
PICTURES TO OBJECTS:
TRANSITIONING TO OBJECT ORIENTED PROGRAMMING

Sarah Heimlich

Bachelor of Engineering
Software Engineering

Department of Engineering
Macquarie University

June 10, 2016

Supervisor: Prof. Michael Johnson

ACKNOWLEDGMENTS

I would like to acknowledge a number of people who helped me throughout the

course of my undergraduate degree and this thesis.

First of all my parents who gave me my love of learning and showed me the

sky is the limit. Thank you for breaking down stereotypes and giving me the

courage to pursue what I’m passionate about. Also thank you to my sister Jaye

for putting up with all my crazy questions and late night working.

Thank you to Prof Michael Johnson for giving huge amounts of flexibility in

this thesis—from the topic to the timing and location. I truly appreciate how

much time and attention you have given this project.

STATEMENT OF CANDIDATE

I, Sarah Heimlich, declare that this report, submitted as part of the require-

ment for the award of Bachelor of Engineering in the Department of Engineering,

Macquarie University, is entirely my own work unless otherwise referenced or

acknowledged. This document has not been submitted for qualification or assess-

ment at any academic institution.

Student’s Name: Sarah Heimlich

Student’s Signature: Sarah Heimlich (electronic)

Date: June 10, 2016

ABSTRACT

Teaching programming is considered hard, but transitioning from procedural to

object oriented programming is even harder. Yet, this is what the new National

Digital Technologies curriculum expects of every Australian student. An examin-

ation of the literature reveals that transitioning to object oriented programming

is difficult, but for unknown reasons. Here, we examine and study this transition

through the literature and a survey. The survey results help us identify program-

ming concepts which are easier, and other concepts which are more difficult, to

learn. The data gathered suggests that fourteen years old is the optimal age

for learning object oriented programming. Based on the information gathered

through the literature review and survey, a new visual programming language

for the LEGO MINDSTORMS EV3 that can assist in the transition to object

oriented programming is created. We propose a new measure to determine how

hard an object oriented programming language is to learn and discover five po-

tential threshold object oriented concepts. It is hoped this project will provide

insight into the transition to object orientation and ease the difficult transition

to object oriented programming.

Contents

Acknowledgments iii

Abstract vii

Table of Contents ix

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Project Goal . 2
1.2 Project Planning . 2

1.2.1 Scope . 2
1.2.2 Time . 3
1.2.3 Cost . 3

2 Background and Related Work 5
2.1 Computer Science Education . 5

2.1.1 Curricula Requirements . 5
2.1.2 Pedagogy . 7
2.1.3 Languages to teach programming 9
2.1.4 Programming Paradigms . 9
2.1.5 Threshold Concepts . 10

2.2 LEGO MINDSTORMS EV3 . 10
2.2.1 EV3 Hardware . 11
2.2.2 EV3 Programming Languages . 11

2.3 Object Oriented Programming . 12
2.3.1 Encapsulation . 13
2.3.2 Inheritance . 13
2.3.3 Polymorphism . 13

2.4 Visual Programming Languages . 13
2.4.1 Syntax of Visual Programming . 14

2.5 Abstraction . 15

ix

x CONTENTS

3 Survey Methodology 17
3.1 Areas of Inquiry . 17
3.2 Recruitment Methods . 18

4 Survey Results 21
4.1 Age to Learn Object Oriented Programming 21
4.2 Easy Object Oriented Concepts . 22
4.3 Difficult Object Oriented Concepts . 23
4.4 Factors that Influence Difficulty . 24
4.5 Scored Difficulty of Object Oriented Concepts 25

5 System Requirements 27
5.1 Interfaces . 27

5.1.1 System Interfaces . 27
5.1.2 User Interfaces . 27
5.1.3 Hardware Interfaces . 28
5.1.4 Software Interfaces . 28
5.1.5 Communications Interfaces . 28

5.2 Nonfunctional Requirements . 28
5.2.1 Reliability . 28
5.2.2 Availability . 29
5.2.3 Maintainability . 29

5.3 Functional Requirements . 29
5.3.1 Data Encapsulation . 29
5.3.2 Inheritance . 29
5.3.3 Polymorphism . 30
5.3.4 Abstract Classes . 30

6 Language Design 31
6.1 Language Platform . 31

6.1.1 EV3 MINDSTORMS . 31
6.1.2 ScratchX . 32
6.1.3 Platform Selection . 32

6.2 Defining Scratch . 33
6.2.1 Scratch Sprites . 34
6.2.2 The Stage . 34
6.2.3 Scratch Costumes . 34
6.2.4 Scratch Blocks . 34
6.2.5 User Interface . 35
6.2.6 Scratch Graph Grammar . 36

6.3 New Language Definition . 36
6.3.1 Updated User Interface . 36
6.3.2 Updated Graph Grammar . 36

CONTENTS xi

7 Language Implementation 39
7.1 Tool Selection . 39
7.2 Scratch Flash Code Architecture . 39

7.2.1 Scratch Class . 40
7.2.2 Blocks Class . 40
7.2.3 Scratch Objects Class . 41
7.2.4 Scratch Runtime Class . 41
7.2.5 Interpreter Class . 41
7.2.6 User Interface Classes . 41

7.3 Scratch EV3 Extension . 42
7.4 Scratch with Components of Object Oriented Technology 43

7.4.1 Sprites as Attributes . 43
7.4.2 Encapsulation . 43
7.4.3 Nymphs . 46
7.4.4 Ghosts . 47
7.4.5 EV3 Integration . 47

7.5 Wide Walls . 47

8 Requirements Validation 49
8.1 Interfaces . 49

8.1.1 System Interfaces . 49
8.1.2 User Interfaces . 49
8.1.3 Hardware Interfaces . 49
8.1.4 Software Interfaces . 50
8.1.5 Communications Interfaces . 50

8.2 Non Functional Requirements . 50
8.2.1 Reliability . 50
8.2.2 Availability . 50
8.2.3 Maintainability . 50

8.3 Functional Requirements . 50
8.3.1 Data Encapsulation . 50
8.3.2 Inheritance . 50
8.3.3 Abstract Classes . 51

9 Discussion 53
9.1 Object Oriented Concept Ambiguity in SCOOT 53
9.2 Age to Learn Object Oriented Programming 53
9.3 Object Oriented Threshold Concepts . 54
9.4 Measurements . 55

9.4.1 Measurement Definition . 55
9.4.2 Measurement Creation . 56
9.4.3 Measurement Usage . 56
9.4.4 Measurement Shortcomings . 57

xii CONTENTS

9.4.5 Learning Difficulty of SCOOT . 58

10 Conclusions 59

11 Future Work 61
11.1 Further Survey . 61
11.2 Trial of System . 61
11.3 Refinement of Measurement . 62
11.4 Final Words . 62

12 Abbreviations 63

A Requirements 65

B Survey Information 71
B.1 Survey . 71
B.2 Survey Recruitment . 75

C Survey Responses 77
C.1 Easy Object Oriented Concepts . 77
C.2 Difficult Object Oriented Concepts . 80
C.3 Reasons for Easy Object Oriented Concepts 83
C.4 Reasons for Difficult Object Oriented Concepts 86

D Scratch Graph Grammar 89

E Meeting Attendance Form 93

F Code 95
F.1 Scratch.as . 95
F.2 Specs.as . 96
F.3 Resources.as . 99
F.4 Block.as . 99
F.5 BlockArg.as . 102
F.6 BlockIO.as . 103
F.7 BlockShape.as . 104
F.8 Interpreter.as . 105
F.9 Variable.as . 107
F.10 MotionAndPenPrims.as . 108
F.11 PaletteBuilder.as . 108
F.12 ScratchGhost.as . 110
F.13 ScratchObj.as . 110
F.14 ScratchRuntime.as . 113
F.15 PaletteSelector.as . 115
F.16 ProcedureSpecEditor.as . 115

CONTENTS xiii

F.17 GhostThumbnail.as . 118
F.18 LibraryPart.as . 119
F.19 ScriptsPart.as . 119
F.20 SpriteInfoPart.as . 121
F.21 TabsPart.as . 122
F.22 ScriptsPane.as . 124

Bibliography 125

List of Figures

1.1 Gantt chart representing the project’s schedule. 3

2.1 Mapping different robotics programs’ and countries’ programming language
requirements to years in school [1, 2, 4, 6, 7, 18, 21]. The orange line depicts
the average learning curve expected of students. 7

2.2 Basic Architecture of Scratch. 12
2.3 Basic Architecture of ScratchX. 12
2.4 Example Graph Grammar . 14

4.1 A box plot of reported object oriented programming difficulty for each age
group. The ‘x’ marks the average and the box shows the upper and lower
quartile range. The whiskers begin at the box and extend to the last data
point that occurs within one and a half times the inter-quartile range. Any
data points outside this range are considered outliers (in common with
usual statistical practice) and are represented by a dot. 22

4.2 Number of responses per category of easy object oriented concepts. 23
4.3 Number of responses per category of difficult object oriented concepts. . . 24

6.1 Square function added to the Sample Data Block. 32
6.2 Underlying LabVIEW for the square function. 32
6.3 ScratchX with the EV3 extension and a sample sample program at the

Stage level. 33
6.4 The dialog for defining the parameters of a data or list element in Scratch. 35
6.5 The changes required to the reporter block for the new programming lan-

guage. 37

7.1 A hat (top), boolean reporter (middle left), data reporter (middle right),
and procedure (bottom) blocks. 40

7.2 The Scratch programming environment user interface components. 42
7.3 A Sprite reporter block’s shape is distinct, indicating it can only be used

in specific locations. 43
7.4 A reporter and procedure block that require a Sprite attribute to execute. 44
7.5 Dialog box for updating a procedure’s parameters. 45
7.6 Interface display on the background of the SCOOT scripting environment. 46

xv

xvi LIST OF FIGURES

7.7 The Sprite info pane includes the ability to set a Nymph. 46

B.1 Survey Recruitment Brochure . 75

D.1 Graph grammar for beginning a script. 90
D.2 Graph grammar for a hat block. 90
D.3 Graph grammar for a script beginning with an event. 90
D.4 Graph grammar for a procedure definition. 90
D.5 Graph grammar for procedures. 91
D.6 Graph grammar for procedures calling reporters. 91
D.7 Graph grammar for having multiple reporters. 91
D.8 Graph grammar for different types of reporters. 91
D.9 Graph grammar for an if statement. 92
D.10 Graph grammar for an if-else statement. 92
D.11 Graph grammar for a loop. 92

List of Tables

1.1 Schedule for the project. 4

4.1 Average reported difficulty (to two decimal places) for pre-determined ob-
ject oriented concepts. 25

9.1 Mapping reported object oriented concept difficulty to percentage of overall
difficulty. 56

9.2 An example of using the measurement system to evaluate Scratch and Java. 57
9.3 OOLD of Scratch, SCOOT, and Java. 58

A.1 System Interface requirements for the system 65
A.2 User Interface requirements for the system 66
A.3 Hardware Interface requirements for the system 67
A.4 Software Interface requirements for the system 67
A.5 Communication Interface requirements for the system 68
A.6 Reliability requirements for the system . 68
A.7 Availability requirements for the system 68
A.8 Maintainability requirements for the system 68
A.9 Functional requirements for the system . 69

C.1 First half of responses, and their categorization, to a short answer question
on the easiest object oriented concept. 78

C.2 Second half of responses, and their categorization, to a short answer ques-
tion on the easiest object oriented concept. 79

C.3 First half of responses, and their categorization, to a short answer question
on the hardest object oriented concept. 81

C.4 Second half of responses, and their categorization, to a short answer ques-
tion on the hardest object oriented concept. 82

C.5 First half of survey responses for why an object oriented concept was easy
to learn. 84

C.6 Second half of survey responses for why an object oriented concept was
easy to learn. 85

C.7 First half of survey responses for why an object oriented concept was dif-
ficult to learn. 87

xvii

xviii LIST OF TABLES

C.8 First half of survey responses for why an object oriented concept was dif-
ficult to learn. 88

Chapter 1

Introduction

The world requires engineers to provide the necessary and expected utilities of a modern
nation [5]. However, there is a significant lack of trained personnel in engineering and In-
formation and Communication Technology (ICT) related careers. Many computer science
employees are in industries other than ICT and an estimated 100,000 new ICT positions
will be available by 2020 [33]. To fill all job vacancies, Australian companies are recruiting
from outside the country. In 2015, four of the top fifteen primary occupations of skilled
worker (subclass 457) visa recipients were in ICT related careers with ICT professionals
accounting for 12% of subclass 457 visas [22] [33].

With this setting as the backdrop, it is easy to understand why computer science
education has become an increasing priority in Australia and around the world. In par-
ticular, this may be seen through the introduction of mandated national computer science
curricula in countries including Australia [2] and the United Kingdom [18]. As students
progress from primary school to secondary and tertiary education, these requirements
take pupils from visual procedural to textual object oriented programming languages.

It is widely recognized that students struggle with transitioning from procedural to
object oriented programming. There is research to support the claim that learning object
oriented programming first enables students to easily transition “back” to procedural
structures [31]. Despite this, with an increasing priority on computer science education,
national curricula often mandate students begin programming in early primary school with
a procedural, visual language. This is before students can fully comprehend abstraction
[53] which is a critical concept for computing and object oriented programming [43].

In addition to curriculum requirements, most robotics competitions for primary and
lower-secondary students have a requirement to use a visual procedural language. One
reason for this is most of these competitions utilize the LEGO robotics platform called
the “EV3 MINDSTORMS”. The programming language LEGO provides for the EV3
MINDSTORMS is a visual procedural language.

As a result of the requirements from national curricula and robotics competitions stu-
dents are often learning to program with a visual procedural language in early primary
school. This creates a disconnect between what the research suggests and what is prac-
ticed. Ultimately, this makes learning object oriented programming more difficult for

1

2 Chapter 1. Introduction

students.
With this disconnect, one would expect a large amount of academic research into how

to bridge the gap between procedural and object oriented programming. Yet, there is
very little information available. The literature abruptly stops with the problem, offering
no solutions.

1.1 Project Goal

The goal of this project is to create a programming language for the LEGO EV3 MIND-
STORMS to assist the transition from visual procedural to object oriented programming
languages.

It should be noted that the goal of this project is not to create an object oriented
language. While many object oriented concepts will be included in the language, it does
not need to implement all features of an object oriented language. It is critical this point
is understood as many decisions throughout the project will be based on this point.

To achieve this goal, the project is divided into two main components: understanding
the transition to object oriented programming and creating the language.

The literature available on the transition to object oriented programming was insuf-
ficient for understanding the problem. As a result, the first component of this project
was to find information regarding the subject area. To accomplish this, in addition to a
full literature review a survey was conducted to better understand which object oriented
concepts were perceived by learners to be easy or difficult to learn, why object oriented
concepts are easy or difficult to comprehend, and if there is an ideal age to learn object
oriented programming.

With this background, the language was then defined, designed, implemented, and
validated.

1.2 Project Planning

As with any project, it is critical to begin by setting a plan. Here we consider the project’s
scope, time frame, and cost.

1.2.1 Scope

The project’s initial scope is set through the goal stated in Section 1.1. From this goal,
it is clear that there are two main stages to the project—requirements elicitation and
system implementation. Many projects would continue into acceptance and maintenance
stages. Due to the time frame of the project, this is infeasible. As a result, the scope
of the project has been limited to the requirements and implementation. The project is
validated by ensuring the final product meets the requirements.

1.2 Project Planning 3

Figure 1.1: Gantt chart representing the project’s schedule.

1.2.2 Time

To ensure the project was completed on time, a schedule was developed at the beginning.
This schedule was approved by the project supervisor. The original project plan can be
seen in the schedule in Table 1.1 and Gantt chart in Figure 1.1.

As with any project, there was some schedule slippage and unforeseen difficulties. In
particular, ethics approval was not received until May, about a month after the survey
was supposed to be started. Despite these set backs, the project was still completed on
time.

1.2.3 Cost

The project was allocated budget of $300. Due to the nature of the project, and the
equipment already owned by Macquarie University, it was originally estimated the project
would cost $0 leaving a $300 surplus. This has occurred with the project having no
financial cost.

4 Chapter 1. Introduction

Table 1.1: Schedule for the project.

Week Requirements
Elicitation

Thesis
Document

Programming
Language

Deliverables

26/02 Finish Proposal Start Collating Papers
4/3 Draft Ethics Ap-

plication and Sur-
vey

Read Papers

11/3 Edit and Submit
Ethics Application

Read Papers First draft Require-
ments Doc

Project Specific-
ations and Plan
Agreement to
Mike

18/03 Start writing lit review section Edit Requirements
Doc

25/03 Finish “Prior research” section Develop code for
the EV3

1/4 Send out Survey
(Pending Ethics
Approval)

Start developing
language

Progress Report

8/4 Continue develop-
ing language

15/04 Continue develop-
ing language

22/04 Continue develop-
ing language

29/04 Analyze Survey
Results

First draft of lan-
guage

6/5 Determine thesis “Story” Update require-
ments based on
Survey

13/05 Begin writing Update Language
based on feedback
and survey

20/05 First Draft Complete Finalize Language
based on feedback
and survey

27/05
Edit Thesis
Create Poster/Presentation

3/6 Week of buffer Practice Presentation Week of buffer Final Report
10/6 Practice Presentation
17/06 Seminar Title,

Abstract, and
Poster

Chapter 2

Background and Related Work

Before we can begin developing the system, it is critical to understand the subject area
of the project. This extends to computer science education, the LEGO MINDSTORMS
EV3, and the psychology of abstraction. Additionally, it is important to have a thorough
understanding of computing concepts including object oriented programming and creating
a visual programming language. Here, we present a brief overview of these topics based on
publications from a variety of journals, authors, and subjects. This background knowledge
is used in later sections to justify decisions and to provide a basis for further arguments.

2.1 Computer Science Education

2.1.1 Curricula Requirements

As computer science becomes an increasing priority around the world, digital technologies
education has received more academic attention. In particular, researchers have discovered
that it takes ten years of experience to progress from a novice to an expert programmer
[52]. Despite this, most undergraduate degrees vary in length from three to four years.
As a result, to graduate expert programmers, we must introduce programming in years
5-6. This is reflected in the Australian and UK national computing curricula as outlined
below.

The transition from visual to object oriented programming languages is mandated
in curricula in some countries. In the Australian Digital Technologies Curriculum, stu-
dents are required to begin learning a graphic programming language in year 3, a general
purpose text language in year 7, and an object oriented language in year 9 [2]. From
years 1-2, students begin understanding algorithms, but they are not required to learn a
programming language.

This sequence of learning differs from the United Kingdom where the computing cur-
riculum begins in year 1, two years before the Australian curriculum. Students start with
a visual programming language and transition to a textual language in year 7 at the same
time as their Australian peers [4, 18]. Despite starting to program sooner, there is no
requirement for students in the UK to learn an object oriented language.

5

6 Chapter 2. Background and Related Work

The transition between programming languages occurs outside of the curriculum as
well. The FIRST Robotics family of competitions for students in years k to 12 also has
students transitioning from visual to object oriented programming. In general, FIRST
students use visual programming languages in years 1 to 6 and object oriented program-
ming languages in years 7 to 12.

A graph of these different programs and a curriculum mapping to programming
paradigms is shown in Figure 2.1. By examining this figure, we note the steep learn-
ing curve expected of students from general purpose text languages to object oriented
languages.

It should also be observed that we can expect students to transition to object oriented
programming in years 7 to 9. This is important to note as it will help define the system’s
target demographic in a later section.

2.1 Computer Science Education 7

Figure 2.1: Mapping different robotics programs’ and countries’ programming language
requirements to years in school [1, 2, 4, 6, 7, 18, 21]. The orange line depicts the average
learning curve expected of students.

2.1.2 Pedagogy

In the words of a University of Helsinki research group, “Teaching programming is hard”
[57]. As of 2011, The University of Helsink’s computer science long term drop out rate
was approximately 45%. As a result, it is easy to understand why so many different
languages and approaches have been tried in teaching programming. Debates in teach-
ing programming include depth versus breadth, procedural versus object oriented, and

8 Chapter 2. Background and Related Work

many more [24]. Here, we provide an overview of some proposed methods for teaching
programming.

Apprenticeship

One approach advocates for an apprenticeship model to be used in teaching programming.
In contrast to a traditional apprenticeship which is based on manual skills, computer
science falls under the cognitive apprenticeship category. Cognitive apprenticeships can
be divided into three stages—modeling, scaffolding, and fading [57].

In the modeling stage, the teacher provides a description of how a problem would be
solved [57]. This could occur through worked examples in a lecture or teaching program-
ming theory.

From modeling, students transition to scaffolding. In this stage, the teacher provides
structured exercises [57]. This could occur through assignments or other types of exercises.

The final stage is fading. Here, the teacher provides less contrived solutions and allows
the apprentice to solve full problems [57]. This slowly moves the apprentice towards self-
sufficiency. At this point, the apprentice should be ready to tackle challenges on their
own [24].

Low Floor, High Ceiling, Wide Walls

The principle of creating a teaching environment with a low floor, high ceiling, and wide
walls, is prevalent in the literature [34, 36, 51, 60]. This does not refer to the location in
which students are taught, but rather to the limitations placed upon students. These
limitations may be placed by the language or by the concepts taught.

The low floor and high ceiling are discussed more extensively . The low floor indicates
an easy entry point for beginners [34]. For example, in COMP115 at Macquarie University,
students are taught Processing instead of Java. This is done because Processing has fewer
requirements to begin writing a program. This provides a lower entry point for students
who are taking their first computing class. The high ceiling speaks to the language’s
ability to support complex projects [36].

The Lifelong Kindergarten group at MIT also coined the term “wide walls” which
reflects the breadth of projects that can be completed using the language [51,60].

Student Engagement

It is also critical to find ways to fully engage students in programming classes. This is
noted in numerous papers supporting different pedagogies [24, 30, 45, 51, 57]. Interactive
languages that enable visual feedback are highly recommended as the student can see the
direct impact of their code [30, 45]. By seeing the impact, students are better able to
understand what their program is doing. This in turn enables a deeper understanding of
the impact of each statement. By using a robotics platform, the programming language
will enable this direct feedback.

2.1 Computer Science Education 9

2.1.3 Languages to teach programming

As with all debates over programming languages, there are a number of differing opinions
about what style of programming language is best to teach programming. Text, visual,
programming by example, and tiered languages have all been suggested as potential ways
to teach programming [47, 49]. To better understand programming languages designed
for teaching, we explore the Scratch programming language in depth below.

Scratch

Scratch is one of the most popular languages for introducing students to computing with
nearly 14 million projects shared on the Scratch website [13]. Developed at MIT’s Media
Lab by Professor Mitchel Resnik, Scratch is a visual language that allows users to program
characters, called Sprites, in a scene, called the Stage. While multiple Sprites normally
occur in a Scratch project, there is only Stage Scratch was built on the theory of having
a low floor, high ceiling, and wide walls as discussed in Section 2.1.2. There are a number
of Scratch’s characteristics that make it easy for users to learn.

Firstly, the language components act like puzzle pieces, only the correct parts can
fit together [45]. For example, an integer cannot fit where a function or boolean is re-
quired. This allows the user to intuitively see where each part can, and cannot, be placed.
Following on from this, each program created is automatically syntactically correct [45].

Scratch is an event driven language. Each section of the code begins when a different
trigger occurs. Triggers range from the keyboard, to Sprite interaction, and many more
options. Scratch provides three first-class data types—boolean, number, and string—and
automatic conversion between numbers and text as required [45].

Sprites are the major component of any scratch program. Users create “costumes”
and “scripts” for each Sprite and the Stage. Sprites and the Stage can contain vari-
ables and behaviors making the language object-based [45]. Despite this, Scratch cannot
be considered Object Oriented as it does not support encapsulation, inheritance, or poly-
morphism. A Sprite can communicate with other Sprites using the broadcast system.
The broadcast system is one-to-many [45], a Sprite will broadcast a message which can
trigger behaviors in other Sprites.

2.1.4 Programming Paradigms

There is much debate over what paradigm to first teach students. Some argue procedural
languages are the best place to start as they offer the simplest option [26]. However, this
view appears to be in the minority with most researchers agreeing it is easier to learn
object oriented programming first and then later transition to this paradigm [31,42,52].

What the literature does not address is what makes this transition difficult for students.
This gap in the literature is very significant. It is impossible to create new methodologies
to help students transition to object oriented programming without first understanding
why they are struggling.

10 Chapter 2. Background and Related Work

This knowledge gap implies the system cannot be created by simply examining the
literature. As a result, the gap in knowledge drives our requirements elicitation process
to the survey described in later sections.

2.1.5 Threshold Concepts

Regardless of object area, a threshold concept is a difficult conceptual “gateway” or
“portal” that once crossed enables a deeper understanding of a subject [46]. There are
five indicators of a threshold concept:

1. A threshold concept is transformative. Once understood, it changes a person’s
perspective [28].

2. A threshold concept is integrative. The concept brings together other concepts that
were previously unknown [46].

3. A threshold concept is irreversible. Once grasped, the concept will not be easily
forgotten [28].

4. A threshold concept is potentially troublesome. The concept is normally difficult to
understand and may appear counter-intuitive [46].

5. A threshold concept is often a boundary marker. A threshold concept is often at
the boundary of a subject [28].

With this definition of a threshold concept, and the information presented in Sec-
tion 2.1.4, it is not surprising that object oriented programming has been identified as
a threshold concept [28]. As a result, it is logical that there are most likely threshold
concepts within object oriented programming as will be discussed in later sections.

2.2 LEGO MINDSTORMS EV3

The EV3 is the hardware the language will control. As a result, it is important to fully
understand this platform. The EV3 was released in 2013 as the third evolution of the
LEGO MINDSTORMS platform. Its predecessors were the RCX and the NXT. Known
at LEGO as the PBrick, or PBR for short [15], the EV3 has been used by primary and
secondary schools, universities, and even NASA [35].

From a terminology perspective, the EV3’s hardware and software are both referred
to as “EV3”. To reduce confusion for the reader, we will in general refer to the hardware
as the EV3 or EV3 brick and the software as EV3 MINDSTORMS. This convention will
be dropped when it is obvious which part of the EV3 we are referencing.

2.2 LEGO MINDSTORMS EV3 11

2.2.1 EV3 Hardware

The EV3 uses a 32-bit ARM9 processor, Texas Instrument AM1808 at 300MHz and
includes 64MB of DDR RAM [17]. The device has inbuilt Bluetooth and USB commu-
nication abilities. Additionally, there is a SD card slot for off-device storage [17]. The
on-board USB port can be used for off device storage or to house a NetGear WNA110
USB dongle, thus enabling WiFi connectivity.

There are 4 input and 4 output ports for sensors and motors [17]. LEGO sells two
types of motors (large and mini) and numerous sensors (light/colour, touch, ultrasonic,
gyro, etc.) for the device [10, 11]. Additionally, other vendors have created sensors that
are compatible with the EV3.

2.2.2 EV3 Programming Languages

There are a number of programming languages available for the EV3 Brick, from Lab-
VIEW based languages such as EV3 MINDSTORMS [9], to text based versions such as
Not Quite C (better known as NQC) [41].

Several of the languages were designed to be used from primary to graduate school.
While this may seem an infeasible goal, several of these languages succeeded. One such
language, RoboLab, has been used by kindergarten and graduate students [35]. Other
languages focus on a particular demographic such as an artificial intelligence class [41].

Many EV3 programming languages are designed to be extensible—users are able to
add new elements. In particular, we examine two extensible EV3 visual programming
languages: EV3 MINDSTORMS and ScratchX.

EV3 MINDSTORMS by LEGO

EV3 MINDSTORMS is the programming language that LEGO distributes alongside the
EV3 hardware. As a result, it is one of the most widely used platforms for programming
the EV3. Versions of the software are available for Windows, OS X, iOS and Android.
EV3 MINDSTORMS is built on National Instruments LabVIEW Web UI Builder and is
a procedural language that supports multi-tasking. EV3 MINDSTORMS communicates
with the EV3 via a USB cable or a wireless Bluetooth connection.

EV3 MINDSTORMS supports methods as “MyBlocks”. Users create MyBlocks by
combining existing blocks into a single block. In addition to this, through the LEGO
MINDSTORMS EV3 Block Developer Kit for Windows, LEGO enables advanced users
to create new blocks using the NI LabVIEW Web UI Builder [15].

ScratchX

ScratchX is a version of Scratch that can be extended by third parties. Scratch is built
on a Flash core as shown in Figure 2.2. ScratchX uses this same Flash core, but has a
different shell that enables interaction with third party code as shown in Figure 2.3.

12 Chapter 2. Background and Related Work

Figure 2.2: Basic Architecture of Scratch.

Figure 2.3: Basic Architecture of ScratchX.

Third party extensions are able to create Scratch blocks with new functionality. This
new functionality can include interfacing with another platform. For example, extensions
are available for Arduino microcontrollers, Twitter, and the EV3.

Aside from the creation of new blocks, ScratchX can be modified in other ways. This
is because the three components of the architecture—the Scratch Flash core, ScratchX
website, and Scratch EV3 Extension, are all open source. As a result, it is possible to
modify any component in the system.

As a result of this multi-component architecture, a variety of languages are used to
create ScratchX for EV3. In particular, the Flash core is written in ActionScript while
the Scratch Extensions are written in JavaScript.

2.3 Object Oriented Programming

As the subject of this project is to create a programming language that helps trans-
ition students to object oriented programming, it is important to fully understand object
oriented programming. Here we discuss the three fundamental components of object
orientation—encapsulation, inheritance, and polymorphism [58]. This section provides
a basic overview of these core object oriented concepts. Readers already familiar with
object oriented programming may elect to skip this section.

2.4 Visual Programming Languages 13

2.3.1 Encapsulation

Encapsulation allows objects to hide their data members and as a result is sometimes
referred to as data-hiding. By hiding information, programmers are encouraged to create
modular designs [48]. Interestingly, it can be argued that inheritance hurts encapsulation
since child classes are allowed to access information from their parents in many program-
ming languages [54].

2.3.2 Inheritance

Inheritance creates an “is-a” relationship between different classes [42]. A class, called the
child, may claim inheritance from a second class, called the parent. Once a parent class
is noted, the child receives the data members and functions associated with the parent.
Depending on the language’s implementation of encapsulation, the child may not receive
items marked private.

2.3.3 Polymorphism

Polymorphism, meaning many forms, enables different classes with the same parent to
be used in the same location. This occurs when a function requires a parent class as a
parameter. A purely object oriented language recognizes the “is-a” relationship through
inheritance and will therefore accept any of the child classes in the parent’s place. This
can be allowed because we know the child includes the parent’s interface [29]. As a result,
a child may always be used in the same way as a parent.

While often referred to as a core concept of object orientation [56], polymorphism can
be viewed as an extension of inheritance [58]. This is because polymorphism is a more
complex implication of the “is-a” inheritance relationship.

2.4 Visual Programming Languages

Visual programming languages use pictures instead of words to communicate meaning [37].
As a result, visual languages have unique properties. Some of these properties enable
visual languages to be easier to learn [27,39]. For example visual languages are better at
expressing structure, enable pre-literate children to program, and can provide a superior
resemblance to the surrounding world [27]. Additionally, several articles point to the fact
that “a picture is worth a thousand words” [27, 37], and is thus able to convey more
meaning. Because the brain considers a picture as a single unit, it is therefore easier
to understand multiple items about a command in a visual language rather than a text
based language [27]. These properties of visual programming languages will be useful for
the system as shown in later chapters.

14 Chapter 2. Background and Related Work

Figure 2.4: Example Graph Grammar

2.4.1 Syntax of Visual Programming

As with any programing language, the creation of a visual language begins with defining
the syntax of the language. For textual languages, this is done using context free gram-
mars. These grammars define how each part of the language interacts and combines to
form the overall program. The language is built up from λ which represents the empty
set. Using a set of rules, called productions, the language can be built up by substituting
the left hand side of the production for the right hand side. The grammars are considered
context-free as they map a single entity, instead of a group of entities, to a number of
different options. Context free grammars are an important tool in creating a new pro-
gramming language, but they are inadequate for this project as they are based on text
instead of graphics.

Instead of using only text, visual languages are defined with shapes, lines, and text [38].
It is still critical to ensure visual languages have well defined specifications [23]. Due to the
graphic nature of visual programming, we can use graphs to represent the most basic form
of a visual language [37]. Therefore, in visual programming languages graph grammars are
used. While numerous flavors of graph grammars are available, their underlying principles
are the same [37,38].

Graph grammars define different nodes and show or describe how they can be combined
to form the overall program. Put another way, graph grammars define the only allowable
transformations on the graph. By defining these valid transformations, graph grammars
ensure proper syntax in the same manner as context-free grammars. Just like context-free
grammars, graph grammars create allowable transformations through production rules.
A production rule contains two graphs as shown in Figure 2.4. The left-hand side of
the production can be transformed into the right-hand side. Figure 2.4 effectively says a
statement can be comprised of multiple statements.

Graph grammars are often not context-free as this restriction has proven too difficult

2.5 Abstraction 15

to create many visual languages [50]. As a result, we are not limited to having a single
node on the left hand side of the production as we would be in a context free grammar.
Instead, the general rule is to ensure the left-hand side of each production has fewer
elements than the right-hand side. This allows the language to be built up through the
graph grammar. Examples of graph grammars abound in the literature [25,45].

The theory behind creating graph grammars presented here will be used in later
chapters in the design of the language.

2.5 Abstraction

As humans our ability to abstract starts at the beginning of our lives and develops as we
mature [53]. Abstraction is our “mental process in which some attribute or characteristic
is observed independently of other characteristics of an experience as a whole.” [59]. Put
more simply, abstraction is simplifying and finding commonalities between different ele-
ments [43]. These elements could be objects, experiences, or other items. From Picasso’s
cubism and Louis Armstrong’s jazz music to maps of train networks and classes in object
oriented programming [43], abstraction is used in numerous and diverse fields.

In computing, abstraction is a key concept. Abstraction is obviously used in object
oriented programming through inheritance and encapsulation. Beyond this, abstraction
is used to create models and this is a critical tool for engineers regardless of their area of
expertise [43].

Studies have shown numerical abstraction occurs for infants as young as 6 months
old [55]. However, these abilities are nowhere near the level needed to understand larger
abstract concepts such as object oriented programming. Additional studies indicate that
math is a critical tool to helping students develop their abstraction abilities [43]. It
is important to note the importance of mathematics in developing abstraction abilities.
In future sections this point will be critical to understanding some of the arguments
presented.

In this chapter we have provided the reader with an understanding of a number of
concepts that are critical for the overall project. By understanding computer science edu-
cation, we can see where this project fits into the current landscape. As the project aims
to develop a language for the EV3, it is obvious that the hardware and software associ-
ated with the platform is understood. To assist the transition from visual procedural to
textual object oriented programming, it is critical to understand both of these paradigms
and language styles. Because abstraction is a critical ability to learn object oriented
programming, it is important to understand the psychology behind abstraction abilities
development in children. Perhaps the most important part of this literature review is
the knowledge gap in the struggles students face when transitioning to object oriented
programming. This gap drives the survey that will be discussed in the next chapter.

16 Chapter 2. Background and Related Work

Chapter 3

Survey Methodology

While the literature review provided the background information required for the project,
there was insufficient information for understanding why it is difficult to transition to
object oriented programming. As a result, a survey was created to fill the knowledge gap.
Here, we describe the methodology behind creating the survey and recruiting participants.

To understand how to create a programming language to assist students to transition to
object oriented programming, it is critical that we understand what makes this conversion
so difficult. As discussed in Section 2.1.4, we know that this transition is difficult but there
is very little research on what makes it a challenge. This makes it more difficult to define
the system as there is limited information to direct the project. To make up for this lack
of information, a detailed requirements elicitation approach is required.

As a member of the target audience, the author has her experiences as a starting point,
but this is purely anecdotal evidence and is thus not suitable for a rigorous academic
approach. Therefore, it was decided that a survey should be created and conducted to
better understand the issues that the language needs to address.

All questions that involved participants responding on a scale were done on a 1-6 scale.
This was chosen to give a significant range of options. An even number of options were
provided to participants to remove a neutral answer.

3.1 Areas of Inquiry

The survey was created to find answers the following five questions:

• Is there an optimal age to learn object oriented programming?

• What object oriented concepts do students find easy to understand?

• What object oriented concepts do students struggle to learn?

• What factors influence the difficulty of learning an object oriented concept?

• How difficult is it to learn the following object oriented concepts?

17

18 Chapter 3. Survey Methodology

– File Interaction

– Method Calls

– Accessing Variables

– Public versus Private

– Inheritance

– Abstract Methods, Variables, and Classes

– Polymorphism

– Encapsulation

Through the survey, we aim to discover what object oriented concepts cause students
to struggle along with which concepts are easy to grasp. To accomplish this, participants
were asked open ended questions about what concept they found the easiest and what
concept they found the most difficult. The goal of these questions was to find concepts
which were not originally considered. After both of these short answer questions, respond-
ents were asked what made the concept easy or difficult. The hope was that from the
survey results enough common areas of difficulty would emerge to determine attributes
of the system.

In addition to the qualitative data these questions will provide, quantifiable data
was collected. Because we know students need abstraction ability and this is not fully
developed in young children, the age at which respondents learned object oriented pro-
gramming was recorded. This age will be compared to how difficult on a 1-6 scale they
found object oriented programming. The hope was to find an age at which object oriented
programming is easiest to learn.

In addition, participants were asked how difficult on a 1-6 scale they found the prede-
termined concepts. The concepts were chosen based on the author’s experience and core
object oriented concepts. By having participants score each concept, it became possible
to directly compare concepts and see which ones are more difficult.

To create an unbiased survey, short answer questions occurred before the ranking
questions.

3.2 Recruitment Methods

The target audience is those whose first programming language was procedural and have
since learned an object oriented programming language. Participants of the survey were
required to be over sixteen for consent purposes.

Survey recruitment was focused on FIRST Robotics Competition and FIRST Tech
Challenge students and alumni as this demographic meets the requirements for survey
participation. The survey was promoted through posts to the Australian FIRST Robotics
Competition e-mail list, social media groups for FIRST Robotics students and alumni,
and Chief Delphi which is the major online forum for FIRST Robotics. In addition three

3.2 Recruitment Methods 19

social media pages and several colleagues of the author publicized the survey through
social media channels. A copy of the survey recruitment brochure is in Appendix B.2.

Because the survey recruitment focused on a specific audience, it is possible for the
data to be skewed. This has been considered and where appropriate it enters into our
discussion of the survey results.

20 Chapter 3. Survey Methodology

Chapter 4

Survey Results

The survey was open from Tuesday May 10th 2016 and the data studied here was collected
on May 24th 2016. In that time frame, 146 unique visitors started the survey with 56
participants completing all questions.

Before the data was processed, the information given was checked to be certain survey
respondents met the criteria. Six survey responses were found to be invalid as the parti-
cipants learned object oriented programming before a visual-procedural language. These
responses were discarded and have not been included in the following analysis.

With the information gathered validated, the survey was analyzed in respect to each
area of inquiry outlined in Chapter 3.

4.1 Age to Learn Object Oriented Programming

The age object oriented programming was learned was considered in comparison to the
difficulty of learning object oriented programming. The data suggest that those who
learned object oriented programming at fourteen found it easier than any other age group.
To illustrate this, consider the box plots of difficulty for each age group as shown in Figure
4.1. The lack of one, or both, whiskers for some age brackets occurs from the relatively few
possible answers (only six distinct answers are possible) that participants could provide.

Using a t-test, with a threshold of p = 0.05 the difference in reported difficulty between
fourteen year olds and the general survey respondent was found to be statistically in-
significant. Considering the statistically low number of participants, the threshold was
increased to p = 0.1. At the p = 0.1 level, the difference was significant.

On a positive note, fourteen years old was the most common age to learn object
oriented programming. Nearly 20% of respondents learned object oriented programming
at this age.

21

22 Chapter 4. Survey Results

Figure 4.1: A box plot of reported object oriented programming difficulty for each age
group. The ‘x’ marks the average and the box shows the upper and lower quartile range.
The whiskers begin at the box and extend to the last data point that occurs within one and
a half times the inter-quartile range. Any data points outside this range are considered
outliers (in common with usual statistical practice) and are represented by a dot.

4.2 Easy Object Oriented Concepts

While this project focuses on the difficulties associated with learning object oriented
programming, it is important to also understand which concepts are easy. This enables
a better understanding of the entire problem. To accomplish this, an analysis of object
oriented concepts respondents reported as easy is conducted.

The analysis of easy to understand object oriented concepts began by grouping re-
sponses. In total, nine categories were found: classes, encapsulation, inheritance, not
applicable, objects, other, polymorphism, procedural concepts, and syntax. The “other”
category was reserved for singleton answers. To view the complete responses and their
categorization, please refer to Appendix C.1. A visual breakdown of the responses per
category is shown in Figure 4.2.

Of particular note is the large number of respondents who did not provide object
oriented concepts. Between the “procedural concepts”, “not applicable”, and “syntax”
categories, 27% of respondents thought a component outside of object orientation was the
easiest to understand. This underscores the difficulty of learning object oriented concepts

4.3 Difficult Object Oriented Concepts 23

Figure 4.2: Number of responses per category of easy object oriented concepts.

and the importance of this project.
Aside from procedural concepts, the most common answer was classes followed by

objects. It is suggested that this occurs because these are some of the first concepts
taught in object oriented programming classes. As a result, students are given a significant
amount of time to understand these concepts.

4.3 Difficult Object Oriented Concepts

Considering the easy to learn object oriented concepts only provides half of the information
required to understand the problem space. The other half comes from the difficult parts
of learning object oriented programming. Here, an analysis of object oriented concepts
respondents reported as difficult is conducted.

As with the analysis of easy to learn object oriented concepts, this analysis began by
grouping responses into appropriate categories. In total, ten categories were discovered:
abstract, class versus object, classes, encapsulation, inheritance, objects, other, overload-
ing, polymorphism, procedural concepts. The “other” category was reserved for answers
with no similarities to other responses. To view all the responses and their categorization,
please refer to Appendix C.2. A graph of the responses per category is shown in Figure
4.3.

24 Chapter 4. Survey Results

Figure 4.3: Number of responses per category of difficult object oriented concepts.

The most common difficult to understand concepts in object oriented programming
that respondents gave were inheritance and polymorphism. Together, inheritance and
polymorphism accounted for 44% of the responses. Interestingly, both inheritance and
polymorphism also appeared on the easiest object oriented programming list. This overlap
between the lists is not unique. Six concepts (classes, encapsulation, inheritance, objects,
polymorphism, and procedural concepts) appear on both lists.

Only three concepts were unique to the difficult to learn category: abstract, class
versus object and overloading. This suggests that these concepts were extra difficult as
no respondent considered them as the easiest concept to grasp.

4.4 Factors that Influence Difficulty

When asked why a particular concept was easy, respondents offered a wide range of
opinions. A complete list can be found in Appendix C.3. A few patterns emerged upon
examining these factors. In particular, many respondents were assisted in their learning
by:

• An explanation a tutorial or teacher provided.

• The object oriented concept being intuitive.

4.5 Scored Difficulty of Object Oriented Concepts 25

Table 4.1: Average reported difficulty (to two decimal places) for pre-determined object
oriented concepts.

Object
Oriented
Concept

File Inter-
action

Method
Calls

Accessing
Variables

Public
versus
Private

Inheritance Abstract
Methods,
Variables,
Classes

Polymorphism Encapsulation

Average
Reported
Difficulty

3.13 2.38 2.09 2.41 3.41 3.89 4.00 3.80

• A component of the programming language.

• Visual feedback.

It is interesting to note the inclusion of visual feedback in this list. The literature
supports this finding. In particular, it was noted in Section 2.1.2 that interactive languages
with visual feedback would assist students as it enables an understanding of the impact
of the code changes.

When respondents were asked what made a particular concept difficult, a similarly
wide range of answers were given. A complete list can be found in Appendix C.4. Some
of the most common reasons respondents provided were:

• An explanation a tutorial or teacher provided.

• Could not see usefulness or relevancy.

• Nothing to compare the concept to from previous languages.

• General confusion and difficulty.

It should be noted that some concepts appear on both the easy and difficult lists of
factors that influence the difficulty of learning an object oriented programming concept.
In particular, a tutorial’s or teacher’s explanation occurs in both lists. This suggests that
how the student is taught is a markedly contributing factor to a student’s ability to learn
object oriented programming.

4.5 Scored Difficulty of Object Oriented Concepts

In addition to giving short answer responses, participants were asked to score the difficulty
of a number of pre-determined object oriented related concepts on a six-point scale. The
average of these responses is shown in Table 4.1.

Based on the responses, it is possible to divide the concepts into those that are hard
and those that are easy to learn. In particular, file interaction, method calls, accessing
variables and public versus private, are all suggested easy concepts. Abstract methods,
variables and classes, polymorphism, and encapsulation appear to fall into the difficult
category. This difficult category aligns with the short answer question discussed in Section
4.3.

26 Chapter 4. Survey Results

Chapter 5

System Requirements

With the survey results analyzed, our focus shifts to setting the requirements of the
system. These requirements are based on the literature review, the author’s experience
and judgment, and the survey results.

As a matter of terminology, the system refers to the new programming language,
development environment, and associated supporting infrastructure. The requirements
outlined below consider the entire system and are not limited to the new programming
language.

This section is based on 10.1109/IEEESTD.1998.88286 recommendations for software
requirements specification documents [40]. Here, the system is considered from a number
of perspectives to elicit requirements. Based on this, the requirements are provided in
Appendix A.

5.1 Interfaces

The system will need to interface with a variety of other components. These components
are defined and the interfaces specified in sections below.

5.1.1 System Interfaces

The system needs to interface with a computing device and the EV3. In particular we
will require that the programming should be completed on a Windows XP, Windows 7 or
Windows 8/8.1 machine as these three operating systems have over 85% market share [20].
System interface requirements are found in Table A.1.

5.1.2 User Interfaces

In order to define the user interfaces, it is important to first know the target audience.
Based on the national curricular requirements and robotics programs considered in Section
2.1.1, the system is targeted for students in years 5-8.

27

28 Chapter 5. System Requirements

To help bridge the gap between the visual procedural languages learnt in years 1-4 and
object oriented programming, the system will be a visual programming language. This
will also decrease the literacy requirements for younger children learning the system.

The user interface requirements appear in Table A.2.

5.1.3 Hardware Interfaces

The hardware interfaces can be divided into two main categories; the computer and the
EV3 ecosystem. On the computer side, there are no major requirements as the OS ensures
a well-defined interface. For the EV3, the system must be able to properly interface with
a variety of input/output hardware. For the purposes of this project, we have limited
these inputs and outputs to the hardware that comes in the EV3 LEGO Education and
LEGO Retail kits, including the input/output on the EV3 brick. The exact details are
outlined in Table A.3.

5.1.4 Software Interfaces

Aside from the operating system interfaces outlined in Section 5.1.1, the system will also
need to interface with the operating system on the EV3. In particular, the EV3 has a
Linux kernel [16] which can be found on GitHub [12].

The software interface requirements appear in Table A.4.

5.1.5 Communications Interfaces

The EV3 supports two main communication protocols for downloads—Bluetooth and Mi-
cro USB. As a result, at least one of these communication protocols will be used. Given
the complex requirements for adapting the EV3 for WiFi, it was decided this commu-
nications protocol would not be supported. The communication interface requirements
appear in Table A.5.

5.2 Nonfunctional Requirements

The system’s nonfunctional requirements relate to no single function of the system, but
rather its overall implementation.

5.2.1 Reliability

In the author’s ten years of competitive LEGO robotics experience, the majority of firm-
ware for LEGO MINDSTORMS programming languages will corrupt itself within two to
four weeks of extensive use. With this in mind, the firmware is expected to have a Mean
Time Between Failure (MTBF) of 3 weeks under extensive usage.

The reliability requirements appear in Table A.6.

5.3 Functional Requirements 29

5.2.2 Availability

The availability requirements are straightforward and therefore are only shown in Table
A.7.

5.2.3 Maintainability

Several LEGO MINDSTORMS languages support the ability to download updates and
patches [3] [19]. Perhaps this is due in part to the extensive user feedback LEGO Edu-
cation receives once the product is released. As a result, the system created must also
enable updates to be sent after the system is released.

The maintainability requirements appear in Table A.8.

5.3 Functional Requirements

The main aim of the project is to create a programming language that helps students
transition from procedural to object oriented programming. The key detail to recall is
that the project goal is not to create an object oriented programming language. This
distinction is critical to understanding the functional requirements as it dictates many
decisions made.

Here, a further explanation of the choice of object oriented concepts selected is provided.
A full list of the functional requirements appears in Table A.9.

5.3.1 Data Encapsulation

Data encapsulation was chosen for a number of reasons. Firstly, we believe the target
audience can understand the concept. Data encapsulation is based on information hiding
and secrecy. Children as young as eight have been shown to understand the concept of
secrecy [44]. We believe this concept easily extends to objects thereby making it a good
concept to include in the language.

Additionally, data encapsulation was identified in Section 4.5 as a potentially difficult
concept for students. As a result, providing transitional assistance in this area can reduce
the overall difficulty of moving to object oriented programming.

For the purposes of this language, data encapsulation will include allowing public and
private attributes and methods, and showing the object’s interface. This provides the
functionality required for encapsulation and assists the student’s understanding.

5.3.2 Inheritance

To help students transition to object oriented programming, some form of abstraction is
needed. As described in Section 2.3.3, polymorphism can be considered an extension of
inheritance. As a result, it is logical to introduce inheritance before polymorphism. This

30 Chapter 5. System Requirements

allows students to understand the underlying concept of inheritance before extending this
knowledge to inheritance.

In Section 4.3, we saw that inheritance was reported as the most difficult object
oriented concept to learn by the largest number of participants. Yet, in Section 4.5, the
data implies that inheritance is the easiest of the object oriented concepts that can be
classified as difficult to learn. This dichotomy suggests that inheritance can be mastered
without large amounts of difficulty if properly considered.

As a result, we have decided to implement inheritance in the programming language.
This will help students master inheritance and prepare them for learning polymorphism.

5.3.3 Polymorphism

As discussed in Section 2.3.3, polymorphism is a more complex implication of inheritance.
With this in mind, it makes sense for students to learn inheritance before polymorphism.
In fact, it is possible to argue that polymorphism can be taught by inheritance. As a
result, we have chosen to focus on implementing inheritance.

This decision is supported by the data collected through the survey. As shown in
Section 4.5, polymorphism is potentially the most difficult object oriented concept to
learn.

This decision does not violate the project’s goals as we are are creating a programming
language to assist in the transition to object oriented programming. This goal significantly
differs from the creation of an object oriented programming language.

5.3.4 Abstract Classes

The survey data suggests that abstract items (methods, variables, and classes) are the
second hardest to learn object oriented concept. As a result, abstract classes arose for
consideration in the overall project. Unlike encapsulation and inheritance, abstract classes
are not a core object oriented concept.

However, abstract classes are an often used object oriented concept. Since abstract
items ranked the second hardest concept and multiple respondents said it was the hardest
object oriented concept, abstract classes were included in the language’s requirements.

Chapter 6

Language Design

With the language’s requirements set, the project can continue to the design phase. We
begin this process by examining two options for a platform on which to build the language.
After that, we present a syntax for the system that meets all the requirements outlined
in Chapter 5.

6.1 Language Platform

To enable quick prototyping and creation of the system, it was decided to build the
language on top of an existing platform. This reduces the overhead of creating a visual
language. Two languages were considered—ScratchX and EV3 MINDSTORMS. Both
languages run on the EV3 with no extra effort required. Here, we discuss each language
platform and how it would work as a platform for this project.

6.1.1 EV3 MINDSTORMS

EV3 MINDSTORMS is the default software that LEGO provides alongside the EV3 and
was discussed in Section 2.2.2.

Because EV3 MINDSTORMS comes alongside the EV3 brick, the target audience is
most likely already familiar with EV3 MINDSTORMS. This is probably the most familiar
language for those learning to program the EV3. EV3 MINDSTORMS supports both
major communication protocols—Bluetooth, and USB.

The Software Development Kit provided by LEGO allows anyone to create new blocks
using National Instruments LabVIEW Web UI Builder. For example, a square function
was added to the provided sample data icon. This was properly built into a block that
was successfully tested on the EV3. The block is shown in Figure 6.1 and the underlying
LabVIEW is shown in Figure 6.2.

Perhaps the biggest downside to using EV3 MINDSTORMS is that there is no un-
derlying object orientation. LabVIEW is a dataflow language, making it more difficult
to transform into an appropriate form. Additionally, because the software is not open
source, it is more difficult to modify the language aside from the creation of new blocks.

31

32 Chapter 6. Language Design

Figure 6.1: Square function added to the Sample Data Block.

Figure 6.2: Underlying LabVIEW for the square function.

6.1.2 ScratchX

ScratchX is an extensible build of Scratch which was discussed in Section 2.1.3. ScratchX
is unusual in that it only runs in a web-browser. Internet Explorer or Firefox are the re-
commended browsers the system supports. By including the EV3 extension for ScratchX,
the language can be used to control the EV3.

ScratchX for EV3 connects to the EV3 via Bluetooth with no firmware download
required. Programs are not stored on the EV3, but are communicated from computer via
Bluetooth to the EV3 brick.

As of May 29, 2016, Scratch had over 12 million registered users [14], making the
programming language familiar to many students in the target audience.

ScratchX is built on the same Flash core as Scratch. This is then combined with a
different webshell to form ScratchX. Extensions can be developed by anyone and added
into ScratchX. All components of this ecosystem are open source. This enables developers
to extend the language in any way they chose. This includes changing a block’s shape,
creating new data items, and adding new provided functions. The ScratchX loaded with
the EV3 extension can be seen in Figure 6.3.

Many of the downsides of using ScratchX come from the nature of open source projects,
In particular, Scratch is poorly documented. The code is barely commented and there
are several layers of the project to navigate through.

6.1.3 Platform Selection

Based on the above information, ScratchX was selected as the language’s platform for a
number of reasons. While both EV3 MINDSTORMS and ScratchX were able to meet the

6.2 Defining Scratch 33

Figure 6.3: ScratchX with the EV3 extension and a sample sample program at the
Stage level.

requirements, ScratchX being open source rendered it the easier to modify as desired. This
increased flexibility allowed the requirements and design to dictate the language instead
of the platform chosen. While Scratch lacks documentation, the code is well organized
and numerous tools are available to assist in debugging ActionScript programs.

6.2 Defining Scratch

The language’s syntax will be defined using graph grammars. Because the language will
be built on ScratchX, we use this as the beginning of the syntax. As a result, before
we can define the language’s graph grammar, it is critical to understand the ScratchX
programming language and environment.

It is important to note that the graph grammars of Scratch and ScratchX are both
defined in the Scratch Flash core and are therefore the same. To define the Scratch
programming language, one would assume we would use a graph grammar as discussed
in section 2.4.1 as Scratch is a visual programming language. However, Scratch defines
certain elements using a user interface. In particular, a number of elements are created
using a button while their parameters are defined using a dialog box. As a result, we
must examine the graph grammar and user interface in more detail. By ensuring this

34 Chapter 6. Language Design

firm foundation in the Scratch language, the new programming language can be similar
to Scratch thus easing the transition to object oriented programming.

6.2.1 Scratch Sprites

To understand the Graph Grammar, it is critical to remember that in Scratch users
program through characters called Sprites on a Stage as was discussed in Section 2.1.3.
A Scratch project can contain many Sprites.

It is also important to remember that Sprites are similar to objects in many ways. For
example, in Scratch, each Sprite has a unique location to build its programs, in a similar
manner to how an object oriented language would have a file for each class. Sprites have
appearances, data members, and functions.

6.2.2 The Stage

The Scratch Stage is very similar to a Sprite and can be thought of in the same manner.
In particular, the Stage has appearances (costumes), data members, and functions.

One of the major differences between the Stage and Sprites is there is only one Stage
per Scratch project. As we will see in Section 7.4, the properties this 1:1 relationship
ensures have useful implications.

6.2.3 Scratch Costumes

A costume object contains an image and associate directional information (x-direction,
y-direction, x-rotation, y-rotation, layer, etc.). Each Sprite and the Stage contain a list
of costumes that represent the multiple forms the object can take.

6.2.4 Scratch Blocks

There are three major types of blocks in Scratch—hats, procedures, and reporters. The
graph grammar defines how these three types of blocks can be combined to create the
overall programming language. Each combination of blocks is referred to as a “script”.

Each script begins with a hat node which can either be an event or a procedure defini-
tion. Under the hat, a number of procedure blocks can be placed to create a stack. When
a hat is triggered, the procedures in the stack are executed procedurally. Event hats are
triggered when the event occurs while procedure definition hats are triggered when the
defined procedure is called. Sprites and the Stage can have multiple scripts, enabling
different functionality based on which hats are triggered.

A procedure is the general purpose block of the Scratch environment. It is responsible
for the majority of commands and actions. For example, if a Sprite moved across the
Stage, this action would be caused by a procedure.

Reporters are the remaining block type in Scratch. These blocks return a value and are
often included in procedures. Reports can return data (a string or integer), list, or boolean.

6.2 Defining Scratch 35

Figure 6.4: The dialog for defining the parameters of a data or list element in Scratch.

Data and list reporters have a different shape to booleans. This is part of Scratch’s ability
to create automatically syntactically correct programs. Because booleans are a different
shape to list and data, they cannot go in the same location. This ensures the program is
syntactically correct before compilation.

Blocks will be explained in more detail in Section 7.2.2.

6.2.5 User Interface

It is important to note that there are user interface elements within Scratch that provide
additional functionality. This simplifies the graph grammar. For example, data and lists
are created using a user interface button instead of a block. To define parameters of a
data or list element, the dialog box shown in Figure 6.4 is used. This means the Scratch
programming language is more complex than the graph grammar provided. As a result,
while the graph grammar outlined below provides the underlying basis for Scratch, it
is important to remember there are additional components that are not defined in this
manner.

Elements are often created using a button while their parameters are defined in a
dialog box. In particular, buttons and dialog boxes create and set parameters of the
following Scratch components:

• Data

• Lists

• Procedure Definitions

• Sprites

• Stage

• Costumes

36 Chapter 6. Language Design

For example, data and lists are set as public or private in a dialog box. A Sprite
is created with a user interface button. The inputs to a procedure are defined in the
procedure definition dialog box.

Understanding how the user interface buttons and dialog boxes are currently used in
Scratch is critical for later determining which components of the new language will be
implemented via new user interface buttons and dialog box options instead of updates to
graph grammar productions.

6.2.6 Scratch Graph Grammar

The parts of Scratch not controlled by the user interface are defined with the graph
grammar productions. Each script begins with a hat block as shown in Figure D.1.

Procedures can be simple blocks as shown in Figure D.5. Procedures also include
if, if-else, and loop statements as shown in Figure D.9, Figure D.10, and Figure D.11
respectively.

The graph grammar production rule for reporters can be seen in Figure D.8.
The full set of productions that define ScratchX’s graph grammars are provided in

Appendix D.

6.3 New Language Definition

To create the new programming language, the majority of changes will occur through
new user interface buttons or dialog box option. An example of an updated dialog box is
shown in Figure 6.4. Here, we describe how Scratch will be extended in each of the major
areas.

6.3.1 Updated User Interface

To consider how the user interface buttons and dialog boxes will be updated, we remember
their general purposes are to create and set parameters of elements.

It is logical to include the data encapsulation elements in a dialog box as this edits
the parameters of the procedure definition. This decision is supported by recalling that
for data and lists, the public versus private setting was included in the dialog box.

To create a cohesive language, abstract classes should be created in the same way as
a Sprite. As Sprites are created with a buttons, this is how abstract classes will be
created as well.

Finally, a Sprite’s parent can be thought of as a parameter of the Sprite. As a result,
we have chosen to include setting the Sprite’s parent in a dialog box.

6.3.2 Updated Graph Grammar

With this large amount of functionality to be added via the user interface as defined
above, it could appear that the graph grammar does not need to be updated. This is

6.3 New Language Definition 37

Figure 6.5: The changes required to the reporter block for the new programming lan-
guage.

incorrect. In particular, to make Sprites passable entities, a new reporter will need to be
created. This cannot simply be done through the user interface buttons and dialog boxes
as the Sprite entity needs to be passed between blocks. As a result, this will change the
graph grammar for reporters from that in Figure D.8 to that in Figure 6.5.

It should be noted that to maintain the iconic puzzle piece structure and automatic
syntactic correctness of Scratch, a unique shape will be required for the Sprite reporter.
This unique shape will ensure that a Sprite cannot be used where a boolean is required.

In this chapter we have designed the new language. We began by selecting ScratchX
as the platform on which to build the language. With this set, we examined how ScratchX
is defined to better understand the base of the new language. With this understanding,
we have shown how the new language’s features will be implemented to create a cohesive
system.

38 Chapter 6. Language Design

Chapter 7

Language Implementation

In this chapter the implementation of the language is discussed. As part of the imple-
mentation, tools were selected for development and source code control. Next, the Scratch
architecture is described to provide the reader the background required to understand the
implementation. With this basis, we explain the implementation of the overall language.

7.1 Tool Selection

In the process of obtaining the Scratch Flash core, the code downloaded had to be compiled
to an executable form. On the source code page, the creators of Scratch recommend the
Intellij IDEA integrated development environment. Intellij IDEA provides support for
ActionScript. This support includes features from debugging to text highlighting. Intellij
IDEA is provided free for students and therefore was within the budget outlined in Section
1.2.3.

Before the language was implemented, a source code management tool was selected.
Because Scratch, ScratchX, and the EV3 extension for Scratch are all available on GitHub,
we began by considering this tool. GitHub is integrated into Intellij IDEA and enables
branching, committing, reverting, and merging files. GitHub also enables the project to
be open source, a requirement of the licensing agreement that all the relevant projects
were released under. Additionally, by having the project on GitHub, any changes made to
Scratch, ScratchX, or the EV3 extension for Scratch can be merged into the new language.
As a result, we elected to stay with GitHub as the source code management tool for this
project.

7.2 Scratch Flash Code Architecture

As discussed in Section 2.1.3, Scratch is an object-based language. As a result, it is un-
surprising that the underlying architecture is object oriented. As a Flash application,
Scratch is written in ActionScript. Here, some critical components of Scratch’s architec-
ture are discussed to give readers a background to enable an understanding of the new

39

40 Chapter 7. Language Implementation

Figure 7.1: A hat (top), boolean reporter (middle left), data reporter (middle right),
and procedure (bottom) blocks.

language’s implementation.

7.2.1 Scratch Class

The Scratch class is the top-level of the application. It can be thought of as the “main”
method. The Scratch class contains the Runtime, Interpreter, and user interface compon-
ents. Additionally, the Scratch class keeps track of the currently viewed-object which is
crucial for the user interface. Depending on what type of object is currently being used,
the interface will adapt appropriately. This is critical for Scratch to function properly as
we shall see in the following sections. The Scratch Object also allows for the creation of
new Scratch Sprites.

7.2.2 Blocks Class

Blocks are the equivalent to most programming languages’ statements. They have a form
(appearance on the screen) and function. The blocks have their own graph grammar that
maps to the different shapes. The blocks can be stacked and combined to form a program.
This grammar was discussed in Section 6.2.

In general, these blocks fall into three shapes (hats, reporters, and procedures) which
can be seen in Figure 7.1 and were described through graph grammar productions in Sec-
tion 6.2. Hats are procedure declarations. This can arise through either the user defining
a new procedure or declaring what should happen when an event occurs. Reporters can
be given to procedures and used within the method. The shape of a reporter can vary
slightly depending on the data type it returns. Finally, procedures are the most common
block and have Scratch’s iconic “puzzle piece” design.

As a matter of terminology, each stack of blocks that can be run is referred to as a
script. It is possible, and expected, that each Scratch Object will have multiple scripts.

In Scratch, blocks execute on the do-object set by the Scratch Runtime and discussed
in more detail in section 7.2.4.

7.2 Scratch Flash Code Architecture 41

7.2.3 Scratch Objects Class

Scratch Objects are the underlying support for the things users can program, as such they
have a number of common properties. In the Scratch language, the key attribute of these
objects is they can be programmed individually. The Scratch Objects class serves as a
super class for the Scratch Stage and Scratch Sprite objects discussed below.

Stage Class

The Scratch Stage is the backdrop of the scene. In addition to this visual role, the Stage
can be scripted in the Scratch environment. Scratch Stage objects do not have access to
all of the procedures available to Sprites. For example, the “motion” set of blocks are
only available to Sprites. This is managed by the palette as discussed in more detail in
Section 7.2.6.

Sprite Class

Sprites are the major component of the Scratch programming language. From an object
oriented perspective, Sprites are a combination of classes and objects. They can be
cloned in a similar manner to instantiating a new object, but cloning is not required.
Sprites are capable of executing all the Scratch blocks.

7.2.4 Scratch Runtime Class

The Scratch Runtime class contains all the logic to start hat blocks and find data or lists.
To accomplish this, the Scratch Runtime class is able to search all Scratch Objects for
the needed information.

The Scratch Runtime keeps track of the current do-object which is critical to the the
Interpreter’s execution. The do-object is usually the Scratch Object that contains the
script being executed. When a user defined procedure is called, the object calling the
procedure is the do-object.

7.2.5 Interpreter Class

The Interpreter class is self explanatory (by the name). It takes the scripts (stacks of
blocks) and interprets them into the required actions.

7.2.6 User Interface Classes

The Scratch user interface is comprised of a number of different classes. To see how these
objects combine, consider the mapping of the Scratch Screen to user interface components
as shown in Figure 7.2.

42 Chapter 7. Language Implementation

Figure 7.2: The Scratch programming environment user interface components.

Palette Classes

The Scratch palette is a subcomponent of the user interface that is composed of a number
of additional classes. Overall, these classes determine which blocks should be displayed
based on a number of factors including what type of Scratch Object is currently being
viewed.

7.3 Scratch EV3 Extension

In addition to understanding the Scratch Flash source code, it is important to understand
the ScratchX extension for EV3.

As with all ScratchX extensions, the EV3 extension is a JavaScript file that defines
new Scratch Blocks and sets functions for the Interpreter to execute when the block is
used. The EV3 ScratchX extension also defines a number of data elements that are EV3
specific.

When the user adds EV3 ScratchX extension to ScratchX, the blocks defined in the
JavaScript appear in the “more blocks” palette. These are then usable in the same manner
as any other Scratch block. The EV3 Scratch Extension includes thirteen blocks that
enable users to program EV3 motors and the light/color, ultrasonic, and touch sensors.

7.4 Scratch with Components of Object Oriented Technology 43

Figure 7.3: A Sprite reporter block’s shape is distinct, indicating it can only be used
in specific locations.

7.4 Scratch with Components of Object Oriented Tech-

nology

To differentiate the language created by this project from others, we have called it Scratch
with Components of Object Oriented Technology or SCOOT for short. Here, we discuss
the additions and extensions made to ScratchX to transform it into SCOOT and to meet
all the requirements outlined in Chapter 5.

7.4.1 Sprites as Attributes

The first update required for SCOOT was transforming Sprites into a passable attribute.
As Scratch Sprites are already a class within Scratch, a reporter block was created that
returned the appropriate Scratch Sprite object.

To maintain the user’s ability to only create syntactically correct programs, a new
shape was created for Sprites. This shape can be seen in Figure 7.3. SCOOT will only
allow users to place Sprites into locations where a Sprite is expected.

Once this was accomplished, the already existing blocks that acted on Sprites were
updated to require a Sprite as shown in Figure 7.4. This enabled the Interpreter to
update the passed Sprite instead of the current do-object, giving the user greater control
over his or her program’s interpretation.

The Sprite reporter blocks were added to the palette under a new category “Creatures”.

7.4.2 Encapsulation

There were two components for implementing encapsulation. To begin, public and private
needed to be included for data, lists, and procedures. Additionally, an interface display
was added to the programming environment. Here, the implementation of these features
is described.

44 Chapter 7. Language Implementation

Figure 7.4: A reporter and procedure block that require a Sprite attribute to execute.

Public and Private

ScratchX already contained support for public and private data and lists. As a result, we
only needed to implement public and private functions. To do this, we first consider how
Scratch accomplishes public and private lists and data.

For data and lists, public items are stored in the Scratch Stage while private items
are stored in the Scratch Sprite. This can be done because data and lists are stored
within Scratch as objects. This same approach could not be used for procedures as there
is no procedure object within Scratch.

Instead, we considered how Scratch Runtime looks up procedures. This is done by
the Scratch Runtime iterating over all the Scratch Objects until the procedure definition
is found. From examining the code, it became apparent procedures were only private
because they could not be accessed via the palette.

As a result, to enable public and private procedures, the palette needs to display the
appropriate blocks. This was accomplished by adding an isGlobal boolean to the Block
class. When a procedure is defined, the dialog box that appears to set parameters includes
a check box for making the procedure global as shown in Figure 7.5.

By knowing the isGlobal boolean, which Sprite defined the procedure, and the cur-
rent viewed-object, the palette updates which procedures should be shown according to

7.4 Scratch with Components of Object Oriented Technology 45

Figure 7.5: Dialog box for updating a procedure’s parameters.

Algorithm 1.

Data: p is a procedure definition;
isGlobal is a boolean;
viewedObject is the currently view object set by the Scratch class
Result: p is added to the display if allowed by the isGlobal boolean
if isGlobal then

Show p
else

if viewedObject defines p then
show p

end

end
Algorithm 1: Algorithm for showing the appropriate procedures based on the isGlobal
boolean.

Interface Display

The interface display shows the procedures, data, and lists that are publicly available from
the current Sprite being viewed as shown in Figure 7.6. The interface display appears
on the background of the scripting environment. This enables users to “see” the interface
of the Scratch Object they are currently programming.

46 Chapter 7. Language Implementation

Figure 7.6: Interface display on the background of the SCOOT scripting environment.

Figure 7.7: The Sprite info pane includes the ability to set a Nymph.

7.4.3 Nymphs

In mythology, nymphs are higher beings than sprites. By analogy, the parent class of a
Sprite is a Sprite. The Nymph can be set in a Sprite’s info pane as shown in Figure
7.7. Once a Nymph is set, the Sprite receives the Nymph’s costumes and private
attributes.

Costumes are stored within a Sprite as a list filled with Costume objects. For a
Sprite to receive the Nymph’s costumes, we added the Nymph’s costumes to the
Sprite’s costume list. Because these reference the same costume object, any changes
made to the costume will be reflected in both the Nymph’s and Sprite’s view of the
costume.

For data, lists and procedures, changes were simply required to the palette. Here,
SCOOT displays both the Sprite and its Nymph’s attributes and methods.

7.5 Wide Walls 47

7.4.4 Ghosts

It is a truth universally acknowledged that ghosts do not exist. Yet, the concept persists.
With this in mind, the implementation of abstract classes in SCOOT was accomplished
by introducing Ghosts to the language.

Ghosts are the most complex component in SCOOT. As there is no difference between
classes and objects in Scratch, Ghosts must attempt to be an abstract class in a class-less
language. As a result, we have focused on the ability to define an abstract class, but not
create any objects from the class. In SCOOT, this is manifests as allowing Ghosts to
exist, but not allowing them to execute without assistance from a Sprite or the Stage.

To accomplish this, Ghosts do not have any costumes and thus cannot appear as
actors on the Scratch Stage. The hat blocks are also removed for Ghosts so their
actions have no way of starting. This leaves Ghosts with the ability to declare data, lists,
and procedures.

Ghosts are implemented within SCOOT as a Scratch Object. The palette does not
show the hat blocks, aside from procedure definition hats, when a Ghost is the viewed-
object. Additionally, the user interface objects work together to remove the costume tab.

It should be noted that Ghosts appear as reporters within the creatures section of
the palette and can be set as a Sprite’s Nymph.

7.4.5 EV3 Integration

To generate a product that feels well-integrated, the ScratchX EV3 extension was pre-
loaded in the SCOOT environment. This allows users to see SCOOT as one product
instead of the several underlying systems.

The ability to access the Gyro sensor’s reading was added. This enables the system
to meet the functional requirements.

7.5 Wide Walls

It should be noted that while the original functional specifications outlined the language’s
interaction with the EV3, SCOOT is able to work on a larger number of projects. This
was caused by the decision to use Scratch as the underlying platform of SCOOT.

This is not a problem as the original specification has still been met. Indeed, it instead
“widens the walls” of the language making it better suited for students as discussed in
Section 2.1.2.

48 Chapter 7. Language Implementation

Chapter 8

Requirements Validation

To validate SCOOT, it is compared to the requirements set in Section 5. Here, each
section of the requirements is considered to ensure nothing is forgotten.

8.1 Interfaces

8.1.1 System Interfaces

There were two major systems SCOOT needed to interface with—the EV3 brick and the
computer running SCOOT. SCOOT is able to successfully integrate with and control the
EV3 brick. On the computer side, SCOOT was required to work on computers running
Windows XP, Windows 7 and Windows 8/8.1 as the operating system.

SCOOT runs in an Internet Explorer or Firefox web browser. Between these, SCOOT
is able to work on computers running the required operating systems. This requirement
has been found more narrow than needed as SCOOT is able to run on a range of operating
systems larger than specified.

8.1.2 User Interfaces

SCOOT is without a doubt a visual programming language meeting requirement UI1.
There is some reading and writing required for the language, but none above a 5th grade
reading level.

Additionally, the names of new components of SCOOT—Nymphs and Ghosts—were
chosen to reflect the student user’s age.

8.1.3 Hardware Interfaces

The current system is able to interface with the EV3, the motors, and required sensors.

49

50 Chapter 8. Requirements Validation

8.1.4 Software Interfaces

As SCOOT is able to run on the EV3, it is clearly able to properly interface with the
brick’s Linux kernel.

8.1.5 Communications Interfaces

SCOOT can communicate with the EV3 via Bluetooth. As only one communication
protocol was required, this meets the requirements.

8.2 Non Functional Requirements

8.2.1 Reliability

Because SCOOT does not have firmware, the reliability requirement is unnecessary for
the system developed.

8.2.2 Availability

The system’s availability is Dependant on the web hosting. The system is currently hosted
on GitHub which was available for 99.47% of the month of May 2016 [8]. The system
therefore meets the availability requirement.

8.2.3 Maintainability

As a web hosted system, SCOOT can be easily updated at any point in time for all users.

8.3 Functional Requirements

All the functional requirements have been met by the system. Given their increased
importance, here we examine data encapsulation, inheritance, and abstract classes.

8.3.1 Data Encapsulation

SCOOT implements data encapsulation. Data, lists, and procedures can all be made
public or private. Additionally, an interface display was added to help students learn
about data encapsulation.

8.3.2 Inheritance

Inheritance was implemented through Nymphs. Once a Sprite sets its Nymph, it
receives the Nymph’s costumes, data, lists, and procedures.

8.3 Functional Requirements 51

8.3.3 Abstract Classes

Abstract classes were implemented through Ghosts. Ghosts exist, but are incapable of
doing anything on their own as they lack the “event” hats that start scripts. Ghosts also
lack a physical appearance as costumes cannot be associated with a Ghost.

52 Chapter 8. Requirements Validation

Chapter 9

Discussion

In the previous chapters we have presented the work completed as part of this project.
Here, we use this work as a base to form new arguments in the field of teaching object
oriented programming. We begin by discussing the ambiguity associated with SCOOT
and present theories on why the survey conducted indicates that fourteen year olds find
it easier to learn object oriented programming. Additionally, we introduce five potential
threshold object oriented concepts and a new measurement system.

9.1 Object Oriented Concept Ambiguity in SCOOT

As discussed in Section 7.4, Nymphs are parents and Ghosts are abstract classes. How-
ever, this can be disputed. Because Sprites are objects and classes, there is ambiguity
in these terms.

This ambiguity was designed into the system. SCOOT is not, and was never intended
to be, object oriented. Instead, SCOOT should assist in the transition to object oriented
programming. We argue these ambiguities will further assist students in the transition as
they provide students with a base understanding of multiple object oriented concepts.

For example, Ghosts could be viewed as classes while Sprites are objects. This is
caused as a Sprite receives all of the Ghost’s attributes. However, it is important to note
that Sprites can exist on their own, and are thereby still a mix of classes and objects.

9.2 Age to Learn Object Oriented Programming

Based on the information collected in the survey, it appears fourteen year olds find it
easiest to learn object oriented programming. They found it easier than any other age
group, including thirteen and fifteen year olds. It is unclear why the data suggests that
fourteen year olds found learning object oriented programming easier than other age
groups, especially in comparison with those one year older or younger. Here, we present
some theories as to why this occurred.

53

54 Chapter 9. Discussion

To understand why it was easier for fourteen year olds to learn object oriented concepts
compared with those one year younger, a few theories emerge. The first is that by fourteen,
most students have begun algebra at school. The abstraction taught in algebra extends
a student’s abstraction abilities and thereby assists in the transition to object oriented
programming. This theory is supported by the literature which states mathematical
knowledge increases students’ abstraction abilities as discussed in Section 2.5.

Another possible explanation arises from considering the participants recruited from
the survey. As the recruitment focused on FIRST Robotics students and alumni, we know
there is the potential to have skewed data. FIRST Robotics students normally transition
to object oriented programming when they begin in the FIRST Robotics Competition at
14 years old. The data implies this is correct with 20% of survey participants learning
object oriented programming at 14 years old. Perhaps the ease of learning object ori-
ented programming comes from not doing it alone, but partaking in a group learning the
language together.

9.3 Object Oriented Threshold Concepts

Object Oriented programming is recognized as a threshold concept within computing as
discussed in Section 2.1.5. As a result, it can be surmised that there are object ori-
ented threshold concepts. Here, we consider the survey results to try to find potential
threshold concepts. We begin by remember the five attributes of a threshold concept as
presented in Section 2.1.5: irreversible, troublesome, boundary marker, transformative,
and integrative.

Because we did not ask the survey participants whether they unlearnt any concepts,
we cannot comment on the irreversibility of potential object oriented threshold concepts.
As a result, we cannot definitively declare any threshold concepts. Instead, we examine
potential concepts in terms of the other four threshold concept attributes.

We next consider the “potentially troublesome to learn” attribute of a threshold
concept. In particular, we remember the six concepts that appeared through the sur-
vey as both the easiest and most difficult concept: classes, encapsulation, inheritance,
objects, polymorphism, and procedural concepts. Obviously, procedural concepts are not
an object oriented threshold concept as they are not unique to object oriented program-
ming. As a result, we will further consider classes, objects, encapsulation, inheritance,
and polymorphism with the remaining threshold concept attributes.

A boundary concept should represent the where the subject begins or ends. Objects
and classes are the underlying concept for object oriented programming, as a result they
clearly mark the start of object oriented programming. In Section 2.3, encapsulation, in-
heritance, and polymorphism were all shown to be crucial to object oriented programming.
As a result, they each mark a boundary of object orientation.

A transformative concept should change a person’s perspective. To learn object ori-
ented programming, a shift is required from procedural to object oriented thinking. This
implies the very transition is transformative. As the beginning of object oriented program-

9.4 Measurements 55

ming, objects and classes are clearly instrumental in this transition. As core concepts of
object oriented programming, encapsulation, inheritance, and polymorphism should also
change the student’s perspective.

A threshold concept must integrate other previously unknown concepts. It is easy to
see how objects and classes integrate each other. A class would not be useful if one could
not instantiate an object. At the same point in time, an object could not exist without
a class. As a result these two concepts are integrative with each other. Encapsulation
includes many other object oriented concepts including data hiding and modularity. As we
have argued several times before, inheritance and polymorphism are integrated concepts.
Polymorphism is an extension of the “is-a” inheritance relationship. As a result, both
inheritance and polymorphism are integrative.

Here, we have shown that objects, classes, encapsulation, inheritance and polymorph-
ism all meet four of the five criteria of a threshold concept. The fifth concept, irreversib-
ility, cannot be confirmed with the currently available information. As a result, we can
say objects, classes, encapsulation, inheritance, and polymorphism are all potential object
oriented threshold concepts.

9.4 Measurements

We know Scratch is object-based, yet students still report struggling in the transition
from Scratch to an object oriented language like Java or C++. This raises the question
of how many object oriented concepts does a programming language need to assist the
transition from procedural to object oriented programming. The answer to this question
is crucial to the overall project and system as it will dictate what features the system
implements.

9.4.1 Measurement Definition

To better understand this, we need an objective measurement system that will allow
programming languages to be ranked based on the number of difficult object oriented
concepts the language implements. No such measurement system currently exists. As a
result, we began by creating a measure of the difficulty of learning the object oriented
concepts in a given programming language. We will call this a measure of Object Oriented
Learning Difficulty (OOLD).

Based on the above definition, we know an object oriented programming language
should have the maximum possible OOLD. With this in mind, we have chosen to measure
OOLD as a percentage. Subsequently, we can say a programming language is a certain
percentage OOLD. In addition, we expect an object oriented language to be 100% OOLD
by definition.

56 Chapter 9. Discussion

Table 9.1: Mapping reported object oriented concept difficulty to percentage of overall
difficulty.

Concept Average Difficulty Percentage of Difficulty
Accessing Variables 2.09 8.32%
Method Calls 2.38 9.46%
Public v. Private 2.41 9.60%
File Interaction 3.13 12.45%
Inheritance 3.41 13.58%
Encapsulation 3.80 15.15%
Abstract 3.89 15.50%
Polymorphism 4.00 15.93%
Total 25.11 100%

9.4.2 Measurement Creation

To measure OOLD, we need to consider the difficulty of a number of components of object
oriented programming. With the results from the survey we have a number of attributes
of object oriented programming scored on difficulty to learn. These values are mapped to
percentages of the overall difficulty as shown in Table 9.1.

Each language is given a rating for each attribute with 0 meaning the language does
not support the attribute, 0.5 meaning the language partially supports the attribute, or 1
meaning the the language fully supports the attribute. While this is a coarse approxima-
tion and does not fully reflect the spectrum of supporting an object oriented concept, the
error introduced is minimal. We know the maximum error for a concept is 0.25. Given
the hardest concept (polymorphism) provides approximately 16% of the difficulty, the
maximum error introduced in a concept is 4%. We deem this an acceptable error.

With these mappings, we can use the following equation to find the OOLD of a
language:

OOLD =
∑

concepts

d%× r (9.1)

Where d is the percentage of difficulty and r is the rating of 0, 0.5, or 1 assigned in the
method described above.

9.4.3 Measurement Usage

To use the new measurement system, consider this example of rating Scratch’s and Java’s
OOLD. This analysis is shown in Table 9.2. Each language is given a score of 0, 0.5, or
1 as outlined above. This is then multiplied by the percentage difficulty. These category
difficulties are added together to determine the language’s overall OOLD.

9.4 Measurements 57

Table 9.2: An example of using the measurement system to evaluate Scratch and Java.

Percentage of Difficulty Scratch Java
Accessing Variables 8.32% 1 1
Method Calls 9.46% 1 1
Public v. Private 9.60% 0.5 1
File Interaction 12.45% 1 1
Inheritance 13.58% 0 1
Encapsulation 15.15% 0.5 1
Abstract 15.50% 0 1
Polymorphism 15.93% 0 1
OOLD 43% 100%

Based on the information shown in Table 9.2, we can see Scratch was 43% OOLD
while Java was 100% OOLD. This suggests that Scratch implements less than 50% of the
difficulty associated with learning object oriented programming. Java is 100% OOLD.
This is not surprising as Java is an object oriented language, and therefore should be
100% OOLD by definition.

9.4.4 Measurement Shortcomings

The major shortcoming of this measurement is the lack of components that contribute to
OOLD. Only the attributes that were scored on the survey can be utilized as they have
an associated quantifiable metric. This excludes a number of difficult concepts discovered
in the course of the survey.

This exclusion occurs because the new attributes found were not scored by parti-
cipants. As a result, there is no quantitative data on which attributes are harder than
others. The number of participants who provided a concept as the most difficult to learn
is independent from the average reported difficulty of the same concept.

This is because it is impossible to compare the hardest question data to the average
ranking data. Consider inheritance which 12 people cited as the most difficult concept,
yet it only received an average difficulty score of 3.41. In contrast, polymorphism was
the hardest part of object oriented programming for 10 participants, yet it received a
difficulty score of 4.00. As a result, it is apparent why concepts that should be included
in the OOLD measure cannot currently be used due to a lack of data.

This is particularly frustrating for classes and objects. Theses two concepts, and the
difference between them, were provided 13 times as the most difficult concept. Combined,
this is more than any other area. Despite this, “class versus object” cannot be included
in the measure as we lack the average response.

This shortcoming is important to note as it implies the measurement is not completely

58 Chapter 9. Discussion

Table 9.3: OOLD of Scratch, SCOOT, and Java.

Percentage of Difficulty Scratch SCOOT Java
Accessing Variables 8.32% 1 1 1
Method Calls 9.46% 1 1 1
Public v. Private 9.60% 0.5 1 1
File Interaction 12.45% 1 1 1
Inheritance 13.58% 0 1 1
Encapsulation 15.15% 0.5 1 1
Abstract 15.50% 0 0.5 1
Polymorphism 15.93% 0 0 1
OOLD 43% 76% 100%

accurate. However, the measure does provide a baseline quantifiable metric for evaluating
programming languages. This shortcoming, and how to overcome it, are discussed in more
detail in Section 11.3.

9.4.5 Learning Difficulty of SCOOT

Based on the analysis done in Section 9.4.3, we know Scratch is 43% OOLD while ob-
ject oriented programming languages are 100% OOLD. As a result, SCOOT should be
approximately 70% OOLD to be halfway between Scratch and object oriented languages.

SCOOT is currently 76% OOLD. In Table 9.3, the OOLD for Scratch, SCOOT, and
Java are shown.

Chapter 10

Conclusions

The goal of this project was to create a programming language to assist in the transition
to object oriented programming. Along the way we realized there was no way to determine
how difficult an object based language was to learn. To satisfy this, we created a new
measure to quantify the expected difficulty to learn a language based on the object oriented
concepts the language implements. Additionally, in the process of determining what
object oriented concepts students struggle to learn, five potential threshold object oriented
concepts were discovered. Here, we conclude by examining everything the project has
accomplished.

A literature review was conducted to understand the background areas of the project.
The review incorporated subject areas ranging from teaching pedagogy to visual language
design. It was found that while it is widely recognized that the transition to object oriented
programming is difficult, there is no research into why this is a difficult conversion.

With little research to base the system on, it was clear additional information would
need to be gathered. Through the survey, we gathered information relating to five areas of
inquiry. These areas were: optimal age to learn object oriented programming, easy to learn
object oriented concepts, difficult to learn object oriented concepts, factors contributing to
difficulty of object oriented programming, and difficulty of pre-determined object oriented
concepts. In total, the survey had over 140 responses.

These responses were analyzed and two interesting results appeared. In particular,
it was discovered that many concepts were easy for some while difficult for others. The
responses suggest that the optimal age to learn programming is fourteen. Additional
data collected led to the creation of a new measurement system and potential threshold
concepts as discussed in Chapter 9

Based on the literature review and survey, a set of requirements were created for the
system. These requirements defined the system’s interface, non-functional attributes, and
functionality. In total, they presented a unified view on how the system should work.

With the requirements set, the system could be designed. It was decided to build
the language on Scratch, a common visual programming language. The Scratch graph
grammar was extended and new user interface buttons and dialog boxes were designed.
In total, these changes transformed Scratch into a system that met the requirements and

59

60 Chapter 10. Conclusions

goal of the project.
Once a design was created, implementation could begin on the system which was called

SCOOT. SCOOT extended Scratch to include encapsulation, inheritance, and abstract
classes. Inheritance was implemented through the introduction of Nymphs while abstract
classes appear as Ghosts. In total, this allowed SCOOT to meet the requirements.

In the process of creating SCOOT, a number of discoveries were made as noted in
Chapter 9. Notably, five potential threshold concepts were found—classes, objects, en-
capsulation, inheritance and polymorphism. Additional research should be conducted to
confirm these attributes as threshold concepts within object oriented programming.

To determine how difficult a language is to learn in terms of object oriented concepts,
a new measurement system, Object Oriented Learning Difficulty (OOLD), was created.
This measure was described in Chapter 9. The measure is based on information from
the survey and allows language developers to determine how difficult an object based
language is to learn.

Chapter 11

Future Work

11.1 Further Survey

Based on the information found in the initial survey, several new lines of inquiry have
emerged. Here, we discuss these lines of inquiry and present questions to be included in
a second survey.

To refine the new measure defined above, more object oriented concepts should be
scored on difficulty by participants. The lack of having quantifiable data for some diffi-
cult concepts discovered in the open-ended question has limited the development of the
measure. For example, class versus object was a component that appeared several times
as a problem in the open ended question, but participants were not asked to score this
component. As a result, it was excluded from the measure. By increasing the number of
attributes considered in OOLD, the measure can become more accurate.

It is believed that at least five threshold object oriented concepts were discovered
in the survey. However, because respondents were not asked about the the ability to
“unlearn” these concepts, it is impossible to ascertain if they are threshold concepts. As
a result, we propose adding a question to a second survey after asking what object oriented
concept was the most difficult: “Once you learned this concept, have you un-learnt it?”
In addition, when asking participants to score object oriented concepts for difficulty, the
question should be expanded to include whether the concept has ever been un-learnt.

11.2 Trial of System

In this project, the system has been defined and implemented. This has been based purely
on theory and some of the author’s experiences and presents the beginning of research
into what makes learning object oriented programming difficult. Given the immaturity
of this field of study, it is no surprise that there is very little beyond theory in the field.

A clear next step is to use the system created within this project to help students
transition to object oriented programming. A full study should be conducted to compare
students learning SCOOT to those learning a lower OOLD language such as Scratch on

61

62 Chapter 11. Future Work

their ability to transition to object oriented programming. This will serve as a way to
test both SCOOT and the OOLD measurement system.

11.3 Refinement of Measurement

As discussed in the above sections, the OOLD measure needs further testing and refine-
ment. This should occur through multiple avenues including the survey and trial. It is
expected the measure will need to be refined as further research in this area occurs.

11.4 Final Words

As shown in Chapter 1, Australia and the world are in need of more qualified engineers
and information technology employees. As a result, we must strive to assist students into
these fields. This project aims to do this be easing the transition from visual procedural
to object oriented programming.

Chapter 12

Abbreviations

CS Computer Science
EV3 LEGO MINDSTORMS EV3
FIRST For Inspiration and Recognition of Science and Technology
FLL FIRST LEGO League
FLL Jr. FIRST LEGO League Junior
FRC FIRST Robotics Competition
FTC FIRST Tech Challenge
ICT Information and Communication Technology
OO Object Oriented
OOLD Object Oriented Learning Difficulty
OOP Object Oriented Programming
SCOOT Scratch with Components of Object Oriented Technology

63

64 Chapter 12. Abbreviations

Appendix A

Requirements

The requirements for the system are shown in Tables A.1, A.2, A.3, A.4, A.5, A.6, A.7,
A.8, and A.9.

Table A.1: System Interface requirements for the system

Ref Num-
ber

Requirement Rationale

SI1 The system must interface with EV3. The system must properly op-
erate on the LEGO MIND-
STORMS EV3.

SI2 The user must be able to use the sys-
tem on a Windows XP, Windows 7 or
Windows 8.8.1 machine.

These three operating systems
hold 85.45% market share [20].

65

66 Chapter A. Requirements

Table A.2: User Interface requirements for the system

Ref Num-
ber

Requirement Rationale

UI1 The system must have a graphic pro-
gramming interface.

To enable primary school
students to use the system,
a graphics-based approach is
used. This enables students to
focus on mastering program-
ming skills instead of their
still-developing spelling and
language skills.

UI2 The system must require minimal read-
ing/writing for the student user.

To enable primary school
students to use the system,
a graphics-based approach is
used. This enables students
to not worry about their
still-developing spelling and
language skills.

67

Table A.3: Hardware Interface requirements for the system

Ref Num-
ber

Requirement Rationale

HI1 The system must interface with the
EV3 servo motor, including the ability
to move the motor at a particular speed
and take readings from the built-in ro-
tation sensor.

The EV3 servo motor is part
of the LEGO Retail and LEGO
Education EV3 kits [11] [10].

HI2 The system must interface with the
EV3 mini-motor, including the ability
to move the motor at a particular speed
and take readings from the built-in ro-
tation sensor.

The EV3 mini-motor is part of
the LEGO Retail and LEGO
Education EV3 kits [11] [10].

HI3 The system must interface with the
EV3 ultrasonic sensor to read its out-
put.

The EV3 ultrasonic sensor is
part of the LEGO Retail and
LEGO Education EV3 kits [11]
[10].

HI4 The system must interface with the
EV3 touch sensor to read its output.

The EV3 touch sensor is part
of the LEGO Retail and LEGO
Education EV3 kits [11] [10].

HI5 The system must interface with the
EV3 color sensor to read its output.

The EV3 color sensor is part
of the LEGO Retail and LEGO
Education EV3 kits [11] [10].

HI6 The system must interface with the
EV3 ultrasonic sensor to read its out-
put.

The EV3 ultrasonic sensor is
part of the LEGO Retail and
LEGO Education EV3 kits [11]
[10].

HI7 The system must interface with the
EV3 gyro sensor to read its output.

The EV3 gyro sensor is part of
the LEGO Education EV3 kit
[11] [10].

Table A.4: Software Interface requirements for the system

Ref Num-
ber

Requirement Rationale

SW1 The system must interface with the
EV3 Linux kernel.

To properly run, the system
must interface with the operat-
ing system on the EV3.

68 Chapter A. Requirements

Table A.5: Communication Interface requirements for the system

Ref Num-
ber

Requirement Rationale

CI1 The system shall support communica-
tion via Bluetooth or a USB to Micro
USB cable.

Bluetooth and USB are the two
major communication protocols
the EV3 supports.

Table A.6: Reliability requirements for the system

Ref Num-
ber

Requirement Rationale

R1 The system’s firmware shall have a
MTBF of 3 weeks with extensive use.

The MTBF of most languages
is 2-4 weeks.

Table A.7: Availability requirements for the system

Ref Num-
ber

Requirement Rationale

A1 The system shall be available 99% of
the time.

With a high MTBF, the system
should be available nearly con-
stantly.

Table A.8: Maintainability requirements for the system

Ref Num-
ber

Requirement Rationale

M1 The system shall be able to be updated
once released.

As with other LEGO MIND-
STORMS languages, the system
should be able to be updated
after released.

69

Table A.9: Functional requirements for the system

Ref Num-
ber

Requirement Rationale

F1 The system must be object-based. The whole point of the sys-
tem is to enable students to
learn object oriented program-
ming, thus the system must
have many of these traits.

F1.1 The system must allow different files to
interact as the program executes.

In object oriented program-
ming, different files must work
together in the program execu-
tion.

F2 The system must allow users to create
objects.

Objects are the key concept of
object oriented programming,
thus they must be supported.

F2.1 Objects must be able to contain attrib-
utes.

Without the ability to store
data within an object, it is
meaningless.

F2.2 Objects must be able to contain func-
tions.

Without the ability for objects
to do things, they would be
meaningless.

F3 The system must support data encap-
sulation.

Data encapsulation is a key
concept of object oriented pro-
gramming and thus needs to be
included.

F3.1 Attributes and functions must be able
to be public or private.

Public versus Private is a key
component of data encapsula-
tion.

F3.2 The system must show an object’s in-
terface.

Encapsulation is a concept stu-
dents struggle with, by showing
the interface the system assists
with this concept.

F3.3 Private attributes and functions can be
implemented as protected.

To assist with a student’s un-
derstanding of inheritance.

F4 The system must support inheritance. Inheritance is a key concept of
object oriented programming,
as a result this must be in-
cluded.

F5 The system must support assignment,
variable declaration, sequence, test,
and loop.

Most programming languages
are comprised of at least five
constructs; assignment, variable
declaration, sequence, test, and
loop. These constructs form the
language’s imperative core [32].

F6 The system must support abstract
classes.

Abstract classes was a com-
monly reported difficult concept
for students.

70 Chapter A. Requirements

Appendix B

Survey Information

B.1 Survey

71

3/23/2016 Qualtrics Survey Software

https://mqedu.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview 1/4

Pictures to Objects

Pictures to Objects Understanding how students transition from graphic to object oriented
programming

Participation in this survey is anonymous and purely voluntary. Information collected will
be used in an undergraduate research thesis at Macquarie University and any future
publications of this project.

Participants of this survey must:
 Be at least 16 years of age.

 If under 18 years of age, have parental permission to complete this survey.

 Reside in Australia, Canada, or the United States of America.

 Have begun programming with a graphic (visual, icon-based) programming language.

 Have learned an object oriented programming language.

By ticking this box you agree you meet the participation requirements and understand the
terms outlined above.

How old were you when you began programming in a graphic programming language?

What was your 　䰄rst graphic programming language?

I agree

LEGO Mindstorms (RCX)

LEGO NXT-G (NXT)

RoboLab (RCX or NXT)

3/23/2016 Qualtrics Survey Software

https://mqedu.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview 2/4

What was the 　䰄rst style of text-based language you learned?

How old were you when you began programming in an object-oriented language?

What was your 　䰄rst object oriented programming language?

With what level of ease did you transition to these programming methodologies?

What object oriented concept did you 　䰄nd the easiest to understand?

LEGO EV3

Scratch

Visual Basic

Other:

Object Oriented

Procedural

Functional

Other:

Java

C++

Python

Processing

Other:

Very

Easily Easily
A little
Easily

A little
dif　䰄cultly Dif　䰄cultly

Very
Dif　䰄cultly

Not
Applicable

Object Oriented

Functional

3/23/2016 Qualtrics Survey Software

https://mqedu.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview 3/4

What made this concept easier to understand?

What object oriented concept did you 　䰄nd the most dif　䰄cult to understand?

What made this concept dif　䰄cult to understand?

With what level of ease did you understand the following Object Oriented Concepts?

To receive a copy of the study’s results once complete, please enter your email address
below.

Very

Easily Easily
A little
Easily

A little
dif　䰄cultly Dif　䰄cultly

Very
Dif　䰄cultly

I'm not
sure
what
that

means

How the different 　䰄les
interacted.

Method Calls.

Accessing Variables.

Public vs. Private.

Inheritance.

Abstract
Methods/Variables/Classes

Polymorphism

Encapsulation

B.2 Survey Recruitment 75

B.2 Survey Recruitment

A copy of the survey recruitment flyer is shown in Figure B.1

Figure B.1: Survey Recruitment Brochure

76 Chapter B. Survey Information

Appendix C

Survey Responses

C.1 Easy Object Oriented Concepts

In total, 58 responses were received to the short answer question on the easiest object
oriented concept. All these responses, and their categorization, are provided in Table C.1
and Table C.2.

77

78 Chapter C. Survey Responses

Table C.1: First half of responses, and their categorization, to a short answer question
on the easiest object oriented concept.

Raw Response Category
Class Classes
Class Classes
Classes Classes
Classes Classes
Classes Classes
Classes Classes
Classes Classes
Classes are like containers Classes
Classes as being “blueprints”
for new objects to be made

Classes

Classes as reusable pieces of code Classes
Multiple classes Classes
The idea that classes contained methods
that I’ve been using before I learned object oriented programming

Classes

encapsulation Encapsulation
Encapsulation Encapsulation
Encapsulation Encapsulation
Encapsulation Encapsulation
Modular programming Encapsulation
Modularity Encapsulation
Classes and subclasses Inheritance
Inheritance Inheritance
Inheritance Inheritance
Inheritance Inheritance
Inheritance Inheritance
Inheritance Inheritance
Subclasses and interfaces Inheritance
nill N/A
not sure N/A

C.1 Easy Object Oriented Concepts 79

Table C.2: Second half of responses, and their categorization, to a short answer question
on the easiest object oriented concept.

Raw Response Category
Dividing components into objects Objects
General idea of what an object is Objects
Objects Objects
Objects Objects
Objects Objects
Objects modeling real world
items/behaviors

Objects

The idea that objects can have properties Objects
What to put into objects Objects
interacting with other objects Objects
Classification Other
Composition Other
Recursion Other
rotations Other
overloading/polymorphism Polymorphism
Polymorphism Polymorphism
Polymorphism Polymorphism
polymorphism Polymorphism
conditionals Procedural Concepts
Data Types Procedural Concepts
Flow? (Loops, function calls etc.) Procedural Concepts
Functions Procedural Concepts
functions Procedural Concepts
Functions/tasks/variables Procedural Concepts
If then Procedural Concepts
Logic Statements Procedural Concepts
Loops Procedural Concepts
Loops, switches, cases etc Procedural Concepts
Methods Procedural Concepts
Method operations Procedural Concepts
syntax is easy Syntax
The syntax of object.method() Syntax

80 Chapter C. Survey Responses

C.2 Difficult Object Oriented Concepts

In total, 57 responses were received to the short answer question on the most difficult
object oriented concept. All these responses, and their categorization, are provided in
Table C.3 and Table C.4.

C.2 Difficult Object Oriented Concepts 81

Table C.3: First half of responses, and their categorization, to a short answer question
on the hardest object oriented concept.

Raw Response Category
Abstraction Abstract
Abstraction/ interfaces Abstract
Diference between interface and class Class versus Object
Difference between class, and an
instantiated object

Class versus Object

instances of objects vs class
definitions, and the differences with static objects.

Class versus Object

Objects and classes themselves Class versus Object
[User-Defined] Classes (and why they are
useful)

Classes

Class definitions Classes
classes Classes
Classes Classes
Classes Classes
Classes/objects Classes
Relating Classes (Extends, Implements) Classes
Data structures Other
Confining functions to a single object Encapsulation
Interfaces Encapsulation
Interfaces in Java Encapsulation
objects don’t talk to each other esily Encapsulation
Setters/Getters Encapsulation
extends and implements relationship Inheritance
Inheritance Inheritance
inheritance Inheritance
Inheritance Inheritance
Inheritance Inheritance
Inheritance Inheritance
Inheritance Inheritance
Inheritance Inheritance
inheritance Inheritance
Inheritance and delegation Inheritance
inheritence Inheritance
Polyinheritance Inheritance

82 Chapter C. Survey Responses

Table C.4: Second half of responses, and their categorization, to a short answer question
on the hardest object oriented concept.

construction/deletion Objects
Objects Objects
How similar things differ (accessibility
of things, functions vs methods, enums, struts, etc)

Other

Singletons Other
Small nitpick stuff with brackets etc Other
static methods Other
v Other
Multi-faceted functions (doing different
things based on certain inputs, etc)

Overloading

Overloading Overloading
Inheritance and polymorphism Polymorphism
Inheritance/polymorphism Polymorphism
Polymorphism Polymorphism
Polymorphism Polymorphism
Polymorphism Polymorphism
Polymorphism Polymorphism
Polymorphism Polymorphism
Polymorphism Polymorphism
Polymorphism Polymorphism
Probably Polymorphism Polymorphism
Methods Procedural Concepts
methods Procedural Concepts
Recursion Procedural Concepts
Recursion Procedural Concepts
Some aspects of methods Procedural Concepts
Variables Procedural Concepts
writing codes and referencing variables Procedural Concepts

C.3 Reasons for Easy Object Oriented Concepts 83

C.3 Reasons for Easy Object Oriented Concepts

The reasons participants provided for finding an object oriented concept easy to learn are
outlined in Table C.5 and Table C.6.

84 Chapter C. Survey Responses

Table C.5: First half of survey responses for why an object oriented concept was easy
to learn.

A book about Flash programming which explained different classes of Cars, all inheriting
the base methods of a Car such as driving but each having their own unique functions
A general understanding of templates and inheritance of attributes.
Because I enjoy keeping things organized
Detailed class diagrams
Division of code into sub-VIs
Flow Charts
Functions are similar to SubVIs in LabVIEW
Graphic programming experience
having a base
Having a physical manifestation of the ‘{}objects’{} that I was programming; in this case,
a robot.
How its defined
I always thought of it as giving the object a “hat” so it could do other things.. I like
organizing things so it this concept just made a lot of sense.
I could picture what an object was
i had used them before in scratch
I was able to relate this to a physical understanding of a robot. It made sense that each
part of the robot would get its own class and set of methods.
Imagining them as a box of parts and values
Intuitive concept
It is intuitive
it is simple.
It makes sense, to have different ways to call the same method
It was fairly ease to visualize as just a function with a weird implementation.
It was intuitive to me, but Java tutorials made it easy.
it was really just like scripting languages, but with custom variable types.
It’s a logical extension of OOP features.
It’s fairly intuitive
It’s often the starting point (and even the justification for) using OOP
Just the explanation of inheritance on where I learned JS, Codecademy.

C.3 Reasons for Easy Object Oriented Concepts 85

Table C.6: Second half of survey responses for why an object oriented concept was easy
to learn.

knew C
logic
Looking at things sequentially
looking inside classes to see the methods contained within
math
mentor
Metaphors, like Animal ->Pet ->Dog
Mindstorms is pretty much event driven programming, where independent tasks cause
others to run. Somewhat similar to using other objects in concert.
Most programming languages already support this, e.g. “+” works with integer, float,
string/char, etc.
nill
not sure
People explaining it in videos
Physical analogies
Practical application
Practicing
Python’s inherant everything-is-an-object-but-you-don’t-know-it-until-you-need-it
Reading Design Patterns book
Real Wolrd Examples
Scratch had sprites which separated code between things kind of like objects
Setting an object’s property and having it immediately reflected in the GameMaker en-
vironment
Similar to reusing functions, but including data members as well
Simplification of code
The analogy with real-world objects (pardon the pun), such as a blueprint and a building
made this very clear
The drag and drop nxt blocks
The fact that it is built in to standard objects like strings (Python)
The idea of data structures was taught in the previous language, and adding methods to
that was pretty intuitive.
The usefulness of having classes already written from previous projects that could be
recycled.
The way my teacher beat the importance of them into our heads
Visual programs do a good job of showing a switch is like a desicion fork and a loop
repeats. So the visual understanding made it transferable
Visualize how objects interact

86 Chapter C. Survey Responses

C.4 Reasons for Difficult Object Oriented Concepts

The reasons participants provided for finding an object oriented concept difficult to learn
are outlined in Table C.7 and Table C.8.

C.4 Reasons for Difficult Object Oriented Concepts 87

Table C.7: First half of survey responses for why an object oriented concept was difficult
to learn.

a child can be substituted for a parent
Although the concept is intuitive, implementation details have been consistently confusing
Bad instruction
building classes
coding a single class, which becomes multiple objects holding different variables.
Coming from procedural, it was just a foreign concept on why it was needed (until I saw
examples of how it makes things nicer)
Confusing
confusion between classes and objects
Couldn’t see how the objects interacted as much
Difficult to visualize
Getting used to what could and should be included in a class
Having done functional/procedural for a long time, I didn’t immediately see the need for
classes, and the value of them.
How they were hidden in nxt-g menus
How they’re used
I confused inhritance with being a member
I could not find an easy way to relate this to what I had previously learned in LEGO
NXT. This was a completely new concept for me and I had nothing to compare it to.
I still don’t understand it!
I was learning by trying stuff, and an “interface” wasn’t at all what I thought it was.
I was used to dividing commands into functions by when I wanted to do them (procedural)
, not by what they did (OOP).
I’m not too sure of a great way to use which in a given scenario
In hindsight it was not awful. I guess I didn’t like the syntax?
Inability to find coherent set of rules for polymorphism
Inheritance made sense - taking one class’s traits and adding onto it - but understanding
the reverse flow of the inheritance tree and figuring out that variables of type A can be
included with type B where B extends A didn’t come easily until thoroughly explained.
Interfaces were hard
Is a, has a, umm... which is which?
It is very complex
it required multiple scripts
It was different than the way I had thought about things in the past
It was hard to understand why you could have a variable with a certain type and as-
sign it with another type. If you don’t quite understand I wrote a quick example,
http://ideone.com/dPCBAW
It was not explained well to me
It’s just not explained well. Graphical languages did not set me back. I heard examples
such as “fruit is class, banana is object” but it’s actually “banana is class, the one you’re
about to eat is object”.
Java doesn’t seem to like them
Just got frustrated at first but eventually understood after practice

88 Chapter C. Survey Responses

Table C.8: First half of survey responses for why an object oriented concept was difficult
to learn.

LabVIEW did not have support for polymorphism, so I did not have any background in
the subject.
Lack of clarity in any documentation.
Lack of exposure to such structures before
minor inconsistancies
No analogy to anything like this in a graphical or functional based language. Very powerful
once understood, however.
No graphical corollary
not sure
Partly, the name was confusing. “Inheritance” does not naturally seem like one class is a
subset (Zebra inside of animal, for example).
persistance of objects
Poor explanation
Something about this was always tricky for me because I would always miss something
and have to go back. Over time they got easier but definitively were the hardest to master.
still not easy
syntax, passing parameters
the amount of variables
The use scenarios where abstractions are needed, and how to decide what kind of abstrac-
tion one would need to use.
The ways in which methods can call themselves and change at the same time
There really isn’t a class structure in LabVIEW
Too much to memorize
Very different from more linear coding styles
Was sort of left on my own and didn’t exactly know, at the time, how it would be relevant
to anything outside of Codecademy
What made this concept difficult to understand?
When to use them
Which superclass is providing the chosen method?

Appendix D

Scratch Graph Grammar

The basic graph grammar for Scratch is shown in Figure D.1, Figure D.2, Figure D.3,
Figure D.4, Figure D.5, Figure D.6, Figure D.7, Figure D.8, Figure D.9, Figure D.10, and
Figure D.11.

89

90 Chapter D. Scratch Graph Grammar

Figure D.1: Graph grammar for beginning a script.

Figure D.2: Graph grammar for a hat block.

Figure D.3: Graph grammar for a script beginning with an event.

Figure D.4: Graph grammar for a procedure definition.

91

Figure D.5: Graph grammar for procedures.

Figure D.6: Graph grammar for procedures calling reporters.

Figure D.7: Graph grammar for having multiple reporters.

Figure D.8: Graph grammar for different types of reporters.

92 Chapter D. Scratch Graph Grammar

Figure D.9: Graph grammar for an if statement.

Figure D.10: Graph grammar for an if-else statement.

Figure D.11: Graph grammar for a loop.

Appendix E

Meeting Attendance Form

93

Appendix F

Code

This chapter contains excerpts from the modified Scratch Flash source code. Code with
a green background indicates a new or modified line. The full Scratch Flash source code
and this branch are available on GitHub.

It is important to note that the Scratch Flash source code has very few comments.
This coding style was adhered to throughout the system’s creation. Comments have been
added here to assist the reader’s understanding.

F.1 Scratch.as

In this section, we show excerpts from the Scratch.as file.

1 // This i s the top−l e v e l app l i c a t i o n .
2

3 package {
4 pub l i c c l a s s Scratch extends Sp r i t e {
5

6 protec ted func t i on i n i t i a l i z e () : void {
7

8 // Code to setup other parameters omitted here .

9

10 // Preload the ev3 extens i on to ScratchX .

11 var ev3 = new ScratchExtens ion (”ev3” , 1) ;

12 ev3 . javascriptURL =

13 ”http :// she im l i ch . g ithub . i o /OO−EV3−ScratchExtens ion / ev3 s c ra t ch . j s ” ;

14 extensionManager . loadCustom (ev3) ;

15 }
16

17 pub l i c func t i on s e l e c t S p r i t e (obj : ScratchObj) : void {
18 i f (i sShowing (imagesPart)) imagesPart . e d i t o r . shutdown () ;
19 i f (i sShowing (soundsPart)) soundsPart . e d i t o r . shutdown () ;
20 viewedObject = obj ;
21 l i b r a r yPa r t . r e f r e s h () ;
22 tabsPart . r e f r e s h () ;

95

96 Chapter F. Code

23 // Do not show the imagesPart i f i t i s a ghost .

24 i f (i sShowing (imagesPart) && ! obj . i sGhost) {
25 imagesPart . r e f r e s h () ;

26 }
27 // I f somehow the imagesPart should be showing f o r a ghost ,

28 // show the s c r i p t s tab in s t ead .

29 i f (i sShowing (imagesPart) && obj . i sGhost) {
30 setTab (’ s c r i p t s ’) ;

31 }
32 i f (i sShowing (soundsPart)) {
33 soundsPart . current Index = 0 ;
34 soundsPart . r e f r e s h () ;
35 }
36 i f (i sShowing (s c r i p t sPa r t)) {
37 s c r i p t sPa r t . updatePalette () ;
38 s c r ip t sPane . v i ewScr ipt sFor (obj) ;
39 s c r i p t sPa r t . updateSpriteWatermark () ;

40 s c r i p t sPa r t . updatePubl icDisp lay () ;

41 }
42 }
43

44 // Function to add a new ghost .

45 pub l i c func t i on addNewGhost (spr : ScratchGhost , showImages : Boolean = f a l s e ,

46 atMouse : Boolean = f a l s e) : void {
47 // Set a l l the r e l e v en t parameters .

48 spr . objName = stagePane . unusedSpriteName (spr . objName) ;

49 stagePane . addChild (spr) ;

50 s e l e c t S p r i t e (spr) ;

51 // Once the ghost i s created , update the d i sp l ay .

52 setTab (’ s c r i p t s ’) ;

53 setSaveNeeded (t rue) ;

54 l i b r a r yPa r t . r e f r e s h () ;

55

56 }

F.2 Specs.as

1 // This f i l e d e f i n e s the command b locks and c a t e g o r i e s .
2 // To add a new command :
3 // a . add a s p e c i f i c a t i o n f o r the new command to the commands array
4 // b . add a p r im i t i v e f o r the new command to the i n t e r p r e t e r
5

6 package {
7 pub l i c c l a s s Specs {

F.2 Specs.as 97

8

9 pub l i c s t a t i c const GETVAR: St r ing = ” readVar iab le ” ;
10 pub l i c s t a t i c const SET VAR: St r ing = ” setVar : to : ” ;
11 pub l i c s t a t i c const CHANGEVAR: St r ing = ”changeVar : by : ” ;
12 pub l i c s t a t i c const GET LIST : St r ing = ” content sOfL i s t : ” ;
13 pub l i c s t a t i c const CALL: St r ing = ” c a l l ” ;
14 pub l i c s t a t i c const PROCEDUREDEF: St r ing = ”procDef ” ;
15 pub l i c s t a t i c const GETPARAM: St r ing = ”getParam” ;

16 // Add a s t r i n g to r ep r e s en t the Sp r i t e Reporter b lock .

17 pub l i c s t a t i c const GET SPRITE: St r ing = ” ge tSp r i t e ” ;

18

19 pub l i c s t a t i c const motionCategory : i n t = 1 ;
20 pub l i c s t a t i c const looksCategory : i n t = 2 ;
21 pub l i c s t a t i c const eventsCategory : i n t = 5 ;
22 pub l i c s t a t i c const contro lCategory : i n t = 6 ;
23 pub l i c s t a t i c const operatorsCategory : i n t = 8 ;
24 pub l i c s t a t i c const dataCategory : i n t = 9 ;
25 pub l i c s t a t i c const myBlocksCategory : i n t = 10 ;
26 pub l i c s t a t i c const l i s tCa t e go r y : i n t = 12 ;

27 // Add a constant f o r the c r ea tu r e block category .

28 pub l i c s t a t i c const creatureCateogry : i n t = 13 ;

29 pub l i c s t a t i c const extens ionsCategory : i n t = 20 ;
30

31 pub l i c s t a t i c var va r i ab l eCo l o r : i n t = 0xEE7D16 ; // Scratch 1 . 4 : 0xF3761D
32 pub l i c s t a t i c var l i s t C o l o r : i n t = 0xCC5B22 ; // Scratch 1 . 4 : 0xD94D11
33 pub l i c s t a t i c var procedureColor : i n t = 0x632D99 ; // 0x531E99 ;
34 pub l i c s t a t i c var parameterColor : i n t = 0x5947B1 ;
35 pub l i c s t a t i c var ex tens i onsCo lo r : i n t = 0x4B4A60 ; // 0x72228C ; // 0

x672D79 ;

36 //Create a unique c o l o r f o r the c r ea tu r e category .

37 pub l i c s t a t i c var c r ea tureCo lo r : i n t = 0x0a6320 ;

38

39 pr i va t e s t a t i c const undef inedColor : i n t = 0xD42828 ;
40

41 pub l i c s t a t i c const c a t e g o r i e s : Array = [
42 // id category name co l o r
43 [0 , ” undef ined ” , 0xD42828] ,
44 [1 , ”Motion” , 0x4a6cd4] ,
45 [2 , ”Looks” , 0x8a55d7] ,
46 [3 , ”Sound” , 0xbb42c3] ,
47 [4 , ”Pen” , 0 x0e9a6c] , // Scratch 1 . 4 : 0x009870
48 [5 , ”Events” , 0xc88330] ,
49 [6 , ”Control ” , 0xe1a91a] ,
50 [7 , ” Sens ing ” , 0 x2ca5e2] ,
51 [8 , ”Operators ” , 0x5cb712] ,
52 [9 , ”Data” , va r i ab l eCo l o r] ,
53 [1 0 , ”More Blocks ” , procedureColor] ,
54 [1 1 , ”Parameter” , parameterColor] ,
55 [1 2 , ” L i s t ” , l i s t C o l o r] ,

56 // Add c r e a tu r e s to the c a t e g o r i e s .

98 Chapter F. Code

57 [1 3 , ”Creatures ” , c r ea tureCo lo r] ,

58 [2 0 , ”Extension ” , ex t ens i onsCo lo r] ,
59] ;
60

61

62 pub l i c s t a t i c var commands : Array = [
63 // block s p e c i f i c a t i o n type , cat , opcode d e f au l t args (

op t i ona l)
64 // motion

65 // Update the motion b locks to accept a Sp r i t e as an argument .

66 [”move %g %n s t ep s ” , ” ” , 1 , ” forward : ” , 1 0] ,

67 [” turn %g @turnRight %n degree s ” , ” ” , 1 , ” turnRight : ” , 1 5] ,

68 [” turn %g @turnLeft %n degree s ” , ” ” , 1 , ” turnLe f t : ” , 1 5] ,

69 [”−−”] ,
70 [” po int %g in d i r e c t i o n %d . d i r e c t i o n ” , ” ” , 1 , ” heading : ” ,

71 90] ,

72 [” po int %g towards %m. spriteOrMouse ” , ” ” , 1 , ”pointTowards : ” ,

73 ””] ,

74 [”−−”] ,
75 [”%g go to x:%n y:%n” , ” ” , 1 , ”gotoX : y : ”] ,

76 [”%g go to %m. l o c a t i o n ” , ” ” , 1 , ” gotoSpriteOrMouse : ” ,

77 ”mousepointer ”] ,

78 [”%g g l i d e %n s e c s to x:%n y:%n” , ” ” , 1 ,

79 ” g l i d eS e c s : toX : y : e l apsed : from : ”] ,

80 [”−−”] ,
81 [” change %g x by %n” , ” ” , 1 , ”changeXposBy : ” , 1 0] ,

82 [” s e t %g x to %n” , ” ” , 1 , ”xpos : ” , 0] ,

83 [” change %g y by %n” , ” ” , 1 , ”changeYposBy : ” , 1 0] ,

84 [” s e t %g y to %n” , ” ” , 1 , ”ypos : ” , 0] ,

85 [”−−”] ,
86 [” i f %g on edge , bounce” , ” ” , 1 , ”bounceOffEdge”] ,

87 [”−”] ,
88 [” s e t %g ro t a t i on s t y l e %m. r o t a t i o nS t y l e ” , ” ” , 1 , ” s e tRota t i onS ty l e ” ,

89 ” l e f t −r i g h t ”] ,
90 [”−−”] ,
91 [”x po s i t i o n o f %g” , ” r ” , 1 , ”xpos”] ,

92 [”y po s i t i o n o f %g ” , ” r ” , 1 , ”ypos”] ,

93 [” d i r e c t i o n o f %g” , ” r ” , 1 , ” heading ”] ,

94

95 // Addi t iona l commands omitted .

96

97] ;
98

99 pub l i c s t a t i c var extens ionSpecs : Array = [”when %m. booleanSensor ” , ”when
%m. senso r %m. lessMore %n” , ” s enso r %m. booleanSensor ?” , ”%m. senso r s enso r

F.3 Resources.as 99

value ” , ” turn %m. motor on f o r %n s e c s ” , ” turn %m. motor on” , ” turn %m.
motor o f f ” , ” s e t %m. motor power to %n” , ” s e t %m. motor2 d i r e c t i o n to %m.
motorDirect ion ” , ”when d i s t ance %m. lessMore %n” , ”when t i l t %m. eNe %n” ,
” d i s t ance ” , ” t i l t ”] ;

100

101 }}

F.3 Resources.as

1 package a s s e t s {
2 pub l i c c l a s s Resources {
3

4 pub l i c s t a t i c func t i on createBmp (resourceName : S t r ing) : Bitmap {
5 var r e s ou r c eC la s s : Class = Resources [resourceName] ;
6 i f (! r e s ou r c eC la s s) {
7 t r a c e (’ miss ing r e sou r c e : ’ , resourceName) ;
8 re turn new Bitmap (new BitmapData (10 , 10 , f a l s e , 0x808080)) ;
9 }

10 re turn new re sou r c eC la s s () ;
11 }
12

13 // Other Resources omitted .

14

15 // Add images f o r the ghost button .

16 [Embed(source=’UI/ newspr i te / ghostOf f . png ’)] p r i va t e s t a t i c const

17 ghostOf f : Class ;

18 [Embed(source=’UI/ newspr i te /ghostOn . png ’)] p r i va t e s t a t i c const

19 ghostOn : Class ;

20

21 // Other Resources omitted .

22

23 // Thumbnail to appear f o r ghost s in the SpritePane .

24 [Embed(source=’UI/ newspr i te /ghostThumb . png ’)]

25 /Hilight p r i va t e s t a t i c const ghostThumb : Class ;
26 }}

F.4 Block.as

1 // A Block i s a g r aph i c a l ob j e c t r ep r e s en t i ng a program statement (command)
2 // or func t i on (r epo r t e r) . A stack i s a sequence o f command blocks , where
3 // the f o l l ow i ng command and any nested commands (e . g . with in a loop) are
4 // ch i l d r en . Blocks come in a va r i e t y o f shapes and usua l l y have some
5 // combination o f l a b e l s t r i n g s and arguments (a l s o ch i l d r en) .
6 //
7 // The Block c l a s s manages block shape , l ab e l s , arguments , layout , and
8 // block sequence . I t a l s o supports gene ra t i on o f the l a b e l s and argument
9 // sequence from a s p e c i f i c a t i o n s t r i n g (e . g . ”%n + %n”) and type (e . g .

r epo r t e r) .

100 Chapter F. Code

10

11 package b locks {
12 pub l i c c l a s s Block extends Sp r i t e {
13

14 // Other data member omitted .

15

16 // Boolean to know i f a procedure i s pub l i c or p r i va t e .

17 pub l i c var i sG loba l : Boolean = f a l s e ;

18 pub l i c var isAsyncHat : Boolean = f a l s e ;
19 pub l i c var i sRepor t e r : Boolean = f a l s e ;
20 pub l i c var i sTermina l : Boolean = f a l s e ; // b locks that end a stack l i k e ”

stop ” or ” f o r e v e r ”
21

22 pub l i c func t i on Block (spec : Str ing , type : S t r ing = ” ” , c o l o r : i n t = 0
xD00000 , op :∗ = 0 , de fau l tArgs : Array = nu l l) {

23

24 i f ((Specs .CALL == op) | |
25 (Specs .GET LIST == op) | |
26 (Specs .GETPARAM == op) | |
27 (Specs .GET VAR == op) | |
28 (Specs .PROCEDUREDEF == op) | |
29 (’ p r o c d e c l a r a t i o n ’ == op) | |
30 (Specs .GET SPRITE == op)) {
31 t h i s . spec = spec ; // don ’ t t r a n s l a t e var / l i s t /param r epo r t e r s
32 }
33

34 var shape : i n t ;
35 i f ((type == ” ”) | | (type == ””) | | (type == ”w”)) {
36 base = new BlockShape (BlockShape . CmdShape , c o l o r) ;
37 indentTop = 3 ;
38 } e l s e i f (type == ”b”) {
39 base = new BlockShape (BlockShape . BooleanShape , c o l o r) ;
40 i sRepor t e r = true ;
41 i ndentLe f t = 9 ;
42 indentRight = 7 ;
43 } e l s e i f (type == ” r ” | | type == ”R”) {
44 t h i s . type = ’ r ’ ;
45 base = new BlockShape (BlockShape . NumberShape , c o l o r) ;
46 i sRepor t e r = true ;
47 forceAsync = (type == ’ r ’) && Scratch . app . extensionManager .

shouldForceAsync (op) ;
48 i sReque s t e r = (type == ’R ’) | | forceAsync ;
49 indentTop = 2 ;
50 indentBottom = 2 ;
51 i ndentLe f t = 6 ;
52 indentRight = 4 ;
53 } e l s e i f (type == ”h” | | type == ’H ’) {
54 base = new BlockShape (BlockShape . HatShape , c o l o r) ;
55 i sHat = true ;

F.4 Block.as 101

56 forceAsync = (type == ’h ’) && Scratch . app . extensionManager .
shouldForceAsync (op) ;

57 isAsyncHat = (type == ’H ’) | | forceAsync ;
58 indentTop = 12 ;
59 }
60 e l s e i f (type == ”c”) {
61 base = new BlockShape (BlockShape . LoopShape , c o l o r) ;
62 } e l s e i f (type == ” c f ”) {
63 base = new BlockShape (BlockShape . FinalLoopShape , c o l o r) ;
64 i sTermina l = true ;
65 } e l s e i f (type == ”e”) {
66 base = new BlockShape (BlockShape . I fElseShape , c o l o r) ;
67 addChild (e l s eLabe l = makeLabel (Trans la tor .map(’ e l s e ’))) ;
68 } e l s e i f (type == ” f ”) {
69 base = new BlockShape (BlockShape . FinalCmdShape , c o l o r) ;
70 i sTermina l = true ;
71 indentTop = 5 ;
72 } e l s e i f (type == ”o”) { // cmd ou t l i n e f o r proc d e f i n i t i o n
73 base = new BlockShape (BlockShape . CmdOutlineShape , c o l o r) ;
74 base . f i l t e r s = [] ; // no bez e l
75 indentTop = 3 ;
76 } e l s e i f (type == ”p”) {
77 base = new BlockShape (BlockShape . ProcHatShape , c o l o r) ;
78 i sHat = true ;
79 } e l s e i f (type == ” c l ”) {
80 base = new BlockShape (BlockShape . ClassDefShape , c o l o r) ;

81 // g i s the char that r ep r e s en t s a s p r i t e r epo r t e r .

82 // I f the type i s g , s e t the appropr ia te va lue s .

83 } e l s e i f (type == ”g”) {
84 base = new BlockShape (BlockShape . SpriteShape , c o l o r) ;

85 i sRepor t e r = true ;

86 } e l s e {
87 base = new BlockShape (BlockShape . RectShape , c o l o r) ;
88 }
89

90 // Code omitted .

91 }
92

93 pub l i c func t i on setSpec (newSpec : Str ing , de fau l tArgs : Array = nu l l) : void {
94 i f (op == Specs .PROCEDUREDEF) {
95

96 // Code omitted .

97

98 // I f the operat i on i s any o f the g e t t e r r e p o r t e r s .

99 } e l s e i f (op == Specs .GET VAR | | op == Specs .GET LIST | |
100 op == Specs .GET SPRITE) {
101 labelsAndArgs = [makeLabel (spec)] ;
102 }
103 }

102 Chapter F. Code

104

105 pr i va t e func t i on argOrLabelFor (s : Str ing , c : i n t) : DisplayObject {
106 // Po s s i b l e token formats :
107 // %<s i n g l e l e t t e r>
108 // %m.<menuName>
109 // @<iconName>
110 // l a b e l (any s t r i n g with no embedded white space that does not s t a r t

with % or @)
111 // a token c on s i s t i n g o f a s i n g l e % or @ charac t e r i s a l s o a l a b e l
112 i f (s . l ength >= 2 && s . charAt (0) == ”%”) { // argument spec
113 var argSpec : S t r ing = s . charAt (1) ;
114 i f (argSpec == ”b”) re turn new BlockArg (”b” , c) ;
115 i f (argSpec == ”c”) re turn new BlockArg (”c” , c) ;
116 i f (argSpec == ”d”) re turn new BlockArg (”d” , c , true , s . s l i c e (3)) ;
117 i f (argSpec == ”m”) return new BlockArg (”m” , c , f a l s e , s . s l i c e (3)) ;
118 i f (argSpec == ”n”) re turn new BlockArg (”n” , c , t rue) ;
119 i f (argSpec == ” s ”) re turn new BlockArg (” s ” , c , t rue) ;

120 // I f the block i s a s p r i t e r epor te r , r e turn the appropr ia te

121 // argument block .

122 i f (argSpec == ”g”) re turn new BlockArg (”g” , c) ;

123 } e l s e i f (s . l ength >= 2 && s . charAt (0) == ”@”) { // icon spec
124 var i con :∗ = Specs . IconNamed (s . s l i c e (1)) ;
125 re turn (i con) ? i con : makeLabel (s) ;
126 }
127 re turn makeLabel (ReadStream . unescape (s)) ;
128 }
129

130 }}

F.5 BlockArg.as

1 // A BlockArg r ep r e s en t s a Block argument s l o t . Some BlockArgs , conta in
2 // a text f i e l d that can be ed i t ed by the user . Others (e . g . boo leans)
3 // are immutable . In e i t h e r case , they be rep laced by a r epo r t e r b lock
4 // o f the r i g h t type . That i s , dropping a r epo r t e r b lock onto a BlockArg
5 // i n s i d e a block causes the BlockArg to be r ep laced by the r epo r t e r .
6 // I f a r epo r t e r i s removed , a BlockArg i s added to the block .
7 //
8 // To c r ea t e a custom BlockArg widget such as a c o l o r p icker , make a
9 // subc l a s s o f BlockArg f o r the widget . Your con s t ruc to r i s r e s p on s i b l e

10 // f o r adding ch i l d d i sp l ay ob j e c t s and s e t t i n g i t s width and he ight .
11 // The widget must i n i t i a l i z e argValue and update i t as the user
12 // i n t e r a c t s with the widget . In some cases , the widget may need to
13 // ove r r i d e the setArgValue () method . I f the widget can accept dropped
14 // arguments , i t should s e t base to a BlockShape to support drag feedback .
15

16 package b locks {
17 pub l i c c l a s s BlockArg extends Sp r i t e {
18

19 // BlockArg types :

F.6 BlockIO.as 103

20 // b − boolean (pointed)
21 // c − c o l o r s e l e c t o r
22 // d − number with menu (rounded w/ menu icon)
23 // m − s t r i n g with menu (r e c tangu l a r w/ menu icon)
24 // n − number (rounded)
25 // s − s t r i n g (r e c t angu l a r)

26 // g − Spr i t e (Flag−shaped)
27 // none o f the above − custom subc l a s s o f BlockArg
28 pub l i c func t i on BlockArg (type : Str ing , c o l o r : int , e d i t a b l e : Boolean = f a l s e

, menuName : S t r ing = ’ ’) {
29

30 i f (type == ’b ’) {
31 base = new BlockShape (BlockShape . BooleanShape , c) ;
32 argValue = f a l s e ;

33 // Create the appropr ia te shape f o r a Sp r i t e r epo r t e r .

34 } e l s e i f (type == ’ g ’) {
35 base = new BlockShape (BlockShape . SpriteShape , c) ;

36 }
37

38 // Code emitted .

39

40 }
41

42 }}

F.6 BlockIO.as

1 // Convert b locks and s tack s to / from an array s t r u c tu r e or JSON s t r i n g
format .

2 // The array s t r u c tu r e format captures the meaning o f s c r i p t s in a compact
form that

3 // i s independent o f the i n t e r n a l r ep r e s en t a t i on and i s easy to convert to /
from JSON.

4

5 package b locks {
6 pub l i c c l a s s BlockIO {
7

8 pr i va t e s t a t i c func t i on blockToArray (b : Block) : Array {
9 // Return an array s t r u c tu r e f o r t h i s b lock .

10 var r e s u l t : Array = [b . op] ;
11 i f (b . op == Specs .GET VAR) return [Specs .GET VAR, b . spec] ; //

va r i ab l e r epo r t e r

12 // Sp r i t e Reporter

13 i f (b . op == Specs .GET SPRITE) return [Specs .GET SPRITE, b . spec] ;

14 i f (b . op == Specs .GET LIST) return [Specs .GET LIST , b . spec] ; // l i s t
r epo r t e r

15 i f (b . op == Specs .GETPARAM) return [Specs .GETPARAM, b . spec , b . type] ;
// parameter r epo r t e r

16

104 Chapter F. Code

17 // Code omitted .

18 }
19

20 pr i va t e s t a t i c func t i on specialCmd (cmd : Array , f o rS tage : Boolean) : Block {
21 // I f the g iven command i s s p e c i a l (e . g . a r epo r t e r or old−s t y l e a hat

block) , r e turn a block f o r i t .
22 // Otherwise , r e turn nu l l .
23 var b : Block ;
24 switch (cmd [0]) {
25 // I f a get s p r i t e r epor te r , c r e a t e the appropr ia te b lock .

26 case Specs .GET SPRITE:

27 re turn new Block (cmd [1] , ’ r ’ , Specs . c reatureCo lor , Specs .GET SPRITE) ;

28 case Specs .PROCEDUREDEF:
29 b = new Block (’ ’ , ’ p ’ , Specs . procedureColor , Specs .PROCEDUREDEF) ;
30 b . parameterNames = cmd [2] ;
31 b . de fau l tArgValues = cmd [3] ;
32 i f (cmd . l ength > 4) b . warpProcFlag = cmd [4] ;

33 // Inc lude the g l oba l f l a g .

34 i f (cmd . l ength > 5) b . i sG loba l = cmd [5] ;

35 i f (cmd . l ength > 6) b . owner = cmd [6] ;
36 b . setSpec (cmd [1]) ;
37 b . f ixArgLayout () ;
38 re turn b ;

39 // Code omitted .

40 }
41 }}

F.7 BlockShape.as

1 package b locks {
2 pub l i c c l a s s BlockShape extends Shape {
3

4 // Shapes
5 pub l i c s t a t i c const RectShape : i n t = 1 ;
6 pub l i c s t a t i c const BooleanShape : i n t = 2 ;
7 pub l i c s t a t i c const NumberShape : i n t = 3 ;
8 pub l i c s t a t i c const CmdShape : i n t = 4 ;
9 pub l i c s t a t i c const FinalCmdShape : i n t = 5 ;

10 pub l i c s t a t i c const CmdOutlineShape : i n t = 6 ;
11 pub l i c s t a t i c const HatShape : i n t = 7 ;
12 pub l i c s t a t i c const ProcHatShape : i n t = 8 ;

13 // Added Spr i teShape Constant .

14 pub l i c s t a t i c const Spr i teShape : i n t = 9 ;

15 // C−shaped b locks

16 // Updated to a l low the Sp r i t e Shape to be in the

17 // normal shape block range .

18 pub l i c s t a t i c const LoopShape : i n t = 10 ;

19 pub l i c s t a t i c const FinalLoopShape : i n t = 11 ;

F.8 Interpreter.as 105

20 // E−shaped b locks

21 pub l i c s t a t i c const I fE l s eShape : i n t = 12 ;

22 // M−Shaped b locks

23 pub l i c s t a t i c const ClassDefShape : i n t = 13 ;

24

25 pr i va t e func t i on setShape (shape : i n t) : void {
26 t h i s . shape = shape ;
27 switch (shape) {
28 case RectShape : drawFunction = drawRectShape ; break ;
29 case BooleanShape : drawFunction = drawBooleanShape ; break ;
30 case NumberShape : drawFunction = drawNumberShape ; break ;

31 // Add a case f o r the Sp r i t e Shape .

32 case Spr i teShape : drawFunction = drawSpriteShape ; break ;

33 case CmdShape :
34 case FinalCmdShape : drawFunction = drawCmdShape ; break ;
35 case CmdOutlineShape : drawFunction = drawCmdOutlineShape ; break ;
36 case LoopShape :
37 case FinalLoopShape : drawFunction = drawLoopShape ; break ;
38 case I fE l s eShape : drawFunction = drawIfElseShape ; break ;
39 case HatShape : drawFunction = drawHatShape ; break ;
40 case ProcHatShape : drawFunction = drawProcHatShape ; break ;
41 case ClassDefShape : drawFunction = drawClassDefShape ; break ;
42 }
43 }
44

45 //Create the d i s t i n c t s p r i t e shape .

46 pr i va t e func t i on drawSpriteShape (g : Graphics) : void {
47 var centerY : i n t = topH / 2 ;

48 g .moveTo(0 , topH) ;

49 g . l ineTo (centerY /2 , centerY) ;

50 g . l ineTo (0 , 0) ;

51 g . l ineTo (w, 0) ;

52 g . l ineTo (w − centerY /2 , centerY) ;

53 g . l ineTo (w, topH) ;

54 }
55

56 }}

F.8 Interpreter.as

1 // A simple yet e f f i c i e n t i n t e r p r e t e r f o r b locks .
2 //
3 // I n t e r p r e t e r s may seem myster ious , but t h i s one i s qu i t e s t r a i gh t f o rwa rd .

S ince every
4 // block knows which block (i f any) f o l l ow s i t in a sequence o f b locks , the

i n t e r p r e t e r

106 Chapter F. Code

5 // simply execute s the cur rent block , then asks that block f o r the next
block . The heart

6 // o f the i n t e r p r e t e r i s the evalCmd () funct ion , which l ooks up the opcode
s t r i n g in a

7 // d i c t i ona ry (i n i t i a l i z e d by in i tPr ims ()) then c a l l s the p r im i t i v e
func t i on f o r that opcode .

8 // Control s t r u c t u r e s are handled by pushing the cur rent s t a t e onto the
a c t i v e thread ’ s

9 // execut ion stack and cont inu ing with the f i r s t b lock o f the substack .
When the end o f a

10 // substack i s reached , the prev ious execut ion s t a t e i s popped . I f the
substack was a loop

11 // body , c on t r o l y i e l d s to the next thread . Otherwise , execut ion cont inues
with the next

12 // block . I f the re i s no next block , and no s t a t e to pop , the thread
te rminate s .

13 //
14 // The i n t e r p r e t e r does as much as i t can with in workTime mi l l i s e c ond s ,

then r e tu rn s
15 // con t r o l . I t r e tu rn s c on t r o l e a r l i e r i f e i t h e r (a) the re are are no more

threads to run
16 // or (b) some thread does a command that has a v i s i b l e e f f e c t (e . g . ”move

10 s t ep s ”) .
17 //
18 // To add a command to the i n t e r p r e t e r , j u s t add a new case to in i tPr ims () .

Command b locks
19 // u sua l l y perform some operat i on and return nul l , whi l e r e p o r t e r s must

re turn a value .
20 // Control s t r u c t u r e s are a l i t t l e t r i c k y ; look at some o f the e x i s t i n g

con t r o l s t r u c tu r e
21 // commands to get a sense o f what to do .
22 //
23 // Clocks and time :
24 //
25 // The m i l l i s e c ond c l o ck s t a r t s at zero when Flash i s s t a r t ed and , s i n c e

the c l o ck i s
26 // a 32−b i t in t ege r , i t wraps a f t e r 24 .86 days . S ince i t seems un l i k e l y

that one Scratch
27 // s e s s i o n would run that long , t h i s code doesn ’ t dea l with c l o ck wrapping .
28 // Since Scratch only runs at d i s c r e t e i n t e r v a l s , timed commands may be

resumed a few
29 // m i l l i s e c ond s l a t e . These smal l e r r o r s accumulate , caus ing threads to

s l i p out o f
30 // synchron i za t i on with each other , a problem e s p e c i a l l y no t i c e ab l e in

music p r o j e c t s .
31 // This problem i s addressed by reco rd ing the amount o f time s l i ppag e and

shor t en ing
32 // subsequent timed commands s l i g h t l y to ” catch up ” .
33 // Delay t imes are rounded to mi l l i s e c ond s , and the minimum delay i s a

m i l l i s e c ond .
34

35 package i n t e r p r e t e r {

F.9 Variable.as 107

36 pub l i c c l a s s I n t e r p r e t e r {
37

38 pr i va t e func t i on in i tPr ims () : void {
39 primTable = new Dict ionary () ;
40

41 // v a r i a b l e s
42 primTable [Specs .GET VAR] = primVarGet ;
43 primTable [Specs .SET VAR] = primVarSet ;
44 primTable [Specs .CHANGEVAR] = primVarChange ;
45 primTable [Specs .GETPARAM] = primGetParam ;

46 \\ Add the Sp r i t e r epo r t e r to the p r im i t i v e d i c t i ona ry .

47 primTable [Specs .GET SPRITE] = primGetSprite ;

48

49 // Code emitted .

50

51 }
52

53 // Add the func t i on f o r the s p r i t e r epo r t e r b lock .

54 pr i va t e func t i on primGetSprite (b : Block) :∗ {
55 // The Sp r i t e ’ s name i s the block ’ s spec .

56 var name : S t r ing = b . spec ;

57 // Lookup the s p r i t e based on the name .

58 var s p r i t e s : Array = app . stagePane . spritesAndClonesNamed (name) ;

59 f o r each (var s : S c ra t chSpr i t e in s p r i t e s) {
60 re turn s ;

61 }
62 }

F.9 Variable.as

1 // A va r i ab l e i s a name−value pa i r .
2

3 package i n t e r p r e t e r {
4 pub l i c c l a s s Var iab le {
5

6 // Add the c r e a t o r o f the va r i ab l e to enable p r i va t e v a r i a b l e s to pass

7 // from Nymph to Sp r i t e .

8 pub l i c var c r e a t o r : ScratchObj ;

9

10 // Add the c r e a t o r to the i n s t a n t i a t i o n .

11 pub l i c func t i on Var iab le (vName : Str ing , i n i t i a lV a l u e :∗ , c : ScratchObj) {
12 name = vName ;
13 value = i n i t i a lV a l u e ;

14 c r e a t o r = c ;

15 }

108 Chapter F. Code

F.10 MotionAndPenPrims.as

One of the motion and pen primatives has been shown. This was updated to enable a
Sprite to be a parameter of the function. The other motion primitive functions have been
updated in a similar manner.

1 pr i va t e func t i on primMove (b : Block) : void {
2 // Grab the f i r s t argument from the block . This i s the Sp r i t e the block

3 // w i l l update .

4 var s : S c ra t chSpr i t e = in t e rp . arg (b , 0) ;

5 i f (s == nu l l) r e turn ;
6 var rad ians : Number = (Math . PI ∗ (90 − s . d i r e c t i o n)) / 180 ;
7 var d :Number = in t e rp . numarg (b , 1) ;
8 moveSpriteTo (s , s . scratchX + (d ∗ Math . cos (rad ians)) , s . scratchY + (d ∗

Math . s i n (rad ians))) ;
9 }

F.11 PaletteBuilder.as

1 package s c ra t ch {
2 pub l i c c l a s s Pa l e t t eBu i l d e r {
3 pub l i c func t i on showBlocksForCategory (s e l e c t edCategory : int , s c r o l lToOr i g i n :

Boolean , sh i f tKey : Boolean = f a l s e) : void {
4 i f (app . p a l e t t e == nu l l) r e turn ;
5

6 app . p a l e t t e . c l e a r (s c r o l lToOr i g i n) ;
7 nextY = 7 ;
8

9 // I f the viewed ob j e c t i s a Ghost and the event tab i s s e l e c t e d .

10 i f (app . viewedObj () &&

11 app . viewedObj () . i sGhost &&

12 s e l e c t edCategory == 5) {
13 // Don\ rq {} t show any b locks .

14 addItem (makeLabel (Trans la tor .map(’Ghost Se l e c t ed : ’))) ;

15 nextY −= 6 ;

16 addItem (makeLabel (Trans la tor .map(’No event b locks ’))) ;

17 re turn ;

18 }
19

20 i f (s e l e c t edCategory == Specs . dataCategory) re turn showDataCategory () ;
21 i f (s e l e c t edCategory == Specs . myBlocksCategory) re turn

showMyBlocksPalette (sh i f tKey) ;

22 // Use a s p e c i a l f unc t i on i f the c r ea tu r e category should be shown .

23 i f (s e l e c t edCategory == Specs . c reatureCateogry)

24 re turn showCreaturesCategory () ;

F.11 PaletteBuilder.as 109

25

26 var catName : S t r ing = Specs . c a t e g o r i e s [s e l e c t edCategory] [1] ;
27 var catColor : i n t = Specs . b lockColor (s e l e c t edCategory) ;
28 i f (app . viewedObj () && app . viewedObj () . i s S t ag e) {
29 // The s tage has d i f f e r e n t b locks f o r some c a t e g o r i e s :
30 var s t a g e S p e c i f i c : Array = [’ Control ’ , ’ Looks ’ , ’Motion ’ , ’Pen ’ , ’

Sens ing ’] ;
31 i f (s t a g e S p e c i f i c . indexOf (catName) != −1) s e l e c t edCategory += 100 ;
32 i f (catName == ’Motion ’) {
33 addItem (makeLabel (Trans la tor .map(’ Stage s e l e c t e d : ’))) ;
34 nextY −= 6 ;
35 addItem (makeLabel (Trans la tor .map(’No motion b locks ’))) ;
36 re turn ;
37 }
38 }
39 addBlocksForCategory (se l ec tedCategory , catColor) ;
40 updateCheckboxes () ;
41 }
42

43 pr i va t e func t i on showMyBlocksPalette (sh i f tKey : Boolean) : void {
44 // show c r e a t i on button , hat , and c a l l b locks
45 var catColor : i n t = Specs . b lockColor (Specs . procedureColor) ;
46 addItem (new Button (Trans la tor .map(’Make a Block ’) , makeNewBlock , f a l s e ,

’ / he lp / s tud io / t i p s / b locks /make−a−block / ’)) ;
47

48 // Add procedures i f they are v i s i b l e based on

49 // the i sG loba l boolean .

50 var d e f i n i t i o n s : Array =

51 app . runtime . v i s i b l eP r o c s () . concat (

52 app . runtime . ObjProcs (app . viewedObj () . getNymph ())) ;

53 i f (d e f i n i t i o n s . l ength > 0) {
54 nextY += 5 ;

55 f o r each (var proc : Block in d e f i n i t i o n s) {
56 var b : Block = new Block (proc . spec , ’ ’ , Specs . procedureColor ,

57 Specs .CALL, proc . de fau l tArgValues) ;

58 addItem (b) ;

59 }
60 nextY += 5 ;

61 }
62

63 // Show the Sp r i t e and Ghost r e p o r t e r s

64 pr i va t e func t i on showCreaturesCategory () : void {
65 // Get a l l Sp r i t e s and Ghosts .

66 var s p r i t e s : Array = app . stagePane . s p r i t e s () ;

67 // Display a l l Sp r i t e s and Ghosts .

68 f o r each (var s : S c ra t chSpr i t e in s p r i t e s) {
69 nextY += 5 ;

110 Chapter F. Code

70 var b : Block = new Block (s . objName , ”g” , Specs . c reatureCo lor , Specs .

GET SPRITE) ;

71 addItem (b)

72 nextY += 5 ;

73 }
74 }
75

76 protec ted func t i on createVar (name : Str ing , va rSe t t i ng s : Va r i ab l eS e t t i ng s) :∗ {
77 var obj : ScratchObj = (va rSe t t i ng s . i sLo c a l) ? app . viewedObj () : app .

stageObj () ;
78 i f (obj . hasName(name)) {
79 DialogBox . n o t i f y (”Cannot Add” , ”That name i s a l r eady in use . ”) ;
80 re turn ;
81 }
82 // Update the scope o f v a r i a b l e s to in c lude the Nymph

83 var va r i a b l e :∗ = (va rSe t t i ng s . i s L i s t ?

84 obj . lookupOrCreateList (name , app . viewedObj ()) :

85 obj . lookupOrCreateVar (name , app . viewedObj ())) ;

86

87 app . runtime . showVarOrListFor (name , va rSe t t i ng s . i s L i s t , obj) ;
88 app . setSaveNeeded () ;
89

90 re turn va r i ab l e ;
91 }
92 }}

F.12 ScratchGhost.as

1 // The ScratchGhost c l a s s removes a l o t o f the f u n c t i o n a l i t y o f a
Sc ra t chSpr i t e .

2 package s c ra t ch {
3 pub l i c c l a s s ScratchGhost extends Sc ra t chSpr i t e {
4

5 pub l i c func t i on ScratchGhost (name : S t r ing = nu l l) {
6 // Set the name to be based o f f Ghost .
7 objName = Scratch . app . stagePane . unusedSpriteName (name | | Trans la tor .map

(’ Ghost1 ’)) ;
8 f i l t e r P a c k = new Fi l t e rPack (t h i s) ;
9 img = new Spr i t e () ;

10 img . cacheAsBitmap = true ;
11 addChild (img) ;
12 // Set i sGhost to t rue .
13 i sGhost = true ;
14 }
15 }}

F.13 ScratchObj.as

F.13 ScratchObj.as 111

1 package s c ra t ch {
2 pub l i c c l a s s ScratchObj extends Sp r i t e {
3

4 pub l i c var nymphName : S t r ing = ’ no nymph ’ ;

5 pub l i c var myChild : ScratchObj = nu l l ;

6 pub l i c var i s S t ag e : Boolean = f a l s e ;

7 pub l i c var i sGhost : Boolean = f a l s e ;

8 pub l i c var v a r i a b l e s : Array = [] ;
9 pub l i c var l i s t s : Array = [] ;

10

11 \\ Code omitted .

12

13 pr i va t e var nymph : ScratchObj = nu l l ;

14

15 pub l i c func t i on updateCostume () : void {
16 updateImage () ;

17 // Update the costumes to inc lude the Nymph.

18 i f (myChild != nu l l) myChild . updateCostumesAsChild () ;

19 }
20

21 // Update func t i on to inc lude c r e a t o r ob j e c t s .

22 // This a s s i s t s in prov id ing p r i va t e f unc t i on s from Nymph

23 // to Sp r i t e .

24 pub l i c func t i on lookupOrCreateVar (varName : Str ing , c r e a t o r : ScratchObj=nu l l) :

Var iab le {
25 // Lookup and return a va r i ab l e . I f lookup f a i l s , c r e a t e the va r i ab l e

in t h i s ob j e c t .
26 var v : Var iab le = lookupVar (varName) ;
27 i f (v == nu l l) { // not found ; c r e a t e i t

28 v = new Var iab le (varName , 0 , c r e a t o r) ;

29 va r i a b l e s . push (v) ;
30 Scratch . app . updatePalette (f a l s e) ;
31 }
32 re turn v ;
33 }
34

35 // Update func t i on to inc lude c r e a t o r ob j e c t s .

36 // This a s s i s t s in prov id ing p r i va t e f unc t i on s from Nymph

37 // to Sp r i t e .

38 pub l i c func t i on lookupOrCreateList (l istName : Str ing , obj : ScratchObj = nu l l

) : ListWatcher {
39 // Look and return a l i s t . I f lookup f a i l s , c r e a t e the l i s t in t h i s

ob j e c t .
40 var l i s t : ListWatcher = lookupLi s t (l istName) ;
41 i f (l i s t == nu l l) { // not found ; c r e a t e i t

42 l i s t = new ListWatcher (listName , [] , th i s , f a l s e , obj) ;

43 l i s t s . push (l i s t) ;

112 Chapter F. Code

44 Scratch . app . updatePalette (f a l s e) ;
45 }
46 re turn l i s t ;
47 }
48

49 // Nymph Getter .

50 pub l i c func t i on getNymph () : ScratchObj {
51 re turn nymph ;

52 }
53

54 // Delete a Nymph, i n c l ud ing removing the costumes .

55 pub l i c func t i on deleteNymph () : void {
56 i f (nymph == nu l l) re turn ;

57

58 f o r each (var c : ScratchCostume in nymph . costumes) {
59 f o r each (var l : ScratchCostume in t h i s . costumes) {
60 i f (c == l) {
61 deleteCostume (c) ;

62 }
63 }
64 }
65 nymph = nu l l ;

66 nymphName = nu l l ;

67 }
68

69 // Set the Nymph

70 pub l i c func t i on setNymph(s : ScratchObj) : void {
71 // Begin by d e l e t i n g any prev ious Nymph.

72 deleteNymph () ;

73 // Set the new Nymph and Name .

74 nymph = s ;

75 nymphName = s . objName ;

76 // Set the ch i l d to be t h i s ob j e c t .

77 nymph . myChild = th i s ;

78 // Obtain the nymph costumes .

79 costumes = costumes . concat (nymph . costumes) ;

80 f o r each (var c in nymph . costumes) {
81 f o r each (var l in t h i s . costumes) {
82 i f (c == l) break ;

83 }
84 costumes . concat (c) ;

85 }

F.14 ScratchRuntime.as 113

86 }
87

88 // Get the Nymph Costumes

89 pub l i c func t i on updateCostumesAsChild () {
90 // Begin by removing a l l the nymph costumes to ensure no dup l i c a t e s .

91 f o r each (var c : ScratchCostume in nymph . costumes) {
92 f o r each (var l : ScratchCostume in t h i s . costumes) {
93 i f (c == l) {
94 deleteCostume (c) ;

95 }
96 }
97 }
98 // Then add a l l the costumes to t h i s s p r i t e .

99 costumes = costumes . concat (nymph . costumes) ;

100 f o r each (var c in nymph . costumes) {
101 f o r each (var l in t h i s . costumes) {
102 i f (c == l) break ;

103 }
104 costumes . concat (c) ;

105 }
106

107 }

F.14 ScratchRuntime.as

1 package s c ra t ch {
2 pub l i c c l a s s ScratchRuntime {
3

4 pub l i c func t i on allVarNames () : Array {
5 var r e s u l t : Array = [] , v : Var iab le ;
6 f o r each (v in app . stageObj () . v a r i a b l e s) r e s u l t . push (v . name) ;
7 i f (! app . viewedObj () . i s S t ag e) {
8 f o r each (v in app . viewedObj () . v a r i a b l e s) r e s u l t . push (v . name) ;

9 // I f the va r i ab l e be longs to the Nymph, i t should be inc luded

10 // in the va r i ab l e names .

11 i f (app . viewedObj () . getNymph () != nu l l) {
12 f o r each (v in app . viewedObj () . getNymph () . v a r i a b l e s) r e s u l t . push (v .

name) ;
13 }
14 }
15 re turn r e s u l t ;
16 }
17

18 // Return a l l the user de f ined procedures that are v i s i b l e

114 Chapter F. Code

19 // based on the i sG loba l boolean .

20 pub l i c func t i on v i s i b l eP r o c s (obj : ScratchObj = nu l l) : Array {
21 var r e s u l t : Array = [] , b : Block , s : ScratchObj ;

22 // The de f au l t i s the viewed−ob j e c t .
23 i f (obj == nu l l) obj = app . viewedObj () ;

24 // For a l l the Scratch Objects

25 f o r each (s in app . stageObj () . s p r i t e s () . concat (app . stageObj ())) {
26 // For a l l the procedure d e f i n i t i o n s

27 f o r each (b in s . p r o c edu r eDe f i n i t i on s ()) {
28 // Determine i f the procedure i s v i s i b l e .

29 var l o c a l : Array = obj . p r o c edu r eDe f i n i t i on s () ;

30 var f l a g : Boolean = f a l s e ;

31 // Find i f the ProcDef i s f o r the viewed ob j e c t

32 f o r each (var l : Block in l o c a l) {
33 i f (l == b) {
34 f l a g = true ;

35 break ;

36 }
37 }
38 i f (b . i sG loba l | | f l a g)

39 r e s u l t . push (b) ;

40 }
41 }
42 re turn r e s u l t ;

43 }
44

45 // Return a l l the procedure d e f i n i t i o n s f o r the g iven ob j e c t .

46 pub l i c func t i on ObjProcs (s : ScratchObj) : Array {
47 i f (s == nu l l) r e turn [] ;

48 var r e s u l t : Array = [] , b : Block ;

49 f o r each (b in s . p r o c edu r eDe f i n i t i on s ()) {
50 r e s u l t . push (b) ;

51 }
52 re turn r e s u l t ;

53 }
54

55 // Return the Scratch Object that owns the g iven procedure .

56 pub l i c func t i on procOwner (b : Block) : ScratchObj {
57 var s : ScratchObj , l : Block ;

58 f o r each (s in app . stageObj () . s p r i t e s () . concat (app . stageObj ())) {
59 f o r each (l in s . p r o c edu r eDe f i n i t i on s ()) {

F.15 PaletteSelector.as 115

60 i f (b == l) {
61 re turn s ;

62 }
63 }
64 }
65 re turn nu l l ;

66 }
67

68 // Inc lude the ob j e c t that c rea ted the va r i ab l e .

69 pub l i c func t i on makeVariable (varObj : Object) : Var iab le {
70 re turn new Var iab le (varObj . name , varObj . value , app . viewedObj ()) ;

71 }
72

73 pub l i c func t i on a l lL i s tNames () : Array {
74 var r e s u l t : Array = app . stageObj () . l i s tNames () ;
75 i f (! app . viewedObj () . i s S t ag e) {
76 r e s u l t = r e s u l t . concat (app . viewedObj () . l i s tNames ()) ;

77 // I f the re i s a Nymph, in c lude those l i s t s

78 // in the Sp r i t e l i s t s .

79 i f (app . viewedObj () . getNymph () != nu l l) {
80 r e s u l t = r e s u l t . concat (app . viewedObj () . getNymph () . l i s tNames ())

81 }
82 }
83 re turn r e s u l t ;
84 }

F.15 PaletteSelector.as

1 package u i {
2 pub l i c c l a s s Pa l e t t e S e l e c t o r extends Sp r i t e {
3 pr i va t e s t a t i c const c a t e g o r i e s : Array = [

4 \\ Add Creatures to column one .

5 ’Motion ’ , ’ Looks ’ , ’ Sound ’ , ’Pen ’ , ’Data ’ , ’ Creatures ’ , // column 1

6 ’ Events ’ , ’ Control ’ , ’ Sens ing ’ , ’ Operators ’ , ’More Blocks ’] ; // column
2

7] ;
8

9 pr i va t e func t i on i n i tCa t e g o r i e s () : void {
10 \\ i n c r e a s e the number o f rows to 6 .

11 const numberOfRows : i n t = 6 ;

12 }
13 }}

F.16 ProcedureSpecEditor.as

116 Chapter F. Code

1 package u i {
2 pub l i c c l a s s ProcedureSpecEditor extends Sp r i t e {
3

4 pr i va t e var owner : ScratchObj ;

5

6 pub l i c func t i on ProcedureSpecEditor (o r i g i n a l Sp e c : Str ing , inputNames : Array
, warpFlag : Boolean , g l oba lF lag : Boolean , o : ScratchObj) {

7 owner = o ;

8

9 // Code emitted .

10

11 addSpecElements (o r i g i na lSpec , inputNames) ;
12 warpCheckbox . setOn (warpFlag) ;

13 // Add checkbox to s e t i sG loba l f l a g .

14 globalButton . setOn (g l oba lF lag) ;

15 showButtons (f a l s e) ;

16

17 }
18

19 pub l i c s t a t i c func t i on s t r i n g s () : Array {
20 re turn [
21 ’ Options ’ , ’Run without s c r e en r e f r e s h ’ ,
22 ’Add number input : ’ ,
23 ’Add s t r i n g input : ’ ,
24 ’Add boolean input : ’ ,

25 \\ St r ing to d i sp l ay f o r adding a s p r i t e input parameter .

26 ’Add s p r i t e input : ’ ,

27 ’Add l a b e l t ex t : ’ ,
28 ’ t ex t ’ ,
29] ;
30 }
31

32 pr i va t e func t i on addSpecElements (spec : Str ing , inputNames : Array) : void {
33 f unc t i on addElement (o : DisplayObject) : void {
34 row . push (o) ;
35 addChild (o) ;
36 }
37 clearRow () ;
38 var i : i n t = 0 ;
39 f o r each (var s : S t r ing in ReadStream . token i z e (spec)) {
40 i f (s . l ength >= 2 && s . charAt (0) == ’%’) { // argument spec
41 var argSpec : S t r ing = s . charAt (1) ;
42 var arg : BlockArg = nu l l ;
43 i f (argSpec == ’b ’) arg = makeBooleanArg () ;
44 i f (argSpec == ’n ’) arg = makeNumberArg () ;
45 i f (argSpec == ’ s ’) arg = makeStringArg () ;

46 // Add Spr i t e Parameter

47 i f (argSpec == ’ g ’) arg = makeSpriteArg () ;

48 i f (arg) {

F.16 ProcedureSpecEditor.as 117

49 arg . setArgValue (inputNames [i ++]) ;
50 addElement (arg) ;
51 }
52 }
53

54 // Code emitted

55

56 }
57

58 pub l i c func t i on defau l tArgValues () : Array {
59 var r e s u l t : Array = [] ;
60 f o r each (var e l :∗ in row) {
61 i f (e l i s BlockArg) {
62 var arg : BlockArg = BlockArg (e l) ;
63 var v :∗ = 0 ;
64 i f (arg . type == ’b ’) v = f a l s e ;
65 i f (arg . type == ’n ’) v = 1 ;
66 i f (arg . type == ’ s ’) v = ’ ’ ;

67 \\ The de f au l t nymph value i s nu l l .

68 i f (arg . type == ’ g ’) v = nu l l ;

69 r e s u l t . push (v) ;
70 }
71 }
72 re turn r e s u l t ;
73 }
74

75 pr i va t e func t i on addButtonsAndLabels () : void {
76 buttonLabels = [
77 makeLabel (’Add number input : ’ , 14) ,
78 makeLabel (’Add s t r i n g input : ’ , 14) ,
79 makeLabel (’Add boolean input : ’ , 14) ,

80 makeLabel (’Add Spr i t e input : ’ , 14) ,

81 makeLabel (’Add l a b e l t ex t : ’ , 14)
82] ;
83 buttons = [
84 new Button (’ ’ , f unc t i on () : void { appendObj (makeNumberArg ()) }) ,
85 new Button (’ ’ , f unc t i on () : void { appendObj (makeStringArg ()) }) ,
86 new Button (’ ’ , f unc t i on () : void { appendObj (makeBooleanArg ()) }) ,
87 new Button (’ ’ , f unc t i on () : void { appendObj (makeSpriteArg ()) }) ,
88 new Button (Trans la tor .map(’ t ex t ’) , f unc t i on () : void { appendObj (

makeTextField (’ ’)) })
89] ;
90

91 const l ightGray : i n t = 0xA0A0A0 ;
92

93 i con = new BlockShape (BlockShape . NumberShape , l ightGray) ;
94 i con . setWidthAndTopHeight (25 , 14 , t rue) ;
95 buttons [0] . s e t I c on (i con) ;
96

97 i con = new BlockShape (BlockShape . RectShape , l ightGray) ;

118 Chapter F. Code

98 i con . setWidthAndTopHeight (22 , 14 , t rue) ;
99 buttons [1] . s e t I c on (i con) ;

100

101 var i con : BlockShape = new BlockShape (BlockShape . BooleanShape , l ightGray
) ;

102 i con . setWidthAndTopHeight (25 , 14 , t rue) ;
103 buttons [2] . s e t I c on (i con) ;
104

105 // Add the Sp r i t e Shape to the button .

106 var i con : BlockShape = new BlockShape (BlockShape . SpriteShape , l ightGray)

;

107 // Add the button to the ed i t o r .

108 i con . setWidthAndTopHeight (25 , 14 , t rue) ;

109 buttons [3] . s e t I c on (i con) ;

110

111 f o r each (var l a b e l : TextFie ld in buttonLabels) addChild (l a b e l) ;
112 f o r each (var b : Button in buttons) addChild (b) ;
113 }
114

115 // Add a Spr i t e parameter to the new procedure .

116 pr i va t e func t i on makeSpriteArg () : BlockArg {
117 var r e s u l t : BlockArg = new BlockArg (’ s ’ , 0xFFFFFF, t rue) ;

118 r e s u l t . setArgValue (unusedArgName (’ s p r i t e ’)) ;

119 re turn r e s u l t ;

120 }
121

122 }}

F.17 GhostThumbnail.as

1 package u i {
2 pub l i c c l a s s SpriteThumbnail extends Sp r i t e {
3 pub l i c func t i on updateThumbnail (t rans lat ionChanged : Boolean = f a l s e) : void {
4 i f (targetObj == nu l l) r e turn ;

5 // I f a ghost , the re i s no costume to be the thumbnail .

6 // Instead , s e t the provided image o f a ghost as the

7 // thumbnail .

8 i f (targetObj . i sGhost) thumbnail . bitmapData =

9 Resources . createBmp (”ghostThumb”) . bitmapData ;

10

11 // Code Emitted .

12

13 }
14 }}

F.18 LibraryPart.as 119

F.18 LibraryPart.as

1 package u i . par t s {
2 pub l i c c l a s s LibraryPart extends UIPart {
3 pr i va t e var gho s tT i t l e : TextFie ld ;

4 pr i va t e var ghostButton : IconButton ;

5

6 pub l i c func t i on LibraryPart (app : Scratch) {
7 t h i s . app = app ;
8 shape = new Shape () ;
9 addChild (shape) ;

10

11 // Make the c r e a t e ghost button .

12 gho s tT i t l e = makeLabel (Trans la tor .map(’New ghost : ’) ,

13 CSS . t i t l eFormat , app . i sMicrowor ld ? 2 : stageAreaWidth + 2 , 5) ;

14 addChild (gho s tT i t l e) ;

15 addChild (ghostButton = makeButton (makeGhost , ’ ghost ’)) ;

16

17 // Code emitted .

18

19 addSpr itesArea () ;
20

21 }
22

23 // Make a ghost .

24 pr i va t e func t i on makeGhost (b : IconButton) : void {
25 var s : ScratchGhost = new ScratchGhost () ;

26 app . addNewGhost (s) ;

27 }
28 }}

F.19 ScriptsPart.as

1 package u i . par t s {
2 pub l i c c l a s s Sc r ip t sPar t extends UIPart {
3

4 pr i va t e var pub l i cD i sp lay : Sp r i t e ;

5 pr i va t e var procs : Array = [] ;

6

7 pub l i c func t i on Sc r ip t sPar t (app : Scratch) {
8 t h i s . app = app ;
9

10 addChild (shape = new Shape ()) ;
11 addChild (spriteWatermark = new Bitmap ()) ;
12 addXYDisplay () ;

13 addPubl icDisplay () ;

120 Chapter F. Code

14 addChild (s e l e c t o r = new Pa l e t t e S e l e c t o r (app)) ;
15

16 // Code Emitted .

17

18 }
19

20 // Add the encapsu la t i on d i sp l ay to the s c r i p t i n g area background .

21 pr i va t e func t i on addPubl icDisplay () : void {
22 pub l i cD i sp lay = new Spr i t e () ;

23 // Make t i t l e .

24 pub l i cD i sp lay . addChild (makeLabel (’My I n t e r f a c e : ’ , readoutTit leFormat ,

25 0 , 0)) ;

26 var nextY :Number = 13 ;

27 pub l i cD i sp lay . addChild (makeLabel (’ Procedures : ’ , readoutTit leFormat , 0 ,

28 nextY)) ;

29 nextY += 13 ;

30 // Add a l l the v i s i b l e procedures .

31 f o r each (var p : Block in app . runtime . v i s i b l eP r o c s ()) {
32 i f (p . i sG loba l && app . runtime . procOwner (p) == app . viewedObj ()) {
33 procs . concat (p) ;

34 pub l i cD i sp lay . addChild (makeLabel (”\ t ” + p . spec , readoutLabelFormat ,

35 0 , nextY)) ;

36 nextY += 13 ;

37 }
38 }
39 // Add a l l the v i s i b l e v a r i a b l e s .

40 i f (app . viewedObj () != nu l l) {
41 pub l i cD i sp lay . addChild (makeLabel (’ Var iab l e s : ’ , readoutTit leFormat , 0 ,

42 nextY)) ;

43 nextY += 13 ;

44 f o r each (var obj : ScratchObj in app . stageObj () . s p r i t e s () . concat (

45 app . stageObj ())) {
46 f o r each (var v : Var iab le in obj . v a r i a b l e s) {
47 i f (app . viewedObj () == v . c r e a t o r && app . stageObj () . ownsVar (

48 v . name)) {
49 pub l i cD i sp lay . addChild (makeLabel (”\ t ” +

50 v . name , readoutLabelFormat , 0 , nextY)) ;

51 nextY += 13 ;

52 }
53 }
54 }
55 // Add a l l the v i s i b l e l i s t s .

F.20 SpriteInfoPart.as 121

56 pub l i cD i sp lay . addChild (makeLabel (’ L i s t s : ’ , readoutTit leFormat , 0 ,

57 nextY)) ;

58 nextY += 13 ;

59 f o r each (var obj : ScratchObj in app . stageObj () . s p r i t e s () . concat (

60 app . stageObj ())) {
61 f o r each (var l : ListWatcher in obj . l i s t s) {
62 i f (app . viewedObj () == l . c r e a t o r && app . stageObj () . ownsList (

63 l . l i stName)) {
64 pub l i cD i sp lay . addChild (makeLabel (”\ t ” +

65 l . l istName , readoutLabelFormat , 0 , nextY)) ;

66 nextY += 13 ;

67 }
68 }
69 }
70 }
71

72 addChild (pub l i cD i sp lay) ;

73 }
74

75 pub l i c func t i on updatePubl icDisp lay () : void {
76 // Clear the d i sp l ay .

77 whi le (pub l i cD i sp lay . numChildren > 0) {
78 pub l i cD i sp lay . removeChildAt (0) ;

79 }
80 // Create a new d i sp l ay .

81 addPubl icDisplay () ;

82 f i x l a y ou t () ;

83

84 }}

F.20 SpriteInfoPart.as

1 package u i . par t s {
2 pub l i c c l a s s Sp r i t e In f oPa r t extends UIPart implements DragClient {
3 // Locat ion to s e t the Nymph.

4 pr i va t e var nymphName : Edi tab leLabe l ;

5 pr i va t e var nymphLabel : TextFie ld ;

6

7 pub l i c func t i on r e f r e s h () : void {
8 spriteName . setContents (app . viewedObj () . objName) ;

9 // I f the nymph i s a l r eady set , d i sp l ay i t in the appropr ia t e f i e l d .

10 nymphName . setContents (app . viewedObj () . nymphName) ;

11

122 Chapter F. Code

12 updateSpr i t e In fo () ;
13 i f (app . s tage I sCont rac ted) layoutCompact () ;
14 e l s e l a y ou tFu l l s i z e () ;
15

16 // Code emitted .

17

18 }
19

20 pr i va t e func t i on addParts () : void {
21 addChild (c loseButton = new IconButton (c l o s e Sp r i t e I n f o , ’ backarrow ’)) ;
22 c loseButton . isMomentary = true ;
23

24 // Add the f i e l d to s e t the nymph to the d i sp l ay .

25 addChild (spriteName = new Editab leLabe l (nameChanged)) ;

26 spriteName . setWidth (200) ;

27

28 addChild (nymphLabel = makeLabel (’Nymph: ’ , readoutLabelFormat)) ;
29 addChild (nymphName = new Editab leLabe l (nymphChanged)) ;
30 nymphName . setWidth (200) ;
31

32 // Code emitted .

33

34 }
35

36 pr i va t e func t i on nymphChanged () : void {
37 var n : ScratchObj ;

38 // Set the nymph as the Stage i f appropr ia te

39 i f (nymphName . contents () == app . stageObj () . objName) n = app . stageObj () ;

40 // Otherwise , f i nd the Sp r i t e with the c o r r e c t name

41 e l s e {
42 f o r each (var s2 : ScratchObj in

43 app . stagePane . spritesAndClonesNamed (nymphName . contents ()))

44 n = s2 ;

45 }
46 // Set the Nymph.

47 app . viewedObj () . setNymph(n) ;

48 app . updatePalette (f a l s e) ;

49 }
50

51 }}

F.21 TabsPart.as

Previously the makeTabs function was in the constructor. This was refactored into a
separate function for re usability.

1 package u i . par t s {

F.21 TabsPart.as 123

2 pub l i c c l a s s TabsPart extends UIPart {
3 pub l i c func t i on TabsPart (app : Scratch) {
4

5 t h i s . app = app ;

6 makeTabs () ;

7

8 }
9

10 pr i va t e func t i on makeTabs () : void {
11 f unc t i on s e l e c t S c r i p t s (b : IconButton) : void { app . setTab (’ s c r i p t s ’) }
12 f unc t i on s e l e c t Image s (b : IconButton) : void { app . setTab (’ images ’) }
13 f unc t i on se l e c tSounds (b : IconButton) : void { app . setTab (’ sounds ’) }
14

15 sc r ipt sTab = makeTab(’ S c r i p t s ’ , s e l e c t S c r i p t s) ;
16 imagesTab = makeTab(’ Images ’ , s e l e c t Image s) ; // changed to ’ Costumes ’

or ’ Scenes ’ by r e f r e s h ()
17 soundsTab = makeTab(’ Sounds ’ , s e l e c tSounds) ;
18 addChild (sc r ipt sTab) ;
19 addChild (imagesTab) ;

20 // The ghost tab should not have costumes .

21 // Hide the tab to en f o r c e t h i s r u l e .

22 i f (app . viewedObj () && app . viewedObj () . i sGhost) imagesTab . v i s i b l e =

f a l s e ;
23 addChild (soundsTab) ;
24 sc r ipt sTab . turnOn () ;
25 }
26

27 pub l i c func t i on r e f r e s h () : void {
28 // With the add i t i on o f Ghosts , the number o f tabs changes .

29 // Remove a l l tabs and remake them to ensure the proper

30 // tabs are shown .

31 whi le (t h i s . numChildren > 0) {
32 t h i s . removeChildAt (0) ;

33 }
34 makeTabs () ;

35 var l a b e l : S t r ing = ((app . viewedObj () != nu l l) && app . viewedObj () .
i s S t ag e) ? ’ Backdrops ’ : ’ Costumes ’ ;

36 imagesTab . setImage (makeTabImg(l abe l , t rue) , makeTabImg(l abe l , f a l s e)) ;
37 f ixLayout () ;
38 }
39

40 pub l i c func t i on se l ec tTab (tabName : S t r ing) : void {
41 sc r ipt sTab . turnOff () ;
42 imagesTab . turnOff () ;
43 soundsTab . turnOff () ;
44 i f (tabName == ’ s c r i p t s ’) s c r ipt sTab . turnOn () ;

45 \\ Do not turn on the images tab i f a ghost i s be ing viewed .

124 Chapter F. Code

46 i f (tabName == ’ images ’ && ! app . viewedObj () . i sGhost) imagesTab . turnOn ()

;
47 i f (tabName == ’ sounds ’) soundsTab . turnOn () ;
48 }
49

50 pub l i c func t i on f ixLayout () : void {
51 sc r ipt sTab . x = 0 ;
52 sc r ipt sTab . y = 0 ;

53 // I f a ghost i s not being viewed , d i sp l ay the costume and sound tabs .

54 i f (app . viewedObj () != nu l l && ! app . viewedObj () . i sGhost) {
55 imagesTab . x = scr ipt sTab . x + scr ipt sTab . width + 1 ;

56 imagesTab . y = 0 ;

57 soundsTab . x = imagesTab . x + imagesTab . width + 1 ;

58 soundsTab . y = 0 ;

59 // I f a ghost i s be ing viewed , only d i sp l ay the sound tab .

60 } e l s e {
61 soundsTab . x = scr ipt sTab . x + scr ipt sTab . width + 1 ;

62 soundsTab . y = 0 ;

63 }
64 t h i s .w = soundsTab . x + soundsTab . width ;
65 t h i s . h = scr ipt sTab . he ight ;
66 }
67 }}

F.22 ScriptsPane.as

1 // A Scr iptsPane i s a working area that ho lds b locks and s tack s . I t
supports the

2 // l o g i c that h i g h l i g h t s p o s s i b l e drop t a r g e t s as a block i s be ing dragged
and

3 // dec ide s what to do when the block i s dropped .
4

5 package u iw idge t s {
6 pub l i c c l a s s Scr iptsPane extends Scrol lFrameContents {
7 // This func t i on determines whether a r epo r t e r can be placed in to

8 // a procedure block argument .

9 pr i va t e func t i on dropCompatible (droppedBlock : Block , t a r g e t : DisplayObject)
: Boolean {

10

11 // Code emitted .

12

13 var dropType : S t r ing = droppedBlock . type ;
14 var targetType : S t r ing = ta rg e t i s Block ? Block (t a r g e t . parent) . argType (

t a r g e t) . s l i c e (1) : BlockArg (t a r g e t) . type ;
15 i f (targetType == ’m’) {
16 i f (Block (t a r g e t . parent) . type == ’h ’) re turn f a l s e ;

F.22 ScriptsPane.as 125

17 re turn menusThatAcceptReporters . indexOf (BlockArg (t a r g e t) .menuName) >
−1;

18 }
19 i f (targetType == ’b ’) re turn dropType == ’b ’ ;

20 // Only a l low Spr i t e r e p o r t e r s i n to Sp r i t e procedure block arguments .

21 i f (targetType == ’ g ’) re turn dropType == ’ g ’ ;

22 re turn true ;
23 }
24 }}

126 Chapter F. Code

Bibliography

[1] “2015 FIRST LEGO League (FLL) Challenge,” [Accessed 7-April-
2016]. [Online]. Available: http://www.firstlegoleague.org/sites/default/files/
TRASH-TREK-Challenge.pdf

[2] “Digital Technologies,” [Accessed April 6, 2016]. [Online]. Avail-
able: http://www.australiancurriculum.edu.au/technologies/digital-technologies/
curriculum/f-10?layout=1

[3] “Downloads,” [Accessed: 30-May-2015]. [Online]. Available: http://education.lego.
com/en-au/downloads/?q=%7bdc0ce993-6544-45a1-8680-b2a547d1eeb6%7d

[4] “Education System in the UK,” [Accessed 7-April-2016]. [Online]. Avail-
able: https://www.gov.uk/government/uploads/system/uploads/attachment data/
file/219167/v01-2012ukes.pdf

[5] “Engineering for the Developing World,” [Accessed: 6-April-2016]. [Online].
Available: http://www.engineeringchallenges.org/cms/7126/7356.aspx

[6] “FIRST LEGO League Jr.” [Accessed 7-April-2016]. [Online]. Available: http:
//www.firstinspires.org/robotics/flljr

[7] “FIRST Robotics Competition,” [Accessed 7-April-2016]. [Online]. Available:
https://firstaustralia.org/programs/first-robotics-competition/

[8] “GitHub Status,” [Accessed May 30, 2016]. [Online]. Available: https:
//status.github.com/graphs/past month

[9] “LEARN TO PROGRAM,” [Accessed: 31-May-2015]. [Online]. Available:
http://www.lego.com/en-us/mindstorms/learn-to-program

[10] “LEGO MINDSTORMS Ed EV3 Base Set,” [Accessed: 30-May-2015].
[Online]. Available: http://www.mooreed.com.au/LEGOregEducationResources/
LEGOMindstormsEdEV3BaseSet.aspx

[11] “LEGO MINDSTORMS EV3,” [Accessed: 30-May-2015]. [Online]. Available:
http://shop.lego.com/en-AU/LEGO-MINDSTORMS-EV3-31313

127

http://www.firstlegoleague.org/sites/default/files/TRASH-TREK-Challenge.pdf
http://www.firstlegoleague.org/sites/default/files/TRASH-TREK-Challenge.pdf
http://www.australiancurriculum.edu.au/technologies/digital-technologies/curriculum/f-10?layout=1
http://www.australiancurriculum.edu.au/technologies/digital-technologies/curriculum/f-10?layout=1
http://education.lego.com/en-au/downloads/?q=%7bdc0ce993-6544-45a1-8680-b2a547d1eeb6%7d
http://education.lego.com/en-au/downloads/?q=%7bdc0ce993-6544-45a1-8680-b2a547d1eeb6%7d
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/219167/v01-2012ukes.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/219167/v01-2012ukes.pdf
http://www.engineeringchallenges.org/cms/7126/7356.aspx
http://www.firstinspires.org/robotics/flljr
http://www.firstinspires.org/robotics/flljr
https://firstaustralia.org/programs/first-robotics-competition/
https://status.github.com/graphs/past_month
https://status.github.com/graphs/past_month
http://www.lego.com/en-us/mindstorms/learn-to-program
http://www.mooreed.com.au/LEGOregEducationResources/LEGOMindstormsEdEV3BaseSet.aspx
http://www.mooreed.com.au/LEGOregEducationResources/LEGOMindstormsEdEV3BaseSet.aspx
http://shop.lego.com/en-AU/LEGO-MINDSTORMS-EV3-31313

128 BIBLIOGRAPHY

[12] “LEGO MINDSTORMS EV3 source code,” [Accessed: 30-May-2015]. [Online].
Available: https://github.com/mindboards/ev3sources

[13] “Scratch,” [Accessed 7-April-2016]. [Online]. Available: https://scratch.mit.edu/

[14] “Scratch Statistics,” [Accessed May 29, 2016]. [Online]. Available: https:
//scratch.mit.edu/statistics/

[15] “Creating Blocks for LEGO Mindstorms EV3,” Tech. Rep., 2013, [Ac-
cessed: 11-April-2016]. [Online]. Available: https://education.lego.com/en-au/
learn/middle-school/mindstorms-ev3/support/ev3-developer-kits

[16] “Hackable Lego Robot Runs Linux,” January 2013, [Accessed: 30-May-
2015]. [Online]. Available: https://www.linux.com/news/software/applications/
688254-hackable-lego-robot-runs-linux

[17] “LEGO Mindstorms EV3 Firmware Developer Kit,” Tech. Rep., 2013, [Ac-
cessed 7-April-2016]. [Online]. Available: https://education.lego.com/en-au/learn/
middle-school/mindstorms-ev3/support/ev3-developer-kits

[18] “National curriculum in England: computing programmes of study,” Sep 2013,
[Accessed April 6, 2016]. [Online]. Available: https://www.gov.uk/government/
publications/national-curriculum-in-england-computing-programmes-of-study/
national-curriculum-in-england-computing-programmes-of-study

[19] “ROBOLAB 2.9.4c patch,” July 2013, [Accessed: 30-May-2015]. [Online]. Available:
http://www.legoengineering.com/robolab-2-9-4c-patch/

[20] “Desktop Operating System Market Share,” April 2015, [Ac-
cessed: 30-May-2015]. [Online]. Available: http://www.netmarketshare.com/
operating-system-market-share.aspx?qprid=10&qpcustomd=0

[21] “FTC Tech Talk: Programming,” March 2015, [Accessed 7-April-
2016]. [Online]. Available: http://firsttechchallenge.blogspot.com.au/2015/03/
ftc-tech-talk-programming.html

[22] “Subclass 457 quarterly report: quarter ending at 31 December
2015,” Tech. Rep., 2015, [Accessed: 6-April-2016]. [Online]. Avail-
able: http://www.border.gov.au/ReportsandPublications/Documents/statistics/
457-quarterly-report-2015-12-31.pdf#search=457quarterlyreport

[23] D. H. Akehurst, “An OO visual language definition approach supporting multiple
views,” in Visual Languages, 2000. Proceedings. 2000 IEEE International Symposium
on. IEEE, 2000, pp. 57–58.

[24] O. Astrachan and D. Reed, “AAA and CS 1: the applied apprenticeship approach
to CS 1,” ACM SIGCSE Bulletin, vol. 27, no. 1, pp. 1–5, 1995.

https://github.com/mindboards/ev3sources
https://scratch.mit.edu/
https://scratch.mit.edu/statistics/
https://scratch.mit.edu/statistics/
https://education.lego.com/en-au/learn/middle-school/mindstorms-ev3/support/ev3-developer-kits
https://education.lego.com/en-au/learn/middle-school/mindstorms-ev3/support/ev3-developer-kits
https://www.linux.com/news/software/applications/688254-hackable-lego-robot-runs-linux
https://www.linux.com/news/software/applications/688254-hackable-lego-robot-runs-linux
https://education.lego.com/en-au/learn/middle-school/mindstorms-ev3/support/ev3-developer-kits
https://education.lego.com/en-au/learn/middle-school/mindstorms-ev3/support/ev3-developer-kits
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
http://www.legoengineering.com/robolab-2-9-4c-patch/
http://www.netmarketshare.com/operating-system-market-share.aspx?qprid=10&qpcustomd=0
http://www.netmarketshare.com/operating-system-market-share.aspx?qprid=10&qpcustomd=0
http://firsttechchallenge.blogspot.com.au/2015/03/ftc-tech-talk-programming.html
http://firsttechchallenge.blogspot.com.au/2015/03/ftc-tech-talk-programming.html
http://www.border.gov.au/ReportsandPublications/Documents/statistics/457-quarterly-report-2015-12-31.pdf#search=457 quarterly report
http://www.border.gov.au/ReportsandPublications/Documents/statistics/457-quarterly-report-2015-12-31.pdf#search=457 quarterly report

BIBLIOGRAPHY 129

[25] O. Banyasad and P. T. Cox, “Design and Implementation of an Editor/Interpreter
for a Visual Logic Programming Language,” International Journal of Software En-
gineering and Knowledge Engineering, vol. 23, no. 06, pp. 801–838, 2013.

[26] M. Ben-Ari, “Constructivism in computer science education,” Journal of Computers
in Mathematics and Science Teaching, vol. 20, no. 1, pp. 45–73, 2001.

[27] A. F. Blackwell, “Metacognitive theories of visual programming: what do we think we
are doing?” in Visual Languages, 1996. Proceedings., IEEE Symposium on. IEEE,
1996, pp. 240–246.

[28] J. Boustedt, A. Eckerdal, R. McCartney, J. E. Moström, M. Ratcliffe, K. Sanders,
and C. Zander, “Threshold concepts in computer science: do they exist and are they
useful?” in ACM SIGCSE Bulletin, vol. 39, no. 1. ACM, 2007, pp. 504–508.

[29] L. Cardelli and P. Wegner, “On understanding types, data abstraction, and poly-
morphism,” ACM Computing Surveys (CSUR), vol. 17, no. 4, pp. 471–523, 1985.

[30] S. Cooper, W. Dann, and R. Pausch, “Alice: a 3-D tool for introductory programming
concepts,” in Journal of Computing Sciences in Colleges, vol. 15, no. 5. Consortium
for Computing Sciences in Colleges, 2000, pp. 107–116.

[31] R. Decker and S. Hirshfield, “The top 10 reasons why object-oriented programming
can’t be taught in CS 1,” ACM SIGCSE Bulletin, vol. 26, no. 1, pp. 51–55, 1994.

[32] G. Dowek, Principles of programming languages. Springer Science & Business Media,
2009.

[33] D. A. Economics et al., “Australia’s digital pulse: key challenges for our nation:
digital skills, jobs and education,” 2015.

[34] B. Erwin, M. Cyr, and C. Rogers, “LEGO engineer and RoboLab: Teaching engin-
eering with LABView from kindergarten to graduate school,” International Journal
of Engineering Education, vol. 16, no. 3, pp. 181–192, 2000.

[35] ——, “LEGO engineer and ROBOLAB: Teaching engineering with LabVIEW from
kindergarten to graduate school,” International Journal of Engineering Education,
vol. 16, no. 3, pp. 181–192, 2000.

[36] Q. FACTS, “Designing personal robots for education: Hardware, software, and cur-
riculum,” 2008.

[37] E. J. Golin, “Theory of visual languages,” Journal of Visual Languages & Computing,
vol. 2, no. 4, pp. 309–310, 1991.

[38] E. J. Golin and S. P. Reiss, “The specification of visual language syntax,” in Visual
Languages, 1989., IEEE Workshop on. IEEE, 1989, pp. 105–110.

130 BIBLIOGRAPHY

[39] T. R. Green, M. Petre, and R. Bellamy, “Comprehensibility of visual and textual
programs: A test of superlativism against the match-mismatch conjecture,” ESP,
vol. 91, no. 743, pp. 121–146, 1991.

[40] IEEE Computer Society. Software Engineering Standards Committee and IEEE-SA
Standards Board, “IEEE Recommended Practice for Software Requirements Specific-
ations.” Institute of Electrical and Electronics Engineers, 1998.

[41] F. Klassner and S. D. Anderson, “Lego MindStorms: Not just for K-12 anymore,”
IEEE Robotics & Automation Magazine, vol. 10, no. 2, pp. 12–18, 2003.

[42] M. Kölling and J. Rosenberg, “Bluea language for teaching object-oriented program-
ming,” in ACM SIGCSE Bulletin, vol. 28, no. 1. ACM, 1996, pp. 190–194.

[43] J. Kramer, “Is abstraction the key to computing?” Communications of the ACM,
vol. 50, no. 4, pp. 36–42, 2007.

[44] U. Last and A. Aharoni-Etzioni, “Secrets and reasons for secrecy among school-aged
children: Developmental trends and gender differences,” The Journal of Genetic
Psychology, vol. 156, no. 2, pp. 191–203, 1995.

[45] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “The scratch pro-
gramming language and environment,” ACM Transactions on Computing Education
(TOCE), vol. 10, no. 4, p. 16, 2010.

[46] J. H. Meyer and R. Land, “Threshold concepts and troublesome knowledge (2): Epi-
stemological considerations and a conceptual framework for teaching and learning,”
Higher education, vol. 49, no. 3, pp. 373–388, 2005.

[47] B. A. Myers, “Visual programming, programming by example, and program visual-
ization: a taxonomy,” in ACM SIGCHI Bulletin, vol. 17, no. 4. ACM, 1986, pp.
59–66.

[48] G. Pascoe, “Elements of object-oriented programming.” Byte, vol. 11, no. 8, pp.
139–144, 1986.

[49] K. Powers, P. Gross, S. Cooper, M. McNally, K. J. Goldman, V. Proulx, and M. Carl-
isle, “Tools for teaching introductory programming: what works?” in ACM SIGCSE
Bulletin, vol. 38, no. 1. ACM, 2006, pp. 560–561.

[50] J. Rekers and A. Schürr, “Defining and parsing visual languages with layered graph
grammars,” Journal of Visual Languages & Computing, vol. 8, no. 1, pp. 27–55, 1997.

[51] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K. Brennan,
A. Millner, E. Rosenbaum, J. Silver, B. Silverman et al., “Scratch: programming for
all,” Communications of the ACM, vol. 52, no. 11, pp. 60–67, 2009.

BIBLIOGRAPHY 131

[52] A. Robins, J. Rountree, and N. Rountree, “Learning and teaching programming:
A review and discussion,” Computer science education, vol. 13, no. 2, pp. 137–172,
2003.

[53] I. E. Sigel, “Developmental trends in the abstraction ability of children,” Child De-
velopment, pp. 131–144, 1953.

[54] A. Snyder, “Encapsulation and inheritance in object-oriented programming lan-
guages,” in ACM Sigplan Notices, vol. 21, no. 11. ACM, 1986, pp. 38–45.

[55] P. Starkey, E. S. Spelke, and R. Gelman, “Numerical abstraction by human infants,”
Cognition, vol. 36, no. 2, pp. 97–127, 1990.

[56] B. Stroustrup, “What is object-oriented programming?” Software, IEEE, vol. 5,
no. 3, pp. 10–20, 1988.

[57] A. Vihavainen, M. Paksula, and M. Luukkainen, “Extreme apprenticeship method
in teaching programming for beginners,” in Proceedings of the 42nd ACM technical
symposium on Computer science education. ACM, 2011, pp. 93–98.

[58] B. E. Wampler, The essence of object-oriented programming with Java and UML.
Addison-Wesley, 2002.

[59] H. Werner, “Comparative psychology of mental development.” 1948.

[60] U. Wolz, H. H. Leitner, D. J. Malan, and J. Maloney, “Starting with scratch in CS
1,” in ACM SIGCSE Bulletin, vol. 41, no. 1. ACM, 2009, pp. 2–3.

	Title Page
	Acknowledgments
	Statement
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Project Goal
	1.2 Project Planning
	1.2.1 Scope
	1.2.2 Time
	1.2.3 Cost

	2 Background and Related Work
	2.1 Computer Science Education
	2.1.1 Curricula Requirements
	2.1.2 Pedagogy
	2.1.3 Languages to teach programming
	2.1.4 Programming Paradigms
	2.1.5 Threshold Concepts

	2.2 LEGO MINDSTORMS EV3
	2.2.1 EV3 Hardware
	2.2.2 EV3 Programming Languages

	2.3 Object Oriented Programming
	2.3.1 Encapsulation
	2.3.2 Inheritance
	2.3.3 Polymorphism

	2.4 Visual Programming Languages
	2.4.1 Syntax of Visual Programming

	2.5 Abstraction

	3 Survey Methodology
	3.1 Areas of Inquiry
	3.2 Recruitment Methods

	4 Survey Results
	4.1 Age to Learn Object Oriented Programming
	4.2 Easy Object Oriented Concepts
	4.3 Difficult Object Oriented Concepts
	4.4 Factors that Influence Difficulty
	4.5 Scored Difficulty of Object Oriented Concepts

	5 System Requirements
	5.1 Interfaces
	5.1.1 System Interfaces
	5.1.2 User Interfaces
	5.1.3 Hardware Interfaces
	5.1.4 Software Interfaces
	5.1.5 Communications Interfaces

	5.2 Nonfunctional Requirements
	5.2.1 Reliability
	5.2.2 Availability
	5.2.3 Maintainability

	5.3 Functional Requirements
	5.3.1 Data Encapsulation
	5.3.2 Inheritance
	5.3.3 Polymorphism
	5.3.4 Abstract Classes

	6 Language Design
	6.1 Language Platform
	6.1.1 EV3 MINDSTORMS
	6.1.2 ScratchX
	6.1.3 Platform Selection

	6.2 Defining Scratch
	6.2.1 Scratch Sprites
	6.2.2 The Stage
	6.2.3 Scratch Costumes
	6.2.4 Scratch Blocks
	6.2.5 User Interface
	6.2.6 Scratch Graph Grammar

	6.3 New Language Definition
	6.3.1 Updated User Interface
	6.3.2 Updated Graph Grammar

	7 Language Implementation
	7.1 Tool Selection
	7.2 Scratch Flash Code Architecture
	7.2.1 Scratch Class
	7.2.2 Blocks Class
	7.2.3 Scratch Objects Class
	7.2.4 Scratch Runtime Class
	7.2.5 Interpreter Class
	7.2.6 User Interface Classes

	7.3 Scratch EV3 Extension
	7.4 Scratch with Components of Object Oriented Technology
	7.4.1 Sprites as Attributes
	7.4.2 Encapsulation
	7.4.3 Nymphs
	7.4.4 Ghosts
	7.4.5 EV3 Integration

	7.5 Wide Walls

	8 Requirements Validation
	8.1 Interfaces
	8.1.1 System Interfaces
	8.1.2 User Interfaces
	8.1.3 Hardware Interfaces
	8.1.4 Software Interfaces
	8.1.5 Communications Interfaces

	8.2 Non Functional Requirements
	8.2.1 Reliability
	8.2.2 Availability
	8.2.3 Maintainability

	8.3 Functional Requirements
	8.3.1 Data Encapsulation
	8.3.2 Inheritance
	8.3.3 Abstract Classes

	9 Discussion
	9.1 Object Oriented Concept Ambiguity in SCOOT
	9.2 Age to Learn Object Oriented Programming
	9.3 Object Oriented Threshold Concepts
	9.4 Measurements
	9.4.1 Measurement Definition
	9.4.2 Measurement Creation
	9.4.3 Measurement Usage
	9.4.4 Measurement Shortcomings
	9.4.5 Learning Difficulty of SCOOT

	10 Conclusions
	11 Future Work
	11.1 Further Survey
	11.2 Trial of System
	11.3 Refinement of Measurement
	11.4 Final Words

	12 Abbreviations
	A Requirements
	B Survey Information
	B.1 Survey
	B.2 Survey Recruitment

	C Survey Responses
	C.1 Easy Object Oriented Concepts
	C.2 Difficult Object Oriented Concepts
	C.3 Reasons for Easy Object Oriented Concepts
	C.4 Reasons for Difficult Object Oriented Concepts

	D Scratch Graph Grammar
	E Meeting Attendance Form
	F Code
	F.1 Scratch.as
	F.2 Specs.as
	F.3 Resources.as
	F.4 Block.as
	F.5 BlockArg.as
	F.6 BlockIO.as
	F.7 BlockShape.as
	F.8 Interpreter.as
	F.9 Variable.as
	F.10 MotionAndPenPrims.as
	F.11 PaletteBuilder.as
	F.12 ScratchGhost.as
	F.13 ScratchObj.as
	F.14 ScratchRuntime.as
	F.15 PaletteSelector.as
	F.16 ProcedureSpecEditor.as
	F.17 GhostThumbnail.as
	F.18 LibraryPart.as
	F.19 ScriptsPart.as
	F.20 SpriteInfoPart.as
	F.21 TabsPart.as
	F.22 ScriptsPane.as

	Bibliography

