pre-

mium. As for the change in debt-to-GDP, not only the increase in the lagged yield

spread and its own lag significantly raise debt position, but also the yield level

and slope positively affect the change in government debt. The higher expected

policy interest rate and higher difference between the long-term and short-term

rate, represented by the yield level and slope, increase government debt payments.

It should be stressed that the relationships between public debt, yield latent fac-

tors and other macroeconomic variables are mainly represented by the interaction

between the change in debt-to-GDP, term spreads and the growth in output. In

fact, the change in the yield spread is influenced by the change in the public debt

position. The higher debt position signals even lower expected policy interest rate,

in other words, level factor. At the same time, long-term yield is raised up in line

with higher term premium. As a result, the yield slope increase. A higher term

spread also signals a recession, reflecting a lower economic activity. Our findings

are consistent with the expectations of future monetary policy being actually re-

lated to fiscal variable.

2.7.1.2 Impulse Response Functions

Figure 2.8 shows the impulse response functions that summarize the response of

the macroeconomic variables to shocks in the term-structure factors or vice versa.

A positive innovation to the change in debt-to-GDP with a magnitude of one stan-

dard deviation initially leads to a fall in the yield curve factors. These reactions

are consistent with a monetary policy response that depresses the term structure

in response to expected lower output. Among these latent factors, the dynamic

path of the level factor appears to be more persistent. Nonetheless, the impact

on yield curve factors are insignificant. Moreover, it can be observed that the
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positive innovation of a change in the debt ratio also affects the yield spread even

if it does not react immediately and only around 10 months later begins to pick

up. This movement implies that the response of the long-term yield is lagged and

takes time for investors to require a compensation for the higher risk premium.

As for the effect on economic activity, we observe a significantly immediate drop

in output growth for almost two years. In addition, the innovation of the change

in government debt position also generates a deflation for over two years even if it

is an insignificant impact. A key implication of this finding is that any changes in

debt position can be used as a fiscal policy instrument to significantly affect the

real economy. This interpretation is consistent with the idea of unconventional

monetary policy and quantitative easing that targets the long-term yield.

Apart from the dynamic adjustments created by a change in debt ratio, we also

find an innovation to change in the yield spread significantly raises the change in

debt-to-GDP. The public debt gradually increases and reach a peak within around

two and a half year, followed by sustained high levels of public debt. A positive

innovation to growth in industrial production index significantly lessen debt-to-

GDP for over two years. This reaction confirms the fact that the government debt

position is pro-cyclical.

2.7.1.3 Forecast error variance decomposition

Table 2.7 presents the results of forecast error variance decomposition of the change

in public debt-to-GDP, yield spread, level and slope factors at 6, 12, 24 and 40

months horizons.

Regarding the variance of the error in forecasting the change in the debt-to-GDP

ratio, we find an innovation of the government debt position is the most important

variable in explaining the variation of the debt ratio, contributing a 60 percent

share of the variations at a 6-month horizon. In addition, the shock in industrial

production index also influences around one-third of the fluctuations in govern-

ment liabilities. One year later, the innovation of the industrial production index

becomes more important and almost equally contribute to the variation of fore-

casting errors of the debt ratio, roughly 40 percent. It should be noted that the
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Table 2.7: Forecast error variance decomposition of the Macro-finance-fiscal
Model with a change in debt-to-GDP proxy for fiscal instability

Variable Horizon LEV SLP CUR GDTG DSPRD GIPI INF

GDTG 6 0.00 0.03 0.00 0.60 0.04 0.33 0.00
12 0.01 0.02 0.00 0.45 0.10 0.42 0.00
24 0.05 0.06 0.05 0.31 0.24 0.27 0.02
40 0.11 0.06 0.15 0.19 0.32 0.15 0.01

DSPRD 6 0.01 0.02 0.09 0.00 0.83 0.03 0.02
12 0.03 0.03 0.07 0.00 0.73 0.07 0.06
24 0.07 0.03 0.06 0.01 0.66 0.07 0.10
40 0.10 0.03 0.06 0.06 0.60 0.06 0.11

LEV 6 0.94 0.00 0.01 0.00 0.02 0.00 0.03
12 0.84 0.00 0.01 0.00 0.04 0.00 0.10
24 0.71 0.00 0.01 0.02 0.05 0.02 0.19
40 0.63 0.01 0.01 0.05 0.06 0.03 0.21

SLP 6 0.47 0.24 0.21 0.01 0.00 0.05 0.01
12 0.33 0.13 0.38 0.03 0.00 0.12 0.01
24 0.28 0.10 0.37 0.04 0.02 0.16 0.04
40 0.25 0.10 0.36 0.04 0.07 0.14 0.04

unexpected change in yield spread turns out to be the the main contributor to the

fluctuation in the debt-to-GDP ratio by accounting for 32 percent of total variation

in 40 consecutive months. This decomposition indicates that the unanticipated

change in spread would be the main shock that predominantly contributes to the

total variation in the debt-to-GDP in the medium run or after one year.

While we find the yield spread successfully influences the variation of debt-to-GDP

in the medium run, there is no significant bilateral effect from the debt position on

the yield spread. In fact, spread innovations initially explain around 80 percent of

total variation in yield spread in 6 month period. However, the variations which

are explained by an unexpected change in spread gradually fall to 60 percent more

than three years later, albeit remaining the most important variable in explaining

a fluctuation in yield spread. Meanwhile, shocks in latent factors and inflation all

together turn to account for around 30 percent of total variation in yield spread.

However, shock in debt position still makes little contribution to variance of the

forecasting errors in yield factors.

For the variation of yield level forecasting errors, an unanticipated innovation

to the level factor itself plays a major role in explaining the forecasting errors,
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accounting for 94 percent of total variation at a 6-month horizon. Although it

remains the major contributor to explain fluctuations in the yield level 40 consec-

utive months later, a shock in inflation is now able to account for 21 percent of the

variation of level factor. This finding evidently affirms the influence of expected

inflation in determining the expected interest rate and the level factor.

Surprisingly, the variance of forecasting errors for the yield slope is not mainly

explained by its own innovation. Notwithstanding, the unexpected innovations in

the yield level and curvature factors account for 68 percent (47 percent from the

level and 21 percent from the curvature factor) of total variation, while the inno-

vation of slope factor itself is able to contribute only 21 percent of the variation

in the yield slope. After two years, the shock in the slope factor itself can only

explain 10 percent of total variation. However, the shock in the curvature factor

becomes the most important driver of yield slope forecasting errors, sharing 37

percent of all variation. In addition, the contribution of the industrial production

index innovation reaches the peak of a 16 percentage share of total variation in

yield slope and then reduces to 14 percent within 40 months.

2.7.2 Macro-Finance-Fiscal Model with Budget-to-GDP as

a Proxy for Fiscal Instability

For the case of using net government budget position-to-GDP, we report the es-

timation results as follows. It allows us to visualize and assess the relationship

between net government budget position proxy and yield spread together with

yield latent factors and other macroeconomic variables.

2.7.2.1 VAR(1) Parameter Estimates

Table 2.8 reports the estimates of the parameters which represent the interaction

between net government budget position-to-GDP, yield spread, yield latent factors

and other macroeconomic variables.
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Table 2.8: Estimates of the Macro-finance-fiscal Model with a change in gov-
ernment budget position-to-GDP proxy for fiscal instability

L t-1 S t-1 C t-1 GBTG t-1 DSPRD t-1 GIPI t-1 INF t-1 u

L t 0.97 0.00 0.02 0.01 0.07 0.00 -0.03 0.26
0.02 0.02 0.01 0.01 0.05 0.00 0.02 0.12

S t -0.02 0.92 0.07 -0.01 -0.06 0.01 0.03 0.04
0.03 0.02 0.02 0.01 0.06 0.00 0.02 0.16

C t -0.01 -0.01 0.85 0.09 0.50 0.02 -0.13 0.13
0.07 0.05 0.04 0.03 0.14 0.01 0.06 0.40

GBTG t -0.02 -0.04 -0.00 1.00 -0.01 0.02 -0.10 0.02
0.01 0.01 0.01 0.00 0.02 0.00 0.01 0.06

DSPRD t -0.02 0.02 -0.01 -0.02 0.91 0.00 0.02 0.09
0.02 0.01 0.01 0.01 0.03 0.00 0.01 0.08

GIPI -0.21 -0.58 0.25 0.02 -0.87 0.92 -0.10 0.95
0.25 0.19 0.14 0.11 0.51 0.03 0.19 1.35

INF t -0.02 -0.03 0.04 0.00 0.08 0.02 0.91 0.40
0.04 0.03 0.02 0.02 0.08 0.01 0.03 0.22

Notes: The table displays matrix of the macro-finance-fiscal model’s coefficients
and standard errors. Bold numbers indicate statistical significance at 5 percent

level while italic numbers refer to standard errors.

For the estimates of the effect of yield curve factors and macroeconomic variable

on net government budget position, we find significantly negative relation between

yield factors and the government budget position. The negative change in the net

government budget position is associated with higher yield latent factors since an

increased interest rate generates a higher cost of borrowing and debt repayment.

In turn, it significantly deteriorates the net government budget. As a result, the

net government budget is negatively related to yield latent factors.

We also examine the relationship between the current term spread and lagged val-

ues of the net government budget position. Our estimation reveals a significantly

negative relation between the term spread and the net government budget posi-

tion. This relation implies possible fiscal instability with a worsened net govern-

ment budget position, significantly widening yield spreads. Unlike the model with

the debt-to-GDP ratio, the adverse effect of fiscal instability on the yield spread,

represented by a deterioration in the net government budget position, becomes

more important as the coefficient increases in magnitude. Yet, the negative im-

pact of a higher yield spread on the growth rate of the industrial production index
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or economic activity is insignificant. In fact, we observe a significantly negative ef-

fect from the yield slope factor on the growth rate the industrial production index.

The increase in term spread is perceived as higher default risk which eventually

raises the long-term interest rate and yield slope factor. Consequently, economic

agents will reduce their spending and reduce the industrial production index. How-

ever, there is no significant evidence of bilateral feedbacks from macroeconomic

variables to yield latent factors. This finding reveals the transmission mechanism

from the fiscal instability stance that pass through yield spread signal could affect

the entire yield curve shape and macroeconomic variables afterwards.

2.7.2.2 Impulse Response Function

Figure 2.9 shows the impulse response functions that summarize the dynamic re-

sponse of the term spread, yield latent factors, macroeconomic and fiscal variables.

With a positive innovation of one standard deviation to net government budget,

we found an improvement of the net government budget-to-GDP significantly nar-

row the difference between Spanish and German 10-year government bond spread

since the perceived default risk on long-term public debt is lessened. It drops to

around 3 percentage points and reaches the bottom of 5 percentage points after

around ten months and gradually reverts back to steady state after 40 consecutive

months. As compared to the previous VAR model with debt-to-GDP proxy, the

dynamic response of a change in the term spread is now significant whereas a shock

to a debt-to-GDP generates a lagged response. In addition, the responses of the

change in industrial production index is reflected by hump-shaped curves, which

are actually less than the impact produced by the debt-to-GDP innovation.

For the response of economic activity after a positive innovation to spread, we

find an inverted U-shaped decline in the industrial production index, similar to

the result from the model with debt-to-GDP proxy. To explore the change in net

government budget-to-GDP in response to real economy, we examine the dynamic

adjustment of response of net government budget position to a positive innovation

of industrial production index and find the improvement in net government budget
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is actually transient and just remains only around two years.

2.7.2.3 Forecast error variance decomposition

Table 2.9 summarizes the results of forecast error variance decomposition of the

net government budget position-to-GDP, yield spread, level and slope factors at

6, 12, 24 and 40 months horizons.

Table 2.9: Forecast error variance decomposition of the Macro-finance-fiscal
Model with a change in government budget position-to-GDP proxy for fiscal

instability

Variable Horizon LEV SLP CUR GBTG DSPRD GIPI INF

GBTG 6 0.01 0.01 0.04 0.89 0.01 0.04 0.01
12 0.04 0.02 0.08 0.72 0.02 0.10 0.01
24 0.13 0.05 0.08 0.58 0.04 0.11 0.01
40 0.20 0.06 0.07 0.50 0.04 0.11 0.01

DSPRD 6 0.03 0.01 0.11 0.12 0.71 0.02 0.00
12 0.08 0.02 0.12 0.17 0.56 0.03 0.01
24 0.17 0.02 0.12 0.22 0.42 0.04 0.01
40 0.24 0.02 0.12 0.22 0.34 0.03 0.02

LEV 6 0.96 0.00 0.02 0.00 0.01 0.00 0.01
12 0.87 0.00 0.05 0.01 0.03 0.01 0.04
24 0.75 0.00 0.07 0.03 0.05 0.02 0.08
40 0.70 0.00 0.08 0.05 0.05 0.02 0.10

SLP 6 0.47 0.27 0.19 0.01 0.00 0.06 0.00
12 0.30 0.15 0.36 0.03 0.00 0.17 0.00
24 0.20 0.11 0.38 0.08 0.01 0.22 0.01
40 0.19 0.12 0.35 0.10 0.03 0.21 0.01

The variance decompositions of the errors in forecasting the change in the net gov-

ernment budget to GDP reveals that an innovation of the net government budget

itself is able to explain most of the variation of forecasting errors, accounting for

89 percent at 6 months horizon. Its own innovation still contributes over 50 per-

cent in the following three years. In comparison with the previous model with

a debt-to-GDP proxy, the innovation of changes in the net government budget

predominantly influence the total variation of forecasting errors whereas the inno-

vation of the change in debt-to-GDP shares account for only 60 percent of total

variation in errors to forecast itself.
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Concerning the variation of yield spread forecasting errors, the unexpected change

in yield spread substantially explain more than 70 percent of total variation in

forecasting itself for the initial a 6 months horizon. When we expand our fore-

casting horizon to 40 months, the forecasting errors of yield spread to predict its

own value just account for only one-third of total variance. Interestingly, the net

government budget position is able to explain 12 percent of total variation in yield

spread at 6 months horizon and eventually 22 percent of total variation at 24 to

40 months horizon. Our forecast error variance decomposition result confirms the

significant and immediate impact of the net government budget position on the

term spread from the impulse response analysis.

As for the variance of yield factors’ forecasting errors, we find the innovation of

the level factor contributes over 95 percent of total variation of its forecasting

errors in the first 6 months. After 40 months, inflation and the curvature factor

are able to explain 15 and 14 percent of the errors in forecasting the latent factor.

Similar to the model with the debt-to-GDP proxy, we also find the innovation of

the curvature and level factors are the main drivers for the variation of yield slope

forecasting errors, accounting for more than 65 percent, while the yield slope itself

can explain 27 percent of total variation at the 6 months horizon.

2.8 Conclusion

This paper analyzes whether term spreads are affected by fiscal indiscipline and

subsequently impact upon aggregate macroeconomic variables. Our study focuses

on Spain which was notably vulnerable to fiscal deterioration after the global

financial crisis. We apply the Nelson and Siegel (1987) yield curve parameteri-

zation and follow Diebold and Li (2006a) and Diebold et al. (2006) to estimate

a macro-finance term structure model based on maximum likelihood estimation

in a state-space specification and Kalman filtering. With the addition of fiscal

stability variables (the net change in government budget position to GDP and the

change in public debt to GDP), and the inclusion of the term spread, we propose

a macro-finance-fiscal term structure model to assess the impact fiscal indiscipline

on the entire yield curve space and examine the macroeconomic linkages among

those variables through the yield spread. The use of term spread can help us to
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unveil how the transmission mechanism of fiscal signals can be explained.

Our results indicate that fiscal indiscipline significantly influences the term spread.

From the estimated coefficients of VAR model, the fiscal instability variables are

found to be statistically significant in affecting the yield spread, albeit with mini-

mal impact. We also find that the term spread significantly determines the change

in industrial production index. These empirical results can be explained within the

context of rational expectation theory. When fiscal positions become weaker than

expected, risk averse investors require an additional term premium as compensa-

tion for the higher default probability. Term spreads are then widened and signal

markets about a possible coming recession. A growing concern about the prob-

ability of economic downturn influences economic agents to cut down aggregate

demand, exacerbating by a further recession. We also investigate the responses of

yield spreads to shocks of fiscal instability variables. Either a net change in the

budget position or in public debt are found to substantially alter yield spreads. In

fact, markets seem to pay more attention to government budget than debt since

the change in government budgets have immediately generated a significant re-

sponse on spread while the reaction from debt is lagged. Notwithstanding, both

fiscal variables have statistically significant effects on output.

The evidences from forecast error variance decompositions (FEVD) consistently

complement estimates of VAR coefficients and impulse response function (IRF)

analysis. Responses of government debt innovation show that a change in the

industrial production index and a change in the yield spread are accounted for

variation in debt. However, there seems to be a negligibly reverse relation from

government debt to alter term spreads, whereas macroeconomic and yield latent

factors tend to be more important in explaining spread variation. In contrast, the

variance of net change in government budget position is predominantly attributed

by its own innovation. More importantly, we find yield latent factors and yield

spread jointly contribute to substantial variation in yield spread for the model

using government budget as a proxy for fiscal instability. At the medium horizon

of 40 months, yield factors and spread share more than 40 percent of underlying

variation in the term spread.
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Findings from the VAR model reveal that yield latent factors and macroeconomic

variables have a crucial role in determining the variance of the yield spread. In-

deed, these influences become more important in the medium run. It means in-

formation contained in unobserved yield factors and economic conditions would

take a long time to affect the yield spread. However, yield latent factors and

government budget deterioration appear to provide non-negligible contributions

to the fluctuations in yield spread, even at the early 6-month horizon. Results of

the government budget variance decomposition confirm a statistically significant

response of the yield spread following a shock to the budget position. A poten-

tial increase in sovereign default risk from a worsening budget immediately raises

the term spread and the yield level factor in anticipation of higher interest rates.

Therefore, we can infer that information of the budget position is more quickly

passed through yield spread rather than public debt variable. Our empirical re-

sults provide further explanation to support the previous literature, for example

Dai and Philippon (2005) and Bernoth et al. (2012), who argue government bud-

get measure is more significant in explaining yield spread. More importantly, yield

spread is found to be the key variable which signals further fiscal stance. Markets

are likely to penalize fiscal indiscipline in action with higher term premium. An

increase in the spread associated with the expectation of higher sovereign default

risk and consequently signals economic agents to reduce their spending and thus

even further worsen the the fiscal position.

Based on our empirical results, we offer two main perspectives on fiscal policy im-

plementation. On the one hand, fiscal stimulus is likely to be less effective in the

presence of fiscal indiscipline. As a matter of fact, the increase in public debt or

budget deficit would have negative impacts on output if loose fiscal policy widens

the yield spread due to higher default risk. On the other hand, expansionary

fiscal policy might successfully induce aggregate demand once it is accompanied

by credible commitments to fiscal discipline. From these different perspectives,

fiscal discipline can be considered as a necessary condition for fiscal policy to ef-

fectively boost the economy and avoid recession; otherwise this stimulus can make

the recession somewhat more severe. This interpretation also supports the idea of

alternatively conduct quantitative easing or fiscal policy in the absence of response

from conventional monetary policy when the policy interest rate reach zero lower

bound.



Chapter 3

Term Structure Forecasting - A

Comparison between the

Dynamic Semiparametric Factor

Model and the Dynamic

Nelson-Siegel Model

3.1 Introduction

In recent years, significant progress has been made in term structure forecast by

combining nonparametric curve fitting with dynamic latent factors to capture the

evolution of yield curves. Yet, there are still few studies, for example, Härdle and

Majer (2012), Hays et al. (2012) and Jungbacker et al. (2013), that investigate

whether the dynamic factor model with nonparametric factor loadings is more

accurate relative to other term structure models. In this paper, we employ the dy-

namic semiparametric factor model, which was developed by Fengler et al. (2007)

and Park et al. (2009) to model the yield term structure and examine its fore-

casting performance relative to the dynamic Nelson-Siegel and other competitive

models, including the random walk. In particular, we evaluate the in-sample fit of

model estimation and compare individual out-of-sample prediction accuracy with

its competitors. In order to assess this, we use a sample of Australian zero-coupon

bond yields consisting of monthly data over the period from April 1999 to March

55
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2013. To gauge the out-of-sample performance, we construct yield forecasts for

short and long term horizons and compare the results with forecasts from several

competitor models. Our forecasting exercises are based on a rolling window es-

timation with fixed size, in which parameters are re-estimated at each stage. In

addition to model comparisons, we use the pairwise Diebold and Mariano (1995)

test against the random walk benchmark and other competitors. We also examine

the robustness of the forecasting ability and investigate the structural break effect

from the global financial crisis during 2007 to 2008 by separating the data into

three sub-samples and re-estimating the yields for each sub-sample. For statisti-

cal evaluation, we implement the Giacomini and Rossi (2010) fluctuation test to

assess the forecasting instability environment.

Our empirical results indicate that a better in-sample fit is provided by the dy-

namic semiparametric factor model. A particular empirical finding is that the

dynamic semiparametric factor model is able to fit a wide range of yield curves

very accurately. The standard errors of the estimated yield are much lower than for

the dynamic Nelson-Siegel model. This finding implies that the dynamic semipara-

metric factor model based on nonparametric B-spline factor loadings is sufficiently

flexible to match cross-sectional yield. The overall forecasting results for the in-

dividual models over the period from 2006 to 2013 are not very encouraging for

yield curve prediction to overcome the naive random walk. The only exception is

the dynamic semiparametric factor model with an AR(1) specification for 6-month

maturity at a 1-month and 3-month ahead horizon, which outperforms the ran-

dom walk. This also shows that the dynamic semiparametric factor model with

an AR(1) specification provides more accurate forecasts for 6-month maturity at

1-month and 3-month ahead with a statistically significant Diebold-Mariano test

against the dynamic Nelson-Siegel counterpart. Additionally, the AR(1) specifi-

cation seems to be the proper stochastic process for the dynamic latent factor.

However, for nearly all maturities at every forecasting horizon, the random walk

produces more accurate results than other models. Our findings affirm the supe-

riority of the random walk for out-of-sample term structure forecast.

As for the robustness check and the forecasting instability assessment on a par-

ticular sub-sample periods, we observe the dynamic semiparametric factor model,

the dynamic Nelson-Siegel and the principal component model all perform poorly
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compared to the random walk for most maturities and forecasting horizons. Dur-

ing the sub-sample period from 2003 to 2006, the observed yields increase sharply

and become highly volatile, and accompanied by a substantial widening of term

spreads. The sub-sample period from 2006 to 2009 has the observed yields de-

clining dramatically during 2008 to 2009. In these two periods, the dynamic

Nelson-Siegel model with VAR(1) provides more accurate prediction compared to

the dynamic semiparametric factor model. This result indicates that the dynamic

Nelson-Siegel model is a more suitable fit with more volatile periods. In contrast,

there is a persistently downward trend in yields throughout the sub-sample period

from 2009 to 2013. The forecasting ability of the dynamic semiparametric factor

model with AR(1) specification tends to outperform the dynamic Nelson-Siegel

model with VAR(1). It seems that each model may play a complementary role

in forecasting, at least during the subperiods in this study. Model uncertainty

is troublesome if one has hopes of obtaining a single model for forecasting. The

results from the Giacomini and Rossi (2010) fluctuation test also confirm the fore-

casting instabilities of the individual models during the period of study. It is clear

that the uncertain environment resulting from the global financial crisis lessened

the predictability performance of both the dynamic semiparametric factor model

and the dynamic Nelson-Siegel model against the random walk.

In the remainder of this paper, the related literatures are reviewed in Section 3.2.

We further present the methodology of the dynamic semiparametric factor model

and the Nelson-Siegel model in Section 3.3 and 3.4. Section 3.5 presents some

stylized facts and a principal component analysis of the Australian yields, follows

by an estimation of the dynamic semiparametric factor model and the Nelson-

Siegel model in Section 3.6. In Section 3.7 and 3.8, we compare the in-sample fit

estimation and out-of-sample prediction accuracy together with the detection of

the structural break effect for the whole sampling and sub-sample periods. We

then give the conclusion of our study in Section 3.9.

3.2 Review of literature

The use of the term structure of interest rates in finance and macroeconomics

has been an active line of research. The term structure carries information about
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expected inflation and the business cycles, which are very important for policy

makers and investors. The term structure yield curve represents a collection of

interest rates that relates to the yield rates of different maturities for any partic-

ular period as well as to the evolution of the yield rates for bonds with the same

maturities over time. It shows the dynamic of the bond yields that evolve across

the periods by linking a yield curve structure in specific cross-section periods. As

such, modeling the term structure of interest rates is challenging. In practice,

the term structure model can be estimated by a statistical model that fits the

yield curve pattern. There are numerous statistical approaches to model the yield

curve, including principal components as in Litterman and Scheinkman (1991),

nonparametric splines interpolation as in McCulloch (1971) and the parametric

exponential-polynomial model as in Nelson and Siegel (1987). Among these sev-

eral statistical models, the Nelson-Siegel which was further extended by Diebold

and Li (2006b) as a dynamic factor model, is widely used by practioners and in

academia. The dynamic Nelson-Siegel can capture both the cross-sectional vari-

ation of the yields in different maturities and the dynamic evolution of the yield

curve through times with a parsimonious structure.

However, the functional Nelson-Siegel model does not allow for capturing more

complicated yield curves, such as when there are multiple changes in the slope

and curvature. It may also be misspecified due to a preselected parametric model.

To avoid the imposition of a predetermined parametric form, there are several

non-parametric methods to estimate yield curve, such as the use of splines as in

the pioneer work of McCulloch (1971) and Vasicek and Fong (1982), or kernel esti-

mation as in Linton et al. (2001) and Jeffrey et al. (2001). Nonparametric methods

are able to minimize incorrect specification and provide accurate cross-sectional

fit for each observed period. Unfortunately, the nonparametric estimation ignores

the evolution of the yield curve over time. There should be some possible latent

factors that explain the variation of the yield curve in different time periods. Thus,

a semiparametric technique has been introduced to handle the complexity of the

dynamic properties of interest rates without arbitrary restrictions imposed by a

pre-specified parametric functional forms. Ghysels and Ng (1998) proposed the

semiparametric term structure model to estimate a cross-sectional nonparametric

function for the yield curve. They use the estimated nonparametric basis func-

tion as a factor loading to obtain yield curve factors over time by parametric least

square estimation that minimizes the errors from the actual yields. Among several
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nonparametric techniques, spline estimation is considered as a proper method to

accommodate the non-linearity of yield corresponding to maturity without flatten-

ing at the boundary as in kernel smoothing. Bowsher and Meeks (2008), Jarrow

et al. (2004) and Krivobokova and Kauermann (2007) employed the spline tech-

nique to fit the cross-sectional dimensions of the yield and derive the yield factors

associated with the coefficient of the nonparametric loading functions to estimate

yield curves for all time periods. Thus, the dynamic evolution of term structure

is captured through the latent factors without assuming the parametric structure

of the cross-sectional dimension of yields.

Basically, the dynamic specification of yield latent factors can be interpreted as

a dynamic factor model (DFM) in the spirit of Geweke (1976) and Sargent and

Sims (1977). The DFM explains a panel of a high-dimensional data set by a small

set of unobserved dynamic factors. Fengler et al. (2007) and Park et al. (2009)

applied the DFM and imposed a smoothness condition on the factor loading that

allows latent factors to represent the evolution of the multidimensional data series.

The proposed method, which is called the dynamic semiparametric factor model

(DSFM), combines the DFM framework with a smooth flexible function for factor

loading coefficients. The smooth factor loadings and time series of latent factors

are simultaneously estimated. The DSFM technique achieves dimension reduction

and the corresponding dynamic factors can then be used for forecasting. Within

the context of yield curve forecasting, the yield dynamics depend on the latent

factors that are modeled by a dynamic stochastic process. Bowsher and Meeks

(2008) developed the cubic spline loading function of the dynamic factor model,

which they labeled the functional signal plus noise (FSN), to estimate the US term

structure from 1984 to 2000. To forecast the term structure, they specified the

dynamic factors in a cointegrated vector autoregressive process or error correction

model (ECM) and found that it outperformed the dynamic Nelson-Siegel model

and the random walk at the one-month ahead horizon. While their approach pro-

vided an accurate term structure forecast, this method was disputed by Koopman

et al. (2010) that the cointegrated factors may be associated with some loss of

economic interpretation.

Since the DFM was proposed by Geweke (1976), it increasingly has played a major

role in term structure modeling and forecasting. Apart from a co-integrated DFM
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term structure forecasting, the dynamic process can be also presented in a autore-

gressive model. There are some recent empirical studies that investigate whether

the DFM with an autoregressive representation is effective for term structure fore-

casting. Härdle and Majer (2012) employed the dynamic semiparametric factor

model for four European countries’ term structure estimation during the period

1999 to 2009 by specifying the dynamic process of the yield factors as a first-order

autoregressive process VAR(1). They found that the dynamic semiparametric fac-

tor model did a better job than the dynamic Nelson-Siegel model in providing more

precise short and long maturities forecasts for a short-term (6-month ahead) hori-

zons. Nonetheless, the prediction performance became worse for longer horizons.

However, they did not reveal the results for their forecasting exercise at shorter (1-

month ahead) or longer (12-month ahead) horizons. This study claimed that the

difficulty in forecasting may be caused by a structural break from financial distress.

Hays et al. (2012) proposed to use a functional data analysis, as in Ramsey and Sil-

verman (2002), to synthesize factor loading and facilitate dynamic factor modeling

of the US term structure over the period 1985 to 2000. They assumed the dynamic

latent factors follow an AR(1) process and found that their functional dynamic

factor model (FDFM) outperforms the dynamic Nelson-Siegel model for both 1-

month and 12-months ahead forecasting horizons despite its failure to do better in

predicting short-term or 3-month and 1-year maturity yields for a 6-month horizon.

Jungbacker et al. (2013) developed a maximum likelihood procedure for imposing

cubic spline smoothing restrictions on the factor loadings of dynamic factor model

of the US term structure. They forecasted the US term structure from 1994 to

2009 and showed their smooth dynamic factor model (SDFM) with VAR(1) rep-

resentation was highly competitive with the dynamic Nelson-Siegel model and the

Bowsher-Meeks functional signal plus noise (FSN) model in producing precise term

structure forecasts, especially for 3-year, 5-year and 10-year maturity at 6-month,

12-month and 24-month ahead horizons. This study also examined the robustness

of the forecasting improvement over the periods 1994 to 1998, 1999 to 2003 and

2004 to 2009. They observed that the smooth dynamic factor model (SDFM) out-

performs the dynamic Nelson-Siegel model over the first two sub-samples periods,

while in the last sub-sample from 2004 to 2009, the functional signal plus noise
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model performs remarkably better.

All of these recent papers choose to compare their dynamic factor model with

the dynamic Nelson-Siegel model. Actually, the dynamic Nelson-Siegel model

can also be regarded as a dynamic factor model. Its functional factor loadings

are pre-specified as fixed parametric curves, whereas other loadings are unknown

smoothing functions. The dynamic Nelson-Siegel is also popular amongst prac-

titioners and academics, and so it serves as a benchmark model. However, Hays

et al. (2012) and Jungbacker et al. (2013) did not compare their models’ forecast-

ing performance with the random walk, which is indeed difficult to beat. Even the

dynamic factor model with smooth loadings seems to outperform its competitors,

especially the dynamic Nelson-Siegel model. The results are still inconsistent and

vary across forecast horizon, maturity and period of study.

For recent Australian term structure studies, there are some empirical studies

that tried to model the term structure and provided insight analysis regarding

the effects of expectation and structural break on the yields and term premia.

Chiarella et al. (2009) estimated the dynamics for interest rate processes with the

multi-factor Heath, Jarrow and Morton (HJM) specification (as in Heath et al.

(1992)). This study found the three-factor model is the proper interest rate model

for Australia. The three factors are labeled as the level, the slope and the twist

effect. The contribution of each factor towards overall variability of the interest

rates were claimed to be considerable in explaining the Australia term structure.

Finlay and Chambers (2009) used the affine term structure model to fit Australian

government bonds with the aim of decomposing forward rates into expected fu-

ture overnight cash rates plus term premia. They found the expected future short

rates derived from the model fluctuate around the average observed short rates.

However, term premia appeared to have a decline in levels and displayed smaller

fluctuations after the implementation of inflation targeting that stabilized inflation

expectations. This suggests that the market has become less uncertain about the

expected interest rates. Prior to the emerging of the global financial crisis, term

premia have been negative, which actually indicated the concern over potential

risk from financial distress. This study was claimed to provide a useful decompo-

sition of changes in the expected path of interest rates and term premia.
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Further development were done to incorporate structural break with term struc-

ture modeling. Suardi (2010) investigate the structural breaks on the cointegrating

relationship implied by the linear expectations hypothesis of the term structure of

interest rates. They found that structural break generated a shift in the cointe-

gration and altered the information content of the term structure. Their findings

provided an implication for policy makers to take into account a regime shift in

the cointegrated term structure modeling. Elliott et al. (2011) proposed a Markov

regime-switching affine term-structure model to include the impact of structural

changes on the term structure dynamics. They introduced a double Esscher trans-

formation to determine a price kernel which was actually defined by the product

of two density processes that measure changes in the interest-rate process and the

Markov chain. As a result, their model takes into account both the market risk

and the long-term economic risk that are useful for term structure modeling.

Although much progress has been made in the Australian term structure modeling,

there is still room for in-depth investigations on the accuracy of the modeling and

forecasting, especially the systematic comparison between the parametric Nelson-

Siegel model and the semiparametric model that are built on the dynamic factor

type approach. For a term structure study in general; there remain relatively few

studies that consider the effects of the economic environment uncertainty on term

structure forecasting accuracy, for example; Altavilla et al. (2013), Araújo and

Cajueiro (2013), Exterkate et al. (2013) and Dijk et al. (2014), particulary during

the global financial crisis.

3.3 The dynamic semiparametric factor model

The dynamic semiparametric factor model (DSFM) provides a general method for

modeling and forecasting time series data that captures the dynamic evolution of

high-dimensional time series by a non-parametrically estimated lower-dimensional

factor. It has the ability to flexibly fit various shapes of the cross-sectional data

while providing time-varying factors that describe the dynamics of the time se-

ries. This method was proposed by Fengler et al. (2007) on their implied volatility

surface study. Due to its virtue of parsimony and parametric interpretability, the

dynamic semiparametric factor model is widely used in many areas of research,
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including Giacomini et al. (2009) on risk neutral density, Härdle and Trück (2010)

on hourly electricity price, Trück et al. (2012) on spot and futures CO2 emission

allowance prices, Härdle et al. (2012) on liquidity supply, Härdle and Majer (2012)

on bond yield term structure modeling and Choros-Tomczyk et al. (2013) on col-

lateralized debt obligations surface dynamics. Detailed discussion on the dynamic

semiparametric factor model specification is given below.

3.3.1 Semiparametric estimation

The dynamic semiparametric factor model estimates yield term structure with a

semiparametric procedure. As discussed earlier, the nonparametric methods are

used in modeling the yield curve to minimize the problems caused by an incorrect

specification of the parametric methods, and additionally allow a more accurate fit

to the observed curves. However, they are estimated nonparametrically for each

cross-sectional period and thus ignore all existing dynamics in the yield curve. To

capture the dynamic term structure, the dynamic latent factor model is introduced

to nonparametric estimation. The dynamic semiparametric factor model combine

advantages of these two approaches, allowing a nonparametric fit for curves to

time and capturing the evolution of curves in time based on latent factor estima-

tion. This method models dynamic yield curves without assuming a parametric

structure for the cross-section dimension of the process.

3.3.1.1 The dynamic semiparametric regression

Semiparametric regression imposes some structure but the regression function is

still not directly predetermined. However, the structure of the model leaves less

flexibility than in the nonparametric case. One motivation for creating this limi-

tation comes from the curse of dimensionality, since in high dimensions nonpara-

metric methods may become infeasible.

Among many possible semiparametric models, we focus on the imposition of the

additive property as in Härdle (2004), Fengler et al. (2007) and Härdle and Majer
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(2012). The key assumption is that the regression function has an additive struc-

ture of the explanatory variable coordinates. The actual yields are supposed to be

linear combinations of high dimensional latent factors. Proposing a suitable sta-

tistical model results in the problem of finding an appropriate way of reducing the

high dimension without losing too much information on the spatial and dynamic

structure of the process. A common way to reduce the dimensionality of multi-

variate processes is to apply factor decomposition. For instance, a J-dimensional

vector of yield observations Yt = (Yt,1, , Yt,j) can be represented as an L-factor

model.

Yt,j =
L∑
l=1

Zt,lml,j(Xt,j) + εt,j (3.1)

where Yt,j is the yield obtained by holding a bond at time t to time-to-maturity

j; Zt,l are latent factors of the factor l at date t, ml,j(Xt,j) is an undetermined

smooth function, or so called basis function, that characterizes the loading of factor

l given time-to-maturity j; Xt,j are maturity-related variables representing bond

yield characteristics at date t; and εt,j are errors that explain the residual parts.

The index t represents time evolution as 1, ..., T and index j is the number of

bonds with different maturities 1, ..., J observed at that time. The corresponding

yield curve can be shown in a J-dimensional vector of yields Yt,j = (yt,1...yt,J)′.

This high dimension of the cross sectional J bonds can be reduced to a smaller

number of factors L� J . The dynamics of yield through time are then explained

by the time propagation of the L factors and can be estimated through the evolu-

tion of the latent factors Zt,l. The latent factors reflect bond yield characteristics

associated with factor-loadings.

3.3.1.2 Basis function estimation

The main assumption of the dynamic semiparametric factor model is that the

loading coefficients ml,j(Xt,j) are unknown nonparametric functions. These func-

tions can be approximated by many classes of smoothing techniques. We follow

Laurini and Hotta (2010) and Härdle and Majer (2012) to choose the B-spline

function as a nonparametric basis function.
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A generic spline is a piecewise polynomial curve, constructed from individual poly-

nomial segments joined at knot points and its first derivatives are continuous at

all points. It approximates the cross-sectional unknown basic function using the

selected K knots within the domain of variation of Xt,j. In particular, if there

are K knots positioned at the maturities that are deterministic and fixed over

time, then the piecewise polynomial ml,j(Xt,j) corresponding to subinterval in the

domain of Xt,j can be written as the linear regression function. Therefore, the co-

efficient associated with the spline basis function can be estimated by the method

of least squares.

To calibrate factor loadings, ml,j are approximated by a series of estimators, given

the B-spline basis function. More formally, the loadings ml,j(.) are linearized with

the piecewise-defined smooth polynomial function as

ml,j(Xt,j) =
K∑
k=1

al,kψk(Xt,j) (3.2)

where Xt,j are the maturity-related variables representing j maturity bond yield

characteristic at date t. ψk(.) = ψ1, ..., ψK denotes the vector of the B-spline basis

functions. K is the number of knots used for the spline functions and is interpreted

as a bandwidth parameter, and al,k are coefficients that approximate ml,j(.) with

Aψ.

Suppose that the yield curves are twice continuously differentiable, then the least

square error is achievable by the spline approximation to the observed yields with

an arbitrary number and positioning of knots. A set of spline polynomial pieces

can be viewed as a local approximation to the cross-sectional yield, with the poly-

nomial pieces joined together to form a smooth function overall. Spline functions

are used frequently for numerical yield curve approximation because they provide

a balance between accurate approximation and smoothness.
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3.3.2 The dynamic factor model

In this subsection, we present the theoretical background of the dynamic factor

model, which is combined with the nonparametric basic function estimation for

loadings to form the dynamic semiparametric factor model.

3.3.2.1 Dynamic regression

In time-varying regression, we simultaneously analyze in space and time dimen-

sions. Note that neglecting the time structure would lead to a regression based on

pooled data. However, such a simplification could cause a loss of important infor-

mation. Therefore, we perform the space or cross-sectional regression over time

with certain modeling assumptions that build dynamic linkages with the latent

factors time dependent.

E(Xt,j|Yt,j) =
L∑
l=0

Zt,lml,j(Xt,j) (3.3)

This representation is relatively parsimonious and allows a convenient separation

between space and time effects. Time changes are caught by latent factor Zt,l,

which can be afterwards analyzed through times series methods. The space de-

pendence is achieved by functions ml,j, which operate on exploratory variables Xt,j

and do not depend on time. The models assume a linear link between the time and

space components. The yield latent factor Zt,l are common for all observations in

moment t and the basic functions ml,j(Xt,j) determine their influence on yields Yt,j.

3.3.2.2 The dynamic semiparametric factor model

In the case, where the maturity dimension J of the yield time series Yt,j is relatively

large, it may be better to apply dimension reduction techniques. One possible

approach utilizes factor analysis. Yt,j can be then rewritten to

Yt,j =
L∑
l=0

Zt,lml,j(Xt,j) + εt,j (3.4)
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which is exactly the dynamic semiparametric regression discussed earlier. This

representation assumes the existence of co-movements among all components of

Yt,j, which are driven by unobservable factors Zt,l.

The yield latent factors Zt,l are time series processes. The usual way is to assume

that these processes are first-order autoregressive processes, represented by

Zt = ΦZt−1 + ωt (3.5)

where Zt,l is the yield latent factor; ml,j(Xt,j) is a factor loading with determin-

istic maturity-related variables Xt,j; Φ are parameter matrices and εt,j; and ωt

are random components independent of each other. Since the dynamics of the fac-

tors are incorporated, the above representation is called the dynamic factor model.

3.3.3 Estimation algorithm

This subsection is devoted to the estimation algorithms of the dynamic semipara-

metric factor model. We present two approaches representation on the discrete

grid, and series estimation. Before we discuss in detail the estimating procedures,

we recall once more the structure of the model.

3.3.3.1 Series estimators

The dynamic semiparametric factor model of order L that incorporates all factors

and factor loadings can be shown as

Yt,j =
L∑
l=0

Zt,l

K∑
k=1

al,kψk(Xt,j) = ZT
t Aψ(Xt,j) (3.6)

where ZT
t = (Zt,0, ..., Zt,L)T and coefficient A = al,k. The coefficient matrix A

and time series of latent factor Zt can be estimated using least squares. The

estimation procedure searches through all estimated matrices A and time series

Zt,l minimizing the sum of squared residuals.
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(Ẑt, Â) = argmin
Zt,A

T∑
t=1

J∑
j=1

(Yt,j − ZT
t Aψ(Xt,j))

2

= argmin
Zt,A

T∑
t=1

J∑
j=1

(Yt,j −
L∑
l=0

ZT
t al,kψ(Xt,j))

2 (3.7)

To find a solution for the minimization problem above, a Newton-Raphson algo-

rithm is used. Following Borak et al. (2005) and Park et al. (2009), the procedure

starts by setting the initial estimate Ẑ0
t,l to be equal to a white noise sequence of

appropriate length. Next, taking this initial estimate as given, the estimate a0
l,k is

obtained. Then we proceed iteratively switching from Zt,l to al,k and vice versa

until convergence is reached.

3.3.3.2 Latent factor specification

An important parameter in the model is the number of factors L and corresponding

factor loadings. The choice of L is based on the explained variance by factors

EV(L) as in Borak et al. (2006) and Härdle and Majer (2012). For different values

of L, the proportion of the variation explained by the model compared to the

simple invariate estimate given by the overall mean can be calculated by

EV (L) = 1−
∑T

t=1

∑J
j=1(Yt,j −

∑L
l=1 Zt,lml,j(Xt,j)

2)∑T
t=1

∑J
j=1(Yt,j − Ȳ )

(3.8)

Since the model is not nested, the whole estimation procedure has to be repeated

for different L’s until the explanatory power of the model is considered to be suf-

ficient.

3.4 The Nelson-Siegel Model

In this section, we describe the exponential-polynomial Nelson-Siegel model and

the modified Nelson-Siegel approach proposed by Diebold and Li (2006b). Nelson
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and Siegel (1987) proposed to fit the forward rate curve, and thus yields or spot

rates, from observed coupon-bond prices at a given date with a flexible, smooth

parametric function. They demonstrated that their proposed model is capable

of capturing many of the typically observed shapes that the yield curve assumes

over time. The Nelson-Siegel model is widely used among academia and policy

maker practitioners, and it is ranked as one of the most popular term structure

estimation methods.

3.4.1 The Nelson-Siegel parametric model

Nelson and Siegel (1987) suggest to fit the forward rate curve at a given date with

a class of prespeficied parametric functions. The functional form they advocate

uses Laguerre functions which consist of the product between a polynomial and an

exponential decay term. The resulting Nelson-Siegel approximating forward curve

can be assumed to be the following three-factor term structure model.

ft(τ) = β1,t + β2,te
−λtτ + β3,tλte

−λtτ (3.9)

To obtain the yield (or spot rate) yt on a zero-coupon bond with τ periods to

maturity, it is necessary to take the equally weighted average of the forward rates.

yt(τ) = β1,t + β2,t(
1− e−λtτ

λtτ
) + β3,t(

1− e−λtτ

λtτ
− e−λtτ ) (3.10)

where yt(τ) is the spot-rate curve with τ time to maturity, and β1,t, β2,t and β3,t

are latent factor parameters, which in dynamic form are referred to as level, slope

and curvature and λt is referred to the exponential decay parameter.

The three latent factor parameters correspond to the factor loading components

on these parameters. The factor loading on the β1,t parameter is 1. As this is a

constant, it does not decay to zero and will be the same for all maturities. So,

this long term factor β1,t is independent of time to maturity and for that rea-

son it is often interpreted as the long-run yield level. The factor loading that is

weighted on β2,t represents the short-term factor with a loading of 1−e−λtτ
λtτ

. This

function starts at one and decays exponentially to zero if time to maturity τ grows.
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Therefore, the corresponding latent factor is often denoted as the slope factor. β3,t

is also weighted by a function depending on time to maturity τ . This function
1−e−λtτ
λtτ

− e−λt , starts at zero and when the time to maturity τ grows it initially

increases and then decreases back to zero. Hence this component creates a hump

and so it is often denoted as the medium-term component. The λt parameter is

an exponential decay parameter that determines the rate at which the regressor

variables decay to zero. Small values for λt result in a slow decay and a better fit

for longer maturities, large values of λt will result in fast decay and a better fit

for short maturities. In addition, the λt parameter also governs where the factor

loading reaches its maximum.

Diebold and Li (2006b) provide insights to how these three factors representing

the long, short and medium components can also be interpreted as the level, slope

and curvature of the curve. The factor loading on the long term component β1,t

is 1 and the same for all maturities, any increase in β1,t will cause the whole curve

to shift upwards and thus it can be seen that this factor represents the level of

the curve. The short term factor β2,t can be viewed as the slope of the curve, an

increase in β2,t will cause the short rates to increase more than long rates as the

short rates load more heavily on β2,t,thus changing the slope of the curve. Finally,

the medium-term factor is closely related to the curvature of the curve, as both

long and short-term maturities do not load heavily on it, but an increase in β3,t

will increase the curve for medium maturities and so increasing the curvature of

the curve.

3.4.2 Optimal decay parameter and latent factor calibra-

tion

In order to obtain these parameter estimates, we follow Annaert et al. (2013) and

Rezende and Ferreira (2013) by estimating a linearized Nelson-Siegel model. The

parameters have typically been estimated by minimizing the root mean squared

errors (RMSE).
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Parameter estimation is computed by running a standard optimization technique.

We use a grid of different values of exponential decay λt parameter, and then run an

ordinary least square algorithm to obtain latent factors β1,t, β2,t and β3,t parameter

estimates. More generally, the parameters of the models can be estimated by

minimizing the difference between the model yield rates and the actual yield rates.

The optimization problem can be stated as.

λ̂ = arg min
λ∈Ω
{ 1

T

T∑
t=1

√√√√ 1

J

J∑
j=1

(yt,j(τ)− ŷt,j(τ, λ, β))2} (3.11)

With given λ, the value of latent factor parameters can be computed with the

ordinary least squares. This procedure was repeated for a whole grid of λ values

ranging in Ω ∈ (0.0000, 1.0000). The estimates with the lowest root mean squared

errors (RMSE) were then chosen as the optimal parameter set.

3.4.3 The dynamic Nelson-Siegel model

Diebold et al. (2006) proposed a dynamic term structure of the Nelson-Siegel model

by specifying first-order autoregressive processes for the latent factors. De Pooter

(2007) generalized the dynamic Nelson-Siegel model as the dynamic latent factor

model, given by the Nelson-Siegel model and the dynamic process of the latent

factors.

The Nelson-Siegel model is

Yt(τ) = Xt(τ)βt (3.12)

and the stochastic process of the latent factor

βt = µ+ Φβt−1 + εt (3.13)

The first dynamic factor equation above specifies the vector of yields, which con-

tains T different maturities. The Nelson-Siegel yield curves are those discussed in

the previous subsections with βt being the vector of factors and Xt as the matrix
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of factor loadings, given by the estimated decay parameter λ.

To estimate the dynamic Nelson-Siegel model, we first solve for the optimal decay

parameter λ. By doing so, the Nelson-Siegel model is treated as a linear cross-

sectional model and we can calculate the latent factors for every particular period

from the ordinary least squares estimation. Then, we estimate the factor dynam-

ics by specifying the stochastic process of latent factors and hence the dynamic

yield curves. The dynamic latent factors are assumed to be a first-order univariate

autoregressive process AR(1) for each factor as well as a first-order multivariate

autoregressive process VAR(1).

In fact, the Nelson-Siegel decay parameter λ and latent factors βt parameters are

able to estimated in one step by using the Kalman filter as in Diebold et al. (2006).

However, this simultaneous estimation is achieved with the expense of more com-

putational efforts. Instead, we follow Diebold and Li (2006b) to estimate the

dynamic Nelson-Siegel model by the two-step approach. Diebold and Li (2006b)

and Koopman et al. (2010) argued the two-step forecasting approach does better

than directly estimate all parameters and dynamic term structure, especially for

the longer maturities.

3.5 Australian yield statistics and stylized fact

In this section, we present the empirical and stylized fact of the Australian yield

data. The details of the data sets are reported in Section 3.5.1. The stylized fact

and descriptive statistics are then presented in Section 3.5.2 and Section 3.5.3. We

also conduct principal component analysis of the Australian yields in Section 3.5.4.

3.5.1 Data

For the empirical study, we use the Australian zero-coupon bond yields provided

by Thomson Reuter Datastream. The data set consists of monthly yield series of
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11 maturities government bond over the period April 1999 to March 2013. The

maturities are 6, 12, 24, 36, 48, 60, 72, 84, 96, 108 and 120 month-to-maturities.

3.5.2 Yield stylized fact

During the period of analysis, the Australian government bond yields exhibit a

sizable inter temporal variation. Figure 3.1 illustrates a three-dimensional plot of

the data set and Figure 3.2 depicts time-series plots for a subset of the maturities

and shows how yield vary substantially throughout the sample.

Figure 3.1: A panel of monthly Australian government bond yields
Notes: The figure shows a 3-dimension plot of the Australian government bond yields. Sample
period is April 1999 to March 2013 (168 months).

In Figure 3.1, the three-dimensional plot shows that the yield series vary heavily

over time for each of the maturities. However, there is a strong common pattern

in the 11-maturity bond series over time. For most months, the yield curve is the

upward sloping and concave. Casual observation of this figure shows the upward

trend of yield for different maturities over the period 1990–2000, 2003–2007 and

2008–2009, revealing a concentration on stabilized inflation. Though on average
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it is upward sloping, there are periods when it is downward sloping. During 2000–

2001, 2007–2008 and from 2010 onwards, the yield curves were on a downward

trend, responding to concern about the dot-com crisis, the global financial crisis

and the European sovereign debt crisis respectively. It is also observed that yield

dynamics are persistent and the short end of the yield curve is more volatile than

the long end. In other words, volatility tends to be lower for the yields of bonds

with a longer time to maturity. These findings are supported by the time series

plots of the 6-month, 2-year and 10-year bonds in Figure 3.2.

Figure 3.2: The evolution of the Australian Yields from April 1999 to March
2013

Notes: This figure shows time series plots of 6-month, 2-year and 10-year Australian government
bonds yields over the period of study, covering the 2000-2001 dot-com crisis, the 2008-2010 global
financial crisis and the 2010-2012 European sovereign debt crisis.

As can be seen in Figure 3.2, the 6-month, 2-year and 10-year bond yields were

exposed to a number of changes during this period from 1999 to 2013. From 1999

to 2000 and 2001 to 2005, long-term yields were higher than short-term yield,

which indicates raising expected short-term interest rates and longer-term interest

rates in response to inflationary pressure. In the aftermath of the global financial

crisis from 2008 to 2010, long-term yield rose once again and widened spread over

short-term yields. Investors anticipated greater volatility and uncertainty in the

future, which increases risk premium and influences the yield spread. Prior to the
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global financial crisis and the European sovereign debt crisis, short-term yields

were higher than long-term yields and caused the yield curve to be inverted. This

means the market expected falling interest rates which are historically followed by

periods of recession.

3.5.3 Yield statistics

To summarize the yield information over the period from 1990 to 2013, the de-

scriptive statistics of government bonds at different maturities and for the yield

curve empirical level, slope and curvature factors are reported. Table 3.1 provides

mean, standard deviation, minimum, maximum and some autocorrelation coeffi-

cients for bonds at different maturities and proxies of empirical level, slope and

curvature in accordance with Diebold and Li (2006b).

Table 3.1: Descriptive statistics of the Australian government bond yield

Maturity Mean Std Dev Min Max ρ(1) ρ(12) ρ(30)

6 5.4305 1.1364 3.1230 8.4747 0.9635 0.1035 -0.0595
12 5.4169 1.1963 2.9999 8.4761 0.9596 0.1413 -0.0031
24 5.3795 1.1206 2.9261 7.9124 0.9551 0.1834 0.0295
36 5.5132 1.0676 3.0509 7.8198 0.9520 0.2210 0.0273
48 5.6867 1.0120 3.2013 7.8413 0.9481 0.1843 0.0114
60 5.7641 0.9664 3.3207 7.7188 0.9462 0.1752 0.0081
72 5.8167 0.9179 3.4359 7.6321 0.9426 0.1570 0.0038
84 5.8661 0.8766 3.5386 7.5947 0.9406 0.1468 0.0012
96 5.9011 0.8451 3.6285 7.6153 0.9373 0.1391 -0.0024
108 5.9295 0.8188 3.7083 7.6355 0.9343 0.1345 -0.0024
120 (Level) 5.9540 0.7974 3.7713 7.6596 0.9314 0.1303 0.0000
Slope 0.5236 0.8186 -1.2409 2.7027 0.9497 0.0849 -0.1761
Curve -0.6255 0.5742 -2.2786 0.3583 0.8919 0.2713 0.1259

Notes: The table shows summary statistics for the Australian government bonds
yields. The results shown are for annualized yields (expressed in precentages).
The sample period is April 1999 to March 2013 (164 observations). Reported
are the mean, standard deviation, minimum, maximum, and the 1st, 12th and

30th sample autocorrelation.

From Table 3.1, we see that the average yield curve is upward sloping. Volatility

decreases by maturity, with the exception of the 12-month maturity being more

volatile than the 6-month maturity. Important for econometric analysis, yields for
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all maturities are very persistent. The persistence is most notable for short term

bonds. As we can see, the first-order autocorrelation of the 6-month bill is 0.9635,

representing highly persistent yields. The slope, level and curvature proxies are

persistent but to a lesser extent. The curvature proxies is least persistent com-

pared to other factor proxies.

3.5.4 Principal component analysis of the yield

Before we proceed with the empirical estimation of the dynamic semiparametric

factor model and the Nelson-Siegel model, we explore how latent factors based on

principal component analysis contribute to understanding variations in the yields.

3.5.4.1 Principal component analysis

Principal component analysis can retrieve a L number of common factors spanning

the term structure of the yields Yt,j(τ), denoted as PC, for t = 1, ..., T . This can

be done by the spectral decomposition of the variance-covariance matrix of Yt,j(τ),

for maturities τ = 1, ..., J , denoted as ΣY

ΣY = ΩΘΩ
′

(3.14)

where J > T , Θ is a diagonal matrix with its elements as the eigenvalues of matrix

ΣY . Ω is an orthogonal matrix whose columns are the eigenvectors corresponding

to the eigenvalues of matrix ΣY .

Given estimates of Ω and Σ, the principal component factors PC can be retrieved

from the yields as follows.

PCt = Ω
′
(Y − Ȳ ) (3.15)

where Ȳ is the sample mean of the yield. Note that PC may not correspond

one-to-one to unobserved factors, but they will be very highly correlated.
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3.5.4.2 Factor specification based on principal component analysis

In this subsection, we use a common non-parametric statistical technique principal-

components analysis (PCA) to explore the dynamic behavior of bond yields in

Australia.

The objective is to estimate yields and extract factors that govern yield curve

dynamics. Before estimating the term structure, the principal component analysis

is conducted to characterize the number of latent factors and the general pattern

of the factor loadings.

Table 3.2: Percentage of variation in yields explained by the first L principal
components

L =1 L=2 L=3 L=4 L=5

Explained Variation (EV) 93.13 99.56 99.86 99.95 99.98

Notes: This table reports explained variation (EV) in yields. The numbers in
the table are the percentage variation in yields explained by the first L principal

components.

The first three principal components obtained through this analysis, explain al-

most all the variation of the term structure of yield; over 99.86 percent. The

first factor explains the largest part of this variation, which is 93.13 percent. The

next part, which is 6.73 percent, is explained by the second and the third factors.

However, the fourth and fifth components contribute negligible increments to ex-

plained variation.

As can be seen from Figure 3.3, the loadings of the three principal components

behave as a horizontal, an invert and a hump shape curve.

The loading of the first principal component is nearly horizontal. This pattern

means that changes in the first principal component correspond to parallel shifts

in the yield curve. The loading of the second principal component is downward

sloping. Changes in the second principal component thus rotate the yield curve.

The loading of the third principal component is hump shaped. The hump occurs
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Figure 3.3: Estimated loadings of yields on principal components
Notes: This figure provides a plot of yield loadings implied by response of yields to changes in the
first three principal components; level, slope and curvature. The loadings of three components
are plotted as a function of yield-to-maturity.

at intermediate maturities. The interpretation of these principal components in

terms of level, slope and curvature is consistent with the principal component

analysis study by Litterman and Scheinkman (1991) and the Nelson-Siegel model

study by Diebold and Li (2006b)

3.6 Model estimation

In this section, we present the empirical results of our term structure estimation.

The dynamic semiparametric factor model (DSFM) estimation is provided in Sub-

section 3.6.1. Then, we present the estimation results for the Nelson-Siegel model

in Subsection 3.6.2.
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3.6.1 The dynamic semiparametric factor model estima-

tion

The DSFM yield curve was calibrated to the data set comprising the entire period

for the term structures. Following Härdle and Majer (2012), this study specifies

the knots as the time to maturity grid and the order of tensor B-splines is set to 1.

The factors L are selected according to their contribution to the total variation.

The higher the number of factors, the better the general fit, however this at the

cost of parsimony and robustness of the model.

3.6.1.1 Factor identification

An important parameter in the model is the number of factors L and correspond-

ing factor loadings. The choice of L is based on the explained variance by factors

EV(L) as in Borak et al. (2005) and Härdle and Majer (2012).

Table 3.3: Share of variance explained by the dynamic semiparametric factor
model with different number of factors

L =1 L=2 L=3 L=4 L=5

Explained Variation (EV) 0.9109 0.9861 0.9984 0.9994 0.9998

Notes: This table summarize the explained variation (EV) of the dynamic semi-
parametric factor model with different number of factors. The numbers in the
table are the percentage variation in yield explained by the first L factors. No-
tice that the first three factors together explain 99.84 of the total variation of

the yields

As can be seen from Table 3.3, the percentage of cumulative is explained variance

for each factor; 91.1 percent in the case of the one factor and 98.61 percent in

the case of the two factors, while the three factors can explain 99.84 percent of

variance. The inclusion of the third factor improves the explanatory power of the

fit and, therefore, the three factors model is appropriate. However, the fourth

and fifth factors indicate the superfluous inclusion provided by their increment

explained variation.
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3.6.1.2 Estimated factor loading

The series estimators of ml,j were extracted by approximating with tensor B-

splines. Since the model is identifiable up to the choice of factor, for this study,

we choose function ml,j(.) based on L = 3 factor with respect to the variance of

Zt. In the dynamic semiparametric factor model, the number of factors are deter-

mined up to rotation transformations that contain the most underlying informa-

tion. We follow Myšičková et al. (2011) and Härdle and Majer (2012) to model

the J-dimensional random vector with L-factor that are allowed for nonorthogo-

nal rotation. The nonorthogonal rotation greatly simplifies the clusters between

factors and maturities which are not necessary to orthogonal to each other. The

estimate m1, m2 and m3 are plotted in Figure 3.4.

Figure 3.4: Estimated loadings of the dynamic semiparametric factor model
Notes: This figure presents estimated loadings of the first, second and third factors extracted by
the dynamic semiparametric factor model. The structure of loadings are able to interpreted as
level, slope and curvature factor, respectively.

The loadings in Figure 3.4 represent the level, slope and curvature, as in the spirit

of the ? term structure model. The loading m̂1 is constant, horizontal and may

be viewed as a long-term factor. This pattern means that changes in the first

loading correspond to parallel shifts in the yield curve. This loading is therefore
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called the level factor loading. The loading m̂2 is downward sloping and decays

monotonically and quickly so that it may be viewed as a short-term factor. This

shape implies changes in the second factor loading by the rotation, yield curve,

and therefore it may be called a slope factor.

The loading m̂3 is hump shaped. It starts at a negative value and increases, then

decays to be negative again. The hump normally occurs at intermediate maturi-

ties, so it may be viewed as a medium-term factor. The interpretation of these

three factors in terms of level, slope, and curvature is consistent with previous yield

curve studies as in Litterman and Scheinkman (1991), Diebold and Li (2006b) and

Piazzesi (2010).

3.6.2 The Nelson-Siegel model estimation

To fit the yield curve to the Nelson-Siegel model, we estimated the optimal decay

parameter and other corresponding latent factors. Most researchers have fixed

the shape parameter with the pre-specified value of the decay parameter and have

estimated the latent factors. However, we chose the optimal decay parameter that

minimizes the sum of squared errors by using the ordinary least square over a grid

of decay parameters.

We searched over a grid of possible value of decay parameters to find the best-

fitting value by using linear least squares. We found the optimal decay parameter

over the whole sample is 0.0822.

Next, we plotted the factor loadings based on the optimal decay parameter 0.0822

as a function of maturity in order to understand intuitively what the Nelson-Siegel

factor loadings look like and provide the reason why the factors they load are in-

terpreted as level, slope and curvature.

We observed that the decay parameter governs the exponential rate of growth of

the slope factor as well as the rate of growth and decay of the curvature factor.

Thus small lambda produces slow decay and can better the yield curve at long
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Figure 3.5: Estimated Loading Factors of the Nelson-Siegel Model
Notes: Factor loadings plotted with an optimal decay factor lambda λ value of 0.0822 where the

factor loading on level factor is 1, the factor loading on slope factor is 1−e−λtτ
λtτ

and the factor

loading on curvature factor is 1−e−λtτ
λtτ

− e−λt .

maturities, whereas large λ produces fast decay and therefore yields with maturi-

ties less than a year better.

According to Nelson and Siegel (1987), β1,t should be regarded as a long-term in-

terest rate and can be interpreted as a level parameter. β2,t should be regarded as

the difference between long-term and short-term interest rates and be interpreted

as a slope parameter. β3,t represents the medium-term interest rate and could be

interpreted as a curvature parameter. Finally, λ is a decay parameter, measuring

the rate at which the parameters decay to zero. For low values, the parameters

will decrease slowly and for high values fast. Therefore, low and high values of λ

could be used to fit the yields at long and short-term maturity respectively.

From the yield equation formula we notice that the loading of parameter β1,t is

constant and equal to 1. This means that β1,t does not decay to zero as time to

maturity approaches infinity and hence it will affect the yield curve at all possible

maturities. Therefore, it is indeed appropriate to regard it as a long-term factor.
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Further, since the loading of β1,t is constant at all maturities, the changes of the

factor will affect all the yields in the same way, changing the level of the yield curve.

The loading of parameter β2,t is equal to 1−e−λtτ
λtτ

. For fixed values of λ, it is a

decreasing function of τ starting from 1 when τ converges to zero and decreasing

to zero when τ ends to infinity. Since the loading of this parameter decays to zero

faster than the one of β3,t, it is appropriate to regard it as a short-term factor.

Also, since the loading of β2,t is higher for short-term maturities, changes of this

factor will affect more the short-term yields, changing the slope of the yield curve.

Finally, the loading of parameter β3,t is equal to 1−e−λtτ
λtτ

− e−λt and it starts at

zero when τ converges to zero, increases and then decreases again, converging to

zero as τ ends to infinity. The fact that the loading starts and finishes with zero

indicates that this parameter does not affect the short term and the long-term

yields, but only the medium-term yields. Hence, it is appropriate to regard it as

a medium-term factor and changes of the factor will change the curvature of the

yield curve. Figure 3.5 presents the loadings of each one of the three factors for

the fixed value of 0.0822.

3.7 Model estimation comparison

In this Section, we compare the estimation accuracy and latent factor of the dy-

namic semiparametric factor model and the Nelson-Siegel model. To evaluate the

performance of both models, we first conducted an in-sample fit assessment and

compare the performance between the two models for the whole period of study

from April 1999 to March 2013 in Subsection 3.7.1. In Subsection 3.7.2, we present

the empirical result of the estimated latent factors as well as their empirical proxies.

3.7.1 Term structure estimation accuracy

First, we assess in-sample fit performance of the dynamic semiparametric factor

model (DSFM) and the Nelson–Siegel model. We compare the root mean square
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error (RMSE) and the explained variation between both models in Table 3.4.

Then, we present the descriptive statistics of the yield curve residuals of both

models for all the maturities in Table 3.5. We also graphically compare the actual

yields with estimated term structure at some specific dates to facilitate in-sample

fit comparisons of the estimated model in Figure 3.6.

3.7.1.1 Root mean square error and explained variation

The performance of the estimates can be assessed by fitting the latent factor with

the time-invariant factor loading at a given point of time and detect the root

mean square error (RMSE) as well as the explained variation of the latent factors.

The dynamic semiparametric factor model (DSFM) is expected to outperform the

Nelson-Siegel (NS) since it is more parsimonious and flexible.

Table 3.4: The root mean square error (RMSE) and explained variation (EV)

all 6-m 1-y 2-y 3-y 5-y 7-y 10-y EV

NS 0.0477 0.0439 0.0830 0.0641 0.0494 0.0499 0.0129 0.0417 0.9978
DSFM 0.0398 0.0455 0.0680 0.0513 0.0421 0.0413 0.0125 0.0350 0.9984

Notes: This table reports root mean square error (RMSE) for the in-sample
fit and explained variation (EV) of the evaluated models where NS and DSFM
denote the Nelson-Siegel and the dynamic semiparametric factor model respec-

tively. Bold numbers indicate DSFM outperforms NS

As shown in Tables 3.4, up to 99.84 percent of the explained variation in term

structure curves can be explained the three-factor dynamic semiparametric factor

model, whereas the three-factor Nelson-Siegel model can explain 99.78 percent of

the term structure variance. For the overall in-sample fit assessment, the dynamic

semiparametric factor model outperforms the Nelson-Siegel model in providing a

relatively lower root mean square error (RMSE). Thus, the dynamic semipara-

metric factor model latent factors do a better job than the Nelson-Siegel model

in capturing the cross-sectional variation of the yield and providing in-sample-fit

with lower root mean square error (RMSE). This result agrees with Laurini (2014)

who finds the fuctional dynamic factor model, which is based on the use of non-

parametric penalised splines, outperforms the Nelson-Siegel model to produce a

better in-sample fit. Härdle and Majer (2012), who also compares the in-sample fit
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performance between the dynamic semiparametric factor model and the Nelson-

Siegel model, observes that the dynamic semiparametric factor model outperforms

the Nelson-Siegel model in estimating Greek term structure. They find it fails to

provide lower root mean square error (RMSE) relative to the Nelson-Siegel model

for term structure estimation in Italy, Portugal and Spain. Indeed, several studies,

including De Pooter (2007), Koopman et al. (2010) and Laurini and Hotta (2010)

find the more flexible and less-restricted models can beat the Nelson-Siegel model

in achieving better in-sample fit.

3.7.1.2 Relative residual statistics

In this part, we compare the in-sample fit performance between the dynamic semi-

parametric factor model and the Nelson-Siegel model by presenting the descriptive

statistics of the residual for all the maturities. We report the residual mean, stan-

dard deviation, maximum value, minimum value, root mean square error (RMSE)

and autocorrelation at various displacements of the residuals in Table 3.5.

The results show that the dynamic semiparametric factor model (DSFM) greatly

outperforms the Nelson-Siegel model in producing negligible mean errors at all ma-

turities. The RMSE and standard deviation produced by the dynamic semipara-

metric factor model is also less than those from the Nelson-Siegel model, except

for the 6-month maturity. Both models seem to provide better fit for the medium-

term maturities, whereas yields for short and long maturities have a slight worse

fit, particularly for the shortest or 6-month maturity. According to the residual

autocorrelation, both models produce high error term autocorrelation, especially

at lag one with ranges from 0.5 to 0.8, and it almost disappears at lag 12. These

results clearly show that the dynamic semiparametric factor model gains more ac-

curate estimation than the Nelson-Siegel model for almost all maturities. This is

also evidence that the more flexible model, in particular the spline-based dynamic

factor model as in Laurini (2014), is able to outperform the Nelson-Siegel model.
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Table 3.5: Descriptive statistics of the yield curve residuals,estimated by the
dynamic semiparametric factor model (DSFM) and the Nelson-Siegel model

(NS)

Maturity Mean Std Dev Min Max RMSE ρ(1) ρ(12) ρ(30)

DSFM

6 0.0003 0.0454 -0.2008 0.1057 0.0453 0.6747 0.0144 -0.0247
12 -0.0006 0.0682 -0.2150 0.2846 0.0680 0.6376 0.0273 -0.0423
24 0.0002 0.0513 -0.0979 0.1813 0.0511 0.8469 0.0563 0.2830
36 0.0005 0.0422 -0.1299 0.1076 0.0421 0.8709 -0.0286 -0.1773
48 -0.0002 0.0433 -0.1783 0.0683 0.0431 0.8088 0.2205 0.2735
60 0.0000 0.0414 -0.1347 0.0921 0.0413 0.7571 0.0625 0.1901
72 -0.0002 0.0280 -0.0794 0.1192 0.0279 0.5999 0.1606 0.1157
84 0.0000 0.0125 -0.0338 0.0339 0.0125 0.6731 0.1816 -0.0763
96 -0.0001 0.0119 -0.0324 0.0418 0.0119 0.6151 -0.0931 -0.0489
108 0.0000 0.0214 -0.0417 0.0797 0.0213 0.7463 0.1157 0.1802
120 0.0001 0.0352 -0.0806 0.1255 0.0351 0.8087 0.2848 0.1812

NS

6 0.0148 0.0415 -0.1644 0.1163 0.0439 0.6565 0.0024 -0.0039
12 -0.0413 0.0723 -0.2315 0.2591 0.0830 0.6622 -0.0233 0.0127
24 0.0425 0.0482 -0.0587 0.2054 0.0641 0.8743 0.3213 0.0082
36 0.0255 0.0425 -0.1102 0.1341 0.0494 0.8740 0.0364 -0.1457
48 -0.0364 0.0453 -0.2082 0.0446 0.0580 0.8025 0.2475 0.2019
60 -0.0234 0.0441 -0.1400 0.0700 0.0499 0.7427 0.1089 0.0091
72 -0.0061 0.0306 -0.0801 0.0943 0.0311 0.6460 0.1517 0.0256
84 -0.0019 0.0129 -0.0359 0.0378 0.0129 0.6866 0.0828 -0.0932
96 0.0050 0.0125 -0.0298 0.0483 0.0134 0.5789 -0.0571 0.0315
108 0.0096 0.0245 -0.0423 0.0895 0.0262 0.7468 0.1652 0.0496
120 0.0117 0.0402 -0.0840 0.1326 0.0417 0.8119 0.3038 0.0561

Notes: This table presents summary statistics of the residuals for different ma-
turities of both evaluated models; the dynamic semiparametric factor model
(DSFM) and the Nelson-Siegel (NS) using monthly data, from April 1999 to
March 2013. Std Dev and RMSE are standard deviation and root mean squared
error respectively. ρ denotes the sample autocorrelations at displacements of 1,

12 and 30 months.
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3.7.1.3 Cross-sectional in-sample fit

To further examine the fit of the dynamic semiparametric factor model to the data

compared with the Nelson-Siegel model, we examine the estimated yield curves

from both models against the actual yields at particular days as shown in Figure

3.6. We chose to plot the yield curves on 29 February 2000, 31 March 2004, 29

September 2006 and 30 November 2009. These four selected dates are examples

of the various different term structure shapes that occur in the data.

Figure 3.6: Fitted yield curve for specific months
Notes: The graph depicts the actual yield curve (blue asterisk) and the fitted yield curve for
the DSFM (red dashed line) and the NS (black solid line). Shown are four months from April
1999 to March 2013: [a] February 29, 2000, [b] March 31, 2004, [c] September 29, 2006 and [d]
November 30, 2009.

In Figure 3.6, the shapes of the yields are concave upward for 29 February 2000

and 30 Novermber 2009, despite the 29 February 2000 curve much steeper for

short maturities and then turn to be flattening for long maturity. Whereas the 31

March 2004 curve is a J-curve shape and the curve for 29 September 2006 is an

inverted yield curve with two hump phases. The plots demonstrate that the term

structure curve shapes can vary over time. As expected, due to more flexibility, the

dynamic semiparametric factor model work better to fit wide ranges of yield curve

shapes, while the Nelson-Siegel model does not seem flexible enough to fit more
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complex curves. The most striking observation in the plots are the J-curve type

and the downward sloping with two-hump shape which the Nelson-Siegel model

has difficulties to fit. The better fit is obtained with the dynamic semiparametric

factor model at the cost of a less smooth fit. In contrast, the curve fitted by the

Nelson-Siegel model has a smoother fit than the actual yields.

Given the characteristics of the yield curve fitting, the dynamic semiparametric

factor model is more accurate and more flexible to fit the actual yields. The results

obtained by dynamic semiparametric factor model indicate that this method has

good properties for the term structure estimation with the robustness to misspec-

ification problems from the parametric nature of the Nelson-Siegel model.

3.7.2 Latent factors

Next, we analyze and compare the factors of the dynamic semiparametric factor

model (DSFM) and the Nelson-Siegel model. The three-factor identification based

on the explained variance criteria shows that the dynamic semiparametric factor

model is quite similar to the Nelson-Siegel model with three factors; level, slope

and curvature. The time series of the factor estimates as well as the series of their

empirical proxies, which have been constructed from the yields directly, are plot-

ted through the time period from 1999 to 2013 in Figure 3.7. The estimated value

for the factors are standardized for simplicity in order to compare the level change.

Furthermore, to examine whether latent factors extracted from model estimation

are legitimately called a level, slope and curvature factors, we follow Diebold and

Li (2006b) to construct an empirical level, slope and curvature from the yields

data and compare them with the estimated latent factors. The empirical level of

the yield is defined as the 120 month yield; the slope is close to spread of 6 month

over 120 month yields and the curvature is worked out as two times the two-year

yield minus the sum of the twenty-five-year and three-month zero-coupon yields.

Then, we compare the descriptive features of the estimated factors across models

and their empirical factor proxies in Table 3.6. To provide some insight on the

latent factors, we also investigate the the correlations between the latent factors
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and the principal components as well as their correlation with the empirical prox-

ies in Table 3.7.

3.7.2.1 Latent factor and empirical yield

The objective of using the dynamic semiparametric factor model and the Nelson-

Siegel is to explain the term structure through latent factors. The latent factors

obtained from the model can be compared with their empirical proxies. Each of

the factors should agree with their data-based proxies. To get a first impression

whether the estimated factors from the term structure models are able to capture

their corresponding proxies, we present the time series from the three latent factors

associated with their proxies in Figure 3.7.

Comparing the graphs for latent factor estimates from different models all give

rather similar estimates for the level, slope and curvature factors. Moreover, the

latent factors follow almost the same pattern as the empirical factors. As can be

observed, there is a sharp decline in level as well as slope factor the slope factor

during 2008 to 2009, which is followed by a gradual recovery process. The evolu-

tion of the level and slope factors are closely related to the Australian monetary

policy regimes corresponding to the global financial crisis. In late 2008, the Aus-

tralian economy was more likely heading into recession and financial instability.

In order to avoid a severe recession, the aggressive monetary expansion was ac-

commodated, which produced a greater negative slope factor and lower yield level.

This evidences suggest the latent factor movement is related to the interest rate

regime and the business cycle.

The evolution of the interest rate can be described by the propagation of the la-

tent factors during the period of study from April 1999 to March 2013. This time

span covers the great moderation since the mid-1980s to 2002, the oil price hike

and asset price bubble during 2003-2007, the global financial crisis during 2008-

2009, the mining boom during 2009-2010 and the European sovereign debt crisis

which began in late 2009. Throughout 1999 to 2005, bond yields show a down-

ward trend reflecting success in stabilizing the Australian economy towards a low

and stable inflation. The dot-com crisis which emerged in the early 2000s caused
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the global economy to slow down. In response to the crisis, the Reserve Bank of

Australia (RBA) applied the countercyclical monetary policy by lowering target

rate to avoid a recession. After the introduction of a stimulus-induced interest

rate regime, the yield curve shifted downward. This situation can be explained

by the first and the second latent factor components; a downward parallel shift

produced by the decline in the level factor and the greater negative value of slope

factor. Expansionary monetary policy generates a bubble in asset prices which can

presage a run up in price levels for the next period. From 2003 to 2007, Australia

experienced inflationary pressures driven by an oil price hike and housing market

boost. The RBA raised the target rate which can be explained by the increase

in the level factor and positive value of the slope factor. In late 2008, during the

onset of the global financial crisis, the RBA decided to cut the target rate sharply.

The level factor declined significantly in line with a marked decrease in the slope

factor that caused the yield curve to be quickly decayed. In the aftermath of the

global financial crisis, the RBA raised the target rate once again to cope with

mining boom which would push the economy into inflationary pressure. The up-

swing of the interest rate is clarified by the sharp increase in level factor and slope

factor . By late 2009, the Australian economy was hit by the European sovereign

debt crisis and the RBA accommodated expansionary monetary policy by again

reducing target rate. The level factor decreased dramatically while the slope factor

slightly increased. However, the negative value of the curvature factor was added,

which created a hump shape of the yield curve. The opposite direction between

level and slope factor implies higher long-term rate which means the market was

anticipating a rise in term premium due to more risky sovereign debt. Regarding

the above empirical results, it can be concluded that the movement of Australian

latent factors is consistent with the RBA policy regime and macroeconomic con-

dition.

Overall, the latent factor evolvement appears to be associated with the business

cycle. Whereas the time series of latent factors mimic the empirical factors quite

closely across the time. The cross relation between latent factors and their empir-

ical proxies are then assessed by comparing correlation coefficient statistics.
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3.7.2.2 Latent factor statistics

The statistic properties of the estimated latent factors from the dynamic semipara-

metric factor model and the Nelson-Siegel model as well as the empirical factor

proxies are presented. Table 3.6 shows the descriptive statistics of the estimated

latent factors along with the empirical counterparts, which have been constructed

from the yields directly.

Table 3.6: Descriptive statistics of the latent factors, estimated by the dy-
namic semiparametric factor model (DSFM) and the Nelson-Siegel model (NS),

compared with the empirical proxies

Mean Std Dev Min Max ρ(1) ρ(12) ρ(30)

DSFM

Z(1) 4.2427 0.6896 2.5542 5.7063 0.9479 0.1613 0.0122
Z(2) -0.0156 0.1921 -0.5617 0.4378 0.9561 0.1537 -0.1126
Z(3) -0.0081 0.0692 -0.2175 0.1385 0.8970 0.1873 0.0207

NS

β(1) 6.2909 0.6446 4.4561 7.8099 0.8927 0.0771 -0.0674
β(2) -0.7804 1.1716 -4.3102 1.7277 0.9500 0.0718 -0.1606
β(3) -1.4866 1.7592 -6.4267 1.6954 0.8895 0.2996 0.0717

EMP

E(1) 5.9540 0.7974 3.7713 7.6596 0.9314 0.1303 0.0000
E(2) -0.5236 0.8186 -1.2409 2.7027 0.9497 0.0849 -0.1761
E(3) -0.6255 0.5742 -2.2786 0.3583 0.8919 0.2713 0.1259

Notes: This table presents summary statistics of the latent factors estimated
by the dynamic semiparametric factor model or Z(i), the Nelson-Siegel or B(i)
and the empirical proxy (EMP) latent factors; 120-month yields for level, 120-
months minus 6 months yields for slope and two times the 24-month yield minus
the 6-month and 120-month yields for curvature or E(i). Denote i = (1,2,3) as
latent factors. For all three factors; 1 = level, 2 = slope and 3 = curvature.
The last three columns contain the sample autocorrelations at displacements of

1, 12 and 30 months. Std Dev stands for standard deviation.

Comparing the mean, standard deviation and other descriptive features of the

estimated factors across models shows that both models give rather similar esti-

mates for the magnitude of level, slope and curvature factors. The magnitudes

and signs of the estimated parameters are consistent with theoretical predictions.

For example, the value of level factors are typically positive while the value of the

slope and curvature factors are negative on average. From the autocorrelations of
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the three factors, the slope factor is more persistent than the other two factors

for both models. The results suggest the high persistency and low volatility of

the slope factor. Whereas the other two factors also show high autocorrelation

at the first lag. This finding is quite different from other term structure studies

prior to the global financial crisis, which found that the level factor is the most

persistent. The high auto-correlated in slope factor represents the persistent yield

spread of the long-term bond over the short-term bond that played a major role

in the term structure evolution during the early 2000s and the aftermath of the

crisis. Furthermore, the time series statistics of the estimated latent factors as well

as the series of their empirical proxies are potentially correlated. This evidence

implies that the estimated factors can represent the empirical factors quite closely.

In general, the highly positive autocorrelation amongst estimated factor time series

at the first lag across the sample demonstrate that these factors in turn should

produce accurate forecasting results. The future values will depend greatly on

their recent historical values. We now examine the forecasting accuracy of the dy-

namic semiparametric factor model, the Nelson-Siegel model together with other

competitive models based on the stochastic process of their latent factors.

3.7.2.3 Latent factor correlation

As mentioned earlier, the latent factors from the dynamic semiparametric factor

model and the Nelson-Siegel model alongside the empirical proxies are potentially

correlated. It is interesting to investigate the relationship of the individual fac-

tor associated its corresponding factor calculated from other model and empirical

proxy. For this purpose, we present the correlation coefficients between the latent

factors and their empirical factors in Table 3.7.

In general, the individual factor is most highly correlated with its counterpart fac-

tor. For example, the dynamic semiparametric factor model level factor, quoted

by DL, is highly related to the Nelson-Siegel model level factor, represented by

NL, with 0.88 correlation coefficient. The level factor seems to have a slightly
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Table 3.7: Correlation coefficients of the estimated latent factors and their
empirical proxies

NL NS NC DL DS DC PL PS PC EL ES EC

NL 1.00
NS -0.34 1.00
NC 0.63 -0.01 1.00
DL 0.88 0.07 0.84 1.00
DS 0.05 0.87 0.48 0.50 1.00
DC -0.74 0.50 -0.87 -0.72 0.01 1.00
PL 0.85 0.13 0.84 1.00 0.56 -0.69 1.00
PS 0.49 -0.98 0.05 0.07 -0.82 -0.53 0.00 1.00
PC 0.21 0.14 -0.53 0.01 -0.09 0.49 0.00 0.00 1.00
EL 0.97 -0.16 0.78 0.97 0.28 -0.78 0.95 0.30 0.07 1.00
ES 0.21 -0.98 -0.18 -0.23 -0.94 -0.32 -0.29 0.95 -0.04 0.01 1.00
EC 0.62 -0.07 0.99 0.82 0.42 -0.89 0.81 0.11 -0.56 0.77 -0.11 1.00

Notes: This table summarizes the correlation matrix between the latent factors
estimated by the Nelson-Siegel model (N-); the dynamic semiparametric factor
model (D-), the principal components (P-) and the empirical proxy (E-) latent
factors. For all models and empirical proxy; the suffix -L, -S and -C refer to
level, slope and curvature. Bold numbers indicate high correlation between

factor within the model and across different models coefficient

higher positive cross-correlation with the curvature factors. This may cause multi-

collinearity between the level and curvature factors. However, there is low cross-

correlation between level and slope factors.

The correlation of the estimated latent factors with their empirical counterpart

factors is extremely high. These correlations assure the economic interpretation of

estimated latent factors from the dynamic semiparametric factor model and the

Nelson-Siegel model as the yield level, slope and curvature respectively. Unfortu-

nately, the correlation between the third-component of the principal component

analysis (PCA) model with other curvature counterparts is not so high.

Considering the dynamic semiparametric factor model, the latent factors are mostly

correlated with the empirical counterpart factors, while less correlated with the

Nelson-Siegel model counterpart factors. Nonetheless, its curvature factor is less

related to the empirical counterpart factor. Even the Nelson-Siegel model has 99

percent correlation. Interestingly, its level factor is highly related with the first
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component of the principal component analysis model.

In essence, the estimated factors remain to keep their interpretation as the level,

slope and curvature despite the fact that they are derived from a different method.

Next, we will investigate the forecasting performances of the dynamic semipara-

metric factor model, the Nelson-Siegel model and other competitive models.

3.8 Model forecasting comparison

For the out-of-sample forecasting performance, we examine the predictive ability

of the dynamic semiparametric factor model and the dynamic Nelson-Siegel with

other competitor models in a rolling-window out-of-sample forecasting experiment

using the Australian government bond yields. While the dynamic semiparametric

factor model outperforms the dynamic Nelson-Siegel in providing better in-sample

fit, there is no clear-cut gain in forecasting. This is because there may be a trade-

off between in-sample and out-of-sample performance. The models that provide a

better in-sample fit do not necessarily have to perform well out-of-sample because

of the risk of over-fitting.

Before documenting the results of the forecasts, we briefly describe how the models

are specified for forecasting in Subsection 3.8.1. Then, we provide details of the

out-of-sample forecasting exercise implementation in Subsection 3.8.2. In Subsec-

tion 3.8.3 and 3.8.4, we explain the statistical accuracy assessment and forecasting

accuracy test across the models and discuss the overall forecasting results in Sub-

section 3.8.5 and sub-sample forecasting results in Subsection 3.8.6.

3.8.1 Model Specification

In this Subsection, we present the methodology for forecasting the dynamic semi-

parametric factor model, the dynamic Nelson-Siegel and the other competitor

models.



Chapter 3. Term Structure Forecasting - A Comparison between the Dynamic
Semiparametric Factor Model and the Dynamic Nelson-Siegel Model 96

3.8.1.1 The dynamic semiparametric factor model

The dynamic semiparametric factor model (DSFM) provides a general method

for modeling and forecasting yield curve from the panel of yield data. Once the

cross-sectional yield curve fitting has been estimated, the dynamics of the time

series of the yields can be further conducted. In this study, the B-spline is used to

model the underlying yield at a specific period and the dynamic evolution of the

yield is assumed to be driven by a stochastic process of a small dimension of latent

factors. The resulting DSFM combines the virtues of parsimony and dimensional

reduction and allows us to forecast the evolution of the yields.

As mentioned earlier, the cross sectional yield is estimated by a B-spline that

corresponds to the knots (time-to-maturities) of the spline at time point t. The

spline basis function is essentially a piecewise smoothing function with pieces that

join together to form a twice continuously differentiable function overall. The

yield curve is estimated as the knots positioned at the maturities. The spline

interpolates to yields with a stochastic process of the time-varying latent factors.

Suppose the dynamic process of the factor is identified, the h-step ahead forecast

of the latent factors and dynamic yields will be based on the dynamic factor

specification. In particular, the h-month ahead prediction of a j-maturity bond

yield in period t is a relationship between latent factor l at the h-month ahead

and factor-loading non-parametric function of the knots at different maturities.

Yt+h,j =
L∑
l=0

Zt+h,lml,j(Xt,j) + εt,j (3.16)

Where ZPt+h,l is the latent factor l at the h-month ahead, given the information

of latent factor up to period t and ml,j(Xt,j) is factor loading.

Basically, the cross-sectional estimation of the yield will extract latent factors at

a particular date and provide the whole range of latent factors over the period of

study. Given the estimated time-series of latent factors from the first step, the

dynamic latent factors are modeled by the specifying stochastic process and the h-

step ahead forecast Zt+h,l is then used with the estimated factor loading ml,j(Xt,j)

to derive the out-of-sample yield forecasts. In this study, the dynamic evolution
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of latent factors is assumed to be driven by the first order autoregressive process,

which can be either an univariate autoregressive AR(1) process or a multivariate

autoregressive VAR(1) process. The first order autoregressive process is motivated

by the numerous studies that successfully model the dynamic yield curve as in

Diebold and Li (2006) and De Pooter (2007) among others. The stochastic process

can be written as.

Zt+h,j = Ξt,l + Φt,lZt,l + νt,l (3.17)

where Z contains the contemporaneous and lagged observations of the latent fac-

tors explaining the variation of the yields corresponding to the cross-sectional basis

function at each period up to t. The coefficients Φt,l,Ξt,l and Zt,l are computed by

the AR(1) or VAR(1) process that minimizes the sum of squared fitted errors of

the model by using the set of Z up to date t.

3.8.1.2 The dynamic Nelson-Siegel model with optimal decay param-

eter

For the dynamic Nelson-Siegel model, we use rolling window estimation and re-

estimate the model at every step by choosing the optimal decay parameter rather

than using a fixed decay parameter to a pre-specified value as Diebold and Li

(2006b) suggested.

Suppose the sub-sample Ts is given for the h-step ahead forecasting exercise at

period t. The algorithm selects the optimal values for the decaying parameters λ

and simultaneously defines a time series of estimated latent factors based on the

procedure described previously.

λ̂t+h = arg min
λ∈Ω
{ 1

Ts

T∑
t=1

√√√√ 1

J

J∑
j=1

(yt+h(τ)− ŷt+h(τ, λ, β))2} (3.18)

By minimizing the difference between the model yield rates and the actual yield

rates, we run an ordinary least square algorithm for a whole grid of λ values to
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obtain the optimal exponential decay λt parameter and latent factors β1,t, β2,t and

β3,t.

Based on the underlying stochastic process for the dynamic latent factor, the yield

forecast is given by

ŷt+h(τ) = β̂1,t+h + β̂2,t(
1− e−λt+hτ

λt+hτ
) + β̂3,t+h(

1− e−λt+hτ

λt+hτ
− e−λt+hτ ) (3.19)

and the stochastic process can be written as.

β̂i,t+h = Υ̂ + Γiβ̂i,ti = 1, 2, 3 (3.20)

where yt+h(τ) is the h-step ahead forecasting yields with τ time to maturity, and

β1,t+h, β2,t+h and β3,t+h are h-step ahead forecasting latent factor parameters,

which in dynamic form are referred to as level, slope and curvature and λt+h is

referred to the exponential decay parameter.

3.8.1.3 Other competitor models

We compare the forecasting performance of the dynamic semiparametric factor

model and the dynamic Nelson-Siegel model to those of several competitor mod-

els. In particular, these are a principal component model, the random walk of the

yield levels, the simple AR(1) on yield levels and the unrestricted VAR(1) on yield

levels. The naive random walk of the yield levels model is expected to be the most

challenging competitor as reported by several studies. In the following, we briefly

sketch the individual competitor forecasting models.

(1) The principal component model

We investigate whether the forecast based on the data-driven factor extraction

technique, the principal component analysis, can compete with the dynamic semi-

parametric factor model and the dynamic Nelson-Siegel model. The idea behind
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principal component analysis is to determine the linear combination of variables

that has the highest variance. This linear combination of variables forms compo-

nent or factor variables and the loadings or coefficients of the linear combination.

Recall the principal component of factor that extracted from the yields.

PCt = Ω
′
(Y − Ȳ ) (3.21)

Where Ȳ is the sample mean of the yields and Ω is the eigenvector matrix of

variance-covariance matrix of the yields.

Inverting the factor equation, we get a regression equation of the factors onto the

yields. This regression explains how principal components can be used to reduce

the dimensionality of the yields.

Yt = ΩPCt + Ȳ (3.22)

Due to the above equation, this regression explains all of the variance in yields.

This equation lies in the fact that the principal components are independent or

orthogonal.

Having a time series of principal components or factors PCt, the h-step ahead

out-of-sample forecast of the yields can be achieved by assuming the stochastic

process of the factors.

P̂Ci,t+h = ψ̂ + ΨiP̂Ci,ti = 1, 2, 3 (3.23)

Based on the underlying stochastic process for the dynamic latent factor, we fore-

cast the yield at h-step ahead by

Ŷt+h = ΩPCt+h + Ȳ (3.24)



Chapter 3. Term Structure Forecasting - A Comparison between the Dynamic
Semiparametric Factor Model and the Dynamic Nelson-Siegel Model 100

where Ȳ is the mean of the in-sample yields.

(2) The random-walk of yield-level model

Many previous studies have suggested that the evolution of interest rates might

be well described by random walk processes. The random walk therefore remains

a common benchmark for interest rate prediction models and is also used as a

competitor here. We assume a random walk model for interest rates implies a

simple no-change forecast of individual yields. Hence, in this model the h-months

ahead prediction of an J-maturity bond yield in period t is simply given by its

time t observation

Yt+h(τ) = Yt+h−1(τ) (3.25)

In this model, any h-step ahead forecast is equal to the most recent observed value.

This assumption implies that interest rates can roam around freely and do not re-

vert back to a long-term mean, which contradicts the central bank’s monetary

policy targets.

(3) The first-order univariate autoregressive model on yield-level

Assuming that the yield of maturity J follows a first-order autoregression, its h-

step ahead forecast is given by

Yt+h(τ) = µ(τ) + φYt+h−1(τ) (3.26)

Simple autoregressive processes constitute another natural benchmark for model-

ing the time variation of bond yields.

(4) The first-order multivariate autoregressive model: Y-VAR(1)

In this model, forecasts of yields are obtained according to.
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Yt+h(τ) = ∆(τ) + ΛYt+h−1(τ) (3.27)

where ∆ and Λ are estimated by regressing the vector Yt onto a constant and its

h-months lag. A well-known drawback of using an unrestricted VAR model for

yields is that forecasts can only be constructed for those maturities used when

estimating the model. As we want to construct forecasts for 11 maturities, this

results in a considerable number of parameters that need to be estimated. As

an attempt to mitigate estimation error, and subsequently, to reduce the forecast

error variance, we summarize the information contained in the explanatory vector

by replacing it with a small number of common latent factors that drive yield

curve dynamics.

3.8.2 Forecast procedure

We choose to evaluate the prediction accuracy of the term structure models on the

basis of their out-of-sample forecasting performance for different yields. In this

way, we will have a uniform ground to systematically compare models. We base

our forecasting comparison exercise on a rolling window estimation with fixed size,

in which parameters are re-estimated at each stage. This study divides the full

data into the training period; April 1999 - March 2006 (84 observations) and the

forecasting period; April 2006 - March 2013 (84 observations). Next to gauging

the models predictive accuracy over the full sample, we also examine the robust-

ness of the forecasting improvement and assess the instability of the structural

change from the global financial crisis during 2008-2009 and European sovereign

debt crisis during 2010-2012. We split the sample into three parts; the pre-crisis

period, starting from April 1999 to March 2006 (84 observations), and the crisis

period, starting from October 2002 - September 2009 (84 observations) and the

crisis period, starting from April 2006 - March 2013 (84 observations). For the pre-

crisis part, we divides them into the training sub-sample; April 1999 - August 2002

(42 observations) and forecasting sub-sample; September 2002 - March 2006 (42

observations). Likewise, the crisis part is separated into the training sub-sample;

October 2002 - February 2006 (42 observations) and forecasting sub-sample; March

2006 - September 2009 (42 observations). Lastly, the post-crisis part is separated
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into the training sub-sample; April 2006 - August 2009 (42 observations) and fore-

casting sub-sample; September 2009 - March 2013 (42 observations).

By doing this, it allows us to compare how the dynamic semiparametric factor

model, the dynamic Nelson-Siegel counterpart and other competitors perform in

the normal and crisis period. All the models are estimated with a rolling win-

dow by moving the sample forward with a fixed sample size and re-estimating the

model iteratively until the h-step ahead out-of-sample forecast is obtained. We

consider four forecast horizons, h = 1 month as well as 3, 6 and 12 months ahead.

3.8.3 Forecasting accuracy performance

To assess the prediction accuracy of the out-of-sample forecast of the the dy-

namic semiparametric factor models, the dynamic Nelson-Siegel model and other

competitors, we use a standard forecast error evaluation criteria. The predictive

performance of the models are statistically evaluated by the root mean squared

prediction error (RMSPE), which is widely used to assess forecasting accuracy of

the models at particular maturities. We also compute the trace root mean squared

prediction error (TRMSPE) of the models for all maturities as in Hördahl et al.

(2006) and De Pooter et al. (2010). It combines the forecast errors of all maturi-

ties and summarizes the performance of each model, thereby allowing for a direct

comparison between the models.

The root mean squared prediction error (RMSPE)

Given a sample of T out-of-sample forecasts with h-months ahead forecast horizon,

we compute the RMSPE for a τ time-to-maturity as follows:

RMSFE(τ) =

√√√√ T∑
t=1

[Yt+h(τ)− Ŷt+h(τ)]2

T
(3.28)

where Ŷt+h is the forecasted yield in period t for t+ h period and [Yt+h− Ŷt+h]2 is

the forecast errors at t+ h for the yields.
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The trace root mean squared prediction error (TRMSPE)

For each forecast horizon, the trace root mean squared prediction error (TRMSPE)

measures the aggregate forecast errors of all yields in J maturities. Given a sample

of T out-of-sample forecasts of J distinct maturities with h-months ahead forecast

horizon, we compute the TRMSPE as follows.

TRMSFE =

√√√√ J∑
j=1

T∑
t=1

[Yt+h − Ŷt+h]2
JT

(3.29)

The RMSPE and the TRMSPE for the dynamic semiparametric factor model and

the Nelson-Siegel model are reported for both the specifications of latent factors

stochastic process; the AR(1) and VAR(1) for all forecasts horizons.

3.8.4 Forecasting accuracy test

In order to assess the relative accuracy of forecasts derived from the dynamic

semiparametric factor model (DSFM), the dynamic Nelson-Siegel model and the

principal component analysis model, we employ the Diebold and Mariano (1995)

test whether the random walk benchmark is significantly superior to those models’

forecasts. We also conduct a pairwise comparison between the DSFM with the

dynamic Nelson-Siegel model and the principal component analysis model. The

Diebold-Mariano test makes a direct comparison between these term structure

models with the random walk and among themselves for each maturity and each

forecast horizon. The testing is based on the null hypothesis of equal predictive

ability to generate mean squared prediction error for each pairwise comparison.

We also examine the stability over time of the out-of-sample forecast over the

period of study which includes the global financial crisis. The methodology we

used is based on the Giacomini and Rossi (2010) test of whether the two models

can produce consistent forecasts, which means they do not suffer from structural

breaks during the crisis.
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3.8.4.1 Diebold-Mariano test

The main feature of the Diebold and Mariano (1995) test of forecast accuracy lies

in its direct applicability to quadratic loss function of the multi-period forecast.

We define the squared forecast errors et as

et = [Yt+h(τ)− Ŷt+h(τ)]2 (3.30)

recall Yt+h is the actual yield and Ŷt+h is the forecasted yield at t+h for the yields.

To determine if one model predicts better than another, one can observe the loss

difference dt of the squared forecast errors as

dt = e1,t − e2,t (3.31)

where e1,t+h and e2,t+h are the quadratic loss functions of the two competing mod-

els. In this case, the forecasting accuracy of the DSFM, the dynamic Nelson-Siegel

model and the principal component analysis model are tested against the random

walk. We also compare the forecasting ability of the DSFM with the dynamic

Nelson-Siegel model and the principal component analysis model. The null hy-

pothesis of equal predictive accuracy is then H0 : E(dt) = 0 against the alternative

hypothesis H1 : E(dt) 6= 0.

Assuming covariance stationarity, the Diebold-Mariano test statistics is computed

as

DM =
d̄√
σ̂d̄
T

(3.32)

where d̄ is the mean loss difference and σ̂d̄ is a consistent estimate of the asymp-

totic (long-run) variance of
√
T d̄. This test corrects for the autocorrelation of the

multi-period forecast errors by a Newey and West (1987) heteroskedasticity and
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autocorrelation consistent standard errors for sample variance of the loss differen-

tial to account for this concern.

We apply the Diebold-Mariano test to forecast errors of the DSFM, the dynamic

Nelson-Siegel model and the principal component analysis model with the random

walk as well as among these term structure models and then report the results in

Table 12 and 13. A negative and statistical significance of the Diebold-Mariano

test statistic means that the DSFM, the dynamic Nelson-Siegel model and the

principal component analysis model provides smaller in magnitude errors than the

random walk, and thus it rejects the null hypothesis that they have the same fore-

casting ability as the random walk. For the test of DSFM against the dynamic

Nelson-Siegel model and the principal component analysis model, a negative and

statistical significance indicates the DSFM outperform the dynamic Nelson-Siegel

model or the principal component analysis model in provides more accurate fore-

cast.

3.8.4.2 Giacomini-Rossi fluctuation test

Since the period of study covers the global finance crisis, it is plausible that the

forecasting performance of the DSFM, the dynamic Nelson-Siegel model, the prin-

cipal component analysis model and the random walk may change over time. To

analyze the stability of the forecasting performance in the presence of instabilities,

we implement the fluctuation test proposed by Giacomini and Rossi (2010).

The Giacomini-Rossi statistic can be used to test whether the out-of-sample fore-

cast performance statistics are able to break down, due to unforeseen structural-

breaks. The test is based on the idea that due to a potentially unstable envi-

ronment, possibly as a consequence of the crisis, the forecast performance of the

DSFM, the dynamic Nelson-Siegel model and the principal component analysis

model relative to the random walk may change. Likewise, the relative prediction

accuracy of the DSFM in comparison with the dynamic Nelson-Siegel model or the

principal component analysis may also be uncertain. Therefore, the assessment

of a local loss difference over time may supply additional information about the

structural break rather than concentrating on the global loss difference as in the
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Diebold-Mariano test.

To implement the fluctuation test, the Giacomini-Rossi test statistics is computed

on the principle that, if the forecast performance of a model does not break down,

then there should be no difference in the predictive accuracy for each moving

window. The loss difference are calculated as the Diebold-Mariano type and the

Giacomini-Rossi fluctuation test is defined as.

GR =
d̄local√
σ̂
d̄local

Q

(3.33)

where d̄local is the mean local loss difference of the sub-sample for each rolling

window, σ̂d̄local is the heteroskedasticity and autocorrelation consistent standard

errors for sample variance of the loss differential in the sub-sample window and Q

is the length of the sub-sample window size.

We thus provide the Giacomini-Rossi test of the null hypothesis that the DSFM,

the dynamic Nelson-Siegel model or the principle component analysis model per-

form equally to the random walk in predicting yields at each point in time against

the alternative that there is a one-time break in the relative performance. We also

test for stable superior accuracy of the DSFM against the dynamic Nelson-Siegel

model or the principle component analysis model. To investigate such potential

instabilities, we measure the local relative forecasting performance of the models,

and test whether it equals zero at each point in time subject to rolling windows.

Following Giacomini and Rossi (2010), we plot the standardized sample path of

the relative measure of local performance, together with critical values, which

measured by the Diebold-Mariano statistics. If the Giacomini-Rossi test statis-

tic is negative and statistical significant; the DSFM, the dynamic Nelson-Siegel

model or the principle component analysis model are outperformed the random

walk at some points in time. For pairwise test between the DSFM and the dy-

namic Nelson-Siegel model or the principle component analysis model, the DSFM

outperforms the other two models whenever the test statistics are negative and

significant. Graphically, if any plots of local performance cross above the positive

critical value or below the negative critical value, one of the models significantly

outperforms its competitor at that point of time. In other words, the predictive
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performance between two specified models are unequal. It implies the unstable

environment may affect the relative forecast performance.

3.8.5 Overall forecasting results

Next, we report the RMSPE of the multiple steps ahead term structure fore-

cast of the Australian government bond yields. The forecasts produced by the

dynamic semiparametric factor model (DSFM) are compared with the dynamic

Nelson-Siegel model, the principal component analysis model, the yield first-order

autoregressive AR(1), the yield first-order vector autoregressive VAR(1) and the

random walk. The results for the whole range of forecasting period from April

2006 to March 2013 are presented in Tables 3.8 - 3.11. To visualize these results,

Figures 3.8 to 3.15 show the actual yields and those predicted by the DSFM and

the dynamic Nelson-Siegel specification by the AR(1) or VAR(1) process, com-

pared with the random walk benchmark for some selected maturities.

3.8.5.1 One-month ahead

In Table 3.8, the one-month-ahead forecasting performance of the DSFM is com-

pared with the dynamic Nelson-Siegel model, the principal component analysis

model and other competitors.

The results for the one-month-ahead horizon are not very encouraging. For nearly

all maturities, the random walk and the AR(1) for yield-level show better statistics

than any of the models. There only six-month bond yield forecasts produced by

the DSFM with AR(1) specification, the Nelson-Siegel model with VAR(1) spec-

ification and the principal component analysis model with AR(1) and VAR(1)

specification are clearly accurate and do better than the random walk. Over all,

the principal component analysis model with AR(1) and VAR(1) specification for

the dynamic latent factors obviously works better than those of the DSFM and

the Nelson-Siegel counterpart in terms of lower RMSPE.
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Table 3.8: Out-of-sample one-month-ahead forecasts for the period 2006 to
2013

TRMSPE RMSPE
all 6-m 1-y 2-y 3-y 5-y 7-y 10-y

RW 0.2932 0.3054 0.3403 0.3324 0.3118 0.2866 0.2667 0.2654
Y-AR(1) 0.3034 0.3146 0.3497 0.3428 0.3230 0.2974 0.2771 0.2749
Y-VAR(1) 0.3342 0.3382 0.3917 0.3879 0.3634 0.3354 0.2974 0.2885

DNS

AR(1) 0.3392 0.3385 0.4085 0.3902 0.3727 0.3376 0.3061 0.2924
VAR(1) 0.3142 0.2891 0.3773 0.3561 0.3408 0.3201 0.2867 0.2741

DSFM

AR(1) 0.3337 0.2935 0.3926 0.4183 0.3785 0.3223 0.2956 0.3022
VAR(1) 0.3304 0.3108 0.3768 0.3996 0.3744 0.3289 0.2945 0.2932

PCA

AR(1) 0.3057 0.3000 0.3784 0.3535 0.3334 0.2970 0.2743 0.2684
VAR(1) 0.3090 0.2961 0.3695 0.3477 0.3362 0.3091 0.2822 0.2733

Notes:. This table summarizes the overall trace root mean squared prediction
errors (TRMSPE) and the root mean squared prediction errors (RMSPE) for
each particular maturity obtained from out-of-sample yield forecasts made for
the period April 2006 to March 2013. RW refers to the random walk; Y-AR(1)
refers to the first-order univariate autoregressive model of yield level; Y-VAR(1)
refers to the first-order multivariate autoregressive model of yield level; DNS
refers to the dynamic Nelson-Siegel model; DSFM refers to the dynamic semi-
parametric factor model and PCA refers to the principal component analysis

model. Bold numbers indicate the best performing model

Between the VAR(1) and AR(1) specification for latent factor dynamics of the

DSFM and the Nelson-Siegel model, the VAR(1) specification outperforms the

AR(1) specification for one-month ahead prediction. However, it is difficult to

outperform the random walk. This evidence is consistent with other term struc-

ture forecast studies.

To further illustrate how the forecasting performance of different models varies

over time, we plot the 1-month ahead forecast horizon for the DSFM, the principal

component analysis model and the Nelson-Siegel model with AR(1) specification

and VAR(1) specification.

Figure 3.8 plots the yield forecasts with AR(1) specification for the 1-month ahead

forecast horizon. According to these plots, the DSFM with AR(1) specification
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Figure 3.8: Observed and 1-month ahead predicted yields with AR(1) speci-
fication

Notes: This figure provides plots of the observed and 1-month ahead predicted time series for
the 6-month, the 3-, the 5- and 10-year maturities. The observed yields are plotted by gray solid
lines, whereas blue solid, green dotted, red dash-dotted, and pink dashed lines correspond to
predictions of the random walk (RW), DSFM with AR(1), NS with AR(1) and PCA with AR(1)
model, respectively.

forecast the persistent movements of yields quite well, especially the 6-month yield

forecast over the period of 2006-2008. However, it fails to produce less RMSPE

during 2011 to 2012. Whereas the Nelson-Siegel model with AR(1) specification

forecast demonstrates the effectiveness in tracking the actual time series better

than the the DSFM, in particular, since the aftermath of the global financial cri-

sis. Even the Nelson-Siegel with AR(1) specification underestimate the forecasted

yield over the period of 2006-2008, it turns to outperform the DSFM by produc-

ing a minimal errors. Nonetheless, the principal component analysis model with

AR(1) specification provide the better track for the actual yield across the entire

forecasting period from 2006 to 2013.

Figure 3.9 present the actual yield and the 1-month ahead predicted yield by

VAR(1) specification. The dynamic Nelson-Siegel model and the principal com-

ponent analysis model achieve accurate prediction while the DSFM predicts more

variation than actual yields. Comparing between the AR(1) and VAR(1) specifi-

cation, the VAR(1) tend to overshoot at the turning point. However, the VAR(1)
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appears to better perform the AR(1) in overall.

Figure 3.9: Observed and 1-month ahead predicted yields with VAR(1) spec-
ification

Notes: This figure provides plots of the observed and 1-month ahead predicted time series for
the 6-month, the 3-, the 5- and 10-year maturities. The observed yields are plotted by gray
solid lines, whereas blue solid, green dotted, red dash-dotted, and pink dashed lines correspond
to predictions of the random walk (RW), DSFM with VAR(1), NS with VAR(1) and PCA with
VAR(1) model, respectively.

As can be seen, the VAR(1) forecasts overstate the actual yields on 2009 and the

six-month yield forecasts predict a severe drop during 2011. Though, the VAR(1)

specification provide accurate out-of-sample forecast at the beginning and at the

end of the forecasting period. The dynamic Nelson-Siegel model and the DSFM

with VAR(1), in particular, forecast more accurate yield rather than the AR(1)

specification.

3.8.5.2 Three-month ahead

Table 3.9 shows the three-month horizon for all models. Now, the DSFM with

AR(1) specification becomes the preferable model and does better than the Nelson-

Siegel model with VAR(1) specification.
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Table 3.9: Out-of-sample three-month-ahead forecasts for the period April
2006 to March 2013

TRMSPE RMSPE
all 6-m 1-y 2-y 3-y 5-y 7-y 10-y

RW 0.6364 0.7534 0.7814 0.7389 0.6802 0.6177 0.5711 0.5401
Y-AR(1) 0.6929 0.8132 0.8412 0.7966 0.7403 0.6781 0.6284 0.5871
Y-VAR(1) 0.7818 1.0098 1.0961 0.9472 0.8331 0.7282 0.6417 0.5826

DNS

AR(1) 0.7332 0.8591 0.9116 0.8626 0.8041 0.7153 0.6534 0.6031
VAR(1) 0.7119 0.8380 0.8876 0.8311 0.7808 0.7006 0.6313 0.5773

DSFM

AR(1) 0.7071 0.7489 0.8743 0.8412 0.7871 0.7101 0.6361 0.5780
VAR(1) 0.7276 0.8036 0.8965 0.8437 0.8086 0.7431 0.6537 0.5747

PCA

PCA
AR(1) 0.6973 0.7936 0.8787 0.8256 0.7724 0.6846 0.6183 0.5667
VAR(1) 0.7138 0.8364 0.8933 0.8251 0.7816 0.7052 0.6350 0.5791

Notes:. This table summarizes the root mean squared errors obtained from
out-of-sample yield forecasts. RW refers to the random walk; Y-AR(1) refers to
the first-order univariate autoregressive model of yield level; Y-VAR(1) refers
to the first-order multivariate autoregressive model of yield level; DNS refers to
the dynamic Nelson-Siegel model; DSFM refers to the dynamic semiparametric
factor model and PCA refers to the principal component analysis model. Bold

numbers indicate the best performing model

As presented in Table 3.9, it is clear that the DSFM and the principal compo-

nent analysis model with AR(1) specification produce more accurate results for

the entire time-to-maturities as compared to the Nelson-Siegel. It is interesting

that the DSFM with AR(1) specification not only fits the term structure very well,

but also still produces accurate 6-month maturity yield forecasts. The DSFM with

VAR(1) specification relatively outperform the dynamic Nelson-Siegel counterpart

in producing lower RMSPE for short and long maturities.

Surprisingly, the dynamic Nelson-Siegel with AR(1) specification is now fail to

outperform the DSFM. This results can be clearly seen from the Figure 3.10.

The main point to take form the graphs is that the DSFM with AR(1) specifi-

cation forecast is more accurate than the Nelson-Siegel. Specifically, the DSFM
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Figure 3.10: Observed and 3-month ahead predicted yields with AR(1) spec-
ification

Notes: This figure provides plots of the observed and 3-month ahead predicted time series for
the 6-month, the 3-, the 5- and 10-year maturities. The observed yields are plotted by gray
solid lines, whereas blue solid, green dotted, red dash-dotted, and pink dashed lines correspond
to predictions of the random walk (RW), DSFM with VAR(1), NS with VAR(1) and PCA with
VAR(1) model, respectively.

successfully tracks the 3-month ahead forecast for 6-month bonds during almost

four years from 2009 to 2012. Unfortunately, it is difficult for the DSFM to give

a precise prediction once the economy experiences a structural break or regime

shift. Figure 3.10 reveals the fact that the DSFM forecasts for 3-month ahead

yields somewhat lag behind the actual yields, more specifically, after the yield hit

the bottom in 2009. In addition, the principal component analysis model with

AR(1) specification produces somewhat optimal forecast track and outperforms

the DSFM and the dynamic Nelson-Siegel model.

Having look at Figure 3.11 gives a clear cut to explanation of why the DSFM

with VAR(1) specification turns to beat the dynamic Nelson-Siegel counterpart

and other models with VAR(1) specification.

As Figure 3.11 shows that the dynamic Nelson-Siegel and the DSFM with VAR(1)

specification overstate the increase in yields by several months over 2009 to 2010.

This pattern indicates the forecasting errors due to the sharp structural shock,

causing the sharp decline in interest rates and the widening spread during this



Chapter 3. Term Structure Forecasting - A Comparison between the Dynamic
Semiparametric Factor Model and the Dynamic Nelson-Siegel Model 113

Figure 3.11: Observed and 3-month ahead predicted yields with VAR(1) spec-
ification

Notes: This figure provides plots of the observed and 3-month ahead predicted time series for
the 6-month, the 3-, the 5- and 10-year maturities. The observed yields are plotted by gray
solid lines, whereas blue solid, green dotted, red dash-dotted, and pink dashed lines correspond
to predictions of the random walk (RW), DSFM with VAR(1), NS with VAR(1) and PCA with
VAR(1) model, respectively.

period.

3.8.5.3 Six-month ahead

Table 3.10 present the 6-month ahead yield curve forecast produced by the DSFM,

the dynamic Nelson-Siegel model and the principal component analysis model,

together with their competitors.

For a 6-month horizon, the Nelson-Siegel with AR(1) specification turns out to do

better job as compared to the DSFM for all maturities. Noticeably, the models

with VAR(1) specification are struggling to predict yield for medium term matu-

rity. Even though, the principal component analysis model, particularly the model

with VAR(1) specification, produces accurate forecasts. In fact, the principal com-

ponent analysis and the Nelson-Siegel model with VAR(1) specification exhibit

poor prediction for short maturities but they provide more accurate forecasts for
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Table 3.10: Out-of-sample six-month-ahead forecasts for the period April 2006
to March 2013

TRMSPE RMSPE
all 6-m 1-y 2-y 3-y 5-y 7-y 10-y

RW 1.0255 1.3198 1.3160 1.2257 1.1101 0.9990 0.9159 0.8438
Y-AR(1) 1.1782 1.5028 1.4972 1.3663 1.2594 1.1645 1.0732 0.9768
Y-VAR(1) 1.5415 2.2096 2.2520 1.9084 1.6677 1.4197 1.2359 1.0816

DNS

AR(1) 1.1471 1.4348 1.4350 1.3402 1.2493 1.1328 1.0509 0.9719
VAR(1) 1.1586 1.5148 1.5052 1.3972 1.2841 1.1223 1.0178 0.9258

DSFM

AR(1) 1.1867 1.4246 1.5031 1.4017 1.3055 1.1937 1.0837 0.9743
VAR(1) 1.2123 1.5700 1.6083 1.4505 1.3410 1.1927 1.0593 0.9322

PCA

AR(1) 1.1922 1.4373 1.5350 1.4371 1.3383 1.1891 1.0691 0.9621
VAR(1) 1.1488 1.5223 1.5420 1.3844 1.2708 1.1109 0.9907 0.8861

Notes:. This table summarizes the root mean squared errors obtained from
out-of-sample yield forecasts. RW refers to the random walk; Y-AR(1) refers to
the first-order univariate autoregressive model of yield level; Y-VAR(1) refers
to the first-order multivariate autoregressive model of yield level; DNS refers to
the dynamic Nelson-Siegel model; DSFM refers to the dynamic semiparametric

factor model and PCA refers to the principal component analysis model

long maturities in terms of RMSPE. Overall, the Nelson-Siegel with AR(1) speci-

fication gains the lowest root mean square prediction errors on average, compared

to other models, except for the random walk.

Figure 3.12 presents the corresponding actual and predicted yields for the 6-month

ahead. As figure shows, the Nelson-Siegel with AR(1) specification is actually less

volatile while the DSFM suffers from higher variation in yield curve forecast. From

2010 onwards, the Nelson-Siegel with AR(1) specification demonstrates large er-

rors in tracking the actual yield whereas the DSFM with AR(1) specification pre-

dicts more impressive results in reducing the RMSPE. Nonetheless, the VAR(1)

specification clearly fluctuates more and overstates the volatility of the yield, as

presented in Figure 3.13.

From Figure 3.13, the spike yield prediction from VAR(1) estimation, especially
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Figure 3.12: Observed and 6-month ahead predicted yields with AR(1) spec-
ification

Notes: This figure provides plots of the observed and 6-month ahead predicted time series for
the 6-month, the 3-, the 5- and 10-year maturities. The observed yields are plotted by gray
solid lines, whereas blue solid, green dotted, red dash-dotted, and pink dashed lines correspond
to predictions of the random walk (RW), DSFM with VAR(1), NS with VAR(1) and PCA with
VAR(1) model, respectively.

Figure 3.13: Observed and 6-month ahead predicted yields with VAR(1) spec-
ification

Notes: This figure provides plots of the observed and 6-month ahead predicted time series for
the 6-month, the 3-, the 5- and 10-year maturities. The observed yields are plotted by gray
solid lines, whereas blue solid, green dotted, red dash-dotted, and pink dashed lines correspond
to predictions of the random walk (RW), DSFM with VAR(1), NS with VAR(1) and PCA with
VAR(1) model, respectively.
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during 2009, become more evident for longer step ahead forecasts. Yet, the princi-

pal component analysis model with VAR(1) specification outperforms the AR(1)

counterpart and other competitors, except for the Nelson-Siegel with AR(1) spec-

ification in tracking the actual yield and forecast over the entire period.

3.8.5.4 Twelve-month ahead

In Table 3.11, the twelve-month ahead forecast for the DSFM, the Nelson-Siegel

model, the principal component analysis and their competitors are reported.

Table 3.11: Out-of-sample twelve-month-ahead forecasts for the period April
2006 to March 2013

TRMSPE RMSPE
all 6-m 1-y 2-y 3-y 5-y 7-y 10-y

RW 1.3653 1.9582 1.9346 1.7009 1.5049 1.3551 1.2205 1.0904
Y-AR(1) 1.6268 2.4643 2.4244 2.0809 1.8337 1.5653 1.3615 1.1732
Y-VAR(1) 2.1330 3.2889 3.1153 2.6560 2.3535 2.0867 1.8111 1.5661

DNS

AR(1) 1.4854 2.1934 2.0999 1.8933 1.7073 1.4367 1.2886 1.1628
VAR(1) 1.5709 2.2382 2.1820 1.9891 1.7812 1.5396 1.4024 1.2825

DSFM

AR(1) 1.6179 2.1818 2.2426 2.0333 1.8880 1.6625 1.4536 1.2637
VAR(1) 1.6539 2.2890 2.3183 2.0554 1.8782 1.6728 1.4880 1.3135

PCA

AR(1) 1.6143 2.1963 2.2658 2.0468 1.8796 1.6270 1.4396 1.2756
VAR(1) 1.5059 2.1269 2.1411 1.9041 1.7207 1.4910 1.3291 1.1901

Notes:. This table summarizes the root mean squared errors obtained from
out-of-sample yield forecasts. RW refers to the random walk; Y-AR(1) refers to
the first-order univariate autoregressive model of yield level; Y-VAR(1) refers
to the first-order multivariate autoregressive model of yield level; DNS refers to
the dynamic Nelson-Siegel model; DSFM refers to the dynamic semiparametric

factor model and PCA refers to the principal component analysis model

As can be seen from Table 3.11, it is still very difficult for any model to provide

forecasts that are more accurate than the random walk. The Nelson-Siegel model

with AR(1) specification produces low RMSPE and does better than other models,
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except the random walk, to anticipate yield in the next twelve month for all ma-

turities. Apparently, the Nelson-Siegel model, the principal component analysis

model and the DSFM produce poor forecast for long period ahead horizons.

To visualize the result, Figure 3.14 shows the actual and those predicted yields by

AR(1) and VAR(1) specification for the Nelson-Siegel, the principal component

analysis model and the DSFM respectively.

Figure 3.14: Observed and 12-month ahead predicted yields with AR(1) spec-
ification

Notes: This figure provides plots of the observed and 12-month ahead predicted time series for
the 6-month, the 3-, the 5- and 10-year maturities. The observed yields are plotted by gray
solid lines, whereas blue solid, green dotted, red dash-dotted, and pink dashed lines correspond
to predictions of the random walk (RW), DSFM with VAR(1), NS with VAR(1) and PCA with
VAR(1) model, respectively. Noticeably, the DSFM and the principal component analysis model
with AR(1) produce a spike yield curve for short (6-month) maturity during the global financial
crisis.

From Figure 3.14, the DSFM, the principal component analysis model and the

Nelson-Siegel model are struggling to provide accurate forecast for long horizons.

In particular, the DSFM and the principal component analysis model with AR(1)

produce a spike yield curve that widens the gap from actual yield and reduces

its predictability. Whereas the Nelson-Siegel with AR(1) specification gives a

smoother yield curve in producing yield for long maturity. The forecasting errors

become larger when the VAR(1) are used to model the dynamic process of latent
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factors.

Figure 3.15 reveals that the VAR(1) specification for the DSFM, the principal

component analysis model and the Nelson-Siegel produce even more overshoots,

as compared to the AR(1) specification.

Figure 3.15: Observed and 12-month ahead predicted yields with VAR(1)
specification

Notes: This figure provides plots of the observed and 12-month ahead predicted time series for
the 6-month, the 3-, the 5- and 10-year maturities. The observed yields are plotted by gray
solid lines, whereas blue solid, green dotted, red dash-dotted, and pink dashed lines correspond
to predictions of the random walk (RW), DSFM with VAR(1), NS with VAR(1) and PCA with
VAR(1) model, respectively.

As presented in Figure 3.15, the DSFM suffers from structural break and yield

volatility, resulting in larger errors than the dynamic Nelson-Siegel and the prin-

cipal component analysis model. The DSFM with VAR(1) specification overstates

the prediction, especially at the turning point during the first-half of 2009 and the

second-half of 2010.

For the overall multi-step ahead prediction over the period from 2006 to 2013,

the DSFM and the dynamic Nelson-Siegel are not encouraging with consistent

accurate forecasts. The performance of each model is contingent to the forecast

horizon, maturity and period of the sample. This may be attributed to a the

out-of-sample period we use. De Pooter et al. (2010) noticed that including the
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period from 2000 onwards may fail to achieve the promising out-of-sample results.

Over the 2003-2006, yield spreads were widened and then sharply declined after

the onset of the global financial crisis during 2007 to 2009. In contrast, the yield

term structure during the second half of the 1990s to the early 2000s was rather

stable and produced promising results for several studies undertook on this period,

as in Duffee (2002), Ang and Piazzesi (2003), Diebold and Li (2006) and Hördahl

et al. (2006). Based on findings over the period of 2006 to 2013, the Nelson-Siegel

typically produces more accurate forecast for 1-month, 6-month and 12-month

ahead, compared with the DSFM which outperforms Nelson-Siegel in providing

less prediction errors for 3-month ahead forecast. These findings imply that the

DSFM may probably be suffering from the volatility and regime shifts while the

Nelson-Siegel can do better.

3.8.5.5 Forecasting accuracy test

In this section, we examine the forecasting ability of the DSFM, the principal

component analysis model and the dynamic Nelson-Siegel model relative to yields

implied by the random walk. As noted in the literatures, for example De Pooter

(2007) and Koopman et al. (2010), the random walk is the hard model to beat in

term structure forecasting. In order to statistically confirm the superior forecast-

ing ability of the random walk model, we employ the Diebold and Mariano (1995)

statistics to assess the prediction performance of the DSFM, the principal com-

ponent analysis model and the dynamic Nelson-Siegel model, compared with the

random walk. A negative and statistically different from zero of the quadratic loss

means that the DSFM, the principal component analysis model or the dynamic

Nelson-Siegel model can provide smaller in magnitude errors than the random

walk, and thus it rejects the null hypothesis that the prediction models have the

same forecasting ability as the random walk. Another main interest is in exam-

ining whether the DSFM can produce more accurate results, compared with the

dynamic Nelson-Siegel model and the principal component analysis model. For

these pairwise tests, the negative value with statistical significance of the Diebold-

Mariano statistics show that the DSFM outperforms its competitor models.
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Besides the Diebold-Mariano test to evaluate the forecasting superiority of the

random walk to other models, we also apply the Giacomini and Rossi (2010) fluc-

tuation test to statistically check whether the superior prediction ability of the

random walk is consistent over the forecasting period and does not suffer from

structural break. To carry out the Giacomini-Rossi fluctuation test exercise, we

recursively estimated the DSFM, the principal component analysis model or the

Nelson-Siegel model against the random walk, by adding one observation and then

re-estimating three models until the end of the rolling window.

(1) Diebold-Mariano test

Since the random walk has superior predictive ability compared to the DSFM,

the principal component analysis model and the dynamic Nelson-Siegel model, we

perform the Diebold-Mariano test to forecast errors of two pairs of the models;

specifically, the DSFM, the principal component analysis model or the dynamic

Nelson-Siegel model with the random walk and present the results in Table 3.12

- 3.13. In the first step, we compare the forecast accuracy of the AR(1) factor

dynamic specification of the DSFM, the principal component analysis model or

the dynamic Nelson-Siegel model with the random walk, and subsequently make a

comparison of the VAR(1) latent factor specification of both models in comparison

with the random walk for each maturity and each forecast horizon.

The results in Table 3.12 and Table 3.13 indicate that the random walk provides

better term structure forecasts. The positive values of Diebold-Mariano statis-

tics indicate that the DSFM, the principal component analysis model and the

Nelson-Siegel model produce higher in magnitude forecast errors than the random

walk model, especially at medium-term and long-term maturities for all forecast-

ing horizon. The reported values of Diebold-Mariano test statistic are consistent

with the RMSPE results. These confirm the random walk has superior prediction

ability as compared with other three models.

Comparison of the DSFM with AR(1) and VAR(1) specification against the Nelson-

Siegel model and the principal component analysis model at six-month maturity

for one-month and three-month ahead show the DSFM as statistically better in
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Table 3.12: Diebold-Mariano (1995) test statistics of the models with AR(1)
specification and the random walk over the period 1999 to 2013

Diebold-Mariano (1995) test statistics
6-m 1-y 2-y 3-y 5-y 7-y 10-y

1-month ahead

DS/RW -0.5510 2.1603* 3.5162* 3.1893* 2.0284* 2.0029* 2.1048*
NS/RW 1.5374 2.5950* 2.3376* 2.9840* 2.5325* 2.2027* 1.4358
DS/NS -2.6382* -0.7794 1.1023 0.2486 -0.5991 -0.4693 0.4571
PCA/RW -0.3203 1.7960 1.7405 2.7218* 1.8144 2.3999* 0.6798
DS/PCA -0.5131 1.7765 2.8133* 2.5193* 1.5149 1.4945 2.0555*

3-month ahead

DS/RW -0.1039 2.2631* 2.2142* 2.4821* 2.2984* 1.7603 1.1788
NS/RW 1.7262 1.8265 1.8485 1.9688 1.4695 1.3259 1.1105
DS/NS -2.7396* -0.6851 -0.6570 -0.5114 -0.1378 -0.5166 -0.7495
PCA/RW 0.7867 2.2371* 1.8059 2.2639* 1.9936* 1.7080 1.1403
DS/PCA -2.4196* -0.3839 0.8872 0.8767 1.4117 1.4279 0.9519

6-month ahead

DS/RW 1.6813 2.0405* 1.4080 1.4581 1.3285 1.1936 1.0154
NS/RW 0.6634 0.5840 0.5962 0.6426 0.5584 0.5675 0.5539
DS/NS -0.0808 0.4568 0.5574 0.4717 0.5271 0.2855 0.0202
PCA/RW 1.1767 2.0683* 1.6222 1.6581 1.3450 1.1411 0.9429
DS/PCA 0.8366 0.7765 0.7704 0.7524 1.0916 1.2056 1.2114

12-month ahead

DS/RW 1.2791 1.6213 1.3738 1.3716 1.0293 0.7978 0.6475
NS/RW 0.6434 0.4390 0.5260 0.5366 0.2367 0.2116 0.2427
DS/NS -0.0596 0.7934 0.9565 1.4709 2.4668* 2.0510* 1.2259
PCA/RW 1.0157 1.4257 1.3761 1.3464 0.9427 0.7835 0.7064
DS/PCA -0.2465 -0.4457 -0.4948 0.4463 2.6063* 0.8447 -0.4301

Notes:. The table presents Diebold-Mariano (DM) forecast accuracy comparison
test results of the dynamic semiparametric factor model (DS), the dynamic
Nelson-Siegel model (NS) and the principal component analysis (PCA) model
with AR(1) specification against the benchmark random walk (RW), DSFM
against benchmark NS and DSFM against benchmark PCA model. The null
hypothesis is that the two forecasts have the same root mean squared error.
Value with a asterisk indicate the statistical significance at the 95 percent. For
each pair, the negative value of DM statistic indicate that first model provides
smaller in magnitude forecast errors than the benchmark model. Four forecast
horizons are evaluated at 1, 3, 6 and 12 months ahead, for yields observed at
maturities of 1, 2, 3, 5, 7, and 10 years. To correct contemporaneously correlated
and serially correlated in forecast errors, we modified the Diebold-Mariano test

with heteroscedasticity and autocorrelation consistent (HAC) estimation
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Table 3.13: Diebold-Mariano (1995) test statistics of the models with VAR(1)
specification and the random walk over the period 1999 to 2013

Diebold-Mariano (1995) test statistics
6-m 1-y 2-y 3-y 5-y 7-y 10-y

1-month ahead

DS/RW 0.1544 1.9624 2.6038* 2.7063* 2.2046* 1.7913 1.5173
NS/RW -0.4357 1.3728 1.2267 1.7326 1.7265 1.3724 0.8115
DS/NS 2.1587* -0.0242 1.5774 1.4868 0.4615 0.5795 1.3399
PCA/RW -0.3168 1.5579 0.9707 1.4601 1.3804 1.0655 0.6574
DS/PCA 1.4928 0.7102 1.9756* 1.7885 1.2636 1.3386 1.6418

3-month ahead

DS/RW 0.4273 1.5082 1.8178 1.7483 1.6487 1.3938 0.7028
NS/RW 0.6609 1.0344 1.3076 1.4673 1.2588 1.1192 0.8284
DS/NS -1.2044 0.1822 0.2673 0.5750 0.8632 0.7215 -0.1829
PCA/RW 0.7851 1.4939 1.5790 1.7081 1.4757 1.2027 0.7827
DS/PCA -1.1699 0.1022 0.4861 0.7463 1.1426 0.9217 -0.3000

6-month ahead

DS/RW 2.3381* 2.3256* 1.8772 1.5670 1.1794 0.8918 0.5842
NS/RW 1.4296 1.2294 1.0642 0.9664 0.6798 0.6082 0.5399
DS/NS 0.6212 0.9591 0.8609 1.1074 1.4067 1.2913 0.3774
PCA/RW 1.4393 1.5239 0.9642 0.8538 0.5954 0.4262 0.2577
DS/PCA 0.3431 0.8290 1.3757 1.5750 2.1015* 2.0286* 1.7564

12-month ahead

DS/RW 5.0376* 5.6264* 9.6226* 9.1699* 2.3022* 1.5769 1.2369
NS/RW 3.4420* 3.4198* 4.7663* 2.6930* 2.0251* 2.2918* 1.8785
DS/NS 5.6676* 4.8655* 5.2226* 3.1332* 1.0813 0.9405 0.9605
PCA/RW 2.2962* 3.3914* 3.3433* 1.5985 0.6961 0.5119 0.4606
DS/PCA 0.8758 1.1333 1.4022 1.5785 2.0030* 2.6540* 3.7778*

Notes:. The table presents Diebold-Mariano (DM) forecast accuracy comparison
test results of the dynamic semiparametric factor model (DS), the dynamic
Nelson-Siegel model (NS) and the principal component analysis (PCA) model
with AR(1) specification against the benchmark random walk (RW), DSFM
against benchmark NS and DSFM against benchmark PCA model. The null
hypothesis is that the two forecasts have the same root mean squared error.
Value with a asterisk indicate the statistical significance at the 95 percent. For
each pair, the negative value of DM statistic indicate that first model provides
smaller in magnitude forecast errors than the benchmark model. Four forecast
horizons are evaluated at 1, 3, 6 and 12 months ahead, for yields observed at
maturities of 1, 2, 3, 5, 7, and 10 years. To correct contemporaneously correlated
and serially correlated in forecast errors, we modified the Diebold-Mariano test

with heteroscedasticity and autocorrelation consistent (HAC) estimation



Chapter 3. Term Structure Forecasting - A Comparison between the Dynamic
Semiparametric Factor Model and the Dynamic Nelson-Siegel Model 123

forecasting yields at short maturities for short-horizons. However, as judged for

all tested forecasting horizons across all maturities, the DSFM, the Nelson-Siegel

model and the principal component analysis model are worse than the random

walk.

(2) Giacomini-Rossi fluctuation test

To evaluate whether potential instabilities may affect the forecast performance of

the random walk relative to the DSFM, the Nelson-Siegel model and the principal

component analysis model, we check the structural stability by the Giacomini-

Rossi fluctuation test which assesses whether the predictive ability changes over

time.

Figure 3.16 shows the Giacomini-Rossi fluctuation test for the 6-month, 3-year,

5-year and 10-year bond yields over the rolling windows during March 2008 to

March 2013. The figure plots the relative forecasting performance for the DSFM,

the Nelson-Siegel model and the principal component analysis model against the

random walk, together with the relative forecasting performance for the DSFM

against the Nelson-Siegel model and the principal component analysis model at

the 5 percent critical values. Since the values of the statistic are below the (nega-

tive) critical value, we reject the null hypothesis of equal predictive ability at each

point in time and conclude that the test model forecasts better than the bench-

mark model in particular periods.

The graph suggests that the global financial crisis (represented by shaded area)

deteriorated the term structure predictability of the DSFM, the Nelson-Siegel and

the principal component analysis model. However, from the end of the year 2008

to the first half of 2009, the forecasting ability of the DSFM, the Nelson-Siegel

model and the principal component analysis model start to recover and even beat

the random walk by producing a negative value of the Giacomini-Rossi fluctuation

test statistics for 6-month yield forecast. It is clear that the DSFM significantly

produces better forecasts for 6-month bonds relative to the random walk by at-

taining some negative Giacomini-Rossi fluctuation test statistics below the critical

value. Since the European sovereign debt crisis emerged from the end of 2010,
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the DSFM, the Nelson-Siegel and the principal component analysis model start to

suffer from a structural break and interest rate volatility corresponding to higher

term premium and yield spread that turns the fluctuation test statistics to be

positive.

Further support for structural instability in forecasting term structure can be also

observed by Figure 3.17 which presents Giacomini-Rossi fluctuation test statistics

based on the VAR(1) specification.

From Figure 3.17, the plot of Giacomini-Rossi fluctuation test statistics clearly

shows the effect of the global financial crisis in 2008 and the European sovereign

debt crisis from the end of 2010 which weakens the prediction ability of the DSFM,

the Nelson-Siegel and the principal component analysis model to compete with

the random walk. The values of fluctuation test statistics are raised and remained

positive after the structural break which indicates the predictability of the three

models is worsened by the unstable environment.

3.8.6 Sub-sample forecasting

As the structural break may be a possible explanation for the inconsistent results

in predicting the term structure, we examine the robustness of the predictive per-

formance of the DSFM and the dynamic Nelson-Siegel as well as try to detect the

affect for the periods that covers the crisis or regime shifts. The overall out-of-

sample period was initially estimated from 2006 to 2013 and thus directly falls

into the 2007 to 2008 global financial crisis period. Therefore, we carry out a fore-

casting experiment by comparing the forecasting results over three sub-samples;

the first sub-sample from 2003 to 2006, the second sub-sample from 2006 to 2009

and the third sub-sample from 2009 to 2013. The second sub-sample will cover

the global financial crisis.

For each sub-sample, we report RMSPE for the DSFM and the dynamic Nelson-

Siegel with the AR(1) and VAR(1) specification and illustrate 1-month ahead yield

forecasts for 6-month, 3-year, 5-year and 10-year bonds and compare them with
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the actual yields.

3.8.6.1 Sub-sample 2003-2006

We start the discussion for each sub-sample period by considering the individual

models performance in terms of the RMSPE. Table 3.14 provides the root mean

squared forecast errors of the different models for the out-of-sample prediction

during the period from 2003 to 2006.

In general, the RMSPE in every individual model and every maturity during the

sub-sample period are lower than those for the overall out-of-sample forecast from

2006 to 2013. In addition, the AR(1) specification clearly outperforms the VAR(1)

dynamics for all multi-period ahead forecasts while the results over 2006 to 2013

are mixed. These results show that forecasting during the normal period is more

accurate and more consistent than the period that includes a structural break.

Analyzing over the specific period ahead forecast, the DSFM with AR(1) specifi-

cation presents the superior forecasting performance at the 3-month and 6-month

ahead, especially for the longer maturities. On the other hand, the Nelson-Siegel

specification demonstrates the accurate forecast for shorter (1-month ahead) and

longer (12-month ahead) horizons.

To demonstrate the forecasting performance corresponding to time period, Figure

3.18 shows the 1-month ahead prediction of the models with an AR(1) specification

for selected bonds in different maturities while Figure 3.19 depicts the prediction

of the models with a VAR(1) specification. During this sub-period, yields initially

decline until the first quarter of 2003. Afterward, these yields rise and continue

on the upward trend, accompanied with a substantial widening of spreads.

As can be seen from the Figure 3.18, the model with an AR(1) specification fore-

cast the persistent movement of the yield, especially after 2003 until the end of

sub-sample period. In particular, the Nelson-Siegel with an AR(1) specification

provide better forecast performance than the DSFM with an AR(1) specification,
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Table 3.14: Out-of-sample forecasts for the subperiod September 2003 to
March 2006

TRMSPE RMSPE
all 6-m 1-y 2-y 3-y 5-y 7-y 10-y

1-month ahead

RW 0.2085 0.1293 0.1583 0.1814 0.2019 0.2139 0.2267 0.2389
DNS
AR(1) 0.2057 0.1481 0.1846 0.1866 0.2013 0.2130 0.2164 0.2273
VAR(1) 0.2100 0.1589 0.2138 0.1932 0.2039 0.2120 0.2159 0.2286
DSFM
AR(1) 0.2103 0.1444 0.1784 0.1936 0.2071 0.2214 0.2210 0.2350
VAR(1) 0.2187 0.1768 0.2007 0.1996 0.2114 0.2274 0.2262 0.2393

3-month ahead

RW 0.3159 0.2531 0.3068 0.3273 0.3432 0.3375 0.3272 0.3235
DNS
AR(1) 0.3561 0.3242 0.3826 0.3858 0.3938 0.3774 0.3539 0.3390
VAR(1) 0.3453 0.3793 0.4124 0.3599 0.3647 0.3523 0.3314 0.3225
DSFM
AR(1) 0.3276 0.3181 0.3688 0.3634 0.3640 0.3428 0.3168 0.3035
VAR(1) 0.3549 0.4069 0.4218 0.3795 0.3781 0.3624 0.3355 0.3225

6-month ahead

RW 0.4075 0.3834 0.4446 0.4563 0.4654 0.4486 0.4271 0.4083
DNS
AR(1) 0.4114 0.4618 0.5212 0.4735 0.4647 0.4327 0.4059 0.3853
VAR(1) 0.5017 0.6830 0.6749 0.5679 0.5424 0.5012 0.4722 0.4491
DSFM
AR(1) 0.3738 0.4921 0.5162 0.4509 0.4250 0.3788 0.3393 0.3102
VAR(1) 0.4748 0.6553 0.6586 0.5418 0.5079 0.4659 0.4413 0.4204

12-month ahead

RW 0.4937 0.5523 0.6194 0.6167 0.6203 0.5924 0.5494 0.5180
DNS
AR(1) 0.3324 0.7262 0.6810 0.4191 0.3241 0.2320 0.2139 0.2326
VAR(1) 0.3807 0.8776 0.7467 0.4250 0.3237 0.2662 0.2724 0.2960
DSFM
AR(1) 0.3696 0.6772 0.6489 0.5026 0.4396 0.3638 0.3021 0.2549
VAR(1) 0.4116 0.7799 0.7124 0.5126 0.4440 0.3851 0.3592 0.3461

Notes:. This table summarizes the overall trace root mean squared prediction
errors (TRMSPE) and the root mean squared prediction errors (RMSPE) for the
random walk (RW); the first-order univariate autoregressive model of yield (Y-
AR(1)); the first-order multivariate autoregressive model of yield (Y-VAR(1));
the dynamic Nelson-Siegel model (DNS); the dynamic semiparametric factor
model (DSFM) and the principal component analysis model (PCA). The results
are made for subperiod 2003 to 2006. For each model, the RMSFEs are reported
for 6-month and 1-, 2-, 3-, 5-, 7- and 10-year maturities, and for 1-, 3-, 6- and
12-month-ahead horizon. Bold numbers indicate the best performing model.



Chapter 3. Term Structure Forecasting - A Comparison between the Dynamic
Semiparametric Factor Model and the Dynamic Nelson-Siegel Model 129

Figure 3.18: Observed and 1-month ahead predicted yields with AR(1) spec-
ification for the subperiod 2003 to 2006

Notes: This figure provides plots of the observed and 1-month ahead predicted time series for
the 6-month, the 3-, the 5- and 10-year maturities. The observed yields are plotted by gray
solid lines, whereas blue solid, green dotted, red dash-dotted, and pink dashed lines correspond
to predictions of the random walk (RW), DSFM with VAR(1), NS with VAR(1) and PCA with
VAR(1) model, respectively.

except for the 6-month bond yield.

The forecasting results for the VAR(1) models are presented in Figure 3.19. Ac-

cording to this plot, the VAR(1) specification of the DSFM and the Nelson-Siegel

tend to overshoot the fluctuation of the yields whereas the AR(1) provide more

persistent results.

During 2003 to 2004, the VAR(1) specification of both models understate the pre-

dicted yields around the turning point of the term structure dynamics. However,

the DSFM with VAR(1) specification appears to miss the particular dynamics by

few months or are lagged relative to the actual yields, while the Nelson-Siegel does

a better job.
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Figure 3.19: Observed and 1-month ahead predicted yields with VAR(1) spec-
ification for the subperiod 2003 to 2006

Notes: This figure provides plots of the observed and 1-month ahead predicted time series for
the 6-month, the 3-, the 5- and 10-year maturities. The observed yields are plotted by gray
solid lines, whereas blue solid, green dotted, red dash-dotted, and pink dashed lines correspond
to predictions of the random walk (RW), DSFM with VAR(1), NS with VAR(1) and PCA with
VAR(1) model, respectively.

3.8.6.2 Sub-sample 2006-2009

This sub-period runs from 2006 to 2009 and thus includes the global financial crisis.

We expect the reason why the prediction accuracy performance for the overall

forecasting period is unpromising and inconsistent may be due to the structural

break. This examination may shed more light on this claim. Forecasting results

for individual models over the multi-step ahead are reported in Table 3.15.

The results for this sub-period shows that the DSFM and the Nelson-Siegel model

with an AR(1) and VAR(1) specification produce higher RMSPE than the overall

forecasting period from 2006 to 2013, and even higher than the previous sub-

sample over 2003 to 2006 which does not include the crisis. Despite the fact that

both models suffered from the crisis and produced less accurate forecast over the

crisis, the Nelson-Siegel model performs a better job than the DSFM, in particular

the 1-month, 6-month and 12 month ahead. Interestingly, the dynamic semipara-

metric factor model with an AR(1) specification outperforms the Nelson-Siegel

model for the three-month horizon forecast. It can also beat the random walk for
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Table 3.15: Out-of-sample forecasts for the period March 2006 to September
2009

TRMSPE RMSPE
all 6-m 1-y 2-y 3-y 5-y 7-y 10-y

1-month ahead

RW 0.3387 0.4043 0.4261 0.3817 0.3521 0.3220 0.2920 0.2886
DNS
AR(1) 0.4025 0.4912 0.5541 0.4816 0.4155 0.3713 0.3296 0.3179
VAR(1) 0.3673 0.3869 0.4774 0.4497 0.4128 0.3736 0.3383 0.3399
DSFM
AR(1) 0.3819 0.3965 0.4905 0.4688 0.4138 0.3719 0.3241 0.3175
VAR(1) 0.3850 0.3880 0.4516 0.4261 0.3919 0.3768 0.3215 0.2973

3-month ahead

RW 0.7942 1.0273 1.0472 0.9457 0.8572 0.7624 0.6892 0.6389
DNS
AR(1) 0.9545 1.3066 1.3330 1.2056 1.0500 0.8852 0.7739 0.6888
VAR(1) 0.9382 0.9976 1.1459 1.1547 1.0733 0.9393 0.8545 0.7974
DSFM
AR(1) 0.8905 1.0971 1.2062 1.1340 1.0050 0.8627 0.7467 0.6662
VAR(1) 1.7470 1.8962 1.9762 1.8679 1.8024 1.8007 1.7226 1.6875

6-month ahead

RW 1.2846 1.8205 1.7910 1.6096 1.4421 1.2639 1.1304 1.0172
DNS
AR(1) 1.4288 2.2237 2.1112 1.8327 1.5763 1.3223 1.1755 1.0601
VAR(1) 1.4518 2.1676 2.1216 1.8724 1.6052 1.3432 1.2247 1.1443
DSFM
AR(1) 1.7366 2.6599 2.7189 2.2960 1.9352 1.5867 1.3687 1.2031
VAR(1) 1.4434 2.2349 2.2215 1.8617 1.5697 1.3134 1.1719 1.0575

12-month ahead

RW 1.6021 2.7816 2.6965 2.2652 1.9541 1.6219 1.3709 1.1469
DNS
AR(1) 1.7627 2.9441 2.8743 2.5470 2.1959 1.7936 1.5467 1.3433
VAR(1) 2.0715 3.1036 3.1287 2.9305 2.6128 2.2222 1.9877 1.7892
DSFM
AR(1) 2.1102 3.1460 3.1605 2.8826 2.6375 2.3286 2.0619 1.8145
VAR(1) 2.1425 3.3672 3.3561 2.9380 2.6441 2.3070 2.0203 1.7582

Notes:. This table summarizes the overall trace root mean squared prediction
errors (TRMSPE) and the root mean squared prediction errors (RMSPE) for the
random walk (RW); the first-order univariate autoregressive model of yield (Y-
AR(1)); the first-order multivariate autoregressive model of yield (Y-VAR(1));
the dynamic Nelson-Siegel model (DNS); the dynamic semiparametric factor
model (DSFM) and the principal component analysis model (PCA). The results
are made for subperiod 2003 to 2006. For each model, the RMSFEs are reported
for 6-month and 1-, 2-, 3-, 5-, 7- and 10-year maturities, and for 1-, 3-, 6- and
12-month-ahead horizon. Bold numbers indicate the best performing model.
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six-month bond yield at one-month ahead horizon.

Comparing the AR(1) and VAR(1) specifications, the AR(1) still demonstrates

better forecasting performance for the sub-sample period, while the VAR(1) spec-

ification with the Nelson-Siegel model only provides better results for the 1-month

ahead forecast. This evidence also confirms that the AR(1) specification outper-

forms the VAR(1) for sub-sample estimation as documented before. The results

also suggest that both models have performed better at the longer maturity, ex-

cept for the 1-month horizon, which provides more accurate forecast at both short

(6-month) and long (10-year) maturities.

The results discussed above are shown in Figure 3.20 and 3.21 for the forecasting

results by the AR(1) and VAR(1) specification over the period 2006-2009 at the

1-month ahead horizon. In this subsequent period, the yield curve experienced a

structural break. From 2006 onwards, yields persistently increased and reached

the peak before the eruption of the global financial crisis at the end of the year

2008. Then, they sharply declined during the distress period and up-swung back

after the economy started to recover at the second-half of the year 2009. Figure

3.20 plots the outcome for the DSFM and the Nelson-Siegel model with an AR(1)

specification.

As shown in Figure 3.20, the DSFM with an AR(1) specification outperforms the

Nelson-Siegel in forecasting the persistent upward trend from the beginning of the

sub-sample period until the outbreak of the global financial crisis. Unfortunately,

it fails to track the yield curve by providing a somewhat lag in time series of the

yields since the 2008 crisis. This forecasting pattern causes the estimation to have

higher RMSPE than those produced during the period prior to the crisis. The

unpromising results appear to become worse when the VAR(1) specification is un-

dertaken as presented in Figure 3.21.

From Figure 3.21, the Nelson-Siegel model with VAR(1) specification forecasts

the term structure is more precise than the DSFM with VAR(1) specification.

The DSFM is more volatile and overstates the forecasted yield around the turning
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Figure 3.20: Observed and 1-month ahead predicted yields with AR(1) spec-
ification for the subperiod 2006 to 2009

Notes: This figure provides plots of the observed and 12-month ahead predicted time series for
the 6-month, the 3-, the 5- and 10-year maturities. The observed yields are plotted by gray
solid lines, whereas blue solid, green dotted, red dash-dotted, and pink dashed lines correspond
to predictions of the random walk (RW), DSFM with VAR(1), NS with VAR(1) and PCA with
VAR(1) model, respectively.

Figure 3.21: Observed and 1-month ahead predicted yields with VAR(1) spec-
ification for the subperiod 2006 to 2009

Notes: This figure provides plots of the observed and 12-month ahead predicted time series for
the 6-month, the 3-, the 5- and 10-year maturities. The observed yields are plotted by gray
solid lines, whereas blue solid, green dotted, red dash-dotted, and pink dashed lines correspond
to predictions of the random walk (RW), DSFM with VAR(1), NS with VAR(1) and PCA with
VAR(1) model, respectively.
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point. Both models also suffer from the structural break after the crisis by pro-

ducing lag values that miss the yield dynamic.

3.8.6.3 Sub-sample 2009-2013

This sub-sample period is the ex-post crisis era and therefore, there is no struc-

tural break. The prediction performance from individual models can be used to

examine the robustness by comparing with the first sub-sample over the period

from 2003 to 2006, which does not cover the 2008 global financial crisis. From

the results, we are also able to evaluate the structural breaks effect on the term

structure forecast when the crisis is included.

The RMSPE for the DSFM and the Nelson-Siegel model, together with their

competitors are reported in Table 3.16. The absolute size of the prediction errors

found the post-crisis are much less than those reported during the crisis. This

result appears to be the reason that the term structure forecast tends to outperform

once it encounters the structural break. In spite of that, the prediction errors in

this sub-sample period are as quite small in magnitude as the pre-crisis figures.

As reported the prediction accuracy for this sub-sequent period in Table 3.16, the

AR(1) process is still better to specify the dynamic latent factors for each sub-

sample period, rather than the VAR(1) specification. The AR(1) process gives

better forecasting performance in producing lower RMSPE, particularly for the

3-month, 6-month and 12-month ahead; but not for 1-month ahead. Another key

result from this sub-sequent period is that the DSFM with AR(1) specification still

outperforms the Nelson-Siegel model to predict 3-month and 6-month ahead fore-

cast as it does for the pre-crisis period. Its 6-month maturity yield prediction also

does a better job than the random walk at 3-month and 6-month ahead forecast.

Interestingly, the DSFM with AR(1) specification presents better performance be-

yond the Nelson-Siegel counterpart for 12-month ahead predictions, even it still

fails to overcome the Nelson-Siegel in anticipating the one-month ahead yield. The

important point is that the DSFM with AR(1) is suitable for predicting yield in

the period without a structural break and in particular, for the longer step ahead.
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Table 3.16: Out-of-sample forecasts for the period September 2009 to March
2013

TRMSPE RMSPE
all 6-m 1-y 2-y 3-y 5-y 7-y 10-y

1-month ahead

RW 0.2392 0.1521 0.2237 0.2743 0.2654 0.2461 0.2387 0.2399
DNS
AR(1) 0.2731 0.1961 0.2525 0.3119 0.3338 0.2753 0.2660 0.2708
VAR(1) 0.2582 0.2199 0.2903 0.2930 0.3002 0.2625 0.2384 0.2325
DSFM
AR(1) 0.2623 0.1923 0.2498 0.3097 0.2691 0.2784 0.2557 0.2633
VAR(1) 0.2682 0.2942 0.2981 0.3022 0.2682 0.2802 0.2453 0.2347

3-month ahead

RW 0.4158 0.3017 0.3614 0.4554 0.4555 0.4469 0.4389 0.4353
DNS
AR(1) 0.6239 0.4786 0.5624 0.6804 0.7172 0.6621 0.6509 0.6447
VAR(1) 0.5691 0.6947 0.6723 0.6459 0.6380 0.5589 0.5213 0.5069
DSFM
AR(1) 0.5267 0.2731 0.4173 0.5154 0.5577 0.6000 0.5808 0.5675
VAR(1) 0.5765 0.7234 0.6867 0.6049 0.6214 0.5969 0.5347 0.4928

6-month ahead

RW 0.6041 0.5090 0.5423 0.6327 0.6478 0.6764 0.6785 0.6712
NS
AR(1) 1.1203 0.9402 1.0529 1.2097 1.2726 1.2555 1.2338 1.1996
VAR(1) 1.1169 1.1104 1.1736 1.2992 1.3213 1.2127 1.1606 1.1134
DSFM
AR(1) 0.9130 0.4713 0.7556 0.9283 0.9842 1.0789 1.0608 1.0236
VAR(1) 1.1131 1.0966 1.2135 1.2615 1.3005 1.2465 1.1542 1.0641

12-month ahead

RW 0.8779 0.8014 0.9351 0.9862 0.9895 1.0997 1.0775 1.0253
DNS
AR(1) 1.4249 2.2016 1.9212 1.7832 1.7136 1.5510 1.4880 1.4148
VAR(1) 1.4943 1.8502 1.8409 1.8918 1.8685 1.7306 1.6579 1.5762
DSFM
AR(1) 1.3535 2.2788 2.0958 1.7495 1.5548 1.4211 1.2965 1.1890
VAR(1) 1.7991 2.6403 2.6258 2.3777 2.2217 2.0101 1.8088 1.6179

Notes:. This table summarizes the overall trace root mean squared prediction
errors (TRMSPE) and the root mean squared prediction errors (RMSPE) for the
random walk (RW); the first-order univariate autoregressive model of yield (Y-
AR(1)); the first-order multivariate autoregressive model of yield (Y-VAR(1));
the dynamic Nelson-Siegel model (DNS); the dynamic semiparametric factor
model (DSFM) and the principal component analysis model (PCA). The results
are made for subperiod 2003 to 2006. For each model, the RMSFEs are reported
for 6-month and 1-, 2-, 3-, 5-, 7- and 10-year maturities, and for 1-, 3-, 6- and
12-month-ahead horizon. Bold numbers indicate the best performing model.
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Even so the DSFM and the Nelson-Siegel provide lower prediction errors than

those figures produced during the crisis period. The RMSPE in this sub-sample

period are not quite similar to the figures from the pre-crisis period. This result

can be clearly seen from Figure 3.22 and 3.23 that illustrate the forecasted with

the actual yields across the sub-sample period.

Figure 3.22: Observed and 1-month ahead predicted yields with AR(1) spec-
ification for the subperiod 2009 to 2013

Notes: This figure provides plots of the observed and 12-month ahead predicted time series for
the 6-month, the 3-, the 5- and 10-year maturities. The observed yields are plotted by gray
solid lines, whereas blue solid, green dotted, red dash-dotted, and pink dashed lines correspond
to predictions of the random walk (RW), DSFM with VAR(1), NS with VAR(1) and PCA with
VAR(1) model, respectively.

At the beginning of the sub-sequent period, long-term yields start at high levels

that produce a wide spread over the the short-term yield due to higher risk pre-

mium after the aftermath of the global financial crisis. However, the European

sovereign debt that emerged from 2009 raised risk premia and induced higher

yields for a few months during 2010 to 2011. The uncertain economic recovery

for the European Union and other advanced economies caused the market to ex-

pect falling interest rates and produced a downward trend of the term structure

from 2011 onwards. Figure 3.22 plots the yield forecast with AR(1) specification

for the one-month ahead forecast over the post-crisis period. From the plots, the

DSFM with AR(1) specification reflects the persistent evolution of the yield well

and produces lower prediction errors as compared to the Nelson-Siegel. Neverthe-

less, it is still difficult for the AR(1) specification to track the actual yield when
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there is a sharp decline in the term structure curve. As depicted in the figure,

the DSFM with AR(1) misses the actual yield and predicts the yield that lags

behind, it though does better than the Nelson-Siegel. The prediction performance

of the individual model with VAR(1) specification compared with the actual yield

is presented in Figure 3.23.

Figure 3.23: Observed and 1-month ahead predicted yields with VAR(1) spec-
ification for the subperiod 2009 to 20013

Notes: This figure provides plots of the observed and 12-month ahead predicted time series for
the 6-month, the 3-, the 5- and 10-year maturities. The observed yields are plotted by gray
solid lines, whereas blue solid, green dotted, red dash-dotted, and pink dashed lines correspond
to predictions of the random walk (RW), DSFM with VAR(1), NS with VAR(1) and PCA with
VAR(1) model, respectively.

In Figure 3.23, there is more evidence that confirms the drawbacks of the VAR(1)

specification in producing the overstated or understated results at the turning

point. For the one-month ahead prediction, the DSFM as well as the Nelson-

Siegel model overstates the yield forecast during 2010 and over the time from 2011

to 2012 for only the 6-month bond, in particular. Comparing both models, the

Nelson-Siegel model with VAR(1) specification provides a more accurate forecast

than the DSFM counterpart.
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3.8.6.4 Sub-sample forecasting performance

In summary, the results of the sub-sample analysis show the strong forecast per-

formance of the random walk over the DSFM, the dynamic Nelson-Siegel and the

principal component model. The forecasting ability of the DSFM, the dynamic

Nelson-Siegel and other competitive models varies during subperiods of study. In

particular, for the first sub-sample period from 2003 to 2006, the dynamic Nelson-

Siegel model with VAR(1) provide a more accurate prediction as compared to the

DSFM. Once the economy had experienced the global financial crisis in the sec-

ond sub-sample period from 2006 to 2009, the dynamic Nelson-Siegel model with

VAR(1) still outperforms the DSFM. However, the DSFM with an AR(1) specifi-

cation provide better forecast compared to the dynamic Nelson-Siegel model with

VAR(1) in the third sub-sample period from 2009 to 2013. Comparing these two

models, the dynamic Nelson-Siegel model seems to predict more accurate results

during the period of uncertainty with high volatility or sudden structural change,

while the DSFM with AR(1) specification better suits term structure forecasting

once the yield behaves persistenly.

3.9 Conclusion

This paper examines the in-sample fit estimation accuracy and out-of-sample fore-

casting performance of the dynamic semiparametric factor model (DSFM) and

the Nelson-Siegel model. The DSFM allows the linking of two classes of methods

widely used in financial econometrics; the dynamic factor model and nonparamet-

ric estimation. The combination of these features recovers the dynamic structures

in curves observed over time without assuming a priori functional forms. We use

the B-spline function to estimate smooth factor loadings and then construct a par-

simonious semiparametric factor model. To provide a better explanation on yield

variation, we use a 3-factor specification instead of only 2 factors as in Härdle and

Majer (2012). By doing this, we can interpret the latent factors as level, slope and

curvature as Diebold and Li (2006b) did. Our methodology provides means to

build a parsimonious dynamic factor model for even high-dimensional time series

panels and with factors that can be given a clear economic interpretation. The

term structure estimation of the DSFM shows it is superior to the Nelson-Siegel
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in producing accurate in-sample fit.

We then compare the prediction accuracy of the DSFM and the dynamic Nelson-

Siegel model with the competitors; the principal component model, the autore-

gressive of yield-level and the random walk model along the maturity spectrum

for horizons of 1-month, 6-month, 3-month and 12-month ahead. Our main re-

sults can be summarized as follows. The random walk forecasts more accurately

than the DSFM, the dynamic Nelson-Siegel model and other competitors, irrespec-

tive of any forecasting horizon. Considering between the DSFM and the dynamic

Nelson-Siegel model for the entire period as well as several sub-sample periods, we

find that the predictive ability of individual models varies over time considerably.

The dynamic Nelson-Siegel model seems more accurate in sub-periods during the

uncertainty about the future path of the yields; the widened term spread during

2002 to 2004 and the global financial crisis during 2007 to 2008. However, the

DSFM with AR(1) specification does particularly well in the sub-period after the

global financial crisis which represent a persistent downward trend in yields. The

fact that different models forecast well in different sub-periods implies the perfor-

mance of each model is contingent on the forecast horizon, maturity and period of

the sample. The results from the Giacomini and Rossi (2010) fluctuation test also

confirm that the uncertain environment from the widen term spread and the global

financial crisis caused unstable predictability of the term structure forecasting.





Chapter 4

Term Structure Forecasting with

a Business Conditions Index

4.1 Introduction

We propose to use the Sheen-Trueck-Wang (2014) small open economy business

conditions index (as in Sheen et al. (2014)) for term structure modelling and

forecasting. This index is the real-time index with a mixed frequency data that

captures change in market expectation and provide relevant macroeconomic in-

formation for term structure dynamics. Our models are the extension of dynamic

factor class of term structure models; the dynamic Nelson-Siegel and the dynamic

semiparametric factor model (DSFM), to include business condition index. The es-

timation is based on a monthly time series of Australian government zero coupon

bonds for different maturities together with other macro variables and business

condition index from March 1999 to April 2013. We find the in-sample fit esti-

mation that incorporates business condition index is a few less accurate, but its

cross-sectional yield at particular period provides guidance to anchor the yield in

the next period. We also find that business condition index improve out-off-sample

forecasting accuracy of the dynamic semiparametric factor model for medium and

long-term maturity at one-month step ahead. Nonetheless, there is no statistically

significant between the random walk, the model with factor only, the macro-finance

model relative to the model with business condition index for all maturities and

over multistep ahead based on the Diebold and Mariano (1995) test. We also

find the prediction performance of the model with business condition index can

141
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be enhanced by using the index with more frequently release (daily, weekly) or

more recent available (one-week and two-week lag) index. The predictability of

the business conditions index also significantly outperform the two most common

Australian survey based indicators; the the Melbourne/Westpac leading index and

the Melbourne/Westpac consumer sentiment index.

Regarding to forward looking behavior of the yield curve, we find the slope factor

significantly relate to the index. This suggests a change in overall economy or

business cycle will affect the yield slope. The monetary authority is anticipated

to implement a contractionary monetary policy once the economy is expected to

be overheating. The yield slope is adjusted corresponding to forward-looking in-

formation about the state of economy. Accordingly, a decrease in the level and

slope of the yield curve can be considered as a signal of the monetary stimulus to

accommodate economy from recession. Thus, the business conditions index signif-

icantly improve associated with the expectation of economic recovery.

The remainder of the paper is organized as follows. Section 4.2 discusses the re-

lated literature on term structure modeling and forecasting with the inclusion of

forward looking information. Section 4.3 provides details about the Sheen-Trueck-

Wang business conditions index and theoretical background of the linkage between

term structure and expectation. Section 4.4 explains the methodology to incorpo-

rate business conditions index with and the term structure model and forecasting

technique. Section 4.5 reports the data used in this study and their corresponding

descriptive statistics. Section 4.7 shows the estimation and forecasting forecasting

results and Section 4.8 gives a conclusion.

4.2 Review of Literature

The term structure of interest rates at any moment contains information regard-

ing interest rates that markets expect to prevail later on. This information is of

tremendous interest to financial practitioners and policymakers alike. Policymak-

ers carefully monitor this information to infer market-based expectations of future

monetary policy and to gauge the effectiveness of their communications strategy.
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For practitioners, the availability of accurate interest rate forecasts can be the key

to a successful trading strategy. In recent years, a new generation of dynamic term

structure models has focused on flexible term structure models, for example, the

Nelson-Siegel model or the non-parametric or semi-parametric factor model. These

models have shown considerable promise for capturing the entire term structure.

However, it is still difficult for these model to provide accurate term structure

forecasting. One main reason is that they disregard the relationships between

macroeconomic variables and interest rates. Hence, the linkage between term

structure evolvement and expected path of monetary policy and macroeconomy

is not captured. Another reason is that typical data samples used in a dynamic

term structure estimation may be too short to represent a mean-reversion and

it is hard to provide precise prediction. Given insufficient information, it would

help to provide additional relevant information. Ang et al. (2007) and Kim and

Orphanides (2012) proposed to incorporate the survey forecasts of short-term in-

terest rates into the term structure models and concluded surveys are informative

and facilitate the estimation of underlying term structure models. Studies such

as Mönch (2008), Füss and Nikitina (2011), Dijk et al. (2013) and Koopman and

Van der Wel (2013) have also shown that the term structure model that adds

macroeconomic information, in particular, the macroeconomic factor-augmented

vector-autoregression (FAVAR), is beneficial to improve forecasting performance.

Even though the survey are useful proxies for the market expectations implicit in

the term structure that can supplement the available interest rate data for the

estimation of a dynamic term structure model. However, it may be concerned

about the reliability of the survey forecast information. Chun (2011) and Francis

and Hua (2012) evaluated the survey-based bond yield forecasts by experts and

found the predictive performance is quite poor, relative to statistical model and

the naive random-walk. In this paper, we propose to tackle this problem by us-

ing the Sheen-Trueck-Wang small open economy business condition index. Sheen

et al. (2014) followed Aruoba et al. (2009) to develop the business conditions in-

dex which is a mixed-frequency data indicator that combine relevant explanatory

macroeconomic variables as the additional information for term structure forecast-

ing. The business conditions index is the real-time indexes that capture changes

in market expectations as well as movements in the macroeconomic variables. The

business conditions index can be serves as a summary statistics of the information
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market participants have received thus far about real activity.

4.3 Business Conditions Index and Term Struc-

ture

We propose to incorporate the business condition index information in term struc-

ture forecast. The basic idea is that this additional information are useful proxies

for the market expectations implicit in the term structure at any point in time,

they should be a rich source of information that can supplement the available in-

terest rate data for the estimation of a dynamic term structure model. This should

help improve the overall precision of the estimated parameters.

4.3.1 Business Conditions Index Estimation

Earlier studies in term structure forecast tried to improve forecasting accuracy

by using survey information. Unfortunately, they did not yield encouraging con-

clusions regarding reliability of surveys. Moreover, the interest rate environment

has changed from the widened term premium and financial distress during 2000s.

Term structure forecast also suffer from the look-ahead bias that arise in the com-

putation of forecast in n-step ahead horizon. One might expect the sophistication

of the real-time indicator could help alleviate inaccurate forecast.

Sheen et al. (2014) extended the Aruoba et al. (2009) business conditions index for

the closed economy to a small open economy. This index uses the Kalman filter in

a dynamic factor model to measure economic activity from different frequencies,

in particular high frequency. It represents economic activity in real time, so called

now-casts, which provides accurate and timely forecasts of the economy. Since

the business confidence plays a major role in driven the indicator, it therefore

contains forward-looking information and predictive content that could remedy

the look-ahead bias. In this part, we discuss the Sheen-Trueck-Wang small open

economy business condition index. The indicator is derived from a dynamic factor
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model and is extracted by using Kalman filter and maximum likelihood estimation.

4.3.1.1 State space representation of the mixed frequency factor model

Assume that the macroeconomic variables are measured at high frequencies. Let

Ft denote the unobserved state of the economy or dynamic factors extracted from

a mixed frequency data set, and assume these factors evolves with autoregressive

process with exogenous variables Ct. The state equation can be written as.

Ft = ACt +RFt−1 +Wet et ∼ N(0, P ) (4.1)

where et is white noise with zero mean and P variance.

Let Mt denote the economic or financial variable, which depends linearly on Ft

and also on various exogenous variables Dt. So, the measurement equation is rep-

resented by.

Mt = GDt +BFt−1 + ηt ηt ∼ N(0, H) (4.2)

where the ηt are contemporaneously and serially uncorrelated innovations with

zero mean and H variance. Given the state-space system, we can estimate mixed

frequency factors via maximum likelihood using Kalman filtering and prediction

error decomposition .

4.3.1.2 Signal extraction and Kalman filter

The Kalman filter and smoother are used to extract the common state using the

above state-space representation. The parameters are estimated by maximizing

the log-likelihood derived from the Kalman filter equations. The parameter esti-

mates are used to compute the filtered estimate of the state of the economy, which
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is further passed through the Kalman smoother to obtain the optimal latent state

of the economy. In order to illustrate the use of the Kalman filter, let us write the

above two equations as follows.

Let denote Ft|t−1 as the predicted states and Σt|t−1 as their variance at time t

conditional on information up to time t − 1, Ft|t and Σt|t as the updated values

conditional on information at time t. Then, the Kalman filter algorithm is con-

ducted by the following equations.

Ft|t−1 = ACt|t−1 +RFt−1|t−1 (4.3)

Σt|t−1 = RΣt−1|t−1R
′ +WPW ′ (4.4)

Ft|t = Ft|t−1 +Ktvt (4.5)

Σt|t = Σt|t−1 −KtBΣ′t|t−1 (4.6)

Kt = Σt|t−1B
′(σ2 +BΣt|t−1B

′)−1 (4.7)

vt = (Mt −GDt −BFt|t−1) (4.8)

where Kt is the Kalman gain and vt is the prediction error when using the previ-

ous period value of the state. The predicted states Ft|t−1 and their corresponding

variance Σt|t−1 are made according to the state and measurement equation and

the update the predictions given by the newly arrived data at time t.

The Kalman filter remains valid if the missing data exist in Mt. We skip updating

and the recursion becomes.

Ft|t = Ft +Ktvt (4.9)

Σt|t = Σt −KtBΣ′t|t−1 (4.10)

And the measurement equation can be replaced by.
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M∗
t = GD∗t +BF ∗t−1 + η∗t η∗t ∼ N(0, H∗t ) (4.11)

where M∗
t is of dimension N∗ < N , containing the elements of the Mt vector that

are observed. The M∗
t and Mt are linked by the transformation M∗

t = WtMt where

Wt is a matrix whose N∗ rows are the rows of IN corresponding to the observed

elements of Mt. Similarly, F ∗t = WtFt, D
∗
t = WtDt, η

∗
t = WtFt and H∗t = WtHtW

′
t .

In this case, the Kalman filter works the same as described above.

4.3.1.3 Maximum likelihood estimation

The above state space model can be estimated using the Kalman filter. Moreover,

maximum likelihood estimation can be carried out using the so called prediction

error decomposition method. The log-likelihood (Lt) of the model can be evaluated

from the prediction error vt. Denote the variance of the prediction error as Ψ =

H +BΣt|t−1B
′. The log-likelihood is given by.

logLt = −1

2
((N log 2π + log |Ψ|+ vtΨ

−1v′t) (4.12)

where N is the number of observations at time t. We estimate the vector of factors

and the hyper-parameters by maximizing the likelihood, equivalently to minimize

the prediction errors, vt. Given initial conditions, the likelihood is built iteratively.

Hyper-parameters are chosen to maximize the likelihood, and then simply plugs

the estimates into the system and construct the estimated latent factor.

As can be seem from the estimation method above, it is challenging task to com-

bine several macroeconomic variables into one index to capture the overview of

economic situation. Macroeconomic data are typically low and mixed frequencies

released and may not be measured consistently. The business conditions index

is used to extracted an unobserved common factor from the underlying observed

macroeconomic time series with mixed frequencies. The indices are constructed

by applying Kalman filter technique that optimizes the updated information on

estimation without concerning any missing data. Hence, this index can summarize

large amounts of information in an efficient way, such as the ability to incorpo-

rate missing and mixed-frequency data and also the ability to update real time
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information with the most recently available data. Due to these useful properties,

the Sheen-Trueck-Wang index can be used in nowcasting and forecasting other

variables of interest, including yield term structure.

4.3.2 Empirical Business Conditions Index Results and Statis-

tics

In this subsection, we provide more details which data sources that Sheen et al.

(2014) used to construct the Sheen-Trueck-Wang business conditions index. Then,

we present the empirical business conditions index.

4.3.2.1 Data and estimation

Sheen et al. (2014) follow Aruoba et al. (2009) to use Kalman filter to construct

real-time indicator with mixed frequency factors for Australian economy. Their

study use five Australian data series from the Reserve Bank of Australia (RBA);

the yield spread between a 10 year Australian Treasury bond and a 3 month Trea-

sury bill, hours worked, the NAB survey-based business confidence index, real

GDP and job vacancies. There are also other four external economy data series;

the real trade-weighted index from the Reserve Bank of Australia (RBA), term of

trade from the Australian Bureau of Statistics (ABS), export-weighted world real

GDP index from Thomson-Reuter Datastream and the TED spread between the

3 month US Treasury bill rate and its LIBOR rate from Federal Reserve Economic

Data (FRED). These variables are key variables representing the Australian econ-

omy and are chosen to construct the index similar to the Arouba-Diebold-Scotti

index. Despite the Sheen-Trueck-Wang index follow quite closely to Aruoba et al.

(2009), the Sheen et al. (2014) study extend the index to a small open economy.

They find that terms of trade plays a vital roles are played in explaining overall

Australian economic activity.
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4.3.2.2 Empirical results

In this part, we present the Sheen-Trueck-Wang business conditions index and dis-

cuss its implication for term structure. The business conditions index is illustrated

in Figure 4.1, compared with time series of the 6-month and 10-year bond yields.

Figure 4.1: The business conditions index, short-term (6-month) yields and
long-term (10-year) yields

To interpret the value of the business conditions index, we need to compare the

index with zero. The positive values imply a better-than-average state of econ-

omy, while the negative values imply economic downturn. This index can be used

as a leading indicator to predict whether the economy is going into a recession.

As in Figure 4.1, the Sheen-Trueck-Wang index shows the two Australian reces-

sions; the dotcom crash during the late 2000 and the global financial crisis after

2009. Therefore, the business conditions index is consistent with the observed

Australian business cycle. Comparing with the short-term and long-term yields,

there are some relationship between the yields and the business conditions in-

dex. The short-term and long-term yields explicitly follow the movement in index.

Economic agents have to anticipate state of economy prior to make their decision.

Their perception about the economy would evolve overtime as they realize some
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additional information and take them into account. The term structure of the

yield would mirror their expectation based on economic information with some

lead times. As a result, the nowcasting and forward looking information from the

business conditions index can be use as the information about expectations that

drive the yield evolvement.

4.3.3 Term structure and expectation

In term structure literature, yield curve reflects the demand for higher yields to

compensate with the risk associated to holding bond and other long-term financial

asset as well as the opportunity cost of losing liquidity. The expectation of eco-

nomic activity could therefore influence the term premium. On the early empirical

studies by Estrella and Hardouvelis (1991) and Estrella and Mishkin (1998), they

found the feedback from the macroeconomy to monetary policy will impact on the

yield curve. Ang and Piazzesi (2003) and Diebold and Li (2006a) proposed the

macro-finance term structure model to incorporate macroeconomic variables with

the vector autoregressive model of yield latent factors and also found macroeco-

nomic variable explain the variation of the yield. Thus, macroeconomic activity

could attribute to yield term structure and a forward looking information should

be beneficial for term structure estimation and forecasting.

The macro-finance term structure model typically link the term structure and the

real economy by referring to the forward-looking monetary policy rule. The mon-

etary authority selects an optimal short-term policy rate based on the predicted

path of future economy. Indeed, the policy interest rate is consistent with investor

expectation observed at the time that decision is made. As the macroeconomic

variables evolve over time, term structure modeling and forecasting based on the

most recent realized expectation are more accurate. Orphanides and Wei (2012)

found that the term structure model that takes into account rational expectation

should provide better explanation about inflation dynamics, monetary policy de-

cision and generate term structure and macroeconomic forecast more consistent

with survey data. In turn, additional information about the up-to-date economic

situation can improve the accuracy of term structure model. In term structure

literature, the expected return on holding bond must be equal to the risk-free
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yield plus a risk premium. The attitude of the market participants towards risk

is a forward-looking and thereby reflecting the link between term premium and

perception about future economy. This relation can be written as the linearlized

expectation model that represent the relation between expected return on bond

and term premium proposed by Shiller (1979).

Et[Yt,j] = rt + φt,j (4.13)

where Et[Yt,j] is expected yield on bond with j time-to-maturity at time t, rt is

the short term interest rate and φt,j is a term premium defined for holding the

bond with residual maturity.

The expected yield is not just only about the anticipation about short-term rate

in the next period. It also implies about a risk premia or term premia that induce

investors to hold long-term nominal bonds. Suppose the expected short rate for T

year ahead years ahead and the T -year instantaneous forward rate given by ft,T

and the forward term premium φt,T is

φt,T = ft,T − Et[Yt+T ] (4.14)

Expectations are unobserved and the estimation on them is not straight forward.

Model misspecification may lead to substantial forecast errors. Kim and Or-

phanides (2012) and Wright (2011) use survey information to measure expected

yield. The survey, for example the US Blue Chip survey, is conducted by asking

the respondents to predict short-term interest rates. However, if there is no survey

on interest rate expectations, they propose to impute the approximate expected

interest rate from forecast on inflation and real GDP growth instead. The link

between risk premiums and perceptions about future economic outcomes reflects

a forward-looking manner.
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4.4 Term structure modeling and forecasting with

business condition index

In this part, we describe the exponential-polynomial Nelson-Siegel model and the

modified Nelson-Siegel approach proposed by Diebold and Li (2006b). Nelson

and Siegel (1987) proposed to fit the forward rate curve, and thus yields or spot

rates, from observed coupon-bond prices at a given date with a flexible, smooth

parametric function. They demonstrated that their proposed model is capable of

capturing many of the typically observed shapes that the yield curve assumes over

time. As the Nelson-Siegel model is widely used among academia, policy maker

practitioners and it is ranked as one of the most popular term structure estimation

methods.

4.4.1 The Nelson-Siegel Parametric Model

Nelson and Siegel (1987) suggest to fit the forward rate curve at a given date with

a class of prespeficied parametric functions. The functional form they advocate

uses Laguerre functions which consist of the product between a polynomial and an

exponential decay term. The resulting Nelson-Siegel approximating forward curve

can be assumed to be the following three-factor term structure model.

ft(τ) = β1,t + β2,te
−λtτ + β3,tλte

−λtτ (4.15)

To obtain the yield (or spot rate) yt on a zero-coupon bond with τ periods to

maturity, it is necessary to take the equally weighted average of the forward rates.

yt(τ) = β1,t + β2,t(
1− e−λtτ

λtτ
) + β3,t(

1− e−λtτ

λtτ
− e−λtτ ) (4.16)

where yt(τ) is the spot-rate curve with τ time to maturity, and β1,t, β2,t and β3,t

are latent factor parameters, which in dynamic form are referred to as level, slope

and curvature and λt is referred to the exponential decay parameter.

The three latent factor parameters are corresponding to the factor loading com-

ponents on these parameters. The factor loading on the β1,t parameter is 1, as
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this is a constant, it does not decay to zero and will be the same for all matu-

rities. So, this long term factor β1,t is independent of time to maturity and for

that reason it is often interpreted as the long-run yield level. The factor loading

that is weighted β2,t on represents the short-term factor with a factor loading of
1−e−λtτ
λtτ

. This function starts at one and decays exponentially to zero if time to

maturity τ grows. Therefore, the corresponding latent factor is often denoted as

slope factor. β3,t is also weighted by a function depending on time to maturity

τ . This function 1−e−λtτ
λtτ

− e−λt , starts at zero and when the time to maturity τ

grows it initially increases and then decreases back to zero. Hence this component

creates a hump and so it is often denoted as the medium-term component. The λt

parameter is a exponential decay parameter that determines the rate at which the

regressor variables decay to zero. Small values for λt result in a slow decay and

better fit longer maturities, large values of λt will result in fast decay and better fit

the curve with short maturities. In addition, the λt parameter also governs where

the factor loading reaches it maximum.

Diebold and Li (2006b) provide insight to how these three factors representing the

long, short and medium components can also be interpreted as the level, slope

and curvature of the curve. The factor loading on the long term component β1,t

is 1 and the same for all maturities, any increase in β1,t will cause the whole curve

to shift upwards and thus it can be seen that this factor represents the level of

the curve. The short term factor β2,t can be viewed as the slope of the curve, an

increase in β2,t will cause the short rates to increase more than long rates as the

short rates load more heavily on β2,t ,thus changing the slope of the curve. Finally

the medium factor is closely related to the curvature of the curve, as both long

and short term maturities do not load heavily on it, but an increase in β3,t will

increase the curve for medium maturities and so increasing the curvature of the

curve.

Applying ordinary least squares to the yield data for each particular period gives

a time series of the estimates of latent factors β1,t, β2,t and β3,t. Diebold and

Li (2006b) and Diebold et al. (2006) proposed a dynamic term structure of the

Nelson-Siegel model by specifying first-order autoregressive processes for the la-

tent factors. De Pooter (2007) generalized the dynamic Nelson-Siegel model as the

dynamic latent factor model, given by the Nelson-Siegel model and the dynamic
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process of the latent factors.

The Nelson-Siegel model

Yt(τ) = Xt(τ)βt (4.17)

The stochastic process of the latent factor

βt = µ+ Φβt−1 (4.18)

The first dynamic factor equation above specify the vector of yields, which con-

tains T different maturities. The Nelson-Siegel yield curves are those discussed in

the previous subsections with βt being the vector of factors and Xt as the matrix

of factor loadings, given by the estimated decay parameter λ.

4.4.2 The dynamic semiparametric factor model

The dynamic semiparametric factor model (DSFM) provides a general method for

modeling and forecasting time series data that captures dynamic evolution of the

high-dimensional time series by a non-parametrically estimated lower-dimensional

factor. It has the ability to flexibly fit variety shapes of the cross-sectional data

while providing time-varying factors that describe dynamics of the time series.

This method was proposed by Fengler et al. (2007) on the implied volatility sur-

face study. The detailed discussion on the dynamic semiparametric factor model

specification are given below.

Semiparametric regression imposes some structure but the regression function is

still not directly predetermined. However, the structure of the model leaves less

flexibility than in the nonparametric case. One of the motivation for creating this

limitation, comes from the curse of dimensionality, since in high dimensions the

nonparametric methods may become infeasible.

Among many possible semiparametric models, we focus on the imposition of the

additive property as in Härdle (2004), Fengler et al. (2007) and Härdle and Majer
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(2012). The key assumption is that the regression function has an additive struc-

ture of the explanatory variable coordinates. The actual yields are supposed to be

linear combination of high dimensional latent factors. By proposing a suitable sta-

tistical model results in the problem of finding an appropriate way of reducing the

high dimension without losing too much information on the spatial and dynamic

structure of the process. A common way to reduce the dimensionality of multi-

variate processes is to apply factor decomposition. For instance, a J-dimensional

vector of yield observations Yt = (Yt,1, , Yt,j) can be represented as an L-factor

model.

Yt,j =
L∑
l=0

Zt,lml,j(Xt,j) + εt,j (4.19)

where Yt,j are the yield obtained by holding a bond at time t to time-to-maturity j,

Zt,l are latent factors of the factor l at date t, ml,j(Xt,j) are undetermined smooth

function, or so called the basic function, that characterizes loading of factor l

given time-to-maturity j, Xt,j are maturity-related variables representing bond

yield characteristic at date t and εt,j are errors which explain the residual part.

The index t represents time evolution as t, ... ,T and index j is a number of bonds

with different maturities j, ... ,J observed at that time. The corresponding yield

curve can be shown in a J-dimensional vector of yields Yt,j = (yt,1...yt,J)′. This

high dimension of the cross sectional J bonds can be reduced to a smaller number

of factors L � J . The dynamics of yield through time is then explained by the

time propagation of the L factors and can be estimated through the evolution of

the latent factors Zt,l. The latent factors reflect bond yield characteristics associ-

ated with factor-loadings.

This representation assumes existence of comovements among all component of

Yt,j, which are driven by unobservable factors Zt,l. The yield latent factors Zt,l

can be treated as time series. A usual way is to assume that these processes are

first-order autoregressive processes, represented by

Zt = ΦZt−1 + ωt (4.20)

where Zt,l is the yield latent factor, ml,j(Xt,j) is a factor loading with determin-

istic maturity-related variables Xt,j, Φ are parameter matrices and εt,j and ωt are
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random components independent of each other. As dynamics of the factors is in-

corporated, these above representation are called the dynamic factor model.

4.4.3 Incorporating business conditions index

The yield curve is closely related to other macroeconomic variables. In terms of

term structure forecast, it reflects economic agent and policy maker beliefs about

economy. As we discussed before, the business conditions index contains real-time

state of economy as well as forward-looking information. It should adapt quickly

to the volatility in business cycle and structural breaks, making it a useful instru-

ment for measuring trends. From this perspective, we may consider to link them

to predict the yield term structure.

A straight forward approach is to treat the business conditions index as an ex-

ogenous variable. In the dynamic semiparametric factor model, we extract latent

factors and are these factors are assumed to follow an first-order autoregressive

process. Then, we extend the multivariate autoregressive process (VAR) with busi-

ness conditions index. The specification that incorporate the business conditions

index can be written as.

Zt+h,j = Ξt,l + Φt,0Mt,0 + Φt,lZt,l + νt,l (4.21)

where Mt,0 is the business conditions index. We can then use this autoregressive

process with business conditions index as exogenous variable to forecast the la-

tent factors and then forecast the term structure of yields. The advantage of this

model is the possibility to use information about the economy to forecast the term

structure.
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4.5 Macroeconomic variables and business con-

ditions index statistics

Before getting into the model, this section presents information about the data

used in this study. We first provide details of the data sets and then report the

descriptive statistics of the data.

4.5.1 Data Description

In this part, we describe the data on the yields, the business conditions index and

the macroeconomic data that we used in the paper. The data we use are monthly

spot rates for zero-coupon bonds of the Australian government bonds, provided

by Thomson Reuters Datastream. This data set consists of 11 maturities (in

months); 6, 12, 24, 36, 48, 60, 72, 84, 96, 108 and 120, over the period from April

1999 to March 2013. Concerning the macroeconomic variables, we use monthly

data for capacity utilization from National Australian Bank’s Australian business

surveys (seasonally adjusted); the overnight interbank rate from the Reserve Bank

of Australia and implied inflation rate, calculated from the difference between the

5-year Australian commonwealth government bond yield and the Australian com-

monwealth government indexed bond yield. All of macro-variables are gathered

from Thomson Reuters Datastream. These three macroeconomic variables repre-

sent real economic activity relative to potential output, the policy interest rate as

monetary policy instrument, and the change in price level. All of these variables

are widely used to augment the term structure model as the macro-finance model

to capture macroeconomic dynamics.

Table 4.1: Overview of Macroeconomic Series

Variables Frequency Acronym Transformation

Capacity Utilisation Rate Monthly (Seasonally Adjusted) CAPU First-difference
Overnight Interbank Rate Monthly INT Log-first-difference
Implied Inflation Rate Monthly INF First-difference
Business Conditions Index Daily BCI No
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We also extend the term structure model with business conditions index to inves-

tigate the way in which macroeconomic information containing in the index can

be used to improve yield curve estimation and forecasting. We apply the Sheen-

Trueck-Wang business conditions index and compare the estimation accuracy as

well as forecasting performance of the term structure model that includes business

conditions index with the macro-finance model. The summary statistics for the

macroeconomic variables are reported in Table 4.1.

4.5.2 Descriptive statistics

For the empirical study, we presents summary statistics for our macroeconomic

variables and the business condition index in Table 4.2 and plot the time series of

them in Figure 2.4. For each of the macroeconomic series, we report the mean,

standard deviation, minimum, maximum, autocorrelation coefficient at various

displacements and as well as the Augmented Dickey-Fuller test statistics for sta-

tionarity.

Table 4.2: Descriptive statistics of macroeconomic variables and BCI

Variables Mean Std Dev Min Max p(1) p(12) p(30) ADF

CAPU 0.8132 0.0127 0.7824 0.8463 0.8597 0.3091 0.0625 -0.1989*
INT 5.1951 1.1172 2.9500 7.9600 0.9691 0.1266 -0.0145 -0.8171*
INF 2.4464 0.7036 1.1174 4.2262 0.9551 0.2894 -0.0211 -0.5832*
BCI 0.0200 3.2594 -14.0216 5.5571 0.8933 -0.1701 0.0854 -2.7895

The summary statistics reveal that the business conditions index and the overnight

interbank rate are noticeably vary over time. The standard deviations for the

business conditions index is around 3.26. It is also clear that all macroeconomic

variables are highly persistent at the first lag, especially the overnight interbank

rate, but varies relative to its mean. The augmented DickeyFuller tests suggest

that the capital utilization, the overnight interbank rate and the implied inflation

rate are non-stationary. In order to obtain stationary series, we then transform

the monthly recorded of the capital utilization, the interest rate and the implied

inflation rate to ensure stationarity by using first difference on the capital utiliza-

tion and the implied inflation rate as well as log differences on the interest rate.
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The empirical statistics are also consistent with Figure 4.2. We plot the capital

utilization, the overnight interbank interest rate, the implied inflation rate and

the business conditions index from April 1999 to March 2009. All macroeconomic

variables move reasonably together and the business conditions index tracks these

macro-variables closely with mean-reverting. There was an upward trend for these

macroeconomic series after 2001, however, all macroeconomic variables turned to

be more volatile after the global financial crisis since 2008 onwards.

Figure 4.2: Time series of macroeconomic variables; capital utilization, inter-
est rate, inflation and business conditions index

Comparing between the business conditions index and other macroeconomic vari-

ables, change in index indicates subsequent economic cycle. From Figure 4.2, the

business conditions index leads the consecutive movement in macroeconomic se-

ries. It should be beneficial to use the index to extract forward looking information

from large data sets of many mixed frequencies variables, and thus deliver forecast-

ing gains. The business conditions index also preserve the real-time nature that

is crucial in estimating and nowcasting the recent or near future macroeconomic

variables and term structure of the yields as well.

To investigate the correlation among macro variables and relationship between the

business conditions index and macro variables, we estimate correlation coefficients

among them and reported in Table 4.3.

From Table 4.3, inflation is strongly correlated with interest rate, following by

relation with capital utilization. Correlation between interest rate and capital
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Table 4.3: Correlation coefficient

CAPU INT INF BCI

CAPU 1.0000 0.6453 0.7047 0.2903
INT 0.6453 1.0000 0.8244 0.0861
INF 0.7047 0.8244 1.0000 0.1533
BCI 0.2903 0.0861 0.1533 1.0000

utilization is somewhat smaller even highly correlated. On the contrary, the re-

lationship between business conditions index the and macro variables are weak.

As mentioned in Sheen et al. (2014), the consumer confidence index and term of

trade play a major role to explain the index rather than real economic activity or

inflation.

4.6 Model estimation with BCI

In this section, we present the results of term structure estimation with the in-

clusion of business conditions index. First, we present two term structure models

that incorporates forward looking information from the business conditions index.

Then, we evaluate the estimation accuracy and compare the estimated latent fac-

tors with empirical factors and macroeconomic variables, particularly the business

conditions index.

4.6.1 Estimation and model specification

To examine the accuracy of the dynamic semiparametric factor model and the

Nelson-Siegel model augmented with the business conditions index relative to the

baseline models without compared to other competitors, we first estimate a simple

autoregressive model of the dynamic factor as a baseline model. Next, we add the

business conditions index to the baseline model to see to what extent its predictive

power is improved by this index. By looking at the baseline model compared with

the extension model based on the index could explicitly show how the extension

model react with the additional forward looking information is taken into account.
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We illustrate the results of the in-sample-fit for the augmented business conditions

index with the dynamic semiparametric factor model relative to baseline model

against the actual yields at some particular days in Figure 4.3 and the results

for the Nelson-Siegel model in Figure 4.4. We chose to plot the yield curves for

selected dates; which are 29 February 2000, 31 March 2004, 29 September 2006

and 30 November 2009, to capture different term structure shapes.

Figure 4.3: Cross-sectional term structure estimation by the dynamic semi-
parametric factor model

As shown in Figure 4.3, the dynamic semiparametric factor model works well to

fit the actual yields information, especially the J-curve type at 31 March 2004 and

the downward sloping with two-hump shape at 29 February 2000. The inclusion of

the business conditions index, represented by the dash line, also provide accurate

fit, similar to the simple model without the index. However, the model with the

supplement information from the index tends to shift the curve of the simple model

towards the trend. For example, the yield curve for 3-year (36 months) to 10-year

(12 months) maturity at date 31 March 2004 is tilted up along the upward trend

after including the index. In contrast, the downward trend for shorter maturity

or 6-month to 2-year (24 month) shift part of the curve downward corresponding

to lower realized yields.
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For the upward sloping yield curve at 29 February 2000 and 30 Novermber 2009, it

is clearly seen that the model with the business condition index supplementation

shift the entire curve upward associated with higher long-term yields. This implies

the economic agents incorporate the forward looking information about the over-

heating economy and inflationary pressure. The anticipation about an increasing

policy interest rate cause the yield estimated from the index to be hike relative

to the baseline model. The response of the model with index cause it to be less

accurate for cross-sectional term structure estimation.

Figure 4.4: Cross-sectional term structure estimation by the Nelson-Siegel
model

In Figure 4.4, we observe the Nelson-Siegel model is not flexible enough to fit more

complex curves, especially the J-curve and the curve with two-hump shape. The

estimation accuracy become worsened when the business conditions index is in-

cluded. As compared to the dynamic semiparametric factor model, the errors are

much more pronounced for the the Nelson-Siegel model with an extension of the

index. For example, the yield with index at 30 November 2009 overestimate the

baseline Nelson-Siegel model, particularly for the medium term maturity (3-year

to 5-year bond). The tilted curve from the model with index reflects an anticipa-

tion of contractionary monetary policy to stabilize economy from higher expected
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inflation.

From the in-sample-fit term structure estimation with the business conditions in-

dex, we find the additional information from the index is useful to guide the near

term yield since it normally move towards the expectation. Therefore, the busi-

ness conditions index itself should not be use to improve estimation accuracy of

the term structure model. Kim and Orphanides (2012) who used survey data to

model the term structure suggested that term structure model based on forward

looking information provide the expectation on the yields. Rather than using for-

ward looking information to estimate the term structure, Altavilla et al. (2013)

recommended to use this expectation information as an anchor to forecast the term

structure. In our study, we use the business conditions index instead of survey

data as additional forward looking information to forecast the term structure. If

the business conditions index is informative to improve latent factors dynamics, it

should produce more accurate forecasting performance as compared to the base-

line model without the index.

4.6.2 In-sample-fit

In this subsection, we assess whether the business conditions index provides infor-

mation beyond that already captured by the latent factors in the baseline model

by comparing the trace root mean square error (TRMSE), the root mean square

error (RMSE) and the explained variation (EV) of the simple model without the

business conditions index and the model with the inclusion of index.

Table 4.4: Out-of-sample forecasts of the DSFM with business confidence
index compared with other competitors

TRMSE 6-m 1-y 2-y 3-y 5-y 7-y 10-y EV

NS 0.0477 0.0439 0.0830 0.0641 0.0494 0.0499 0.0129 0.0417 0.9978
NS-BCI 0.0498 0.0456 0.0841 0.0696 0.0518 0.0503 0.0132 0.0431 0.9976
DSFM 0.0398 0.0454 0.0680 0.0512 0.0421 0.0413 0.0125 0.0350 0.9984
DSFM-BCI 0.0403 0.0458 0.0685 0.0513 0.0428 0.0413 0.0126 0.0361 0.9984

As shown in Table 4.4, the dynamic semiparametric factor model with the business

conditions index extension achieves 99.84 percentage of the explained variation in
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term structure curves while the Nelson-Siegel model with the index can explain

99.76 percentage of the term structure variance. Considering with the estimation

accuracy measured by the trace root mean square error (TRMSE), the dynamic

semiparametric factor model augmented by the business conditions index also

outperform the Nelson-Siegel model with the index. The dynamic semiparamet-

ric factor model specification that is more flexible and less-restricted makes it

outperform the Nelson-Siegel specification in providing more precise in-sample es-

timation. This finding is consistent with other studies, including De Pooter (2007),

Koopman et al. (2010) and Laurini and Hotta (2010) who also find the nonpara-

metric or semiparametric is beneficial for term structure modeling. It should be

noted that the inclusion of the business conditions index actually deteriorate the

estimation accuracy provided by the baseline models. Forecasting errors produced

by models with the index are higher than those of the baseline model without the

index. These results confirm the findings we shown in the previous subsection.

4.6.3 Yield latent factor, macro variables and correspond-

ing empirical

Next, we compare the latent factors from the dynamic semiparametric factor model

and the Nelson-Siegel model. These factors are extracted from the yield estima-

tion and then plotted through the time period from 1999 to 2013 in Figure 4.5 to

4.6. The estimated value for the factors are standardized to make it more easy for

comparison. The latent factors obtained from the model are presented together

with related macroeconomic variables and their empirical proxies. By following

Diebold and Li (2006a), the level factor is close to the 120 month yield, the slope

is close to spread of 3 month over 120 month yields and the curvature is close to

the 24 month yield minus the 3 and 120 month yield. Moreover, the level factor

is linked with inflation expectation as suggested by the Fisher equation while the

slope factor appears to related with business cycle, represented by capacity uti-

lization. These relations also mentioned in term structure literatures, including

Hördahl et al. (2006) and Dewachter and Lyrio (2006). For the curvature factor, it

should be related with expectation about macroeconomy as noted in Orphanides

(2003) and Mönch (2012). We proposed to use the business conditions index as a

macroeconomic variable to represent the anticipation about future economy. The
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time series of the latent factors, macroeconomic variables and their empirical prox-

ies, estimated by the dynamic semiparametric factor model and the Nelson-Siegel

model are depicted in Figure 4.5 and Figure 4.6 respectively.

Comparing the graphs for latent factors extracted from two different models, we

observe these latent factors follow similar pattern as the empirical factors. The

level factor is more persistent relative to other two factors, while the slope and

curvature are more volatile. The evolution of the factors are also related with

macroeconomic situation. In macroeconomic context, we find the level factor is

closely related to inflation and consistent with the inflationary expectations hy-

pothesis. The anticipation about higher inflation shifts up the long end of the

yield curve up and also drive up short rates as well as expected interest rates. It

suggests that the shift of the long end and the shape of the yield curve. Therefore,

the variation in inflation expectation is captured by the level factor.

Figure 4.5: The dynamic semiparametric factor model latent factors, macro
variables and corresponding empiricals

Moreover, there is also a positive relation between the slope factor and macroeco-

nomic activity represented by the capacity utilization. The plots of slope factors

are closely related to the Australian business cycle throughout the periods of

study. Obviously, there is a declining slope factor that causes the Reserve Bank of

Australia to accommodate lower interest rate in response to economic downturn

during the global financial crisis in 2008 to 2009. During the expansionary mon-

etary policy, we observe a downward trend in the long rates and the slope of the

yield curve. As a result, the greater fall in long rates was larger than the decline
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in short rates and alter the yield curve shape.

Figure 4.6: The Nelson-Siegel model latent factors, macro variables and cor-
responding empiricals

Although the level and slope factors are found to be related with inflation and

output, the curvature is still ignored by term structure studies, such the recent

work by Ullah et al. (2013), to search for the linkage with empirical macroeco-

nomic variables. Nonetheless, Mönch (2012) found that unexpected changes of

the curvature factor are more informative about the future evolution of the yields

and macroeconomy. We propose to link the curvature factor with the business

conditions index due to the fact that it represents forward looking information

and expectation about state of economy. From Figure 4.5 and Figure 4.6, there

is a strong relationship between the curvature factors and the business conditions

index. Prior to the global financial crisis, the curvature factor appear to decline

and signal the upcoming recession before the onset of the crisis. It also anticipates

the recovery earlier than other latent factors. This finding is consistent with the

pattern of the business conditions index that represents forward looking informa-

tion and leads the movement of other macroeconomic variables.
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4.7 Term structure forecast with business con-

dition index

We examine the predictive ability of the dynamic semiparametric factor model

(DSFM) with business confidence index in a rolling window out-of-sample fore-

casting experiment using the zero coupon bond yield and the Sheen-Trueck-Wang

business conditions index for Australia. We conduct rolling window examination

for the period from April 2006 to March 2013. The forecasts are made for yields

of all maturities, at 1-month, 3-month, 6-month and 12-month horizons ahead. To

assess the forecasting accuracy, we compute the root mean square forecast errors

(RMSFE) for 6-month, 1-year, 2-year, 3-year, 5-year, 7-year and 10-year maturity

as well as the overall trace root mean square forecast errors (TRMSFE) for indi-

vidual model.

4.7.1 Forecast Procedure

We choose to evaluate the prediction accuracy of the term structure models on the

basis of their out-of-sample forecasting performance for different yields. In this

way, we will have a uniform ground to systematically compare models. We base

our forecasting comparison exercise on a rolling window estimation with fixed size,

in which parameters are re-estimated at each stage. This study divides the full

data into the training period; April 1999 - March 2006 (84 observations) and the

forecasting period; April 2006 - March 2013 (84 observations).

By doing this, it will allow us to compare how the dynamic semiparametric fac-

tor model, the Nelson-Siegel counterpart and other competitors perform in the

normal and crisis period. All the models are estimated with a rolling window by

moving the sample forward with a fixed sample size and re-estimating the model

iteratively until the h-step ahead out-of-sample forecast is obtained. We consider

four forecast horizons, h = 1 month as well as 3, 6 and 12 months ahead.
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4.7.2 Forecasting Accuracy Performance

To assess the prediction accuracy of the out-of-sample forecast of the the dynamic

semiparametric factor models and the Nelson-siegel model, we use a standard

forecast error evaluation criteria. The predictive performance of the models are

statistically evaluated by the root mean squared prediction error (RMSPE), which

is widely used to assess forecasting accuracy of the models at particular maturities.

We also compute the trace root mean squared prediction error (TRMSPE) of the

models for all maturities as in Hördahl et al. (2006) and De Pooter et al. (2010).

It combines the forecast errors of all maturities and summarizes the performance

of each model, thereby allowing for a direct comparison between the models.

The Root Mean Squared Prediction Error (RMSPE)

Given a sample of T out-of-sample forecasts with h-months ahead forecast horizon,

I compute the RMSPE for a τ time-to-maturity as follows:

RMSFE(τ) =

√√√√ T∑
t=1

[Yt+h(τ)− Ŷt+h(τ)]2

T
(4.22)

Where Ŷt+h is the forecasted yield in period t for t + h period and [Yt+h − Ŷt+h]2

is the forecast errors at t+ h for the yields.

The Trace Root Mean Squared Prediction Error (TRMSPE)

For each forecast horizon, the trace root mean squared prediction error (TRMSPE)

measure the aggregate forecast errors of all yields in J maturities. Given a sample

of T out-of-sample forecasts of J distinct maturities with h-months ahead forecast

horizon, we compute the TRMSPE as follows.

TRMSFE =

√√√√ J∑
j=1

T∑
t=1

[Yt+h − Ŷt+h]2
JT

(4.23)

The root mean squared prediction error (RMSPE) and the trace root mean squared

prediction error (TRMSPE) for the dynamic semiparametric factor model and
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the Nelson-Siegel model are reported for both the specifications of latent factors

stochastic process; the AR(1) and VAR(1) for all forecasts horizons.

4.7.3 Forecasting Result

In this subsection, we present the empirical results of our forecasting exercises. In

the first, we report the estimates of yield latent factor autoregressive process, the

augmented dynamic factor model with macroeconomic variables and with business

conditions index. Next, we investigate the out-of-sample forecasting performance

of the term structure model driven by these different factor dynamics to see what

extent their predictive power are improved. The multiple steps ahead forecasting

experiments are conducted from rolling windows of the yields and macroeconomic

time series. Then, we determine whether the differences in forecasting accuracy

are statistically significant to examine the overall quality of forecasting. Finally,

we assess the robustness of our forecasting results with different sub-samples and

frequencies.

4.7.3.1 VAR estimation and specification

Our goal in this study is to analyze how we use the business conditions indica-

tor as an additional information for term structure modeling and forecasting. To

estimate the dynamic term structure model, we specify the multivariate autore-

gressive process of the unobserved factors and then subsequently fit the dynamic

latent factors into the term structure model to capture the yield curve evolvement

over the times. Following traditional macro-finance term structure model, we use

yield latent factor and macroeconomic variables to estimate the vector autoregres-

sion model as also did in earlier studies by Ang and Piazzesi (2003), Diebold and

Li (2006a), Hördahl et al. (2006) and Rudebusch and Wu (2008). Furthermore,

we propose to use the business conditions indicator that summarizes macroeco-

nomic information and compare its predictive performance. The results obtained

from the vector autoregression model of the yield latent factors extracted from the

Nelson-siegel model and the dynamic semiparametric factor model (DSFM) are re-

ported in Table 4.5, whereas the vector autoregression estimates of the extension
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model with macrocosmic variables (macro-finance model) are in Table 4.6 and the

vector autoregression model of latent factors with business conditions indicator

are in Table 4.7.

Table 4.5: Estimated vector autoregression model of the Nelson-Siegel and
the DSFM dynamic factors

NS DSFM

CON Lt-1 St-1 Ct-1 CON Lt-1 St-1 Ct-1
Lt 1.2337 0.8126 -0.0528 0.0585 Lt 0.6189 0.8555 0.1317 1.4016

0.2615 0.0398 0.0184 0.0138 0.1885 0.0434 0.1065 0.3699
St -0.7114 0.1170 0.9678 0.0174 St -0.1356 0.0313 0.9035 -0.0686

0.3917 0.0597 0.0275 0.0207 0.0559 0.0129 0.0316 0.1098
Ct -1.1846 0.1492 -0.0135 0.8703 Ct -0.0133 0.0027 -0.0229 0.8821

0.8420 0.1282 0.0591 0.0445 0.0316 0.0073 0.0178 0.0619

In Table 4.5, the estimates of factor coefficient from their own lags along the diago-

nal of transition matrix from both models are all close to unity, while the estimates

of the off-diagonal elements are minimal. The yield slope factor is the most persis-

tent, following by curvature and level factor. For the estimates from the dynamic

semiparametric factor model specification, the level factor is significantly deter-

mined by the first lag of curvature and its own lag, while the first lag in slope factor

of the Nelson-Siegel model also explains level factor. In addition, the slope fac-

tor significantly depend on lagged level factor and its lagged value for both models.

The results in Table 4.6 for the yield-macro models show that the level factor is sig-

nificantly explained by its lagged value, other yield factors and inflation rate. This

suggests that the yield curve is raised in response to inflationary pressure. In turn,

change in level factors from previous period significantly causes lagged negative

effects on inflation. The positive relation between the slope factor and interest rate

in the Nelson-Siegel model is also statistically significant, while this relation in the

dynamic semiparametric factor model (DSFM) is insignificant. The expectation

on lower policy interest rate shifts the yield curve downward with greater negative

value of slope factor. The curvature that generates a humped-shape term struc-

ture significantly related the a change in monetary policy interest rate in response

to inflation. Finally, the economic activity, represented by capacity utilization, is

significantly affected by regime change in yield term structure or slope factor.
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Table 4.6: Estimated vector autoregression model of the DSFM dynamic fac-
tors, macro-variables and business conditions index

NS

CON Lt-1 St-1 Ct-1 CAPUt-1 INTt-1 INFt-1
Lt 1.1322 0.8273 -0.0378 0.0496 0.5229 -0.3377 0.3637

0.2592 0.0396 0.0185 0.0140 2.3339 0.5549 0.1241
St -0.5599 0.0906 0.9680 0.0065 1.5497 2.1362 -0.1898

0.3912 0.0598 0.0280 0.0212 3.5232 0.8377 0.1873
Ct -1.6465 0.2234 0.0290 0.8642 12.5848 -3.6948 1.0149

0.8353 0.1276 0.0597 0.0452 7.5220 1.7885 0.3998
CAPUt 0.0089 -0.0015 -0.0014 0.0004 -0.4898 0.0038 0.0012

0.0075 0.0012 0.0005 0.0004 0.0678 0.0161 0.0036
INTt 0.0083 -0.0012 -0.0065 0.0034 0.4965 0.2541 0.0548

0.0397 0.0061 0.0028 0.0021 0.3579 0.0851 0.0190
INFt 0.4917 -0.0771 -0.0371 0.0169 0.8077 -0.0148 0.4368

0.1709 0.0261 0.0122 0.0092 1.5389 0.3659 0.0818

DSFM

CON Lt-1 St-1 Ct-1 CAPUt-1 INTt-1 INFt-1
Lt 0.5148 0.8788 0.1367 0.9851 2.3777 -0.3187 0.3700

0.1798 0.0414 0.0995 0.3565 1.6051 0.3813 0.0853
St -0.1345 0.0310 0.9062 -0.1356 0.7949 0.1431 0.0255

0.0558 0.0128 0.0309 0.1106 0.4978 0.1183 0.0265
Ct -0.0330 0.0072 -0.0230 0.8635 0.3289 -0.1746 0.0379

0.0314 0.0072 0.0174 0.0622 0.2799 0.0665 0.0149
CAPUt 0.0093 -0.0022 -0.0021 0.0264 -0.4903 0.0042 0.0012

0.0076 0.0017 0.0042 0.0151 0.0678 0.0161 0.0036
INTt 0.0041 -0.0013 -0.0162 0.1303 0.4964 0.2569 0.0553

0.0402 0.0092 0.0222 0.0796 0.3584 0.0852 0.0190
INFt 0.4978 -0.1145 0.0762 0.9497 0.7924 0.0030 0.4367

0.1724 0.0397 0.0954 0.3418 1.5390 0.3656 0.0818

The estimates of yield latent factor corresponding to their lagged values are higher

in magnitude as compared to the effect of macroeconomic variables on yield fac-

tors. However, some coefficients, particularly the effect of inflation on yield factors,

are statistically significant and consistent with economic literature. As all diagonal

elements and some off-diagonal elecmets in contemporaneous matrix are statisti-

cally significant, the inclusion of macroeconomic factors in the NelsonSiegel model

as well as the dynamic semiparametric factor model (DSFM) specification should

improves the estimation accuracy and prediction performance. This finding is

consistent with previous macro-finance literature, including the recent studies by

Koopman and Van der Wel (2013) and Ullah et al. (2013)
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Table 4.7: Estimated vector autoregression model of the the dynamic semi-
parametric factor model and the Nelson-Siegel model dynamic factors

NS

CON Lt-1 St-1 Ct-1 BCIt-1
Lt 1.2381 0.8123 -0.0556 0.0610 -0.0036

0.2614 0.0398 0.0190 0.0146 0.0067
St -0.7431 0.1186 0.9873 -0.0008 0.0258

0.3842 0.0585 0.0280 0.0215 0.0099
Ct -1.2166 0.1508 0.0062 0.8520 0.0261

0.8388 0.1277 0.0611 0.0469 0.0216
BCIt 2.2911 -0.3817 -0.3581 0.0724 0.9130

1.1162 0.1699 0.0813 0.0624 0.0288

DSFM

CON Lt-1 St-1 Ct-1 BCIt-1
Lt 0.6161 0.8560 0.1354 1.2603 0.0063

0.1875 0.0431 0.1060 0.3833 0.0048
St -0.1378 0.0317 0.9064 -0.1780 0.0049

0.0540 0.0124 0.0305 0.1103 0.0014
Ct -0.0133 0.0027 -0.0229 0.8813 0.0000

0.0316 0.0073 0.0178 0.0645 0.0008
BCIt 2.2557 -0.5270 -0.6688 5.5384 0.9150

1.1247 0.2588 0.6359 2.2994 0.0286

In Table 4.7, we propose to use the business conditions index instead of a group

of macroeconomic variables. The results also reveal that the yield latent factors

and the business conditions index are highly persistent and all diagonal elements

of the transition matrix are statistically significant. The inclusion of the index is

significantly explained the slope factor. This suggests a change in overall economy

or business cycle will affect the yield slope. The monetary authority is anticipated

to implement a contractionary monetary policy once the economy is expected to

be overheating. The yield slope is adjusted corresponding to forward-looking in-

formation about the state of economy. Accordingly, an decrease in the level and

slope of the yield curve can be considered as a signal of the monetary stimulus to

accommodate economy from recession. Thus, the business conditions index signif-

icantly reverses with a change in policy interest rate.

Regarding the statistically significant of the relationship between the business

conditions index and slope factor together with the significant impact of yield

factors on the business conditions index, we expect the extension of yield factor

vector autoregressive model to include the business conditions index should be
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an alternative way to incorporate macroeconomic information into term structure

model. The forward-looking and mixed frequencies information that contains in

the business conditions index should improve the prediction performance of the

term structure model relative to the traditional yield-macro model.

4.7.3.2 Out-of-sample forecasting results

Next, we examine the out-of-sample prediction performance of the term struc-

ture model with business conditions index in comparison to the model with only

yield latent factor and the model augmented with macroeconomic variables. The

forecasts are computed for the period from April 2006 to March 2013. We con-

duct forecasting exercise in multiple steps ahead, covering h = 1, 3, 6 and 12

month ahead, and compute the root mean square forecast errors (RMSFE) for

each model and each maturity as well as the overall trace root mean square fore-

cast errors (TRMSFE) for individual model. The forecasting results are reported

in Table 4.8 for all forecasting horizons. The leftmost column reports the trace

root mean square forecast errors (TRMSFE) and the other columns on the right

are the root mean square forecast errors (RMSFE) for 6-month, 1-year, 2-year,

3-year, 5-year, 7-year and 10-year. The first row records forecast errors produced

by the benchmark random walk.

As reported in Table 4.8, the forecasts produced by the dynamic semiparametric

factor model with business conditions index supplement at the one-month ahead

provide lower root mean square error (RMSPE) than those with yield latent fac-

tor only and with macro variables. However, for nearly all maturities in all n step

ahead, the random walk provides the lowest error amongst those obtained by other

models.

For one-month ahead forecast, incorporating business conditions index as an ad-

ditional source of information improves forecasts for the dynamic semiparametric

factor model with the first order vector regressive model, especially for maturi-

ties of more than 2 years. This implies a support from additional information

contained in the index to enhance predictability of the dynamic semiparametric

factor model relative to the model without index and the model with the use of
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Table 4.8: Out-of-sample forecasts of the dynamic semiparametric factor
model and the Nelson-Siegel model with business confidence index compared

with other competitorsx

TRMSE 6-m 1-y 2-y 3-y 5-y 7-y 10-y

1-month ahead
RW 0.2932 0.3054 0.3403 0.3324 0.3118 0.2866 0.2667 0.2654
DSFM
VAR(1) 0.3304 0.3108 0.3768 0.3996 0.3744 0.3289 0.2945 0.2932
VARMAC(1) 0.3334 0.3195 0.3723 0.3923 0.3633 0.3272 0.3039 0.3143
VARBCI(1) 0.3268 0.3247 0.3772 0.3878 0.3608 0.3223 0.2915 0.2928
NS
VAR(1) 0.3142 0.2891 0.3773 0.3561 0.3408 0.3201 0.2867 0.2741
VARMAC(1) 0.3072 0.2853 0.3586 0.3475 0.3335 0.3130 0.2832 0.2704
VARBCI(1) 0.3195 0.2870 0.3726 0.3425 0.3483 0.3297 0.2975 0.2842
3-month ahead
RW 0.6364 0.7534 0.7814 0.7389 0.6802 0.6177 0.5711 0.5401
DSFM
VAR(1) 0.7276 0.8036 0.8965 0.8437 0.8086 0.7431 0.6537 0.5747
VARMAC(1) 0.7021 0.8100 0.8856 0.8155 0.7701 0.7044 0.6220 0.5532
VARBCI(1) 0.7181 0.8228 0.8918 0.8240 0.7832 0.7246 0.6436 0.5760
NS
VAR(1) 0.7119 0.8380 0.8876 0.8311 0.7808 0.7006 0.6313 0.5773
VARMAC(1) 0.7015 0.7992 0.8625 0.8057 0.7681 0.6946 0.6339 0.5868
VARBCI(1) 0.9026 0.9289 1.0599 1.0350 1.0127 0.9164 0.8345 0.7720
6-month ahead
RW 1.0255 1.3198 1.3160 1.2257 1.1101 0.9990 0.9159 0.8438
DSFM
VAR(1) 1.2123 1.5700 1.6083 1.4505 1.3410 1.1927 1.0593 0.9322
VARMAC(1) 1.2414 1.6649 1.6928 1.5000 1.3749 1.2063 1.0562 0.9122
VARBCI(1) 1.2052 1.4645 1.5185 1.4153 1.3334 1.2190 1.0996 0.9764
NS
VAR(1) 1.1586 1.5148 1.5052 1.3972 1.2841 1.1223 1.0178 0.9258
VARMAC(1) 1.2022 1.5611 1.5687 1.4647 1.3431 1.1648 1.0504 0.9499
VARBCI(1) 1.5464 2.0269 2.0093 1.8803 1.7282 1.4957 1.3481 1.2159
12-month ahead
RW 1.3653 1.9582 1.9346 1.7009 1.5049 1.3551 1.2205 1.0904
DSFM
VAR(1) 1.6539 2.2890 2.3183 2.0554 1.8782 1.6728 1.4880 1.3135
VARMAC(1) 1.5533 2.1130 2.1467 1.9147 1.7548 1.5831 1.4190 1.2638
VARBCI(1) 1.5850 2.1781 2.2066 1.9654 1.7964 1.6014 1.4355 1.2785
NS
VAR(1) 1.5709 2.2382 2.1820 1.9891 1.7812 1.5396 1.4024 1.2825
VARMAC(1) 1.6273 2.3650 2.3040 2.0833 1.8512 1.5737 1.4228 1.2971
VARBCI(1) 1.8675 2.6546 2.6159 2.3819 2.1234 1.8251 1.6566 1.5084
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macro variables. The index can also improve the prediction performance of the

Nelson-Siegel model for shorter maturity, in particular 6-month to 2-year matu-

rity. Actually, all specification of the Nelson-Siegel dominates either the dynamic

semiparametric factor model and even the random walk in providing more accu-

rate forecast. The improvement made by the index is also pronounced when we

include it into the Nelson-Siegel model even though the macro variable produce

more accurate results.

The results for the three-month ahead forecast horizon are quite similar to those for

the 1-month horizon. The inclusion of business conditions index into the dynamic

semiparametric factor model is able to improve the accuracy of the yields with

1-year to 7-year maturities as compared to the simple model with only yield latent

factors. However, the overall trace root mean square prediction error (TRMSPE)

generated by the model with the index fails to overcome the counterpart model

with macro variables. For the Nelson-Siegel model, incorporating the business

conditions index is not informative and cause more errors relative to the model

without the index. It appears to be beneficial for the dynamic semiparametric fac-

tor model to include the business conditions index to improve forecasting results

while it does not work for the Nelson-Siegel model.

Considering the results of six-month ahead forecast, the dynamic semiparametric

factor model with the business conditions index outperforms those forecast with

only yield latent factors for the short and medium term yields with less than 5-

year maturity. Impressively, it turn to produce more precise results relative to

the model with macro variables. Again, the business conditions index worsen the

predictability of the Nelson-Siegel model after including it. In this context, the

index seems to be informative to incorporate with the dynamic semiparametric

factor model rather than the Nelson-Siegel model.

At the twelve-month ahead horizon, the dynamic semiparametric factor model

with the business conditions index produce forecasts that consistently outper-

form the model with only yield latent factors. Relative to the model with macro

variable, the business conditions index become less informative for twelve-month

horizon forecast. For the Nelson-Siegel model, the accuracy is deteriorating when

the business conditions index is included, representing by considerably higher root
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mean square prediction error (RMSPE) compared to the model without the index.

To visualize these results, Figures 4.7 and 4.8 provide a visual impression of the

one-month ahead out-of-sample forecasting performance of the index-augmented

models compared with the actual yields and those predicted by the dynamic semi-

parametric factor model and the Nelson-Siegel model with the supplement of yield

factors and macro variables. Figure 5 plots the outcomes for the dynamic semi-

parametric factor model and Figure 6 for the Nelson-Siegel model.

Figure 4.7: Term structure forecasting by the dynamic semiparametric factor
model

As Figure 4.7 shows, the dynamic semiparametric factor model with business con-

ditions index; VAR-BCI(1) produces less variation than the simple model with

only yield latent factors; VAR(1), and the model that includes macro variables;

VAR-MAC(1). As can be seen, the model with latent factors and model with

macro variables overstate the actual yields during the global financial crisis on

2009. The forecasts of them perform particularly badly in the month after the

crisis. In contrast, the model augmented with business conditions index perform

impressively by producing more accurate results than others at the turning points

and the periods after the crisis. This indicates the forward-looking information

from the index enhances the forecasting accuracy of the dynamic semiparametric

factor model.

Figure 4.8 reveals that the Nelson-Siegel model forecast the persistent movements

of the yield at short-term maturity, in particular 6-month yield, remarkably well.
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Figure 4.8: Term structure forecasting by the Nelson-Siegel model

As compared to the dynamic semiparametric factor model, it more precisely track

the actual yields than those provided by the dynamic semiparametric factor model.

Unfortunately, the forecasts of the Nelson-Siegel model perform particularly badly

in at the turning points relative to the dynamic semiparametric factor model.

Interestingly, an inclusion of the business conditions index produces more errors

by understating the trough as well as overstating the yields during recovery period.

4.7.3.3 Robustness check

In order to analyze whether the predictive power of the business conditions index

varies under different conditions, we conduct three types of robustness checks. We

first compare the forecasting accuracy produced by the model with the business

conditions index relative to survey-based indicators. Next, we investigate whether

the results are affected by adopting different data frequencies. Lastly, we check

to what extent the forecasting results are improved by a different lag value of the

business conditions index.

(1) Comparison with survey-based indicators

We assess the predictive power of the business conditions index relative to the

two most common Australian survey-based indicators; the Westpac-Melbourne

Institute leading index of economic activity and the Westpac-Melbourne Institute
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consumer sentiment expectations index. The Westpac-Melbourne Institute leading

index reports the movements in the leading indicators and is a gauge of Australian

business cycle. This business conditions index is estimated from the ASX200 stock

index, Westpac-Melbourne Institute consumer sentiment expectations index, US

industrial production, the Reserve Bank of Australia’s commodity price index,

dwelling approvals, yield spread and aggregate monthly hours worked. Unlike the

leading index that signals the near term economic performance based on various

macroeconomic data, the consumer sentiment index reports the expectations of

participants about the future economy. It reflects household financial situation,

consumption and macroeconomic projection.

Table 4.9: Out-of-sample forecasts of the dynamic semiparametric factor
model with business confidence index compared with other competitors

TRMSE 6-m 1-y 2-y 3-y 5-y 7-y 10-y

RW 0.2932 0.3054 0.3403 0.3324 0.3118 0.2866 0.2667 0.2654
DSFM
VAR-BCI(1) 0.3268 0.3247 0.3772 0.3878 0.3608 0.3223 0.2915 0.2928
VAR-LDI(1) 0.3325 0.3075 0.3803 0.4026 0.3775 0.3326 0.2966 0.2938
VAR-CCF(1) 0.3324 0.3171 0.3784 0.3992 0.3744 0.3308 0.2970 0.2955
NS
VAR-BCI(1) 0.3195 0.2870 0.3726 0.3425 0.3483 0.3297 0.2975 0.2842
VAR-LDI(1) 0.3206 0.2956 0.3831 0.3591 0.3477 0.3269 0.2939 0.2817
VAR-CCF(1) 0.3150 0.2930 0.3793 0.3561 0.3403 0.3201 0.2872 0.2751

Table 4.9 shows that the business conditions index augmentation enhances the

predictability of the dynamic semiparametric factor model to provide better out-

of-sample forecasts, relative to the leading index and the consumer sentiment in-

dex. However, the supplementary information from the business conditions index

worsens the prediction power of the Nelson-Siegel model so that it fails to compete

with other two competitive indices. For the Nelson-Siegel model, the inclusion of

the consumer sentiment index contributes to the achievement with a lowest trace

root mean square prediction error (TRMSPE) compared to other indicators. The

consumer sentiment index is also the second best indicator to be augmented with

the dynamic semiparametric factor model. It is not surprising that the consumer

sentiment index is relatively successful to forecast the yields, especially with the

Nelson-Siegel extension. It contains forward looking information and particularly

helps the Nelson-Siegel level factor for term structure forecasting with inflation ex-

pectation as mentioned in the literature, including Dijk et al. (2013). The leading



Chapter 4. Term Structure Forecasting with a Business Conditions Index 179

index is relatively unsuccessful at forecasting the term structure for both mod-

els. Comparing the leading index with the business conditions index, the leading

index only concentrates on domestic economy and may not represent the overall

economic performance and therefore it is not informative enough for term struc-

ture forecasting.

(2) Data frequency

As noted earlier, term structure forecasting is theoretically based on expectation

and is forwarding looking. Participants continuously update their expectation on

the new information. To take advantage of the high frequency of the business

conditions index that is available for daily and weekly, we conduct a forecasting

exercise daily and weekly to investigate whether the predictive performance is im-

proved by higher frequency information.

Table 4.10: Out-of-sample forecasts of the dynamic semiparametric factor
model with business conditions index compared with other competitors

TRMSE 6-m 1-y 2-y 3-y 5-y 7-y 10-y

Daily 0.1206 0.0868 0.1191 0.1256 0.1274 0.1313 0.1179 0.1265
Weekly 0.1421 0.0984 0.1083 0.1274 0.1422 0.1521 0.1500 0.1600

Monthly 0.3268 0.3247 0.3772 0.3878 0.3608 0.3223 0.2915 0.2928

Table 4.10 presents the term structure forecasting of the dynamic semiparamet-

ric factor model and the Nelson-Siegel model with the business conditions index

at different frequencies. High frequency information, in particular of the daily

business conditions index, significantly improves the forecasting performance of

both models. We also observe the weekly index also significantly enhances the

predictability of the term structure forecasting. We suggest using the business

conditions index at high frequency (daily or weekly) to link the yields information

with the macroeconomic situation rather than traditional macro variables that are

normally used in macro-finance term structure model.

(3) Choice of lags BCI
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One important benefit from the business conditions index is it availability. The

supplementary information from the index is basically based on the index at the

end date of the previous month. Since the index contains forward looking informa-

tion, forecasting made by the index implies the trend or the anchor for the yields

in the future. We consider different lags of the business conditions index. The

most recent available index may probably improve the forecasting accuracy of the

term structure model. We examine the term structure forecast with different lag

periods from one-day lag, two-day lag until one-month lag. The forecasting re-

sults measured by the root mean square prediction error (RMSPE) is not sensitive

to any lags with less than one-week. We report the results produced by the in-

clusion of the index at one-week lag, two-week lag in comparison to one-month lag.

Table 4.11: Out-of-sample forecasts of the dynamic semiparametric factor
model with business confidence index compared with other competitors

TRMSE 6-m 1-y 2-y 3-y 5-y 7-y 10-y

1-week lag 0.2713 0.2562 0.2907 0.2912 0.2883 0.2792 0.2595 0.2520
2-week lag 0.2710 0.2565 0.2908 0.2911 0.2880 0.2787 0.2590 0.2514
1-month lag 0.2710 0.2564 0.2910 0.2913 0.2882 0.2790 0.2590 0.2512
1-day lag 0.2714 0.2563 0.2907 0.2912 0.2884 0.2794 0.2597 0.2521

Table 4.11 shows that the incorporating of the business conditions index at a two-

week lag significantly improves forecasting accuracy and provides the lowest root

mean square prediction error (RMSPE) relative to the choice of one-week lag and

the baseline model with one-month lag. As mentioned earlier, the index with less

than one-week lag is not informative. This implies the forward looking informa-

tion contained in the index is actually updated with the more recent available

information. Hence, the only two-week lag provides better results compared with

one-month (four-week lag). It also suggest the adjustment of the yield curve shape

in regard to the recent economic situation takes some time to revise expectation

and affect the yields.

4.8 Conclusion

In this paper, we propose to use the Sheen-Trueck-Wang business conditions index

to incorporating forward looking information into the dynamic Nelson-Siegel and
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dynamic semiparametric factor model for yield curve estimation and forecasting.

Our method offers an anchor for the cross-sectional and in-sample term structure

model that is very useful for term structure forecasting by providing the expecta-

tion about the future term structure.

The high frequency nature of the business conditions index allows us to produce

more frequent term structure forecasts and also utilize the latest information.

We find that the inclusion of the business conditions index helps to reduce the

forecasting errors relative to other models. Comparing with other survey-based

indicators, the business conditions index is found to be a good candidate that pro-

vides a very promising new source of data to forecast term structure. It is more

relevant to economic activities and therefore predictive power. Unfortunately, it is

hard to beat the random walk, especially when forecasting long-term interest rates.





Chapter 5

The Economic Impact of

Quantitative Easing on the U.S.

Economy: A Bayesian Structural

VAR (B-SVAR) with Sign

Restrictions Analysis

5.1 Introduction

We examine the effectiveness of the US quantitative easing (QE) policy that was

adopted when the short-term fed funds interest rate became constrained by the

zero lower bound by exploring the dynamic effects of a shock to commercial bank

credit on the bond yield slope, inflation and output growth. The effects are esti-

mated by a Bayesian structural vector autoregressive (B-SVAR) model with sign

restrictions using monthly data over the period of January 2003 to August 2013.

Within this B-SVAR, we identify an innovation of the unconventional monetary

policy shocks by a shift in the Federal Reserve’s balance sheet size that provides

a massive credit supply shock and has impacts on the long-term yield, economic

activity and inflation. We find that an exogenous increase in the Federal Reserve’s

assets leads to a drop in long-term interest rates that compresses the long-term

bond yield spread over the short-term yield, or yield slope, and raises inflation as

183
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well as output growth.

There are three main contributions to the existing literature. First, this study pro-

vides evidence for the effectiveness of the unconventional monetary policy for the

US economy. This result suggests that unconventional monetary policy measures

adopted by central banks during a liquidity trap can provide temporary support

to their economies. Second, using the B-SVAR with sign restrictions to impose

a theoretical structure and establish some relevant stylized facts allows us to be

agnostic about how macroeconomic activity responds to quantitative easing. To

credibly identify our quantitative easing shock, the yield slope, which is the vehicle

for central bank asset expansion to affect other macro-variables, is unrestricted to

let it freely respond to the data. Most of the earlier literature implemented event

studies to analyze the effects of unconventional monetary policy on particular fi-

nancial market variables such as the long term yield or yield spread. However, this

does not imply that unconventional monetary policy will in general have positive

macroeconomic effects. Third, we propose the transmission mechanism of uncon-

ventional monetary policy by characterizing the macroeconomic consequences of

the central banks asset purchases via a rise in the central bank balance sheet,

which causes a decline in the long-term rate. The compression in the long-term

yield spread leads to the expansion of output and higher inflation. Based on these

results, we conclude that large-scale purchases of long-term government bonds

constitute a viable policy option to provide additional monetary policy accommo-

dation in a zero-lower-bound environment that enables central banks to achieve

their mandate of stimulating the economy in the absence of conventional monetary

policy.

The remainder of the paper is structured as follows: Section 5.2 discusses the

related literature on unconventional monetary policy, Section 5.3 describes the

Bayesian structural vector autoregressive (B-SVAR) model with sign restrictions

and proposes identification strategies for conventional monetary policy, uncon-

ventional monetary policy and other aggregate shocks. Then, we describe the

conceptual framework about unconventional monetary policy and how the Federal

Reserve has implemented unconventional monetary policy after the global finan-

cial crisis in 2008 in Section 5.4. The data description and descriptive statistics

are reported in Section 5.5. Afterwards, the results are presented and discussed
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in Section 5.6, as well as a comparison exercise to assess the effectiveness of the

unconventional monetary polcy relative to the conventional monetary policy. We

also conduct robustness checks in Section 5.7 and finally give conclusion in Section

5.8.

5.2 Review of literature

After the global financial crisis in the late 2000s, the implementation of non-

standard monetary policies and the analysis of their effects became more inter-

esting for policy analysts and academia. Earlier studies prior to the crisis were

conducted to examine the effectiveness of any alternative monetary policy other

than changing the standard monetary policy interest rate. Most earlier studies

focused on the effects on financial variables of a large scale purchase in long term

assets by the central bank. The assessment of the effects of unconventional mone-

tary policy on financial variables, especially the long-term interest rate and yield

spread, was mainly conducted by event study methods. Bernanke et al. (2004)

examined financial market reactions to a non-standard monetary policy to change

the relative supply of the government securities and found the extension of central

bank assets provides excess reserves while maintaining the zero lower bound of the

short-term interest rate, and in fact generated lower long term yields. The deter-

mination to pursue a very low short term policy rate was realized by economic

agents and transmitted into the long-end of the term structure. The decline in

long-term yields implies higher expected inflation and income and therefore in-

duces aggregate demand.

Since then, there have been a series of papers that investigated the effect of un-

conventional monetary policy on the yield term structure through the expectation

channel. For example, Okina and Shiratsuka (2004), Baba et al. (2005), Ugai

(2007) and Oda and Ueda (2007) explored the extension of central bank assets in

Japan and found a negative impact on yield spreads. However, these studies are

not informative for analyzing the effect of the extension of central bank’s assets

during the 2000s financial crisis, particularly for the case of the US. Gagnon et al.

(2010), Krishnamurthy and Vissing-Jorgensen (2011), Hamilton and Wu (2012)
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and DAmico et al. (2012) assessed the Large Scale Asset Purchases (LSAPs) im-

plementation programs by the Federal Reserve in the US after the global financial

crisis. They found the massive long-term assets purchasing through LSAP1 (dur-

ing 2008-2009), LSAP2 (during 2010) and Operation Twist (during 2011-2012),

effectively lessened long-term interest rates mainly through the reduction in liq-

uidity premia and duration risk. However, these studies found minimal negative

effects on yield spreads and even less for the LSAP2 once economic agents had

already anticipated the impact before the program was enacted. As noted, these

studies employed the event study method to evaluate the effectiveness of uncon-

ventional monetary policy on the yield spread and compared the counterfactual

impact when there is no such implementation. Nonetheless, there are small but ac-

ceptable samples of historical data available for doing a qualified study. Moreover,

these empirical studies only focus on the link between the operation of unconven-

tional monetary policy and the yield term structure but ignore the consequences

of changes in the yield spread on macroeconomic variables, particularly output

and inflation.

To analyze the wider effects on macroeconomic variables, Wright (2012), Joyce

et al. (2012) and Chung et al. (2012) estimated the impact of unconventional pol-

icy measures on asset prices or the term structure of yields, and then plugged-in

the reaction of financial variables into a macroeconomic model, a vector autore-

gressive model. However, this two-step method as argued by Hamilton and Wu

(2012), probably leads to biased estimation. Furthermore, unconventional mon-

etary policy may actually affect the economy through a lower long-term yield

and transmit by the channel of a yield slope compression. Therefore, the effect

of unconventional monetary policy should be estimated as an agnostic change in

the yield spread simultaneously with other monetary policy instrument and other

macro economic variables.

For these reasons, there is a growing literature that applies the structural vector

autoregressive model (SVAR) to uncover the macroeconomic effects of unconven-

tional monetary policy and analyze the transmission mechanism based on impulse

response analysis. This approach investigates a non-standard monetary policy

shock, associated with the central bank’s assets purchasing, on long-term yield or

yield spread, given a restricted policy interest rate unchanged at the zero-lower
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bound. There are a few studies that apply the SVAR techniques to estimate the

macroeconomic impacts of the standard monetary policy in the aftermath of the

global financial crisis.

SVAR techniques analyze the effect of unconventional monetary policy innovation

by identifying certain restrictions on the contemporaneous interactions between

monetary policy instruments, the yield spread channel, economic activity, infla-

tion and other financial or macroeconomic variables. Among several identification

approaches, sign restrictions has a strong theoretical rationale and therefore has

been used in recent SVAR studies on non-standard monetary policy measures,

including Peersman (2011), Kapetanios et al. (2012), Schenkelberg and Watzka

(2013), Baumeister and Benati (2013) and Gambacorta et al. (2014).

One of the early studies on the macroeconomic consequence of non-standard mon-

etary policy initiatives within the context of the the financial crisis after 2008

was done by Peersman (2011). This study estimated the SVAR model for the

Euro area over the period of 1999 to 2009 to examine the effectiveness of the

massive increase in credit supply shocks, orthogonalized to a zero lower bound

policy rate. It was found that a positive innovation on unconventional monetary

policy significantly generate a humped shape increase in output and persistently

increases inflation. These effects are passed through a persistent decline in the

yield spread. Comparing with a negative shock for conventional monetary policy,

the impulse responses from the unconventional monetary policy are more sluggish.

Baumeister and Benati (2013) also investigated the macroeconomic effects of a

compression in the yield spread during 1954 to 2011 in the U.K. and U.S. Unlike

Peersman (2011), this study directly analyzed the impact of a change in the yield

spread on economic activity and inflation regardless of the transmission from any

monetary policy instruments such as credit supply or central bank’s assets. The

compression in the yield spread was found to play an important role to stimulate

output growth and inflation when the conventional monetary policy is constrained

by a zero lower bound interest rate. The unconventional monetary policy measures

also confirmed by a counterfactual simulation the effectiveness to avert risk of a

prolonged recession and deflation. This study also found the impacts of the non-

standard monetary policy on output growth and inflation become stronger after



Chapter 5. The Economic Impact of Quantitative Easing on the U.S. Economy:
A Bayesian Structural VAR (B-SVAR) with Sign Restrictions Analysis 188

the global financial crisis when allowing for time-variant parameters. Even though

they conducted counterfactual simulation and applied the time-varying parameter

structural vector autoregressive (TVP-SVAR) with sign restrictions estimation,

the transmission mechanism was still unclear since monetary policy instruments

were disregarded in this study.

In order to provide better understanding about the interaction between the mon-

etary policy instrument and macroeconomic variable, Gambacorta et al. (2014)

straightforwardly chose the central bank’s balance sheet as an instrument to ac-

commodate unconventional monetary policy in their study. They employed a panel

SVAR with sign restrictions for eight industrial economies: Canada, the Eurozone,

Japan, Norway, Switzerland, Sweden, the U.K. and the U.S., to investigate the

effectiveness of non-standard monetary policy on output, price level, stock mar-

ket volatility and central bank’s balance sheet over the crisis period from 2008 to

2011. An extension in central banks assets achieved efficacious outcomes to avert

stagnation and mitigate concerns about economic instability. Unlike Peersman

(2011), the impacts on price level were founded to be quantitatively weaker and

less persistent in comparison with output. The empirical results across economies

were quite similar, which implies unconventional policy is able to be used as a

tailor-made measure for any central banks to stimulate the economy at the zero

lower bound interest. Compared with previous studies, it directly quantified the

impacts of changes in the central bank’s balance sheet on output and the price

level. However, the long-term yield or yield spread, which is theoretically explained

as a vehicle of unconventional monetary policy, is left out of this study. Another

critical caveat is that they did not orthogonalise the policy interest rate to purely

assess the response of non-standard policy.

A broader study that characterizes the transmission mechanism from a change in

the monetary policy instrument via the long-term yield or yield spread channel

towards macroeconomic variables was done by Schenkelberg and Watzka (2013).

This study applied a Bayesian SVAR with sign restrictions to investigate the im-

pacts of unconventional monetary policy on the industrial production index, con-

sumer price index and exchange rate for Japan during the period from 1995 to

2010. The transmission mechanism instrument of unconventional monetary pol-

icy was identified by a change in the central bank’s reserves that passes through
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the long-term yield and eventually affects macroeconomic variables. This study

proposed a set of identified shocks: unconventional monetary policy, aggregate

demand and aggregate supply shock, that allowed it to examine the impacts of

non-standard stimulus relative to others. The unconventional monetary policy

shock was found to produce positive effects on output and the price level, but less

in magnitude relative to aggregate demand shocks. This study argued that the

non-standard monetary policy actually failed to induce output growth and avert

deflation due to weak and transient responses. Yet, it still ignored the possible

caveat about unorthogonalised policy and therefore the results were not properly

measured.

Another study on examining whether unconventional monetary policy instruments

affect the yield spread and macroeconomic variables was published by Kapetanios

et al. (2012). The unconventional monetary policy was identified by a change in

the monetary base that passes through the yield spread and then affects output as

well as the price level. This study used several techniques: Bayesian VAR (BVAR),

time-varying parameters SVAR (TVP-SVAR) and Markov-Switching SVAR (MS-

SVAR), to measure the impacts of quantitative easing conducted by the Bank

of England based on data from 1993 to 2010. With regards to counterfactual

simulation, the BVAR estimation revealed that the U.K. economy would probably

decline even more if the unconventional monetary policy was not put in place. The

results produced by TVP-SVAR and MS-SVAR also confirmed that quantitative

easing effectively stimulated the economy and avoided deflation despite the fact

that the magnitude of the impacts markedly varied across the models. Whilst this

empirical study supported the idea that central bank could enlarge the monetary

base to affect the long-term yield and overall economy at the zero lower bound

interest rate, it did not discuss how the non-standard policy works through the

yield spread channel to affect the macroeconomy. It also ignored robustness checks

for different identification schemes and other possible transmission channels.

It remains unclear in the literature how unconventional monetary policy affects on

economic activity and inflation in comparison with conventional monetary policy

and aggregated demand stimulus. The transmission mechanism from a change

in the monetary policy instrument via the long-term yield or yield spread to

macroeconomic variable also requires further in-depth investigation to reveal the
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interaction and propagation in the overall economy. Specifically, there are a lim-

ited number of SVARs with sign restrictions studies that focus on unconventional

monetary policy measures implemented by the Federal Reserve since the global

financial crisis.

5.3 Methodology

In this Section, we describe the method in specifying the structural vector autore-

gressive (SVAR) model in subsection 5.3.1 and estimating by Bayesian method

in Subsection 5.3.2. We then discuss the identification strategy by means of sign

restrictions technique in subsection 5.3.3. We follow the approach that was pro-

posed by Uhlig (2005) to decompose structural shocks. For subsection 5.3.4, we

explain the reason why we choose Federal Reserve’s balance sheet as a monetary

policy instrument and a yield slope as a monetary policy channel for unconven-

tional monetary policy transmission mechanism. We then specify restrictions for

the conventional monetary policy, unconventional monetary policy and other tra-

ditional aggregate shocks in subsection 5.3.5.

5.3.1 SVAR specification

To analyze the effectiveness and transmission mechanism of unconventional mon-

etary policy at the zero lower bound interest rate, we estimate the joint behaviour

of the Federal Reserve balance sheet or the FED asset position (FAS), the spread

between the 10-year Treasury bond yield and the 3-month Treasury bill rate or

the yield slope (YSL), the Fed funds rate (FFR), the industrial production index

(IPI) and the consumer price index (CPI) in the framework of a structural vector

autoregressive (SVAR) model.

The benchmark vector autoregressive (VAR) model is estimated by the following

reduced-form VAR model:
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Yt = A1(L)Yt−1 + ...+ Ap(L)Yt−p + εt (5.1)

where Yt is a K dimensional vector of endogenous variables of interest, A1, ..., Ap

are collected in the vector of coefficients, and εt is a vector of residuals with vari-

ancecovariance matrix E[εtε
′
t] = Σε and t = 1, ..., T .

Equivalently the model can be written more compactly as:

A(L)Y = εt (5.2)

where A(L) is the a matrix polynomial in the lag operator and L is an autoregres-

sive lag order polynomial.

For a particular period, these variables are affected by exogenous disturbances.

To learn about the effect of the shocks, in particular the unconventional monetary

policy shock, we rewrite the reduced-form VAR model as the structural vector

autoregressive (SVAR) model.

B0Yt = B1Yt−1 + ...+BpYt−p + ut (5.3)

where ut denotes a mean zero serially uncorrelated error term. It is also assumed

to be unconditionally homoskedastic.

Again, it can be also rewritten in terms of the lag operator:

B(L)Yt = ut (5.4)

where B(L) = B0 −B1L−B2L
2 − ...BpL

p is the autoregressive lag order polyno-

mial. The variance-covariance matrix of the structural error term is normalized

such that:

E[utu
′
t] = Σu = IK (5.5)
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These structural shocks are mutually uncorrelated, implying Σu is diagonal. The

variance of structural shocks are normalized to unity.

The SVAR model can be used to identify shocks and trace out how structural

innovations affect the dependent variables in the original model by employing im-

pulse response analysis and forecast error variance decompositions (FEVD), which

we will discuss later.

Recall for the structural vector autoregressive (SVAR) model. If we multiply both

sides of the structural VAR representation by B−1
0 , we get:

B−1
0 B0Yt = B−1

0 B1Yt−1 + ...+B−1
0 BpYt−p +B−1

0 ut (5.6)

This representation actually is the reduced-form representation where Ai = B−1
0 Bi,

i = 1, ..., p and εt = B−1
0 ut.

The matrix B−1
0 governs how a structural shocks ut affect Yt. We can estimate the

reduced-form equation from the data. However, we need to recover the element

B−1
0 from the reduced-form equation. Once knowing B−1

0 allows us to reconstruct

ut from ut = B0εt.

Recalling εt = B−1
0 ut, the variance of εt is:

E(εtε
′
t) = B−1

0 E(utu
′
t)B

−1′

0 (5.7)

Equivalently.

Σε = B−1
0 Σu)B

−1′

0 = B−1
0 B−1′

0 (5.8)
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The equation Σε = B−1
0 B−1′

0 can be solved for the unknown parameters B−1
0 given

known Σε from the reduced form estimation. The number of unknown parameters

in the SVAR exceeds the number of known parameters from the reduced form

equation, and so are under-identified.

To recover the structural parameters, we need to impose additional restrictions on

selected elements of B−1
0 . The most common approach is to impose zero restric-

tions on selected elements of B−1
0 . Practically, we may impose a short-run restric-

tion by assuming that there is no instantaneous effect from any shocks on output

and inflation. However, there is much skepticism about excluding restrictions used

to achieve identification. Another solution to disentangle the structural innova-

tions ut from the reduced-form innovations εt is to identify the model by making

assumption on the causal ordering of the variables that compose the SVAR. By

applying a recursive restriction, the error term in each regression is uncorrelated

with the error in the preceding equations. Define P as the lower-triangular matrix

with positive main diagonal. The orthgonalized matrix P is then related to the

error covariance matrix by Σε = PP ′. By taking such a Cholesky decomposition

of the variance-covariance matrix, we can recover the structural shocks ut since

P is lower triangular, and so all parameters are exactly identified. The recursive

restriction approach was popularized to model the monetary policy transmission

mechanism following the pioneer works of Sims (1980), Bernanke and Blinder

(1992) and Christiano et al. (1999). It is important to be aware that the recursive

restrictions depends on the particular successive ordering and may not be sup-

ported by economic theory. Without a reasonable economic interpretation, this

solution become meaningless.

To overcome the controversy about the right short-run restrictions or the plau-

sible sequence of restriction, we may focus instead on long-run restrictions that

are better justified by theory. For example, the aggregate demand shock is as-

sumed to have a zero long run effects on real variables, as in Blanchard and Quah

(1990). Nonetheless, it is difficult to find an accurate estimate of the impulse re-

sponses at the infinite horizon from a short time span of data. Faust and Leeper

(1997) found the small sample bias actually caused substantial distortion when

the long-run restriction is imposed. Hence, the imposition of zero restrictions on
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the contemporaneous impact or on the long-run cumulative effect is still doubtful.

Instead of placing stringent constraints on a structural VAR model, restrictions on

the signs of impulse responses to structural shocks emerge to be more consistent

with economic theory and empirical data. The idea is that sign restrictions are

imposed on the response of some variables to a shock for a particular period or lag

length while leaving the response of the main variable of interest unrestricted. The

sign restrictions method as an alternative way for SVAR model identification has

been proposed by Faust (1998), Canova and Nicoló (2002)and Uhlig (2005). These

studies used pre-identified sign restrictions on the impulse response functions to

identify shocks. Unlike other zero restriction approaches, it is not necessary to

impose zero constraints on the contemporaneous impact matrix. Instead, it only

needs to detect a band of impulse responses which satisfy the desired signs. It

can also combine zero restrictions with sign restrictions to identify shocks. More

importantly, the restrictions are explicitly consistent with dynamic general equi-

librium theory.

To implement sign restriction, we follow Uhlig (2005) to use Bayesian methods for

estimation and inference. The Bayesian SVAR is parsimonious approach to cap-

ture the rich dynamic relation. Since we estimate numerous structural parameters

from impulse responses experiments that agree with identified signs, the Bayesian

approach is able to solve the curse of dimensionality by adding prior informa-

tion to a reduced form VAR, and improve the accuracy of forecasts by combining

updated posterior information. The posterior information from data is weighted

through coefficient estimates associated with prior information from data. The

details about Bayesian SVARs and SVARs with sign restrictions are explained in

the following subsections.

5.3.2 Bayesian estimation

Bayesian techniques are widely used in macro-econometric analysis with VAR

models since the works of Litterman (1986) and Sims and Zha (1998). By adding

prior information about the likely value of parameters, the Bayesian approach can
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improve forecasting accuracy in the context of vector autoregressive models. Fore-

casting performance is also enhanced by combining posterior information with a

priori information even if the sample period is short. To explore dynamic propa-

gation of macroeconomic shock, Waggoner and Zha (2003) applied Bayesian tech-

niques in their structural VAR model and claimed the Bayesian SVAR is efficient

in drawing posteriors and well-suited to prior information. Uhlig (2005) use the

Bayesian approach to form prior beliefs and utilize information from the posterior

to estimate structural parameters and investigate the effect of monetary policy

shocks. The Bayesian SVAR with sign restrictions was found to be an appropriate

tool for macroeconomic policy analysis without imposing zero restrictions on the

contemporaneous matrix. This approach was also employed by recent studies on

the unconventional monetary policy analysis such as Peersman (2011), Kapetanios

et al. (2012), Baumeister and Benati (2013), Schenkelberg and Watzka (2013) and

Gambacorta et al. (2014).

We estimate the model using the Bayesian structural vector autoregressive (B-

SVAR) approach. Let us discuss how the Bayesian method is conducted for SVAR

estimation. B-SVAR method starts with rewriting the reduced form VAR as a

system of simultaneous equations:

Y = Xβ + E (5.9)

where Y = (Y1, ..., YT )′, X = (X1, ..., XT )′ with Xt = (Y ′t−1, ..., Y
′
t−p)

′. E =

(e1, ..., eT )′ and B = (A1, ..., Ap)
′ are T × N , T × k, k × N and T × N matri-

ces respectively. Let’s denote K = N × p as the number of coefficients. All

variables are collected together for each time t.

In fact, the simultaneous equation for variable i is Yi = XBi + Ei. We can then

transform the reduced form VAR in another useful notation by stacking the col-

umn of Yi and Ei into NT × 1 vectors as following:

Y = (Im ⊗X)β + e ≡ Xβ + e (5.10)
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For this second notation, β is kN × 1 vector or β = vec(B). Each variable repre-

sents a time series of it for all periods. Assume that et is independent and identi-

cally distributed (i.i.d.). The likelihood function L(β,Σ) of a VAR can therefore

be decomposed into the product of a Normal density, conditional on the ordinary

least square (OLS) estimator as:

β|Σ, Y ∼ N((β̂),Σ⊗ (X ′X)−1) (5.11)

where Σ ⊗ (X ′X)−1 is the ordinary least square (OLS) estimator of variable β̂,

and a Wishart density for covariance Σ−1

Σ−1|Y ∼ W (S−1, T −K −N − 1) (5.12)

where W (.) is a Wishart distribution and T −K −N − 1 are degrees of freedom.

S is the sum of squared errors S = (Y − Xβ̂)′(Y − Xβ̂) computed by the OLS

estimates β̂.

As we can see, the VAR model is not parsimonious since it contains many param-

eters and it is hard to obtain precise estimates. Based on maximum likelihood

estimation, the parameters are treated as fixed unknown quantities, and unbiased

estimators could be estimated from the inference on a large number of samples

given known distributions. The average value of the sample estimator converges

to the true value with the law of large numbers.

Another approach to estimate the VAR model is Bayesian estimation. Parameters

are now assumed to be random variables with a probability distribution. Proba-

bility measures the degree of beliefs in the estimators that can be summarized by

the probability density, which is called the prior. The prior is formed before inves-

tigating the data. Then, we use the data to learn and update information about

the parameters, which is also known as the posterior. For the SVAR context, we

use Bayesian analysis to incorporate beliefs and information from data to estimate

parameters that satisfy the identification scheme.
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Suppose θ denote parameters which are unobserved and we use data Y to uncover

them. From the Bayes’ rule, we know that:

p(θ|Y ) =
p(Y |θ)p(θ)
p(Y )

(5.13)

where p(θ|Y ) is the posterior probability density that explains the probability of

θ occurring conditional on Y having occurred. The probability density describes

what we know about θ, given the data. p(Y |θ) is the likelihood function and p(θ)

is a prior belief on the assumed probability distribution.

The posterior probability becomes:

p(θ|Y ) ∝ p(Y |θ)p(θ) (5.14)

which means that the posterior probability density p(θ|Y ) is proportional to the

prior times the likelihood function.

Hence, we need to build a prior for the parameters β and Σ and then use the

likelihood function of the VAR to compute the posterior density as well as the

conditional mean E(β|y) and the conditional variance var(β|y) afterward. The

posterior density is consequently the object of interest in Bayesian estimation.

The assumption about prior probability density or distribution determines whether

the posterior distribution can be computed. Some priors require repeated and

complicated calculation which raises computational burden. Among several pri-

ors, conjugate priors have proved to be convenient to work with and suited for

empirical data. The main advantage of conjugate prior assumptions is that com-

bining distributions of a conjugate family results in a new distribution of the same

family. As noted in Zellner (1996), if the normal-inverted Wishart prior is con-

jugate, then the conditional posterior distribution is also normal-inverted Wishart.

The conditionally conjugate prior distribution can then be written as:

β|Σ ∼ N(β0,Σ⊗ Ω0) Σ ∼ IW (v0, S0)) (5.15)
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Note that β|Σ is a matrix-variate normal distribution where the prior expectation

E(β) = β0 and prior variance var(β) = Σ ⊗ Ω0. The prior variance matrix has a

Kroneker structure where Ω is the variance matrix of the disturbances.

As mentioned earlier, the normal-inverted Wishart prior is conjugate, therefore,

the conditional posterior distribution is also normal-inverted Wishart:

β|Σ, Y ∼ N(β̄,Σ⊗ Ω̄) Σ|Y ∼ IW (v̄, S̄)) (5.16)

where v̄ and S̄ denote that as parameters of the posterior distribution.

To perform statistical inference and forecasting from Bayesian estimation, we then

simulate the posterior distribution of the parameters conditional on the data.

Drawing from the conditionals β|Σ, Y and Σ|Y would eventually produce a se-

quence of draws from the joint posterior and the marginal posteriors distribution.

Based on the estimated posterior distribution for the VAR coefficients, we cal-

culate the impulse responses and keep those which are compatible with the sign

restriction and ultimately calculate summary statistics of interest, particularly the

median and probability bands.

5.3.3 Sign-restriction identification

To investigate the impact of structural shock on endogenous variables, we apply

a Bayesian SVAR with sign restrictions as used in Uhlig (2005) to decompose

structural shocks whose impacts are theoretically reasonable. The idea is to dis-

entangle the reduced-form errors εt that summarizes statistical relationships into

a set of orthogonal structural disturbances, described by economic innovation ut.

The vector of structural innovations ut is assumed to be independent so that

E(utu
′
t) = Σu = IK . We need to find a matrix H such that Hut = εt. This matrix

H can be estimated using the information given by the covariance matrix of the

reduced form:
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Σu = E(utu
′
t) = HE(εtε

′
t)H

′ = HH ′ (5.17)

We need at least n× (n− 1)/2 restrictions on H to achieve identification.

Let q be a random orthonormal matrix, orthogonal decomposition of which satisfies

qq′ = I. The multiplicity of Hqq′H ′ = HH ′ is also an admissible decomposition.

Denote a = Hq, then we have:

Σu = E(utu
′
t) = HH ′ = Hqq′H ′ = aa′ (5.18)

where a is not lower triangular anymore.

This decomposition produces a new set of uncorrelated shocks without imposing

zero-type restrictions on the model. In order to estimate the structural model, we

follow Uhlig (2005), Mountford and Uhlig (2009) and Fratzscher et al. (2010) to

find vector a where a ∈ Rn, given there is an n dimensional orthogonal vector q

so that a = H̃q where H̃H̃ ′ = Σε and H̃ is a lower triangular Cholesky factor of Σε.

Solving for structural shock can be conveniently transformed into the problem

of choosing elements in an orthogonal set in responses to one particular shock.

Rewrite the VAR in reduced form vector moving average representation.

Y = [I − A(L)]−1εt (5.19)

Yt =
∞∑
s=0

Csεt−s (5.20)

where the Cs matrices represent the dynamic multipliers or impulse responses.

The impulse response to the i− th one-step ahead prediction error is given by the

i− th column of the Cs.
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The impulse response rs of all variables at horizon s to the i− th structural shock

is then given by:

rs = Csa (5.21)

The vector a is called an impulse vector which contains the contemporaneous re-

sponses of the endogenous variables to the primary shock.

Equivalently:

rs = [I − A(L)]−1aj (5.22)

Based on the coefficients A(L) in the reduced form VAR, the impulse responses

for n-variables up to s horizons can be simulated for a given impulse vector a to a

j shock. We impose sign restrictions on a subset of the n variables over horizons

up to S associated with a particularly identified shock of interest. We then check

whether the signs of simulated impulse responses satisfy a set of a priori identifica-

tion and construct a distribution of the solutions that agrees with the restrictions,

while discarding any responses that violate the signs.

The estimation and inference is carried out by using the Bayesian SVAR approach

to handle sign restriction as in the pioneering work of Uhlig (2005). As discussed

before, we firstly estimate the reduced form VAR to form a prior. Using the

Normal-Wishart prior in (A(L),Σu) implies that the posterior is also the Normal-

Wishart for (A(L),Σu) times the indicator function on a = H̃q.

Then, we take a joint draw from the posterior of the Normal-Wishart for (A(L),Σu)

and a draw from the unit sphere to obtain candidate q vectors. The draws from

the posterior are used to calculate the Choleski decomposition H from Σu = HH ′

afterward. Each random orthonormal q drawn from the uniform distribution is

taken together with Choleski decomposition H to compute impulse vector a.
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Given a structural impulse vector a, we calculate impulse responses at period s

to the i− th shock obtained by Choleski decomposition Σu = HH ′. The impulse

response ra(s) ∈ Rn at s horizon corresponding to impulse vector a is given by:

ra(s) =
n∑
i=1

qri(s) (5.23)

From the impulse response ra(s) of all variables to the i − th structural shock at

horizon s, we can identify the impulse vector a corresponding to the specific i− th
structural shock, in which the impulse responses ra(s) is satisfied with the imposed

sign for the time interval.

In practice, we take a joint draw from the posterior of the Normal-Wishart for

(A(L),Σu) and obtain a candidate random orthonormal vector q. The impulse

responses associated with the joint draw (A(L),Σu), q) are evaluated when the

impulse vectors ã satisfy the restrictions and then kept, otherwise discarded. This

procedure is repeated until a 1000 draws that satisfy the restriction are obtained.

5.3.4 Monetary policy instrument and transmission chan-

nel

The VAR model in our study is estimated by means of Bayesian methods using

monthly data over the period January 2003 to September 2013. The period of

study cover the implementation of unconventional policies under the Troubled As-

set Relief Program (TARP) start from 3 October 2008. In the course of this action,

the federal funds rate was cut to 0.25 on December 2008 and the 10-year bond yield

fell from 3.89 on September 2008 to 2.42 on December 2008. Unlike Schenkelberg

and Watzka (2013) who used the monetary base and Peersman (2011) who used

commercial bank credit as the monetary policy instrument, we follow Gambacorta

et al. (2014) to treat Federal Reserve assets as the unconventional monetary policy

instrument.

As mentioned by McCallum (1988), when the economy reaches the zero lower

bound interest rate, conventional monetary policy become ineffective and has to



Chapter 5. The Economic Impact of Quantitative Easing on the U.S. Economy:
A Bayesian Structural VAR (B-SVAR) with Sign Restrictions Analysis 202

be replaced by a quantitative reaction function. Gambacorta et al. (2014) sug-

gested to use central bank assets as instrument of a quantitative aggregate instead

of reserve, the monetary base or commercial bank credit supply since it evidently

more accurately gauges unconventional monetary policies during the crisis than

others. A large-scale purchase of long term bonds and private securities supplies

liquidity for financial market for lending and brings down risk spreads in money

markets. Consequently, a higher price on financial assets cause lower long-term

interest rates and compresses the yield spread.

The motivation of the unconventional policy intervention is a narrowing down

of the yield spread in order to induce economic activity and inflation by reduc-

ing risk and borrowing costs. Several empirical studies such as Rudebusch et al.

(2007) and Gilchrist et al. (2009) found that a decline in the term premium of

10-year Treasury yields tends to boost real economic activity. The injection of

liquidity provides more credit supply and reduces lending and therefore the yield

spread charged by banks. As long-term yields decrease, economic agents may an-

ticipate that the central bank will accommodate lower interest rates and expect

higher inflation. The impact of unconventional monetary policy eventually stimu-

lates output and raises consumer prices. To examine the transmission mechanism

through the change in long term rate, we propose to use the yield spread as the

transmission channel and investigate time lag of the impact on output and price

level, relative to the impact from a decline in the conventional policy rate. Al-

though Baumeister and Benati (2013) also investigate the impact of unconditional

monetary policy on yield spread, their study did not include central bank assets

or any monetary instruments so that the transmission mechanism is still unclear.

5.3.5 Identification based on sign restrictions

We next discuss what restrictions are imposed on conventional monetary policy,

unconventional monetary policy, demand and supply shocks. The propagation

of four individual shocks on endogenous variables - industrial production index

(IPI), consumer price index (CPI), fed funds rate (FFR), yield slope (YSL) and

the Federal Reserve assets (FAS) - are identified by standard sign restrictions.
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For the unconventional monetary policy shock, we assume a large scale purchasing

of Federal Reserve assets generates higher output and inflation while restricting to

zero contemporaneous impact on the fed funds rate, but an unrestricted effect on

the yield slope. To order to assess the effectiveness of the non-standard monetary

policy in comparison with the standard monetary policy, we identify the conven-

tional monetary policy innovation as a negative shock to the fed funds rate that

raises output growth and inflation through purchasing Treasury bills and short-

term bonds. By doing so, the Federal Reserve assets increase. The yield spread is

still kept unrestricted. In addition to the monetary policy shocks, we also investi-

gate the impacts of two standard aggregate shocks; a demand and a supply shock.

A positive demand shock is supposed to stimulate output and inflation at the ex-

pense of a higher fed funds rate, while a positive supply shock will increase higher

output with lower inflation. Each of these shocks are assumed to affect economic

activity and prices whereas the yield spread is left unrestricted and data-agnostic.

The restricted contemporaneous responses are set for the initial period. All of

the shocks are orthogonal to each other so that the impacts from individual shock

are investigated separately. The identified sign restrictions are summarized as in

Table 5.1.

Table 5.1: Identifying sign restrictions

IPI CPI FFR YSL FAS

Conventional Monetary Policy Shock ≥ 0 ≥ 0 ≤ 0 ? ≥ 0
Unconventional Monetary Policy Shock ≥ 0 ≥ 0 = 0 ? ≥ 0
Demand Shock ≥ 0 ≥ 0 ≥ 0 ? ?
Supply Shock ≥ 0 ≤ 0 ? ? ?

Notes:
1) The table displays sign restrictions on the responses of the variables in the
model after conventional monetary policy, unconventional monetary policy, de-

mand and supply shock
2) Endogenous variables: IPI: growth of industrial production index, CPI:
consumer price index inflation, FFR: fed funds rate, YSL: yield slope, FAS:

federal reserve assets
3) Restricted Sign: ≤ 0 less than or equal to 0, ≥ 0 greater than or equal to

0, = 0 equal to 0, ? unrestricted

It is worth explaining in more detail about the identification scheme for each shock.
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5.3.5.1 Unconventional monetary policy shock

The unconventional monetary policy shock is assumed to be an exogenous inno-

vation to Federal Reserve assets. Typically, this non-standard monetary policy is

implemented when the policy interest rate approaches a zero-lower bound. There-

fore, we need to isolate the effect of conventional monetary policy by combining

zero restrictions along all finite horizons. We orthogonalize the fed funds rate

for the purpose of disentangling macroeconomic variables from the conventional

monetary policy so that they will only be affected by the unconventional mone-

tary policy. The objective of the unconventional policy measures is to compress

the yield spread by lowering the long-term yield, given the zero short-term rate.

The large scale purchase of government bonds and private securities will influ-

ence business confidence and lower term premia. As a result, borrowing costs fall

spurring real economic activity and inflation. Hence, the compression in the yield

slope requires a zero restriction on the policy interest rate. The identification of

a pure unconventional monetary policy shock allows us to examine the impact of

a compression of the yield spread within the environment that the policy rate is

bound to zero during the period of study. Yet, some empirical studies on the un-

conventional monetary policy did not orthogonalize the policy interest rate such

as Schenkelberg and Watzka (2013) and Gambacorta et al. (2014).

During normal periods, the yield spread compression can be thought of as a lower

expected inflation or term premium that lessens the long-term yield, given the

central bank still maintains the policy interest rate unchanged. The impact from

unconventional monetary policy innovations to growth in output and inflation are

allowed to have an immediately positive effect, which is common a assumption for

monetary transmission, particularly in the non-standard monetary policy stud-

ies, including Kapetanios et al. (2012) and Baumeister and Benati (2013). The

dynamic effects on these macroeconomic and financial variables could be used to

assess the effectiveness of the quantitative easing measures as well as the trans-

mission mechanism, compared with the conventional monetary policy.
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5.3.5.2 Conventional monetary policy shock

While we are mainly interested in the effect of a unconventional monetary pol-

icy, we also investigate the impact of a conventional monetary policy interest rate

shock and other aggregate shocks in order to compare the main shock of interest

with other theoretically plausible restrictions as suggested in Kilian and Murphy

(2012). The contemporaneous impact of the interest policy shock increases the

Federal Reserve balance sheet from buying treasury bills and short-term assets

through open market operations. The response of the output growth and infla-

tion are also supposed to increase after the conventional monetary policy shock.

However, the responses of the yield slope from the policy interest rate shock is left

unrestricted for agnostic purposes. The lower fed funds rate could imply higher

expected inflation and ultimately higher long-term yields once the expectation of

economic agents is taken into account. Therefore, the unrestricted yield slope can

help to explore the transmission that passes through it along the term structure.

5.3.5.3 Demand shock

The sign restrictions on the aggregate demand and aggregate supply shocks are

imposed in the typical approach as in macroeconomic theory. We assume that the

unexpected increase in exogenous demand will induce growth in output and boost

inflation. There is also an increase in the policy interest rate corresponding to

the higher inflationary pressure. These effects are consistent with an upward shift

in the IS curve due to the increase in aggregate spending. The yield slope and

Federal Reserve balance sheet are left unrestricted to examine the transmission

mechanism of the positive demand shock relative to monetary policy shocks.

5.3.5.4 Supply shock

After a positive supply shock, the growth in output is supposed to increase and

consequently reduce inflation rate due to higher productivity and lower costs.

Nonetheless, the response on interest rate is left unrestricted since the reaction

from the central bank is uncertain. As a consequence, we do not impose any re-

striction on the policy interest rate and other financial variables: the yield slope
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and central bank assets. Hence, the data will determine the sign of these responses

after the supply shock. The identification scheme for these aggregate shocks are

set up in the same way as Baumeister and Benati (2013), however, their study

directly examine the unconventional monetary policy response through the yield

spread without including any monetary policy instrument.

5.4 Conceptual framework

The main objectives of the unconventional monetary policy response to the finan-

cial crisis when the economy approaches the zero lower bound interest rate are

enhancing economic stability and facilitating liquidity to financial intermediaries

and the private sector. To deal with this situation, the central bank is not able

to cut the policy interest rate below the zero bound, instead it needs to introduce

the non-standard approach to stimulate economy by changing the size of central

bank balance sheet rather than varying the amount of money supply.

5.4.1 Definition of the unconventional monetary policy

At the zero lower bound interest rate, the central bank supports the financial

market by a mix of purchasing financial assets and a lending program to the mal-

functioning credit market. This reaction put more emphasis on the asset side of

the central bank balance sheet. Basically, the central bank may directly affect

financial conditions at the very low policy interest rate by conducting monetary

measures that results in substantial changes in central bank’s balance sheet in

terms of size and composition. The extension of central bank assets require a

large scale purchase in long-term asset and securities instead of buying short-term

bills as in conventional open market operation. This tremendous increase in bal-

ance sheet of the monetary authority is commonly referred to quantitative easing

(QE). In 2001, the Bank of Japan first introduced this measure to avert a defla-

tion spiral. In the aftermath of the global financial crisis of 2007 to 2008, it was

adopted by the Federal Reserve, the Bank of England and the European Central

Bank to stimulate economy at the zero lower bound.
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Bernanke et al. (2004) defined unconventional monetary policy as a change in

the size and composition of the central bank’s balance sheet to influence asset

prices and reduce term premia as well as long-term yields. By increasing the size

of central bank assets, the central bank injects broad money through long-term

government bonds and securities purchasing and directly influences bond yields

with long maturities. An increase in asset side of the central bank balance sheet

also leads to the expansion of the liabilities side of its balance sheet in the form

of greater reserve holding by the banking system. This excess reserve is served

as a buffer for liquidity risk at financial intermediation and enhance confidence

in financial markets. The extension to longer term assets further shifts the com-

position of central bank’s asset holding from shorter towards longer maturity as-

sets. In contrast to the conventional way which alters short-term policy rate, the

non-standard monetary policy affects long term interest rate and eventually the

expectation on short-term rate and inflation. Due to lower returns on long-term

government bonds, rational economic agents will rebalance their portfolio to invest

more in corporate bonds and private securities. Concerning this, the unconven-

tional monetary policy better suits as a measure to stimulate the economy and

avert deflation at the zero lower bound interest rate, comparing with the tradi-

tional policy approach.

5.4.2 Unconventional monetary policy transmission mech-

anism

The transmission mechanism through which the unconventional monetary policy

works can be explained by two main processes; first how the central bank’s balance

sheet extension affect the yield spread as a channel to affect financial intermedi-

ation at the zero-lower bound interest rate, and second how the change in yield

spread influences aggregate demand and alters economic activity as well as price

level afterwards. The large scale purchasing in long-term government bonds causes

investors to rebalance their portfolio to corporate bonds and securities. By this

process, the central bank is able to inject massive amount of liquidity to financial

markets and private companies even while financial intermediation malfunctions.

The continuing lower long-term yields also signals the central bank’s policy inten-

tion perceived by economic agents as the expected policy interest remains lower
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together with higher expected inflation. Much of how the unconventional mone-

tary policy might affect the economy through portfolio rebalancing and signalling

are discussed as follows.

5.4.2.1 Portfolio rebalancing

The implementation of the unconventional monetary policy basically work through

the purchase of long-term government bonds from institutional investors, particu-

larly financial intermediaries such as commercial banks, insurance companies and

pension funds. The enormous demand for long-term financial assets raises up

prices and consequently move down the long-term yields. This procedure is the

first part of the unconventional monetary policy transmission mechanism from a

change in central bank’s assets that affects yield spreads.

At the zero lower bound interest rate, money and short-term bond are perfectly

substitute in the sense that both of them pay no interest rate. Any attempts to

increase money supply by conventionally purchasing short-term bond fail to stim-

ulate the economy when it is struggling with a liquidity trap. However, long term

bonds are imperfect substitute relative to holding money. As a result, the central

bank can purchase long-term bonds to implement quantitative easing. When the

central bank purchases long-duration assets, the aggregate amount of duration risk

that remains in the market is more likely to reduce and therefore the term pre-

mia and associated returns are reduced. Investors will seek to re-invest the money

obtained from selling long-term government bonds and search for alternative finan-

cial assets - especially corporate bonds or private securities, which now provides

better returns. This means that the investors may move away from their prefer-

ence of a particular segment of the yield curve, which was named by Modigliani

and Sutch (1966) as preferred habitat. By doing so, the investors rebalance their

portfolio and change the proportion of longer-maturity towards shorter-maturity

assets. The portfolio switching has viewed as the crucial mechanism to facili-

tate the unconventional monetary policy measures. However, if there is no such

portfolio rebalance as proposed by Tobin (1969) and Brunner and Meltzer (1972),

the unconventional monetary policy might become ineffective. Eggertsson and

Woodford (2003) argued if the representative agent cannot distinguish between
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long-term government bonds and their own assets, they will not willing to swap

any financial assets. Curdia and Woodford (2011) then suggested the central bank

should conduct direct lending or credit easing instead.

5.4.2.2 Signalling and wealth effect

A second part of the transmission mechanism is the pass-through process via the

yield spread to affect the economy and price level. The information from the long

end of the term structure reveals about future policy interest rates and expecta-

tions on future inflation. Once economic agents realize this information, it will

affect their aggregate spending. The large scale purchasing on financial assets

raises up asset prices, which in turn creates more wealth for asset holders. Lower

cost of borrowing and higher wealth effects will consequently stimulate economy.

If the central bank convinces economic agents of its commitment to pursue low

interest rate at or near the zero lower bound for longer periods, this may help

maintain credibility and keep inflation expectations positively anchored. Eco-

nomic agents take into account this information and anticipate a continuing low

interest rate with higher expected inflation and therefore increase their consump-

tion and investment. Vayanos and Vila (2009) and Greenwood and Vayanos (2010)

provided New Keynesian models to explain how do investors change their expec-

tation affect yields and macroeconomic activity through signalling channel. Joyce

et al. (2012) also offered empirical evidence that quantitative easing measure even-

tually boost household wealth, especially in the form of pension. As a result, the

unconventional monetary policy is not only beneficial for corporate firms from

falling cost of funds, but also broadly affects household with greater wealth.

5.4.3 The U.S. unconventional policy measures and imple-

mentation

In this subsection, we outline the unconventional monetary policy measures that

the Federal Reserve conducted in response to the global financial crisis, especially

after the collapse of Lehman Brothers in September 2008. The non-standard
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scheme fundamentally focused on purchasing long-term government bonds instead

of direct lending to financial intermediations which were malfunctioned. The large

acquisition in long-term bonds caused a dramatically extension in Federal Reserve

balance sheet and allowed it to provide liquidity to financial market.

The financial markets in the US were evidently suffered from an immense losses

from subprime mortgages since 2007. The first sign of financial distress started

from Bear Stearns failure to maintain a sufficient level of capital against risks in-

volved in the subprime market. Afterwards, several securities and companies with

a huge exposure were downgraded by credit rating agencies. On August 2007, the

Federal Reserve announced its effort to provide liquidity to financial markets and

then sharply cut fed funds rate from 5.25 to 4.75 percent or by 50 basis points on

September 2007. By September 2008, the on-going turmoil reached a critical point

when Lehman Brothers filed for bankruptcy and the Federal Reserve took over two

mortgage-lending Fannie Mae and Freddie Mac and provided bailout loan to the

American International Group (AIG). In response to this, the Troubled Asset Re-

lief Program (TARP) was set up on October 2008 to provided necessary funds to

purchase assets and equity from financial institutions under the implementation

of unconventional monetary policy.

During November 2008 to March 2009, Federal Reserve mainly purchased residen-

tial mortgage-related assets. By November 2008, the first attempt was announced

to spend 100 billion dollars in purchasing government-sponsored enterprise (GSE)

debt and 500 billion dollars in mortgage-backed securities (MBS). The additional

package was subsequently announced on March 2009 to purchase 100 billion dollars

in government-sponsored enterprise (GSE) debt, 50 billion dollars in mortgage-

backed securities (MBS) and 300 billion dollars in long-term Treasury securities.

The initial asset purchase program carried out from 2008 to 2009 is commonly

known as a quantitative easing 1 or QE1 program. The QE1 was primarily de-

signed to facilitate liquidity for purchasing houses and real estates and reduce term

premia, which in turn improve market confidence and return financial intermedi-

aries to function again.

Although the QE1 was found to abate financial turmoil, there were still concerns
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about potentially deflation over the second half of 2010. Besides, economic ac-

tivity remained sluggish. On November 2010, the Federal Reserve announced to

purchase an additional 600 billion dollars in U.S. Treasuries to promote a stronger

economic recovery and avert deflation. This consecutive quantitative easing pro-

gram was commonly called as QE2. It was specifically designed to increase the

inflation through lower long-term yield and higher expected inflation. Therefore,

Federal Reserve focused on purchasing Treasury bonds with longer maturity. Even

though, the QE2 did not much change long-term yield when it was implemented

since the market had already anticipated. Before the official announcement, the

Federal Reserve signalled to market for its further asset purchases. The expec-

tation of renewed QE package undermined market reaction and thus led to less

response.

By June 2011, the Federal Reserve has spent 1.725 trillion dollars for QE1 and 600

billion dollars on QE2. However, the unemployment rate remained elevated. On

September 2011, the Federal Reserve announced the implementation of Operation

Twist to purchase 400 billion dollars of bonds with maturities of 6 to 30 years

and to sell bonds with maturities less than 3 years. This unconventional mea-

sure allowed Federal Reserve to use the money from selling short-term assets to

purchase longer-term assets without printing more money. Therefore, it avoided

inflationary pressure though long-term yields were still lowered to spur economy.

Until the second half of 2012, The Federal Reserve still required sustainable im-

provement in the labor market. However, it could no longer sell short-term Trea-

sury securities due to insufficient holding available. Hence, Federal Reserve an-

nounced on September 2012 to spend an open-ended purchases of 40 billion dollars

of mortgage debt per month and additional 45 billion dollars on longer-term Trea-

sury securities per month in a QE3 measure. The Federal Reserve planned to end

its QE3 on October 2014.

To conclude, the Federal Reserve’s unconventional monetary policy measures that

have been conducted after the global financial crisis comprises four distinct pro-

grams; quantitative easing 1 (November 2008 to March 2010), quantitative easing

2 (November 2010 to June 2011), Operation Twist (September 2011 to September
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2012) and quantitative easing 3 (September 2012 to October 2014). These mas-

sive asset purchase aimed to reduce long-term yields and raise economic growth

as well as avert deflation when conventional monetary policy was binding at the

zero lower bound constraint.

5.5 Data and descriptive statistics

Before getting into the model, we present information about the data used in this

study. The data description is provided in subsection 5.5.1. In subsection 5.5.2,

we then present the descriptive statistics of the data.

5.5.1 Data description

Our data set for the B-SVAR model comprises 5 monthly variables namely, the

industrial production index (IPI), the consumer price index (CPI), the effective

fed funds rate (FFR), the spread between the 10-year Treasury bond yield and the

3-month Treasury bill rate or the yield slope (YSL) and the Federal Reserve’s bal-

ance sheet measure or Fed assets (FAS), covering the period from January 2003

to August 2013. We chose the seasonally adjusted industrial production index

(IPI) as a proxy for monthly output and the seasonally adjusted consumer price

index for all items less food and energy to represent core inflation. The industrial

production index, consumer price index (CPI), the 10-year Treasury bond yield

and the 3-month Treasury bill rate are obtained from Thomson-Reuters Datas-

tream, while the effective fed funds rates are gathered from the Federal Reserve

Economic Data (FRED) and the Federal Reserve’s balance sheets are released by

the Federal Reserve Board of Governors. The start of the sample is subjected

to the fact that the monthly data series of the Federal Reserve’s balance sheets

begin from January 2003. Our samples cover the pre-crisis period over 2003 to

2008 and the period of Federal Reserve’s quantitative easing, starting from the

Federal Open Market Committee (FOMC) announcement to implement the first

Large Scale Asset Purchases programme (LSAP1) or QE1 on November 2008 up

to the third programme (LSAP3) or QE3 executed from September 2012. We also

consider the possibility of taking into account the unconventional monetary policy
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implementation into our benchmark B-SVAR model. Hence, we include a dummy

variable to represent the state implementing the quantitative easing measure from

October 2008 onwards.

To analyze the effectiveness and the transmission mechanism of the unconventional

monetary policy, we use the Federal Reserve’s assets as a monetary policy instru-

ment since they directly represent the amount of asset purchases by the Federal

Reserve (instead of using the monetary base, Fed credit or Fed reserves which are

subsets of the balance sheet).

5.5.2 Descriptive statistics and unit root test

The descriptive statistics of the data series used in the B-SVAR model are re-

ported in Table 5.2 and then plotted in Figure 5.1. For each variable, we report

the mean, standard deviation, minimum, maximum, autocorrelation coefficient at

various displacements and the Augmented Dickey-Fuller test statistics for station-

arity.

Table 5.2: Descriptive statistics of macroeconomic variables

Variables Mean Std Dev Min Max p(1) p(12) p(30) ADF

IPI 94.26 4.33 83.76 100.82 0.98 0.30 -0.48 0.35
CPI 213.16 12.62 192.40 234.30 0.98 0.72 0.32 2.55
FFR 1.71 1.88 0.07 5.26 0.99 0.67 -0.11 -1.37
YSL 2.46 1.12 0.11 4.37 0.95 0.39 -0.54 -0.91
FAS 1643.03 934.99 712.81 3644.46 0.97 0.73 0.32 2.03

As shown in Table 5.2, the Federal Reserve’s assets has a much higher volatility

than other variables, indicating that it was affected by the large scale increase

under the quantitative easing scheme. The autocorrelation coefficients at one-

month lag show all variables are strongly positive autocorrelated. We also examine

whether the time series are unit root by applying the augmented DickeyFuller

(ADF) test. The unit root test results show that all variables have unit roots.

The ADF tests fail to reject the null hypothesis that the examined variables are

non-stationary. In order to proceed our empirical analysis, we therefore transform

the industrial production index (IPI), the consumer price index (CPI) and the
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Federal Reserve’s balance sheet into log-difference of monthly observations. This

transformation allows us to redefine them as output growth rate, inflation rate

and rate of change in Federal Reserve’s assets. The fed funds rate and yield

slope are left untransformed since they have already measured in percentage form.

Thus, we can infer the impact from change in policy interest rate or yield slope

straightforward.

Figure 5.1: Time series of macroeconomic variables; industrial production
index, consumer price index, effective fed fund rate, yield slope and Federal

Reserve assets
Note: Shaded areas indicate the U.S. recession of 2008 to 2009

We also plot time series of all variables in Figure 5.1. As we can see from the graph-

ical presentation, there are clear indications of all variable being non-stationary

by having a trend or seasonal pattern. From 2004 to 2008, the industrial produc-

tion index, consumer price index and fed funds rate continuously evolved upward.

However, the eruption of financial crisis during 2008 to 2009 shifted the industrial

production index to go down and reach the bottom in the first half of 2009. It also

caused the effective fed funds rate curves to the regime of lower rates. This policy

interest rate has been bottomed at the zero lower bound since the end of 2008,

representing the period in which the Federal Reserve implemented the alternative

monetary policy regime. From 2008 onwards, there was a huge surge in the Fed-

eral Reserve’s assets from the large scale purchase on long-term assets under the

quantitative easing (QE) measures. The extension in Federal Reserve’s balance
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sheet also causes a downward trend in yield slope. As the figures show, there

are 3 distinguished periods for the descendent yield spread which are consistent

with the precedent quantitative easing time lines; QE1 (November 2008 - March

2010), QE2 (August 2010- June 2011) and operation twist (September 2011 - June

2012). The large scale long-term government bond and securities purchases drove

up asset prices and compressed the yield spread once the fed funds rate remained

at zero lower bound.

5.6 Results

In this section, we provide empirical evidence of unconventional monetary pol-

icy, comparing it with conventional monetary policy and other aggregate shocks

based on the benchmark specification and identification as explained earlier. First,

we estimate impulse responses and discussion on the relative response to conven-

tional and unconventional monetary policy are shown in subsection 5.6.1. Then,

the comparison of economic impacts generated by the conventional and unconven-

tional monetary policy is presented in subsection 5.6.2.

The benchmark SVAR is estimated over the period January 2003 to August 2013

with five endogenous variables; the industrial production index, the consumer

price index, the difference between the 10-year Treasury bond and 3-month trea-

sury bill yield or the yield slope, the policy interest rate (federal funds effective

rate) and Federal Reserve assets. We use a Bayesian approach to estimate poste-

rior distributions of the reduced form VAR. Assuming a Normal-Wishart priors,

we take a joint draw from the unrestricted Normal-Wishart posterior for the VAR

parameters and a random orthogonal variance-covariance decomposition that al-

lows for constructing associated impulse responses. The impulse responses that

satisfy the imposed restrictions are kept. Then we use 1000 successful draws from

the posterior to produce the impulse response results. To compare the impacts of

unconventional monetary policy to conventional monetary policy, we calibrate one

standard deviation of the unconventional monetary policy shock so that the model

generates the same change of Federal reserve assets used by the conventional mon-

etary policy shock to increase by 10 basis points (0.1 percentage points) of yield

slope and investigate their impulse responses relative to those of the conventional
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monetary.

5.6.1 Impulse response analysis

Initially, we examine the impact of conventional monetary policy on yield spreads

and other macroeconomic variables and compare the results with unconventional

monetary policy and standard aggregate shocks. As described in Section 3, we

implement Bayesian structural vector autoregression with sign restrictions and

examine the impulse responses at horizons up to 40 months. The impulse re-

sponses are reported as median responses following a shock equal to one standard

deviation. Figures 2-5 show the impulse responses of the industrial production in-

dex, the consumer price index, the difference between the 10-year Treasury bond

and 3-month treasury bill yield or the yield slope, the federal funds effective rate

or policy interest rate and the Federal Reserve assets to one standard deviation of

each identified shock based on the specification and sign restrictions explained in

the previous part.

In all figures, the middle green lines represent the median impulse responses from

a Bayesian estimation with 1000 draws, while the bands indicate the 16 and 84

percentiles of the posterior distribution of the impulse responses. The 68 percent

range of the responses represents the confidence bands of successful models that

satisfy the identification scheme for each period. Under the assumption of a nor-

mal distribution, a one standard deviation of the identified shock would generate

a statistically significant response if the confidence intervals associated with the

impulse response function (IRFs) do not contain zero for any specific time horizon.

Our Bayesian simulation and statistical inference follow the method described in

Uhlig (2005), Fratzscher et al. (2010) and Arias et al. (2014).

5.6.1.1 Responses to a conventional monetary policy shock

To analyze the effectiveness of quantitative easing during the zero lower bound

interest rate, it is useful to examine whether the empirical results from the con-

ventional monetary policy implementation, estimated by the model, is able to
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capture structural relationship between the policy interest rate shock and other

macro variables.

Figure 5.2 shows the effects of conventional monetary policy. The response of a

negative one-standard deviation conventional monetary policy innovation has been

restricted to increase growth of output and inflation. The reaction on the federal

reserve balance sheet also has to be positive. The yield spread, which is a key

variable for transmission mechanism, has been left without restriction.

Figure 5.2: Median IRFs (green line) of a negative one-standard deviation
conventional monetary policy shock together with 16th (blue line) and 84th
(red line) percentiles or 68-percent error bands for the estimated median impulse

responses

The expansionary monetary policy results in the immediate increase in output

growth and inflation as restricted. In particular, the change in the industrial pro-

duction index and the consumer price index rise up in response to lower interest

rate and stay positive throughout 40 months horizon. Especially, the responses on

inflation are persistent. For the yield spread that has been left unrestricted, we

find the lower interest results in a widened yield spread that suddenly jumps to 5

basis point and then returns to baseline within 2 years. The effect from expansion-

ary monetary policy on the change in Federal Reserve’s asset remains positive in

line with a negative change in the interest rate throughout 40 consecutive months.

To accommodate expansionary monetary policy, the Federal Reserve needs to buy
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short-term government securities which leads to higher Federal Reserve’s assets

over the following 40 months. The impulse response results produced by con-

ventional interest rate innovations are consistent with the early structural vector

autoregressive (SVAR) model studies on the monetary transmission mechanism

such as Bernanke and Blinder (1992), Bernanke and Mihov (1998) and Christiano

et al. (1999) and SVAR with sign restriction on monetary policy, including Uhlig

(2005), Peersman (2005) and Dungey and Fry (2009).

5.6.1.2 Responses to a unconventional monetary policy shock

The main interest of this study is the effectiveness of unconventional monetary

policy intervention. We investigate the consequences of structural shocks to the

yield spread and other macroeconomic variables, given the policy interest rate is

restricted at zero. The response of the change in Federal Reserve’s asset purchase

has been restricted to be positive following the shock while growth in output and

inflation must have a positive reaction. However, the yield slope which is the main

variable of interest that transmits central bank asset shock to macro-variables, has

been left unrestricted.

Figure 5.3: Median IRFs (green line) of a negative one-standard deviation
unconventional monetary policy shock together with 16th (blue line) and 84th
(red line) percentiles or 68-percent error bands for the estimated median impulse

responses
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From Figure 5.3, output growth and inflation increase after the unconventional

monetary policy shock. In particular, the growth rate of the manufacturing pro-

duction index initially increases 0.2 percentage point. Within one year, it attains

0.4 percentage point of growth and maintains this level for three consecutive years.

Even though inflation is raised up only by around 0.1 percentage point at the begin-

ning, the impact gradually increases and eventually grows around 0.2 percentage

point at the 40 month horizon. Thus, the SVAR with sign restriction suggest that

the unconventional monetary policy shock does in fact increase economic activity.

The unconventional monetary policy innovation also causes the growth rate in

Federal Reserve balance sheet to jump up significantly and stay positive for over

four years. However, the adjustment of the term structure to change the yield

curve shape is actually delayed. It takes around a half year for the yield slope

to become negative. The figure shows the yield slope gradually decreases from

around positive 2 basis points in the first period to reach negative 5 basis points

four years later. The yield spread between the 10 year bond and 3 month bill yield

continuously compresses so that the long-term yield become less than short-term

yield and the yield curve inverts. A downward yield curve indicates the continuing

low interest rate policy which then has been realized by economic agents. The ex-

pectation that the central bank will keep the interest rate at the zero lower bound

and bring down the long-term rate for an extended period potentially stimulates

the economy and raises inflation.

Hence, these results indicate that quantitative easing affects the real economy and

inflation through lowering long-term rates. Importantly, this effect has been inves-

tigated by using an agnostic approach with an unrestricted yield slope. Overall,

the results indicate that unconventional monetary policy is effective in stimulating

the economy. Both output growth and inflation increase, associated with a com-

pression in yield slope. Compared to the transmission mechanism of conventional

monetary policy shocks, the response of macroeconomic variables are qualitatively

similar except the long-term rate pass through instead of the short-term interest

rate.
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5.6.1.3 Comparison of impulse responses to conventional and uncon-

ventional monetary policy shock

In order to examine the transmission mechanism and the effectiveness of the un-

conventional monetary policy relative to the conventional monetary policy, we

make a comparison on the impulse responses from both policy implementations.

For the conventional monetary policy, an unexpected fall in the policy rate is fol-

lowed by an rise in economic activity and inflation. The similar results on output

growth, inflation and central bank balance sheet are also generated by economic

non-standard monetary policy. Therefore, unconventional monetary policy is effec-

tive in stimulating economy and can be used as an alternative when conventional

monetary policy becomes ineffective, especially in a liquidity trap. Nonetheless,

the unconventional monetary policy shocks tend to generate a higher impact on

inflation compared with standard monetary policy. The transmission mechanism

that passes through the yield spread by changing the yield curve shape is in fact

delayed. In particular, it takes around half a year for long-term yield to be lower

than short-term yield.

Comparing the relative magnitudes of the unconventional monetary policy shock

with the traditional monetary policy on the response of output and inflation, we

find the initial impact from unconventional monetary policy on the growth rate

of the industrial production index is equivalent to the conventional way. The un-

conventional monetary policy more persistently raises inflation avoiding deflation.

We also find the absolute size of the response on inflation is larger than the impact

on output growth. This evidence supports the idea to implement unconventional

monetary policy to deal with a deflationary spiral, despite it is failure in Japan as

mentioned in Schenkelberg and Watzka (2013).

In addition, the compression on yield spread from the lower long-term yield does

improve the economy in a liquidity trap and deflation. The large scale purchase

in long term government bonds and private securities restore consumer and busi-

ness confidence. The economic agents realize the on-going stimulus and anticipate

lower expected real interest rates due to lower risk and higher expected inflation.

As a result, output and inflation will increase and these results will be even more
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pronounced and longer lasting because of the expectation. The role of expecta-

tions for the transmission mechanism during a zero lower bound interest rate is

evidenced by Eggertsson and Woodford (2004). However, we find the long-term

yield may be sluggish to fall after the quantitative easing is conducted. Our find-

ings also confirm other previous studies, especially Lenza et al. (2010), Peersman

(2011) and Schenkelberg and Watzka (2013), who also noticed a delayed response

from non-standard monetary policy. Unlike their studies, we investigate the trans-

mission mechanism through the yield slope and find out the sluggish adjustment

is in fact caused by the lagged lowering of the long-term rate.

5.6.1.4 Responses to a demand shock

In addition to examining the responses of conventional and unconventional mon-

etary policy shocks, we also compare the impulse responses of a balance sheet

shock with two other standard structural shocks: demand and supply shocks as

shown in Figure 5.4 and 5.5 respectively. We follow Kapetanios et al. (2012) and

Schenkelberg and Watzka (2013) and investigate the shocks to demand and supply

to compare the quantitative importance of unconventional monetary policy with

the impacts from aggregate shocks. The two studies mentioned did not identify a

monetary policy instrument as by central bank assets in their analyses.

As mentioned before, we impose positive restrictions on output, inflation and the

policy interest rate, while the yield slope and the central bank balance sheet are

left unrestricted. In Figure 5.4, we find the innovation on aggregate demand in-

creases output, inflation and interest rate as restricted. Noticeably, an increase

in demand persistently boosts inflation and economic activity over the 40 months

horizon. The interest rate also rises for more than one years, associated with the

inflationary pressure. Theoretically, when the central bank raises the policy inter-

est rate by selling treasury bills, the yield spread will be compressed and will cause

central bank assets to be smaller. We find the central bank balance sheet and the

yield slope evidently decrease, even though the impacts are minimal. Likewise

Kapetanios et al. (2012) reported the insignificant effects on yield spread in their

study as well. Similarly, Schenkelberg and Watzka (2013) who chose to use the
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Figure 5.4: Median IRFs (green line) to a positive one-standard deviation
demand shock together with 16th and 84th percentiles for the U.S. for selected

months

long-term yield instead of the yield spread found a minimal decrease in the long-

term yield from a demand shock.

5.6.1.5 Responses to a supply shock

For the positive shock in supply, we initially restrict output to increase while infla-

tion decreases. Following Kapetanios et al. (2012) and Schenkelberg and Watzka

(2013), the policy interest rate is left unrestricted. In addition, we allow the un-

restricted yield slope and central bank balance sheet.

From Figure 5.5, after positive shock in supply, output growth increase whereas

inflation decrease, consistent with the imposed restrictions. Over the 40 months

horizon, output growth remains positive while inflation stays negative. As the

price level decreases, economic agents will anticipate deflation and the policy in-

terest rate is then likely decrease. To lower the policy interest rate, the central

bank is required to purchase Treasury bills, so that the central bank balance sheet

expands. This policy implementation, in turn, widens the spread between long-

term and short-term yields. As we can see, the policy interest rate decreases while

the yield slope and the central bank assets increase. It should be noticed that the
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Figure 5.5: Median IRFs (green line) to a positive one-standard deviation
supply shock together with 16th and 84th percentiles for the U.S. for selected

months

effect on output growth and inflation are persistent. Schenkelberg and Watzka

(2013) also find a minor effect on the yield slope. However, the effect on output

in their study is actually short-lived while we find it is more persistent.

Comparing the relative magnitude of the responses on growth of production and

inflation from aggregate shocks with those from the unconventional monetary pol-

icy shock, we find the responses produced by the unconventional monetary policy

shock by aggregate shocks are on the same level. This findings suggests the uncon-

ventional monetary policy is an effective way to stimulate economy in a liquidity

trap with the zero lower bound interest rate. It is able to produce higher output

growth and inflation in a similar magnitude as an aggregate demand stimulus.

Note, Schenkelberg and Watzka (2013) reported the implementation of unconven-

tional monetary policy in Japan could not induce output as much as an aggregate

demand shock.

In summary, impulse responses produced by unconventional monetary policy com-

pared with standard monetary policy and other aggregate shocks indicate that

unconventional monetary policy measures effectively stimulate economic activity.
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The impact on output growth and inflation produced by the unconventional mon-

etary policy is similar to conventional monetary policy. This is in spite of the fact

that the transmission mechanism through a compression in yield slope is sluggish.

Also, the scale of change in output growth from the increase in central bank assets

is also similar to the response produced by the aggregate demand shock. There-

fore, the purchasing of long-term bond and securities can be used as an alternative

monetary policy measure to stimulate the economy and avoid deflation when stan-

dard monetary policy becomes ineffective.

5.6.2 Comparison between conventional and unconventional

monetary effectiveness

Having examined the effectiveness of unconventional monetary policy compared

with conventional monetary policy, we found the non-standard monetary policy

produces qualitatively similar responses to the typical monetary policy. In this

subsection, we analyze whether the responses created by non-standard monetary

policy quantitatively differ from the standard monetary policy. For this purpose,

we compare the magnitude of change in endogenous variables through impulse

responses following unconventional and conventional monetary policy shocks with

the same size of Federal Reserve’s assets shock. The only difference in the former

operates on the long term rate, and the later on the federal funds rate.

To generate a benchmark for comparison, we extract the value of Federal Reserve’s

assets following a one standard deviation shock of conventional monetary policy

that raises 0.1 percentage point or 10 basis point of the policy rate. Then, we

calibrate the unconventional monetary policy shock with the same size of change

in Federal Reserve’s assets and compare the magnitude of impacts on endogenous

variables relative to conventional monetary policy shock. The impulse responses

of the two different policies which are created by the same change in balance sheet,

are presented in Figure 5.6 and 5.7 as well as the estimated relative responses are

reported in Table 5.3.
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5.6.2.1 Impulse response comparison

We compare the magnitude of dynamic impulse responses to all endogenous vari-

ables after a one standard deviation shock to the conventional policy regime and

the same increase in Federal Reserve’s assets for the unconventional one. The

responses to the conventional monetary policy shock are used as benchmarks for

comparison with the results produced by the unconventional monetary policy.

(1) Responses to a conventional monetary policy shock

As mentioned before, we start our exercise by generating a one standard deviation

shock of the conventional monetary policy that raise 10 basis points of yield slope

and the implied Federal Reserve’s asset jump.

Figure 5.6: Median IRFs (green line) of a one-standard deviation shock to a
negative conventional monetary policy shock (with the same change in Federal
Reserve’s assets as conventional monetary policy shock) together with 16th (blue
line) and 84th (red line) percentiles or 68-percent error bands for the estimated

median impulse responses

From Figure 5.6, a one-standard-deviation shock to the conventional monetary

policy that raises 10 basis points in the yield slope requires around 0.03 percent-

age points of growth in Federal Reserve’s assets. The increase in short-term asset

purchase through open market operation results in initially lower fed funds rate
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by around 0.05 percentage point or 5 basis points and stays negative throughout

the 40 month horizons. The lower policy interest rate immediately induces the

growth rate of output by around 0.3 percentage points. The growth rate of output

gradually reach the peak at 0.4 percentage point in one year later. The initial

response of inflation is smaller, about 0.06 percentage point. However, the impact

on inflation is more persistent. This exercise also suggests the transmission mech-

anism is based on the expectation. The initial cut in the fed funds rate by 5 basis

points amplifies the yield spread by 10 basis points. The continuing expansionary

monetary policy is realized by market, who form an expectation of lower future

policy interest rates. Within around one year, long-term yields gradually decrease

and compress yield spread towards zero. Thus, the conventional monetary policy

works through the policy interest rate channel while the yield slope plays a less

important role in transmission mechanism.

(2) Responses to an unconventional monetary policy shock

Now, we assess the magnitude of impulse responses on endogenous variables after

a shock of the unconventional monetary policy, given the same change in Federal

Reserve’s assets as we obtained for the conventional monetary policy. We calibrate

the 0.03 percentage points of growth in the Federal Reserve’s assets and examine

the dynamic adjustment of impulse responses following this unconventional mon-

etary policy shock as shown in Figure 5.7.

The key finding from Figure 5.7, is that the growth of output generated by the

unconventional monetary policy shock is in fact a little less than the change in

output produced by the conventional monetary policy. A 0.03 percentage points of

growth in Federal Reserve’s assets induces 0.23 percentage points in output growth

whereas we got 0.3 percentage points of output growth from standard policy. If the

central bank prefers to achieve higher output growth, it needs to increase Federal

Reserve assets more.

Another important result is that the unconventional monetary policy shock effec-

tively averts deflation. By a change of the same size of the central bank balance

sheet, the unconventional monetary policy generates around 0.15 percentage points
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Figure 5.7: Median IRFs (green line) of a one-standard deviation shock to a
negative unconventional monetary policy shock (with the same change in Federal
Reserve’s assets as unconventional monetary policy shock) together with 16th
(blue line) and 84th (red line) percentiles or 68-percent error bands for the

estimated median impulse responses

of initial inflation, which persistently increases to reach 0.4 percentage points af-

ter 40 months, while the standard policy can only raise initial inflation by 0.05

percentage points. We also find a lag response in the change of shape of the yield

curve to an inverted slope. After the unconventional monetary policy shock, the

yield spread continuously reduces from its initial level at 5 basis points to become

negative in six months and eventually attain -9 basis points at the 40 months hori-

zon. In the context of rational expectation, a reduction in the long-term yield that

changes the yield curve to be downward slope shape will be perceived by economic

agents as a signal for a continuing zero bound policy rate and higher inflation.

The anticipation of low interest rates and expected inflation in the future induces

aggregate demand and stimulates the economy.

From the exercise on comparison of the impulse response, we find the effects of

the unconventional monetary policy on output growth are lower than conventional

monetary policy, given by the same change in central bank’s assets. The central

bank needs to purchase much more assets than the standard amount in conducting

unconventional policy to have the same effect. Notwithstanding, unconventional

monetary policy is more effective in averting deflation as compared to conventional
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policy.

5.6.2.2 Relative responses

To provide quantitative evidence for a comparison between the conventional (c)

and unconventional (u) monetary policy, we calculate relative responses of three

endogenous variables after the unconventional monetary policy shock in compar-

ison with conventional monetary policy shock; which are change in growth of

Federal Reserve’s assets (∆FASc/∆FASu), change in growth of the industrial

production index (∆IPIc/∆IPIu) and change in inflation (∆CPIc/∆CPIu). The

relative responses are separated into three main scenarios: Federal Reserve’s as-

sets used for two monetary policy measures are equal (FASc = FASu), industrial

production growth index produced by two monetary policy measures are equal

(IPIc = IPIu) and inflation produced by the two monetary policy measures are

equal (CPIc = CPIu). For each scenario, we report the initial relative responses

at the first period and the medium run response at 24-month horizons. The re-

sults are reported in Table 5.3. The common explanation for all figures in the table

is that whenever the number is greater than one this means the unconventional

monetary policy requires higher Federal Reserve assets or produces more output

or inflation relative to the conventional monetary policy.

The top panel of Table 5.3 presents the relative responses of Federal Reserve as-

sets, growth in output and inflation at the first period and at the 24-month horizon

when the conventional and unconventional monetary policy are conducted with the

same change in Federal Reserve assets. As we can see, the non-standard monetary

policy initially generates relatively less output than the standard monetary policy,

represented by relative response ratio equals 0.9. However, the unconventional

monetary policy becomes relatively more effective in the medium run or two years

later. It also comparably outperforms the conventional monetary policy in the

first period with regard to the relative response ratio greater than one for inflation.

From the middle panel of Table 5.3, we compare the relative change in central

bank’s assets and inflation if both monetary policy regimes are calibrated to gen-

erate the same impact on output growth at the first period and the 24 period. If
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Table 5.3: Relative response produced by conventional and unconventional
monetary policy

Scenario 1: FASc = FASu

Period 1 Period 24
∆FASc/∆FASu 1.00 1.31
∆IPIc/∆IPIu 0.90 1.45
∆CPIc/∆CPIu 2.43 0.89

Scenario 2: IPIc1 = IPIu1 Scenario 3: IPIc24 = IPIu24

Period 1 Period 24 Period 1 Period 24
∆FASc/∆FASu 1.01 1.45 ∆FASc/∆FASu 0.32 1.13
∆IPIc/∆IPIu 1.00 1.12 ∆IPIc/∆IPIu 0.32 1.00
∆CPIc/∆CPIu 1.34 0.07 ∆CPIc/∆CPIu 0.43 0.02

Scenario 4: CPIc1 = CPIu1 Scenario 5: CPIc24 = CPIu24

Period 1 Period 24 Period 1 Period 24
∆FASc/∆FASu 0.75 2.13 ∆FASc/∆FASu 1.10 2.14
∆IPIc/∆IPIu 0.75 1.33 ∆IPIc/∆IPIu 1.06 1.50
∆CPIc/∆CPIu 1.00 0.05 ∆CPIc/∆CPIu 1.13 1.00

both policy regimes are supposed to produce the same output in the first period,

the unconventional monetary policy costs more Federal Reserve’s assets and leads

to higher inflation. The non-standard monetary policy even starts with less output

when we calibrate both policies to attain the same level of output of the two-year

horizon.

In the last panel of Table 5.3, the effects on inflation from both policies are set to

be equal at the first and the 24 periods. Given the same initial impact on inflation

rate, the unconventional monetary policy provides less output growth in the first

month. In the case that two different policies achieve the same effect on inflation

two years later, the unorthodox policy outweighs the typical policy to boost eco-

nomic growth despite the larger size of central bank balance sheet. These findings

confirm the economic consequences of the non-standard monetary policy are much

more pronounced on inflation than output growth.

This experiment shows that the unconventional monetary policy is more effective

to avert deflation when the central bank’ balance sheet is changed at the same

rate as implementing conventional monetary policy. When considering the im-

pact on output, the non-standard monetary policy requires quite higher central
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bank’ assets to achieve the same change in output. With larger asset purchase,

the unconventional monetary policy is equivalent in terms of impacts and able to

substitute the standard monetary policy when the latter policy is ineffective.

5.7 Robustness check

In this section, we discuss the robustness of the results whether the identification

schemes are varied in subsection 5.7.1. In particular, we impose a zero restriction

on output and unrestrict price level. Afterwards, we investigate the results for dif-

ferent sub-samples in subsection 5.7.2, specifically the period before and after the

unconventional monetary policy was implemented after the financial crisis. For

subsection 5.7.3, we also examine the robustness when we use alternative mon-

etary policy instruments. Moreover, we extend our model to include additional

asset market variables, particularly stock index and stock volatility index and ex-

plore the transmission mechanism relative to the benchmark model in subsection

5.7.4.

5.7.1 Change Identification

For the first robustness check, we investigate whether our empirical results on

economic activity and price level regarding the unconventional monetary policy

innovation are sensitive to change in restrictions. Previously, we restricted the

positive response on the growth of industrial production index and inflation for

the shock in the unconventional monetary policy innovation. Now, we impose a

zero restriction on industrial production index for the first scenario and then we

leave inflation unrestricted for the second scenario.

5.7.1.1 Zero restriction on output

As mentioned before, both industrial production index growth and inflation are

assumed to have a positive reaction to the positive Federal Reserve balance sheet
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shock. However, previous studies on the unconventional monetary policy imple-

mentation, including Peersman (2011) and Schenkelberg and Watzka (2013), found

the effect on output actually retards and is transient. Therefore, we impose a zero

restriction on output and examine the effect of the unconventional monetary pol-

icy. This identification is also more conservative and aligns with the Sims (1986)

and Bernanke (1986) identification.

Figure 5.8: Median IRFs (green line) of a one-standard deviation shock to a
negative unconventional monetary policy shock with zero restriction on output

together with 16th and 84th percentiles for the U.S. for selected months

Figure 5.8 shows the results of the unconventional monetary policy innovation are

insensitive to this change in identification. As we can see, inflation still increases

by the increase in balance sheet and there is a compression in the yield slope.

However, the quantitative effects on inflation, the yield slope and Federal Re-

serve’s assets are still robust and consistent with the benchmark unconventional

monetary policy shock. An increase in the central bank balance sheet actually

stimulates output for around 5 months while the increase in price level is more

permanent.
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5.7.1.2 Unrestricted price level

Another alteration for the restriction setup to the unconventional monetary pol-

icy identification is an unrestricted effect on inflation. One important objective of

quantitative easing is to raise up from deflation, for example as in the deflationary

spiral in Japan as mentioned in Fujiwara (2006) and Ugai (2007). It would be in-

structive to implement an alternative identification by leaving the response of the

consumer price index unrestricted so that we can adopt a more agnostic stance re-

garding the change in inflation. To examine the transmission mechanism through

yield slope when we increase central bank asset, we still assume an unrestricted

effect on the yield slope after the shock.

Figure 5.9: Median IRFs (green line) of a one-standard deviation shock to
a negative unconventional monetary policy shock with unrestricted price level

together with 16th and 84th percentiles for the U.S. for selected months

As seen in Figure 5.9, the main results remains robust, as they are qualitatively

similar to the benchmark impulse responses we did earlier. This implies imposing

unrestricted condition on inflation does not lead to a different impact. Again,

we still observe persistent effect on output growth and inflation. These findings

confirms that inflation is effectively affected by the quantitative easing implemen-

tation, as also found in Schenkelberg and Watzka (2013).
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5.7.2 Sub-sample analysis

Since the quantitative easing began in 2008 in response to the global financial

crisis, there is a considerable jump in the Federal Reserve balance sheet. To inves-

tigate whether our results are robust accounting for the period prior to the policy

was implemented relative to the period after that, we re-estimate the structural

VAR specification with respect to two different sub-samples; a period before the

unconventional monetary policy implementation (January 2003 to July 2008) and

a period after the implementation of the unconventional monetary policy (Septem-

ber 2008 to August 2013).

5.7.2.1 Period before the unconventional monetary policy implemen-

tation

The first sub-sample period covers the time prior to the unconventional mone-

tary policy implementation. We conduct the impulse response analysis to test for

model stability over a sample period that excludes the enhanced central bank asset

position. The estimation is based on 68 months (January 2003 to July 2008) prior

to the implementation of the unconventional monetary policy.

As depicted the impulse response results in Figure 5.10 confirm that the unconven-

tional monetary policy innovation affects economic activity and inflation through

a compression in the yield spread even in the normal time before the liquidity trap.

Therefore, the economic consequences of the unconventional monetary policy for

the sub-sample period prior to crisis is still robust. Indeed, the unconventional

monetary policy does not induce a hump shape of output growth and an upward

trend of inflation as we previously got from the whole sample. However, output

growth and inflation immediately jump in the first instance and gradually reduce

over the period of 40 months. There is no time lag for yield slope to reshape the

yield curve that has become inverted as compared to the whole sample exercise.
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Figure 5.10: Median IRFs (green line) of a one-standard deviation shock to
a negative unconventional monetary policy shock for the period over 2003-2008

together with 16th and 84th percentiles for the U.S. for selected months

5.7.2.2 Period after the unconventional monetary policy implementa-

tion

After the eruption of the global financial crisis, the Federal Reserve introduced

quantitative easing measures to substitute for the ineffective interest rate mea-

sure. We therefore investigate the results for the sub-sample period after the

non-standard policy is implemented for over 60 months (September 2008 to Au-

gust 2013).

The impulse response propagations for the period after conducting unconventional

monetary policy are similar to those results prior to the implementation. The

main results are also robust and consistent with the responses for the whole sam-

ple period. We find an immediately sharp decrease in the yield slope after the

quantitative easing is introduced. This evidence indicates that the time lag in

changing the yield curve shape for the whole sample exercise, in fact relates to

the term structure adjustment under the different regimes. Nonetheless, the sub-

sample exercise still confirms that unconventional monetary policy works through

a compression in yield slope to stimulate the economy and avert deflation.
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Figure 5.11: Median IRFs (green line) of a one-standard deviation shock to
a negative unconventional monetary policy shock for the period over 2008-2013

together with 16th and 84th percentiles for the U.S. for selected months

5.7.3 Alternative measures of the monetary policy instru-

ment

In this subsection, we discuss the robustness of the results for alternative mea-

sures of the monetary policy instrument. Rather than using the central bank

balance sheet, we now use the monetary base and commercial bank credit as

monetary policy measures for the shock in unconventional monetary policy. For

previous non-standard monetary policy during the zero-lower bound interest rate,

Schenkelberg and Watzka (2013) used the monetary base while Peersman (2011)

employed the commercial bank credit as monetary policy instruments.

5.7.3.1 Monetary base

The large increase in the central bank balance sheet due to the unconventional

monetary policy generates a large amount of central bank reserves as well as cur-

rency. For our analysis, we also restrict the effect from unconventional monetary

policy shocks via the monetary base to be orthogonal to the policy interest rate.
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Figure 5.12: Median IRFs (green line) of a one-standard deviation shock
to a negative unconventional monetary policy shock (using monetary base as
monetary policy instrument) together with 16th and 84th percentiles for the

U.S. for selected months

As can be seen from the impulse responses in Figure ??, an increase in the mone-

tary base provides results that are similar to the responses generated by a central

bank balance sheet innovation. The non-standard monetary policy shock through

the monetary base effectively increases output growth and inflation. By extending

the size of central bank’s assets, the monetary authority is able to increase the

monetary base, which typically results in a much larger increase in credit supply

and eventually aggregate demand. In line with Schenkelberg and Watzka (2013),

we find the unconventional monetary policy generates a hump shape impact on

output growth and a permanently positive impact on inflation.

5.7.3.2 Commercial bank credit

According to the unconventional monetary policy, the large scale increase in the

central bank balance sheet through the purchase in long term bond and securi-

ties also provides more liquidity to commercial banks thus creating more credit

supply. By doing so, the composition of central bank liabilities will increase. We,

therefore, investigate an exogenous shock in the volume of commercial bank credit

as a monetary policy instrument. Similar to the analysis on monetary base, we
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assume the economic impact from the unconventional monetary policy innovation

through commercial bank credit to the policy interest rate is still orthogonal.

Figure 5.13: Median IRFs (green line) of a one-standard deviation shock to a
negative unconventional monetary policy shock (using commercial bank credit
as monetary policy instrument) together with 16th and 84th percentiles for the

U.S. for selected months

Figure 5.13 displays the impulse response functions for the unconventional policy

monetary innovation via the increase in commercial bank credit. We still ob-

serve positive impacts on output growth and inflation which are similar to the

benchmark impulse responses with the central bank’s balance sheet shock. The

non-standard monetary policy, which is here aiming to increase commercial bank

credit, effectively stimulates economic activity. Actually, the increase in central

balance sheet creates more credit supply and lessens the bank lending rates. As

we can see, the yield slope decline, implying the long-term rate and lending rate

fall after the shock. This evidence is also consistent with Peersman (2011) who

examined the economic effects of unconventional monetary policy using commer-

cial bank credit as the monetary policy instrument.

In summary, the results of our robustness check with alternative monetary policy

instruments do not change our main conclusion that quantitative easing measures

effectively increase production and raise inflation. In addition, the yield slope is

compressed after the unconventional monetary policy innovation, confirming the
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effect on the long-term yield is robust for any monetary policy instrument. The

increase in commercial bank credit is found to impact yield spread and signifi-

cantly affects output and inflation. Therefore, a closer inspection of transmission

mechanism implies the unconventional expansion of the size of the central balance

sheet in fact increases the monetary base, drives up commercial bank credit sup-

ply, reduces the bank lending rate and ultimately stimulates economic activity.

5.7.4 Additional variables for the asset market reaction

Quantitative easing aims to lower long-term yields and compress the yield slope

by directly purchasing long-term financial assets. The liquidity influx to finan-

cial markets also restores confidence to make markets function again. In order

to have a better understanding about the transmission mechanism, we hence ex-

amine the robustness of the unconventional policy monetary by incorporating the

stock volatility index and stock market index in our structural vector autoregres-

sive model. We use the implied stock market volatility index (VIX) from Chicago

Board Options Exchange to capture market sentiment uncertainly. We also use

the NASDAQ 100 stock index to investigate the effect of the quantitative easing

on financial asset prices.

5.7.4.1 Volatility index

The implied stock market volatility index (VIX) is a proxy for perception about

financial market risk. The inclusion of the volatility index takes into account the

reaction of financial markets to the large scale purchase in financial assets under

unconventional monetary policy. The expansion of the central bank balance sheet

could potentially reduce financial market instability and contribute to economic

recovery. The recent unconventional monetary policy study by Gambacorta et al.

(2014) examined the consequence of an increase in the central bank asset on stock

market volatility by restricting a negative effect on the volatility index. However,

their model did not include the policy interest rate. They also ignored the trans-

mission mechanism on the yield slope. Unlike their study, we orthogonalize the

impact of the policy interest rate to investigate the pure effect of quantitative
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easing and unrestrict the contemporaneous effect on the yield slope, except the

volatility index is still kept negatively restricted. This identification scheme allow

us to be agnostic about the transmission mechanism of the central bank balance

sheet shock on yield spread compression by taking into account financial market

sentiment. We expect the unconventional monetary policy shock by purchasing

financial assets, especially long-term bond and securities, could induce economic

expansion through a lower long-term yield and also enhance financial liquidity to

mitigate concerns about economic instability.

Figure 5.14: Median IRFs (green line) of a one-standard deviation shock to
a negative unconventional monetary policy shock (incorporating the volatility
index into baseline model) together with 16th and 84th percentiles for the U.S.

for selected months

As in Figure 5.14, out results remain robust with unconventional monetary policy

implemented by the massive expansion of central bank asset effectively stimulating

the real economy and driving up inflation. The impulse response results also reveal

that the unconventional monetary policy innovations significantly reduce financial

market risk by enhancing the confidence in economic recovery. Afterward, long

term yields decrease and compress the yield spread. The significant impact on fi-

nancial market sentiment therefore reflects the influence of a purchase of financial

asset to reduce the risk premium and lower long term yields. Gambacorta et al.

(2014) also found the extension of central bank balance sheet significantly affects

the volatility index so that it mitigates economic uncertainty and accommodates

effective non-standard monetary policy. Our findings shed light the reason why
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unconventional monetary policy produces a lagged effect on the yield slope and eco-

nomic activity. In fact, the quantitative easing shock initially restores confidence

and then reduces the long term yield due to a lower risk premium. Consequently, a

compressed yield spread gradually boosts the economy with a persistent inflation.

Hence, the effectiveness of unconventional monetary policy is actually explained

by the transmission mechanism through lower risk premium and a compression in

the yield spread.

5.7.4.2 Stock index

The large scale purchase of long term bonds and securities could lead higher asset

prices. Higher stock prices will not just only induce more consumption from the

wealth effect, but also will improve the liquidity of the firm to boost investment.

Kapetanios et al. (2012) investigated the effect of a change in the monetary base

from unconventional monetary policy on economic activity, the price level, policy

interest rate and stock index through the yield spread. We follow this study to

restrict a zero contemporaneous effect on the policy interest rate and allow an

unrestricted condition on the yield spread. Nonetheless, we choose the central

bank balance sheet as the monetary policy instrument instead of the monetary

base which has limitations to reflect the actual transmission mechanism. We also

relax the restriction on the stock index to examine the effect on the stock market

from the data.

From Figure 5.15 the impulse response plots confirm similar findings that the

expansion of central bank balance sheet effectively increases output growth and

inflation. These results are also consistent with Kapetanios et al. (2012) who sug-

gest quantitative easing through a compression in the yield spread is effective to

stimulate the economy. While their study also reported that the unconventional

monetary policy shock raises the stock index, they did not explain the transmis-

sion mechanism through the stock index. In our study, we find a gradual increase

in the growth rate of stock index to reach the peak within one year after the shock,

given no restriction imposed on stock index. After an unconventional monetary

policy shock, the long term yield immediately decreases. This evidence indicates

the purchase of long term bonds and securities does not drive financial asset prices
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Figure 5.15: Median IRFs (green line) of a one-standard deviation shock to
a negative unconventional monetary policy shock (incorporating the NASDAQ
100 stock index into baseline model) together with 16th and 84th percentiles

for the U.S. for selected months

in the first place. In fact, the immediate decline in long term yield can be explained

by the lower risk as mentioned earlier.

The inclusion of the volatility index and the stock index reveals the unconventional

monetary policy transmission mechanism basically works through yield spread

compression from lower risk premia. The extension of the central bank balance

sheet initially enhances confidence in financial markets and consequently reduces

the long term yield. Economic agents then anticipate lower real interest rates as

well as higher expected inflation. Eventually, aggregate demand starts to increase

and return to a normal growth path.

5.8 Conclusion

In this paper, we examine the transmission mechanism and the effectiveness of

unconventional monetary policy implementation by the US Federal Reserve un-

der its quantitative easing scheme after the global financial crisis in comparison

with conventional monetary policy. We use a Bayesian structural VAR (B-SVAR)
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with sign restrictions technique to investigate macroeconomic impacts of the four

different identifications: the unconventional monetary policy shock through the

extension of the Federal Reserve’s assets that then lessens the long-term yield and

compresses the yield spread; the conventional monetary policy shock by lower-

ing the fed funds rate; as well as typical aggregate demand and aggregate supply

shocks during the period of January 2003 to August 2013. To explore macroeco-

nomic impacts of the quantitative easing measures, we identify the unconventional

monetary policy shock as an innovation in Federal Reserve’s assets in which the

fed funds rate is constrained by the zero lower bound, while the yield slope is left

unrestricted for an agnostic transmission mechanism.

Overall, we find the exogenous increase in the Federal Reserve’s balance sheet

at the zero lower bound interest rate effectively stimulates output growth and

persistently averts deflation at the expense of a dramatic surge in the Federal Re-

serve’s assets, even though the adjustment of the yield curve may take time to

become inverted. This non-standard monetary policy can be used effectively as

an alternative measure for expansionary monetary policy when the standard way

is ineffective due to the fact that both approaches eventually lead to economic

growth associated with higher inflation. Nonetheless, the unconventional mone-

tary policy will quantitatively create less output growth relative to conventional

monetary policy, given the same extension in Federal Reserve’s assets. In other

words, the central bank requires much larger assets to drive the economy when the

objective is reducing the long-term yield to conduct a heterodox monetary policy.

However, we find unconventional monetary policy is more effective to raise infla-

tion, in contrast to other results that show a failure to avert deflation in Japan,

such as in Schenkelberg and Watzka (2013).

In particular, the Federal Reserve is alternatively able to raise the size of its bal-

ance sheet as a monetary policy instrument to induce output growth and inflation

through a compression in the yield spread channel when standard monetary policy

is ineffective. The large scale purchase in long-term bonds lessens the long term

yield since it provides liquidity for private equity investment through portfolio

rebalancing and therefore restores market confidence accompanied by mitigating

risk premia. In addition, the transmission mechanism via lower long-term yields

also implies market anticipation on the continuing zero lower bound interest rate
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and higher expected inflation. Hence, the quantitative easing measures signal to

economic agents to resume their spending, which eventually stimulates the econ-

omy and averts deflation. We also check the sensitivity of our results to different

measures of monetary policy instruments: monetary base and commercial bank

credit. The results do not change the conclusion that unconventional monetary

policy effectively raises output growth and inflation. This analysis also reveals

quantitative easing indeed increases the monetary base and drives up commercial

bank credit supply and reduces the lending rate to stimulate aggregate demand.

We further estimate specifications that include a volatility index and a stock index

to examine the transmission mechanism through asset markets. Our results are

robust to this alteration and confirm the role of the yield spread as a channel to

affect economic activity through lower risk premia and gains from higher equity

prices.

We also further check the robustness of the results for different sub-samples and

find our results are insensitive to the change in sample period. In fact, the Fed-

eral Reserve officially began to conduct unconventional monetary policy though a

large increase in its asset after the onset of the global financial crisis in 2008. In

order to investigate whether the unconventional monetary policy is still effective

regardless of any structural breaks in central bank assets, we additionally estimate

our unconventional monetary policy specification for the shorter period prior to

the implementation of this policy (January 2003 to July 2008) and compare it

to the period after the implementation (September 2008 to August 2013). We

find the unconventional monetary policy significantly affect output growth and

inflation even such a policy is not yet implemented. Indeed, the effectiveness of

the non-standard monetary policy in more favorable since the growth rate of in-

dustrial production index and inflation significantly increase without time lags,

despite Schenkelberg and Watzka (2013) finding this policy ineffective for Japan.

Based on these results, we can support unconventional monetary policy as an

accommodating monetary policy option for the monetary authority at the zero

lower bound interest rate. It could potentially counter financial risk and restore

market confidence to boost aggregate demand. The quantitative easing scheme is

also tailored to avert deflation during the liquidity trap. However, this stimulus



Chapter 5. The Economic Impact of Quantitative Easing on the U.S. Economy:
A Bayesian Structural VAR (B-SVAR) with Sign Restrictions Analysis 244

measure requires a massive extension of the central bank’s balance sheet.

Our analysis also needs further development to cover some caveats. The transmis-

sion mechanism involves portfolio rebalancing and needs to better confront imper-

fect asset substitution. To capture market frictions, a dynamic stochastic general

equilibrium (DSGE) framework can be applied to explain the macroeconomic ef-

fects of quantitative easing with micro foundations. It is also worth accounting for

changes in economic structure due to the financial crisis by using a time-varying

parameter specification that allows us to trace the effects of unconventional mone-

tary policy in its effort to stimulate the economy. Another question that could be

asked concerns the relative effectiveness of unconventional and conventional mon-

etary policy when the central bank is in a contractionary phase of monetary policy.



Chapter 6

Conclusion

This thesis presents four papers to examine different aspects of term structure

estimation and forecasting. The main objective of this thesis is to propose an

improvement in the area of term structure modeling and forecasting. In Chapter

2, I introduce a macro-finance-fiscal term structure model to explore the impact of

fiscal instability on term structure. Besides, I use a Sheen-Trueck-Wang business

conditions index as a new strategy to incorporate a forward looking information

to estimate yield curve in Chapter 4. This thesis also aims to provide a com-

prehensive investigation in comparing the relative forecasting accuracy of the dy-

namic semiparametric factor model, the dynamic Nelson-Siegel model and other

competitors. Since the period of study cover the global financial crisis and the

zero-lower-bound interest rate, I further test whether unstable economic environ-

ment affects the forecasting performance of the underlying models as mentioned

in Chapter 3. Another area of my study is to use the information content of the

yield curve and analysis their linkage with macroeconomic variables. In Chapter

5, I analyze the impact of a large scale increase in central bank’s balance sheet and

macroeconomic variables to reveal the transmission mechanism of unconventional

monetary policy through yield slope information. This investigation gives a policy

recommendation for unconventional monetary policy implementation.

With respect to the methodological contributions, this thesis aims to promote in-

novative techniques in econometrics. For the dynamic macro-finance-fiscal term

structure model in Chapter 2, I use the Kalman filter to extract yield latent factors

and simultaneously solve for parameters by using maximun likelihood estimation,
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hence improving model efficiency. To provide better understanding on unsolved

puzzle whether parametric and nonparametric term structure models become less

accurate in comparison to the random walk, I propose to use Giacomini and Rossi

(2010) fluctuation test in Chapter 3 to evaluate potential instabilities from dra-

matic interest rate lowering may affect the forecast performance. In chapters 4, I

investigate the effectiveness of unconventional monetary policy based on a modern

Bayesian structural vector autoregressive (B-SVAR) model with sign-restrictions.

My identification approach is imposed on policy interest rate to be orthogonal

with a change in central bank balance sheet. It provide a better interpretation of

structural shocks and allows me to be agnostic about how macroeconomic activi-

ties respond to quantitative easing.

The first paper entitled “Spanish Sovereign Term Structure: Implications of the

Sovereign Debt Crisis” is presented in Chapter 2, I propose a macro-finance-fiscal

term structure model as a tool to examine the effect of fiscal instability on yield

spread.

My empirical results indicate that yield spread significantly responds to fiscal in-

discipline. In particular, a deterioration in net government budget position imme-

diately generated a significant widening of the yield spread. This result may reflect

the fact market reaction to fiscal loosening by demanding a higher risk premium

due to higher sovereign defalut risk. Even the reaction from a rise in public debt

is more lagging than those generated by a worsening government budget position,

I observe the evidence that both fiscal instability variables significantly effect the

growth in output. A fiscal indiscipline and high public debt destroy creditworthi-

ness. Consequently, yield spread is raised in the presence of fiscal mismanagement.

A relevant policy implication is that fiscal stimulus package might adverse effect

once market participants penalize for the worsening government budget position

and public debt. The scepticism about fiscal instability downplays the effective-

ness of expansionary fiscal policy in stimulating aggregate demand. Under this

perpective, fiscal discipline would be considered as a necessary condition for fiscal

policy to be successfully implemented.
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In the second paper entitled “Term Structure Forecasting - A Comparison be-

tween the Dynamic Semiparametric Factor Model and the Dynamic Nelson-Siegel

Model” as presented in Chapter 3, I compare the in-sample fit and out-of-sample

forecasting performance of the dynamic semiparametric factor model, the dynamic

Nelson-Sielgel model with other competitors.

The results show that the dynamic semiparametric factor model outperforms the

dynamic Nelson-Siegel model in providing better in-sample fit. With an AR(1)

specification, the dynamic semiparametric factor model also statistically produces

superior forecasting results than the random walk and the dynamic Nelson-Siegel

for 6-month maturity at a 1-month and 3-month ahead horizon. Even though,

the random walk turns to overcome other models in predicting the yield curve at

longer maturities and horizons over the period from 2006 to 2013.

The comparisons of forecast accuracy are also assessed over three distinct sub-

periods that reveal relative performance has changed over time. Indeed, the dy-

namic Nelson-Siegel model is a more preferable in forecasting for more volatile

periods from 2003 to 2006 and 2006 to 2008. By contrast, the dynamic semi-

parametric factor model has a superior forecasting performance over the period of

persistent downward trend following the global financial crisis in 2009. The results

from Giacomini and Rossi (2010) fluctuation test also suggest that the evidence of

predictability differs across individual predictive models. In particular, forecasts

become less accurate when the long-term yields fell while the short-term yields hit

the zero-lower bound.

The third paper entitled “Term Structure Forecasting with a Business Condition

Index” is presented in Chapter 4. In this paper, I examine the role of forward

looking information to estimate and forecast the term structure.

This paper proposes to use the Sheen-Trueck-Wang business conditions index in

providing an informational advantage about the current state of economy and

forward-looking information. I find the evidence that the inclusion of the business

conditions index in a term structure model provides guidance to anchor the yield

in the next period. I also find that the business conditions index helps to improve
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forecasting accuracy of the dynamic semiparametric factor model for medium and

long-term maturity at one-month step ahead. The prediction performance can

further be improved with a more recent available or a more frequently released

index. The business conditions index is not only useful in improving the nowcasts

when the new information becomes available, it is also able to provide more accu-

rate forecast of the term structure.

The last paper entitled “The Economic Impact of Quantitative Easing on the US

Economy: A Structural VAR with Sign Restriction Analysis” is presented in Chap-

ter 5. In this paper, I employ a Bayesian structural vector autoregressive (SVAR)

model with sign restrictions to analyzes the economic impact of unconventional

monetary policy.

This paper investigates the effectiveness of unconventional monetary policy adopted

by the Federal Reserve. The macroeconomic effects are assessed by estimating the

effects of exogenous innovations to balance sheet that compresses slope of the yield

curve and eventually stimulate output and inflation. The main finding of this study

suggests that unconventional monetary policy measures are actively used to avert

a recession in the absence of conventional monetary policy. A large scale purchase

of Federal Reserve’s asset significantly reduces yield slope and boosts economic

activities.

In fact, it is more effective to use unconventional monetary policy to raise price and

avoid deflationary pressures despite the fact that the non-standard monetary policy

relatively generates less output growth as compared with conventional monetary

policy. Based on these results, unconventional monetary policy provides additonal

monetary policy measures in response to financial crisis. The policy implication

of these findings is that the unconventional monetary policy can be used as a

complementary measure when the conventional monetary policy actions become

ineffective. The central bank might need a larger assets to reduce long-term yields.
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