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Abstract

Given a locally cartesian closed regular category E , we may form the bicategories of relations, spans,

and polynomials. We show that for each hom-category, relations are a reflective subcategory of spans,

and spans are a coreflective subcategory of polynomials (with cartesian 2-cells). We then use these

local reflections and coreflections to derive the universal property of relations from that of spans, and

construct a right adjoint to the inclusion of spans into polynomials in the 2-category of bicategories,

lax functors and icons. Moreover, we show that this right adjoint becomes a pseudofunctor if we

restrict ourselves to polynomials for which the middle map is a monomorphism, or alternatively if we

restrict ourselves to polynomials for which this map is a regular epimorphism.
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1
Introduction

Hermida showed in [1, TheoremA.2] that given a category E with pullbacks and a bicategoryC , giving

a pseudofunctor Span (E ) → C is equivalent to giving a pseudofunctor E → C which maps arrows

into left adjoints and satisfies a Beck condition. If E is also regular, this result may be extended to the

bicategory of relations Rel (E ) by noticing that for every pair of objects X, Y ∈ E the hom-category

Rel (E ) (X, Y ) is a reflective subcategory of the hom-category Span (E ) (X, Y ). The 2-category

of bicategories, lax functors and icons introduced by Lack [2] provides a natural setting in which to

consider these local reflections; in particular, these local reflections extend to an adjunction in this

2-category. In chapter 3 we introduce the theory of locally reflective sub-bicategories of which this is

an example, and use this theory to deduce the universal property of relations from that of spans.

We will then extend this idea of considering local reflections between Rel (E ) and Span (E ) to

considering local coreflections between Span (E ) and Poly (E ), where Poly (E ) is the bicategory of

polynomials with cartesian 2-cells. In order to do this we will need to first introduce a generalization

of the standard pullback for a monomorphism p

E B

E E

p

p (4.1)

by realizing that such a pullback is terminal among pullbacks for which the bottom arrow p pulls back

into an identity, i.e. pullbacks of the form
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E B

E E

(4.2)

p

p``

This universal property allows us to give a suitable generalization of pullbacks of the form (4.1)

to the case when p is not necessarily a monomorphism. Throughout chapter 4 we discover many

interesting properties of this construction, including results determining precisely when an arrow

pulls back into an isomorphism or a monomorphism in a locally cartesian closed category.

Making use of these terminal pullbacks (which we will call singleton fiber pullbacks), we will

define a lax functor L : Poly (E ) → Span (E ) which exhibits Span (E ) as a locally coreflective

sub-bicategory of Poly (E ). Moreover, we will show that if we restrict ourselves to polynomials of

the form

E B

I J

s t

p

for which p is a monomorphism, then this lax functor L becomes a pseudofunctor. Similarly, we show

that if we restrict ourselves to polynomials for which p is a regular epimorphism (when E is a regular

category) then L also reduces to a pseudofunctor.

The original research in this paper includes the definition and universal property of locally reflective

sub-bicategories, the universal property of relations, and all of chapters 4 and 5 (aside from the basic

theory of relations, spans and polynomials).
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Background

Throughout category theory it is often prudent to study mathematical structures by analyzing the

behavior of morphisms in or out of such structures, and in particular universal properties satisfied by

these morphisms. For example a product A × B may be characterized by the property that giving a

morphism into the product A × B is the same as giving morphisms into both A and B. In a similar

fashion, we may also investigate universal properties satisfied by certain categories.

Given a suitable category E , it is possible to construct new categories Rel (E ), Span (E ) and

Poly (E ) (which will be defined later). To better understand these constructions we would like to

know how giving a functor out of Rel (E ), Span (E ) or Poly (E ) relates to giving a functor out

of E . We should note here that Rel (E ), Span (E ) and Poly (E ) are not actually categories, but a

2-dimensional version of categories known as bicategories; the corresponding 2-dimensional version

of functor is a pseudofunctor.

2.1 Bicategories

Consider the category Cat of small categories and functors. We have the functors mapping between

categories, but we could also add in natural transformations mapping between functors. We now

have a 2-dimensional structure consisting of small categories, functors and natural transformations.

Hence we may view Cat as a 2-dimensional category with the usual objects and morphisms as well

as these “morphisms between the morphisms”: the natural transformations. Adding in these natural
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transformations turns out to be very useful; in particular it allows us define adjoint functors.

Cat with these “2-morphisms” is an example of a 2-category. More generally, we may ask that

composition of morphisms is associative only up to isomorphism; this gives the more general notion

of a bicategory as defined by Bénabou [3].

Definition 1. A bicategory C consists of

• A collection of objects C0;

• For each pair of objects X, Y ∈ C0, a category C (X, Y ), of which we call its objects 1-cells

and morphisms 2-cells;

• For each objectX ∈ C0, a functor IX : 1→ C (X,X) which picks out the identity 1-cell atX;

• For each triple of objects X, Y, Z ∈ C0, a functor cX,Y,Z : C (Y, Z) × C (X, Y ) → C (X,Z)

called horizontal composition, whose action on objects andmorphismswewrite as (g, f ) 7→ g◦f

and (α, β) 7→ α ∗ β respectively;

• Natural isomorphisms

a : cW,X,Z ◦
(
cX,Y,Z × idC (W,X)

)
=⇒ cW,Y,Z ◦

(
idC (Y,Z) × cW,X,Y

)
;

` : cW,X,X ◦
(
IX × idC (W,X)

)
=⇒ idC (W,X);

r : cW,W,X ◦
(
idC (W,X) × IW

)
=⇒ idC (W,X);

consisting of component 2-cells for every f : W → X , g : X → Y and h : Y → Z

ah,g,f : (hg) f → h (gf ) , `f : 1W f → f, rf : f1X → f

known as the associators and left and right unitors respectively. Moreover, we require that the

associators satisfy the pentagon identity expressed by the commutivity of the diagram:
(kh) (gf )

((kh) g) fk (h (gf ))

(k (hg)) fk ((hg) f )

akh,g,fak,h,gf

ak,h,gfkah,g,f

ak,hg,f

and that the unitors render commutative the diagram:
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(g ◦ 1) ◦ f g ◦ (1 ◦ f )

g ◦ f

rgf
g`f

ag,1,f

If the associators and unitors are identities, then we call C a 2-category.

Pseudofunctors

We all know that the structure preserving maps between categories are functors, but we will need

a 2-dimensional analogue of functor to serve as our maps between bicategories. These are called

pseudofunctors and consist of an action on objects, as well a functor on each hom-category. We only

require that these pseudofunctors preserve identities and composition up to 2-isomorphism.

Definition 2. A pseudofunctor F : C → D consists of

• For each object X ∈ C , an object FX ∈ D ;

• For each pair of objects X, Y ∈ C0, a functor FX,Y : C (X, Y ) → D (FX,FY );

• For each object X ∈ C0, a 2-isomorphism λX : 1FX → F (1X );

• For each triple of objects X, Y, Z ∈ C0 and morphisms f : X → Y and g : Y → Z, a

2-isomorphism ϕg,f : F (g) F (f ) → F (gf ) natural in g and f .

Moreover, we require that the constraints make the associativity diagram

F (h) (F (g) F (f )) F (h) F (gf ) F (h (gf ))

(F (h) F (g)) F (f ) F (hg) F (f ) F ((hg) f )

F (h) ϕg,f ϕh,gf

F
(
ah,g,f

)
aFh,Fg,Ff

ϕh,gF (f ) ϕhg,f

commute for composable morphisms f ,g and h. We also ask that the identity constraints make the

following diagrams commute:

F (f ) 1FX

F (f )

F (f ) F (1X )

F (f ◦ 1X )

1FY F (f )

F (f )

F (1Y ) F (f )

F (1Y ◦ f )

F (f ) λX

rFf ϕf,1X

F
(
rf
)

λY F (f )

`Ff ϕ1Y ,f

F
(
`f
)

More generally, if we no longer require that the constraints λ and ϕ are invertible then we have the

definition of a lax functor. Furthermore, if we reverse the direction of these constraints we then have

the notion of an oplax functor.
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Icons

We now have our 2-dimensional versions of categories and functors, so what about natural trans-

formations? Most authors use oplax transformations as the maps between pseudofunctors but this

has a disadvantage: bicategories, pseudofunctors and oplax transformations don’t form a bicategory.

Fortunately, there is an alternative and simpler notion of map between pseudofunctor to use, known as

icons [2]. These icons (which exist only between pseudofunctors which agree on objects) are simply

families of natural transformations between those functors on the hom-categories which pseudofunc-

tors consist of. The main advantage of this is that bicategories, pseudofunctors and icons form a

2-category (as shown in [2]) which will make our work considerably simpler.

Definition 3. Given two pseudofunctors F,G : A → B that agree on objects, an icon α : F =⇒ G

is a family of natural transformations

A (X, Y ) ⇓ αX,Y B (FX,FY ) , X, Y ∈ Aob

GX,Y

FX,Y

with components making the following diagrams commute:

F (g) F (f )

G (g)G (f )

F (gf )

G (gf )

1FX

F1X G1X

ϕg,f

αg ∗ αf αgf

ψg,f

λX

α1X

ωX

We will denote the 2-category of bicategories, pseudofunctors and icons as Icon. We will denote

the corresponding 2-categories with lax functors and oplax functors as LaxIcon and OplaxIcon

respectively.1

Adjunctions

In the 2-category Cat we have the notion of an adjunction between two functors; we now generalize

this to an arbitrary bicategory.

Definition 4. In a bicategory C , an adjunction between two objects A,B ∈ C0 consists of two 1-cells

f : A → B and u : B → A, as well as two 2-cells ε : fg =⇒ 1 and η : 1 =⇒ gf such that the

triangle identities 1f = εf ◦ fη and 1u = uε ◦ ηu are satisfied. In this case we say f is left adjoint to

g; denoted f a g.

1Due to length constraints, we will omit any discussion of small and large categories.
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Mates

Definition 5. Let η, ε : f a u : B → A and η′, ε′ : f ′ a u′ : B → A be two pairs of adjoint

morphisms. We say that two 2-cells

A

B

A′

B′

⇓ α

A

B

A′

B′

g

f f ′

h

⇓ β

g

u u′

h

are mates under the adjunctions if β is given by the pasting

A

B

A′

B′

⇓ α

A′

B

⇓ η′⇓ ε

g

f f ′

h

1A′

1B

u

u′

and consequently α is given by the pasting

A

B

A′

B′

⇓ β

B′

A

⇓ ε′⇓ η

g

u u′

h 1B′

f ′
1A

f

It follows from the triangle identities that taking mates in this fashion defines a bijection between

2-cells f ′g → hf and 2-cells gu→ u′h, which is functorial in a suitable sense: see [4].

2.2 Bicategory of spans

Before defining the bicategory Poly (E ) we will study the simpler and more well known construction

Span (E ), which was introduced by Bénabou in 1967 [3].

Definition 6. Given a category E with pullbacks (equipped with a choice of pullback for each diagram

of the formX → Y ← Z), we may form a bicategory called Span (E ) with objects those of E , 1-cells

A9 B given by diagrams in E of the form
X

A B

p q

composition of 1-cells given by taking the chosen pullback

X

A B

Y

C

X ×B Y

p q r s

π1 π2
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and 2-cells α given by those morphisms between the vertices of two spans which yield commuting

diagrams of the form
X

A B

Y

p

p′

q

q′

α

Identities are given by identity spans X 1X←− X
1X−→ X , and composition extends to 2-cells by using

the universal property of pullbacks. The uniqueness of the limit of a diagram
X

A B

Y

C

Z

D

p q r s t u

up to isomorphism yields the appropriate associators, making Span (E ) into a bicategory.

Spans as linear maps

A morphism in Span (Set)

X

I J

p q

may be represented by the matrix of sets defined componentwise by

Bi,j = {x ∈ X : p (x) = i, q (x) = j}

which induces the “linear mapping”

B : SetI → SetJ : v =
(
v1,i : i ∈ I

)
7→ vB =

∑
i∈I

v1,i ×Bi,j : j ∈ J
 .

Composition of spans then corresponds to “matrix multiplication”.

Embedding into spans

A category E with pullbacks (viewed as a locally discrete bicategory, i.e. a bicategory with all 2-cells

being identities) may be embedded into the bicategory Span (E ) via the pseudofunctor (−)∗ : E →

Span (E ) which sends an object of E to itself, and is defined on morphisms by the assignment
A

A B

7→BA
1A ff

It is not hard to show that this span has right adjoint B f←− A
1A−→ A. We will often denote these left

and right adjoints by f∗ and f∗ respectively.
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Sinister and Beck functors

A pseudofunctor between bicategories which sends arrows to left adjoints is called sinister. We will

write Ff∗ for the chosen right adjoint of each Ff . Given a sinister pseudofunctor F : E → C (where

E is a locally discrete 2-category) and a pullback square in E

X

X2

X1

X0

(
P
)p1

p2 x1

x2

applying F and composing with pseudofunctoriality constraints yields an invertible 2-cell as on the

left, and then taking mates gives a 2-cell as on the right:

FX

FX2

FX1

FX0

⇓ ξ

FX

FX2

FX1

FX0

⇓ ξ∗

Fp1

Fp∗2 Fx∗1

Fx2

Fp1

Fp2 Fx1

Fx2

We say that a sinister pseudofunctor F satisfies the Beck condition if every such ξ∗ is invertible.

An example of a pseudofunctor which is sinister and satisfies the Beck condition is the embedding

(−)∗ : E → Span (E ); we have already seen that the embedding maps arrows into left adjoints, and

we will now check that the embedding (−)∗ satisfies the Beck condition.

Beck-Chevalley isomorphisms

Given a pullback square of the form
(
P
)
, the composites in Span (E )

X2

X2 X0

X1

X1

1X2 x2 x1 1X1
X

X2 X

X

X1

p2 1X 1X p1

coincide up to an invertible 2-cell (due to the uniqueness of pullbacks up to isomorphism). This shows

that the embedding (−)∗ satisfies the Beck condition.

There is another Beck functor to consider here, namely the pseudofunctor Σ : E → Cat which

sends an object X ∈ E to its slice category E/X and sends a morphism f : A→ B to the “compose

with f” functor Σf . Note that since E has pullbacks, each Σf has a right adjoint: the “pull back along

f” functor denoted by ∆f . To see that the pseudofunctor Σ satisfies the Beck condition, note that for

every pullback square
(
P
)
and map h : A→ X2, we see via the diagram
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•

•

•

•

• •

p2

p1 x2

x1

h∆p2 (h)

that we have ∆x1Σx2 (h) � Σp1∆p2 (h) due to the pullback pasting lemma and uniqueness of pull-

backs up to isomorphism. We call such a natural isomorphism ∆x1Σx2 � Σp1∆p2 a Beck-Chevalley

isomorphism.

Universal property of spans

Given a bicategory C and a pseudofunctor F : Span (E ) → C

Span (E )

E

C

F

F

(−)∗

we get a pseudofunctor F (−)∗ : E → C by composing with the earlier mentioned embedding.

We may ask what pseudofunctors E → C arise in this way, and if this describes a bijective

correspondence between pseudofunctors Span (E ) → C and those pseudofunctors E → C which

arise in this way. In practice, we will want to regard certain pseudofunctors as being the same if we

are to define a bijection, specifically pseudofunctors which are isomorphic with respect to the maps

between pseudofunctors we are using: i.e. pseudofunctors which differ by an invertible icon. It is

convenient to state such a “bijection up to isomorphism” as an equivalence of hom-categories of the

form

Hom (Span (E ) ,C ) w Hom (E ,C )subject to conditions

The universal property of spans as stated by Hermida was in a tricategorical context making use of

modifications [1, Theorem A.2]. Here we describe a simpler 2-categorical version of this result, and

briefly discuss why it holds. The universal property of spans is given by the equivalence of categories

Icon (Span (E ) ,C ) w Beck (E ,C )

where Icon (Span (E ) ,C ) is the category of pseudofunctors Span (E ) → C and icons, and

Beck (E ,C ) is the category of sinister Beck morphisms and invertible icons.

Why is this true? Well consider the “composition with the embedding” functor (which may be

alternatively viewed as just restricting a pseudofunctor to spans of the form X
1X← X

f→ Y ) defined
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by the assignment

Icon (Span (E ) ,C ) → Beck (E ,C )

Span (E ) ⇓ α C 7→ E ⇓ α (−)∗ C

F

G

F (−)∗

G (−)∗

Well defined: Icons map to invertible icons since for any f ∈ E , the 2-cell αf∗ : Ff∗ → Gf∗ has

an inverse given by the mate of αf∗ : Ff∗ → Gf∗ under the adjunctions Ff∗ a Ff∗ andGf∗ a Gf∗.

Fully faithful: Why is the assignment α 7→ α (−)∗ bijective? Well given any invertible icon

α∗ : F (−)∗ → G (−)∗, i.e. collection of 2-cells of the form αf∗ : Ff∗ → Gf∗, we can define the 2-

cells αf∗ : Ff∗ → Gf∗ as
(
α−1
f∗

)∗
. We can then define the 2-cell for a general span A f←− X

g−→ B

as the horizontal composite αg∗ ∗ αf∗ . This tells us the assignment is surjective; also since
(
α−1
f∗

)∗
is

the only choice for αf∗ the assignment is also injective.

Essentially surjective: Given a sinister and Beck pseudofunctor H : E → C we can define the

action on a span A f←− X
g−→ B as H (g)H (f )∗ where H (f )∗ denotes a chosen right adjoint

of H (f ). The isomorphisms due to the Beck condition yield the appropriate pseudofunctoriality

constraints; furthermore the coherences on our new functor follow from the coherences on H and the

functoriality of mates.

Remark 7. (1) This universal property was incorrectly stated in [5] with the maps between pseudofunc-

tors being oplax transformations, which is problematic as pseudofunctors and oplax transformations

do not form a category. (2) Again restating the results of [5] in terms of icons, we see that invert-

ible icons correspond to sinister icons (icons α (−)∗ for which each
(
α−1
f∗

)∗
is invertible) under this

equivalence.

The canonical pseudofunctor Φ : Span (E ) → Cat

Recall that for any morphism f : A → B, we denoted by ∆f : E/B → E/A the “pull back along f”

functor between the slice categories, and denoted by Σf : E/A→ E/B its left adjoint: the “compose

with f” functor.

Proposition 8. There is a canonical pseudofunctor Φ : Span (E ) → Cat defined by taking an object

A to its slice category E/A, with the functors on the hom-categories Span (E ) (A,B) being given by

the assignment
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A B

X

Y

7→ E/A E/B
⇓

⇓

f ′

f

g′

g

w
ΣgΣw∆w∆f

Σg′∆f ′

Σg∆f

where the first upper 2-cell on the right comes from the isomorphisms Σgw � ΣgΣw and ∆fw � ∆w∆f ,

and the lower one results from the the counit of the adjunction ε : Σw∆w =⇒ 1.

Proof. Apply the universal property of spans with the Beck pseudofunctor Σ : E → Cat defined by

mapping an object X to its slice E/X , and mapping a morphism f to the functor Σf .

The pseudofunctor Φ motivates us to view a span A f←− X
g−→ B as (by abuse of notation)

Σg∆f . So how do we compose spans if we view them this way? The earlier mentioned Beck-Chevalley

isomorphisms allow us to reduce a composite of spans, i.e. something of the form Σg1∆f1Σg2∆f2 to

Σg1Σg
′
2
∆f ′1
∆f2 � Σg1g2∆f2f ′1

which is our resulting span (where f ′1 = ∆g2f1 and g′2 = ∆f1g2).

2.3 Bicategory of polynomials

We have seen that given a category E with pullbacks, one may construct a new bicategory Span (E )

with morphisms corresponding to “multivariate linear maps”, i.e. “matrices”. In this section we will

construct a bicategory Poly (E ) with morphisms corresponding to “multivariate polynomials”. As

noted in [6], such structures turn out to be a rich area for study, with applications in areas ranging

from computer science [7] and topology [9] to mathematical logic [8, 10].

Definition 9. A polynomial in a category E is a diagram of the form

E B

I J

s t

p

We now consider polynomials in the case E = Set, and their correspondence to multivariate

polynomial maps.

Polynomial maps

We saw earlier that a morphism in Span (Set) could be viewed as linear map. Similarly (as noted in

[11]) a polynomial in Set (which will be later defined as a morphism in Poly (Set))



2.3 Bicategory of polynomials 13

E B

I J

s t

p

induces the “multivariate polynomial mapping”

P :SetI → SetJ :
(
v1,i : i ∈ I

)
7→

∑
b∈Bj

∏
e∈Eb

v1,s(e) : j ∈ J


where Bj := t−1 (j) and Eb := p−1 (b). In the case in which I and J are singleton, this reduces to

the polynomial in one variable,

P :Set→ Set : v 7→
∑
b∈B

∏
e∈Eb

v �
∑
b∈B

vEb

Alternatively, if p is an identity map this reduces to the “linear mapping”

P :SetI → SetJ :
(
v1,i : i ∈ I

)
7→

∑
b∈Bj

v1,s(b) : j ∈ J
 �

∑
i∈I

v1,i ×Bi,j : j ∈ J


as seen in spans.

In order to define our bicategory Poly (E ), we will assume that E not only has pullbacks, but also

satisfies an additional property:

Definition 10. We say a finitely complete category E is locally cartesian closed if for any morphism

f : A→ B the pullback functor ∆f : E/B → E/A has a right adjoint Πf .

Distributivity pullbacks

Wenow define a special type of pullback introduced byWeber [12], which is related to the distributivity

of multiplication over addition, and will be useful for composing polynomials.

Definition 11. Given two composable morphisms u : X → A and f : A → B, a pullback around

(f, u) is a diagram

T X

Y

A

Br

f

up

q

such that the outer rectangle is a pullback. A morphism of pullbacks around (f, u) is a pair of

morphisms s : T → T ′ and t : Y → Y ′ such that p′s = p, q′s = tq and r = r′t. A distributivity

pullback around (f, u) is a terminal object in the category of pullbacks around (f, u).
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As the large square is a pullback, we have a Beck-Chevalley isomorphism ∆fΣr =⇒ Σup∆q.

Under the adjunctions ∆f a Πf and ∆q a Πq this has a mate ΣrΠq =⇒ ΠfΣup. Whiskering with ∆p
and composing with the counit ε : Σp∆p =⇒ 1 yields a morphism

ΣrΠq∆p =⇒ ΠfΣup∆p � ΠfΣuΣp∆p =⇒ ΠfΣu

In fact, this is an isomorphism if and only if this pullback around (p, q, r) is a distributivity pullback

[12, Prop 2.2.3].

In a locally cartesian closed category E , given the maps u : X → A and f : A → B we can

construct a distributivity pullback around (f, u) as the diagram

A×C B

A

B

C

X

f

g = Πf (u)∆f (g)

f ′

u

e

where e is the counit of the adjunction ∆f a Πf at u; i.e. εu : ∆fΠf (u) −→ u. We take this diagram

as the chosen distributivity pullback. Given such a diagram, we have a distributivity isomorphism

ΣgΠf ′∆e =⇒ ΠfΣu as just shown.

Bicategory of polynomials

Definition 12. Given a locally cartesian closed category E , we may form a bicategory Poly (E ) with

objects taken as those of E , and morphisms I 9 J given by diagrams of the form

E B

I J

s t

p

where to compose a polynomial I 9 J with a polynomial J 9 K we form the diagram:

E B

I J

E′ B′

K

(‡)

s2 t2

p2

s1 t1

p1

•

s′1 t′2

•

e

•
p′1

g•
s′′1 (1)

(2)

(3)

(4)

•
e′

p′2

p′′2

where (1), (2) and (3) are chosen pullbacks, and (4) is a chosen distributivity pullback. A cartesian

2-cell between two polynomials I 9 J is a pair of arrows f and g yielding the commuting diagram
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E B

I J

E′ B′

pb

s t

p

s′ t′

p′

f g

It is worth noting that there is a more general notion of 2-cell given by diagrams of the form

E B

I J

E′ B′

M
pb

s t

p

s′ t′

p′

f

gh
e

With these more general 2-cells, for any f : A → B we have adjunctions (by abuse of notation)

Σf a ∆f a Πf in Poly (E ) where Σf ,∆f and Πf are given by the polynomials

A A

A B

1 f
1

A A

B A

f 1
1

A B

A B

1 1
f

respectively. However, we will not use these general 2-cells. Throughout the remainder of this thesis

Poly (E ) is to be understood as the bicategory of polynomials with cartesian 2-cells, unless otherwise

stated.

In much the same way as we have the canonical pseudofunctor Span (E ) → Cat, we also have a

canonical pseudofunctor Poly (E ) → Cat which sends a general 1-cell (which by abuse of notation,

is a composite of the form ΣtΠp∆s) to its associated polynomial functor ΣtΠp∆s : E/I → E/J [12,

Theorem 3.2.6]. From this viewpoint, we can look at what is going on in our definition of composition

of two polynomials, and see why it is defined this way. Starting from an expression of the form

Σt1Πp1∆s1Σt2Πp2∆s2 ,

we first evaluate the pullback (3) and apply the Beck isomorphism to get

Σt1Πp1Σt′2
∆s′1
Πp2∆s2 ;

we then apply the Beck isomorphism for the pullback (1) to get

Σt1Πp1Σt′2
Πp′2
∆s′′1
∆s2 ;

now applying the distributivity law for (4) gives

Σt1ΣgΠp′1
∆eΠp′2

∆s′′1
∆s2 ;
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then applying the Beck isomorphism for (3) gives

Σt1ΣgΠp′1
Πp′′2
∆e′∆s′′1

∆s2 ;

giving the polynomial expression

Σt1gΠp′1p
′′
2
∆s2s′′1e

′ .

Remark 13. When we say Beck isomorphism here we mean the isomorphism which exists due to the

uniqueness of pullbacks up to isomorphism, as discussed in “Beck-Chevalley isomorphisms” (not the

isomorphisms between the functors). Similarly, the distributivity isomorphisms here are due to the

uniqueness of distributivity pullbacks up to isomorphism.

Universal property of polynomial composition

Proposition 14. [12, Prop. 3.1.6]. Suppose we are given two fixed polynomials P : I 9 J and

Q : J 9 K. Consider a category K with objects given by commuting diagrams of the form

E B

I J

E′ B′

K

s2 t2

p2

s1 t1

p1

A2A1 A3

for which the left and right squares are pullbacks, and morphisms given by diagrams

E B

I J

E′ B′

K

s2 t2

p2

s1 t1

p1

A2

C2

A1

C1

A3

C3

which commute. Then in this category K, the diagram

E B

I J

E′ B′

K

s2 t2

p2

s1 t1

p1

•
s′1e t′2e
• •

g

p′1
s′′1e
′

p′′2

as defined in (‡) (which yields the composite QP : I 9 K) is a terminal object.

This property allows one to verify that Poly (E ) satisfies the coherence axioms, and to define

horizontal composition of 2-cells. Moreover, this property may to used to check that Poly (E ) is

indeed a bicategory.



3
Local reflections

Given an adjunction L a I : B′ → B in Cat for which I is a full inclusion, the functor L is known as

a reflector, and we say that B′ is a reflective subcategory of B. In this chapter we are interested in the

situation in which we have a family of adjunctions between hom-categories

LX,Y a IX,Y : B′ (X, Y ) → B (X, Y ) , X, Y ∈ Bob

for which IX,Y is a full inclusion (or more generally a fully faithful functor) for every pair of objects

X and Y . In particular we would like to know how maps out of B′ correspond to maps out of B in

such a situation.

3.1 The universal property of an adjunction

Given an equivalence F a G : A ' B in a bicategory C and an object C ∈ C it’s clear that giving a

map H : A → C is equivalent to giving a map H : B → C, as we may compose with F and G.

A ⊥ B

C

G

F
H H

Now given an adjunction F a G which is not necessarily an equivalence, we should expect to still

have some correspondence between maps A → C and maps B → C as an adjunction is a weakened
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version of equivalence; the only difference being that we do not ask the counit ε and unit η be invertible.

We now prove this is indeed the case.

Proposition 15. An adjunction in a bicategory C ,

A ⊥ B

G

F

with counit ε : FG→ 1A and unit η : 1B → GF induces an equivalence between 1-cells H : A → C

for which Hε is invertible and 1-cells H : B → C for which Hη is invertible, for every object C ∈ C .

We denote this equivalence by C (A, C)inv ε ' C (B, C)inv η.

Proof. We consider the composition functors

C (A, C)inv ε C (B, C)inv η

(−) ◦ F

(−) ◦G

and first check that these are well defined. To see the mapping

(−) ◦ F : C (A, C)inv ε → C (B, C)inv η

is well defined, note that by the triangle identities εF ◦Fη = 1F , and so given a 1-cellH : A → C such

that Hε is invertible we have HεF ◦HFη = 1HF . Hence HFη = (HεF )−1 is invertible. Similarly,

one can show (−) ◦G is well defined. We also have natural transformations

(−) ◦ ε : (−) ◦ FG =⇒ (−) : C (A, C)inv ε → C (A, C)inv ε

(−) ◦ η : (−) =⇒ (−) ◦GF : C (B, C)inv η → C (B, C)inv η

which are invertible by definition, and so yield our equivalence of categories.

Remark 16. (1) This is the version concerning postcomposition. Dually, the equivalenceC (C,A)inv ε '

C (C,B)inv η holds true if we compose with the counit ε and unit η on the other side. (2) Alternatively,

we may see that this universal property follows from the fact that the adjunction (−) ◦ G a (−) ◦ F

restricts to an equivalence on the subcategories of objects for which the unit and counit are invertible.

3.2 Local reflections

In practice we would like to deduce universal properties concerning an entire hom-category. One way

do this is to consider adjunctions for which the counit ε is invertible. Let us now restrict our attention

to the case C = LaxIcon.
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Definition 17. Let B and B′ be two bicategories with the same class of objects. We say B′ is a

locally reflective sub-bicategory of B if there exists an adjunction in LaxIcon

B′ ⊥ B

I

L

for which I is locally fully faithful. If the adjunction is in the other direction, i.e. if I a L, we say B′

is a locally coreflective sub-bicategory of B.

The following proposition gives sufficient conditions by which wemay recognize one bicategory as

a locally reflective sub-bicategory of another. The proof is based on the theory of doctrinal adjunctions,

described in [13].

Proposition 18. Let B and B′ be two bicategories with the same class of objects. Suppose there

exists a B2
ob-indexed family of adjunctions

B′ (X, Y ) ⊥ B (X, Y ) , (X, Y ) ∈ B2
ob

IX,Y

LX,Y

such that

(L1) Every IX,Y is fully faithful;

(L2) The family
(
IX,Y : X, Y ∈ B

)
extends to a lax functor I : B′ → B;

(L3) L maps ηf and its whiskers into isomorphisms1;

(L4) L maps the constraints of I into isomorphisms;

Then the family
(
LX,Y : X, Y ∈ B

)
extends to a pseudofunctor L : B → B′ which is left adjoint to

I in LaxIcon, and so B′ is a locally reflective sub-bicategory of B.

Proof. Togive the pseudofunctoriality constraints forL, we first note themate correspondence between

natural transformations

1The 2-cell ηf is an arbitrary component of a unit η : 1→ IX,Y LX,Y . We mean L with the appropriate indiciesX,Y

such that applying LX,Y to the 2-cell is well defined, and so we are not assuming the family
(
LX,Y : X,Y ∈ B

)
extends

to a lax/oplax functor; similarly for axiom L4. Note that this axiom may be replaced by asking that expressions of the form

LX,Z

(
ηY,Z × ηX,Y

)
are invertible.
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B (Y, Z) ×B (X, Y )

B′ (Y, Z) ×B′ (X, Y )

B (X,Z)

B′ (X,Z)

⇓ α

B (Y, Z) ×B (X, Y )

B′ (Y, Z) ×B′ (X, Y )

B (X,Z)

B′ (X,Z)

◦

LY,Z × LX,Y LX,Z

•

⇓ β

◦

IY,Z × IX,Y IX,Z

•

and so taking β to be the lax functoriality constraints of I yields oplax functoriality constraints for L.

More explicitly, our α is given at a pair of composable maps f and g by the commuting diagram

L (gf )

L (ILgILf ) LI (LgLf )

L (g) L (f )

L
(
ηg ∗ ηf

)
L
(
βLg,Lf

)
εLg,Lf

αg,f

and we know εLg,Lf is invertible since each IX,Y is fully faithful, L
(
βLg,Lf

)
is invertible by axiom

(L4), and L
(
ηg ∗ ηf

)
is invertible by axiom (L3), as the horizontal composite ηg ∗ ηf may be defined

in terms of whiskering. Similarly, the nullary constraints for L are given by the mates of those of I:

1

1

B (X,X)

B′ (X,X)

⇓ α

1

1

B (X,X)

B′ (X,X)

σ

LX,X

ω

⇓ β

σ

IX,X

ω

Thus our constraint αX : L (1X ) → 1X is given by the composite

L (1X ) LI (1X ) 1X
L (βX ) ε1X

which is again invertible by axioms (L1) and (L4). To check that L is a pseudofunctor it remains to

check coherences of the constraints. Note that the coherences on I tell us the two sides of the cube

B′ (Y, Z) B′ (X, Y ) B′ (W,X) B (Y, Z) B (X, Y ) B (W,X)

B′ (Y, Z) B′ (W,Y ) B′ (X,Z) B′ (W,X) B (X,Z) B (W,X)

B′ (W,Z) B (W,Z)

⇓ a
⇓ β

⇓ β × IW,X

IY,Z × IX,Y × IW,X

IW,Z

◦ × id

◦

id× •

•

• × id

•

IX,Z × IW,X
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B′ (Y, Z) B′ (X, Y ) B′ (W,X) B (Y, Z) B (X, Y ) B (W,X)

B′ (Y, Z) B′ (W,Y ) B (X,Z) B (W,X)

B′ (W,Z) B (W,Z)

B (Y, Z) B (W,Y )

⇓ β

⇓ IY,Z × β

⇓ a

IY,Z × IX,Y × IW,X

IW,Z

◦ × id

◦

id× •

•

id× ◦

◦

IY,Z × IW,Y

are equal, and so taking mates (which is a bijection compatible with composition) yields the coherence

conditions for L. We omit the identity coherences, which may be shown similarly. Finally, it remains

to check that we actually get an adjunction in LaxIcon, i.e. we need to show the families of units and

counits

ε =
(
εX,Y : X, Y ∈ B

)
: LI → 1B′ , η =

(
ηX,Y : X, Y ∈ B

)
: 1B → IL

satisfy the conditions for being an icon. (Note that here L is pseudo and I is lax, so that both LI and

IL are lax functors. In the last chapter we will consider an example in which I is pseudo and L is

oplax). We will just check this for ε, as the proof for η is similar.

Compatibility with identities: Under the adjunction LX,X a IX,X the map βX : 1X → IX,X (1X )

corresponds to the map αX : LX,X (1X ) → 1X . The identity condition on being an icon asks that

ε1X ◦
(
LβX ◦ α−1

X

)
is the identity, which is the case as αX maps to βX and then ε1X ◦ LβX (which

must agree with αX) under the adjunction.

Compatibility with composition: The condition for ε being compatible with the constraints of LI

asks that

L (Ig ◦ If ) LIg • LIf

LI (g ◦ f ) gf

αIg,If

εgf

Lβgf εg ∗ εf

commutes, which is true since given the pasting diagram

⇓ ε× ε ⇓ α ⇓ Lη ⇓ εid idLILL× L

id id id•

◦I × I L id

we may cancel the right 2 squares by the triangle identities, or alternatively replace the left 3 squares

by Lβ due to the definition of mate.

The following proposition gives means by which the later mentioned bicategory of relations may

be constructed from the bicategory of spans.
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Proposition 19. LetB be a bicategory. Suppose that we are given aB2
ob-indexed family of categories

and adjunctions

CX,Y ⊥ B (X, Y ) , (X, Y ) ∈ B2
ob

IX,Y

LX,Y

such that

(L1) Every IX,Y is fully faithful;

(L3) L maps ηf and its whiskers into isomorphisms.

Then we may form a bicategory B′ where

• B′ has the same objects as B;

• For every X, Y ∈ B, B′ (X, Y ) := CX,Y ;

• For every X ∈ B, 1X := LX,X (1X ) ∈ B′;

• The composition functor • in B′ renders commutative the diagram

B′ (Y, Z) ×B′ (X, Y ) B′ (X,Z)

B (Y, Z) ×B (X, Y ) B (X,Z)

•

◦

IY,Z × IX,Y LX,Z

Moreover, the family
(
IX,Y : X, Y ∈ B

)
extends to a lax functor I : B′ → B with constraints

I (g) ◦ I (f ) IL (Ig ◦ If ) = I (g • f )
ηI (g)◦I (f )

1X IL (1X ) = I (1X )
η1X

Note that since we have all axioms L1-L4 of Proposition 18 satisfied, it then follows that B′ is

a locally reflective sub-bicategory of B, and moreover the family
(
LX,Y : X, Y ∈ B

)
extends to a

pseudofunctor L : B → B′.

Proof. For a verification that the coherence axioms for a bicategory are satisfied we refer the reader

to the work of Day [14], who did this calculation in the case of one-object bicategories (which may

be identified with monoidal categories). Alternatively, this proposition may be seen as a special case

of [13, Theorem 3.3].
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Lemma 20. Suppose that the adjunction L a I in LaxIcon exhibits B′ as a locally reflective sub-

bicategory ofB. Then the following are equivalent for any pseudofunctorF : B → C : (1)F � FIL;

(2)Fη is an invertible icon; (3)F inverts all elements of Σ = {2-cells α ∈ B : Lα is invertible in B′}.

Proof.

(1 =⇒ 2): Suppose that α : FIL =⇒ F is an invertible icon. Then we have the commuting

square for the composite α ∗ η;

FILIL FIL

FIL F

FILη Fη

α

αIL

As α, αIL and FILη are invertible we conclude that Fη is also invertible.

(2 =⇒ 3): Given an α : f → g such that Lα is invertible we consider the naturality square

FILf FILg

Ff Fg

Fηf Fηg

Fα

FILα

to see that Fα must also be invertible.

(3 =⇒ 1): Since Lη is invertible we have η ∈ Σ, hence Fη : F → FIL is invertible and so

F � FIL.

Theorem 21 (Universal properties of local reflections). Suppose that we are given an adjunction

L a I in LaxIcon which exhibits B′ as a locally reflective sub-bicategory of B. Composition with

L and I then yields the equivalences

LaxIcon
(
B′,C

)
' LaxIcon (B,C )inv η

Icon
(
B′,C

)
' Icon (B,C )inv η

where C is an arbitrary bicategory, and a functor F : B → C “inverts η” when it maps every 2-cell

X ⇓ ηX,Y (f ) Y

IX,Y LX,Y f

f

into a 2-isomorphism; that is, when Fη is an invertible icon.

Proof. The first equivalence is merely the universal property of the adjunction L a I due to Proposi-

tion 15. As (−) ◦ L : Icon
(
B′,C

)
→ Icon (B,C )inv η is a restriction of this equivalence, it’s still
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fully faithful. Well definedness is clear as L is a pseudofunctor by [13, Theorem 1.5], and for essential

surjectivity note that for a given pseudofunctor F : B → C which inverts η, we may compose with

I to obtain the lax functor FI : B′ → C . Now since L inverts the constraints of I (this follows from

the diagram for compatibility of ε with the constraints in Proposition 18 and noting the ε′s and α are

invertible and so Lβ be also), any constraint σ of I lies in Σ and so since Fη is invertible, it follows

that F inverts the constraints of I . Hence FI is in fact a pseudofunctor. Finally, FIL � F via Fη

and so we have essential surjectivity.

Remark 22. Using (1) ⇐⇒ (2) of Lemma 20 it is not hard to show that the equivalence

LaxIcon
(
B′,C

)
' LaxIcon (B,C )inv η may be realized as the universal property of the bi-

coequalizer

B B B′
1

IL

L

The 2-category Icon is a 2-category of bicategories (families of hom-categories), pseudofunctors

(families of functors between the hom-categories) and icons (families of natural transformations

between these functors on the hom-categories) and sowe should expect Icon to be somewhat analogous

to Cat. For example the property [Aop,Bop] � [A,B]op in Cat will extend to Icon if we reverse the

arrows in the hom-categories (i.e. reverse the 2-cells).

Corollary 23. Suppose that we are given an adjunction ε, η : I a L : B → B′ in OplaxIcon where

I is locally fully faithful; then L is a pseudofunctor and we have the equivalences

OplaxIcon
(
B′,C

)
' OplaxIcon (B,C )inv ε

Icon
(
B′,C

)
' Icon (B,C )inv ε

Proof. This is true since the adjunction I a L : ε, η in OplaxIcon becomes an adjunction L′ a I ′ :

ε′, η′ in LaxIcon upon reversing the 2-cells. This yields the equivalence

Icon
(
B′,C

)
� Icon

((
B′
)co

,C co
)op
'
[
Icon

((
B′
)co

,C co
)
inv η′

]op
� Icon (B,C )inv ε .

where ε =
(
η′
)op. As earlier, L is a pseudofunctor by [13, Theorem 1.5].

Remark 24. In chapter 5 we are interested in the situation where we are given an adjunction I a L :

B → B′ in LaxIcon wherein I is locally fully faithful; i.e. the situation of locally coreflective

sub-bicategories (note that in such a situation I is pseudo [13]). We might expect to again have the

equivalence Icon
(
B′,C

)
' Icon (B,C )inv ε; however, this is not the case since there is no reason

for composition with the lax functor L to map pseudofunctors to pseudofunctors. In fact, the correct
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“universal property of local reflections” in this case concerns composition on the other side, and is

given by Icon
(
C ,B′

)
' Icon (C ,B)inv ε; though we will not use this equivalence.

3.3 Relations

3.3.1 Regular categories

In Set, given a function f : A → B we may form the image {f (a) : a ∈ A}, and then write the

function f as a surjection followed by an inclusion

A
f
� {f (a) : a ∈ A}� B

We would like to perform these so called image factorizations in categories E aside from Set. We

now describe a type of category in which we can always perform these factorizations.

Definition 25. A category E is said to be regular if

• E is finitely complete;

• The kernel pair of any morphism f : A→ B

A×B A

A

A

B
f

fπ2

π1

admits a coequalizer

A×B A A R;
π1

π2

q

• Regular epimorphisms (epimorphisms which arise as a coequalizer) pull back into regular

epimorphisms.

Remark 26. In a regular category E , anymorphism f : A→ B can bewritten as a regular epimorphism

followed by a monomorphism [15, Theorem 2.1.3], by factoring through the coequalizer of the kernel

pair. This is known as an image factorization.

Definition 27. A strong epimorphism is an epimorphism p such that given any commuting diagram

of the form
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A B

C D

r

s

p i
h

for which i is a monomorphism, there exists a unique arrow h : C → B making the diagram commute.

Remark 28. In a regular category, an epimorphism is strong if and only if it is regular [15, Prop.

2.1.4].

3.3.2 The bicategory of relations

Let us now modify the bicategory Span (E ) slightly so as to construct a new bicategory Rel (E )

known as the bicategory of relations.

Definition 29. Let E be a regular category (equipped with a choice of pullbacks and image factoriza-

tions). We define the bicategory Rel (E ) with objects being those of E , 1-cells A9 B given by those

spans
X

A B

p q

which are jointly mono, i.e. spans that satisfy the following property: if pm = pn and qm =

qn thenm = n. Note that we may view such a span as a monomorphism into the product

(p, q) : X � A×B

Composition of 1-cells is given by taking the chosen pullback

X

A B

Y

C

X ×B Y

p q r s

π1 π2

as before, and then viewing this a map into the product

(pπ1, sπ2) : X ×B Y → A× C

and finally taking the resulting monomorphism

im (pπ1, sπ2)� A× C

from the image factorization (which is unique up to isomorphism by [15, Theorem 2.1.3]) as the result.

The 2-cells α are given by those morphisms between the vertices of two jointly mono spans which

yield commuting diagrams of the form
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X

A B

Y

p

p′

q

q′

α

We will soon check well definedness of Rel (E ) as a bicategory, via an application of Proposi-

tion 19.

Reflecting spans onto relations

As our first example of local reflections we consider the case with B′ = Rel (E ) and B = Span (E ).

Now, our family of adjunctions

Rel (E ) (X, Y ) ⊥ Span (E ) (X, Y ) , (X, Y ) ∈ E2
ob

IX,Y

LX,Y

are given by first noting that

Rel (E ) (X, Y ) � Emono/X × Y, Span (E ) (X, Y ) � E/X × Y

and defining the functor LX,Y : E/X × Y → Emono/X × Y on objects by taking the resulting

monomorphism from the chosen image factorization, and on morphisms by

R R′

X × Y

7→ imp

R

X × Y

R′

imq

X × Y

(†)

α

p q

1X×Y

p q

p′ q′

α

Lα

where Lα is the arrow which exists due to p being a strong epimorphism, and q′ a monomorphism.

We simply define IX,Y to be the inclusion.

To see this is an adjunction, note that we may take our ηX,Y : 1 =⇒ IX,Y LX,Y to be defined on

a general component (a morphism p into the product X × Y ) by

X × Y

R imp

p
IX,Y LX,Y p

ηp

and take ε : LX,Y IX,Y =⇒ 1 to be the identity (by defining L to do nothing on mono 1-cells, i.e. we

choose the image factorization of a mono to be an identity followed by itself). It is then easily checked

that Lη and ηI are identities, so that the triangle identities are satisfied.
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Whiskering

We now check that L maps η and its whiskers into isomorphisms. Note first that L maps all regular

epimorphisms into identities by our definition of L, and so as η consists of regular epimorphisms Lη

is an identity. We now consider the diagram where we whisker a regular epi 2-cell (in particular a

component of η) by a 1-cell on the right:

X

A B

Y

C

X ×B YT

T ×B Y

p q

a

b

r s

η
m n

r′ s′

γ

Now qηa = na = rb so there is an induced map γ into the pullback X ×B Y which is the whiskering

of η by the span (r, s) : B 9 C. Also both r, s′, r′, q and r, s′γ, a, qη are pullback squares. By

the pullback pasting lemma, we conclude that a, η, r′, γ is also a pullback, and so since we’re in a

regular category we know that γ is a regular epi, and hence is sent to an isomorphism under L. The

argument for whiskering on the left is similar. Hence by Proposition 19, Rel (E ) is a locally reflective

sub-bicategory of Span (E ), and moreover by Theorem 21 we have the equivalence

Icon (Rel (E ) ,C ) ' Icon (Span (E ) ,C )inv η

where a functor F : Span (E ) → C inverts η when Fη is an invertible icon. We will now use this

equivalence to derive the universal property of relations from that of spans.

Definition 30. Let E be a regular category, and let C be a bicategory. We define Beckreg epi (E ,C ) to

be the category of Beck functors H : E → C for which ε : H (p)H (p)∗ → 1 is invertible for every

regular epimorphism p (Beck functors which map regular epimorphisms to reflections), and invertible

icons between them.

Theorem 31 (Universal property of relations). Let E be a regular category, and let C be a bicategory.

We then have the equivalence

Icon (Rel (E ) ,C ) ' Icon (Span (E ) ,C )inv η ' Beckreg epi (E ,C )

Proof. Given a Beck functor H : E → C we get a corresponding functor H : Span (E ) → C

under the equivalence Icon (Span (E ) ,C ) ' Beck (E ,C ). Now by Lemma 20 the functor H :
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Span (E ) → C inverts η, i.e. Hη is invertible, if and only if H inverts all elements of

Σ = {2-cells α ∈ Span (E ) : Lα is invertible in Rel (E )}

It is clear from our definition of Lα given by the diagram (†), that if α is a regular epimorphism

then Lα is as well (by the commutivity of the top right square). Moreover, the commutivity of the

bottom right square means Lα must also be mono and hence Lα is invertible if α is a regular epi

2-cell. Hence Σ contains all regular epimorphisms, and so ifHη is invertible, thenH maps all regular

epi 2-cells into isomorphisms. The converse, that if H maps regular epis into isomorphisms then

Hη is invertible, is trivial as the components of η are regular epimorphisms. Now, to ask that this

pseudofunctor H maps any regular epi 2-cell α
X

A B

Y

p

p′

q

q′

α

into an isomorphism, is to ask that

H (q)H (p)∗ = H
(
q′α

)
H
(
p′α

)∗
� H

(
q′
)
H (α)H (α)∗H

(
p′
)∗

H
(
q′
)
H
(
p′
)∗H

(
q′
)
εαH

(
p′
)∗

is invertible. It is thus sufficient to ask that every εα : H (α)H (α)∗ → 1 is invertible, and moreover

necessary as we may consider 2-cells
X

Y Y

Y

α

1Y

α

1Y

α

Hence to give a pseudofunctor Rel (E ) → C is to give a Beck functor H : E → C for which

ε : H (p)H (p)∗ → 1 is invertible for every regular epimorphism p.

Remark 32. Noting that (1) ⇐⇒ (2) of Lemma 20 holds in a general bicategory C (not just

LaxIcon), it is easily seen that ifH (p) is a reflection, thenH (p) may be realized as the bicoequalizer

• • •
id

H (p)∗H (p)

H (p)
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4
Pulling back into isomorphisms

We all know that if we take a pullback square

E B

X A

p

f

p′

f ′

then to say that both f ′ and p′ are isomorphisms is to say that f and p are the same modulo an

isomorphism, and are both monomorphisms. But what does it mean if we only ask that p′ is an

isomorphism? In this chapter we will answer this question in the context of locally cartesian closed

categories.

To find out what it means for p′ to be invertible, a natural question to ask is how the case in which

we only ask that p′ is invertible relates to the case where both f ′ and p′ are invertible. Simplifying our

question by only considering those those isomorphisms which are identities, this question reduces to

asking what is special about the standard pullback of a monomorphism p along itself

E B

E E

p

p (4.1)

relative to pullbacks for which we only ask that the bottom arrow p pulls back into an identity, i.e.

those pullbacks of the form

E B

A A

(4.2)

p

p``
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We notice here that pullbacks of the form (4.2) admit a unique factorization through pullbacks of

the form (4.1)

E B

A A

= E E

E B

A A

p

p``

` `

p

p

In categorical language, we say that the pullback (4.1) is terminal among pullbacks of the form (4.2).

Notice that this is only valid when p is a monomorphism; if p is not a monomorphism then (4.1) is

not a pullback, and it is unclear if there is still a terminal pullback among pullbacks of the form (4.2).

This is a question we will explore in this chapter.

4.1 Extracting the singleton fibers

Suppose we are given a function p : E → B in Set. A common exercise is to restrict the domain

of our function to a subset Ep ⊆ E so that the function restricted to our new domain p : Ep → B

is injective. This can be done in a canonical way; namely by taking Ep to be union of the singleton

fibers of p. More precisely,

Ep = {e ∈ E | pe has singleton fibre} =
{
e ∈ E | ∀e′ ∈ E, pe = pe′ =⇒ e = e′

}
.

Denoting the subset inclusion Ep ⊆ E as the function kp : Ep ↪→ E, we have in Set the property

that for any given function p, there exists a canonical choice of injection kp such that pkp is injective.

Note that this is the best canonical choice; we could for example include the empty set into E but then

we are forgetting more elements of E than necessary. Conversely, there are often better choices than

Ep, for example restricting x2 : R → R to non-negative reals instead of the only singleton fiber {0},

however such a choice is not canonical. Since kp is the best canonical choice, we will not be surprised

to find that certain constructions involving the inclusion kp satisfy universal properties. We will now

generalize this notion to any locally cartesian closed category E .

Definition 33. Given any morphism p : E → B in a locally cartesian closed category E , we define

kp := Ππ1

(
δp
)
where δp and π1 are defined by the pullback diagram
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E B

E ×B E E

E

p

p

π1

π2

1E

1E

δp

Throughout the rest of this thesis, we will assume p : E → B is a fixed map in a locally cartesian

closed category E , with δp, π1, π2 and kp defined as above, unless otherwise stated.

Remark 34. As δp is a monomorphism, it follows that kp = Ππ1

(
δp
)
is also a monomorphism by the

following property of dependent products.

Lemma 35. Dependent products preserve isomorphisms and monomorphisms

Proof. As the dependent product functor Πp : E/E → E/B is a right adjoint, it preserves limits,

and in particular terminal objects; hence isomorphisms into E map into isomorphisms into B. For

convenience, we will choose Πp such that identities are mapped into identities.

We also note that since Πp preserves limits, it will preserve the standard pullback of a monomor-

phism along itself, and so Πp preserves monomorphisms. Hence for any monomorphismm : X ↪→ E

in E , (which gives the monomorphism m : m ↪→ 1E in the slice E/E) we get the monomorphism in

the slice category E/B

B

BY

Πp (m)

Πp (m)

and so taking Πp (m) a = Πp (m) b we have the commuting diagram

B

Y BT

Πp (m) a = Πp (m) b

Πp (m)

Πp (m)

a

b

forcing a = b since Πp (m) is mono in E/B. Thus Πp (m) is a monomorphism in E .

4.2 Pulling back into isomorphisms

In this section we will give necessary and sufficient conditions by which a fixed morphism p : E → B

in a locally cartesian closed category E pulls back along another morphism f : A → B into an
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isomorphism. We then demonstrate that for such a morphism p, there is indeed a terminal pullback

among pullbacks of the form (4.2).

Lemma 36. The monomorphism δp is the equalizer of π1 and π2.

Proof. Suppose we are given a morphism u such that π1u = π2u. Then both u and δpπ1u render

commutative the following diagram

E B

E ×B E E

E

p

p

π1

π2

π1u = π2u

π1u = π2u

δpπ1u
u

since π1δpπ1u = π1u and π2δpπ1u = π1u = π2u, and so u = δp (π1u). The fact that δp is a

monomorphism ensures the uniqueness property of the equalizer.

Proposition 37. Let a morphism h : A → E be given in the locally cartesian closed category E ,

define (A×B E, ζ1, h× 1) to be the pullback

E ×B E E

A×B E A

π1

h

ζ1

h× 1

Then the following are equivalent: (1) h admits a (unique) factorization through kp : Ep ↪→ E; (2)

h × 1 admits a (unique) factorization through δp : E ↪→ E ×B E; (3) hζ1 = π2 (h× 1); (4) ζ1 is

invertible; (5) ηh : h→ ∆pΣph is invertible.

Proof. (1) ⇐⇒ (2): Under the adjunction ∆π1 a Ππ1 : E/E ×B E → E/E, we have a factorization

h = kpf , i.e. a morphism f : h → Ππ1δp = kp in the slice E/E, if and only if there is a morphism

g : h×1 = ∆π1h→ δp in the slice E/E×BE, i.e. a morphism g : A×BE → E such that h×1 = δpg.

(2) ⇐⇒ (3): Since δp equalizes π1 and π2, we have a factorization h × 1 = δpg if and only if

π1 (h× 1) = π2 (h× 1), i.e. hζ1 = π2 (h× 1).

(2) =⇒ (4): Assuming h× 1 = δpg gives the composite of pullbacks

E ×B E E

A×B E AA×B E

E

EE

π1

h

δp

ζ1

gg

δp
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and since the identity π1δp must pullback into an isomorphism, we know that ζ1 is invertible.

(4) =⇒ (2): By assuming that ζ1 is invertible, and considering the pullback composite

E ×B E E

A×B E A•

E π1

h

δp

ζ1

h× 1u

r

we see that ζ1r (a pullback of an identity), and hence r, is invertible. Hence h× 1 = δpur−1.

(4) ⇐⇒ (5): Recall that ηh is defined as the unique map making the following diagram commute

(wherein the bottom right square is a pullback)

E B

A×B E A

A

p

ph

γ1

∆pΣphh

ηh

and this pullback coincides with the composite

E ×B E E

A×B E A

E B

π1

h

ζ1

h× 1

p

pπ2

modulo an isomorphism. It is then clear that ζ1 is invertible iff γ1 is invertible iff ηh is invertible.

We will now give our description of precisely when a morphism p : E → B pulls back into an

isomorphism, which we will use often throughout the remainder of this thesis.

Theorem 38. Given a pullback of morphisms p : E → B and f : A → B in a locally cartesian

closed category E ,

E B

A×B E A

p

f

γ1

γ2

The following are equivalent: (1) f admits a factorization through pkp : Ep → B; (2) γ1 is invertible;

(3) εf : Σp∆pf → f is invertible.

Proof. (1 =⇒ 2): Suppose that f : A → B may be written as A f−→ Ep
kp−→ E

p−→ B. We may

then form the pullbacks
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E ×B E E

A×B E A

E B

π1

kpf

ζ1

kpf × 1

p

pπ2

As kpf admits a factorization through kp, we conclude that ζ1 is invertible by Proposition 37. By the

uniqueness of pullback up to isomorphism, we can write γ1 = αζ1 for some isomorphism α, and so

γ1 is invertible.

(2 =⇒ 1): Suppose now that γ1 is invertible, so that f = pγ2γ
−1
1 . We may then form the

composite of pullbacks (where we know pγ2γ
−1
1 = f )

E ×B E E

A×B E A

E B

π1

γ2γ
−1
1

ζ1

γ2γ
−1
1 × 1

p

pπ2

As before, the uniqueness of pullback up to isomorphism means α−1γ1 = ζ1 for some invertible α,

and so ζ1 is invertible. Hence γ2γ
−1
1 admits a factorization through kp by Proposition 37, i.e. we may

write γ2γ
−1
1 = kpf , so that f = pγ2γ

−1
1 = pkpf as required.

(2 ⇐⇒ 3): This is since εf = γ1 in this case.

Lemma 39. For all maps f : A → E and u : A → Ep in the locally cartesian closed category E , if

pf = pkpu then f = kpu.

Proof. Suppose pf = pkpu, and then consider the pullback diagram

E B

A×B E A

A

p

pkpu = pf

γ1

γ2

α

1A

kpu

f

Now since pkpu factors through pkp we know that γ1 is invertible by Theorem 38, and so α = γ−1
1

regardless of whether we place kpu or f on the far left. We can thus conclude that kpu = f = γ2α as

required.

Corollary 40. For all maps p : E → B in a locally cartesian closed category E , pkp is a monomor-

phism.
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Proof. If pkpm = pkpn for morphisms m,n : X → Ep we have by Lemma 39 that kpm = kpn, and

so since kp is monom = n. Hence pkp is also a monomorphism.

Corollary 41. For all maps p : E → B in a locally cartesian closed category E , p is a monomorphism

if and only if kp is an isomorphism.

Proof. ( =⇒ ): Assuming that p is a monomorphism we have the pullback square

E B

E E

p

p

As the top morphism is invertible we can apply Theorem 38 and conclude that p = pkpu for some

u : E → Ep. By Lemma 39 this means kpu = 1E . Hence kpukp = kp and so since kp is mono we

have ukp = 1Ep
. Hence kp is an isomorphism with inverse u.

(⇐=): Suppose kp is invertible. Then since pkp is a monomorphism so is p = pkpk−1
p .

4.2.1 Universal property

Given a morphism p : E → B in a category E with pullbacks, consider the category in which objects

are pullbacks of the form

E B

A A

p

p``

and in which a morphism of pullbacks h : (p, p`1) → (p, p`2) is a factorization

E B

X X

= Y Y

E B

X X

p

p`1`1

h h

`2

p

p`2

Definition 42. We define the singleton fiber pullback about a morphism p : E → B to be the terminal

object in this category, if it exists. We have shown that in a locally cartesian closed category E , this

singleton fiber pullback about p is given by

E B

Ep Ep

sfpb

p

pkpkp

where kp is defined as in Definition 33.



38 Pulling back into isomorphisms

4.3 Pulling back into monomorphisms

In much the same way as we can describe when an arrow pulls back into an isomorphism, we can

describe when an arrow pulls back into a monomorphism. This description of when an arrow pulls

back into a monomorphism easily follows from the previous section, as we can pull back such a

monomorphism along itself to get the standard pullback (4.1), and apply Theorem 38.

Theorem 43. Given a pullback of morphisms p : E → B and f : A → B in a locally cartesian

closed category E ,

E B

A×B E A

p

f

γ1

γ2

The following are equivalent: (1) γ1 is a monomorphism; (2) γ2 admits a (unique) factorization

through kp; (3) f admits a (unique) factorization through Πp
(
kp
)
.

Proof. (1 =⇒ 2): Suppose that γ1 is a monomorphism. We then have the composite of pullbacks
A×B E A×B E

E

A×B E A

Bp

f

γ1
γ1

γ2

and so we may write fγ1 = pkpu for some morphism u by Theorem 38. As fγ1 = pγ2 we have

pkpu = pγ2 and so kpu = γ2 by Lemma 39.

(2 =⇒ 1): Suppose that γ2 = kpu for some morphism u, and then consider the diagram wherein

all squares are pullbacks

A×B E

E B

A×B E A

A×B E

B

E

p

f

γ1
γ1

kpu

α

β

kpu

f

p

As fγ1 = pkpu factors through pkp, we have thatβ, and similarlyα, must be invertible as a consequence

of Theorem 38. Hence γ1 is a monomorphism.

(2 ⇐⇒ 3): Under the adjunction ∆p a Πp, to give a morphism u : ∆p (f ) → kp in the slice

category E/E is to give a morphism ũ : f → Πp
(
kp
)
in the slice category E/B. In other words, to
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give a morphism u such that γ2 = kpu is to give a morphism ũ such that f = Πp
(
kp
)
ũ.

Remark 44. (1) In the case E = Set, the map Πp
(
kp
)
is given by the inclusion

Πp
(
kp
)

:
{
b ∈ B :

∣∣∣p−1 (b)
∣∣∣ ≤ 1

}
↪→ B

(2) We have discussed when arrows pull back into isomorphisms and monomorphisms, but have

not said anything about epimorphisms. It is an easy exercise to prove that an arrow p pulls back

along an arrow f into a split epimorphism if and only if f factors through p, in any category E with

pullbacks.

4.3.1 Distributivity pullbacks with invertible counit

Given morphisms p : E → B and h : A→ E in a locally cartesian closed category E , it is sometimes

the case that the distributivity pullback around p and h has the form

E B

A Y

p

Πp (h)

p′

h

This happens precisely when the counit component εh : ∆pΠp (h) → h is invertible. We now give

sufficient (but not necessary) conditions for this component to be invertible.

Proposition 45. Given a morphism u : A → Ep, if we take a distributivity pullback around p and

kpu, then the counit component ε : ∆pΠp
(
kpu

)
→ kpu is invertible.

Proof. To see that the counit component ε given below is a split epimorphism, form the pullback

around p and kpu given by Theorem 38

X

A

E

Y

B

A

A

p

Πp
(
kpu

)
p′

kpu

ε
pkpu

βα

and apply the universal property of the distributivity pullback to construct the morphisms α and β.

Furthermore, to see that ε is a monomorphism assume that εa = εb for two morphisms a, b : Z → X

and consider the pullback around p and kpu
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X

Z Z

E

Y

B

A

p

Πp
(
kpu

)
p′

kpu

ε

εa = εb

pkpuεa = pkpuεb

p′b p′ba b

which forces a = b by the uniqueness of the induced arrow into the distributivity pullback. Hence ε is

invertible as required.

Remark 46. It is tempting to say that the counit of ∆p a Πp at an object h is invertible if and only

if the unit of Σp a ∆p is invertible at an object h. This would mean that εh : ∆pΠp (h) → h is

invertible if and only if h has the form h = kpu; however this is clearly false. For example consider

the distributivity pullback around a morphism p : E → B (which is not mono) and h = 1E . In this

case εh is invertible, but h = 1E does not have the required form.

Corollary 47. If p is a monomorphism, then any distributivity pullback around p : E → B and

another morphism h : A→ E has invertible counit component.

Proof. This is since kp is invertible when p is a monomorphism as shown in Corollary 41, and so we

may write h = kpu where u = k−1
p h.

Another corollary of Proposition 45 is that if an arrow pulls back into an isomorphism, then this

isomorphism necessarily arises from pulling a monomorphism back along itself. We will state this

result with only those isomorphisms which are identities for simplicity.

Corollary 48. In a locally cartesian closed category E , any pullback square in which p pulls back

into an identity admits a factorization

E B

A A

= A X

E B

A A

p

p``

p′

p′
`

p

Πp (`)

Proof. Applying Theorem 43 we see that ` is of the form kpu since p pulls back into an identity,

which is a monomorphism. Hence the distributivity pullback around p and ` has invertible counit

component. That the arrow p′ above is a monomorphism is equivalent to ` factoring through kp by the

same theorem.
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4.3.2 Universal property

Given a morphism p : E → B in a locally cartesian closed category E , we may consider the

distributivity pullback around p and kp given by the diagram

Ep

E

Y

B

Ep

p

Πp
(
kp
)

p′

kp

The universal property of this distributivity pullback shows that it is the terminal object in the category

of pullbacks of the form

E B

A×B E A

p

f

γ1

γ2

for which γ1 is a monomorphism, since by Theorem 43 γ1 is a monomorphism if and only if this

pullback is a pullback around p and kp.

4.4 Extending pullbacks along singleton fibers

In the next chapter we will often want to pull a morphism ` : C → E back along the inclusion of

the singleton fibers of p, namely kp : Ep ↪→ E. We now demonstrate that such a pullback has a

particularly simple form if ` arises from pulling back a morphism along p.

Proposition 49. If the right square below is a pullback, then there exists a pullback as on the left

(where u is uniquely determined since kp is mono)

E B

C DCq

Ep p

t

q

`

kq

kp

u

Proof. Given the pullback square on the right, we can form the pullback (X, a, b) of ` and kp as below,

and then since tqb = pkpa we know that if we extend the diagram with pullback squares to
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E B

C D

CC ×D C

C ×D X X

q

γ1

γ2

X

Ep

b

ζ1

ζ2

p

t

q

`

b

kp

a

then ζ1 is invertible by Theorem 38. Hence we may write qb = qkqm for some morphism m again

by Theorem 38, and so b = kqm by Lemma 39. Note that since kp is mono (and pullbacks preserve

monos), we know that ∆`
(
kp
)
= b = kqm is mono, and som is also a monomorphism.

Now observe that in the top pullback of b and γ1, we could have just taken the pullback of kq and

γ1 instead. Again this would give an invertible top arrow by Theorem 38, and so we can conclude that

tqkq = pkpu for some u by the same theorem. Since tq = p` this says p`kq = pkpu, which implies that

`kq = kpu by Lemma 39. But considering the diagram

Ep E

X A

Cq

kp

`

b = kqm

a

h

kq

u

where h is the induced map into the pullback, we see that kqmh = kq and since kq is mono this means

mh = 1Cq
. We also know that m is mono and so since mhm = m we have hm = 1X as well. Thus

m defines an isomorphism between X and Cq, and so we have the composite

E B

C DX

Ep

Cq

Ep p

t

q

`

b

kp

au = am−1

m−1

with bm−1 = kq as required.
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In order to motivate this chapter let us look at the relationship between Span (Set) and Poly (Set).

Recall that the 1-cells in Span (Set) and Poly (Set) are analogous to linear and polynomial maps

in many variables. Let us consider one variable maps for simplicity.

Trivially, a polynomial of the form ax (which we may think of as a 1-cell in Span (Set)) may be

written as the polynomial 0 + ax + 0x2 + · · · (which we may think of as a 1-cell in Poly (Set)). We

denote this inclusion of “spans” into “polynomials” by the functionR. Conversely, given a polynomial

a0 + a1x + a2x
2 + · · · we may extract the term a1x. We denote this reflection from “polynomials” to

“spans” as L. It is clear that the inclusion R of “spans” into “polynomials” is functorial, i.e. that

R (ax) ◦R (bx) = R (ax ◦ bx) = 0 + abx + 0x2 + · · ·

But this is not so for our reflector L mapping “polynomials” into “spans”; for example

L
(
x2
)
◦ L (x + 1) = 0 ◦ (x + 1) = 0

differs from

L
(
x2 ◦ (x + 1)

)
= L

(
x2 + 2x + 1

)
= 2x

However, if we restrict ourselves to polynomials of the form a0 + a1x, which we will call “mono

polynomials”, then we indeed have functoriality since

L ((a0 + a1x) ◦ (b0 + b1x)) = L (a0 + a1 (b0 + b1x)) = a1b1x
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and

L (a0 + a1x) ◦ L (b0 + b1x) = a1x ◦ b1x = a1b1x

Similarly, if we restrict ourselves to polynomials for which the constant term vanishes, i.e. those

of the form∑
n≥1 anx

n (which one often does in the context of composing formal power series), then

L is functorial. We will call these “epic polynomials”. In fact the mapping L is also functorial on

epi-mono factorizations, i.e.

L

(a0 + a1x) ◦
∑
n≥1

bnx
n

 = a1b1x = a1x ◦ b1x = L (a0 + a1x) ◦ L

∑
n≥1

bnx
n


Now considering this from a more categorical viewpoint, we ask if this may be categorified to

give an adjunction between L and R : Span (E ) ↪→ Poly (E ), and in particular is this a reflection or

a coreflection. We may also ask if L is functorial if we restrict ourselves to polynomials of the form

E B

I J

s t

p

for which p is a monomorphism, or alternatively if we restrict ourselves to polynomials for which p is

a regular epimorphism in a regular category E .

Remark 50. It turns out that the categorification of the mapping L : ∑n≥0 anx
n 7→ a1x corresponds

to extracting the singleton fibers, and so we will make considerable use of the previous chapter.

5.1 The coreflector

We intend to define a local coreflection in LaxIcon

Span (E ) > Poly (E )
R

L

where R is the inclusion and L is the coreflector. (Note that L is the right adjoint to R here; however,

we will later flip the adjunction by reversing the 2-cells.) It is clear how to define the inclusion R, but

it remains to define our categorification of the mapping L : ∑n≥0 anx
n 7→ a1x.

5.1.1 Defining the coreflector locally

We will define our coreflector L by reversing the 2-cells in Span (E ) and Poly (E ) and applying

Proposition 18. The first step is to define our family of adjunctions
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Span (E )co (I, J ) ⊥ Poly (E )co (I, J ) , (I, J ) ∈ Eob
RI,J

LI,J

To do this, we first define the family of functors

LI,J : Poly (E )co (I, J ) → Span (E )co (I, J )

by the assignment

E B

I J

C D

7→ I

Ep

J

Cq

s

s′ t′

t

p

q

skp tpkp

` t

s′kq t′qkq

∆kp (`)

Remark 51. Note that Proposition 49 shows that ∆kp (`) may be realized as a morphism Cq → Ep

uniquely, so that this is indeed well defined.

We then define the family of functors

RI,J : Span (E )co (I, J ) → Poly (E )co (I, J )

by the inclusion
E E

I J

C C

7→I

E

J

C

s

u v

ts t

f f

u v

f

To see that this indeed gives a family of adjunctionsLI,J a RI,J , note that wemay take ε : LI,JRI,J →

1 simply as the identity, and take our η : 1→ RI,JLI,J to be given at a polynomial P = (t, p, s) by

E B

I J

Ep Ep

sfpb

s

skp tpkp

t

p

kp pkp

In other words, our η consists of the singleton fiber pullbacks. For the triangle identities, note that if p

is an identity above then this 2-cell ηP may be taken to be an identity. Moreover, if we apply L to the

component of η at (t, p, s) we get an identity 2-cell since ∆kp

(
kp
)
= 1Ep

as kp is a monomorphism

(with a suitable choice of the pullback functor ∆kp).
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5.1.2 Extending the coreflector

Clearly the family of inclusions RI,J extend to a pseudofunctor (and in particular a lax functor)

R : Span (E )co → Poly (E )co, and so we may apply Proposition 18 without axiom L3. The loss

of axiom L3 means the induced oplax left adjoint L : Poly (E )co → Span (E )co might not have

invertible constraints.

Reversing the 2-cells to dispose of the “co” on the bicategories flips the adjunction, leaves R as a

pseudofunctor and turns the oplax L into a lax L. We thus have the following result.

Theorem 52. Given a locally cartesian closed category E , the lax functor L : Poly (E ) → Span (E )

defined by the assignment

E B

I J

X Y

7→ I

Ep

J

Xq

s

u v

t

p

q

skp tpkp

a b

ukq vqkq

∆kq (a)

with kp and kq defined as in Definition 33 is right adjoint to the inclusion R : Span (E ) ↪→ Poly (E )

in LaxIcon. Moreover, composition with the maps L and R induce an equivalence

LaxIcon (Span (E ) ,C ) ' LaxIcon (Poly (E ) ,C )inv sfpb

where the RHS consists only of those functors F : Poly (E ) → C which map all 2-cells of the form

Ep Ep

E B

E B

sfpb

kp pkp

p

kp pkp

into isomorphisms. Note that it suffices to consider only these 2-cells since a general ηP comes from

whiskering this with Σt and ∆s.

5.2 Functoriality on monic and epic polynomials

In this section we show that if we restrict ourselves to polynomials P = (t, p, s) for which p is

a monomorphism, or alternatively if we restrict ourselves to polynomials for which p is a regular

epimorphism in a regular category, then this lax functor L : Poly (E ) → Span (E ) becomes a

pseudofunctor (or equivalently the oplax L : Poly (E )co → Span (E )co reduces to a pseudofunctor).
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5.2.1 A distributivity pullback lemma

Since pullbacks are symmetric, the pullback pasting lemma applies whether we are composing pull-

backs horizontally or vertically. However, this is not the case for distributivity pullbacks. The

horizontal “distributivity pullback lemma” is described in [12, Lemma 2.2.4]. Here we prove the

version concerning composing distributivity pullbacks vertically.

Lemma 53 (Vertical distributivity pullback lemma). Suppose we are given a diagram of the form

• •

•

•

•

•

• •

•

dpb

pb

pb
q

p

r

u

v

a

b

ε

d c

e

Then if the outside diagram is a distributivity pullback around (p, ab), the top pullback is a distributivity

pullback around (q, c).

Proof. Suppose we are given a pullback around (q, c) which consists of morphisms ṽ, r̃ and ε̃ such

that qcε̃ = ṽr̃. Since the outside is a distributivity pullback around (p, ab), there are induced arrows α

and β such that dεα = dε̃, rα = βr̃ and uvβ = uṽ.

• •

•

•

•

•

• •

•

dpb

pb

pb

• •

q

p

r

u

v

a

b

ε

d c

e

ṽ

ε̃dε̃

r̃

α β

We now check that εα = ε̃ and vβ = ṽ. Note that in order to prove that εα = ε̃ it suffices to show

that cεα = cε̃. This is because if cεα = cε̃ it then follows that εα = ε̃ by uniqueness in the following

diagram wherein the bottom right square is a pullback
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• •

• •

•

e

b

d

c

ε̃

εα

cεα = cε̃

dεα = dε̃

The fact that cεα = cε̃ and vβ = ṽ follows from the uniqueness of the induced arrows into the bottom

distributivity pullback via the diagram

• •

•

• •

• •
cε̃ cεα ṽ vβ

dpb

ecεα = bdεα = bdε̃ = ecε̃ q

p

r̃

u

uvβ = uṽ

a

e

For uniqueness, note that the given pullback (ṽ, r̃, ε̃) around (q, c) may be extended to the pullback

(uṽ, r̃, dε̃) around (p, ab). Supposing we are given two morphisms (α, β) and (γ, δ) of pullbacks

around (q, c) from (ṽ, r̃, ε̃) to (v, r, ε), we get two morphisms with the same data, (α, β) and (γ, δ),

from (uṽ, r̃, dε̃) to (uv, r, dε). By the fact that the outside diagram is a distributivity pullback we

conclude (α, β) = (γ, δ).

5.2.2 Whiskering on the right

We now consider whiskering a 2-cell ηP by a polynomial Q on the right. Our goal here is to show

that if P is a regular epi polynomial, or if Q is a mono polynomial, then L (QηP ) is invertible. We

first calculate the resulting 2-cell QηP by applying the universal property of polynomial composition

given in Proposition 14; this resulting 2-cell is given by the diagram
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E B

I J

X Y

K

•

• •

Ep Ep

•

•

••

• • •

ũ

ũ

kp

ee′

q′′

Πq
(
t′
)

p′′

ε
ε

∆u
(
tpkp

)
Πq
(
∆u
(
tpkp

))
β

u′′

p′

α γ

w

pkp

s t

p

u v

qu′
t′

where α, β and γ are the induced arrows into the polynomial composite. Now as p′′ pulls back into an

isomorphism, we must have that α = kp′′h and β = p′′kp′′h for some h. We hence have a diagram

• •

•

•

•

•

• •

•

dpb

pb

pb
q′′

q

w

Πq
(
t′
)

γ

t′

p′kp′

h

∆kp′
(
e′
)

p′′kp′′

e

where the square on the LHS is the pullback composite

• •

• ••

•
p′

e

p′′

e′

kp′′

kp′

∆kp′
(
e′
)

given by Proposition 49. Now by the same proposition we know that t′p′kp′ is the same as ∆u
(
tpkp

)
modulo an isomorphism, since we have the pullback composite

B J

• X

EEp

• •

t

u

t′

u′

kp

kp′ p′

p

u′′∆kp

(
u′′
)

Since the outside is a distributivity pullback around q and t′p′kp′ � ∆u
(
tpkp

)
we conclude that the

top pullback is a distributivity pullback around q′′ and p′′kp′′ . Hence we may write γ = Πq′′
(
p′′kp′′

)
.

It remains to check that in the diagram
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• •

• ••

•

•

•
q′′

γ = Πq′′
(
p′′kp′′

)w

p′′kp′′h

p′′

kp′′h

kq′′p′′

φ

kw

φ is invertible. But φ is invertible if and only if q′′p′′kq′′p′′ factors through Πq′′
(
p′′kp′′

)
, using the fact

that Πq′′
(
p′′kp′′

)
is mono as p′′kp′′ is mono and Theorem 38. That is, φ is invertible if and only if there

is a morphism q′′p′′kq′′p′′ → Πq′′
(
p′′kp′′

)
in the slice E/B, which corresponds under the adjunction

∆q′′ a Πq′′ to a morphism ∆q′′
(
q′′p′′kq′′p′′

)
→ p′′kp′′ . But due to Theorem 38, there exists a morphism

∆q′′
(
q′′p′′kq′′p′′

)
→ p′′kp′′ , i.e. a factorization of ∆q′′

(
q′′p′′kq′′p′′

)
through p′′kp′′ , if and only if in the

pullback composite

• •

• •

••

∆q′′
(
q′′p′′kq′′p′′

)
q′′δ

q′′p′′kq′′p′′

ξ p′′

ξ is invertible. Upon noting that the outside square is actually the singleton fiber pullback about q′′p′′,

we see that δξ defines an isomorphism and so ξ is a split monomorphism and δ is a split epimorphism.

Now if p′′ is a regular epi, then so is ξ making ξ invertible. Alternatively, if q′′ is mono then δ must also

be mono, making δ invertible, and so ξ = δ−1 (δξ) is also invertible. Hence φ defined earlier is indeed

invertible, and so we have shown L (QηP ) is an isomorphism provided P is an epic polynomial, or Q

a mono polynomial.

5.2.3 Whiskering on the left

Similarly to the previous result, we aim to show that if P is an epic polynomial, or if Q is a mono

polynomial, then L
(
ηQP

)
is invertible. We again calculate ηQP using the universal property of

polynomial composition from Proposition 14, given by the diagram
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E B

I J

X Y

K

•

• ••

•

ee′

q′′

Πq
(
t′
)

p′′

u′′
p′

s t

p

u v

qu′
t′

Xq Xq

kq

qkq

• ••

t̃ t̃

p̃

βα γ

We will first show that γ is merely q′′kp′′ by making use of the universal property of singleton fiber

pullbacks described in Definition 42.

Lemma 54. The pullback square in the above diagram

• •

• •

q′′

γβ

is actually a singleton fiber pullback.

Proof. To prove this square is a singleton fiber pullback it suffices to show that this square is terminal

among pullbacks of the form

• •

• •

q′′

q′′``

So let ` be any morphism giving such a pullback, and consider the commuting diagram

• •

• •

•

• •

• •

q′′

γβ

e

t′
Πq
(
t′
)

q

kq t̃

` q′′`



52 Polynomial reflections

with our goal being to find a unique y such that βy = `. We note that t′e` = kqx for a unique x by

Theorem 43, as q pulls back into the identity monomorphism. Now considering the pullback diagram

• •

• •

••

•

e`

x
y

t′

t

kq

t̃

r

u′ u

we see that x = t̃y for some y, and so t′e` = kq t̃y. It remains to show that our y satisfies βy = `.

We observe that since the commutivity property of the universal property of polynomial composition

forces u′eβ = ∆t
(
ukq

)
in the diagram for ηQP above, we have r = eβ by uniqueness of the induced

arrow into the pullback
(
u, u′, t, t′

)
above. Forming the pullback around q and t′

• •

• •

•

• •

q′′
e

t′
Πq
(
t′
)

q

e` = eβy

qt′e`

βy` q′′`q′′βy

and noting that both ` and βy satisfy the property of the induced maps into the distributivity pullback,

we see that βy = ` by uniqueness. Lastly, let us suppose that we have two solutions y1 and y2 such

that βy1 = βy2 = `. Then as t′eβ = kq t̃ we have kq t̃y1 = kq t̃y2 = t
′e` and so as kq is mono t̃y1 = t̃y2.

Hence both y1 and y2 give a commuting diagram

• •

• •

••

•

u′eβy1 = u
′eβy2

t̃y1 = t̃y2

t′

t

kq

t̃

r = eβ

u′ u

y1

y2

which forces y1 = y2 by uniqueness.

Finally, we consider the composite of pullbacks



5.2 Functoriality on monic and epic polynomials 53

• •

• •

••
q′′p′′kq′′p′′

p′′ψ

ϕ q′′

and note that this is just the singleton fiber pullback about q′′p′′, so the composite ϕψ is invertible,

and so ψ is split mono and ϕ is split epi. If p′′ is a regular epi, then so is ψ forcing both ψ and ϕ to be

invertible. If q′′ is mono then so is ϕ, forcing both ϕ and ψ to be invertible. As ϕ is invertible in either

case, we may write q′′p′′kq′′p′′ = q′′kq′′x for some x by Theorem 38. It follows by the same theorem

that in the pullback

• •

• •

q′′p′′kq′′p′′

γ = q′′kq′′φ

φ is invertible, as required. We have now shown that if P is an epic polynomial, or if Q is a monic

polynomial, then L
(
ηQP

)
is invertible.

5.2.4 Functoriality on epic and monic polynomials

We now give sufficient conditions by which the oplax constraints of L are invertible.

Corollary 55. If P is a regular epi polynomial, or Q mono polynomial, then the oplax constraint

L (QP ) → L (Q) L (P ) is invertible.

Proof. It suffices to show that L
(
ηQ ∗ ηP

)
is invertible, as the invertibility of this guarantees the

invertibility of the oplax constraints of L by the argument of Proposition 18. Now the horizontal

composite ηQ ∗ ηP may be defined in terms of whiskering as

ηQ ∗ ηP = ILQηP ◦ ηQP

We have shown that L (ILQηP ) is invertible in ’whiskering on the right’, and that L
(
ηQP

)
is

invertible by the argument in ’whiskering on the left’. As L is strictly functorial with respect to

vertical composition of 2-cells, we see that L
(
ηQ ∗ ηP

)
= L (ILQηP ) ◦ L

(
ηQP

)
is invertible as

required.

Remark 56. In particular, this means the reflectors L|mono : Poly (E )comono → Span (E )co and

L|epic : Poly (E )coepic → Span (E )co are pseudofunctors, where Poly (E )mono denotes the full
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sub-bicategory of Poly (E ) containing only monic polynomials, and Poly (E )epic denotes the sub-

bicategory containing only regular epi polynomials, where E is a regular category.

5.2.5 Universal properties of epic and monic polynomials

Applying Proposition 15 to the adjunction L ` R : Span (E ) ↪→ Poly (E )mono/epic in Icon it follows

that for any locally cartesian closed category E ,

Icon (Span (E ) ,C ) ' Icon
(
Poly (E )mono ,C

)
inv sfpb

and for any locally cartesian closed regular category E ,

Icon (Span (E ) ,C ) ' Icon
(
Poly (E )epic ,C

)
inv sfpb

Remark 57. (1) Note that L (which is a pseudofunctor when restricted to epic or monic polynomials)

is right adjoint to the inclusion pseudofunctor R in Icon, LaxIcon, and OplaxIcon, and so the

universal property of the adjunction (R a L) |mono/epic given by Proposition 15 we just mentioned in

the case of Icon, also holds in LaxIcon and OplaxIcon. (2) Note that these equivalences may

be regarded as restrictions of the universal properties of monic and epic polynomials with cartesian

2-cells.



6
Future directions

We are now familiar with the universal property of spans

Icon (Span (E ) ,C ) ' Beck (E ,C )

and the universal property of relations

Icon (Rel (E ) ,C ) ' Beckreg epi (E ,C ) ;

however, it remains to find a universal property for the bicategory of polynomialsPoly (E ). We expect

the bicategory of polynomials with general 2-cells (in which case we have adjunctions between 1-cells

Σp a ∆p a Πp) to have a universal property analogous to that of spans, involving a Beck condition and

a distributivity condition. With the cartesian 2-cells (for which we don’t have an adjunction ∆p a Πp),

we expect the universal property to be more complicated; though in this case we may make use of our

adjunction between the inclusion R and coreflector L:

Span (E ) ⊥ Poly (E ) .
R

L

In future work we aim to derive universal properties of the bicategoryPoly (E ) with both the cartesian

and general 2-cells. We then wish to develop a theory of Poly (E )-enriched categories (in the context

of indexed/fibered categories) as has been developed for Span (E )-enriched categories. Furthermore,

we aim to describe algebraic structures such as groups, monoids and modules in terms of Poly (E )-

enriched categories.
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