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ABSTRACT

In order to understand the aerodynamics of a model, wind tunnel testing is crucial

and in wind tunnel testing there needs to be an accurate correlation between

the environment inside the tunnel and the environment on the road. In the

automotive industry, to make the test environment more realistic, a model vehicle

being analyzed is now placed on a rolling road to simulate a moving ground. Inside

wind tunnels as such, these models are supported by structures such as struts so

that it can be held in place and a system of balance connected to these struts is

used to measure the aerodynamic forces such as drag. These structures, however,

interfere with wind tunnel results and it is standard practice to correct wind

tunnel results for a model with and without presence of support structures. In

order to make the wind tunnel test environment more realistic and results more

accurate thus enabling us to understand the complete aerodynamics of a model,

an advanced alternative is proposed and researched in this project. This project

is about the development of an autonomous control system that can maintain

a model vehicles position inside a wind tunnel over a moving ground with high

degree of accuracy and measure the drag the vehicle is experiencing. This thesis

reviews existing technology in the field of wind tunnel testing and autonomous

driving and discusses the development of an advanced mathematical algorithm

for the aimed control system.
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Chapter 1

Introduction

Wind tunnel testing to understand the aerodynamics of a vehicle has long been a part of
the automotive industry. Having a body that is aerodynamic, such that the air resistance
or drag faced by the vehicle is reduced to a minimum where needed and maximized where
needed, can drastically improve the performance of a vehicle. In order to understand
the aerodynamics of a vehicle, often model vehicle are subjected to wind tunnel testing.
The model is placed on a moving ground inside the wind tunnel and subjected to various
wind forces. The most common method to maintain the models position on the moving
ground is to use metal struts to hold the model in position. The tension experienced
by this structures is used to measure the drag experienced by the vehicle [13]. However,
due to the absence of these struts in real life, the actual aerodynamics of the car are not
obtained [21]. In order to obtain more realistic data, a solution that enables the model to
maintain its position in the tunnel and measure drag subsequently without the presence
of any physical object within the range of the model that might affect the airflow around
the model needs to be implemented. This thesis project looks into the development of
an autonomous control system with advanced mathematical algorithm that will enable a
model vehicle to maintain its position in a wind tunnel while measuring the drag that the
model experience.

1.1 Project Overview

This section discusses the overview of the project including the particular project spec-
ifications. The aims and goals of the project that were set in order to meet the project
specifications are listed and discussed. Finally, a time-line of completion of expected
stages of the project is illustrated by the use of a gantt chart.

1.1.1 Project Specification

The overall aim of this project is to build an autonomous control system capable of
maintaining a model vehicle position inside a wind tunnel and measure the drag force
experienced by the model vehicle. The model vehicle needs to be at the center of the
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2 Chapter 1. Introduction

moving ground inside the wind tunnel. There is a tolerance range of ±5mm making a
total of 10mm or 1cm length of total variance that can be present. This is illustrated in
figure 1.1 below.

Figure 1.1: Project Specifications

In order to achieve the desired specifications the project was broken down into several
stages and goals were set of each of these stages. These goals are discussed in the next
section.

1.1.2 Aims and Goals

There were several aims that were set in order to establish a systematic approach to the
design process which will lead up to the final goal of this project. The aims are given
below.

• Develop a mathematical equation to realize vehicle steering dynamic and form a
control algorithm based on the mathematical analysis.

• Research and list sensors that can be used to realize the input parameters to the
mathematical algorithm.

• Implement the control system such that the vehicle aligns itself with the central
target line from either side of the target line.
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• Develop a technique to measure the drag that the model vehicle experience during
operation.

1.1.3 Project Timeline

The project is to be carried out over a thirteen week long semester as part of an un-
dergraduate degree. A project schedule was developed in order to maintain and track
progress of the project. The project schedule is best illustrated by the aid of a gantt
chart. This is given below in figure 1.2.
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Figure 1.2: Project Timeline



Chapter 2

Literature Review

2.1 Background

This section discusses the reasons behind the aim of this project and what have been done
so far. To understand the need of the proposed control system in chapter 1, the history
behind aerodynamic research and necessary equipment development needs to be realized.
This dates back to the 18th century when Benjamin Robbins, an English mathematician
first developed the whirling arm [1] [3]. The whirling arm was truly the first machine
used for aerodynamic data accumulation. The first machine had an arm 4 feet long. The
arm was spun by a falling weight acting on a pulley and spindle arrangement, however
the arm tip could only reach velocities of a few feet per second.

The whirling arm could be used to gather most of the systematic aerodynamic data.
However, its flaws were noticed. The working principal of the whirling arm actually set
the air in the vicinity in rotary motion which adversely affected the test results. Aircraft
models on the end of an arm in effect flew into their own wakes [1]. Due to such strong
turbulence, the true relative velocity between the model and air could not be determined.
Furthermore, it was extremely difficult to mount instruments and measure the small forces
exerted on the model when it was spinning at high speeds [1]. In pursuit of more accurate
data something better needed to be developed. It was not until the 19th century that
something better had emerged. The first wind tunnel was developed. Frank H. Wenham
(1824-1908), a Council Member of the Aeronautical Society of Great Britain, is generally
credited with designing and operating the first wind tunnel in 1871 [1] [3]. Wenham
had used a whirling arm for his experiments, but was not satisfied with them and found
motive to develop something better and with the council backing him with funds, he
was able to build the first wind tunnel [1]. The first wind tunnel had a trunk 12 feet
long and 18 inches square. It had a steam engine powered fan-blower which propelled
air through the tube to the model being analyzed. The wind tunnel managed to direct
the air current horizontally and parallel to the course [1]. Tests using these wind tunnels
allowed for researchers to understand the aerodynamic forces such as lift, drag and their
ratios but these wind tunnels were capable of analyzing only scale models as analyzing
full-size models were simply too expensive [1]. So a question still remained whether these
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6 Chapter 2. Literature Review

scale model results were applicable to real sized aircrafts until Osborne Reynolds from
the University of Manchester managed to demonstrate that the airflow pattern over a
scale model would be the same for the full-scale vehicle if a certain flow parameter were
the same in both cases. This factor is known as the Reynolds number and it is a basic
parameter in the description of all fluid-flow situations [1].

In 1901 a better wind tunnel was developed by the Wright brothers [3]. Their first
tunnel consisted of a two-element balance mounted in the airstream, one was a calibrated
plane surface and the other was a cambered test surface inclined at the same angle but
in the opposite direction. When the wind tunnel was brought up to speed, the vane-type
balance turned one way or the other, thereby indicating the relative lifting forces [1]. Im-
provements in aerodynamic testing and equipment used for these tests continued and the
subjects being tested were not limited to airplanes anymore. They were expanded to cars
as well when it was realized that proper aerodynamic design affected its performance [6].
In the automobile industry, especially in motor sports such as F1, aerodynamics of ve-
hicles is important down to the point where meticulous precision in aerodynamic design
will result in the car being faster by crucial seconds thus making a difference in the final
result of a race or so. In 1972, Colin Chapman showed the way ahead for Formula 1. The
legendary designer and team boss equipped his Lotus 72 with revolutionary aerodynam-
ics. This resulted in Emerson Fittipaldi in winning the World Championship for Lotus.
According to Steven de Groote from F1 Technical, aerodynamics are the most important
factor in the design of a Formula One car [6]. Now, when determining the aerodynamics
of a vehicle, wind tunnel testing for these vehicles is essential.

2.1.1 Current Wind Tunnels and Testing Methodology

Many types of wind tunnels have been developed, but they all have the purpose of creating
a uniform stream of air which passes through a test chamber in which a scale model is
mounted. The model is mounted on struts or wires fastened to a system of balances which
enable the tunnel operator to measure the forces and moments acting on the model [13].
However the current wind tunnels are more advanced. One major advancement was the
use of moving ground planes when analyzing cars [18]. A stationary ground plane causes
a boundary layer to build up under the car, and can interfere with the boundary layer
of the lower components of the car [18]. Thus influencing the test results. The ground
boundary layer can be removed by using a moving belt under the car which causes the
wheels to rotate with the belt [18]. This was an effective way of simulating rotating
wheels and this simulation was important as cars in Indy and Formula 1 have exposed
wheels and neglecting these aerodynamic effects will alter the performance. The moving
belt approach is mandatory for vehicles with very low ground clearance or low drag
coefficients [18]. Now on a moving belt, the model needs to be held stationary and the
existing method of using struts connected to system of balances is applied to hold the
vehicle and measure aerodynamic forces. However during actual operation of the vehicle
on tracks these struts will not be present and using them in the wind tunnel fails to
co-relate the wind tunnel environment to the actual environment. An example of such a
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situation is shown below in figure 2.1.

Figure 2.1: Difference in wind tunnel situation and real world situation [11]

From figure 2.1 it can be seen that the yaw angle of attack vary locally [11]. Having a
structure holding the vehicle in place does not allow for the dynamic changes in the angle
of attack to occur. However if the vehicle could hold its position without the presence of
support structures, the dynamic changes would occur and the aerodynamic test results
would be more accurate. The presence of support structures also alter the air-flow around
the model and therefore affect the results obtained [4] [12]. Therefore, in order to obtain
better results, further improvement to the testing equipment or alternative methods have
been researched.

2.1.2 Alternative Support and Testing Methodology

In wind tunnel testing of models, interference due to support structure is a problem
as old as wind tunnels themselves, and a lot of research has been conducted to estab-
lish alternative methods that eliminate errors due to support structure interference [12].
An alternative that have been considered a potential solution for many support system
problems for several decades is the use of magnetic suspension and balance systems, or
MSBS [12]. In the past, there have been applications of MSBS in small wind tunnels,
however the technologies necessary to construct large wind tunnel systems were not avail-
able until recent years [12]. While MSBS does appear to be a potential solution, it has
its limitations. Some problems and limitations of existing MSBS include roll control, size
limitations, reliability, position sensing and calibration. Some further problems specific
to large-scale magnetic suspension and balance systems are requirements of high-power
electromagnets, high-capacity power supplies, highly sophisticated control systems and
high costs [2].

A less expensive proposed alternative that could eliminate support structures in wind
tunnel testing is an autonomous control system within the model [21]. The focus of this
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project is the autonomous control system that will allow for the model vehicle to control
itself on the running belt inside the wind tunnel and also allow us to measure the drag
the vehicle is experiencing. The control system will be implemented in a model car. The
control system will be able to control the vehicle and maintain its position with a high
degree of accuracy and measure the drag the vehicle is experiencing. Since the control
system will be implemented on a model vehicle, therefore self-driving cars are reviewed.

2.2 Autonomous Driving

Self-driven car has been an interesting phenomenon in the past years and technological
giants and automobile giants such as Google and Mercedes respectively and certain other
companies have managed to establish such cars [17]. Since the control system being
researched will essentially result in a self-driven car therefore existing technologies, sensors
and control algorithms in the field of autonomous driving is reviewed.

In order for a car to be able to perform autonomous driving, it needs to know where
it is and what are in it’s surroundings and where it needs to go. The car obtains these
information by means of a combination of advanced sensors. Figure 2.2 below shows a
pictorial representation of how a car capable of autonomous driving sees the road.

Figure 2.2: How self-driving car see the road [17]

From figure 2.2 above, it can be seen that these car use the following list of sensors.

• Camera
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• Radar

• Lidar

A self-driving car uses these sensors along with Global Positioning System (GPS) to
sense its surroundings and plan its trajectory [9]. The GPS is used to navigate from
an initial location to a final destination and the other set of on-board sensors are used
to localize the vehicle with its surroundings. These sensor data are then fed back to a
central processing unit where the data is analysed and instructions are outputted to the
vehicle for autonomous driving [17]. Autonomous maneuvers such as obstacle detection,
obstacle avoidance, maintaining position and adjusting speed are amongst the common
tasks that a self-driving vehicle would do. Considering the maneuvers that a self driving
vehicle would do, some sensors that could be used to input data to the autonomous control
system and certain control algorithms used to process these sensor data is also reviewed
in this thesis.

2.2.1 Control Algorithms

This section of the thesis looks into control algorithms and techniques of how autonomous
driving has been achieved so far by other institutions. In particular two techniques stand
out in terms of how the techniques and research involved can be related to this project. Of
the two techniques, one, called Junior [9], was developed at Stanford University as part of
an urban competition held by Defense Advanced Research Projects Agency (DARPA) in
the United states and the other called Ralph (Rapidly Adapting Lateral Position Handler)
[15] was developed by Carnegie Mellon University and Assistware Technology Inc.

Junior

A research vehicle, named Junior, uses a trio of unsupervised algorithms to calibrate a high
accuracy, 64-beam rotating LIDAR. The LIDAR is then used to scan the surroundings
and the sensor data is used to generate high-resolution maps of the environment which
are used used for localization purposes accurate to a centimeter. An example of the effect
of the calibration and map generated is shown below in figure 2.3

Figure 2.3: Lidar data before and after calibration [9]
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Then specialized algorithms for perception and recognition is used to track and classify
different obstacles as cyclists, pedestrians, and vehicles. The system is capable of detect-
ing traffic lights as well [9]. The incoming sensor data is used to generate thousands of
candidate trajectories per second and the optimal path is chosen dynamically. An exam-
ple of such a planned trajectory is shown in figure 2.4 below. Once the trajectory has
been determined, the controller constantly adjusts the throttle, brake, and steering actua-
tion through proportional, integral and differential (PID) control for lower-level feedback
control tasks that allows for the vehicle to maintain the planned trajectory [9] [14].

Figure 2.4: Optimum Trajectory vs Hybrid A trajectory [14]

In figure 2.4 above, the vehicle is traveling from location X to location Y. The blue
and cyan traces show the optimum trajectory of the front and rear axle respectively. The
black trace, also referred to as the Hybrid A trace, however represents the dynamically
adjusted trajectory that the vehicle traveled upon considering the obstacles in the path
that have been sensed by the sensors and map data [14]. It is worthy to notice that the
optimum trajectory can be represented by multiple small arcs. The arc representation of
the vehicle’s path of travel is later used in the development of the control algorithm for
this project.

Rapidly Adapting Lateral Position Handler (RALPH)

Ralph is a technique that employs an advanced control algorithm that allows for the
vehicle to maintain its position in a driving lane. Ralph achieves autonomous vehicle
steering in three steps. First it samples the image captured by a camera. Second, using
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the sampled images it determines the road curvature and finally assesses the lateral offset
of the vehicle relative to the lane center [15]. An example of the sampled image is shown
in figure 2.5 below. The results of the latter two steps is then combined by Ralph into
a steering command, which is then sent to the steering motor to achieve autonomous
steering, hence autonomous driving. This control algorithm was implemented on a test
bed vehicle called Navlab 5 for autonomous steering control [15].

Figure 2.5: Image from the front camera (left), image sampled by Ralph (right) [15]

From the image obtained, the background is irrelevant and only the region within the
white trapezoid, as shown in figure 2.5(left), is of interest and the length of the upper and
lower boundaries of the trapezoid vary with speed [15]. This section of the sampled image
is then parallelized as shown in figure 2.5(right) and analyzed to understand the curvature
of the road. The analysis consists of a ”hypothesize and test” strategy [15]. RALPH
hypothesizes a possible curvature for the road ahead. This hypothesized curvature is then
subtracted from the parallelized low resolution image of the road ahead and tested to
see how well the hypothesized curvature has straightened the image [15]. This process is
repeated multiple times until the best result is obtained and the best radius of curvature
is chosen. A visual representation of the determination of radius of curvature is shown in
figure 2.6 below.

Figure 2.6: Ralph’s technique for determining road curvature [15]
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2.2.2 Autonomous Control System for Wind Tunnel Model

An autonomous control system for a wind tunnel model was researched by Nicholas Tode-
sco at Macquarie University in 2014 [21]. However the project needed additional work in
terms of the development of a control algorithm that used mathematical representation
of vehicle steering dynamics. The control system that was implemented was not fully
autonomous and also lacked stability in terms of performance. The vehicle was not able
to maintain its position with the desired accuracy. The control system was implemented
on a 1/10th scale model. It used the micro-controller, Arduino Uno as the central pro-
cessing unit. An arduino is great in terms of affordability and ease of use. It used a Hitech
HS422 servo to steer the vehicle and a Leopard V2 electronic speed controller (ESC) in
conjunction with a brushless DC motor to drive the vehicle. For sensors, it used multiple
proximity sensors. It used lithium polymer (LiPo) batteries to power the arduino and the
ESC.
The working principle of the control system was such that it uses the proximity sensors
on both sides of the vehicle to sense the distance of the vehicle from the side walls and
steered the vehicle so that the distance measured on either side of the vehicle is the same.
Hence maintaining the vehicle’s position on the center of the moving ground inside the
wind tunnel. It also used proximity sensors at the back of the vehicle to measure the
distance of the vehicle from a panel at the end of the moving ground and using this
measured distance it controlled the speed of the vehicle to maintain a specific distance.
Although this technique was implemented but the operation of the control system was
not fully autonomous and needed operator intervention. Also an important aspect of the
research that was adopted into this project was the ’toe-in’ setting of the steering wheels.
Figure 2.7 below shows a ’toe-in’ setting for steering wheels.

Figure 2.7: Toe-in setting of the steering wheels [21]
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The toe-in setting increases the stability of the system when the vehicle is steering.
This setting makes the turn less sharp thus contributing to the stability of the control
system [21]. This project took prior research and the model vehicle and components used
in Todesco’s [21] thesis and advanced further into the development of the control system
for this project. Since an arduino was being used as the micro-controller, therefore arduino
compatible sensors that can be used in this project are also reviewed.

2.3 Sensor Review

This section of the document reviews sensors that can be used to detect the presence of
physical objects and measure it’s distance from the sensor. In reviewing these sensors,
the working principal of these sensors is also reviewed.

2.3.1 Arduino Compatible Sensors

• Proximity sensors : Proximity sensors use infrared rays to sense object. Typically
these sensors have an infrared ray emitter and a receiver. The emitted ray reflects of
an object present in front of it within range of sensing and the reflection is received
by the receiver. The intensity of the reflection received is used to determine the
distance of the object from the sensor. Infrared proximity sensors are usually not
expensive and their range of sensing is roughly from 10cm to 80cm. However the
accuracy of these sensors are not great. It has a tolerance rating that ranges from
20% to 40% [19].

• Ultrasonic distance sensors : These distance sensors use ultrasound to measure
distance. These sensors usually contain an ultrasound emitter and a receiver. A
short pulse of ultrasound is emitted and the time taken for the emitted wave to
reflect form an object within range of detection and come back to the receiver is
measured. Using the known speed of travel of the wave, the distance of the object
from the sensor is calculated. The arduino compatible ultrasonic sensors that are
readily available generally have a sensing range of a few centimeters to three or four
meters and the measurements can be as accurate to 3mm [5].

• Laser range finders : Laser range finders are generally more accurate amongst the
three types of distance sensors reviewed in this section. Laser range finders use
laser light pulse emitter and optical sensors arranged in a compact sensor. The
working principle is similar to ultrasonic sensors but different in terms of the wave
emitted. It emits a pulse of light and measures the time taken for the emitted pulse
to reflect of a surface and come back to the sensor. Laser range finders work in
conjunction to optical sensors to sense the reflected light pulse. With the time of
flight measured and speed of travel of light known the distance is calculated. Laser
range finders have variable range of sensing. Some laser range finders can sense
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upto 40m whereas other can sense only upto several meters. The higher the range
of sensing the accuracy reduces and vice versa [16].

2.4 Summary

In summary, the evolution of wind tunnel testing facility and how the scale model testing
principle is valid was reviewed. Then existing wind tunnel testing facilities was also
reviewed and this revealed the areas of testing where there can be improvements hence
the motivation for this project is highlighted. Since the implementation of this project
will essentially result in a self driving car, therefore control algorithms for self driving
cars from existing research were reviewed and the working principle of these algorithms
was studied so that it can be related to this project and it was found that the trajectory
planning in order to steer the vehicle involved formation of arcs to represent the path of
travel. Finally, an autonomous control system for wind tunnel model vehicle was reviewed.
In reviewing the control system, the sensors used in the implementation of such a control
system were also reviewed along with other potential sensors.



Chapter 3

Development of an Advanced
Control System Algorithm

3.1 Introduction

The most crucial part of this project is the final control algorithm that will be used in the
autonomous control system. In order to develop this control algorithm, vehicle steering
dynamics was analyzed and an approach to realize these dynamics in terms of a single
mathematical equation was undertaken. The control algorithm needs to be such that
it will be able to align the model vehicle with a target line which will be in the center
of the moving ground, the exact specification can be found in chapter 1. When it is
aligned with the target line and operating within the desired specifications, it needs to
be able to take power consumption measurements and transmit the data to the operator
for analysis of aerodynamic drag. Incorporating the results of the steering dynamics
analysis, it was observed that the control algorithm would best perform if there were to
be two modes of operation, one when the vehicle is not operating within the acceptable
tolerance range, (the normal mode) and the other when the vehicle is operating within
the tolerance range, (tolerance mode). This section of the thesis discusses the steering
dynamic analysis, mathematical approach to finding a method of steering the vehicle and
the two modes of operation i.e. the normal mode and the tolerance mode.

3.2 Vehicle Steering Dynamics

In order to steer a vehicle, the control system needs to know that the path the it needs to
steer the vehicle along and from section 2.2.1 and 2.2.1 above, it was observed that vehicle
trajectory can be represented by a combination of arcs of circles. The arc characteristics
can be determined by analyzing the circle.

15
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Figure 3.1: Vehicle steering dynamics [21]

From figure 3.1 above it can be observed that the arc can be determined by determining
the radius of the circle that is formed by the arc. Initially this radius is labeled R1 and
when the direction of the vehicle has changed by a certain amount of degrees, the center
of the circle changes and there is a new radius R2 which steers the vehicle accordingly.
From this analysis it was observed that in order to determine the arc, it will be essential
to determine the position of the center of the imaginary circle and the radius of the circle.
Therefore further analysis was conducted to form a mathematical equation to represent
this arc.
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3.3 Mathematical Approach to Realizing Steering Dy-

namics

In determining how the arc should be, the control algorithm essentially determines a radius
of curvature that can be used to represent the arc. These autonomous vehicles operate at
velocities often much lower than the velocities that a wind tunnel model vehicle might be
subjected to. Operation at lower velocities mean availability of more time to analyze the
mass amount of data that can be gathered. However, if a wind tunnel model which will be
operating at much higher velocities, is to perform autonomous driving inside the tunnel
the amount of data that needs to be sensed has to be minimized as much as possible in
comparison to traditional autonomous driving vehicles. The smaller the amount of data
that needs to be sensed, the quicker it can be sensed. The faster the input data is sensed,
it can be analyzed to output a radius of curvature that the control system can then use
to steer the vehicle at high velocities. This suggests that the input parameters to the
mathematical equation should be as less as possible. A systematic analysis of the vehicles
position on the moving ground revealed that any time during the operation of the normal
mode, there can be four different types of scenarios. The scenarios are as follows.

1. The vehicle is to right of the target line, pointing towards the target line.

2. The vehicle is to left of the target line, pointing towards the target line.

3. The vehicle is to right of the target line, pointing away from the target line.

4. The vehicle is to left of the target line, pointing away from the target line.

These scenarios are best illustrated with the aid of a diagram given below.
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Figure 3.2: Four different scenarios of vehicle location and orientation

Apart from the four scenarios there is one other scenario that can occur. However, this
fifth scenario can be incorporated within the four scenarios by making an assumption. For
this fifth scenario, the vehicle could be on either side of the target line and it is neither
pointing towards it or away from it but traveling parallel to it. In such a case an assump-
tion was made that the vehicle is pointing towards the target line with a very small angle
of deviation form the parallel. This assumption puts the fifth scenario withing scenario
one and two mentioned above. Further analyzing the vehicles position and orientation
from the four scenario types, it can be observed that they can be distinguished by the
two parameters mentioned below.

1. The distance from the target line.

2. The angle of deviation from the aimed direction of travel.

It was realized that these two parameters can be used as variables in a mathematical
equation to calculate a radius of curvature that would represent the arced path corre-
sponding to the vehicle steering dynamic. The mathematical illustration of calculation of
the radius of curvature is shown in figure 3.3 below followed by the calculations.
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Figure 3.3: Radius of Curvature

In figure 3.3, the broken grey circle represents an imaginary circle and the red arc
represents the path of the vehicle. The x axis is the target line that the model vehicle has
to travel along with a tolerance of ±5mm. The inputs to the control system algorithm
are two parameters

1. The horizontal displacement of the vehicle from the central target line, ′h′.

2. The angle of deviation from the aimed direction of travel, ′θ′.

Taking these inputs and applying the rules from circle theorem geometry and simple
trigonometry, the coordinates of the center of the circle can be worked out and using that
the radius of curvature of the circle can be worked out.

Referring to figure 3.3, it was considered that the vehicle is at location A. If a tangent
to the circle at A is to be drawn, the angle subtended by the radius and the tangent at
A would be a right angle. Therefore:

∠BAC = 90− θ (3.1)

The angle subtended by the radius and the x axis is also 90◦ and since the line AB is
parallel to the x axis, ∠ABC = 90◦. As the sum of angles in a triangle equal 180◦, and
∠ABC = 90◦ This makes ∠ACB = θ. Now from ∆ADC, it can be seen that it is an
isosceles triangle as line AC and DC are radii. This is shown in figure 3.4 below.
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Figure 3.4: Major triangle ADC and sub-triangle ABD and ABC

Using the properties of an isosceles triangle,

∠ADC =
180− θ

2
(3.2)

∠ADB = ∠ADC (3.3)

Therefore,

tan(∠ADB) =
x

h
(3.4)

where x is the x coordinate of the imaginary circle and h is the horizontal displacement
from the target line
The x-coordinate of the center of the circle is given by:

x = h tan(
180− θ

2
) (3.5)

Therefore looking at ∆ABC in figure 3.4, the radius, which is in fact length AC is
given by:

radius =
x

sin(θ)
(3.6)

Combining equations 3.5 and 3.6 a single equation that takes the displacement and
angle as its input and returns the required radius of curvature was obtained. This equation
is given below.

radius =
h tan(180−θ

2
)

sin(θ)
(3.7)

Once the equation was obtained, it was used in a simulation program to understand
if the equation was able to realize the required trajectory that a vehicle would steer by.
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3.3.1 Simulation of Steering Dynamics

The simulation was conducted for different combinations of horizontal displacement and
angle of deviation to realize the four different types of scenarios. The results of the
simulation are shown below in figure 3.5.

Figure 3.5: Steering Dynamic Simulation

In figure 3.5 above there are four different trajectories illustrated each corresponding
to the four scenarios mentioned earlier in this section. However, in the calculation above
only the case where the vehicle is pointing towards the target line was used to obtain the
equation for radius of curvature i.e. equation 3.7. In the simulation, in order to project
the vehicle’s trajectory in the case where the vehicle is pointing away from the target
line a recursive method of using equation 3.7 was adopted. In this case, the simulation
program uses equation 3.7 to compute a radius of curvature that will smoothly steer the
vehicle in an arc until the vehicle is pointing towards the target line but with a horizontal
displacement. At this point, equation 3.7 is again used, in a recursive manner, to compute
a new radius of curvature according to the calculations shown above. This is illustrated
in figure 3.5 by the trajectory marked ’A’ and ’D’ and the point on the trajectory where
the recursive use of equation 3.7 occurs is marked by ’X’ and ’Y’ respectively.

In the figure the orange lines represent the tolerance region. It can be noticed that
the equation is able to determine a radius of curvature that can realize the trajectory
needed for the model vehicle to align itself within acceptable tolerance. This technique
of calculating a radius of curvature and using it to steer the vehicle into alignment is
essentially applicable to the normal mode of operation where the vehicle is not within
acceptable tolerance as once the vehicle is inside the tolerance region it simply needs to
maintain the position by correcting any locational drift in any direction. Therefore, for
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the tolerance mode, a more sensitive control algorithm was developed. The two modes of
operation are further discussed in the following sections.

3.4 The Normal Mode

When the vehicle is operating in the normal mode, the autonomous control system needs
to control the vehicle to bring it within the tolerance region very steadily due to the high
operational velocities of the wind tunnel. Attempting to steer the vehicle rapidly will
compromise the stability of the system. Therefore, to avoid the risk of losing stability,
the four different types of scenarios as shown in figure 3.2 was further analyzed. Out of
these four types of scenarios, they can further be classified as two different types in order
to make the control algorithm for normal mode of operation more optimized. The two
types are as follows.

1. The vehicle is pointing towards the target line.

2. The vehicle is pointing away from the target line.

The two scenarios mentioned above will have slightly different control algorithms ap-
plied to them in order to achieve smooth autonomous driving. In the case of scenario one
mentioned above in this section, relating the simulation to the actual scenario is straight
forward. On the other hand, in case of scenario two when the vehicle is pointing away
from the target line, it was decided that the algorithm uses a fixed radius to steer the
vehicle and make it point towards the target line and then apply the control algorithm
for scenario one. This is best illustrated with the aid of a flowchart in terms of block
diagrams. This is given in figure 3.6 below.



3.4 The Normal Mode 23

Figure 3.6: Control algorithm for the normal mode of operation

The fixed radius mentioned in the control algorithm was set to be 200mm. This was
set to be 200mm because, as per the specification of the wind tunnel test facility available
in Macquarie university, the test section is 500mm wide. With the target line at the center
of this test section, this leaves a horizontal range of 250mm on either side. Therefore the
fixed radius was capped at 200mm as this would ensure that the vehicle does not steer
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outside the bounds of the test section. It is worth noticing that in the case where the
vehicle is not pointing towards the target line, the orientation of the vehicle is updated
constantly to check for the instance when it is pointing towards the target line. In the
complete execution of the algorithm, the data regarding vehicle’s location and orientation
is updated and checked in every iteration to determine whether the vehicle has entered
the tolerance mode or not.

3.5 The Tolerance mode

The second mode of operation is the tolerance mode. In this mode the vehicle is already
within acceptable tolerance and now it needs to maintain the vehicle’s position with a
high degree of accuracy. According to the project specification the control system needs
to hold the vehicle in position accurate to ±5mm. The first step within the operation of
the tolerance mode is to check whether the vehicle has lost its position from the tolerance
region or not in that case the algorithm autonomously shifts to the normal mode. If the
vehicle is still within the tolerance mode, a method needed to be devised that can realize
any small incremental change in the position of the car in any direction. Upon detection
of a movement of approximately 5mm, the control algorithm needs to steer or adjust
throttle or do both according to the movement of the vehicle.

The response of the control system according to the possible changes in position of
the vehicle is best described by tabular representation. This is shown below in table 3.1

5mm change in vehicle’s position
Corresponding required action

forward backward leftward rightward
True X X X Reduce throttle

X True X X Increase throttle
X X True X Short steer right
X X X True Short steer left

True X True X Reduce throttle and short steer right
True X X True Reduce throttle and short steer left

X True True X Increase throttle and short steer right
X True X True Increase throttle and short steer left
X X X X Hold steering value and throttle value

Table 3.1: Control system response for small change in vehicle’s position

In table 3.1 above, the first four columns represent the directions in which the vehicle
might move and the fifth column represents the required action of the control system.
A tabular approach was taken to represent this as using a table it would be easier to
realize the possible combinations of change in vehicle’s position that might occur and
how they can be related to the required action of the control system. From the table
it can be seen that there are nine possible combinations and the required action of the
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control algorithm outcomes of these nine possible cases are outlined. When the vehicle is
performing within the tolerance region and is stable, the control system needs to measure
the power consumption of the vehicle and transfer this information to the operator for
analysis of aerodynamic drag. This flow of operation is again best described with the aid
of a flow chart as shown in figure 3.7 below.

Figure 3.7: Control algorithm for the tolerance mode of operation

Now that the control algorithm for both the modes of operation has been determined
they can be connected to obtain a complete final algorithm that represents the total
operational flow of the autonomous control system.
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Figure 3.8: Complete Control algorithm incorporating the two modes of operation

Figure 3.8 above represents the complete control algorithm. It is worth noticing that
the control block that checks if the vehicle is in tolerance or not is accessed in every
iteration of the control algorithm. This ensures that the control algorithm always operates
in the right mode of operation. Another important aspect worth mentioning is that, during
the implementation of the control algorithm, the control algorithm was slightly altered.
While the control principle remains the exact same, few additional control blocks were
added such that the sensors that can be used to realize the two modes of operation are
incorporated. This is further discussed in chapter 4.
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3.6 Determination of the Drag Force

One of the aim of this project is such that the control system has to be capable of
measuring the drag fore that is experienced by the vehicle. This section discusses the
technique of how the control system was given drag measurement capability.

In fluid dynamics, drag sometimes called air resistance or fluid resistance, is a force that
acts opposite to the relative motion of any object moving with respect to the surrounding
fluid. The drag experienced is proportional to the velocity of the moving object. In other
words the power produced by the vehicle to maintain its velocity is proportional to the
drag. By measuring the power consumption of the vehicle the drag that the vehicle is
experiencing can be determined. A mathematical analysis to calculate the actual drag
excluding other resistive forces involved is given below.

During the operation of the vehicle inside the wind tunnel, it will be subjected to
various forces Figure 3.9 below shows all the forces acting on it.

Figure 3.9: Different forces acting on the vehicle during operation

This total resistive force (Drag + Friction) now needs to be overcome by the power
produced by the vehicle. The power produced by the vehicle is the work done per unit
time and work done is given by:

work = Force× distance (3.8)

Therefore,

power =
Force× distance

time
(3.9)

and distance moved per unit time is the velocity and in this case the force is the total
resistive force. Therefore equation 3.9 can now be written as

P = (D + Fr)× v (3.10)



28 Chapter 3. Development of an Advanced Control System Algorithm

where P is the power, v is the velocity, D is the drag and Fr is the friction experience
by the vehicle.

From equation 3.10, ‘D’ is the desirable variable and ‘Fr’ needs to be calculated sepa-
rately in order to obtain the actual drag. The friction can be calculated using the relation
between normal reaction force and friction.

Fr = µ×N (3.11)

where N is the normal reaction force and

N = mg (3.12)

where ‘m’ is the mass of the vehicle and ‘g’ is the acceleration due to gravity. Combin-
ing equations 3.11 and 3.12 and substituting it into equation 3.10, the following equation
can be obtained.

P = (D + µ×mg)× v (3.13)

The power consumed by the vehicle in order to maintain its position can be measured
by taking appropriate voltage and current measurements. The mass of the vehicle can be
easily measured and the velocity will be known from the velocity of the moving ground.
‘g’ is a constant and ‘µ’ will vary from surface to surface but for a known surface it will
be a constant. Therefore, rearranging equation 3.13 to make ‘D’ the subject, the drag can
be calculated or if a graph of P vs v were to be plotted, the constant ‘µmg’ subtracted
from the gradient would also give the drag.

3.7 Chapter Summary

In summary, this chapter looks into the development of the advanced control system
algorithm. In this chapter, vehicle steering dynamics was analyzed and a mathematical
approach to realize the steering dynamics was undertaken. The different types of scenarios
that the model vehicle might be subjected to during its operation was speculated and
the distinguishing parameters were identified. These parameters were found to be the
horizontal displacement of the vehicle relative to the target line and the angle of deviation
of the vehicle from a line parallel to the target line. Using these two input parameters,
circle theorem geometry and trigonometry was applied to obtain a single mathematical
equation that outputs a radius of curvature which can be used to steer the vehicle. The
equation was simulated to observe whether it projected the correct steering trajectory or
not. Analysis of the simulations revealed that for best results, there needed to be two
modes of operation, the normal mode and the tolerance mode. Later in the chapter, the
normal mode and tolerance mode was analyzed and control algorithms for each of these
modes were developed. The control algorithms for the two modes were combined to obtain
a final complete control algorithm. Finally, a mathematical equation to measure the drag
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experienced by the vehicle was developed and the technique to calculate the drag from
the equation was discussed.
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Chapter 4

Specific Criteria Based Sensor
Analysis

4.1 Introduction

This chapter in the thesis looks into the sensors that were used to sense the necessary data
that can be used as the input parameters for the control algorithm for both the modes of
operation. There are several different combinations of sensors that can be used to achieve
this, however there were several criteria involved in the choosing of sensors which limited
the available options. These criteria used in the decision making process along with the
final choice of sensors, are discussed below. Once the sensors of choice were procured they
were tested in order to check their performance and to see if they were accurate enough
for the purposes of this project. The methods used in conducting these tests and the test
results are also discussed in this chapter.

4.2 Sensor Research Criteria

In order to establish the criteria for choosing sensors, it is necessary to understand what
is it that needs to be sensed. From section 3.3 and section 3.4 above, it can be determined
that in the normal mode of operation there are two parameters that needs to be sensed.
They are the horizontal displacement from target line and angle of deviation from aimed
direction of travel. So essentially the control system needs to take distance measurements
and orientation measurements. When taking distance measurements, the range of sensing
is an important aspect worth considering. The control system is to perform with a certain
degree of accuracy. The control system also needs to operate at high speeds which indicate
high frequency of sensing. Two additional factors that were considered when choosing the
sensors were the cost and lead time for procurement as the project needed to be conducted
within a set budget and duration. The selection criteria is discussed further below.

• Range: The range of sensing was the first criteria that was considered. The maxi-
mum required range of sensing was obtained through analysis of the technique that

31
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will be adopted in implementing the control algorithm. The control algorithm needs
the distance of the vehicle from the target line. This was achieved making use of
the known dimensions of the wind tunnel test section. The test section is 500mm
wide, this makes the target line to be 250mm from either of the side walls. If the
vehicle were to sense the distance of one of these walls and subtract it from 250,
the magnitude of the resulting figure would be the distance of the vehicle from the
target line and the sign of the figure can be used to deduce the vehicle’s position
on either side of the wall. Considering this technique the maximum distance that
needed to be sensed was 400mm as the sensors were to be mounted on the side of
the vehicle and the model vehicle used in this project was only 118mm wide.

• Accuracy: Sensors are a key component of this project when in comes to the accuracy
of the deliverable. The specified accuracy for this project is ±5mm. Sensors are
the first point of source of error as the data sensed by the sensors will be used to
compute the output of the control system and if the input data is erroneous then the
computed output will be erroneous as well. Thus resulting in inaccurate position
maintenance for the model vehicle. Since the desired accuracy on the control system
was ±5mm, this allows a total variance of 10mm therefore the sensors were desired
to be accurate to 10mm or better.

• Frequency: The sensor needed to have a high frequency of operation. Since the
model vehicle will be traveling at variable high speeds inside the tunnel, therefore
the higher the operating frequency for the sensors the better.

• Cost: The cost had to be as minimum as possible, the allocated fund for the project
was three hundred Australian Dollars. The sensors along with other components
had to be procured from this fund. Some components cost much more than others,
therefore, the cost per item was minimized as much as possible to include everything
within the allocated fund.

• Lead time: In researching for the sensors and other components, the lead time was
attempted to be kept as short as possible. The stage of the project when the order
for parts was placed the maximum amount of time that could be allocated for the
arrival of parts was three weeks. This factor was also incorporated in the choice of
sensors.

These were the criteria that were considered in the research for sensors. The different
sensors that were considered and the ones that were finally selected are discussed in the
next section.

4.3 Sensor and Component Selection

According to the criteria mentioned above a research was conducted to find suitable
sensors. The results of the research are best described in the form of a table. This is
given below in table 4.1.
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Name Range Accuracy Frequency Cost
Lead
time

Parallax Ultrasonic
Distance Sensor

2cm -
3m

11% -
12 %

5kHz

Approximately
AU40.53+
AU10.99

(shipping)

9 days -
26 days

HC-SR04
Ultrasonic Sensor

2cm -
400cm

3mm
(0.075% -

15%)
40Hz AU$1.90

3 days -
9 days

IR Proximity
sensors

10cm -
80cm

20-40% 25Hz AU$13.20 <6 days

Parallax Laser
Range finder

15cm -
122cm

3% avg
5% max

1Hz
USD 99 +
(shipping)

10 days -
3 months

Adafruit 9-DOF
Absolute Orientation
IMU Fusion BNO055

Breakout Sensor Module

60 mg 100Hz
AU46.51+
AU34.36

(shipping)

9 days -
19 days

Adafruit 9-DOF
Accel/Mag/Gyro+

Temp Breakout Board
- LSM9DS0 (ADA: 2021)

60mg
100kHz -
400kHz

AU41.95+
AU7.95

<5 days

DC Voltage Detector
& Sensor Module
For Arduino ADC

DC 0-
25V

0.1% X AU$5.75
9 days -
10 days

1 Pc 5A Range
Current Sensor
Module ACS712

for Arduino

0-5A 1.5% X
AU1.88+
AU0.26

3 weeks -
5 weeks

30A Range Current
Sensor Module

ACS712ELC-30A
Chip Module (Arduino)

DC 0-
30A

1.5% X AU$7.87 <7 days

Table 4.1: Results of criteria based sensor research [19] [5] [8] [7] [22] [20] [10]

From table 4.1 the desired sensors and other required components were chosen. To
sense the vehicle’s distance from the side wall the HC-SRO4 Ultrasonic sensor was chosen
as its performance specifications best suited the projects need. To obtain the orientation of
the vehicle, the Adafruit 9 Degree of Freedom Absolute Orientation IMU Fusion BNO055
Breakout Sensor Module was chosen. However, due to the unavailability of the item the
choice had to be changed to Adafruit 9 Degree of Freedom Accelerometer, Magnetometer,
Gyroscope and Temperature Breakout Board. In order to measure the power consumption
of the control system a current sensor and a voltage sensor was chosen. To sense the
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current a 30A Range Current Sensor Module using ACS712ELC-30A Chip Module was
chosen and for the voltage sensor the 0-25VDC voltage detector sensor module for arduino
ADC was chosen.

The distance and orientation sensor chosen are to be used in the normal mode of
operation. During the tolerance mode of operation, in order to sense very small drift
of less that 5mm in the vehicles position, a technique using a combination of multiple
components was conceptualized. It was proposed that a light dependent resistor (LDR)
array, in conjunction with a laser pointer could be used to detect positional drift of a
range less than 5mm. An LDR is a variable resistor whose resistance varies with the
amount of light being shone on it. The laser beam shone on the LDR array will focus on
one LDR at any time and identifying the LDR that has the strongest intensity of laser
light shone upon, the position on the vehicle relative to the laser point can be identified.
Holding the laser pointer on top of the target line a reference position for the vehicle can
be obtained and using the relative distance of the center of the vehicle from the reference
point can be used to steer the vehicle such that it always minimizes the relative distant.
The LDR and laser arrangement is shown below with the aid of a diagram.

Figure 4.1: Concept of LDRs and laser pointer

According to figure 4.1 above, considering the direction of travel to be leftward, if the
laser pointer is shining on the central LDR i.e. LDR 22, the vehicle is traveling along
the target line. If the laser points on any of the LDRs numbered 11, 12 or 13 the vehicle
has drifted left and needs to steer right. Similarly, laser pointing on any of the LDRs
numbered 31, 32 or 33 means the vehicle needs to steer left. If the laser points on LDRs
numbered 11, 21 or 31 the vehicle has drifted towards the rear and needs to accelerate.
Similarly, if any of the LDRs numbered 13, 23 or 33 are illuminated by the laser, it
indicates the vehicle is moving too fast and needs to slow down.

In terms of components the micro-controller that was chosen as the central processing
unit of the control system is the Arduino Uno. The number of input and output (I/O)
pins on this micro-controller is limited. In order to cater for the proposed LDR array
the number of (I/O) pins needed to be increased. Therefore a multiplexer was also
incorporated in the list of parts to be procured.

4.4 Sensor Test

The LDR arrangement mentioned in previous section needed to be tested so that it could
be confirmed that the arrangement can sense minute changes in vehicles position and act
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on it.

4.4.1 LDR Array and Laser Dot Combination

In testing the LDR, a linear translator was made out of the available equipment in the
laboratory. A set of LDRs were attached side by side and a red laser dot was shone
on one of the LDRs. The linear translator was used to translate the LDR arrangement
until the laser was shining onto the second LDR. The change in output due to change
in resistance of the LDRs upon shining the laser light was recorded corresponding to the
linear translation of the LDRs and a graph was plotted to identify the maximum distance
of translation that can occur before the sensors outputs completely change their values.
The arrangement of the equipment is shown in figure 4.2, 4.3 and 4.4 below.

Figure 4.2: Arrangement of LDRs and Laser Dot
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Figure 4.3: Initial Position of LDR

Figure 4.4: Incremented Position of LDR

The graph that was obtained is shown in figure 4.5 below and it is seen that as the
position of the LDRs is incremented, one sensor value decreases and the other increases
and at an increment of 3mm the value of the second sensor becomes greater that the first
sensor. Hence the difference curve changes quadrant on the plot.
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Figure 4.5: LDR values corresponding to their position increment

This confirms that the LDR arrangement can be used to accurately identify a move-
ment of 3mm. Since the specification of the project is such that the vehicle maintains
its position with an accuracy of 5mm, a sensor arrangement that can detect a movement
accurate to 3mm is desirable.

4.4.2 Ultrasonic Sensor

The ultrasonic sensor was also tested to determine the accuracy of the sensor. The
distance to an object from the sensor was measured using both the ultrasonic sensor and
a ruler to get the real distance. The distance of the object was varied and recorded. For
each distance value a hundred distance reading samples were taken and the average was
calculated. Then a graph was plotted to understand the difference in measured values
and actual values. The equipment arrangement is shown in figure 4.6 below.
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Figure 4.6: Ultrasonic Sensor Test Arrangement

Two graphs were plotted and are shown in figure 4.7 and 4.8 below. It was seen
that the percentage error between the actual values and the measured values fluctuated
between 0 and 0.14
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Figure 4.7: Percentage Error in Measurement Using Ultrasound
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Figure 4.8: Measured Distance vs Actual Distance

From both the graphs it can be seen that the distance the sensor has an optimum
performance range when it is measuring distance greater than 200mm. This is actually
suitable for the purposes of this project.

4.5 Summary

To summarize a specific research criteria was formed and sensors were researched accord-
ing to the criteria. The criteria involved were range of sensing, accuracy of measurement,
frequency of operation, cost and lead time. According to the criteria, the best fit sensors
were the HC-SR04 ultrasonic distance sensor and LSM9DSO accelerometer, magnetome-
ter and gyroscope. These sensors were applicable for the normal mode of operation and
for the tolerance mode of operation, an arrangement of LDRs in conjunction with a laser
pointer was developed and tested. The LDR arrangement and ultrasonic sensor was tested
for their accuracy of performance and it was found that the ultrasonic sensor had a op-
timum operating range of more than 200m which is appropriate for this project and the
LDR arrangement was accurate to 3mm.



Chapter 5

Implementation of the Control
System

5.1 Introduction

The control algorithm developed in section 3.5 and the sensors researched in section 4.3
were implemented on a 1/10th scale model vehicle that was provided from the department.
Taking the project further from prior development, the arduino, electronic speed controller
and brushless motor was kept. The sensors were replaced and additional sensors were
added. The proximity sensors were changed to the combination of sensors researched in
section 4.3. In order to mount all the sensors appropriately a sensor mount was designed
according to the dimensions of the model vehicle and the sensor mount was 3D printed.
The micro-controller from the prior project was reprogrammed such that it would realize
the new sensors and control algorithm. This section discusses the design of a sensor mount
to house all the sensors and necessary components and the technique that was adopted
in order to implement a prototype autonomous control system.

5.2 The Technique of Implementation

The control system will have two modes of operation as discussed earlier and these two
modes need different set of sensors. As mentioned in section 4.2, for normal mode of
operation, the distance of the vehicle from the target line will be obtained by measuring
the distance of the vehicle from the side wall and subtracting 250mm from it. Therefore
the ultrasonic sensor chosen in section 4.3 will be mounted on one side of the vehicle and
the accelerometer will be mounted on top of the vehicle such that it lays flat. For the
tolerance mode of operation, the LDR array will also be mounted on the top of the vehicle
so that the laser pointer can point onto the array. This technique of implementing the
control algorithm is illustrated below with the aid of a diagram.
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Figure 5.1: The Sensor Setup Plan

Figure 5.1 above shows the plan that was adopted to develop the control system. Ac-
cording to this plan a test bench prototype control system was developed with the sensors
mounted accordingly to test the functionality of the plan. This is shown in figure 5.2
below.

Figure 5.2: The model vehicle maintaining its position on the running ground

It was observed that the control system was being able to measure the vehicle’s distance
form the side wall and steer the vehicle to maintain the measured distance. However it
was not being able to maintain the vehicle position according to the desired specification
of ±5mm accuracy. Therefore the tolerance mode needed to be implemented to meet the
project specification. In order to implement the tolerance mode of the control system,
the LDR array needed to be developed. Therefore a schematic was developed which
incorporated the LDR array.

An LDR was used as a resistor in a voltage divider and when the laser light is shone
onto the LDR, the resistance decrease rapidly which alters the voltage across the voltage
divider and this change in voltage can be used to identify which LDR is the laser pointing
at. This voltage divider circuit is shown below for a single LDR.
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Figure 5.3: Circuit schematic for a singe LDR

While figure 5.3 shows the working principle of a single LDR voltage divider, the
project needed an array of LDRs to operate successfully. With careful analysis of the
accuracy of the ultrasonic sensor in section 4.4 it was determined that a 3x3 array would
be sufficient enough. A 3x3 array of LDRs would mean for nine analog pins on the
Arduino, however the number of analog pins available were not sufficient. Therefore a
multiplexer selector was chosen to increase the number of analog pins in the Arduino Uno.
The LDR array was assembled on a breadboard for initial testing and then it was soldered
onto a silicon board. With all the sensors procured, the sensor mount was designed by
taking exact measurements of the sensor, components and vehicle dimensions.

5.3 Sensor Mount Design

The sensor mount was initially designed by hand drawing a three dimensional model. It
was then transformed into a digital design using computer aided design software. The
design has holes on the right side of the body for the ultrasonic sensor’s transmitter and
receiver to protrude and it has holes at the bottom so that it can be screwed onto the
car. The top surface also has holes where the micro-controller and other components were
screwed on. The sensor mount design is such that it has some empty space between the
top surface of the mount and the base of the model vehicle’s chassis. This space was
intentionally incorporated in the design to make room for parts of the chassis to pass
through and to place the LiPo battery. Figure 5.4 below shows the digital model of the
sensor.
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Figure 5.4: Digital model of the designed sensor mount

The digital model was then 3D printed using the available equipment at the laboratory.
The print was successful. Figure 5.5 below shows the results of the print.
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Figure 5.5: 3D printed sensor mount

5.4 The Final Control System

With the sensor mount printed and the appropriate sensors mounted on the model vehicle,
the micro-controller needed to programmed. The complete control algorithm that was
developed at the end of section 3.5 is refined here so that the appropriate use of sensors,
the calibration process and autonomous driving is implemented in the programming of
the micro-controller. The refined control algorithm which in essence is the pseudo code
for the micro-controller is given below in figure 5.6.
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Figure 5.6: Refined control algorithm

Every time the electronic speed controller is disconnected from the battery it needs
recalibration and at the beginning of the operation of the control system after the ESC
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calibration the parameters such as default steering angle and the default PWM frequency
for throttle response is configured. This configuration is a manual process where the
operator will have to control the vehicle remotely from the PC. Once these parameters
are configured, the autonomous driving mode can be engaged. Once the autonomous
driving mode has been engaged the micro-controller controls the vehicle according the
control algorithm shown in figure 5.6. At this stage of the project the model vehicle
was finally built and the micro-controller was programmed accordingly. The complete
schematic including every single components used in the implementation of the control
system is given below in figure 5.7.

Figure 5.7: Complete schematic

Following the schematic the sensor mount was populated with the HC-SR04 ultrasonic
distance sensor, the nine degree of freedom LSM9DSO accelerometer magnetometer gyro-
scope, the LDR array, the HC06 bluetooth module and the Arduino Uno micro-controller
itself. The current sensor and voltage sensor was not mounted on the sensor mount as
they needed to be placed close to the LiPo battery. The populated sensor mount was then
attached to the model vehicle and the final result of the model vehicle is shown below in
figure ??.
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Figure 5.8: Model vehicle with the populated sensor mount and all components

5.4.1 Mapping The Calculated Radius to a Steering Angle

In the control algorithm, there is a control block that states the calculated radius needs
to be mapped onto the steering angle. This block is essential in terms of programming
the micro-controller. When programming the micro-controller, there were no means of
calculating a servo steering angle from a radius of curvature without relevant reference
data. In order to do understand the relationship between a radius of curvature and a
steering angle the reference data was obtained experimentally. The experiment involved
varying the steering angle and letting the vehicle drive itself for a known distance and
measuring the resultant horizontal offset. Using these two lengths and applying geometric
and trigonometric analysis the radius of curvature could be calculated. The experimental
procedure is better illustrated with the aid of a diagram. This is shown below in figure 5.9
followed by the calculations.
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Figure 5.9: Experimental procedure to get relation between steering angle and radius
of curvature

In figure 5.9 above ‘d’ is the known distance and ‘x’ is the measured horizontal offset.
This is represented in geometric form in figure 5.10 to aid with the calculations.
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Figure 5.10: Geometric representation for calculation of radius

The length AB or ‘l ’ can be calculated by pythagoras theorem

l =
√
x2 + d2 (5.1)

θ = arctan
x

d
(5.2)

In ∆ABC, ∠ABC equals 90− θ as per rules from the circle theorem.

cos(90− θ) =
l
2

r
(5.3)

Therefore, rearranging equation 5.3 and substituting equations 5.1 and 5.2 in it the
radius of curvature can be obtained by the following equation.

r =
l

2 cos(90− arctan(x
d
))

(5.4)

The equation was used to calculate the radius for several different steering angle and
a graph of radius vs steering angle was plotted. This is given below.
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Figure 5.11: Radius of curvature vs steering angle

An analysis of the graph suggests that the relation is accurate. The steering angle
and the radius of curvature should be inversely proportional and that is what the graph
suggest as well. If the steering angle is small the the radius of curvature should be large
and from the graph it can be seen that as the steering angle approaches zero the radius of
curvature tends towards infinity and the y-axis in the graph is asymptotic to the graph.
Using this relation, during the execution of the control algorithm, the calculated radius
is mapped to a steering angle.

5.5 Summary

To summarize, this chapter discusses the implementation of the control system on a
1/10th scale model vehicle. The complete control algorithm developed is section 3.5 was
refined in this chapter so that the control algorithm can be related to the new components
that were researched for this project. The pre-existing project was further developed to
build the final model of this project. In the process, the additional sensors were added
to the model and to house these sensors, a sensor mount was designed and 3D printed.
The sensor mount was then populated appropriately with the sensors and the final model
vehicle was built. In order to execute the complete control algorithm the data needed for
the block which maps calculated radius to steering angle was accumulated experimentally.
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Chapter 6

Interfacing with the Control System

6.1 Introduction

This chapter discusses the steps that were taken to interface with the control system from
the computer. There were two means developed in order to interface with the control
system. The first is a simple interfacing technique over a terminal program with a set
baudrate and the second is a graphical user interface that can be used to represent the
data accumulated while the control system is operational.

6.2 Interfacing Over a Terminal Program

In order to interface with the control system, the operator would essentially have to estab-
lish a serial connection between the computer and the arduino on the vehicle. A wireless
method of communication was chosen by the use of bluetooth modules. A bluetooth
dongle connected to the computer and paired with the bluetooth module on the vehicle
can be used to establish a stable serial communication channel between the PC and the
control system. Once the bluetooth module is connected and paired, the com port that
it will communicate through can be found from the device manager. Once the COM
port is identified, a terminal program needs to be launched with the correct COM port
number and baudrate. For this project, PuTTy was used as the terminal program and
the communication baudrate was set to be 9600 as per the arduino code.

The first step in the operation of the control algorithm is the calibration of the elec-
tronic speed controller (ESC). The calibration process is done in three steps. The first
step is to set the maximum throttle. At this point the arduino outputs a PWM signal with
a frequency of 180Hz. Once the maximum throttle is adjusted, the ESC makes a beep
sequence of four beeps. Then pressing any key on the keyboard advances the calibration
process to the next step. In this step the minimum throttle is set. Here the PWM signal
frequency is set to 0HZ. A similar beep sequence is produced once the calibration is com-
pleted. The last step in the calibration process is the recognition of the neutral throttle
value. In this case the PWM signal frequency value is set to be halfway between the max-
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imum value and minimum value i.e. 90Hz. Once the maximum, minimum and neutral
throttle values are set, the ESC is calibrated and at this stage the ESC confirms this by
producing a beep sequence of four beeps followed by an additional two beeps making a
total of six beeps. After the ESC is calibrated, the accelerometer is initialized. During
the whole calibration process, the control system was programmed to send strings of text
over the serial connection established to communicate with the operator. An illustration
of this communication terminal is shown below in figure 6.1

Figure 6.1: The serial terminal during calibration

Upon successful completion of the calibration process, the reference steering angle
needed to be configured. This is done by adjusting the vehicle’s position on the center
of the moving ground by manually incrementing or decrementing the steering angle. The
arduino was programmed to recognize the transmission of numeric key ’8’ and ’9’ as
commands to increment ad decrement the steering angle. The orientation in which the
steering servo was mounted was as such that an increment in the steering angle would steer
the vehicle left and a decrement would steer it right. Once the operator is satisfied with
the vehicle’s position on the moving ground, pressing the the numeric key ’7’ initializes
the autonomous driving. Once the autonomous driving is engaged, the data that is being
sensed by the sensors are transmitted over the wireless serial communication established
at the beginning. An image of the terminal screen during the operation of the autonomous
driving is given below followed by a discussion of the transmitted data.
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Figure 6.2: The serial terminal during autonomous driving

The data transmitted is the orientation of the vehicle along the X, Y and Z axis
followed by five floating values. The X, Y and Z axis gyroscope readings and the five
floating values are each separated by a ’space’ character. Out of the five floating values,
the first two can only take values of either zero or one and these two characters indicate
the activation of autonomous driving and operation in tolerance mode respectively. The
next two figures are the current and voltage readings respectively. The last figure is the
PWM frequency value.

6.3 Graphical User Interface

In an attempt to represent the data in a more visual manner rather than just continuous
strings of text an attempt was made to develop a graphical user interface (GUI). However
this graphical user interface can only be accessed once the calibration and configuring
steps has been completed and the autonomous driving mode has been activated.

As discussed in the previous section, the data transmitted consists of the vehicle’s ori-
entation, indication of autonomous driving activation and tolerance mode operation and
the power consumption details. In order to represent this data, the vehicle’s orientation
was best illustrated by modeling the vehicle as a cube that would mimic the orientation
of the vehicle in real time. The rest of the data was best represented in an information
dialog box beside the cube. The indication of autonomous driving mode and tolerance
mode was illustrated with the aid of colored blocks, where a red block indicates deacti-
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vated stage and a green block indicates active stage. The GUI is shown below in a series
of three images.

Figure 6.3: The idle graphical user interface
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Figure 6.4: The graphical user interface during normal mode of operation
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Figure 6.5: The graphical user interface during tolerance mode of operation

Figure 6.3, 6.4 and 6.5 above show three stages of the GUI. Figure 6.3 shows the GUI
when there is no data being transmitted. Here the dialog box is empty and the cube
is in its default orientation. Figure 6.4 above shows the GUI when the control system
is operational and autonomous driving has been enabled but it is not in the tolerance
mode and figure 6.5 shows both autonomous driving and tolerance mode engaged. In
these figures the autonomous driving block and the tolerance mode block is green and red
accordingly and the dialog box consists of the current reading, voltage reading and PWM
signal frequency.

6.4 Summary

This chapter is about the communication protocol used and methods of interfacing with
the control system. In summary the communication between the control system and PC
is done wirelessly over bluetooth. Two different methods of interfacing with the control
system was developed. The first method was interfacing over a terminal program and
the second was a graphical user interface. The terminal program is used to calibrate and
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configure the control system’s default parameters and shows the quantitative data that
is transmitted from the control system. The second interfacing method is the graphical
one where the vehicle is modeled as a cube and a dialog box is present displaying all the
accumulated data.
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Chapter 7

Conclusions

In conclusion, this thesis project took an intuitive approach to develop a control system
that can maintain a model vehicle’s position in a wind tunnel with high degree of accu-
racy and measure the drag the vehicle is experiencing. Existing wind tunnel facilities and
methods of measuring drag was reviewed. Relevant autonomous driving algorithms were
reviewed and the concept of determining the vehicles trajectory by obtaining a radius of
curvature was adopted. A mathematical approach was taken to realize the vehicle steer-
ing dynamics and a single equation was obtained that takes two input parameters of a
horizontal displacement and angle of deviation from the direction of travel and outputs a
radius of curvature. An experiment was done to map the calculated radius to a steering
angle. After the mathematical analysis it was observed that the control system would
perform best if there were to be two modes of operation, one where the vehicle is not in
tolerance, the normal mode and the other when the vehicle is within tolerance, tolerance
mode. Separate control algorithms were developed for each of the modes and then com-
bined to obtain one complete algorithm. As part of the control algorithm, a technique to
measure the drag the vehicle experiences was also developed. Sensors that could realize
the inputs to the control algorithm were researched. The sensors were researched under a
specific criteria and the ones that best fitted the criteria were chosen. The chosen sensors
were also tested and finally the control system was implemented on a 1/10th scale model.
The control system performed according to the project specifications and was able to
measure power consumption for drag determination.

Future Work

Whilst the control system performed within acceptable tolerance, there is room for im-
provement. The program running in the micro-controller can be further optimized. As
part of the optimization process, the LDR array and multiplexer arrangement that is being
used in the tolerance mode needs to be further developed such that they have their own
computational capacity and the new arrangement of the tolerance mode sensors allow for
quicker sensing of the minute movement in the tolerance region. The drag measurement
can also be further improved. Currently the power consumption is measured by measuring
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the power input to the electronic speed controller and there is question of efficiency. This
efficiency factor needs to be further analyzed. Another area of improvement is the smooth
launching ability. At the moment the operation of the control system is such that the
increase in the speed of the brushless motor system going from no throttle to minimum
throttle is very rapid. So the operator needs to place the vehicle on the moving ground
when the ground is moving above a certain speed. A technique needs to be developed so
that this increase in speed is gradual and not rapid.
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Appendix A

HC-SR04 Datasheet

 

 

  Tech Support: services@elecfreaks.com 

Ultrasonic Ranging Module HC - SR04 

 Product features:  

Ultrasonic ranging module HC - SR04 provides 2cm - 400cm non-contact 
measurement function, the ranging accuracy can reach to 3mm. The modules 
includes ultrasonic transmitters, receiver and control circuit. The basic principle 
of work: 
(1) Using IO trigger for at least 10us high level signal, 
(2) The Module automatically sends eight 40 kHz and detect whether there is a 
pulse signal back. 
(3) IF the signal back, through high level , time of high output IO duration is 
the time from sending ultrasonic to returning. 
Test distance = (high level time×velocity of sound (340M/S) / 2, 

 Wire connecting direct as following:  

� 5V Supply 
� Trigger Pulse Input 
� Echo Pulse Output 
� 0V Ground 

Electric Parameter 

Working Voltage DC 5 V 

Working Current 15mA 

Working Frequency 40Hz 

Max Range 4m 

Min Range 2cm 

MeasuringAngle 15 degree 

Trigger Input Signal 10uS TTL pulse 

Echo Output Signal Input TTL lever signal and the range in 

proportion 

Dimension 45*20*15mm 

 

Figure A.1
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Arduino Code

B.1 Version 1

#inc lude <Servo . h>

// Acce lerometer package code i n c o r p o r a t i o n begin
#inc lude <SPI . h>
#inc lude <Wire . h>
#inc lude <Adaf ru i t Senso r . h>
#inc lude <Adafruit LSM9DS0 . h>
#inc lude <Adafruit Simple AHRS . h>

// Create LSM9DS0 board in s t ance .
Adafruit LSM9DS0 lsm ( 1 0 0 0 ) ; // Use I2C , ID #1000

// Create s imple AHRS algor i thm us ing the LSM9DS0 ins tance ’ s acce l e romete r and magnetometer .
Adafruit Simple AHRS ahrs (&lsm . getAcce l ( ) , &lsm . getMag ( ) ) ;

// Function to c o n f i g u r e the s e n s o r s on the LSM9DS0 board .
// You don ’ t need to change anything here , but have the opt ion to s e l e c t d i f f e r e n t
// range and gain va lue s .
void configureLSM9DS0 ( void )
{

// 1 . ) Set the acce l e romete r range
lsm . setupAcce l ( lsm .LSM9DS0 ACCELRANGE 2G) ;
// lsm . setupAcce l ( lsm .LSM9DS0 ACCELRANGE 4G) ;
// lsm . setupAcce l ( lsm .LSM9DS0 ACCELRANGE 6G) ;
// lsm . setupAcce l ( lsm .LSM9DS0 ACCELRANGE 8G) ;
// lsm . setupAcce l ( lsm .LSM9DS0 ACCELRANGE 16G) ;

// 2 . ) Set the magnetometer s e n s i t i v i t y
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lsm . setupMag ( lsm .LSM9DS0 MAGGAIN 2GAUSS) ;
// lsm . setupMag ( lsm .LSM9DS0 MAGGAIN 4GAUSS) ;
// lsm . setupMag ( lsm .LSM9DS0 MAGGAIN 8GAUSS) ;
// lsm . setupMag ( lsm .LSM9DS0 MAGGAIN 12GAUSS ) ;

// 3 . ) Setup the gyroscope
lsm . setupGyro ( lsm .LSM9DS0 GYROSCALE 245DPS ) ;
// lsm . setupGyro ( lsm .LSM9DS0 GYROSCALE 500DPS ) ;
// lsm . setupGyro ( lsm . LSM9DS0 GYROSCALE 2000DPS ) ;

}
// Acce lerometer package code i n c o r p o r a t i o n end

Servo dr iveServo ;
Servo s t e e rSe rvo ;

const i n t t r i g P i n = 9 ;
const i n t echoPin = 10 ;

long durat ion ;
i n t d i s t anc e ;

const i n t analogInPin0 = A0 ; // Analog input pin that the potent iometer i s attached to
const i n t analogInPin1 = A1 ; // Analog input pin that the potent iometer i s attached to
// const i n t analogInPin2 = A2 ; // Analog input pin that the potent iometer i s attached to

const i n t currentPin = A2 ; // Analog input pin that the potent iometer i s attached to
const i n t vo l tagePin = A3 ; // Analog input pin that the potent iometer i s attached to

i n t sensorValue [ 3 ] ;
i n t outputValue [ 3 ] ;

i n t minVal ;
i n t LDR;

i n t dr iveServoPin = 3 ;
i n t s t ee rSe rvoPin = 5 ;
i n t i n s t r u c t i o n = 0 ;
i n t s t ee rAng l e = 87 ;
i n t manualAdjustedAngle = 87 ;
i n t bluetoothPower = 12 ;

f l o a t currentDrawn = 0 ;
f l o a t voltageDrop = 0 ;
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i n t cu r r en tThro t t l e = 95 ;

bool autoPilotUSND = f a l s e ;
bool autoPilotLDR = f a l s e ;
f l o a t t o l e r a n c e = 0 ;
f l o a t autoDrive = 0 ;

void setup ( ) {
// put your setup code here , to run once :
pinMode ( t r igP in , OUTPUT) ;
pinMode ( echoPin , INPUT) ;

pinMode ( bluetoothPower , OUTPUT) ;
d i g i t a l W r i t e ( bluetoothPower , HIGH) ;

dr iveServo . attach ( dr iveServoPin ) ;
s t e e rSe rvo . attach ( s t ee rSe rvoP in ) ;

S e r i a l . begin ( 9 6 0 0 ) ;
whi l e ( ! S e r i a l ){}
c a l i b r a t e D r i v e S e r v o ( ) ;
S e r i a l . p r i n t l n ( ” ” ) ;
S e r i a l . p r i n t l n (”ESC CALIBRATION: OK! ” ) ;
dr iveServo . wr i t e ( 9 5 ) ;
s t e e rSe rvo . wr i t e ( s t ee rAng l e ) ;
S e r i a l . p r i n t l n (” Driv ing ESC: OK! ” ) ;

// Acce lerometer i n i t i l i s a t i o n begin
S e r i a l . p r i n t l n (F(” Adafru i t LSM9DS0 9 DOF Board AHRS I n i t i a l i s a t i o n begin ” ) ) ; S e r i a l . p r i n t l n ( ” ” ) ;

// I n i t i a l i s e the LSM9DS0 board .
i f ( ! lsm . begin ( ) )
{

// There was a problem d e t e c t i n g the LSM9DS0 . . . check your connect ions
S e r i a l . p r i n t (F(”No LSM9DS0 detec ted . . . Check wi r ing or I2C ADDR! ” ) ) ;
whi l e ( 1 ) ;

}

// Setup the senso r gain and i n t e g r a t i o n time .
configureLSM9DS0 ( ) ;
// Acce lerometer i n i t i a l i s a t i o n end

}
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void loop ( ) {
// put your main code here , to run repea t ed ly :
i n t temp = i n s t r u c t i o n ;
i f ( S e r i a l . a v a i l a b l e ( ) )

i n s t r u c t i o n = S e r i a l . read ( ) − 48 ;

/∗
i f ( i n s t r u c t i o n == 0)

dr iveServo . wr i t e ( 9 5 ) ;
e l s e i f ( i n s t r u c t i o n == 1)

dr iveServo . wr i t e ( 1 0 0 ) ;
e l s e i f ( i n s t r u c t i o n == 2)

dr iveServo . wr i t e ( 1 0 5 ) ;
e l s e i f ( i n s t r u c t i o n == 3)

dr iveServo . wr i t e ( 1 1 0 ) ;
// e l s e

// dr iveServo . wr i t e ( 9 0 ) ;
∗/
i f ( i n s t r u c t i o n == 1)
{

cu r r en tThro t t l e++;
i n s t r u c t i o n = temp ;

}
e l s e i f ( i n s t r u c t i o n == 2)
{

cur rentThrot t l e −−;
i n s t r u c t i o n = temp ;

}

i f ( cu r r en tThro t t l e < 180)
{

dr iveServo . wr i t e ( cu r r en tThro t t l e ) ;

S e r i a l . p r i n t (” Throt t l e Value : ” ) ;
S e r i a l . p r i n t ( cu r r en tThro t t l e ) ;
S e r i a l . p r i n t (” un i t s ” ) ;
S e r i a l . p r i n t (” \ t ” ) ;

}

i f ( i n s t r u c t i o n == 7)
{

autoPilotUSND = true ;
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autoDrive = 1 ;
i n s t r u c t i o n = temp ;
S e r i a l . p r i n t l n (” Auto P i l o t USND Enabled : OK! ” ) ;

}
e l s e i f ( i n s t r u c t i o n == 6)
{

autoPilotUSND = f a l s e ;
autoDrive = 0 ;
i n s t r u c t i o n = temp ;
S e r i a l . p r i n t l n (” Auto P i l o t USND Disabled : OK! ” ) ;

}

i f ( i n s t r u c t i o n == 5)
{

autoPilotLDR = true ;
i n s t r u c t i o n = temp ;
S e r i a l . p r i n t l n (” Auto P i l o t LDR Enabled : OK! ” ) ;

}
e l s e i f ( i n s t r u c t i o n == 4)
{

autoPilotLDR = f a l s e ;
i n s t r u c t i o n = temp ;
S e r i a l . p r i n t l n (” Auto P i l o t LDR Disabled : OK! ” ) ;

}

i f ( ! autoPilotUSND && ! autoPilotLDR )
{

i f ( i n s t r u c t i o n == 9)
{

s t ee rAng l e++;
i n s t r u c t i o n = temp ;
manualAdjustedAngle = stee rAng l e ;

}
i f ( i n s t r u c t i o n == 8)
{

steerAngle−−;
i n s t r u c t i o n = temp ;
manualAdjustedAngle = stee rAng l e ;

}
s t e e rSe rvo . wr i t e ( s t ee rAng l e ) ;
S e r i a l . p r i n t (” Manually Adjusted Angle : ” ) ;
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S e r i a l . p r i n t ( manualAdjustedAngle ) ;
S e r i a l . p r i n t l n (” degree s ” ) ;

}

whi le ( autoPilotUSND )
{

temp = i n s t r u c t i o n ;
i f ( S e r i a l . a v a i l a b l e ( ) )

i n s t r u c t i o n = S e r i a l . read ( ) − 48 ;

i f ( i n s t r u c t i o n == 6)
{

autoPilotUSND = f a l s e ;
autoDrive = 0 ;
i n s t r u c t i o n = temp ;
S e r i a l . p r i n t l n (” Auto P i l o t USND Disabled : OK! ” ) ;

}

// i n t cur rentDi s tance = distanceMeasured ;
// autoDrive = 1 ;
//−−−−−−−−−−−−
// U l t r a son i c p o s i t i o n mainta in ing code
d i g i t a l W r i t e ( t r i gP in , LOW) ;
de layMicroseconds ( 2 ) ;

d i g i t a l W r i t e ( t r i gP in , HIGH) ;
de layMicroseconds ( 1 0 ) ;
d i g i t a l W r i t e ( t r i gP in , LOW) ;

durat ion = pu l s e In ( echoPin , HIGH) ;
d i s t ance = durat ion ∗0 . 0 3 4 / 2 . 0 ;
// S e r i a l . p r i n t (” Current Distance : ” ) ;
// S e r i a l . p r i n t ( d i s t anc e ) ;
// S e r i a l . p r i n t l n (”cm” ) ;

i f ( d i s t ance < 25)
{

s t ee rAng l e++;
s t e e rSe rvo . wr i t e ( s t ee rAng l e ) ;
// de layMicroseconds ( 3 0 0 0 ) ;
de lay ( 5 0 ) ;
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steerAngle−−;
// i n s t r u c t i o n = temp ;

}
e l s e i f ( d i s t ance > 25)
{

steerAngle−−;
s t e e rS e rvo . wr i t e ( s t ee rAng l e ) ;
// de layMicroseconds ( 3 0 0 0 ) ;
de lay ( 5 0 ) ;
s t e e rAng l e++;
// i n s t r u c t i o n = temp ;

}
e l s e
{

s t ee rAng l e = manualAdjustedAngle ;
}
i f ( abs ( d i s t anc e − 25) <= 5)

t o l e r a n c e = 1 ;
e l s e

t o l e r a n c e = 0 ;
//−−−−−−−−−−−−
currentDrawn = analogRead ( currentPin ) ;
voltageDrop = analogRead ( vo l tagePin ) ;

// Acce lerometer code inco rpora ted begin
s e n s o r s v e c t o r i e n t a t i o n ;

// Use the s imple AHRS func t i on to get the cur rent o r i e n t a t i o n .
i f ( ahrs . g e tOr i en ta t i on (& o r i e n t a t i o n ) )
{

/∗ ’ o r i e n t a t i o n ’ should have v a l i d . r o l l and . p i t ch f i e l d s ∗/
S e r i a l . p r i n t (F(” Or i entat i on : ” ) ) ;
S e r i a l . p r i n t ( o r i e n t a t i o n . r o l l ) ;
S e r i a l . p r i n t (F(” ” ) ) ;
S e r i a l . p r i n t ( o r i e n t a t i o n . p i t ch ) ;
S e r i a l . p r i n t (F(” ” ) ) ;
S e r i a l . p r i n t ( o r i e n t a t i o n . heading ) ;
S e r i a l . p r i n t (F(” ” ) ) ;
S e r i a l . p r i n t ( autoDrive ) ;
S e r i a l . p r i n t (” ” ) ;
S e r i a l . p r i n t ( t o l e r a n c e ) ;
S e r i a l . p r i n t (” ” ) ;
S e r i a l . p r i n t ( currentDrawn ) ;
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S e r i a l . p r i n t (” ” ) ;
S e r i a l . p r i n t ( voltageDrop ) ;
S e r i a l . p r i n t (” ” ) ;
S e r i a l . p r i n t ( cu r r en tThro t t l e ) ;
S e r i a l . p r i n t l n (” ” ) ;

}

// de lay ( 1 0 0 ) ;
// Acce lerometer code inco rpora ted end

}
i f ( autoPilotLDR )
{

//∗∗∗∗∗∗∗∗
// LDR p o s i t i o n mainta in ing code
// read the analog in value :
// and
// map i t to the range o f the analog out :
sensorValue [ 0 ] = analogRead ( analogInPin0 ) ;
outputValue [ 0 ] = map( sensorValue [ 0 ] , 0 , 1023 , 0 , 255 ) ;

sensorValue [ 1 ] = analogRead ( analogInPin1 ) ;
outputValue [ 1 ] = map( sensorValue [ 1 ] , 0 , 1023 , 0 , 255 ) ;

// sensorValue [ 2 ] = analogRead ( analogInPin2 ) ;
// outputValue [ 2 ] = map( sensorValue [ 2 ] , 0 , 1023 , 0 , 255 ) ;

minVal = outputValue [ 1 ] ;
LDR = 1 ;
f o r ( i n t i = 0 ; i < 2 ; i++)
{

i f ( outputValue [ i ] < minVal )
{

minVal = outputValue [ i ] ;
LDR = i ;

}
}

i f (LDR == 0)
{

S e r i a l . p r i n t l n (” Stee r Right ” ) ;
s teerAngle−−;
s t e e rS e rvo . wr i t e ( s t ee rAng l e ) ;
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delayMicroseconds ( 3 0 0 0 ) ;
// de lay ( 5 0 ) ;
s t e e rAng l e++;

}
e l s e i f (LDR == 2)
{

S e r i a l . p r i n t l n (” Stee r Le f t ” ) ;
s t e e rAng l e++;
s t e e rSe rvo . wr i t e ( s t ee rAng l e ) ;
de layMicroseconds ( 3 0 0 0 ) ;
// de lay ( 5 0 ) ;
s teerAngle−−;

}
e l s e
{

S e r i a l . p r i n t l n (” Stee r S t r a i gh t ” ) ;
}
//∗∗∗∗∗∗∗∗

}

}

void c a l i b r a t e D r i v e S e r v o ( )
{

i n t maxThrottle = 180 ;
i n t minThrott le = 0 ;
i n t noThrott le = 90 ;
i n t d i s ca rd ;

// Outputing Maximum t h r o t t l e va lue and c a l i b r a t i n g the ESC
S e r i a l . p r i n t (” Ca l i b ra t i ng maximum t h r o t t l e : ” ) ;
whi l e ( ! S e r i a l . a v a i l a b l e ( ) )
{

dr iveServo . wr i t e ( maxThrottle ) ;
}
d i s ca rd = S e r i a l . read ( ) ;
S e r i a l . p r i n t l n (”OK! −−> Maximum t h r o t t l e c a l i b r a t e d ” ) ;

//
S e r i a l . p r i n t (” Ca l i b ra t i ng minimum t h r o t t l e : ” ) ;
whi l e ( ! S e r i a l . a v a i l a b l e ( ) )
{

dr iveServo . wr i t e ( minThrott le ) ;
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}
d i s ca rd = S e r i a l . read ( ) ;
S e r i a l . p r i n t l n (”OK! −−> Minimum t h r o t t l e c a l i b r a t e d ” ) ;

S e r i a l . p r i n t (” Ca l i b ra t i ng no t h r o t t l e : ” ) ;
whi l e ( ! S e r i a l . a v a i l a b l e ( ) )
{

dr iveServo . wr i t e ( noThrott le ) ;
}
d i s ca rd = S e r i a l . read ( ) ;
S e r i a l . p r i n t l n (” OK! −−> No t h r o t t l e c a l i b r a t e d ” ) ;

}

i n t distanceMeasured ( )
{

long durat ion ;
i n t d i s t anc e ;

d i g i t a l W r i t e ( t r i gP in , LOW) ;
de layMicroseconds ( 2 ) ;

d i g i t a l W r i t e ( t r i gP in , HIGH) ;
de layMicroseconds ( 1 0 ) ;
d i g i t a l W r i t e ( t r i gP in , LOW) ;

durat ion = pu l s e In ( echoPin , HIGH) ;
d i s t ance = durat ion ∗0 . 0 3 4 / 2 . 0 ;
S e r i a l . p r i n t (” Current Distance : ” ) ;
S e r i a l . p r i n t ( d i s t anc e ) ;
S e r i a l . p r i n t (”cm” ) ;

r e turn d i s t ance ;
}

B.2 Version 2

#inc lude <Servo . h>
//#inc lude <S o f t w a r e S e r i a l . h>

//Req . Acc l i b begin
#inc lude <SPI . h>
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#inc lude <Wire . h>
#inc lude <Adaf ru i t Senso r . h>
#inc lude <Adafruit LSM9DS0 . h>
#inc lude <Adafruit Simple AHRS . h>

// Create LSM9DS0 board in s t ance .
Adafruit LSM9DS0 lsm ( 1 0 0 0 ) ; // Use I2C , ID #1000

// Create s imple AHRS algor i thm us ing the LSM9DS0 ins tance ’ s acce l e romete r and magnetometer .
Adafruit Simple AHRS ahrs (&lsm . getAcce l ( ) , &lsm . getMag ( ) ) ;

// Function to c o n f i g u r e the s e n s o r s on the LSM9DS0 board .
// You don ’ t need to change anything here , but have the opt ion to s e l e c t d i f f e r e n t
// range and gain va lue s .
void configureLSM9DS0 ( void )
{

// 1 . ) Set the acce l e romete r range
lsm . setupAcce l ( lsm .LSM9DS0 ACCELRANGE 2G) ;
// lsm . setupAcce l ( lsm .LSM9DS0 ACCELRANGE 4G) ;
// lsm . setupAcce l ( lsm .LSM9DS0 ACCELRANGE 6G) ;
// lsm . setupAcce l ( lsm .LSM9DS0 ACCELRANGE 8G) ;
// lsm . setupAcce l ( lsm .LSM9DS0 ACCELRANGE 16G) ;

// 2 . ) Set the magnetometer s e n s i t i v i t y
lsm . setupMag ( lsm .LSM9DS0 MAGGAIN 2GAUSS) ;
// lsm . setupMag ( lsm .LSM9DS0 MAGGAIN 4GAUSS) ;
// lsm . setupMag ( lsm .LSM9DS0 MAGGAIN 8GAUSS) ;
// lsm . setupMag ( lsm .LSM9DS0 MAGGAIN 12GAUSS ) ;

// 3 . ) Setup the gyroscope
lsm . setupGyro ( lsm .LSM9DS0 GYROSCALE 245DPS ) ;
// lsm . setupGyro ( lsm .LSM9DS0 GYROSCALE 500DPS ) ;
// lsm . setupGyro ( lsm . LSM9DS0 GYROSCALE 2000DPS ) ;

}

//Req . Acc l i b end

// S o f t w a r e S e r i a l S e r i a l (7 , 8 ) ; // RX, TX

f l o a t h ;
f l o a t angleValue ;
f l o a t a n g l e c a l c ;
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f l o a t theta n ;
f l o a t t h e t a c a l c ;

f l o a t xCoor ;
f l o a t rad iu s ;

Servo dr iveServo ;
Servo s t e e rSe rvo ;

const i n t t r i g P i n = 9 ;
const i n t echoPin = 10 ;

long durat ion ;
i n t d i s t anc e ;

const i n t centroLDR = A0 ; // Analog input pin that the potent iometer i s attached to
const i n t toleranceLDR = A1 ; // Analog input pin that the potent iometer i s attached to
const i n t currentPin = A2 ; // Analog input pin that the potent iometer i s attached to
const i n t vo l tagePin = A3 ; // Analog input pin that the potent iometer i s attached to

f l o a t currentDrawn = 0 ;
f l o a t voltageDrop = 0 ;
f l o a t theta ;

// i n t ldrValue [ 3 ] ;
// i n t ldrOutputValue [ 3 ] ;

i n t minVal ;
i n t LDR;

i n t dr iveServoPin = 3 ;
i n t s t ee rSe rvoPin = 5 ;
i n t i n s t r u c t i o n = 0 ;
i n t s t ee rAng l e = 90;//87
i n t manualAdjustedAngle = 90;//87
i n t bluetoothPower = 12 ;
i n t tolCheckCount = 0 ;

i n t cu r r en tThro t t l e = 95 ;

bool autoPilotUSND = f a l s e ;
bool autoPilotLDR = f a l s e ;
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bool v eh i c l e InTo l e r anc e = f a l s e ;
bool autonomousDriving = f a l s e ;

void setup ( ) {
// put your setup code here , to run once :
pinMode ( t r igP in , OUTPUT) ;
pinMode ( echoPin , INPUT) ;

pinMode ( bluetoothPower , OUTPUT) ;
d i g i t a l W r i t e ( bluetoothPower , HIGH) ;

dr iveServo . attach ( dr iveServoPin ) ;
s t e e rSe rvo . attach ( s t ee rSe rvoP in ) ;

//−−−−−−− Acce lerometer Setup begin
S e r i a l . begin (115200 ) ;
S e r i a l . p r i n t l n (F(” Adafru i t LSM9DS0 9 DOF Board AHRS Example ” ) ) ; S e r i a l . p r i n t l n ( ” ” ) ;

// I n i t i a l i s e the LSM9DS0 board .
i f ( ! lsm . begin ( ) )
{

// There was a problem d e t e c t i n g the LSM9DS0 . . . check your connect ions
S e r i a l . p r i n t (F(” Ooops , no LSM9DS0 detec ted . . . Check your wi r ing or I2C ADDR! ” ) ) ;
whi l e ( 1 ) ;

}

// Setup the senso r gain and i n t e g r a t i o n time .
configureLSM9DS0 ( ) ;

//−−−−−−− Acce lerometer Setup end

// S e r i a l . begin ( 9 6 0 0 ) ;
whi l e ( ! S e r i a l ){}
c a l i b r a t e D r i v e S e r v o ( ) ;
S e r i a l . p r i n t l n ( ” ” ) ;
S e r i a l . p r i n t l n (”ESC CALIBRATION: OK! ” ) ;
dr iveServo . wr i t e ( 9 5 ) ;
s t e e rSe rvo . wr i t e ( s t ee rAng l e ) ;
S e r i a l . p r i n t l n (” Driv ing ESC: OK! ” ) ;

}

void loop ( ) {
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// put your main code here , to run repea t ed ly :
i n t temp = i n s t r u c t i o n ;
i f ( S e r i a l . a v a i l a b l e ( ) )

i n s t r u c t i o n = S e r i a l . read ( ) − 48 ;

// Throt t l e c o n t r o l code begin
i f ( i n s t r u c t i o n == 1)
{

cu r r en tThro t t l e++;
i n s t r u c t i o n = temp ;

}
e l s e i f ( i n s t r u c t i o n == 2)
{

cur rentThrot t l e −−;
i n s t r u c t i o n = temp ;

}

i f ( cu r r en tThro t t l e < 180)
{

dr iveServo . wr i t e ( cu r r en tThro t t l e ) ;

S e r i a l . p r i n t (” Throt t l e Value : ” ) ;
S e r i a l . p r i n t ( cu r r en tThro t t l e ) ;
S e r i a l . p r i n t (” un i t s ” ) ;
S e r i a l . p r i n t (” \ t ” ) ;

}
// Throt t l e c o n t r o l code end

i f ( i n s t r u c t i o n == 7)
{

autoPilotUSND = true ;
i n s t r u c t i o n = temp ;
S e r i a l . p r i n t l n (” Auto P i l o t USND Enabled : OK! ” ) ;

}
e l s e i f ( i n s t r u c t i o n == 6)
{

autoPilotUSND = f a l s e ;
i n s t r u c t i o n = temp ;
S e r i a l . p r i n t l n (” Auto P i l o t USND Disabled : OK! ” ) ;

}

i f ( i n s t r u c t i o n == 5)
{
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autoPilotLDR = true ;
i n s t r u c t i o n = temp ;
S e r i a l . p r i n t l n (” Auto P i l o t LDR Enabled : OK! ” ) ;

}
e l s e i f ( i n s t r u c t i o n == 4)
{

autoPilotLDR = f a l s e ;
i n s t r u c t i o n = temp ;
S e r i a l . p r i n t l n (” Auto P i l o t LDR Disabled : OK! ” ) ;

}

//8/6/16
whi le ( autonomousDriving )
{

checkTolerance ( ) ;
whi l e ( v eh i c l e InTo l e r anc e )
{

i f ( analogRead ( centroLDR ) < 50)
{

currentDrawn = analogRead ( currentPin ) ;
voltageDrop = analogRead ( vo l tagePin ) ;
S e r i a l . p r i n t l n (” Current and Voltage Measured ” ) ;
S e r i a l . p r i n t ( currentDrawn ) ;
S e r i a l . p r i n t ( voltageDrop ) ;
S e r i a l . p r i n t l n ( ) ;

}
e l s e
{

i f ( tolCheckCount == 3 | | tolCheckCount == 5 | | tolCheckCount == 8)
{

steerAngle−−;
s t e e rS e rvo . wr i t e ( s t ee rAng l e ) ;

}
e l s e i f ( tolCheckCount == 1 | | tolCheckCount == 4 | | tolCheckCount == 6)
{

s t ee rAng l e++;
s t e e rSe rvo . wr i t e ( s t ee rAng l e ) ;

}
i f ( tolCheckCount == 1 | | tolCheckCount == 2 | | tolCheckCount == 3)
{

cu r r en tThro t t l e++;
}
e l s e i f ( tolCheckCount == 1 | | tolCheckCount == 4 | | tolCheckCount == 6)
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{
cur rentThrot t l e −−;

}

dr iveServo . wr i t e ( cu r r en tThro t t l e )
s t e e rSe rvo . wr i t e ( manualAdjustedAngle ) ;

}
checkTolerance ( ) ;

}
whi le ( ! v eh i c l e InTo l e r ance )// e l s e
{

h = abs ( getDi s tance ( ) − 250 ) ;
angleValue = abs ( getAngle ( ) ) ;
// need to sense d i s t anc e here

a n g l e c a l c = (180 − angleValue ) / 2 ;
theta = ( angleValue ∗PI )/180 ;
t h e t a c a l c = ( a n g l e c a l c ∗PI )/180 ;

i f ( ( theta > 0 && d i s t anc e > 25) | | ( theta < 0 && d i s t anc e < 25))
{

// c a l c u l a t e Radius
xCoor = h∗ tan ( t h e t a c a l c ) ;
r ad iu s = ( xCoor/ tan ( theta ) ) + h ;

//map rad iu s to s t e e r i n g ang le

i f ( r ad iu s > 1000)
s t ee rAng l e +=2;

e l s e
s t ee rAng l e +=5;

s t e e rSe rvo . wr i t e ( s t ee rAng l e ) ;
de layMicroseconds ( 5 0 ) ;
s t e e rSe rvo . wr i t e ( manualAdjustedAngle ) ;

whi l e ( abs ( theta ) >= 0 . 3 )
{

theta = getAngle ( ) ;
}

}
e l s e
{
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i f ( d i s t ance > 25)
{

s t ee rAng l e++; // s t e e r by f i x e d rad iu s
}
e l s e
{

steerAngle−−; // s t e e r by f i x e d rad iu s
}
s t e e rSe rvo . wr i t e ( s t ee rAng l e ) ;

}
checkTolerance ( ) ;

}
}
//8/6/16

i f ( ! autoPilotUSND && ! autoPilotLDR )
{

i f ( i n s t r u c t i o n == 8)// swapped f o r new servo
{

s t ee rAng l e++;
i n s t r u c t i o n = temp ;
manualAdjustedAngle = stee rAng l e ;

}
i f ( i n s t r u c t i o n == 9)// swapped f o r new servo
{

steerAngle−−;
i n s t r u c t i o n = temp ;
manualAdjustedAngle = stee rAng l e ;

}
s t e e rSe rvo . wr i t e ( s t ee rAng l e ) ;
S e r i a l . p r i n t (” Manually Adjusted Angle : ” ) ;
S e r i a l . p r i n t ( manualAdjustedAngle ) ;
S e r i a l . p r i n t l n (” degree s ” ) ;

}

i f ( autoPilotUSND )
{

// i n t cur rentDi s tance = distanceMeasured ;

//−−−−−−−−−−−−
// U l t r a son i c p o s i t i o n mainta in ing code
d i g i t a l W r i t e ( t r i gP in , LOW) ;
de layMicroseconds ( 2 ) ;
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d i g i t a l W r i t e ( t r i gP in , HIGH) ;
de layMicroseconds ( 1 0 ) ;
d i g i t a l W r i t e ( t r i gP in , LOW) ;

durat ion = pu l s e In ( echoPin , HIGH) ;
d i s t ance = durat ion ∗0 . 0 3 4 / 2 . 0 ;
S e r i a l . p r i n t (” Current Distance : ” ) ;
S e r i a l . p r i n t ( d i s t anc e ) ;
S e r i a l . p r i n t l n (”cm” ) ;

i f ( d i s t ance > 25) //swapped f o r new servo
{

s t ee rAng l e++;
s t e e rSe rvo . wr i t e ( s t ee rAng l e ) ;
de layMicroseconds ( 3 0 0 0 ) ;
// de lay ( 5 0 ) ;
s teerAngle−−;
// i n s t r u c t i o n = temp ;

}
e l s e i f ( d i s t ance < 25) //swapped f o r new servo
{

steerAngle−−;
s t e e rS e rvo . wr i t e ( s t ee rAng l e ) ;
de layMicroseconds ( 3 0 0 0 ) ;
// de lay ( 5 0 ) ;
s t e e rAng l e++;
// i n s t r u c t i o n = temp ;

}
e l s e
{

s t ee rAng l e = manualAdjustedAngle ;
}
//−−−−−−−−−−−−

}
}

void c a l i b r a t e D r i v e S e r v o ( )
{
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i n t maxThrottle = 180 ;
i n t minThrott le = 0 ;
i n t noThrott le = 90 ;
i n t d i s ca rd ;

S e r i a l . p r i n t l n (” Begin i n i t i a l i s a t i o n proce s s ” ) ;
whi l e ( ! S e r i a l . a v a i l a b l e ( ) ){}
d i s ca rd = S e r i a l . read ( ) ;
S e r i a l . p r i n t l n (” I n i t i a l i s a t i o n Started ” ) ;

// Outputing Maximum t h r o t t l e va lue and c a l i b r a t i n g the ESC
S e r i a l . p r i n t (” Ca l i b ra t i ng maximum t h r o t t l e : ” ) ;
whi l e ( ! S e r i a l . a v a i l a b l e ( ) )
{

dr iveServo . wr i t e ( maxThrottle ) ;
}
d i s ca rd = S e r i a l . read ( ) ;
S e r i a l . p r i n t l n (”OK! −−> Maximum t h r o t t l e c a l i b r a t e d ” ) ;

//
S e r i a l . p r i n t (” Ca l i b ra t i ng minimum t h r o t t l e : ” ) ;
whi l e ( ! S e r i a l . a v a i l a b l e ( ) )
{

dr iveServo . wr i t e ( minThrott le ) ;
}
d i s ca rd = S e r i a l . read ( ) ;
S e r i a l . p r i n t l n (”OK! −−> Minimum t h r o t t l e c a l i b r a t e d ” ) ;

S e r i a l . p r i n t (” Ca l i b ra t i ng no t h r o t t l e : ” ) ;
whi l e ( ! S e r i a l . a v a i l a b l e ( ) )
{

dr iveServo . wr i t e ( noThrott le ) ;
}
d i s ca rd = S e r i a l . read ( ) ;
S e r i a l . p r i n t l n (” OK! −−> No t h r o t t l e c a l i b r a t e d ” ) ;

}

void checkTolerance ( )
{

veh i c l e InTo l e r anc e = f a l s e ;
f l o a t ldrVal [ 9 ] ;
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f o r ( i n t i = 0 ; i < 2 ; i++)
{

i f ( i == 1)
d i g i t a l W r i t e (6 , HIGH) ;

e l s e
d i g i t a l W r i t e (6 , LOW) ;

f o r ( i n t j = 0 ; i < 2 ; i++)
{

i f ( j == 1)
d i g i t a l W r i t e (7 , HIGH) ;

e l s e
d i g i t a l W r i t e (7 , LOW) ;

f o r ( i n t k = 0 ; i < 2 ; i++)
{

i f ( k == 1)
d i g i t a l W r i t e (8 , HIGH) ;

e l s e
d i g i t a l W r i t e (8 , LOW) ;

ldrVal [ count ] = map( analogRead ( toleranceLDR ) , 0 , 1023 , 0 , 255 ) ;
tolCheckCount++;

}
}

}

f o r ( i n t i = 0 ; i < 9 ; i++)
{

i f ( ldrVal [ i ] < 50)
veh i c l e InTo l e r anc e = true ;

e l s e
v eh i c l e InTo l e r anc e = f a l s e ;

}

}

f l o a t getDi s tance ( )
{

long durationN ;
f l o a t distanceN ;

d i g i t a l W r i t e ( t r i gP in , LOW) ;
de layMicroseconds ( 2 ) ;
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d i g i t a l W r i t e ( t r i gP in , HIGH) ;
de layMicroseconds ( 1 0 ) ;
d i g i t a l W r i t e ( t r i gP in , LOW) ;

durationN = pu l s e In ( echoPin , HIGH) ;
distanceN = durationN ∗0 . 0 3 4 / 2 . 0 ;
S e r i a l . p r i n t (” Current Distance : ” ) ;
S e r i a l . p r i n t ( distanceN ) ;
S e r i a l . p r i n t l n (”cm” ) ;

r e turn distanceN ;
}

f l o a t getAngle ( )
{

s e n s o r s v e c t o r i e n t a t i o n ;

// Use the s imple AHRS func t i on to get the cur rent o r i e n t a t i o n .
i f ( ahrs . g e tOr i en ta t i on (& o r i e n t a t i o n ) )
{

/∗ ’ o r i e n t a t i o n ’ should have v a l i d . r o l l and . p i t ch f i e l d s ∗/
S e r i a l . p r i n t (F(” Or i entat i on : ” ) ) ;
S e r i a l . p r i n t ( o r i e n t a t i o n . r o l l ) ;
S e r i a l . p r i n t (F(” ” ) ) ;
S e r i a l . p r i n t ( o r i e n t a t i o n . p i t ch ) ;
S e r i a l . p r i n t (F(” ” ) ) ;
S e r i a l . p r i n t ( o r i e n t a t i o n . heading ) ;
S e r i a l . p r i n t l n (F ( ” ” ) ) ;

}

// de lay ( 1 0 0 ) ;
r e turn o r i e n t a t i o n . p i t ch ;

}
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Appendix C

Consultation Meetings Attendance
Form
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