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Abstract

In this work we analyse various aspects of the common envelope (CE) interaction between two

stars via numerical simulations.

The common envelope (CE) interaction is a short phase of the interaction between two stars (a

primary and a companion) in a binary system characterised by the dense cores of the two objects

orbiting inside their merged envelopes. During this phase, orbital energy and angular momentum

are transferred to the gas of the envelope, that can become unbound from the potential well of

the system, leaving behind a close binary. Unfortunately, due to its short duration, the CE phase

is not readily observed (only one case has been observed until now) and numerical simulations

are a major way to investigate its physics. However, to this time, numerical studies have failed to

fully reproduce the observed post-CE parameters, that is, close binaries with separations generally

shorter than ≃ 5 R⊙ and where all the envelope has been expelled, yielding instead rather large

final separations and never expelling the whole envelope.

Since the CE interaction has been analysed in multiple works, but without explicitly taking in

consideration the effect of the single physical parameters, in this PhD we tried to do so.

One of the main topics we investigated during this PhD work has been the effect of large initial

binary separations on the CE interaction. We performed a simulation with the binary components

initially placed at the maximum possible distance that would guarantee the system to end in a CE.

The main outcomes of this work show that a larger initial separation does not dramatically affect

the CE interaction. The final separations obtained in this way are slightly larger with respect to

an identical system where only the separation is reduced in such a way that the CE begins at the

beginning of the simulation. The amount of mass unbound from the potential well of the binary is
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x ABSTRACT

also slightly larger.

Another important part of this work has been the study of the effects of rotation on the CE

interaction. To achieve this goal we spun up the original star we used for the study on larger sepa-

rations, after investigating the possibility and reliability to create a more accurate stellar model.The

results of this investigation show that initial rotation of the primary star has negligible effects on

the outputs of the CE interaction.

The third effect we worked on is the variation of the final separation and unbound mass in

function of the mass of the primary. We therefore performed a set of simulations with a more

massive primary star and set of companions with different masses. This simple study showed that

for the same companion’s mass a more massive primary generates a closer binary at the end of the

CE interaction, in the range of observations, yielding however less unbound mass.

Additionally, during the work we encountered a numerical problem with ENZO, which showed

poor conservation of energy in our simulations. We therefore had to devote part of this PhD work

to investigate the issue and find a solution for it.
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1
Introduction

To contextualise the work made in this thesis it is important to introduce basic literature and con-

cepts involving the evolution of single and binary stars, followed by a more detailed description

of the main phenomenon that will be studied throughout this thesis: the common envelope binary

interaction.

1.1 Stellar evolution

Stars form out of clouds of interstellar matter. Some of these clouds can collapse and form a proto-

star, that is basically a dense clump of gas contracting on a thermal time-scale. The molecular

hydrogen making up the original cloud gas dissociates and ionises as the temperature rises. Even-

tually nuclear fusion is triggered (at ∼ 107 K, this condition can be fulfilled only for proto-stars

with mass & 0.08 M⊙).
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2 INTRODUCTION

When a star begins its life, it is said to enter an evolutionary phase called main sequence (MS).

During the MS the luminosity of the star is produced by hydrogen nuclear burning in the core,

while the rest of the star is basically inactive and radiatively or convectively expelling the energy

produced. Hydrogen burning produces as an output helium, which starts accumulating in the core

but is not yet burning due to the low temperatures. The core may be either convective or radiative

depending on the mass of the star.

When central hydrogen burning stops, the star has a helium core surrounded by a hydrogen-

rich envelope burning at the base. The hydrogen burning shell temperature increases due to the

heating created by the contraction of the inert stellar core and the star expands and, eventually,

grows in luminosity. We call these first-time giants, or red giant branch (RGB) stars. In this phase,

due to the increased radius and luminosity the star is very prone to lose mass via stellar winds.

Eventually core contraction triggers core helium burning and the star leaves the RGB phase. It

is during the RGB phase that the star has its first opportunity to interact with a nearby stellar or

planetary companion.

Helium burning in the core terminates when the material is processed principally into carbon

and oxygen and, similarly to what happened before when hydrogen stopped burning in the core,

helium continues to be burned in a shell surrounding the exhausted core. Now the star has two shell

sources: the more internal helium shell and the hydrogen burning shell above it. While the helium

shell burns outwards the CO core increases in mass and contracts. At the same time hydrogen

burning dumps helium on the shell, which eventually ignites (quite violently in an event called a

helium shell flash).

During helium and hydrogen shell burning the star grows in radius and luminosity for the

second time, in a phase called the asymptotic giant branch (AGB). Similarly to what happens

during the RGB phase, because of the large radius and intense luminosity, the star tends to lose

mass via stellar winds. During the last phases of the AGB the mass-loss rate intensifies until all

but 10−2 − 10−3 M⊙ of envelope material is left, at which point the remaining envelope contracts

and the stellar effective temperature is seen to increase. The material expelled by the winds can be

heated and ionised by the radiation from the central object; as a result of this ionisation the shell

of gas emits and can be observed as a planetary nebula (PN). Eventually the nuclear shell sources

run low on fuel and are quenched. The core is now a white dwarf (WD).
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For the more massive stars (mass greater than 8 M⊙) nuclear burning of the carbon in the core

can take place. At increasing stellar mass, heavier elements can be synthesised and burned (in

the order: oxygen, neon, magnesium, silicon, sulphur, iron and nickel), forming as a consequence

a more complex onion-like structure. After these subsequent burning phases massive stars end

their life exploding as core-collapse supernovae, ejecting their entire envelope and leaving behind

a neutron star or black hole remnant. WDs are supported by the pressure of highly degenerated

electrons and have radii and densities of the order of, respectively, ≃ 10−2 R⊙ and 106 g cm−3.

Neutron stars are instead supported by the pressure of partially degenerate neutrons and have radii

and densities of the order of ≃ 10−5 R⊙ (10 km) and 1014 g cm−3, respectively.

For a more detailed description of the various stages of the stellar evolution, we refer the reader

to Kippenhahn et al. (2012).

1.2 Binary interactions

A non-negligible percentage of the stars in the universe are known to be part of multiple systems,

mostly binaries. As a result of these statistics many classes of objects and types of physical phe-

nomena are known to originate from binary stars or are hypothesized to be so. Additionally, stars

must also often interact with their planets, since it is known that planets are often present around

main sequence stars. The discovery of planets close to evolved stars plausibly indicates that some

kind of interaction has taken place.

The binary fraction, that is the percentage of binary systems among the total number of systems,

where a system is intended as a single star or a multiple star system, changes as a function of the

mass of the primary (. 0.1 M⊙= very low mass, ≃ 0.1− 0.5 M⊙ = low mass, ≃ 0.7− 1.3 M⊙ =

solar type, ≃ 1.5−5 M⊙ = intermediate mass, > 8 M⊙ = massive; Duchêne & Kraus 2013). More

massive stars are more prone to having a companion, showing a binary fraction > 60%. Instead

intermediate mass, solar type and low / very low mass stars have binary fractions respectively

> 50%, 41% and 22%. The binary fractions seem to be independent of whether the stars are in

clusters or in the field. Together with the binary fraction, the period, the ellipticity and the mass

ratio distribution determine the frequency and intensity of the binary interactions that can take

place, driving the evolution of systems. The mass ratio distribution is approximately flat for solar
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type primaries in wide orbits, while in close binaries similar mass components are somewhat more

probable. Intermediate mass and massive stars seem instead more likely to exist in non-equal mass

systems for both wide and close binaries. There is, however, a great deal of uncertainty in the

observations (Duchêne & Kraus 2013).

Most of the binary systems have large separations and the components are not likely to have a

substantial impact on each other. However, if the stars are close enough, i.e., with orbital separa-

tions of at most a few stellar radii of the larger star, the components can directly interact exchanging

matter in different ways. Common mechanisms mass transfer via Roche-lobe overflow and wind

mass transfer. In this work we will focus on the former. When the components of a binary sys-

tem are close enough they tidally deform and spin-orbit interaction circularises the orbits. If this

configuration remains stable the system is defined as a detached binary. However, at some point,

instabilities, such as the Darwin instability (Darwin 1879), may develop. Darwin instability takes

place when one of the components of a stable binary system grows in size because of stellar evo-

lution. The components of a stable binary system orbit in co-rotation, that is, the orbital frequency

and the spin frequencies of the stars around their own axes are the same. This yields the lowest

energy configuration for the binary. When one of the stars increases in size it spins down, due

to conservation of angular momentum, as a result the orbit tries to reach a new minimum energy

configuration where the system is stable by giving angular momentum to the star. This spins the

star up, slows the orbit down and reduces the orbital separation, re-establishing co-rotation. How-

ever, there is a threshold (Darwin instability) over which the orbit cannot give enough angular

momentum to the star to re-establish co-rotation, roughly when the spin angular momentum of the

star is greater than one third of the orbital angular momentum, keeping the orbit from becoming

stable again and pulling the stellar components closer. This generates a new tidal phase that brings

the components close enough that mass transfer can take place. Mass transfer is a complicated

process that involves a lot of physical mechanisms, but is basically driven by the combined ef-

fective potential field of the two stars, where “effective” means that all the fictitious forces, such

as the centrifugal force, are included in the potential. The combined potential of the two objects

forms a field of equipotential surfaces around them with special points of equilibrium called La-

grangian points (Figure 1.1). If one of the stars fills the equipotential surface corresponding to

the Lagrangian point L1, part of the envelope material can escape through the very same point to
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FIGURE 1.1: General schematic of equipotential surfaces and Lagrangian points L1−5 around stars 1 and 2 with

masses m1 and m2, respectively. If we suppose that Star 2 is the accreting component filling its Roche lobe, L2 and L3

are respectively the outer Lagrangian point on the secondary and primary side. Image from Benacquista & Downing

(2013).

be drawn towards the companion star. This mass transfer can begin for example if the primary

expands beyond the above-mentioned equipotential surface or if the orbital size is decreased by

tides. When mass transfer is ongoing through L1 the system is defined a semi-detached binary.

Due to the orbital motion, mass does not accrete directly onto the companion, but generates an

accretion disk around the companion. In some cases, for example in the case of mass transfer with

a small mass ratio, both stars can fill the L1 equipotential surface. The two stars share in this case

a common atmosphere which fills the equipotential surface going through L2, and are defined a

contact binary.

From the moment when mass transfer begins the type of behaviour we can expect depends sen-

sitively on the interplay of a large number of stellar and orbital parameters. Mass transfer can be

conservative (no loss of angular momentum from the system) or non-conservative, stable or catas-

trophic. Binaries can have one or more episodes of mass transfer as the stars in the systems change

as they evolve or as a result of the interaction itself. It goes without saying that the phenomenology

is complex and extremely difficult to interpret. There is no need to list the details of each process,

but it is interesting to describe some common classes of objects, observed or theorised, that are a

by-product of a binary interaction (see Carroll & Ostlie 2006 and references therein for additional
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details):

1. Algols: main sequence or sub-giant stars simply undergoing mass transfer. Semi-detached

binary systems where the originally more massive star has transferred enough mass to its

companion to invert the mass ratio.

2. Cataclysmic variables and nova-like binaries: in these systems the components are very close

and always involve a white dwarf and usually a main sequence star filling the Roche lobe

(semi-detached binary). Examples are dwarf novae and classical novae, binaries that release

energy in a very powerful event related to the accretion onto the white dwarf. The peculiarity

of these binaries is that the binary survives the release of energy and the outburst event can

happen again. On the other hand Type Ia supernovae exhibit a more energetic outburst, again

based on accretion onto a white dwarf that increases its mass above the Chandrasekhar limit,

leading to a thermonuclear runaway that destroys the binary.

3. X-ray binaries with neutron star and black hole components: systems characterised by a

bright emission of X-rays and comprising, in general, a neutron star or, in a smaller num-

ber of cases, a black hole. These objects are powered by accretion from a non-degenerate

companion.

4. Symbiotic binaries: relatively long period interacting binaries, composed of a giant primary

and a white dwarf. The giant’s stellar wind accretes onto the compact companion. Occa-

sionally the giant can be filling its Roche lobe.

5. Barium and S-star binaries: here there is no ongoing binary interaction. They are long

period binaries composed of a giant companion and a white dwarf primary with an observed

abundance rich in elements that the giant cannot have manufactured itself. It is widely

believed that the white dwarf donated those elements to the giant by an interaction some

time in the past.

6. Post-common-envelope objects: of particular interest since specifically related to the topic

of this thesis, they include a wide number of binary types. The majority of the systems

described in the previous points may also be included in this category, since CE could, in
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certain cases, be a part of their evolution. However, we will highlight here those binaries for

which CE is the last step of evolution prior to their current state. These objects are in most

part short period binaries composed of a hot dwarf or sub-dwarf and a main sequence star or

other compact objects. Presumably the former was originally a giant or sub-giant stripped

of its envelope as a result of a CE interaction. Planetary nebulae with a close binary in their

centre likely derive from CE interactions. Mergers are another aspect of this category; some

CE events could lead to close binaries that then dissipated the remaining orbital energy via

gravitational waves and ended up forming a single star. Some mergers could happen inside

the CE (Tylenda et al. 2011)

1.3 The common envelope interaction

To understand the evolution of stellar binary systems it is essential to analyse the interactions

between their stellar components. Such interactions include physical phenomena such as spin-

orbit tidal interactions or mass transfer. All of these processes can act together to give rise to

complex binary interaction phenomena such as outflows and outbursts, for example in novae and

some supernovae. In this thesis we study one of these possible binary interactions, known as the

common envelope (CE) interaction. It occurs when two stars in a close binary spiral-in towards

each other within a single extended atmosphere, or envelope, after one of the two expands.

Since it has been first hypothesized by Paczynski (1976), its general features have been ap-

proximately understood. However, it is the details of the physics behind the CE interaction that

dictate the terms of the engagement and what type of binary is forged by this process. Current CE

models cannot explain the observations of post-CE binaries. For a comprehensive review of the CE

interaction we point the reader to the following reviews: Iben & Livio (1993), Taam & Sandquist

(2000), Webbink (2008), Taam & Ricker (2010) and Ivanova et al. (2013).

1.3.1 The hypothesis of the common envelope phase

The idea of the CE interaction dates back to the 1970s, when the discovery of the binary object

V471 Tau in the Hyades cluster was identified as a possible cataclysmic binary system. Because
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of its relative proximity to us, it was relatively easy to measure its parameters with good precision.

From these parameters it was determined that this binary must have gone through a CE phase.

Cataclysmic binary systems such as novae and dwarf novae were known to be short period bi-

naries consisting of a WD primary and a main sequence companion donating mass to the primary

via an accretion disk. From stellar evolution theory the expectation for the masses of the compo-

nents is around 1 M⊙ for both the stars, and that the WD star was originally grown as the core of a

red giant or super-giant star. The red giant would have been larger than today’s orbital separation,

implying that the companion must have been inside the giant in the past. That means that the two

stars must have gone through a CE phase.

When the giant progenitor of the WD expanded and filled its Roche lobe, a contact system

was formed, and soon thereafter the common surface of contact could expand beyond the outer

Lagrangian points (see Figure 1.1) without being lost immediately. This can be analytically shown

if the envelope is not solid-body rotating (and there is no obvious reason for the envelope of a

binary system to rotate as a rigid body), hence theory suggests that a binary of this type could be a

reasonably long-lived object. The transition between a contact binary and a CE binary is defined

as the points at which the common surface expands beyond the outer Lagrangian points. With

the components of the binary orbiting within the CE (these components are the degenerate core of

the giant and the companion star), there will be a gravitational drag force on the stars, that makes

them lose orbital energy and in-spiral towards one another. With this basic physical understanding,

Paczynski (1976) proposed that:

τD
Porb

∼
M

a3ρCE

, (1.1)

where τD is the time-scale on which the drag force makes the binary spiral-in, Porb is the orbital

period, M = m1 + m2 is the total mass of the system, a is the orbital separation and ρCE is

the average density of the CE. This gives a criterion to estimate the spiral-in time as a function

of the ratio between the average density of the matter within the separation a, given by ρa ∼

M/a3, and ρCE. Equation 1.1 is useful to estimate the time-scale of a CE interaction provided

observational data of a system are available. In addition, various important considerations were

made by Paczynski (1976):

• Through the drag force, the orbital energy and the angular momentum of the binary system
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are passed to the CE gas, respectively heating it and spinning it up.

• As the in-spiral goes on, it will become more difficult to transfer energy from the orbit to

the CE. Intuitively, the relative velocity of the components with respect to the surrounding

matter will decrease, because the envelope material will be close to co-rotation, decreasing

in turn the drag force.

• Although the in-spiral slows down (see previous point), it could inject enough energy in the

CE to eject it and leave the binary system as we observe it now, while the ejected matter, if

ionized by the heat of the degenerate star, could be observed as a planetary nebula.

Finally, it is worth noting that the estimation of τD for the system considered in that (V471 Tau)

paper was τD ≃ 103Porb, and since Porb ≃ 12 hours = 0.5 days, we get a in-spiral time-scale of

τD ≃ 500 days ≃ 1.4 years. This time is of the same order of magnitude of the dynamical times of

giants (months to years).

With these considerations, Paczynski (1976) laid the foundations of the CE interaction, but

left many details unresolved. Unfortunately, without a detailed description we cannot even start to

make predictions of what type of binary systems emerge from CE interactions.

1.3.2 The importance of studying common envelope evolution

The CE interaction is the gateway to the formation of a rich set of astronomical objects, such as

cataclysmic variables, gamma ray bursts and Type Ia supernova progenitors.

Once a CE phase begins, the ejection of the envelope is probably not inevitable. In general,

we expect that if the envelope is ejected a close binary emerges from the interaction. However, if

the CE is not ejected the most likely fate for the central stars is a merger. Today there is still no

quantitative understanding of what leads to one or the other outcome.

Various astrophysical objects have gone through one or more CE phases as introduced in Sec-

tion 1.2 (see Ivanova et al. 2013 and references therein):

• High-mass compact binary mergers. The merging of compact objects in systems composed

of a double neutron star, a double black hole or a neutron star plus a black hole, is thought

to produce detectable gravitational waves. The recent detection of gravitational waves was
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in fact consistent with a black hole-black hole merger (Abbott et al. 2016a, Abbott et al.

2016b). These kind of systems are expected to have gone through one or two CE events.

Therefore, understanding how to create a close binary system that can later evolve in one of

the merger types mentioned above could help interpret future observations of gravitational

waves by constraining their merger rates in stellar population synthesis models.

• Low-mass compact binary mergers. Another type of compact merger is potentially respon-

sible for at least some type Ia supernovae, thought to be the merger of two carbon-oxygen

white dwarfs. This scenario is similar to the one above: a system with a wide orbit has to

shrink and expel the gaseous envelope, then the remaining close binary system will merge

through other physical processes. Also in this case understanding the physics of the CE

would help constrain the type Ia supernova rate through stellar population synthesis, inter-

pret the observations and establish the elusive nature of the progenitors.

• Type Ia supernovae from single degenerate systems. Binaries composed of a main sequence

or a giant star transferring mass onto a carbon-oxygen white dwarf are believed to be another

channel for the production of type Ia supernovae. Most of these binaries went through a

CE phase so an improved understanding of the CE phase could help to understand their

production.

• Gamma-ray bursts. The short duration gamma-ray bursts have been hypothesized to be the

result of compact mergers, hence they could be the results of the phenomena introduced

above. The long duration gamma-ray bursts type should derive instead from particular types

of core-collapse in massive stars that require the loss of the envelope, achievable through the

CE. As in the previous cases, we could make more accurate predictions of their rates and

characteristics with an improved understanding of the CE phase.

• The physics of CE interactions also has the potential to give us a different way to look at

the evolution of single stars. A star might have its evolution altered by CE-type in-spiral

of a planet, a brown-dwarf or a low-mass main sequence star. These interactions could

have observable consequences such as polluting the stellar envelope, spinning it up or even

ejecting it (Passy et al. 2012, Staff et al. 2016b). The ejection due to the planets could in turn
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explain the formation of single low-mass white dwarfs.

The ejected envelope could evolve into a planetary nebula if the effective temperature of one or

both of the central stars were enough to ionize the gas (as originally stated by Paczynski 1976).

Observations of planetary nebulae show that at least about 10-15% of their population has a close

binary system in the centre (Bond 2000, Miszalski et al. 2009a). Planetary nebulae form when

stars eject the envelope at the end of the AGB via dust-driven winds and/or binary interactions.

Similarly, the formation via a CE phase sees the CE ejection mechanism as the way to expel the

envelope of the AGB star.

Moreover, a CE ejection naturally explains the axi-symmetric shapes of planetary nebulae typ-

ically observed around post-CE binary central stars (Miszalski et al. 2009b). In fact the great

majority of planetary nebulae are not spherical, but they display axi-symmetries and point symme-

tries, sometimes with the addition of jet-like structures. In general these kind of shapes have been

explained through particular models of stellar rotation and magnetic fields (Garcı́a-Segura et al.

1999), but there are counter arguments that show that in the majority of the cases these physical

phenomena cannot be sustained if the star is single: the presence of a companion could drive the

ejection through preferential ways (e.g. equatorial mass loss) and sustain a magnetic field to create

jets (Nordhaus & Blackman 2006, Nordhaus et al. 2007; but see also De Marco 2009 for a com-

plete discussion of the problem). The physical mechanisms producing ejecta and jets as a result of a

CE interaction had already been analysed by Soker (1997) and updated later by De Marco & Soker

(2011), who distinguish five types of planetary nebula shaping binary interaction.

To conclude, the importance of studying the CE resides in the fact that there are many unsolved

questions around close binary systems both from the theoretical and observational points of view,

and the understanding of the physics of the phenomenon could give both the initial conditions to

model more clearly all of its “children” and a lot of useful prediction for the observations.

1.4 Numerical simulations of common envelope binaries

To discuss the general approach used to study the CE; it is important to note that the phenomenon

is so complex that a complete analytical model is impossible, and all analytical estimates can

only be used as guidance. The CE interaction is also inherently 3D and 1D numerical models are
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not accurate enough to describe it. However, so far research that needs prescriptions for the CE

phase, such as population synthesis calculations, have used the analytical approach. For example

modeling CE interactions in stellar population synthesis studies has relied upon simple analytical

prescriptions based on energetic or angular momentum considerations (e.g. Politano & Weiler

2007, Nelemans 2010, De Marco et al. 2011). These back-of-the-envelope analytical estimates

have been essential to direct the approach to the study of CE with numerical simulations.

Current 3D CE hydrodynamic simulations have at their basis a simplified model for the binary

system, due to the fact that this type of hydrodynamical simulations requires substantial alloca-

tion of computational time, using expensive supercomputing facilities. Several numerical stud-

ies have been undertaken. Primary examples are those of Rasio & Livio (1996), Sandquist et al.

(1998) and Sandquist et al. (2000) for older references, while to cite more recent important work

we have Ricker & Taam (2008), P12: Passy et al. (2012) (hereafter P12), Ricker & Taam (2012),

Nandez et al. (2014), Nandez et al. (2015), Ohlmann et al. (2016), Staff et al. (2016a) and Staff et al.

(2016b). All of them include similar ingredients but test different types of numerical codes (see

in particular P12 for the comparison of different code methods). The complexity of modern 3D

hydrodynamic codes gives rise to difficulties when interpreting the outputs of simulations. Exam-

ples of physical processes investigated using simulations are: the efficiency of hydrodynamical and

gravitational drag forces, accretion onto the companion, the morphology of the outflowing CE, the

effects of gas recombination on the energy budget and many others. However, the big question,

which still has to be answered, is how the CE is ejected, and how the post-CE binary parameters

relate to the input parameters.

There are several reasons why it is so difficult to achieve the envelope ejection in numerical

simulations. The CE evolution can be divided into different phases, with different time-scales,

lengthscales and different driving physical mechanisms. Following Podsiadlowski (2001) and

Taam & Ricker (2010) the following phases characterise the whole phenomenon:

1. During the initial phase the two stars, still detached and with no mass exchange, approach

one another due to tidal torques. If co-rotation between the orbit and the stellar rotation is

reached, orbital decay may still take place because of the Darwin instability. When the pri-

mary fills its Roche lobe, mass transfer between the primary giant and the smaller companion
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starts.

2. The second phase is identified as a rapid in-spiral. After an initial short period of orbital

decay and mass exchange through Roche-lobe overflow, the rapid in-spiral takes place. In

this phase energy and angular momentum are deposited in the CE, driving its expansion and

may lead to its dynamical ejection. As noted before, the time-scale of this phase is very

short, around one year.

3. The final phase may include a slow in-spiral phase. Once the orbital decay of the system

in the CE has deposited enough energy in it to cause significant expansion, the rapid in-

spiral will slow down (assuming the CE has not been ejected yet) to a stage where all the

frictional energy that is released is transported to the surface where it is radiated away, until

the envelope is eventually completely ejected by the percentage of energy that is not lost by

radiation. This phase can last hundreds of years.

As one can see, the three phases have very different time-scales and are driven by different phys-

ical processes, hence it is simply impossible, at the moment, to reproduce all of them in a single

numerical simulation. What is done instead are numerical simulations of the single phases inde-

pendently, but this does not account for the natural continuity of the phenomenon. Additionally,

the number of physical processes involved in the CE phase is huge and each of them is a free

parameter (sometimes constrained by observations) that has unpredictable consequences. Not all

these parameters have been explored yet. For example, factors like the initial rotation profiles of

the components, recombination energy of the CE gas during the expansion and the effect of lay-

ers of CE material not properly ejected that fall back onto the binary, have only been investigated

partially.

While simulating the entire interaction will not be possible in the immediate future, the most

achievable way to investigate CE is to systematically add new physical parameters to present sim-

ulations and determine the changes in the outputs with respect to previously obtained results.
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1.5 Motivation for the current project and outline

This thesis’ project aims to gauge the impact of the input parameters on the outcomes of 3D hydro-

dynamic simulations. Previous numerical work investigated primarly individual simulations with

a particular set of initial conditions. However, without any comparison simulations, carried out

with different initial parameters, one cannot properly gauge the impact of different physical mech-

anisms on the outcome of the CE. Notable exceptions are the work of Sandquist et al. (1998) and

of P12, where such investigations did take place and which we will discuss fully throughout this

thesis. Here we investigated in detail three parameters, which can be chosen as initial conditions:

the rotation of the primary star, the initial orbital separation, the mass of the primary’s envelope.

Finally, we also tested CE simulations using a range of computational techniques: the hydro-

dynamic code ENZO in uniform, static grid as well as adaptive mesh refinement (AMR) modes and

of the smooth particle hydrodynamics (SPH) code PHANTOM, used here for CE simulations for

the first time.

1.5.1 Simulating a CE binary system with a rotating giant star

This sub-project focuses on adding the rotation of the primary star to one of the CE simulations of

P12. The rotation of the primary star has been included by Rasio & Livio (1996), Sandquist et al.

(1998), Ricker & Taam (2012) and Ohlmann et al. (2016). All but Rasio & Livio (1996) use grid

codes in the inertial frame, with the primary rotation velocity set as a function of the orbital velocity

to be co-rotating or slightly below co-rotation. Rasio & Livio (1996) instead set their binary up

in the co-rotating frame. The former papers do not stabilise the giants in the co-rotating frame,

while the latter paper does. None of the published papers takes into account realistic rotational

profiles for giant stars. Sandquist et al. (1998) are the only ones who compare two rotating and

non-rotating giant models with otherwise identical parameters. They concluded that rotation only

affects marginally the ejection of the envelope. The other publications do not discuss the effects of

rotation on the outcome of the simulation.

The questions that we set out to answer therefore are: (i) does the lack of giant stabilisation

impact the CE outcome? (ii) Is it possible to set up a giant with a realistic rotation profile? (iii)

Would rotation affect the outcome of the CE simulation carried out by P12?
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1.5.2 The impact of the pre rapid in-spiral phase on CE simulations out-

comes

For this simulation we set the companion orbiting at a larger distance from the primary than in

the simulations of P12, but close enough that a tidal capture is expected. With a bigger simulation

box compared to that of P12, so as to contain a system with a greater separation, we will also

be able to follow the ejecta further. Although simulating tidal capture correctly is beyond our

computational capabilities, angular momentum conservation insures that all the orbital angular

momentum is carried into the CE. The pre in-spiral phase comprises stellar spin up as well as

Roche-lobe overflow. Both these phases likely alter the energetic exchange prior to the in-spiral

compared to a simulation where the companion started on the surface of the primary.

1.5.3 The impact of a massive primary star on the CE output

It is likely that a more massive and/or more compact primary will impact the CE outcome. A given

post-CE primary mass can be created by a more massive star caught into a CE earlier during its

RGB evolution, or a less massive one caught later. At that time, a more massive star will be more

compact than a lower mass one for equal core mass. Being more compact and more massive could

be an advantage to reach a smaller final separation and consequently extract more orbital energy

and possibly also eject more mass. We therefore set out to compare a simulation with a larger RGB

envelope mass to the simulation of P12.

1.5.4 Code-code comparison

Previous numerical work on the CE interaction have used both grid (e.g., Sandquist et al. 1998,

Ricker & Taam 2012), SPH (e.g., Rasio & Livio 1996, Nandez et al. 2015) and more recently

moving-mesh (Ohlmann et al. 2016) codes, but only P12 actually compared different numerical

techniques (grid and SPH) using the same setup. We follow the same approach, comparing the

results of the grid code ENZO and of the SPH code PHANTOM (see Chapter 2 for a description of

the software). This gives more robustness to our results and additionally gives us the possibility to

use PHANTOM for the CE problem for the first time.
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2
Our “codes” and the generation of the initial

stellar model

2.1 The three modelling codes used in this thesis

Modern astrophysics widely uses numerical simulations to reproduce any kind of interaction. As

a result a myriad of different codes are available. It is therefore generally possible to simulate the

same astrophysical problem with multiple codes. CE evolution itself had been simulated before

with different of them. Since the major part of this thesis work involved modelling of single

stars and binary systems with numerical tools, we had the necessity to chose the codes to fit our

purposes. In this chapter we describe the three codes we used to carry out all of our work: ENZO,

PHANTOM, and MESA.

17
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2.1.1 The hydrodynamic code ENZO

Before describing the ENZO code (O’Shea et al. 2004, Bryan et al. 2014) in detail, it is useful

to show the hydrodynamic equations that are solved by hydrodynamic codes that includes self-

gravity. These equations can be used in various forms depending on the formalism of the code

(e.g., Eulerian vs. Lagrangian). However, here we will only show the Eulerian form used to

simulate fluids in ENZO. ENZO can solve the above-mentioned equations with or without magnetic

fields, cosmological expansion (the code was originally developed for cosmological simulations),

radiative cooling, radiative heating and conduction, but for our purpose these ingredients will be

omitted. As a consequence the equations we are solving take the following form:

∂ρ

∂t
+∇ · (ρ~v) = 0 , (2.1)

∂ρ~v

∂t
+ ρ(∇ · ~v)~v + ρ(~v · ∇)~v = −∇p− ρ∇Φ , (2.2)

∂e

∂t
+∇ · [(e+ p)~v] = −ρ~v · ∇Φ , (2.3)

where ρ is the density, t is time, ~v is the velocity, p is the pressure, Φ is the gravitational potential

and e is the total energy per unit volume (e = u + (ρv2)/2), where u is thermal energy per unit

volume). The first equation represents conservation of mass, the second of momentum and the

third of total energy. The system is closed by an ideal gas equation of state

p = u(γ − 1) , (2.4)

where γ is the ratio of specific heats, and by the Poisson’s equation for the gravitational potential

∇2Φ = 4πGρ , (2.5)

where G is the gravitational constant. This set of equations is numerically solved at each time-

step for each element of fluid simulated. In the following paragraphs we briefly describe how the

simulated fluid is mapped and how the hydrodynamic equations are solved.
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ENZO is a block structured adaptive mesh refinement (AMR), parallel code meant to provide

both high spatial and temporal resolution for modelling astrophysical fluid flows. The code is Eu-

lerian, can be run in all the three dimensions (1D, 2D, 3D) in a Cartesian grid and supports a wide

variety of physics: hydrodynamics, ideal and non-ideal MHD, N-body (self-gravity of fluids and

particles), primordial gas chemistry, optically thin radiative cooling of primordial and metal en-

riched plasmas (as well as some optically thick cooling models), radiation transport, cosmological

expansion and models for star formation and feedback in a cosmological context.

The AMR algorithm of ENZO uses an adaptive hierarchy of grid patches at varying levels of

resolution. Each of these patches covers a region in space requiring higher resolution than its

parent grid and can itself become a parent grid to a higher refinement level. This hierarchy is re-

constructed constantly during the simulation since it has to adapt to the emergence of “interesting”

regions in the grid. AMR can be extended to arbitrary depths by adding additional grids to refine

regions in the sub-grids. AMR allows different methods of refinement to generate sub-grids from

a parent grid. One of the most commonly used methods is to refine by gas mass, on the assumption

that regions of denser gas are “interesting”. A cell is refined if the gas mass contained in it is

greater than a certain value. This method mimics the Lagrangian method by trying to keep a fixed

mass resolution. AMR presented certain grid boundary problems when tested on CE simulations

until a new solver was designed by Passy & Bryan (2014). With the new solver energy is well con-

served for the point-mass particles representing the core of the primary and the companion for CE

interactions (see Section 2.2, Chapter 3 and Chapter 6). In the work presented here ENZO was used

in static grid mode, i.e., using a uniformly spaced grid set up at the beginning of the simulations as

well as in AMR mode, once the AMR solver became available.

ENZO allows various hydrodynamic methods to solve the fluid equations. What we used for

all our simulations is the second-order finite difference finite difference scheme previously used

in the ZEUS code (Stone & Norman 1992a). It is important to note that ENZO is independent

from ZEUS, only the latter algorithm has been implemented. This algorithm is peculiar because

uses a staggered mesh such that velocities are face-centred, while density and internal energy are

cell-centred. This algorithm is formally second-order accurate in space and first-order accurate in

time. It is an aperture-split method, which breaks the solution of the fluid equations into parts that

are solved successively. Equations are split into three parts: operator-split expansion terms (i.e.,
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the terms dependent on the derivative of the acceleration), source terms and transport terms (i.e.,

advection terms for mass, momentum and energy). Self-gravity is instead handled by using a fast

Fourier technique to solve the Poisson equation on the root grid at each time-step.

The code, in addition to gas, can include collisionless matter, modelled with particles that

interact with other particles and gas only via gravity. Particles are not adaptively refined, instead

each particle is associated with the highest refined level available at its position in the domain and

are moved between grids as the grid is rebuilt between one time-step and the following. As a

result, a particle has the same time-step and feels the same gravitational force as a grid cell at that

refinement level. To calculate the dynamics of collisionless systems, ENZO uses a particle-mesh

N-body method and to avoid non-physical point mass effects, particles are considered point masses

only until a certain level of refinement. Above this threshold, level contributions from particles to

the gravitating mass field will be smoothed over a spherical region centred at the particle position.

All grids on a level are advanced with the same time-step. The time-step at a certain level is

computed by first calculating the largest time-step allowed for each cell, then the level is advanced

with a time-step equal to the minimum of all of the values previously computed. Since the code is

grid based, it has a spatial limit given by the simulation box. Matter that reaches the limits of this

box is handled by a range of boundary conditions. For our problem we used “vacuum” boundary

conditions (see Section 2.2), such that outflowing gas leaves the domain and cannot return nor

interact further.

ENZO outputs can be saved to disk with any required cadence, but these dumps can be very

memory expensive, especially when simulating at high resolution or with AMR. Therefore one

usually chooses a dumping frequency fitting the time-scale of the simulated problem, but not too

high to avoid excessive memory usage and slowing down of the simulation due to the input-output

times. For example, in CE simulations, the frequency at which outputs are typically saved is

every 0.01 to 0.05 yr, on total simulation times of the order of a couple of years. However, ENZO

also gives the possibility of having higher time cadence outputs for data analysis done during the

course of a simulation. The cadence of this data analysis can be as high as every sub-cycle of

the finest refinement level, without the need to write an entire dump. This is done through the YT

data analysis package (Turk et al. 2011). During the computation ENZO can be linked to YT so
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that the mesh geometry, fluid quantities and particle data are saved as NumPy1 arrays. YT then

processes these data in the same way it would read data from a data dump saved on the disk. This

processing is done via a user-defined Python script, which is run at a user-defined frequency during

the simulation. Every time the script is run, ENZO does not proceed to the next time-step until the

data analysis is completed.

ENZO is parallelised using Message Passing Interface (MPI). Parallelisation is accomplished

by distributing grids among processors, where the root grid is split into a number of tiles typically

equal to the number of processors. Sub-grids are then moved to the least busy processors to balance

the computational load.

2.1.2 The hydrodynamic code PHANTOM

A second hydrodynamic code used for this thesis is the smoothed particle hydrodynamics (SPH)

code PHANTOM. PHANTOM (Price & Federrath 2010, Lodato & Price 2010) is a code designed to

avoid high memory usage and its original purpose was primarily to model star formation.

The need to have a comparison code arises from the fact that grid and SPH codes have their

distinctive advantages and disadvantages, therefore using both of them on the same physical prob-

lem allows one to estimate with more precision possible shortfalls of the numerical method. The

major advantages of grid-codes with respect to SPH are for example better resolution of shocks,

better treatment of dynamical instabilities (e.g. Kelvin-Helmholtz, Rayleigh-Taylor instabilities)

and better resolution of low density regions. On the other hand, advantages of the SPH codes over

grid-codes are their intrinsic adaptivity, without the need for additional numerical methods like

AMR, the capability to follow all the mass, no advection issues and Galilean invariancy. This has

advantages when checking on energy conservation.

A code comparison between grid-codes and SPH on CE simulations has been carried out by

P12, using ENZO (see Section 2.1.1) and the SPH code SNSPH (Fryer et al. 2006). The results

of their investigation show that on a “standard” CE setup, namely a giant primary star with a

companion orbiting at its surface in circular orbit, the two codes are in very good agreement.

However, the comparison has not been extended to different regimes. Additionally, the SPH code

1http://www.numpy.org/

http://www.numpy.org/


22 OUR “CODES” AND THE GENERATION OF THE INITIAL STELLAR MODEL

PHANTOM was never used for CE simulations before. Therefore we also analyse the CE evolution

and its outputs with a new code (see Chapter 3).

PHANTOM solves the fluid equations in Lagrangian form, i.e., the fluid is discretised into a set

of “particles” that move with the fluid velocity field. The properties of one of these particles are

determined as a function of the neighbouring ones, therefore what are usually called particles are

in fact interpolation points.

The density field is computed as:

ρa =
∑

b

mbW (|~ra − ~rb|, ha) , (2.6)

where a and b are particle indexes, ρa is the the density at particle a and mb is the mass of particle

b. W is the smoothing kernel, ra and rb are the locations of particles a and b with respect to a

chosen centre of reference and ha is the “smoothing length” of the considered particle. The sum is

over neighbouring particles. The smoothing length for particle a is given by:

ha = hfact

(ma

ρa

)
1

3

, (2.7)

where hfact is a proportionality factor specifying the smoothing length in terms of the mean lo-

cal particle spacing. This formula only works for equal mass particles, a condition enforced in

PHANTOM. Since ρa and ha have a mutual dependence, the two equations have to be solved simul-

taneously. The kernel function is instead given by:

W =
Cnorm

h3a
f(q) , (2.8)

where Cnorm is a normalisation constant (π−1 in three dimensions) and f(q) is a cubic spline

function with q = |~ra − ~rb|/ha.

Neighbour finding is done via a kd-tree as a default and its implementation closely follows

that of Gafton & Rosswog (2011), splitting particles recursively based on the centre of mass and

bisecting the longest axis at each level. The tree is refined until a cell contains less than Nmin

particles. Nmin is set by default to 10. At each of these nodes the code then executes neighbour

finding. After this procedure is performed the density field is calculated.
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Domain decomposition is used in PHANTOM to apply a shared memory parallelisation (OpenMP).

PHANTOM has options to solve the gas equations in different forms. In all of these forms the

equation of motion for each particle is discretised and numerically solved. The default form, also

used in this work, is simple compressive hydrodynamics plus an adiabatic equation of state, using

γ = 5/3. In addition to this basic gas equation, PHANTOM can solve magneto-hydrodynamics in

both the ideal and non-ideal cases (dissipative magnetic field), dust-gas mixtures, chemistry with

cooling and particles injection.

The time-stepping, while integrating the equations of motion, is done by a leap-frog integrator.

This particular version of the integrator is both reversible and symplectic, making the algorithm

Hamiltonian: linear and angular momentum are exactly conserved, while energy and phase-space

volume are very well conserved.

The time-step is limited by the Courant condition and it is chosen to be the minimum between

a set of constrained physical quantities from the simulation (accelerations, external forces, sink-

particle accelerations, cooling function). The time-step can also be individual for each particle for

problems with a large range of time-scales over the domain. This increases the efficiency (in terms

of time) of the code, increasing the speed by approximately one order of magnitude, but reducing

the conservation of physical quantities.

Sink particles are available in PHANTOM. This type of particle is different from SPH particles

in that they interact with other particles (other sink particles and SPH particles) only via gravity.

For sink particles, gravitational interaction is computed by direct summation; they can accrete

gas and can store all the physical quantities of the accreted SPH particles. In this work we have

used sink particles as fixed mass particles, or accreting only for a short amount of time at the

very beginning of the simulation, to generate a particle with the mass of the giant star’s core (see

Chapter 3).

2.1.3 The stellar structure and evolution code MESA

The code we used to model the giant primaries prior to inserting them into the 3D hydrody-

namic codes is MESA and a detailed description of the code can be found in Paxton et al. (2010),



24 OUR “CODES” AND THE GENERATION OF THE INITIAL STELLAR MODEL

Paxton et al. (2011), Paxton et al. (2013) and Paxton et al. (2015). Here we give a general descrip-

tion of the features of the code.

Solving the coupled, non-linear differential equations of stellar structure has to be done compu-

tationally. MESA represents one of the most recent codes devoted to the solution of stellar structure

equations and is an open-source code that combines many numerical and physics modules for 1D

stellar simulations. Additional modules can be easily added to increase the scope of the code. In

addition to the core part of the software, to model stellar structure and evolution, MESA is designed

to be used for a wide range of stellar physics studies. Concepts such as equation of state, nuclear

reactions or opacities can be applied to a wider range of phenomena. By default a wide range of

stellar evolutionary scenarios can be simulated: from low- to high-mass stars and from pre-main

sequence to advanced evolutionary phases.

The code is OpenMP parallel and allows for both AMR and adaptive time-stepping to optimise

the level of detail of the physics where needed and to improve performance. The way MESA

operates is to build a 1D (spherically symmetric) model where the number of cells depends on

the complexity of nuclear burning, gradient of state variables, composition, etc. The equations

of stellar structure and composition, physically coupled, are solved simultaneously numerically

and include sophisticated equations of state, opacity, nuclear reaction rates, element diffusion and

atmosphere boundary conditions. Below we will discuss some of these in more detail.

A detailed zone-by-zone equation of state incurs a certain computational burden. To alleviate

this burden and speed up the simulations it is convenient to compute tables before the simulation

starts, which are then read and used during the simulation. Similarly, thermonuclear and weak

reactions are tabulated before the beginning of the computation. The nuclear reactions are instead

computed during the runs and various reaction networks are available.

In addition to micro-physics MESA handles numerous macro-physical phenomena happening

during stellar evolution, including various mixing length treatments for convection, convective

overshooting, treatment of the stellar atmosphere outside the photosphere (to guarantee stability),

diffusion, gravitational settling and different possible wind schemes. Additionally, MESA also

implements schemes to simulate binary interactions; for example it is possible to calculate two

individual stars that are transferring mass between one another.

The code has been verified (i.e., the physical equations are correctly solved) and validated (i.e.,
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it is solving the correct set of physical equations) against various other codes and observations for

a wide range of problems. In addition the code is constantly being developed, thanks to a large

community of users.

2.2 Common envelope simulations: initial stellar modelling

The main purpose of this work is to simulate the interaction between an RGB star and a compact

companion, paying particular attention to details such as the impact of the initial structure of the

giant primary on the simulation outcomes. Here we review the numerical procedure used, giving

technical references where needed.

In this work we expand on the work of P12, by evaluating a greater number of quantities and

details that may have repercussions on the interaction simulations. The initial stellar models used

in our 3D simulations are pre-calculated in 1D using MESA and they are physically very accurate.

However, after it is transposed into the hydrodynamic codes becomes unphysical: it has no energy

source, it does not radiate and it is governed by a simplistic equation of state. It is, however, in

hydrostatic equilibrium, and has a reasonably accurate density and internal energy profile. This

makes it sufficiently realistic in simulations that take place on the dynamical time-scale. Here we

explain some aspects of this setup.

2.2.1 Creation of the one-dimensional stellar model

For some of our simulations we used the same stellar structure calculation as P12, where a 1 M⊙

star was evolved until its hydrogen-exhausted core mass reached Mcore = 0.392 M⊙, with the

EVOL code (Herwig 2000). At this point the star has a total radius of R = 83 R⊙ and a total mass

M = 0.88 M⊙, smaller than the initial value because of mass loss. These older stellar models were

used for consistency with P12. However, we carried out equivalent MESA models, which confirm

that they are almost identical and that they can therefore be used interchangeably.
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2.2.2 Mapping the 1D stellar model into the 3D computational domain

In Section 2.2.1 we have described how we use one-dimensional stellar evolution codes to generate

a stellar structure model of an RGB star. The next step is to insert the stellar model into the

ENZO computational domain and stabilise it. In Figure 2.1 we show how density, temperature and

pressure of the 1D model result once mapped into the 3D code ENZO. The most important things
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FIGURE 2.1: Comparison between the 1D model (blue) used for the simulations in Chapters 3 and 4 and the same

model once mapped in 3D (red). Panel (a) is density, (b) is temperature and (c) is pressure.

to highlight are the difference in resolution between the two codes and the jump in temperature

on the outside of the star after the mapping in the 3D domain. The reasons of these features are

described below.

One of the main differences between MESA and ENZO is the equation of state used by the

two codes. While MESA uses a tabulated equation of state that takes into account factors such
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as different elements, radiation, recombination and ionisation, specific to reproduce the physics

taking place inside a star during its evolution, ENZO uses a more generic ideal equation of state

for mono-atomic gas (i.e., the entire envelope is made of mono-atomic hydrogen). As a result

not all the MESA equation of state related quantities needs to be imported into ENZO. For each

radius value of the 1D model we only import density and pressure, from these quantities the initial

temperature can be extrapolated through the ideal gas equation of state. After the quantities are

interpolated to the 3D domain the first time, the hydrodynamical solver of ENZO evolves them

and no additional inputs are needed from the 1D model. The central energy source of the star,

that is the core, where nuclear reactions take place, it is not reproduced in ENZO. However, the

pressure imported from the 1D model is the result of the MESA calculation, that includes nuclear

core burning. With these pressure values we are able to produce a stable stellar model. Being the

equilibrium of the star well reproduced, the lack of the central energy source is not expected to

affect the CE interaction from an hydrodynamical point of view. The radiation produced produced

by the core could affect the CE by applying radiation pressure to the envelope material. This aspect

of the interaction has not yet been studied and we leave it to future work.

The stellar relaxation procedure that we are about to explain is reasonably standard and and was

first adopted by Rasio & Livio (1996). On the other hand, publications using this procedure lack a

quantitative and detailed explanation of this process. As simulations gain in sophistication so will

the importance of accurate model mapping and good stability. We here quantify our procedure and

the degree to which it achieves stabilisation so as to provide a reference point for future work. As

one can see from Figure 2.2, a stellar model imported from a 1D stellar evolution code evolved

in ENZO without stabilisation loses the original structure and starts expanding in the simulation

domain within one dynamical time (21 days for our model). If one could follow the model with

a bigger simulation domain and for its whole natural relaxation time, eventually the matter would

stabilize to a new spherical structure around the central point-mass. However, we are limited

by both domain sizes and simulation time. Therefore the necessity to obtain artificially a stable

model arises. Below we describe the procedure to map the 1D star into the computational domain,

followed by the stabilisation procedure. While several of the parameters are the same as for the

standard ENZO code, others have been created especially for the CE problem by P12. We list here

those parameters that are particularly important, justifying their values.
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(a) (b)

(c)

FIGURE 2.2: Density slices on the x − y plane at z = 0 for our RGB stellar model at a resolution of 1283 cells

and with a computational domain of 2 AU per side, without velocity damping. The plots show different times: 0 yr

(a), 0.29 yr (b) and 0.58 yr (c). Arrows show the velocity field. The small green triangle shows the position of the

central point-mass particle.

Other parameters have their default values, which can be found in the ENZO user guide2:

• ProblemType = 41; enables the modifications carried out by P12 to simulate binary common

envelope interactions.

• TopGridDimensions = 256 256 256; grid resolution.

2http://enzo-project.org/doc/index.html

http://enzo-project.org/doc/index.html
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• LeftFaceBoundaryCondition / RightFaceBoundaryCondition = 5 5 5; vacuum boundary con-

ditions are implemented for this problem. The classical outflow boundary conditions created

a significant artificial mass in-fall into the simulation domain as mass is attracted into the

domain from the ghost regions surrounding it by the mass in the box.

• LengthUnits = 6e13; 4 AU in centimetres. The value of this parameter represents also the

simulation box size if it is not specified through any other parameter. The box size is double

the one of P12. We took as a reference the 1283 cells simulations in that paper, and to keep

the star resolved with the same number of cells our linear resolution was doubled to 2563

(see the parameter above).

• TimeUnits = 3.1558e7; 1 yr in seconds. The time-scale of a CE interaction is of the order of

years, hence the year is the natural time unit.

• MassUnits = 1.9891e33; 1 M⊙ in grams.

• BinaryStarHaloDensityFract = 1e-4; this parameter lets the user chose the density of the gas

surrounding the star as a fraction of the density of the surface shell of the star. The halo gas

parameters other than density are set by the code such that Phalo = Pouter stellar shell (where P

is the pressure) to avoid stellar instabilities due to the missing of a realistic stellar atmosphere

which would gradually vanish in the surrounding medium. Since ENZO uses an ideal gas

equation of state, the very low pressure gas surrounding the star is at very high temperature.

This is evident from Figure 2.1 (b).

• BinaryStarUsePointMasses = 1; 0 = standard ENZO dark matter particles, 1 = point masses.

P12 modified the potential of a dimensionless particle to be defined analytically so as to

reduce the uncertainty in gravity computations. For details see P12, section 2.3, paragraph

5.

• BinaryStarNumberOfParticles = 1; 1 = single star, 2 = with companion. Here we are running

a simulation to stabilize our giant star in ENZO, before running the CE simulation, hence we

insert just one body.
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• BinaryStarCentralMass = 0.3959; in M⊙. Counter-intuitively, this value is not the mass of

the core of the giant star. To explain clearly what this parameter represents, a description of

how ENZO interpolates the 1D stellar model to a less refined 3D model is given below.

• BinaryStarFile = RGB SPH Init.txt; name of the 1D stellar structure model file.

• StaticHierarchy = 1; 0: AMR, 1: no AMR. Before late 2014 we used ENZO in uniform,

static grid mode. When upgrades by Passy & Bryan (2014) became available we started

using the AMR capability.

• ParticleCourantSafetyNumber = 0.4; maximum fraction of a cell width that a particle is

allowed to travel per time-step.

• CourantSafetyNumber = 0.4; this is the maximum fraction of the CourantFriedrichsLewy-

implied time-step that will be used to advance any grid.

• PointMassPotentialType = 1; 1 = Sandquist et al. (1998), 2 = Plummer. This parameter rep-

resents the shape of the smoothed potential of the point-mass particles. The Sandquist et al.

(1998) potential is smoothed by the prescription described in Equation 6.6.

• PointMassSmoothingLength = 3.516e11; in cm. The gravity smoothing length for the point-

mass particles: typical values are between 1.5 and 3 times the cell width in uniform, static

grid mode and the smaller cell width in AMR. This parameter takes its value in physical

units, not in code units, so one has to consider the single cell physical length as a function

of the LengthUnits parameter, of the grid dimensions and of the box size. The particular

value is hence 1.5 times the width of our static main grid in centimetres. The value of the

smoothing length is of great consequence to the energy conservation properties of the code

and we will discuss the issue further in Chapter 6.

• RelaxationOn = 1; 0 = off, 1 = on. Activates damped relaxation of the star. At every time-

step the velocities are divided by a factor defined by the next parameter. We use this to speed

up the stellar structure relaxation time.

• RelaxationFactor = 3.0; when RelaxationOn = 1, at every time-step all velocities are divided

by this number.
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Once parameters are set the 1D star is mapped into ENZO in the following way. To start, ENZO

loops over all its 3D cells and computes their centres. Then for every ENZO cell centre its distance,

r, from the centre of the domain, ENZO applies a bisection method to the 1D star shell radii, with

the first interval being the whole radius (r0), as schematically shown in Figure 2.3. In this way the

shell of the 1D star that corresponds to a given cell centre distance is determined; this means that

the value of r is between the lower and the upper bounds of the 1D shell selected with the bisection

method.

FIGURE 2.3: Classic bisection method. Here R is the current ENZO shell centre radius, which we called r in the

text, and r0, r1 and r2 are the 1D model radii.

Next, to assign the values of the various physical quantities to the ENZO cell of radius r, we

perform a first-order interpolation by averaging their values at the shell’s boundaries, respectively

r1 and r2, weighing those values by a factor that depends on the distance of r from r1 and r2. That

is:






(r − r1)/(r2 − r1) = k ,

(r2 − r)/(r2 − r1) = 1− k .
(2.9)

Then to average the physical quantities, for example the density, ρ, at the centre of the ENZO cell

of radius r we have:

ρ(r) = ρ2(1− k) + ρ1k , (2.10)

where ρ1 and ρ2 are, respectively, the densities at the bottom and top boundaries of the 1D shell.

The problem with this method is that the stellar mass, particularly for giants, is very concentrated

in the core (see Figure 2.4). Because of the steep density gradient near the core, a large part of

the mass is lost in the central ENZO cell during the interpolation. The fact that the entire central

part of the star is missing from the 3D model mapped in ENZO it is also clear from Figure 2.1,

where the red lines, representing the ENZO model, reach a lower radius of at most 2 R⊙. The

mass missing because of interpolation must be added back into ENZO to properly represent the
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star and preserve equilibrium, and since it is mostly lost in the core, this can be done by adding a

point-mass particle of the residual mass at the centre of the star, by choosing an appropriate value

for the BinaryStarCentralMass parameter. To chose the appropriate value, we estimate the missing

mass, by comparing the total mass of the 1D model to the total stellar mass enclosed in the ENZO

computational domain after the interpolation. The contribution of the medium surrounding the

star can be minimised by choosing an appropriate low density (e.g., BinaryStarHaloDensityFract

= 10−20).

FIGURE 2.4: A representation of how ENZO samples a 1D model stellar density profile. A generic stellar density

profile trend is plotted. Evident is the very steep gradient near the core, where most of the mass of the star is enclosed.

The procedure carried to set up a stellar model in the SPH code PHANTOM is mostly analogous

to what was discussed above for ENZO. The first difference is that, during the process of interpo-

lating the data, PHANTOM generates an user-defined number of SPH particle with equal mass. The

sum all the particles’ masses corresponds to the total mass of the star. Then all the SPH particles in

a certain radius around the centre (decided in function of the simulation) are removed and replaced

by a point-mass with a total mass equal to that of the particles removed. If this was not done, the

extreme density of SPH particles in the core would dramatically slow down the simulations. The

final model obtained in this way has therefore the same structure of the ENZO one. The second dif-

ference is that in SPH no external low-pressure, high-density gas is required, since the simulation

domain is only limited to the space occupied by the existing particles.
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Furthermore, the damping and relaxation procedure described in the following sections and the

evaluation criteria are identical for both ENZO and PHANTOM, therefore we limit ourselves to their

description in the former.

2.2.3 Criteria to evaluate damping and relaxation

The 1D stellar evolution codes are extremely refined both from the point of view of the physics and

of the grid resolution. ENZO’s grid is coarser and its adiabatic equation of state is different from

MESA. As soon as the star is mapped into ENZO it starts to expand. We speed up the relaxation

process by dividing all velocities on the grid by a factor three at every time-step.

To determine when the star is relaxed we compare the gas velocities to typical orbital velocity

values, because the entire interaction takes of the order of one orbital period. We therefore do not

want velocities due to instabilities to be larger than the physical motion of the gas we are trying to

study. The criterion is therefore:

vnum,max < fvKep , (2.11)

where vnum,max is the maximum of all gas velocities at the selected simulation output, vKep is the

Keplerian circular velocity of the companion orbiting at the stellar surface or

vKep =

√

G(M +m)

a
≃ 33.7 km s−1 , (2.12)

for a 0.6 M⊙ companion orbiting at 3 stellar radii (= 249 R⊙) and f is a tolerance factor, which is

not chosen a priori. These parameters can be adapted to the problem.

We also compare our gas velocities with the local sound speed (Cs =
√

γP/ρ, where γ = 5/3,

P is pressure and ρ is density). This comparison gives an estimate of the stability of the model on

a local scale. In fact if in a certain region the gas velocities are bigger than Cs, unwanted shocks

could propagate through the model.

We run the damping for more than one dynamical time:

tdyn ≃

√

R3

2GM
, (2.13)
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where R is the radius of the primary star, M is its mass and G is the gravitational constant. At

this point the perturbations due to the stabilization had the time to propagate across the star. So,

monitoring the velocities for at least 1tdyn gives us an idea of the magnitude of f in the type of

stellar models we are using.

2.2.4 A stellar relaxation simulation

We run a relaxation simulation using the ENZO parameter file described in Section 2.1 and the same

stellar evolution code file output of P12, to create a primary star for a CE interaction simulation.

We run the damping part of the simulation for an arbitrary number of dynamical times (≃ 7tdyn ≃

0.4 yr). The evolution of the density vs. radius profile is shown in Figure 2.5 (left panel). The

density profiles plotted in Figure 2.5 are averaged over a sphere of fixed radius. Note that in this

case we do not overplot the MESA profiles since the initial model (blue line) it is the same as the

red line showed in Figure 2.1 (a). The loss of spherical symmetry once the star is mapped in

ENZO is minimal, hence the averaged density profiles are almost identical to those taken along

any direction. The density profile has a very small variation over the simulation time except in the

central part of the star, within ≃ 10 R⊙ (recall that the stellar radius is ≃ 83 R⊙). The density

decreases rapidly in that region at the beginning of the simulation before stabilising. The density

profile is steeper and poorly sampled in this region, thus the star needs to reconfigure itself more

near the core than at the surface. At the beginning of the simulation velocities are all zero due to

the fact that they are not imported from MESA (Figure 2.5, right panel; solid blue line). However,

the velocity profile starts to change rapidly as soon as the simulation is started, but the damping

is effective in keeping the values of the velocity from growing. At the end of this simulation

(t ≃ 7tdyn) velocities are below ≃ 2× 10−4 km s−1 (Figure 2.5, right panel; dashed red line). We

can now consider the criterion in Equation 2.11 to estimate the tolerance factor f at ≃ 7tdyn. The

value of vnum,max is of the order of 2× 10−4 km s−1, hence

f =
vnum,max

vKep

≃ 6× 10−6 . (2.14)

Since, as we will see below, the stellar model results in reasonable equilibrium if allowed to evolve

without damping, we decided that a factor f = 6× 10−6 is sufficient to damp this type of primary
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FIGURE 2.5: Left panel: the averaged radial density as a function of the radius at the beginning (solid blue) and

at the end (dashed red) of the damped simulation. Right panel: same as the left panel, but for the shell-averaged radial

velocity as a function of radius.

star. This value has then be used as a reference for additional damping simulations carried out in

this thesis work. The value of Cs is always far greater than the value of vnum in every cell of the

box for our stellar model at the end of the damping simulation (see Figure 2.6).

FIGURE 2.6: Values of Cs (blue line) and those of vnum (red line) as a function of the linearized cell number (cell

have been linearised starting from the the corner of the box with coordinates (0,0,0) and moving along y, then z, then

x. Note that not all the cells are plotted, but just those enclosed in a sphere of 100 R⊙ radius and centred at the centre

of the box. The sphere contains the whole star.
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Following the damped simulation we reset all velocities to zero and restart the simulation with-

out velocity damping for a few more dynamical times to ensure the stability of the star. We reset

the velocities to zero by accessing the ENZO output files, which are in the HDF5 format, using

the python programming language module h5py3, then we restart our ENZO simulation from this

modified output, changing the settings of the following parameters in the ENZO parameter file to:

• StopTime = 0.80931448857348; 14tdyn in code units.

• RelaxationOn = 0; relaxation turned off.

A time sequence of slices in the three directions of the Cartesian axes is shown in Figure 2.7 and

will be used together with the radial velocities and densities vs. radius profiles for the analysis.

In this case the profile shows a more substantial variation at the surface of the star than at the

core, where four density cusps form in the directions of the coordinate axes. These cusps are the

result of the method used to map the 1D model into the 3D domain, that leaves small singularities

at every 90 degrees angle aligned with one of the three directions of the ENZO domain. These

singularities evolve in the cusps when the model is relaxed into the ENZO domain. At increasing

resolution (either by increasing the overall resolution in uniform grid mode or by using AMR)

the magnitude of these extrusions diminishes. We evaluated their mass by considering the density

profile along a direction that does not overlap the cusps, for example the 45◦ direction in the plane

x − y at z = 0. We selected as radius the point where the density drops to an almost constant

value, which results in a sphere of radius 100 R⊙, centred at the centre of the domain, as shown in

Figure 2.8. The mass enclosed in the sphere is ≃ 0.87869 M⊙, while the total mass including the

cusps is ≃ 0.87874 M⊙, hence the mass in the cusps due to numerical effects is ≃ 5 × 10−5 M⊙.

In conclusion, the amount of mass which accumulates in the cusps is very small and we expect it

to have negligible effects on the binary interaction simulation.

More significant is the radius of the relaxed star as compared to the original MESA radius, as

is clear from Figure 2.9 (left panel). The radius has increased by ≃ 17 R⊙ (i.e., from 83 R⊙to

100 R⊙) with respect to the 1D stellar radius, but the amount of mass that filled the expanded

volume is ≃ 2 × 10−3 M⊙, a very small amount compared to the total mass of the star. So its

3a good explanation on the structure of the ENZO outputs HDF5 file can be found in the official documentation

at: http://enzo.readthedocs.org/en/latest/user_guide/HierarchyFile.html; while every-

thing about h5py can be found at: www.h5py.org

http://enzo.readthedocs.org/en/latest/user_guide/HierarchyFile.html
www.h5py.org


2.2 COMMON ENVELOPE SIMULATIONS: INITIAL STELLAR MODELLING 37

FIGURE 2.7: Slices on the x (left row), y (central row) and z (right row) axes at times ≃ 0.40 yr (first column),

≃ 0.52 yr (second column), ≃ 69 yr (third column), ≃ 0.81 yr (fourth column). The first slice of every column

represents the last output of the damping part of the simulation, with all the velocities reset to zero.

effect on the binary interaction should be relatively small. The evolution of the radial velocity vs.

radius profile is instead shown in Figure 2.9 (right panel). As soon as the simulation is started

without damping velocities develop in the model. Since the star is now readjusting, velocities are

chaotic inside the model. Bigger variations appear near the surface at the beginning, where the

star is sightly expanding. This behaviour reflects the changes that occur to the density profile.

Over the 7tdyn of the un-dampened simulation, velocities tend to decrease on the surface and the

oscillations propagate towards the core. At the end of the simulation the overall values of velocity

remain below ≃ 3 km s−1. Also in this case to ensure the reliability of the model we applied the

criterion in Equation 2.11, using the value of 3 km s−1 as a reference for the maximum velocity.

Hence:

f =
vnum,max

vKep

≃ 0.1 , (2.15)
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FIGURE 2.8: Zoom of the last panel of the right column of Figure 2.7. The color map has been changed to

enhance the cusps and the velocity arrows have been removed. The over-plotted circle has a radius of 100 R⊙.

and it is clear that in this case the velocities that develop in the star are not completely negligible.

However, we have carried out damping and relaxation simulations for longer times without a no-

ticeable increase in the final internal velocities. Additionally, increasing the resolution, e.g., using

AMR, does reduce the velocities leftover after stabilisation.

The values ofCs and vnum for each cell are shown in Figure 2.10, from which we estimated that

the simulation is free of artificial shocks. Finally, we checked the stability of the central point-mass

particle between the beginning of the damping simulation and the end of the relaxation simulation.

Due to the symmetry of the numerical processes that develop in the model the central point-mass

particle does not move during the simulation.

In conclusion, our relaxed stellar model retains its initial spherical symmetry, as well as the

giant density profile and it does not exhibit extreme numerical features. However the spurious

velocities that are still present after the relaxation are not as low as one might hope. In the future,

for more realistic simulations, which may be run for time-scales longer than a few dynamical times

we will have to further consider stellar stability. For the time being, this is the best model we can

achieve, so we progress to our binary, CE simulations.
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FIGURE 2.9: Left panel: the averaged radial density as a function of the radius at the beginning (solid blue) and

at the end (dashed red) of the un-damped simulation. Right panel: same as the left panel, but for the shell-averaged

radial velocity as a function of radius.

FIGURE 2.10: The same as Figure 2.6 but for the un-damped part of the simulation. In this case the radius of the

sphere enclosing the analysed cells is 150 R⊙.
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3
The effect of the initial separation on common

envelope simulations

Here we study the outcome of CE simulations where the initial orbital separation is larger than one

stellar radius. Several simulations from previous work have initial conditions whereby the com-

panion is close enough to the primary that the latter is overflowing its Roche lobe. We speculate

that letting the primary evolve to Roche lobe contact can alter the dynamics compared to a situation

where the two stars are initially in contact.

Most of this chapter was presented as a paper. The paper has been submitted to the Monthly No-

tices of the Royal Astronomical Society (MNRAS, http://mnras.oxfordjournals.org)

on 02/March/2016. We have edited out information that was already presented or that will be pre-

sented in the following chapters. The full submitted paper is available at

http://arxiv.org/abs/1603.01953. I am the lead author of the submitted paper and
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have carried out all of the tasks described therein except for the two SPH simulations carried out as

comparisons, that were performed by Master student Thomas Reichardt, although I had originally

set up a stable star within the SPH code PHANTOM, which had never been used to perform CE

simulations before.

3.1 Introduction

Here we analyse the effect of the initial orbital separation on the final outcome of CE simulations

by carrying out a set of simulations that parallel one of the simulations carried out by P12, where

a 0.88 M⊙ red giant branch (RGB) star interacts with its 0.6 M⊙ compact companion. In their

simulation the companion was initially placed near the surface of the giant. In one of our simula-

tions we place instead the companion at the approximate largest distance from which an orbiting

companion is likely to be brought into Roche lobe contact with a giant. It is expected that prior to

the start of the CE in-spiral phase, tidal forces will redistribute orbital energy and angular momen-

tum from the orbit to the primary. Eventually the primary would overflow its Roche lobe and start

mass transfer onto the companion, resulting in the rapid CE in-spiral. These phases are expected

to induce envelope rotation and expansion, changing the overall distribution of the envelope and

lowering its binding energy. The envelope would be lighter and easier to unbind, but the overall

strength of the gravitational drag (Ostriker 1999) may be smaller because of relatively lower den-

sities and smaller velocity contrasts. It is therefore not clear a priori what effect a larger initial

separation would have on the simulation.

The effect of rotation alone is the central investigation in Chapter 4. Here we hope to obtain

rotation as a side effect of the tidal forces. It is however important to highlight that the effect of

a rotating giant is difficult to determine from previous work, as only Sandquist et al. (1998) carry

out a rotating/non-rotating comparison. Hence, as a part of this chapter, we will also consider the

rotation we were able to induce in the primary. Considering instead the initial orbital separation, all

simulations from previous work started at a separation such that the giant was already overflowing

its Roche lobe and thus could not determine the effects of a more gradual expansion of the giant

envelope.

We carry out our simulations with grid (in AMR mode) and SPH codes. In so doing we
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compare different numerical techniques while making the most of what each has to offer. The

SPH code we use, PHANTOM (Price & Federrath 2010; Lodato & Price 2010), has never been

used for CE interaction simulations before, hence this work serves also to introduce PHANTOM to

this problem.

3.2 ENZO simulation setup

The simulations of P12 were run with a static uniform grid. ENZO already had AMR capabilities

when P12 performed their simulations, but they were not available for CE simulations. How-

ever, given the most recent updates applied to ENZO (Passy & Bryan 2014) we used the AMR

capabilities of the code, which guarantee better resolution where needed and a better usage of

computational resources.

Our simulation has been run with a cubic domain of 863 R⊙ = 4 AU on a side and a coarse grid

resolution of 128 cells per side. We adopt two levels of refinement with a refinement factor of two

(i.e., when a cell is refined it is divided by two along each dimension),in this way the smaller cell

size is 1.68 R Ł , as was the case in the 256 3 simulations of P12. The refinement criterion is based

on cell gas density. Cell densities above 1.38 × 108 g cm3 dictate a cell division. Additionally

ENZO adaptively de-refines the zones where a cell and its surrounding region no longer satisfy the

refinement criterion. For our choice of the smoothing length (see below), two levels of refinement

are the minimum to obtain a stable giant model with the best possible energy conservation. ENZO

has various numerical solvers for hydrodynamics, for all our simulations we adopt the ZEUS solver,

an implementation of the one used by the code ZEUS (Stone & Norman 1992a, Stone & Norman

1992b). The value of the artificial viscosity we use (roughly representing the number of cells over

which a shock is spread) is 2.

As we will explain in Section 3.2.1 and Section 3.2.2, we use point-masses, interacting only

gravitationally with both gas and other particles, to model the primary core and the companion.

These point-masses have a smoothing length associated with them, according to the prescription

of Ruffert (1993), and in this work with the term “smoothing length” we refer to the smoothing

length only of the point-mass particles. To ensure a reasonable degree of energy conservation in

the simulations, we use a smoothing length equal to 3 times the smallest cell size. This was found
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to be the optimal value by Staff et al. (2016a), who monitored the energy conservation in their CE

ENZO simulations as a function of smoothing length1. The smoothing length is described in detail

in Chapter 6.

The methodology followed to simulate our CE interaction consists of two main phases and is

described in the following sections.

3.2.1 Single star setup and stabilisation

As in P12 we model our binary system as an RGB primary and a smaller companion with compa-

rable mass, identifiable with a main sequence star or a compact object such as a white dwarf. The

resolution is not sufficient to resolve the primary’s core, nor the companion, so we model them as

dimensionless point-masses. The companion mass is M2 = 0.6 M⊙ (this choice will be discussed

in Section 3.2.2). The primary star is an extended object whose envelope is well resolved. We use

the same initial model as in P12: a star with an initial mass of 1 M⊙ evolved to the RGB with the

1D stellar evolution code EVOL (Herwig 2000). At this stage of the evolution the star has a radius

of R1 = 83 R⊙, a total mass of M1 = 0.88 M⊙ and a core mass of Mc = 0.392 M⊙.

The relevant ENZO physical quantities are interpolated from the 1D model to the 3D domain.

The star is stabilised in the domain, as described in Section 2.2, where we carried out the damping

for 10 tdyn time and the stabilisation for an additional 10. At the end of this process the initial 3D

stellar model is relaxed with respect to the 1D model as showed in Figure 3.1. The sharp density

jump at the edge of the star has been smoothed by the stabilisation process, and the star is now

slightly larger. The contour of density of 10−11 g cm−3 has a radius 100 R⊙. The central density is

also slightly reduced, but overall the original structure of the star is mostly preserved.

As an additional test of the stability (see also Section 2.2), the velocities that develop have been

compared to global and local velocity scales, such as the local sound speed and the dynamical

velocity, vdyn,1 = R1/tdyn,1 ≃ R1(G〈ρ1〉)
1

2 , where tdyn,1 is the dynamical time of the primary, G is

the gravitational constant and 〈ρ1〉 is the average density of the star. Additionally, we also compare

the gas velocities in the frame of reference of the primary to the orbital velocities of the binary

1I am co-author of the paper. The work I have done for it consisted of quantifying how non-negligible approxi-

mations in the numerical solver of Enzo result in reduced conservation due to poorly resolved steep, moving density

gradients.
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FIGURE 3.1: Radial density profiles of the primary RGB star used in our simulation, calculated with the 1D

EVOL code (blue curve), after mapping it in the ENZO computational domain but before the stabilisation process (red

curve) and after stabilisation (yellow curve). The change in slope at a radius of 3× 10−2 R⊙ marks the core-envelope

boundary of the 1D model, while the vertical line shows the size of an ENZO cell at the deepest level of refinement.

system in the frame of reference of the center of mass (see Section 2.2). The star was relaxed for

10 dynamical times and mostly maintained its internal structure (Figure 3.1). At each step during

the relaxation at most 7 per cent of the cells had velocities exceeding the lowest of the velocity

limits discussed above. Hence we expect the contamination of the CE interaction by the spurious

motions of the primary envelope to be negligible.

3.2.2 Binary system setup

The companion has a mass M2 = 0.6 M⊙, selected among those simulated by P12, also based on

the fact that their 0.6 M⊙ companion simulations were converged for the coarse grid resolutions

we are using. The orbital separation was the largest that would result in the evolution of the

orbital elements and eventually in a CE within a reasonable computational time: a = 300 R⊙

(corresponding to a period of 496 days = 1.36 yr). This value also corresponds to the approximate

maximum orbital separation from which a tidal capture of the companion may take place within

the evolution of a star similar to our primary (Madappatt et al. 2016). The system was placed

in circular orbit, where we gave the RGB star a Keplerian velocity v1 ≃ 12.4 km s−1 and the

companion point particle a velocity v2 ≃ 18.2 km s−1, with the point mass core of the primary

coinciding with the centre of the box. The initial configuration of the binary system is shown in
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FIGURE 3.2: Density slice on the x− y plane at z = 0, showing the entire computational domain with the initial

setup of the binary simulation. The arrows show the velocity field; vectors are scaled to the maximum value of the

velocity (the orbital velocity of the companion or 18.2 km s−1). Note that also the point-mass particles representing

respectively the core of the primary and the companion are given Keplerian velocities, even if arrows are not present

in the plot.

Figure 3.2.

In our simulation the primary is driven into Roche lobe contact (the Roche lobe radius of the

primary is 124 R⊙ at an orbital separation of 300 R⊙, using the approximation of Eggleton 1983,

but noting it to be valid in the case of synchronised orbits, which is not our case) and eventually

a CE interaction by the pre-contact tidal interactions in a relatively short time-scale, much shorter

than realistic tidal interaction time-scales. The reason for this difference is that the strength of the

interaction is sensitive to departures of the stellar envelope distribution from spherical symmetry.

Inserting the companion in the computational domain generates a small distortion of the primary’s

envelope resulting in a set of oscillations, which exert a relatively strong tidal force. Paradoxi-

cally, this larger than average tide results in shortening of the orbital separation within reasonable

computational times, something that would not be so if the tide were better reproduced.

We do not apply any initial rotation to the primary. However, we achieve a spinning star by

spin-orbit interaction. The initial orbital separation is the maximum that would allow a capture of

the companion into a CE interaction during this phase of the evolution of the star. This means that
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FIGURE 3.3: Left panel: evolution of the separation, a, between the two particles representing the core of the

primary and the companion, over the whole simulation time. The blue line represents the actual separation computed

every 0.01 year. The red line represents the separation averaged over one orbital cycle. The black vertical lines

represent, from left to right, the beginning of mass transfer, the beginning of the fast in-spiral phase and the end of the

fast in-spiral phase. Right panel: evolution of the orbital decay, computed on the separation averaged over one orbital

cycle.

the total angular momentum in the system, which is increasingly transferred from the orbit to the

envelope of the giant, is approximately that which would be expected for this system.

3.3 Results

3.3.1 Orbital Separation

The separation between the point masses as a function of time and the orbital decay rate are shown

in Figure 3.3. To determine the time when the mass transfer phase begins, we calculated the Roche

lobe surface around the primary using the total potential field computed in the simulation. Then,

we checked whether the cells contained within the primary’s Roche lobe, including the first cell

near the inner Lagrangian point in the companion’s Roche lobe, have a density greater than the

vacuum’s density (6.93 × 10−12 g cm−3). Computed in this way, the beginning of the contact

phase takes place after about 547 days ≈ 1.5 yr from the beginning of the simulation. During this

pre-contact phase, the orbital separation has been reduced from 300 to 265 R⊙, at which point the

primary’s Roche lobe radius is 108 R⊙, similar to the stellar radius at the start of the simulation.

The mass transfer phase lasts until the companion is engulfed in the envelope of the primary,
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at which point the rapid in-spiral phase begins. We define the start of the rapid in-spiral phase

as the time when the equipotential surface passing through the outer Lagrangian point L2 has a

density greater than the vacuum’s density in each of its cells. This condition is satisfied after about

1515 days or 4.2 yr from the beginning of the simulation.

The rapid in-spiral phase is observed as a steepening of the separation vs time curve, which

denotes a regime change. This phase lasts 324 days and ends at 1840 days, or 5.0 yr from the

beginning of the simulation, when the orbital separation stabilises. We have used the same criterion

as P12 and Sandquist et al. (1998), who defined the end of the rapid in-spiral phase when −ȧ <

0.1(−ȧmax), where ȧ = da/dt. This point is somewhat arbitrary because it depends on how

steep the in-spiral is. In our simulations, the in-spiral is much steeper than that witnessed in the

simulations of Sandquist et al. (1998) and P12, as can be seen by comparing our Figure 3.3, lower

panel with their figures 4 and 5, respectively.

The rapid in-spiral phase in our simulation lasts approximately 10 per cent longer than for the

equivalent simulation of P12, and longer still if we acknowledge that at the end of the in-spiral

phase as defined above, the separation is still reducing considerably. This could be due to the fact

that our donor star is puffed up by the interactions in the previous phases, hence it is less dense.

The delayed rapid in-spiral and its longer duration are in line with the results obtained by P12 in

their simulations with the companion star slightly away from the primary surface rather than in

contact. The rapid in-spiral time-scale is 65 per cent of the initial period, in line with theoretical

expectations (Paczynski 1976).

The orbit starts to become elliptical during the rapid in-spiral phase. Using the maxima and

minima in the orbital separation evolution after the end of the rapid in-spiral phase, we obtain an

eccentricity e = 0.12, in agreement with what was obtained by P12.

The final separation achieved (af ) is a crucial output of the CE simulations. P12 identified that

CE simulations have final separations that not only tend to be larger than observed (Zorotovic et al.

2010 and De Marco et al. 2011), but that depend on the companion/primary mass ratio (q), a ten-

dency not seen in the observations. By using the average separation (red line in Figure 3.3) we

estimated the value of the separation reached at the end of the rapid in-spiral phase to be 36 R⊙,

using the criterion described above, and 20 R⊙ if we take the average value at the end of the sim-

ulation (see Table 3.1, where we report the initial conditions and final outcomes for all past CE
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FIGURE 3.4: Final orbital separation vs mass ratio q = M2/M1 for observed post-CE systems (Zorotovic et al.

2010 and De Marco et al. 2011, black dots) and for simulations (Sandquist et al. 1998, green circles; Ricker & Taam

2012, cyan triangle - note that here we report the separation of the simulations of Ricker & Taam 2012 which is lower

than reposted in Ricker & Taam 2008 where the in-spiral had not come to an end; the 2563 ENZO simulations of P12

are shown as yellow squares; Rasio & Livio 1996, magenta pentagon; PHANTOM simulations, blue hexagons, see

Section 3.4; Ohlmann et al. 2016, grey diamond; Nandez et al. 2015, pink cross), together with the results of our new

ENZO simulation (yellow star). Note that for our work and for the simulations of Sandquist et al. (1998) the definition

of the final separation may lead to a slightly larger value than for other simulations. See text and Table 3.1.

simulations including at least a giant). The separation at the end of the simulation is ≃ 4 times the

smoothing length, indicating that the end of the in-spiral is not affected by the smoothing-length

and resolution. Our values of the final separation are larger than those of P12, which were 19 and

16 R⊙, for the criterion-defined and at the end of the simulation, respectively. In other words,

the final separation is larger by 25 per cent for the ENZO simulation starting with a larger initial

separation. We plot final separations in Fig. 3.4, and we defer further discussion on the issue of

final orbital separation to Section 3.5.
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M1 M1,c R1 Giant M2 q ai/R1 Ω/ω1 R1/R1,RL Code2 Resolution τ 3run a4f M5
Unb Ref.6

(M⊙) (M⊙) (R⊙) (M⊙) (Part./R⊙) (day) (R⊙) (%)

4 0.7 66 RGB 0.7 0.18 1.6 1(y) 1.3 SPH 500k 124 1(e) 10(?) 1

3 0.7 200 AGB 0.4 0.13 1.4 1(n) 1.3 n-grid 2.4 800 4.4(a) 41(?) 2

3 0.7 200 AGB 0.4 0.13 1.4 0 1.3 n-grid 2.4 800 4.7(a) 46(?) 2

5 1.0 200 AGB 0.4 0.08 1.4 1(n) 1.2 n-grid 2.4 800 4.4(a) 21(?) 2

5 1.0 200 AGB 0.6 0.12 1.4 1(n) 1.3 n-grid 2.4 800 4.8(a) 45(?) 2

5 0.94 354 AGB 0.6 0.12 1.5 0 1.2 n-grid 2.4 800 8.9(a) 46(?) 2

1.05 0.36 31 RGB 0.6 0.57 2.0 0.95(n) 1.2 a-grid(F) 0.29 60 9(e) 26(t) 3

0.88 0.39 85 RGB 0.1 0.11 1 .0 0 1.8 u-grid(E) 1.7 1000 5.7(a) / 4.2(e) – 4

0.88 0.39 85 RGB 0.15 0.17 1.0 0 1.9 u-grid (E)1.7 1000 6.9(a) / 4.7(e) – 4

0.88 0.39 85 RGB 0.3 0.34 1.0 0 2.1 u-grid(E) 1.7 1000 11(a) / 9.0(e) – 4

0.88 0.39 85 RGB 0.6 0.68 1.0 0 2.4 u-grid(E) 1.7 1000 19(a) / 16(e) – 4

0.88 0.39 85 RGB 0.9 1.02 1.0 0 2.6 u-grid(E) 1.7 1000 26(a) / 22(e) – 4

0.88 0.39 83 RGB 0.1 0.11 1.0 0 1.8 SPH(S) 500k 1050 6.1(a) / 5.7(e) 2(t) 4

0.88 0.39 83 RGB 0.15 0.17 1.0 0 1.9 SPH(S) 500k 950 7.3(a) / 7.8(e) 6(t) 4

0.88 0.39 83 RGB 0.3 0.34 1.0 0 2.1 SPH(S) 500k 750 11(a) / 10(e) 8(t) 4

0.88 0.39 83 RGB 0.6 0.68 1.0 0 2.4 SPH(S) 500k 950 21(a) / 18(e) 10(t) 4

0.88 0.39 83 RGB 0.9 1.02 1.0 0 2.6 SPH(S) 500k 600 27(a) / 25(e) 10(t) 4

1.98 0.38 49 RGB 0.99 0.5 1.0 0.95(n) 2.3 m-mesh 0.07-0.01 120 4.9(e) 8(t) 5

1.50 0.32 267 RGB 0.36 0.24 2.0 0 1.0 SPH 200k (?) 0.91(e) 100(r)8 6

0.88 0.39 100. RGB 0.6 0.68 3 0 0.81 a-grid(E) 1.7 2000 36(a)/20(e) 16(t) 7

0.88 0.39 93 RGB 0.6 0.68 1.1 0 2.2 SPH(P) 2.3m 1850 21(a)/16(e) 12(t) 7

0.88 0.39 91 RGB 0.6 0.68 2.4 0 1.0 SPH(P) 300k 5050 29(a)/22(e) 15(t) 7
1Stellar spin frequency as a function of orbital frequency, with an indication of whether the star was stabilised in its rotating

configuration (y) or not (n) before the start of the simulation.
2SPH: smooth particle hydrodynamics; u-grid: static uniform grid; n-grid: static nested grids; m-mesh: moving mesh; a-grid: adaptive mesh

refinement grid; F: FLASH, E: ENZO, S: SNSPH, P: PHANTOM.
3 Information not provided (?).
4Rounded to 2 significant figures, calculated either at the end of the simulation (e) or at a time defined by the formula in Section 3.3.1 (a).
5 Calculated by including thermal energy (t), not including thermal energy (k), information not provided (?) or including recombination

energy (r).
61: Rasio & Livio 1996. 2: Sandquist et al. 1998. 3: Ricker & Taam 2012. 4: P12: Passy et al. 2012. 5: Ohlmann et al. 2016.

6: Nandez et al. 2015. 7: This work.
7 This is the Roche lobe radius also corresponding to the SPH radius in their simulation.
8 Note that the same simulation run without recombination energy unbinds 50 per cent of the envelope, although the authors of that

simulation do not present data to illustrate their statement.

TABLE 3.1: A comparison of initial conditions and final outcomes of previous common envelope simulations that included at least one giant star.
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3.3.2 Envelope ejection

To determine the extent to which the envelope is unbound we determined whether gas has total

energy larger than zero. The total energy can be calculated including or excluding thermal en-

ergy, where the former prescription results in more unbound gas. Ivanova & Chaichenets (2011)

discussed how it is the enthalpy rather than the thermal energy that needs to be included when de-

termining whether a gas parcel is bound or not. Using enthalpy instead of thermal energy increases

the unbound mass very marginally.

In Figure 3.5 we present density slices in the orbital and perpendicular planes. In the first and

middle columns we compare the distribution of unbound gas both including thermal energy (left

column) and excluding thermal energy (middle column), to distinguish between gas acceleration

and gas heating. The initial unbinding event (first two rows, left columns) happens because of

heating of the gas falling into the potential well of the companion during the mass transfer phase,

which is why this unbound material is not recorded on Figure 3.5, middle column. This unbound

material has very low mass. The heating of the gas in the unbound zones can be seen in Figure 3.6,

where we plot the temperature distribution. Note also that the very hot zone outside of the envelope

is the due to the presence of the low-pressure, high-temperature vacuum. Later, during the rapid

in-spiral phase (Figure 3.5, last two rows, left and middle columns) far more mass is unbound

because it is accelerated above the escape velocity as demonstrated by the similarity of the left

and central columns. In this case this behaviour can be seen by plotting the velocity distribution

(Figure 3.7). The masses of the unbound gas inside the simulation box obtained by including or

excluding Etherm are listed in Table 3.2.
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FIGURE 3.5: Left panel, left column: density slices perpendicular to the z axis in the orbital plane after (from top

to bottom) 887, 1381, 1669 and 1724 days from the beginning of the simulation. The point-mass particles representing

the core of the primary and the companion are shown as black dots, while the white regions represent the unbound

gas. The size of the black dots is not representative of any property of the point masses and is chosen only to highlight

them. Left panel, right column: same as the left column, but excluding thermal energy (Eth) in the computation of the

bound/unbound mass elements. Right panel, left and right columns: same as for the left panels, but the density slices

are taken perpendicularly to the orbital plane, at x = 0.



3.3 RESULTS 53

−2

−1

0

1

2

y
(A

U
)

−2

−1

0

1

2

y
(A

U
)

−2

−1

0

1

2

y
(A

U
)

−2 −1 0 1 2
x (AU)

−2

−1

0

1

2

y
(A

U
)

104

105

106

107 −2

−1

0

1

2

z
(A

U
)

−2

−1

0

1

2

z
(A

U
)

−2

−1

0

1

2

z
(A

U
)

−2 −1 0 1 2
y (AU)

−2

−1

0

1

2

z
(A

U
)

104

105

106

107

T
em

p
er
at
u
re

(K
)

FIGURE 3.6: Same as the left and right panels of Figure 3.5, but the showing the temperature distribution instead.
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FIGURE 3.7: Same as the left and right panels of Figure 3.5, but the showing the velocity distribution instead.
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The evolution of the unbound gas can be followed only inside the simulation box, due to the

grid nature of ENZO. However, we estimated whether the mass that leaves the box is bound or

unbound in the following way. We calculated the fraction of unbound gas contained within the box

boundary (i.e., within the six, one cell thick, box faces) and we assumed it to be representative of

the fraction of unbound gas between code outputs (which take place every 3.65 days = 0.01 yr).

We then multiplied this fraction by the mass that leaves the box between code outputs.

The procedure we adopted above is computationally cheap, since it is entirely done during

post-processing of the simulation data. However, to estimate the goodness of this procedure, we

performed a one-off simulation using the “inline” Python capability of ENZO. This option allows

us to measure user-defined quantities at each coarse grid time-step of the simulation at the expense

of simulation time and works by coupling ENZO with the YT data analysis software (Turk et al.

2011). With this option turned on, ENZO stores its relevant arrays in memory in such a fashion

that YT can read them as they were saved on the disk, then executes a script (written by the user)

that analyses the data. More detailed information on how this works can be found in Chapter 2 and

Bryan et al. 2014.

In our script we select all cells defining the six faces of our cubic simulation box. For each

of these faces we then compute the average component of the velocity directed perpendicularly

outward, 〈vout〉, for all those cells having a velocity component directed outwards (whose fraction

is fout). With these quantities it is possible to obtain an estimate of the fractional volume of the

face that will be leaving the box during the next time-step as

Vlost ≃ s〈vout〉fout∆t , (3.1)

where s is the surface area of the face and ∆t is the time-step.

Finally, from this value one can estimate the bound and unbound mass lost from the box as











mlost,bound ≃ Vlost
V
mfbound

mlost,unbound ≃ Vlost
V
m(1− fbound)

, (3.2)

wherem is the total mass in the face, V is the face volume and fbound is the fraction of bound cells,
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determined by considering the cell’s total energy according to one of the prescriptions discussed

in Section 3.3.2. This procedure has the advantage of recording the mass losses from the domain

at each coarse-grid time-step, therefore with a cadence abundantly superior with respect to the one

with which data are saved to disk.

It is important to remark that the simulations are already slowed down when the “inline” Python

option is activated. In addition the particular script we run is especially expensive in terms of

computational time, this makes running every simulation with this option turned on beyond our

computational possibilities. For this reason we only run one simulation of this type, with the same

setup of the one described in the published paper, but with uniform, static grid to further reduce

the load and the time used. We then applied the approximated method on the post-processed data

and compared the results. The outcome of the comparison showed that the bound and unbound

fractions are very similar using either the “inline” Python or interpolating between the dumps saved

on disk by the code. Therefore we used the second procedure on the published data.

In Figure 3.8 we present the various components of the mass (total, bound and unbound) for

both the gas inside the simulation domain (left panel) and the gas that accumulates outside of the

domain (right panel). looking at the latter it is possible to see that our approximation is consistent

with the total amount of mass that leaves the box during the simulation, shown in Figure 3.8 (left

panel). The first unbound mass leaves the box at approximately 1500 days, at the onset of the rapid

in-spiral, but the bulk of the mass flows out during the rapid in-spiral phase (between approximately

1750 and 1900 days). The total mass unbound in the simulation amounts to 8×10−2 M⊙, or 16 per

cent of the initial envelope mass. The unbound mass is 14 per cent, if we do not include thermal

energy and 17 per cent, if we use the enthalpy as suggested by Ivanova & Chaichenets (2011). P12

found that 10 per cent of the initial envelope mass was unbound, which should be compared to our

16 per cent. This increase likely represents the effect of a larger initial separation.

Most of the ejecta is expected to flow away close to the orbital plane, where the gas is accel-

erated by the orbiting particles. This was already borne out by the simulations of Sandquist et

al. (1998) and is clearly seen in Figure 3.5. Figure 3.9 demonstrates how the envelope is ejected

around the binary over time. We divide the computational domain into six pyramids centred at the

centre of the box and whose bases are the six faces. We plot the mass in pairs of pyramids aligned

with each of the three directions, x, y and z. Initially the mass is equally distributed in the three
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FIGURE 3.8: Left panel: evolution of the gas mass inside the simulation box over time. The blue line represents

the value of the initial gas mass contained in the box and is plotted for comparison, while the green line shows the

evolution of the total mass contained inside the box. The red and cyan lines show, respectively, the bound and unbound

components of the mass. Right panel: cumulative mass of the gas flowing out of the simulation box over time. Line

colours have the same meaning as for the upper panel. The black vertical lines in both panels correspond to the

beginning and end of the rapid in-spiral and both the plots are limited to the part of the simulation where significant

mass is lost from the box.

pairs of pyramids as the star resides at the centre of the box. Later the mass in the pyramid pairs

oscillates as the giant moves along its orbit. The decrease of the peaks in the green line during the

fast in-spiral phase in Figure 3.9 marking approximately the completion of a full orbital revolution,

demonstrating a decrease in the mass contained in the z direction in favour of mass contained in

the other two directions. The decreasing amplitude of the oscillations over time indicates that the

gas distribution becomes more and more independent of the orbital motion of the two particles, as

Time Munb (Ekin + Epot + Etherm) Munb (Ekin + Epot)

(days) (M⊙) (M⊙)

887 1.61× 10−3 7.64× 10−6

1381 1.58× 10−3 4.89× 10−5

1669 1.56× 10−2 6.28× 10−3

1724 3.72× 10−2 2.93× 10−2

TABLE 3.2: Gas mass unbound inside the simulation box at various times and for the two possible

prescriptions, including thermal energy and excluding thermal energy.
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FIGURE 3.9: Gas mass inside the simulation domain vs time for the gas located in six pyramids whose bases are

the six faces and whose vertexes are at the centre of the domain. The two pyramids along the x axis are in blue, along

the y axis are in red and along the z axis are in green. The cyan line shows the sum of the x and y contributions to

highlight the behaviour of the mass ejection in the orbital plane. The black vertical lines show the estimated beginning

of the Roche-lobe overflow phase and the beginning and end of the fast in-spiral phase.

the interaction proceeds. Towards the end of the CE, as the oscillations cease, more mass is be-

ing ejected out of the simulation box highlighting how the fast in-spiral rapidly lifts the envelope,

disrupting the primary star.

3.3.3 Tidal bulges

As explained in Section 3.2.2, the pre-contact phase in our simulation takes place over much shorter

time-scales than it would in nature. The short pre-contact time-scale observed in our simulation

is due to deformations created on the primary by the insertion of the companion into the compu-

tational domain that are likely larger compared to those expected from the theory of equilibrium

tides.

A simple analytical estimate of the mass, δM1, contained in the tidal bulges of the primary ,

for equilibrium tides, can be obtained from Zahn (2008):

δM1 ≤M2

(R1

a

)3

, (3.3)

where M1, M2, R1 and a are the masses of the primary, secondary, the radius of the primary and

the orbital separation, respectively. For the purpose of this calculation we only vary a with time,
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FIGURE 3.10: Mass in the tidal bulges of the primary star overtime during the pre-contact phase, estimated from

the ENZO simulation data (solid blue line), from the PHANTOM simulation data described in Section 3.4 (dashed blue

line) and from the analytical formula (dotted red line).

while leaving R1 constant. We compared this analytical estimate with the bound mass residing

outside the initial equilibrium radius of the primary.

As shown in Figure 3.10 (solid blue line), the insertion of the companion into our ENZO simulation

triggers some oscillations, on a time-scale of the order of the dynamical time of the star (≃21 days).

Over the pre-contact phase there is also a gradual expansion of the star, seen as an increasing trend

of the mass outside its original volume. Once mass transfer starts at ≃ 550 days, new forces are

at play that overwhelm the tidal torque. Figure 3.10 also shows that the mass outside the original

stellar volume in the ENZO simulations does not exceed substantially the theoretical value (note

that the dashed dotted line is calculated using the PHANTOM simulations presented in Section 3.4

and will be discussed at that time). Its distribution is in the shape of two small opposite bulges

that are initially aligned with the direction of the companion, which disappear and reappear at 90

degrees to the original direction. This generates the relatively strong torques that result in the fast

decrease of the orbital separation during the pre-contact phase.
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3.3.4 Evolution of the gas velocities and density in proximity to the compan-

ion: the end of the in-spiral

The mechanism behind the energy and angular momentum exchange that drives the in-spiral is

gravitational drag (Ricker & Taam 2012). Gravitational drag is caused by the gas which flows past

the moving body (in our case the companion star), forming a wake with higher density behind it that

gravitationally pulls on it, slowing the body down. The gravitational drag experienced by a body

immersed in a fluid depends on the body’s mass, the fluid density, the velocity contrast between the

body and the fluid and on the Mach number of the body. Approximations for the gravitational drag

are given by Iben & Livio (1993, Fdrag ∝ (M2ρv
2
rel)/(v

2
rel + c2s), for the subsonic motion regime)

and by Ostriker (1999) who calculated a more detailed formula, carefully considering the effects

of the Mach number.

It is fundamental to determine whether simulations accurately reproduce the effects of grav-

itational drag because this determines in turn when the companion in-spiral terminates and, as a

result, the amount of orbital energy deposited. Is the end of the in-spiral due to the decreasing

density around the particles, the co-rotation of the surrounding gas or a change in the Mach regime

(as was the case in the simulations of Staff et al. 2016b)? Does the density gradient affect the force

as questioned by MacLeod & Ramirez-Ruiz (2015)? How does the interplay of resolution and

smoothing length affect the simulation (Staff et al. 2016a)? It is well known that the particles will

not approach closer than approximately two smoothing lengths, effectively because their potentials

are flat within that distance. However, less clear are the effects that not resolving a radius of the

order of the Bondi radius (Bondi 1952) around the particles will have on the drag force (Staff et al.

2016b). Finally, the gas trapped in the potential of the particles and travelling with them, gives

the particles a larger mass and an effective “size” and this could affect both the gravitational and

hydrodynamic drags.

In Figure 3.11 we display the evolution of the density profile between the two cores, showing

only the part between the particles (left panel), or the entire computational domain (right panel).

The density profile changes smoothly at the beginning of the simulation, with the primary expand-

ing, but it then transitions into a phase of more rapid change at the onset of the rapid in-spiral

phase, when the profile flattens and then becomes U-shaped, showing peaks at the locations of
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FIGURE 3.11: Left panel: density profile between the core of the primary (located at zero in the abscissa) and

the companion (each black dot represents the density at the location of the companion). The colour legend shows the

time, in days, corresponding to each line. Profiles are taken, for clarity, every 110 dumps of the code. Right panel:

same as the top panel, but extended to the whole box. The primary’s core is represented by a large black dot while the

companion is marked as a smaller dot.

both the primary’s core and the companion with densities of 2.8 × 10−6 g cm−3 for the primary

and 4.6 × 10−6 g cm−3 for the companion. The underlying density is of the order of 10−6 g cm−3

at 365 − 730 days after the start of the simulation. These values are comparable to those of P12

(their figure 13, middle panel).

The gas density in the proximity of the particles at the end of the simulation is high, and is

unlikely to be the cause of the observed slowing down of the in-spiral. From the density profiles

Figure 3.11 (right panel) it is clear that during the evolution of the system some of the envelope

accumulates around the companion. The accumulation of mass is negligible until the beginning

of the rapid in-spiral phase, during which it starts to increase because the companion is plunging

into the denser parts of the envelope. The companion local density is a factor of a few larger than

the density 10-20 R⊙ away from it. The density gradient underlying the density peak near the

companion is small and likely unimportant to the in-spiral.

In Figure 3.12 (left panel) we plot the companion’s speed, the average local gas velocity pro-

jected in the direction of motion of the companion and the average local gas velocity projected in

the direction perpendicular to the motion of the companion, while in the right panel we plot the

companion’s Mach number and the normalised average density near the companion. To calculate

the parallel and perpendicular ambient gas velocities we averaged the respective projections for all
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cells within a volume with radius 10 R⊙ from the companion. The local density was calculated by

averaging the density inside the same volume and the Mach number by averaging the gas sound

speed within the same volume.

As was the case for the simulation of P12, the entire journey of the companion is subsonic,

reaching at most a Mach number of 0.6. This is different from the simulations of Staff et al.

(2016b), where the initial part of the in-spiral was supersonic and the end of the in-spiral phase

appeared to coincide with the transition between a super-sonic and sub-sonic regimes. No such

transition occurs here. In our simulation no shocks are observed and no shock heating can take

place as was instead the case in the simulations of Sandquist et al. (1998).

On the other hand, a regime change does take place at the approximate time of the end of the

in-spiral, at ∼1850 days. The density peaks at that time, due to the fact that first the companion

plunges into a region of higher density, but as the in-spiral stalls, that volume is somewhat evac-

uated as gas flows outwards. The velocity of the companion, which increases during the in-spiral

due to the decreasing orbital separation, approximately levels off after the in-spiral. The peaks

and troughs are due to the orbit becoming eccentric early in the in-spiral. The local gas velocity

parallel to the companion’s motion increases as the local gas is dragged along with the compan-

ion. Corresponding with the approximate end of the in-spiral the local gas is spun up to almost

co-rotate with the companion, which greatly reduces the drag. At that time the gas perpendicular

velocity is seen to increase somewhat, as an outflow takes place (which acts to decrease the local

density). During the in-spiral, the perpendicular gas velocity local to the companion decreases

overall, as the companion plunges into layers that are harder and harder to eject. The peak at 1700

days corresponds with the high companion velocity peak taking place at the first periastron of the

now-eccentric orbit. At the same time, much of the unbinding is taking place at the location of the

companion, as can be seen in Figure 3.5 (third row).

To confirm that this trend is not a result of the size of the sphere used to estimate our quantities,

we carried out the same test with spheres of 5 R⊙and 20 R⊙. Both show results similar to Figure

3.12 with the only exception that the gas velocity parallel to the companion direction of motion is

overall larger and close to the companion’s velocity for the smaller sphere, as expected. We also

note that at the beginning of the in-spiral the local gas has a rotation velocity of 10-20 km s−1,

which is a range of values expected for giants spun up by a companion.
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FIGURE 3.12: Left panel: companion velocity (thicker blue line), local average gas velocity projected on the

direction of the companion velocity (
〈

vgas,‖
〉

, thick green line) and local average gas velocity perpendicular to the

direction of the companion velocity (〈vgas,⊥〉, thin cyan line). The three lines are smoothed with a Savitzky-Golay

filter, using 31 coefficients and 7th order polynomials. Right panel: companion Mach number (thick blue line) and

normalised average gas density in the companion’s proximity (〈ρ〉 / 〈ρ〉max, thin green line). All plots start at the

onset of the rapid in-spiral, the vertical solid lines represent the estimated end of the rapid in-spiral and the dashed

ones mark the point of maximum density.

3.3.5 Angular momentum and energy conservation

Energy and angular momentum were excellently conserved by the SPH simulations of P12 (to a

1 percent level). They did not check the conservation level of their equivalent ENZO simulations,

because of the grid nature of the code which leads to loss of mass off the simulation box and be-

cause their ENZO simulations showed similar results to the SPH ones, which implied a reasonable

level of energy conservation.

As introduced in Section 3.2, Staff et al. (2016) quantified the level of energy non-conservation

in grid based simulations using ENZO and determined that conservation is improved by selecting a

larger smoothing length of 3 cells rather than what was used by P12 (1.5 cells, see also Chapter 6).

The highest resolution in our AMR simulation is the same as the resolution in the unigrid simula-

tions of P12. However, we have adopted the larger smoothing length of 3 cells, which must have

weakened the gravitational interaction somewhat compared to the simulations of P12.

In Figure 3.13 and 3.14 we plot various components of the angular momentum and energy,

respectively, in the computational domain as a function of time. The behaviour of some of the

components is driven by mass loss out of the computational domain, which starts at ∼260 days
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FIGURE 3.13: Evolution of the angular momentum components with respect to the center of mass of the system

for gas, particles and their sum, inside the simulation domain. The blue curves represent the x angular momenta,

the red curves the y angular momenta and the green curves the z angular momenta. In all three cases the solid

line represents the particles + gas, the dashed lines the particles and the dotted line the gas. The black vertical line

represents the moment when the envelope mass starts leaving the box (≃ 260 days).

(some of the low density ambient medium outflows before, but has negligible mass), but is par-

ticularly heavy during the rapid in-spiral phase. In Figure 3.13 we see that, as expected, the z

component of the angular momentum dominates over the other components and that most of the

angular momentum resides in the point masses, with an initial value of ∼ 3.5 · 1052 g cm2 s−1. Be-

fore 260 days from the beginning of the simulation, only negligible mass and angular momentum

are leaving the simulation box. The particles’ z angular momentum decreases during the in-spiral.

Some of that is transferred to the gas. Five percent of the angular momentum is lost due to non-

conservation, between the beginning of the simulation and 260 days, while 10 percent is lost over

the first 3 years, a time at which substantial amount of mass starts leaving leaves the box. This

value is larger (as expected) than for the SPH simulation of P12 and similar to the 8 per cent of

Sandquist et al. (1998), who estimated it over ≃ 1000 days of their simulation.

Estimating the level of conservation of energy is even more difficult than for the angular momen-

tum, because the low density medium filling the volume outside the star has a very high thermal

energy, even if its total mass is negligible. Even before envelope mass starts flowing out of the

computational domain at 260 days, a small amount of this high energy gas flows out of the box
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FIGURE 3.14: Components of the energy as a function of simulation time in the domain: total energy (thick black

line), total kinetic energy (solid black line), total potential energy (dashed black line), total (= gas) thermal energy

(dotted black line), gas kinetic energy (solid red line), gas potential energy (dashed red line), point-mass kinetic (solid

yellow line), point-mass to point-mass potential (dashed yellow line) and point-mass to gas potential (dashed cyan

line). The black vertical line represents the moment when the envelope mass starts leaving the box (≃ 260 days).

taking with it an energy of ≃ 1.3 × 1045 erg (or ≃ 11 percent of the initial total energy). This be-

haviour is clear in Figure 3.14: the total energy at the beginning of the simulation is dominated by

the thermal energy of the “vacuum” and by the potential energy between the point mass particles

and the gas, with the former continuously decreasing as some of the low density medium flows out

of the box; this decrease is mimicked by the total energy at times greater than 260 days. Before

this threshold is passed the code conserves energy to the 4 percent level, similar to the result of

Sandquist et al. (1998).

3.4 Comparison with PHANTOM simulations

Alongside the ENZO simulation we carried out a set of simulations using the SPH code PHANTOM

(Price & Federrath 2010; Lodato & Price 2010; Chapter 2).

In PHANTOM we map the same 1D stellar model used for the ENZO simulations, but in this case

the SPH particles are distributed so as to reproduce the entire stellar mass distribution, inclusive

of the core. This generates a very high particle density at the location of the core that would

slow down the simulation excessively. Therefore, similarly to the ENZO procedure, we use point-

masses (called sink particles in the phantom nomenclature), interacting only gravitationally with
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both gas and SPH particles, to model the primary core and the companion. These sink particles

were made to accrete all SPH particles within a radius of 0.03 R⊙. This quickly generated a “core”

with a mass of Mc=0.392 M⊙. The giant was stabilised as was done for the ENZO simulations.

The companion particle was placed in the computation with a mass of 0.6 M⊙. Both core and

companion particles were given a softening length2 of 3 R⊙. In all our PHANTOM simulations we

use a default number of neighbours equal to ≃ 60, adaptive softening for the SPH particles and a

Courant factor of 0.4. For the shock capturing we use an artificial viscosity equal to 10% of the

particles’ sound speeds. Finally, note that the number of particles mentioned for all the phantom

simulations in the following sections is the actual number of particles after the accretion process

(e.g., the convergence test using 2.3×106 particles (see below) was actually initialised with 4×106

particles). The giant was then damped and stabilised as was done for ENZO.

Our first simulation, using 2.3 million particles, has similar parameters to that carried out by

P12 with a companion mass of 0.6 M⊙ and is used as a verification step to ensure that PHANTOM

performs similarly to ENZO and the SPH code used by P12, SNSPH (Fryer et al. 2006). This

simulation’s outcomes were compared directly with the SPH simulation “SPH2”, which in that

study was carried out with the SPH code SNSPH using 500 000 SPH particles. Comparisons were

carried out for all energy and angular momentum quantities (see figures 8 and 9 in P12), separation

evolution (their figure 4) and were found to be in all cases within 10 per cent of one another. Small

differences can be ascribed to different resolution, differences in the codes and to a somewhat

different stellar setup (more below). We carried out a convergence test using 3 resolutions. In

Fig. 3.15 we show the evolution of the orbital separation for simulations using 23, 000, 230, 000,

and 2.3 million particles, respectively. The factor of 10 difference between the resolutions is just

larger than the minimum resolution step needed for such a test. While this test shows that we

have not yet achieved formal convergence, the change in orbital evolution with resolution is much

smaller between the higher two resolutions than between the lower two, indicating converging

behaviour.

The final separation we obtain with PHANTOM is 21R⊙ at ∼ 180 days (the end of the dynamical

in-spiral as defined above), 16 R⊙ at 1000 days and 14 R⊙ at the end of the simulation at 1500

2The softening length in PHANTOM is equivalent to the smoothing length in ENZO. PHANTOM reserves the term

“smoothing length” for the size of the smoothing kernel, such that each SPH particle has a smoothing length.
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FIGURE 3.15: Evolution of the separation, a, between the two particles representing the core of the primary and

the companion, used to show the convergence for the PHANTOM code. The simulation reproduces the one from P12

with the same companion’s mass as this work (M2 = 0.6 M⊙). The number of SPH particles used is: 2.3×104 (blue),

2.3× 105 (red), 2.3× 106 (yellow). The inset shows a 10× zoom on the end of the rapid in-spiral phase.

days. The first two values can be compared to 21 R⊙ at the end of the in-spiral and 18 R⊙ at 1000

days for simulation SPH2 of P12. The mass unbound in our PHANTOM simulation is ∼ 12 per

cent of the envelope mass, compared to approximately 10 per cent for SPH12 of P12. We think

that these differences are mainly due to the differences in resolution and the sightly different initial

separation of 100 R⊙ that we had to adopt because the relaxed star in PHANTOM has a larger radius

(R = 93 R⊙; defined using the volume-equivalent definition of Nandez et al. 2014) compared to

the radius of the star stabilised in simulation SPH2 of P12 (R = 83 R⊙).

We then carried out a second PHANTOM simulation with a larger initial separation, to inves-

tigate whether a larger initial separation leads to a wider final separation. Our new PHANTOM

simulation has an initial separation of 218 R⊙, the distance at which the primary fills its Roche

lobe. Ideally we would have used a larger separation of 300 R⊙, like for the ENZO simulation

discussed here. However, the orbital evolution of a PHANTOM simulation with an initial separation

of 300 R⊙ was too slow to reach the common envelope phase in reasonable computational times.

This is due to the stability of SPH simulations to surface deformations (Springel (2010); see also

our discussion in Section 3.3.3 and Fig. 3.10).

The final separation of this simulation was 29 R⊙, using the criterion above or 22 R⊙ at the

end of the simulation (5050 days). In Figure 3.16 we compare the evolution of the separations
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FIGURE 3.16: Evolution of the separation, a, between the two particles representing the core of the primary and

the companion for the PHANTOM simulations with initial separations of 100 R⊙ (blue curve) and 218 R⊙ (red curve).

For a clearer comparison of the final separation the blue line has been shifted forward in time by 3096 days, which is

the time when the orbital separation of that simulation reaches 100 R⊙.

of our two PHANTOM simulations by shifting the simulation starting at 100 R⊙ by 3096 days

to a time when the other simulation, starting at 218 R⊙, has a separation of 100 R⊙. We can

therefore compare compare 29 and 22 R⊙ for the “wide” simulation, with 21 R⊙ and 16 R⊙, for

the PHANTOM simulation starting with a smaller separation.

The two PHANTOM simulations show an increase in the final orbital separation by 38 per cent,

corroborating the conclusion drawn from comparing the two ENZO simulations that the final orbital

separation increases by including phases before the rapid in-spiral. The mass unbound in the

PHANTOM simulation starting at 218 R⊙ is 15 per cent, marginally larger than the 12 per cent for

the same simulation starting with a lower initial separation.

3.5 Comparison with published simulations

Here we carry out a comparison of CE simulations containing at least one giant (Rasio & Livio

1996, Sandquist et al. 1998, P12: Passy et al. 2012, Ricker & Taam 2012, Nandez et al. 2015,

Ohlmann et al. 2016), highlighting possible trends or aspects that need further clarification. We do

not include those simulations carried out by Staff et al. (2016a) that started with highly eccentric

orbits. All the final results of these simulations are summarised in Table 3.1. All the simulations,
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except that of Nandez et al. (2015) are carried out with codes that include similar physics and can

be more directly compared.

3.5.1 Side-by-side code comparison

The only side-by-side code comparison that can be carried out is between ENZO, SNSPH and PHAN-

TOM for which almost identical simulations were carried out. The comparison between the first two

was already carried out by P12. Here we only add that SNSPH final separations are approximately

10 per cent larger than for ENZO. The relative difference does however increase for simulations

with very low mass companions (0.1 M⊙).

The comparison between SNSPH (simulation SPH2 in P12) and our own PHANTOM simulation

shows that, at the “criterion point”, the two values are the same within one solar radius, while at

1000 days the PHANTOM separation is 10 per cent smaller, but has the same value as the ENZO

simulation. We conclude that code-to-code differences for these three codes and for this parameter

space are within 10 per cent for simulations with companions more massive than ∼0.3 M⊙.

3.5.2 The final orbital separation as a function of M2/M1

Comparing the 5 ENZO simulations of P12 with each other, or their 5 SNSPH simulations with each

other, or, to an extent, comparing two of the simulations of Sandquist et al. (1998) for which only

M2 was changed, we conclude that the final separation has a clear relationship to the value of M2

for the same value of M1. It is difficult to compare with the other simulations, because although

two simulations may have the same value of q, the binding energies of the primaries’ envelope

could be vastly different (but see Sec. 3.5.3).

Sandquist et al. (1998) also compared two simulations with different primaries and the same q.

The simulation with the more extended, lower binding envelope energy primary has a much larger

final separation (see Table 3.1), but we did not plot it because the final separation cannot decrease

much below the resolution times the particles’ smoothing length and in that simulation the two

values are almost the same.

The post-CE binary observations of Zorotovic et al. (2011) show that post-CE binaries with
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post-RGB primaries (identified by a mass smaller than 0.5 M⊙) have systematically smaller sepa-

rations than post-CE binaries with post-AGB primaries (which have masses larger than 0.5 M⊙).

They also show a marginal correlation, though statistically “real”, between secondary mass and

post-CE orbital separation. The latter conclusion is in line with the simulations, though clearly the

signal in the data is diluted by the range in primary masses for each secondary mass (see below).

3.5.3 The final orbital separation as a function of primary mass or envelope

binding energy

The simulations of Rasio & Livio (1996), Nandez et al. (2015) and Ohlmann et al. (2016) produce

distinctly lower separations, even accounting for their different values of M2. We ascribe this

difference to heavier and/or more compact primaries, resulting in envelopes with larger binding

energies. The P12 and Sandquist et al. (1998) simulations with the most comparable values of q

are extremely similar, despite the fact that the lower mass for the former should promote a wider

separation than the higher mass for the latter. On the other hand, Sandquist et al. (1998) simulated

a more extended AGB star, which could lead to a wider separation, countering the effect of the

larger primary mass.

We do not think that the reason for the compact final configuration achieved by Nandez et al.

(2015) is the extra energy source. If anything, that should have contributed to a wider separation,

because of a more prompt envelope ejection. The reason is likely the more compact configuration

of their RGB giant.

3.5.4 The final orbital separation as a function of giant spin at the time of

Roche-lobe overflow

It could be argued that starting with a wider initial separation has, primarily, the effect of spinning

up the giant, by injecting the the orbital angular momentum into the envelope. The farther the

initial separation (within the limits of tidal effectiveness) the more angular momentum is available.

This may in turn reduce the velocity contrast between the companion and the envelope and result in

a smaller gravitational drag. However, the rotating and non-rotating simulations of Sandquist et al.
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(1998) reached the same final separation, indicating that the larger amount of angular momentum

of their rotating star does not influence the outcome of those CE simulations.

The simulations of Sandquist et al. (1998) did not stabilise the star in the rotating frame.

Neither did those of Ohlmann et al. (2016). On the other hand those of Rasio & Livio (1996)

stabilised their rotating giant in the co-moving frame while slowly decreasing the orbital separation

to the moment of Roche-lobe overflow. Considering the lack of a difference between the rotating

and non-rotating results of Sandquist et al. (1998) we suggest that the lack of stabilisation does

not have an effect on the results.

If not by the presence of induced rotation, how can we explain the slower plunge and the

increase in the final orbital separation by between 25 (Section 3.3.1) and 38 per cent (Section 3.4)

that resulted from larger initial separations? Another cause for this difference could be the envelope

being more extended as an effect of simulating the entire Roche-lobe overflow phase.

3.5.5 Unbound mass

The mass unbound at the end of the simulations listed in Table 3.1 ranges between 8 and 46 per

cent (not counting the result of Nandez et al. (2015)), something that cannot be accounting for the

fact that not all values were obtained with the same definition of bound mass.

By looking at the outputs of the simulations of Sandquist et al. (1998) and P12, one could

deduce that lower mass ratios (M2/M1) lead to less unbound mass. However our work, that of

Rasio & Livio (1996), of Ricker & Taam (2012) and of P12 show unbound gas masses that are

overall lower than for the simulations of Sandquist et al. (1998) or the simulations of Nandez et al.

(2015) not including recombination energy, which unbound 50 per cent of the envelope (although

this is only stated in the text of that paper and no plots, nor other data are presented for that

simulation).

The simulations of Staff et al. (2016a) with a 3 M⊙ AGB star in a common envelope with 0.6-

3.0 M⊙ companions have not been included in Table 3.1 because of their high initial eccentricity,

which makes them stand on their own. We note, however, that resolution tests carried out in the

context of those simulations show that slightly unconverged simulations tend to unbind signifi-

cantly more mass than better converged simulations. We therefore wonder whether convergence,
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which is seldom formally achieved in this type of time-consuming simulations, may impact the

value of the unbound mass.

The impact of the recombination energy on the unbound mass was shown to be a promis-

ing avenue for further study by Nandez et al. (2015), who derived unbound masses of almost

100 per cent, compared to 50 per cent not including recombination energy. The simulations by

Ohlmann et al. (2016) repeated with recombination energy (Ohlmann, private communication)

also unbind twice the mass as those carried out without recombination energy and presented in

Ohlmann et al. (2016), but even so, still only unbinding a small fraction of the total envelope.

3.6 Conclusions

In this chapter we have expanded on the results of P12: Passy et al. (2012) by repeating one of their

common envelope simulations, a 0.88 M⊙, RGB primary and a 0.6 M⊙ companion, but increasing

the initial orbital separation from 1 to 3 times the initial stellar radius. This is the approximate value

of the orbital separation for which a tidal capture can be expected and as such it is the approximate

value of the maximum angular momentum that can be delivered to the primary for such a system.

We have also carried out a parallel set of simulations using the SPH code PHANTOM aimed at

continuing code-code comparison while checking the conclusions obtained using the grid code.

We divided the evolution into a pre-contact phase, a mass transfer phase and a rapid in-spiral

phase. The pre-contact phase is driven by tides. However, this phase is unrealistically short in

our simulation, due to small but tidally significant oscillations of the primary star envelope set in

motion by the introduction of the companion in the computational domain. Despite this unrealistic

time-scale, a reasonable conservation of angular momentum ensures that the primary absorbs the

correct amount of angular momentum. The mass transfer and the rapid in-spiral phases are in

approximate agreement with the theoretical expectations. Starting with a larger initial separation

results in a larger final separation by between 25 and 38 per cent for the set of parameters tested

in this work. Based on a comparison with simulations in the literature, we conclude preliminarily

that this has to be due primarily to the stellar expansion during the Roche-lobe overflow phase,

rather than the extra angular momentum injected into the primary.

We observed that the unbinding of the mass happens in a short, bursting event which begins
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shortly before the rapid in-spiral phase and peaks early during it, as expected from previous work.

All the unbound mass is then rapidly pushed out of the simulation box. The total amount of mass

unbound during the interaction is 16 per cent of the total envelope mass, while in the equivalent

simulation of P12: Passy et al. (2012), 11 per cent of the envelope mass is unbound. The com-

panion could thus eject 60 per cent more mass than for a simulation starting with a smaller orbit,

probably because by tapping the reservoir of orbital angular momentum in the wider orbit the en-

velope has a lower binding energy. This increase is echoed by comparing our two SPH simulations

that started at different initial separations.

A study on the gravitational drag has been carried out, estimating all the relevant quantities

in the surroundings of the companion during the simulation. We do not find any change of the

Mach regime, differently to what was observed by Staff et al. (2016b). Instead the end of the in-

spiral seems to be caused mainly by a decrease in density during the later stages of the interaction.

Finally, since the final separation obtained is approximately three times larger than the smoothing

length we do not think that the result is affected by the approximated gravity.

By setting our results in the context of previous work, a new picture seems to be emerging,

indicating that the discrepancy between observed post-CE separations and simulation is not as

definitive as when Passy et al. (2012) carried out their comparison, with several simulations re-

producing very small final separations, even for relatively large values of the M2/M1 ratio. The

strong dependence of final separation on secondary mass can only assessed by the P12 simulations,

which carried out the necessary comparison. The amount of unbound mass seems to cluster in two

groups, with low (.15 per cent) and high (&40 per cent) values, but the reason for this difference

is not clear.

Nandez et al. (2015) report to have resolved the problem of unbinding the CE by including

recombination energy in their simulations. However, there is an indication that in the different

regime of giant CE simulations, the inclusion of recombination energy is not sufficient to unbind

the envelope (Ohlmann, private communication). It is also unclear whether the entire recombina-

tion energy budget can also be used to unbind the envelope (as would be the case in all adiabatic

simulations) or whether it would partly radiate away, decreasing its efficiency. This said, the pi-

oneering work of Nandez et al. (2015) (see also Ivanova et al. (2015)) constitutes a step that will

have to be considered and tested further in future numerical simulations.
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It is hoped that future simulations by different groups will attempt to clarify some of the ques-

tions above by carrying out similar simulations with a range of parameters. In this paper we have

also compared the simulations with the observations previously used by P12. However additional

observations, such as those by Zorotovic et al. (2011) show new trends, which can guide parameter

choices of future simulations.

The results just discussed will have, however, to be partially reconsidered in future work. In

fact, days before the submission of this thesis, we obtained results from an additional simulation

carried out as in P12, but with the new AMR setting used here. The final separation of this (P12-

AMR) simulation is 10 R⊙ instead of the 16 R⊙ obtained by P12 with ENZO and the 18 R⊙ with

SNSPH, while the mass unbound in the P12-AMR simulation is 14% of the total envelope mass,

instead of the 10% obtained by P12 with SNSPH. Hence our original conclusion, that including the

phases prior to the rapid in-spiral results in a larger final orbital separation, is still valid. The mass

of the envelope unbound becomes instead more similar to the results of P12, making debatable

the conclusion that we are able to eject more mass by starting the simulation at a larger initial

orbital separation. Moreover, we can consider how this result changes the ENZO vs. PHANTOM

comparison. The results obtained by the comparison between the two PHANTOM simulations,

starting respectively at 218 R⊙ and 93 R⊙, are still valid. In fact the P12-AMR simulation still

shows a smaller separation with respect to the the ENZO AMR simulation started at 300 R⊙, trend

corroborated by PHANTOM. The final values for the envelope mass unbound are much closer to

what was obtained comparing the two PHANTOM simulations: just a few percent more mass is

unbound when starting the simulation at a larger separation.

We think, however, that the resolution used may have a non-negligible effect on the outcomes

of the simulations and therefore even run-to-run differences have to be carefully considered when

evaluating the outputs of two simulations. We leave it to future work to compare resolutions,

especially in the inner regions of the primary star, and explain this effect.



4
The effect of the primary rotation on the

common envelope simulations

In this chapter we investigate the rotation profiles of RGB stars. The ultimate aim is to carry out

the same simulation as P12, hereafter P12, including a primary star with a realistic rotation profile.

The motivation for this analysis is that in previous numerical work rotation of the primary was

seldom included. When this was done, it was either by spinning the star without stabilising it (grid

simulations) or by setting the system in co-rotation (SPH simulations). The results of the only

existing side-by-side comparison indicate that there is no difference (Sandquist et al. 1998), but

few details were given and doubts remain. Even if rotation was presumed not to affect the CE from

an energetic point of view (P12), a rotating star will be more extended and less dense, therefore a

companion plunging into its envelope could show a different behaviour compared with a similar

non-rotating model. We here aim to understand in detail the impact of rotation on CE interaction.

75
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A second motivation is understanding the results from Chapter 3. There, the wider orbital

separation efficiently spun-up the primary while also allowing it to relax and naturally overflow its

Roche lobe before the rapid in-spiral. It was therefore impossible, in that chapter, to distinguish

between the effects of a larger angular momentum budget and those of a different stellar geometry

at the time of the in-spiral.

Since a lot of simulations with and without rotation and starting at various orbital separations

are present in the literature, we decided to separate, at least for one simulation, the effect of rotation

from those of a larger orbital separation. Finally, we also wanted to investigate the possibility of

pre-calculating a giant star with the correct rotation profile. As it happens, we were not successful

in this last attempt. To perform the latter investigation we carried out a study of giant stars rotation

profiles, with which we start the chapter.

4.1 The rotation of red giant branch stars

The rotation of giant stars has been widely studied. However, in the last decade, with the CoRoT

(Baglin et al. 2006) and Kepler (Borucki et al. 2010, Koch et al. 2010) satellites, more accurate

observations have become available, opening up the possibility of new studies. It appears that

there are two groups of RGB stars: those with slow rotating cores, making up the majority, and

those with fast rotating ones (Ceillier et al. 2012 and Goupil et al. 2012). Both Ceillier et al. (2012)

and Goupil et al. (2012) performed 1D stellar evolution simulations with the intent of reproduc-

ing the observed rotation profiles. As shown in Figure 4.1, taken from Ceillier et al. (2012), they

were able to reproduce most stars with high core speeds, but could not account for the slow core

rotators. This limitation in the ability to reproduce this type of object possibly resides in uncertain-

ties in the description of angular momentum transport (see also the recent work of Cantiello et al.

2014). Similar results are obtained by other studies such as those by Palacios & Brun (2007),

Eggenberger et al. (2010), Beck et al. (2012), Deheuvels et al. (2012), Eggenberger et al. (2012)

and Marques et al. (2012).

Independently of the core, the envelopes of RGB stars rotate approximately as solid-bodies,

due to the effectiveness of the transport of angular momentum. Surface rotations of giants are

observed to be 1 − 2 km s −1 (Massarotti et al. 2008), with a few cases rotating slightly faster.
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FIGURE 4.1: From Ceillier et al. (2012). Rotation profile for the numerical model (solid line) failing to reproduce

the observed rotation of the giant star KIC 7341231 with a slow-rotating core (top dashed line) and solid-body surface

rotation (bottom dashed line).

Occasionally surface rotation velocities between 10 and 20 km s −1 are measured (Massarotti et al.

2008). These cases are thought to be due to spinning-up of the envelope at the hand of a binary

companion that exerts a tidal force on the giant, because attempts to model fast rotation rates in

single giants failed (Nordhaus & Blackman 2006, Garcı́a-Segura et al. 2014). Most binaries that

enter a CE phase will have been interacting tidally and it is therefore likely that most of the giant

stars that are about to interact with a companion are spinning relatively rapidly. Since the giant core

is not resolved in ENZO, it is only the solid-body rotating envelope that needs to be reproduced.

We would therefore like a MESA model with a realistic, relatively high (10− 20 km s −1) rotation

profile.

4.2 One dimensional simulations with rotation

In this section we will discuss the procedure we followed in attempting to create a model of a giant

with rotation, in line with the observations, as discussed in Section 4.1. Ideally, the model would
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have a fast surface velocity, between 10 km s−1 and 20 km s−1, as expected of a giant that has

interacted tidally with its companion.

Pre-emptying the results of the following sections, we try various attempts to obtain a rotating

star such as the one introduced above, however we do not achieve the required surface velocities.

Our 1D simulations are all carried out with different parameters, but always considering a single

star, without the influence of a binary companion. We took this approach because the option to

perform a stellar evolution simulation with the influence of a binary companion was not available

in MESA at the time we performed the computations described in this chapter. Ultimately the way

forward is therefore to calculate MESA models in “binary” mode (Paxton et al. 2015), using the

latest MESA binary module. However, even succeeding in calculating a MESA model with the

desired rotation rates, the challenge will be in mapping such a 1D model into the 3D domain,

particularly in the knowledge that stellar structure is likely non spherical.

4.2.1 Generalities of the simulations

We aim to reproduce a stellar model similar to that used by P12, but including rotation. The

star used in that paper was a 1 M⊙ star, evolved to the RGB until the core reached a mass of

≃ 0.392 M⊙, at which point the radius of the star was ≃ 83 R⊙ and its total mass was ≃ 0.88 M⊙

(the main parameters of the 1D stellar structure simulation are shown in Table 4.1). The model

PARAMETER VALUE

Initial star mass M⋆ = 1.0 M⊙

Initial H mass fraction X⋆ = 0.7380 (solar, Grevesse et al. 2010)

Initial He mass fraction Y⋆ = 0.2485 (solar, Grevesse et al. 2010)

Initial heavy elements mass fraction Z⋆ = 0.0134 (solar, Grevesse et al. 2010)

Reimers RGB mass-loss scheme η⋆ = 0.5

TABLE 4.1: P12 star parameters.

has a solid-body rotation on the zero age main sequence (ZAMS). The treatment of magnetic

braking in MESA (Paxton et al. 2010, Paxton et al. 2011, Paxton et al. 2013, Paxton et al. 2015)

will successfully distribute the angular momentum so as to create realistic rotation profiles.
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4.2.2 Varying the ZAMS angular frequency

To start, we have varied the initial ZAMS solid-body velocity parametrized by ω/ωcrit, where

ωcrit =
√

GM/R3 is the angular frequency for which the modulus of the centrifugal force be-

comes equal to the modulus of the gravitational attraction and the star breaks up. Here G is the

gravitational constant, M is the mass of the star and R is its radius. By increasing the initial solid-

body rotation velocity we expect that despite the action of magnetic braking the velocity during

the giant phase will also be larger. The core preserves a significant part of the original angular

momentum, which is later given to the envelope of the giant through the interaction between the

two regions.

Ten simulations were carried out and stopped at the tip of RGB. All the simulated stars are in

the mass range 0.5 M⊙ < M⋆ < 2.25 M⊙, for which we expect the helium-flash to happen. Results

are shown in Table 4.2. The simulations with [ω/ωcrit]ZAMS ≥ 0.6 show a code instability, causing

[ω/ωcrit]ZAMS Age (yr) [m/M⋆]SB R (R⊙) M (M⊙) vrot (km s −1) ω (Hz)

0.1 1.21× 1010 0.6 171 0.773 3.15× 10−2 4.22× 10−11

0.2 1.24× 1010 0.6 170 0.775 6.52× 10−2 8.75× 10−11

0.3 1.30× 1010 0.6 167 0.778 1.04× 10−1 1.41× 10−10

0.4 1.37× 1010 0.6 168 0.779 1.42× 10−1 1.92× 10−10

0.5 1.45× 1010 0.6 168 0.777 1.70× 10−1 2.32× 10−10

TABLE 4.2: Results for the simulations for a range of ZAMS initial frequencies, for a 1 M⊙ solar mass star. “Age”

is the age at the tip of RGB, [m/M⋆]SB is the fraction of mass in the core, R is the radius of the star at the end of

the simulation, M is the mass of the star at the end of the simulation, vrot is the equatorial tangential velocity on the

surface of the star and ω is the angular velocity.

the time-step to become extremely small. This is probably due to the extreme physical regime

induced by the very high rotation velocity. A solar model with ω = 0.6ωcrit = 3.78× 10−4 rad s−1

has a surface velocity of vrot = ωR ≃ 265 km s−1. Such large velocities do not seem to be

handled very well by the code. Since increasing the resolution does not help, we limited ourselves

to rotation velocities below this value.

The results obtained for the angular frequency profiles are in approximate agreement with

observations and with the models described in Section 4.1. In Figure 4.2 we show the angular

profile velocity just before the helium core flash. Table 4.2 demonstrates that the angular frequency
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FIGURE 4.2: Three representative plots for the [ω/ωcrit]ZAMS = 0.5 stellar model of Table 4.2 at the end of

the simulation. The evolutionary track of the star in the L − Teff diagram is shown on the top-left plot and the core

temperature-density diagram is shown in the bottom-left plot. The angular frequency profile (labelled as “omega”,

thick yellow line) along with the tangential rotation velocity (v rot, thin purple line) are plotted as a function of m/M⋆

(labelled as “q”) in the plot on the right.

of the solid-body rotating envelope increases with increasing [ω/ωcrit]ZAMS, as expected, but also

shows that, even with our artificially high ZAMS rotation rates, we are not able to reach the rotation

speeds characterising giants in binary systems (but see Section 4.2.4).

The results shown above help to get an idea of how the uniform angular frequency at the ZAMS

could act as a usable parameter to manage our models, but they are far away from the large surface

rotation rates we need. In fact if we look at Figure 4.2 the first thing we notice is the location of

the flattening of the angular frequency, at approximately m/M⋆ = 0.6 in every one of the final

models. We call this parameter [m/M⋆]SB, for solid body in all tables. Let us consider now the

ratio mcore/M⋆ (where mcore is the mass of the core of the star), which represents the percentage

of the total mass residing in the core; in P12 their star has been evolved until mcore/M⋆ ≃ 0.445,

thus a star taken at the moment prior to the helium flash is too evolved for our purpose.

There are three paths that we can follow to compare one of our rotating stars with the one of

P12. We can consider the rotating MESA simulation when the core of the RGB star is mcore ≃

0.392 M⊙, when M⋆ ≃ 0.88 M⊙ or when R⋆ ≃ 83 R⊙. The data obtained from the same set
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of simulations shown in Table 4.2, but stopped at the evolutionary stage where the core mass is

≃ 0.392 M⊙ are shown in Table 4.3. What appears clear is that the presence of rotation expands the

[ω/ωcrit]ZAMS Age (yr) [m/M⋆]SB R (R⊙) M (M⊙) vrot (km s −1) ω (Hz)

0.1 1.21× 1010 0.436 92 0.9 2.96× 10−1 7.38× 10−10

0.2 1.24× 1010 0.437 92 0.9 5.90× 10−1 1.47× 10−9

0.3 1.30× 1010 0.437 92 0.9 8.78× 10−1 2.16× 10−9

0.4 1.37× 1010 0.438 92 0.9 1.15 2.86× 10−9

0.5 1.48× 1010 0.438 92 0.9 1.41 3.47× 10−9

TABLE 4.3: Results for the same simulations of Table 4.2, stopped at the evolutionary stage when mcore ≃
0.392 M⊙.

star marginally with respect to the model used in P12 (as one would expect), but also accelerates its

evolution. In fact one can see that the total mass for every model is slightly greater than the one of

the reference paper at the same core mass, where less mass loss is expected due to the absence of

rotation. Said in another way: when the core has burned the same amount of material the rotating

stars have lost less mass than the reference, although one could expect them to lose their mass

more rapidly because of rotation.

Overall, the models obtained in this way are very similar to the reference one, but the surface

rotation velocities achievable in this way cannot exceed ≃ 2 km s−1. If an increase of the range of

[vrot]SURF is needed, one must modify other parameters of the initial model.

The data obtained from a set of simulations like those presented in Table 4.2, but stopped at

the evolutionary stage where the total mass is ≃ 0.88 M⊙ are shown in Table 4.4. This criterion

[ω/ωcrit]ZAMS Age (yr) [m/M⋆]SB R (R⊙) M (M⊙) vrot (km s −1) ω (Hz)

0.1 1.21× 1010 0.470 110 0.88 1.92× 10−1 3.96× 10−10

0.2 1.25× 1010 0.470 110 0.88 5.00× 10−1 7.96× 10−10

0.3 1.30× 1010 0.469 110 0.88 7.50× 10−1 1.19× 10−9

0.4 1.37× 1010 0.469 110 0.88 7.68× 10−1 1.59× 10−9

0.5 1.48× 1010 0.468 110 0.88 9.61× 10−1 2× 10−9

TABLE 4.4: Results for the same simulations of Table 4.2, stopped at the evolutionary stage when M⋆ ≃ 0.88 M⊙.
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aims to create a model with the same total mass of the star in P12. As expected, in all the models

for this selection criterion the total radius of the star is greater than the radius of the star in the

reference paper by about 27 R⊙. For this set of models the surface rotation velocities cannot

exceed ≃ 1 km s−1.

The data obtained from a set of simulations like those presented in Table 4.2, but stopped at

the evolutionary stage where the total radius is ≃ 83 R⊙ are shown in Table 4.5. For all models

[ω/ωcrit]ZAMS Age (yr) [m/M⋆]SB R (R⊙) M (M⊙) vrot (km s −1) ω (Hz)

0.1 1.22× 1010 0.421 83 0.92 3.60× 10−1 9.93× 10−10

0.2 1.24× 1010 0.421 83 0.92 7.15× 10−1 1.97× 10−9

0.3 1.30× 1010 0.421 83 0.92 1.07 2.94× 10−9

0.4 1.36× 1010 0.421 83 0.92 1.42 3.9× 10−9

0.5 1.44× 1010 0.422 83 0.92 1.74 4.79× 10−9

TABLE 4.5: Results for the same simulations of Table 4.2 at the evolutionary stage when R⋆ ≃ 83 R⊙.

obtained with this criterion the total mass when R⋆ ≃ 83 R⊙ is greater than the one of P12 (M⋆ =

0.88 M⊙). This is probably due to the effect of the centrifugal force. In fact this force gives rise

to two effects simultaneously: the mass loss and the expansion of the star. Now, the balance of

these two phenomena is what determined the increased mass at similar radius for these models.

Although there is mass loss, the effect of the centrifugal force on the expansion of the star is

stronger, hence the star reaches the desired radius before the total mass decreases to 0.88 M⊙. For

this set of models the surface rotation velocities cannot exceed ≃ 2 km s−1. None of our models

achieve sufficient surface rotation.

4.2.3 Varying η⋆ and M⋆

Here we try and increase the angular frequencies by varying the Reimers mass-loss parameter, η⋆,

and the main sequence mass, M⋆. Three simulations have been carried out to check the effects of

varying the Reimers RGB wind parameter on the final angular frequency of the star, one for each

of the three criteria, all with the same [ω/ωcrit]ZAMS of 0.5, the one that yielded the highest angular

frequencies in every case. We chose a very low value for η⋆ of 0.0001, which means almost no
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mass loss, since the higher the mass loss, the more the angular momentum loss. The results are

shown in Table 4.6. Clearly, the low value of η⋆ does not significantly help us to spin-up the star

[ω/ωcrit]ZAMS Age (yr) [m/M⋆]SB R (R⊙) M (M⊙) vrot (km s −1) ω (Hz)

0.5 1.53× 1010 0.396 92 1 2.91 7.24× 10−9

0.5 1.55× 1010 0.625 206 0.88 3.73× 10−1 4.14× 10−10

0.5 1.47× 1010 0.421 83 0.92 1.75 4.82× 10−9

TABLE 4.6: Results for three simulations with η⋆ = 10−4 and [ω/ωcrit]ZAMS = 0.5. The parameter that matches

the equivalent P12 is underlined. For the first model in this table the parameter is mcore ≃ 0.392.

to the rate expected for a giant that is tidally interacting with a companion. At most we reach

≃ 3 km s−1 for a model with the same core mass as P12.

Three additional simulations were carried out to check the effect of varying the total mass of

the star on its final angular frequency, one for each criterion, but with the same [ω/ωcrit]ZAMS of

0.5, the one that yielded the highest angular frequencies in every case. We chose a value for M⋆

of 1.3 M⊙. Since varying the mass can significantly change the evolution of the star we did not

want to deviate too much from the model of P12. We expect that increasing the total initial mass,

at fixed [ω/ωcrit]ZAMS, more angular momentum is imparted to the model. The results are shown

in Table 4.7. Overall the results show that increasing the mass of the model does not achieve

[ω/ωcrit]ZAMS Age (yr) [m/M⋆]SB R (R⊙) M (M⊙) vrot (km s −1) ω (Hz)

0.5 5.08× 109 0.322 86 1.23 1.43 3.77× 10−9

0.5 5.22× 109 0.999 287× 102 0.88 2.47× 10−2 1.97× 10−11

0.5 5.08× 109 0.318 83 1.23 1.50 4.14× 10−9

TABLE 4.7: Results for the three simulations with M⋆ = 1.3 M⊙. The parameter that matches the equivalent P12

is underlined. For the first model in this table the parameter is mcore ≃ 0.392.

sufficiently large rotation velocities.

4.2.4 A work-around of code limitations for fast rotating stars

With an overall maximum surface rotation velocity of 2 km s−1 for the standard models of Table 4.5

and of 3 km s−1 for the modified models of Table 4.6, the star has clearly not been spun up
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sufficiently so as to reach the range of velocities expected from observations of giants in binaries

(Massarotti et al. 2008, 10− 20 km s−1). An option to simulate a CE with a spinning star could be

to take the model in a lower part of the RGB branch, which will have higher rotation velocities.

A way to perform simulations with [ω/ωcrit]ZAMS > 0.5 was found by considering further the

approximations MESA has to make to model rotating stars1. Although this methodology did not

result in a viable rotating model, we outline it here as part of a corpus of knowledge on coupling

1D and 3D models to understand binary interactions.

Stellar rotation in MESA is implemented following the prescription of the classic paper of

Endal & Sofia (1976), which applies corrections to the equations of the stellar structure due to

the rotation (fT and fP). This model considers equipotential surfaces in the interior of a star, de-

noted by ψ, used as reference point to model the stellar structure. General quantities related to the

equipotential surfaces of the rotating star that do not depend on the angle are:

• rψ, the radius of a sphere enclosing the volume Vψ = 4
3
πr3ψ, that is the volume of a given

equipotential surface ψ.

• Mψ, the mass interior to the equipotential surface ψ.

• Sψ, the surface area of an equipotential surface ψ.

• < g >, the local effective gravity averaged over the polar angle θ (0 < θ < π). Note that the

star is considered cylindrically symmetric.

• < g−1 >, the reciprocal of the local effective gravity averaged over the angle θ.

The modified equations of the stellar structure are:

∂P

∂Mψ

=
−GMψ

4πr4ψ
fP , (4.1)

∂ lnT

∂ lnP
= min

[

∇ad , ∇rad

fT
fP

]

, (4.2)

with

fP =
4πr4ψ

GMψSψ

1

< g−1 >
, (4.3)

1The suggestion was obtained by consulting the MESA user community.
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fT =
(4πr2ψ
Sψ

)2 1

< g >< g−1 >
. (4.4)

A spherical stellar structure is computed as a function of rψ, which approximates the structure

of the rotating, non-spherical star by using the average quantities and the global properties of the

equipotential surfaces of the rotating star. Once the model is computed for the average quantities,

it assumes that they are valid also for the rotating non-spherical star. With this assumption the

approximate shape of the equipotential surfaces can be obtained along with other angle-dependent

quantities, such as the radii at the equator and pole. This approximation is valid only for small

distortions and does not include the direct effect of rotation on convection (e.g., rotation could

inhibit convection in some zones of the star).

When rotation is turned on, MESA starts using the corrected stellar structure equations (Equa-

tions 4.1 and 4.2). The ratio ω/ωcrit at the equator is constant. This means that MESA’s outputs

are inherently along the equator. Since the model is valid just for small distortions, if the star is

spinning too fast the corrections fP and fT become too large for the model to converge.

To let MESA evolve correctly an initially fast-rotating star, one must consider the limits of

the Endal & Sofia (1976) model. The optimal lower values for the corrections fP and fT are

fP,min = 0.75 and fT,min = 0.95, with 0 < fP, fT < 1 (where the value of unity means no

rotation). If the computed fP and fT are lower due to large imposed rotations they are reset

respectively to 0.75 and 0.95. In such a way MESA can be forced to evolve stars with initial

angular frequencies [ω/ωcrit]ZAMS > 0.5. The price of this modification is an inconsistency in the

model on the ZAMS between Equations 4.1-4.2 and 4.3-4.4. During the RGB, where the star slows

down significantly because of expansion, magnetic braking and angular frequencies are within the

limits of the approximation and no further resetting of the values of fP and fT takes place.

Here we summarize the results of the simulations carried out with values of [ω/ωcrit]ZAMS >

0.5, using the usual three stopping criteria shown in the previous sections. For models stopped

when mcore ≃ 0.392 M⊙ results are shown in Table 4.8. These results show an increasing of the

surface rotation velocity up to 1.82 km s−1, decreasing for increasing [ω/ωcrit]ZAMS, probably due

to the high mass-loss rates because of the high initial angular frequency. The resulting loss of

angular momentum is enough to spin down the star.

For models stopped when Mtot ≃ 0.88 M⊙ results are shown in Table 4.9. For the last two



86 THE EFFECT OF THE PRIMARY ROTATION ON THE COMMON ENVELOPE SIMULATIONS

[ω/ωcrit]ZAMS Age (yr) [m/M⋆]SB R (R⊙) M (M⊙) vrot (km s −1) ω (Hz)

0.6 1.64× 1010 0.439 94 0.9 1.65 4.01× 10−9

0.7 1.82× 1010 0.441 95 0.9 1.82 4.39× 10−9

0.8 2.51× 1010 0.570 104 0.7 5.13× 10−1 1.13× 10−9

0.9 4.52× 1010 0.846 101 0.47 1.48× 10−1 3.33× 10−11

TABLE 4.8: Results for the simulations with [ω/ωcrit]ZAMS > 0.5, stopped when mcore ≃ 0.392 M⊙.

[ω/ωcrit]ZAMS Age (yr) [m/M⋆]SB R (R⊙) M (M⊙) vrot (km s −1) ω (Hz)

0.6 1.60× 1010 0.467 109 0.88 1.15 2.4× 10−9

0.7 1.82× 1010 0.465 109 0.88 1.33 2.8× 10−9

0.8 1.75× 1010 0.379 0.90 0.88 173 4.38× 10−5

0.9 1.44× 1010 1.23× 10−7 0.61 0.88 139 5.20× 10−5

TABLE 4.9: Results for the simulations with [ω/ωcrit]ZAMS > 0.5, stopped when M⋆ ≃ 0.88 M⊙.

models the mass limit is reached while the star is still on the main sequence, as one can see looking

at the radius values. The last two models cannot be considered giants and can be removed from

our sample.

Finally, for models stopped when Rtot ≃ 83 R⊙ results are shown in Table 4.10. In this case a

[ω/ωcrit]ZAMS Age (yr) [m/M⋆]SB R (R⊙) M (M⊙) vrot (km s −1) ω (Hz)

0.6 1.65× 1010 0.420 83 0.92 2.10 5.76× 10−9

0.7 1.82× 1010 0.420 83 0.91 2.36 6.51× 10−9

0.8 2.51× 1010 0.517 83 0.73 1.03 2.85× 10−9

0.9 4.52× 1010 0.730 83 0.51 0.2 5.41× 10−10

TABLE 4.10: Results for the simulations with [ω/ωcrit]ZAMS > 0.5, stopped when R⋆ ≃ 83 R⊙.

similar behaviour to the first criterion is observed, with an increase of the surface rotation velocity

followed by its decrease due to the loss of angular momentum.

Overall we witness an increase of the maximum value of the surface rotation velocity for every

criterion considered, with respect to models calculated with lower [ω/ωcrit]ZAMS. However, this

increase only brings the maximum value of the rotation velocity to [vrot]SURF ≃ 2.4 km s−1,
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still well below the ≃ 10 km s−1 target we wanted to achieve to reproduce tidally accelerated

stars. Clearly there is a limit [ω/ωcrit]ZAMS for which MESA has additional problems in correctly

computing the models, due to the extreme regimes. The last two stars have in fact characteristics

that largely diverge from the stellar parameters obtained at [ω/ωcrit]ZAMS = 0.7. Given that we

were anyway unable to reproduce the desired surface velocities, we did not investigate the causes

of this divergence in the last two models.

Below we carry out a simulation with a star that is spinning and not stabilised, as is done in

most grid simulations (e.g., Sandquist et al. 1998). The aim is to obtain a side-by-side comparison

with the similar, non-rotating simulation of P12.

4.3 Three dimensional simulations of the CE phase with rota-

tion

Despite the fact that we were not able to reproduce a realistic one-dimensional profile for a single

RGB star, we simulate here a binary system with a rotating giant by applying solid-body rotation

to the initial stellar model of P12. Below we first describe how the rotating model was setup, then

we analyse the main outputs of the simulation emphasizing the differences with the results of P12.

As discussed in Section 3.6, we have carried out the same simulations as P12, but using the AMR

code and setup used for the rotating star, so as to minimise differences (hereafter we will refer to

the non-rotating P12 simulation, but carried out with AMR as P12-AMR).

4.3.1 Simulation setup

P12 used two different numerical codes (ENZO and SNSPH) to simulate a CE interaction between

an RGB giant and a compact companion, modelled as a point mass, placed on the surface of the pri-

mary. The two stars orbit each other in a circular orbit. We use the same setup as theirs, with the fol-

lowing exceptions: we use an updated version of ENZO that includes AMR (Passy & Bryan 2014),

as we did in Chapter 3. To carry out a better comparison between a rotating and a non-rotating

star, we have repeated the P12 simulation with the AMR code and the same setup/resolution of

Chapter 3.
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Before comparing rotating and non-rotating simulations, we comment on our new P12-AMR

simulation. The final separation achieved 10 R⊙ vs. 16 R⊙ and 18 R⊙ of the P12 grid and SPH

simulations, respectively. The unbound mass is 14% of the total envelope mass, compared to 10%

of the P12 SPH simulation. These differences must be down to small resolution and smoothing

length differences (see Chapter 3).

In the literature simulations including rotating stars have been run following two techniques: by

spinning up the primary, applying no further stabilisation (Sandquist et al. 1998, Ricker & Taam

2012, Ohlmann et al. 2016), or by setting up the binary system in a co-rotating frame and relax-

ing the configuration (Rasio & Livio 1996, Nandez et al. 2014, Nandez et al. 2015). The latter

approach consists in applying a linear friction term to all the velocities in the system in the co-

rotating frame. The binary has initially a large orbital separation and the stars are slowly brought

closer artificially until the desired initial separation is reached. This procedure of reducing the

orbital distance has to be done on time-scales greater than those at which the linear friction term

is acting to allow the star to properly relax. We note that in the co-rotating frame both orbital and

primary rotation velocities are hidden and therefore not subject to the linear friction. ENZO does

not have a co-rotating frame option, hence we adopted the first approach, as it allows us a direct

comparison with P12.

In a binary system the stars have evolved together since birth and we expect the two stars to

have adapted to each other, reaching a stable configuration. The most stable configuration for

any given binary separation is when the two components are co-rotating, meaning that the orbital

frequency equals the frequency of rotation of the stars around their own axes. This situation of

equilibrium can be broken due to different reasons. In our case it is likely that a Darwin instability

(Darwin 1879) can change a stable, synchronised system into an unstable one, where the orbital

separation is reduced until Roche-lobe overflow and ultimately a CE takes place. See Section 1.2

for a description of the Darwin instability. In this case the unstable regime is triggered and the two

components tidally drag each other, reducing the orbital separation until eventually an interaction

starts. This phase cannot be simulated in ENZO even if ENZO were setup to simulate a binary in the

co-rotating frame, reproducing tides would require a far superior precision of the flow simulation

than we currently have. Additionally, even if we could simulate tides, the simulation would have

to be run for unrealistically long times.
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We map a non-rotating giant evolved as in P12 and Chapter 3 into ENZO and give it solid-

body rotation. Artificially forcing the model to rotate makes it expand. With an initial orbital

separation such as the one P12 are using, the rapid in-spiral is triggered as soon as the simulation

starts, leading to gas flows that are faster than those due to the expanding star. As a result, the

lack of realism is mitigated by the presence of a factor of greater magnitude which drives the CE

interaction.

We give our RGB star solid-body rotation equal to 95% of the orbital frequency. This choice

is in line with previous work (Ricker & Taam 2008, Ricker & Taam 2012, Ohlmann et al. 2016).

This also leaves a small difference in rotation between the gas and the companion which facil-

itates the onset of in-spiral. The chosen rotation corresponds to a primary’s surface velocity of

33 km s −1, somewhat larger, though comparable to values of giants surface velocities in binary

systems (Massarotti et al. 2008). The orbital velocities with respect to the centre of mass of the

system are v1 ≃ 23.6 km s −1 and v2 ≃ 34.7 km s−1, where v1 is the velocity of the primary’s core

and v2 is that of the companion.

4.3.2 Evolution of the binary separation

The orbital evolution of the rotating and non-rotating simulations are almost identical (Figure 4.3,

upper panel). The similarity of the two simulations is somewhat unexpected. On the other hand,

simply on energetic arguments the addition of rotation adds

Ekin,rot =
1

2

(

2

5
M1R

2
1

)(

vsurf
R1

)2

≃ 9.53× 1044erg , (4.5)

whereM1 is the mass of the primary,R1 is the radius of the primary and vsurf is the surface velocity

of the primary. This value is two orders of magnitude smaller than any other form of energy in the

star (internal or potential). We started our simulation from a sightly smaller initial separation than

P12, because by using AMR the initial RGB model has a radius of ≃ 83 R⊙ instead of ≃ 86 R⊙.

The value of the final separation at 400 days obtained for the rotating model is plotted, together

with the value of P12-AMR and previous work (Chapter 3) in Figure 4.4.

As explained in detail in Chapter 3, the main process driving the rapid in-spiral is gravitational

drag, which increases with the density of the medium and the relative velocity between it and
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FIGURE 4.3: Upper panel: evolution of the separation between the core of the primary and the companion for the

simulation with a rotating primary (blue), for the simulation P12-AMR (cyan) and for the separation averaged over

one orbital cycle (red), as defined by P12 and in Chapter 3. The black vertical line represents the end of the rapid

in-spiral phase. Lower panel: evolution of the orbital decay, computed on the separation averaged over one orbital

cycle.
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the companion. If we follow the formulation used in Iben & Livio (1993) and P12 for subsonic

regimes:

Fgravodrag ∼ πρv2rel

(

2GM2

v2rel + c2s

)2

sinα , (4.6)

where ρ is the density of the gas around the companion, vrel is the relative velocity between the

companion and the envelope around it, G is the gravitational constant, M2 is the mass of the

companion, cs is the local sound speed and α is the angle between the velocity of the companion

and that of the envelope, the term inside the parentheses has the dimension of length and is known

as the accretion radius (Ra). Ra is the scale length on which the gravitational drag operates,

therefore all the previous quantities can be considered as their average values inside a radius Ra

around the companion. In our case the initial rotation of the star reduces the relative velocity

between envelope and companion. We might assume that this decreases the gravitational drag,

and, at least initially, the effectiveness of the in-spiral. However, what we see is a very similar

in-spiral. This is somewhat different from what was discovered by Sandquist et al. (1998), who

attribute their observed larger eccentricity in the rotating simulation to the fact that when the gas

has a smaller relative velocity with respect to the companion, the companion has more time to

transfer its angular momentum to the gas.

The initial separation used for the calculation in Chapter 3 is 300 R⊙. By the time the compan-

ion reaches 83 R⊙, the radius of the undisturbed giant, it has deposited into the envelope a certain

amount of angular momentum:

∆Lsep = (a1,iM1v1,i + a2,iM2v2,i)− (a1,fM1v1,f + a2,fM2v2,f) ≃ 2.15× 1052 g cm2 s−1 . (4.7)

On the other hand, our artificially spun up giant was imparted an angular momentum:

Lrot =
2

5
M1R

2
1

(vsurf
R1

)

≃ 1.33× 1052 g cm2 s−1 , (4.8)

where a1,i/a1,f are the distances of the primary from the centre of mass of the system in the initial

and final configurations, a2,i/a2,f are the same for the companion, v1,i/v1,f are the circular orbital

velocities of the primary with respect to the centre of mass of the system in the initial and final

configurations and v2,i/v2,f are the same for the companion.
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FIGURE 4.4: Final orbital separation vs mass ratio q = M2/M1 for observed post-CE systems (Zorotovic et al.

2010 and De Marco et al. 2011, black dots) and for simulations (Sandquist et al. 1998, green circles; Ricker & Taam

2012, cyan triangle; Rasio & Livio 1996, magenta pentagon; PHANTOM simulations, blue hexagons, see Section 3.4;

Ohlmann et al. 2016, grey diamond; Nandez et al. 2015, pink cross; the results of the ENZO simulation described in

Chapter 3, yellow star; simulation P12-AMR, yellow square; the results of this chapter, yellow rectangle).

These values are very similar. This tells us that the nominal rotation rates of the giants in the

two numerical experiments are similar. The difference between the simulation in Chapter 3 and

this one must therefore be that by the time any companion-gas interaction takes place the giant

is substantially more extended and less dense for the simulation in Chapter 3, thus reducing the

strength of the interaction throughout the simulation.

Finally, from Figure 4.3 (upper panel), we see a decrease in the period towards the end of both

the rotating star simulation and P12-AMRs. This is not a physical effect, but rather a resonance

between the orbital frequency and the code output saving frequency.
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4.3.3 Envelope ejection

Only the simulation of Nandez et al. (2015) has been able able to fully eject the envelope in a CE

simulation by using recombination energy of the gas during the interaction. Their result, however,

is discordant with the results of Ohlmann et al. (2016b) (in preparation and private communica-

tion), who, while showing a doubling of the unbound CE mass, from 8% to 16% by including

recombination energy, did not succeed in ejecting the envelope.

Following the same scheme we used in Chapter 3, we define the envelope’s gas in a simulation

cell to be unbound when Etot = Ekin + Epot + Etherm > 0, where Etot is the total energy, Ekin

is the kinetic energy, Epot is the potential energy and Etherm is the thermal energy. We will also

discuss the contribution of the thermal energy to the total energy, as we did in Chapter 3. The

envelope lifting happens mainly on the orbital plane, where energy and angular momentum are

deposited, and it starts as soon as the simulation begins. The in-spiral is very quick, as shown in

the previous section, and this generates a very high velocity wave of material expanding into the

external medium. This wave is mainly composed of unbound gas, as shown in Figure 4.5 (first two

rows), and starts leaving the simulation box at ≃ 90 days from the beginning of the simulation.

This first unbinding event is mainly generated by gas accelerated above the escape velocity and

not by heating (the difference between left and right columns in the first two rows of Figure 4.5 is

small).

In the second row of Figure 4.5 it is possible to see that in the zones “behind” the expanding

wave of previously unbound gas that is about to leave the domain additional unbinding, this time

due to extra heating (compare left and right columns in Figure 4.5). Next, at ≃ 263 days (see

Figure 4.5, third row), a new unbinding event is generated mainly by the heating. This happens

because of successive pressure waves smashing into one another and heating the gas. Again, the

unbound layer is rapidly pushed out of the simulation box. To clarify this behaviour we also plot

slices of temperature and velocity in Figure 4.6 and Figure 4.7 respectively.
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FIGURE 4.5: Left panel, left column: density slices perpendicular to the z axis in the orbital plane after (from top

to bottom) 44, 88, 263 and 285 days from the beginning of the simulation. The point-mass particles representing the

core of the primary and the companion are shown as black dots, while the white regions represent the unbound gas.

The size of the black dots is not representative of any property of the point masses and is chosen only to highlight

them. Left panel, right column: same as the left column, but excluding thermal energy (Eth) in the computation of the

bound/unbound mass elements. Right panel, left and right columns: same as for the left panels, but the density slices

are taken perpendicularly to the orbital plane, at x = 0.
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FIGURE 4.6: Same as the left and right panels of Figure 4.5, but the showing the temperature distribution instead.
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FIGURE 4.7: Same as the left and right panels of Figure 4.5, but the showing the velocity distribution instead.
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Observing the density slices in Figure 3.5, we see that the main mechanism of unbinding is via

heating at the beginning of the simulation and by acceleration above escape velocity later. This

is exactly the opposite of what we observe in the case of the rotating giant (Figure 4.5). Rotation

favours unbinding on the outermost layers via acceleration at the beginning of the simulation.

The difference can be ascribed again to the different modality of the interaction: the outer layers

do not have time to adapt to the rotation when they interact with the companion, while for the

work in Chapter 3 the entire star receives energy and angular momentum from the orbit while

the companion is outside the envelope. Nevertheless, the amount of mass unbound here and in

Chapter 3 is similar.

The evolution of the mass inside the simulation domain (Figure 4.8, upper panel) shows that

no significant mass is lost from the domain until ≃ 70 days (green line). Mass starts to be unbound

at the beginning of the simulation (cyan line), peaking at ≃ 100 days, but then both bound and

unbound gas are pushed out of the domain as the simulation evolves. The cumulative mass leaving

the domain (Figure 4.8, lower panel) better shows that gas starts to leave at ≃ 70 days. Initially

all the mass leaving the domain is unbound, joined at ≃ 300 days by bound gas, which keeps

increasing. Following the cumulative unbound mass line, it is possible to see the double unbinding

event described earlier, with a steep initial accumulation of unbound mass, which then flattens out

until≃ 300 days, where it rises again because of mass leaving the box in the second unbound wave.

The total unbound mass is ≃ 15% of the total envelope mass, almost identical to the P12-AMR

simulation, which unbound ≃ 14% of the total envelope mass. Sandquist et al. (1998) obtain a

difference in the amount of bound and unbound mass generated with a rotating and non-rotating

model. Their rotating simulation unbinds ≃ 26% of the envelope mass, while their non-rotating

one unbinds ≃ 33%. They do not, however, discuss this difference.
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FIGURE 4.8: Upper panel: evolution of the gas mass inside the simulation box over time. The blue line represents

the value of the initial gas mass contained in the box and is plotted for comparison, while the green line shows the

evolution of the total mass contained inside the box. The red and cyan lines show, respectively, the bound and unbound

components of the mass. Lower panel: cumulative mass of the gas flowing out of the simulation box over time. Line

colours have the same meaning as for the upper panel.



5
The effect of massive primaries on the

common envelope interaction

Our work philosophy is to isolate specific initial parameters or conditions and determine the impact

on the output of the CE simulations. This allows us, among other things, to gauge the importance

of aspects of the simulations that are not included in numerical work at the moment and which

might or not affect the results. Following this line of research, in this chapter we analyse the effect

of a more massive RGB primary while keeping the companion the same as those used by P12,

hereafter P12, to make a direct comparison. The set of five simulations analysed in this chapter

were performed by our collaborator J.-C. Passy using Canadian supercomputing resources. The

outputs were then fully analysed by R. Iaconi.
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5.1 Simulations setup

The binary systems simulated in this chapter have been created in the same way as those used by

P12: ENZO is used in uniform static grid mode and the companions are placed on the surface of the

primary at the beginning of the simulation. The primary has been mapped and stabilised in three

dimensions starting with a one-dimensional model, obtained from a stellar evolution code (in this

case MESA, Chapter 2). However, here, the RGB star has an initial mass of 2 M⊙ instead of 1 M⊙.

The star has been evolved until its core mass is the same as the one of P12, Mc = 0.392 M⊙. At

this point of the evolution, the star has a total mass of M1 = 1.97 M⊙ (compared with 0.88 M⊙ in

P12) and a radius ofR1 = 66 R⊙ (compared with 83 R⊙ in P12). This is therefore a more compact,

bound star. The reason for choosing to compare two stars with equal core mass was that once the

CE takes place, and assuming a binary emerges, the two binaries would be indistinguishable. The

companion masses are 0.1 M⊙, 0.15 M⊙, 0.3 M⊙, 0.6 M⊙ and 0.9 M⊙, as was the case in P12.

They are all meant to be compact objects, main sequence stars or white dwarfs, not resolved in the

ENZO grid and therefore they are modelled as point-masses interacting only gravitationally with

both gas and other particles. The primary (both the core particle and the gas) and the companion

are then given Keplerian circular orbital velocities.

The simulations have been run with three different resolutions: 1283, 2563 and 5123 cells, with

a static uniform grid. The size of one side of the computational domain cube is 2.4 × 1013 cm ≃

1.60 AU ≃ 345 R⊙ for all the three resolutions, as was the case for P12. The initial models for the

primary star, after mapping them from MESA to ENZO, for the three resolutions we used are shown

in Figure 5.1. With increasing ENZO resolution the MESA model is reproduced more accurately

and with more sample points, especially in the core, where more MESA cells are lost due to the

interpolation (see Chapter 2). After the relaxation process (again, see Chapter 2) the stellar profile

slightly expands; this effect is smaller at higher resolution. This is clear from Figure 5.2, where

the initial configuration of the binary system used in the simulations is shown. Note the position

of the companion at the surface of the primary envelope, as was the case in P12.

P12 run simulations with 1283 and 2563 cells, together with SPH simulations with 500, 000

particles, and concluded that the 1283 simulations were not converged. For example, the final

separation obtained with the 1283 simulations was different from the values obtained with 2563
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FIGURE 5.1: Density profiles of the 2 M⊙ RGB star at the three ENZO resolutions used and for the original 1D

MESA model.

cells and SPH, especially for low mass companions. The 2563 cells and SPH simulations resulted

instead in similar values for the final separations. This does not mean that simulations are fully

converged. Here we run the 5123 set to improve the resolution test, indicating converging be-

haviour. The results show that the difference between the 2563 and the 5123 are small, while the

1283 show larger variations. Considering again the values for the final separations, for 0.1, 0.15,

0.3, 0.6, 0.9 M⊙ companions we obtain respectively 4.5, 4, 3.8, 5.9, 5.1 R⊙ (1283 cells) and 2.3,

2.6, 2.2, 3.1, 4.4 R⊙ (2563 cells). Also, similarly to P12, less convergence is seen at lower compan-

ion masses. The results and plots below are for the 5123 simulations. Their initial conditions and

final outputs are shown in Table 5.1, together with the results for the 2563 and SPH simulations of

P12. Note that the initial separation does not exactly correspond to the radius of 66 R⊙ mentioned

above because of the slight increase in radius due to the relaxation process discussed above.
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M1 M1,c R1 Giant M2 q ai/R1 Ω/ω1 Code2 Resolution τrun a3f M4
Unb Ref.5

(M⊙) (M⊙) (R⊙) (M⊙) (Part./R⊙) (day) (R⊙) (%)

1.97 0.39 69 RGB 0.1 0.05 1.0 0 u-grid(E) 0.7 250 1.3 2 1

1.97 0.39 69 RGB 0.15 0.08 1.0 0 u-grid(E) 0.7 250 1.3 4 1

1.97 0.39 69 RGB 0.3 0.15 1.0 0 u-grid(E) 0.7 250 1.4 10 1

1.97 0.39 69 RGB 0.6 0.3 1.0 0 u-grid(E) 0.7 250 2.4 16 1

1.97 0.39 69 RGB 0.9 0.5 1.0 0 u-grid(E) 0.7 250 4.6 11 1

0.88 0.39 85 RGB 0.1 0.11 1.0 0 u-grid(E) 1.7 1000 4.2 – 2

0.88 0.39 85 RGB 0.15 0.17 1.0 0 u-grid(E) 1.7 1000 4.7 – 2

0.88 0.39 85 RGB 0.3 0.34 1.0 0 u-grid(E) 1.7 1000 9 – 2

0.88 0.39 85 RGB 0.6 0.68 1.0 0 u-grid(E) 1.7 1000 16 – 2

0.88 0.39 85 RGB 0.9 1.02 1.0 0 u-grid(E) 1.7 1000 22 – 2

0.88 0.39 83 RGB 0.1 0.11 1.0 0 SPH(S) 500k 1050 5.7 2 2

0.88 0.39 83 RGB 0.15 0.17 1.0 0 SPH(S) 500k 950 7.8 6 2

0.88 0.39 83 RGB 0.3 0.34 1.0 0 SPH(S) 500k 750 10 8 2

0.88 0.39 83 RGB 0.6 0.68 1.0 0 SPH(S) 500k 950 18 10 2

0.88 0.39 83 RGB 0.9 1.02 1.0 0 SPH(S) 500k 600 25 10 2
1Stellar spin frequency as a function of orbital frequency. None of these simulations used spinning stars.
2u-grid: uniform, static grid; SPH: smooth particle hydrodynamics. E: ENZO; S: SNSPH.
3Rounded to 2 significant figures, calculated at the end of the simulation.
4 Calculated by including thermal energy.
51: This work. 2: P12.

TABLE 5.1: Initial conditions and final outcomes of the 5123 simulations carried out in this chapter,

compared to the simulations of P12.
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FIGURE 5.2: Initial configurations for the binary system used in this chapter (M1 = 1.97 M⊙) at different

resolutions: 1283 (top left), 2563 (top right) and 5123 (bottom).
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FIGURE 5.3: Evolution of the orbital separation between the point-mass particles over the simulation time. Dif-

ferent colours represent different mass companions (see legend). The discontinuous look of these curves is due to the

relatively low output data dump rate.

5.2 Evolution of the binary separations

Let us consider first the evolution of the orbital separation for our simulations (Figure 5.3). More

massive companions sink deeper. Also, the initial slope changes substantially for different com-

panion mass, with the least massive companion (Figure 5.3, black line) showing a slower decrease

in the separation. The decrease steepens for more massive companion masses. The behaviour is

exactly the same noticed in P12 (their Figure 4). Clearly the far greater binding energy of the more

massive stars contributes to this behaviour.

The physics of the rapid in-spiral is dictated by the strength of the gravitational drag force

(Fdrag) exerted by the primary’s envelope on the companion, which, for a subsonic regime is given

by (Iben & Livio 1993):

Fdrag ∝
M2

2 ρv
2
rel

(v2rel + c2s)
2
, (5.1)

while for the supersonic regime is given by (Hoyle & Lyttleton 1939):

Fdrag ∝M2
2 ρv

2
rel . (5.2)
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Here M2 is the mass of the companion, ρ is the gas density around the companion, vrel is the

relative velocity between the companion and the gas and cs is the sound speed of the gas around

the companion. The trend between speed of in-spiral and companion mass is expected in the initial

phases of the in-spiral, since the gravitational drag depends, among other quantities, on the mass

of the companion and relative velocity, both of which are larger for more massive companions.

Examining the separation in Figure 5.3 later on, at approximately 150 days we see a regime change:

the less massive companions sink deeper in the envelope of the primary than the more massive

ones. Also, the more massive companions have separations that plateau earlier. The more massive

companions expel the outer layers of the envelope right away, because of the sudden, larger energy

injection. Hence in the case of a massive companion, starting from exactly the same conditions as

a lighter one, the outer envelope is spun-up more at the beginning of the interaction, reducing the

efficiency of the gravitational drag more rapidly and slowing the in-spiral. This said it is not always

obvious why the in-spiral stops by plotting the quantities that make up the factors in Equations 5.1

and 5.2. Carrying out a study on such factors becomes increasingly more difficult as the companion

mass increases, because, due to stronger forces close to the object, the fluid situation around it is

more complex. For example, Staff et al. (2016b) tested the effect of planets interacting with the

envelope of giant stars. For such low mass companions a local fluid analysis was possible, because

the conditions around those objects were much less turbulent. Another difficulty we face here

arises from the initial setup used. The envelope has to adapt to the companion as the simulation

starts, resulting in additional complexity around the in-spiraling object. We attempt such a study

for our lowest mass companion. In Figure 5.4 we compare the velocity of the companion, the local

average gas velocity projected on the direction of the companion velocity (
〈

vgas,‖
〉

) and the local

average gas velocity perpendicular to the direction of the companion velocity (〈vgas,⊥〉) in the left

panel, the companion’s Mach number and the normalised average gas density in the companion’s

proximity (〈ρ〉 / 〈ρ〉max) in the right panel, for the least massive companion (0.1 M⊙). Average

quantities are computed over a sphere of 7 R⊙ (10 cells) centred around the companion. For

further details we refer the reader to Section 3.3.4. The relative velocity between the companion

and
〈

vgas,‖
〉

does not seem to be playing a role in the lack of initial in-spiral. Also, one may expect
〈

vgas,‖
〉

to increase as the gas is spun-up, but this clearly does not happen in this case. Finally, the

relative velocity between companion and gas around it on the gravitational drag are the magnitude
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FIGURE 5.4: Simulation with a 0.1 M⊙ companion. Left panel: companion velocity (thicker blue line), local

average gas velocity projected on the direction of the companion velocity (
〈

vgas,‖
〉

, thick green line) and local average

gas velocity perpendicular to the direction of the companion velocity (〈vgas,⊥〉, thin cyan line). The three lines are

smoothed with a Savitzky-Golay filter, using 17 coefficients and 7th order polynomials. Right panel: companion’s

Mach number (thick blue line) and normalised average gas density in the companion’s proximity (〈ρ〉 / 〈ρ〉max, thin

green line). The dashed vertical line marks the point of maximum density.

of 〈vgas,⊥〉, always larger than
〈

vgas,‖
〉

. This indicates that the envelope gas tends to move outward

radially instead of following the companion.

The lack of initial in-spiral must be then down to the low density in tandem with the low

companion mass. After the 50 days mark the density around the companion starts increasing, until

it plateaus at ≃ 150 days. In this time span the increasing density is the main cause of the increasing

drag force which brings the companion deeper into the primary’s envelope. Ostriker (1999), in

their simulation of the gravitational drag, explore the effect of the Mach number. They show that

near Mach number = 1 the gravitational drag is at maximum, decreasing steeply for values lesser

than unity and decreasing more gradually for values larger than unity. Staff et al. (2016b) ascribed

the end of the in-spiral to a change of the regime from supersonic to subsonic. In Chapter 3 we

saw how the 0.6 M⊙ companion remains subsonic in its in-spiral; the reason for the end of the

in-spiral is therefore not the Mach number. Here we observe instead that the Mach number of the

companion is below unity to begin with, but the journey rapidly becomes supersonic. After peaking

at ≃ 50 days, the Mach number decreases on the same time-scale, reaching its minimum around

the sonic point. After the minimum the companion’s journey becomes supersonic again, showing

constantly increasing Mach numbers until the end of the simulation. This behaviour is difficult to

interpret in connection to its effect on the gravitational drag and one has to wonder what effect a
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supersonic speed has on a hydrodynamic simulation like ours. The formation of a shock is treated

with an artificial viscosity factor that smooths the shock front over more than one cell. One may

therefore be suspicious that the artificial treatment of the shock condition may influence the result.

As we highlight its importance, we leave this topic to future work. We further posit that at low

masses gravitational drag is not the only mechanism that should be driving the in-spiral. Staff et al.

(2016b), working with planetary mass companions, showed analytically that the hydrodynamical

drag on those bodies should be similar to the gravitational drag simulated in the code. This could

also be the case for the least massive companions studied by P12 and here, a comparison we leave

to future work.

Finally, we also wonder whether the hydrodynamic code does not simulate hydrodynamical

drag. The most massive companions travel through the envelope together with a certain amount of

gas that is trapped permanently in their potential well. This gas gives the companion an effective

width which will slow the object down hydrodynamically. This effect may not impact the simula-

tion outcomes, since it would be larger for more massive companions, which are also those with

larger gravitational drag. However it would be useful to quantify it.

In Chapter 3 we have discussed how the definition of final separation is different for different

publications. Some of them use a criterion based on reaching a certain percentage of the maximum

orbital decay while others simply take the value at the end of their simulations. The choice of

what to use is completely arbitrary, but one needs to be consistent when comparing. For this set

of simulations we decided to take the values at ≃ 250 days, when the separation vs time curve

has approximately flattened for all the simulations. The final separations reached in this work are

plotted in Figure 5.5. All the final separations obtained by using a more massive giant are in lower

and in better agreement with the observed samples. This behaviour is the result of a more compact

and/or more massive primary. Looking at the results of these simulations one could think that this

is the simple solution to the CE problem, however, pre-empting the results of Section 5.3, a more

massive primary results in less unbound gas.

As a final remark, we note that, similarly to what was observed by P12, there is a correlation

between the final separation and the mass ratio. This is not an observed correlation, although one

may wonder whether observed systems are too heterogeneous a group to reveal such a correlation.
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FIGURE 5.5: Final orbital separation vs mass ratio q = M2/M1 for observed post-CE systems (Zorotovic et al.

2010 and De Marco et al. 2011, black dots) and for simulations (Sandquist et al. 1998, green circles; Ricker & Taam

2012, cyan triangle - note that here we report the separation of the simulations of Ricker & Taam 2012 which is lower

than reposted in Ricker & Taam 2008 where the in-spiral had not come to an end; the 2563 ENZO simulations of P12

are shown as yellow squares; Rasio & Livio 1996, magenta pentagon; PHANTOM simulations, blue hexagons, see

Section 3.4; Ohlmann et al. 2016, grey diamond; Nandez et al. 2015, pink cross; the results of the ENZO simulation

described in Chapter 3, yellow star; the results of this chapter, yellow rectangles).

5.3 Envelope ejection

To evaluate the unbinding of mass we plot the evolution of bound and unbound gas mass both

inside and outside the box in Figure 5.6. We did not plot the total mass inside the simulation

domain since it closely resembles the bound mass plot.

The trend of both bound and unbound mass inside the simulation domain are conditioned by

the domain size itself. Mass starts leaving the domain very rapidly after the beginning of the

simulations. This is clear from Figure 5.6 (left panels). The trends are a function of, as expected,

the companion mass; lighter companions push the envelope out of the box slower and in smaller

amounts. In all the simulations we notice an initial event of unbinding, but the mass unbound is
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FIGURE 5.6: Bound mass inside the simulation domain (top left), unbound mass inside the simulation domain

(bottom left), cumulative bound mass leaving the simulation domain (top right) and cumulative unbound mass leaving

the simulation domain (bottom right). Different colours represent different mass companions (see legend).

entirely pushed out of the simulation domain very rapidly.

Of more interest is the right column of Figure 5.6, that shows the cumulative bound and un-

bound mass leaving the domain. We cannot store quantities that leave the domain during the

simulations. Therefore the only way to estimate the bound and unbound mass leaving the domain

is by interpolating between code data dumps as explained in detail in Section 3.3.2. The bound

mass leaves the domain (Figure 5.6, top right panel) in a steady flow in all simulations, both during

and after the rapid in-spiral phase. This is in accordance with the behaviour of the bound mass

inside the simulation box discussed above (Figure 5.6, top left panel). Additionally, if for example

we compare the yellow lines in Figure 5.6, top right and left panels, it is possible to see that the

amount of bound mass inside the box decreases by ≃ 0.4 M⊙ (there is almost no unbound mass in
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the box at that time), a value that is the same as the sum of bound and unbound mass that left the

domain, this shows the consistency of the interpolation method.

The total amount of mass unbound in the simulations has been calculated here by including the

contribution of thermal energy; a more detailed discussion on the different contributions that can be

considered is carried out in Section 3.3.2. We see from Figure 5.6 (see also Table 5.1) that in none

of the simulations the entire envelope is unbound. In addition less massive companions unbind

less envelope mass. The main unbinding event happens later for the lower companion masses and

it is more gradual. The more massive companions are able to accrete and drag more envelope gas

when the interaction starts, generating a wave of outgoing material with velocities larger than the

escape speed, resulting in unbinding. For less massive companions the unbinding happens at later

times, when the gravitational drag becomes more effective (as discussed in Section 5.2) and it is

more gradual and less conspicuous.

This trend is not quite preserved by the 0.6 M⊙ companion, which is able to unbind 4% more

mass than the more massive, 0.9 M⊙, companion. The reason is not immediately clear, but could

be related to what is happening after the rapid in-spiral. From Figure 5.6 (bottom panels) it is

in fact clear that unbinding happens after 100 − 150 days from the beginning of the simulation,

and at this time the rapid in-spiral for the 0.6 M⊙ companion has already completed. While the

initial unbinding of the envelope takes place with the first wave of material accelerated by the

companion and it is mainly due to gas reaching escape velocity (Figure 5.7, left plot), the second

one is mainly due to the heating of the gas, differently from what happens during the rapid in-spiral

(Figure 5.7, right plot). These unbound regions coincide with zones where gas has a velocity larger

that the local gas sound speed (Figure 5.8, top right panel). However, similarly high Mach number

regions occur also for less (Figure 5.8, top left panel) and more (Figure 5.8, bottom panel) massive

companions at late times and are not indicative of additional unbinding. There is no clear physical

cause for this particular effect and it could be either a random occurrence or a numerical effect. A

deeper understanding of what is taking place in the code is clearly necessary.

Overall, using a massive giant does not help increase the amount of mass unbound in the

interaction with respect to a less massive one like the one used in P12, which achieves at its

maximum an unbinding of ≃ 10% of the envelope.
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5.4 Conclusions

In this chapter we performed a set of CE simulations using ENZO with an initial setup similar to

the simulations of P12, except for the mass of the primary star’s envelope. The giant star we used

is a 1.97 M⊙ star instead of a 0.88 M⊙ one, therefore it is more compact and denser for similar

core masses. With such a setup we show that the entire set of companions, with masses 0.1,

0.15, 0.3, 0.6 and 0.9 M⊙, is able to achieve final orbital separations within the range of observed

values (see Table 5.1). Similarly to P12, we obtain larger separations for increasing companion

mass, something not readily observed. Finally, the final separations obtained by us and P12 for the

lowest mass companions are much closer to each other than those obtained for higher companion

masses. This suggests that at lower mass the in-spiral is more independent of the envelope mass

and distribution than at higher companion masses. This has to be investigated in future work.

Although final separation is in agreement with observations, we are still unable to unbind

the entire envelope mass. As expected, lower mass companions have less energy and angular

momentum to transfer to the envelope and therefore unbind less mass than the heavier ones. The

main unbinding event happens earlier, and in a shorter burst, at higher masses. This is due to the

higher efficiency of the gravitational drag at early times. As the companion mass increases, the

companion’s interaction with the envelope is less gradual, the envelope is lifted more rapidly and

when the companion reaches the zones near the core the gas has a lower density. The percentages

of unbound gas reach a maximum of 16% in the case of the 0.6 M⊙ companion, something that

we are, for now, not able to explain. If we exclude this result the most mass unbound is 11% of

the envelope mass, not dissimilar from the results of P12 and slightly lower than what we obtained

in Chapter 3 and Chapter 4. We think that an additional physical mechanism not included in

simulations is needed to match the observations. This could be the injection of recombination

energy as gas recombines in the expanding and cooling envelope (Nandez et al. 2015).

Aside from code shortcomings it is not unrealistic to suppose that relatively more post-CE

binaries derive from more massive stars, which have a larger binary fraction, something that we

discuss further in Chapter 7.
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FIGURE 5.7: Left columns: density slices perpendicular to the z axis in the orbital plane after, from top to bottom,

15, 29, 44, 58 days (left plot) and 234, 277, 292, 307 days (right plot) for the 0.6 M⊙ companion. The point-mass

particles representing the core of the primary and the companion are shown as black dots, while the white regions

represent the unbound gas. The size of the black dots is not representative of any property of the point masses and

is chosen only to highlight them. Right columns: same as the left column, but excluding thermal energy from the

computation of the bound/unbound mass elements.
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FIGURE 5.8: Gas Mach number slices perpendicular to the z axis in the orbital plane at the same times of

Figure 5.7, for the 0.1 M⊙ (top left), 0.6 M⊙ (top right) and the 0.9 M⊙ (bottom) companions. Time increases from

left to right and from top to bottom. The point-mass particles representing the core of the primary and the companion

are shown as black dots, their size is not representative of any property of the point masses and is chosen only to

highlight them. The blue contours represent Mach number equal to unity.
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6
Energy conservation in ENZO

During the work described in Chapter 3 we discovered an energy conservation issue with the ENZO

code as applied to our problem. Energy non-conservation can create non-physical behaviours in

the simulated systems, hence yielding incorrect results for the final configuration of the binary

(final separation, unbound mass, etc.). Here we investigate the cause of this problem.

Due to this work, which resulted in a viable solution to the problem that was affecting other

simulations that were being carried out within our group, I became co-author of the paper by

Staff et al. (2016a).

6.1 The problem of energy conservation in grid codes

In all the codes, whatever their numerical method (e.g., grid or SPH), conservation of physical

quantities is a fundamental requirement. If we consider grid codes (for a general idea on how they

115
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work see Section 2.1.1), they are known to have limitations in conserving energy, and this is in part

due to how they do the integration of the energy equation. To carry out a numerical integration it is

in fact convenient to insert gravity as a source term. ENZO is no exception. The numerically-solved

energy equation can be expressed, in the pure hydrodynamical form, as (Jiang et al. 2013):

∂e

∂t
+∇ · [(e+ P )~v] = ρ~v · ∇Φ , (6.1)

where e is total energy per unit volume, P is pressure, t is time, ~v is the velocity vector, ρ is

density and Φ is gravitational potential. This means that gravity is only taken into account on the

right hand side of Equation 6.1 and the gravity solver is separated from the hydrodynamic solver.

In other words, the left hand side of the equation is solved by the hydrodynamic solver, while the

right hand side is solved by the Poisson solver. As a results of this technique, at each time-step the

quantities on the left hand side and those on the right hand side are not guaranteed to be the same

to round-off error.

This problem is exacerbated if gravity cannot be evaluated with enough precision, for example

when resolution is low and steep, moving density gradients are not resolved by a sufficient number

of cells. Let us take as an example Figure 6.1, where the problem is explained in one dimension for

simplicity. The blue curve represents the analogue density resolved by two cells, such that we have

only two values for the density ρ at each cell centre. Here we call ρ1 and ρ2 as the values at the

cell centres, but they can assume any value of ρanalytic (the blue curve in Figure 6.1) within the cell

boundaries, depending on the interpolation method. ENZO evaluates the potential energy at each

cell centre on the base of ρ1 and ρ2, values that have a standard deviation that is proportional to the

cell size and the steepness of the gradient. Under these circumstances, when ENZO steps forward

by one time-step, if mass moves between the two cells, the potential energy change at those cell

centres has an error associated with the standard deviation of the density value.

As a consequence, at each successive time-step, the value of the right hand side of the energy

equation is much more approximate than for the left hand side, hence yielding an erroneous value

for energy. This situation, in our simulations, systematically occurs in the central regions of the

primary. Here the density gradient is very steep and moving from one cell to another because of

both the expansion of the star and its orbital velocity. Additionally we are not able to reach a
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FIGURE 6.1: One dimensional scheme of a steep density gradient not resolved in a sufficient number of cells.

resolution such that the gradient is split between a sufficient number of cells.

The issue involving energy conservation we encountered in ENZO revealed itself in our simu-

lations in view of the specific conditions encountered in CEs.

6.2 Evaluating energy conservation

Conservation of energy and angular momentum can be difficult to evaluate in grid codes when

simulating problems that have different spatial scales involved. In fact one has to find the right

compromise between resolution and domain size to properly reproduce the physics of a problem

within reasonable computational time. Ideally, we would like to model the CE ejecta, for which

spatial scales of tens of AU are needed. At the same time we need to resolve the inner part of the

in-spiral on spatial scales of less than a solar radius. The compromise is to simulate a few AU and

let some mass leave the computational domain.

Unfortunately, when mass leaves the simulation domain both energy and angular momentum

are irreparably lost. Additionally, our initial configuration includes an extremely hot (≃ 108 K),

low density (≃ 10−11 g cm −3) medium outside the giant, intended to keep the star from expanding

in the otherwise empty space (see Section 2.2). The problem with this method is that, even before
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mass from the primary is lost from the grid, the external medium is pushed out of the box by the

initially expanding giant. This has almost no effect on the total mass and angular momentum in

the computational domain. However, this gas carries a large amount of thermal energy because

of its high temperature. Therefore, as soon as a small amount of gas leaves the domain the total

energy in the computational domain is greatly affected. Obviously this issue created a problem

when assessing energy conservation and could have therefore have partly affected our conclusions

despite our effort to account for natural energy losses out of the domain. Alternative ways to

evaluate energy conservation in grid codes include the method we have adopted in Section 3.3.2.

The work carried out here, however, does not attempt to estimate the amount of energy leaving the

domain. Here we account for the energy leaving the domain only qualitatively, something that, as

it turns out, was sufficient to identify the origin of the problem and suggest a solution.

6.2.1 Calculation of energies

Here we rapidly describe how the computation of the various components of the total energy

showed in the plot in Section 6.4 has been carried out. The total energy is given by the formula

Etot = Etherm,tot + Ekin,tot + Epot,tot and its single components are computed as follows.

The contribution to thermal energy comes just from the gas and its value is given as an output

by the ENZO code per unit mass, hence for each cell it is just multiplied by the gas mass in the

same cell. Then the contributions of all the cells are summed up to get Etherm,tot. The total kinetic

energy is given by the sum of the kinetic energy of the gas and of the particles. The contribution

of the gas is given by

Ekin,gas =
1

2

N
∑

i=1

miv
2
i , (6.2)

where the index i runs over all the cells, N is the total number of cells, mi is the mass of the i-th

cell and vi is the absolute value of the velocity of the i-th cell. The contribution of the particles is

instead given by

Ekin,part =
1

2

M
∑

k=1

mkv
2
k , (6.3)

where the index k runs over all the particles, M is the total number of particles (1 for the cases

where there is a single star or 2 when there is a binary), mk is the mass of the k-th particle and vk
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is the modulus of the velocity of the k-th particle. Then Ekin,tot = Ekin,gas + Ekin,part.

The smoothed potential, Φ, of the gas at each cell position is given as an output by the ENZO

code and the total potential energy between gas and gas has been computed as:

Epot,gas−gas =
1

2

N
∑

i=1

Φimi , (6.4)

where Φi is the gas potential at the position of the i-th cell. The 1/2 factor is to prevent a double

contribution by each pair of cells. The total potential energy between particles and gas has been

computed as:

Epot,part−gas =

M
∑

k=1

N
∑

i=1

−Gmkmi
√

r2i + ǫ2δ2exp[−r2i /ǫ
2δ2]

, (6.5)

where G is the gravitational constant, ri is the distance between the i-th cell and the k-th particle,

ǫ = 1.5 (this is a numerical multiplying factor which combined with δ gives the smoothing length)

and δ is the size of a cell. Finally, the total potential energy between particles has been computed

only in the case where there are two particles in the grid and it is given by

Epot,part−part =
−Gm1m2

√

r212 + ǫ2δ2exp[−r212/ǫ
2δ2]

, (6.6)

where m1 is the mass of the first particle, m2 is the mass of the second particle and r12 is the

distance between the two. Note that in the Equation 6.5 and Equation 6.6 the smoothed potential

recipe from Ruffert (1993) has been used to correctly compute the energies.

6.3 Estimating the extent of energy non-conservation

Before we started using the AMR version of ENZO as implemented by Passy & Bryan (2014),

we ran simulations with a static, uniform grid. In fact, the study of Chapter 3 had been initially

carried out in this way. The simulation used a domain size equal to the one used in Chapter 3

(863 R⊙ = 4 AU), but we doubled the number of cells with respect to P12, from 1283 to 2563, to

maintain the primary star resolved with the same number of cells as P12. The smoothing length

for the point-mass particles was 3 times the cells size instead of the value of 1.5 used in Chapter 3
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FIGURE 6.2: Components of the energy inside the computational domain over the whole simulation time: total

energy (stars blue), total kinetic energy (solid green), total potential energy (dashed green), total thermal energy

(dotted green), gas kinetic energy (solid red), gas potential energy (dashed red), gas thermal (dotted red), particles

kinetic (solid yellow), particles to particle potential (dashed yellow) and particle to gas potential (dashed cyan).

and, as we will see, this factor was a main contribution to the problem of energy conservation.

The remaining parameters were exactly the same as those used in Chapter 3, to which we refer the

reader for further details.

In Figure 6.2 we show the various components of the energy inside the simulation domain over

time. There is a steep rise in total energy (blue star line) in the first year of the simulation, followed

by steep decrease and flattening. The decrease and flattening after the first year of simulation

can be understood by looking at Figure 6.3, showing the total gas mass inside the simulation

domain over time. At one year, significant mass starts leaving the box, a time that approximately

corresponds to the point when the total energy decreases. Clearly, when a lot of gas is pushed

out a commensurable amount of thermal energy is lost. This trend is also confirmed by how the

total energy curve mimics the behaviour of thermal energy (dotted red curve in Figure 6.2). The

subsequent flattening can also be explained by the trend of the thermal energy, in fact as soon as

the “hot vacuum” has entirely left the domain, at around 2 yr, the decrease is much smoother and

it is balanced by the increases in both potential and kinetic energies.

Let us now consider the more enigmatic initial increase in total energy, from ≃ 1.1 × 1046 erg

to ≃ 1.6×1046 erg (∆Etot ≃ 5×1045 erg). This cannot be accounted for by the change in thermal
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FIGURE 6.3: Gas mass inside the domain over the whole simulation time.

energy, which goes in the opposite direction. Here we assume that during this time span all the

thermal energy lost is due to “hot vacuum” mass leaving the box and only a negligible part has

been transformed into kinetic energy. With this assumption all the thermal energy lost needs to be

added to the energy non-conservation budget, making the total amount of energy change in the first

0.86 yr of the simulation 1.63 × 1046 erg. This is a substantial fraction of the total energy at the

beginning of the simulation. It is also a substantial fraction of the potential energy in the system.

6.4 Further tests

We will now discuss in detail the set of test simulations we carried out to understand what was

causing the energy non-conservation issue. Below we refer to each test using the reference label in

the first column of Table 6.1. The tests are organised as follows: T01, T02 and T03 are tests done

without a star, from T04 to T12 are tests done with only a giant star in the computational domain

and from T13 to T16 are tests done by running CE simulations.

As a measure of the energy conservation we use the change in total energy, ∆|E|, divided by the

initial value of the total energy, |Einitial|. We acknowledge that the fractional change will be driven

by how close to zero the system’s total energy is initially. As a result the value ∆|E|/|Einitial| is

not necessarily an indication of how acceptable a given level of non-conservation might be.
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TABLE 6.1: Test simulations list.

Reference Resolution Box size (cm) System setup Boundary Solver Max Cycles Primary Run
conditions ∆|E|/|Einitial| tdyn (days) time

T01 256 1.0 Sod Shock Tube Periodic Zeus ≃ 0.008 56218 N.A. 1 s
T02 1024 1.0 Sod Shock Tube Periodic Zeus ≃ 0.007 56218 N.A. 1 s
T03 256 1.0 Sod Shock Tube Periodic PPM ≃ 0.007 56218 N.A. 1 s
T04 3843 4.4× 1014 Single star movinga Vacuum Zeus ≃ 0.20 38007 154 10 yr
T05 3843 4.4× 1014 Single star statica Vacuum Zeus ≃ 0.035 37670 154 10 yr
T06 2563 4.4× 1014 Single star moving,a Vacuum Zeus ≃ 0.14c 3141 154 10 yr

high density background
T07 2563 4.4× 1014 Single star moving,a Vacuum Zeus ≃ 90 2619 154 4.5 yr

no central particle
T08 2563 4.4× 1014 Single star static,a Vacuum Zeus ≃ 90 2609 154 4.5 yr

no central particle
T09 643 1.5× 1013 Single star staticb Periodic PPM, ≃ 0.001 67424 28 140 days

dual
T10 643 1.5× 1013 Single star staticb Periodic PPM, ≃ 0.07 65600 24 140 days

dual
T11 643 1.5× 1013 Single star staticb Periodic PPM, ≃ 0.5 65593 22 140 days

dual
T12 643 1.5× 1013 Single star staticb Periodic PPM, ≃ 1.6 30627 6 140 days

dual
T13 2563 6.0× 1013 Binary 3 stellar radiid Vacuum Zeus ≃ 0.34e 56218e 28 1 yre

T14 2563 6.0× 1013 Binary 3 stellar radiid Periodic Zeus ≃ 1.0 55982 28 1 yr
T15 1283 6.0× 1013 Binary 3 stellar radiid Vacuum Zeus ≃ 0.18e 49564e 28 1 yr e

T16 643 6.0× 1013 Binary 3 stellar radiid Vacuum Zeus ≃ 0.34e 27016e 28 1 yr e
a M ≃ 3.05 M⊙, R ≃ 473 R⊙.
b Simulations run with the same stellar models (Menvelope ≃ 0.48 M⊙ and R ≃ 100 R⊙) and different central particle mass: 0.0 M⊙ (T09), 0.2 M⊙ (T10), 0.3959 M⊙

(T11), 10.0 M⊙ (T12)
c Mass is lost from the grid from the beginning of the simulation.
dMprimary ≃ 0.88 M⊙, Rprimary ≃ 100 R⊙, Mcompanion=0.6 R⊙.
eBefore the point when mass starts leaving the box.
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T01, T02 and T03 solve the 1D Sod Shock Tube test with periodic boundary conditions to avoid

mass loss and were run to check the energy conservation without gravity. Given the simplicity of

this test we used it also to check the integrity of the Zeus solver we are using for CE simulations

against the more computationally expensive PPM and to test resolution effects with the Zeus solver.

Results show that with both solvers energy is well conserved and that energy conservation is worse

with decreasing resolution.

T04 and T05, have been run with the AGB giant used by Staff et al. (2016a). The purpose of

these tests was to analyse if the non-conservation changed depending on whether the star is static

on the grid or moving. The comparison shows that clearly, in the moving case energy conservation

is worse.

T06 aimed to analyse the effect of a higher density “hot vacuum” outside the giant. We sus-

pected that non-conservation was generated at the edge of the giant, where it makes contact with

the hot vacuum, because of the huge difference in the physical quantities of the two gasses. Also,

we had previously discovered that a moving giant conserved less energy (T04), therefore we tested

the higher density vacuum using the same moving star of T04, but reduced the resolution for com-

putational time reasons. We therefore acknowledge that by changing the resolution, T06 is not

perfectly comparable with T04 and T05. In this case the non-conservation appeared to be still

high. However, a non-negligible flux of mass starts leaving the box from the beginning of the

simulation, because in this case the vacuum is denser. This eliminates out of the domain more

kinetic and potential energy compared to T04 and T05, but much less thermal energy. As a result

conservation is better than T04, despite the resolution being lower.

T07 and T08 have been run to investigate how much the presence of the central point-mass

particle affected the non-conservation. Here we removed the central point-mass. This resulted in

the star expanding and losing mass out of the box. Here we highlight again that in Tables 6.1 we

give the quantity ∆|E|/|Einitial| in column 7. This value is not always representative of good or

bad energy conservation, because it is very sensitive to the value of the initial total energy (i.e.,

easily becomes very large if the initial total energy is close to zero). It can be therefore used as

a comparison only between simulations with a similar initial total energy. This applies to both

T07 and T08, where the initial value of the total energy is very close to zero, due to the absence

of the point mass. As a result we cannot easily compare T07 and T08 with T04 and T05. We
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can, however, compare T07 with T08. The comparison shows a similar amount of energy non-

conservation, a sign that in the absence of a point-mass the presence of static or moving gas has no

repercussions on the energy conservation. The issue is therefore connected with the point-masses.

We further investigate the issue with the point-masses from the two previous tests using T09-

T12. This set of four tests uses the same giant star as in in Chapters 3 and 4. In this case we

proceeded by trying different masses for the particle in the centre of the giant, to understand how

much the issue depended on its actual mass. Therefore we also used an overall lower resolution,

to reduce computational times. The results show that by increasing the point-mass value, energy

conservation worsens, something that we ascribe to the fact that more massive particles create a

steeper potential which would require higher resolution to be properly represented. Since the point-

masses we use in these tests do not have the correct value to set the star in hydrostatic equilibrium,

the giant is unstable and prone to expand and push mass out of the grid. To avoid this issue and

correctly evaluate energy conservation we used periodic boundary conditions in these simulations.

We also run some tests with a CE simulation set up. T13 is the simulation in which we unveiled

the energy non-conservation issue described in Sections 6.2 and 6.3, also visualised in Figure 6.2.

In T14 we run exactly the same simulation as T13, but with periodic boundary conditions, to

pin down the exact magnitude of energy non-conservation. The periodic simulation shows that

the actual value of energy non-conservation, when no gas leaves the domain, is actually higher.

Finally, we run two resolution tests, T15 (1283 cells) and T16 (643 cells), to be compared with T13

and to check the behaviour of the code at different resolutions with point-mass particles in the grid.

The boundary conditions were “outflow”, like for T13, to keep conditions the same. The result of

this is that ENZO conserves less energy at decreasing resolution.

From all the tests described above, we can extrapolate three trends compromising energy con-

servation in our CE simulations: energy conservation improves with decreasing the mass of the

point-mass particle, energy conservation is better when a particle is static on the grid, and energy

conservation improves with resolution. In the next section we describe in detail the origin of the

problem and our method to improve conservation.
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6.5 Solving the energy conservation issue

Only recently Jiang et al. (2013) described a numerical solver able to better conserve energy by

not taking gravity as a source term. In lieu of an expensive code modification, we resorted to

reducing the steepness of the potential gradients by increasing the particle potential smoothing

length (Equations 6.5 and 6.6). The smoothing length is a numerical method used to approximate

the gravitational potential on short distance scales, where it rapidly decreases to minus infinity.

To avoid the singularity and related numerical approximations, the natural potential function is

modified so that within the smoothing length the potential is flat. As a result gravity is smoothed

within this threshold distance. There are various ways in which gravitational potential can be

smoothed. In our simulations, for the point-mass particles, we use the prescription of Ruffert

(1993), also used by P12.

Staff et al. (2016a) tested various resolutions and concluded that even using AMR to increase

the resolution in high density regions, we are not able to match the steep density gradient around

the core with enough cells and be able to simulate the interaction in an affordable time and with

tolerable energy conservation. By doubling the smoothing length, however, we reduced non-

conservation. To double the smoothing length we modified the value of ǫ in Equations 6.5 and

6.6. The ǫ used by P12 and also in the simulation that displayed poor energy conservation (T13)

was 1.5, therefore yielding a smoothing length δǫ of 1.5 times the smallest cell size.

Increasing the smoothing length decreases the strength of gravitational interactions, potentially

creating less accurate results. Staff et al. (2016a) tested the interplay between energy conservation

and smoothing length with the aim of identifying the minimum point-mass particle smoothing

length one can use and still keep energy conservation within reasonable limits and at the same

time do not approximate too much the gravitational interaction. The result of their tests is that an

optimal value for ǫ is 3 (a smoothing length of three times the smallest cell size). We have placed

the entire paper in appendix.

By increasing the smoothing length from 1.5 to 3 times the length of the smallest cell in the

domain we are able to conserve energy retaining a reasonable gravitational interaction. For ex-

ample in the simulation used for the work described in Chapter 3, which is the same as T13,

we are able to conserve energy to the 4% level over 19861 coarse grid cycles, corresponding to
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260 days ≃ 0.71 yr. This estimate has been done in the initial portion of the simulation when the

mass of external hot medium leaving the domain is negligible. The only difference between T13

and the simulation in Chapter 3 is that in the latter we use ENZO with AMR, a coarse resolution

of 128 cells per side and two levels of refinement, which grants us double the resolution of T13 in

the densest regions.



7
Conclusions and future work

Here we summarise the CE problem, our approach, numerical issues we faced and the results

obtained. Additionally we outline new directions for future research on the topic.

7.1 An unsolved physical problem

The scientific topic investigated in this thesis is the common envelope (CE) interaction (Paczynski

1976, Ivanova et al. 2013), that falls within the range of phenomena called close binary interac-

tions: at a certain point during the life of a binary star there is the possibility that the two compo-

nents of the system approach each other enough to exchange mass. If the rate of mass transferred

from one object (primary) to the second (companion) is too large for the companion to accom-

modate it, the envelope of the primary distributes itself around the binary, creating a CE. In this

situation the companion in-spirals rapidly towards the core of the primary, reducing their orbital
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separation and ejecting the envelope around them.

The CE phase is a short event in astrophysical time-scales (∼ 1 yr), and up to now it has been

observed for sure only once by Tylenda et al. (2011). The CE interaction is of great importance,

as it is one of the few known channels to decrease a binary’s orbital separation (. 5 R⊙) and,

as such, the only way to explain compact evolved binaries and mergers. Observations in fact

show that the universe is populated by many cases of such post-CE systems (De Marco et al. 2011,

Zorotovic et al. 2011). Additionally, post-CE objects evolve on and eventually result in a variety

of additional phenomena, such as compact white dwarf, neutron star and black hole mergers, that

produce gravitational waves, as in the case observed by Abbott et al. (2016a). They are also the

systems that give rise to type Ia supernovae and some gamma-ray bursts. As a result, understanding

the physics of the CE is crucial for modern stellar astrophysics.

Despite the fact that the basic concepts of the interaction were clear already at the time when

Paczynski (1976) published his work, up to today the CE problem has not been understood enough

for the theory to make viable predictions. The interaction involves multiple physical processes

and, its inherently 3D nature, places it is beyond the ability of analytical studies. The main way to

investigate the CE interaction is therefore with 3D numerical simulations. Various studies have ap-

proached the problem numerically: Rasio & Livio (1996), Sandquist et al. (1998), Sandquist et al.

(2000), Ricker & Taam (2008), P12, Ricker & Taam (2012), Nandez et al. (2014), Nandez et al.

(2015), Ohlmann et al. (2016). However, despite the use of different numerical techniques (grid-

codes, SPH, moving mesh) and different initial conditions (e.g., component masses, primary ra-

dius, initial separation), we are still not able to make viable predictions, nor relate the simulations

to the observed post-CE systems. Namely, except for one single case which we will discuss in

Section 7.1.1 (Nandez et al. 2015), simulations cannot simultaneously obtain a small final orbital

separation and unbind the entire gaseous envelope.

7.1.1 On envelope recombination energy simulations

Nandez et al. (2015) introduced for the first time gas recombination energy in CE simulations.

This physical mechanism supplies an additional energy source that helps unbind the envelope.

By including recombination energy, Nandez et al. (2015) were able to fully unbind the envelope,
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something never achieved before. Without recombination energy they unbound 50% of their enve-

lope, while with recombination energy they unbound almost 100%.

However, S. Ohlmann (private communication) applied the same technique to their simulation

(Ohlmann et al. 2016) and increased the fraction of unbound envelope from 8% to 16%. Clearly

recombination energy makes a difference, but does not necessarily solve the problem. This raises

questions about the validity of the Nandez et al. (2015)’s work. In particular, the system they

simulated (a primary with a mass of 1.5 M⊙ and a companion with a mass of 0.36 M⊙) is different

from any previous work, precluding the possibility of a direct comparison. Their resolution is also

very low (200,000 particles) and no resolution test is presented. Finally, their paper contains one

figure and almost no detail, nor any explanation, nor analysis of their simulation.

The paper by Nandez et al. (2015) came out late in my Ph.D. and, the code modifications

required to include recombination energy would have required more time than was available for

this thesis. We leave this investigation to future work (see Section 7.4).

7.2 The aim of this project

The numerical efforts aimed to understand CE (see Section 7.1) lack in coherence. Numerical tech-

niques differ, convergence tests are few and far between, and comparisons are almost non-existent.

Conclusions as to the nature of specific mechanisms are made based on individual simulations

carried out with only one parameter setup. Notable exceptions are the work of Sandquist et al.

(1998) and P12. Necessary comparisons with observations are often missing. Our aim is there-

fore to investigate the CE interaction with a systematic approach, that consists of isolating single

physical mechanisms that could affect the outcome of CE and carry out numerical simulations

specifically tailored to highlight that effect. We have used as a main term of comparison the publi-

cation of P12, who developed one of the codes we use. We have used different numerical schemes,

grid-codes in both uniform and AMR modes (ENZO; O’Shea et al. 2004, Bryan et al. 2014) and

SPH codes (PHANTOM; Lodato & Price 2010, Price & Federrath 2010), to maintain a handle on

different outcomes due to the different numerics and also to exploit the advantages of each.
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7.3 Results

The main CE interaction results under scrutiny are the final separation of the binary and the amount

of mass ejected from the envelope. It is these two simulation outcomes that are compared across

simulations where no more than one aspect is changed at any one time.

7.3.1 CE simulations with a rotating giant

We first report the results of Chapter 4, because they stand alone and support and enrich the dis-

cussion of the results of Chapter 3. How can the rotation of the primary’s envelope influence the

outcome of the CE interaction? Rotation injects additional kinetic energy and angular momentum

into the primary, resulting in an envelope that is less bound. However, with a spinning envelope

the strength of the gravitational drag driving the in-spiral is reduced.

Sandquist et al. (1998), the only ones to carry out a similar comparison, deduced that the final

separation is similar whether rotation is included or not (4.4 vs. 4.7 R⊙), while the unbound mass

in the rotating star is 20% less compared to the static one, from 33 to 26% of the total envelope

mass.

We first carried out a preliminary study to understand the feasibility of importing a model

of a giant evolved with rotation. However, with 1D stellar evolution codes we were not able to

achieve rotation velocities similar to those observed in giants in binary systems. Additionally,

even having succeeded in obtaining a suitably fast-spinning giant, it would have been dubious

how to map such a 1D model into the 3D computational domain. Therefore we approached the

problem by artificially spinning-up our primary in the computational domain starting from the

same stellar model as P12, calculated as a non-rotating star. The rotation velocity applied to the

primary star was equal to 95% of the co-rotation velocity. No substantial difference is obtained by

adding rotation to the envelope of the star. The final separation is very similar in both the rotating

and non-rotating cases (≃ 10 R⊙), similar to the results obtained by Sandquist et al. (1998). The

amount of envelope ejected is again very close for the two cases: the non-rotating setup unbinds

14% of the total envelope mass, while the rotating one unbinds 15% of it. This is in less close

agreement with the results of Sandquist et al. (1998). From analytical estimates it is clear that the

supply of angular momentum given by rotation is substantial, but the amount of kinetic energy
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added is very low compared to the other energy reservoirs of the star. Hence it is not surprising

that we do not see a noticeable change in unbound mass, in accordance with our result.

Repeating the 0.6 M⊙companion simulation of P12 using the new ENZO AMR solver and

a similar resolution resulted in somewhat different results. A final orbital separation of 10 R⊙

instead of 16 R⊙and 18 R⊙in the ENZO and SNSPH simulations of of P12, respectively, and an

unbound mass equal 14% of the envelope mass, compared to a 10% of the SNSPH simulation of

P12 (see Section 7.3.1) reminds us that numerical and resolution differences do affect the outcome.

The work of P12 include 500,000 particles SPH simulations as well as 2563 uniform, static grid

simulations. We leave to future work an accurate investigation of the possible resolution effects.

7.3.2 CE simulations with a wide initial orbital separation

We have analysed the effect of a large initial orbital separation on the outcome of the CE interaction

by placing the primary and the companion at the maximum orbital distance that would allow a

tidal capture. This differed from most of the initial conditions used in past simulations, that set the

companion on top of the primary’s surface, already overfilling its Roche lobe and triggering CE

from the beginning of the simulation. With our setup we aimed to inject the energy and angular

momentum from the orbit into the primary, in a way that is more in line with what happens in

nature. We were not able to properly reproduce the tidal phase of the interaction, because the

artificial setup of the binary stimulates oscillations in the primary’s envelope that accelerate the

tidal in-spiral. The subsequent phases of the interaction happen on time-scales comparable with

theoretical expectations. Both final separation and unbound mass are larger than for the comparison

simulations of P12. The final separation is twice as large compared to the results of P12 for the

same mass ratio. The unbound mass is instead 14% larger. Therefore, a larger orbital separation

favours more unbinding. However, we know that this is not due to the primary being spun-up (see

Section 7.3.1), but rather to the different primary envelope geometry at the time of Roche lobe

contact. The envelope unbinding is mainly due to thermal heating at early stages of the interaction,

and to acceleration above escape velocity later on.

We carried out these simulations with both a SPH and an AMR grid-code. The results are in

line with each other and the above trends are preserved when changing numerical scheme.
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7.3.3 CE simulations with more bound primaries

The effect of the mass of the envelope on the outcome of the CE interaction is the last CE initial

condition we considered in this work. A more massive giant star with identical core mass will

leave a post-CE remnant that is indistinguishable from a less massive one, and yet we can expect

the effects of a more massive envelope on the interaction to be substantial.

Here we have used a primary star with double the mass of the giant used by P12 and we

have carried out a set of five different simulations at increasing companion’s mass (the same set

of companions as P12), where the companions are placed on the surface of the primary, as was

the case in P12. By using a more massive primary star we observed a shortening of the time-

scale of rapid in-spiral. This effect is due to the increased envelope density, which applies a

greater gravitational drag to the companion as it plunges in. The evolution of the separation versus

time curves for increasing companion’s mass is similar to that observed by P12: more massive

companions in-spiral faster, but their final separations are larger compared to the final separations

reached by lower mass companions.

This difference in the rapidity of the in-spiral process is the reason why lower mass compan-

ions reach smaller final separations: more massive companions interact more strongly with early in

the simulation, the gas density rapidly decreases and weakens the interaction, leaving more mas-

sive companions at larger orbital separations. This effect reduced for less massive companions,

maintaining a higher gravitational drag and needing a deeper incursion of the companion to lift the

envelope sufficiently to halt the in-spiral.

The values of final separations obtained for the more massive primary are in the range of the

observed values for all the companion masses. We note that it is possible that observed systems do

indeed derive from more massive primaries. Statistically, more massive stars are in binaries more

often (Duchêne & Kraus 2013). Additionally, for the post-CE binaries with CO white dwarfs,

implying that the CE interaction took place on the AGB, are more likely to form more massive

stars: lower mass stars, with a small AGB vs. RGB radius ratio preferentially interact on the RGB

(Soker 1998).

On the other hand, the percentage of envelope unbound in the interaction is similar to P12.

The amount of mass unbound increases with increasing companion mass, to a maximum of 11%
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for the 0.9 M⊙ one. This implies that although the mass of the primary star helps reducing the

final separation, an additional source of energy remains necessary to fully unbind the envelope.

Recombination of the envelope gas, as proposed by Nandez et al. (2015), could be a possible or

partial solution to the problem.

7.3.4 Energy conservation in common envelope simulations

We have also investigated the energy conservation behaviour of the ENZO code applied to CE

simulations. Under the physical regime of CE simulations ENZO tends to poorly conserve total

energy. The issue was unveiled after performing simulations for the project of Chapter 3. To

understand the origin of the problem we ran a systematic set of test simulations, isolating various

possible factors. We found the issue to be the ENZO solver, that handles the gravitational potential

as a source term in the energy equation. In other words, the Poisson equation is solved separately

from the hydrodynamics. Therefore, moving, high density gradients are not sufficiently resolved

and this generates approximations in the computation of the gravitational potential, that are added

to the total energy at every time-step. The problem was reduced by carefully tuning the smoothing

length of the point-mass to the resolution. Steep density gradients in our kind of simulations

always occur close to the primary’s core or companion. Therefore, reducing the strength of the

potential close to the particle by increasing the smoothing length attenuates the errors produced.

On the other hand, reducing the smoothing length also affects the realism of the gravitational

interaction between particles and gas and the tuning process has to be checked carefully. The fruits

of this work were exploited by Staff et al. (2016a), who carried out a series of test simulations,

obtaining an optimal value for the smoothing length of 3 times the length of the smallest cell in

the computational domain. This smoothing length is double that used by P12. This and the recent

availability of AMR in ENZO as applied to CE (Passy & Bryan 2014) led us to repeat the P12

simulations used as comparison in this work.
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7.4 Future work

In this thesis we explored only a couple of the possible initial conditions and physical mechanisms

that could affect the outcome of the CE interaction. Below we give a list of all the work we will

undertake next.

The work of Nandez et al. (2015) contains one of the most interesting approaches to CE sim-

ulations taken recently. As we have explained extensively in Section 7.1.1, this approach holds

promise, but it is at the moment not clear that their results do not depend on the low resolution, or

on the specific parameters used. Therefore it is essential to test this physical process further and

with different stellar models, initial conditions and numerical codes. We are in the process of inte-

grating MESA’s equation of state both in ENZO and PHANTOM to test the impact of recombination

energy in the simulation of P12.

Another likely important physical process, which has never been included in CE simulations is

magnetic fields. Post-CE binaries inside planetary nebulae must have recently gone through a CE

event, because planetary nebulae are short lived objects (De Marco 2009). Some of these planetary

nebulae have jets that can be dated to before the CE ejection, while others have jets that have been

launched after the CE interaction. To investigate these mechanisms, Tocknell et al. (2014) used

velocities and spatial distributions of the jets to measure the strength of the magnetic fields present

at the time of their launch. This is possible since jets and magnetic fields are intimately connected,

and the former can be used as a proxy to understand the latter. For jets launched before the CE

in-spiral, Tocknell et al. (2014) showed that the magnetic fields were weak at that time, of the order

of 1 G. These jets are probably fuelled by an accretion disk that formed at the time of Roche-lobe

overflow. Objects whose jets were launched after the CE in-spiral, show instead that the magnetic

fields at that time were of the order of 500 − 1000 G, opening the possibility that a CE magnetic

dynamo took place, winding up and intensifying the indigenous giant stars fossil magnetic field.

This had been already predicted by Regős & Tout (1995) and Nordhaus et al. (2007). Such a strong

magnetic field could have an important dynamical impact on the interaction itself.

We have just started adding seed magnetic fields in a CE simulation, either as a constant,

low strength field or as a dipolar field and stabilising the star with it. Once we find a way to

create the initial conditions we will reproduce the simulation of P12. Additionally, it is important
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to determine how the influence of magnetic fields changes with parameters such as primary and

companion mass, particularly moving to a more massive regime.

If jets are launched before the CE event, their action could be important also during the in-

spiral. The idea of jets inside the CE has been introduced by Soker (2016). It would be interesting

to introduce artificial jets in a CE simulation, starting at the moment of Roche-lobe overflow and

ejected at the location of the companion, with ejection energy and momentum guided by observa-

tions and based on previous works (Staff et al. 2016a, Soker 2016). This could tell us if and how

these jets modify the CE interaction, shape the morphology of the ejecta or alter the unbinding of

the envelope and the final orbital separation reached.

Studies of CE interactions with massive stars are sorely lacking and are becoming increasingly

important: the recent detection of gravitational waves from a double black hole merger demon-

strates the existence of these systems. Double black holes and neutron stars that merge must have

gone through at least one CE event. Understanding the CE phase has therefore become a must in

the era of multi-messenger astrophysics. Using less massive and energetic CE interactions is of

great importance to understand the dynamics of the problem, with the ultimate goal, however, to

extend these simulations to massive stars to understand the formation of close binary neutron stars

and black holes.

The CE interaction is also thought to be a relevant evolutionary stage of more complex stellar

systems. As an example Tauris & van den Heuvel (2014) ascribe the formation of a triple star,

where one component is a millisecond pulsar, to the interaction of a giant star with two white

dwarfs. The three objects in the observed triple system are evolved stars, where nuclear burning

is not active anymore. The age and type of the three stars is an indication that all of them went

through phases where they where much more expanded in the past. This suggests that they have

interacted during their evolution. Tauris & van den Heuvel (2014) propose a scenario where all the

three components interact to form what we observe today. However, the orbital configuration is

quite peculiar, with the millisecond pulsar in a close orbit (1.63 days period) with one white dwarf

and the second white dwarf orbiting the pair with a much longer (327 days) period. A complex,

multi-step interaction is therefore required to reach this configuration. The process described by

Tauris & van den Heuvel (2014) is composed of nine steps, involving various physical mechanisms

with different energetics, time-scales and length-scales. The first of these steps is the most critical.
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Here a star (that is today’s the millisecond pulsar) evolves to the giant phase and enters a CE

interaction with a close companion, presumably a regular hydrogen-burning star. This CE phase

could be reproduced using a massive giant (MMS & 10 M⊙, only such massive stars later become

neutron stars) and a nearby companion as well as with a second companion in a wider orbit. In

this configuration the ejecta of the CE will interact with the wider companion and likely cause a

gravitational drag on it that could remove energy and angular momentum from the wide orbit of

this object and bring it closer than the observations show. The challenge will be to determine under

what conditions the wide orbit can be preserved. Understanding this mechanism can be generalised

to a range of systems relevant to the formation of double degenerate binaries composed of white

dwarfs, neutron stars or black holes.

While trying to reproduce interesting and exotic systems is certainly a driver of theoretical

common envelope studies, one must not forget that the range of physical mechanisms involved

in the creation of such systems is likely beyond todays simulations. There remains therefore a

need to continue the exploration of parameter space and of the effects of individual mechanisms

on the interaction, alongside code development work that can increase the ability of the simulation

tools. Aside from recombination energy and the action of magnetic fields, we should not forget

that the final outcome of a CE interaction is dictated by a phase immediately following the dy-

namical in-spiral, which acts on a longer, thermal time-scale. This is unlikely to be reproduced in

hydrodynamic simulations any time soon, although 1D simulations and partial 3D hydrodynamic

simulations will be able to inform our intuition. Between the dynamical and the thermal phases one

can also expect some bound envelope gas to return as a fall-back disk, something that is observed

around certain post-CE binaries (van Winckel et al. 2009). The action of such disks may also alter

the longer term outcome of the CE interaction. The path ahead is therefore long and yet a certain

haste is dictated by the advent of time-resolved surveys and the new availability of gravitational

waves to observe merging and interacting systems.
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